

City, University of London Institutional Repository

Citation: Child, C. H. T. & Stathis, K. (2005). The Apriori Stochastic Dependency Detection

(ASDD) algorithm for learning Stochastic logic rules. Lecture Notes in Computer Science:
Computational Logic In Multi-Agent Systems, 3259, pp. 234-249. doi: 10.1007/978-3-540-
30200-1_13

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/3002/

Link to published version: https://doi.org/10.1007/978-3-540-30200-1_13

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

The Apriori Stochastic Dependency Detection (ASDD)
Algorithm for Learning Stochastic Logic Rules.

Christopher Child* and Kostas Stathis
Department of Computing,

School of Informatics,
City University, London

 {c.child,k.stathis}@city.ac.uk

Abstract. Apriori Stochastic Dependency Detection (ASDD) is an algorithm
for fast induction of stochastic logic rules from a database of observations made
by an agent situated in an environment. ASDD is based on features of the Apri-
ori algorithm for mining association rules in large databases of sales transac-
tions [1] and the MSDD algorithm for discovering stochastic dependencies in
multiple streams of data [15]. Once these rules have been acquired the Prece-
dence algorithm assigns operator precedence when two or more rules matching
the input data are applicable to the same output variable. These algorithms cur-
rently learn propositional rules, with future extensions aimed towards learning
first-order models. We show that stochastic rules produced by this algorithm are
capable of reproducing an accurate world model in a simple predator-prey envi-
ronment.

1 Introduction

This paper introduces the Apriori Stochastic Dependency Detection (ASDD) algo-
rithm for fast induction of stochastic logic rules from a database of observations. The
focus of our research is on methods by which a logic-based agent can automatically
acquire a rule-based model of a stochastic environment in which it is situated from
observations and use the acquired model to form plans using decision theoretic meth-
ods. Examples in this paper are geared towards this research, but the algorithm is ap-
plicable to induction of stochastic logic rules in the general case.

The key feature of this algorithm is that it can eliminate candidate n element rules
by reference to n-1 element rules that have already been discounted without the need
to for expensive scans of the data set. This is achieved via a breadth first search. Rules
are discounted at each level of the search if they do not occur regularly in the data set
or the addition of extra constraints has no statistical significance on their performance.

Although research in stochastic rule induction is in its infancy, some previous re-
search includes MSDD [14], ILP [12], and the schema mechanism [2]. For a discus-
sion on the topic see [10].

* Corresponding author.

202 Christopher Child and Kostas Stathis

Our research is motivated by the observation that rule based methods in decision
theoretic planning, such as stochastic STRIPS operators (SOPs) promise to be a
highly efficient method of representing a world model for an agent in a stochastic en-
vironment [2]. The main advantage of SOPs is that they provide a solution to the
frame problem which other methods in this area do not address [11].

Previous research in automatic acquisition of stochastic environment models has
been focused on either explicit state space models or dynamic Bayesian networks
(DBNs). State space models record the relative frequency with which each action
available to an agent leads to a next state from an initial state [16]. These methods do
not scale up well because each environment state must be explicitly enumerated. Dy-
namic Bayesian networks are an example of a factored state approach, in which the
state space is modeled as a set of nodes representing state variables, and dependencies
represented as connections. Although methods exist for modelling DBNs from data
[13] the representation must explicitly assert that variables unaffected by an action
persist in value and therefore suffers from the frame problem. Variables which are
unaffected by an action in the probabilistic STRIPS representation, however, need not
be mentioned in the actions description [2].

In order to give context to the ASDD algorithm, an example predator-prey domain
and probabilistic strips operators (PSOs) are first introduced, which will form the ba-
sis of examples in the remainder of the paper. Section 2 describes the ASDD algo-
rithm for stochastic rule induction. Section 3 describes the Precedence algorithm for
operator precedence. Section 4 describes the process of state generation from PSO
operators. Section 5 gives results comparing the algorithms performance against
MSDD and a state space method. Conclusions and future work are presented in sec-
tion 6.

1.1 Example Predator Prey Domain

The environment consists of a four by four grid surrounded by a “wall”. There is one
predator and one prey. The predator will be assumed to have caught the prey when it
lands on the same square. The prey selects a random action at each move. Both preda-
tor and prey have four actions: move north, east, south and west. An action has the ef-
fect of moving the agent one square in the selected direction, unless there is a wall, in
which instance there is no effect. The predator and prey move in simultaneous turns.
The agent’s percept gives the contents of the four squares around it and the square
under it. Each square can be in one of three states: empty, wall or agent. For example
a predator agent has a wall to the west and a prey to the east would have the percept
{EMPTY_NORTH, AGENT_EAST, EMPTY_SOUTH, WALL_WEST, EMPTY_UNDER} corre-
sponding to the squares to the north, east, south, west and under respectively (shown
in figure 1).

The ASDD Algorithm for Learning Stochastic Logic Rules 203

Fig. 1. Simple predator prey scenario. Predator and prey in a 4 by 4 grid. P
indicates the predator and A the prey agent. The percept from the predator’s
perspective is shown to the right.

1.2 Probabilistic STRIPS operators

The STRIPS planning operator representation has, for each action, a set of precondi-
tions, an “add” list, and a “delete” list (Fikes and Nilsson 1971) [6]. The STRIPS
planner was designed for deterministic environments, with the assumption that actions
taken in a state matching the operator’s preconditions would consistently result in the
state changes indicated by the operator’s add and delete lists. In a non-deterministic
environment a less restrictive view is taken, allowing actions to be attempted in any
state. The effects of the action then depend on the state in which it was taken and are
influenced by some properties external to the agents perception which appear random
from the agent’s perspective.

The following format for a stochastic STRIPS operator is an adaptation of that
used by Oates & Cohen [15] to the form of stochastic logic programs (section 1.3). A
stochastic STRIPS operator takes the form: prob: e a, c, where a specifies an ac-
tion, c specifies a context, e the effects and prob the probability of the effects. If the
agent is in a state matching the context c, and takes the action a, then the agent will
observe a state matching the effects e with probability prob.

The agent is assumed to have a set of n possible actions, A = {a1, …, an} and can
perceive m possible state variables P = {p1, … pm}, each of which can take on a finite
set of possible values. Let pi = {pi1, …, pik} be the values associated with the ith vari-
able. The context, c, of an operator is specified as a set of variables from P represent-
ing the perception of the agent. In order to restrict the number of possible operators, e
is defined to be a single variable for each operator, again taken from the set P. A
combination of single variable operators is, however, sufficient to generate a full per-
cept.

In the predator prey domain:
− A = {MOVE_NORTH, MOVE_EAST, MOVE_SOUTH, MOVE_WEST}
− P = {NORTH, EAST, SOUTH, WEST, UNDER}
− PNORTH = {EMPTY_NORTH, WALL_NORTH, AGENT_NORTH}
− PEAST, PSOUTH, PWEST, PUNDER follow the same form as PNORTH

1.3 Stochastic Logic Programs

Stochastic logic programs (SLPs) are first-order logic program extensions of sto-
chastic grammars. Although ASDD is currently not able to learn first-order programs,

204 Christopher Child and Kostas Stathis

the full SLP representation is presented, with the eventual goal of this research being
to learn programs of this nature. Muggleton [12] defines the syntax of an SLP in as
follows:

“An SLP, S, is a set of labelled clauses p:C where p is a probability (i.e. a number
in the range [0,1] and C is a first-order range-restricted clause. The subset Sp is of
clauses in S with predicate symbol p in the head is called the definition of p. For each
definition Sp the sum of probability labels πp must be at most 1. S is said to be com-
plete if πp = 1 for each p and incomplete otherwise. P(S) represents the definite pro-
gram consisting of all the clauses in S, with labels removed.”

2 Apriori Stochastic Dependency Detection (ASDD)

ASDD is based on the Apriori algorithm for mining association rules (section 2.1),
and the MSDD algorithm for finding dependencies in multiple streams of data.
MSDD has previously been applied to the problem of learning probabilistic STRIPS
operators in [15] [4].

2.1 The Apriori method for Association Rule Mining

The Apriori algorithm was designed to address the problem of discovering association
rules between items in a large database of sales transactions. A record in these data-
bases typically consists of a transaction date and the items bought in the transaction
(referred to as basket data). An example of association rule is that 98% of customers
purchasing tyres and auto accessories also purchase automotive services [1]. The form
of this rule is similar to a stochastic logic rule of the form: 0.98: Automotive Services

 Tyres, Accessories. The Apriori algorithm and its descendants have been shown to
scale up to large databases and methods also exist for incrementally updating the
learned rules [7][3]. For a survey see [6]. These features are highly desirable to prob-
abilistic STRIPS learning with its need to process a large database of perceptions, and
incrementally improve these rules as the agent receives new data. The language used
to describe ASDD (2.2) has been chosen to reflect that used in [1]. The algorithm is
largely similar, but has an additional aprioriFilter step (2.2.5) which removes poten-
tial conditions from rules if they are shown to have no significant effect on their prob-
ability. There is also a final filter step, which is equivalent to that used in MSDD.

2.2 Apriori Stochastic Dependency Detection (ASDD)

The task of learning probabilistic STRIPS operators proceeds as follow: The sets P
and A are as defined in section 1.2. Let D be a set of perceptual data items (PDIs)
from an agent, where each PDI is a triplet of the form {Pt-1, At-1, Pt} i.e. the percept
and action at time t-1 and the percept at time t. The elements of P ∪ A are collectively
defined as rule elements.

The ASDD Algorithm for Learning Stochastic Logic Rules 205

A PDI contains rule element set X, if X ⊆ Pt-1 ∪ At-1. A rule is an implication from
a rule element set to an effect, e, of the form e X, where e ⊆ Pt. In logic
programing terms e is the head of the rule and X is the body.

A PSO (prob: e X) is a rule with an associated probability (prob). A rule holds
in the data set D with probability prob if prob% of PDIs which contain X also contain
e.

The rule e X, has support s in the perceptual data set D if s of PDIs in D contain
e ∪ X. minsup defines the minimum support a PSO has to display before it is
admissible to the rule base1.

The problem of discovering a PSO set can be separated into three sub-problems:
1. Discover large rule element sets at level k exhibiting support above minsup. The

support for a rule element set is the number of PDIs that contain the rule element
set. The level of a rule element set is defined as the number of rule elements it
contains (section 2.2.1).

2. Combine rule element sets at level k to form a list of candidate sets for level k+1
using aprioriGen, which removes all candidates that cannot have minimum sup-
port (section 2.2.3).

3. After level 3, apply the AprioriFilter function to remove stochastic planning op-
erators (rule element sets with a result element) at level k, which are covered by
an operator at level k-3 (section 2.2.5).

4. Finally, filter the remaining rules to remove stochastic planning operators which
are covered by a rule at any level (section 2.2.4).

2.2.1 Discovering Large Rule Element Sets
Discovering large rule element sets involves making multiple passes over the percep-
tual data set D. In the first pass (giving level k = 1) the support of individual rule ele-
ment sets is counted to determine which of them are large, i.e. have minimum sup-
port. In each subsequent pass, large rule element sets from the previous pass (k-1) are
used to create candidate rule element sets.

The support for each of these candidate sets is counted in a pass over the data.
Candidates that do not have minimum support are removed and the remaining candi-
dates are used to generate candidates for the next level. After the third pass, rule ele-
ment sets that have an effect element (rule head) can be filtered by rules at the k-1th
level to see if additional conditions have a significant effect on its probability (section
2.2.5). This process continues until no new sets of rule elements are found.

The AprioriGen algorithm (adapted from [1]) generates the candidate rule element
sets to be counted in a pass by considering only the rule element sets found to be large
in the previous pass. Candidates with k rule elements are generated by rule element
sets at the k-1 level. Any generated candidates containing a k-1 set which does not
have minimum support are then removed in a the prune step, because any subset of a
large set must also be large. This avoids the need for an expensive pass over the data
set when generating candidates.

The notation is used in the following algorithms is:

1 This definition of support is slightly different from the Apriori algorithm, in which support is

defined as a percentage of the data.

206 Christopher Child and Kostas Stathis

− L[k]: Set of large k-rule element sets (those with minimum support). Each member
of this set has three fields:

1. Elements: a set of rule elements
2. Support: the number of times the rule matched the database (if the set of rule

elements has an effect (rule head).
3. BodySupp: the number of times the body of the rule matched the database
− C[k]: Set of candidate k-rule element sets (potentially large sets). Fields are identi-

cal to L[k].

2.2.2 The ASDD algorithm
The first part of the Apriori algorithm simply counts occurrences of single rule

elements to determine large 1 rule element sets. A subsequent pass consists of the fol-
lowing steps:
1. Large rule element sets L[k-1] found in the pass (k-1) are used to generate the

candidate rule element sets C[k], using the aprioriGen function (section 2.2.3).
2. The support of candidates in C[k] is counted by a database scan using the subset

function, which returns the subset of C[k] contained in a PDI2.
3. Rule element sets with below minimum support are removed.
4. If rule element set has no effect (head) bodySupp = support.
5. Rules, which are rule element sets with an effect element (rule head), are filtered

against rules that subsume them at the level k-3 by the aprioriFilter function
(section 2.2.5).

Finally, rules are filtered with a greater test for statistical significance by the filter
function (section 2.2.4).

ASDD(D)
L[1] = {large 1-literalsets};
for (k = 2; L[k-1] ≠ ∅; k++) {
 Ck = AprioriGen(L[k-1]); //(1)
 for (pdi ∈ D) { //(2)
 Ct = Subset(Ck, pdi)
 for (c ∈ Ct)
 c.support ++;
 }
 L[k] = {c ∈ Ck | c.support ≥ minsup} //(3)
 for (l ∈ L[k] where not HasEffect(l))
 l.bodySupp = l.support;
 if (k > 3)
 Ck = AprioriFilter(Ck, L[k-3]); //(4)
}
ruleSet = ∪ for k of L[k];
return filter(ruleSet);

2.2.3 AprioriGen
The aprioriGen function generates a set of potentially large k-rule element sets from
(k-1) sets.

There are two main steps:

2 An efficient subset function is described in the original algorithm but is not used in the im-

plementation tested here.

The ASDD Algorithm for Learning Stochastic Logic Rules 207

1. The join step joins L[k-1] with L[k-1] to form candidate rule sets C[k].
2. The prune step deletes generated candidates for which some (k-1) subset is not

present in L[k-1].

For the purposes of rule generation, the following steps have been added:
1. Rules (rule element sets with an effect element) will have a body that is equal to

one of the rules used to form them. In this case the bodySupp variable is copied
to restrict the number of database passes required.

2. Effects are restricted to just one variable. If both L[k-1] rules have an effect vari-
able (rule head) they are not combined (the HasEffect function will return true).

Join(L[k-1])
C[k] = ∅
for (p ∈ L[k-1]) {
 for (q ∈ L[k-1]) {
 generate = true;
 if (p == q) next q;
 if (HasEffect(p) and HasEffect(q)) next q;
 if (p.lastElement > last(q.elements)) {
 generate = false; next q; }
 for (i from 0 to num elements in p-2) {
 if (p.elements[i] ≠ q.elements[i])
 generate = false; next q;
 }
 if (!generate)
 next q;
 newC.elements = p.elements + last(q.elements);
 if (HasEffect(newC) {
 if (body(newC) == body(p)) newC.bodySupp = p.bodySupp;
 if (body(newC) == body(q)) newC.bodySupp = q.bodySupp;
 }
 add(C[k], newCandidate);
}}
return C[k]

Prune(Ck, L[k-1])
for (c ∈ C[k]) {
 forall (k-1 size subsets s of c) {
 if (s ∉ L[k-1]) delete c from C[k]

Note: The body function returns all rule elements excluding effect rule elements (rule
head).

Example: L[3] rule element sets are (indicates an effect element):
1. {MOVE_NORTH, AGENT_NORTH , EMPTY_EAST},
2. {MOVE_NORTH, AGENT_NORTH , WALL_SOUTH},
3. {MOVE_NORTH, EMPTY_EAST, WALL_SOUTH},
4. {MOVE_NORTH, EMPTY_EAST, WALL_NORTH},
5. {AGENT_NORTH , EMPTY_EAST, WALL_SOUTH}.

The join step creates the C[4] rule element sets as follows: From a combination of
1 and 2: {MOVE_NORTH, AGENT_NORTH , EMPTY_EAST, WALL_SOUTH). From a combi-
nation of 3 and 4: {MOVE_NORTH, EMPTY_EAST, WALL_SOUTH, WALL_NORTH}.

The prune step will delete the rule element set {MOVE_NORTH, EMPTY_EAST,
WALL_SOUTH, WALL_NORTH} because the subset {MOVE_NORTH, WALL_SOUTH,
WALL_NORTH} is not contained in L[3]. In the full data set this behaviour is observed

208 Christopher Child and Kostas Stathis

because the agent cannot perceive the conditions WALL_SOUTH and WALL_NORTH si-
multaneously. The algorithm is able to draw this conclusion without a further pass
through the data.

2.2.4 Filter
The filter function was presented in (Oates and Coen) [15] as an extension to the
MSDD algorithm. It removes rules that are covered and subsumed by more general
ones. For example, the rule {Prob 1.0: WALL_NORTH MOVE_NORTH, WALL_NORTH,
WALL_EAST} is a more specific version of {Prob 1.0: WALL_NORTH MOVE_NORTH,
WALL_NORTH,} and therefore subsumes it. If the extra condition has no significant ef-
fect on the probability of the rule then it is covered by the more general rule (and
therefore unnecessary). In this example the additional condition WALL_EAST has no
significant effect.

More general operators are preferred because they are more likely to apply to rules
outside the original data set and a reduced number of rules can cover the same infor-
mation. The test determines whether Prob (e| c1, c2, a) and Prob (e | c1, a) are signifi-
cantly different. If not, the general operator is kept the specific one discarded.

Filter (R, D, g)
sort R in non-increasing order of generality
S = {}
while NotEmpty(R)
 s = Pop(R)
 Push (s, S)
 for (r ∈ R)
 if (Subsumes(s, r) and G(s, r, H) < g)
 remove r from R
Return S

R is a set of stochastic rules. D is the set of PDIs observed by the agent. Sub-
sumes(d1, d2) is a Boolean function defined to return true if dependency operator d1 is
a generalisation of d2. G(d1, d2, H) returns the G statistic to determine whether the
conditional probability of d1’s effects given its conditions is significantly different
from d2’s effects given its conditions. The parameter g is used as a threshold, which
the G statistic must exceed before d1 and d2 are considered different3. For an explana-
tion of calculation of the G statistic see [14].

2.2.5 AprioriFilter
The AprioriFilter function is similar to filter, but checks candidate rules at level k
against rules at level k-3.

AprioriFilter(Ck, L[k-3], significant)
RulesL[k-3] = {l ∈ L[k-3] | HasEffect(l)}
for (c ∈ Ck where HasEffect(c))
 for (lr ∈ RulesL[k-3])
 if (Subsumes(lr,c) and G(c,lr) < significant) {
 remove c from Ck;
 next c;
 }

3 A value of 3.84 for g tests for statistical significance at the 5% level.

The ASDD Algorithm for Learning Stochastic Logic Rules 209

The significant parameter defines the g statistic level at which we filter. Rules filtered
by this function are removed in the same way as pruned rules, and therefore take no
further part in rule generation. For example, if the rule: a b is removed by this
method no further rules will be generated with head a and body b (e.g. {a b,c}, {a

 b,d}). This can cause a problem when the effect of b as a condition for a is not
immediately apparent (e.g. the XOR function in which the output is determined by a
combination of each input, with the observation of a single input appearing to have no
bearing on the output).

The problem was resolved by setting the significant parameter to 0.1 (3.84 would
be 95% significance), by not filtering until rules at level 4 (i.e. the rule {a b,c,d}
can be filtered by {a b,c}, and by filtering against rules with three less conditions
(k-3). Further experimentation is required in this area.

The aprioriFilter function alters the stopping criteria through removing rules that
do not appear significant at each level. Apriori halts when there are no further rules
that can be generated above minimum support. ASDD halts with the additional crite-
ria that there are likely to be no further significant rules.

2.2.6 Generating Rule Probabilities
The rule probability (prob), which is the probability of the effect (rule head) being
true if the body (conditions) is true is derived empirically as prob = sup-
port/bodySupp.

2.2.7 Add Rule Complements
The Filter function often filters rules and not their complements. For example, the
variable, NORTH, can take the values: EMPTY_NORTH, AGENT_NORTH, and WALL_NORTH.
The filter process could filter rule 2 below, but leave 1 and 3.
1. 0.6: EMPTY_NORTH MOVE_NORTH, EMPTY_WEST
2. 0.1: AGENT_NORTH MOVE_NORTH, EMPTY_WEST
3. 0.3: WALL_NORTH MOVE_NORTH, EMPTY_WEST

This would cause a problem in the state generation (section 4), because the set of
rules will not generate states with AGENT_NORTH present. The algorithm iterates
through all rules in the learned dependencies, R, checking that all possible values of
its effect fluent are either present in R already or do not match any observations in the
data D. If a missing rule is found it is added to R.

AddRuleComplements(R, D)
for (r ∈ R) do
 f = r.head;
 for (fValue ∈ possibleValues(f))
 if (fValue ≠ f.value)
 newRule = copy of f with f.head set to fValue
 if (newRule ∈ R)
 if (newRule matches a PDI in D)
 add newRule to R

210 Christopher Child and Kostas Stathis

3 The Precedence Algorithm

The Precedence algorithm provides a method of resolving conflicts when more than
one rule set is applicable to the same state. A rule set is defined as a set of rules that
apply to the same output variable and has the same body.

Example: The percept at time t-1 is {EMPTY_NORTH, WALL_EAST, AGENT_SOUTH,
EMPTY_UNDER} and the action at time t-1 is MOVE_NORTH. The conflicting rule sets in
Table 1 and Table 2 apply to the same output variable, NORTH, which can take values
NORTH_WALL, NORTH_EMPTY, NORTH_AGENT. The Precedence algorithm defines how
conflicts of this nature are resolved.

Table 1. Rule set with body: action = MOVE_NORTH and percept contains EMPTY_NORTH

Effect Conditions

0.6: EMPTY_NORTH MOVE_NORTH, EMPTY_NORTH
0.1: AGENT_NORTH MOVE_NORTH, EMPTY_NORTH
0.3: WALL_NORTH MOVE_NORTH, EMPTY_NORTH

Table 2. Rule set with body: action = MOVE_NORTH and percept contains AGENT_SOUTH

Effect Conditions
0.7: EMPTY_NORTH MOVE_NORTH,AGENT_SOUTH
0.3: WALL_NORTH MOVE_NORTH,AGENT_SOUTH

The precedence algorithm evaluates the precedence of a generated set of rules R,
over a set of PDIs, D, and proceeds in the following 2 steps:
1. Categorise all rules into rule sets. A rule set is a group of rules with the same

output variable and the same body (section 3.1).
2. For all PDIs in the database, if two rule sets apply to the same PDI and have same

output variable, define which one has precedence using the FirstRuleSetSuperior
function. This function finds the subset of PDIs for which both rule sets apply
and uses an error measure to check which set performs best on the subset (section
3.2).

Precedence(R, D)
ruleSets = FormRuleSets(R, D)
for (p ∈ D){
 matchedRules = MatchingRules(ruleSets, p);
 for (rSet1 ∈ RuleSetsIn(matchedRules)) {
 for (rSet2 ∈ RuleSetsIn(matchedRules)) {
 if (rSet1 == rSet2) next rSet2;
 if (OutputVar(rSet1) ≠ OutputVar(rSet2)) next rSet2;
 if (PrecedenceSet(rSet1, rSet2) next rSet2;
 if (FirstRuleSetSuperior(set1, set2))
 SetPrecedenceOver(set2, set1);
 else
 SetPrecedenceOver(set1, set2);
} } }

The MatchingRules function returns the subset of rule sets with a body matching
the percept and action from the PDI. The RuleSetsIn function returns the rule sets con-
tained in the matching rules. The OutputVar function returns the variable that forms
the head of a rule (rather than it’s actual value). If the head of a rule is EMPTY_NORTH
then the variable is NORTH.

The ASDD Algorithm for Learning Stochastic Logic Rules 211

Note that D can be either the same set of data used to learn the rules, or a separate
set used purely to test the rules. If the same data set is used, the speed of the algorithm
can be increased by the observation that a specific rule set (one with more conditions)
will always have precedence over a general one (section 3.2).

3.1 FormRuleSets

Rule sets are sets of rules with the same conditions (rule body) which apply to the
same output variable. E.g. {Prob: 0.5: EMPTY_NORTH MOVE_NORTH, Prob: 0.5:
AGENT_NORTH MOVE_NORTH} is a rule set for the variable NORTH.

FormRuleSets(R)
for (r ∈ R) {
 if (NotEmpty(r.ruleSet) next r;
 for (c ∈ R) {
 if (Body(r) ≠ Body(c)) next c;
 if (OutputVar(r) ≠ OutputVar(c)) next c;
 if (r ∈ c.ruleSet)) {
 copy(r.ruleSet, c.ruleSet)); next r; }
 r.ruleSet += c;
}}

3.2 FirstRuleSetSuperior

The FirstRuleSetSuperior function returns true if the first rule set should have prece-
dence in situations where the two rule sets conflict. This is achieved by comparing the
probability values for the output variable of the rule sets with a new rule set generated
by combining their conditions. The probabilities for the new rule set are generated
empirically in the same manner as all other rules (section 2.2.6) prob = sup-
port/bodySupp.

Example: The rule sets in Table 1 and Table 2 have the conditions {MOVE_NORTH,
EMPTY_NORTH} and {EMPTY_NORTH, AGENT_SOUTH} respectively. If the two sets of
conditions are combined and the effects (rule heads) added the new rule set shown in
Table 3 is generated.

Table 3. Rule set formed from the combination of rule sets in Table 1 and Table 2.

0.75: EMPTY_NORTH MOVE_NORTH, MOVE_NORTH, EMPTY_NORTH
0.0: AGENT_NORTH MOVE_NORTH, EMPTY_NORTH, AGENT_SOUTH
0.25: WALL_NORTH MOVE_NORTH, EMPTY_NORTH, AGENT_SOUTH

The rule set that has the least error when compared to the combined rule set is
given precedence over the other. In the implementation used for this paper, an error of
+0.5 was given for each non-matching output and the difference otherwise. The rule
set in Table 1 would therefore have an error of 1.0 (for AGENT_NORTH) + (0.75 – 0.6 =
0.15) for v1 + (0.3 – 0.25 = 0.05). The total error is therefore 0.7. This error measure
is somewhat arbitrary, but was defined in order to penalise rules which failed to gen-
erate all values for a variable, however infrequently that variable occurs.

212 Christopher Child and Kostas Stathis

Note 1: A rule set which is subsumed by a more general rule will always have
precedence over a specific one, if we are using the same data set to test rule sets as to
create them. This is because the combined rule set will be equal to the more specific
rule set. For example, if we have a rule with conditions {a,b} and a rule with condi-
tions {a}, the combined rule has conditions are {a,b}.

Note 2: If the combined rule set applies to a limited number of examples from the
data this method is likely to produce spurious results.

4 Generating States from learned rules

The state generator function generates all possible next states (with associated prob-
abilities) for an action that the agent could take in a given state. These states are gen-
erated using the rules learned by ASDD from the history of observations. The gener-
ated states can then be used as a model by a reinforcement learning algorithm such as
value learning to generate a policy. This method has been applied previously in [4].

Our implementation of the ASDD algorithm generates a set of rules with only one
fluent in the effects in order to reduce substantially the number of rules that must be
evaluated. States are generated as follows:

1. Find all rules matching the current state and selected action. This is the subset of
rules with conditions matching the state and action.

2. Remove rules that defer to other matching rules. For each rule in the rule set from
step 1, remove if another rule has precedence over it.

3. Generate possible states and probabilities (section 4.1).
4. Remove impossible states using constraints and normalise the state probabilities

(section 4.2).

4.1 Generate Possible States

The possible states are generated as follows:
1. Create a new state from each combination of effect fluent values in the rules re-

maining after steps 1 and 2 above.
2. Multiply the probability of each effect rule to generate the probability of each

state.
In order to demonstrate this process, we refer back to the predator-prey scenario,

introduced in section 1.1, which forms the basis of the experiments in section 5 and
shows how the predator generates states from the learned rules.

After steps 1 and 2 from section 4, we are left with the rules in Table 4 for the ini-
tial percept {WALL_NORTH, EMPTY_EAST, EMPTY_SOUTH, AGENT_WEST,
EMPTY_UNDER} and action MOVE_NORTH.

The ASDD Algorithm for Learning Stochastic Logic Rules 213

Table 4. Rules generated by the ASDD algorithm for the predator prey scenario matching the
initial percept WALL_NORTH, EMPTY_EAST, EMPTY_SOUTH, AGENT_WEST, EMPTY_UNDER
and action MOVE_NORTH, after removal of rules by precedence.

Prob: Effect Conditions
1.0 WALL_NORTH MOVE_NORTH, WALL_NORTH
1.0 EMPTY_EAST MOVE_NORTH, EMPTY_EAST, AGENT_WEST
1.0 EMPTY_SOUTH MOVE_EAST, WALL_EAST
0.59 EMPTY_WEST MOVE_NORTH, EMPTY_EAST, AGENT_WEST
0.41 AGENT_WEST MOVE_NORTH, EMPTY_EAST, AGENT_WEST
0.63 EMPTY_UNDER MOVE_NORTH, WALL_NORTH, AGENT_WEST
0.37 AGENT_UNDER MOVE_NORTH, WALL_NORTH, AGENT_WEST

The states generated from the rules in Table 4 are shown in Table 5. The probabili-
ties for each state are generated by multiplying the probabilities of each rule that gen-
erated the state.

Table 5. Generated states and associated probabilites from the rules in Table 4

WALL_NORTH EMPT_EAST EMPT_SOUTH EMPT_WEST EMPT_UNDER Pr: 0.37
WALL_NORTH EMPT_EAST EMPT_SOUTH EMPT_WEST AGEN_UNDER Pr: 0.22
WALL_NORTH EMPT_EAST EMPT_SOUTH AGEN_WEST EMPT_UNDER Pr: 0.25
WALL_NORTH EMPT_EAST EMPT_SOUTH AGEN_WEST AGEN_UNDER Pr: 0.15

There were two rules for the west variable with results EMPTY and AGENT, and two
rules for the under fluent with results EMPTY and AGENT. The other rules had one re-
sult each resulting in a total of: 2 * 1 * 1* 2 * 1 = 4 possible states.

4.2 Removing Impossible States with Constraints

Some of the states generated could not occur in the domain area. For example in the
predator-prey scenario, the operators may generate a percept with two agents when
there is only one agent in the world (e.g. the rule in Italics in Table 5). Ultimately, the
agent should generate it’s own constraints that define impossible world states. A rule
such as IMPOSSIBLE (AGENT_NORTH, AGENT_SOUTH) allows elimination of the impos-
sible world states generated. If we do not use these constraints, the erroneous gener-
ated states will propagate (e.g. predator agents, three walls etc.), and the model be-
comes meaningless, as it is too far detached from the real world states. Currently our
system removes impossible states by checking that each generated state contains only
one agent, and does not have walls opposite each other, but the impossible function
should be simple to create by observing rule element sets eliminated in the prune step
of the ASDD algorithm.

After elimination of illegal states, the probabilities of remaining states are normal-
ised by dividing the probability of each state by the total probability of all generated
states to give the final states.

Despite the addition of the two constraints mentioned, the state generator is still
able to generate erroneous states as is demonstrated below. Removing states of this
type is a complex problem as the states themselves are not impossible.

214 Christopher Child and Kostas Stathis

Fig. 2. : Generation of erroneous states. From the initial state P1 in which the prey

is immediately to the west, the state generator generates the states Pa and Pb after a
move west action. Situation Pa is in fact not possible, because the predator and prey
take simultaneous moves. For the predator to be on top of the prey after a move west,
the prey would have to have stayed still. This is only possible if it moved into a wall,
which it cannot have done as all the square around it are empty.

5 Results

Table 6 compares the speed of ASDD against the MSDD algorithm. Timings were
taken on learning rules from data sets of 100 to 20000 observations of random moves.
Performance was measured on a 350MHz Pentium with 256MB RAM. Although
these are only preliminary tests, we found that ASDD displayed roughly equal per-
formance to MSDD initially, and that the time taken to learn rules increased roughly
in proportion to the size of the data set for MSDD. On larger data sets time taken by
ASDD starts to level and thus shows a dramatic performance increase against MSDD
for 20000 observations. ASDD minimum support was set to 1 (any occurrence means
a rule set is not discarded), and significant in AprioriFilter to 0.1. For both ASDD and
MSDD g in Filter was set to 1.17.

Table 6. Time taken (in seconds) to learn rules with data collected from 100, 1000, 2000, 5000,
10000 and 20000 random moves.

 100 1000 2000 5000 10000 20000
ASDD 36 227 303 471 641 828
MSDD 12 213 442 1151 2363 4930

Table 7 gives an error measure of the state generation ability of ASDD, MSDD and
a state map against an empirical measure of the state transition probabilities taken
from a state map of 200,000 trials (a “correct” state map). The state map records, for
each percept and action, the relative frequencies of each next percept. The error
measure is defined as follows: For each state generated which is not present in the
“correct” state map add 0.5 to the error. For each in the “correct” state map which is
not in the generated set, add 0.5 to the error. If both state sets contain the same state
add the difference in probability for the two states. The total number of state-action
pairs in the “correct” map was 168 and total state-action following states was 852.

The ASDD Algorithm for Learning Stochastic Logic Rules 215

Table 7. Error measure of generated states generated from rules learned from data
collected over 100, 1000, 2000, 5000, 10000 and 20000 random moves.

 100 1000 2000 5000 10000 20000
State Map 415.9 355.2 261.8 135.1 40.5 15.3
ASDD 480.0 335.1 274.6 220.4 197.9 108.9
MSDD 482.7 333.5 280.5 198.7 137.6 92.18

The performance of both rule-learning methods is poor against a state map gener-
ated from the same number of trials except in the case where there is a limited amount
of data. The performance of the rule sets generated by ASDD and MSDD are, how-
ever, approximately equal in generating states. This indicates that the error lies in our
state generation process, rather than the rules themselves. Further investigation is re-
quired to discern why the error rate is high for both rule sets. A possible reason for the
error is the removal of impossible states problem outlined in section 4.2.

6 Conclusions

This paper presents the ASDD algorithm, which is the first step in the development of
an efficient algorithm for learning stochastic logic rules from data. Results in our pre-
liminary tests are extremely encouraging in that the algorithm is able to learn rules
accurately and at over twice the speed of MSDD. Future extensions to the method are
expected to greatly increase the performance and application of the algorithm. Some
initial areas to examine are:
− Increasing the performance of the algorithm by use of efficient subset function and

transaction ID approaches from Apriori.
− Testing the algorithm on a wide variety of data sets to give a better performance

measure.
− Implementing incremental updating of rules using methods from association rule

mining.
− Generating first-order rules from data through the inclusion of background knowl-

edge.

Acknowledgements:

Chris Child would like to acknowledge the support of EPSRC, grant number
00318484.

References

1. Agrawal, R. and Srikant, R.: Fast Algorithms for Mining Association Rules. In: Proc. 20th
Int. Conf. Very Large Data Bases {VLDB}, 12-15, Bocca, J.B., Jarke, M., Zaniolo, C.
(eds.), Morgan Kaufmann, (1994).

2. Boutilier, C. and Dean, T. and Hanks, S. Decision-Theoretic Planning: Structural Assump-
tions and Computational Leverage. Journal of Artificial Intelligence Research 11: 1-94.
(1999).

216 Christopher Child and Kostas Stathis

3. Cheung, D.W. and Han, J., Ng, V., and Wong, C.Y., Maintenance of discovered associa-
tion rules in large databases: An incremental updating technique. In Proc. 1996 Int. Conf.
Data Engineering, pages 106--114, New Orleans, Louisiana, Feb. (1996)

4. Child, C. and Stathis, K. 2003. SMART (Stochastic Model Acquisition with Reinforce-
menT) Learning Agents: A Preliminary Report. Adaptive Agents and Multi-Agent Sys-
tems AAMAS-3. AISB 2003 Convention., Dimitar Kazakov. Aberystwyth, University of
Wales. ISBN 1 902956 31 5. (2003).

5. Drescher, G.L. Made-Up Minds, A Constructivist Approach to Artificial Intelligence. The
MIT Press. (1991)

6. Fikes, R.E. and Nilsson, N.J. STRIPS: a new approach to the application of theorem prov-
ing to problem-solving. Artificial Intelligence 2(3-4): 189-208 (1971).

7. Hidber C., Online Association Rule Mining. SIGMOD Conf., 1999.
http://citeseer.nj.nec.com/hidber98online.html (1999).

8. Hipp, J. and Gunter, U. and Nakhaeizadeh, G., Algorithms for Association Rule Mining -
A General Survey and Comparison, SIGKDD Explorations, 2000, vol. 2, no. 1, 58-64,
July. (2000).

9. Kaelbling, L.P. and Littman, H.L. and Moore, A.P. Reinforcement Learning: A Survey.
Journal of Artificial Intelligence Research 4: 237-285. (1996)

10. Kaelbling, L. P., and Oates, T. and Hernandez, N. and Finney, S. Learning in Worlds with
Objects, citeseer.nj.nec.com/kaelbling01learning.html.

11. McCarthy, J. and Hayes, P.J. Some philosophical problems from the standpoint of artifi-
cial intelligence. Machine Intelligence, 4: 463-502. (1969).

12. Muggleton, S.H. Learning Stochastic Logic Programs. Proceedings of the AAAI2000
Workshop on Learning Statistical Models from Relational Data, L. Getoor and D. Jensen,
AAAI. (2000).

13. Murphy, K.P. Dynamic Bayesian Networks: Representation, Inference and Learning.
Ph.D. Thesis, University of California, Berkeley. (2002).

14. Oates T., Schmill, M.D., Gregory, D.E. and Cohen P.R. Detecting complex dependencies
in categorical data. Chap. in Finding Structure in Data: Artificial Intelligence and Statis-
tics V. Springer Verlag. (1995).

15. Oates, T. and Cohen, P. R.Learning Planning Operators with Conditional and Probabilistic
Effects. AAAI-96 Spring Symposium on Planning with Incomplete Information for Robot
Problems, AAAI. (1996).

16. Sutton, R.S., and A.G. Barto. Reinforcement Learning: An Introduction. A Bradford Book,
MIT Press. (1998).

