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���‡�Ž�Ž���…�‘�”�”�‡�Ž�ƒ�–�‹�‘�•�•���‘�—�–�•�‹�†�‡ �’�Š�›�•�‹�…�•
���ä �
�ƒ�Ž�Ž�—�• �w* �á�����ä ���ä ���‘�–�Š�‘�• �x�á�����ä ���Ž�ƒ�•�‹�ƒ�• �y�á�z�á�����ä ���Ž�ƒ�•�‹�ƒ�• �x�á���
�ä ���ä ���‡�ƒ�”�•�Ž�‡�› �x �¬�����ä ���ä ���‘�Œ�…�‹�‡�…�Š�‘�™�•�•�‹ �{

���‘�”�”�‡�Ž�ƒ�–�‹�‘�•�•���ƒ�”�‡���—�„�‹�“�—�‹�–�‘�—�•���‹�•���•�ƒ�–�—�”�‡���ƒ�•�†���–�Š�‡�‹�”���’�”�‹�•�…�‹�’�Ž�‡�†���•�–�—�†�›���‹�•���‘�ˆ���’�ƒ�”�ƒ�•�‘�—�•�–���‹�•�’�‘�”�–�ƒ�•�…�‡���‹�•��
�•�…�‹�‡�•�–�‹�¤�…���†�‡�˜�‡�Ž�‘�’�•�‡�•�–�ä�����Š�‡���•�‡�•�‹�•�ƒ�Ž���…�‘�•�–�”�‹�„�—�–�‹�‘�•�•���ˆ�”�‘�•���
�‘�Š�•�����‡�Ž�Ž���‘�¡�‡�”���ƒ���ˆ�”�ƒ�•�‡�™�‘�”�•���ˆ�‘�”���ƒ�•�ƒ�Ž�›�œ�‹�•�‰��
�–�Š�‡���…�‘�”�”�‡�Ž�ƒ�–�‹�‘�•�•���„�‡�–�™�‡�‡�•���–�Š�‡���…�‘�•�’�‘�•�‡�•�–�•���‘�ˆ���“�—�ƒ�•�–�—�•���•�‡�…�Š�ƒ�•�‹�…�ƒ�Ž���•�›�•�–�‡�•�•���ƒ�•�†���Š�ƒ�˜�‡���‹�•�•�–�‹�‰�ƒ�–�‡�†��
�ƒ�•���‡�š�’�‡�”�‹�•�‡�•�–�ƒ�Ž���–�”�ƒ�†�‹�–�‹�‘�•���™�Š�‹�…�Š���Š�ƒ�•���”�‡�…�‡�•�–�Ž�›���…�—�Ž�•�‹�•�ƒ�–�‡�†���™�‹�–�Š���–�Š�‡�����‘�„�‡�Ž�����”�‹�œ�‡���‹�•�����Š�›�•�‹�…�•�����x�v�x�x���ä�����•��
�’�Š�›�•�‹�…�•�á�����‡�Ž�Ž�ï�•���ˆ�”�ƒ�•�‡�™�‘�”�•���ƒ�Ž�Ž�‘�™�•���–�Š�‡���†�‡�•�‘�•�•�–�”�ƒ�–�‹�‘�•���‘�ˆ���–�Š�‡���•�‘�•�æ�…�Ž�ƒ�•�•�‹�…�ƒ�Ž���•�ƒ�–�—�”�‡���‘�ˆ���“�—�ƒ�•�–�—�•���•�›�•�–�‡�•�•��
�Œ�—�•�–���ˆ�”�‘�•���–�Š�‡���ƒ�•�ƒ�Ž�›�•�‹�•���‘�ˆ���–�Š�‡���‘�„�•�‡�”�˜�‡�†���…�‘�”�”�‡�Ž�ƒ�–�‹�‘�•���’�ƒ�–�–�‡�”�•�•�ä�����‡�Ž�Ž�ï�•���‹�†�‡�ƒ�•���•�‡�‡�†���•�‘�–���„�‡���”�‡�•�–�”�‹�…�–�‡�†��
�–�‘���’�Š�›�•�‹�…�•�ä�����—�”���…�‘�•�–�”�‹�„�—�–�‹�‘�•���‹�•���–�‘���•�Š�‘�™���ƒ�•���‡�š�ƒ�•�’�Ž�‡���‘�ˆ���ƒ�����‡�Ž�Ž���ƒ�’�’�”�‘�ƒ�…�Š�á���„�ƒ�•�‡�†���‘�•���–�Š�‡���‹�•�•�‹�‰�Š�–���–�Š�ƒ�–��
�…�‘�”�”�‡�Ž�ƒ�–�‹�‘�•�•���…�ƒ�•���„�‡���„�”�‘�•�‡�•���†�‘�™�•���‹�•�–�‘���ƒ���’�ƒ�”�–���†�—�‡���–�‘���…�‘�•�•�‘�•�á���‘�•�–�‡�•�•�‹�„�Ž�›���•�‹�‰�•�‹�¤�…�ƒ�•�–���…�ƒ�—�•�‡�•�á���ƒ�•�†���ƒ���’�ƒ�”�–��
�†�—�‡���–�‘���•�‘�‹�•�‡�ä�����‡���‡�•�’�Ž�‘�›���†�ƒ�–�ƒ���ˆ�”�‘�•���¤�•�ƒ�•�…�‡�����’�”�‹�…�‡���…�Š�ƒ�•�‰�‡�•���‘�ˆ���•�‡�…�—�”�‹�–�‹�‡�•�����ƒ�•���ƒ�•���‡�š�ƒ�•�’�Ž�‡���–�‘���†�‡�•�‘�•�•�–�”�ƒ�–�‡��
�‘�—�”���ƒ�’�’�”�‘�ƒ�…�Š�á���Š�‹�‰�Š�Ž�‹�‰�Š�–�‹�•�‰���•�‡�˜�‡�”�ƒ�Ž���‰�‡�•�‡�”�ƒ�Ž���ƒ�’�’�Ž�‹�…�ƒ�–�‹�‘�•�•�ã���¤�”�•�–�á���™�‡���†�‡�•�‘�•�•�–�”�ƒ�–�‡���ƒ���•�‡�™���•�‡�ƒ�•�—�”�‡���‘�ˆ��
�ƒ�•�•�‘�…�‹�ƒ�–�‹�‘�•�á���‹�•�ˆ�‘�”�•�‡�†���„�›���–�Š�‡���ƒ�•�•�—�•�‡�†���…�ƒ�—�•�ƒ�Ž���”�‡�Ž�ƒ�–�‹�‘�•�•�Š�‹�’���„�‡�–�™�‡�‡�•���˜�ƒ�”�‹�ƒ�„�Ž�‡�•�ä�����‡�…�‘�•�†�á���‘�—�”���ˆ�”�ƒ�•�‡�™�‘�”�•��
�…�ƒ�•���Ž�‡�ƒ�†���–�‘���•�–�”�‡�ƒ�•�Ž�‹�•�‡�†�����‡�Ž�Ž�æ�–�›�’�‡���–�‡�•�–�•���‘�ˆ���™�‹�†�‡�Ž�›���‡�•�’�Ž�‘�›�‡�†���•�‘�†�‡�Ž�•���‘�ˆ���ƒ�•�•�‘�…�‹�ƒ�–�‹�‘�•�á���™�Š�‹�…�Š���ƒ�”�‡���‹�•��
�’�”�‹�•�…�‹�’�Ž�‡���ƒ�’�’�Ž�‹�…�ƒ�„�Ž�‡���–�‘���ƒ�•�›���†�‹�•�…�‹�’�Ž�‹�•�‡�ä�����•���–�Š�‡���ƒ�”�‡�ƒ���‘�ˆ���¤�•�ƒ�•�…�‡�á���•�—�…�Š���•�‘�†�‡�Ž�•���‘�ˆ���ƒ�•�•�‘�…�‹�ƒ�–�‹�‘�•���ƒ�”�‡���	�ƒ�…�–�‘�”��
���‘�†�‡�Ž�•���ƒ�•�†���–�Š�‡���„�‹�˜�ƒ�”�‹�ƒ�–�‡���
�ƒ�—�•�•�‹�ƒ�•���•�‘�†�‡�Ž�ä�����˜�‡�”�ƒ�Ž�Ž�á���™�‡���•�Š�‘�™���–�Š�ƒ�–�����‡�Ž�Ž�ï�•���ƒ�’�’�”�‘�ƒ�…�Š���ƒ�•�†���–�Š�‡���•�‘�†�‡�Ž�•���™�‡��
�…�‘�•�•�‹�†�‡�”���ƒ�”�‡���ƒ�’�’�Ž�‹�…�ƒ�„�Ž�‡���ƒ�•���‰�‡�•�‡�”�ƒ�Ž���•�–�ƒ�–�‹�•�–�‹�…�ƒ�Ž���–�‡�…�Š�•�‹�“�—�‡�•�á���™�‹�–�Š�‘�—�–���ƒ�•�›���†�‘�•�ƒ�‹�•���•�’�‡�…�‹�¤�…�‹�–�›�ä�����‡���Š�‘�’�‡��
�–�Š�ƒ�–���‘�—�”���™�‘�”�•���™�‹�Ž�Ž���’�ƒ�˜�‡���–�Š�‡���™�ƒ�›���ˆ�‘�”���‡�š�–�‡�•�†�‹�•�‰���‘�—�”���‰�‡�•�‡�”�ƒ�Ž���—�•�†�‡�”�•�–�ƒ�•�†�‹�•�‰���ˆ�‘�”���Š�‘�™���–�Š�‡���•�–�”�—�…�–�—�”�‡���‘�ˆ��
�ƒ�•�•�‘�…�‹�ƒ�–�‹�‘�•�•���…�ƒ�•���„�‡���ƒ�•�ƒ�Ž�›�œ�‡�†�ä

�e understanding of correlations is crucial for theoretical progress throughout science. For example, in psychol-
ogy, formal analysis of social networks o�en quanti�es di�erent kinds of interaction between agents in terms of 
correlation functions (e.g., in this journal,1). In zoology, it might be of interest to study how correlations in the 
behavior between the organisms comprising an ecosystem varies with environmental characteristics, such as 
rainfall. In epidemiology, correlation is o�en the basis for attempts to understand the causal drivers of changes 
in the spread of particular diseases (e.g., in this journal,2). In engineering, correlations between the variables 
characterizing a complex system, such as the temperature of di�erent components, might shed light on the prop-
erties of the system or help with troubleshooting. In economic theory, positive correlation between performance 
outcomes might signal competition3. In this journal4, complex �nancial systems have been studied in terms�of 
interaction mechanisms ultimately based on correlation.

It hardly seems necessary to motivate the importance of studying correlation structure across science. Yet, 
there has been a hugely in�uential approach to correlation in physics, with so far negligible impact in the rest of 
science. John Bell developed what is arguably the most sophisticated framework for correlations in physics, show-
ing how certain assumptions about the structure of causal relationships between two pairs of variables produce a 
distinctive signature on the observed correlations. In particular, certain natural assumptions about the causes of 
physical phenomena lead to the so-called Bell inequality. �e point of Bell’s analysis was to argue that, if using a 
causal analysis we can exclude any ’classical’ in�uences on any observed correlations, then particular correlation 
patterns could only be explained by something not classical in the physical nature of the corresponding systems 
- this has been the essential argument for how a Bell test can be used as evidence for the non-classical nature of 
quantum structure in the physical world. Bell’s work has inspired the exciting experiments conducted by Aspect, 
Clauser, and Zeilinger, whose importance has been recognized with the recent Nobel Prize in Physics (2022).

At this point, we have to o�er a disclaimer to our readers: our work is intended to be of general interest, 
concerning any situation where there is a need to understand the structure of correlations. However, the bulk 
of work concerning Bell’s framework has been conducted in physics. �erefore, much of the ensuing discussion 
inevitably borrows from corresponding work in physics and extends this work accordingly.

In physics, the derivation of the inequalities in a Bell experiment rests on the assumptions of realism, local-
ity and free choice, while any observed violations show that models insisting on all three assumptions run into 
contradictions with physical reality. Bell experiments are performed by subjecting two space-time separated com-
ponents of an entangled particle system to certain measurements (e.g. spin measurements). Note that di�erent 

��������

�w���‡�…�Š�•�‹�•�…�Š�‡�� ���‘�…�Š�•�…�Š�—�Ž�‡�� ���‹�–�–�‡�Ž�Š�‡�•�•�‡�•�á�� �y�{�y�•�v �
�‹�‡�é�‡�•�á�� �
�‡�”�•�ƒ�•�›�ä���x���‹�–�›�á�� ���•�‹�˜�‡�”�•�‹�–�›�� �‘�ˆ�� ���‘�•�†�‘�•�á�� ���‘�•�†�‘�• �����w����
�v�����á�� �����ä���y���•�•�–�‹�–�—�–�‡�� �ˆ�‘�”�� ���—�ƒ�•�–�—�•�� ���–�—�†�‹�‡�•�á�� ���Š�ƒ�’�•�ƒ�•�� ���•�‹�˜�‡�”�•�‹�–�›�á�� ���”�ƒ�•�‰�‡�á�� �����á�� �������ä���z���•�•�–�‹�–�—�–�‡�� �‘�ˆ�� ���—�…�Ž�‡�ƒ�”�� ���Š�›�•�‹�…�•��
���‘�Ž�‹�•�Š�� ���…�ƒ�†�‡�•�›�� �‘�ˆ�� ���…�‹�‡�•�…�‡�•�á�� �y�w�y�z�x ���”�ƒ�•�×�™�á�� ���‘�Ž�ƒ�•�†�ä���{���•�•�–�‹�–�—�–�‡�� �‘�ˆ�� ���’�’�Ž�‹�‡�†�� ���•�›�…�Š�‘�Ž�‘�‰�›�á�� �
�ƒ�‰�‹�‡�Ž�Ž�‘�•�‹�ƒ�•�� ���•�‹�˜�‡�”�•�‹�–�›�á��
�y�v�y�z�~ ���”�ƒ�•�×�™�á�����‘�Ž�ƒ�•�†�ä * �‡�•�ƒ�‹�Ž�ã���…�Š�”�‹�•�–�‘�’�Š�ä�‰�ƒ�Ž�Ž�—�•�;�™�ä�–�Š�•�ä�†�‡
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notions of non-locality exist, for example those based on information retrieval and local state discrimination5, 
whereas the perspective taken here is based on causal mechanisms. �e experimenters on each side choose the 
regimes x,�y freely from one of two possible spin directions. �e result of the two measurements are recorded as 
a and b, respectively. A time series of quadruplets (a,�b,�x,�y) results, from which a statistic � ��� � �� � and four 
expectation values � �� � �� �

�
� �� �� � ��� � �� � can be computed. For simplicity we use the compact notation �

� �� �� � ��� ��� � when we mean 
�

� �� �� � �� � � �� � � �.
�e combination of these four expectation values yields the four S-values

Note, here we follow the Clauser-Horne-Shimony-Holt (CHSH) approach6, as their variant of the original Bell 
inequalities are slightly simpler and, in any case, better suited to the present purposes. Either way, this provides 
us with a tool to make testable distinctions between di�erent causal models for a given dataset. Speci�cally, Bell’s 
seminal ideas lead to the conclusion that any realist local hidden variable model where experimenters can freely 
chose x,�y has to satisfy the following four inequalities

While the theoretical maximum value for the S-values is 4, an intuitive class of classical models leads to a 
maximum value of 2, whereas quantum mechanics predicts violations of that maximum, but only allows S-values 
up to the famous Tsirelson�bound of �

�
� ,7. Let us call the quantities from any of these equations S-values.

Depending on the experimental context and the causal model, violations of the Bell Inequalities�(5) have 
sharply contrasting meaning. In realist models for quantum physics, they may be interpreted as violations of free 
choice or as violations of Bell locality8,9, or even as indications of retrocausality10,11.

In general, it will always be a challenge in extending a tool developed in physics, to the study of systems out-
side physics12–14. �ere are two di�culties in extending Bell’s framework to the study of correlations outside phys-
ics. First, the assumptions of locality and free choice in Bell’s framework are very particular to physics. Beyond 
the question of whether microscopic physical systems have quantum structure or not, locality and free choice 
have extremely limited interest. However, this di�culty does not pose a serious problem in putative extensions, 
since it is straightforward to imagine how analogous assumptions could guide suitable causal analyses in di�erent 
situations. Amongst others, Pearl15–17 pioneered a formal methodology for doing so, aiming at the development 
of a theory of causal and counterfactual inference. Second, and perhaps more seriously, Bell’s framework involves 
two systems with two pairs of binary variables characterizing each system. �e fact that we have a pair of binary 
variable pairs limits applicability outside physics, at least insofar as the study of correlation is concerned. �is is 
because, in general, we are interested in the association between pairs of variables and, also, it is more practical 
to consider pairs. Outside the study of quantum mechanics, there are relatively few cases whereby a system is 
naturally characterized by a pair of variables, let alone binary ones. Indeed, existing applications of Bell inequali-
ties outside physics o�en involve somewhat arti�cial set-ups for how to arrange variables so that Bell tests are 
possible (e.g., in behavioral sciences18–20).

Any general statistical measure inevitably simpli�es situations, which are probably very complex. �e cor-
relation is a great example, insofar that the association between two variables is reduced to a single, linear index, 
regardless of any information about the causal processes linking the two variables. In seeking to apply Bell’s ideas 
outside physics, our aim is to develop an association index with some sensitivity to the causal structure relevant 
to two variables, but in a way which is as domain general as possible. �e key assumption is that it is possible 
to separate the relatedness between two variables into two distinct parts, a part due to signi�cant causes and a 
part due to incidental noise, and that the two parts can be distinguished in terms of the magnitude of variable 
change, at di�erent parts of the variable’s range. We will see shortly how this assumption can be developed to a 
quantitative, precise framework.

In the remainder of the paper, we discuss a concrete application of these ideas, based on associations between 
the price change of di�erent securities, in the S&P 500 index. �ere are three main reasons why we have chosen 
�nance as an area for a �rst application of our framework. First, there is an immediately available, large data 
set. In the S&P 500 index, the information to construct variables corresponding to price changes for di�erent 
securities within a temporal window is readily available: the S&P 500 o�ers 125,000 pairs of securities, against 
which we can test our new proposal for association, against standard correlation. Second, in �nance, correlations 
play an important role. Correlations between the price change of di�erent securities are key in creating optimal 
portfolios using Markowitz’s mean-variance model, while correlations between single securities and a broad 
market index enter the capital asset pricing model via the market beta and, from there, the valuation of companies 
via the discounted cash �ow model21–27. Understanding the generative processes leading to correlations in the 
stock market is clearly a hugely involved task28–37. So, a key objective is whether the use of S-values, instead of 
correlations, a�ords any advantages. Finally, there have been several proposals aimed at capturing association 
structure in more detail. It is important to note that, even though the models we will discuss have their origins 
in �nance research, they are general statistical models and can be applied in any area where there is a need for 
detailed understanding between variables.

(1)� � � � �� � �� � � �� � �� � � �� � �� � � �� � �� �

(2)� � � � �� � �� � � �� � �� � � �� � �� � � �� � �� �

(3)� � � � �� � �� � � �� � �� � � �� � �� � � �� � �� �

(4)� � � � � �� � �� � � �� � �� � � �� � �� � � �� � �� �

(5)�� � � � � ��� � � �� � � � � ��
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In what follows, we �rst describe how the S-test in physics can be translated to something interesting in other 
areas. As noted, most of the mathematical methods follow from the Bell literature in physics. However, we intend 
our conclusions and analytical tools to be applicable in any area where there is a need to understand association 
structure in some detail, with �nance being our chosen area of application presently.

�	�”�‘�•���’�Š�›�•�‹�…�•���–�‘���‘�–�Š�‡�”���†�‹�•�…�‹�’�Ž�‹�•�‡�•�ä In physics experiments, precise assumptions about the structure of 
the systems under study enable detailed predictions concerning the ensuing correlations. Outside physics, such 
detailed assumptions and predictions are not possible in general terms. Indeed, the precise causal origins of some 
observed correlations are likely to vary across di�erent areas of application. Nonetheless, a generic approach can 
be developed, by partitioning the relevant variable, for example in �nance, price change, into di�erent regimes, 
for example, into weak and strong parts. We propose that the di�erent regimes can be understood in terms of 
di�ering causal mechanisms, which allows a broad distinction between correlations due to signi�cant causes for 
two companies and incidental processes. It may appear too ambitious to seek to separate out correlations due to 
signi�cant causes versus incidental processes. However, the current practice of relying on just price correlations 
from historic time series data does not take into account any possible causal mechanisms responsible for the 
observed behaviour; indeed such mechanisms may change with time, as markets are subject to structural change 
and di�erent regimes may have been at work during the time period that is used to compile a database. Our aim 
is to show that substantial progress can be made with the above approach, utilizing technical tools from physics 
and the �eld of causal inference.

Speci�cally, in �nance, we propose a de�nition of the S-values by partitioning the observed �nancial time 
series into di�erent regimes. To this end, consider two securities A (for example, Apple Inc.) and B (for example, 
Broadcom Inc.) and a list of di�erent �nancial regimes (to be explained shortly) with respect to a security such 
that, on a given day, one and only one �nancial regime prevails. �e measurement outcomes are now generated 
by the simultaneous price changes in securities A,�B. In particular, the outcome will be � � �  if security A has 
increased in price over a given time period and � � �  if security B has increased in price over the same time 
period. Similarly, decreases in price are denoted by � � � �  and � � � �  , respectively.

For �nancial applications, the available history consists of public information and information that was pos-
sibly private initially and became public subsequently. Possible ways to determine �nancial regimes, by which 
the value of x,�y is de�ned, would be by using an exogenous time series or the prices of the securities themselves. 
�is allows partitioning the available data in a way that is analogous to the measurement settings in the standard 
Bell setup.

Restricting ourselves to �nancial price data only, an interesting choice of regimes is the distinction between 
weak and strong price change, whereby it is assumed that weak changes are due to incidental processes whereas 
strong changes are due to (ostensibly) shared, signi�cant causal factors. �ough not essential to the subsequent 
analysis, there are many ways to motivate these causal factors starting from known market mechanisms. For 
example, it is known that classical correlations tend to be higher during a market crash when investors may 
panic28,38–42. Under such circumstances, common causes driving correlations between many securities would 
be de-risking requirements and decreased collateral values.

To obtain a simple and symmetrical description, we separate large price changes from small changes by 
de�ning � � �  for each day in the time series when the price of security A has gone up or down by less than a 
�xed percentage � �  , and � � �  when the price of security A has changed by a larger amount. Days with � � �  
are called strong days for security A. Similarly � � � �� ��  is de�ned as a function of the price change in security 
B, over the same time period, using � �  as threshold to separate weak from strong days. We think it is a reason-
able intuition that strong price changes are due to signi�cant events in the market, possibly unique to the pair 
of stocks considered, while weak changes are due to residual or incidental market processes. Note, analogous 
approaches can be envisaged in any domain of application, that is, we think that in the case of any variable we 
can (fairly generically) identify large vs. small changes, and so adopt de�nitions analogous to the ones just above 
- or exogenous variables could be recruited to separate out measurement regimes in the variables of interest.

With these de�nitions, the four S-values can be computed from Eqs.�(1)–(4). Importantly, it is possible to 
derive variants of the Inequalities�(5), for particular causal models, as shown below. If the empirical data shows 
violations of these inequalities, such causal models can be excluded in line with the leitmotiv of the �eld of causal 
inference15–17. Note, in the physics literature, a discussion of Bell inequalities is usually accompanied by careful 
consideration of whether an observed violation of the inequalities is due to ’genuine’ contextuality, versus signal-
ling or direct in�uence (e.g.43). However, for the present purposes this distinction is irrelevant, because we aim at 
a general statistical technique capable of indicating a violation of certain causal mechanisms as described below.

�e quantities � � are de�ned as linear combinations of four conditional expectations, which can be inter-
preted as correlations between the outcomes a,�b under di�erent regimes x,�y. Out of these four S-values the � �
-value is the most interesting for us, because � �  can be interpreted as correlation when strong change in at least 
one part of the system occurs. �is can be seen directly from Eq.�(1), as all correlations with at least one strong 
change (i.e., the regimes �� � ��� ��  and 10) are added, while the contribution with weak change in both parts 
of the system (i.e. �� � ��  ) is subtracted. So, � � -values can be interpreted as a type of correlation (in the above 
speci�c sense), but where the contributions involving strong change on at least one part are separated from the 
contribution involving only weak parts.

We consider two ways to utilize S-values towards understanding the correlation between the variables of inter-
est, here security prices. In both cases, assumptions about the correlation structure can be tested by comparing 
empirically measured S-values against theoretical S-values, derived on the basis of speci�c model assumptions. 
First, because the S-value can always be empirically computed independently of a parametric distribution model, 
we can examine very general causal models characterizing the interdependence between two securities, provided 
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we can make a meaningful distinction between strong and weak change. Here we can derive speci�c bounds on 
possible S-values, which can be used to eliminate certain classes of models. In an application to �nance, as we 
will see, the bound of 2 may be broken by dependencies between two stocks, but other bounds are implied by 
certain generative models like the Factor Models44,45 and the bivariate Gaussian model46,47. In both cases, models 
can be given a speci�c parametric form.

Can we apply our framework to acquire additional insights into these models or develop simpli�ed tests of 
their applicability? Regarding Factor Models, we show that S-values computed conditionally on precisely known 
values of all contributing factors may not exceed 2. As this result holds for any arbitrary functional relation-
ship between stock price returns and the contributing factors, one important and surprising message is this: in 
cases where a linear factor model is invalidated by �nding conditional S-values above 2, then assuming a more 
complicated functional relationship for stock price change based on the same contributing factors will also 
be invalidated. Regarding the bivariate Gaussian distribution model, we show how S-values can be computed 
explicitly and how such values can exceed the classical limit of 2. Estimating S-values, as a function of classical 
correlation, the empirically observed S-value can be employed as a test of the adequacy of the Gaussian model. 
Overall, our approach brings together generative models of association with assumptions about the causal struc-
ture, allowing tests for both, in a seamless framework.

���‡�Ž�Ž���–�‡�•�–�•���ˆ�‘�”���‰�‡�•�‡�”�‹�…���…�ƒ�—�•�ƒ�Ž���•�‘�†�‡�Ž�•�ä A Bell analysis is underwritten by a causal network, encoding the 
assumptions of putative sources of in�uence between the two components of a system. In physics, with two 
binary questions for systems composed of two parts, it is straightforward to provide a corresponding causal 
network, consistent with the key assumptions of locality and free choice. In the �nance case, more care is needed 
since the causal network has to additionally re�ect the way assumptions about measurement regimes x,�y interact 
with measurement outcomes a,�b.

When the measurement regimes are categorized into a strong versus a weak price change, a natural choice for 
a simple causal model would be to postulate one unknown cause � �  for driving the magnitude of price change (i.e. 
x,�y) and a di�erent unknown cause � �  for driving direction (i.e. a,�b). � �  could be interpreted as a market volatil-
ity factor re�ecting general uncertainty, while � �  could be regarded as a measure of optimistic versus pessimistic 
market responses to new information. However, there is not a unique way in which even these two simple ideas 
can be translated into a causal model and Fig.�1 shows two variants of hypothetical causal mechanisms. Herein, 
� �  is responsible for determining whether a trading day is strong, with a large price change in either direction. 
Cause � �  is thus responsible for separating strong trading days from weak trading days (the latter re�ecting 
incidental correlation) and thus in�uences only x,�y directly. �e second cause � �  is responsible for determining 
price direction, i.e. whether stocks go up or down and therefore has direct in�uence on a,�b.

Figure�1.   Two competing causal models. On the le�-hand side two possible causal models for stock price 
co-movements are shown. Model (a) was inspired by the Bell experiments in quantum mechanics, while Model 
(b) is an extension of Model (a) with just one additional causal arrow. Both models may be proposed to describe 
stock price behavior in the regime of weak versus strong price changes. �e right hand side shows a heatmap of 
� � -values from daily closing price changes of S&P-500 stocks for the time period 4.5.2016 to 3.5.2019 grouped 
into 11 sectors according to the Global Industry Classi�cation Standard (GICS) and ordered by descending 
strength of classical correlation within each sector. An identical threshold of � � � � � � ��  was used for each 
pair of stocks. �e deep red indicates � � -values above two. �ose values falsify Model (a).
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How could we decide between Model (a) versus Model (b)? One may suspect that � �  also has an e�ect on 
price direction, in which case in Fig.�1 an arrow from � �  to � �  is needed and hence Model (b) is more appro-
priate. However, one may also argue that Model (a) is simpler and should thus be preferred. Interestingly, it is 
possible to test via the S-values whether the simpler model provides a feasible option, because the simple Model 
(a) mathematically implies a Bell bound of 2, as stated in the following proposition (see Supplementary infor-
mation for the proof).

Proposition 1 For the causal Model (a) in Fig.�1 the inequalities �� � � � �  have to hold for all � � �� � � � � � .

However, empirical values of � �  can be substantially above 2, so that Model (a) is readily falsi�ed as shown 
by the heatmap on the right-hand side of Fig.�1. �e heatmap of � � -values also illustrates the usefulness of the � �
-value to show the sectorial structure of the stock market. Below the diagonal, black dividing lines were added 
to show the industry sectors using the companies’ fundamental main operating business model.

In our application to the S &P 500, data for the � � -value immediately falsi�ed Model (a). In terms of examining 
di�erent causal models, generally each quantity � � � � � � � � � � �  provides a testable opportunity to falsify a speci�c 
causal model, but a violation of the bound of 2 can occur at most in one of the four quantities:

Proposition 2 For a given statistic �� ��� ��� �� ��  not more than one of the four Inequalities (5) can be violated.

See Supplementary information for the proof. Regarding causal Model (a) in Fig.�1 the violation �� � � � �  
therefore implies �� � � � �  for � � �� �� � .

Other, more complex causal mechanisms than Model (a), are not ruled out by the data. For example, a causal 
connection from � �  to � �  may be assumed, leading to Model (b) in Fig.�1. �is could be motivated in the �nancial 
area by considering that, for example, nervous and volatile markets may tend to interpret ambiguous news for 
stocks A,�B in a pessimistic way, leading to a decline of stock prices. Formally, this leads to a link between causes 
for the magnitude of change (i.e. � �  ) and causes for the direction of change (i.e. � �  as it determines a,�b and hence 
whether a price change is positive or negative). Despite the fact that Model (b) has just one causal arrow more 
than Model (a), Model (b) is fully general in the sense that, without further restrictions, any possible statistic for 
the four values a,�b,�x,�y can be generated from it, as the following proposition shows.

Proposition 3  Let ��  be an arbitrary joint probability distribution of the quadruplets (a,�b,�x,�y) and let P denote the 
joint probability distribution generated by Model (b) for those quadruplets. �en , Model (b) can be speci�ed in a 
manner that yields � � ��  . �is can be achieved by de�ning � �  appropriately and setting � � �� � �  , so one general 
cause su�ces to generate any arbitrary distribution �� .

�e proof of Proposition� 3 is given in Supplementary information. It shows that Model (b) achieves its gen-
erality essentially by having a causal connection from one unkown cause to all observed values a,�b,�x,�y and by 
allowing arbitrary probability distributions for the unkown cause. So, Model (b), in its general form, provides 
a generic class of models. Because of this generality, it cannot be applied directly. In the next section, we will 
therefore explore three pertinent special cases to restrict Model (b).

���‡�Ž�Ž���–�‡�•�–�•���ˆ�‘�” �•�’�‡�…�‹�¤�…���’�ƒ�”�ƒ�•�‡�–�”�‹�…���…�ƒ�—�•�ƒ�Ž���•�‘�†�‡�Ž�•
So far we have not identi�ed a causal model, which lends itself to an applicable description of the empirical data 
and/or application of more speci�c generative models. We want to achieve this by exploring speci�c parametric 
special cases of the generic Model (b). First, we start with a situation where the unknown causes have a very 
simple parametric expression through dichotomous or uniformly distributed values. Second, as another special 
case of Model (b), we consider Factor Models, i.e. descriptions of stock price returns through a linear combina-
tion of di�erent observable factors. �ird, we examine the bivariate Gaussian distribution model as a generative 
model, in which stock price change is driven by a fundamental dri� and a random overlay of volatility modelled 
by Brownian Motion.

1.	 A generating model with dichotomous causes. As outlined, we �rst consider the implications from allowing 
only simple parametric distributions for the causes in Model (b). As shown in the �rst part of the following 
Proposition�4, any distribution of quadruplets can be generated by a special case of Model (b), where we 
use only one dichotomous unknown cause and one uniformly distributed common error term driving the 
behavior of a and b. In particular, a causal graph equivalent to Model (b) can be speci�ed, where the causal 
arrows concerning weak vs. strong days (parameters x,�y expressing for example volatility) can be separated 
from the causal arrows for upward vs. downward price change (parameters a,�b expressing for example market 
direction), by the simple addition of a uniformly distributed common error term.

With Model (b) it is also easy to generate the full algebraically possible range of � � -values without being 
restricted by a bound, like the Tsirelson�bound in quantum mechanics. In fact, two separate dichotomous causes 
speci�ed by only one parameter are su�cient to achieve this, as shown in the second part of Proposition�4. We 
give an explicit corresponding parametrization in the proof of Proposition�4 in Supplementary information, 
which is amenable to further generalisations, and outlines a way by which Model (b) can be made practically 
useful as a parametric model for an observed statistic.
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Proposition 4 Assuming bivalued unknown causes in Model (b) in Fig.�1, the following holds true: 

1.	 For any arbitrary joint probability distribution ��  of the quadruplets (a,�b,�x,�y), identical bivalued causes � �  
and � �  can be de�ned such that the joint probability distribution generated by Model (b) equals ��  up to an 
independent, uniformly distributed error term common to a and b.

2.	 An explicit parametrization for two separate causes � �  and � �  with only one free parameter can be given such 
that the � � -value computed from Model (b) can attain every number in the interval ���� �� �.

To prove the second part of Proposition�4, we proceed by directly parameterizing the strength of the causal 
links in Model (b). Speci�cally, di�erent parameters concern the strength of the links representing signi�cant 
causes versus residual processes. Our approach allows us to compute � �  as a product � � � � �� � �� ��� � ���  . See 
the proof of Proposition�4 in Appendix A of the Supplementary information for a de�nition of the parameters 
�  and �  . Intuitively, parameter �  can be thought of as quanti�ng the strength of the link between the common 
causes � �  and � �  in Model (b) in Fig.�1, while parameter �  corresponds to the pattern of outcomes, i.e. the links 
between � �  and a,�b in that causal model.

�e model from the proof of Proposition�4 should be seen as an illustrative example. It is a compromise 
between a small number of parameters and su�cient �exibility. In this simple model, possible � � -values span the 
entire algebraic range ���� �� � , while the other quantities � � � � � � � �  vanish, but it can be extended to situations 
with non-zero � �  -, � �  - and � � -values by introducing additional free parameters. Despite its simplicity, the speci-
�ed model allows us to generate all theoretically possible � � -values, if the parameters �  and �  are unrestricted. 
Note, particular empirical domains of application might allow us to specialize the model to reduced ranges for 
� � �  , thereby restricting the possible range for � �  as well. In contrast to the prediction from quantum mechanics7, 
this approach generates no general Tsirelson bound for � � .

2.	 Factor Models. Factor Models aim to explain the returns of single stocks by one or more observable com-
mon factors. Such common factors may simply be the return of a broad market index, like the S &P 500, 
or more complex factors, such as the return of a diversi�ed portfolio of small stocks minus the return of a 
diversi�ed portfolio of large stocks, see44,45. Formally, a linear Factor Model assumes that the returns of two 
stocks � � � � �  are given by the relationships

Here, � � � � � � � � �  are common factors that are observable on any trading day, whereas � � � � �  and 
� �

� � � � � � � �
� � � �

� � � � � � � �
�  are constants. Di�erences (residuals) between the observed stock returns � � � � �  

and the linear predictions are denoted by � � � � �  and are assumed to be independent.
If the assumed linear relationship is unrealistic, the Factor Model can be generalized to

by using two arbitrary functions ��  , �� .
As Model (b) can generate any distribution of quadruplets, Factor Models can be seen as a special case of 

Model (b) for the purpose of analyzing S-values. However, Factor Models provide a more speci�c causal story, 
because Factor Models connect x and a, as well as y and b in a special way, as the former pair (x,�a) is derived 
from � �  only, while the latter pair (y,�b) is solely generated from � �  , as illustrated in the causal diagram in Fig.�2. 
Interestingly, Factor Models allow a Bell bound conditional on the common factors, as the following proposi-
tion shows.

Proposition 5 With given arbitrary functions �� � ��  , random variables � � � � � � � � �  (“factors“) and random variables 
� � � � �  (“residuals“), Eqs.�(8) and (9) de�ne two stock return processes � � � � �  , from which the variables a,�b,�x,�y 
can be computed.

Let us denote the four S-values computed conditionally on the values of the factors as � ���  . If the residuals are sto-
chastically independent, then we obtain

See Supplementary information for the proof. Importantly, the derivation of the Bell bound for the conditional 
S-values holds even in the case of a non-linear Factor Model and is independent of the number of factors used.

(6)� � �� � �
��

���

� �
� � � � � � �

(7)� � � � � �
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���

� �
� � � � � � �

(8)� � � ��
�
� � � � � � � � � � � � �

�

(9)� � � ��
�
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�e Bell bound in Proposition�5 only holds conditionally on all factor values � � �� � � � � � � � � � . An interesting 
conundrum arises: We have already seen that for many pairs of stocks the value of � �  as computed from the data 
exceeds the value of 2. So, how is it possible that when computing � � -values conditionalised on the factors F, all 
these conditional � � -values may not exceed 2? One possible answer is that the speci�c Factor Model is incorrect 
in most cases. However, there is another, subtler possibility. In fact, this analysis reveals instances of Simpson’s 
paradox. As we show with an illustrative example in Appendix�B, it is possible to have � �� � � �  conditional on 
di�erent factor values, but when computing � �  for all data, � � � �  , because

may hold.
Proposition�5 is a powerful result concerning the implications of applying a Factor Model to a particular pair 

of stock prices. It links Factor Models with our framework, via the conditionalisation of the S-values on speci�c 
values of F. Assume that we want to construct a speci�c Factor Model for two stocks and a single observable 
factor F, such as a general market index like the S&P 500. �en, if there exists an instance for the variable F in 
which � �� � � �  holds, we have to conclude that the considered Factor Model is invalid. Current practice con-
cerning Factor Models typically involves linear regression (and so an assumption of linear relationship between 
price indices and the single stocks), but Proposition�5 is not restricted in this way: Proposition�5 encompasses 
any functional relationship between the price indices and the additional variables F, so that � �� � � �  indicates 
that something is missing in any function linking single stock price returns to a particular factor F (in that the 
residuals from the corresponding Eqs.�(8) and (9) would not be independent). �is holds also true if more than 
one factor is used. An important implication is that if one does not have the right factors when setting up a linear 
model, then moving to non-linear models with complicated functional relationships would generally not help.

�e values in Eqs.�(8) and (9) have a continuous distribution, so that conditioning on speci�c single point 
values is not practical. To apply Proposition�5 with real data, the �rst step is to select appropriate intervals for 
the factors F, such that the measurement settings are stable across intervals, i.e. � ��� �� � � � �� � � �� � � � �� � � � . 
With a stable probability distribution for the measurement settings, i.e. constant P(xy|F) on a set of factor val-
ues, Proposition�5 holds, as shown in Appendix C of the Supplementary information. In practice, there would 
be a trade-o� between choosing small intervals, yielding constant probabilities versus intervals that contain a 
reasonably large number of data points.

For the present examples, we used three di�erent pairs of stocks and divided the range of value changes in 
the single factor S&P 500 into two intervals, distinguishing between days with positive returns of the S&P 500 
and days with negative returns, i.e. we look at � ��� �� � ��  versus � ��� �� � ��  . It can be seen, from the almost 

(10)� � ��
�

�

� ��� � �� �

Figure�2.   Factor Models. Panel (0) illustrates the Factor Model described in Eqs.�(8) and (9), where the factors 
F generate the stock price returns � �  and � �  from which x,�a and y,�b are derived. Residuals are not shown 
in the diagram and appear as noise terms in the equations. Panels (i), (ii) and (iii) illustrate empirical tests of 
the factor model. �ese panels are based on the daily price change of the general S&P-500 market index as 
the explaining factor for market price change during the time period 4.5.2016 to 3.5.2019. Each of the three 
panels shows the conditional probabilities � ��� ���  for the four regimes �� � ��� ��� ��� ��  for a di�erent pair of 
stocks. Again, a threshold of ��  is used to distinguish days with weak price change from days with strong price 
change. We compare the value of � ��� �� � ��  , i.e. the probability on days with negative returns in the S&P-500, 
against � ��� �� � ��  , i.e. the probability on days with positive returns in the S&P-500. Horizontal lines in the 
panels show equal probabilities. Panel�(i) shows the stock pair ES (Eversource Energy) and AEE (Ameren Corp) 
with conditional � � -values of � �� � �� � ����  and � �� � �� � ����  . Panel�(ii) shows the same analyses for the pair 
of stocks EQR (Equity Residential) and ESS (Essex Property Trust), while the righthand Panel�(iii) shows the 
analyses for the pair of stocks SNPS.O (Synopsys Inc.) and CDNS.O (Cadence Design Systems Inc.).
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horizontal lines in Fig.�2, that the assumption of measurement setting independence is approximately valid. For 
di�erent pairs of stocks we observe conditional � � -values above 2 both on the positive and the negative inter-
val. �is indicates a failure of the speci�c Factor Model for the observed price change of the two stocks, when 
assuming a coarse graining of the S&P 500 index by just distinguishing between positive and negative returns. 
�erefore, it is not possible to have a complete explanation of the observed (Bell) statistics of the two stocks 
under consideration, with this speci�c Factor Model, based on a two-interval coarsening of S &P 500. �at is, a 
Factor Model for these two stocks based on just whether S &P 500 was up or down on di�erent trading days fails.

In general, if the condition of measurement setting independence is ful�lled, i.e. constant conditional prob-
abilities � ��� ���  occur across di�erent ranges of factor values (see Proposition�7 in Appendix C of the Supple-
mentary information), the degree by which � �  exceeds 2 can be seen as a measure of the non-applicability of the 
Factor Model. While the above examples in Fig.�2 use a very rough coarse graining of the Factor, by partitioning 
the range of S&P 500 index values into just two intervals, a �ner partitioning is of course possible and could yield 
a stronger conclusion. However, ful�lling the condition of constant conditional probabilities � ��� ���  becomes 
harder, when a �ne partition with many sub-intervals is used. An important direction for future work is extend-
ing Proposition�7 to situations when the probabilities � ��� ���  vary across the chosen intervals. Also, note that 
such analyses can be easily extended by considering other variables for a Factor Model, e.g. as in multi Factor 
Models like the 3- or the 5-Factor Model by Fama and French44,45.

3.	 Gaussian Models. �e present approach can be utilized to examine the validity of di�erent generative models 
for associations between securities. Apart from Factor Models, a particularly in�uential one is the bivariate 
Gaussian model, which is frequently used in continuous time �nancial theory for pricing and hedging of 
derivative securities and for optimal consumption over time, see48–51.

�e Gaussian model can be expressed for two stocks as

with two correlated Brownian Motions � � � � �  , two positive numbers � � � � �  as price volatilities, and � � � � �  
as price dri�s. With the simpli�cation of assuming zero risk free interest rates and zero price dri�, three model 
parameters remain, � � � � �  and the correlation �  between the two Brownian Motions.

�e density function, for the joint distribution of the logarithmic returns of the two stocks over a short time 
interval

is given by

From this density function, the four expectation values that make up the S-value in Eqs. (1)–(4), can be 
computed, such as, for example:

If the thresholds � �  and � �  are taken as constant multiples of the volatilities � �  and � �  , fomulae for the S-values 
are possible that contain only the Gaussian correlation �  as a free parameter, see Supplementary information.

Proposition 6 If the price of two securities follows the bivariate Gaussian model in Eqs.�(11)–(12) and if the thresh-
olds that separate weak from strong days are given as � � � �� �  and � � � �� �  with positive constants � � �  , then the 
S-values can be computed via analytic expressions. It holds for example that

where �� � � � � �
� �

� � � �� � �� ��  denotes the incomplete gamma function and
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�e other expectation values ��� � �� � ��� � �� � ��� � ��  have analogous analytic expressions leading to an analytic formula 
for � �����

�  for all � � �� �� �� �  in the Gaussian model, as shown in Supplementary information.

Figure�3 illustrates � �����
�  as a function of Gaussian correlation �  , if the same multiple of volatility is chosen 

for the thresholds of the two securities. �e Gaussian model does allow strong levels of association between two 
securities and readily yields values � �����

�  above 2, however, it does not exhaust the full range of possible � � -values 
���� � � . In fact, � � -values that are possible under the Gaussian model lie substantially below 4 and may therefore 
not explain high empirical � � -values. If the empirically determined value � ���

�  is above the curves shown in 
Fig.�3, then we may conclude that the data would o�er a refutation of this model. Figure�3 illustrates the excess 
of empirical � � -values over � �����

�  for S&P-500 stocks with red colors. While the amount of information in this 
�gure is too much to make it readily applicable, it does illustrate that using the � � -value o�ers a simple test of the 
applicability of the Gaussian model, for any two stocks.

���‘�•�…�Ž�—�•�‹�‘�•���ƒ�•�† �†�‹�•�…�—�•�•�‹�‘�•
A key objective in most scienti�c domains is to understand the causal structures which give rise to observed 
correlations. For example, in �nance, what are the factors that drive risk and return between the components 
of �nancial portfolios? Finding asset allocations and risk diversi�cation strategies that lead to a smooth and 
balanced outcome under di�erent �nancial regimes is key for �nancial stability and economic prosperity. Study-
ing the association and mechanisms between joint price changes in �nancial instruments is therefore of high 
importance.

Our approach has been to explore an established framework from physics for linking assumptions about 
causal structure to correlations. �ere is a long history of cross-fertilization between physics and other disci-
plines. Regarding our chosen example in �nance, a notable application concerns the heat equation to the pricing 
and hedging of �nancial derivatives48. Quantum methods have also been applied to problems in social science, 
cognitive modelling, games and �nance2052–57.

Regarding correlations, Bell’s approach is the most in�uential framework for understanding the way particu-
lar causal models can be linked to observed correlations in nature. It is a framework and a general method for 
understanding the structure in the correlation between two components of a system, a�orded by an underly-
ing causal model58–60. However, its formulation does not depend on the laws of quantum mechanics and is in 
principle open to applications in any domain (concerning economics and �nance, see, for example,15–17,61–63).

Figure�3.   Gaussian Models. �e le�hand side shows the � �����
� -values computed via Monte Carlo simulation 

as functions of Gaussian correlation �  , with thresholds taken as alpha multiplied by the respective volatility 
(i.e. � � � �� �  and � � � �� �  , with �  chosen in the range from 1 to 3). �e righthand side shows a heatmap of 
the positive excess � � � ���

� � � �����
�  from daily closing price changes of S&P-500 stocks using the same time 

period, GICS sector classi�cation and ordering as in Fig.�1. For each pair of stocks, �  was computed by setting 
the threshold, that separates strong from weak days, to the stock’s daily volatility, as it was observed over the 
entire time period. Equation�(1) was used to compute � ���

�  from the time series of historic stock prices, while the 
� �����

� -value used was based on Monte Carlo simulations (as illustrated in Fig.�3 for positive values), with �  set to 
the historic correlation between the daily returns of the two stocks under consideration.
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�e main di�erence between the application of Bell’s framework in physics and applications in other areas is 
that in the former case it is employed as a test of macrorealistic models, whereas in applications on the macro-
scopic domain, such as �nance, realism is a given, so that violations of Bell bounds have to be interpreted in the 
terms of a putative underlying causal network. �is yields a fairly generic approach recognizing that correlations 
between two variables can occur because of shared causes or because of random �uctuations, where only the 
former is typically of interest. In �nance, the variables of interest would be the price of two securities, so that 
our approach essentially assumes a separation between correlations resulting from signi�cant shared causes 
from correlations assumed to be due to residual market processes. Such a separation can be realized using Bell’s 
framework.

�e partitioning of (price) data into di�erent regimes allows di�erent conclusions regarding the causal model 
of association in these regimes. �is opens the route to explore and possibly refute competing causal models 
from the available data. We o�ered a basic example: when x,�y are de�ned by the magnitude of price change, 
one of the two causal models in Fig.�1 can be readily excluded from observation on the basis of Proposition�1. 
�e remaining causal model from Fig.�1 is very general, but can be given a parameterization to allow a simple 
description of observed � � -values, as shown in Propositions�3 and �4. �ese methods are not speci�c to �nance 
and can be easily generalized to any domain.

�ere are many alternative ways to restrict Model (b), including by utilizing domain-speci�c theory. In 
�nance, two in�uential models are Factor Models and Gaussian Models, though note again that the applicability 
of these models is quite general (they are particular ways to model the association between variables). For Factor 
Models we have shown in Proposition�5 that conditional S-values are subject to the Bell bound, provided the 
residuals are stochastically independent. �is provides interesting testing possibilities in empirical data sets in 
which the measurement settings x,�y remain stable across chosen intervals of factor values. As the mathematical 
result does not require a linear relationship between factors and stock price returns and as it holds for any number 
of factors, Proposition�5 underlines the importance of choosing the right factors with independent residuals, 
when setting up a factor model. Proposition�5 thus o�ers potential for a very general test of proposals for Factor 
Models based on particular combinations of factors.

Regarding the widely used Gaussian model, Proposition�6 shows how the present framework can be employed 
so that limits on the � � -value can be used to probe the Gaussian distribution assumption. While Gaussian models 
are known to underestimate the probability of extreme events, the � � -value can be computed independently of 
the Gaussian assumption and, where empirical � � -values outside the range attainable by Gaussian models are 
found, the inappropriateness of the Gaussian assumption follows. �e present approach o�ers an alternative, 
simple way to test Gaussian models, which complements existing methods, such as, speci�cally for �nance64–66, 
and can be generalised to variants of the Gaussian model approach.

�e present paper aims to outline possible applications of Bell’s method as a general framework for linking 
causal assumptions to observed correlations. Even when it is desirable to restrict analyses to a single variable of 
primary interest, such as stock price, there is a rich range of possibilities one could employ, depending on the 
focus of interest. While in this paper only one regime was considered, the list of possible regimes can be readily 
extended. Following from our example in �nance, to study, for example, causal mechanisms of market crashes, an 
asymmetric de�nition, where x,�y are set to the value of zero only in the case of a large price decline could be used.

With the present advances in computational power and theoretical methods of machine learning, applications 
of data mining algorithms to��nance are o�en attempted. However, while the amount of data may seem large, 
the available time periods are sometimes short and the relevant environments may not be static. For example, in 
�nance, with ongoing changes in regulation, investor behavior, as well as �scal and monetary policy, the avail-
able time series data generally results from di�erent causal regimes. To �nd appropriate quantitative models for 
learning it may also be important to incorporate human knowledge regarding economic, political and market 
mechanisms into a machine learning approach.

Another consideration is that the present method can be generalised so that the regimes can be de�ned via 
additional variables, to take into account particular hypotheses for specifying the di�erent measurement regimes. 
In �nance, such variables might correspond to known economic, political, regulatory, and market mechanisms. 
�e important point is that, in specifying the underlying generative causal model, there would be many cases 
where di�erent models imply di�erent restrictions on the ensuing correlations, that can be tested using the pre-
sent approach. In particular, a Bell test may reveal when a certain formalisation of human knowledge is at odds 
with observed statistical facts. �e language of Bayesian networks and the causal model approach may thus help 
to build better models, based on statistical data and assumptions about putative causal mechanisms. Ultimately, 
more informative measures of association may be derived, by simple choices concerning the underlying causal 
mechanisms for the variables of interest.

Overall, we have shown how Bell’s framework in physics can be adapted to o�er a measure of association 
between variables in any domain, focused on a distinction between strong and weak changes. We explored vari-
ous causal models formalising an intuition of changes due to shared, substantial causes vs. incidental processes 
and illustrated various ways in which an initial causal model proposal could be re�ned. Additionally, we con-
sidered two well-known generative models in our application domain, based on factors driving market returns 
or on a bivariate Gaussian distribution, to describe co-movements in security prices. In both cases, we showed 
how our framework can provide simple tests for the validity of the chosen model in di�erent cases. �us, the � �
-value extends the concept of correlation both instrumentally and in terms of the underlying supporting theory.

���ƒ�–�ƒ���ƒ�˜�ƒ�‹�Ž�‹�„�‹�Ž�‹�–�›
�e data that support the �ndings of this study are available from www.​re�n​itiv.​com but restrictions apply to the 
availability of these data, which were used under license for the current study, and so are not publicly available. 

http://www.refinitiv.com
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Data are however available from the corresponding author upon reasonable request and with permission of 
re�nitiv .
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