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Abstract

Abstract

Wind tunnel tests were conducted in a simulated atmospheric boundary layer on a 
model of a circular, single-cell building possessing a dominant circular wall opening. 
The roof of the model was either rigid or made from a flexible membrane material 
with a variable tension and the internal volume of the model was also adjustable in 
discrete increments. A total of one hundred and fifty model configurations were 
investigated; five different roof tensions, three cavity volumes, two windspeeds and 
five opening azimuth angles.

The local mean external pressure distribution around the model was insensitive to 
changes in Reynolds number over the range 1,4xl05 < Re < 2.5xl05, whereas, the 
mean internal pressure distributions were self-similar for Reynolds numbers above 
1.8xl05. Reynolds numbers were based upon the diameter of the model and the mean 
windspeed at roof height and for Reynolds numbers above 1.8xl05 the mean internal 
pressures were equal to those measured on the external walls.

Attention was focussed on the steady-state dynamic response of the cavity pressure 
within the model and its sensitivity to changes in the flexibility of the roof. It was 
shown that turbulent buffetting present on the external wall pressure spectra was 
transmitted to the internal pressure fluctuations and that the phenomenon of 
Helmholtz oscillation, due to resonance of the air contained within the dominant 
opening, occurred for all the configurations tested.

Increased damping of the Helmholtz mode was effected by increasing the flexibility 
of the roof, increasing the mean windspeed, increasing the cavity volume and rotating 
the opening away from the line of the approach flow. Indeed, differences in the 
magnitudes of the internal and external root-mean-square pressures were attributed to 
changes in the magnitude of the resonant peak due to Helmholtz oscillation. An 
apparently universal relationship between the magnitude of the measured spectral 
response at the Helmholtz frequency and cavity volume scaling was determined.

Comparisons between the measured and predicted magnitudes of the ratio of internal 
to external pressure fluctuations, using the theoretical approach of Vickery & 
Bloxham (1992), were satisfactory when the opening was oriented to windward whilst 
at other azimuth angles the theory overestimated the root-mean-square cavity 
pressure. However, it was concluded that accurate determination of the empirical loss 
and inertia coefficients may improve these comparisons.

IX



Notation

a
c

Co
d

fo

k
k[ ,k2

eff ’^e

n
m

P
Pf
Pan Po
q

r
t

tg
u*
x

y
z

A
Cj, C2

Cd
C,

D
E
F
G i, G2, g 3
H

Jo

Ka

Notation

area; 1/dispersion 
damping factor 
sonic velocity
displacement thickness; opening diameter
frequency
stiffness
empirical coefficients 
effective length of opening 
length of opening 
frequency 
mass
probability; pressure 
peak factor 
atmospheric pressure
dynamic pressure; generalised co-ordinate of roof
displacement
radius; frequency ratio
membrane thickness; time
period of peak pressure
friction velocity
displacement
reduced variate
vertical distance
roughness length

area
empirical coefficients 
orifice discharge coefficient 
orifice inertia coefficient 
mean pressure coefficient 
root-mean-square pressure coefficient 
diameter of wind tunnel model 
elastic modulus 
flexibility factor 
gain functions
height of model; frequency response function 
Bessel function of first kind, zero order 
bulk modulus of air

X



Notation

Lx
M], M2 
N
"ORDR"
P
Re
S{n}

T
U
Uref>Uro0f
V

effective bulk modulus 
building bulk modulus 
longitudinal turbulence length scale 
empirical coefficients 
no. of sample points 
orifice-resonator dimension ratio 
probability 
Reynolds number 
power spectral density
normalised power spectral density at the natural 

frequency, w(1 
roof tension 
mode, mean windspeed
mean reference windspeed (roof height of model) 
cavity volume; flow velocity through opening

a
b
f

g
1
m

q
r
s
w, W

y
z

power law exponent 
refere to chapter 2 
azimuth angle of opening 
ratio of specific heats 
scale factor 
mass/area
azimuth angle of external pressure; phase angle
air density
standard deviation
circular frequency
roof mode shape
damping factor (as a fraction of critical)

XI



Chapter 1: Introduction and Literature Survey

Chapter 1: Introduction & Literature Survey

[1-1] Introduction

The distribution of external pressures over low and high-rise buildings has undergone 
considerable investigation at both model and full-scale and the results from this 
research permit the overall wind loads on many different structures to be determined. 
However, when considering the loads sustained by individual walls, windows or 
across a roof, then the net load is dependent upon the pressure differential across the 
individual partition and the magnitude of the internal pressure is potentially as 
significant as the external loading. Nevertheless, quantification of an internal pressure 
for the purposes of design is complicated by the variability of the factors which 
influence the magnitude of the internal pressure. The internal pressure is principally a 
function of the external pressure distribution (assuming that any mechanical 
pressurisation by ventilation systems is small or non-existent) which is transmitted to 
the interior of the building by openings and porosity in the envelope of the building; 
thus, the area, length, number and location of these openings is important and the 
designer is faced with the problem of choosing a worst-case loading scenario in order 
to obtain a conservative estimate of the likely maximum in-service loading. The 
influence that the location of an opening has on internal pressure and consequently, 
the net loading across individual walls is illustrated in figure 1.1,

- >

Figure 1.1: Influence of a windward and leeward opening on internal pressure

In addition to the simple examples shown above it has been shown at both model and 
full-scale that the presence of a dominant opening can bring about a resonant 
phenomenon called Helmholtz oscillation due to the motion of the mass of air 
contained within the opening. There are likely to be two different, yet significant, 
structural loading problems associated with this so-called Helmholtz resonance 
phenomenon; the amplification of internal pressure fluctuations at the Helmholtz 
frequency to levels where failure of structural components may occur and/or fatigue

1.1



Chapter 1: Introduction and Literature Survey

failure of structural components due to the effects of repeated loading and unloading 
at the Helmhotz frequency even when the amplitudes of the pressure fluctuations are 
relatively small. The former loading mechanism can be controlled by increasing the 
damping of the system to minimise the amplitude of the oscillation and/or measures 
can be taken at the design stage to select an opening geometry such that the natural 
frequency of the oscillation is out in the tail-end of the wind-spectrum and therefore, 
unlikely to be excited to large amplitude.

The fatigue loading aspect of Helmholtz resonance is difficult to quantify from the 
results of wind tunnel experiments but may make a contribution to the failure of 
certain fixtures and fastenings on full-scale buildings in strong winds, though this is 
unconfirmed in practice. During a storm it is frequently observed that windbome 
projectiles cause failure of windward glass cladding thus raising the load on the roof 
and leeward walls (see figure 1.1) as well as creating conditions which are conducive 
to the occurrence of Helmholtz oscillation. If the latter does occur then it is not 
inconceivable that the cyclic loading due to the resonance may result in weakening 
and even failure of local fixtures and fastenings and thus reduce the ability of the 
primary components to withstand the already high net loading across certain parts of 
the building envelope. The possibility for the above as a mechanism for failure is lent 
some credence by the fact that the more catastrophic failures of major building 
components during storms occur some time after the inital appearance of a windward 
opening. In the above scenario it is assumed that after the failure of the windward 
opening the building envelope remains effectively sealed until the primary failure 
occurs. In reality it is likely that other local failures may occur, for example failure 
of a leeward window, which would generally relieve the maximum net loads across 
the building envelope.

If the building envelope is relatively flexible, then the Helmholtz mode is perceived 
as a heaving motion of the skin of the structure (not dissimilar to the collapse and 
expansion of a paper bag if one places a bag over the mouth and breathes). It has 
been shown that this flexibility can be treated theoretically as an effective increase in 
the cavity volume and as a consequence, reductions in the resistance of the building 
envelope to variations in the internal pressure bring about a decrease in the Helmholtz 
frequency. Although there have been numerous papers concerned with the dynamics 
of internal pressure inside building cavities and some of these have dealt exclusively 
with Helmholtz resonance it was felt that there was a need to experimentally quantify 
the influence that flexibility of the building envelope has on internal pressure 
variations and this forms the main subject of this thesis.



Chapter 1: Introduction and Literature Survey

There are many conventional buildings which are relatively flexible, e.g. industrial 
prefabricated buildings, but there has also been an increase in the number of civil 
engineering structures of extended lifespan, which may loosely be defined as a life 
span in excess of twenty years, which utilise membrane materials as primary or 
secondary load bearing components. The remainder of this chapter contains a review 
of the loading characteristics and properties of membrane structures with particular 
emphasis on buildings which form an effectively enclosed cavity covered by a 
flexible roof. In addition, the existing body of knowledge concerned with the internal 
pressure fluctuations of buildings is briefly discussed (more detailed analysis is 
presented in chapter 2) and finally, the factors affecting the external flow around 
surface-mounted, low-rise bluff bodies are presented.

[1-2] Membrane Structures in Civil Engineering Applications

[1-2-1] Introduction

In many branches of engineering it would appear that the mass of structures is 
continually being reduced with more lightweight and flexible components replacing 
the relatively massive and stiff older designs. This process is certainly true in the 
aerospace and civil engineering industries. The main reasons for the reductions in 
structural mass are improvements in the understanding of in-service loading 
mechanisms, which have lead to improved design procedures, and advances in 
materials technology, which have improved the range, quality, and material 
properties available to the structural engineer and architect.

Focussing on composite materials as applied to civil engineering structures it is 
apparent that one of the significant advances over the past thirty years has been the 
success of composite fabric membranes as a primary load bearing material in the 
design of extended life span structures. Indeed the advent of materials such as PVC 
coated polyester and Teflon coated glass fibre has opened the door to a completely 
new sphere of architectural design with particular successes in the design of large 
span lightweight membrane roof structures.

Clearly, thin fabric materials, with an area density of order lkg/m2, are highly 
susceptible to static loads caused by wind, rain and snow and by the dynamic loads 
due to wind alone. The structure must be designed so that under all anticipated 
loadings the fabric remains in tension and consequently, the membrane must be 
pretensioned by a cable system or by an over pressure within the building cavity (or 
some hybrid of the two) which is capable of sustaining the membrane tension over the 
whole surface of the membrane under all conditions of loading. In addition the
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Chapter 1: Introduction and Literature Survey

maximum tension induced within the fabric should not exceed the breaking stress of 
the fabric.

The often unique forms that tensile structures take are generally unsuitable for 
inclusion in wind loading codes of practice and, therefore, a wind tunnel investigation 
is required to obtain a realistic estimate of the mean pressure distribution around the 
structure; the mean pressure coefficient data can subsequently be used as loading 
terms in computer analyses of mean membrane stress and deflection. However, the 
inherent flexibility of membrane structures implies that they could undergo relatively 
large structural deflections compared with the response of conventional buildings such 
that the deflection causes a significant change in the pressure field on the membrane 
surface which then feeds back to change the deflected shape of the membrane. This 
feedback loop could produce an aerodynamic instability that would, at least, increase 
the fatigue load on the membrane and in the worst case produce membrane stresses in 
excess of the design values and lead to failure of the fabric material. Aerodynamic 
instabilities as described above are not generally amenable to theoretical analyses and 
consequently, the use of an aeroelastic wind tunnel model becomes a viable option for 
the structural engineer. Nevertheless, construction of an accurately scaled flexible 
model can be extremely difficult, if not impossible, due to the limitations of material 
availability, and the modelling requirements need careful assessment (see chapter 2).

One of the more successful applications of civil engineering fabric materials has been 
in spanning large open areas like sports arenas which can be both physically and 
mathematically modelled as an enclosed building cavity with vented walls, that 
represent access points, covered by a flexible membrane roof as shown in figure 1.2. 
An attractive feature of this particular configuration from the viewpoint of physical 
modelling is its simplicity because the membrane could be tensioned without the need 
for modelling a cable support system and no complex cutting pattern is required in 
order to obtain the correct geometric form of the roof.

n_

jfroof motion

f
air motion

building cavity

Figure 1.2: Diagram of a vented building cavity with a membrane roof
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[1-2-2] Tensile Structures - An Historical Perspective

The use of fabric shelter in the form of tents has been widespread for centuries, 
however, it is only since the beginning of the twentieth century that applications have 
been extended to increasingly large architectural forms, mainly as a result of 
advances in materials technology. The earliest proposal for a pneumatic structure was 
by Lanchester in 1917 with a patented design for a military field hospital (Dent, 
1977). However, it was not until 1950 that Bird designed and produced inflatable, 
spherical radomes to cover early warning radar antennae for the U.S. Army. The 
military maintained an interest in pneumatic structures throughout the sixties 
exploiting their lightweight, low bulk and cubage, ease of handling and logistical 
support properties (Dietz et al, 1969).

During the fifties and sixties architects like Frei Otto (1967) also began to explore the 
novel design concepts made possible by membrane materials and in 1967 and 1972 
the first and second "International Colloquia on Pneumatic Structures" were held at 
Stuttgart and Delft respectively. Various aspects of designing with membrane 
structures were presented at these two Colloquia, but both concluded that more 
research into the static and dynamic response of the structures to wind loading was 
necessary. The U.S. Pavilion at Expo'70 in Osaka heightened commercial and 
architectural interest and was the first glassfibre air-supported structure.

Despite the regulatory limitations placed upon the designer (Parkinson, 1980) and the 
inherent problems associated with the use of membrane materials such as, fabric tear 
and fire resistance, concepts for membrane applications in civil engineering have 
been many and varied ranging from inflatable walkways to the enclosure of city 
centres (Otto, 1967; Herzog, 1977). Although the latter is probably a long way from 
realisation there has been considerable success in spanning the roofs of large sports 
stadia with cable/air-supported hybrid structures, for example the Pontiac Stadium 
roof in Michigan, the Uni-Dome in Iowa and the Uni of Santa Clara in California 
(Geiger, 1975). One of the largest cable-tensioned membrane roof structures to date 
is that of the Haj airport terminal in Jeddah, Saudi Arabia which covers an area of 
approximately 0.7 square kilometres (Tryggvason et al, 1978).

The codification of data from wind loading research serves to simplify and thus speed 
up the design process, however, only the more "standard" architectural forms such as 
cylinders, spheres and their derivatives are suitable for this purpose and the design 
requirements for air-supported structures of this shape are presented in B.S. 6661. 
Accordingly, the unusual and often unique designs made possible by membrane 
materials are likely to require a program of wind tunnel tests in order to quantify the
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pressure field around the structure as highlighted by the investigations of Sykes 
(1992) on rigid models of tensile structures. This procedure will increase the cost of 
design and delay the construction start date, nevertheless, it is likely that,

'....due to the following factors; low initial cost, low operating costs, 
faster erection and erection of the roof occurring simultaneously with 
other activities below...',

the total cost of the structure will be less than that for a conventional building 
(Geiger, 1975, discussing the air-supported roof on the Pontiac Metropolitan 
Stadium).

[1-2-3] Classification of Membrane Structures

The membrane is a flexible surface structure that carries load by developing a two- 
way tension field and/or tangential shearing stresses; it is unstable, and folds in 
compression (Schodek, 1980). The tensile state is maintained over the design lifetime 
in two ways, pre-stressing if the weight of the membrane is smaller than the 
estimated maximum loads or by internal pressurization. These mechanisms 
correspond to the building classifications as cable-supported or pneumatic structures 
respectively. The cable-supported membrane should be distinguished from cable-net 
constructions because the latter utilise the membrane in a non-structural role as an 
impervious cover over a load bearing cable net, whereas, the former employs the 
membrane as a primary load bearing component that is held in tension by a cable 
framework. Suspended roof systems often comprise a cable-net mesh that is filled in 
with a relatively heavy covering material, the weight of the roof alone is sufficient to 
maintain membrane tension for all the anticipated in-service loads over the lifetime of 
the structure.

Pneumatic structures keep their rigidity by maintaining a pressure differential across 
the membrane and it is possible to divide pneumatic structures into two groups based 
upon the magnitude of this differential pressure. The first of these categories is 
termed air-supported structures and these have been successfully employed as roof 
structures spanning large arenas (Geiger, 1975). These structures are characterised by 
a relatively low overpressure, a few centimetres of water is usually sufficient (Dent, 
1977), within the building cavity and consequently, the users of the building are in 
an environment which is above atmospheric pressure. In contrast the second group, 
termed air-inflated structures, utilise a much larger pressure differential of the order 
a number of atmospheres (Benjamin, 1982) to inflate a tubular or dual-walled 
structure which can then be used in a more conventional building role in the form of
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inflated beams or arches. Simple examples of the two types of pneumatic structure 
are presented in figure 1.3.

Figure 1.3: An air-supported and air-inflated pneumatic structure.

Pneumatic structures are frequently dome-shaped with only a single direction of 
curvature apparent over the membrane, as shown in figure 1.3. Structures with single 
curvature are called synclastic, however, if a tension structure has two directions of 
curvature over its surface then it is said to be anticlastic. This latter shape is 
exemplified by the numerous saddle-type geometric forms that appear in the design 
of cable-supported membrane structures (see Otto, 1967). Large flat areas are 
generally avoided in design because of the large stresses developed within the 
membrane to withstand loads that are applied normal to the surface (Benjamin, 
1982).

[1-2-4] Properties of Full-Scale Membrane Materials

Generally, a monophase material will not fulfill all the mechanical and resistive 
requirements necessary for a full-scale membrane structure. Consequently, a 
composite woven fabric is used as the base fabric which provides stiffness and shear 
flexibility and this base fabric is coated with a polymer to modify permeability and 
environmental resistance. A finishing coat may also be applied to the membrane for 
additional protection. The woven yam base fibre possesses strength and elongation 
characteristics that vary with direction and this directionality combined with a non-
linear stress-strain curve usually requires that a representative design value for elastic 
modulus is chosen (Irwin et al, 1979). A selection of the different components 
currently used to manufacture a membrane along with their relative benefits is 
presented in Figure 1.4, and Table 1.1 summarises the desired properties of the base 
fabric, polymer coat and finishing coat.

Stress relaxation characteristics, of which creep is a particular form, are also 
significant and will result in a reduction of prestress tension over the lifetime of the 
structure. This problem is alleviated by increasing the prestress loading at the design 
stage to take account of any creep that will occur or by incorporating a "jack" system
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Fluoroelastomers
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Figure 1.4: Materials for civil engineering membranes
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into the structural design so that the tension in the membrane can be periodically 
increased. Clearly, the latter technique complicates the structure and increases 
maintenance costs (Benjamin, 1982). Material transluscency and solar reflectivity can 
be varied by polymer coat modifiers offering economic benefits on daytime lighting 
and cooling costs respectively (Morrison, 1980).

Base Fabric | Polymer Coating Finishing Coat

low cost
used as a buffer if polymer 
coating has limitations eg. 

prevention of loss of plasticiser
lightweight

durable
high tensile strength
high tensile stiffness
low shear stiffness

low susceptibility to ageing, 
weathering & discontinuous 

loading
good weather resistance

resistance to degradation by 
U.V. light, moisture, 

biological & chemical attack
dirt repellant

negligible permeability to air & moisture, 
controllable transluscency
weldable (heat sealable)

resistant to extremes of 
temperature & loading

non-flammable
capable of erection, 

dismantling & relocation
able to protect base fabric 

from abrasive damage

Table 1.1: Desired design properties of full-scale membrane materials

Reference Material m

(kg/m2)

t

(mm)

E

(GPa)

Tensile
Strength
(N/m)

Jackson (1983) Glass/PTFE 1.25 to 1.50 0.8 to 
1.0

1.4x10s

Irwin et al Kevlar 49/ 1.1 1 .6xl07
(1979) PVC 1.1

Geiger (1975) Glass/Teflon 4.9 3.0 3 .5 x l0 4 to
1.75x10s

Anseil (1980) Nylon mass increases 5.5
Polyester on moving from 13.8
Aramid top to bottom 62.1
Glass 68.9

Table 1.2: Typical full-scale membrane properties
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Two membrane materials dominate the field of fabric structures at the present time; 
P.V.C. coated polyester and Teflon/P.T.F.E. coated glassfibre. The glass/P.T.F.E. 
has proven very successful for extended lifespan structures, defined as a design 
lifespan in excess of twenty years (Jackson, 1983), because it is both durable and 
self-cleaning (Geiger, 1975; Morrison, 1980). Unfortunately, it is also expensive, 
brittle in failure, suffers if the structure is demountable and is less forgiving of 
cutting pattern errors because of its higher shear rigidity (Parkinson, 1980; 
Dumbleton, 1986). The polyester/P.V.C. system is chiefly used for temporary or 
short-life applications and is significantly cheaper (Parkinson, 1980). A list of some 
of the materials and properties used in constructing pneumatic structures, circa 1972, 
can be found in Dent (1977) and, in addition, typical full-scale values of membrane 
properties are presented in table 1.2. It should be noted that for a monophase 
material the mass per unit area of the membrane is a linear function of membrane 
thickness.

[1-2-5] Loading of Membrane Structures

The atmospheric climate is of great importance when considering the likely 
mechanisms for loading a membrane structure. Both rain and snow can cause 
difficulties due to accumulation of either on the membrane surface and the risk of 
localised buckling because of the increase in deadweight. Snow loading is not a 
serious design problem because generally the snow will slide off curved surfaces 
under its own weight or melt due to heat loss through the membrane, however, the 
difficulties associated with the static problem of "ponding" rainwater have received 
attention (Malcolm & Glockner, 1981). Consequently, the dynamic effects due to 
wind are the major concern for designers and wind loading criteria should be 
accurately known if the need for excessively complex and heavy cable systems and 
prohibitively expensive fabrics is to be avoided.

[1-2-6] Wind Tunnel Investigations on Aeroelastic Models of Membrane 
Structures

It is convenient to discuss the existing papers concerned with the results of 
experiments on aeroelastic models of membrane structures in the following general 
groups,

• tests on air-supported membrane models (generally spherical or cylindrical)

• tests on models of structures with hanging/suspended roofs

• design studies on proposed "real" structures
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[1-2-6-1] Air-Supported Membranes

Early wind loading tests on flexible models of air-supported buildings seem to 
provide much of the information on which B.S. 6661 is based e.g. the tests of Beger 
and Mâcher (1967) and Niemann (1972) which were conducted in uniform, low 
turbulence flows. However, the results of wind tunnel tests on rigid models of dome 
shaped buildings by Nakayama et al (1986) in which the mean pressure distribution in 
three different approach flows (uniform, low turbulence; grid generated turbulence; 
sheared, turbulent flow) were measured seem to imply that in a uniform, low 
turbulence flow the maximum mean suctions tend to be higher than those measured in 
flow simulations more representative of the atmospheric boundary layer. This effect 
was most pronounced for domes where h/d (defined in figure 1.5) was greater than 
0.5 and reductions in h/d generally caused a reduction in the magnitude of the 
loading over the whole roof. Tests by Kawamura & Kiuchi (1986b) showed that the 
maximum mean suctions on rigid dome-type models in a simulated atmospheric 
boundary layer approach flow were similar in magnitude (around -0.7 to -0.9 at the 
top of the dome) to the values reported by Nakayama et al (1986).

Figure 1.5: Definition of the height-to-diameter ratio

B.S. 6661 permits the minimum inflation pressure to be determined as a function of 
the design value of the dynamic pressure, q, for different dome shapes and dome- 
cylinder combinations; the design tensions induced within the membrane are also 
expressed in terms of q and a building dimension. Newman et al (1984) derived an 
expression for the minmium internal gauge pressure of spherical inflated domes in 
terms of the height-to-diameter ratio and the skin friction at the ground, rw, where 
pimin is equal to 180(h/d)rw and h and d are defined in figure 1.5.

Regarding the effect that membrane deflection has on the pressure distribution over 
the models, B.S. 6661 states that,

"....In general, deflection results in lower wind pressures but higher wind 
suctions than those that would be obtained on a rigid structure of the same 
initial shape. The lower the inflation pressure, the higher the wind suction 
becomes....'
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The above is confirmed by the results of Srivastava et al (1984) on a hemispherical 
inflated membrane model where reduction of the pressure ratio, p/q, caused the peak 
suction on the "along-wind" meridian to double in magnitude and move some 30° 
toward the windward face. Srivastava et al (1984) also showed that the deflection of 
the membrane, at a number of points over the surface of the membrane, followed a 
near exponential decrease as the internal pressure ratio, p/q was increased. Similar 
behaviour was reported by Kawamura & Kiuchi (1986b) on wind tunnel models of 
low-rise, air-supported buildings.

Kawamura and Kiuchi (1986 (a&b)) reported that increases in internal pressure 
caused the natural frequency of the building to increase because of the increase in 
pneumatic stiffness, a result that was subsequently confirmed by Mataki et al (1988) 
who added that their medium sized field model (25mx25m plan dimension) of a 
building with an air-supported roof did not vibrate in volume displacing modes. In 
addition, both of the above teams of investigators reported that increases in the 
internal pressure caused the damping of the membrane to be reduced. This is most 
likely due to a reduction in the component of damping due to acoustic radiation, fa, 
which is strongly dependent upon the volume of air displaced by the membrane 
movement (assuming the vibrating membrane to be like an acoustic source (see 
chapter 2)); increasing the internal pressurisation of the building increases the 
pneumatic stiffness and thus reduces membrane deflections.

Finally, the most recent investigation on a model of a hemispherical air-supported 
building was conducted by Kassem & Novak (1992) where the response of the 
internal pressure and the membrane was monitored in a series of atmoshperic 
boundary layer simulations for variations in the internal pressurisation, gradient 
windspeed and internal volume. They found that generally rms deflections of the 
membrane were small compared with mean deflections and that increasing the mean 
internal pressure caused a reduction in the rms internal pressure fluctuations as did 
reducing the internal volume of the model (though sensitivity of the fluctuations to 
the volume change was not as great as the sensitivity to the internal pressurisation).

[1-2-6-2] Suspended Roofs

A section through a suspended or hanging roof structure is shown in figure 1.6 and 
the plan of this building is typically rectangular. Uchiyama et al (1979) showed that 
in a "smooth" approach flow (i.e. low turbulence, uniform velocity from left to right 
in figure 1.6) there was separation from the leading edge of the building and a 
dominant periodicity in the free-shear layer which grew from this separation point. 
However, this regularity in the velocity fluctuations was not apparent in the
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separation bubble which filled the region beneath the shear layer. Nevertheless, when 
a membrane roof was fitted to the models the response of the roof was categorised 
into three distinct types of motion, which were bounded by quite distinct mean 
windspeeds which were in turn dependent upon the sag ratio, S/L.

Figure 1.6: Diagram of a suspended/hanging roof structure

\

A series of papers by Kimoto and Kawamura (1983, 1986) and Kawamura and 
Kimoto (1979) on wind tunnel models of suspended roof structures, which were again 
predominantly conducted in a uniform, low turbulence approach flow, revealed an 
aerodynamic stability in the response of the roof which was characterised by a change 
in the amplitude of the dynamic component of the deflection of the roof as shown in 
figure 1.7. The velocities Us and Up were defined as the starting and peak windspeeds 
at which the instability began and reached a maximum respectively. Experiments 
conducted on a medium-scale field model under the action of a real wind showed 
similar characteristics to the wind tunnel models, though scatter in the results was 
large. Although of interest, the results described in the above series of experiments 
occurred in somewhat idealised circumstances because it was also reported that 
increases in the turbulence intensity of the approach flow reduced the peak amplitude 
and addition of a simple cable truss along the edges of the roof practically eliminated 
the instability.

Matsumoto (1983, 1990) also reported an aerodynamic instability in the first 
asymmetirc mode of model of suspended membrane roofs structures under the action 
of a "smooth" approach flow (in a turbulent shear flow the oscillation did not 
appear). Matsumoto (1983) determined that the self-excited oscillation occurred at a 
reduced velocity, U/fL, of around 1.6 and later (Matsumoto, 1990) proposed a 
mechanism for the instability which was based upon a vortex produced at the 
upstream edge of the roof, through fluid elastic interaction between the roof motion 
and the flow, being convected downstream at a speed roughly equal to the mean 
speed of the approach flow.

Finally, results presented by Uematsu and Uchiyama (1986) on the response of an 
hyperbolic-paraboloid roof to the action of wind also showed evidence of an
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aerodynamic instability which was highly dependent upon the wind incidence. Two 
approach flows were used, one was uniform and of low turbulence (0.5%) whilst the 
other had a turbulence intensity of 6% (it was not clear whether this flow was 
sheared). The instability was dependent upon the reduced velocity, but was also mode 
dependent in that the first instability, which occurred at a relatively low value of 
reduced velocity, induced oscillations in the first asymmetric mode and subsequent 
increases in the reduced velocity produced instabilities in higher modes. It was noted 
that tests on a rigid model to measure the surface pressure fluctuations showed no 
dominant periodicity at any location for any wind direction.

Figure 1.7: Typical behaviour of roof amplitude as a function of windspeed.

[1-2-6-3] Tests on Models of Prototype Structures

A number of investigations involving aeroelastic models of prototype membrane 
structures have been carried out by Tryggvason & Isyumov (1977), Tryggvason et al 
(1978), Irwin et al (1979) and Kind & Wardlaw (1981). The scaling requirements 
which were complied with in each of the above tests were discussed in detail in the 
relevant reports and will be summarised later in chapter two. The first of the above 
investigations was performed on a 1/330th scale model of the proposed Dalhousie 
sports stadium which had an air-supported roof. The model was completely sealed 
and the results from the wind tunnel tests showed that the roof was aerodynamically 
stable for all the wind directions and speeds that were tested. The response of the roof 
was, in the main, due to buffetting of the wind with no large resonant components. 
The mean deflection of the roof was generally upward with a maximum mean 
deflection at the centre of the roof which is in qualitiative agreement with the rigid 
model results on dome buildings by Nakayama et al (1986).

0
Tests on an aeroelastic model of a part of the roof of the Haj airport Terminal in 
Jeddah, Saudi Arabia (Tryggvaon & Isyumov (1978)), showed a similar broad-band 
response of the fabric to buffetting by the wind with no apparent aerodynamic 
instabilities. All the measured responses, membrane deflection and bending moments
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and strains in the supporting pylons, showed fairly smooth, monotonic increases with 
windspeed.

Tests for the retractable roof on the Montreal Olympic Stadium, which was a cable- 
supported roof with no internal pressurisation, were reported by Irwin et al (1979) 
and Kind & Wardlaw (1981). As in the other investigations, no aerodynamic 
instability was found and deflections and forces on the roof and cable system were 
found to increase monotonically with windspeed. It was noted by Irwin et al (1979) 
that excitation of the membrane by acoustic noise within the circuit of the wind tunnel 
was responsible for much of the measured roof response. The importance of carefully 
selecting the most relevant scaling parameters when modelling an aeroelastic building 
was highlighted in the discussion on scaling requirements by Kind & Wardlaw (1981) 
(see chapter two).

In reality most buildings require openings for access and ventilation and thus the use 
of an essentially air-tight model, with an additional and large pneumatic stiffness due 
to the air contained within the cavity of the building, is not a good representation. 
Although the results reported by Elashkar & Novak (1983) and more recently by 
Novak & Kassem (1990a; 1990b) and Kassem & Novak (1990) were conducted on 
relatively idealised representations of buildings with membrane roofs which had no 
supporting cable network, it could be argued that these models were more realistic 
because they attempt to investigate the effect that venting of the building has on the 
response of the membrane. Kassem and Novak (1990) reported that the response of 
the roof of their model, which was similar to that shown in figure 1.2, under zero 
wind conditions was dependent upon the total area of the openings and could be 
modelled as a two-degree-of freedom system with a fundamental mode due to 
Helmholtz resonance and a second mode attributed to the "kettledrum" frequency (see 
Kinsler & Frey, 1962). The investigations of Novak & Kassem traverse a gap 
between the response of membranes to wind and the role played by internal pressure 
fluctuations on the motion and loads across both membrane and/or the walls of a 
building. Clearly, the motion of both the building envelope and the flow through an 
opening somewhere in the walls of the structure are coupled by the internal pressure 
which leads us onto the next section of this review.

[1-3] Building Internal Pressures

The internal pressure within a building is dependent upon the size and distribution of 
dominant openings as well as the relative distribution of background porosity, the 
magnitude of which is dependent, in general terms, upon the function and age of the 
building. The recommendations for mean internal pressure in the British Standard
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Code of Practice, CP3: Chapter V: Part 2: 1972, are dependent upon the relative 
permeability of the walls of a building and the relative location of any dominant 
openings. However, if the permeability is not known then there are two cases to 
consider,

• if the probability of a dominant opening occurring is small then Cp; should be 
taken as the more onerous of +0.2 or -0.3

• if a dominant opening is likely to occur then Cp; = 0.75xCpe, where Cpe is the 
external pressure coefficient at the location of the opening.

The significance of distributed porosity on the internal and external presssure 
distributions of low rise buildings in two types of simulated atmospheric boundary 
layer flows (open country and urban) was investigated by Stathopoulos et al (1979). 
The results were quite extensive, but the main points relating to internal pressure may 
be summarised as

• the internal pressure was dynamic though the magnitude of the fluctuations were 
smaller than those measured on external walls

• the spatial correlation of the fluctuations within the building cavity was high 
except in regions very near dominant openings.

• the largest internal pressure coefficients occurred with openings to windward but 
for small windward openings combined with a large leeward porosity the internal 
pressure became negative

• configurations with an impermeable windward wall and openings in the lee of the 
building had internal pressure coefficients that were generally insensitive to the 
size of the openings and the porosity

• generally, with openings greater than 20% of the wall area the internal pressure 
coefficient was effectively independent of further increases in opening size.

It was also stated that comparison of spectral measurements of the internal and 
external pressures on the models showed a high correlation between the two, though 
typical spectra were not presented; there was no report of any resonant peaks on the 
internal pressure spectra.

Holmes (1979) was the first investigator to report that a rigid-walled wind tunnel 
model with a dominant windward opening, under the action of a turbulent wind, 
sufferred from resonance of its internal pressure. The cause of this resonance was
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attributed to the inertia of the air contained within the opening which was excited by 
buffetting of the turbulence in the incident wind. The system was theoretically 
described by treating the building as an Helmholtz resonator of classical acoustics 
(eg. Kinsler & Frey, 1962). Although the resonance was apparent in the results, 
Holmes (1979) concluded its contribution to the total r.m.s. internal pressure 
fluctuation was relatively small because it occurred out in the tail-end of the wind 
spectrum and that in reality flexibility of the walls was likely to have a significant 
effect by increasing damping and thus reducing any oscillation. (This latter point 
seemed to be confirmed by the full-scale measurements of Fahrtash & Liu (1990) on 
three different structures, a garage, a sports arena and an observatory). Nevertheless, 
the frequency at which the Helmholtz oscillation occurs is dependent upon the volume 
of the internal cavity as well as the geometry of the openings so that for certain types 
of building the resonant frequency may lie within the higher energy part of the wind 
spectrum.

This hypothesis appears to be corroborated by the full-scale measurements on an 
industrial bam at A.F.R.C., Silsoe (Hoxey, 1991; Robertson, 1992) where a periodic 
heaving motion of the structure was observed when the door of the bam was left 
open. Spectral division of the internal pressure fluctuations (door open) by those 
measured on the external walls of the building, over a common bandwidth, produced 
gain functions with a peak at a frequency of around 1.0Hz which was attributed to 
Helmholtz resonance. This peak was not apparent in the gain of the internal pressure 
fluctuations that was obtained when the bam door was closed. Robertson (1992) 
concluded that the effect of the resonance needed to be taken into account during the 
design process because of the significant increase in peak stresses that could occur.

Liu & Rhee (1986) described results obtained from a rigid wind tunnel model of a 
low-rise building with a single dominant opening of square cross-section (and 
dimensions of 10, 20, 30 and 40mm) located in the centre of either the windward or 
leeward wall. A resonant peak due to Helmholtz oscillation was measured on the 
internal pressure spectra even when the approach flow was of uniform velocity 
distribution with a longitudinal turbulence intensity of around 1%. There was also 
evidence that increasing the size of the dominant opening enhanced the intensity of 
the resonance as well as raising the frequency at which the oscillation occurred. This 
result was in agreement with the conclusions of Holmes (1979) who reported that 
increases in the size of the opening reduced damping. Liu & Rhee (1986) also 
addressed the problem of vortex shedding from an upstream body impinging upon a 
windward opening of a building and found if the frequency of the shedding was near 
that of the Helmholtz frequency, then a large amplitude double resonance occurred,
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i.e. an excitation force with high energy near the natural frequency of the building 
cavity produced large oscillations of the internal pressure.

Vickery (1986) also considered the effect of internal pressure fluctuations with a 
dominant opening assuming the equations of Holmes (1979) but incorporating the 
influence of building flexibility into an effective cavity volume which was dependent 
upon the ratio of the building to air bulk moduli, Ka/Kb, (see chapter 2). Estimates 
for the bulk modulus ratio were around 0.2 for stiff buildings but nearer five for low, 
large span structures. Vickery concluded that generally, resonant amplification of the 
internal pressure would be insignificant except for large, flexible structures.

A loading problem related to the appearance of a windward opening is the maximum 
internal pressure attained shortly after the opening appears, and more specifically the 
question of whether this so-called overshoot phenomenon will exceed the peak 
pressures which occur in the building cavity during the steady-state oscillations. This 
problem was considered theoretically by Liu & Saathoff (1981, 1982) and later by 
Stathopoulos & Luchian (1989) who conducted a series of wind tunnel experiments 
on rigid models where the sudden appearance of windward opening was simulated. 
Calculations to find the maximum (overshoot) internal pressure after a breakage as a 
function of cavity volume, wind speed and size of opening showed that the maximum 
induced internal pressure was increased if the area of the opening was increased or 
the speed of the incident wind or the volume of the cavity were reduced. 
Furthermore, from the point of view of building design, it was found that in all the 
configurations tested the peak internal pressures that occurred shortly after the 
appearance of the opening (i.e. during the transient phase of the response of the 
internal pressure) was exceeded by the peak pressures attained during the steady-state 
internal pressure fluctuations.

Vickery & Bloxham (1992) also studied the transient and steady-state internal 
pressure dynamics after the sudden occurrence of a single windward opening on a 
rigid-walled model. Both the peak pressure during the steady-state fluctuations and 
the maximum overshoot pressure attained during the transient phase were found to 
reduce as the background leakage was increased. This implied that the theoretical 
predictions of overshoot for a rigid building were conservative and should be 
considered during the design of a building (the relevant theory will be summarised in 
chapter 2). Finally, mention will be made of the theoretical analysis by Harris (1990) 
where the relation between an unsteady external pressure and the internal pressure 
within a building was investigated; however, the inertia of the air within the openings 
was omitted in order to simplify the problem so that any resonant effects were 
neglected.
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The following section will summarise the salient features of the flow around circular 
cylinders with emphasis on more recent results from tests on surface-mounted circular 
cylinders in simulated atmospheric boundary layer flows.

[1-4] The Flow Around Surface-Mounted Bluff Bodies

[1-4-1] Sensitivity to Reynolds Number

The flow around a bluff body is a highly complex phenomenon that is a function of 
the shape of the body and the nature of the flow in which the body is immersed. 
Sharp-edged bodies have associated flow patterns that are generally insensitive to 
changes in Reynolds number over a wide range because separation is fixed by the 
geometry of the bodies. However, flow separation from spherical, circular or gently 
curving surfaces is greatly influenced by the Reynolds number, surface roughness and 
the turbulence content of the incident airflow. The Reynolds numbers associated with 
the flow around full-scale buildings are typically of the order 106 to 108, whereas, the 
maximum attainable Reynolds numbers in wind loading tests on models are typically 
of the order 105 to 106, largely because the dimensions of the model are restricted by 
tunnel blockage constraints. Nevertheless, it is generally accepted that empirical 
determination of a mean pressure distribution over the surface of the model that is 
broadly unchanging with increases in the Reynolds number is sufficient to ensure that 
the test results are applicable for full-scale design purposes.

Roshko (1961) concluded that the dependence on Reynolds number of the mean drag 
coefficient, and hence the mean pressure distribution, of a smooth circular cylinder in 
a uniform, low turbulence (often referred to as smooth) flow was due to the form of 
the boundary layer around the cylinder. At "subcritical" Reynolds numbers the 
boundary layer remained laminar and separated from the windward side of the 
cylinder, some 70° aft of the windward generator, to produce a wide wake with an 
associated high drag. At higher Reynolds numbers flow conditions were described as 
"supercritical" and shortly after separation of the laminar boundary layer the free- 
shear layer became turbulent and reattached to the surface of the cylinder; the 
reattached turbulent boudary layer was more capable of withstanding the adverse 
pressure gradient around the leeward side of the cylinder and did not separate until 
around 120° from the windward generator. At still higher Reynolds numbers Roshko 
(1961) defined a "transcritical" flow regime which was characterised by purely 
turbulent separation of the boundary layer at around 100° to 110°. The dependence 
of the drag coefficient on Reynolds number is shown in figure 1.8 (from Panton 
(1984)), whereas figures 1.9 show the form of the different separation processes as 
depicted by Basu (1985).
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Figure 1.8: Reynolds dependence o f the mean drag coefficient of a circular cylinder.
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Figure 1.9: Flow separation from a circular cylinder at different Reynolds number (after Basu (1985))

[1-4-2] Sensitivity to Free-Stream Turbulence

Bearman and Morel (1983) present a detailed discussion of the effect of free-stream 
turbulence (F.S.T.) on a variety of bluff body flows and concluded that there were 
three basic mechanisms by which F.S.T interacts with the overall mean flow
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• accelerated transition to turbulence

• enhanced mixing and entrainment

• distortion of the F.S.T. itself by the mean flow

and that the overall effect of F.S.T. was likely to be some combination of the three 
mechanisms. However, the only generalisation that was drawn about the influence of 
F.S.T. was that if some effect was measured, then increases in the intensity of the 
turbulence increased the effect.

A good example of this latter point is provided by a selection of the results from wind 
tunnel tests on a smooth, two-dimensional circular cylinder in uniform flow fields of 
different turbulence intensities, presented by Cheung & Melbourne (1983). They 
reported that increases in the F.S.T. from 0.4% to 9.1% reduced the mean minimum 
pressure and increased the base pressure at subcritical Reynolds numbers but had the 
reverse effect under supercritical conditions. The consequence of the above results on 
the mean drag coefficients are clearly shown in figure 1.10. Increases in the 
turbulence intensity of the approach flow effect a drop in the mean drag coefficient at 
a lower Reynolds number (i.e. induce an increase in the effective Reynolds number 
of the flow), but the high Reynolds number flow thus attained is different from that 
found around a smooth cylinder in a "smooth" flow. Similar limitations should be 
noted when the surface of the cylinder is artificially roughened as shown in the early 
results of Fage & Warsap (1929) (see figure 1.11 (from Szechenyi, 1975)). 
Turbulence length scales were kept at approximately constant values by Cheung & 
Melbourne (1983) and the conclusions in table 2 of Bearman & Morel (1983) seemed 
to imply that the influence of length scales on the flow around circular cylinders is 
unclear.

Figure 1.10: Influence of approach flow turbulence on the mean drag coefficient of a circular cylinder 
over a range of Reynolds numbers.
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F age  A- W arsa p 's  resu lts  fo r th e  s tea d y  d ra g  coefficient. Q ,  sm oo th  cylinder; 
n .  S/D =  -  X 10- 3; A - S/D =  4 x  t o - 3; $ ,  SjD =  7 x 10-3; 9 ,  S/D =  9 x 10 -3; 3 .  S[d  = 2 x  
i o - ; .

Figure 1.11: Influence of surface roughness on the mean drag coefficient of a circular cylinder for a 

range of Reynolds numbers.

[1-4-3] Sensitivity to Turbulence Length Scale

The theory of Hunt (1973) states that the presence of a body in an isotropic 
turbulence field will cause a disturbance of the turbulence on the upstream stagnation 
line as the body is approached and the nature of this disturbance is dependent upon 
the scale of the turbulence. As Lx/D (where Lx is the longitudinal length scale and D 
the plan dimension of the body) tends toward infinity the flow behaves quasi- 
statically and the turbulence intensity diminishes as the body is approached, whereas, 
Lx/D tending toward zero brings about an amplification of the intensity of turbulence 
as the body is approached. This theory has been used by a number of investigators,
e.g. Lee (1977), to explain the empirical dependence of the base pressure on the

\
length scales measured for cylinders of rectangular planform (see figure 1.12).

Figure 1.12: Influence of length scale on base pressure behind a rectangular cylinder (after Lee, 1977)
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Flow separation from the windward face of the cylinder reattaches to the sides of the 
body because amplification of the intensity at small length scales causes an increase in 
the entrainment of the shear layer. The flow remains attached until the trailing edge 
of the cylinder is reached whereupon it again separates and the unstable free shear 
layers eventually roll-up to form wake vortices some distance downstream of the 
body. The further away these vortices form the higher is the base pressure. Larger 
length scales diminish the turbulence intensity around the body so that the shear 
layers separating from the front face will have a larger radius of curvature and 
eventually roll-up a short distance downstream of the leeward face of the cylinder so 
that the base pressure is correspondingly low. Although the above discussion strictly 
applies to a cylinder of rectangular cross-section it is possible that similar trends are 
apparent on circular bodies, however, this author knows of no studies which show 
that this is the case.

[1-4-4] Flow Around Surface-Mounted Circular Cylinders

Attention will now be focussed on the results of recent studies which deal with more 
"realistic" representations of wind loading on wind tunnel models of silos and storage 
tanks of circular cross-section. The flow around these surface mounted bodies is 
complicated by the formation of horseshoe vortices around the base of the buildings 
as well as the flow "up-and-over" the free ends, indeed for cylinders of low aspect 
ratio it is likely that these three dimensional flow phenomena will interact so that the 
features common to two dimensional flows are suppressed altogether. Holroyd (1983) 
presents the results of a comprehensive study into the flow field around a circular 
cylinder of aspect ratio, height to diameter, 0.2 and figure 1.13 is an interpretation, 
by Holroyd, of the flow around the cylinder.

Figure 1.13: Flow around a low aspect ratio, surface mounted circular cylinder
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The boundary layer in which the tests were conducted was representative of open 
countryside and the length scale ratio, Lx/D, was 0.75. Tests were conducted at a 
Reynolds number of 1.65x105. The flow over the roof separated at the leading edge 
and reattached approximately D/10 upstream of the centre of the of the roof. It was 
noted that the pressure over the roof was negative and that the pressure gradient in 
the along-wind direction was also negative so that the attached turbulent boundary 
layer which grew over the rear of the roof was in an adverse pressure gradient. The 
pressure on the vertical walls of the cylinder did not exhibit a constant pressure wake 
region for azimuth angles greater than 130°, typical of two-dimensional studies, but 
instead steadily recovered to a base pressure coefficient of around -0.2. This result 
implied the existence of the secondary vortex shown in figure 1.13. The root-mean- 
square pressure coefficients reduced from around 26% at the front stagnation point to 
around 12% in the base region.

The Reynolds numbers of the tests reported by Sabransky & Melbourne (1987) 
ranged from l.OxlO5 to 3.0xl05 and were shown to be supercritical, i.e., the pressure 
distribution around the walls of the cylinders was insensitive to Reynolds number 
over this range. The boundary layer was again representative of open country terrain 
with a turbulence intensity at roof height of 15%. Cylinders of aspect ratio 1.16, 0.78 
and 0.66  were tested and the main conclusion from the pressure distributions on the 
vertical surfaces of the cylinders was that the models were completedy enveloped in a 
three-dimensional flow so that the flow behaviour was not equivalent to that observed 
on two-dimensional models.

Finally, MacDonald et al (1988) reported that Reynolds number independence was 
achieved for Reynolds numbers greater than l.OxlO5 in an open countryside boundary 
layer simulation with turbulence intensity of aound 15% at roof height. The aspect 
ratios of the cylinders ranged from 0.5 to 2.0  and it was clear that an increase in the 
aspect ratio brought about an increase in the maximum mean suction (this was also 
evident in the results of Sabransky & Melbourne (1987) (see also figure 5.3)). The 
vertical change in the mean pressure distribution around a cylinder of aspect ratio 1.0 

is shown in figure 1.14. The results clearly show the effect of the shear in the 
approach flow, but significantly it should be noted that the uppermost measuring 
station (z/H=0.94) shows a steady pressure recovery around to the base region. 
MacDonald et al were able to distinguish three regions up the height of the cylinder 
such that the middle region exhibited flow characteristics which were two- 
dimensional in nature.
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Figure 1.14: Mean pressure distribution around the circumference of a circular cylinder at different 
heights up the cylinder.

[1-5] The Scope of this Thesis

A number of wind tunnel investigations to quantify the wind loading on rigid models 
of tension structures have been conducted at City University (e.g. Sykes, (1992)). In 
order to complement and expand on the experience gained during these investigations 
a survey of the existing literature concerned with wind tunnel tests on aeroelastic 
models of tension sturctures was instigated with a view to defining a research 
programme from the results of the survey (sections 1-2, 1-3 & 2-3).

It transpired that one of the more successful applications of membrane materials in 
civil engineering was in covering large span arenas but as reported by both Novak & 
Kassem (1990) and Vickery & Georgiou (1991) significant dynamic interactions 
between the motion of the roof and the internal pressure was '•possible if these 
structures were vented. Indeed, the resonant phenomenon of Helmholtz oscillation, 
first reported by Holmes (1979) on a rigid model of a conventional building, 
occurred in a form that was modfiied by the flexibility of the roof. Vickery (1986) 
extended the original analysis of Holmes (1979) to include the effects of flexibility in 
the building envelope of more conventional but flexible buildings. Vickery (1986) 
stressed that the analysis was not suitable for membrane roof structures but, 
unfortunately, precise limits on the range of applicability of the analysis were not 
defined.

As a result, there appeared to be a need to quantify the effect that variations in the 
flexibility of the building envelope had on internal pressure fluctuations. An idealised 
building could be tested comprised of a single-cell cavity with a single dominant
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opening and an envelope of variable stiffness representing a range of building types 
from the more conventional (stiff) to the more exotic (flexible). The simple drum- 
type model of Novak & Kassem (1990) was well-suited to this purpose and a design 
based upon that used by these investigators was manufactured according to the 
description presented in chapter 2 .

Preliminary free-vibration tests on the model were conducted in still-air (c.f. Novak 
& Kassem (1990)) in order to quantify the damping of the Helmholtz mode and relate 
the free-vibration frequency of the isolated membrane roof to the corresponding bulk 
modulus ratio, Ka/Kb, of the building as defined by Vickery (1986). These data are 
reported in chapter 4.

When a building is submerged in a boundary layer flow then the changes in internal 
pressure are primarily a function of the external pressure distribution. The pressure 
field that exists adjacent to a dominant opening is particularly significant because the 
opening provides a relatively direct connection to the internal cavity. Measurement of 
parameters such as the mean, r.m.s. and spectra of the external pressure quantify the 
excitation force for the internal pressure fluctuations. For the model used in this 
investigation these quantities are discussed in chapter 5.

In chapter 6 the magnitude of the mean and dynamic components of the cavity 
pressure are presented for changes in the Reynolds number of the external flow, 
cavity volume, azimuth angle of the dominant opening and roof flexibility. When 
these results were compared with those of chapter 5 a number of inferences were 
drawn about the form of the cavity response in the frequency domain. These 
inferences were corroborated by the spectral data of chapter 7 where the sensitivity of 
the magnitude of the resonant peak due to Helmholtz oscillation to the physical 
changes listed above was summarised.

As shown in figure 1.1, the magnitude of the mean internal pressure is important 
when estimating the net loading across individual walls and roof surfaces. However, 
for the case of a single-cell building with a dominant opening the rate at which the 
external pressure fluctuations adjacent to the opening are transmitted to the cavity is 
high so that relatively large peak internal pressures may also occur. Consequently, an 
extreme value analysis of the cavity pressure data was conducted for gusts of five 
different sizes corresponding to 0.003s, 0.006s, 0.012s, 0.024 & 0.048s at model 
scale. The sensitivity of the extreme value parameters of the internal pressure, 
namely the mode and dispersion, to changes in the physical configuration of the 
model were discussed and summarised.
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[1-6] Summary

A brief introduction to the main areas of research which the author believes are 
pertinent to the work presented in this thesis is given. Although the coverage is 
somewhat scant in certain areas more detail will be given in subsequent chapters 
where the specific results of previous investigations are directly relevant to the 
findings of the present study. The purpose of this chapter was interpreted as an 
introduction to results presented in later chapters.
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Chapter 2: Experimental Models, Scaling Requirements &
Theoretical Analysis

[2-1] Introduction

This chapter is divided into three sections. Initially, details of the two physical 
models used in the experimental work will be presented. This will be followed by a 
discussion of the physical scaling requirements necessary for conducting a wind 
tunnel test on a model with a flexible roof based upon the findings of previous 
investigators. Finally, a theoretical treatment of a single-cell building as an Helmholtz 
resonator is presented.

[2-2] Description of the Experimental Models

The model used in the wind tunnel experiments, model A, was based upon that used 
by Novak & Kassem (1990b) and was representative of a large arena type building 
with openings. However, the theoretical analysis presented in section 2-4 includes a 
selection of empirical coefficients (e.g. the inertia coefficient, Q) which are sensitive 
to both flow conditions and model geometry and some of these were quantified using 
a second model, model B.

[2-2-1] Model A

Model A, shown in figures 2.1(a) and 2.1(b) and plates 2.1(a) and 2.1(b) was a 
circular cylindrical drum-type model of plywood construction with a height, H, to 
diameter, D, aspect ratio of 0.25. The upper one third of the model was detachable 
which permitted either a rigid plywood roof or a flexible membrane roof section to be 
fitted. The interchangeable roof enabled variations in building envelope flexibility to 
be made so that the model configuration was representative of a range of buildings 
from conventional types with relatively rigid roofs to those with more exotic and 
flexible membrane roofs.

The external diameter of the model was 300mm and the walls were 50mm thick so 
that the span of the membrane was only 200mm; the tension of the membrane was 
continuously adjustable by raising or lowering the height of the tension ring (figure 
2.1(a)). The base of model A was vented by sixteen identical and symmetrically 
arranged circular orifices with diameters of 19mm and length to diameter ratios, l0/d, 
of 2.6. The orifices were centred at a height of 0.27H and whilst the internal edges of 
these orifices were sharp, the external edges had a small, sharp-edged, rebate in order 
to accommodate sealing plugs. The orifices could be opened or closed in any 
combination and the maximum vented area of the orifices was 6.4% of the area of the
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Figure 2.1(a): Cross-sectional view through model "A".

Figure 2.1(b): Plan View of Model "A".



Plate 2.1(a): View of model "A" showing the exaggerated volume box.
Plate 2.1 (b): View of model "A" showing the membrane roof.
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wall of the model, or 6.4% of the plan area of the model, or 14.4% of the area of the 
membrane roof. The internal volume of the basic model, as described so far, will be 
denoted as V0 and was approximately 0.0024m3. The base of model A was also 
pressure tapped with sixteen taps of internal diameter 1.0mm and length 55mm which 
were located at a height of 0.27H, midway between adjacent orifices. An additional, 
single pressure tap was located above the centre of one of the orifices at a height of 
0.55H.

A cylindrical wooden box of rectangular cross-section was manufactured, for 
attachment to model A, which permitted a ten times exaggeration of the internal 
volume of the model in discrete increments of two, four, six, eight and ten times V0. 
This "box" was rigidly closed at one end. When the wind tunnel tests on model A were 
conducted, it was necessary to construct a connecting pipe between the base of the 
"basic" model (ie. Vo=0.0024m3) and the underside of the tunnel floor where the 
exaggerated internal volume "box" was situated (see Plates 2.1(a) and (b)). The internal 
volume of the additional pipe was approximately 0.0059m3, that is 2.5V0, so that cavity 
volumes "A", "B" and "C", referred to in later chapters, corresponded to 4.5V0, 8.5V0 
and 12.5V0 respectively. When the model was being tested all joints were sealed using 
an industrial strength sticking tape and a plastiscene filler. The reasons for exaggerating 
the cavity volume will be discussed in section [2-3-2-3-3J.

[2-2-2] Model B

Model B (not shown) was a rigid plywood box of square planform with a fixed internal 
volume of 0.005m3 and internal cavity dimensions of ,2x.2x. 12 metres. A sharp-edged, 
circular orifice of diameter 40mm was drilled in the centre of each of the four sidewalls 
of model B. The aspect ratio, l0/d, of these holes was approximately 0.25, and as with 
model A, the orifices could be opened or sealed in any combination. A series of "plugs" 
was manufactured from "ABS" plastic which could be slotted into the orifices or stuck 
to the external walls in order to vary the orifice dimensions. The aspect ratios of the 
orifices on model B ranged from 0.25 to 4.0 as shown in table 2.1 and once again every 
effort was made to ensure that all joints were air-tight.

[2-3] Scaling Requirements

Data obtained from wind-tunnel tests should be representative of events at full-scale 
and for dynamic similarity to exist between the two systems the relative magnitudes of 
all forces, excitation, inertia, damping and stiffness should be equal. Dimensional 
analysis is a powerful technique for obtaining a set of non-dimensional similarity
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parameters for scaling, provided all relevant physical quantities are included in the 
analysis. Unfortunately, it is seldom possible to accurately match all the derived scaling 
parameters and an order-of-magnitude assessment of the non-dimensional constants 
will usually permit either complete or partial relaxation of the less influential 
parameters. Consequently, it is important for an a priori judgement to be made about 
the mechanisms which will affect the response of a particular physical model and to 
determine the degree of scaling relaxation that will still provide acceptable results.

length (mm)

diameter (mm) 10 20 40
10 1.0 2.0 4.0
20 0.5 1.0 2.0
40 0.25 0.5 1.0

Table 2.1: Orifice Aspect Ratios, l0/d for model B 

[2-3-1] Scaling the Atmospheric Boundary Layer

Mixing in the atmospheric boundary layer can be attributed to forced (or mechanical) 
convection and thermal convection and generally both these physical processes are at 
work simultaneously. However, for wind loading tests the thermal convective processes 
are ignored because it is assumed that the maximum design load will occur under the 
action of a strong wind where mechanical mixing is dominant and the boundary layer is 
neutrally stratified. A neutral atmospheric boundary layer is both sheared and turbulent 
and strict scaling necessitates reproduction of both these properties of the boundary 
layer.

Traditionally, the mean windspeed profile was characterised by the power law 
exponent, a, but this has been superseded by the log-law format which is characterised 
by the roughness length, z0 and the friction velocity, u* (section 3-3-1-2). The ratio of 
building height, H, to z0 is called the Jensen number and this ratio matches the form of 
the mean windspeed profile to the size of the building under investigation.

Correctly scaling the three orthogonal components of turbulence is an exacting 
requirement and the modeller is often limited to matching only the longitudinal 
component of turbulence and even then the length scale may be some two to three 
times less than desired. Ideally, both the length scales of turbulence and the roughness 
length should match the geometric scale of the model, X L , however, refer to sections [1- 
4-2] and [1-4-3],
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Once a suitable geometric length scale has been selected, often based upon the size of 
wind tunnel working-section, blockage constraints and the form of the simulated 
atmospheric boundary layer, then the velocity scaling, Av, must be set. For low-rise 
buildings a good collapse of the pressure coefficient data has been found when the 
dynamic pressure at roof height is used as the reference pressure and this is almost 
universally used as the reference windspeed height. Selection of a minimum reference 
windspeed is generally dictated by the magnitude of the Reynolds number for tests on 
bluff bodies, with particular problems occurring for buildings with curved surfaces 
(see also section [1-4-1J). Reynolds number scaling ensures similitude of the ratio of 
inertia to viscous forces in a fluid medium.

[2-3-2] Scaling the Model

The following discussion draws chiefly on the reports of Irwin et al (1979), Kind & 
Wardlaw (1981) and Tryggvason (1978) which were primarily concerned with the 
necessary scaling of actual prototype membrane structures, namely the roof of the 
Montreal Olympic Stadium and the roof of the Haj Airport Terminal at Jeddah, Saudi 
Arabia, rather than the idealised building described in section [2-2],

[2-3-2-1] Froude Number

The Froude number describes the ratio of the inertia of the air to the gravitational 
force of a structure and may be expressed as U2/bg, where U is the mean windspeed, 
b, a length and g, gravitational acceleration. Accurate scaling of the Froude number 
is not required for a pre-tensioned membrane because movement of the membrane 
will only become significant when aerodynamic or inertia forces are much greater 
than those due to gravity. The upshot of this is that higher model-scale windspeeds 
can be used, which is desirable if prohibitively low Reynolds numbers are to be 
avoided. In addition constraints on elastic scaling are reduced. However, a hanging 
membrane that is not pre-tensioned will require similitude of the Froude numbers 
between the model and prototype.

Pneumatically tensioned membranes require scaling of gravitational and internal 
pressurisation forces, expressed as (p/p).U2/bg and pinl/(pU2/2) respectively, but a 
simplification can be made if these two parameters are combined to form an effective 
pressure coefficient, (pin,-pg)/(pU2/2). The mass/area term, p, is derived from the 
product pb. Clearly, if the membrane is highly tensioned by a large internal pressure 
then Froude number scaling is not significant.
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[2-3-2-2] Mass

Depending upon the structure some or all of the following non-dimensional mass 
parameters may require scaling, m,/pb3, m2/pb2 or |i/pb. The first of these, m,, refers 
to the actual mass of a structure such as a tall building or tower, whereas m-, has units 
of mass/length and should be applied to line-like structures such as cables, ji is the 
mass per unit area and is the mass scaling parameter for shell and membrane structures.

It is apparently very difficult to accurately scale (I whilst simultaneously maintaining 
strict scaling of the stiffness because of the limited availability of model-scale 
materials. However, relaxation of the mass/area scaling is permissible because the area 
density of a typical full-scale membrane roof is approximately equal to that of the 
surrounding air and estimates have shown that the mass of the surrounding air that 
vibrates with the roof, the added mass, is an order of magnitude greater than the 
membrane mass. A means of quantifying the added mass will be described in section 
[2-4-2-3J. Consequently, when scaling the mass/area of a membrane the virtual mass 
should be considered and not simply the membrane mass, where the term virtual mass 
is defined as the sum of the membrane mass and the added mass of the surrounding air.

[2-3-2-3] Stiffness

Correct scaling of elastic or stiffness forces is necessary to match the relative 
magnitude of restoring forces between model and full-scale. The discussion on stiffness 
scaling will be divided into three sections.

[2-3-2-3-1] Tensile Stiffness

As for the mass scaling three non-dimensional stiffnesses are usually considered, 
E/pU2, Et/pU2b & EA/pU2b2 with the latter two quantities applying to membranes and 
cables repectively. However, experience and analysis has shown that elastic scaling can 
be considerably relaxed without significant errors in the simulated response being 
incurred and the following paraphrases a general argument presented by Tryggvason 
(1982) in support of the relaxation of elastic scaling of membrane roof structures. A 
membrane that is displaced from its static equilibrium position is subjected to two 
restoring forces due to changes in surface geometry and increased tension as a result of 
increased strain; these two forces are termed geometric and elastic stiffness 
respectively. Analyses show that in general geometric stiffness is the dominant 
restoring force and this can be correctly reproduced by ensuring similarity of surface 
shape and tensioning permitting the elastic scaling, Et/pU2b, to be relaxed.
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[2-3-2-3-2] Bending Stiffness

In general, it was argued by Irwin et al (1979) that the bending stiffness of a 
membrane surface is not a significant parameter to model because the radii of 
curvature of the membrane are usually very large. However, under certain conditions 
the non-dimensional folding height of a membrane material, hm/b, where hm is 
approximately equal to [Et2/(20pmg)]1/3, is significant and should be modelled (Kind 
(1981)). The significance of using a model-scale membrane material that is too stiff 
in bending is that small-scale, localised deflections of the membrane would not occur.

[2-3-2-3-3] Pneumatic Stiffness

Vibrations of a membrane roof can occur in either volume displacing or non-volume 
displacing modes, i.e. symmetric or asymmetric modes respectively, and the former 
result in a dynamic component of internal pressure. The compression and expansion 
of the internal air gives rise to a pneumatic stiffness term which will reduce in 
magnitude as the building becomes more open, but which can be correctly scaled by 
maintaining similitude of the following non-dimensional parameters;

(7rb4pc2)/(T0V0) - Elashkar (1983)

(2A3/2p0)/(pU2V0) - Holmes (1979)

(2p0/pU2)/(Av/Vo) - Tryggvason (1982).

These three independently derived parameters each lead to the same cavity volume 
scaling factor,

^~vol (^ o )m o d e /(^ o ) fu l l- s c a le

where XL and Xy are the geometric length and windspeed scaling respectively. This 
means that the cavity volume dynamics can be reproduced at model-scale by 
exaggerating the volume of the model by a factor equal to the square of the velocity 
scaling, however, if the velocity scaling is much less than unity then difficulties of 
model size might occur.

[2-3-2-4] Damping

In general, reproduction of damping forces at model-scale is complicated not least 
because it is often difficult to quantify the principle damping mechanisms that occur
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at full-scale. Consequently, after some assessment of the major sources of damping 
has been made, the design philosophy appears to be to construct a wind tunnel model 
which is lightly damped so that the resultant response of the model will be 
conservative.

The energy contained in the motion of a membrane roof is dissipated by structural 
damping and acoustic radiation damping into the surrounding air. The structural 
damping term is used to describe energy absorbed by the deformation of the 
membrane material itself and by the motion of the fixtures that keep the roof on 
place. However, a roof used to span a large arena is likely to be chiefly damped by 
acoustic radiation which can be quantified by treating the roof as a simple acoustic 
source (e.g. Novak & Kassem (1990a)).

In addition, the motion of air in and out of openings in the walls beneath the 
membrane roof further damps the overall dynamic system by acoustic radiation from 
the openings and by pneumatic or viscous losses due to the flow through the 
openings. The former can be estimated using the same mathematical model as for the 
acoustic radiation from the roof whilst the latter damping mechanism is a complex 
function of opening geometry and flow conditions but methods for its estimation have 
been proposed (e.g. Vickery & Bloxham, (1992)). Further details of how these 
modes of damping are quantified are presented in section 2-4.

[2-4] Theoretical Analysis

[2-4-1] Introduction

The analogy of the Helmholtz resonator of classical acoustics has been successfully 
employed in describing the response of the internal pressure of rigid-walled, single- 
celled buildings to an external excitation applied at a single opening representative of 
an open door or window (Holmes, 1979). Flexibility in the building envelope, 
perhaps caused by a flexible membrane roofing material, modifies the response of the 
internal pressure and this can be treated as a change in the effective volume of the 
building cavity (Vickery, 1986; Vickery & Bloxham, 1992), or by treating the roof 
as an additional degree of freedom and analysing the building as a multi-degree-of 
freedom system with stiffness coupling through the cavity pressure (Novak & 
Kassem, 1990a; Vickery & Georgiou, 1991).

The response, to an external excitation, of a rigid-walled cavity containing a single 
opening is documented in texts on classical acoustics (e.g. Kinsler & Frey (1962)) as 
the Helmholtz resonator. Fluid contained within the opening is treated as a lumped
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mass whose motion is determined by the pressure differential across the opening 
(figure 2.2). The Helmholtz mode of oscillation is physically different from higher 
cavity modes which are due to the formation of standing waves within the cavity and 
are generally characterised by a frequency that is an order of magnitude greater than 
that of the Helmholtz mode; these higher modes are of little interest to the structural 
engineer because they lie beyond the high energy range of the turbulent wind 
spectrum.

Under the action of a steady-state external stimulus, motion of the lumped mass is 
sustained by the "stiffness" of the air contained within the cavity; an incoming mass 
compresses the contained air and consequently increases the cavity pressure until an 
overpressure exists and the motion of the "slug" is reversed. The system is damped 
by acoustic radiation of pressure from the opening into the surrounding medium and 
by losses due to the flow of air through the opening.

[2-4-2] Treatment of an Helmholtz Resonator as a Single-Degree-of-

The following analysis is largely based upon the work reported by Vickery & 
Bloxham (1992). The equation relating the fluid flow through an opening of area A to 
the pressure difference across the opening is

where suffix "j" refers to the jth opening, Vj is the flow velocity through the jth 
opening and Cl  is a loss coefficient. If the air in the opening is considered as a 
lumped mass that moves an incremental distance x due to the existence of a pressure 
differential then (2 . 1) can be rewritten as

opening

cavity

Figure 2.2: A simple Helmholtz resonator

Freedom System

1 i l  dV,„ n  \r  v  1 ___i (2.1)

(2.2)
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because Vj =dx/dt.

Movement of the air contained within the opening causes compression or expansion 
of the air contained within the building cavity and it may be assumed that this process 
is isentropic so that p„V07 = constant. Differentiation of this expression permits the 
incremental volumetric changes, dV(), to be related to the incremental changes in 
cavity pressure, dp;

= —~ dVo (2.3a)
v o

and the volume change dVG is equal to the product of the area of the opening and the 
displacement of the air mass within the opening, x,

dp, = 7 P„ A (2.3b)

Equation (2.3b) and the definition of a pressure coefficient (equation A.l) can be 
used to transform equation (2 .2) into the following expression

m7  Cp' + ¡ 7  7 C . . |  +  C p . =C„ (2.4)

where go is the circular frequency and 0 a constant defined by

GO
_  7 Po A

P  V„le

1 Cl  Vq P 
4 U  A 7  p„

(2.5)

Equation 2.4 is similar in form to the equation of the Helmholtz resonator derived in 
texts on acoustics (Kinsler & Frey, 1962) and to the differential equation governing 
the response of the internal pressure of buildings with dominant openings reported by 
Holmes (1979) and Liu & Saathoff (1981, 1982). (The reader is directed to Vickery 
(1991) for a discussion on the differences between the approaches of the latter 
investigators). Nevertheless, the non-linear damping term in equation (2.4) dictates 
that closed form solutions can not be obtained and the use of the equation as a
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predictive tool is limited unless, for a sealed building where the mean Cpj is zero, a 
linear approximation is made which yields

C C
p, Pi

-  c  c
K Pl (2 .6)

where the prime refers to the root-mean-square derivative of the pressure coefficient 
(Vickery & Bloxham, 1992). Substituting (2.6) into (2.4) gives

J - C  + E9 V-'Pi ‘ 9CO“ CO“
+  c „

(2.7)

and it is a trivial matter to show that the damping factor as a fraction of critical, for 
the system is given by

( 2 .8)

When the resonant component is significant, C can be approximated by the 
expression

(2.9)

(Vickery & Bloxham, 1992), so that

(2 . 10)

and the response of the cavity pressure can be estimated entirely from the dimensions 
of the building and the magnitude and frequency content of the external pressure 
outside the opening. The parameter S0 is the magnitude of the spectral energy 
contained in the external pressure spectrum at the resonant frequency, to, when the 
pressure spectrum is plotted in the normalised format of n.S{n}/o2.

Equation (2.7) may be compared with the equation of motion of the familiar spring- 
mass-damper (e.g. Craig, 1981; Thompson, 1988)

m x + c x + k x = 0  to i n
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which under the action of a complex harmonic excitation, F0.eint, can be assumed to 
have a steady-state solution of the form

x = H(ii2).F0.eint (2.12)

where H(iQ) is the complex frequency response function which is defined by

H(iQ)
_________ 1_________
( k -  m .n 2) + i (c) Q

(2.13)

From (2.11) the natural frequency, co, and damping factor, are defined by the 
expressions

co2 = k /m  & 2^w = c/m (2.14)

If the frequency ratio r is defined as Q/co, then substitution of (2.14) into (2.13) permits 
the modulus of the frequency response function to be determined

H(ift)
__________1_________
k V ( l - r 2)2 + (2  ̂ r )2

and the output lags the input by a phase angle, 9, where

(2.15)

tan 0 = — (2.16)
(1 — r )

From equation (2.15) the non-dimensional amplitude ratio is expressed as k . |H(iQ)|. 

[2-4-2-1] Empirical Coefficients

The parameters CD and (3 defined in equations (2.5) contain empirical coefficients C( & 
CL which until recently have been assumed to take values of 0.886 and 2.679 based 
upon idealised theoretical analyses (see for example Vickery (1991))- The inertia 
coefficient, C,, can be visualised as an extension of the length of air contained within 
the opening because the external air immediately adjacent to the opening is forced to 
move by the contained air. The parameter CL is a loss coefficient and is related to the 
steady flow dicscharge coefficient, Cd (CL=1/Cd2).
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The values commonly allotted to these two coefficients, quoted above, are strictly 
applicable to steady flows through circular openings whereas for an oscillating flow the 
geometry of the opening, local Reynolds number, reduced frequency, ratio of the flow 
velocity through the opening to that of the external flow and the magnitude of the 
oscillation can all be expected to influence the actual values of these coefficients. 
Vickery & Karakatsanis (1989) reported on a series of tests where the discharge 
coefficient of a circular opening was measured as the ratio of the velocity of the 
external flow past the opening to the flow velocity through the opening was changed. 
They found that marked changes occurred with variations in the discharge coefficient 
up to a factor of five, but even in these tests the flows were not oscillatory.

In light of the above there does appear to be a need to systematically measure the 
dependence of both C, and CL for different opening geometries under varying flow 
conditions in order to better define these parameters. In chapter 4 the inertia 
coefficients for openings of different geometry were measured under a zero wind 
condition.

[2-4-2-2J Building Envelope Flexibility

For a rigid building the inflow of air through an opening leads to compression of the 
air contained within the building cavity, according to equation (2.3a), and the 
"stiffness" of the air is quantified by the bulk modulus of air, Ka (equal to yp0). 
However, if the envelope of the building is flexible then compression of the contained 
air is accompanied by deformation, or displacement, of the flexible component and the 
resultant interactions between the cavity pressure and the building envelope may result 
in relatively complex dynamic phenomena as described by Vickery & Georgiou 
(1991).

Nevertheless, provided that the lowest natural frequency of the envelope is high 
compared with the rate at which pressure changes occur within the building cavity, as 
in a highly tensioned membrane roof, then the influence of the building envelope 
flexibility can be accounted for by defining an effective bulk modulus of air, Ka', where

K (2.17)

and Kb is the bulk modulus of the building (Vickery & Bloxham, 1992). Substitution of 
(2.17) into equations (2.5) leads to the conclusion that for conventional buildings the
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influence of building flexibility on internal pressure dynamics is to increase the 
effective cavity volume by a factor equal to (1+Ka/Kb) as reported by Cook (1989).

Vickery (1985) and Vickery & Bloxham (1992) stress that the definition of an effective 
bulk modulus in order to account for any flexibility in the walls of a building is strictly 
applicable to more conventional type buildings and not to large span membrane roof 
structures. However, the approach does not appear to have been corroborated by 
experimental results and precise limits on the permissible degree of envelope flexibility 
have not been prescribed.

[2-4-2-3] Acoustic Damping

The damping, as a fraction of critical, defined in equation (2.10) is concerned with the 
losses due to flow through an opening. However, the internal pressure fluctuations of 
buildings with openings covered by a membrane roof may be damped to a significant 
degree by acoustic radiation from both the openings and the roof into the surrounding 
medium. This form of damping was successfully modelled by Novak & Kassem, 
(1990a & b) and Kassem & Novak, (1990) as that from a simple acoustic source.

Damping due to acoustic radiation from a simple acoustic source contained in an 
infinite baffle is given by

C, = P0 cQ A F { 2 r —  } (2.18)
Co

where ca is the acoustic damping coefficient, c0 is sonic velocity, r is the radius of 
radiating source of area A and the function F{x) is defined by the series

x =
2 .4

+
2 . 4 . 6  2 . 4 . 6 . 8

(2.19)

{Note that "x" in equation (2.19) is nothing to do with displacement}.

For an opening, A is simply the area of the opening which has a radius r, whereas, for 
an oscillating circular membrane A is the generalised area associated with each of the 
symmetric membrane mode shapes under consideration. The magnitude of the acoustic 
radiation is dependent upon the amount of air displaced by the motion of the membrane 
and not on the exact shape of the vibrating surface. Consequently, the membrane can 
be replaced by an analogous rigid piston which has a volumetric displacement
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equivalent to that of the actual membrane. Finally, it should be noted that the first 
symmetric mode of a vibrating circular membrane rigidly fixed at its circumference is 
the most efficient radiator of acoustic energy because the only nodal line is fixed at the 
circumference of the roof (Kinsler & Frey, (1962)).

The small size of the openings used on the models (sections 2-2-1 & 2-2-2) and the 
damping results shown in chapter 4 implied that acoustic radiation damping from a 
single opening was small. Consequently, damping due to the motion of the roof will be 
focussed on and compared with the results obtained using equation 2.10.

The displacement of the roof is

x2(r2, t )  = \|/(r2) q(t) (2.20)

where the suffix "2" denotes roof motion, \j/(r2) is the mode shape and q(t) the 
generalised co-ordinate. The mode shape, \|/(r2)=J0(k'r2), is defined so that \j/(0)=l. The 
boundary condition at the edge of the membrane (r2=R2) is xo(r2,t)=0 which implies 
that

J0(k'R2) = 0 and hence k'R2=2.405,5.520, 8.654.... (2.21)

The generalised mass and area of the roof are

rm = jV (r2) t r  (r2) dA2 and (2 .22)

A2 = Jv|/ (r2 ) dA,
A i

(2.23)

respectively, where ¡i(n,) is the area density of the membrane roof including the 
external added mass of the surrounding air.

Lightweight roof structures possess an area density which is comparable with the 
surrounding air and consequently when excited the contribution of the adjacent air to 
the effective mass of the roof is significant. Indeed estimates show an order of 
magnitude difference in the ratio of added mass to fabric mass (Irwin et al, 1979) on 
full-scale structures. The generalised piston analogy for the vibrating roof described
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above permitted the added mass to be computed using formulae derived for oscillating 
discs (Blevins, 1979).

t « a \ 1/

Figure 2.3: Diagram of oscillating disc.

For a thin disc oscillating in the direction shown in figure 2.3 the added mass on a 
single side of the disc is given by

m. - 8 Pc (2.24)

where in the present analysis the radius "a" is the radius of the generalised area of the 
roof, a=[A2/7t]l/2.

Computing the generalised area of the roof for the first symmetric mode permitted the 
added mass for an equivalent rigid piston to be estimated and subsequently the 
generalised mass of the membrane roof was determined. This mass was then used to 
estimate the acoustic radiation damping for the vibrating roof using equation (2.18) and 
the expression

1 ca
2 m, (i)

(2.25)

where m-, and CD are defined by equations (2.22) & (2.5) respectively.

[2-4-2-4J Theoretical Damping Predictions & Comparisons with 
Experimental Data

Acoustic radiation damping from the roof and damping due to flow through the 
opening were computed and the results are shown below in table 2.2 for a selection of 
model configurations only.

The estimates of Ça were independent of opening azimuth angle and windspeed and 
showed that acoustic radiation losses from the roof were less than 1 % for most of the 
model configurations tested and consequently were of secondary importance.
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inflow 9.4 m/s 13.0 m/s
<l> R Ta Tb Tc Td R Ta Tb Tc Td

Va 0 .003 .016 .036 .075 .125 .009 .042 .096 .197 .331
90 .001 .006 .013 .025 .049 .004 .016 .035 .065 .129
180 .001 .006 .012 .021 .035 .004 .017 .031 .055 .093

Vc 0 .014 .038 .084 .106 .193 .038 .101 .223 .282 .510
90 .006 .011 .025 - - .015 .028 .066 - -

180 .005 .011 .024 .030 .049 .014 .030 .062 .079 .129
Va Ca - .009 .007 .007 .005 - .009 .007 .006 .005
Vc Ca - .008 .006 .006 .005 - .008 .006 .006 .005

Table 2.2: Theoretical damping factors due to flow losses and acoustic radiation losses at the
resonant frequencies.

It is now convenient to compare the theoretical estimates of damping factor using 
equation (2.10) and the results of chapter five with the estimates of the experimental 
data obtained from the cavity pressure spectra results of chapter 6. In addition the 
measured and predicted ratios of external to internal cavity pressure will be compared 
using equation (2.9) and the relevant results of chapters 5 and 6. Results were obtained 
for a limited set of model configurations only.

Figures 2.4 showed that increasing the flexibility of the roof increased the damping and 
that for the majority of cases the theoretical estimates of damping were less than the 
measured damping factors. The comparison was best when the opening was oriented to 
windward, that is p=0°, poorest for <j)=90° and was fair when the opening was in the 
base region.

These results were reflected in figures 2.5 where the root-mean-square pressure ratios, 
internal divided by external at 0.27H, were compared. With a windward opening the 
predicted fluctuating cavity pressure was generally within plus or minus 10% of the 
experimental value, whereas an opening at 180° and 90° lead to progressively greater 
overestimates of the magnitude of the cavity pressure fluctuations. The precise reasons 
for these discrepancies were not clear, however, there were a number of possible 
sources of error.

The half-power method (Craig, 1981) was used to determine experimental damping 
factors from the gain functions of cavity pressure spectra compiled in appendix C. 
Most of the resonant peaks on these plots were well-defined but for the purposes of 
determing the damping factors the definition was enhanced by additional smoothing 
along the gain function. However, even allowing for a plus/minus 30% margin of error 
in the empirical estimates of damping does not account for the discrepancies shown in 
figures 2.4(b) and (c).
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¡¡measured
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°  VaOOdeg  

* V cOOdeg

¡¡measured

/ - '

/

_____

A

f
r

. - '

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(b)

13 Va4  9 0 deg

-----*------ V c 4 9 0 deg

°  V aO 9 0 deg 

* V c 0 9 0 d e g
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Figure 2.4: Comparison of the measured & predicted damping factors as a fraction 
of critical for different roof tensions and volumes and with $ equal to 
(a) 0 degrees, (b) 90 degrees, (c) 180 degrees.
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Cpi' (measured)

Cpi' (predicted)

Cpi' (predicted)

Cpi' (measured)

Cpi' (predicted)

Figure 2.5: Comparison of the measured & predicted ratios of r.m.s. cavity pressure 
fluctuation to external r.m.s. pressure fluctuation for different roof 
tensions and volumes and with (J) equal to 
(a) 0 degrees, (b) 90 degrees, (c) 180 degrees.
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The theoretical damping predictions only considered losses due to flow through the 
opening which was shown to be a reasonable approximation by the results of table 
2.2. Nevertheless, the "standard" value for the loss coefficient, CL=2.68, was used 
to derive the theoretical estimates and this value is known to be sensitive to flow 
conditions (refer to section 2-4-2-1). A procedure was implemented to fit the 
theoretical damping factors to the empirical values by changing the magnitude of the 
loss coefficient but this yielded values of CL ranging between 1.8 to 22 just by 
changing the tension in the membrane roof!

Notwithstanding the above the theoretical predictions may be considered conservative 
in that damping is underestimated which leads to an overestimate of the response of 
the cavity pressure fluctuations.

[2-4-3] Treatment of a Flexible-Roofed Helmholtz Resonator as 
a Two-Degree-of-Freedom System

Finally, a brief mention will be made on the work of Novak & Kassem (1990a & b), 
Kassem & Novak (1990) and Vickery & Georgiou (1991) who modelled the flexible 
membrane roof backed by a cavity with openings as a two and many degree of 
freedom system respectively. The roof was treated as a generalised piston similar to 
that discussed in the previous section and a diagram of the idealised system is shown 
in figure 2 .2 .

Figure 2.2: Idealisation of an Helmholtz Resonator with a Flexible Roof

Suffices "1" and "2" will be used to describe the motion of the "slug" of air and the 
roof motion respectively. Preliminary visual tests on a model fitted with a membrane 
roof indicated that the roof response in its first two resonant modes was dominated by 
the first volume-displacing symmetric mode. The symmetrical, volume displacing 
modes of a circular membrane rigidly clamped around its circumference are described 
by a Bessel's function of the first kind, zero order, J0(k’.r2), (Kinsler & Frey (1962))
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where the parameter k' is a function of the tension/length, area density and frequency of 
vibration of the membrane and has dimensions of [length]-1 (see equation (2.21)).

Consequently, the theoretical analysis was restricted to considerations of only a single 
roof mode and the resonator was completetly described by a two-degree-of-freedom 
system. The full theoretical model presented by Vickery & Georgiou (1991) allows for 
any number of openings and roof modes.

If the generalised structural stiffness of the roof is

ks = m2 ,cor2 (2.26)

where co,. is the natural frequency of the isolated roof (Novak & Kassem, 1990b) and 
the pneumatic stiffness is inferred from equation (2.3a) as

dP = -
V

(Ai . x 1 + A 2 . x 2) (2.27)

then the equations of motion of the two-degree-of-freedom system are

m, x, + (c + cF ) x, + y P “ A ' ~  ■ Y P- A' ^ X, = 0
V,

x, +

rm x2 + (cai + cs ) x2 + ks x2 + Y Pa, A]
V,

V

x2 + Y Pat A, A2 
V,

(2.28)

x, = 0

However, the treatment of the roof response using the equations 2.28 will not be 
considered further because the spectral results in chapters 6 and appendix E showed 
that the response of the cavity pressure and roof were dominated by the lower 
frequency Helmholtz mode (see also Appendix E).

[2-5] Summary

Initially, a description of the experimental models was presented and this was followed 
by a discussion of the necessary requirements for "correctly" scaling a wind tunnel 
model of a membrane structure with a membrane roof.

The second half of this chapter was concerned with formulating the theoretical 
treatment of the response of the cavity pressure to turbulent pressure fluctuations

2.22



Chapter 2: Experimental Models, Scaling Requirements & Theoretical Analysis

outside a dominant opening. This analysis was drawn from the results of previous 
investigators, principally Vickery & Bloxham (1992), and was found to give good to 
overly conservative estimates of the cavity pressure fluctuations based upon the 
measured external pressures acting on the wind tunnel model. Vickery & Bloxham 
(1992) presented experimental results for a model with a dominant windward opening 
which supported their theoretical analysis and they stated that the analysis was 
generally applicable for openings at different orientations. However, the results in 
section [2-4-2-4] imply that this may not be the case, although accurate determination 
of the two empirical coefficients, CL and C, and their sensitivity to different flow 
conditions might significantly improve the theoretical predictions.
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Chapter 3: Data Acquisition & Approach Flow Characteristics

[3-1] Introduction

This chapter summarises the instrumentation, data acquisition and data analysis 
procedures used in both the "still-air" and the wind tunnel portions of the test 
programme. This is followed by a description of the boundary layer profile used in the 
wind tunnel test programme.

[3-2] Data Acquisition

[3-2-1] "Still-Air" Free-Vibration Tests

The free-vibration tests (chapter 4) were conducted using a low frequency square wave 
pulse to excite the air within the cavity of the two models tested (refer to chapter 2). A 
flush-mounted Setra 237 pressure transducer, referenced to atmosphere, monitored the 
decay in the response.

Power spectra and time domain data were measured "on-line" by the GenRad PDP-11 
data acquisition system and each frequency and damping factor was determined from 
an average of eight separate pressure pulses. Helmholtz frequencies were obtained 
directly from power spectra whereas, damping factors were estimated by fitting an 
exponential function to the decay curves. The time series also permitted estimates of 
the oscillation frequency to be made by measuring the length of time taken for a 
number of complete oscillations to occur. The GenRad system digitised the analogue 
transducer signals at 2.56 times the maximum frequency of interest. Depending on the 
resonator configuration the measured Helmholtz frequencies covered the range from 
20Hz to 110Hz.

[3-2-2] Wind Tunnel Tests

[3-2-2-1] Pressure Measurements

The internal and external surface pressures on the model were measured using two 
separate Setra 237 differential pressure transducers. The transducer for measuring 
internal pressure was flush mounted in the wall of the model whereas the external 
pressure transducer was connected via a short length of tubing, 60mm long, to a brass 
pressure tap, 55mm long, of internal diameter 0.5mm. The response of the 
transducer/tube system was measured prior to testing [see Appendix A] and was used 
to correct the distortion of the pressure spectra. No pneumatic response optimisation
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devices, such as restrictors, were incorporated into the system. The flush-mounted 
transducer was assumed to possess a flat frequency response well in excess of the 
bandwidth of interest in the tests.

Pressures were normalised by referencing the transducers to the static pressure at an 
upstream reference location and dividing the pressure by the dynamic pressure at that 
same location. The resultant coefficient was corrected following the procedure 
outlined in Appendix A. The reference static pressure connection was comprised of a 
series of interconnected, flexible plastic tubes with different internal diameters 
running to an overall length in excess of four metres. Consequently, any static 
pressure fluctuations were heavily damped.

[3-2-2-2] Storage and Processing of Data

During the running of the wind tunnel tests, mean and root-mean-square internal 
pressure coefficients were computed and output by the GenRad PDP-11 data 
acquisition system. In addition data was recorded on magnetic tape for subsequent 
analysis "off-line". Reynolds number sensitivity tests were conducted "on-line" with 
continuous sampling of both the reference dynamic pressure and the point pressure of 
interest on the model. Contiguous blocks of 512 samples were collected at a sampling 
frequency of 256Hz which was equivalent to two seconds of real time data (model 
scale). Averages were computed along each of these time series and the results stored 
until thirty seconds of data was obtained. The fifteen values were then averaged and 
output by the computer. This process was repeated three times giving mean and 
r.m.s. pressure coefficients obtained over a period of one-and-a-half minutes at each 
wind azimuth angle.

A fourteen channel FM tape recorder recording at a tape speed of l7/ 8 inch/sec was 
used to store the reference dynamic pressure and both unconditioned and conditioned 
internal pressure and external pressure (at z/H=0.55). The conditioned signals had 
their mean values "backed o f f  and the remaining signal was amplified and low pass 
filtered at 500Hz by a filter with a sharp cut-off of 18db/octave.

To speed-up the "off-line" analysis process the playback speed of the tape was 
doubled to 33/4 inch/sec. A 486-33MHz personal computer fitted with an A/D card 
was used to digitise up to three data channels. The data was collected in contiguous 
blocks of 4096 points and for the spectral analysis the data was further low-pass 
filtered at a cut-off frequency of 315Hz which was equivalent to 157.5Hz in real 
(wind tunnel) time. The sampling frequency was set to 333.33Hz per channel (real 
time) which was 2.12 times the cut-off frequency. Generally, twenty five blocks of
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data were collected, processed individually and eventually ensemble averaged in 
order to smooth the result. However, the original time series were split into smaller 
blocks of 2048 points before being Fast Fourier Transformed, thus doubling the 
number of spectra to be ensemble averaged to increase the smoothing.

[3-3] Characteristics of the Approach Flow

The industrial aerodynamics wind tunnel at City university is of closed return type 
with the return circuit mounted above the working section. The working section is 9m 
x 3m x 1.5m and details of the tunnel construction and performance were discussed 
by Sykes (1977). A non-specific atmospheric boundary layer simulation was desired 
for the wind tunnel test programme and so existing "hardware" was used for 
development of the boundary layer.

A full width, straight-edged barrier of height 90mm with eight equi-spaced 
triangulated spires of height 760mm was located at the exit from the contraction 
followed by a 5m fetch of uniform roughness. The function of the barrier was to trip 
the approach flow and provide an initial momentum deficit which was subsequently 
distributed through the boundary layer by the spires (or mixing devices). The floor 
roughness sustained the turbulence as the boundary developed downstream and to a 
large extent determined the value of the scaling parameters z0 and u*. Summaries of 
the "standard" techniques used to simulate the atmospheric boundary layer in both 
long and short wind tunnels were given by Cermak (1982) and Cook (1982).

The turntable on which the model was mounted was a painted wood surface not 
covered by roughness elements and the development of a secondary inner boundary 
layer was noted in the results. Nevertheless, assuming a geometric scale factor of 
1/200, the resultant boundary layer was deemed to be typical of the flow over a 
rural/suburban terrain with a model-scale surface roughness of 0.94mm and a 
longitudinal turbulence length scale of around 0.4m. A summary of the measured 
boundary layer characteristics and the apparatus used for boundary layer development 
is given in table 3.1.

[3-3-1] Vertical Boundary Layer Profiles 

[3-3-1-1] Measurement Technique

The mean velocity profile was measured using a 0.5m pitot-tube rake which was 
connected to an inclined manometer and positioned on the centreline of the tunnel 
nearly 3.5D upstream of the centre of the turntable. Two reference pitot-static
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tubes were positioned symmetrically 2.5D on either side of the rake at a height of 
75mm, corresponding to the height of the roof of the model. These reference probes 
were downstream of the rake in the same cross-section as the centre of the turntable 
and the rake pressures were referenced to the average of the static pressures obtained 
from the two pitot-static probes. The mean windspeed profile was measured at four 
different windspeeds and the results were averaged. A difference in the static pressure 
at the rake location and that measured by the reference pitot-static probes caused an 
offset in the results when the mean windspeed profile was referenced to the mean 
windspeed at roof height. Consequently, a small correction was made by back- 
calibrating the two reference pitot-static probes against a third probe situated at a 
height of 75mm in lieu of the pitot rake.

simulation hardware:
barrier height 90mm
no. of triangular spires 8
height of spires 762mm
height of roughness 
elements

33mm

packing density based 
upon average plan area)

2.5%

length of fetch (uniform 
roughness)

5m

turntable diameter 2.4m

boundary layer characteristics:
uniform roughness power law exponent, a 0.18

roughness length, zn, 
(model scale)

0.94mm

u»/Urnnf 0.091
turntable power law exponent, a 0.11

roughness length, zn, 
(model scale)

0.002mm

u*/Uronf 0.035
turbulence intensities at z/H = 0.27 21.5%

z/H = 0.55 21.0%
z/H = 1.0 19.5%
boundary layer depth >4.5H
model blockage ratio 0.5%

Table 3.1 : Summary of boundary layer characteristics

The vertical longitudinal turbulence intensity profiles were measured using a linearised
D.I.S.A. constant temperature hot-wire anemometer which was positioned at the centre 
of the turntable and traversed over a height of approximately 4.5H using a D.I.S.A.
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Sweep Drive Unit. The tunnel temperature during these tests changed by approximately 
10°C but no corrections were made to the results following the findings of Bearman 
(1969).

[3-3-1-2] Profile Results

Traditionally, the shape of the mean velocity profile in a neutrally buoyant strong wind 
was fairly well represented by an empirical power law of the form

U/Uref = (z/zref)a  (3.1)

where the power law exponent, a , was dependent upon the roughness of the surface 
over which the boundary layer developed. However, this formulation for the boundary 
layer profile was gradually replaced by the theoretically more rigorous log-law

U/u* = 2.5 In { (z-d)/z0 } (3.2)

where u* is the friction velocity, z0 the roughness length and the factor of 2.5 is the 
inverse of the von Karman constant, k. The length, d, is an empirical constant called 
the displacement thickness which was set equal to zero in the present tests because 
Lawson (1980) stated that it was insignificant for roughness elements with an area 
density <10%. Equations 3.1 and 3.2, or variations of these, are both commonly quoted 
in the literature, e.g. Deaves & Harris (1976), and consequently both were used to 
quantify the form of the mean windspeed profile.

In figure 3.1(a) the natural logarithm of z was plotted against ln{U/Uroof} and an 
estimate for the value of a  was obtained from the gradient of the graph. The two 
different slopes in figure 3.1(a) implied that the mean windspeed profile was composed 
of two distinct regions because of the change in roughness at the upstream edge of the 
turntable. Two estimates for the roughness length were calculated from figure 3.1(b) 
which also showed the boundary layer to be a hybrid with a well developed upper 
region due to the uniform roughness which was gradually being displaced by a profile 
characteristic of the relatively smooth surface of the turntable. Results from tests using 
a combination of different size roughness elements (not reported here) confirmed that 
the changes in the profiles were due to step changes in the roughness.

The boundary layer was predominated by the rougher profile and was subsequently 
graded as typical of a rural/suburban boundary layer with a full-scale zQ of 0.19m 
(using E.S.D.U 82026 and assuming a 1:200 scale factor). This grading was further 
corroborated by the estimated power law exponent of 0.18 following the early results
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Figure 3.1: (a) Graphical representation of equation 3.1; slope equals power law exponent.
(b) Graphical representation of equation 3.2; intercept equals roughness length, Zo.

Figure 3.2: Mean windspeed and longitudinal turbulence intensity profiles
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of Davenport (1965) which are reproduced below in table 3.2. The longitudinal 
turbulence intensity profile and the mean windspeed profile are shown in figure 3.2.

roughness description power law exponent, a

open water 0.16
town suburb 0.28
city centres 0.40

Table 3.2:- Mean windspeed profiles (after Davenport (1965))

[3-3-2] Turbulence Length Scale

The spectrum of the longitudinal turbulence was not directly measured by the 
conventional hot-wire technique. Instead the scale of turbulence was estimated from 
the normalised pressure spectrum in the windward stagnation region of the model. 
This enabled a direct measure of the dynamic excitation acting on the orifice of the 
model to be made after the turbulence in the approach flow had been distorted by the 
presence of the building. Fitting the curve for the normalised longitudinal wind 
spectrum (E.S.D.U. 85020) to the normalised pressure spectrum in the windward 
stagnation region provided an estimate for the turbulence length scale acting on the 
orifice. The E.S.D.U. curve is given by the expression

n. S(n) / a 2  = 4 . (n Lx / U) / [1 + 70.8 (n L* / U)2 ]5/6 (3.3)

where <r2 is the variance, U is the reference windspeed (Uroof) and Lx is the integral 
length scale. When expressed in this normalised format the area under the spectrum is 
equal to unity.

The results of the pressure spectra measured at z/H=0.27 and 0.55 at the two 
reference windspeeds of 9.4m/s and 13.0m/s with 6  equal to zero degrees are shown 
in figures 3.3 and 3.4. The length scale appeared to be independent of both 
windspeed and height and an average value for L* was calculated as 0.43m. The 
length scales were obtained by fitting the theoretical curves (equation 3.3) to the 
experimental data by eye such that the low frequency peaks of the spectra were 
matched as closely as possible.

The work of Rao (1986) was consulted to corroborate this estimate for the length 
scale. Using the same roughness elements and mixing devices but with a slightly 
taller barrier (114mm) Rao reported that the longitudinal turbulence length scale, 
measured using a linearised hot-wire anemometer, was 0.653m. This estimate was 
obtained at a height of 50mm using a reference windspeed of lOm/s. However, it 
appeared that the reference speed was measured at a height of approximately 370mm
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Figure 3.3: (a) Normalised external pressure spectrum at z/H = 0.27, Uroof = 9.4 m/s, 0 = 0 degrees.
(b) " " " " at z/H = 0.55, Uroof = 9.4 m/s, 0 = 0 degrees.

Figure 3.4: (a) Normalised external pressure spectrum at z/H = 0.27, Uroof = 13.0 m/s, 0 = 0 degrees.
(b) " " " " at z/H = 0.55, Uroof = 13.0 m/s, 0 = 0 degrees.
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in a boundary layer where U/Uref was equal to 0.65 at a height of 77mm. This 
enabled a "corrected" length scale of 0.42m to be computed which compared very 
well with the result of the present tests.

A final check on the form of the pressure spectra was made by re-plotting the spectral 
data as log{Sp(n)/a^} versus log{n} in order to determine the rates of decay of the 
turbulent fluctuations (figures 3.5 & 3.6). Slopes of -5/3 and -3.5 were fitted (by 
eye) to the spectra and are shown in figures 3.5 & 3.6 for comparison and table 3.3 
summarises the approximate frequency bandwidths over which these two rates of 
decay best fitted the individual spectra.

slope
0=0°; z=0.27H II 3 N =0.55H

Re = 181000 Re=25000 
0

Re=18100
0

Re=25000

-5/3 3 Hz to 8Hz to 6Hz to 8 to 45 Hz
35Hz 35Hz 35 Hz

-3.5 45 Hz to 50Hz to 50Hz to 50 to
150Hz 150Hz 150Hz 150Hz

Table 3.3: Rates of decay of turbulent pressure fluctuations on the windward wall of the model

[3-4] Summary

The data acquisition and analysis equipment were described. The turbulent shear 
layer in which model A was submerged was characterised by a roughness length, zG, 
of 0.94mm (model scale) a longitudinal length scale of 0.43m and a longitudinal 
turbulence intensity at roof height of approximately 20%. The pressure spectra 
showed the decay rates of the turbulent energy to be comparable with those of other 
investigators.
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(a)

181000 

- 1.67 

-3 50

(b)

250000

•1.67

-3.50

Figure 3.5: Normalised external pressure spectra (at 0.27H & 0 = 0 degrees) 
showing rates of decay of turbulent fluctuations; (a) Re=181000, 
(b) Re=250000

Figure 3.6: Normalised external pressure spectra (at 0.55H & 0 = 0 degrees) 
showing rates of decay of turbulent fluctuations; (a) Re=181000, 
(b) Re=250000
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Chapter 4: Free-Vibration Tests in Still Air

Chapter 4: Free-Vibration Tests in Still Air

[4-1] Introduction

The results presented were obtained from the damped response of the internal cavity 
pressure to an excitation in the form of an external pressure pulse. Tests were 
conducted on two models "A" and "B" in still air. In the majority of cases only the 
first resonant frequency (ie. the Helmholtz frequency) of each cavity was measured 
and the associated damping as a fraction of critical was estimated from amplitude 
decay curve data. The main objectives of the tests reported in this chapter were to 
obtain realistic estimates of the inertia coefficient, CI? and to quantify the magnitude 
of the bulk modulus ratio for models with different envelope flexibilities.

[4-2] Processing of the Results

[4-2-1] Introduction

In the theoretical analysis of chapter two a number of parameters required empirical 
determination in order for the response of the cavity pressure to be accurately 
determined. These parameters were the total damping factor at the Helmholtz 
frequency, fH, the inertia coefficient of the open orifices, Cr, the loss coefficient, CL, 
and the bulk modulus ratio, Ka/Kb. Although values for the above quantities have 
generally been assumed or estimated by previous investigators (e.g. Holmes, 1979; 
Vickery 1986; Novak & Kassem, 1990(a) & (b)) it was the objective of this chapter 
to obtain experimental values pertinent to the models under test.

[4-2-2] Determination of Cj and Ka/Kb

The rigid-walled rectangular box, model "B", was used to determine the value of 
orifice inertia coefficients for orifices of different aspect ratio, defined as the ratio of 
length to diameter. The resonant frequency for each model configuration was 
measured and substituted into equation (2.5) in order to calculate the inertia 
coefficient C,. It was assumed in this analysis that the flexibility parameter Ka/Kb was 
zero. Subsequent measurement of the Helmholtz frequency for resonator "A" fitted 
with a flexible roof enabled Ka/Kb to be estimated (table 4.1) assuming a suitable 
value for C, from the results for model "B".
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Volume Tension f, [Hz] f2 [Hz] c? Kn/Kh
A Rigid 29.0 N/A 0.039 N/A 0.23

A 18.4 160.0 0.062 0.022 2.04
B 15.0 150.0 0.068 0.019 3.59
C 13.1 141.9 0.073 0.017 5.05
D 11.0 140.0 0.079 0.017 7.54

B Rigid 21.3 N/A 0.052 N/A 0.10
A 16.1 111.6 0.076 0.023 0.91
B 13.0 96.0 0.078 0.014 1.94
C 11.2 92.0 0.086 0.013 2.96
D 10.6 92.0 0.084 0.013 3.45

C Rigid 17.9 N/A 0.054 N/A 0.02
A 14.4 95.4 0.056 0.016 0.58
B 11.8 79.6 0.067 0.014 1.36
C 10.9 77.3 0.065 0.017 1.76
D 9.4 72.8 0.067 0.015 2.71

Table 4.1: Results of free-vibration tests on model "A" located in the wind tunnel in still air 

[4-2-3] Determination of C,H

The damping factors, as a fraction of critical, at the Helmholtz frequency were 
estimated from the shape of the decay curve envelope, which was assumed to be 
exponential, after the raw experimental data had been corrected for an off-set in the 
"zero" value. This correction procedure caused the somewhat "bumpy" appearance of 
some of the "corrected" decay curves shown in figure 4.1. The assumption of an 
exponential decay in the magnitude of the pressure fluctuations within the cavity of the 
resonators appeared to be justified by the linearity exhibited in figure 4.1. Equivalent 
results for model "A" in the wind tunnel (in still air) are shown in figure 4.2.

[4-3] Presentation of the Results

[4-3-1] Inertia Coefficients & Damping Factors

In an attempt to present the results in a concise manner, both the measured damping 
factor at the Helmholtz frequency, ijH, and the inertia coefficients of the openings, C,, 
were expressed as functions of a novel non-dimensional geometric quantity that was 
dependent only upon the relative physical dimensions of the orifice/s compared with 
those of the resonator. This quantity was called the "Orifice-Resonator Dimension 
Ratio" [ORDR], and was defined as,

4.2



Figure 4.1: Internal pressure damped decay curves for model B (after correction for zero offset). The legends describe the box 
configuration, e.g. 423 indicates an orifice diameter of 40mm, length 20mm with three identical orifices open.
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Figure 4.2: Internal pressure damped decay curves (after correction for zero-offset) for model "A".
The legends (e.g. "CD1R") referto the cavity volume (C), the roof tension (D) and "IR" 
or "1BR" refer to before and after the wind tunnel tests respectively.
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Chapter 4: Free-Vibration Tests in Still Air

ORDR [orifice aspect ratio] x [orifice area/wall area] x 

[orifice volume/cavity volume]

ORDR" [l0/d] x [NA/Awall] x [NA10/V,] 

[Nl0 A]2 / [dAwallVi]
(4.1)

ORDR"

where Awall is the total external area of the walls of the resonator that contain the 
orifices. Awall did not include the area of the "roof" of the model or the additional 
external wall area due to exaggeration of the internal volume. Figures 4.3 (a-c) and 4.4 
(a-c) show the orifice inertia coefficients and damping factors for resonator "B" plotted 
against "ORDR" on a semi-logarithmic scale. The damping factor estimates of model 
"A" fitted with a rigid roof are plotted against logm (ORDR) in figure 4.5.

[4-3-2] Bulk Modulus Ratio

The bulk modulus ratio is a measure of the compressibility of the air contained within 
the cavity, Ka, compared with the flexibility of the envelope of the building. An 
estimate for the stiffness of the roof on model "A" was obtained by measuring the 
natural frequency of the isolated roof, fMi2, that is the natural frequency of the 
membrane with an infinite cavity volume and all orifices open. Figure 4.6 was 
constructed from the results of experiments on model "A" where the natural frequency 
of the isolated membrane was measured before attaching any cavity walls to the "basic" 
model and subsequently related to the estimates of Ka/Kb obtained from the measured 
Helmholtz frequency (section [4-2-2]).

During the wind tunnel tests it was not convenient to dismantle the model and measure 
the natural frequency of the "isolated" membrane and so figure 4.6 was utilised to 
obtain estimates of fMi2 from the measured Helmholtz frequency and the physical 
dimensions of the model. It is apparent that the experimental measure of fMi2, included 
the effects of external added mass and as such cannot be used to directly estimate the 
roof tension unless the added mass of the membrane can be quantified.

[4-3-3] Free-Vibration Results on the Wind Tunnel Model

Model "A" alone was utilised in the wind tunnel tests but only for the case of a single 
dominant opening; the results reported above included tests where numerous orifices 
were open.
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linear for openings of length 10mm and increasingly non-linear for orifices of length 
20mm and 40mm. The commonly quoted theoretical inertia coefficient of 0.89 for 
circular orifices (eg. Holmes, 1979) appeared to coincide with the lower limit of the 
results in figure 4.3. A possible explanation for the correlation between large values of 
Cj and orifices of high aspect ratio (see figure 4.3) may be the existence of a more 
stable "jet-type" flow in the immediate vicinity of the exit plane of the longer openings. 
This hypothesis is illustrated in figure 4.7.

pi > pat (i.e. outflow from cavity)

pat

relatively long 
neck

short neck

Figure 4.7: A diagram of the possible differences between the flows for high
aspect ratio and low aspect ratio orifices.

The total damping at the Helmholtz frequency also showed a systematic dependence 
upon ORDR and 10 (figure 4.4). Starting with openings of diameter 10mm, it was 
apparent that an increase in the ORDR generally diminished the total damping at each 
value of 10. This change was attributed to a reduction in the flow losses due to viscous 
dissipation. However, there was a limit to this drop in damping which was 
characterised by a minimum value of at a "critical" value of ORDR where the 
critical ORDR appeared to be dependent upon the orifice length, 10.

Increases in ORDR beyond [ORDR]crit effected an increase in total damping for 
orifices of length 10mm and 20mm but for for openings of length 40mm the critical 
ORDR was not exceeded. The magnitude of the minimum value of was independent 
of 10 and marked the boundary between damping at the Helmholtz frequency that was 
dominated by viscous losses and damping that was dominated by losses due to acoustic 
radiation. This result is summarised in figure 4.8.

The apparent relationship between [ORDR]crit and 10 is shown more clearly in figure 
4.9 which was constructed from the results in table 4.2. A comparison was made 
between the results from rigid model "B" and from rigid model "A" (figure 4.5) and an 
estimate of ORDR assuming N=3 for the model used by Kassem and Novak (1990) 
[K&M] was also included. K&M concluded that the Helmholtz mode of their model
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model was principally damped by acoustic radiation a conclusion that appeared to be 
consistent with the results of the present tests for openings of length 10mm.

Figure 4.8: Diagram of the behaviour of the total damping at the Helmholtz
frequency versus the ORDR.

logio [ORDR]cnt lo (mm) source

-3.2 to -2.9 40 fig. 4.4a

-4.46 20 fig. 4.4b

-5.14 10 fig. 4.4c

-2.4 to -2.7 50 fig. 4.5

-5.80 10 N&K (1990) for N =  3

Table 4.2: Estimates of the critical ORDR for openings of different length

It is evident from the above discussion that the orifice length, 1Q, is a significant 
parameter in determining the magnitude of the damping for an Helmholtz resonator. 
Although the orifice length was not normalised, the results in figure 4.9 may be used 
as a guide when designing a scale model building with openings if the internal 
pressure dynamics are of interest. In general the philosophy applied to damping of 
physical models is to ensure that the scaled damping is less than that which is likely 
to occur at full-scale so that the resultant response will be conservative. Employing 
this practice here would mean that, within the constraints of wall flexibility, the wall 
thickness (ie. length of orifice) should be selected so that the ORDR is critical.

A direct extension of the above findings to actual buildings would require 
investigation of the dominant mechanisms that dissipate internal pressure fluctuations 
at full-scale. Normalisation of 10 by a suitable reference length may permit 
extrapolation of the above results, however, a suitable reference length was not 
identified and this process is not recommended without the support of full-scale data. 
Novak & Kassem (1990(a) & (b)) cite structural and acoustic radiation damping as 
the principal damping mechanisms at work in a membrane roof structure backed by a 
cavity with openings, whereas, Vickery & Georgiou (1991) in a theoretical analysis
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of a similar structure consider only the losses due to flow through the openings. A 
qualitative assessment of the above comments using the results of figure 4.4 would
seem to imply that both sets of authors are correct..... dependent upon the geometries
of the openings on the building.

lo (mm)

' 7 "6 -5 -4 -3 -2 -1 o

Log {ORDR}

Figure 4.9: Relationship between orifice length and |ORDR]crit

[4-4-2] Model "A"

Based upon the generel trends exhibited in figure 4.4 it was possible to infer from 
figure 4.5 that: damping for resonator "A" was subcritical for small open areas (ie. 
viscous losses predominated), increases in cavity volume caused a reduction in the 
total damping, and increases in ORDR reduced to a minimum the magnitude of 
which appeared to be independent of cavity volume.

Table 4.1 summarises the range of bulk modulus ratios that was covered during the 
wind tunnel tests and is a useful introduction to the "wind-on" results presented in the 
remaining chapters. Three different cavity volumes, denoted as A < B < C ,  were 
tested in the wind tunnel and at each volume five different roof tensions were tested, 
denoted in order of decreasing tension as RIGID, TA, TB, Tc, and TD. Although there 
were some difficulties in obtaining identical values of membrane tension for each size 
of cavity (ie. TA for volume A equal to TA for volumes B and C) this was 
approximately achieved using the results of figure 4.6 to determine the natural 
frequency of the isolated membrane roof (table 4.3). Linear regression analysis of the 
data points in figure 4.6 produced a "best-fit" line with a gradient of 1/428.33. The 
frequencies contained in the first column of table 4.3 may be thought of as those for 
an equivalent membrane roof and were computed as a check on the similarity of 
experimental conditions between rigid roof configurations. It was noted that the
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frequency estimate for volume C was roughly a factor of two greater than that for 
volumes A and B!

Rigid Ta Tb Tc Td
Va 419.1 140.7 106.1 89.4 73.2
Vb 4 6 2 .5 153.3 105.0 85.0 78.7
Vc 8 5 2 .7 158.3 103.4 90.9 73.3

Table 4.3: Estimated natural frequencies (in Hz) of the ''isolated” membrane roof
on model "A" in the wind tunnel

The frequencies and damping factors in table 4.1 denoted by the subscript are 
those for the Helmholtz mode (1st mode), whereas values for the second mode are 
denoted by the subscript "2". The latter set of results are included for the sake of 
completeness and as a reference to the spectral and gain results presented in later 
chapters where these higher modes can be seen but their significance is small because 
of the low energy content of the wind at these higher frequencies. The damping 
results for the Helmholtz mode showed an increase as the roof tension was reduced 
for volume A because of additional damping due to the roof displacement, however, 
this trend was not repeated for volumes B or C. The bulk modulus results showed 
that for the "same" membrane tension increases in cavity volume reduced the 
measured Ka/Kb as shown earlier in figure 4.6. Both modes exhibited a reduction in 
frequency as the cavity size increased.

[4-5] Summary

The orifice inertia coefficients and the total damping factors at the Helmholtz 
frequency were expressed in terms of a novel non-dimensional parameter called the 
"ORDR". The total damping was comprised of acoustic radiation damping and losses 
due to viscous dissipation and a critical value of the ORDR marked the boundary 
between the predominance of either of these two mechanisms. Longer orifices were 
associated with higher values of inertia coefficient. The results of table 4.3 should be 
referred to in conjunction with the "wind-on" results presented in subsequent 
chapters. It was shown that damping at the Helmholtz mode for resonator "A", fitted 
with a rigid roof, was dominated by viscous losses. Addition of a flexible roof to 
model "A" with a cavity volume of A caused an increase in total damping as tension 
was reduced, however, such a trend was not observed for volumes B or C.
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Chapter 5: External Pressure Distribution

[5-1] Introduction

This chapter presents the results for the external pressure distribution around the 
model. Initially, the pressure acting on the vertical walls is described and this is 
followed by a summary of the pressures acting on the rigid roof of the model. Mean 
and root-mean-square pressure coefficients are presented as well as the power spectra 
in the familiar n . S { n } / c r 2  versus log{n} format.

[5-2] Wall Pressures

[5-2-1] Mean Wall Pressures

The surface-mounted circular cylinder used in the wind tunnel tests was categorised 
as a squat cylinder based upon its slenderness ratio, H/D, of 0.25. Cook (1989) 
defined squat cylinders as having 2H/D < 1. Vertically mounted cylinders are also 
characterised by a mean pressure distribution which for design purposes may be 
assumed to be invariant over the height of the cylinder. Collation of experimental 
results from a number of sources, e.g. Sabransky & Melbourne (1987) and 
MacDonald et al (1988), permitted Cook (1989) to conclude that in the range 
0.5 < H/D <2  the mean circumferential pressure distribution can be represented by 
the expression

Cp = k [An cos n0], (5.1)

where k is a factor, An are the Fourier coefficients, 6 is the angular position of the 
point of interest measured from the windward stagnation point and n are the 
harmonics which are reproduced in table 5.1 together with the pertinent Fourier 
coefficients. The factor k is a function of the sign of the mean pressure; it is equal to 
one for +ve mean pressures and l+log{H/D} for suction pressures. Cylinders with a 
slenderness ratio greater than two or less than a half were catered for by assuming 
that the wind loading was the same as that for H/D=2.0 and 0.5 respectively.

Using equation (5.1) the "theoretical" pressure distributions for three cylinders of 
aspect ratio 0.5, 1.0 and 2.0 were computed and the results are shown in figure 5.1. 
The primary effect of reducing the slenderness ratio was to reduce the magnitude of 
the suction lobe as an increasing proportion of the flow went over the top of the 
cylinder. The pressure distribution in the positive pressure region was independent of

5.1



Chapter 5: External Pressure Distribution

Figure 5.1: Theoretical mean pressure distribution (using equation 5.1) around circular 
cylinders o f different slenderness ratio, H/D.

- Cp {max mean suction}

1.6
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Figure 5.2: Maximum mean pressure coefficient as a function of circular cylinder 
slenderness ratio
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the slenderness ratio and flow separation was evident in the lee of the cylinder by a 
constant pressure region over the range 14O°<0<18O°.

Harmonic, n Fourier coefficient. An
0 -0.5
1 0.4
2 0.8
3 0.3
4 -0.1
5 -0.05
6 0
7 0

Table 5.1: Fourier coefficients for use in equation 5.1

The form of the mean pressure distribution around a circular cylinder at full-scale 
Reynolds numbers (2x10^) was shown in Batham (1985) where the results obtained by 
Tunstall (1974) on a chimney at Fawley power station were reproduced. At the front 
stagnation point the pressure coefficient was 1.0 and this fell to zero at around 33°. The 
flow continued to accelerate around the chimney until the peak suction Cp of around - 
1.7 was reached at 9=78°. The adverse pressure gradient around the lee of the chimney 
decelerated the flow until separation occurred at 0=120° forming a relatively constant- 
pressure wake region where Cp=-0.3. This description is generally applicable to 
"infintely" long cylinders where the flow is essentially two-dimensional and 
supercritical.

Based upon the above it was clear that for structural loading the two most significant 
regions of the flow were near the front stagnation point and some 80° aft of this point 
where the maximum suction occurred. The former load was invariant with changes in 
H/D, whereas, the maximum suction load was dependent upon H/D as shown in figure 
5.1 and in more detail in figure 5.2. The results from Sabransky & Melbourne (1987) 
and MacDonald et al (1988) were plotted against slenderness ratio and as expected the 
predictions using equation (5.1) were seen to closely follow the experimental results 
for maximum mean pressure coefficient (see figure 5.2). However, further reductions 
of the slenderness ratio to 0.25 and 0.2 by this author and Holroyd (1983) respectively 
implied that for squat cylinders the "theoretical" method outlined above overestimated 
the maximum mean suction by around 20%. It should be noted that Holroyd used a 
reference dynamic pressure postitioned at H/2: the value shown in figure 5.2 was 
corrected to a reference location at H for consistency with the other results.

5.3



Chapter 5: External Pressure Distribution

Comparison of the theoretical and experimental mean pressure distributions shown in 
figures 5.1 and 5.3(a)-(c) revealed a fundamental difference in the flow regimes 
around the cylinders. The results using equation 5.1 all exhibited a constant pressure 
wake region which occurred some 130° to 140° aft of the front stagntion point, 
whereas, the present tests did not reproduce this characteristic of the flow at either of 
the two vertical stations 0.27H or 0.55H. Instead there was a steady recovery of the 
pressure around the leeward side of the model to a base pressure (0=180°) only 
slightly less than the local static pressure. The question then arose as to the cause of 
this recovery? Was it due to the proximity of the ground-based families of horseshoe 
vortices (see Baker (1980)) or to the flow over the free end of the cylinder both of 
which are highly three-dimensional flow phenomena.

Closer investigation of the results of MacDonald et al (1988) (in particular the family 
of plots reproduced in figure 1.14) showed that near the free end of a vertically 
mounted circular cylinder with H/D = 1 there was a steady recovery in pressure right 
around the the cylinder into the base region. Furthermore, full-scale results of the 
mean pressure distribution around a 240m tall chimney stack (Sageau (1977/78)) 
exhibited a steady pressure recovery into the base region at a height of 0.98H which 
was not evident in measurements made at 0.57H and 0.79H.

To this author's knowledge this phenomenon does not appear to have been 
commented on at any length by previous investigators possibly because for tall 
cylinders the size of the suction lobe near the free end of the cylinder is reduced by 
flow over the free end and consequently, the design loads occur some distance from 
the free end. However, as the slenderness ratio of the cylinder is reduced so the 
influence of the free-end eventually appears to "swamp" the flow regime up the 
complete height of the cylinder and thus reduce the overall wind loading experienced 
by the cylinder. The result presented in figure 5.2 is corroborated by Holroyd (1983) 
and seems to imply that current design recommendations (Cook, (1989)) lead to 
overly conservative design loads on cylinders with a slenderness ratio <0.5.

[5-2-1-1] The Effect of Reynolds Number on Mean Wall Pressure

Referring back to figures 5.3(a), (b), & (c) it can be seen that the mean pressure 
distribution on the external wall of the cylinder was essentially independent of 
Reynolds number in the range 1.35x10^ to 2.55x10^. The flow accelerated around 
the cylinder and reached a minimum Cp of -0.8 some 90° from the windward 
stagnation point. The adverse pressure gradient around the leeward side of the 
cylinder decelerated the flow but did not appear to cause the classic separation of the 
turbulent boundary layer to form a constant pressure wake region for azimuth angles
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Figure 5.3: Mean (L.H.S.) and r.m.s. (R.H.S.) external, circumferential wall pressure coefficients over a range of Reynolds numbers 
(shown in legend): z/H = 0.27 (orifice closed) - top; z/H = 0.55 (orifice closed) - middle; z/H = 0.55 (orifice open) - bottom.
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greater than 120°. This phenomenon has been widely reported in tests performed on 
the flow around two-dimensional cylinders (e.g. Panton (1984)). As discussed in the 
previous section the gradual pressure recovery into the base region of the cylinder 
was attributed to the proximity of the free-end of the cylinder to the tunnel floor.

In figure 5.3(b), mean pressure distribution at 0.55H, there was a slight reduction in 
the magnitude of the mean pressure coefficients at the lowest Reynolds number of 
1.44x10^. Because this reduction was experienced right around the cylinder it was 
attributed to a processing error when applying the correction procedure to the raw 
data (see Appendix A) and not a Reynolds number effect. Nevertheless, when 
conducting the main series of experiments, reported in subsequent chapters, Reynolds 
numbers of 1.8x1 ()5 and 2.5x10)5 were used.

As discussed in chapter one the concensus from previous investigations is that the 
mean pressure distribution around a vertically mounted circular cylinder in a sheared 
flow with a longitudinal turbulence intensity of 15% (measured at roof height) is self- 
similar for Reynolds numbers greater than 1.0x10)5. This result was corroborated by 
the present tests which implied that the flow regime was supercritical and thus similar 
to that expected at full-scale.

[5-2-2] Unsteady Wall Pressures

The root-mean-square (rms) pressure coefficients at 0.27H and 0.55H are shown in 
figures 5.3(d) and (e). The form of the distributions is not dissimilar to that reported 
by Holroyd (1983) and to a first approximation could be represented as a linear 
reduction in the magnitude of the unsteady component of pressure on moving from 
the windward to the base region. The rms pressure (0=0°) at 0.27H is slightly less 
than that measured at 0.55H whereas in the base region (0=180°) this situation is 
reversed, however, these differences are relatively small.

There is no generally recognised limiting form of the the unsteady pressure 
distribution around a vertically mounted circular cylinder that implies independence 
of the external flow from the effects of Reynolds number. However, there does 
appear to be a degree of self-similarity in the profiles shown in figures 5.3(d) & (e).

[5-2-3] Power Spectra of Wall Pressures

The power spectrum shows the distribution of energy contained within the pressure 
fluctuations measured at a point (or finite area) over a specified frequency range.
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Spectra were measured at five incidences from 0° to 180° in 45° increments and at 
two different windspeeds of around 9.0m/s and 13.0m/s measured at roof height. The 
spectra shown are the raw results of the ensemble averages of fifty individual spectral 
estimates and have not undergone any further form of smoothing (unless stated 
otherwise).

The spectra at 0.27H (figs. 5.4 and 5.5) generally exhibited a series of very sharp 
peaks which were attibuted to acoustic noise within the working section of the tunnel 
(see Appendix A). Nevertheless, it was easy to distinguish the broad-band turbulent 
energy component of the signals and so no attempt was made to remove the noise for 
fear of losing a desired part of the signal. The acoustic noise was not so prevalent in 
the spectra obtained at the higher windspeed (figs. 5.5).

At an azimuth angle of 0° (figs 5.4(a) & 5.5(a)) the spectra exhibited a broad peak at 
low frequencies which steadily decayed to zero at higher frequencies. This behaviour 
was typical of pressure spectra on the windward face of a bluff body where the 
turbulent energy of the wind at lower frequencies is fully transmitted to the pressure 
fluctuations acting on the surface of the body. However, at higher frequencies the 
pressure flucutations generally decay at a faster rate than the velocity fluctuations of 
the approach flow; a phenomenon which is easily visualised by plotting the spectra in 
the form S{n}/a^ versus log{n}. The ratio of the normalised pressure and velocity 
spectra can be computed to form an admittance function (see for example Simiu & 
Scanlan (1987)). The effect of the admittance function is equivalent to applying a 
low-pass filter to the velocity fluctuations in order to obtain the pressure spectrum. 
Unfortunately, such an admittance function could not be derived from the present 
tests because an approach flow spectrum was not measured, however, a similar 
concept was used in this and later chapters to determine the gain function (square root 
of admittance) of the ratio of two spectra.

The spectra at 45°, 90° and 135° azimuth angles all contained the low frequency 
peak associated with the integral length scale of the approach flow. However, at 135° 
there was an additional marked increase in the energy at higher frequencies implying 
that smaller scale turbulence was influencing the pressure fluctuations in the lee of the 
model. This increase in energy at higher frequencies was attributed to building- 
induced turbulence as described by Eaton & Mayne (1975) on the full-sized two- 
storey house at Aylesbury. In the base region, the maximum energy in the spectrum 
had shifted completely to higher frequencies and showed no evidence of the large 
scale peak associated with the turbulence of the approach flow. This implied that the 
pressure fluctuations in the wake of the building were generated by relatively small 
eddies whose scale was related to the dimensions of the wake.
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Figure 5.5: Normalised external pressure spectra on vertical wall at 0.27H at Re=255000 and 0 equal 
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[5-2-4] Influence of an Open Orifice on External Wall Pressures 

[5-2-4-1] Pressure measured directly above an open orifice

A limited series of tests was performed in order to assess the impact of an open orifice 
in the sidewall of the model on the pressure distribution. Referring to figures 5.3(c) & 
(f) it was apparent that the presence of the open orifice had little affect on either the 
mean or the unsteady pressures at a point directly above the open orifice (at 0.55H or 
l . ld above the centre of the opening). The Reynolds number independence was 
maintained along with the overall profile shapes. However, there was a slight increase 
in the mean pressure on moving from 0° to 10° (fig. 5.3(c)) which may have been due 
to the inflow into the orifice deflecting higher momentum air downwards.

Spectra measured at 0.55H with the orifice open showed no signs of resonance due to 
the periodic motion of air into and out of the cavity of the model (figs 5.6 & 5.7) and 
were essentially the same as the spectra measured at 0.27H. A more detailed 
comparison of the two sets of spectra was made by deriving a gain function as defined 
below,

I ( 72 . >S{n} / 6  ) o 27 ft
v ( n-S{n} /  a  2 ) 0 55H

®0.55H 

^  0.21 H

I S { n } 027H

V ^ ^ O . S S H

(5.2)

and the graphical results are shown in figures 5.8 and 5.9 (a) to (e).

In the base region the gain functions showed that the spectra at 0.27H and 0.55H were 
essentially the same at both windspeeds. However, rotating from 0° to 135° it was 
increasingly apparent that there was more energy contained within the small scale 
turbulence at the higher location and that the rate of decay of this energy across the 
spectrum was less than that at 0.27H. These effects were most noticeable at 9=135°.

[S-2-4-2] Pressure Measured Downstream of an Open Orifice at 0.27H

The mean and unsteady pressures were measured (but not spectra) downstream of an 
open orifice with the orifice orientated at a number of different azimuth angles from 0° 
to 180° in 10° increments at a single Reynolds of 2.54xl()5. (In the figures (j) was used 
to denote the azimuth angle of the orifice and 0 denotes the location of the pressure tap; 
for comparison the reference pressure distributions at 0.27H with the orifice closed are 
shown as dashed lines).
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Figure 5.6: Normalised external pressure spectra on vertical w all at 0.55H  at R e=181000 and 8 equal
to (a) 0 degrees, (b) 45 degrees, (c) 90 degrees, (d) 135 degrees & (e) 180 degrees
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Figure 5.7: Normalised external pressure spectra on vertical wall at 0.55H at Re=255000 and 0 equal 
to (a) 0 degrees, (b) 45 degrees, (c) 90 degrees, (d) 135 degrees & (e) 180 degrees
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Figure 5.8: Gain functions (equation (5.2)) o f pressure spectra on vertical wall at Re=181000 and 9 
equal to (a) 0 degrees, (b) 45 degrees, (c) 90 degrees, (d) 135 degrees & (e) 180 degrees
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Gain, G2
(a)

Figure 5.9: Gain functions (equation (5.2)) o f pressure spectra on vertical wall at R e=255000 and £
equal to (a) 0 degrees, (b) 45 degrees, (c) 90 degrees, (d) 135 degrees & (e) 180 degrees
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The mean pressure downstream of the open orifice (fig 5.10) was little affected by the 
presence of the opening apart from a slightly increased rate of pressure recovery 
around the leeward face of the cylinder. The magnitudes of the windward stagnation 
pressure, maximum mean suction and base pressure were all unchanged by the 
presence of the opening. For the sake of clarity, the unsteady pressure results have been 
divided into three groups (figs 5.11(a) to (c)). With the orifice oriented between 0° to 
50° the rms pressure coefficients were seen to follow the reference profile (dashed 
line) quite well until 9=70°. Between the limits of 7O°<0<12O° there was a marked 
increase in the unsteady pressure which eventually rejoined the reference pressure 
profile into the base region. For orifice incidences greater than 60° the presence of the 
opening did not influence the magnitude of the rms pressure fluctuations further 
downstream.

The reasons for the increased unsteady pressures may have been twofold. Firstly, the 
mere presence of the opening would have introduced an irregularity on the surface of 
the model and thus increased the unsteady pressure fluctuations downsteam of the 
orifice. Secondly, the oscillating "slug" of air contained within the orifice may have 
added a resonant component to the downstream fluctuations. Both these processes 
would have been relatively small-scale phenomena characterised by the size of the 
opening and the wavelength of the Flelmholtz frequency respectively, however, without 
spectral evidence it was not possible to be any more specific. The constancy of the 
unsteady pressure in the lee of the model, 11O°<0<18O°, may indicate that the small- 
scale disturbances introduced by the presence of the opening were either rapidly 
dissipated or, more likely, were lost in the free-shear layer which formed the boundary 
to the wake of the cylinder.

[5-2-4-3] Pressure Measured at 0.27H Midway Between Two Open Orifices

Spectral measurements of the pressure fluctuation between t w o  open orifices were also 
made at Reynolds numbers of 1.8x10^ and 2.5x10^ for azimuth angles, 0, (measured 
between the windward stagantion point and the pressure tap) between 0 ° to 180° in 
45° increments (The corresponding orifice incidences were equal to 0 plus and minus 
11.25°. The raw spectral data were converted directly to gain functions defined by

G a i n ,  G 3  -

 ̂ ( n . S { n }  / o ) 0.27h c ,

( n . S { n }  / C7~ ) o 27 h
“ open

5{n}
^ l n }o.27H,

0.55 H  c lo s e d

open (5.3)
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In contrast to the "G2" functions (figures 5.8 & 5.9) the "G3" gains (figs 5.12 & 5.13) 
were additionally smoothed by computing the nine-point moving average across the 
whole frequency range.

At 0°, 45° and 180° the "G3" functions were flat across the whole frequency range. At 
90° the presence of the openings brought about an increased gain at frequencies above 
80Hz (approximately) with this increase being greater at the lower Reynolds number. 
When 0 was equal to 135° the "G3" again showed increased energy levels over the top 
end of the spectrum, but in addition there was a significant resonant component 
corresponding to the Helmholtz frequency (shown by the vertical dashed line).

Now whilst, the configuration of the tests reported here differed slightly from those 
described in the previous section (5-2-4-2) the results seem to confirm that the 
principal effect of an opening/s was to increase the energy of the small-scale pressure 
fluctuations over a broad bandwidth and to impart a resonant component to the external 
pressure fluctuations at certain azimuth angles (narrow-band process).

[5-3] Roof Pressures

[5-3-1] Mean Roof Pressures

Nine pressure taps were equispaced along a radius of the rigid roof of the model 
beginning at the centre of the roof and ending at D/3 from the centre; this span 
corresponded to the radius of the flexible roof (see chapter 2). The mean roof pressures 
were measured at an early stage in the experimental programme using a bank of 
inclined multitube manometers so unsteady pressure measurements were not obtained. 
Tests were conducted at a single Reynolds number of 2 .5 x 1 0  ̂ because the windward 
sharp-edge of the roof effectively fixed flow separation at this location. The model was 
rotated through 180° in 1 0 ° increments and the corrected pressure coefficients were 
plotted against radial position for each azimuth angle. Interpolation between data points 
enabled a contour plot of mean pressure coefficients to be constructed (figure 5.14).

The area of the roof covered by the pressure taps was under a suction pressure. The 
maximum suction occurred on the upwind side of the roof (top of figure 5.14) and an 
adverse pressure gradient existed along the roof in the direction of the mean flow. The 
magnitude of this gradient was reduced on moving downstream.
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Figure 5.12: Gain functions (see equation (5.3)) of external pressure spectra at 0.27H and incidences 
of (a) 0 degrees, (b) 45 degrees, (c) 90 degrees, (d) 135 degrees & (e) 180 degrees. 
Reynolds number of tests was 181000.
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Figure 5.13: Gain functions (see equation (5.3)) of external pressure spectra at 0.27H and incidences 
of (a) 0 degrees, (b) 45 degrees, (c) 90 degrees, (d) 135 degrees & (e) 180 degrees. 
Reynolds number of tests was 255000.
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u

Figure 5.14: Mean pressure contours on the roof of the model 
(measured in the central portion of the roof only). Legend 
denotes the mean pressure coefficient commencing with 
the most upwind value of -0.8; the diameter of the model 
is also shown for comparison.
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The form of the mean pressure distribution was similar to that obtained by Holroyd 
(1983) with fairly flat pressure contours at right angles to the mean flow which 
gradually turned into the downstream direction near the edges of the roof. However, 
whereas the maximum mean suction shown in figure 5.14 was around -0.8. at a similar 
location Holroyd reported a mean pressure coefficient nearer to -1.0. This discrepancy 
might be explained by differences in the two boundary layer simulations where the roof 
height longitudinal turbulence intensity was 2 2 % in the present tests as opposed to a 
value nearer 14% in the tests of Holroyd. Purdy et al (1967) showed that increasing the 
turbulence intensity promoted earlier reattachment of the shear layer (which had 
separated from the leading edge of the roof) and shifted the maximum roof suction in 
an upstream direction. Such a movement was implied by the results of figure 5.14.

[5-3-2] Unsteady Roof Pressures & Power Spectra

Root-mean-square pressure coefficients at a single radial location of D/ 6  from the 
centre of the roof were determined at two Reynolds numbers of 1.8xlo5 and 2.5x10^ 
and azimuth angles of approximately 26°, 71°, 116°, 154°, and 161°. The r.m.s. 
pressure coefficients are presented in table 5.2 where it was noted that a reduction in 
the unsteady roof pressure occurred in the along-wind direction. The magnitude of the 
rms pressure coefficient was independent of the Reynolds number for the two test 
cases.

Azimuth
(degrees)

Reynolds number = 
1 .8 x l 0 5

Reynolds number = 
2.5xl05

26 .18 .18
71 .16 .17
116 . 1 2 . 1 2

154 .09 .08
171 .09 .09

Table 5.2: Unsteady pressure coefficients (r.m.s.) on the roof of the model

The unsteady pressures were obtained as a by-product of the spectral measurements 
shown in figures 5.15 and 5.16. The spectra at the lower Reynolds number (figure 
5.15) contained sharp peaks associated with acoustic noise within the wind tunnel but 
were to a large extent invariant with changes in 0. Re-examination of figure 5.14 
showed that the spectra were measured over an area on the roof where the mean 
pressure coefficients changed by less than 0 . 1  which was reflected in the fixed 
frequency distribution of the pressure fluctuations in this region.
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Figure 5.15: Normalised external pressure spectra on roof at x/D=0.17, Re=181000 and 0 equal to 

(a) 26 degrees, (b) 71 degrees, (c) 116 degrees, (d) 154 degrees & (e) 161 degrees.
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Figure 5.16: Normalised external pressure spectra on roof at x/D=0.17, Re=255000 and 0 equal to 
(a) 26 degrees, (b) 71 degrees, (c) 116 degrees, (d) 154 degrees & (e) 161 degrees.
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The above characteristics were also apparent in spectra measured at a Reynolds number 
of 2 .5 5 x 1 0  ̂ (figure 5.16) apart from an apparent periodicity in the pressure 
fluctuations at around 10Hz which was present for azimuth angles of 116° and greater. 
This peak was not thought to be of acoustic origin because it was different in 
appearance to the very narrow band peaks previously described. The squat slenderness 
ratio of the cylinder precluded any notion of coherent vortex shedding in the wake of 
the cylinder so the precise origin of this peak was not identified.

When plotted in the S{n)/a2 versus log{n } format the roof spectra at both Reynolds 
numbers collapsed and were described by decay rates given in table 5.3.

Reynolds number = 1.8xlCP Reynolds number = 2.5x10^
bandwidth decay rate bandwidth decav rate
upto 4Hz flat upto 4Hz flat

4Hz to 30Hz n-0.35 4Hz to 50Hz n-0.35

40 Hz to 85Hz n-1 .67 40Hz to 90Hz n-1 .67

90Hz to 155Hz D i b 90Hz to 155Hz n-3.8

Table 5.3: Decay rates for roof pressure spectra

[5-4] Summary

Results for the external pressure distribution around the wind tunnel model were 
presented and discussed in context with the results from previous investigators. The 
external pressure characterisitcs needed to be determined as these were the primary 
sources of excitation for the pressure variations within the cavity of the model. The 
characteristics of the internal cavity pressure are described in the following chapters.
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Chapter 6: Mean and Unsteady Cavity Pressure Measurements

[6-1] Introduction

The pressure characteristics of the internal volume of the model were to a large extent 
dependent upon a number of geometric parameters, namely cavity volume, roof 
flexibility, number of open orifices and orifice orientation. Reynolds number also 
influenced the internal pressures. This chapter quantifies how the above parameters 
influenced mean and root-mean-square cavity pressures. The majority of tests where 
cavity pressure fluctuations were monitored were conducted with only a single opening 
connecting the internal volume to the external flow. Great care was taken to ensure that 
all joints on the model were rigidly sealed to minimise the background leakage on the 
model.

[6-2] Mean Cavity Pressures

[6-2-1] General Characteristics of the Mean Cavity Pressures

The mean cavity pressure distributions (fig 6.1) were obtained by rotating the open 
orifice from 0° to 180° in discrete increments. The angle between the windward 
stagnation point and the centre of the orifice defined the azimuth angle, cf).

The mean pressure distributions were broadly similar in shape to the external 
distributions (compare with figures 5.3) which implied that the cavity pressure was 
directly related to the external pressure via the open orifice. The front stagnation 
pressures lay somewhere between the mean external pressures measured at 0.27H 
(centre of opening) and 0.55H (above the opening) which implied that the mean cavity 
pressure was a spatial average of the external pressure across the area of the opening. 
The minimum mean pressure coefficient was around -0.8 and there was a steady 
pressure recovery into the base region. Indeed the final recovery was greater than that 
measured on the external walls of the model.

[6-2-2] Mean Cavity Pressure as a Function of Reynolds Number and Cavity 
Volume

The two parameters cavity volume and Reynolds number (based upon the mean 
windspeed at roof height and the diameter of the cylinder) were found to be interlinked 
(figure 6.1). Whilst a fair degree of confidence was assumed about the Reynolds number 
sensitivities of the external flow (section 5-2-1-1] the small size of the openings in the 
model caused some concern about local Reynolds number effects on the flow through
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the orifice. This situation was further complicated by the nature of the orifice flow which 
was rapidly reversing due to resonance within the cavity. At the largest cavity volume 
(Vc) the mean cavity pressure distribution was self-similar for Reynolds numbers in the 
range 1.4xl05<Re<2.52xl05 (fig 6.1(c)). However, as the cavity volume was reduced 
through volume B (Vb) and on to volume A (Va) a sensitivity to Reynolds number 
became apparent around the leeward face of the cylinder where increases in the 
Reynolds number brought about an increase in suction around the model.

The implications of this result were more clearly seen by replotting the mean pressure 
distributions for different cavity volumes at similar Reynolds numbers (fig. 6.2). A good 
collapse of the data was evident at the two largest Reynolds numbers but at a Reynolds 
number of 1.8xl05 the mean cavity pressure for Va showed signs of Reynolds number 
sensitivity. At the lowest Reynolds number the mean cavity pressure for both Va and Vb 
sensitive to Reynolds number. Consequently, the earlier conclusion to run the main set 
of tests at Reynolds numbers of 1.8xl05 and 2.5xl05 based upon external flow 
sensitivities (section 5-2-1-1) was just sufficient to satisfy the local Reynolds number 
sensitivities of the orifice flow.

[6-3] Unsteady Cavity Pressures

[6-3-1] General Characteristics of the Unsteady Cavity Pressures

The r.m.s. cavity pressures showed a fairly rapid reduction between 0°<(jx70° after 
which they remained fairly constant apart from an additional slight reduction around 
(j>=130° (figure 6.1). This behaviour contrasted with the almost linear reduction of the 
external unsteady pressures with increasng azimuth angle.

[6-3-2] Unsteady Cavity Pressure as a Function of Reynolds Number and Cavity 
Volume

There were ranges of azimuth over which the r.m.s. pressures coefficients showed a 
systematic variation with changes in Reynolds number (figs 6.1(d), (e) & (f)). Although 
not clear for each internal volume these ranges seemed to be confined to the windward 
(overpressure) region and the base region for angles between 0° to 40° and 130° to 
180° respectively. Between these two zones the unsteady cavity pressure was 
independent of the Reynolds number.

As the cavity volume was increased there was a gradual flattening of the profile shape 
over the sector from 0°<(()<30o sector (figure 6.1). In addition there was a slight
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Figure 6.2: Mean internal pressure coefficients as a function of orifice incidence for different internal 
volumes at approximately constant Reynolds numbers: the legends display the Reynolds 
numbers for the different volumes with volume A (top) < volume B (centre) < volume C 
(bottom).
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reduction in the r.m.s. pressure fluctations in the base region from around 0.18 to 0.14 
as the cavity volume was increased. Further examination of the unsteady pressure 
coefficients by computing the ratio of the r.m.s. cavity pressure to the external r.m.s. 
pressure (at 0.27H) identified distinct sectors where cavity pressure fluctuations 
exceeded external pressure fluctuations (figure 6.3). From 0° to 50° the pressure 
fluctuations measured in the internal volume of the model were greater than those 
measured on the external wall. However, between 60° and a larger azimuth angle, 
termed $ (or 9upper), the r.m.s. cavity pressure was less than the external wall 
pressure and the value of 9upper was dependent upon the cavity volume as shown in table 
6 . 1.

Cavity Volume u iiDDer

v a 139°
v b 150°
V, 160°

Table 6.1: Estimated values of 0upper from figure 6.3.

The cavity pressure fluctuations were shown to be sensitive to Reynolds number in 
figure 6.1 and were also a function of the azimuth angle as shown in figure 6.3. Changes 
in the variance (or its square root) of the cavity pressure fluctuations will be reflected in 
the distribution of energy in the power spectra (whose area is equal to the variance) 
whereby the sensitivities discussed above may be related to the magnitude of the 
Helmholtz oscillation. There was evidence to support this proposition in the spectral 
data (chapter 7).

[6-3-3] Unsteady Cavity Pressures as a Function of Roof Flexibility

The influence of wall flexibility on resonance at the Helmholtz frequency was alluded to 
by Liu & Rhee (1986), however, no experimental evidence was presented. In order to 
directly assess the effects of roof flexibility on the cavity pressure fluctuations the r.m.s. 
cavity pressure measured when the roof of the model was rigid was used as a reference 
value for each configuration where "configuration" was defined by a Reynolds number, 
orifice azimuth angle, cj), and cavity volume. For each configuration four different roof 
tensions were tested and the resultant unsteady pressure coefficients, C'pif]ex expressed 
as a fraction of C'prigid. Azimuth angles from 9° to 189° in increments of 45° were tested. 
The results were tabulated (table 6.2) and expressed in the form of histograms in
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Chapter 6: Mean & Unsteady Cavity Pressure Measurements

Figure 6.3: R.m.s. pressure ratios expressed as cavity pressure divided by external pressure 
(at z/H=0.27) versus orifice azimuth angle for (a) volume A, (b) volume B and 
(c) volume C
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figure 6.4 (Note: The roof tensions are shown in qualitative terms only going from 
relatively rigid, Ta to the most flexible, Td).

Orifice
Incidence
[degrees]

Cavity Volume A
Re 1.8 xlO5 Speed 2.5 xlO5

t a t b Tc t d t a t b Tc t d

0 0.961 0.937 0.854 0.842 0.879 0.843 0.794 0.776
45 1.019 0.989 0.916 0.880 0.913 0.857 0.811 0.760
90 1.023 1.030 0.981 0.987 1.006 0.988 0.950 0.963
135 0.960 0.917 0.879 0.818 0.813 0.774 0.732 0.687
180 0.983 0.859 0.805 0.719 0.869 0.784 0.746 0.646

Orifice
Incidence
[degrees]

Cavity Volume B
Re 1.8 xlO5 Re 2.5 xlO5

t a t b Tc t d t a t b Tc t d

0 0.956 0.879 0.820 0.815 0.907 0.835 0.818 0.808
45 0.993 0.905 0.834 0.857 0.920 0.833 0.797 0.796
90 0.968 0.940 1.016 0.979 0.972 0.960 0.959 0.961
135 0.899 0.842 0.809 0.837 0.923 0.899 0.871 0.851
180 0.883 0.786 0.717 0.744 0.883 0.778 0.785 0.788

Orifice
Incidence
[degrees]

Cavity Volume C
Re 1 . 8 xlO5 Re 2.5 xlO^

t a Tb Tc t d t a Tb Tc t d

0 0.945 0.868 0.848 0.831 0.932 0.879 0.861 0.854
45 0.954 0.895 0.917 0.841 0.937 0.860 0.841 0.797
90 1.009 0.963 0.967 0.949 0.983 0.968 0.971 0.954
135 0.940 0.884 0.860 0.829 0.942 0.918 0.877 0.841
180 0.847 0.766 0.748 0.686 0.881 0.822 0.788 0.746

Table 6.2: Ratio of r.m.s. cavity pressures; flexible roof/rigid roof configurations

In nearly all the test cases increasing the flexibility of the roof attenuated the intensity of 
the pressure fluctuations within the cavity of the building. Generally, the smallest 
attenuation ocurred for the cases ())=90o where the fluctuation ratio was near to unity, 
i.e. the unsteady cavity pressure was least affected by roof flexibility.

At the lower Reynolds number (figures 6.4(a) to (c)) the attenuation increased in a 
systematic way from (j)=90° to <])=0o and similarly from (j)=90° to c}>= 180°. For each cavity 
volume the maximum attenuation generally occurred when the orifice was in the
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Chapter 6: Mean & Unsteady Cavity Pressure Measurements

the base region of the cylinder (<£= 1 80°). Similar trends to the above were noted in 
the results obtained at the higher Reynolds number, however, these results were less 
consistent.

A final manipulation of the data contained in table 6.2 was made by using the bulk 
modulus ratios, Ka/Kb (defined in section 2-4-2-2), estimated from the "still-air" 
Helmholtz frequencies. Ka/Kb is a measure of the relative compressibilities of the 
building envelope and the air within the cavity. Increasing the flexibility of the roof 
increased the value of Ka/Kb and a relative increase was obtained at each value of 
roof tension by defining a flexibility factor, F, where

p  — / Kb ) flex /g  j-,

(Ka / K b) ngid

The estimate of the rigid roof building bulk modulus ratio for Vc was very small, 
only 0.02, which gave rise to correspondingly large values of F of between 30 and 
130. These values were some three to four times bigger than the equivalent flexibility 
factors computed for volumes A and B. Consequently, for the purposes of a 
comparison the estimate of (Ka/Kb)ngjd for Vc was (somewhat arbitrarily) doubled to 
0.04 (but see also table 4.3).

At the lower Reynolds number the results of unsteady pressure ratio as a function of 
the change in roof flexibility were "well-behaved" and collapsed onto a single curve 
that was independent of cavity volume (figure 6.5). Reductions in the tension of the 
roof generally brought about an attenuation of the r.m.s. cavity pressures for each 
orifice azimuth apart from 4>=90° where roof flexibility had practically no effect on 
the cavity pressure fluctuations. At the higher Reynolds number (figure 6.6) the data 
appeared to collapse for configurations where the orifice was on the windward side of 
the model but when in the lee of the building the results were more scattered.

The general conclusions from figures 6.5 and 6.6 were that increases in the flexibility 
factor to around twenty reduced the cavity pressure fluctuations by 20% and further 
reductions in the rigidity of the roof had a negligible effect on the unsteady cavity 
pressures.

[6-4] Summary

The mean cavity pressures were to a large extent dependent upon the pressures acting 
on the external walls of the model. Some degree of local Reynolds number sensitivity
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Chapter 6: Mean & Unsteady Cavity Pressure Measurements

was noted in the flow through the openings but for Reynolds numbers (based upon the 
mean roof height windspeed and diameter of the model) of 1.81xl05 and above these 
effects were minimal. It was suggested that variations in the unsteady cavity pressures 
might well be reflected in the degree to which the Helmholtz mode of oscillation was 
excited within the cavity. This suggestion will be discussed further in the next chapter.
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Chapter 7: Cavity Pressure Results in the Frequency Domain

[7-1] Introduction

A significant amount of research has been reported on the phenomenon of Helmholtz 
resonance, a phenomenon which was categorised as a fluid-resonant behaviour in the 
review paper of Naudascher & Rockwell (1978). A particularly successful application 
of the Helmholtz resonator appears to be as a means of suppressing duct noise where 
holes in the wall of a duct communicate with resonator cavities of different size. This 
type of research is generally restricted to the case of an external flow moving 
perpendicular to the longitudinal axis of the opening (equivalent to the "90°" case in 
the present tests) for which both the interactions between the external flow and the 
cavity and the sensitivity of the cavity response to changes in the opening geometry 
have been investigated.

Baumeister & Rice (1975) captured the exchanges between the external flow and an 
Helmholtz resonator on camera and the results are summarised below for three stages 
of the resonant cycle; the arrows show the direction of the flow.

Figure 7.1 : Flow mechanism of Helmholtz oscillation under a "grazing" flow

(after Baumeister & Rice, 1975).

The sequence shown in figure 7.1 starts on the inflow stage of the resonant cycle 
(7.1 (i)) where separation from point B limits the area available for inflow to the 
region downstream of the separation line. Eventually, the overpressure within the 
cavity forces fluid back into the external flow but this outflow begins "beneath" the 
shear layer (as indicated on figure 7.1 (ii)) where the momentum of the fluid is low 
compared with the jet of fluid to the left of the shear layer. At this time the net 
momentum through the opening is zero but two distinct bodies of fluid moving in 
opposite directions coexist within the opening. The inflow component in figure 7.1 (ii) 
is gradually decelerated until the opening is completely filled with fluid moving from 
cavity to external flow and the cycle is completed (figure 7.1(iii)).
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Baumeister & Rice (1975) concluded that the existence of the external flow reduced the 
effective area of the opening on both the inflow and outflow parts of the cycle, 
compared with the zero external flow case, so that the presence of the grazing flow 
could be viewed qualitatively as a blockage in the opening. In addition, measurements 
of the discharge coefficients associated with the inflow and ouflow parts of the cycle 
showed that the energy loss on the inflow exceeded the energy lost on the outflow 
which implied that the two flow processes were different. However, knowledge of the 
ratio of the mean jet velocity through the opening to the mean external flowspeed, 
Vjet/Vgxtemai’ was sufficient to define the two discharge coefficients.

Panton (1990) considered the influence of the shape of the opening of the resonator on 
the response of the cavity pressure and found that significant changes occurred for 
apparently small variations in geometry. The basic experimental configuration was 
similar to that shown in figure 7.1 and the results clearly demonstrated that the cavity 
response was increased when modifications were made to the geometry of the opening 
which facilitated inflow and outflow through the opening. For example, compared with 
the opening shown in figure 7.2(i), the cavity response was enhanced by making the 
changes shown in 7.2(ii) and (iii), whereas the geometry shown in 7.2(iv) virtually 
eliminated the resonant response of the pressure within the cavity.

(i)

cavity

(ii)

? cavity

Figure 7.2: Changes in opening geometry investigated by Panton (1990).

The tests of Panton (1990) were conducted for a range of external flow conditions and 
the results presented in the normalised format of pj/q versus the Strouhal number of the 
opening, V/(L.f0), where f0 was the acoustic Helmholtz frequency. When plotted in this 
way the response characterisics of the different resonators were generally similar with a 
peak of around 1.0 (dependent upon the geometry of the opening) occurring at a 
Strouhal number of approximately 3.8.

7.2



Chapter 7: Cavity Pressure Results in the Frequency Domain

The results of the present tests showed an increased cavity response on changing the 
orientation of the opening from 90° through 45° to 0° and this agreed qualitatively with 
the results of Panton (1990), as discussed above. However, a significant response was 
also observed on directing the opening away from the direction of the mean external 
flow, the 135° and 180° cases, which implied that the reversed flow in the wake of the 
model produced an inflow component capable of exciting the resonant mode. These 
general results were applicable to each of the model configurations tested with the 
minimum response occurring for an opening located at an azimuth angle of 90°.

The spectra of the pressure fluctuations measured within the cavity of the model will 
initially be presented for tests conducted with a rigid roof and walls and the specific 
influences of mean reference windspeed, orientation of the opening and cavity volume 
will be described. Similar sets of data from tests on a model fitted with a flexible 
membrane roof will then be presented and conclusions drawn regarding the modelling 
of internal pressure dynamics. A complete set of the cavity pressure spectra are 
included in appendix B, whilst the gain functions defined by equation (7.1) are 
presented in appendix C; a small selection of the graphs from these two appendices will 
be reproduced in this chapter in order to illustrate the points being made in the text.

[7-2] Rigid Roof Results

[7-2-1] The Influence of Mean Reference Windspeed

Each model configuration was tested at two mean reference windspeeds of 9.4m/s and 
13.0m/s, however, for volume A with an opening orientated at 0° and 45° tests were 
run at two additional windspeeds. The cavity pressure spectra for these tests are shown 
in figures 7.3 and 7.4 where it is clear that reductions in the mean windspeed increased 
the resonant response at both orientations. This trend was consistently repeated for the 
pairs of results obtained from tests on other configurations of the model, i.e. the 
response at 9.4m/s exceeded that measured at 13.0m/s.

The implication of this result was that damping at the Helmholtz frequency was a 
function of the mean windspeed such that increases in the mean speed increased 
damping and thus reduced the resonant response of the cavity pressure. Indeed, the 
damping constants for flow through an opening modelled by Vickery & Georgiou 
(1991) included a direct relationship between damping and the mean reference 
windspeed (see equation 2.9) of the external flow. However, it was possible that the 
changes in the response of the cavity pressure fluctuations might have been caused by
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Figure 7.3: Normalised cavity pressure spectra for model fitted with a rigid roof and 
with an opening azimuth angle of 0 degrees at mean reference 
windspeeds of (a) 13.0 m/s, (b) 11.3 m/s, (c) 9.4 m/s, (d) 7.2 m/s.
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Figure 7.4: Normalised cavity pressure spectra for model fitted with a rigid roof and 
with an opening azimuth angle of 45 degrees at mean reference 
windspeeds of (a) 13.0m/s, (b) 11.3 m/s, (c) 9.4m/s, (d) 7.2 m/s.
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changes in the external pressure field which were subsequently transmitted to the 
pressure fluctuations within the cavity. In order to remove this effect, if it were present, 
a third gain function, G,, was defined (c.f. the functions G2 and G3 defined in chapter 
5) which was obtained by narrow bandwidth division of the cavity pressure spectra by 
the external pressure spectra measured at 0.27H. The function G, is defined by

Gain, G , =
( n . Sj {n} / a i 2 ) 

( n . S e {n } / a e 2 ) 027 H

e 0.27H

a  ;
S: {m (7.1)

I 0.27 H

where the suffices "i" and "e" refer to internal and external pressure respectively. These 
gain results retained the sensitivity to mean windspeed described above and are shown 
in figure 7.5.

[7-2-2] The Influence of Cavity Volume

Comparison of the cavity pressure spectra for different cavity volumes showed a 
reduction in the response at the Helmholtz frequency as the volume was increased. For 
the convenience of the reader the cases of maximum response (0°) and minimum 
response (90°) were reproduced in figure 7.6 (similar trends were observed in the 
additional results shown in appendix B).

Changing the volume of the internal cavity altered the Helmholtz frequency so that for 
the same turbulent excitation the natural frequency of the cavities were subjected to 
different levels of turbulent energy. Once again conversion of the spectra to gain 
functions removed this effect but the results retained the sensitivity to internal volume 
described above (figure 7.7).

[7-2-3] The Influence of Azimuth Angle

At each cavity volume and windspeed the minimum resonant response of the cavity 
pressure consistently occurred when the opening in the wall of the model was at 90° to 
the aproach flow. At 90° a significant broad-band of low frequency energy was 
apparent on the cavity pressure spectra which had been transmitted from the turbulent 
pressure fluctuations acting on the outside of the model (figure 7.8). This broad-band 
response was due to the buffetting effect of the turbulence. The magnitude of the 
spectral peak associated with turbulence was generally greater than that of the resonant 
peak due to Helmholtz oscillation when the opening was at an azimuth angle
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-1 - 0 . 5  0 0 . 5  1 1 . 5  2 2 . 5

Gain, G1
log{n}

(c)

•0.6 0

9 “T

7 

6

5 - -  

4 - -  

3 -* 

2 --

log{n}

Figure 7.5: Gain functions o f cavity pressure for a rigid-roofed model with volume A and :
(a) opening at 0 degrees, windspeed =13.0m/s
(b) opening at 0 degrees, windspeed = 9.4m/s
(c) opening at 45 degrees, windspeed = 13.0m/s
(d) opening at 45 degrees, windspeed = 9.4m/s
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Figure 7.6: Cavity pressure spectra at a windspeed o f 9.4m/s for the model fitted with a rigid roof and
(a) opening at 0 degrees, volume A, (b) opening at 0 degrees, volume B, (c) opening at 0 degrees, volume C,
(d) opening at 90 degrees, volume A, (e) opening at 90 degrees, volume B, (0  opening at 90 degrees, volume C.
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Figure 7.7: Cavity pressure gain functions at a windspeed of 9.4m/s for the model fitted with a rigid roof and
(a) opening at 0 degrees, volume A, (b) opening at 0 degrees, volume B, (c) opening at 0 degrees, volume C,
(d) opening at 90 degrees, volume A, (e) opening at 90 degrees, volume B, (f) opening at 90 degrees, volume C.
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Figure 7.8: Cavity pressure spectra for volume B at a mean windspeed o f 9.4m/s with a rigid roof and
openings located at (a) 90 degrees, (b) 45 degrees, (c) 0 degrees, (d) 135 degrees, (e) 180 degrees.
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of 90°. Rotating the opening to windward through 45° to 0° gradually increased the 
energy content of the resonant peak because the position of the opening promoted the 
flow of air into the cavity of the model (Panton, 1990). The broad-band turbulent 
buffetting response was essentially "swamped" by resonance when the opening was 
orientated to windward.

However, turning the opening to 135° and then 180° also enhanced the resonant 
response of the cavity even though the opening was directed away from the approach 
flow. At these azimuth angles the Helmholtz oscillation again dominated the cavity 
pressure spectra excited by the inflow components induced by reversed flow on the 
leeward side of the model. The shift in turbulent energy toward higher frequencies that 
occurred on the outside walls of the model on moving from windward to leeward 
(chapter 5) might also have prompted the large resonant response of the cavity pressure 
for openings situated on the leeward side of the model. The gain function defined in 
section 7-1 was used to remove this effect and showed that the resonant response of the 
cavity pressure was high for openings located in this region (figure 7.9).

[7-2-4] Effect of Volume Scaling on the Response of the Cavity Pressure

The scaling requirements for correctly matching the internal pressure dynamics of both 
full-scale and model buildings (chapter 2) showed that using a velocity scale less than 
unity meant that the cavity volume of the model had to be exaggerated by a factor 
equal to the square of the velocity scale. This result (which seems to have been 
independently derived by a number of different investigators) was corroborated, at least 
qualitatively, by the results discussed in sections 7-2-2 and 7-2-3, where running a test 
at a low windspeed increased the resonant response of the cavity pressure fluctuations 
whilst increasing the volume of the cavity reduced the resonant response of the cavity 
pressure so that the two phenomena could be used to compensate for one another.

In order to make a more qualitative assessment of this behaviour, one of the model 
configurations was arbitrarily chosen to be a "correct" representation of some 
undefined full-scale building; the response and internal volume of this configuration 
were used as reference values for comparison with the results obtained from the 
remaining configurations where response was quantified by an estimate of the height of 
the resonant peak on the cavity pressure spectra. The reference configuration selected 
was volume B tested at a windspeed of 9.4m/s (denoted by Vb9 4). A reference full- 
scale windspeed of 27.405m/s was derived by equating the 8.5 volume



-o

to

Figure 7.9: Cavity pressure gain functions for volume B at a mean windspeed o f 9.4m/s with a rigid roof and
openings located at (a) 90 degrees, (b) 45 degrees, (c) 0 degrees, (d) 135 degrees, (e) 180 degrees.
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Chapter 7: Cavity Pressure Results in the Frequency Domain

factor of volume B to the inverse of the square of the velocity scale. The relative 
mismatch in the volume scaling for all other configurations of the tests were obtained 
by dividing the pertinent volume factors (4.5, 8.5 or 12.5) by 1/A.V2. The relative 
response of the internal cavity pressure was quantified at each azimuth angle by 
estimating the resonant peak of the Helmholtz oscillation from the spectrum and 
dividing it by the corresonding response measured for Vb9 4.

The results for openings located at five different azimuth angles appeared to collapse 
onto a single curve as shown in figure 7.10 and were adequately described by the 
exponential decay curve (shown as the "best-fit" on figure 7.10),

y = 1.6338. e -°'4107x (7.2)

where y is the relative réponse and x the distortion in the scaling. Exaggerating the 
scale factor resulted in a reduced response whilst a cavity volume that was too small 
overestimated the response. It may be argued that the latter error in scaling would 
produce conservative results at model-scale because of the increased response, 
however, the exponential nature of the relationship in equation 7.2 produces errors in 
the response of smaller magnitude for a 50% (say) overestimate of the cavity volume 
than those for a 50% underestimate. The percentage error bands which enclose all the 
data points are shown in order to give some feel for the scatter in the data.

[7-3] Flexible Roof Results

[7-3-1] The Helmholtz Mode

Generally for each value of the roof tension, denoted in order of increasing flexibility 
as Ta, Tb, Tc, Td, the trends described in section 7-2 were also applicable, namely

• minimum response occurred for openings at 90° to the approach flow

• increased cavity volume reduced the resonant response of the cavity pressure 
fluctuations

• increased mean windspeed reduced the resonant response of the cavity pressure 
fluctuations.

However, these effects were generally less pronounced than they were for the rigid roof 
tests because of the additional damping introduced by the motion of the roof. None of
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Chapter 7: Cavity Pressure Results in the Frequency Domain

None of the results compiled in appendices B & C were reproduced here due to 
limitations in space.

Nevertheless, in order to summarise the results of this section the analysis of section 
7-2-4 was extended to include the effective cavity volume, Veff, defined in chapter 2. 
Using the volume factors from the previous section and multiplying them by the 
relevant values of (1 + K./K,,) (listed in chapter 4) and for each opening azimuth angle 
using the rigid roof Vb9-4 response as a reference value, figure 7.10 was extended to 
incorporate the flexible roof results. All the data again collapsed onto a single curve 
(figure 7.11) which was fitted by a function of the form

y -  8508 . e - 9038 ,6̂  (7.3)

where y and x were defined in equation 7.2. The fact that both rigid roof and flexible 
roof data collapsed so well would seem to corroborate the use of an effective volume 
when describing the internal pressure dynamics of both rigid and flexible structures. 
Consequently, similitude of the resonant response of the internal pressure at velocity 
scales less than unity may be achieved by either exaggeration of the cavity volume at 
model scale or by introducing some degree of flexibility into the envelope of the 
model. This idea was alluded to by Pearce & Sykes (1994) from the results of free- 
vibration tests on the model under zero wind condition.

[7-3-2] Higher Modes of Oscillation

The theory in chapter 2 showed that a rigid-walled Helmholtz resonator can be 
modelled as a single-degree-of-freedom system and that this analysis may be extended 
to "conventional" buildings with flexible walls if an effective volume dependent upon 
the relative stiffnesses of air and the envelope of the building is defined. However, 
strictly speaking, the additional motion of the flexible components of the building 
introduce additional degrees-of-freedom to the system which produce higher 
frequency modes of vibration to which the building can p o t e n t i a l l y  respond.

Vickery (1986) stressed that the definition of an effective volume was only applicable 
to more conventional buildings and should not be applied to the analysis of the 
dynamic response of large-span roof structures. The reasoning behind this was 
probably that the inherent stiffness of conventional buildings, even those that were 
relatively flexible, produced higher frequency modes that were way out in the tail end 
of the turbulent energy spectrum of the atmospheric boundary layer and were thus
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fluctuations for models with both rigid and flexible roofs.

C
hapter 7: C

avity Pressure Results in the Frequency D
om

ain



Chapter 7: Cavity Pressure Results in the Frequency Domain

unlikely to be excited to a significant degree even if they were only lightly damped 
modes. The results of the previous section [7-3-1] showed that the definition of an 
effective volume was a valid means of extending the analysis of an Helmholtz 
resonator as a single-degree-of-freedom system to fairly "unconventional" buildings 
with large flexibility in the envelope of the building, however, the spectral results of 
appendix B showed that such an analysis did not paint the complete picture because 
higher modes were excited by the turbulent pressure field acting around the model. The 
reader is again referred to appendices B and C for the relevant results.

[7-3-2-1] Roof Mode Shapes

A simple visualisation study of the motion of the flexible roof of the model in still air 
was conducted using a loudspeaker emitting a sinusoidal excitation and salt as a 
marker. This test revealed that for the two modes of oscillation shown on the spectra in 
appendix C the roof was vibrating in its fundamental mode, i.e. first volume-displacing 
mode and that no asymmetric roof modes were excited for frequencies up to around 
150Hz (at model scale). This simplified the multi-degree-of-freedom analysis of the 
roof-cavity-opening system, as described by Vickery & Georgiou (1991), to a two- 
degree-of-freedom system as outlined in chapter 2.

[7-3-2-2] Trends in the Response of the Cavity Pressure

The natural frequency of the higher frequency mode for the model configured as 
volume A lay just beyond the frequency range covered by the data processing. This 
was unfortunate but the maximum cut-off frequency of the spectral analysis was 
limited by the speed of the sampling software. However, based upon the results 
obtained for cavity volumes A and B a number of general conclusions were drawn .

Similar model configurations showed an increased response at the frequency of the 
second mode when the windspeed of the external flow was increased. However, there 
was no discernible trend apparent in the response of the cavity pressure when the 
volume was increased; some configurations showed an increased response whilst others 
a reduced response. Increases in the flexibility of the building envelope, for cavity 
volume C showed an increased response for openings located at most azimuth angles, 
whereas, for volume B this same trend was restricted to openings positioned at 90°, 
135° and 180° (the response was insensitive to changes in roof tension when the 
openings pointed to windward).
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The frequency of the second mode of oscillation was reduced when either the cavity 
volume was increased or the tension of the roof was decreased and thus followed the 
same trends as the lower frequency Helmholtz mode. These shifts along the frequency 
axis moved the frequencies of the second modes to regions where the turbulent energy 
available for excitation was greater, nevertheless, for most of the results shown in 
appendix B the response of the cavity pressure at the higher frequency was only a small 
fraction of the total dynamic response. Indeed comparisons of the areas under the 
power spectra, by inspection, indicated that the response at the higher mode contributed 
less than 10% of the total response of the cavity pressure.

[7-4] Summary

The spectral results revealed that the magnitude of the resonant response of the cavity 
pressure fluctuations was highly dependent upon the location of the single dominant 
opening present in the wall of the model. The minimum response was found to occur 
when the opening was orientated such that the component of flow into the opening was 
at a minimum. These results were in agreement with the root-mean-square pressures 
reported in chapter 6 where the dynamic component of the cavity pressure was less 
than that measured on the external walls of the model for azimuth angles centred 
around 90°.

The cavity pressure spectra measured when the walls of the model were rigid showed 
that resonance at the Helmholtz frequency dominated the response for certain 
configurations of the model, but at other times the response was essentially due to 
broad-band turbulent buffetting. The definition of a gain function, G,, was useful in 
isolating changes in the cavity pressure spectra by removing any sensitivities inherent 
in the external pressure spectra.

When the flexible membrane roof was fitted to the model and tests repeated for varying 
degrees of roof tension a second, higher frequency mode appeared on the cavity 
pressure spectra. However, the response of the cavity pressure in this mode was 
negligible across the range of model configurations tested.

The scaling parameter for modelling internal pressure dynamics was experimentally 
verified both qualitatively and quantitatively and a general empirical relationship 
between the resonant response of the cavity pressure at the Helmholtz frequency as a 
function of errors in scaling was determined from the graphical results of appendix B.
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Chapter 8: Probability Distributions & Peak Pressures 

[8-1] Introduction

The results presented so far have been concerned with mean values and variance (or 
standard deviation) of the measured pressure coefficients. However, in the design of a 
structure the maximum loading likely to be encountered during its lifetime has clear 
significance. The importance of the mean internal pressure on the net loading across 
the individual walls of a structure was discussed in chapter 1 (see figure 1.1), but 
buildings with a dominant opening are also prone to relatively large peak pressures 
because of the relative ease with which the energy contained in external gusts is 
transmitted to the building cavity. Whilst theoretical estimates and measurements of the 
peak internal pressures induced in rigid walled buildings have been reported previously 
(Liu & Saathoff, 1981, 1982; Stathopoulos & Luchian, 1989) there does not appear to 
be published data concerned directly with the influence that building envelope 
flexibility has on the magnitude and distribution of peak internal pressures. The results 
in this chapter address this gap in knowledge for a limited set of experimental 
conditions.

An important parameter in terms of obtaining realistic values for the peak net loading 
is the correlation between occurrences of extreme external pressure and extreme 
internal pressure. This correlation will in general be a function of the position, size, 
geometry and lengths of the openings in the walls of the building as well as the 
geometry of the internal cavity and is likely to be low for relatively airtight structures 
and high for buildings that are open, or closed but with a dominant opening. Thus, the 
results presented below may be considered to be representative of a typical worst-case 
scenario where peak factors (defined in equation 8.2) for internal pressure are high and 
a s s u m e d  to be well-correlated with the external peak pressures. The actual correlation 
between external and internal pressure fluctuations was not determined from the 
experimental results.

The extreme value analysis conducted in the present test programme was restricted to 
pressures on the vertical walls of model A at a height of z/H=0.55 for wind azimuth 
angles (9) of 0°, 45°, 90°, 135° and 180° at two mean wind speeds of 9.4m/s and 
13.0m/s. The peak internal pressures were obtained at the same five orifice azimuth 
angles, though from the viewpoint of structural loading the results at 6=0° and (j)=90° 
are the more significant because these two locations represented the two extreme mean 
loads exerted around the circumference of the model. The peak internal pressure 
coefficients were obtained for three cavity volumes, A, B & C, five roof tensions, rigid, 
Ta,Tb,Tc & Td and two mean reference windspeeds.
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[8-2] Data Acquisition and Analysis

The previous chapter was concerned with the transformation of time series data into 
the frequency domain where the frequency content was quantified and described. 
However, the same time series may be converted into the amplitude domain where 
the likelihood of occurrence of data of different magnitudes can be compared by 
computing the probability distribution. Generally speaking, values around the mean 
have a high probability of occurrence whilst out in the tail ends of the probability 
distribution the extreme values have a low probability of occurrence.

Peterka & Cermak (1975) were able to determine the form of the probability density 
function (p.d.f.) of external pressure from the magnitude of the mean pressure 
coefficient at the point of interest. If the Cp > -0.1 then the flow above the pressure 
tap was attached and adequately described by a Gaussian distribution, whereas the 
condition Cp <-0.25 implied that the external flow was separated and the p.d.f. 
approached an exponential form. More recently Holmes (1981) reported that the 
shape of the p.d.f.s of pressures on windward walls of buildings was also dependent 
upon the magnitude of the turbulence intensity of the approach flow becoming more 
exponential as the intensity increased. The significance of the latter result is that 
assuming a Gaussian form for the p.d.f. increasingly underestimates the magnitude of 
the extreme pressures.

Despite the sensitivity of the shape of the p.d.f. to the external flow the distribution 
of extremes for both Gaussian (or normal) and exponential functions can be described 
by the Fisher-Tippett Type I distribution and this was assumed in the analysis of the 
following results. Details of the analysis procedure can be found in Cook (1985; 
1989) and a summary of the procedure is given in appendix D. Probability 
distributions of both internal and external cavity pressures were computed for each 
configuration of the model and compared graphically with the standardised normal 
distribution. In addition the third and fourth moments of the time series, namely skew 
and kurtosis, were computed and compared for parametric changes in the 
configuration of the model.

The extreme values were obtained in the form of pressure coefficients referenced to 
the dynamic pressure at the height of the model (see appendix A). The mean 
component of pressure was removed from each sample block so that each peak value 
was of the form.
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In regions on the building where the mean pressure was positive then the peak positive 
pressure was selected as the maximum of interest and in regions of mean suction the 
peak negative pressure was chosen as the "maximum". The variance of the pressure 
over each sample period was also computed which enabled the peak factors, pf, of 
external and internal pressure to be compared, where

Pf = ( 8.2)

As stated in chapter 3 the time series were digitised at 333.33Hz in blocks of 4096 data 
points. Five different peak values were extracted from each block corresponding to 
single, two, four, eight and sixteen-point moving averages computed along the time 
series. For each block the five different peak values were stored until twenty-four 
blocks had been processed. Each set of extremes was then analysed following the 
procedure outlined in appendix D. The five different peak values were equivalent to 
model-scale averages computed over periods of approximately 0.003s, 0.006s, 0.012s, 
0.024s and 0.048s being the maxima for individual data blocks that were approximately 
12s in length.

[8-3] External Wall Pressure Results 

[8-3-1] Probability Distributions

A standardised normal distribution is symmetric about zero and consequently has zero 
skew. In addition, the "flatness" or kurtosis for the same type of distribution has a value 
of three so that the differences between the computed skew and kurtosis and these 
"theoretical" values gives some idea of goodness of fit of the experimental data to a 
normal distribution.

Table 8.1 contains both the skew and kurtosis data computed for external pressure 
fluctuations acting on the vertical wall of the model at a height of 0.27H. The skew was 
positive when the mean external pressure was positive and negative when the pressure 
was negative. In addition, the magnitude of the skew was high when the magnitude of 
the mean pressure was high and low when the magnitude of the mean mean was low.

Estimates of the kurtosis of the external pressure fluctuations exceeded those of a 
Gaussian distribution for all azimuth angles. The magnitude of the kurtosis was high 
for pressure fluctuations in the stagnation region of the vertical wall and systematically
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decreased on moving to leeward; however, in the base region (0=180°) the kurtosis was 
at a maximum value.

azimuth

angle

Uref = 9.4m/s Uref = 13.0m/s

skew kurtosis skew kurtosis

0 0.76 3.93 0.76 3.89

45 0.24 3.75 0.30 3.88

90 -0.66 3.59 -0.66 3.54

135 -0.50 3.58 -0.45 3.54

180 -0.17 4.13 -0.26 4.03

Table 8.1: Estimates of the skew & kurtosis of the external pressures at 0.27H

[8-3-2] Extreme Value Distributions

The acquisition of extreme value data was described in section 8-2 and these data were 
processed according to the method outlined in appendix D. The analysis of these 
extreme value peak factors (equation 8.2) produced estimates of the most likely 
extreme value (mode, U), the spread of extreme values (dispersion, 1/a) and also the 
dimensionless characteristic product of extremes, all. Table 8.2 summarises the 
extreme value analysis data of the external pressure fluctuations on the vertical face of 
the model at a height Of 0.55H, for single, two, four, eight & sixteen point extreme 
values.

gust

-size

1 2 4 8 16

speed 9 U 1/a Ua u 1/a Ua U 1/a Ua U 1/a Ua U 1/a Ua

9.4

0 4.51 0.50 9.0 4.30 0.50 8.6 3.99 0.44 8.99 3.54 0.45 7.88 2.97 0.40 7.5

45 4.32 0.35 12.5 4.05 0.32 12.7 3.74 0.34 10.9 3.35 0.26 12.9 2.88 0.24 12.1

90 4.00 0.44 9.0 3.83 0.38 10.0 3.62 0.42 8.7 3.38 0.44 7.64 3.00 0.47 6.3

135 4.64 0.65 7.1 4.03 0.62 6.5 3.49 0.57 6.2 3.16 0.51 6.2 2.82 0.46 6.2

180 4.34 0.39 11.1 3.81 0.39 9.6 3.39 0.31 1 1.0 2.87 0.28 10.1 2.30 0.30 7.7

13.0

0 4.60 0.55 8.3 4.29 0.45 9.4 3.86 0.43 9.0 3.27 0.43 7.7 2.67 0.22 12.1

45 4.62 0.57 8.1 4.31 0.51 8.5 3.84 0.40 9.5 3.35 0.42 7.9 2.75 0.34 8.1
90 4.19 0.58 7.3 4.01 0.60 6.6 3.84 0.52 7.4 3.56 0.42 8.5 3.20 0.32 9.9

135 4.21 0.38 11.0 3.71 0.32 11.8 3.28 0.30 10.8 2.97 0.34 8.7 2.66 0.27 9.7

180 5.11 1.08 4.7 4.47 0.91 4.9 3.64 0.56 6.5 3.04 0.52 5.8 2.41 0.46 5.2

Table 8.2: Extreme value analysis parameters for extremes of different duration measured

on the external wall at a height of 0.55H.

Systematically increasing the size of the moving average from a single point extreme 
value to the mean of sixteen consecutive data points increased the size of gust under 
investigation within the cavity of the model. It was clear that this procedure had the 
effect of smoothing the original time series data so that for a particular time series one
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would expect the estimate of the mode to get smaller as the size of gust was increased, 
i.e. the magnitude of the most likely extreme value decreased with increases in gust 
size. It was also anticipated that the smoothing process described above would diminish 
the spread of extremes, 1/a. Reductions in the dispersion parameter implied that the 
range of extreme values was nearer in magnitude to the magnitude of the mode, a 
condition that was also implied by a high value for the characteristic product.

The results in table 8.2 were consistent with the expectations described in the previous 
paragraph with both the mode and dispersion decreasing in magnitude for increases in 
the duration of the extreme; there was no discernible trend apparent for the 
characteristic product. As shown in appendix D the estimate of the mode was 
associated with the smallest margin of error and so the sensitivity of this parameter to 
changes in the duration of the peak was quantified as follows. At each azimuth angle, 
the "single-point" mode, UN=1, was used to normalise the modes for 2, 4, 8 & 16 point 
extremes and these data were then plotted against the relative period of the gust, 1, 2, 4, 
8 & 16. The resultant curves were approximated by exponential decays of the form

UN
1 gust

U N=1
k 2 e ki N (8.3)

where k0 and k, were empirical coefficients and N represents the number of points in 
the moving average. The linear regression analysis of the data for each configuration 
of the model showed that the coefficient k2 was equal to unity to within plus or minus 
5%, whereas, the decay rate k, was a function of both azimuth angle and windspeed as 
shown in table 8.3 and figure 8.1.

e
Uref = 9.4m/s U ref = I3.0m/s

k l k2 kl k2

0 -0.027 1.00 -0.035 0.99

45 -0.026 0.99 -0.033 0.99

90 -0.018 0.99 -0.017 1.00
135 -0.029 0.92 -0.027 0.93

180 -0.040 0.96 -0.047 0.95

Table 8.3: k, & k2 (defined in equation 8.3) for external pressure fluctuations at 0.55H

The coefficient k, was negative for all cases which implied that increasing the size of 
the extreme gust reduced the magnitude of the most likely extreme value. Clearly this 
result implied that even though the spatial correlation of a large gust is greater than that 
of a smaller gust its overall magnitude is less. Nevertheless, the rate of this reduction
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Figure 8.1: The parameter kl (defined in equation 8.3) as a function of azimuth angle for
external pressure fluctuaions on the external wall at a height of 0.55H.
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was sensitive to the location of the pressure fluctuations with values ranging between - 
0.03<k,<-0.05.

Remembering that high values of k,, i.e. those approaching zero, suggested that the 
magnitude of the mode was not significantly affected by the size of the peak gust, for 
the range of gusts covered in this analysis, it was apparent from figure 8.1 that the 
relationship between the e.v.a. mode and peak duration was not universal and that the 
nature of peak pressures in the stagnation region was perhaps physically different from 
the peaks that occurred in the maximum mean suction region (0=90°).

[8-4] Cavity Pressure Results

[8-4-1] Probability Distributions

Figure (8.2) shows the probability distributions of the cavity pressure measured when 
the model had a rigid roof and cavity volume A and figure (8.3) shows equivalent 
results for the same configuration but with the membrane roof fitted at tension D. 
Inspection of these plots shows that when the mean cavity pressure was positive the 
skew on the p.d.f. of pressure was positive and for negative mean pressures the skew 
was negative. These trends agreed qualitatively with the results of table 8.1. The 
physical significance of positive (or negative) skew is that a higher probability of 
occurrence of extreme positive (or negative) pressures exists compared with the 
Gaussian distribution (as illustrated on figures (8.2) & (8.3)).

The degree of skew and kurtosis is quantified in tables 8.4 & 8.5 where neither 
variations in roof tension nor changes in the cavity volume had any discernible effect 
on the p.d.f. of the cavity pressure. The trends mentioned in the previous paragraph 
were apparent in the data and, in addition, increases in the magnitude of the pressure 
were accompanied by increases in the skew. The estimates of kurtosis were generally 
high for openings oriented to windward and steadily reduced to values of around 3.0 
when the opening was in the base region of the model. Generally the magnitudes of 
both the skew and kurtosis were less than those measured on the external wall at 0.27H 
which probably reflects the area-averaging effect of the opening.

In addition to the above the consistency in the measures of both skew and kurtosis 
permitted these data to be used as a check on the quality of the results obtained for each 
configuration of the model tested. It can be seen that ten of the experimental runs 
(highlighted in tables 8.4 & 8.5 by the bold, italicised print) produced values of skew 
and kurtosis that differed significantly from the majority of the tests which was
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Figure 8 .2(i): Probability distributions for cavity pressure fluctuations with Va, mean windspeed 
of I3.0m/s, rigid roof and (a) 0 = 0 degrees, (b) <t> = 45 degrees, (c) <J> = 90 
degrees, (d) <{> = 135 degrees, (e) <}> = 180 degrees.
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Figure 8.2(ii): Probability distributions for cavity pressure fluctuations with Va, mean windspeed 
of 9.4m/s, rigid roof and (a) 0 = 0 degrees, (b) 4> = 45 degrees, (c) <f> = 90 
degrees, (d) $ = 135 degrees, (e) <J> = 180 degrees.
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Figure 8 .3(i): Probability distributions for cavity pressure fluctuations with Va, mean windspeed 

of 13.0m/s, roof tension D and (a) <J> = 0 degrees, (b) = 45 degrees, (c) <J> = 90
degrees, (d) <J> = 135 degrees, (e) <}> = 180 degrees.
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Figure 8.3(ii): Probability distributions for cavity pressure fluctuations with Va, mean windspeed 

of 9.4m/s, roof tension D and (a) <|> = 0 degrees, (b) 4> = 45 degrees, (c) = 90
degrees, (d) = 135 degrees, (e) <j> = 180 degrees.
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indicative that during the digitisation process there may have been drop-outs or spikes 
present on the analog tape. These "errors" were consistent and appeared in both the 
skew and kurtosis data.

Va Vb Vc

u 0 R Ta Tb Tc Td R Ta Tb Tc Td R Ta Tb Tc Td

0 .67 .59 .53 .53 .62 .61 .61 .59 .62 .56 .63 .59 .53 .59 .64

45 .62 .31 .44 .43 .40 .54 .44 .36 .35 .41 .43 .42 .41 -3 .6 .38

9.4 90 -.62 -.85 -.50 -.44 -.55 -.62 -.58 -.52 - 1.8 -.51 -.69 -.62 -.54 -.57 -.52

135 -.19 -.26 -.26 -.34 -.67 -.25 -.35 -.49 -.35 -.38 -.22 -.35 -.35 -.63 -.32

180 0 -.02 -.05 -.05 -.05 -.03 -.01 -.07 -.04 -.09 -.10 -.07 -.10 -.04 -.05

0 .60 .52 .28 .59 .61 - .50 .54 .61 .58 .54 .53 .54 .3 7 .58

45 .59 .39 .43 .44 .44 .52 .35 - .07 .40 .39 .48 .39 .39 .41 .43

13 90 -.68 -.48 -.50 -.50 -.47 -.63 -.55 -.52 -.44 -.43 -.54 -.45 -.54 -.42 -.43

135 -.29 -.33 -.35 -.37 -.34 -.33 -.33 -.37 -.35 -.37 -.32 -.31 - 1.0 -.35 -.36

180 -.01 -.06 -.06 -.07 0 -.05 -.05 -.06 -.03 -.06 -.02 -.08 -.07 -.07 -.07

Table 8.4: Estimates of the skew (third mode) for cavity pressure fluctuations.

Va Vb Vc

U 0 R Ta Tb Tc Td R Ta Tb Tc Td R Ta Tb Tc Td

0 3.84 3.95 3.34 3.30 3.52 3.58 4.32 3.46 3.54 3.35 3.61 3.49 3.25 3.46 3.54

45 4 .2 7 5.71 3.52 4.05 3.61 3.70 3.59 3.42 3.42 3.72 4.44 3.49 3.48 134 . 3.41

9.4 90 3.59 6 .50 3.44 3.29 3.59 3.57 3.53 3.45 56 .7 3.39 3.74 3.71 3.59 4.1 1 3.40

135 3.42 3.31 3.23 3.36 7.31 3.34 3.55 3.33 3.25 3.38 3.18 3.38 3.79 7.58 3.35

180 3.26 3.03 3.42 3.09 3.03 3.12 3.37 3.10 3.05 3.06 3.92 3.05 3.06 3.02 3.01

0 3.51 3.31 7.42 3.36 3.41 - 3.49 3.28 3.40 3.34 3.26 3.28 3.28 6 .4 7 3.27

45 3.97 3.50 3.98 3.55 3.58 3.68 3.41 10.4 3.42 3.46 3.53 3.42 3.41 3.31 3.47

13 90 3.64 3.29 3.37 3.42 3.28 3.57 3.42 3.63 3.20 3.31 3.28 3.20 5.03 3.17 3.18

135 3.31 3.34 3.24 3.32 3.29 3.29 3.21 3.31 3.27 3.30 3.38 3.24 15.0 3.33 3.32

180 3.10 3.03 3.06 3.05 3.00 3.04 3.04 3.05 3.03 3.03 2.93 2.95 3.06 2.98 3.00

Table 8.5: Estimates of kurtosis (fourth mode) for cavity pressure fluctuations.

[8-4-2] Extreme Value Distributions 

[8-4-2-1] Introduction

Tables 8.6 summarise the extreme value analysis data of the cavity pressure 
fluctuations for single-point extreme values. Whilst the e.v.a. parameters associated 
with the larger gusts were obtained they were not tabulated below due to limitations of 
space. However, these data were used in an extended analysis of the mode parameter 
where the influence of gust size, cavity volume, roof tension and cavity volume scaling 
were investigated using equation 8.3. Comparison of the results in tables 8.6 with the 
single-point extreme external pressure results (table 8.2) indicated that, f o r  m o s t  

a z i m u t h  a n g l e s , both the mode and dispersion of the external pressure fluctuations 
exceeded those measured for the cavity pressure.
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R Ta Tb Tc Td

speed 4> U I/a Ua U 1/a Ua U 1/a Ua U 1/a Ua U 1/a Ua

Va

9.4 0 4.34 0.53 8.15 3.89 0.42 9.2 3.81 0.32 11.8 3.78 0.35 10.7 3.93 0.45 8.8

45 4.60 0.59 7.77 4.17 0.45 9.4 3.97 0.44 8.9 4.01 0.47 8.4 3.83 0.47 8.2

90 3.82 0.48 8.35 4.03 0.80 5.0 3.86 0.31 12.3 3.88 0.34 11.3 3.74 0.42 8.8

135 3.72 0.31 12.1 3.72 0.33 1 1.2 3.69 0.34 10.7 3.84 0.39 9.8 3.65 0.48 7.6
180 3.78 0.34 11.2 3.48 0.31 11.1 3.58 0.25 14.1 3.63 0.19 19.1 3.49 0.29 12.2

Vb

9.4 0 4.05 0.32 12.6 4.04 0.52 7.7 3.75 0.29 12.8 4.00 0.36 11.1 3.66 0.29 12.5

45 4.14 0.39 10.6 3.77 0.38 9.9 3.72 0.42 8.8 3.63 0.44 8.3 3.75 0.45 8.4

90 3.65 0.44 8.2 3.64 0.43 8.4 3.68 0.42 8.7 3.85 0.50 7.7 3.57 0.55 6.5

135 3.54 0.36 9.9 3.77 0.47 7.8 3.89 0.41 9.4 3.55 0.40 8.9 3.74 0.38 9.7

180 3.65 0.31 11.9 3.46 0.22 15.4 3.44 0.41 8.3 3.39 0.37 9.2 3.54 0.27 12.9

Vc

9.4 0 4.06 0.37 11.0 3.83 0.37 10.5 3.59 0.35 10.4 3.74 0.46 8.0 3.76 0.45 8.3

45 4.06 0.44 9.2 3.72 0.40 9.3 3.69 0.40 9.1 4.48 2.24 2.0 3.69 0.39 9.4

90 3.68 0.48 7.6 3.73 0.49 7.6 3.64 0.43 8.4 3.65 0.35 10.3 3.60 0.36 10.1

135 3.40 0.31 11.0 3.66 0.34 10.7 3.62 0.35 10.4 3.71 0.81 4.6 3.64 0.34 10.8

180 3.46 0.34 10.3 3.52 0.34 10.2 3.45 0.29 11.8 3.42 0.20 17.0 3.43 0.26 13.4

Table 8.6(a): Extreme value analysis results for cavity pressure fluctuations using
single point extremes at a reference windspeed of 9.4m/s

R Ta Tb Tc Td

speed <!> U 1/a Ua U 1/a Ua U 1/a Ua U 1/a Ua U 1/a Ua

Va

13.0 0 4.21 0.32 13.1 3.93 0.29 13.5 3.86 0.38 10.0 3.91 0.31 12.5 3.90 0.31 12.5

45 4.31 0.54 7.9 3.97 0.40 9.86 3.85 0.39 9.9 3.86 0.47 8.1 3.81 0.47 8.1

90 4.01 0.27 14.7 3.71 0.34 10.8 3.60 0.37 9.8 3.87 0.30 13.1 3.71 0.34 10.8

135 3.71 0.31 12.1 3.69 0.35 10.6 3.64 0.35 10.5 3.68 0.43 8.6 3.78 0.41 9.3
180 3.59 0.38 9.4 3.54 0.28 12.7 3.59 0.24 15.0 3.63 0.33 10.8 3.50 0.25 13.8

Vb

13.0 0 3.89 0.37 10.5 3.83 0.38 10.1 3.72 0.28 13.3 3.87 0.38 10.2 3.89 0.33 11.6

45 4.17 0.49 8.5 3.82 0.35 10.9 3.75 0.37 10.1 3.74 0.38 9.9 3.72 0.37 9.9
90 3.91 0.25 15.5 3.79 0.42 9.0 3.73 0.40 9.3 3.63 0.40 9.1 3.60 0.39 9.1

135 3.68 0.26 15.2 3.50 0.30 11.6 3.67 0.37 10.0 3.72 0.37 10.2 3.75 0.33 11.2

180 3.47 0.23 14.9 3.48 0.21 16.8 3.56 0.28 12.9 3.54 0.25 14.5 3.56 0.23 15.5

Vc

13.0 0 3.64 0.35 10.4 3.62 0.39 9.4 3.74 0.30 12.4 3.86 0.38 10.1 3.58 0.34 10.7

45 3.89 0.47 8.3 3.71 0.47 7.9 3.74 0.39 9.5 3.77 0.35 10.9 3.85 0.43 8.8

90 3.56 0.27 13.2 3.46 0.34 10.3 3.48 0.48 7.3 3.45 0.33 10.5 3.57 0.35 10.4

135 3.55 0.36 10.0 3.54 0.38 9.3 3.63 0.27 13.3 3.63 0.28 12.9 3.75 0.42 9.0

180 3.26 0.25 13.1 3.42 0.24 14.1 3.52 0.20 17.2 3.43 0.22 15.4 3.45 0.23 14.8

Table 8.6(b): Extreme value analysis results for cavity pressure fluctuations using
single point extremes at a reference windspeed of 13.0m/s

[S-4-2-2] The Influence of Gust Size on the Magnitude of the Mode

The extreme value modes for cavity pressure fluctuations were analysed employing 
equation 8.3. Presentation of the mode data in this format permitted the sensitivity of 
changes in peak gust size for systematic changes in model geometry to be quantified 
and the "k," results are shown in figures 8.4(i) & (ii).
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The coefficient k, was negative for all cases which implied that increasing the size of 
the extreme gust reduced the magnitude of the most likely extreme value. However, 
the rate of this reduction was sensitive to the configuration of the model with values 
ranging between -0.01<k,<-0.06 dependent upon the cavity volume, azimuth angle of 
the opening, reference windspeed and roof flexibility.

Generally, for (j) equal to 90°, k, was a maximum for all the configurations tested; 
rotating the opening to windward or leeward reduced the value of kr  This trend was 
similar to that reported on the external wall (figure 8.1) but the range of the parameter, 
k[, was increased for cavity pressure peak factors. This result was also analogous to the 
cavity pressure spectra of chapter 7 where the minimum resonant response occurred 
with (j)=90° and demonstrated a link between peak pressure and the degree of resonant 
excitation.

Increasing the size of the cavity volume also increased the value of k,, a trend that was 
particularly clear for the rigid roof results (figs 8.4(i)a & 8.4(ii)a) at both windspeeds 
and underlined the link between peak pressure and resonance of the cavity pressure. 
Increasing the flexibility of the roof of the model systematically reduced the 
dependence of k, on opening azimuth angle such that for the largest building envelope 
flexibility k, was essentially constant for 0°<(j)<180o at an "averaged" value of around - 
0.015. A systematic relationship between mean reference windspeed and the parameter 
k, was not identified in figures 8.4.

One of the implications of the results discussed above is that cavity pressure 
fluctuations caused primarily by turbulent buffetting have a mode, obtained from 
extreme value analysis of the peak factors, for gusts of different size that is relatively 
insensitive to the gust-size. However, when the cavity response is dominated by 
Helmholtz resonance then the mode of the peak factors of the cavity pressure is far 
more sensitive to gust size. Indeed equation 8.3 and the results shown in figures 8.4 can 
be used to quantify this effect; assuming a maximum increase in gust-size of sixteen 
times gives a relative reduction in the mode of around 0.85 for a response that is 
turbulent (assuming k,=-0.01) but nearer to 0.40 for a more resonant response 
(assuming k,=-0.06).

[S-4-2-3] The Influence of Cavity Volume Scaling on the Mode

This section investigates the magnitude of the mode of the cavity pressure fluctuations 
as a function of cavity volume scaling. Data were analysed in five sets based upon the 
gust-size and as in the previous chapter, section 7-2-4, an arbitrary "reference" model 
configuration was used to normalise the modes obtained from different model
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configurations; the reference configuration was cavity volume B fitted with a rigid roof 
in a boundary layer with a mean reference windspeed of 9.4m/s. The results of this 
procedure are shown in figures 8.5.

The data were fitted by an exponential curve

--------  = k  2 . e [ki - V ^ ) (8.4)
U Rb9,

which was similar in form to equation 7.3. The "best-fit" to each set of results was 
obtained by linear regression and the scatter in the results was quantified by the error 
bands shown on each figure as the dashed lines.

The volume distortion, shown as the independent variable in figures 8.5, was an 
effective distortion which took into account both the magnitude of the internal cavity 
and the apparent increase in this volume due to increased flexibility of the building 
envelope (see section 7-3-5). Increases in the cavity volume scaling up to a factor of 
twelve had little effect on the mode of the pressure fluctuations for gusts smaller than 
0.024s (model scale), where the magnitude of the mode was changed by less than 10% 
of the "correct" value. However, the results for the largest gust, 0.048s, showed that a 
10% change in the magnitude of the mode was effected by an exaggeration in the 
cavity volume by a factor of two whilst at an exaggerated cavity scaling of twelve 
times, the mode was altered by nearly 40%.

Another feature of the results in figures 8.5 was that for peak cavity pressures of 
duration 0.003s through to 0.012s exaggerating the cavity volume attenuated the 
extreme value mode, whereas similar changes in the volume scaling amplified the 
mode when the peaks were 0.024s and 0.048s duration. In order to quantify this effect 
the parameters k, and k0, as defined in equation 8.4, were plotted against the relative 
duration of the peak value in figures 8.6. If the duration of the peaks are normalised by 
the sample period of 12.288s then a non-dimensional gust duration, tgnorm, can be 
defined which for these tests ranged from 0.0002, 0.0005, 0.0010, 0.0020 to 0.0039.

Figures 8.6 permit the likely error in the mode of the cavity pressure fluctuations for 
errors in cavity scaling to be estimated based upon the relative period of the extreme 
pressure. The duration of the peak determines whether exaggerating the cavity volume 
scaling will amplify or attenuate the measured mode; tgnorm<0.0015 attenuates the mode
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Figure 8.5: Influence of cavity volume scaling on the extreme value analysis estimate of the 
mode of the cavity pressure fluctuations. Graphs show the mode for each 
configuration as a fraction of the "correctly" scaled mode [i.e. the mode for a 
cavity volume B at a reference windspeed of 9.4m/s| as a function of the distorted 
volume scaling for (a) single point extremes, (b) two-point extremes, (c) four point 
extremes, (d) eight point extremes & (e) sixteen point extremes.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
"gust size"

Figure 8.6: Variation of the empirical coefficients kl and k2 (defined by equation 8.4) 
with the size of the peak gust moving point average.
(Note: division of the "gust-size" shown on these graphs by the block size of 
4096 data points gives the normalised peak period described in the text.)
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(because k, is negative), whereas t„norm>0.0015 amplifies the mode (because k[ is 
positive).

[8-5] Summary

Expression of the time series, of both external wall and cavity pressure fluctuations, in 
the amplitude domain showed that similar trends were apparent on the probability 
distributions and in the extreme value analysis of both sets of data.

Positive (negative) skew occurred in regions where the mean pressure was positive 
(negative) and the magnitude of the skew was proportional to the magnitude of the 
mean pressure. Measures of the kurtosis were high at the front stagnation region and 
steadily reduced on moving to windward.

Extreme values were obtained in the form of positive peak factors for five different 
peak periods corresponding to 0.003s, 0.006s, 0.012s, 0.024s & 0.048s (model scale). 
These data showed that increasing the duration of the peak reduced the magnitude of 
the most likely extreme value, the mode, and also reduced the spread of extremes, the 
dispersion. These trends were not unexpected but it was found that the rate of decay of 
the mode for increases in peak duration was not a universal function, but depended 
upon the region in which the pressure fluctuations occurred and on the cavity volume 
and building envelope flexibility. The rates of decay of the dispersion were not 
quantified because these changes were attributed to a reduction in the scatter of the 
extreme values as the duration of the peaks was increased and not a physical process.

Emulating the analysis of the resonant response of the cavity pressure fluctuations 
(section 7-3-5), the influence of cavity volume scaling on the magnitude of the extreme 
value mode was investigated. It was found that a critical normalised peak period, t g n o i -m ,  

existed whereby exaggerating the cavity volume scaling attenuated the mode for 
t g C t g n o r m ,  whilst the opposite result occurred for t g > t g n o r m .
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Chapter 9: Overall Summary & Suggestions for Future Work

[9-1] Reasons for this Investigation

Wind tunnel studies to determine the wind loading on rigid models of prototype 
membrane structures are often necessary because the unique shapes of these structures 
are beyond the remit of design codes. In addition, if the designer is concerned about 
the existence of an aeroelastic instability, that could lead to catastrophic failure of the 
fabric material, then it may be necessary to conduct additional wind tunnel studies 
using expensive and elaborate aeroelastic models. A number of reports concerned 
with the results from investigations on aeroelastic models of prototype membrane 
structures have been cited in this thesis but it is difficult to draw general conclusions 
from these results.

Consequently, it was felt that a wind tunnel investigation of the fundamental 
interactions between roof motion and internal building pressure dynamics might 
provide valuable information of use to both wind tunnel modellers and structural 
engineers. Indeed, the proliferation of "exotic", lightweight membranes as roofing 
materials suggests that the need for such information is on the increase.

The principle objective of this thesis was to investigate experimentally the impact of 
variations in building envelope flexibility on the steady-state internal pressure 
dynamics of a single-cell building with a single dominant opening. The case of a 
domainant windward opening is often considered as the worst case scenario for mean 
net loadings across the roof and windward walls and Holmes (1979) considered that 
the phenomenon of Helmholtz resonance was similarly intense for a dominant 
windward opening. Stathopoulos (1989) showed that the peak internal pressure 
occurred during steady-state fluctuations of the internal pressure and not after the 
sudden occurrence of a windward opening whilst Vickery & Bloxham (1992) 
quantified the effect of background porosity on cavity pressure fluctuations. 
However, experimental results that quantify the effect of envelope flexibility on 
cavity pressure dynamics have not been reported and the main conclusions of this 
study are listed below.

[9-2] Main Conclusions

An extensive series of experiments to define the sensitivities of the empirical 
coefficients C, and CL to different conditions of flow and opening geometry is 
required. These results would remove the need for assuming "standard" values
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for the coefficients and permit a true comparison of theoretical models with 
experimental results.

A novel, dimensionless geometric parameter, the ORDR, was defined. This 
parameter brought about a reasonable "collapse" of both the inertia coefficient 
and the damping, at the Helmholtz frequency, data obtained from tests 
conducted in still air and showed that for most of the test configurations acoustic 
radiation damping was negligible.

Comparisons of the predicted damping, using the theory of Vickery & Bloxham 
(1992), with experimental results (wind-on) were fair for the case of a windward 
opening; however, for openings at other azimuth angles the theoretical damping 
estimates were very low. These results were reflected in the predicted and 
measured values of the root-mean-square cavity pressure fluctuations where 
predictions exceeded the measured results. [Data from point "1" might improve 
this situation!]

The local maximum mean suction on the external wall of the model was some 
20% less than that predicted by Cook (1990). This result was corroborated by 
the data of Holroyd (1983) for tests on a ground-mounted circular cylinder, 
similar to the present model "A", with an aspect ratio less than 0.5.

The cavity pressures were dynamic and resonant exhibiting a narrow band 
response at the Helmholtz frequency. Turbulent buffetting, originating from the 
external pressure spectra, was transmitted to the cavity pressure spectra but in 
addition resonance of the air contained within the opening was superimposed on 
the buffetting response. The Helmholtz effect was most heavily damped for an 
opening located at 90° to the approach flow, whilst peak resonant responses 
occurred when the opening was aligned with the flow direction (f=0° and 180°).

Increasing the flexibility of the roof increased the damping at the Helmholtz 
frequency and consequently reduced the magnitude of the root-mean-square 
cavity pressure fluctuations. For the most resonant cases, f=0° and 180°, a 
factor of 30 increase in the flexibility attenuated the root-mean-square cavity 
pressure by between 20% to 30%.

The influence of cavity volume scaling on the resonant response was empirically 

determined as y =  kj e ' k - “A * where y is the relative resonant response and 

x the relative effective volume of the cavity. The exponential term in this 
expression dictates that a factor of 2 overestimate of the volume will lead to a
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30% underestimate of the response whilst a factor of 2 underestimate of the 
volume will produce a 50% overestimate of the response.

An extreme value analysis of the peak factors of the cavity pressure for five 
different gust periods showed that the most likely extreme value, the mode, was 
attenuated as the gust period was increased. However, the rate of decay of the 
mode for increases in peak period was not a universal function and appeared to 
be related to the magnitude of the resonant response.
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Appendix A: Calibration of the Reference Static and Dynamic
Pressures

[A-l-1] Calibration Procedure

The use of a pressure coefficient as a means of representing the wind load on a 
structure requires the definition of a reference static and dynamic pressure according to 
equation A. 1.

C
p

(P - Psr)
hr

(A. 1)

where p is the normal surface pressure of interest and psr and qr the reference static and 
dynamic pressures respectively.

The choice of a reference dynamic pressure is often dependent upon the structure 
under test and for low-rise buildings the windspeed at roof height is a convenient 
choice for normalisation of wind loads. The reference dynamic pressure may be 
considered as a measure of the magnitude of the speed of the flow in which a structure 
is immersed. On the other hand, the reference static pressure should represent the 
static pressure at the position of interest on the building surface but with the building 
absent so that subtraction of this pressure from the normal surface pressure provides a 
measure of the pressure due solely to the action of the wind at that point. It is 
understood that the presence of the building, and of surrounding obstacles, will distort 
the static pressure field so that the location of the reference static pressure point should 
be outside the region influenced by the presence of the building but not so far away 
that the measured pressure is unrepresentative of that at the site of the building.

Keeping the above in mind, there appear to be two methods by which a measure of the 
correct reference static pressure can be obtained. Firstly, a direct reading of the static 
pressure can be made during a test run using a pitot-static probe positioned in the same 
cross-section as the model but outside the influence of the static pressure field of the 
model; this technique presumes that any vertical or horizontal variation in static 
pressure within the working section of the tunnel is relatively small and demands 
estimation of the extent of the static pressure field of the model. The second technique 
involves calibration of the static pressure at the position of interest, with the model 

absent, against the static pressure at an upstream location that is well away from the 
static pressure field of the model. This "false" reference is used as the backing

A. I
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pressure to any pressure transducers in the model and a small correction to the 
measured pressure coefficients is then required at the data reduction stage. This latter 
method was used in the tests presented in this thesis and details of the correction 
procedure are given below.

Figure A .l shows the relative locations of the pitot-static tubes used in the calibration 
tests. Probe #1 was located near a sidewall of the tunnel at a height of 3.5D (where D 
is the diameter of the model) and approximately 6D upstream of probes #2, #3 and #4. 
The latter three probes were symmetrically arranged across the tunnel in the same 
cross-section that the model was to occupy at a height equal to one model height, H. 
Probe #3 was in the centre of the working-section and probes #2 and #4 were displaced 
approximately 2.5D to either side.

8 x

barrier

Figure A.l: The relative locations of the reference pitot-static tubes.

The calibration tests comprised measurement of the static and dynamic pressures at the 
locations of the four pitot-static tubes over a range of tunnel speeds with the boundary 
layer development "hardware" in place but no model in the tunnel. The dynamic 
pressure at #3 was expressed as a function of the dynamic pressure measured by tube 
#\ (see equation A.4) and the difference between the static pressure measured by probe 
#1 and an average of the three static pressures measured at locations #2, #3 and #4 was 
also expressed as a function the dynamic pressure measured at position #1 (see 
equation A.5). The scatter in the static pressure measurements was approximately 
plus/minus two Pascals across the whole range of dyanmic pressures.

During the wind tunnel tests when the model was at position #3, probe #1 was used as 
a "false reference" probe because it was well away from the influence of the pressure 
field due to the model and because it was a permanent fixture in the tunnel. The 
differential pressure transducers (Setra 237's) used to measure the wind loading 
around the model were referenced to the static pressure tap on probe #1 and the 
resultant output from the transducer was normalised by the dynamic pressure measured
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by probe #1. The resultant pressure coefficient is described by equation A.3 and the 
corrected coefficient by equation A.6.

[A-I-2] Analysis

If the "true" pressure coefficient is defined as

Cpx (Px - Psx)
qx

(A.2)

where suffices "x" and "s" denote the model location and static pressure respectively, 
then the measured pressure coefficient is given by

c  = (Px - Psm) (A.3)
q m

where suffix "m" refers to the upstream "reference" location. The results of the 
calibration tests shown in figures A.2 and A.3 permit the following functions to be 
determined

q m = Mi-qx + c , and (A. 4)

(psx - Psm) = M2-qm + C2 (A.5)

where M,, M2, C, and C9 are constants that are a function of the type of boundary 
layer and streamwise position of the probes if horizontal and vertical variations of the 
static pressure are assumed to be negligible. Substitution of A.4 and A.5 into A.3 and 
manipulation of the resultant equation enables the "true" pressure coefficient to be 
expressed in terms of C m and the four constants in equations A.4 and A.5,

Cpx = M,.{ qm.( Cpm - M2) - C2 } / { qm - C, } (A.6)

If the "best-fit" line is forced through the origin then the constants C, and C2 are zero 
and equation A.6 simplifies to,

c pl = M ,.{ C „ - M2 } (A.7)
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It is implicit in the above discussion that the pitot-static tubes will correctly measure 
the static pressure at a specific site. However, in reality the across-wind fluctuations 
due to turbulence in the simulated atmospheric boundary layer will increase the 
apparent static pressure and errors in local pressure coefficient as large as 0.06 are 
have been estimated typical in flows with 20% turbulence (Cook, 1990).

[A-2-1] Standing Waves in the Test Section

The ducting which forms the circuit of a wind tunnel is prone to "organ-pipe" type 
resonances due to the superposition of noise waves travelling in opposite directions 
around the circuit. A simple estimate of the frequencies associated with resonant 
acoustic phenomena can be obtained from the dimensions of the tunnel if assumptions 
are made about the form of the standing wave.

1 1 ,4m

L/2

13 .4m

1 5 .8m

Figure A.2: Fundamental modes of standing waves in different sections of the tunnel corresponding 
to (top) open-open pipe, (middle) open-closed pipe & (bottom) closed-closed pipe.

In figure A.2 the dotted lines show the form of the fundamental frequency of the 
standing wave for three different sections of the lower circuit of the industrial 
aerodynamics tunnel at City University. The top and bottom cases have an associated 
frequency of 14.9Hz and 10.8Hz (assuming the speed of sound to be 340m/s) with 
higher modes being 2, 3 & 4 times the fundamental. The middle case has a frequency 
of 6.3Hz with higher modes at frequencies of 3, 5, 7 & 9 times the fundamental.

The theoretical estimates of the frequencies due to acoustic noise coincided with the 
range of frequencies at which Helmholtz oscillation occurred. It was not deemed 
possible to filter out the noise because an integral part of the response signal would be 
lost and so the noise had to be tolerated.

A.4
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[A-3-1] Correction of the External Pressure Spectra

The short length of tubing connecting the head of the pressure transducer (Setra 237) 
to the external pressure tap distorted the pressure signal in a manner that was 
experimentally determined following the method of Hassan (1979).

A short length of six inch diameter pipe was fitted with a loudspeaker at one end and a 
flat plate at the other. A reference pressure transducer with a Hat frequency response 
across the range of interest was flush-mounted in the centre of the flat plate whilst a 
brass tap and flexible tube, identical to that used on the wind tunnel model, was 
connected to a Setra pressure transducer adjacent to the reference transducer. The 
loudspeaker was driven by a variable frequency oscillator up to frequencies in excess 
of 300Hz and the r.m.s. output from each of the pressure transducers was measured. 
The ratio of the magntitudes of the signals from each pressure transducer was a 
measure of the distortion due to the tap/tube system (figure A.3). The square of this 
ratio was used to correct the external pressure spectra shown in appendix B and chapter 
5. This technique is similar to that reported by Irwin et al (1979) and Holmes & Lewis 
(1987).

Figure A.3: Experimentally measured gain due to the pressure tap/tubing system.



Appendix B: Cavity Pressure Spectra

Appendix B: Cavity Pressure Spectra

The results in this appendix comprise the complete set of power spectra measured 
inside the cavity of the model.

Results were plotted in the familiar format of frequency multiplied by the power at 
that frequency on a linear scale against the logarithm to base 10 of the frequency (at 
model scale). The spectra were all normalised by the variance.

The key to each graph is best explained by giving an example,
Figure B 14(e) B/13.0/A/180 cavity volume B,

mean reference windspeed 13.0m/s, 
roof tension, A (tension "A"), 
opening azimuth angle 180 degrees
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Figure BIO: (a) A/9.4/B/O (b) A/9.4 /B/45 (c) A /9.4/B/90
(d) A/9.4 /B /l35 (e) A/9.4/B/180

Figure B 11 : (a) A/9.4/C/O (b) A/9.4/C/45 (c) A/9.4/C/90 log in )
(d) A/9.4 /C/135 (el A /9.4/C/180

A
ppendix B: Cavity Pressure Spectra



R.8
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Figure B 18: (a) B/9 .4/R /0 (b) B/9.4 /R/45 (c) B/9.4/R/90 log{n)
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Figure B19: (a) B/9.4/A/0 (b) B/9.4/A/45 (c) B/9.4/A/90
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Figure B20: (a) • B /9.4/B /0 (b) B/9.4 /B/45 (c) B/9.4/B/90
id) B/9.4 /B/135 (e) B/9.4 /B/180

Figure B21: (a) B/9.4 /C/0 (b) B/9.4/C/45 (c) B/9.4/C/90
(d) B/9.4 /C /l 35 (ei B /9.4/C /l 80
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Figure B25: (a) C/13.0/B/0 (b) C/13.0/B/45 (c) C/13.0/B/90 log{n}
(d) C/13.0/B/135 (e) C/13.0/B/180

Figure B26: (a) C/13.0/C/0 (b) C/13.0/C/45 (c) C/13.0/C/90 logjn}
(d) C/13.0/C/135 (e) C/13.0/C/180
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Figure B27: (a) C/13.0/D/0 (b) C/13.0/D/45 (c) C/13.0/D/90 io g Jn }
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(d) C/9.4/R/135 (e) C/9.4 /R /l 80
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Appendix C: Cavity Pressure Gain Functions

The results in this appendix comprise the complete set of gain functions (defined by 
equation 7.1) obtained by dividing the cavity pressure spectra by the external pressure 
spectra measured at a point 0.27H up the wall of the model.

Results were plotted as gain (on a linear scale) against the logarithm to base 10 of the 
frequency (at model scale).

The key to each graph is best explained by giving an example.
Figure C1 (c) A/9.4 /R/0 cavity volume A,

mean reference windspeed 9.4m/s, 
roof tension, R (rigid), 
opening azimuth angle 0 degrees

0 45 90 135 180

Va Vb Vc Va Vb Vc Va Vb Vc Va Vb Vc Va Vb Vc

L R .07 .08 .10 .10 .05 .14 .15 .25 .24 .10 .12 .14 .06 .09 .10

Ta .09 .18 .14 .18 .21 .21 .27 .25 .38 .10 .14 .14 .09 .10 .13

Tb .11 .21 .26 .16 .23 .22 .42 .29 .47 .15 .22 .31 .12 .18 .21

Tc .20 .28 .30 .28 .44 .39 .41 .46 - .17 .25 .36 .15 .22 .22

Td .28 .34 .33 .41 .42 .59 .27 .64 - .31 .34 .57 .30 .26 .34

H R .08 .14 .17 .12 .24 .25 .31 .47 .41 .12 .18 .27 .07 .13 .17

Ta .18 .24 .23 .27 .27 .48 .52 .38 - .14 .25 .36 .15 .18 .22

Tb .22 .42 .39 .41 .32 - .67 .59 - .29 .33 .25 .19 .29 .37

Tc .29 .39 .39 .36 - - - - - .45 .42 .54 .25 .62 .38

Td .29 .44 .42 - - - - - - .30 .34 .51 .42 .41 .54

Table C l: Experimental estimates of damping, as a fraction of critical, at
the Helmholtz frequency.

The results in table Cl were estimated from the following graphs using the half-
amplitude method.
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Figure C3: (a) A /9.4/R/90 (b) A/9.4 /A/90 (c) A/9.4 /B/90 log{n }
(d) A/9.4/C/90 (e) A/9.4/D/90
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Figure C6: (a) A/13.0/R/0 (b) A/13.0/A/0 (c) A/13.0/B/0
(d) A/13.0/C/0 (e) A/13.0/D/0

Figure C7: (a) A/13.0/R/45 (b) A/13.0/A/45 (c) A/13.0/B/45
(d) A/13.0/C/45 (e) A/13.0/D/45
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Figure C il :  (a) B /9.4/R/0 (b) B/9.4 /A/0 (c) B/9.4 /B/0
(d) B /9 .4 /aO  (e) B/9.4 /D/O l o g {n }

Figure C12: (a) B/9.4/R745 (b) B/9.4 /A/45 (c) B/9.4/B/45
(d) B/9.4/C/45 (e) B/9.4/D/45 l o g i n }
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Figure 0 3 :  (a) B/9.4/R/90 (b) B/9 4 /A/90 (c) B/9.4/B/90
(di B/9.4 /C/90 (e) B/9.4/D/90 l o g ( n )

Figure C14: (a) B/9.4/R/135 (b) B/9 4/A/135 (c) B/9.4 /B/135
(d) B/9.4/C/135 (e) B/9.4 /D/135 l o g i n )
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Figure C18: (a) B/13.0/R/90 (b) B/I3.0/A/90 (c) B/I3.0/B/90
(d) B/13.0/C/90 (e) B/13.0/D/90

Figure C19: (a) B/13.0/R/135 (b) B/13.0/A/135 (c) B/l 3.0/B/135
(di B /13.0/C/l 35 (e) B/13.0/D/135
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Figure C23: (ai C/9.4 /R/90 (b) C/9.4/A/90 (c) C/9.4 /B/90
id) C /9.4/C /90 (e) C/9.4/D/90 login}

Figure C24: (a) C/9.4/R/135 (b) C/9.4/A/135 (c) C/9.4 /B/135
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Appendix D: Analysis of Extreme Value Data

[D-l] Analysis Procedure

Peak internal and external pressure coefficient data were obtained for selected 
configurations of model A (see chapter 8). These data were analysed using the method 
of order statistics which is described in detail below using a set of extreme values, 
chosen at random.

The data were ranked in ascending order from 1 to N, where N is the total number of 
extreme data points (N=20 in this example, though the results in chapter 8 utilised 24 
extreme values) as shown in table D.l. After ranking the data an estimate of the 
cumulative distribution function (C.D.F.), P, was obtained from the expression,

P = —
N + 1

(D.l)

and subsequently tranformed to the reduced variate, y, where for the Fisher-Tippett 
Type I distribution

y = -ln { -ln [m /(N  + l)]}. (D.2)

A graph was then plotted with the reduced variate as abscissa and the corresponding 
extreme values as ordinates (see figure D.l).

The Fisher-Tippett Type I distribution when plotted against the reduced variate, y, is 
defined by an equation of the form

X = - .y  + U (D.3)
a

where X are the extreme values, and the parameters 1/a and U are constants called the 
dispersion and mode respectively and are unique functions of the extreme value 
distribution. The mode is the value with the greatest likelihood of occurrence and thus 
corresponds with the peak of the probability density function. The dispersion is a 
measure of the spread of the data. These two parameters are similar to the more 
familiar measures of mean and variance which are associated with the Gaussian 
distribution.
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Appendix D: Analysis o f Extreme Value Data

Although it is possible to fit a straight line to the experimental results by the method of 
least squares this is generally not recommended because of the statistical bias 
introduced to the data points by the ranking procedure (Lawson, 1980; Cook, 1985). 
Instead, the numerical approach developed by Lieblein can be employed where the 
ordered list of extremes is multiplied by the two sets of Lieblein "best linear unbiased 
estimators" ("B.L.U.E.") to produce two series of values, as shown in the end columns 
of table D.l. This process is discussed in detail by Cook (1985) where values of the 
"B.L.U.E." for sets of extremes up to 24 points are presented. A simple summation of 
the individual columns of Leiblein products enables the mode and dispersion to be 
quantified and the resulting best-fit line is shown on figure D.l.

Rank Cpm ax Probability Reduced Lieblein Lieblein
m P=m/(N+1) Variate A  X  C pm ax B  X  C p m ax

y = -lni-ln(P))
1 1.190 0.0476 -1.113 0.132 -0.207
2 1.239 0.0952 -0.855 0.120 -0.140
3 1.328 0.1429 -0.666 0.114 -0.096
4 1.367 0.1905 -0.506 0.107 -0.059
5 1.421 0.2381 -0.361 0.099 -0.033
6 1.459 0.2857 -0.225 0.093 -0.013
7 1.461 0.3333 -0.094 0.086 0.004
8 1.462 0.3810 0.036 0.080 0.018
9 1.479 0.4286 0.166 0.074 0.028
10 1.495 0.4762 0.298 0.069 0.036
11 1.517 0.5238 0.436 0.065 0.044
12 1.540 0.5714 0.581 0.060 0.049
13 1.569 0.6190 0.735 0.056 0.055
14 1.575 0.6667 0.902 0.053 0.060
15 1.599 0.7143 1.089 0.048 0.062
16 1.647 0.7619 1.302 0.043 0.066
17 1.716 0.8095 1.554 0.039 0.070
18 1.727 0.8571 1.870 0.034 0.071
19 1.756 0.9048 2.302 0.032 0.070
20 1.824 0.9524 3.020 0.027 0.071

N = 20 Mean 1.519 Totals 1.433 0.159
Std.devn. 0.028 MODE, DISPN., 1/a

s. U

Table D.l: Example of the analysis of extreme internal pressure coefficients.

The mean and variance for the set of twenty data points was also calculated and 
following the procedure outlined by Lawson (1980) it was possible to determine the 
99.7% confidence limits associated with the data shown in table D.L These limits are 
plotted on figure D.l. According to Lawson (1980), Gumbel found that the distribution 
of the extreme values at a single value of the reduced variate, y, was Gaussian with a 
variance that could be approximated by
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? {0.2643 + 0.1166y + 0.6687y 2)SX2 
N

(D.4)

where Sx is the standard deviation of the set of extremes. So, if the value of Sx for a set 
of N extreme values is known then the variance of the extremes at each value of y can 
be calculated and confidence limits set which bound a specified percentage of all the 
expected readings, for example, it would be expected that

68.0% of all readings lie within the limits of Xv + c vy x

95.0% of all readings lie within the limits of Xv + 2ovy x

99.7% of all readings lie within the limits of Xy + 3ox

where Xy is the magnitude of the ordinate at a value of y and a x the standard deviation 
of Xy.

Figure D .l: F.T. 1. plot of the data shown in table D .l ; the "B.L.U.E." line and confidence limits are 
also shown.
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Appendix E: Membrane Roof Deflections

[E-l] Introduction

A brief summary and description of the results from a limited series of wind tunnel tests 
on model A is presented where the deflection of the roof membrane was monitored at a 
single location.

[E-2] Experimental Details

The deflections of the membrane roof were monitored for cavity volume C only. A 
"Kaman" non-contact displacement transducer was used to sense the motion of the roof 
via the deflections of a small annulus, made from thin foil, that was attached to the 
membrane. Tests showed that the transducer response was linear over a range from 0 to 
around 3.1mm for an annulus with an internal diameter of 10mm and an outer diameter 
of 12.5mm. The sensitivity of the transducer to such an annular target was around 
5mm/volt. The restricted linear range of the displacement transducer dictated that the 
foil target should be located away from the centre of the roof. The output from the 
displacement transducer was amplified by a factor of approximately three prior to 
recording on the FM tape recorder.

In order to further optimise the range of the transducer it was necessary to change the 
offset distance between the target foil and the transducer head depending upon the 
model configuration under test. For example, those configurations where the mean 
membrane deflection was likely to be negative (i.e. when (j)=90°) required a large initial 
offset, whereas, positive deflections dictated a small initial offset.

In general, this procedure appeared to produce satisfactory results, however, those cases 
where the mean deflection was high, say greater than 1mm, were likely to be in error 
because of their associated extremes. Large positive deflections were likely to be non-
linear with transducer output, whereas, large negative deflections were limited by 
contact between the membrane and the head of the transducer. Fortunately, the 
lightweight of the vibrating membrane was insufficient to cause damage to the 
tranducer.

[E-3] Results

The author was concerned with the quality of the data obtained when the membrane was 
at its most flexible, tensions C and D, and in particular for the cases when the opening
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was oriented at azimuth angles of 0° and 90°., corresponding with the occurrence of 
maximum mean positive and negative deflections respectively. For these reasons the 
membrane deflection results were not included in the main body of this thesis. However, 
Table E.l summarises the first four moments of the deflection data for different model 
configurations.

[E-3-1] Mean , R.m.s., Skew & Kurtosis of the Membrane Deflections

()>0

9.4 m/s 13.0 m/s

mean r.m.s. skew kurtosis mean r.m.s. skew kurtosis

Ta 0 .3136 .115 .56 3.44 .5920 .1842 .43 3.01
45 .1081 .1014 .49 3.60 .2186 .1789 .44 3.39
90 -.1915 .0666 -.48 3.40 -.3587 .1100 -.31 3.14
135 -.0341 .0557 -.27 3.75 -.0653 .0976 -.16 3.16
180 .0750 .0557 .02 3.45 .1457 .0946 .04 3.29

Tb 0 .7528 .3111 .03 2.60 1.320 .3111 .03 2.60
45 .2523 .2429 .35 3.69 .5006 .3947 .21 2.80
90 -.4892 .1446 -.37 3.40 -.8818 .2285 -.30 6.41
135 -.1051 .1281 .82 42.37 -.1859 .2013 -.61 10.89
180 .1480 .1109 -.01 3.50 .2836 .1799 -.01 0.49

Tc 0 .1755 .1264 .04 3.18 .3226 .2033 -.10 2.95
45 -.1295 .1393 -.20 3.23 N/A N/A N/A N/A
90 N/A N/A N/A N/A N/A N/A N/A N/A
135 .3171 .2901 .31 3.37 .5930 .4453 .12 2.62
180 .9286 .2685 0.21 2.75 1.532 .3094 -.12 2.64

Td 0 1.318 .3457 .11 2.66 2.084 .3588 -.24 2.70
45 .4793 .4000 .38 2.74 .8823 .5945 .09 2.36
90 -.7348 .2076 -.35 3.14 -1.325 .3076 -.06 2.83
135 -.1651 .1709 -.23 3.22 -.3204 .2892 -.21 2.98
180 .2248 .1412 -.16 3.01 .3696 .2117 -.43 3.15

Table E.l: Membrane deflection data (in mm) for cavity volume C

The displacement transducer was located on a radius that was 0.16D from the centre of 
the roof of the model so that when the opening was at an azimuth angle of 0°, 45°, 90°, 
135° & 180° the corresponding azimuth angles of the transducer were 163.3°, 118.3°, 
73.3°, 28.3° & 16.7° respectively (angles measured from the windward generator).

Both the mean and root-mean-square deflections increased when the mean windspeed 
was increased. The magnitude of the mean membrane deflection was largely dependent 
upon the location of the opening with the largest mean uplifts occurring when the 
opening was orientated to windward and large mean downward motions occurring for <j) 
equal to 90°. The standard deviation of the membrane deflection generally reduced as 
the opening was moved from windward to leeward, a trend that was qualitatively similar
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to that observed in the magnitude of the internal pressure fluctuations. The mean suction 
which acted over the roof resulted in a net uplift on the membrane when the opening 
was in the base region of the model and the mean internal pressure was only slightly 
negative.

[E-3-2] Spectra

Deflection spectra were computed in the same way as the pressure spectra so that each 
was an ensemble average of fifty separate spectra; spectra were normalised by the 
variance of the deflection and plotted as the product of frequency and normalised 
spectral density versus the logarithm (base 10) of frequency (figures E.l to E.4).

For all the configurations the roof responded to the low frequency broad-band turbulent 
buffetting component that was evident in the cavity pressure spectrum; this component 
of the cavity pressure had its origins in the pressure fluctuations that occurred on the 
external walls of the model. Indeed it appeared that the energy apparent at high 
frequencies in the pressure spectra measured on the surface of the rigid roof of the 
model had little effect on the membrane deflection spectra.

The resonant phenomenon of Helmholtz oscillation was apparent for most opening 
azimuth angles apart from the 90° case where, as for the cavity pressure fluctuations, 
this mode was heavily damped. Moving the opening from 90° to either windward or 
leeward increased the resonant response of the Helmholtz oscillation.

A second higher frequency mode was apparent on each of the frequency domain plots 
but the energy it contained was negligible compared with that due to both turbulent 
buffetting and Helmholtz oscillation. It was noted that increasing the mean windspeed 
generally reduced the energy contained in the Helmholtz mode of vibration. These 
trends were in general agreement with those reported in chapter 7 where the cavity 
pressure spectra were described.

[E-4] Summary

A non-contact displacement transducer was used to measure the motion of the 
membrane roof at a single point, however, reservations about the linear range of this 
transducer lead the author to include the roof deflection data as a brief appendix only. 
Extreme value membrane deflections were not presented. The roof deflection was 
monitored on the model configured with cavity volume C only.
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Figure E. 1: Membrane deflection spectra for cavity volume C, membrane tension Ta

and 0° (top) to 180° (bottom); l.h.s. Urep=9.4m/s, r.h.s. U rep=13.0m/s.
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Figure E.2: Membrane deflection spectra for cavity volume C, membrane tension Tb

and (|>= 0° (top) to 180° (bottom); l.h.s. Uref=9.4m /s, r.h.s. Urel=13.0m /s.
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Membrane deflection spectra for cavity volume C, membrane tension Tc

and 0= 0° (top) to 180° (bottom); l.h.s. Uref=9.4m/s, r.h.s. Uref=13.0m/s.

Figure E.3:

A
ppendix E: M

em
brane R

oof D
eflections



T i
-4

Figure E.4: Membrane deflection spectra for cavity volume C, membrane tension Td

_________________ and 0= 0° (top) to 180° (bottom): l.h.s. U„r=9.4m/s. r.h.s. U...r=13.0m/s.
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Appendix E: Membrane R oof Deflections

The mean roof deflection appeared to be dominated by the magnitude of the cavity 
pressure, whilst in the frequency domain the response of the membrane was seen to 
follow that of the cavity pressure fluctuations. Resonance was exhibited at both the 
Helmholtz frequency and higher frequencies with the former generally being the 
dominant resonant mode. Trends apparent in the membrane spectra were similar to 
those reported in the cavity pressure spectra.
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