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Abstract

The aim of this thesis is to identify statistical techniques which are appropriate for the 
analysis of software development metrics and to investigate how they might be useful 
to support quality management procedures.

The initial approach was to investigate the use of statistical techniques to identify 
consistent relationships between measures collected during the development and fault 
or change-proneness of the final product. No common relationships were identified 
between the datasets when module relationships were considered. Therefore, there is 
little hope of identifying any general relationships between module attributes and product 
quality attributes.

However, some techniques were good at identifying outlier/anomalous components 
irrespective of the particular attributes. For univariate outlier detection a modification 
of the boxplot technique was found to be useful. This is described in the document. 
For bi-variate outliers, scatterplots were found to be useful. This thesis describes how 
the scatterplot technique can be automated to objectively identify outliers. It describes 
a set of rules which were implemented into a prototype. The objective was to produce 
a technique which most consistently identified the anomalies that had been identified 
subjectively by an expert consultant.

The thesis describes how summary statistics can be useful at the project level. It 
identifies a sub-set of useful information to enable a project manager to control his/her 
project. A target value, where appropriate is suggested for each measurement. 
Monitoring is based on the principle that when an actual attribute value exceeds the 
target value then it is likely to be a potential problem in the development.

A survey highlighted that for automatic anomaly detection to be of any significant 
benefit to a project manager, some interpretation is required to identify the likely cause 
of the anomaly and its effect on the project. The thesis shows how the cause of an 
anomaly can be diagnosed with the help of a simple expert system which looks at a 
combination of attribute values for diagnosis.
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1. Introduction

The aim of this thesis is to identify statistical techniques which are appropriate for the 

analysis of software development metrics and to investigate how they might be used to 

support quality management procedures.

The author’s specific objectives originated from a European collaborative project called 

REQUEST. The part of REQUEST the author was involved in was the development 

of a Constructive QUality MOdel (COQUAMO). It was intended that COQUAMO 

would use measurements collected during the development to predict final product 

quality. The REQUEST project, and in particular, the COQUAMO model is described 

in section 1.1. The author was only involved in the monitoring mode of the model. Her 

initial objectives were to:

• Identify consistent/general relationships between software measurements 

collected during the development and fault or change-proneness of the 

product;

• Identify measurements and methods for detecting atypical software 

components;

• Construct stable, predictive models.

The initial approach was to investigate the use of statistical techniques required to meet 

the above objectives and to analyse software data sets to validate the proposed 

techniques. The author also had a requirement to use the statistical techniques to 

automate the use of the predictive models. As a result of the author’s initial work 

(section 3, "Preliminary Analysis") the view of the project goals changed. This altered 

the author’s goals to:

• identify methods to automate anomaly detection;

• set up an advice system to help diagnose problems, that is, automate the 

interpretation of the detected anomalies.
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Chapter 2 discusses in general why measurement of software attributes is important and 

how it can help project managers control their projects during development.

The REQUEST project team envisaged that project managers would wish to predict 

quality throughout the development of a product and to detect problems before the end 

of the project. In chapter 3, the author describes the investigations and analyses she 

undertook to identify consistent/general relationships and atypical values. This analysis 

revealed that the nature of software attribute data affects the use of classical statistical 

techniques and shows how some of the problems could be overcome.

Before the author could choose a statistical technique which automates the detection of 

atypical values, she investigated type of anomalies an experienced project manager 

would detect as anomalous. Chapter 4 describes a survey which the author carried to 

do this.

The results in Chapter 3 revealed no evidence that a statistical relationship exists 

between development measures taken during development and final product quality,(see 

chapter 3 and [1]). Therefore the REQUEST team decided to concentrate on the 

automatic detection of anomalies found during the development process in the 

monitoring mode of COQUAMO. The monitoring mode was intended to support the 

project manager at two different levels - project and component level assessment of 

project progress.

Chapter 5 describes the use of project-level summary information and the setting of 

targets to help project managers to control projects. The author suggests the type of 

information the project manager would find useful and sets some default targets values. 

Default target values are required because data will not always be available to generate 

the target value.

Component-based monitoring is described in chapter 6. The author was responsible for 

choosing an appropriate statistical technique to automate component-based anomaly 

detection. The technique chosen required some adaption and the chapter describes what 

the adaption was and why it was required. This chapter also describes the verification 

and validation process of the prototype and the results found.
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The need for an advice system was identified in the survey described in chapter 4. A 

statistical based anomaly detection only identifies atypical or anomalous values, it does 

not provide any indication of why the values were atypical. Chapter 7 shows how the 

use of an advice or simple expert system can help interpretation. The author was 

responsible for converting expert knowledge into an advice system. The chapter also 

describes the verification and validation process of the advice system and the results.

The datasets used for the preliminary analysis, the automation of the anomaly detection 

and the verification and validation process are described in section 1.3 of this chapter.

1.1 Overview of the REQUEST project

REQUEST was one of the ESPRIT Software Technology projects. Its name was derived 

from Reliability and Quality for European Software Technology. The aim of the 

REQUEST project was to provide improved and validated techniques for measuring and 

modelling software quality and reliability. This was to be supported by appropriate 

prototype tools. The project was concerned with the use of quantitative information and 

models which provide information to help project and quality management decision 

making and control.

It was organised into three sub-projects:

Sub-project 1 - Quality measurement, modelling and prediction; 

Sub-project 2 - Reliability measurement, modelling and prediction; 

Sub-project 3 - Data collection and storage.

The aim of Sub-project 1 was to produce a Constructive Quality Model (COQUAMO). 

Originally COQUAMO was assumed to be empirically based, that is, based on observed 

relationships between quality factors obtained in a product, and various quality indicators 

which are quantitative in nature. This implied the need to identify techniques which can 

reveal and formulate such relationships.

The reliability modelling work was concerned with developing reliability models which
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incorporate testing information. This involved devising new approaches to modelling 

the reliability of single and diverse N-version software systems. It included the 

modelling of ultra-high reliability systems capable of incorporating failure information 

of single version but taking into account fault-tolerant architectures.

The aim of sub-project 3 was to provide software data to allow the validation of models 

produced by the other two sub-projects. As part of the work of devising a database, the 

sub-project also produced data collection forms and manuals.

1.2 Overview of COQUAMO

The idea of COQUAMO, [2], was inspired by the Constructive Cost Model, COCOMO,

[3]. COCOMO predicts software effort using cost drivers and COQUAMO was 

intended to be a set of predictive models which would use quality drivers to predict the 

end-product quality. Conventially, software engineers seldom consider the issue of 

software quality achievement as part of their problem. This is partially due to the 

feeling that quality is achieved by controlling the production methods not the product 

itself. This has been reinforced by quality assurance development guidelines which 

identify good techniques and assess projects in terms of whether or not these techniques 

have been adhered to.

The aim of REQUEST was to link assessment to measurable features of the software 

as well as adherance to procedures. REQUEST was concerned with the problems of 

quantitative prediction and assessment. In particular, REQUEST was concerned with 

the means by which such predictions and evaluations may be used to assist software 

producers in initial project set-up and the process of product development throughout 

the software life cycle.

As part of the background to COQUAMO, the REQUEST project had to consider how 

software quality could be specified and measured. The existing quality models were 

based on the quality factor, criteria, metric model. This is a hierarchical model that 

defines a set of quality factors which are intended to characterise quality from the user’s 

viewpoint. The factors are broken down into quality criteria which are related to a set
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of measurable attributes called quality metrics. This approach was used by various 

research workers and their work is described in section 2.2 of this thesis. There are 

many limitations (identified in section 2.2) with this approach which makes its use in 

practice difficult.

Gilb [4] suggested an alternative approach to quality modelling where quality and 

resource requirements should be specified individually for any software system , not a 

general set of factors as suggested with the above approach. The attributes are not 

broken into quality criteria but into more and more specific attributes until they are 

directly measurable.

The REQUEST aim was to update and improve ideas on Quality Models. Their 

approach was to refine the McCall and Walter’s model [5] and use Gilb’s approach to 

quantifying quality.

The REQUEST team realised that the idea of predictive models which cover all phases 

of software development was not feasible since there was no evidence that a statistical 

relationship existed between end-product quality and software attributes collected during 

the development process. This implied that there were two different types of metrics, 

metrics related to final product qualities and metrics related to software production.

The team decided to divide the model into three modes which reflect the three stages 

of software development - planning, monitoring and assessment. The metrics related to 

final product quality are relevant at the planning and the assessment modes and the 

metrics related to the software production are relevant at the monitoring mode.

Planning

The planning mode was intended for use during the early stages of system planning and 

feasibility assessment of the quality levels planned. It is intended to:

• help the user identify and specify quality requirements;
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• predict final product qualities from the values of measures (quality 

drivers) available at the start of a project from plans and constraints.

The final product qualities (quality factors) were selected from various quality factors 

suggested in the literature [5], [6] and [7]. The quality factors which were selected and 

the selection process are described in [8] and [9]. The quality drivers, along with their 

function and origin, are described in [10].

The planning mode is the closest to the original idea of COQUAMO. The model for 

this mode (COQUAMO-1) is operational from the start of the project until high level 

design when the planning is complete.

Monitoring

The monitoring mode is intended to assist the project manager to monitor and control 

the development process, using quantitative measures (software attributes) that can be 

collected during development. Once the planning is complete and the end product 

qualities have been assessed as feasible, it is assumed that the planned development 

process will result in the achievement of the final product qualities. The monitoring 

system (COQUAMO-2) is intended to detect when there is a deviation from plan and 

provide help in the control of the development process. If there is a deviation from plan 

this implies that the end-product qualities may not be achieved if no action is taken.

COQUAMO-2 has two major components:

• A range of statistical techniques which will be used to identify unusual 

values. At the project level this is basically the use of summary 

information and deviations from set targets. The component level 

monitoring involves more sophisticated techniques;

• An advisory system which will provide some possible interpretations of 

the cause of the detected unusual values.
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COQUAMO-2 is active throughout the development period from the requirements phase 

until the product has been completed. The author’s research activities were concerned 

with this model only.

Assessment

The assessment mode is invoked near the end of the integration testing. It is intended 

to assist final product assessment in determining whether the product quality 

characteristics observed conform to those initially specified during the planning mode.

The set of models for this mode (COQUAMO-3) provide feedback to COQUAMO-1. 

These results will be of interest in decisions on product release and in planning support 

for the operational phase. This should also provide information to other projects to 

allow better estimation. The models used for reliability and usability are reliability 

growth models and are described in [11] and [12]. The COQUAMO-3 assessment can 

start when the software product exists in a sufficiently complete version to allow 

realistic operational testing.

1.3 Data Descriptions

Four datasets have been used to validate the statistical techniques investigated in this 

thesis for the analysis of software data.

1.3.1 Datasets 1 and 2

These two data sets were implementations of the same functional requirement of a large 

operating system and have the same descriptions. Dataset 1 consists of 27 modules and 

dataset 2 consists 40 modules. For each module eleven measures were collected.

(1) Machine code Instructions (MCI)

This is a count of the number of machine level instructions in the compiled
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version of the modules, in bytes, (code based metric)

(2) Lines of code (LOC)

This is a count of the number of lines of code in the module between the first 

BEGIN and the ENDMODULE lines. A line was included in this count if the 

first non-space character was not a comment character. Blank lines were not 

included, (code based metric)

(3) Fan-out (FO)

This is the number of other modules called by a module, (design based metric)

(4) Data Items (DI)

This is the number of external global static (i.e. common) data items accessed 

by a module, (design based metric)

(5) Parameters (PAR)

This is the number of parameters on the interface of a module, (design based 

metric)

(6) nl

This is the number of distinct operators appearing in a module. This metric and 

the next three metrics can be used in calculating Halstead’s Software Science 

metrics [13]. (code based metric)

(7) n2

This is the number of distinct operands appearing in a module, (code based

metric)

(8) Nl

This is the total number of all operators appearing in a module, (code based 

metric)

(9) N2

This is the total number of all operands appearing in a module, (code based
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module)

(10) McCabe’s V (V(G))

This is McCabe’s cyclomatic number which defines the complexity of a module 

in terms of its control structure and is represented by the maximum number of 

linearly independent paths through a module [14], (code based metric because 

collected at the coding stage, but could be derived from the design)

(11) Changes (CHG)

This is the number of changes made to a module , after the module was put 

under formal configuration control.

Some combinations of the basic metrics have been used:

n = nl + n2

N = Nl + N2

HE = nl*N2*N*log2(n)/2*n2

where HE is Halstead’s Effort metric, mental effort to produce a module, (code based 

metric)

When the metric names are shown with a preceding N (e.g. NN)it means that the metric 

has been normalised by dividing it by its size (lines of code).

1.3.2 Dataset 3

This data is from a large operating system and consists of 226 modules. For each 

module twelve measures were collected.

(1) Fan-in

This is the number of modules which call a specified module.
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(2)

This is the number of modules called by a specified module.

Fan-out

(3) Input parameters

The number of input parameters on a module interface.

(4) Output parameters

The number of output parameters on a module interface. When parameters are 

used as both input and output parameters they are included in both counts.

(5) Data reads

The number of data structures (not individual elements) the module reads from, 

but does not also write to.

(6) Data writes

The number of data structures the module writes to, but does not also read from.

(7) Data reads and writes

The number of data structures the module both reads from and writes to.

(8) Size (LEN)

Module size in lines of code, non-comment, non-blank lines in a module.

(9) Control flow (CF)

Module control flow measured in terms of the number of branches.

Notional branches were included so that IF-THEN-ELSE and IF-THEN-ELSE-IF 

were both counted as two branches. The number of branches for loops with a 

single control structure (i.e. FOR,WHILE, or UNTIL) was counted as two, and 

for loops with a dual control structure (i.e FOR and WHILE, or FOR and 

UNTIL) was counted as three. The compiler evaluated compound booleans 

lazily, so each AND and OR in a conditional statement or loop control was 

counted separately.
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(10) Module enhancements (CHNG)

The number of times a module was amended excluding changes for fault 

clearance. The information was obtained from formatted comments in each 

module which recorded each change during its development and subsequent 

evolution.

(11) Known errors (KE)

The number of faults corrected in the module.

This information was obtained from formatted comments in each module, 

recording each fault cleared during its development and subsequent maintenance.

(12) Subjective complexity

An assessment of the complexity of the module on a scale of 1 (very simple) to 

5 (very complex) provided by member of the development group.

1.3.3 Dataset 4

Two datasets was combined to form this dataset. They were:

• SCSI

• TCB

These are two subsystems of a real-time embedded software system. The data was 

collected by a manual inspection of the design documents, the print-out of the coded 

data and the subsequent error reports.

The data is made up of a number of procedures, seventeen in the SCSI dataset and 

thirty-four in the TCB dataset. For each of the procedures the following variables have 

been extracted (1 to 13) and calculations made (14-16):

(1) lines of code

page 19



(2) comments

(3) paths

(4) returns

(5) global (externally accessible) items

(6) instruction boxes

(7) fan-out

(8) number of entry points

(9) fan-in

(10) testing errors

(11) design errors (testing)

(12) coding errors (testing)

(13) specification errors (testing)

(14) errors per lines of code

(15) errors per instruction box

(16) lines of code per instruction box

In the SCSI dataset there are 3 modules for which there are no coding metrics. This 

is because the coding was altered after the initial design document as these procedures 

were found to be redundant. The latest available design documents were used, together 

with their complementary coding print outs and error reports.
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2. Use of Metrics in Control of Projects

Metrics are quantitative measures of software attributes. For example, lines of code is 

a metric for measuring size and hours is a metric for measuring effort. The use of 

measurement is important in most areas of work. The need for it can be summarised 

by the quote "you cannot control what you cannot measure", [15]. Measurement 

removes vagueness and helps to provide an objective and common basis of 

understanding.

Software engineering is no exception to this. The use of measurement is as important 

in this area as in any other. For example, everyone has their own opinion on what 

quality means. However, in every specification there is an implied requirement for a 

quality product. This requirement is difficult to achieve without a common view of the 

term. The attachment of quantitative measures to the specification would help in two 

ways:

• it identifies what the client means by ‘quality’;

• it allows testing of the product to confirm that the measure has been 

achieved.

Many high level management goals identify ‘improvement’ as one of their aims, for 

example, improvement in productivity or quality. You cannot judge whether 

improvement has occurred or not if an objective baseline does not exist with which to 

compare.

When relevant quantitative measures are available, they provide information to assist the 

monitoring and control of the production process. Measurement can help provide 

control of projects in different ways. For example: •

• measures can provide a common baseline. If quantitative measures are 

collected, along with the definitions and counting rules, they can be used 

as a baseline to compare future measurements with. This is particularly 

important for comparison among projects, for example, using similar past
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projects to help obtain planned or expected values for the current project.

measures can be incorporated into a management planning and 

monitoring activity where estimates of effort, timescale and quality are 

made part of the project plans. Progress can be monitored by comparing 

the actual values against the planned values. The planned values can be 

derived either from external targets or from estimates. The measurement 

process provides the information needed to assess whether externally set 

constraints are likely to be achieved and whether there are any potential 

problems occurring with the development process.

measures can highlight particular problem areas. Recording information 

about the nature and origin of a defect provides information to identify 

where major problems are occurring. Information about how defects are 

detected provides useful information about the efficiency of testing 

process.

2.1 Views of Quality

There are many different views of what is meant by ‘Quality’. Garvin [16] has 

described five different views of Quality which identify different meanings of quality. 

The five views are:

(1) Transcendent

This approach to quality comes from philosophy where quality is equated to 

innate excellence. It cannot be defined precisely and is felt rather than 

measured. This type of quality can only be recognised through experience and 

a person can only recognise the presence or absence of it.

(2) Product-based

This approach comes from economics where quality is related to the content of 

the product. This implies that quality is an inherent characteristic and that higher 

quality leads to higher cost. This type of quality can be measured objectively

page 22



although an individual’s preference for the different product attributes is 

subjective.

(3) User-based

This approach depends on the assumptions as to what the user wants. It is 

defined as "fitness for purpose". The problem with this type of quality is 

differentiating between product attributes which represent quality and those 

which just increase customer satisfaction. This quality view is external to the 

producing organisation.

(4) Manufacturing-based

This approach of quality is defined as "conformance to specification". Quality 

from this viewpoint means meeting the specification precisely and first time. 

This view is internal to the organisation where cost reduction is achieved by 

minimising specification deviations.

(5) Value-based

This approach is a combination of User-based and Manufacturing-based

viewpoints. This viewpoint of Quality means providing what the customer wants 

at an acceptable price and conformance to specification at an acceptable cost.

In the software industry, the user view, the product view, the manufacturing view and 

the value-based view are assumed to apply.

The user view of quality is based on an evaluation of the product in the context of the 

task it is intended to perform and a product is viewed as a quality product if it meets 

the users requirements. This view should be stated explicitly in the requirements 

specification. Quality models attempt to map the user view to the product view by 

relating external quality characteristics to internal product measures.

The manufacturing view regards a quality product as one that is constructed "right first 

time" and therefore minimises the rework costs during development and after delivery. 

This view should be covered in the technical specification which directly converts the 

requirements specification into how it can be produced. Initially these views of quality
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should not be in conflict. However, when the user requests changes to the requirements 

this results in the user’s requirement being in conflict with the producer’s goal of 

minimising work. Under these circumstances, the value-based view becomes important. 

This view considers the trade-off between cost and quality and a decision has to be 

made as to what the user is prepared to pay for. Once this has been establish then a 

cost can be matched to it in order to reduce the conflict.

2.2 Background to Software Quality Modelling

In the 1970’s, the approach to modelling software quality was to identify characteristics 

of quality which were consistent with a user’s view of a quality software product. 

These quality components are called quality factors and should contribute to the user’s 

view of the quality of the software product. These quality factors are then broken down 

in lower level components called quality criteria. The quality criteria are consistent with 

a system developer’s view of quality.

The management of quality requires the ability to objectively measure quality therefore, 

the quality criteria are related to a set of measurable attributes of the software called 

quality metrics.

This approach is called the quality factor, quality criteria, quality metric model. It was 

first put forward by Boehm et al [6] at TRW. Then McCall, Richards and Walters [5] 

standardised the terminology and the model. More recently Bowen, Wigle and Tsai [7] 

have added more quality factors. The additional quality factors have resulted in more 

quality criteria being added. The quality factors identified by the three sets of research 

workers are shown in Figure 2.1.
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Boehm et al McCall et al Bowen et al
Efficiency Efficiency Efficiency
Reliability Reliability Reliability
Human Engineering Usability Usability
Modifiability Flexibility Expandability
Portability Portability Portability
Testability Testability Verifiability
Understandability Reusability Reusability

Maintainability Maintainability
Interoperability Interoperability
Correctness Correctness
Integrity Integrity

Flexibility
Survivability

Figure 2.1 Software Quality Factors

There are a number of problems with the factor, criteria, metric model:

The natures of the factors, criteria and metrics are very different for different 

qualities. The factors are a mixture of general, specialist system and software 

development process factors. The criteria are a mixture of more detailed 

descriptions of the quality factor, functional features and development process 

features. The metrics are a mixture of genuine metrics, checklists and production 

standards.

There are overlaps between the different quality factors.

There is no clear indication of the trade-off relationships between the factors (e.g 

efficiency against maintainability).

There is no explicit relationships between criteria, metrics and the life-cycle.

There is no objective rationale for including, or excluding, a particular quality 

factor.

The quality factors are not defined in measurable terms so validation of any 

relationship between quality factor and quality metrics is difficult.
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Gilb [4] suggests an alternative approach to modelling software quality. His view is that 

of a system user and he aims to provide an agreed statement of quality attributes at the 

start of production which can be validated directly in the final product.

Gilb suggests that quality and resource requirements should be specified individually for 

any software system and that the specification process should include an indication of 

the relative priority of the specified attributes. The attributes are broken down into more 

specific attributes and they are further broken down during their specification until the 

attribute can be measured directly.

The REQUEST approach was aimed at the software producer and attempted to synthesis 

the work of Gilb and McCall et al. Since there was no obvious link between the 

different level of the system it was decided to work at two different levels - project and 

component.

Another approach to quality modelling is Quality Factor Deployment (QFD), [17,18]. 

QFD is a structured procedure which combines the customer requirements and the 

design requirements/technical characteristics required to meet the customer requirements. 

It displays them in the form of a matrix which ensures that the customer requirements 

are preserved throughout the design process and the design requirements are clearly 

linked to them. This graphical display highlights the customer requirements which are 

not being met and the design requirements which do not address any customer 

requirements.

A quantifiable measure, which represents the target value, is attached to each design 

requirement and must be understandable and relevant to the customer. The QFD matrix 

requires the strength of the relationship between the customer requirement (the WHAT) 

and the design requirement (the HOW) to be identified and the relationship between the 

design requirements to be identified. This helps to identify any potential problem areas.

The QFD procedure also requires cross-functional team participation at all stages of 

planning. This reduces the need for rework due to a lack of communication and 

understanding. The QFD can be extended to a sequence of matrices where each level 

of matrix uses the HOWs selected from the previous level to represent the WHATs in
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the current level.

Gilb suggested a similar approach to QFD whereby quality requirements were related 

to the software engineering techniques intended to implement them. This approach was 

used by Walker and Kitchenham [59] to develop a system for assessing the feasibility 

of quality requirements. These ideas were later automated and used to provide support 

for COQUAMO-1.

2.3 Basis of Thesis

The work in this thesis was concerned with the automation of the work by Kitchenham 

and Walker [19]. They used the approach to monitoring and control of projects first 

suggested by Doerflinger and Basili, [20], Doerflinger and Basili compared a set of 

measurements collected at several stages (starting at the coding stage) in the 

development process with baseline values. The baselines were obtained by calculating 

the average value and standard deviation of each of the measurements taken from a 

group of similar past projects. The actual measurement value was considered abnormal 

if the value was greater than or less than one standard deviation away from the group 

average. Basili later extended this work to included an expert system approach to 

interpret the measurements [21],

Kitchenham and Walker extended Doerflinger and Basili’s original work by extending 

the scope of monitoring process. They covered project phases from requirements 

specification to integration stage. They also derived the baselines using robust statistical 

analyses rather than the classical summary statistics. They felt this was more accurate 

for software data. Kitchenham and Walker also suggested the use of component-based 

monitoring as well as project-based monitoring which allows the monitoring of a project 

even in the absence of similar past projects.

One of the major results of Kitchenham and Walker work was that they highlighted 

additional problems with anomaly detection which have to be considered. Their work 

suggests that the same value can have a variety of different meanings. For example a 

low fault rate could mean high quality or poor testing.
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Huff et al, [22], also suggested the use of quantitative information to monitor the 

development of a product. Their idea was based on the use of quantitative models 

formulated as a set of equations whose variables describe a particular software 

development activity. Again monitoring was performed against expected values derived 

from the models and management action was required if the actual measures deviated 

from plans. The primary goal was to provide feedback on a particular software activity 

during the development process. Quantitative models support all phases of project 

management and are constructed as part of the detailed planning. The input variables 

for the equations are usually based on expert opinion estimates or values obtained from 

previous similar projects.

2.4 Latest Research in Area

This section discusses the latest research results in software metrics for project control. 

Ramsey and Basili [21] evaluated the use of expert systems in software engineering 

management. They looked at four different prototype expert systems which, given 

values of identified metrics, provided an interpretation to explain abnormal combination 

of values. Ramsey and Basili found that the most complete and accurate solutions were 

from using a bottom-up approach to knowledge acquisition. This approach is 

application specific as opposed to the more general top-down approach. They also 

found that rule-based expert systems were better than frame-based since frame-based 

systems often missed interpretations because of incorrect relationships between the 

metrics. The interpretation system described in chapter 7 is a rule-based system which 

uses the bottom-up approach.

Ramsey and Basili used two experts to obtain their knowledge for the systems and found 

that the required knowledge was not yet well understood. The experts often disagreed 

on the interpretations and the relationships between the metrics. This confirms what was 

found by the survey described in chapter 4.

The work on quality since the end of the thesis appears to be concentrating on anomaly 

detection and the use of classification instead of complex predictive equations. The use 

of simple non-parametric techniques is increasing but often used in conjunction with the
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complex statistical techniques.

Selby and Porter [23] investigated the use of decision trees to identify modules which 

had high development effort or faults. A ‘high’ value was defined to be one which was 

in the upper quartile using past data. They were concerned with the feasibility of 

automatic generation of a decision tree was and whether such trees could be both simple 

and accurate enough to deal with the software resource analysis problem, especially 

when different amounts of data are available to generate the trees. Selby and Porter 

found that the decision trees correctly identified 79.3% of the software modules that had 

either high development effort or faults.

Munson and Khoshgoftaar [24] used principal components to obtain uncorrelated metrics 

and then applied discriminant analysis to classify the programs as fault-prone and not 

fault-prone. They divided the data into two and randomly selected 260 programs to 

develop the model, with the remaining 160 used to validate the model. The number of 

changes were classified into two groups of 0 or 1 change and 10 or more changes 

(programs with 2-9 changes were excluded from the investigation). At the 10% level 

of significance the procedure identified 75% of one type of program correctly and 62% 

of the other type. They emphasised the need for accurate and well-defined data 

collection.

Briand, Basili and Hetmanski [25,26] have developed models for identifying high risk 

software components which require extra testing/verification effort. They compared 

logistic regression, classification trees and optimised set reduction (OSR). OSR is based 

on machine learning principles and univariate statistics. It uses logical expressions to 

represent patterns in a data set. The validation indicated that OSR was more accurate 

than either logistic regression or classification trees. In their environment, Briand, Basili 

and Hetmanski found that it was a good alternative to multivariate logistic regression. 

They also thought that classification trees might be too simplistic for modelling high risk 

software components.

Selby and Basili [27] used the concept of coupling and strength to characterise the 

structure of a software system. They calculated a ‘coupling/strength’ ratio for a cluster 

of routines within a subsystem. Strength is the amount of interaction within a software
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component and coupling is the amount of interaction between software components of 

a system. The cluster were joined bottom-up, that is the components with the lowest 

ratio were joined first. Selby and Basili found that the routines with the lowest 

coupling/strength ratios had 7 times fewer errors per thousand lines of code (KLOC) 

than the routines with the highest ratio values. The errors were also 21.7 times less 

costly to fix. They also found that subsystems with low ratio values had routines with 

4.8 times fewer errors per KLOC than subsystems with high ratio values.

Agresli and Evanco [28] also found coupling had a significant effect on software defects 

along with information flow. They used multivariate regression to predict software 

defects. However, they had problems with multicollinearity, i.e. correlation between the 

independent or explanatory variables in the equation.

Non-parametric techniques are also being used to evaluate software metrics. Courtney 

and Gustafson [29] used non-parametric techniques to highlight the problem with the 

‘shotgun’ approach to evaluating software measures. The approach involves trying 

variables until a significant Pearson’s correlation coefficient is found. No initial 

hypothesis is stated. They show that a large number of non-independent variables 

(multicollinearity) and the limited amount of data available make the chance of finding 

an accidental relationship high.

Courtney and Gustafson used simulation to highlight the problems of the shotgun 

approach. They found that although the probability of a Type 1 error (finding a 

significant relationship when one does not really exist) was fixed at 0.05, it was 

significantly larger than 0.05 when Pearson’s r coefficient was used. They compared 

Pearson’s r with Spearman’s p and Kendall’s Tau. They do emphasise that a true 

shotgun approach is unlikely to be applied in practice and intend to repeat the 

experiment with an actual data set. They emphasised the need for more research in 

software measures and thought the use of non-parametric techniques was important in 

validation.

Schneidewind [30] used the non-parametric techniques of rank correlation and 

contingency tables to evaluate metrics against a validation criterion. The validation 

approach was user-based and consisted of six mathematically defined criteria to relate
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a software attribute to software quality. He identified a validated metric as "one whose 

values have been shown to be statistically associated with corresponding values". He 

used the rank correlation coefficient to test for consistency and the contingency tables 

to test for correct and incorrect classifications. He also emphasised that non-parametric 

techniques played an important part in evaluating metrics.

Khoshgoftaar et al [31] investigated new estimation procedures. They described two 

new estimation procedures and compared the performance in modelling software quality 

in terms of the predictive quality and the quality of fit with least squares regression (LS) 

and least absolute value (LAV) techniques. The two new estimation techniques were 

relative least squares (RLS) and Minimum Relative Error (MRE). They used the same 

data that has been used for the analysis described in chapter 3. They confirmed the 

problem of predicting quality and the need to establish baselines.

Khoshgoftaar et al found that RLS and MRE appeared to have a better predictive quality 

and MRE produced the best line fit although LAV performed fairly well when outliers 

were present. They stated that the mis-use of complex statistical procedures may lead 

to the use of the wrong model for project management and confirmed that least squares 

did not perform well when the normality assumptions are not valid.

The assessment of quality using metrics has also been applied to Object-Oriented 

language programs. Henry and Lattanzi [32] have been investigating whether systems 

written in object-oriented languages were more maintainable than procedural languages 

and whether they promoted reuse. The study found that the object-oriented systems 

were reused more often and better reused. Henry and Lattanzi have investigated a suite 

of metrics for object-oriented language systems (Chidamber-Kemerer). Currently they 

are investigating the use of quantitative measures to decide when to reuse a component 

and are developing a tool for collection of these measures. Analysis has shown that use 

of a combination of metric values can identify problems. They emphasise the lack of 

object-oriented metrics available for controlling software quality and cost.

Rising [33] evaluated an Information Hiding metric. She compared the ranking of the 

modules in three different programs with a subjective information hiding value ranking 

made by the relevant expert for each program. Using Spearman’s p she found a strong
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relationship.

She also investigated whether there was any significant relationship between the 

information hiding metric and the level of change in a module. Although her case study 

revealed no correlation, the Mann-Whitney and Chi-squared tests indicated that the 

metric could identify the modules which were likely to have ‘significant’ changes.

Brooks [34] identified the need for a well-defined, repeatable and appropriate software 

process to collect and assess reliability, maintainability and cost with Object-Oriented 

design.

Some work has been done as a direct result of the REQUEST work. Anderson [35] 

showed how to use the metrics to establish baselines to allow the metric values obtained 

in future projects to be interpreted. He described how the analysis of the first data set 

identified some major problems with the project.

He collected both product and process measures from high level design through to the 

coding stages of the development process, including information from testing, 

inspections and documentation. From the comparison of planned and actual effort he 

found that 20% of the tasks were unplanned which caused an overrun of 30% of the 

total cost. Also, the tasks which were planned had a 22% overrun. Further 

investigation allowed him to establish a strategy to reduce the uncertainty of future 

effort estimates in the short term. This was:

• planned effort for small or large tasks must be carefully reviewed to ensure that 

no gross under-estimations have been made;

• increase estimates by 5-10% for average or very large tasks to cover any slight 

under-estimations that occur.

He also showed how to create a basis for changing effort allocation throughout a future 

project when early phases show an overrun. This can be done by looking at the effort 

ratios between the different phases.
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The ESPRIT research project MERMAID promotes and encourages the use of locally 

defined models to predict cost since the models are likely to be context dependent. 

They have confirmed the results of REQUEST that globally defined models which work 

in a variety of environments are unlikely to deliver accurate estimates. The statistical 

techniques which were investigated and found useful in the REQUEST project have 

been incorporated in the MERMAID statistical package. The use of non-parametric 

techniques has also been advocated in current textbooks (e.g. Fenton’s book [36]). The 

interpretation system described in chapter 7 is currently being used in the SQUID 

research project.

In conclusion, the work since the thesis appears to be concentrating on the detection of 

unusual components. There is still a debate about whether intensive statistical analysis 

using sophisticated tools is better than simple non-parametric techniques. There seems 

to be a case for both, starting with the simple techniques and then, if necessary, applying 

the relevant sophisticated techniques.

There is still a major problem in moving between the different levels of the system (i.e. 

from component to system). Most of the current work on metric validation is being 

done at the module level, using fault counts as a surrogate for reliability and number of 

changes for maintainability. There appears to be no evidence of any research addressing 

the problem of how to move between the levels. In fact, there has even been a step 

back in the standards arena, ISO 9126 is promoting the McCall et al’s principle of set 

number of general factors with a decomposition despite the REQUEST criticisms of this 

approach. The ISO standard identifies six factors but does not suggest how these factors 

can be measured directly.

2.5 Use of Statistics in Analysis of Software Data

Statistics is a tool to summarise raw data into usable information. There are several 

ways it can do this. For example: •

• it provides techniques for collecting, analysing and drawing conclusions 

from data. This aspect of statistics is used by investigators who attempt
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to draw general conclusions from samples or planned experiments;

• it provides a monitoring mechanism for quality control, e.g. in assembly 

line production;

• it is a succinct means of presenting information. Many news items 

present their information in terms of statistics, e.g. inflation increased by 

3%.

Basic statistical concepts assist in promoting clear thinking about a problem, provide 

some guidance to the conditions that a problem solution must satisfy and enable an 

analyst to draw conclusions that could be difficult to obtain by any other way.

Statistics provides data summaries in two main forms - numerical and graphical. 

Graphical representation is very useful for:

• summarising data;

• providing a simple representation of the results obtained from a more 

detailed analysis;

• identifying trends or features in a preliminary analysis of the data prior 

to more formal analysis.

Numerical techniques can serve as objective yardsticks against which the informal 

conclusions, based on a visual assessment of the information contained in the graphical 

displays, can be evaluated. They can also provide a more detailed understanding of data 

by providing more information than can be gained from graphics.

In the software development area, project managers often ‘sense’ whether the project is 

running well or not. From experience, they may have some idea of what characteristics 

of the product are related and which are the most useful for assessing project progress. 

However, little evidence exists as to how to quantify the expert’s intuition. Statistics 

is useful in the field of software engineering as a means of analysing quantitative
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information about what is happening during development and identifying when 

something goes wrong.

Like data collection, statistics is likely to be more useful to project managers if it can 

be automated. However, statistics cannot be used in an intellectual vacuum. The 

requirements of the investigation must be specified before any analysis can be 

undertaken. In particular, the hypothesis under test or the relationship being investigated 

must be decided before any statistical analysis can confirm or reject them. For example, 

if a relationship between size and the number of errors is investigated, the statistical 

technique of correlation may be used to confirm or reject the existence of a relationship, 

but it will not identify the correct functional form of the relationship. Selection of the 

‘correct’ statistical technique, therefore, implies that the analyst must understand what 

information is needed from the data.

The choice of which techniques to use in which circumstance is well-defined in certain 

fields of use. For example, in the agricultural area, the techniques are well-known and 

have been used with success for many years. The underlying assumptions of the 

techniques are known to be approximately valid. In general, these techniques are 

standard parametric techniques that are based on the assumption that the data is drawn 

from a Gaussian/Normal distribution, i. e. the data is symmetrical, possess a constant 

variance and contains a predeterminable number of atypical values. In the software 

engineering area, the appropriate techniques are not known: in particular, the assumption 

of a Gaussian data distribution is not necessarily valid.

This highlights the importance of the use of non-parametric techniques in the software 

engineering area. Non-parametric techniques, [37], make no assumptions about the 

underlying distribution of the data. They are usually ‘pessimistic’ techniques. There 

is added confidence that any relationships which these techniques identify are genuine 

but they can fail to locate a genuine, but weak, relationship.

Robust techniques, [38], can also be useful since they tend to be insensitive to deviations 

from the assumptions of the Gaussian distribution and often can be used as an 

alternative to the classical techniques. Using classical techniques inappropriately can 

lead to misleading results, therefore the alternative robust and non-parametric techniques
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should be used wherever there is any doubt as to the validity of the classical techniques.

This thesis describes how statistics can be used in software engineering and, in 

particular, concentrates on the use of statistics in the automation of Kitchenham and 

Walker’s work on monitoring and control of projects.
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3. Preliminary Analysis

This chapter discusses the type of statistical techniques that were required to formulate, 

evaluate and use the proposed REQUEST model COQUAMO. Statistical techniques are 

evaluated in terms of the probable nature and mode of use of COQUAMO, the 

requirements for model and attribute validation, and the particular problems of software 

data. The author’s requirements were provided by the REQUEST project.

The work in this chapter reflects the project team’s view of the COQUAMO model 

when the author did the work. At that time the monitoring mode of the COQUAMO 

model (referred to as COQUAMO-2) was viewed as one (or a series of) predictive 

equations. It was intended to use the attribute values collected during development of 

a product to predict the final quality of the product. The result of the work reported in 

the chapter was one of the reasons why the approach to the monitoring mode was 

changed.

3.1 Aims of Analyses and Implications for Statistical Techniques

In order to identify appropriate statistical techniques, the REQUEST project had to 

identify the analysis requirements both for the project research workers and for the 

intended users of COQUAMO.

The research workers required techniques to assist with the formulation and validation 

of COQUAMO. The process of formulation of COQUAMO involved:

• identifying trends and abnormalities in quality attributes that may be 

indicative of potential quality problems;

• identifying relationships between quality attributes and final product 

quality (in terms of quality factors; •

• constructing stable predictive models to incorporate any identified 

relationships.
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The process of validating COQUAMO involved:

• establishing the generality of any identified relationships with respect to 

different environments;

• performing formal evaluation studies to verify particular predictive

models.

It was intended that users of COQUAMO would need statistical techniques to calibrate 

COQUAMO to their own environment. This would have involved:

• techniques to re-estimate the parameters of any predictive model;

• techniques to identify sections of data which should be used in any re-

estimation (i.e to select similar projects from a database).

The author’s initial requirements were to identify statistical methods that could be used:

1. To identify consistent/general relationships;

2. To identify components with atypical values i.e potential ‘anomalies’;

3. To construct stable, predictive models.

However, as well as the above requirements an underlying important requirement for the 

author was to investigate which statistical techniques were valid for analysing software 

data. The type of the statistical techniques which support the author’s aims are 

discussed below.

3.1.1 Identification of Relationships

In theory there are two types of general relationships that can be used in the formulation 

of any automatic system of the COQUAMO model - algorithmic relationships and
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definition of subgroups with rules for assigning objects to the groups. COQUAMO 

required a method of formulating relationships between measurements taken during 

development and final product quality. This suggests correlation and regression 

techniques when algorithmic relationships are expected, and classification and 

discriminant analysis when assignment to groups is expected. Discriminant analysis is 

a technique used to split a large group of data into smaller groups on the basis of certain 

characteristics.

Algorithmic relationships are formulated as equations. For example, number of errors 

= module size/lOO. To identify this type of relationship the usual statistical techniques

are:

visually: scatter plots(two dimensions only);

and

numerically: regression and correlations.

An example of a relationship which requires assigning ungrouped data to groups is:

Module Group Assignment Criteria

Expected errors per module module size

0 <20

1 21<50

2 51<100

This type of procedure is likely to depend on classification or discriminant analysis.

It may also be important to identify relationships between the attribute measurements 

collected during development. If several attributes are very strongly correlated among 

themselves, it is likely that any predictive equation containing all of them would be 

unstable. Thus, it may be important to identify the underlying dimensionality of the 

data, and either select a subset of the original attributes, or identify a series of 

independent linear combinations, which can then be included safely in a predictive 

equation. This suggests some form of principal component analysis would be useful 

since it is a technique which transforms a multivariate dataset into a set of new variables
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which are linear functions of the original variables and independent of each other.

3.1.2 Identification of Potential Anomalies

It is possible to use measurements collected during development as anomaly detectors 

(i.e indicators of unusual or atypical events or objects) to allow the software 

development process to be monitored [20] and [39]. In order to identify anomalies, 

techniques are required which will locate anomalous components among a group of 

similar components, (e.g. anomalous modules in a system or sub-system), or identify an 

attribute value as outside "normal" ranges compared with the values obtained for other 

similar products.

An example of the first type would be to identify particularly error-prone modules by 

looking at the error rate per module for a group of modules. An example of the second 

type would be to identify the testing effort used to produce a product of given size and 

application type as unusually large or small compared to other similar products.

In the first case a relationship between module size and number of errors might be 

established and analysis of residuals used to identify anomalous modules. In the second 

case, a measure of the central location of a group of test effort values from various 

similar products (e.g. mean, median, mode) plus a measure of the expected variability 

about the centre of location (e.g. standard deviation, range) is required in order to 

establish whether the testing effort for a new product is an any sense abnormal.

Thus, theoretically anomaly detection is likely to involve residual analysis and the 

identification of "normal" values (which for a Gaussian or Normal population would 

imply, for example, the mean plus or minus two standard deviations).

3.1.3 Stable Predictive Models

Any predictive models identified will need to be evaluated through cross-validation
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studies. This might be done, for example, by using a sub-set of the data to specify a 

statistical relationship. This relationship is then validated against the remaining data. 

More detailed descriptions of cross-validation techniques are given in Mosteller and 

Tukey, [38],

3.1.4 Statistical Techniques for COQUAMO-2 users

The statistical techniques selected initially were based on the idea that COQUAMO-2 

would be a predictive, general model. This would require the users of COQUAMO-2 

to be able to calibrate the model to their own organisation. Since the nature of 

COQUAMO-2 has changed, the need for techniques to enable calibration of 

COQUAMO-2 was removed. Therefore, the author did not investigate any techniques 

which would be specific to a COQUAMO-2 user.

3.2 Implication of the non-Gaussian nature of Software Data

The nature of software data is very important when considering which statistical 

techniques are appropriate for the analysis of software data for the COQUAMO model. 

The REQUEST project team [1] had already identified that software data was highly 

skewed, contained a relatively high number of outliers, and often showed evidence of 

relationships between the mean and the variance. Such data is obviously non-Gaussian 

which suggests that statistical techniques, which assume an underlying Normal 

distribution, must be used with caution.

A number of techniques may be used to avoid problems of non-Normality:

• data transformation

It may be possible to transform the data to make it sufficiently close to 

Gaussian that the classical statistical techniques can be used. Often log 

transformations are used (c.f. cost models such as COCOMO, [3]).

Problems may occur if many variables need to be included in a predictive
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model, and each variable requires a different transformation. This would 

make interpretation of any observed relationships very difficult.

• robust techniques

It may be possible that techniques which are robust, with respect to 

departure from normality, can be used. Examples of this range from 

using medians rather than means as statistics of central location, to using 

statistics based on the jackknife technique or using robust variance- 

covariance matrices when performing any multivariate techniques such 

as principal components.

• non-parametric techniques

It may sometimes be useful to techniques which are independent of the 

underlying distribution of the data. Such techniques tend to be 

pessimistic in the sense that they may fail to locate genuine relationships, 

but relationships which they do identify can be treated with some 

confidence. This has been suggested by the researchers at the US Rome 

Air Development Centre as the only suitable analysis technique for their 

data, [7].

• other distribution-based techniques

Even though the data cannot be assumed normal, it may follow another 

distribution, for example the exponential or the Poisson distributions. If 

the particular distribution can be determined, statistical techniques 

appropriate to that distribution can be used.

The rest of this chapter describes the analysis and the results of two data sets using 

some of the above techniques that the author believed were appropriate to meet the 

requirements set by the REQUEST project. The only technique for avoiding the 

problem of non-normality which was not investigated at all is "other distribution-based" 

technique. Since the work on the author’s thesis has been completed, further work has 

been done which investigates the use of the Poisson and Negative Binomial distributions 

[40],
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3.3 Determination of Relationships among Software Attributes

The aim of this section of the thesis was to identify relationships between attribute 

measurements collected during the development of the product and subsequent change- 

proneness. The author used datasets 1 and 2 because they comprised of data collected 

from two implementations of the same subsystem. The author expected that if any 

general relationships existed, they would be found in both of the datasets. Also, a range 

of different attributes measures had been collected, many of which were likely to be of 

use to COQUAMO. These attribute measures were:

• Machine code Instructions (MCI)

• Lines of code (LOC)

• Fan-out (FO) [i.e. the number of programs called by the program]

• Data Items (DI) [i.e. the number of global data items accessed by the 

program]

• Parameters (PAR) [i.e. the number of arguments on the program’s 

interface]

• Number of distinct operators (nl)

• Number of distinct operands (n2)

• Total number of operators used (Nl)

• Total number of operands used (N2)

• McCabe’s cyclomatic complexity V (V(G))

• Changes (CHG)

Some combinations of the basic metrics have been used:

n -  nl + n2

N = Nl + N2

HE = nl*N2*N*log2(n)/2*n2 (Halstead’s E)

A full description of the datasets 1 and 2 is given in section 1.3

Relationships can either be bi-variate or multivariate in nature. Different statistical 

techniques are required for each type.
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3.3.1 Bi-variate Relationships

The author used correlation coefficients and scatter plots to investigate the nature of 

two-dimensional relationships. Although the identification of error-prone and change- 

prone components are unlikely to be based on the value of a single metric, the exercise 

was useful in highlighting some potential problems with the nature of the data and 

allowing them to be investigated without the additional problem of applying a complex 

statistical technique which may not be valid.

A correlation coefficient is a measure of the extent of association between two variables. 

The usual correlation coefficient used is Pearson’s correlation coefficient, r. This 

coefficient assumes an underlying Normal distribution which is unlikely to exist with 

software engineering data, therefore it should be used with caution. The correlation 

coefficients for the two datasets are given in Tables 3.1 and 3.2 below. The significance 

of the correlations are shown in the tables by the following key:

* p<0.05

** p<0.01

*** p<0.001

p<0.05 means that there is a 95% chance that the significant relationship did not occur 

by chance, similarly p<0.01 implies a 99% chance and pcO.OOl implies a 99.9% chance.
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MCI LOC FO DI PAR n l n2 N l N2 VG CHG

MCI 1

LOC 0.94

***

1

FO 0.44

*

0.46

*

1

DI 0.62

***

0.80

***

0.33 1

PAR 0.40

*

0.34 0.16 0.09 1

n l 0.72

***

0.70

***

0.83

***

0.48

*

0.45

*

i

n2 0.86

***

0.78

***

0.67

***

0.45

*

0.37 0.88

***

1

N l 0.91

***

0.97

***

0.28 0.79

***

0.28 0.55

**

0.87

***

1

N2 0.94

***

0.98

***

0.32 0.78

***

0.28 0.58

**

0.72

***

1.00

***

1

VG 0.87

***

0.91

***

0.49

**

0.89

***

0.52

**

0.77

***

0.78

***

0.83

***

0.84

***

1

CHG 0.66

***

0.55

**

0.61

***

0.31 0.54

**

0.78

***

0.71

***

0.44

*

0.46

*

0.88

***

1

Table 3.1 SSI - Pearson’s Correlation Matrix
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MCI LOC FO DI PAR nl n2 Nl N2 VG CHG

MCI 1

LOC 0.98
***

1

FO 0.58
***

0.65
***

1

DI 0.78
***

0.79
***

0.69
***

1

PAR 0.34
*

0.33
*

0.06 0.35
*

1

nl 0.87
***

0.88
***

0.77
***

0.81
***

0.30
*

1

n2 0.93
***

0.91
***

0.61
***

0.77
***

0.37
*

0.92
***

1

Nl 0.98
***

0.97
***

0.56
***

0.76
***

0.34
*

0.85
***

0.93
***

1

N2 0.99
si«**

0.97
***

0.56
***

0.77
***

0.34
*

0.85
***

0.91
***

1.00
***

1

VG 0.94
***

0.93
***

0.50
***

0.76
***

0.38
*

0.79
***

0.86
***

0.93
***

0.93
***

1

CHG 0.72
***

0.67
***

0.47
**

0.46
**

0.19 0.65
***

0.73
***

0.70
***

0.69
***

0.69
***

1

Tab e 3.2 SS2 - Pearson’s Correlation Matrix

Software data is unlikely to follow a Normal distribution therefore the author also 

calculated a non-parametric correlation coefficient. Non-parametric techniques do not 

make assumptions regarding the underlying distribution of the data. The author 

investigated the use of two different non-parametric techniques, contingency correlation 

C and Spearman’s p [37]. Spearman’s p cannot cope with a large number of tied values 

therefore it could not be used with this data. The contingency coefficient C is 

particularly good for categorical data and for data which has a lot of tied values. The 

contingency coefficient C is interpreted in the same way as the parametric coefficients 

with the only difference being that it can only take a value between zero and one
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inclusively. This means that a positive or negative relationship cannot be detected, only 

a significant correlation. The correlation coefficients for datasets 1 and 2 are given in 

tables 3.3 and 3.4 respectively.

MCI LOC FO DI PAR nl n2 Nl N2 VG CHG

MCI 1

LOC 0.58
***

1

FO 0.43
*

0.53
***

1

DI 0.85
***

0.58
***

0.53
***

1

PAR 0.26 0.25 0.30 0.21 1

nl 0.62
***

0.62
***

0.48
**

0.54
***

0.26 i

n2 0.65
***

0.65
***

0.48
**

0.58
***

0.25 0.62
***

1

Nl 0.71
***

0.58
***

0.43
*

0.65
***

0.25 0.62
***

0.65
***

1

N2 0.65
***

0.65
***

0.53
***

0.58
***

0.25 0.62
***

0.71
***

0.65
***

1

VG 0.58
***

0.58
***

0.43
*

0.58
***

0.44
**

0.54
***

0.62
***

0.58
***

0.58
***

1

CHG 0.48
**

0.48
**

0.53
***

0.49
**

0.25 0.44
**

0.58
***

0.48
**

0.58
***

0.38
*

1

Table 3.3 SSI - Jontingency C Jorrelation Coefficients
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MCI LOC FO DI PAR nl n2 Nl N2 VG CHG

MCI 1

LOC 0.70
***

1

FO 0.37
*

0.50
***

1

DI 0.51
***

0.51
***

0.29 1

PAR 0.34
*

0.34
*

0.10 0.15 1

n l 0.61
***

0.65
***

0.41
**

0.48
***

0.19 i

n2 0.71
***

0.70
***

0.37
*

0.51
***

0.34
*

0.60
***

i

N l 0.70
***

0.63
***

0.37
*

0.48
***

0.34
*

0.54
***

0.70
***

1

N2 0.70
***

0.63
***

0.37
*

0.48
***

0.34
*

0.54
***

0.70
***

0.70
***

1

VG 0.57
***

0.51
***

0.20 0.51
***

0.42
**

0.41
**

0.57
***

0.57
***

0.57
***

1

CHG 0.45
**

0.50
***

0.21 0.45
**

0.27 0.42
**

0.45
**

0.45
**

0.45
**

0.52
***

1

Table 3.4 SS2 - Contingency C Correlation Coefficients

In general the contingency correlations are lower than the parametric correlations, which 

was expected. However, they are still significant.

There are strong correlations among the basic Halstead measures. This suggests that 

some caution should be used exercised when interpreting the meaning of any synthetic 

metric based on basic measures. Also, the high correlation between the these measures 

and the size measures suggests that the Halstead measures are equivalent to measures 

of size.
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Some of the measures mentioned will be available earlier in the development process 

than module size and the number of times a module was changed, therefore they may 

be useful as early indicators of size or change-proneness if significant correlations exist. 

Some of the measures, such as modules called and data items used appear to be 

correlated to both size and number of changes. These correlations were found in both 

datasets, so may be fairly general in nature. Since they are also available early in the 

software design process they might be useful as early indicators.

However, it should be noted that not all relationships were found to be consistent. For 

example, the number of parameters was significantly correlated with changes in dataset 

1 but not for dataset 2. This implies that some metrics will be unsuitable for inclusion 

in a general predictive model.

Scatter plots are useful for visually investigating the nature of relationships between two 

variables. The advantages of scatter plots are that they are simple and easy to use 

without the need for any underlying assumptions to be made about the data.

As was mentioned earlier, (see section 3.2), data transformation may be useful as a 

technique to deal with non-normality in the data. Figure 3.1 shows an example of some 

of the problems with the nature of software data and figure 3.2 shows how useful the 

logarithmic transformation can be in reducing these problems. Figure 3.1 is the plot of 

size, measured in lines of code against McCabe’s Complexity V, V(G). Intuitively it 

was expected that as size increases, the value of McCabe’s Complexity V increases 

because it is derived from the number of conditions and loops in a program. The more 

conditions and loops the more statements are needed to code them. This plot shows a 

strong positive relationship but evidence of heavy, positive skewing. Skewing can be 

detected by a high density of modules in a particular range of values and, in this case, 

the skewing is positive because there is a tendency towards the smaller values. There 

are also more anomalies than would normally be expected from 27 data points. It is 

also possible that the increased number of apparent anomalies is caused by an increase 

in the variation of the data. An increasing variance is usually overcome by applying a 

logarithmic transformation.
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Figure 3.1 SSI - Size against complexity

The author applied a logarithmic transformation in an attempt to stabilise the variance. 

Figure 3.2 shows the data after the measures have undergone a natural logarithmic 

transformation. The relationship between V(G) and size is clearer, with the effects of 

skewing and anomalies greatly reduced. Therefore it appears that more confidence can 

be placed in the detection of the true underlying trend between the metric values of 

McCabe’s Complexity V and the size of the module if the data is transformed.

L n ( I o c 3

Figure 3.2 SSI - Size against complexity 
using natural logarithm transformation
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From Figure 3.3, it can be seen that the scatter plot for dataset 2 does not show any 

evidence of bivariate oudiers, only one large value. It does, however, appear to have 

positive skewing and evidence of an increasing variance similar to that of dataset 1.

Figure 3.3 SS2 - Size against complexity

Plotting the log of the dataset 2 measures (Figure 3.4), as expected reduced the effect 

of the increasing variance and the positive skewing. It is interesting to note that the 

scatterplot now appears to have at least one outlier. If a logarithmic transformation had 

not been used, this anomalous module would have gone undetected in the plot. This 

highlights a problem of visual representation of the data where a choice of scale, which 

appears to be the optimum one, actually obscures subjective detection of anomalies. 

The transformation has reduced the problem of the increasing variance and the 

anomalies.

Due to the high correlation between the size of the module and McCabe’s V(G), it was 

doubtful whether there was any benefit from using McCabe’s V(G) rather than the size 

of the module to identify change-prone modules. To investigate this, the author 

normalised the McCabe’s V(G) measure with respect to size and plotted the resulting 

measure against the number of changes per module. After normalisation there was no 

longer a significant relationship. The correlation coefficient dropped from 0.68 

(p<0.001) for the raw data, to 0.21 which was not significant for the normalised
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measure. In addition a plot of changes against the size of the module (Figure 3.5) 

shows the same basic relationship as changes against McCabe’s V(G) plot, and identifies 

the same anomalous module.

Figure 3.4 SS2 - Size against complexity 
using natural logarithm transformation

Figure 3.5 SS2 - Size against changes

For dataset 2 data, the correlation for the normalised McCabe’s V(G) against number 

of changes was also insignificant. Thus the two datasets indicate that the size of a 

module can provide as much information for identifying or predicting change-prone 

modules as McCabe’s V(G). It is possible however, that McCabe’s V(G) measure may
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be available from detailed designs rather than from the code and thus provide 

information earlier in the development process than a code-based size measure. 

McCabe’s V(G) is also important from the viewpoint of test management since it 

provides a simple measure of the number of test cases needed to execute each branch 

of code in a module.

3.3.2 Multivariate Relationships

The author investigated the use of regression as a technique for determining whether 

design and code-based metrics can indicate whether a module is likely to require a large 

or a small number of changes. Regression is a technique which can be used to identify 

a relationship between a single variable (the dependent variable) and a set of one or 

more other variables (explanatory variables), [41]. The dependent variable is the 

variable being estimated or predicted in a regression (e.g number of changes) and the 

explanatory variables are the variable being used to estimate the dependent variable.

Initially an Ordinary Least Squares (OLS) regression was used to obtain an indication 

of both the nature of the relationship between all the metrics and the number of changes 

(CHG), and the problems likely to exist with software data.

The significant regression obtained with data set 1 was:

CHG= 0.042MCI - 0.075N + 0.00002HE (1)

where CHG is the number of changes, MCI is the number of machine code instructions 

in bytes, N is the total number of operators and operands and HE is Halstead’s E. This 

equation had an adjusted R2 of 0.57. An adjusted R2 is a measure of the proportion of 

variation in the dependent variable that is explained by the independent variables in a 

multiple regression (more than one explanatory variable) adjusted for the number of 

explanatory variables in the regression. The adjusted R2 is used instead of the 

unadjusted because as the number of variables in the regression increase the value of the 

unadjusted R2 increases, regardless of whether the variables have a significant effect on 

the dependent variable.
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Equation (1) suggests that a combination of the values for the number of machine code 

instructions (MCI), the total number of operators and operands (N) and Halstead’s E 

(HE) are a significant predictor for the number of changes (CHG). There are some 

doubts as to the validity of this equation as a predictive equation of change-proneness 

because of the negative sign for N. The negative sign is saying that if N increases this 

reduces the number of changes the module will require. Therefore from a predictive 

viewpoint the above equation does not conform with the REQUEST’S team intuition. 

However, the high correlation between the explanatory metrics themselves might be 

causing this negative impact. This might indicate that not all of the explanatory 

variables, which the regression has shown as having a significant effect on change- 

proneness, are having a significant independent effect.

The residual plot (Figure 3.6) showed five potential anomalies. A point was assumed 

to be anomalous if the value was extreme with respect to either the predicted number 

of changes or the residual value. A residual is the difference between an actual 

observed data value and the equivalent value predicted by a regression model. A 

residual plot is used to identify any systematic patterns in a group of residuals to 

evaluate the adequacy of the regression model [41].

Figure 3.6 SSI - OLS Residual Plot

The removal of the anomalies reduced the adjusted R2, which indicates that the
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anomalies were contributing to the significance of the equation, i.e. the regression was 

being noticeably altered by one or two data values.

The metric "lines of code" was now also significant in the equation and all the 

coefficients were marginally significant. Therefore, the anomalies are obviously 

affecting the detection of any relationship and it is likely the non-Gaussian nature of the 

data is contributing to the untrustworthy results obtained from the OLS regression.

The results obtained from dataset 2 were totally different from dataset 1:

CHG = 0.25FO - 0.53DI + 0.09V(G) (2)

where CHG is the number of changes, FO is fan-out, DI is the number of data items and 

V(G) is McCabe’s complexity V. This equation had an adjusted R2 of 0.57. Instead of 

being totally code attributes, the predictive equation is based predominantly on design 

attributes. Again, there is an unexpected negative sign in the equation.

However, the residual plot did not show any of the attributes to be having an 

independent effect on change-proneness. One potential anomaly was identified by the 

residual plot (Figure 3.7). When this was removed the measure of fan-out (FO) was not 

significant.

Figure 3.7 SS2 - Residual plot for 
multivariate regression
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The use of complex multivariate equations may not be necessary since there was little 

reduction in the value of R2 for both of the equations when only a single variable was 

used in the regression. The best single variable regression for dataset 1 was:

CHG = -2.097 + 0.234nl (3)

with an R2 of 0.582. The residual plot (see Figure 3.8) shows bias in the equation since 

it indicates that a curved fit would be more appropriate. It also shows four outliers, one 

of which is different to those shown with the multivariate regression. This highlights 

a problem with the use of residual plots for outlier detection since the outliers are not 

independent of the equation chosen and there are many equations which would be 

equally valid.

The results of dataset 2 are similar to dataset 1 in that the best single variate equation 

had a similar R2 to the complex multivariate equation:

CHG -  1.190 + 0.007MC1 (4)

with an R2 of 0.524. However, these results are inconsistent with dataset 1 results with 

respect to the best single variable. The residual plot (Figure 3.9) shows one outlier, 

which was different to the multivariate equation outlier.

Figure 3.8 SSI - Residual plot for best 
single variate regression
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Figure 3.9 SS2 - Residual plot for best 
single variable regression

The conclusion from applying OLS regression is that there does not appear to be any 

stable predictive equation for change-proneness with the given attributes since both the 

datasets had completely different equations. In addition, both multivariate equations 

appear to be unstable with coefficients which do not conform with the team’s intuition.

3.3.3 Problems with OLS regressions

The OLS regression technique assumes that the data is from a normal distribution. 

Software datasets available to the REQUEST project did not follow this distribution. 

The OLS regression technique has been shown to be highly influenced by outliers and 

may also be influenced by the increasing variance. In this section the author has 

investigated some techniques which may remove the effect of these problems and so 

allow an identification of a relationship if one exists.

3.3.3.1 Transformations

One of the scatter plots (Figure 3.1) shows evidence of an increasing variance and, since 

an increasing variance can cause insignificant coefficients to look significant, the author
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decided to apply a natural logarithmic transformation to the data.

With both data sets, taking natural logarithms of the data dramatically altered the result 

obtained. With data set 1 none of the previous attributes shown to be significant are 

now significant. The only significant attribute now was the number of parameters. 

Again no confidence can be put in this result because its correlation with change- 

proneness is low.

With data set 2, the effect of the transformation was to show that only McCabe’s V(G) 

had a significant effect on change-proneness.

This implies that the predictive equations using the available quality indicators were not 

stable. It is likely that these quality indicators are not good predictors of change- 

proneness.

3.3.3.2 Robust Regressions

Another possible method of dealing with the characteristics of software data is by using 

a robust regression method. Instead of reducing the effect of the characteristics present 

in software data, it attempts to be less sensitive to them. This should mean that 

deviations from the Gaussian assumptions required by the OLS regression will not cause 

the regression technique to give invalid results.

The two robust regressions the author investigated were a ‘least absolute residual’ 

regression and a ‘one-step Andrew’s’ robust regression [38]. The ‘least absolute 

residual’ regression minimises the sum of the absolute values of the residuals and the 

residuals can be used as input into the ‘one-step Andrew’s’.

The raw original data was used for the robust regression. The significant regression 

equation was:

CHG = 0.013MCI - 0077N + 0.00002 HE (5)
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where CHG is the number of changes, MCI is the number of machine code instructions, 

N is the total number of operators and operands and HE is Halstead’s E. This equation 

had an adjusted R2 of 0.92. However, if this equation is compared to the OLS equation 

(1) there appears to be very little difference except that the R2 is 0.25 greater. This is 

unexpected since there are anomalies present which have been shown to have 

dramatically altered the OLS regression results and the robust regression is supposed to 

be insensitive to their presence.

The residual plot (Figure 3.10) indicated four potential anomalies. The regression 

coefficients, after the three anomalies were removed from the analysis, were all totally 

insignificant but the equation still had a high adjusted R2 of 0.83. This implies that it 

was not the majority of the points showing a relationship with change-proneness but 

only the three anomalies. Thus it appears that with this data the robust regression is not 

in fact resilient to anomalies and does not produce a more trustworthy predictive 

equation. In fact, the robust regression, instead of reducing the problems that were 

occurring with the use of OLS regression, appears to increase them. The robust 

regression including the anomalies, has shown 25% more confidence in the predictive 

power of the equation. Therefore, the technique appears to produce more optimistic 

results than OLS, without any identified (at present) underlying cause.

Figure 3.10 SSI - Robust Residual Plot
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The equation obtained using robust regression on dataset 2 was similar to that obtained 

for data set 1, equation (5). However, only the machine code instructions coefficient 

was significant (although only at the 80% level) with an adjusted R2 of 0.65.

The residual plot (Figure 3.11) highlighted five potential anomalies. After they were 

removed and the regression repeated all the coefficients were insignificant.

Figure 3.11 SS2 - Robust Residual Plot

In conclusion both data sets have shown that the robust regression was sensitive to 

anomalies and has not provided reliable information about the nature of the relationship 

of the metrics to the number of changes in the presence of these anomalies. Work 

undertaken since this, [36] has shown a simple Theil’s robust regression [42] was useful 

with software data. The only problem identified with Theil’s regression is that the 

calculations become very cumbersome with large amounts of data therefore a powerful 

computer would be required.

3.3.4 Problems with Data Characteristics

The previous sections have shown that problems exist with the nature of the attribute 

values not just the statistical techniques. Some of the identified problems are addressed
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in this section.

3.3.4.1 Obtaining Independent Measures

The previous section has shown that the attributes are highly correlated. The presence 

of highly correlated attributes can cause insignificant results to appear significant and 

result in unstable equations. The author investigated two methods in an attempt to 

overcome this problem. The two methods were:

(1) normalisation of the data;

(2) use of principal components to produce independent variables.

(1) Normalisation of the data

One of the problems when using regression on this data is that instead of the attributes 

being independent of each other most of them are correlated with size. Therefore, the 

author decided to remove the effect of size from all the attributes, that is to "normalise" 

the data with respect to size by dividing the value of each attribute for each module with 

a measure of size for that module. The dependent variable (CHG) was also normalised. 

The reason for normalising changes was to investigate the relationship of the rest of the 

attributes on the number of changes, without the influence of size since other studies 

have shown that size affects the number of changes.

To investigate what power function of size was required for the normalisation of the 

attributes, the logarithmic transformation of each attribute was plotted against the log 

of the size. The coefficient of the regression line through this plot indicates the power 

of the relationship [38]. Most of the coefficients were approximately one, therefore the 

attributes were simply divided by the module size in lines of code.

With dataset 1, using OLS regression, the regression equation was:

NCHG = -0.004 + 0.378NPAR + 0.122Nnl (6)
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with an R2 of 0.985. However, the normalised number of parameters (NPAR) and the 

normalised number of distinct operators (Nnl) are correlated with an r=0.752 although 

the individual coefficients are highly significant. The residual plot (Figure 3.12) showed 

no major outliers but did indicate the presence of an increasing variance for the larger 

predicted values for the normalised changes.

Figure 3.12 SSI - Residual Plot for 
Normalised Equation

The normalised measure of distinct operators is significant in the equations for both the 

datasets. However, the other measures are different and have different signs. The 

regression equation for dataset 2 was:

NCHG = 0.002 + 0.212Nnl - 0.594NFO - 0.083Nn2 (7)

with an R2 of 0.913.

The residual plot (Figure 3.13) highlighted four major outliers (the cross at ‘1’ 

represents three module values). They related to very small modules which after the 

normalisation transformation produced relatively large attribute values which have a 

dramatic effect on the regression.

The regression was re-run after the outliers were removed. Now none of the coefficients
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were significant which suggests that the original relationship was based on one or two 

influential modules only.

Figure 3.13 SS2 - Residual Plot for 
Normalised Equation

The conclusion from normalising the data is that no stable predictive equations could 

de detected.

(2) Use of Principal Components

The technique of Principal Components transforms the original data into new variables 

which are linear combinations of the old variables [43]. The new variables are not 

correlated with each other. In this way the original attributes can all be used, if they 

have a significant effect on change-proneness without the problem of correlated 

variables.

Principal Components cannot be based on the covariance matrix because it is heavily 

influenced by the scale of the factors. This means that attributes like Halstead’s E 

dominate the components because their values are so much larger than the other 

attributes. Therefore principal components should be based either on the correlation 

matrix or the covariance matrix after the variables have been standardised to have a zero
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mean and unit variance.

With dataset 1, the significant OLS regression was:

CHG = 5.22 + 1.30PRIN1 + 2.28PRIN2 (8)

with an adjusted R2 of 0.66. The third principal component was insignificant.

With dataset 2, only the first principal component was significant:

CHG = 3.05 + 0.61PRIN1 (9)

with an adjusted R2 of 0.43.

Although both regressions do not have any anomalies in the residuals, the two datasets 

give conflicting results. The first principal component for both datasets consisted of all 

the measures except the number of parameters. The second principal component differs 

between the two datasets, the second principal component for dataset 1 consists of fan-

out and the number of distinct operators, whereas the second principal component for 

dataset 2 consists of the number of parameters and fan-out. Also, even if they were 

producing the similar results it is difficult to interpret the regression equation because 

the principal components do not separate into any interpretable high level factors, for 

example the first component all the code measures and the second component all the 

design measures. Table 3.5 shows the correlations between the first two principal 

components and the raw data1

lrrhe correlations for the principal components have been 
calculated using slightly different Halstead E values due to 
problems with the statistical package. The author believes that 
the differences cause little impact on the results.
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Dataset 1 Dataset 2

Measure Comp 1 Comp 2 Comp 1 Comp 2

MCI 0.964 -0.057 0.987 -0.043

LOC 0.980 -0.149 0.982 0.017

V(G) 0.928 0.049 0.933 -0.134

nl 0.798 0.567 0.922 0.197

n2 0.870 0.378 0.951 0.010

n 0.869 0.450 0.958 0.071

Nl 0.931 -0.352 0.979 -0.065

N2 0.948 -0.306 0.978 -0.066

N 0.940 -0.332 0.979 -0.065

DI 0.743 -0.303 0.841 0.116

PAR 0.416 0.251 0.380 -0.763

FO 0.543 0.693 0.666 0.560

HE 0.881 -0.388 0.854 -0.114

Table 3.5 Correlations between Pnncipa Components and Raw Data

3.3.4.2 Division into Design and Code-based Metrics

The previous regressions did not show evidence of any consistent relationships. 

Therefore, the author decided to investigate whether regression results could be 

improved by splitting the explanatory variables into design-based and code-based 

metrics. Since the attributes have come from different phases of the development, it is 

feasible to assume that they will have certain characteristics which are unique to their 

development phase. It may also be possible to investigate whether the design-based 

attributes can be used as early indicators of module size and/or the change-proneness of
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the modules. Similarly, the author investigated whether code-based attributes can be 

used as indicators of change-proneness. The design-based attributes were FO, DI and 

PARS, with the code-based attributes MCI, LOC, n, N, V(G) and HE.

To reduce the effect of the increasing variance and the relatively large number of 

outliers, the author applied the logarithmic transformation on the attributes. The 

attributes were not adjusted for size.

Since there were six code-based metrics which were all highly correlated, it was decided 

to use their first principal component when investigating the relationship between design 

attributes and size. This removed the need to decide which was the most appropriate 

size attribute.

With dataset 1 an OLS regression showed the following significant linear relationship 

of design attributes against size (i.e. the first principal component).

Size = -4.70 + 1.08FO +1.37DI (10)

with an adjusted R2 of 0.58. The residual plot indicated a tendency for the above 

equation to under-estimate size.

With dataset 2, the equation was:

Size = -6.27 + 1.10FO + 0.86PAR (11)

with an adjusted R2 of 0.79. The number of parameters is a significant attribute with 

dataset 2 but not with dataset 1. Although all the coefficients were significant, the most 

significant was the constant.

Since the datasets did not display the same general underlying relationship, no 

conclusions could be drawn about general relationships, only about specific relationships.

The author investigated the effect of the design-based attributes on change-proneness.
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With dataset 1, the resulting equation was:

CHG = 0.38FO + 0.48PAR (12)

with an adjusted R2 of 0.59.

There existed a conflict between the two techniques used to evaluate the significance of 

the coefficients in this equation, the t-statistic and the residual plots. In the results 

reported so far, the two techniques have complemented one another. If the t-statistic 

was borderline the residual plot indicated whether the attribute was having an effect. 

However, in this equation the t-statistic indicated that the FO coefficient was marginally 

more significant than the PAR coefficient, whereas the residual plot indicated that PAR 

has a more significant effect on changes. No reason could be found as to why the 

conflict was occurring in this one case.

Dataset 2 showed a different result. No relationship appeared to exist between the 

design attributes and changes. Therefore, the author concluded that these datasets 

showed no evidence of a consistent relationship between design measures and number 

of changes.

When the author examined the relationship between code-based attributes and change- 

proneness, dataset 1 displayed no evidence that any of the attributes affected changes 

and dataset 2 indicated that only McCabe’s complexity V(G) was marginally significant.

The conclusions from the division of the data seem to be:

(1) the code attributes appear to have been masking any effect that the design 

attributes might have had;

(2) no consistent general relationships were found.

The author then decided to apply principal components to investigate how the attributes 

within the design-based and code-based groups affected each other.

page 67



The principal component analysis of the design-based attributes showed the first 

principal component to be an equal weighting of the number of modules called and the 

number of data items. The second component was composed of the number of 

parameters.

The result explained why both fan-out and the data items attribute were never significant 

in the same equation. Mathematically they could be used as one attribute although this 

is not consistent with their meaning and is likely to be a feature of these datasets. Both 

datasets showed the same results.

The principal component analysis on the code-based attributes also showed consistency 

between the two datasets. The first component indicated that all the code-based 

attributes measures of size and the same amount of information could be obtained by 

using a single measure which was a weighted average of all the values.

3.4 Identification of Atypical Values

The monitoring mode of COQUAMO required statistical techniques to identify atypical 

values. It is possible to use attribute values as anomaly detectors (that is, indicators of 

unusual or atypical events or objects) to allow the software development process to be 

monitored [21,16]. Anomaly detection can be univariate, bi-variate or multivariate. 

Different statistical techniques are required for each type.

3.4.1 Comparison of Single Attribute Values

Univariate detection requires identification of an attribute value as outside the ‘normal’ 

range compared with the values obtained from other similar products. This can be 

achieved by using a measure of central location of a data set plus a measure of the 

expected variability about the central location. For example, it may be useful to 

determine whether the testing effort used to produce a product of given size and 

application type is unusually large or small compared with other similar products. A 

measure of central location of a dataset of testing values from various similar products

page 68



plus a measure of the expected variability about this central location is required to 

establish whether the testing effort for a new product is in any sense abnormal.

The author’s first step was to calculate a measure for the centre of location. The usual 

measure of the centre of location is the arithmetic mean. This is the numerical average 

of the values for each attribute. One alternative to the mean is the median, which is the 

mid-point of the attribute values for the dataset. To assess which statistic was better, 

the author compared the mean and the median for datasets 1 and 2.

Tables 3.6 and 3.7 show the comparison between the mean and the median as measures 

of the centre of location for Data sets 1 and 2 respectively. For both of these data sets, 

the mean value is usually far larger than the median. This is because of the presence 

of extreme values.

Mean Median

MCI 335 161

LOC 162 90

FO 4 4

DI 7 4

PAR 3 2

nl 31 29

n2 50 41

Nl 226 99

N2 200 95

V(G) 21 14

CHG 5 4

l'able 3.6 SSI - Mean and Median
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Mean Median

MCI 263 177

LOC 189 126

FO 5 4

DI 3 2

PAR 4 4

nl 32 32

n2 49 38

Nl 180 128

N2 175 125

V(G) 20 14

CHG 3 2

Table 3.7 SS2 - Mean and Median

Figure 3.14 shows the mean and the median for machine code instructions. It is clear 

that the median is a more plausible measure of the centre of location of the datasets 

since it is not distorted by atypical values or anomalies. The median, therefore, appears 

to be a more stable choice for a ‘centre of location’ statistic.

The boxplot is a useful technique for indicating the distribution of values in a dataset 

which also explains why the mean and the median are not the same. A boxplot provides 

graphical representation of the following features of the data: •

• centre of location (median);

• spread;

• range of data;

• outlying anomalous data points;

• skewness.
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Figure 3.14 Comparison between Mean and 
Median

This compact data display is also very useful for comparing several groups of data. 

Figure 3.15 provides an example of the general result the author found when she applied 

this technique. The distribution for each metric is shown as a boxplot in Appendix A.

The median value is the value which divides the dataset in half and this is represented 

by the line or crossbar in the box. In the example (Figure 3.15) the median values are 

161 and 177 bytes for subsystem 1 and 2 respectively. The position of this line within 

the box indicates the skewness of the data. The data from both subsystems is heavily 

positively skewed since the median lies to the left of the box. If the data was symmetric 

then the median would be in the centre of the box.

The average spread of the data is shown by the position of the box. The edges of the 

box show the upper and the lower fourths of the data, therefore the box represents the 

middle 50% of the data or the fourth spread. In the example the fourth spread is from 

93 to 380.5 bytes for subsystem 1 and between 92 and 429.5 bytes for subsystem 2.

The ‘normal’ range of the data is shown by the lines which extend from the edge of the 

box to the most remote data values in the dataset which are not outliers. These lines 

are called the upper and lower tails of the data distribution. The upper and lower tail 

values are defined as Fu+ 3/2dF and FL- 3/2dF where FL, and FL are the upper and lower
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fourths and dF is the difference between the fourths, i.e. the fourth spread. The ‘normal’ 

range for machine code instructions in the example is between 0 and 812 bytes for 

subsystem 1 and between 0 and 936 bytes for subsystem 2.

The outliers are defined as those values which are greater than the upper tail value and 

less than the lower tail value. The subsystem 1 outliers are indicated by the crosses at 

1350 and 1425 bytes and the subsystem 2 outlier at 994 bytes.

As can be seen from the comparison of the two boxplots of the machine-code 

instructions, the distribution of the data values is similar between the two data sets. 

Since boxplots for the other metrics were also similar there appears to exist some 

consistency in the distribution of software data values in this environment.

Figure 3.15 Boxplots for Machine Code 
Instructions

Looking at all the box plots provides some idea of the nature of the data and the dangers 

in the use of the mean rather than the median. If the underlying distribution of the data 

is symmetrical about its mean then the mean and the median coincide. However, if the 

distribution is highly skewed, as it is with the data under study, then the median is a 

more intuitively appealing measure of central location than the mean. In addition, there 

is a danger in applying the mean when extreme outlying points are present in the dataset 

since they will distort the value of the sample mean and give misleading results if the 

sample mean is used to construct ‘normal’ ranges. The further the outliers are from the
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rest of the data values the more misleading the mean can be.

Most of the data values, as well as including outliers, were also heavily positively 

skewed. This is not unexpected since programmers, as a matter of good programming 

practice, tend to keep the modules as small as possible. This trend can, therefore, be 

expected to be present in most software data. It is also probable that other software 

datasets will reveal a number of outliers. This does not mean that every module will 

be small because the optimum size depends on the underlying problem (i. e. the 

function being coded). If the problem is large then the module representing the solution 

will probably be large.

The boxplot appears to be a very useful technique for automating the detection of 

univariate anomalies since it does not make any assumptions about the nature of the data 

and is not subjective. The use of the boxplot for automating anomaly detection of the 

monitoring mode of COQUAMO is described in Chapter 6 "Component-based Anomaly 

Detection”.

3.4.2 Bivariate and Multivariate Detection

Bivariate and multivariate anomaly detection requires a relationship or trend to be 

established such that those components which do not follow the identified relationship 

can be easily identified. With bivariate detection a simple scatter plot is may be 

sufficient. The only problem with a scatterplot is that visual inspection and 

identification of anomalies is subjective. The use of scatterplots for bivariate anomaly 

detection is discussed in Chapter 6 "Component-based Anomaly Detection".

Regression can be used to establish a relationship between attribute values but a 

technique is also required to detect when a component (or components) deviates 

significantly from the general relationship. Analysis of the residuals obtained from the 

regression line may be used to identify anomalous components because the size of the 

residual identifies by how much a particular component deviates from the identified 

relationship. For example, to detect particularly error-prone modules within a 

subsystem, the error rate per module for the modules within the subsystem can be
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compared with the average (or median) rate. This is achieved by establishing a 

relationship between the number of errors and module size.

In order to investigate multivariate anomaly detection the author used untransformed 

data. The consequences of abnormalities in multivariate data are intrinsically more 

complex than in the univariate case. One reason for this is that a multivariate 

abnormality can distort not only measures of location and scale, but also measures of 

correlation. The author investigated the use of two techniques to identify anomalies:

• A plot of the first two principal components;

• A residual analysis from a regression.

The type of anomaly that may be detected by the Principal Component plot is one which 

is inappropriately inflating the variances and correlations upon which the principal 

component analysis is based.

The principal component plots (Figures 3.16 and 3.17) appear to identify modules that 

are abnormal only when a number of different attribute values are considered together, 

as well as the modules which have extreme values for all attributes. An analysis 

technique which considers more than one metric is likely to be more useful to the 

project manager than one which only identifies very large or very small modules.

Figure 3.16 SSI - Principal Component 
Plot
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Figure 3.17 SS2 - Principal Component 
Plot

The second method the author used was to identify the anomalies by visual inspection 

of the residual plot. The Ordinary Least Squares regression for data set 1 (Figure 3.6) 

highlighted the modules which were relatively change-prone due to their large size. It 

is useful to have a technique which identifies these modules but it is likely that a project 

manager would already be aware of the potential problems concerning large modules 

which exhibited large values for all attributes. More usefully, however, the technique 

identified one module that only appeared abnormal when all attribute values were 

considered together. This module had relatively high values of fan-out, data items and 

number of operators and operands for its size. The residual plot for the robust 

regression (Figure 3.8) identified all the modules that the OLS plot identified as 

potential anomalies except for the one mentioned above. The residual plots did not 

highlight any modules which had a relatively low number of changes with respect to all 

the other attribute values.

The residual plots for data set 2 from the OLS regression (Figure 3.7) and the robust 

regression (Figure 3.11) were not consistent. The robust residual plot shows five 

potential anomalies which can be split into two categories: •

• large modules (i.e. modules for which all the metrics had large values;
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• unusually change-prone modules (i.e. modules which were more change- 

prone than would have been expected for their size).

The OLS residual plot did not highlight any anomalous modules.

Therefore, of the two techniques used, the principal components appeared to highlight 

the most interesting and useful potential anomalies. It is unclear whether this is because 

the regression technique did not detect the best relationships or whether the residual 

analysis technique is not useful for detecting multivariate anomalies.

3.5 An Evaluation of Some Design-Based Metrics

COQUAMO-2 assumed that prediction of product quality would be made throughout the 

product lifecycle. It was therefore important to investigate attributes that would be 

measurable during the early stages of development. Therefore the REQUEST project 

undertook an investigation of some design metrics.

The aim of this investigation was to evaluate the Henry and Kafura’s ‘Information Flow’ 

design metrics, [44], in comparison to the simpler code-based metrics of size (lines of 

code) and control flow (number of branches). Henry and Kafura define a local flow of 

information from module A to module B as occurring if one of three following 

conditions hold:

• A calls B

• B calls A and A returns a value to B, which B subsequently utilises

• C calls both A and B passing a value from A to B.

The comparison involved investigating the ability of the information flow metrics to 

identify change-prone, error-prone and complex components in comparison with the use 

of code-based metrics. This work is also documented in Software Engineering Journal 

[45],

The information flow metrics measure the links among components in terms of the flow
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of information among components and are relevant to any system which has been 

developed using a structured design technique or can be represented using a structure 

chart [46,47]. The data used in this study was dataset 3 (see section 1.3). The 

procedure code size metrics used were lines of code (LEN) and control flow (CF). The 

measures used to assess the final characteristics of a procedure were number of known 

errors (KE), number of planned changes (CHNG) and subjective complexity (SC). The 

design metrics were informational fan-out (IFO), informational fan-in (IFI) and 

informational flow complexity (IFC).

The definitions of the design metrics were used in this study are:

• IFI = number of procedures which call the procedure

+ number of data structures from which the procedure receives data

• IFO = number of procedures called by the procedure

+ number of output parameters on the procedure’s interface 

+ number of data structures into which the procedure places data

• IFC = (IFI * IFO)1 2

These are not exactly the same as the definitions used in [44] since these definitions of 

the information flow metrics caused some problems. Henry and Kafura themselves have 

used different definitions in other papers, [48] and [49]. Also, the description of the 

conditions under which a flow of information occurs is not sufficient to provide 

unambiguous counting rules for information flow. For example, the counting rules are 

not fully defined for the third type of local information flow. The counting rules 

associated with the third type of information flow are either:

(1) for A, add 1 to fan-out count 

for C, add 1 to fan-in count 

add 1 to fan-out count 

for B, add 1 to fan-in count

or
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(2) for A, add 1 to fan-out count

for C, leave fan-in and fan-out counts unchanged 

for B, add 1 to fan-in count

The second counting rule seems more logical but would then appear to contradict the 

counting rule implicit in the definition of the second type of local information flow.

Another difficulty with the counting rules occurs if module C processes a value returned 

from A, prior to its input to B. The returned value from A should then be regarded as 

a fan-in to C but it is not clear whether it should be counted as one fan-in to B (from 

C) or two fan-ins to B (one from C and one from A). Therefore, the counting rules for 

the third type of local information flow were not totally clear and it would have been 

difficult to count such indirect flows manually.

The multiplication of EFC and program size, to obtain a procedural complexity metric, 

was ignored, because for both evaluation and interpretation purposes, Henry and Kafura 

consider the information flow part of their procedural complexity metric separately from 

the code size part. In addition, if information flow metrics are to be used to evaluate 

a design prior to coding, they should not include a measure of code size which would 

be unavailable.

Henry and Kafura found their metrics were able to identify change-prone metrics in a 

UNIX 3 environment. If these metrics were of general use this could be of value to 

software engineers and managers. The evaluation procedure used was to investigate the 

relationship between the design metrics and:

• the number of changes to components that resulted from system 

enhancements;

• the number of changes to components that resulted from component 

faults; •

• the subjective assessment of component complexity, provided by team 

leader of system developers.
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The work was done in conjunction with Dr. Barbara Kitchenham, who did the actual 

evaluation while the author did the statistical analysis. We were looking for attributes 

which would identify the largest proportion of change-prone, error-prone and/or complex 

components while maintaining a relatively low false identification rate.

The attributes were divided into ‘quality indicator metrics’ (design and code based 

attributes) and ‘quality characteristic metrics’ (changes, errors and subjective 

complexity). The boxplots showed, as expected, that the data was heavily skewed. The 

boxplots are shown in Appendix C. One point worth noting is that the information flow 

complexity metric has a large number of anomalies compared to the number found for 

its constituent parts. This may cause too many benign anomalies to be identified as a 

potential problem if the metric was used for quality control purposes. There is also no 

reason why its constituent parts cannot be used instead of the compound metric since 

they have to be investigated before the anomaly can be interpreted.

3.5.1 Relationships Between Measures

An initial assessment of the relationships between the ‘indicator’ metrics and the 

‘characteristic’ metrics was obtained by a correlation analysis. However, due to the 

nature of the software data, described previously, the Pearson correlations shown in 

Table 3.8 must be treated with caution. The additional problem of a large number of 

"ties" (i.e. components with the same value) for the characteristic metrics meant that 

the Spearman’s rank correlation coefficient could not be used instead. This is because 

the components with the tied value are randomly allocated a position in the ranking 

which may result in a misleading coefficient. Therefore, the non-parametric Contingency 

C coefficient was calculated to compare with the parametric coefficients and are shown 

in parenthesis in Table 3.8. The contingency tables were constructed by splitting the 

metric values into four groups (relating to the boxplot) containing the values:

<= lower fourth

> lower fourth and <= upper fourth

> upper fourth and <= upper tail

> upper tail

page 79



Quality

indicator

metrics

Quality

characteristic

metrics

KE CHNG SC

IFC 0.07 (0.31**) 0.06 (0.35**) 0.12 (0.37**)

IFI 0.03 (0.25) 0.08 (0.18) 0.09 (0.25)

IFO 0.53** (0.43**) 0.45** (0.42**) 0.48** (0.49**)

LEN 0.65** (0.53**) 0.44** (0.35**) 0.58** (0.58**)

CF 0.65** (0.46**) 0.43** (0.37**) 0.57** (0.59**)

Table 3.8 Correlation Coefficients

The Pearson correlation coefficients showed that the informational flow complexity 

metric based on Henry and Kafura’s approach was not significantly correlated to any of 

the quality characteristic metrics. However, if the components of the informational flow 

complexity metric were considered separately, it appeared that informational fan-out was 

significantly correlated to all three quality characteristic metrics whereas informational 

fan-in was not. The contingency correlations, however, indicated that the informational 

flow complexity metric was significantly associated with the quality characteristic 

metrics although the association is less than that observed for the other indicator metrics. 

Information flow fan-out still significant and informational fan-in remained non-

significant.

The results contradict Henry and Kafura’s results but are consistent with a study by Troy 

and Zweben, [50]. They used fan-out and fan-in metrics based solely on procedure 

calls. In their study, they observed that fan-out was related to errors and fan-in was not. 

The code metrics exhibited larger correlations with known errors and subjective 

complexity than the informational fan-out metric. This study is less encouraging than 

the Kafura and Canning [39] study, which indicated that informational flow was at least 

as good a predictor of error-prone procedures as size, and a better predictor than 

McCabe’s cyclomatic complexity metric [16]. There were problems with the extraction 

of the metrics and the identification of the underlying causes of the metric values.
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The extraction problems were due to a combination of two problems - ambiguous 

published data definitions and difficulty in manually collecting some of the primitive 

counts. Metrics cannot be properly validated without good definitions and it is unlikely 

that the metrics can be used in practice in a software production environment without 

data collection and analysis tools.

The information flow metrics are obtained by combining the values of different counts. 

The main problem with the combined metric is that it can have different underlying 

causes, for example, the program with the largest informational fan-in value was a 

frequently used function which was called by many different paths and therefore was 

a critical program. However, the program with the second largest fan-in values had a 

large value because it read from a large number of data structures but is only called by 

one other program. The different underlying causes may lead to an incorrect diagnosis. 

Therefore the study suggested that a simple measure of fan-out was a more useful metric 

than the more complex information flow metrics.

The study did confirm that design metrics could be used as early predictors of problem 

modules. The results of the study suggested that it might be cost-effective to give special 

attention to programs with high informational fan-out values. Extra time spent on 18% 

of the programs would have been 82% effective (82% of the programs with high fan-out 

values also had high quality characteristic values) and 45% effective (45% of the 

programs which required extra development time would have been identified).

3.6 Conclusions of Preliminary Analysis

It is clear that the underlying nature of software data causes a number of problems when 

using classical statistical techniques. These techniques generally assume a Gaussian 

distribution which is symmetrical, has constant variance and a low expected number of 

outliers. In contrast, software data often appears to be skewed, has an increasing 

variance and a relatively high number of outliers.

This does not, however, imply that classical techniques are completely inappropriate for 

software data but only that care must be taken to check that violation of their
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assumptions do not lead to misleading results. If the effect of the violation is that 

results are misleading, or infeasible, then either the data must be transformed so that the 

assumptions are met, or robust techniques or non-parametric techniques are required.

In the author’s view statistics does have a place in software engineering, but must be 

used with care. It is essential to have a clear idea of why statistical techniques are 

required and a ‘hypothesis’ about expected software engineering principles being 

investigated. If no expectations exist, statistics cannot be used effectively.

The results from this chapter have implications for the derivation of the COQUAMO-2 

model.

• No common relationships were detected between the datasets when module 

relationships were considered. Therefore, there is little hope of identifying a 

‘general model’ between module attribute and product quality attributes.

• Some techniques were good at identifying outliers/anomalous components 

irrespective of the particular attributes. These techniques were boxplots for the 

univariate outliers, scatterplots for the bivariate outliers and principal components 

for the multivariate outliers.

Therefore, the goal of COQU AMO-2 was changed to monitoring the development 

process using quantitative information collected during the development process and 

detecting when there was a potential problem. This involves identifying atypical values 

with respect to planned values and comparison between individual component values. 

These aims are described in chapters 5 and 6. The interpretation of detected atypical 

values is described in chapter 7. The work in this chapter (excluding section 3.5) is also 

reported in [51] and [52].
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4. Anomaly Detection Survey

This chapter describes a survey which the author organised to identify whether the 

concept of controlling anomalous components was easily understood by expert project 

managers and quality assurance managers. This was done by investigating the type of 

atypical components an expert project or quality assurance manager believed to be 

anomalous.

The aim of the thesis is to identify statistical techniques which are appropriate for the 

analysis of software development metrics and to investigate how they might be used to 

support quality management procedures. The results from the survey were intended to 

be used as "best practice" against which various automated statistical techniques could 

be compared. The aim was to investigate which statistical technique would best emulate 

the expert project manager in detecting anomalous components. This investigation is 

described in chapter 6 "Component-based Anomaly Detection" along with the statistical 

techniques under review.

Initial analysis of software data (see Chapter 3) indicated that datasets of measures of 

software items (modules/projects) usually included items that exhibited unusual values 

or unusual combination of values. Such anomalous items often exhibited quality 

problems (e. g fault-proneness). The REQUEST project concluded that statistical 

techniques that assisted the identification of such items would assist project and quality 

managers to monitor and control their software projects. The REQUEST project 

assumed that project and quality managers would already be using this sort of approach 

informally. Therefore, the author devised an survey to review the way in which project 

and quality managers currently assessed unusual components.

The work in this chapter is part of the monitoring mode of the REQUEST model (called 

COQUAMO-2). It was intended that the subjective information gained from the project 

managers would be used to compare the effectiveness of different statistical techniques 

supporting automatic anomaly detection.

The survey had two aims, with the first being the major one:
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(1) to determine what a project manager would identify as an unusual 

component from a scatter (or a density) plot;

(2) to determine whether initial standardisation of the attribute values affects 

the detection of unusual components.

The reason for the use density plots,as well as scatter plots, was due to the nature of 

software data. Software data often has tied values which overlap on a scatter plot. 

When this occurs a scatter plot often gives a misleading impression of the density of the 

points. An example of this can be seen in Figure 4.1, where 226 data points are shown 

as only 24 on a scatter plot (dataset 3).

The author observed that approximately a quarter of the scatter plots in this dataset had 

this problem. The author investigated several ideas to see the best way to represent this 

data, given the capabilities of the available data presentation tools. The method selected 

was a density plot. The density plot shows the number of points in each cell. Within 

each cell, the points are randomly scattered although they all have the same value and 

would overlap if plotted on a scatter plot. The reason for scattering the points is to 

provide some visual impression of the density within each cell. The density plot can 

be viewed in a similar way to the scatter plot allowing potentially anomalous points to
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be highlighted.

4.1 Design of Survey

The author chose eleven graphs for the survey. The attributes included in the graphs

were:

• size;

• control flow;

• module enhancements;

• errors;

• parameters;

• data items;

• fan-in (number of calling modules);

• fan-out (number of called modules);

• subjective assessment of complexity.

The author chose the attributes and graphs which were most useful in helping to detect 

where problems were in the development of the project. This was assessed by a manual 

analysis of the data (by Dr. Kitchenham), [53]. The actual graphs are included in 

Appendix D. The managers approached to take part in the survey were chosen because 

they were experienced managers and they were expected to have experience of using 

measurements to identify software development problems.

Each project manager was given a brief description of the survey, explaining why it was 

being run, and a short questionnaire to allow the possibility of any discrepancies in the 

managers’ identification of anomalies to be explained by the most likely causes. The 

managers were then asked to mark any modules which they regard as unusual on a 

range of scatter plots (or density plot, when a scatter plot is not appropriate), indicating 

whether the marked module was likely to be unusually favourable or unfavourable (or 

no mark at all if it is unclear, or could not be determined by the information provided). 

The questionnaire given to managers is given in Appendix D.
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Since there were two distinct aims of this experiment, two distinct methods were 

required to deal with them. The first, and most important aim, involved identifying a 

common set of anomalies for each plot to summarise the information from the project 

managers. The resulting plots were then intended to be used as a control for the 

automated detection techniques. This meant that each technique’s results were to be 

compared with those derived from the manager and checked for similarity. The 

anomaly detection technique which identified the majority of the unfavourable anomalies 

identified by the project managers would be chosen for inclusion in the COQUAMO 

prototype.

The second aim intended to be dealt with using the ‘density grid’ method, which does 

not depend on the use standardised values. This technique could be compared to the 

control, using both standardised and raw values. If the results of this comparison 

showed that there was a difference between the anomalies detected when standardised 

metrics are used, then any technique which requires standardised metrics would have to 

be rejected.

4.2 Survey Results

This section gives the results of the survey and the problems encountered in the analysis 

of the questionnaires.

Two batches of questionnaires were handed out. The first batch of 120 questionnaires 

was handed out at the QA Forum. Ten replies were received, three of which were from 

the same company. The second batch of questionnaires was given out to various 

managers in a software company. Seven replies were received.

Due to the small number of replies and the wide background variety of the respondents, 

none of the results could be generalised. Also, the differences between the managers 

replies could not be explained.
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4.2.1 Background of Responders

The majority of the respondents, as expected from the QA Forum, were involved with 

Quality Assurance although a few used to be project managers. They included a 

combination of quality assurance and consultants. A large majority had over ten years 

experience in the software field and a few had a software/hardware background. None 

of the respondents had a purely hardware background. The software company 

responders, which were a combination of project managers and consultants, all had more 

than ten years experience and, like the other responders, the majority had software 

experience.

With the QA Forum responders, although 6 out of 8 (two did not provide any 

information) used metrics during development, only 3 of the responders used them to 

detect problems. The majority were not familiar with the use of scatterplots to detect 

problems, which might be one of the reasons why the managers had problems viewing 

the plots. With the software company responders the situation was slightly different. 

Six out of seven responders used metrics to assess project progress and to detect 

problems. However, the results from both groups were equally varied.

The QA responders had a wide variety of type of company, implying that they deal with 

a wide variety of software products. Although the software product was the same for 

the software company responders, it is a large product with a variety of different 

functions.

4.2.2 Results of Analysis

The type of response varied from plots being completely unmarked, to the provision 

of added information about what would be investigated to identify whether the marked 

module was truly anomalous or not. There did not appear to be any significant 

difference between the two groups of replies. There was, however, a difference between 

the consultants’ replies and the practitioners. The consultants all had some idea of what 

they thought was the problem and what they would look for next (although they did not 

all agree with each other).
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There was a wide variance in anomalies detected by the managers. This caused a 

slightly different approach to be taken when gathering the information from the plots. 

It was obvious that different managers would not all mark the same modules as 

anomalous but it was envisaged that there would be a common sub-set. However, it was 

not possible to identify any common sub-set since there was little consensus of opinion 

between the managers as to which modules were anomalous (in fact, no one module was 

identified as anomalous by all managers). It was therefore necessary to lower the 100% 

agreement for identification of an anomalous module before the module was included 

in the set of agreed anomalies. However, even reducing the agreement level to 50% did 

not allow the detection of a common sub-set of anomalies.

One reason for the lack of consensus might be that the managers had a poor 

understanding of the use of software attributes during development and were only 

interested in the attributes which they already use, namely errors and changes which are 

commonly used at the end of development. One response which supports this view was 

from a manager who stated that the number of data items used was not important to 

him. Another said he was only interested in the number of errors and he did not care, 

what any of the other attribute values were. In one respect this might be good news for 

an automatic system because it would hopefully guide the manager into looking in more 

detail for potential problems. However, developing an automatic anomaly detection 

system consistent with a manager’s approach appears impossible because there did not 

appear to be any consistent approach.

For a small sub-set of the plots (those which contained fan-in and fan-out) there was no 

response from the majority of the managers. Since fan-in and fan-out may not be as 

familiar to managers as other metrics, it was suspected that one reason for the lack of 

response might have been lack of understanding of what the implications were for an 

unusual module. Managers did not appear to be familiar with the use of software 

attributes. They do not understand how to interpret them or use them.

In some cases, it appeared that the managers were looking for a particular type of 

pattern and identifying modules which do not conform to the expected pattern as 

anomalous. In many cases the managers did not know which patterns are correct for the 

different attribute combinations.
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Some of the responses were screened out after observing the type of modules marked 

as anomalous on some of the plots. Examples of this are:

• In a couple of cases the cell of the grid marked, on a density plot with 

the highest density was marked. In one case a manager marked the 

highest density cell, which represented the modules with average size and 

average complexity, as being an unfavourable anomaly;

• There was a tendency to view the plot as a uni-dimensional plot, 

especially with respect to errors.

The background information supplied by the managers did not explain the reason why 

the variety of replies were found. The replies within the single software company were 

as varied as those from many different companies, although the background information 

was similar for the single company.

As well as identifying potentially anomalous modules, the project managers were also 

asked, if possible, to indicate whether they thought the anomaly was favourable or 

unfavourable. The results of this were not conclusive. The only point to emerge from 

this, and because of the small sample size cannot be taken as general, was, when a small 

set of modules were looked at, that a higher proportion of the anomalous modules 

identified were marked as unfavourable. This highlights that managers are only 

interested in detection of modules which are regarded as potential problems. However, 

a statistical technique which automatically detects anomalous modules cannot 

differentiate between unfavourable and favourable anomalies. This highlights the need 

for an advice system to be linked to the anomaly detection, to provide some help on 

interpretation of the detected anomalies. Anomaly detection on its own is of limited use 

to the project manager.

The need for a linked advice system was also confirmed by the result that often 

managers did not indicate whether they thought combination of attribute values was 

favourable or unfavourable. This was not surprising because each plot was being 

regarded independently. This condition is required for the automatic detection of 

anomalies but the decision as to whether an anomaly is favourable or not often requires
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more information than can be obtained from a single bivariate plot. However, some 

managers identified certain anomalies as having favourable implications and other 

managers identified the same anomalies as unfavourable for the same plot. This again 

highlighted the managers lack of understanding of the use of software attributes during 

the development of a product.

Another situation which was occurring, was the tendency for the managers to assume 

that zero or a low number of errors, are an indication of high quality, regardless of any 

other attribute values. They did not question whether the module had been adequately 

tested. An extreme example was where one responder decided that all components 

which had zero errors during development were good and all those which had non-zero 

errors were bad. The COQUAMO automatic system should not emulate this but it was 

a good advertisement for the need for the COQUAMO model which discourages 

considering only one attribute value in isolation.

The overall conclusion from the experiment was that the managers’ replies were not 

consistent enough to be used as a control in the experiment for the choice of the most 

appropriate technique for automatic anomaly-based detection. The managers may have 

confused interpretation with detection and therefore made it difficult to isolate their 

detection strategies.

It appeared from the results that managers are not familiar with the use of software 

attributes. They do not understand how to interpret and use them. This contradicted the 

author’s original assumptions when devising the survey. This highlights two issues:

(1) For such a survey to be effective it would need to be re-done after proper 

training;

(2) New attributes need to be related to project management issues if they 

are going to be used successfully.

Although they could not be used for the original purpose, the results were useful 

because they showed the potential benefit an automatic anomaly detection system might 

be to project managers if some help on interpretation of the detected anomalies was
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provided.

Since it was impossible to use the results of the survey, identification of the most 

appropriate statistical technique was based on a consultant’s view of what constituted 

an anomaly. This was justified because the survey did indicate that consultants are 

using measurements to detect anomalies during the development process. The 

investigation of statistical anomaly detection and results are described in chapter 6 

"Component-based Anomaly Detection".

page 91



5. Project-based Monitoring

This chapter is concerned with monitoring the overall project using quantitative 

information collected during the development of the product at specific defined 

milestones. This is called project-based monitoring. The aim of the thesis is to identify 

statistical techniques which are appropriate for the analysis of software development 

metrics and to investigate how they might be used to support quality management 

procedures. This chapter shows how summary quantitative information can be used to 

help the manager monitor his/her overall project and can therefore control the 

development process.

The work identified in this chapter forms part of the monitoring mode of the REQUEST 

model (called COQUAMO-2). The REQUEST project team aimed to build a prototype 

tool to support COQUAMO. As part of the prototype, the author designed the summary 

reports which the COQUAMO-2 prototype would display. She had no involvement with 

the implementation of the prototype.

The author’s task was two-fold:

(1) To identify a sub-set of essential information required to allow a project manager 

to control his/her project. The sub-set was taken from a list of potentially useful 

attribute measurements [54];

(2) To set targets, where appropriate, for each attribute measure identified in (1) 

above. Monitoring is based on the principle that when an actual attribute value 

exceeds the target value then it is likely to be a potential problem in the 

development. Thus, monitoring relies on identifying target values of attributes. 

Targets can be derived from past history but if no past history results are 

available default targets are needed.

5.1 Introduction to Project-based Monitoring

The aim of the project-based monitoring is to enable a project manager to identify
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whether a project is deviating from what was originally planned or expected. This type 

of monitoring is concerned with the behaviour of the whole project, at well-defined 

points in time, not the behaviour of particular product components.

In order to assess whether a project is progressing appropriately, a project manager must 

have a formal plan or informal expectation. For example, if a project is using too much 

effort, an expected or planned value for effort must exist to compare the actual values 

with.

The reason for a deviation from expected can be due to one of three causes:

• the planned values (i.e. targets) were unrealistic and inaccurate;

• an unexpected problem has occurred during the project;

• a deliberate or known change has been made to the project but the

planned values have been unaltered. For example, if a problem was 

found in high level design it might have required extra effort to correct 

it in detailed design. Therefore, the actual values are showing the impact 

of the solution not the problem.

Deviations can be due to serious problems and can, therefore, require solutions that can 

seriously affect all the plans. An automatic measurement system cannot identify the 

reason for a deviation from target, only the project manager can do this but it should 

allow for re-planning.

Project managers are trying to control their projects. They want to be able to tell 

whether their project is going well or whether there are problems. Since the earlier a 

problem can be detected, the easier and cheaper it is to solve, project managers need 

regular feedback to maintain a particular standard of product. Early feedback minimises 

the time it takes to respond to a potential problem.

Support for timely feedback means collecting information at regular intervals throughout 

the product development. The REQUEST approach is to use the end of each lifecycle
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phase as a checkpoint for analysis and reporting on data.

Measurements can help project managers detect potential problems with their projects. 

As well as providing a quantitative measure of project progress, they can assist diagnosis 

of the particular type of problem that has occurred.

For project planning and control to be effective, a project manager must set targets for 

quantitative attributes that are capable of providing appropriate information about the 

project environment or development process. For example, there is no benefit in setting 

a target on the percentage of re-use in a project, if re-use is not an important issue. 

However, whatever specific goals a project or company wishes to achieve, if project- 

based monitoring is being used, a base set of goals are assumed to be desired. Three 

main goals can be assumed to be general for any development:

(1) Keep the development on time;

(2) Keep the development within budget;

(3) Maintain the quality of the product throughout development.

The user must define what he/she means by quality so that the REQUEST model can 

be of most benefit to him/her. It should be noted that, for the purposes of this work, 

quality has been taken to mean a fault-free and stable product, and monitoring of quality 

in the REQUEST prototype was taken to be similar to that of statistical quality control. 

To support the three goals identified above, different types of attribute measurements 

will be required:

(1) time;

(2) resources;

(3) quality indicators.

At present the third goal is too imprecise to be quantified. The goal needs to sub-

divided so that the appropriate measurements can be chosen to show whether a particular 

sub-goal has been achieved. The following questions can be asked, sub-dividing the 

quality goal 3 into issues 3, 4 and 5:
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(3) Is the software faulty?

(4) Is the software unstable?

(5) Are all the tasks such as testing being performed properly?

It is an assumption of the system that the product being developed supports the 

requirements, that is, all the required functions are provided. It is possible for the 

system to assess this issue by the use of traceability metrics.

The targets can be sub-divided into those which are external to the project and those 

which are internal.

(1) External Targets

The external targets are usually those set on timescale and budget. These targets 

may not be under the control of the project manager and cannot be changed 

without a contract re-negotiation. Monitoring against these targets will highlight 

whether the external constraints on the project are feasible or not.

The need to monitor budget and schedule is readily accepted by project 

managers. Budget and schedule targets are usually set by higher management, 

when a project is approved, and are usually quantified. They are monitored to 

ensure that the project will complete within the required time and cost, and to 

detect any problems which might mean that the targets would not be met. The 

project manager is likely to be pressurised into meeting budget and schedule 

targets and the success of a project is often judged on these goals. This is 

because when a budget or schedule target is missed it is easily detected and the 

effect is easily understood and translated into monetary terms. However, budget 

and schedule should not be the only consideration. The original budget and 

schedule targets may have been unrealistic or an unforeseen problem may occur. 

In these situations, there is a temptation for a project manager to reduce the 

product development timescale in later stages of the project, or reduce reviews 

and testing of the intermediate products (or even the final product). Although 

the effect of budget or schedule compression may not be immediately obvious, 

it is likely to result in a poor quality product which will be costly to maintain, 

and will reduce customer satisfaction. Therefore, quality indicators should also
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be monitored to ensure that meeting short term productivity goals is not achieved 

at the expense of product quality, resulting in higher long terms costs for the 

company.

(2) Internal Targets

Internal targets are planning values set by the project manager. They include 

defect levels, change levels and the distribution of effort and duration across the

phases.

One of the major problems a project manager has when using measurements, is 

to decide which measures are most important to their own particular project. 

Some general guidelines can be provided to a manager to help with this task. 

Information is required that will help a manger to detect quickly if any major 

problems are occurring with the project and, if so, to identify the particular 

underlying problems and how they can be resolved.

As part of the REQUEST COQUAMO prototype, a set of screens have been defined 

which identify, in general, what information might be required to identify problems in 

a project and to show how the project, as a whole, is progressing. The original set was 

very detailed, identifying information which would be useful for a complete analysis of 

the project.

The author felt that the amount of information asked from the project manager would 

be overwhelming with some of the benefits only visible in the long term. This would 

discourage many managers from using any automatic system, especially those who are 

just starting to collect measures. Therefore, the author identified a sub-set of essential 

information which would help a project manager control his/her project by identifying 

only major problems. This will hopefully avoid managers wasting time solving minor 

problems at the expense of the major problems. Also, if a project manager is asked to 

provide too much information, he/she will not feel that the use of the COQUAMO 

model (and the prototype of an automatic tool which was developed by REQUEST) has 

sufficient cost benefit.

From the questions related to the three goals, appropriate attribute measures can be

page 96



collected to adequately monitor the development process:

(1) within schedule? monitor timescales;

(2) within budget? monitor effort;

(3) software faulty? monitor number of faults;

(4) software unstable? monitor number of changes;

(5) testing done properly monitor test coverage.

This basic set of five measures can be sub-divided into more specialised measures but 

they are all extensions to the basic set taken to a greater level of detail and 

specialisation for a particular environment or project. For example:

• Total project effort can be split into effort expended to construct the software 

and effort expended to review that software once it has been constructed;

• Changes can be classified by cause;

• Fault classification can be sub-divided extensively because faults have a fault 

introduction, detection and removal process, all of which can provide specific 

information about the product and its development processes. For example fault 

classification can identify where the majority of the faults were introduced, how 

various types of faults were detected, and how long faults remain in the product. 

All this can be used to assess process effectiveness.

5.2 Setting Targets

Target values need to be set at the start of the project but should be amended as 

necessary throughout product development. Target-based monitoring can be either 

continuous or at defined checkpoints. In the REQUEST terminology, the term 

"Continuous monitoring" involves collecting actual values throughout a project phase 

at regular points in time. Time-series curves are then drawn and checked against 

expected curves. For example, the cumulative number of faults found during testing per 

week should flatten out after a point in tine (Figure 5.1). If this pattern is not seen then
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either the testing period has not been long enough or the product is particularly fault- 

prone. For each time series to be checked automatically, all the expected curves would 

have to be identified in advance. This type of monitoring is not included in the current 

version of the prototype.

WEEK NUMBER

Figure 5.1 Typical cumulative 
fault v time graph

"Checkpoint monitoring" involves assessing the project status at phase-end or other pre-

determined project milestones. Project managers should choose checkpoints which are 

appropriate to their environment and lifecycle/process model. The advantage of using 

a lifecycle model is to ensure that the data collection is incorporated into normal 

working methods with the minimum of disturbance. The reason for monitoring a project 

by looking at attribute values at the different checkpoints instead of waiting until testing 

is to provide information early in the development lifecycle about how well the project 

is progressing. This permits early detection of problems [3]. The earlier the problem 

is detected the less expensive it is to fix, therefore monitoring is intended to help the 

project manager to control the project and to reduce the overall cost of the production.

Attributes used for monitoring at each checkpoint are usually environment dependent. 

This is because different methods can be used to develop a product, for example, object 

oriented methods, formal methods, structured methods, etc. It is important that the 

project manager decides what he/she regards as the most useful information to assess 

at the start of his/her project, since each environment (and sometimes individual
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projects) have different conditions and influences. The target values that are planned 

in the project are also environment dependent and the project manager should not expect 

targets set in a different organisation to be relevant in their own.

This raises a problem, because project managers may not know what values they expect 

for a particular attribute target, and may not have any data from previous similar 

projects from which to assess a reasonable value. Therefore, any automated system 

must provide default values for some of the more general planning attributes and some 

guidelines for calibrating the system to the users’ own organisation.

The default targets were set on a per phase basis and can be checked against the actual 

values at the end of each phase. The default targets can be used as an initial starting 

values but would need to be amended as data about a particular organisation is 

accumulated. The phases used in the COQUAMO-2 prototype were taken from the 

standard V model but the beginning and the end of each phase must still be defined by 

the project manager.

The author identified the default target values using a variety of methods:

• experience (values taken from experienced project managers);

• various literature studies;

• industry values;

• values calculated from some existing, available data sets.

The following list identifies the attributes suggested for collecting to allow a project 

manager to control the development of a product:

• effort;

• duration;

• re-work;

• faults;

• changes.

The target/planned values were based on a 3GL environment and assumed a well-
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structured and stable environment. These target values are likely to be less relevant to 

other organisations, for example a small software house dealing with be-spoke software.

A single value for a target is not sufficient to detect project problems. The project 

manager needs to decide what variability he/she will allow in the actual values before 

a problem is highlighted and action is required. Therefore, for each target, the author 

has provided some guidelines for an acceptable range around the target value. If an 

actual value is outside this range then it would be highlighted as anomalous.

The author, jointly with another colleague from the REQUEST project, decided to 

classify the checkpoint information into different levels of detail. The higher the level 

number is, the more detailed the information is. The top level or phase summary 

presents the minimum information required for controlling a project. Table 5.1 gives 

the target values associated with this information. The author did not assign any target 

values to effort and duration since the REQUEST project assumed that a cost model 

(e.g. COCOMO) would provide the resource constraint information. A potential 

problem or missed target would be flagged if the actual was larger than the estimate.

Attribute Target Anomaly detection range

resource effort "cost model"

constraints duration "cost model"

re-work 10% total effort +/- 5% re-work

outstanding unresolved faults 5% faults found >0.05 * Fault distribution

problems faults not cleared 10% faults found >0.1 * Fault distribution

outstanding changes 5% faults found >0.05 * Change

distribution

Table 5.' Phase Summary

Included in the Phase summary was the number of unsatisfied targets and that value as 

a percentage of the total number of targets. The fault and change distributions show the 

percentage breakdown expected of the total number of fault and changes found during
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reviews, inspections and testing. Table 5.2 shows the fault and change distributions 

along with the fault origin distribution.

Phase % faults discovered % fault origin % changes 

identified

requirements 5 15 25

high level design 20 25 20

detailed design 25 35 15

code 10 10 10

unit testing 15 5 10

integration testing 25 10 20

Ta Die 5.2 Fault and Change Phase Distributions

Table 5.3 shows the targets for the level two information. This identifies the breakdown 

of the resource constraints and event information.

Attribute Target Anomaly 

detection range

resources effort from "cost model"

duration from "cost model"

checking effort prep. + insp. 

effort

+/- 5%

other activities 10% effort actual/total > 0.1

re-work - faults 10% of re-work > 0.1 * re-work

events # changes 0 > #mods,sections

rate/requ’t 0.4 > 0.4

Table 5.3 Level 2 Target Information
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The prototype screen for this information also includes number of agreed and number 

of outstanding changes although no targets have been set on this information.

Table 5.4 shows the level three information. This information reports the information 

at the inspections/reviews, process assessment and change request classification. 

Although the information is reported at the project level, it requires information to be 

available at the component level.
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Attribute Target Anomaly Detection Range

Process assessment prop, planned effort 

used

from "cost model" actual > 0.1*estimate

prop, planned 

duration used

from "cost model" actual >0.1* estimate

fault detection 

efficiency

50% estimated faults <50%

Inspection/review av. # inspections 3 per component > 3

prep, effort 2 * # inspectors hrs <0.1 *target+prep.eff 

>0.1 *target+prep.eff

av. # inspectors 3<=5 <3, >5

inspection effort #total faults/4 <0.1*target+insp eff 

>0.1*target+insp eff

inspection rate 4 faults per hr <3.6 faults per hr 

>4.4 faults per hr

clearance rate 2.5 hrs/fault < 2.5

#faults found 5*size/1001oc

5*size/1000words

#faults* 100/size<4.5 

#faults* 100/size>5.5 

#faults* 1000/size<4.5 

#faults* 1000/size>5.5

major faults 25% of faults found > 0.25 *faults found

changes user requirements 25% of changes > 0.25 * #changes

internal standards 25% of changes > 0.25 * #changes

external standards 25% of changes > 0.25 * #changes

others 25% of changes > 0.25 * #changes

quality assessment fog index 9-instruction man. 

12-technical docs

> 9

> 12

Table 5.4 Level Three Targets

All the figures for effort and number of faults need to be multiplied by the relevant 

phase percentage taken from the fault and change distribution value for the required
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phase. This level of screen also includes a check both on the number of test cases run 

against those planned and on the test coverage achieved although there are no targets. 

The quality assessment was assumed to assess subjectively for "completeness", 

"correctness" and "traceability" attributes.

The information at level four only includes the detailed fault and structural information. 

The author only set targets on the fault information. Table 5.5 shows the targets for 

fault classification which is linked to the inspection information.

Fault classification type of fault Target Anomaly

Detection

Range

Discovery of fault missing phase distribution * 0.4 > target 

+0.1*target

wrong phase distribution * 0.45 > target 

+0.1*target

extra phase distribution * 0.1 > target 

+0.1 ̂ target

query phase distribution * 0.05 > target 

+0.1*target

Origin of fault missing phase distribution * 0.4 > target 

+0.1 * target

wrong phase distribution * 0.45 > target 

+0.1*target

extra phase distribution * 0.1 > target 

+0.1* target

query phase distribution * 0.05 > target 

+0.1* target

fable 5.5 Level 4 fault classification
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The total number of faults was estimated at 5 faults per 100 loc or 1000 words. The 

reviews and inspection were assumed to be 60% efficient, therefore the residual number 

of faults is 2 per 100 loc or 1000 words. The author only looked at major faults since 

she assumed that project managers were more concerned with the major faults.

Reasons for collecting the information and setting a target depend on the intended use 

of the information. Suggested reasons are given in Chapter 7 "Interpretation".

The default targets are unlikely to be representative of any particular organisation but 

should help the project manager to set his/her own targets. Targets require calibration 

to the particular environment in which the project is taking place. They can be 

calibrated in several ways:

(1) Use of experience - where the project manager knows what to expect if the 

project is running well from past experience and therefore knows what target to 

set.

(2) Past project development history data - use of values obtained from previous like 

projects. If enough project data existed it would be useful to compare actual 

values from projects which were successful and projects which failed.

(3) Use of models (e. g. COCOMO) to obtain synthetic estimates for a particular 

measure (e.g. effort, size, etc. for cost prediction).

(4) Use of REQUEST defaults amended with actual values when available - this 

establishes a database of past projects (see 2 above).

Since default values should only be used in the absence of any other information, this 

means that calibration of the target values will be the first and most important task of 

any automated monitoring system. Therefore, it is important to ensure that the 

calibration facilities are simple enough to encourage project managers to use them. In 

the current prototype, we have been able to provide tool support in the form of an 

analysis package (to analyse past project data) but we have not yet included any help 

facilities.
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5.3 The Automatic System

In the prototype of the automatic system, the information is organised into a hierarchy 

with the most important global information being presented to the manager first. From 

the global information, the project manager can see at a glance how the project is 

progressing through the checkpoints or phases, and can identify any major problems. 

After this, the project manager can ask to see more detailed information on any 

particular values shown at the global level. The information is arranged to allow the 

manager to choose the level of detail he/she wishes to see or has collected the relevant 

information for. The more detailed levels provide more information and therefore help 

in diagnosing the cause of problems but they require more detailed data to be collected 

which may not always be possible.

The prototype did not go through a verification and validation process. The current 

status of the prototype is that it is a working prototype which is linked to the 

component-based monitoring and interpretation prototypes which are described in 

chapter 6 and 7 respectively.
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6. Component-based Anomaly Detection

This chapter is concerned with monitoring individual components using quantitative 

information collected during the development of the product. This is called component- 

based monitoring. The aim of the thesis is to identify statistical techniques which are 

appropriate for analysis of software development metrics and to investigate how they 

might be used to support quality management procedures. This chapter shows how 

attribute measures obtained throughout the development can be used to detect potential 

problem components. This work forms part of the monitoring mode of the REQUEST 

model (called COQUAMO-2). The author had no involvement with the implementation 

of the prototype of COQUAMO-2 after the specification stage.

The author’s tasks were:

(1) To investigate different statistical techniques with a view to identifying 

anomalous components;

(2) To identify statistical techniques which would automatically detect univariate and 

bivariate anomalous components;

(3) To specify the automatic anomaly detection algorithms.

The aim of component-based anomaly detection is to enable the project manager to 

detect potential problem components as early as possible in a project. It should be noted 

that the attribute measures are being used to monitor the process not the final product. 

This is because the quality indicators available throughout the development do not have 

a strong enough relationship with the final product to predict the effect that a particular 

value will have on the final product quality (as shown in Chapter 3).

In order for the monitoring to be effective, managers must identify the goals they wish 

their projects to meet in order to select the attributes which are most suitable for 

tracking those goals. For example, a manager may be interested in the quality control 

of the process but uninterested in the re-use of the product (or parts of it).
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As with project-based monitoring, the choice of attributes to measure may be different 

for different environments since many attributes are dependant on how the software is 

being developed, e.g. whether the design is predominantly driven by control flow or data 

flow. However, as a guideline only, the following are examples of the type of 

attributes which can be used for monitoring and detecting anomalies, on a per 

component basis:

• size;

• control flow;

• data flow;

• information flow;

• faults;

• enhancements;

• effort - construction and review.

All of these attributes can be viewed as quality indicators for the individual components 

throughout the development. Size is often used to normalise attribute values for 

comparison purposes e.g. defects/100 lines of code, control flow paths/100 lines of code. 

This allows component attribute values to be compared for different components. In 

addition, it is possible to identify quality trends against size e.g. large modules with low 

defect rates or small modules with large control flow complexity.

In order to achieve early detection of problem components, measurements need to be 

collected at each stage of the development process. This serves two purposes in that it 

provides information that a particular component is a potential problem early in the 

development process (permitting remedial action to take place), and can track a 

particular component over-time to indicate whether or not the remedial action was 

effective. One way of identifying an anomalous component is simply by subjective 

judgement, for example, looking at a scatterplot of two attributes. There are 

disadvantage with this method: 1

1. It is very time consuming, especially when trying to keep track of all the 

attribute values of a component to provide information about the likely 

cause of the anomaly.
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2. Lack of consistency. No rules are laid down to define what constitutes 

an anomaly therefore it depends on individual judgement. This also 

makes it more difficult to justify taking remedial action, since a particular 

component is not necessarily regarded as a problem by everyone.

Therefore, there appears to be a good case for automating the anomaly detection process. 

The advantages which can be gained are:

1. an objective, and therefore, consistent way of identifying anomalies;

2. a reduction in time required to monitor project progress;

3. a defined base for identifying what constitutes an anomaly, and therefore 

a basis for changing system if required;

4. a means of de-skilling the process which is useful for training 

inexperienced managers and introducing a company standard.

In theory, three different types of anomalies can exist:

1. a particular component with an attribute value significantly higher or 

lower than the rest of the component values;

2. a particular component has a pair of attribute values which do not exhibit 

the same pattern as other components;

3. a combination of attribute values for a particular component that is 

significantly different from the combinations observed on other 

components.

The first type of anomaly is found when a single attribute is being examined. Each 

component value is compared with the distribution of the attribute values and 

components with unusual values can be identified. This depends on a method of 

defining the distribution of attribute values.
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The second type of anomaly is concerned with the relationships between attributes. The 

general relationship for all the components can be identified and each component 

compared to this to identify whether it follows the general relationship. This indicates 

the need for a bivariate technique which deals with relationships among pairs of 

attributes.

The third type of anomaly is concerned with how metrics relate to each other when a 

combination of metrics are examined together. This indicates the need for a multivariate 

technique which deals with relationships (among many attributes).

The author investigated which of the three types of anomalies described above exist in 

practice using values from dataset 3 (see section 1.2). She subjectively identified 

anomalies using:

• the distribution of the attribute values;

• bivariate plots to identify general relationships (subjectively);

• Principal Component Analysis leading to a bivariate plot of the first two 

principal components.

The author discovered that any components exhibiting the third type of anomaly, had 

already been identified by either the first or the second type. Therefore, since no new 

anomalies were being highlighted, she decided not to investigate automation of 

multivariate detection except as a check on the anomalies detected by the univariate and 

bivariate techniques (this was felt to be required since relatively few data sets have been 

investigated). Therefore, the research effort reported in this thesis concentrated on 

finding statistical techniques which would automatically detect univariate and bivariate 

anomalies.

6.1 Automatic Univariate Anomaly Detection

Automatic univariate anomaly detection is employed to detect components which have
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an attribute value which is significantly higher or lower than the rest of the components’ 

values for that attribute. The technique the author considered for this was a modified 

version of Tukey’s boxplot [38]. The reason this technique was considered is because 

it:

• provides a summary of the distribution of attribute values;

• does not require the values to follow a Normal distribution (or any other 

distribution);

• provides quantitative values outside which the value can be regarded as 

anomalous;

• for heavily skewed data boxplots provides more accurate summaries than 

the more conventional mean and variance statistics (see chapter 3 for 

examination of nature of software data);

• was designed to assist the detection of anomalies (outliers).

However, the technique only identifies statistically significant anomalies, which tend to 

be so extreme, that a project manager would already be aware of the problems. 

Anomaly detection was intended to do more than just highlight problems which were 

obvious to the project manager. It was intended to highlight components which were 

not necessarily a problem at present but might become problems later in the 

development process when it would be more difficult and expensive to correct. In 

software development, project managers are used to (and accept) the hypothesis that 

20% of the components cause 80% of the problems, known as the Pareto effect. 

Therefore it was envisaged that a system which identified approximately 20% of 

components, as potential problems would be acceptable.

Working with Dr. Kitchenham and Sue Linkman, the author attempted to evaluate how 

successful a quality approach to the analysis of attribute values would be, [45]. Unusual 

quality indicator values at the design and code stage were identified and three factors 

were investigated:
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• what proportion of components were anomalous with respect to each 

indicator metric and each quality characteristic (where a quality indicator 

was a metric collected during the design or coding phases of the 

development and a quality characteristic was an attribute collected during 

testing, e.g. faults and changes);

• the efficiency with which the indicator metrics identified ‘critical’ 

components, i.e. the proportion of components with anomalous indicator 

metrics that were also anomalous with respect to the quality

characteristics metrics;

• the effectiveness with which the indicator metrics identified the ‘critical’ 

components, i.e. the proportion of components with anomalous quality 

characteristics metrics that were anomalous with respect to the indicator 

metrics.

Figure 6.1 shows the difference between effectiveness and efficiency.

Figure 6.1

The total number of components is (A+B), where A is the number of components with 

normal characteristic attribute values and B is the number of components with unusual 

characteristic values. The total number of components with unusual indicator values is
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(C+D). Therefore:

Efficiency D/(C+D)

and

Effectiveness D/B

The components were regarded as anomalous if the attribute values were greater than 

the upper fourth (i.e. lay in the top 25% of the data). In the boxplot terms this means 

that the cut-off values (Q, and CL) were changed from:

where Fp, and FL are the upper and lower fourths respectively of the attribute value’s 

distribution and dF is the difference between the upper and lower fourths.

However, for an automatic anomaly detection system the percentage of components 

identified as anomalous by the above cut-off values is likely to be too high. This is 

because they will cause too many components to be identified as anomalous in a large 

system and this may lead to unacceptable burden on the project manager. Therefore, 

an automatic detection system should identify those components which are not 

necessarily formal outliers but are most likely to cause the project managers problems 

later in the development process. If the automatic system identifies too many 

components that the project manager may not have the time or the inclination to 

investigate them all and may stop using the system. This defeats the main purposes of 

the automatic system which is to increase the benefit of using measurement and provide 

more information in return for a minimum amount of time spent. This led to the author 

choosing cut-off values for the detection of univariate anomalies to lie between the 

original Tukey’s values (i.e. + 1.5 dF) and those given above (i.e. + dF).

The most effective value of the dF multiplier was chosen by examining which anomalies

Qj = Fa + 3/2dF 

CL = FL - 3/2dF

to
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were detected for three attributes of dataset 3 and then subtracting 0.25 of the tail 

lengths from the value and repeating the process. The value was taken to be too low 

if the cut-off points were classifying more than 20% of the data as being anomalous. 

Table 6.1 gives a summary of the results of this process and shows the average 

percentage of anomalies which the value of the dF coefficient was detecting.

dF multiplier % of data identified as 

anomalous

0.75 -20-25

1 -10-15

Table 6.1 Percentage ot Data identified

With the multiplier higher than 1, the technique was identifying only one or two more 

components as outliers each time the procedure was invoked. However, when the 

coefficient was lower than 1, then there was a large increase in the percentage identified. 

This is probably due to the presence of a large number of tied values in some of the 

attribute measures and when the cut-off value close to a value with many ties it is 

starting to identify part of the majority of the data as anomalous. Therefore, the cut-off 

points which were implemented into the automatic system are:

Qj -  Fu + dF
CL = FL - dF

The results from the investigation, using the upper fourth cut-off values, suggested that 

although detailed project control activities still rely on the expertise of the project 

manager, metrics could provide useful input to the design process both at the design and 

coding stages of the development process. For example, extra time spent on the 18% 

of the components with high fan-out values would have been 82% efficient and 45% 

effective, compared to 17% and 8% respectively, if extra time was spent on a randomly 

selected 18% of the components.

Percentiles of the data could be used by managers if they only wished to detect
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univariate anomalies, e.g. look at the top 10% of the high valued components. 

However, the advantage of the boxplot technique is that it also provides an input for 

automatic interpretation of the anomalies.

6.2 Automatic Bivariate Anomaly Detection

A bivariate technique is required to detect anomalies that occur when a component has 

an unusual combination of two attributes. The relationship between any two attributes 

is not necessarily a linear one and it is difficult, if not impossible, to predict the 

relationship in advance.

In the absence of a known underlying distribution, no simple statistical technique exists 

which is designed to detect bivariate anomalies. The author decided to use a bivariate 

plot to show the relationship because a manager might use scatterplots and therefore 

would be likely to understand. While the univariate anomaly detection can be easily 

understood, using a bivariate plot it is not as easy to define an outlying point. This 

makes automation difficult, although more useful.

The author provisionally chose three statistical techniques as potentially useful for 

automatic detection purposes since they were capable of identifying atypical values when 

a combination of values were unusual. These techniques are described below in section 

6.2. 1.

6.2.1 Suggested Techniques for Bivariate Anomaly Detection

Three techniques for detecting bivariate outliers were considered. These techniques 

were:

(1) Nearest neighbour clustering;

(2) Sum of Euclidean distances from all other points;
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(3) Frequency of points in a grid (i.e. density plot).

Investigation of other techniques, such as tensor analysis, was rejected due to lack of 

time.

It was envisaged that one technique would not identify the anomalies on every scatter 

plot, and that two techniques may be required. Visual inspection of scatter plots showed 

that problem components are not necessarily those that have attribute values which 

deviate from a direct relationship but can be those which fall between two clusters of 

points.

If two techniques had been necessary, then both of the techniques would have had to be 

automated as part of the automated tool or prototype. Both of the techniques would 

have to be applied and outliers identified by each method combined to produce one set.

6.2.1.1 Nearest Neighbour Clustering technique

This technique starts with each of the points (i.e. values related to a particular 

component) on a plot being regarded as a separate, individual group. A distance matrix, 

giving the Euclidean distances between each point and all others, is obtained. The 

technique then fuses the groups according to distance between the groups, with the 

smallest distance being fused first. Each fusion decreases the number of groups by one. 

A dendogram [55] shows graphically which groups have been fused, and in which order. 

Any point which is separate or outlying from the other point(s) should be easily detected 

since it will be the last point(s) to be fused. It was envisaged that this technique would 

probably be capable of detecting the type of anomalies shown in Figure 6.2.

Potential Problems Identified Prior to Use

This technique requires the attribute values to be standardised. It was unclear whether 

standardising measurements drawn form non-Normal distributions would have 

unexpected side-effects.

page 116



i t t i-.

to o -

f 50 -m
è * ••  .

i
c . r  *Z * 0 -

.  / ’-  * •

1 2 0 -

S '  '

1 0 0  2 0 0  300  4 00 500 S 00  7 0 0  • 0

dim (frm t of coda)

Figure 6.2 Size against 
Control Flow

The technique is unlikely to work when the points on the plot form a composite pattern, 

i.e. a pattern which has been derived from one or more patterns, as shown in Figure 6.3

There might be difficulty in transferring the information from dendograms directly into 

an automated interpretation system. The information is used by the statistical packages 

but the output from such packages is usually in graphical form, not numerical form.

The points added to the cluster last, which would be regarded as potential outliers, still 

have to be identified. This entails deciding what distance will be used as the cut-off 

point i.e. what is the maximum summed distance allowed before an individual 

component is identified as anomalous. This value may have to be related to the actual 

data rather than independent of the particular data set. This problem might be resolved 

by standardising the data first.
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6.2.1.2 Sum of Euclidean Distances

This technique also requires a distance matrix with the Euclidean distance from each 

individual point to all other points. All that is then required is to sum all the distances 

from an individual point to all others and compare the sums. This may be automated 

by drawing a boxplot based on the summed value for each point.

Potential Problems Identified Prior to Usage

This technique requires the attribute values to be standardised. It was unclear whether 

standardising the metrics would alter the number of and which particular components 

would be detected as anomalous.

The technique is unlikely to work when the points on the plot form a composite pattern.

The points which would be regarded as potential outliers, still had to be identified. This 

entails deciding what distance the cut-off point will be, which this may have to be 

related to the actual data. This problem may be resolved by standardising the data first.

6.2.1.3 Density plot

This technique involves dividing the plot into grid areas and calculating the frequency 

of points in each area, as shown in figure 6.4. All the points which are in grid areas 

with less than a certain percentage of points in them will be regarded as potential 

outliers. At present, there appears to be no reason why this technique will not detect 

anomalies from all types of pattern.

Potential Problems Identified Prior to Usage

The optimum percentage cut-off level still had to be decided. There was also the 

problem of relating the grid to the range of attribute values. Standardising the metric
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values might ease the problem because it is likely that only one standard grid would 

then need to be chosen.
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6.2.2 Choice of Statistical Technique

Since the object of the automatic detection was to emulate the performance of an expert 

project manager in detection of problems, it was decided to investigate what types of 

anomaly an expert project manager would detect and choose the statistical technique 

which detected the most of those anomalies. The author ran an experiment to identify 

what type of anomalies an expert project manager would detect (see chapter 4). The 

experiment had two aims, with the first being the major one:

(1) to determine what a project manager would identify as an unusual 

component from a scatter (or a density) plot;

(2) to determine whether initial standardisation of the attribute values affects 

the detection of unusual components.

The full description of the experiment was given previously in Chapter 4. The results 

from the experiment indicated that the managers’ replies were not consistent enough to 

be used as a control in an experiment to identify the most appropriate technique to use 

for automatic anomaly detection.
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Since the project manager’s replies from the experiment could not be used to identify 

which of the techniques identified and described in section 6.2.1, was the most 

appropriate technique for automatic bi-variate anomaly detection, another way of 

choosing the technique had to be employed. The method used was to identify the 

technique which best replicated an expert consultant’s subjective detection of anomalies 

on an available project.

Frequently, it is useful to consider pairs of variables as ratios, for example lines of code 

per month or defects per 1000 lines. At first glance this would appear to make the 

anomaly detection easier because it would reduce bivariate detection to univariate 

detection. However, the same ratio value can have different meanings, e.g. a large 

component with a large number of faults can have the same ratio value as a small 

component with a small number of faults. The individual attribute values are required 

for interpretation of the anomaly. For example, a large module with a small number of 

faults would have a low defect rate, and using ratio values would be assumed to be a 

good module. This would be incorrect if the low number of faults was actually a result 

of poor testing.

The technique of ‘nearest neighbour’ clustering was initially regarded as the most 

promising. One advantage of this technique was that as well as identifying the majority 

of the anomalies detected by the expert consultant, it also divided them into clusters of 

different types of anomalies. This helped with the interpretation of the anomaly. When 

the technique was used to identify the clusters, it showed some initial promising results 

from the identification viewpoint. However, the trial investigation also highlighted a 

problem with completely automating the technique. The data required to automatically 

identify the different clusters was not easily accessible from SPSS, the statistical 

package used. Also, if this technique was used in the automatic system the user would 

need to have available a large statistical package, which is expensive and requires a 

substantial amount of memory. Therefore, a technique was sought which could be 

relatively easily automated internally as part of the REQUEST prototype and therefore 

could be provided as an integrated part of the automated system to the user with 

minimum overhead cost.

The technique investigated was an amended version of the density technique. It was
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amended to capture some of the capability of the clustering technique and because the 

density in the different grid cells alone was not sufficient to detect the anomalies. This 

was because it would identify all points in a grid cell as being anomalous if the density 

was low but took no account that the cell might be surrounded by the majority of the 

data, due to the placing of the grid not the distribution of the data.

The author decided to add a neighbouring concept to the density grid, which removed 

the above problem. The advantage of this approach was ease of implementation and 

linking to other facilities, like the interpretation prototype which is an important part of 

monitoring the development process. The reason that the link is so important is that the 

automatic detection system can only detect that a component has attribute values which 

are different to the majority of the components, it cannot detect whether this difference 

is likely to cause a problem or not. Since this would result in the project manager 

having to check many components that are not problems, it might discourage the use of 

anomaly detection tool unless a method of interpretation is also provided.

Certain analysis criteria had to be decided before the technique could be automated and 

implemented in the prototype:

• Size of grid to place on scatter plot;

• Rules for identifying whether a component is anomalous or not.

The initial grid size was chosen for software engineering reasons, not for statistical 

reasons. In software it is quite common to collect information on a five level ordinal 

scale. For example, defining complexity to be very low, low, average, high or very 

high. This led to the choice of dividing each axis into five equal sections. A useful 

enhancement would be to set a grid size which made more use of the information 

contained in the numerical measures in the data set and would therefore be more 

sensitive, e.g. use of percentile information.

The rules for identifying whether a component is anomalous or not were derived by 

analysing the values obtained from dataset 3, the same dataset that was used to choose 

the univariate detection technique. The objective was to find a set of rules which 

combined the influences of both the density of each grid cell and whether it was near
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any other highly populated grid cells, to produce a technique which most consistently 

identified the anomalies that had already been identified subjectively by an expert 

consultant for the project. Different combinations of density and number of 

neighbouring cells were investigated on plots with different combinations of attributes. 

The plots used were the same as those used by the expert consultant. The set of rules 

eventually chosen for inclusion into the automatic system were those which identified 

most anomalies (if not all) on the majority of the plots.

The final set of rules which were implemented into the prototype are:

(1) density of grid cell is either one or two 

and

number of non-empty neighbouring cells is less than three.

(2) density of grid cell is greater than two 

and

density of grid cell is less than 10% of the total number of components 

and

the number of non-empty neighbouring cells is less than two.

A component (or components) is identified as anomalous if either of the above rules is 

true. The implementation of these rules was carried out by another member of the 

REQUEST project who followed the author’s specification.

6.3 Verification and Validation of Automatic Detection Prototype

The basic approach was to compare the results of the automatic anomaly detection 

routine with an analysis which was undertaken to show that the COQUAMO-2 model 

worked when the principles applied by an experienced analyst. The analysis was carried 

out using data from dataset 4. The analysis was carried through to the advice and the 

developers of the product verified that the majority of the components identified 

subjectively as anomalous by the expert were problem components. The analysis was 

completed prior to the Verification and Validation exercise and completely
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independently of the tool. This analysis also met the criterion that the data set used had 

not been used to derive any of the anomaly detection rules.

Two anomaly detecdon routines were implemented in the prototype. These routines 

were an implementation of the rules for univariate and bivariate anomaly detection 

outlined in this chapter. They were implemented by a mixture of shell script and C 

programs, details of which are given in [56]. The aim of the prototype was to 

demonstrate that the techniques could be automated and were capable of detecting the 

same type and level of anomalies as an experienced consultant detected in the 

COQUAMO-2 model simulations, [53] and [57].

Since the results of the anomaly detection routines is part of the input to the 

interpretation system, verification and validation of the output of the routines was felt 

to be necessary to avoid advice being given on misleading information.

6.3.1 Verification Process

The tester who performed the verification was given a description of the rules that the 

univariate and bivariate anomaly detection should follow and then used this information 

to check whether the tool was executing the rules correctly.

The process used to implement the tests was to make use of the anomaly detection 

routines which were available as an user’s option on the "User’s Analysis Tool". This 

tool allows the users the option of inspecting and analysing their data at the lowest level 

of the summary report prototype.

The tester called up each of the analyses used in the manual analysis and checked 

whether the prototype obeyed the anomaly detection rules identified in this chapter. If 

the rules were not obeyed, the problem was flagged to the implementor who diagnosed 

the problem and implemented the solution. The analysis where the problem was 

detected was re-run and checked to see if the implemented solution had solved the 

problem. The verification uncovered four implementation problems. Once they were 

corrected the prototype appeared to be detecting anomalies correctly with regard to the
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rules.

6.3.2 Validation Process

Once the verification process had been completed and the problems solved, the 

validation process was started. The tester looked at the same set of analyses but this 

time checked whether the anomalies which the tool had detected were the expected 

anomalies. The expected anomalies were the ones detected by the subjective 

identification performed by the expert. Any problems found were reported to the author.

6.3.2.1 Validation Results

The validation showed that the automatic univariate technique detected all the expected 

anomalies. The automatic bivariate technique detected 96% of the expected anomalies 

when all the anomalies from all the graphs were considered. Many of the anomalies 

were found on more than one plot and therefore were detected more than once, in fact 

81% of the anomalies which the expert detected were found on every graph which the 

expert used. The automatic technique also identified a component as anomalous which 

the expert consultant had not. This component was not diagnosed as being problematic 

in the system under investigation but it caused serious problems when the particular 

component was ported to another application. This may have been coincidence but it 

would be interesting to check if the anomaly detection routines are capable of detecting 

components which will be problematic when ported or re-used in another application. 

However, this is outside the work of this thesis.

Four conditions were highlighted as problems, where the technique would have been 

expected to have identified the anomaly but did not (although the rules were correctly 

applied). The following plots show the anomalies which were only subjectively 

identified as anomalous in bold type-face and the anomalies only identified by the tool 

in italics. The rest of the marked anomalies were identified subjectively and by the tool. 1

(1) Figure 6.5 shows an example of where more anomalies have been identified than
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expected. Component 4 has a combination of attribute values which is both 

feasible and acceptable but the rules have detected it as anomalous because it is 

the only component in the grid cell which has only one neighbour. This occurs 

when the majority of the data is captured in one cell of the grid and the rest 

randomly scattered around the plot. This will mainly be a problem with 

classified errors, which have many zeros, but will also cause a problem with any 

other attribute which has a large number of tied values and a low range of 

values.

Figure 6.5 also highlights the need for the grid setting to be different for 

attributes with a small range of values to avoid the situation of a line of grid 

cells whose limit boundaries fall between integers with no whole integer value 

contained in them and can therefore have no values in them.
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(2) Figure 6.6 shows an example of where the neighbouring rules are failing to 

detect all of the expected anomalies. The component marked with an arrow has 

not been identified because its grid cell has three neighbours although component 

26 has been identified as anomalous.

This occurs when most of the values of one of the attributes fall in a small 

range. The range of the other attribute causes most of the data points to lie in
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a vertical or horizontal line.
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(3) Figure 6.7 shows another example of where the neighbouring rules are not 

detecting all of the expected anomalies. Component 10 has not been detected 

because it has three neighbours.
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This occurs due to the positioning of the grid lines on the plot. Although the
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two components 31 and 2 have similar values for number of paths (or branches), 

the grid line has, by chance, been placed between these two values. This has 

resulted in the components being in different cells and they are both acting as 

neighbours to component 10, which is undetected since its grid cell has three 

neighbours.

(4) Figure 6.8 shows another example of where the neighbouring rules are not 

detecting all of the expected anomalies. Component 1 has not been detected 

because it has three neighbours.
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This occurs due to the positioning of the grid lines for the plot, similar to 

problem 3. However, this problem is caused by components 10 and 1 falling in 

neighbouring, diagonal cells, although they are relatively far apart in value. 

Therefore, they are both having an influence as a neighbour.

Problem 5 was not directly detected from plots in the validation exercise but could be 

foreseen as a result of those which were. The circled components are those which the 

anomaly detection rules would detect as anomalous. 5

(5) When all the data points lie in a diagonal line (see Figure 6.9), the cells with less
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than 10% of the data in them will be detected as anomalous. This is because the 

grid cells will only have two neighbours, on the diagonal. The extreme case of 

this could cause all the components to be detected as anomalous.

Figure 6.9

6.4 Summary of Verification and Validation Results

The system appears to be successfully detecting anomalous components and is largely 

consistent with the expert consultant, with only a few exceptions. The anomaly 

detection routines have been shown to be effective on a data set which was not used in 

the original definition of the rules and routines. The validation problems are mainly 

sensitivity problems caused by the process of setting the grid on the plot. However, 

these problems occur relatively rarely, except for the problem with attributes with a 

large number of tied values and low variability. Any future enhancements to the 

routines would have to include the solutions to the above mentioned problems. The 

rules for anomaly detection have only been used with data sets in the range of 50 to 240 

data points. It is unlikey that the rules will be valid for either very small data sets (e.g. 

less than 20 data points) or very lrage data sets. More reserach is required to identify 

more appropriate rules for very large data sets. These rules would have to take account 

of the size of the data set.
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7. Interpretation

This chapter is concerned with the interpretation of anomalies detected by project-based 

and component-based monitoring. The aim of the thesis is to identify statistical 

techniques which are appropriate for the analysis of software development metrics and 

to investigate how they might be used to support quality management procedures. This 

chapter shows how the likely cause of the anomaly can be detected with the help of a 

simple expert system which looks at a combination of attribute values for diagnosis.

The author’s task was two-fold:

(1) To liaise with an expert consultant to obtain knowledge about what an expert 

considers when diagnosing a problem;

(2) To set up an simple expert system, or advice system which incorporates the 

knowledge obtained from the expert.

The potential anomalies were identified by the anomaly detection routine as described 

in chapter 6. The development of the system diagrams involved turning the expert’s 

knowledge into interpretation trees and then into a set of rules for input into a rule-based 

system. The author did not write the expert system shell but was responsible for 

deriving the rules.

The interpretation system is intended to automate the interpretation of project and 

component anomalies. For automatic anomaly detection to be of any significant benefit 

to a project manager, some interpretation is required to identify the likely cause of the 

anomaly and its effect on the project. This was emphasised by the results of the 

experiment described in chapter 4. Automatic anomaly detection can only identify a 

component as being significantly different from other components, it cannot identify 

why it is different. An anomalous component may differ because there is a problem but 

it may differ because it has been exceptionally well developed. Beneficial anomalies 

occur for many different reasons, for example, a complex component might have been 

given to an experienced developer or subjected to more rigorous testing. To minimise 

time spent checking components, it is useful to differentiate between components that
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are potential problems and those that are not. Without this facility, project managers 

may find an automatic monitoring system inefficient.

The objective of the automated interpretation system is to diagnose the likely cause of 

any anomalous components detected by the automatic detection routines. It cannot 

replace the project manager’s experience, and was not intended to, because there can be 

many causes of an anomaly, the majority of which will be unforeseen or unknown to 

any general interpretation system.

7.1 Project -based Interpretation

Like anomaly detection, anomaly interpretation can occur at two different levels, project 

and component level. The concept of interpretation is the same for both except that a 

project-based anomaly detection is always assumed to be a problem. Project targets are 

set so that a missed target is a problem. However, unusual component values are not 

necessarily indicative of a problem.

Although both levels of interpretation need to identify the likely cause of the anomaly, 

the method used differs between the two types of monitoring.

For project-based monitoring, the interpretation of an anomaly, or missed target, depends 

on what the goal was when the target was originally set. For example, if project 

managers want to keep a check on how stable their projects are, they may want to set 

a maximum target on the rate of change per requirement (number of changes/number 

of requirements). If a project exceeds this target it may indicate instability of the 

requirements resulting in an unstable development.

The following tables provide suggestions as to why a project manager may wish to 

monitor the attributes on which initial default targets have been set in Chapter 5 

"Project-based Monitoring.

Table 7.1 provides some suggestions as to why a project manager may want the 

information contained in the Phase Summary (see Table 5.2 for targets).
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Attribute Reason for Monitoring

Resource constraints effort Check spending too much/little effort up to 

current phase. Too much effort may result 

in insignificant effort for testing. Too little 

effort spent may indicate some activity has 

not been properly completed

duration Check for schedule slippages

re-work Check for excessive amount of rework

Outstanding problems Check efficiency of problem clearance 

process

Table 7.1 Reasons for Fhase summary mlormation

Table 7.2 suggests some reasons why a project manager may want to have the Level 2 

Target information.
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Attribute Reason for Monitoring

Resources effort Check adequate amount of 

effort spent on current 

phase

duration Check adequate amount of 

time available for current

phase

checking effort Check adequacy of 

reviewing and inspecting

other activities Check amount of effort on 

activities other than 

development

rework-faults Check software/document 

not becoming unstable

Events rate of change /req’t Check stability of 

requirements

Table 7.2 Reasons tor Level 2 Information

Table 7.3 suggests some reasons why a project manager may want a review summary.
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Attribute Reason for Monitoring

av. # inspections per 

document/item

If number > 3 then inspection/review not being 

effective and software should be checked with a 

view to rewriting problem areas.

preparation effort Check if spending adequate amount of time 

preparing for reviews.

av. # inspectors Check on having too many (waste of money) or too 

few (not effective reviewing) inspectors.

inspection effort Check spending adequate amount of effort in a 

review.

inspection rate Check inspections are effective at finding faults.

clearance rate Check clearing detected faults effectively.

# faults found Check fault removal process is adequate (not too 

few) and check product not too faulty and likely to 

be fault-prone later.

category of fault Likely problem if more than 25% of faults found 

are major.

Table 7.3 Reasons tor Review/lnspection information

Table 7.4 suggests some reasons for monitoring process assessment.
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Attribute Reason for Monitoring

Process assessment prop.planned effort used Check planned effort used 

too quickly with a danger 

of no effort left to test. 

May also indicate 

existence of unplanned for 

functions

prop, of planned duration

used

Check if likely to produce 

product on time

check effort/ production 

effort

Check software/document 

produced too quickly at 

expense of testing effort.

Test plan number of test cases Check that planning of test 

cases is adequate and no 

unplanned functions 

developed

Readability Fog Index Check documents are 

readable.

Subjective assessment Check quality attributes 

are at least average

Table 7.4 Reasons tor Process assessment

Table 7.5 suggests reasons why a project manager may wish to see fault and change 

classification information.
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Distribution Reason for Monitoring

Change classification change request Detect which type of fault is 

predominant.

Fault classification discovery distribution Check efficiency of review

process.

origin distribution Check for problem phases

category Detect unexpected levels of 

fault types.

Table 7.5 Reasons for Fault and Change Classifications

It is not the intention of the interpretation system to collate the advice provided for each 

missed target and produce an assessment of the most likely problem for the project. The 

final view of how well the project is developing and the final identification of any 

problems remains the responsibility of the project manager. The automatic system is 

only intended to provide some additional information and advice to help the manager 

in this task.

7.2 Component-based Interpretation

Automatic interpretation is more important at the component level because it is not 

obvious what impact an anomaly may have on the development. Project managers are 

more likely to be interested in the underlying cause of the anomaly and what they have 

to do to resolve it. This was also emphasised by the results of the experiment, described 

in chapter 4, where some of the responders did not understand what the measurements 

or attributes meant and therefore could not identify when a component was anomalous. 

Therefore, interpretation is an important part of the monitoring process.

In the COQUAMO-2 prototype the results of both the project and the component-based 

detection are input to the interpretation system, however, the results of the component- 

based detection are not shown to the project managers as they are for the project-based
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detection (via summary reports). The list of anomalous components detected is passed 

directly to the interpretation system, where the likely cause of the anomaly is assessed.

The component-based interpretation falls into two distinct parts:

• identification of likely cause of anomaly;

• corrective action for likely cause.

This chapter concentrates on describing the techniques that were used to identify the 

likely cause of a component-based anomaly. There are two distinct stages involved in 

the identification of the likely cause of the anomaly. The first stage requires 

summarising the nature of the anomaly by classification of the attribute values. The 

classified values are then used as input for the second stage which involves 

interpretation of the likely cause of the anomaly.

7.2.1 Classification

Prior to investigating the underlying cause of the anomalies, the nature of the anomaly 

needed to be summarised. This was done by classifying the attribute values onto a 

simple ordinal scale. This was required because the absolute values are not as important 

as relative values for interpretation. The classification scheme developed by the author 

was intended to be meaningful to project managers. It was based on defining an 

attribute values on the following five point scale:

• very low

• low

• medium

• high

• very high.

A consistent method was required to transfer all the attribute values to this form. The 

univariate automatic detection technique already required the calculation of a five-point 

summary of the attribute values, therefore the author used the boxplot information to
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map the values onto the ordinal scale. This information is shown in Table 7.6 below.

Boxplot Range Ordinal scale 

classification

below lower tail value very low

between lower tail value and lower fourth low

between lower fourth and upper fourth medium

between upper fourth and upper tail value high

above upper tail value very high

1'able 7.6 Transformation to Ordinal Scale Values

7.2.2 Interpretation System

The first step in choosing a method to automate component-based interpretation was to 

investigate what a consultant did. Although the component-based detection method was 

not based on multivariate methods, interpretation of anomalies is often based on many 

different attributes. Also, consultants use more information than the comparison of 

attribute values. They incorporate software experience when they decide what should 

be examined to explain why a particular combination of attribute values has occurred.

However, a consultant also takes into account the variety of conditions under which the 

project is operating. Dr. Kitchenham suggested that these different conditions could be 

captured by the use of scenarios. A study [58], incorporating the simulation of possible 

scenarios, showed the infeasibility of coping with many different possible conditions. 

The interpretation system was therefore restricted to the development of a simple expert 

system.

The interpretation system was required to cover all the phases which the anomaly 

detection system covers (from requirements to integration testing). The component- 

based interpretation deals with the phases:
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• high level design;

• detailed design;

• coding/implementation;

• unit test.

The requirements and integration test phases are concerned with the project as a whole, 

so anomaly detection and interpretation is not relevant. These phases are covered by 

phase-based monitoring.

Due to the lack of available experts in the metrics area and the variation between expert 

opinion, only one recognised expert was used to obtain the original knowledge for the 

expert system rules. The expert was Dr. Barbara Kitchenham. The author and the 

expert decided to limit the identification of the likely cause to major problems which 

could occur in the development. This would inform the user whether the anomalous 

component was likely to be a major problem although it would not provide any help for 

more minor problems.

The expert’s knowledge was documented in the form of a hierarchical tree for each 

phase and the attribute chosen to start each tree was the size of the component. A list 

of general problems which a project manager may face was identified. This list was 

reduced to major problems that could be found from investigating the component’s 

attribute values. The resultant list of potentially dangerous conditions included:

• fault-prone components;

• inadequately tested components;

• unstable/difficult to enhance components;

• insufficient or excessive effort per component;

• complex component;

• difficult to test components.

The above set of conditions are relevant to the first three phases. Most conditions are 

detected at different stages of the development and can be either causes or symptoms. 

Causes and symptoms of problems are difficult to distinguish because at one stage of 

the development a condition might be regarded as a cause of another problem and the
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next stage as a symptom. The automatic interpretation system was only concerned with 

identifying potentially dangerous conditions. It was not concerned with whether the 

condition was a cause or a symptom of some other problem, only that if would result 

in a major product problem. In practice, conditions can be caused or compounded by 

other conditions e.g. a component may be fault-prone because it is complex. Further, 

if the component is also given to inexperienced staff then the condition is even more 

serious. Currently, the automatic interpretation system stops when it identifies a 

potentially dangerous condition which is likely to result in a problem. This problem 

may have many causes which are not explicitly identified. A useful enhancement of the 

system would be to deal with multiple causes by continuing diagnosis after the first 

dangerous condition is identified. This would result in a more complete interpretation 

of the anomaly.

Unit test is conceptually different so it is not surprising that different types of problems 

are encountered:

• test planning inappropriate;

• test coverage not achieved;

• testing unsuccessful;

• unstable/difficult to enhance components.

If none of the problems are likely to be affecting the component then, within the 

limitations of the advice system, the component is assumed not to be a problem.

The different types of problem are investigated in a particular order (the same for all 

phases) by the comparison of attribute value classifications for each anomalous 

component. In many cases the attributes can only narrow the scope of the problem to 

its likely area. Additional information is required to identify the particular problem or 

explain the reason why the combination of attribute value classifications has occurred 

but it does not constitute a problem. The most common reasons for the combinations 

are queried by asking the project manager relevant questions when a particular 

combination is found. The interpretation tree for each phase is given in the following 

pages and has the following key:
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plain text 

underlined

bold

questions internally answered (by attribute value); 

questions externally answered (by user). These require a 

yes/no reply, 

likely cause of anomaly.

Figure 7.1 shows the interpretation tree for the high level design phase. The first 

characteristic looked at is the relative value of the high level design size. The answer 

to whether it is large or small will dictate which branch of the tree the user will be 

directed down and which set of questions will be asked.

The system will continue down the tree asking questions until a likely cause is 

identified. The main path down the tree represents the "no problem" path derived from 

the attribute value classifications. The branches either examine more attributes, ask 

clarifying questions or identify the likely cause. The answers to the questions either 

identify a likely cause, or identifies "no problem" and the flow of the tree returns to the 

main path. The interpretation trees for the other phases are as follows:

detailed design - Figure 7.2

coding - Figure 7.3

unit test - Figure 7.4

They all have the same structure.

At present, the interpretation trees are limited to major problems which may exist in the 

environment. However, because of the way they have been designed, the trees can be 

modified relatively easily. This means that the interpretation can be modified to reflect 

the problems which are most prevalent in the intended user’s own organisation. Also, 

if particular attributes cannot be measured, and/or the problems they can highlight are 

uncommon in an environment, the attribute can be removed from the main path, with 

all its branches, without the need for modification to the rest of the tree.

Since the structure of the trees is consistent across the phases, it is easy to see where 

an attribute would need to be inserted into the tree for all the phases once its position 

in one tree is decided. At present, the system assumes the existence of only one likely
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cause and stops when it identifies one. Therefore, the order in which the problems are 

investigated can be important. If a tree is amended to include checks for an additional 

problem, the significance of the problem should determine the position in the tree where 

the check should be inserted.

Once the system has identified a likely cause and terminates the diagnosis, it suggests 

a corrective action for that problem with the suggested diagnosis. A summary report 

is presented which provides the complete list of the anomalous components identified 

in a particular phase, their likely causes, and what diagnosis was identified in a previous 

phase (if any).
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Figure 7.1 High level design phase
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Figure 7.1 High level design phase (continued)
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Figure 7.2 Detailed design phase
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Figure 7.2 Detailed design phase (continued)
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Figure 7.3 Coding phase (continued)

page 149



page 150



page 151



Faulty (relative to size)

Low number of test cases
successfully run (relative to number of paths)

Low test coverage?

Is fault rate per week 
increasing?

no

Change prone

Is the testing 
adeguate?

T e s t i n g  of  
component  
u n su c c e s s fu l

to enhance

Figure 7.4 Unit test phase (continued)
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7.3 Rules and Expert System Shell

The author implemented the interpretation trees as a file of Prolog rules for each phase. 

The expert system shell used to verify the rules is called "go", a proprietary STL 

product which was specially written for the this expert system. It is a primitive expert 

system shell written in Prolog and uses backward chaining logic. Figure 7.5 shows the 

architecture of the system.

Since the expert system was developed using Prolog, all the names used in the rules 

must be valid Prolog atoms and each rule must end with a full stop. The system expects 

possible hypotheses, in this case "likely causes", and its rule-base must be supplied on
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file. The attribute values can either be entered in a file or will be prompted for by the 

system. The system can save the conclusions from each run into a file if required.

The hypotheses are supplied in a file called "goals" and can either be explicitly affirmed, 

or denied, or voted on. Hypotheses which are affirmed when the system is run are 

reported in alphabetic order if the term "find_all_conclusion" is included in the rule- 

base. If this term is not included then only the first conclusion or likely cause is 

identified. If no hypothesis can be affirmed then the votes cast for all hypotheses are 

reported in numerical order. The format of the hypothesis is:

conclusion(<name of hypothesis>,<name of information file>)

At present, the interpretation system does not use the voting procedure since the rules 

are designed to generate one affirmed conclusion only. The voting system has been 

included because of the likelihood of enhancement to the rule-base (possible 

enhancements are described later in this chapter). The "information file" is used to store 

the corrective actions for the likely causes. The rule-base is supplied in a file called 

"rules". The rule-base contains both the knowledge base and the meta rules that allow 

the evaluation to be re-started. The knowledge-based rules are expressed in the form:

show(<name of intermediate hypothesis>,true/false) if <condition>. 

or

conclude(<name of hypothesis>,true/false) if <condition>.

The attribute values are supplied in a file called "metrics". The system can deal with 

both absolute values and ordinal scale values as input since the classification routine 

converts the absolute values to ordinal scale. If any attribute value is not available the 

file then the user is prompted to input the value. As seen in the trees some of the 

questions asked of the user do not require any quantitative information they require a 

yes/no reply.
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7.4 The Interpretation System Evaluation

The data set which was used to validate the anomaly detection procedure was used to 

validate the Interpretation system (dataset 4). This was also the dataset used for the 

evaluation of design metrics which was described in Chapter 3. The evaluator, who 

owned the data set, had not revealed what the problems were with the project prior to 

viewing the automatic system. He was asked to use the automatic system to identify 

potential problems, inputting his own data, and compare the results with what he had 

found during the development.

The results were very encouraging. The data set had two sub-system with a total of 56 

components altogether. Of these, in the high level and detailed design, 8 components 

were detected as being a problem by the system. The user himself had detected 7 out 

of the 8 but had detected them at least one phase later in the project than the system 

had. Also, all the likely causes, except one, were correctly identified by the system. 

The one likely cause which was not identified was found to be the result of a minor 

error in the rules which, when corrected, resulted in the correct identification of the 

likely cause.

There was one potential problem component which the system identified but which the 

evaluator felt was not a problem. However, when the relevant component was re-used 

in another project, it caused many problems. The cause of these problems had been 

correctly identified by the system in the original project.

The evaluation of the implementation and unit test phases was completed after the work 

on REQUEST was stopped. This meant that the author did not receive a formal 

evaluation report from the evaluator. Informally, the major problems were detected and 

diagnosed correctly but many of the other identified components were diagnosed as "no 

problem". Therefore, it appears that the advice system is working correctly but the 

detection system was identifying too many components at the implementation and unit 

testing phases as anomalous to allow a detailed examination of whether the components 

were correctly diagnosed as no problem. The main difficulty appears to be that the 

detection threshold of the anomaly detection routine is too low for the implementation 

and unit test phases, resulting in too many components being classed as anomalous and
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being passed to the advice system for diagnosis. It appears that the automatic 

monitoring system can correctly identify the majority of the project’s major problems 

and can do so earlier than the project manager. However, further testing is required, 

using completely new data sets from different environments, before it can be inferred 

that the results are generally valid.

7.5 Future Enhancements

Two enhancements to the automatic interpretation system are envisaged. The first one 

is the addition of a "don’t know" category for replying to questions. At present the 

worst case is assumed, for example, if the project manager is asked if a component is 

complex and does not know whether it is or not, the system assumes it is complex, and 

infers that this is the likely cause of the anomaly.

The second enhancement would only be undertaken if interest is shown in the system 

in its current state. The enhancement is to remove the assumption that an anomaly has 

a single underlying cause. This requires the advice to be enhanced to consider the 

situation when one cause has been identified but the others still have to be checked. At 

present, when a specific cause is identified the system exits from the diagnosis 

procedure. If the diagnosis were to check for coincident causes, the system would need 

to revert to processing subsequent parts of the tree. In practice, multiple causes are not 

uncommon [38], so this could be a useful enhancement.
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8. Conclusions

The aim of my thesis was to identify statistical techniques appropriate for the analysis 

of software development metrics, and to investigate how they might be used to support 

quality management procedures.

The approach taken to achieve this aim was to:

• identify consistent/general relationships between software measurements 

collected during the development, and the subsequent fault or change- 

proneness of the product;

• identify measurements and methods for detection of atypical software 

components;

• construct stable, predictive models.

The results reported in Chapter 3 indicated that my first objective was not achievable. 

I was unable to identify any common relationships between datasets 1 and 2 when 

considering module relationships. Therefore identifying a consistent or general model 

between module attributes and product quality attributes seemed unlikely to be possible.

However, I did find that there were techniques capable of identifying outlier/anomalous 

components irrespective of the particular attribute. This led to the research goals being

changed to:

• identify methods to automate anomaly detection;

• set up an advice system to help diagnose problems, that is, automate the 

interpretation of the detected anomalies.

Chapters 5 and 6 show that it is possible to use software measurements and statistical 

techniques to detect anomalies automatically. Chapter 5 also demonstrates that setting
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targets or identifying expected values for particular software measurements can help a 

project manager control a project. Some default target values were suggested together 

with an acceptable range of actual values. Values outside the acceptable range would 

be recorded as a potential problem.

Chapter 6 described the statistical technique used to identify atypical values in the 

REQUEST prototype. The technique is a simple adaptation of the scatterplot principle 

that includes a measure of density to identifying atypical values objectively and 

automatically. The verification and validation exercise showed that, in this environment, 

the atypical values detected using this technique correspond to those that an expert 

consultant also identified as atypical.

The survey described in chapter 4 aimed to investigate how expert managers identify 

anomalous modules. The survey did not have the desired results because REQUEST 

incorrectly assumed that managers were familiar with the use of metrics for controlling 

their projects. The survey indicated that this assumption was not correct. However, it 

did produce some useful results since it identified the need for an advice system to 

interpret the reason for the atypical value and identify the problem components. It was 

clear that managers would not benefit from anomaly detection unless they were given 

some indication of what an anomaly meant.

Chapter 7 demonstrated that it was possible to develop an automatic anomaly 

interpretation tool. In general, use of a simple rule-based advice system should be 

capable of being calibrated to any environment by the input of the relevant advice in the 

rules.

Although the work reported in this thesis was incorporated into the COQUAMO-2 

prototype, the prototype was never upgraded to a commercial tool. This is probably 

because project managers were not familiar enough with the use of software metrics for 

the control of projects for a tool to have been commercially viable at the end of 

REQUEST. However, consultants do appear to be aware of the benefits of measurement 

and are using measurements to identify problems during development. Therefore, it is 

likely that the prototype and the analysis techniques will be useful in the future but only 

after project mangers become more familiar with the concept of software measurements
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and have had some training in its potential benefits.

The work since the thesis appears to be concentrating on the detection of unusual 

components. There is still a debate about whether intensive statistical analysis using 

sophisticated tools is better than simple non-parametric techniques. There seems to be 

a case for both, starting with the simple techniques and then, if necessary, applying the 

relevant sophisticated techniques.

There is still a major problem in moving between the different levels of the system (i.e. 

from component to system). Most of the current work on metric validation is being 

done at the module level, using faultcounts as a surrogate for reliability and number of 

changes for maintainability. There appears to be no evidence of any research addressing 

the problem of how to move between the levels. In fact, there has even been a step 

back in the standards arena, ISO 9126 is promoting the McCall et al’s principle of a 

fixed number of general quality factors with a hierarchical decomposition in spite of the 

REQUEST criticisms. The ISO standard identifies six factors but does not suggest how 

these factors can be measured directly.

On a more positive note, although the COQUAMO-2 prototype has not been 

commercialised it is currently being used in a European funded research project called 

SQUID. In addition, the idea of using quantitative measurements for anomaly detection 

is generally accepted as a useful technique and is used in current text books [34],
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Appendix A: Boxplots for Dataset 1
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Appendix B: Boxplots for Dataset 2
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Appendix C: Boxplots for Dataset 4
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Automated Quality Control Experiment

T h a n k  y o u  fo r  a g re e in g  to  ta k e  p a r t  in  th is  e x p e r im e n t.

O n e  m e th o d  o f  q u a l i ty  c o n tro l is to  u s e  so f tw a re  m e tr ic s  to  h e lp  d e te c t w h e n  th e re  is s o m e th in g  

u n u s u a l  a b o u t a n  in d iv id u a l  p ro g ra m . T h is  c a n  b e  d o n e  b y  s tu d y in g  th e  m e tr ic  v a lu e s  a n d  

c o m p a r in g  th e  m e tr ic  v a lu e  fo r  ea c h  p ro g ra m  w ith  all o th e r  p ro g ra m s . H o w e v e r , m o re  in fo rm a tio n  

c a n  b e  o b ta in e d  b y  c o m p a r in g  tw o  d if fe re n t m e tr ic s  i.e. a  s c a tte r  p lo t  c a n  b e  u s e d  to  a s se ss  th e  

re la t io n s h ip  b e tw e e n  tw o  m e tr ic s . If th e  m a jo r i ty  o f  th e  p r o g r a m s  s h o w  a  d ir e c t  re la t io n s h ip  (i.e. 

b o th  m e tr ic s  h a v e  e i th e r  h ig h  v a lu e s  o r  lo w  v a lu e s  fo r  th e  s a m e  p ro g ra m )  th e n  th e  p ro g ra m  th a t 

h a s  o n e  h ig h  m e tr ic  v a lu e  a n d  o n e  lo w  o n e  w ill b e  c o n s id e re d  a s  u n u s u a l .

T h e  a im  o f  th is  e x p e r im e n t  is  to  in v e s tig a te  w h a t  ty p e  o f  p ro g ra m , re p re s e n te d  b y  p o in ts  o n  a tw o  

d im e n s io n a l  s c a t te r  p lo t  o f  v a r io u s  so f tw a re  m e tr ic s , a re  id e n t if ie d  a s  u n u s u a l  b y  e x p e r ie n c e d  

p ro je c t m a n a g e rs . In  so m e  c a se s  w h e n  th e  s c a tte r  p lo t  c o u ld  p ro v id e  n o  in fo rm a tio n  d u e  to  a  la rg e  

n u m b e r  o f  o v e r la p p in g  d a ta  p o in ts ,  a  d e n s i ty  p lo t  h a s  b e e n  u s e d  to  r e p re s e n t  th e  d a ta  in s te a d .

T he  r e s u l ts  w ill b e  u s e d  to  id e n tify  a  te c h n iq u e  to  a u to m a te  th e  d e te c tio n  o f  u n u s u a l  p ro g ra m s .

B a c k g ro u n d  to  th e  E x p e r im e n t

T h is  w o r k  fo rm s  p a r t  o f  a n  ESPR IT  p ro je c t, c a lle d  R E Q U E ST , w h ic h  is le d  b y  STL a t  N e w c a s tle -  

u n d e r-L y m e . T h e  p ro je c t is s p l i t  in to  th re e  su b -p ro jec ts :

o  d e v e lo p m e n t  o f  a  q u a li ty  m o d e l

o  d e v e lo p m e n t  o f re l ia b il i ty  a n d  u l t r a - h ig h  r e l i a b i l i ty /  f a u l t - to le r a n t  m o d e ls

o  p ro v is io n  o f  a  d a ta b a s e  to  s u p p o r t  th e  o th e r  s u b -p ro je c ts

STL a n d  E le k tro n ik C e n tra le n  a re  p r im a r i ly  in v o lv e d  w ith  th e  d e v e lo p m e n t  o f  th e  q u a l i ty  m o d e l, 

a l th o u g h  w e  h a v e  a c c e ss  to  th e  re su lts  o f  th e  re s t  o f  th e  p ro jec t.

T h e  d e v e lo p m e n t  o f  a  C o n s tru c tiv e  Q u a li ty  M o d e l (C O Q U A M O ) w a s  in s p ir e d  b y  th e  

C o n s tru c tiv e  C o s t M o d e l d e v e lo p e d  b y  B. W . B o e h m .T h e  a im  o f th e  m o d e l is  to  g iv e  h e lp  to  th e  

q u a l i ty  a n d  p ro je c t m a n a g e r s  in  q u a li ty  re la te d  is su e s . It h a s  b e e n  re c o g n ise d  th a t  th e  id e a  o f o ne
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p re d ic tiv e  m o d e l,  c o v e r in g  a ll p h a s e s  o f  th e  d e v e lo p m e n t , is  n o t  fea s ib le  s in c e  s tro n g  p re d ic t iv e  

m e tr ic s  a re  n o t  a v a ila b le  th r o u g h o u t  th e  c o m p le te  d e v e lo p m e n t. T h e re fo re , it is  n o w  in te n d e d  

th a t  th e  m o d e l  w ill h a v e  th re e  m o d e s  w h ic h  re la te  to  th e  th re e  s ta g e s  o f a  s o f tw a re  

d e v e lo p m e n t;  p la n n in g , m o n ito r in g  a n d  a sse ssm e n t. EC  h a s  th e  re sp o n s ib ilty  o f  th e  p la n n in g  m o d e  

p ro to ty p e  a n d  STL h a s  th e  re s p o n s ib il ty  o f  th e  m o n ito r in g  m o d e  p ro to ty p e  a n d  th e  a s s e s s m e n t 

m o d e  p r o to ty p e  ( th e  la t te r  h a s  m a in ly  b e e n  s u b -c o n tra c te d  to  C ity  U n iv e rs ity ) .

P la n n in g  m o d e

T h e  p la n n in g  m o d e  w ill b e  u s e d  d u r in g  th e  e a r ly  s ta g e s  o f  sy s te m  p la n in g  a n d  fe a s ib ilty  

a s se s sm e n t a n d  is  in te n d e d

o  to  h e lp  th e  u s e r  to  id e n tify  a n d  sp e c ify  q u a l i ty  re q u ire m e n ts .

o  to  p re d ic t  f in a l p r o d u c t  q u a lit ie s  f ro m  th e  v a lu e s  o f  m e a s u re s  (q u a li ty  d r iv e rs )  

a v a ila b le  a t  th e  s ta r t  o f  a p ro je c t f ro m  p la n s  a n d  c o n s tra in ts .

T h is  m o d e  is th e  c lo se s t to  C O C O M O 's  id e a s

M o n ito r in g  M o d e

T h e  m o n i to r in g /s te e r in g  m o d e  is in te n d e d  to  a s s is t  th e  p ro je c t m a n a g e r  to  m o n ito r  a n d  

c o n tro l  th e  d e v e lo p m e n t , w i th  q u a n ti ta t iv e  m e a s u re s  th a t  c a n  b e  c o lle c te d  d u r in g  

d e v e lo p m e n t . T h is  m o d e  fa lls  in to  tw o  a re a s  :

o A  ra n g e  o f  s ta tis tic a l te c h n iq u e s  (f ro m  s im p le  s u m m a ry  in fo rm a tio n  to  m o re  

s o p h is t ic a te d  te c h n iq u e s ) , w h ic h  w ill b e  u s e d  to  id e n tify  u n u s u a l  v a lu e s .

o A n  a d v is o r y  sy s te m , w h ic h  w ill p r o v id e  so m e  p o s s ib le  in te rp re ta t io n s  o f  th e  c a u se  of 

th e  u n u s u a l  v a lu e .

T h is  m o d e  w ill  b e  a c tiv e  th r o u g h o u t  th e  d e v e lo p m e n t  p e r io d  f ro m  th e  re q u ire m e n ts  p h a s e  

u n ti l  th e  p ro je c t h a s  b e e n  c o m p le te d .

A sse ssm e n t m o d e

T h e  a s s e s s m e n t m o d e  is in v o k e d  n e a r  th e  e n d  o f  in te g ra t io n  te s tin g . It is  in te n d e d  to  a s s is t  

f in a l p r o d u c t  a s s e s s m e n t  in  d e te rm in in g  w h e th e r  th e  p ro d u c t  c h a ra c te r is tic s  o b se rv e d
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c o n fo rm  to  th o se  in it ia l ly  sp e c if ie d  d u r in g  th e  p la n n in g  m o d e . T h e se  re s u lts  w ill b e  of 

in te re s t  in  d e c is io n s  o n  p r o d u c t  re le a se  a n d  in  p la n n in g  s u p p o r t  fo r  th e  o p e ra tio n a l  p h a se .

T h is  e x p e r im e n t  is c o n c e rn e d  w i th  th e  s ta tis tic a l te c h n iq u e s  se c tio n  in  th e  m o n ito r in g  m o d e . T he  

re s u lts  w ill  b e  u se d  to  t ry  a n d  a u to m a te  th e  p ro c e d u re  o f  id e n tif ic a tio n  o f  u n u s u a l  m e tr ic  v a lu e s . 

T h e  r e s u l t in g  in fo rm a tio n  fro m  a n  a u to m a tic  d e te c tio n  c a n  th e n  b e  a u to m a tic a lly  fe d  in to  th e  

a d v is o ry  s y s te m  w h ic h  is c o n c e rn e d  w i th  th e  in te rp re ta t io n  o f  th e  u n u s u a l  v a lu e s .

P ro c e d u re  fo r  C o m p le tin g  Q u e s tio n n a ire

T h e  e x p e r im e n t c o n s is ts  o f  tw o  sec tions:

o S e c tio n  o n e  is a  b r ie f  q u e s t io n n a ire  w h ic h  y o u  s h o u ld  fill in  a t  th e  s ta r t  o f  th e  e x p e r im e n t to  

g iv e  in fo rm a tio n  a b o u t  y o u r  b a c k g ro u n d  a n d  ex p e rien ce .

o S e c tio n  tw o  c o n s is ts  o f  b i-v a r ia te  sc a tte r  p lo ts  a n d  so m e  d e n s i ty  p lo ts . T h e  p ro c e d u re  is to 

s im p ly  c irc le  th e  v a lu e s  y o u  re g a rd  a s  u n u s u a l  (if a n y ) , a n d  w o r th  fu r th e r  in v e s tig a tio n , o n  

e a c h  p lo t  in d iv id u a l ly .  P le a se  a d d  a  m in u s  s ig n  b e s id e  th e  m a rk e d  p o in ts  w h ic h  y o u  re g a rd  

a s  p o te n tia l ly  p ro b le m a tic  a n d  a  p lu s  s ig n  b e s id e  th o se  m a rk e d  w h ic h  y o u  r e g a rd  a s  

fa v o u ra b le  (a d d  n o th in g  if  y o u  c a n n o t d e te rm in e  w h ic h ). If y o u  feel th a t  y o u  re q u ire  m o re  

in fo rm a tio n  th a n  th a t  p ro v id e d  o n  a n  in d iv id u a l  p lo t , p le a se  s ta te  th e  in fo rm a tio n  y o u  feel 

y o u  r e q u ir e  b e s id e  th e  re le v a n t p lo t.

Size against Control Flow

T h e  d e n s i ty  p lo t  s h o w s  th e  n u m b e r  o f  p o in ts  in  e a c h  cell. W ith in  e a c h  cell, th e  p o in ts  a re  

r a n d o m ly  sc a tte re d  to  s h o w  th e  d e n s i ty  b u t  th e y  a ll h a v e  th e  s a m e  v a lu e  a n d  w o u ld  

o v e r la p  if p lo t te d  o n  a  s c a tte r  p lo t. A p a r t  f ro m  re m e m b e r in g  th a t  th e  p o s it io n  o f a n y  p o in t

page 185



w ith in  a  cell is r a n d o m , a n d  th e re fo re  n o  e m p h a s is  s h o u ld  be  p u t  o n  w h e re  th e  p o in ts  lie, a 

d e n s i ty  p lo t  c a n  b e  tre a te d  in  a s im ila r  w a y  a s  a sc a tte r  p lo t.

Subjective Complexity Assessment «gainst Total Known Errors
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It is in te n d e d  th a t  th e  e x p e r im e n t s h o u ld  fo llo w  th e  n o rm a l  p ra c tic e s  o f  th e  m a n a g e r , a s  fa r a s  

p o ss ib le . T h e re fo re  if a n o th e r  m e m b e r  of y o u r  te a m  is n o rm a lly  re sp o n s ib le  for q u a lity  co n tro l, 

th is  q u e s tio n n a ire  s h o u ld  b e  c o m p le te d  b y  th a t  p e rso n .

E ach  p lo t  is in te n d e d  to  b e  tr e a te d  in d iv id u a lly . D o n o t  a t te m p t  to  c o m p a re  th em .

A fte r  c o m p le tio n  o f  b o th  se c tio n s  p le a se  s e n d  th e m  to  th e  fo llo w in g  a d d re ss :

L esley  P ic k a rd  

STC T e c h n o lo g y  L td  

C o p th a ll  H o u s e  

N e ls o n  P la c e  

N e w c a s t le -u n d e r -L y m e  

ST5 1EZ

If y o u  w o u ld  lik e  to  rece iv e  a  r e p o r t  o n  th e  re su lts  o f  th is  e x p e r im e n t, a n d / o r  fu r th e r  in fo rm a tio n  

a b o u t R E Q U EST, p lease  a t ta c h  y o u r  n a m e  a n d  a d d r e s s  to  th e  Q u e s tio n n a ire  w h e n  y o u  re tu rn  it. 

P lease  in d ic a te  if y o u  w o u ld  lik e  to  rece iv e  o n ly  th e  r e s u l ts  o f  th e  e x p e r im e n t o r  in fo rm a tio n  a b o u t 

R EQ U EST as w ell.
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Description of Data Used

T iie  d a ta  u s e d  fo r th is  e x p e r im e n t a re  m e a su re s , ta k e n  o n  a  p e r  p ro g ra m  b as is , f ro m  a s u b -sy s te m  of 

a  la rg e  m a in f ra m e  o p e ra tin g  sy s tem . It c o n s is ts  o f  226 p ro g ra m s . F o r ea c h  p ro g ra m  n in e  m e a su re s  

w e re  c o lle c te d .

1. th e  n u m b e r  o f p ro g ra m s  w h ic h  ca ll a sp e c if ie d  p ro g ra m  (i.e. F an -in )

2. th e  n u m b e r  o f p ro g ra m s  c a lle d  b y  a sp e c if ie d  p ro g ra m  (i.e. F a n -o u t)

3. th e  n u m b e r  o f to ta l p a ra m e te rs  o n  th e  p ro g ra m  in te rface .

4 . th e  n u m b e r  of d a ta  i te m s  u se d  b y  th e  p ro g ra m .

5. p ro g ra m  size  in  lin es  o f co d e , i.e. n o n -c o m m e n t, n o n -b la n k  lines, in  p ro g ra m

6. p ro g ra m  co n tro l flow  m e a s u re d  in  te rm s  o f th e  n u m b e r  o f b ran ch es .

N o tio n a l  b ra n c h e s  w e re  in c lu d e d  so  th a t  IF -T H E N -E L S E  a n d  IF -T H E N -E L S E -IF  w e re  

b o th  c o u n te d  a s  tw o  b ra n c h e s . T he  n u m b e r  o f  b ra n c h e s  fo r lo o p s  w ith  a  s in g le  c o n tro l 

s t ru c tu re  (i.e. FO R , W H IL E , o r  U N T IL  ) w a s  c o u n te d  a s  tw o , a n d  fo r lo o p s  w ith  a  d u a l  

c o n tro l s t ru c tu re  (i.e. FO R  a n d  W H IL E , o r  FO R  a n d  U N T IL  ) w a s  c o u n te d  a s  th ree .

T h e  c o m p ile r  e v a lu a te d  c o m p o u n d  b o o le a n s  la z ily , so each  A N D  a n d  O R  in  a 

c o n d itio n a l s ta te m e n t o r  lo o p  c o n tro l w a s  c o u n te d  se p a ra te ly .

7. p ro g ra m  e n h a n c e m e n ts , i.e. th e  n u m b e r  o f  tim es  th e  p ro g ra m  w a s  a m e n d e d  e x c lu d in g  

c h a n g e s  fo r  fa u lt  c le a ra n ce .

T h is  in fo rm a tio n  w a s  o b ta in e d  f ro m  fo rm a tte d  c o m m e n ts  in  e a c h  p ro g ra m  w h ic h  

re c o rd e d  e a c h  c h a n g e  to  th e  p ro g ra m  d u r in g  its  d e v e lo p m e n t a n d  su b se q u e n t ev o lu tio n .

8. th e  n u m b e r  o f k n o w n  e rro rs , i.e. th e  n u m b e r  of fa u lts  c o rre c ted  in  the  p ro g ra m .

T h is  in fo rm a tio n  w a s  o b ta in e d  f ro m  fo rm a tte d  c o m m e n ts  in  e ach  p ro g ra m , re c o rd in g  

e ach  fa u lt  c le a re d  d u r in g  i ts  d e v e lo p m e n t a n d  s u b s e q u e n t m a in te n a n c e .
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su b je c tiv e  co m p lex ity , i.e. a n  a s s e s s m e n t o f th e  c o m p le x ity  o f th e  p ro g ra m  on  a scale o f 

1 (v e ry  s im p le ) to  5 (v e ry  co m p lex ) p r o v id e d  b y  a  m e m b e r  o f th e  d e v e lo p m e n t g ro u p
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Section 1 - Questionnaire

Reference N um ber

1. N u m b e r  o f  y e a rs  o f c o m p u te r  ex p erien ce?

a 0 - 2

b 2 - 4

c 4 - 6

d 6 - 1 0

e 10+

E x p e rie n c e  d o m a in ?

a s o f tw a re

b h a r d w a r e

c m ix tu re  o f  b o th

F o rm a l E d u c a tio n

( i ) L e v e l

a P o s t g ra d u a te

b D e g re e

c H N D  /  H N C

d S c h o o l q u a lif ic a tio n s

e N o  fo rm a l q u a lif ic a tio n s

( i i)S u b je c t

a  c o m p u te r  science

b  sc ience /  m a th e m a tic s  /  e n g in e e r in g

c a r t s

d  o th e r
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R e fe ren ce  N um ber4 . T y p e  o f  jo b  (p re d o m in a te ly )?

a p ro jec t m a n a g e r

b q u a l i ty  a s s u ra n c e  m a n a g e r

c m e m b e r o f  Q A  g ro u p

d te a m  le a d e r

e d e v e lo p e r

f o th e r  (p le a se  sp e c ify )

A re  y o u  a  c u r re n t  o r  p a s t m an ag er?

a c u rre n t

b p a s t

5(ii) If p a s t  - n u m b e r  o f  y e a rs  since?

a 0 - 2

b 2 - 6

c 6 - 1 0

d 10+

Please state current position

6. D o y o u  u s u a lly  u s e  so f tw a re  m e tric s  to  d e te c t p ro b le m s?

a  u s u a l ly

b  se ld o m

c n e v e r

7. A re  y o u  fa m ilia r  w i th  th e  u se  o f  sc a tte r  p lo ts  fo r  so f tw a re  q u a li ty  a s s u ra n c e  ?

a  no

b  p a r t i a l l y

c c o m p le te ly

8. A re  y o u  u s e d  to  u s in g  m etrics  d u r in g  d e v e lo p m e n t?

a  y e s

b  no

9. W o u ld  y o u  b e  w il l in g  to  ta k e  p a r t  in  a m o re  d e ta i le d  s tu d y  c o n c e rn in g  in te rp re ta t io n  of 

s o f tw a re  m e tr ic s?

a  y e s

b  no

If y e s , p le a se  a tta c h  y o u r  n a m e  a n d  a d d re s s  to  th e  Q u e s tio n n a ire  w h e n  y o u  re tu rn  it
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Contents List of Flots

S iz e

S ize

S iz e

S iz e

S iz e

S iz e

T o ta l P a r a m e te r s  

T o ta l P a r a m e te r s  

C o n tro l  H o w  

D a ta  I te m s  U se d  

C a ll in g  M o d u le s  (F an -in ) 

S u b jec tiv e  A sse s sm e n t 

T o ta l K n o w n  E rrro rs

a g a in s t C o n tro l F low

a g a in s t S u b jec tiv e  C o m p le x ity  A sse s sm e n t

a g a in s t M o d u le s  C a lle d  (F a n -o u t)

a g a in s t C a llin g  M o d u le s  (F a n -in )

a g a in s t T o ta l K n o w n  E rro rs

a g a in s t M o d u le  E n h a n c e m e n ts

a g a in s t S iz e

a g a in s t T o ta l K n o w n  E rro rs

a g a in s t T o ta l K n o w n  E rro rs

a g a in s t S iz e

a g a in s t M o d u le s  C a lle d  (F a n -o u t)

a g a in s t T o ta l K n o w n  E rro rs

a g a in s t M o d u le  E n h a n c e m e n ts
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