

City, University of London Institutional Repository

Citation: Pickard, L. M. (1994). Statistical techniques and project monitoring. (Unpublished

Doctoral thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/30072/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

STATISTICAL TECHNIQUES

AND

PROJECT MONITORING

by

Lesley Margaret Pickard

PhD

City University

Computer Science Department

March 1994

Contents Page

Acknowledgements .. 7

Declaration.. 7

Abstract ... 8

1. Introduction... 9

1.1 Overview of the REQUEST project .. 11

1.2 Overview of COQUAMO... 12

1.3 Data Descriptions... 15

1.3.1 Datasets 1 and 2 ... 15

1.3.2 Dataset 3 .. 17

1.3.3 Dataset 4 .. 19

2. Use of Metrics in Control of Projects.. 21

2.1 Views of Q uality ... 22

2.2 Background to Software Quality Modelling.. 24

2.3 Basis of Thesis ... 27

2.4 Latest Research in Area ... 28

2.5 Use of Statistics in Analysis of Software D ata 33

3. Preliminary Analysis .. 36

3.1 Aims of Analyses and Implications for Statistical Techniques............ 36

3.1.1 Identification of Relationships.. 37

3.1.2 Identification of Potential Anomalies...................................... 39

3.1.3 Stable Predictive Models ... 39

3.1.4 Statistical Techniques for COQUAMO-2 u s e rs 40

3.2 Implication of the non-Gaussian nature of Software Data 40

3.3 Determination of Relationships among Software A ttributes.................. 42

3.3.1 Bi-variate Relationships... 43

3.3.2 Multivariate Relationships .. 52

3.3.3 Problems with OLS regressions... 56

page 2

3.3.3.1 Transformations... 56

3.3.3.2 Robust Regressions.. 57

3.3.4 Problems with Data Characteristics 59

3.3.4.1 Obtaining Independent Measures 60

3.3.4.2 Division into Design and Code-based Metrics 64

3.4 Identification of Atypical Values ... 67

3.4.1 Comparison of Single Attribute Values 67

3.4.2 Bivariate and Multivariate Detection 72

3.5 An Evaluation of Some Design-Based Metrics...................................... 75

3.5.1 Relationships Between Measures... 78

3.6 Conclusions of Preliminary Analysis .. 80

4. Anomaly Detection Survey .. 82

4.1 Design of Survey... 84

4.2 Survey Results... 85

4.2.1 Background of Responders.. 85

4.2.2 Results of Analysis .. 86

5. Project-based Monitoring ... 91

5.1 Introduction to Project-based Monitoring ... 91

5.2 Setting Targets... 96

5.3 The Automatic System ... 104

6. Component-based Anomaly Detection ..106

6.1 Automatic Univariate Anomaly Detection... 109

6.2 Automatic Bivariate Anomaly Detection... 114

6.2.1 Suggested Techniques for Bivariate Anomaly Detection 114

6.2.1.1 Nearest Neighbour Clustering technique115

6.2.1.2 Sum of Euclidean Distances..117

6.2.1.3 Density p lo t..117

6.2.2 Choice of Statistical Technique... 118

6.3 Verification and Validation of Automatic Detection Prototype..............121

6.3.1 Verification Process.. 122

6.3.2 Validation Process.. 123

page 3

6.3.2.1 Validation Results .. 123

6.4 Summary of Verification and Validation Results 128

7. Interpretation.. 129

7.1 Project -based Interpretation .. 130

7.2 Component-based Interpretation... 135

7.2.1 Classification ... 136

7.2.2 Interpretation System ... 137

7.3 Rules and Expert System Shell ... 153

7.4 The Interpretation System Evaluation..155

7.5 Future Enhancements ..156

8. Conclusions.. 157

9. References .. 160

Appendices... 168

Appendix A: Boxplots for Dataset 1 169

Appendix B: Boxplots for Dataset 2 ...173

Appendix C: Boxplots for Dataset 4 ...177

Appendix D: Questionnaire... 182

page 4

Illustrations

Figure 3.1 SSI - Size against Complexity

Figure 3.1 SSI - Size against Complexity using natural logarithms

Figure 3.3 SS2 - Size against Complexity

Figure 3.4 SS2 - Size against Complexity using natural logarithms

Figure 3.5 SS2 - Size against Changes

Figure 3.6 SSI - OLS Residual Plot for Multivariate Regression

Figure 3.7 SS2 - OLS Residual Plot for Multivariate Regression

Figure 3.8 SSI - Residual Plot for best single variate regression

Figure 3.9 SS2 - Residual Plot for best single variate regression

Figure 3.10 SSI - Robust Residual Plot

Figure 3.11 SS2 - Robust Residual Plot

Figure 3.12 SSI - Residual Plot for Normalised Equation

Figure 3.13 SS2 - Residual Plot for Normalised Equation

Figure 3.14 Comparison between Mean and Median

Figure 3.15 Boxplots for Machine Code Instructions

Figure 3.16 SSI - Principal Components Plot

Figure 3.17 SS2 - Principal Components Plot

Figure 4.1 Example of Overlapping Points

Figure 5.1 Cumulative Faults found during Testing

Figure 6.1

Figure 6.2 Size against Control Flow

Figure 6.3 Informational Fan-in against Known Errors

Figure 6.4 Size against Subjective Complexity Assessment

Figure 6.5 Size against Coding Errors

Figure 6.6 Information Fan-in against Size

Figure 6.7 Size against Paths

Figure 6.8 Testing Errors against Exit Paths

Figure 6.9

Figure 7.1 High level design phase

Figure 7.2 Detailed design phase

Figure 7.3 Coding phase

Figure 7.4 Unit test phase

page 5

Figure 7.5 System Architecture

Tables

Table 3.1 SSI - Pearson’s Correlation Matrix

Table 3.2 SS2 - Pearson’s Correlation Matrix

Table 3.3 SSI - Contingency C Correlation Coefficients

Table 3.4 SS2 - Contingency C Correlation Coefficients

Table 3.5 Correlations between Principal Components and raw data

Table 3.6 SSI - Mean and Median

Table 3.7 SS2 - Mean and Median

Table 3.8 Correlation Coefficients

Table 5.1 Phase summary

Table 5.2 Fault and Change phase distributions

Table 5.3 Level 2 Target information

Table 5.4 Level 3 Targets

Table 5.5 Level 4 fault classification

Table 6.1 Percentage of Data identified

Table 7.1 Reasons for Phase summary information

Table 7.2 Reasons for level 2 information

Table 7.3 Reasons for Review/inspection information

Table 7.4 Reasons for Process assessment

Table 7.5 Reasons for Fault and change classifications

Table 7.6 Transformation to Ordinal scale values

page 6

Acknowledgements

I would like to thank my supervisor Dr. Barbara Kitchenham for all her help, advice and

encouragement during the work and write-up of my thesis.

I would also like to acknowledge the help and discussions of my colleagues on the

REQUEST project, especially Steve Linkman. The work for my thesis was funded by

ESPRIT as part of the Reliability and Quality for European Software Technology

(REQUEST) project. I wish to thank STL/ICL for their support.

I would like to thank Eric Barber for his help with the implementation of the expert

system rules and Colin Meredith and Max Turner for their involvement in the

Verification and Validation exercise.

In addition, I would like to thank Barbara Kitchenham for the collection of the datasets

and Sharon Aid for the complexity assessment for dataset 3. I would also like to thank

Sue Linkman for allowing me to use her boxplot illustrations for dataset 4 which are in

Appendix C.

Declaration

I grant powers of discretion to the University Librarian to allow this thesis to be copied

in whole or in part without further reference to me. This permission covers only single

copies made for study purposes, subject to normal conditions of acknowledgment.

page 7

Abstract

The aim of this thesis is to identify statistical techniques which are appropriate for the
analysis of software development metrics and to investigate how they might be useful
to support quality management procedures.

The initial approach was to investigate the use of statistical techniques to identify
consistent relationships between measures collected during the development and fault
or change-proneness of the final product. No common relationships were identified
between the datasets when module relationships were considered. Therefore, there is
little hope of identifying any general relationships between module attributes and product
quality attributes.

However, some techniques were good at identifying outlier/anomalous components
irrespective of the particular attributes. For univariate outlier detection a modification
of the boxplot technique was found to be useful. This is described in the document.
For bi-variate outliers, scatterplots were found to be useful. This thesis describes how
the scatterplot technique can be automated to objectively identify outliers. It describes
a set of rules which were implemented into a prototype. The objective was to produce
a technique which most consistently identified the anomalies that had been identified
subjectively by an expert consultant.

The thesis describes how summary statistics can be useful at the project level. It
identifies a sub-set of useful information to enable a project manager to control his/her
project. A target value, where appropriate is suggested for each measurement.
Monitoring is based on the principle that when an actual attribute value exceeds the
target value then it is likely to be a potential problem in the development.

A survey highlighted that for automatic anomaly detection to be of any significant
benefit to a project manager, some interpretation is required to identify the likely cause
of the anomaly and its effect on the project. The thesis shows how the cause of an
anomaly can be diagnosed with the help of a simple expert system which looks at a
combination of attribute values for diagnosis.

page 8

1. Introduction

The aim of this thesis is to identify statistical techniques which are appropriate for the

analysis of software development metrics and to investigate how they might be used to

support quality management procedures.

The author’s specific objectives originated from a European collaborative project called

REQUEST. The part of REQUEST the author was involved in was the development

of a Constructive QUality MOdel (COQUAMO). It was intended that COQUAMO

would use measurements collected during the development to predict final product

quality. The REQUEST project, and in particular, the COQUAMO model is described

in section 1.1. The author was only involved in the monitoring mode of the model. Her

initial objectives were to:

• Identify consistent/general relationships between software measurements

collected during the development and fault or change-proneness of the

product;

• Identify measurements and methods for detecting atypical software

components;

• Construct stable, predictive models.

The initial approach was to investigate the use of statistical techniques required to meet

the above objectives and to analyse software data sets to validate the proposed

techniques. The author also had a requirement to use the statistical techniques to

automate the use of the predictive models. As a result of the author’s initial work

(section 3, "Preliminary Analysis") the view of the project goals changed. This altered

the author’s goals to:

• identify methods to automate anomaly detection;

• set up an advice system to help diagnose problems, that is, automate the

interpretation of the detected anomalies.

page 9

Chapter 2 discusses in general why measurement of software attributes is important and

how it can help project managers control their projects during development.

The REQUEST project team envisaged that project managers would wish to predict

quality throughout the development of a product and to detect problems before the end

of the project. In chapter 3, the author describes the investigations and analyses she

undertook to identify consistent/general relationships and atypical values. This analysis

revealed that the nature of software attribute data affects the use of classical statistical

techniques and shows how some of the problems could be overcome.

Before the author could choose a statistical technique which automates the detection of

atypical values, she investigated type of anomalies an experienced project manager

would detect as anomalous. Chapter 4 describes a survey which the author carried to

do this.

The results in Chapter 3 revealed no evidence that a statistical relationship exists

between development measures taken during development and final product quality,(see

chapter 3 and [1]). Therefore the REQUEST team decided to concentrate on the

automatic detection of anomalies found during the development process in the

monitoring mode of COQUAMO. The monitoring mode was intended to support the

project manager at two different levels - project and component level assessment of

project progress.

Chapter 5 describes the use of project-level summary information and the setting of

targets to help project managers to control projects. The author suggests the type of

information the project manager would find useful and sets some default targets values.

Default target values are required because data will not always be available to generate

the target value.

Component-based monitoring is described in chapter 6. The author was responsible for

choosing an appropriate statistical technique to automate component-based anomaly

detection. The technique chosen required some adaption and the chapter describes what

the adaption was and why it was required. This chapter also describes the verification

and validation process of the prototype and the results found.

page 10

The need for an advice system was identified in the survey described in chapter 4. A

statistical based anomaly detection only identifies atypical or anomalous values, it does

not provide any indication of why the values were atypical. Chapter 7 shows how the

use of an advice or simple expert system can help interpretation. The author was

responsible for converting expert knowledge into an advice system. The chapter also

describes the verification and validation process of the advice system and the results.

The datasets used for the preliminary analysis, the automation of the anomaly detection

and the verification and validation process are described in section 1.3 of this chapter.

1.1 Overview of the REQUEST project

REQUEST was one of the ESPRIT Software Technology projects. Its name was derived

from Reliability and Quality for European Software Technology. The aim of the

REQUEST project was to provide improved and validated techniques for measuring and

modelling software quality and reliability. This was to be supported by appropriate

prototype tools. The project was concerned with the use of quantitative information and

models which provide information to help project and quality management decision

making and control.

It was organised into three sub-projects:

Sub-project 1 - Quality measurement, modelling and prediction;

Sub-project 2 - Reliability measurement, modelling and prediction;

Sub-project 3 - Data collection and storage.

The aim of Sub-project 1 was to produce a Constructive Quality Model (COQUAMO).

Originally COQUAMO was assumed to be empirically based, that is, based on observed

relationships between quality factors obtained in a product, and various quality indicators

which are quantitative in nature. This implied the need to identify techniques which can

reveal and formulate such relationships.

The reliability modelling work was concerned with developing reliability models which

page 11

incorporate testing information. This involved devising new approaches to modelling

the reliability of single and diverse N-version software systems. It included the

modelling of ultra-high reliability systems capable of incorporating failure information

of single version but taking into account fault-tolerant architectures.

The aim of sub-project 3 was to provide software data to allow the validation of models

produced by the other two sub-projects. As part of the work of devising a database, the

sub-project also produced data collection forms and manuals.

1.2 Overview of COQUAMO

The idea of COQUAMO, [2], was inspired by the Constructive Cost Model, COCOMO,

[3]. COCOMO predicts software effort using cost drivers and COQUAMO was

intended to be a set of predictive models which would use quality drivers to predict the

end-product quality. Conventially, software engineers seldom consider the issue of

software quality achievement as part of their problem. This is partially due to the

feeling that quality is achieved by controlling the production methods not the product

itself. This has been reinforced by quality assurance development guidelines which

identify good techniques and assess projects in terms of whether or not these techniques

have been adhered to.

The aim of REQUEST was to link assessment to measurable features of the software

as well as adherance to procedures. REQUEST was concerned with the problems of

quantitative prediction and assessment. In particular, REQUEST was concerned with

the means by which such predictions and evaluations may be used to assist software

producers in initial project set-up and the process of product development throughout

the software life cycle.

As part of the background to COQUAMO, the REQUEST project had to consider how

software quality could be specified and measured. The existing quality models were

based on the quality factor, criteria, metric model. This is a hierarchical model that

defines a set of quality factors which are intended to characterise quality from the user’s

viewpoint. The factors are broken down into quality criteria which are related to a set

page 12

of measurable attributes called quality metrics. This approach was used by various

research workers and their work is described in section 2.2 of this thesis. There are

many limitations (identified in section 2.2) with this approach which makes its use in

practice difficult.

Gilb [4] suggested an alternative approach to quality modelling where quality and

resource requirements should be specified individually for any software system , not a

general set of factors as suggested with the above approach. The attributes are not

broken into quality criteria but into more and more specific attributes until they are

directly measurable.

The REQUEST aim was to update and improve ideas on Quality Models. Their

approach was to refine the McCall and Walter’s model [5] and use Gilb’s approach to

quantifying quality.

The REQUEST team realised that the idea of predictive models which cover all phases

of software development was not feasible since there was no evidence that a statistical

relationship existed between end-product quality and software attributes collected during

the development process. This implied that there were two different types of metrics,

metrics related to final product qualities and metrics related to software production.

The team decided to divide the model into three modes which reflect the three stages

of software development - planning, monitoring and assessment. The metrics related to

final product quality are relevant at the planning and the assessment modes and the

metrics related to the software production are relevant at the monitoring mode.

Planning

The planning mode was intended for use during the early stages of system planning and

feasibility assessment of the quality levels planned. It is intended to:

• help the user identify and specify quality requirements;

page 13

• predict final product qualities from the values of measures (quality

drivers) available at the start of a project from plans and constraints.

The final product qualities (quality factors) were selected from various quality factors

suggested in the literature [5], [6] and [7]. The quality factors which were selected and

the selection process are described in [8] and [9]. The quality drivers, along with their

function and origin, are described in [10].

The planning mode is the closest to the original idea of COQUAMO. The model for

this mode (COQUAMO-1) is operational from the start of the project until high level

design when the planning is complete.

Monitoring

The monitoring mode is intended to assist the project manager to monitor and control

the development process, using quantitative measures (software attributes) that can be

collected during development. Once the planning is complete and the end product

qualities have been assessed as feasible, it is assumed that the planned development

process will result in the achievement of the final product qualities. The monitoring

system (COQUAMO-2) is intended to detect when there is a deviation from plan and

provide help in the control of the development process. If there is a deviation from plan

this implies that the end-product qualities may not be achieved if no action is taken.

COQUAMO-2 has two major components:

• A range of statistical techniques which will be used to identify unusual

values. At the project level this is basically the use of summary

information and deviations from set targets. The component level

monitoring involves more sophisticated techniques;

• An advisory system which will provide some possible interpretations of

the cause of the detected unusual values.

page 14

COQUAMO-2 is active throughout the development period from the requirements phase

until the product has been completed. The author’s research activities were concerned

with this model only.

Assessment

The assessment mode is invoked near the end of the integration testing. It is intended

to assist final product assessment in determining whether the product quality

characteristics observed conform to those initially specified during the planning mode.

The set of models for this mode (COQUAMO-3) provide feedback to COQUAMO-1.

These results will be of interest in decisions on product release and in planning support

for the operational phase. This should also provide information to other projects to

allow better estimation. The models used for reliability and usability are reliability

growth models and are described in [11] and [12]. The COQUAMO-3 assessment can

start when the software product exists in a sufficiently complete version to allow

realistic operational testing.

1.3 Data Descriptions

Four datasets have been used to validate the statistical techniques investigated in this

thesis for the analysis of software data.

1.3.1 Datasets 1 and 2

These two data sets were implementations of the same functional requirement of a large

operating system and have the same descriptions. Dataset 1 consists of 27 modules and

dataset 2 consists 40 modules. For each module eleven measures were collected.

(1) Machine code Instructions (MCI)

This is a count of the number of machine level instructions in the compiled

page 15

version of the modules, in bytes, (code based metric)

(2) Lines of code (LOC)

This is a count of the number of lines of code in the module between the first

BEGIN and the ENDMODULE lines. A line was included in this count if the

first non-space character was not a comment character. Blank lines were not

included, (code based metric)

(3) Fan-out (FO)

This is the number of other modules called by a module, (design based metric)

(4) Data Items (DI)

This is the number of external global static (i.e. common) data items accessed

by a module, (design based metric)

(5) Parameters (PAR)

This is the number of parameters on the interface of a module, (design based

metric)

(6) nl

This is the number of distinct operators appearing in a module. This metric and

the next three metrics can be used in calculating Halstead’s Software Science

metrics [13]. (code based metric)

(7) n2

This is the number of distinct operands appearing in a module, (code based

metric)

(8) Nl

This is the total number of all operators appearing in a module, (code based

metric)

(9) N2

This is the total number of all operands appearing in a module, (code based

page 16

module)

(10) McCabe’s V (V(G))

This is McCabe’s cyclomatic number which defines the complexity of a module

in terms of its control structure and is represented by the maximum number of

linearly independent paths through a module [14], (code based metric because

collected at the coding stage, but could be derived from the design)

(11) Changes (CHG)

This is the number of changes made to a module , after the module was put

under formal configuration control.

Some combinations of the basic metrics have been used:

n = nl + n2

N = Nl + N2

HE = nl*N2*N*log2(n)/2*n2

where HE is Halstead’s Effort metric, mental effort to produce a module, (code based

metric)

When the metric names are shown with a preceding N (e.g. NN)it means that the metric

has been normalised by dividing it by its size (lines of code).

1.3.2 Dataset 3

This data is from a large operating system and consists of 226 modules. For each

module twelve measures were collected.

(1) Fan-in

This is the number of modules which call a specified module.

page 17

(2)

This is the number of modules called by a specified module.

Fan-out

(3) Input parameters

The number of input parameters on a module interface.

(4) Output parameters

The number of output parameters on a module interface. When parameters are

used as both input and output parameters they are included in both counts.

(5) Data reads

The number of data structures (not individual elements) the module reads from,

but does not also write to.

(6) Data writes

The number of data structures the module writes to, but does not also read from.

(7) Data reads and writes

The number of data structures the module both reads from and writes to.

(8) Size (LEN)

Module size in lines of code, non-comment, non-blank lines in a module.

(9) Control flow (CF)

Module control flow measured in terms of the number of branches.

Notional branches were included so that IF-THEN-ELSE and IF-THEN-ELSE-IF

were both counted as two branches. The number of branches for loops with a

single control structure (i.e. FOR,WHILE, or UNTIL) was counted as two, and

for loops with a dual control structure (i.e FOR and WHILE, or FOR and

UNTIL) was counted as three. The compiler evaluated compound booleans

lazily, so each AND and OR in a conditional statement or loop control was

counted separately.

page 18

(10) Module enhancements (CHNG)

The number of times a module was amended excluding changes for fault

clearance. The information was obtained from formatted comments in each

module which recorded each change during its development and subsequent

evolution.

(11) Known errors (KE)

The number of faults corrected in the module.

This information was obtained from formatted comments in each module,

recording each fault cleared during its development and subsequent maintenance.

(12) Subjective complexity

An assessment of the complexity of the module on a scale of 1 (very simple) to

5 (very complex) provided by member of the development group.

1.3.3 Dataset 4

Two datasets was combined to form this dataset. They were:

• SCSI

• TCB

These are two subsystems of a real-time embedded software system. The data was

collected by a manual inspection of the design documents, the print-out of the coded

data and the subsequent error reports.

The data is made up of a number of procedures, seventeen in the SCSI dataset and

thirty-four in the TCB dataset. For each of the procedures the following variables have

been extracted (1 to 13) and calculations made (14-16):

(1) lines of code

page 19

(2) comments

(3) paths

(4) returns

(5) global (externally accessible) items

(6) instruction boxes

(7) fan-out

(8) number of entry points

(9) fan-in

(10) testing errors

(11) design errors (testing)

(12) coding errors (testing)

(13) specification errors (testing)

(14) errors per lines of code

(15) errors per instruction box

(16) lines of code per instruction box

In the SCSI dataset there are 3 modules for which there are no coding metrics. This

is because the coding was altered after the initial design document as these procedures

were found to be redundant. The latest available design documents were used, together

with their complementary coding print outs and error reports.

page 20

2. Use of Metrics in Control of Projects

Metrics are quantitative measures of software attributes. For example, lines of code is

a metric for measuring size and hours is a metric for measuring effort. The use of

measurement is important in most areas of work. The need for it can be summarised

by the quote "you cannot control what you cannot measure", [15]. Measurement

removes vagueness and helps to provide an objective and common basis of

understanding.

Software engineering is no exception to this. The use of measurement is as important

in this area as in any other. For example, everyone has their own opinion on what

quality means. However, in every specification there is an implied requirement for a

quality product. This requirement is difficult to achieve without a common view of the

term. The attachment of quantitative measures to the specification would help in two

ways:

• it identifies what the client means by ‘quality’;

• it allows testing of the product to confirm that the measure has been

achieved.

Many high level management goals identify ‘improvement’ as one of their aims, for

example, improvement in productivity or quality. You cannot judge whether

improvement has occurred or not if an objective baseline does not exist with which to

compare.

When relevant quantitative measures are available, they provide information to assist the

monitoring and control of the production process. Measurement can help provide

control of projects in different ways. For example: •

• measures can provide a common baseline. If quantitative measures are

collected, along with the definitions and counting rules, they can be used

as a baseline to compare future measurements with. This is particularly

important for comparison among projects, for example, using similar past

page 21

projects to help obtain planned or expected values for the current project.

measures can be incorporated into a management planning and

monitoring activity where estimates of effort, timescale and quality are

made part of the project plans. Progress can be monitored by comparing

the actual values against the planned values. The planned values can be

derived either from external targets or from estimates. The measurement

process provides the information needed to assess whether externally set

constraints are likely to be achieved and whether there are any potential

problems occurring with the development process.

measures can highlight particular problem areas. Recording information

about the nature and origin of a defect provides information to identify

where major problems are occurring. Information about how defects are

detected provides useful information about the efficiency of testing

process.

2.1 Views of Quality

There are many different views of what is meant by ‘Quality’. Garvin [16] has

described five different views of Quality which identify different meanings of quality.

The five views are:

(1) Transcendent

This approach to quality comes from philosophy where quality is equated to

innate excellence. It cannot be defined precisely and is felt rather than

measured. This type of quality can only be recognised through experience and

a person can only recognise the presence or absence of it.

(2) Product-based

This approach comes from economics where quality is related to the content of

the product. This implies that quality is an inherent characteristic and that higher

quality leads to higher cost. This type of quality can be measured objectively

page 22

although an individual’s preference for the different product attributes is

subjective.

(3) User-based

This approach depends on the assumptions as to what the user wants. It is

defined as "fitness for purpose". The problem with this type of quality is

differentiating between product attributes which represent quality and those

which just increase customer satisfaction. This quality view is external to the

producing organisation.

(4) Manufacturing-based

This approach of quality is defined as "conformance to specification". Quality

from this viewpoint means meeting the specification precisely and first time.

This view is internal to the organisation where cost reduction is achieved by

minimising specification deviations.

(5) Value-based

This approach is a combination of User-based and Manufacturing-based

viewpoints. This viewpoint of Quality means providing what the customer wants

at an acceptable price and conformance to specification at an acceptable cost.

In the software industry, the user view, the product view, the manufacturing view and

the value-based view are assumed to apply.

The user view of quality is based on an evaluation of the product in the context of the

task it is intended to perform and a product is viewed as a quality product if it meets

the users requirements. This view should be stated explicitly in the requirements

specification. Quality models attempt to map the user view to the product view by

relating external quality characteristics to internal product measures.

The manufacturing view regards a quality product as one that is constructed "right first

time" and therefore minimises the rework costs during development and after delivery.

This view should be covered in the technical specification which directly converts the

requirements specification into how it can be produced. Initially these views of quality

page 23

should not be in conflict. However, when the user requests changes to the requirements

this results in the user’s requirement being in conflict with the producer’s goal of

minimising work. Under these circumstances, the value-based view becomes important.

This view considers the trade-off between cost and quality and a decision has to be

made as to what the user is prepared to pay for. Once this has been establish then a

cost can be matched to it in order to reduce the conflict.

2.2 Background to Software Quality Modelling

In the 1970’s, the approach to modelling software quality was to identify characteristics

of quality which were consistent with a user’s view of a quality software product.

These quality components are called quality factors and should contribute to the user’s

view of the quality of the software product. These quality factors are then broken down

in lower level components called quality criteria. The quality criteria are consistent with

a system developer’s view of quality.

The management of quality requires the ability to objectively measure quality therefore,

the quality criteria are related to a set of measurable attributes of the software called

quality metrics.

This approach is called the quality factor, quality criteria, quality metric model. It was

first put forward by Boehm et al [6] at TRW. Then McCall, Richards and Walters [5]

standardised the terminology and the model. More recently Bowen, Wigle and Tsai [7]

have added more quality factors. The additional quality factors have resulted in more

quality criteria being added. The quality factors identified by the three sets of research

workers are shown in Figure 2.1.

page 24

Boehm et al McCall et al Bowen et al
Efficiency Efficiency Efficiency
Reliability Reliability Reliability
Human Engineering Usability Usability
Modifiability Flexibility Expandability
Portability Portability Portability
Testability Testability Verifiability
Understandability Reusability Reusability

Maintainability Maintainability
Interoperability Interoperability
Correctness Correctness
Integrity Integrity

Flexibility
Survivability

Figure 2.1 Software Quality Factors

There are a number of problems with the factor, criteria, metric model:

The natures of the factors, criteria and metrics are very different for different

qualities. The factors are a mixture of general, specialist system and software

development process factors. The criteria are a mixture of more detailed

descriptions of the quality factor, functional features and development process

features. The metrics are a mixture of genuine metrics, checklists and production

standards.

There are overlaps between the different quality factors.

There is no clear indication of the trade-off relationships between the factors (e.g

efficiency against maintainability).

There is no explicit relationships between criteria, metrics and the life-cycle.

There is no objective rationale for including, or excluding, a particular quality

factor.

The quality factors are not defined in measurable terms so validation of any

relationship between quality factor and quality metrics is difficult.

page 25

Gilb [4] suggests an alternative approach to modelling software quality. His view is that

of a system user and he aims to provide an agreed statement of quality attributes at the

start of production which can be validated directly in the final product.

Gilb suggests that quality and resource requirements should be specified individually for

any software system and that the specification process should include an indication of

the relative priority of the specified attributes. The attributes are broken down into more

specific attributes and they are further broken down during their specification until the

attribute can be measured directly.

The REQUEST approach was aimed at the software producer and attempted to synthesis

the work of Gilb and McCall et al. Since there was no obvious link between the

different level of the system it was decided to work at two different levels - project and

component.

Another approach to quality modelling is Quality Factor Deployment (QFD), [17,18].

QFD is a structured procedure which combines the customer requirements and the

design requirements/technical characteristics required to meet the customer requirements.

It displays them in the form of a matrix which ensures that the customer requirements

are preserved throughout the design process and the design requirements are clearly

linked to them. This graphical display highlights the customer requirements which are

not being met and the design requirements which do not address any customer

requirements.

A quantifiable measure, which represents the target value, is attached to each design

requirement and must be understandable and relevant to the customer. The QFD matrix

requires the strength of the relationship between the customer requirement (the WHAT)

and the design requirement (the HOW) to be identified and the relationship between the

design requirements to be identified. This helps to identify any potential problem areas.

The QFD procedure also requires cross-functional team participation at all stages of

planning. This reduces the need for rework due to a lack of communication and

understanding. The QFD can be extended to a sequence of matrices where each level

of matrix uses the HOWs selected from the previous level to represent the WHATs in

page 26

the current level.

Gilb suggested a similar approach to QFD whereby quality requirements were related

to the software engineering techniques intended to implement them. This approach was

used by Walker and Kitchenham [59] to develop a system for assessing the feasibility

of quality requirements. These ideas were later automated and used to provide support

for COQUAMO-1.

2.3 Basis of Thesis

The work in this thesis was concerned with the automation of the work by Kitchenham

and Walker [19]. They used the approach to monitoring and control of projects first

suggested by Doerflinger and Basili, [20], Doerflinger and Basili compared a set of

measurements collected at several stages (starting at the coding stage) in the

development process with baseline values. The baselines were obtained by calculating

the average value and standard deviation of each of the measurements taken from a

group of similar past projects. The actual measurement value was considered abnormal

if the value was greater than or less than one standard deviation away from the group

average. Basili later extended this work to included an expert system approach to

interpret the measurements [21],

Kitchenham and Walker extended Doerflinger and Basili’s original work by extending

the scope of monitoring process. They covered project phases from requirements

specification to integration stage. They also derived the baselines using robust statistical

analyses rather than the classical summary statistics. They felt this was more accurate

for software data. Kitchenham and Walker also suggested the use of component-based

monitoring as well as project-based monitoring which allows the monitoring of a project

even in the absence of similar past projects.

One of the major results of Kitchenham and Walker work was that they highlighted

additional problems with anomaly detection which have to be considered. Their work

suggests that the same value can have a variety of different meanings. For example a

low fault rate could mean high quality or poor testing.

page 27

Huff et al, [22], also suggested the use of quantitative information to monitor the

development of a product. Their idea was based on the use of quantitative models

formulated as a set of equations whose variables describe a particular software

development activity. Again monitoring was performed against expected values derived

from the models and management action was required if the actual measures deviated

from plans. The primary goal was to provide feedback on a particular software activity

during the development process. Quantitative models support all phases of project

management and are constructed as part of the detailed planning. The input variables

for the equations are usually based on expert opinion estimates or values obtained from

previous similar projects.

2.4 Latest Research in Area

This section discusses the latest research results in software metrics for project control.

Ramsey and Basili [21] evaluated the use of expert systems in software engineering

management. They looked at four different prototype expert systems which, given

values of identified metrics, provided an interpretation to explain abnormal combination

of values. Ramsey and Basili found that the most complete and accurate solutions were

from using a bottom-up approach to knowledge acquisition. This approach is

application specific as opposed to the more general top-down approach. They also

found that rule-based expert systems were better than frame-based since frame-based

systems often missed interpretations because of incorrect relationships between the

metrics. The interpretation system described in chapter 7 is a rule-based system which

uses the bottom-up approach.

Ramsey and Basili used two experts to obtain their knowledge for the systems and found

that the required knowledge was not yet well understood. The experts often disagreed

on the interpretations and the relationships between the metrics. This confirms what was

found by the survey described in chapter 4.

The work on quality since the end of the thesis appears to be concentrating on anomaly

detection and the use of classification instead of complex predictive equations. The use

of simple non-parametric techniques is increasing but often used in conjunction with the

page 28

complex statistical techniques.

Selby and Porter [23] investigated the use of decision trees to identify modules which

had high development effort or faults. A ‘high’ value was defined to be one which was

in the upper quartile using past data. They were concerned with the feasibility of

automatic generation of a decision tree was and whether such trees could be both simple

and accurate enough to deal with the software resource analysis problem, especially

when different amounts of data are available to generate the trees. Selby and Porter

found that the decision trees correctly identified 79.3% of the software modules that had

either high development effort or faults.

Munson and Khoshgoftaar [24] used principal components to obtain uncorrelated metrics

and then applied discriminant analysis to classify the programs as fault-prone and not

fault-prone. They divided the data into two and randomly selected 260 programs to

develop the model, with the remaining 160 used to validate the model. The number of

changes were classified into two groups of 0 or 1 change and 10 or more changes

(programs with 2-9 changes were excluded from the investigation). At the 10% level

of significance the procedure identified 75% of one type of program correctly and 62%

of the other type. They emphasised the need for accurate and well-defined data

collection.

Briand, Basili and Hetmanski [25,26] have developed models for identifying high risk

software components which require extra testing/verification effort. They compared

logistic regression, classification trees and optimised set reduction (OSR). OSR is based

on machine learning principles and univariate statistics. It uses logical expressions to

represent patterns in a data set. The validation indicated that OSR was more accurate

than either logistic regression or classification trees. In their environment, Briand, Basili

and Hetmanski found that it was a good alternative to multivariate logistic regression.

They also thought that classification trees might be too simplistic for modelling high risk

software components.

Selby and Basili [27] used the concept of coupling and strength to characterise the

structure of a software system. They calculated a ‘coupling/strength’ ratio for a cluster

of routines within a subsystem. Strength is the amount of interaction within a software

page 29

component and coupling is the amount of interaction between software components of

a system. The cluster were joined bottom-up, that is the components with the lowest

ratio were joined first. Selby and Basili found that the routines with the lowest

coupling/strength ratios had 7 times fewer errors per thousand lines of code (KLOC)

than the routines with the highest ratio values. The errors were also 21.7 times less

costly to fix. They also found that subsystems with low ratio values had routines with

4.8 times fewer errors per KLOC than subsystems with high ratio values.

Agresli and Evanco [28] also found coupling had a significant effect on software defects

along with information flow. They used multivariate regression to predict software

defects. However, they had problems with multicollinearity, i.e. correlation between the

independent or explanatory variables in the equation.

Non-parametric techniques are also being used to evaluate software metrics. Courtney

and Gustafson [29] used non-parametric techniques to highlight the problem with the

‘shotgun’ approach to evaluating software measures. The approach involves trying

variables until a significant Pearson’s correlation coefficient is found. No initial

hypothesis is stated. They show that a large number of non-independent variables

(multicollinearity) and the limited amount of data available make the chance of finding

an accidental relationship high.

Courtney and Gustafson used simulation to highlight the problems of the shotgun

approach. They found that although the probability of a Type 1 error (finding a

significant relationship when one does not really exist) was fixed at 0.05, it was

significantly larger than 0.05 when Pearson’s r coefficient was used. They compared

Pearson’s r with Spearman’s p and Kendall’s Tau. They do emphasise that a true

shotgun approach is unlikely to be applied in practice and intend to repeat the

experiment with an actual data set. They emphasised the need for more research in

software measures and thought the use of non-parametric techniques was important in

validation.

Schneidewind [30] used the non-parametric techniques of rank correlation and

contingency tables to evaluate metrics against a validation criterion. The validation

approach was user-based and consisted of six mathematically defined criteria to relate

page 30

a software attribute to software quality. He identified a validated metric as "one whose

values have been shown to be statistically associated with corresponding values". He

used the rank correlation coefficient to test for consistency and the contingency tables

to test for correct and incorrect classifications. He also emphasised that non-parametric

techniques played an important part in evaluating metrics.

Khoshgoftaar et al [31] investigated new estimation procedures. They described two

new estimation procedures and compared the performance in modelling software quality

in terms of the predictive quality and the quality of fit with least squares regression (LS)

and least absolute value (LAV) techniques. The two new estimation techniques were

relative least squares (RLS) and Minimum Relative Error (MRE). They used the same

data that has been used for the analysis described in chapter 3. They confirmed the

problem of predicting quality and the need to establish baselines.

Khoshgoftaar et al found that RLS and MRE appeared to have a better predictive quality

and MRE produced the best line fit although LAV performed fairly well when outliers

were present. They stated that the mis-use of complex statistical procedures may lead

to the use of the wrong model for project management and confirmed that least squares

did not perform well when the normality assumptions are not valid.

The assessment of quality using metrics has also been applied to Object-Oriented

language programs. Henry and Lattanzi [32] have been investigating whether systems

written in object-oriented languages were more maintainable than procedural languages

and whether they promoted reuse. The study found that the object-oriented systems

were reused more often and better reused. Henry and Lattanzi have investigated a suite

of metrics for object-oriented language systems (Chidamber-Kemerer). Currently they

are investigating the use of quantitative measures to decide when to reuse a component

and are developing a tool for collection of these measures. Analysis has shown that use

of a combination of metric values can identify problems. They emphasise the lack of

object-oriented metrics available for controlling software quality and cost.

Rising [33] evaluated an Information Hiding metric. She compared the ranking of the

modules in three different programs with a subjective information hiding value ranking

made by the relevant expert for each program. Using Spearman’s p she found a strong

page 31

relationship.

She also investigated whether there was any significant relationship between the

information hiding metric and the level of change in a module. Although her case study

revealed no correlation, the Mann-Whitney and Chi-squared tests indicated that the

metric could identify the modules which were likely to have ‘significant’ changes.

Brooks [34] identified the need for a well-defined, repeatable and appropriate software

process to collect and assess reliability, maintainability and cost with Object-Oriented

design.

Some work has been done as a direct result of the REQUEST work. Anderson [35]

showed how to use the metrics to establish baselines to allow the metric values obtained

in future projects to be interpreted. He described how the analysis of the first data set

identified some major problems with the project.

He collected both product and process measures from high level design through to the

coding stages of the development process, including information from testing,

inspections and documentation. From the comparison of planned and actual effort he

found that 20% of the tasks were unplanned which caused an overrun of 30% of the

total cost. Also, the tasks which were planned had a 22% overrun. Further

investigation allowed him to establish a strategy to reduce the uncertainty of future

effort estimates in the short term. This was:

• planned effort for small or large tasks must be carefully reviewed to ensure that

no gross under-estimations have been made;

• increase estimates by 5-10% for average or very large tasks to cover any slight

under-estimations that occur.

He also showed how to create a basis for changing effort allocation throughout a future

project when early phases show an overrun. This can be done by looking at the effort

ratios between the different phases.

page 32

The ESPRIT research project MERMAID promotes and encourages the use of locally

defined models to predict cost since the models are likely to be context dependent.

They have confirmed the results of REQUEST that globally defined models which work

in a variety of environments are unlikely to deliver accurate estimates. The statistical

techniques which were investigated and found useful in the REQUEST project have

been incorporated in the MERMAID statistical package. The use of non-parametric

techniques has also been advocated in current textbooks (e.g. Fenton’s book [36]). The

interpretation system described in chapter 7 is currently being used in the SQUID

research project.

In conclusion, the work since the thesis appears to be concentrating on the detection of

unusual components. There is still a debate about whether intensive statistical analysis

using sophisticated tools is better than simple non-parametric techniques. There seems

to be a case for both, starting with the simple techniques and then, if necessary, applying

the relevant sophisticated techniques.

There is still a major problem in moving between the different levels of the system (i.e.

from component to system). Most of the current work on metric validation is being

done at the module level, using fault counts as a surrogate for reliability and number of

changes for maintainability. There appears to be no evidence of any research addressing

the problem of how to move between the levels. In fact, there has even been a step

back in the standards arena, ISO 9126 is promoting the McCall et al’s principle of set

number of general factors with a decomposition despite the REQUEST criticisms of this

approach. The ISO standard identifies six factors but does not suggest how these factors

can be measured directly.

2.5 Use of Statistics in Analysis of Software Data

Statistics is a tool to summarise raw data into usable information. There are several

ways it can do this. For example: •

• it provides techniques for collecting, analysing and drawing conclusions

from data. This aspect of statistics is used by investigators who attempt

page 33

to draw general conclusions from samples or planned experiments;

• it provides a monitoring mechanism for quality control, e.g. in assembly

line production;

• it is a succinct means of presenting information. Many news items

present their information in terms of statistics, e.g. inflation increased by

3%.

Basic statistical concepts assist in promoting clear thinking about a problem, provide

some guidance to the conditions that a problem solution must satisfy and enable an

analyst to draw conclusions that could be difficult to obtain by any other way.

Statistics provides data summaries in two main forms - numerical and graphical.

Graphical representation is very useful for:

• summarising data;

• providing a simple representation of the results obtained from a more

detailed analysis;

• identifying trends or features in a preliminary analysis of the data prior

to more formal analysis.

Numerical techniques can serve as objective yardsticks against which the informal

conclusions, based on a visual assessment of the information contained in the graphical

displays, can be evaluated. They can also provide a more detailed understanding of data

by providing more information than can be gained from graphics.

In the software development area, project managers often ‘sense’ whether the project is

running well or not. From experience, they may have some idea of what characteristics

of the product are related and which are the most useful for assessing project progress.

However, little evidence exists as to how to quantify the expert’s intuition. Statistics

is useful in the field of software engineering as a means of analysing quantitative

page 34

information about what is happening during development and identifying when

something goes wrong.

Like data collection, statistics is likely to be more useful to project managers if it can

be automated. However, statistics cannot be used in an intellectual vacuum. The

requirements of the investigation must be specified before any analysis can be

undertaken. In particular, the hypothesis under test or the relationship being investigated

must be decided before any statistical analysis can confirm or reject them. For example,

if a relationship between size and the number of errors is investigated, the statistical

technique of correlation may be used to confirm or reject the existence of a relationship,

but it will not identify the correct functional form of the relationship. Selection of the

‘correct’ statistical technique, therefore, implies that the analyst must understand what

information is needed from the data.

The choice of which techniques to use in which circumstance is well-defined in certain

fields of use. For example, in the agricultural area, the techniques are well-known and

have been used with success for many years. The underlying assumptions of the

techniques are known to be approximately valid. In general, these techniques are

standard parametric techniques that are based on the assumption that the data is drawn

from a Gaussian/Normal distribution, i. e. the data is symmetrical, possess a constant

variance and contains a predeterminable number of atypical values. In the software

engineering area, the appropriate techniques are not known: in particular, the assumption

of a Gaussian data distribution is not necessarily valid.

This highlights the importance of the use of non-parametric techniques in the software

engineering area. Non-parametric techniques, [37], make no assumptions about the

underlying distribution of the data. They are usually ‘pessimistic’ techniques. There

is added confidence that any relationships which these techniques identify are genuine

but they can fail to locate a genuine, but weak, relationship.

Robust techniques, [38], can also be useful since they tend to be insensitive to deviations

from the assumptions of the Gaussian distribution and often can be used as an

alternative to the classical techniques. Using classical techniques inappropriately can

lead to misleading results, therefore the alternative robust and non-parametric techniques

page 35

should be used wherever there is any doubt as to the validity of the classical techniques.

This thesis describes how statistics can be used in software engineering and, in

particular, concentrates on the use of statistics in the automation of Kitchenham and

Walker’s work on monitoring and control of projects.

page 36

3. Preliminary Analysis

This chapter discusses the type of statistical techniques that were required to formulate,

evaluate and use the proposed REQUEST model COQUAMO. Statistical techniques are

evaluated in terms of the probable nature and mode of use of COQUAMO, the

requirements for model and attribute validation, and the particular problems of software

data. The author’s requirements were provided by the REQUEST project.

The work in this chapter reflects the project team’s view of the COQUAMO model

when the author did the work. At that time the monitoring mode of the COQUAMO

model (referred to as COQUAMO-2) was viewed as one (or a series of) predictive

equations. It was intended to use the attribute values collected during development of

a product to predict the final quality of the product. The result of the work reported in

the chapter was one of the reasons why the approach to the monitoring mode was

changed.

3.1 Aims of Analyses and Implications for Statistical Techniques

In order to identify appropriate statistical techniques, the REQUEST project had to

identify the analysis requirements both for the project research workers and for the

intended users of COQUAMO.

The research workers required techniques to assist with the formulation and validation

of COQUAMO. The process of formulation of COQUAMO involved:

• identifying trends and abnormalities in quality attributes that may be

indicative of potential quality problems;

• identifying relationships between quality attributes and final product

quality (in terms of quality factors; •

• constructing stable predictive models to incorporate any identified

relationships.

page 37

The process of validating COQUAMO involved:

• establishing the generality of any identified relationships with respect to

different environments;

• performing formal evaluation studies to verify particular predictive

models.

It was intended that users of COQUAMO would need statistical techniques to calibrate

COQUAMO to their own environment. This would have involved:

• techniques to re-estimate the parameters of any predictive model;

• techniques to identify sections of data which should be used in any re-

estimation (i.e to select similar projects from a database).

The author’s initial requirements were to identify statistical methods that could be used:

1. To identify consistent/general relationships;

2. To identify components with atypical values i.e potential ‘anomalies’;

3. To construct stable, predictive models.

However, as well as the above requirements an underlying important requirement for the

author was to investigate which statistical techniques were valid for analysing software

data. The type of the statistical techniques which support the author’s aims are

discussed below.

3.1.1 Identification of Relationships

In theory there are two types of general relationships that can be used in the formulation

of any automatic system of the COQUAMO model - algorithmic relationships and

page 38

definition of subgroups with rules for assigning objects to the groups. COQUAMO

required a method of formulating relationships between measurements taken during

development and final product quality. This suggests correlation and regression

techniques when algorithmic relationships are expected, and classification and

discriminant analysis when assignment to groups is expected. Discriminant analysis is

a technique used to split a large group of data into smaller groups on the basis of certain

characteristics.

Algorithmic relationships are formulated as equations. For example, number of errors

= module size/lOO. To identify this type of relationship the usual statistical techniques

are:

visually: scatter plots(two dimensions only);

and

numerically: regression and correlations.

An example of a relationship which requires assigning ungrouped data to groups is:

Module Group Assignment Criteria

Expected errors per module module size

0 <20

1 21<50

2 51<100

This type of procedure is likely to depend on classification or discriminant analysis.

It may also be important to identify relationships between the attribute measurements

collected during development. If several attributes are very strongly correlated among

themselves, it is likely that any predictive equation containing all of them would be

unstable. Thus, it may be important to identify the underlying dimensionality of the

data, and either select a subset of the original attributes, or identify a series of

independent linear combinations, which can then be included safely in a predictive

equation. This suggests some form of principal component analysis would be useful

since it is a technique which transforms a multivariate dataset into a set of new variables

page 39

which are linear functions of the original variables and independent of each other.

3.1.2 Identification of Potential Anomalies

It is possible to use measurements collected during development as anomaly detectors

(i.e indicators of unusual or atypical events or objects) to allow the software

development process to be monitored [20] and [39]. In order to identify anomalies,

techniques are required which will locate anomalous components among a group of

similar components, (e.g. anomalous modules in a system or sub-system), or identify an

attribute value as outside "normal" ranges compared with the values obtained for other

similar products.

An example of the first type would be to identify particularly error-prone modules by

looking at the error rate per module for a group of modules. An example of the second

type would be to identify the testing effort used to produce a product of given size and

application type as unusually large or small compared to other similar products.

In the first case a relationship between module size and number of errors might be

established and analysis of residuals used to identify anomalous modules. In the second

case, a measure of the central location of a group of test effort values from various

similar products (e.g. mean, median, mode) plus a measure of the expected variability

about the centre of location (e.g. standard deviation, range) is required in order to

establish whether the testing effort for a new product is an any sense abnormal.

Thus, theoretically anomaly detection is likely to involve residual analysis and the

identification of "normal" values (which for a Gaussian or Normal population would

imply, for example, the mean plus or minus two standard deviations).

3.1.3 Stable Predictive Models

Any predictive models identified will need to be evaluated through cross-validation

page 40

studies. This might be done, for example, by using a sub-set of the data to specify a

statistical relationship. This relationship is then validated against the remaining data.

More detailed descriptions of cross-validation techniques are given in Mosteller and

Tukey, [38],

3.1.4 Statistical Techniques for COQUAMO-2 users

The statistical techniques selected initially were based on the idea that COQUAMO-2

would be a predictive, general model. This would require the users of COQUAMO-2

to be able to calibrate the model to their own organisation. Since the nature of

COQUAMO-2 has changed, the need for techniques to enable calibration of

COQUAMO-2 was removed. Therefore, the author did not investigate any techniques

which would be specific to a COQUAMO-2 user.

3.2 Implication of the non-Gaussian nature of Software Data

The nature of software data is very important when considering which statistical

techniques are appropriate for the analysis of software data for the COQUAMO model.

The REQUEST project team [1] had already identified that software data was highly

skewed, contained a relatively high number of outliers, and often showed evidence of

relationships between the mean and the variance. Such data is obviously non-Gaussian

which suggests that statistical techniques, which assume an underlying Normal

distribution, must be used with caution.

A number of techniques may be used to avoid problems of non-Normality:

• data transformation

It may be possible to transform the data to make it sufficiently close to

Gaussian that the classical statistical techniques can be used. Often log

transformations are used (c.f. cost models such as COCOMO, [3]).

Problems may occur if many variables need to be included in a predictive

page 41

model, and each variable requires a different transformation. This would

make interpretation of any observed relationships very difficult.

• robust techniques

It may be possible that techniques which are robust, with respect to

departure from normality, can be used. Examples of this range from

using medians rather than means as statistics of central location, to using

statistics based on the jackknife technique or using robust variance-

covariance matrices when performing any multivariate techniques such

as principal components.

• non-parametric techniques

It may sometimes be useful to techniques which are independent of the

underlying distribution of the data. Such techniques tend to be

pessimistic in the sense that they may fail to locate genuine relationships,

but relationships which they do identify can be treated with some

confidence. This has been suggested by the researchers at the US Rome

Air Development Centre as the only suitable analysis technique for their

data, [7].

• other distribution-based techniques

Even though the data cannot be assumed normal, it may follow another

distribution, for example the exponential or the Poisson distributions. If

the particular distribution can be determined, statistical techniques

appropriate to that distribution can be used.

The rest of this chapter describes the analysis and the results of two data sets using

some of the above techniques that the author believed were appropriate to meet the

requirements set by the REQUEST project. The only technique for avoiding the

problem of non-normality which was not investigated at all is "other distribution-based"

technique. Since the work on the author’s thesis has been completed, further work has

been done which investigates the use of the Poisson and Negative Binomial distributions

[40],

page 42

3.3 Determination of Relationships among Software Attributes

The aim of this section of the thesis was to identify relationships between attribute

measurements collected during the development of the product and subsequent change-

proneness. The author used datasets 1 and 2 because they comprised of data collected

from two implementations of the same subsystem. The author expected that if any

general relationships existed, they would be found in both of the datasets. Also, a range

of different attributes measures had been collected, many of which were likely to be of

use to COQUAMO. These attribute measures were:

• Machine code Instructions (MCI)

• Lines of code (LOC)

• Fan-out (FO) [i.e. the number of programs called by the program]

• Data Items (DI) [i.e. the number of global data items accessed by the

program]

• Parameters (PAR) [i.e. the number of arguments on the program’s

interface]

• Number of distinct operators (nl)

• Number of distinct operands (n2)

• Total number of operators used (Nl)

• Total number of operands used (N2)

• McCabe’s cyclomatic complexity V (V(G))

• Changes (CHG)

Some combinations of the basic metrics have been used:

n - nl + n2

N = Nl + N2

HE = nl*N2*N*log2(n)/2*n2 (Halstead’s E)

A full description of the datasets 1 and 2 is given in section 1.3

Relationships can either be bi-variate or multivariate in nature. Different statistical

techniques are required for each type.

page 43

3.3.1 Bi-variate Relationships

The author used correlation coefficients and scatter plots to investigate the nature of

two-dimensional relationships. Although the identification of error-prone and change-

prone components are unlikely to be based on the value of a single metric, the exercise

was useful in highlighting some potential problems with the nature of the data and

allowing them to be investigated without the additional problem of applying a complex

statistical technique which may not be valid.

A correlation coefficient is a measure of the extent of association between two variables.

The usual correlation coefficient used is Pearson’s correlation coefficient, r. This

coefficient assumes an underlying Normal distribution which is unlikely to exist with

software engineering data, therefore it should be used with caution. The correlation

coefficients for the two datasets are given in Tables 3.1 and 3.2 below. The significance

of the correlations are shown in the tables by the following key:

* p<0.05

** p<0.01

*** p<0.001

p<0.05 means that there is a 95% chance that the significant relationship did not occur

by chance, similarly p<0.01 implies a 99% chance and pcO.OOl implies a 99.9% chance.

page 44

MCI LOC FO DI PAR n l n2 N l N2 VG CHG

MCI 1

LOC 0.94

1

FO 0.44

*

0.46

*

1

DI 0.62

0.80

0.33 1

PAR 0.40

*

0.34 0.16 0.09 1

n l 0.72

0.70

0.83

0.48

*

0.45

*

i

n2 0.86

0.78

0.67

0.45

*

0.37 0.88

1

N l 0.91

0.97

0.28 0.79

0.28 0.55

**

0.87

1

N2 0.94

0.98

0.32 0.78

0.28 0.58

**

0.72

1.00

1

VG 0.87

0.91

0.49

**

0.89

0.52

**

0.77

0.78

0.83

0.84

1

CHG 0.66

0.55

**

0.61

0.31 0.54

**

0.78

0.71

0.44

*

0.46

*

0.88

1

Table 3.1 SSI - Pearson’s Correlation Matrix

page 45

MCI LOC FO DI PAR nl n2 Nl N2 VG CHG

MCI 1

LOC 0.98

1

FO 0.58

0.65

1

DI 0.78

0.79

0.69

1

PAR 0.34
*

0.33
*

0.06 0.35
*

1

nl 0.87

0.88

0.77

0.81

0.30
*

1

n2 0.93

0.91

0.61

0.77

0.37
*

0.92

1

Nl 0.98

0.97

0.56

0.76

0.34
*

0.85

0.93

1

N2 0.99
si«**

0.97

0.56

0.77

0.34
*

0.85

0.91

1.00

1

VG 0.94

0.93

0.50

0.76

0.38
*

0.79

0.86

0.93

0.93

1

CHG 0.72

0.67

0.47
**

0.46
**

0.19 0.65

0.73

0.70

0.69

0.69

1

Tab e 3.2 SS2 - Pearson’s Correlation Matrix

Software data is unlikely to follow a Normal distribution therefore the author also

calculated a non-parametric correlation coefficient. Non-parametric techniques do not

make assumptions regarding the underlying distribution of the data. The author

investigated the use of two different non-parametric techniques, contingency correlation

C and Spearman’s p [37]. Spearman’s p cannot cope with a large number of tied values

therefore it could not be used with this data. The contingency coefficient C is

particularly good for categorical data and for data which has a lot of tied values. The

contingency coefficient C is interpreted in the same way as the parametric coefficients

with the only difference being that it can only take a value between zero and one

page 46

inclusively. This means that a positive or negative relationship cannot be detected, only

a significant correlation. The correlation coefficients for datasets 1 and 2 are given in

tables 3.3 and 3.4 respectively.

MCI LOC FO DI PAR nl n2 Nl N2 VG CHG

MCI 1

LOC 0.58

1

FO 0.43
*

0.53

1

DI 0.85

0.58

0.53

1

PAR 0.26 0.25 0.30 0.21 1

nl 0.62

0.62

0.48
**

0.54

0.26 i

n2 0.65

0.65

0.48
**

0.58

0.25 0.62

1

Nl 0.71

0.58

0.43
*

0.65

0.25 0.62

0.65

1

N2 0.65

0.65

0.53

0.58

0.25 0.62

0.71

0.65

1

VG 0.58

0.58

0.43
*

0.58

0.44
**

0.54

0.62

0.58

0.58

1

CHG 0.48
**

0.48
**

0.53

0.49
**

0.25 0.44
**

0.58

0.48
**

0.58

0.38
*

1

Table 3.3 SSI - Jontingency C Jorrelation Coefficients

page 47

MCI LOC FO DI PAR nl n2 Nl N2 VG CHG

MCI 1

LOC 0.70

1

FO 0.37
*

0.50

1

DI 0.51

0.51

0.29 1

PAR 0.34
*

0.34
*

0.10 0.15 1

n l 0.61

0.65

0.41
**

0.48

0.19 i

n2 0.71

0.70

0.37
*

0.51

0.34
*

0.60

i

N l 0.70

0.63

0.37
*

0.48

0.34
*

0.54

0.70

1

N2 0.70

0.63

0.37
*

0.48

0.34
*

0.54

0.70

0.70

1

VG 0.57

0.51

0.20 0.51

0.42
**

0.41
**

0.57

0.57

0.57

1

CHG 0.45
**

0.50

0.21 0.45
**

0.27 0.42
**

0.45
**

0.45
**

0.45
**

0.52

1

Table 3.4 SS2 - Contingency C Correlation Coefficients

In general the contingency correlations are lower than the parametric correlations, which

was expected. However, they are still significant.

There are strong correlations among the basic Halstead measures. This suggests that

some caution should be used exercised when interpreting the meaning of any synthetic

metric based on basic measures. Also, the high correlation between the these measures

and the size measures suggests that the Halstead measures are equivalent to measures

of size.

page 48

Some of the measures mentioned will be available earlier in the development process

than module size and the number of times a module was changed, therefore they may

be useful as early indicators of size or change-proneness if significant correlations exist.

Some of the measures, such as modules called and data items used appear to be

correlated to both size and number of changes. These correlations were found in both

datasets, so may be fairly general in nature. Since they are also available early in the

software design process they might be useful as early indicators.

However, it should be noted that not all relationships were found to be consistent. For

example, the number of parameters was significantly correlated with changes in dataset

1 but not for dataset 2. This implies that some metrics will be unsuitable for inclusion

in a general predictive model.

Scatter plots are useful for visually investigating the nature of relationships between two

variables. The advantages of scatter plots are that they are simple and easy to use

without the need for any underlying assumptions to be made about the data.

As was mentioned earlier, (see section 3.2), data transformation may be useful as a

technique to deal with non-normality in the data. Figure 3.1 shows an example of some

of the problems with the nature of software data and figure 3.2 shows how useful the

logarithmic transformation can be in reducing these problems. Figure 3.1 is the plot of

size, measured in lines of code against McCabe’s Complexity V, V(G). Intuitively it

was expected that as size increases, the value of McCabe’s Complexity V increases

because it is derived from the number of conditions and loops in a program. The more

conditions and loops the more statements are needed to code them. This plot shows a

strong positive relationship but evidence of heavy, positive skewing. Skewing can be

detected by a high density of modules in a particular range of values and, in this case,

the skewing is positive because there is a tendency towards the smaller values. There

are also more anomalies than would normally be expected from 27 data points. It is

also possible that the increased number of apparent anomalies is caused by an increase

in the variation of the data. An increasing variance is usually overcome by applying a

logarithmic transformation.

page 49

r

Figure 3.1 SSI - Size against complexity

The author applied a logarithmic transformation in an attempt to stabilise the variance.

Figure 3.2 shows the data after the measures have undergone a natural logarithmic

transformation. The relationship between V(G) and size is clearer, with the effects of

skewing and anomalies greatly reduced. Therefore it appears that more confidence can

be placed in the detection of the true underlying trend between the metric values of

McCabe’s Complexity V and the size of the module if the data is transformed.

L n (I o c 3

Figure 3.2 SSI - Size against complexity
using natural logarithm transformation

page 50

From Figure 3.3, it can be seen that the scatter plot for dataset 2 does not show any

evidence of bivariate oudiers, only one large value. It does, however, appear to have

positive skewing and evidence of an increasing variance similar to that of dataset 1.

Figure 3.3 SS2 - Size against complexity

Plotting the log of the dataset 2 measures (Figure 3.4), as expected reduced the effect

of the increasing variance and the positive skewing. It is interesting to note that the

scatterplot now appears to have at least one outlier. If a logarithmic transformation had

not been used, this anomalous module would have gone undetected in the plot. This

highlights a problem of visual representation of the data where a choice of scale, which

appears to be the optimum one, actually obscures subjective detection of anomalies.

The transformation has reduced the problem of the increasing variance and the

anomalies.

Due to the high correlation between the size of the module and McCabe’s V(G), it was

doubtful whether there was any benefit from using McCabe’s V(G) rather than the size

of the module to identify change-prone modules. To investigate this, the author

normalised the McCabe’s V(G) measure with respect to size and plotted the resulting

measure against the number of changes per module. After normalisation there was no

longer a significant relationship. The correlation coefficient dropped from 0.68

(p<0.001) for the raw data, to 0.21 which was not significant for the normalised

page 51

measure. In addition a plot of changes against the size of the module (Figure 3.5)

shows the same basic relationship as changes against McCabe’s V(G) plot, and identifies

the same anomalous module.

Figure 3.4 SS2 - Size against complexity
using natural logarithm transformation

Figure 3.5 SS2 - Size against changes

For dataset 2 data, the correlation for the normalised McCabe’s V(G) against number

of changes was also insignificant. Thus the two datasets indicate that the size of a

module can provide as much information for identifying or predicting change-prone

modules as McCabe’s V(G). It is possible however, that McCabe’s V(G) measure may

page 52

be available from detailed designs rather than from the code and thus provide

information earlier in the development process than a code-based size measure.

McCabe’s V(G) is also important from the viewpoint of test management since it

provides a simple measure of the number of test cases needed to execute each branch

of code in a module.

3.3.2 Multivariate Relationships

The author investigated the use of regression as a technique for determining whether

design and code-based metrics can indicate whether a module is likely to require a large

or a small number of changes. Regression is a technique which can be used to identify

a relationship between a single variable (the dependent variable) and a set of one or

more other variables (explanatory variables), [41]. The dependent variable is the

variable being estimated or predicted in a regression (e.g number of changes) and the

explanatory variables are the variable being used to estimate the dependent variable.

Initially an Ordinary Least Squares (OLS) regression was used to obtain an indication

of both the nature of the relationship between all the metrics and the number of changes

(CHG), and the problems likely to exist with software data.

The significant regression obtained with data set 1 was:

CHG= 0.042MCI - 0.075N + 0.00002HE (1)

where CHG is the number of changes, MCI is the number of machine code instructions

in bytes, N is the total number of operators and operands and HE is Halstead’s E. This

equation had an adjusted R2 of 0.57. An adjusted R2 is a measure of the proportion of

variation in the dependent variable that is explained by the independent variables in a

multiple regression (more than one explanatory variable) adjusted for the number of

explanatory variables in the regression. The adjusted R2 is used instead of the

unadjusted because as the number of variables in the regression increase the value of the

unadjusted R2 increases, regardless of whether the variables have a significant effect on

the dependent variable.

page 53

Equation (1) suggests that a combination of the values for the number of machine code

instructions (MCI), the total number of operators and operands (N) and Halstead’s E

(HE) are a significant predictor for the number of changes (CHG). There are some

doubts as to the validity of this equation as a predictive equation of change-proneness

because of the negative sign for N. The negative sign is saying that if N increases this

reduces the number of changes the module will require. Therefore from a predictive

viewpoint the above equation does not conform with the REQUEST’S team intuition.

However, the high correlation between the explanatory metrics themselves might be

causing this negative impact. This might indicate that not all of the explanatory

variables, which the regression has shown as having a significant effect on change-

proneness, are having a significant independent effect.

The residual plot (Figure 3.6) showed five potential anomalies. A point was assumed

to be anomalous if the value was extreme with respect to either the predicted number

of changes or the residual value. A residual is the difference between an actual

observed data value and the equivalent value predicted by a regression model. A

residual plot is used to identify any systematic patterns in a group of residuals to

evaluate the adequacy of the regression model [41].

Figure 3.6 SSI - OLS Residual Plot

The removal of the anomalies reduced the adjusted R2, which indicates that the

page 54

anomalies were contributing to the significance of the equation, i.e. the regression was

being noticeably altered by one or two data values.

The metric "lines of code" was now also significant in the equation and all the

coefficients were marginally significant. Therefore, the anomalies are obviously

affecting the detection of any relationship and it is likely the non-Gaussian nature of the

data is contributing to the untrustworthy results obtained from the OLS regression.

The results obtained from dataset 2 were totally different from dataset 1:

CHG = 0.25FO - 0.53DI + 0.09V(G) (2)

where CHG is the number of changes, FO is fan-out, DI is the number of data items and

V(G) is McCabe’s complexity V. This equation had an adjusted R2 of 0.57. Instead of

being totally code attributes, the predictive equation is based predominantly on design

attributes. Again, there is an unexpected negative sign in the equation.

However, the residual plot did not show any of the attributes to be having an

independent effect on change-proneness. One potential anomaly was identified by the

residual plot (Figure 3.7). When this was removed the measure of fan-out (FO) was not

significant.

Figure 3.7 SS2 - Residual plot for
multivariate regression

page 55

The use of complex multivariate equations may not be necessary since there was little

reduction in the value of R2 for both of the equations when only a single variable was

used in the regression. The best single variable regression for dataset 1 was:

CHG = -2.097 + 0.234nl (3)

with an R2 of 0.582. The residual plot (see Figure 3.8) shows bias in the equation since

it indicates that a curved fit would be more appropriate. It also shows four outliers, one

of which is different to those shown with the multivariate regression. This highlights

a problem with the use of residual plots for outlier detection since the outliers are not

independent of the equation chosen and there are many equations which would be

equally valid.

The results of dataset 2 are similar to dataset 1 in that the best single variate equation

had a similar R2 to the complex multivariate equation:

CHG - 1.190 + 0.007MC1 (4)

with an R2 of 0.524. However, these results are inconsistent with dataset 1 results with

respect to the best single variable. The residual plot (Figure 3.9) shows one outlier,

which was different to the multivariate equation outlier.

Figure 3.8 SSI - Residual plot for best
single variate regression

page 56

4 1 X '

enQ)cr -1

>s< X X

>%< X X

>S<

X X

-+- -+-2 3 ■» 5 8 7
E s t i m a t e d c h a n g e s

©

Figure 3.9 SS2 - Residual plot for best
single variable regression

The conclusion from applying OLS regression is that there does not appear to be any

stable predictive equation for change-proneness with the given attributes since both the

datasets had completely different equations. In addition, both multivariate equations

appear to be unstable with coefficients which do not conform with the team’s intuition.

3.3.3 Problems with OLS regressions

The OLS regression technique assumes that the data is from a normal distribution.

Software datasets available to the REQUEST project did not follow this distribution.

The OLS regression technique has been shown to be highly influenced by outliers and

may also be influenced by the increasing variance. In this section the author has

investigated some techniques which may remove the effect of these problems and so

allow an identification of a relationship if one exists.

3.3.3.1 Transformations

One of the scatter plots (Figure 3.1) shows evidence of an increasing variance and, since

an increasing variance can cause insignificant coefficients to look significant, the author

page 57

decided to apply a natural logarithmic transformation to the data.

With both data sets, taking natural logarithms of the data dramatically altered the result

obtained. With data set 1 none of the previous attributes shown to be significant are

now significant. The only significant attribute now was the number of parameters.

Again no confidence can be put in this result because its correlation with change-

proneness is low.

With data set 2, the effect of the transformation was to show that only McCabe’s V(G)

had a significant effect on change-proneness.

This implies that the predictive equations using the available quality indicators were not

stable. It is likely that these quality indicators are not good predictors of change-

proneness.

3.3.3.2 Robust Regressions

Another possible method of dealing with the characteristics of software data is by using

a robust regression method. Instead of reducing the effect of the characteristics present

in software data, it attempts to be less sensitive to them. This should mean that

deviations from the Gaussian assumptions required by the OLS regression will not cause

the regression technique to give invalid results.

The two robust regressions the author investigated were a ‘least absolute residual’

regression and a ‘one-step Andrew’s’ robust regression [38]. The ‘least absolute

residual’ regression minimises the sum of the absolute values of the residuals and the

residuals can be used as input into the ‘one-step Andrew’s’.

The raw original data was used for the robust regression. The significant regression

equation was:

CHG = 0.013MCI - 0077N + 0.00002 HE (5)

page 58

where CHG is the number of changes, MCI is the number of machine code instructions,

N is the total number of operators and operands and HE is Halstead’s E. This equation

had an adjusted R2 of 0.92. However, if this equation is compared to the OLS equation

(1) there appears to be very little difference except that the R2 is 0.25 greater. This is

unexpected since there are anomalies present which have been shown to have

dramatically altered the OLS regression results and the robust regression is supposed to

be insensitive to their presence.

The residual plot (Figure 3.10) indicated four potential anomalies. The regression

coefficients, after the three anomalies were removed from the analysis, were all totally

insignificant but the equation still had a high adjusted R2 of 0.83. This implies that it

was not the majority of the points showing a relationship with change-proneness but

only the three anomalies. Thus it appears that with this data the robust regression is not

in fact resilient to anomalies and does not produce a more trustworthy predictive

equation. In fact, the robust regression, instead of reducing the problems that were

occurring with the use of OLS regression, appears to increase them. The robust

regression including the anomalies, has shown 25% more confidence in the predictive

power of the equation. Therefore, the technique appears to produce more optimistic

results than OLS, without any identified (at present) underlying cause.

Figure 3.10 SSI - Robust Residual Plot

page 59

The equation obtained using robust regression on dataset 2 was similar to that obtained

for data set 1, equation (5). However, only the machine code instructions coefficient

was significant (although only at the 80% level) with an adjusted R2 of 0.65.

The residual plot (Figure 3.11) highlighted five potential anomalies. After they were

removed and the regression repeated all the coefficients were insignificant.

Figure 3.11 SS2 - Robust Residual Plot

In conclusion both data sets have shown that the robust regression was sensitive to

anomalies and has not provided reliable information about the nature of the relationship

of the metrics to the number of changes in the presence of these anomalies. Work

undertaken since this, [36] has shown a simple Theil’s robust regression [42] was useful

with software data. The only problem identified with Theil’s regression is that the

calculations become very cumbersome with large amounts of data therefore a powerful

computer would be required.

3.3.4 Problems with Data Characteristics

The previous sections have shown that problems exist with the nature of the attribute

values not just the statistical techniques. Some of the identified problems are addressed

page 60

in this section.

3.3.4.1 Obtaining Independent Measures

The previous section has shown that the attributes are highly correlated. The presence

of highly correlated attributes can cause insignificant results to appear significant and

result in unstable equations. The author investigated two methods in an attempt to

overcome this problem. The two methods were:

(1) normalisation of the data;

(2) use of principal components to produce independent variables.

(1) Normalisation of the data

One of the problems when using regression on this data is that instead of the attributes

being independent of each other most of them are correlated with size. Therefore, the

author decided to remove the effect of size from all the attributes, that is to "normalise"

the data with respect to size by dividing the value of each attribute for each module with

a measure of size for that module. The dependent variable (CHG) was also normalised.

The reason for normalising changes was to investigate the relationship of the rest of the

attributes on the number of changes, without the influence of size since other studies

have shown that size affects the number of changes.

To investigate what power function of size was required for the normalisation of the

attributes, the logarithmic transformation of each attribute was plotted against the log

of the size. The coefficient of the regression line through this plot indicates the power

of the relationship [38]. Most of the coefficients were approximately one, therefore the

attributes were simply divided by the module size in lines of code.

With dataset 1, using OLS regression, the regression equation was:

NCHG = -0.004 + 0.378NPAR + 0.122Nnl (6)

page 61

with an R2 of 0.985. However, the normalised number of parameters (NPAR) and the

normalised number of distinct operators (Nnl) are correlated with an r=0.752 although

the individual coefficients are highly significant. The residual plot (Figure 3.12) showed

no major outliers but did indicate the presence of an increasing variance for the larger

predicted values for the normalised changes.

Figure 3.12 SSI - Residual Plot for
Normalised Equation

The normalised measure of distinct operators is significant in the equations for both the

datasets. However, the other measures are different and have different signs. The

regression equation for dataset 2 was:

NCHG = 0.002 + 0.212Nnl - 0.594NFO - 0.083Nn2 (7)

with an R2 of 0.913.

The residual plot (Figure 3.13) highlighted four major outliers (the cross at ‘1’

represents three module values). They related to very small modules which after the

normalisation transformation produced relatively large attribute values which have a

dramatic effect on the regression.

The regression was re-run after the outliers were removed. Now none of the coefficients

page 62

were significant which suggests that the original relationship was based on one or two

influential modules only.

Figure 3.13 SS2 - Residual Plot for
Normalised Equation

The conclusion from normalising the data is that no stable predictive equations could

de detected.

(2) Use of Principal Components

The technique of Principal Components transforms the original data into new variables

which are linear combinations of the old variables [43]. The new variables are not

correlated with each other. In this way the original attributes can all be used, if they

have a significant effect on change-proneness without the problem of correlated

variables.

Principal Components cannot be based on the covariance matrix because it is heavily

influenced by the scale of the factors. This means that attributes like Halstead’s E

dominate the components because their values are so much larger than the other

attributes. Therefore principal components should be based either on the correlation

matrix or the covariance matrix after the variables have been standardised to have a zero

page 63

mean and unit variance.

With dataset 1, the significant OLS regression was:

CHG = 5.22 + 1.30PRIN1 + 2.28PRIN2 (8)

with an adjusted R2 of 0.66. The third principal component was insignificant.

With dataset 2, only the first principal component was significant:

CHG = 3.05 + 0.61PRIN1 (9)

with an adjusted R2 of 0.43.

Although both regressions do not have any anomalies in the residuals, the two datasets

give conflicting results. The first principal component for both datasets consisted of all

the measures except the number of parameters. The second principal component differs

between the two datasets, the second principal component for dataset 1 consists of fan-

out and the number of distinct operators, whereas the second principal component for

dataset 2 consists of the number of parameters and fan-out. Also, even if they were

producing the similar results it is difficult to interpret the regression equation because

the principal components do not separate into any interpretable high level factors, for

example the first component all the code measures and the second component all the

design measures. Table 3.5 shows the correlations between the first two principal

components and the raw data1

lrrhe correlations for the principal components have been
calculated using slightly different Halstead E values due to
problems with the statistical package. The author believes that
the differences cause little impact on the results.

page 64

Dataset 1 Dataset 2

Measure Comp 1 Comp 2 Comp 1 Comp 2

MCI 0.964 -0.057 0.987 -0.043

LOC 0.980 -0.149 0.982 0.017

V(G) 0.928 0.049 0.933 -0.134

nl 0.798 0.567 0.922 0.197

n2 0.870 0.378 0.951 0.010

n 0.869 0.450 0.958 0.071

Nl 0.931 -0.352 0.979 -0.065

N2 0.948 -0.306 0.978 -0.066

N 0.940 -0.332 0.979 -0.065

DI 0.743 -0.303 0.841 0.116

PAR 0.416 0.251 0.380 -0.763

FO 0.543 0.693 0.666 0.560

HE 0.881 -0.388 0.854 -0.114

Table 3.5 Correlations between Pnncipa Components and Raw Data

3.3.4.2 Division into Design and Code-based Metrics

The previous regressions did not show evidence of any consistent relationships.

Therefore, the author decided to investigate whether regression results could be

improved by splitting the explanatory variables into design-based and code-based

metrics. Since the attributes have come from different phases of the development, it is

feasible to assume that they will have certain characteristics which are unique to their

development phase. It may also be possible to investigate whether the design-based

attributes can be used as early indicators of module size and/or the change-proneness of

page 65

the modules. Similarly, the author investigated whether code-based attributes can be

used as indicators of change-proneness. The design-based attributes were FO, DI and

PARS, with the code-based attributes MCI, LOC, n, N, V(G) and HE.

To reduce the effect of the increasing variance and the relatively large number of

outliers, the author applied the logarithmic transformation on the attributes. The

attributes were not adjusted for size.

Since there were six code-based metrics which were all highly correlated, it was decided

to use their first principal component when investigating the relationship between design

attributes and size. This removed the need to decide which was the most appropriate

size attribute.

With dataset 1 an OLS regression showed the following significant linear relationship

of design attributes against size (i.e. the first principal component).

Size = -4.70 + 1.08FO +1.37DI (10)

with an adjusted R2 of 0.58. The residual plot indicated a tendency for the above

equation to under-estimate size.

With dataset 2, the equation was:

Size = -6.27 + 1.10FO + 0.86PAR (11)

with an adjusted R2 of 0.79. The number of parameters is a significant attribute with

dataset 2 but not with dataset 1. Although all the coefficients were significant, the most

significant was the constant.

Since the datasets did not display the same general underlying relationship, no

conclusions could be drawn about general relationships, only about specific relationships.

The author investigated the effect of the design-based attributes on change-proneness.

page 66

With dataset 1, the resulting equation was:

CHG = 0.38FO + 0.48PAR (12)

with an adjusted R2 of 0.59.

There existed a conflict between the two techniques used to evaluate the significance of

the coefficients in this equation, the t-statistic and the residual plots. In the results

reported so far, the two techniques have complemented one another. If the t-statistic

was borderline the residual plot indicated whether the attribute was having an effect.

However, in this equation the t-statistic indicated that the FO coefficient was marginally

more significant than the PAR coefficient, whereas the residual plot indicated that PAR

has a more significant effect on changes. No reason could be found as to why the

conflict was occurring in this one case.

Dataset 2 showed a different result. No relationship appeared to exist between the

design attributes and changes. Therefore, the author concluded that these datasets

showed no evidence of a consistent relationship between design measures and number

of changes.

When the author examined the relationship between code-based attributes and change-

proneness, dataset 1 displayed no evidence that any of the attributes affected changes

and dataset 2 indicated that only McCabe’s complexity V(G) was marginally significant.

The conclusions from the division of the data seem to be:

(1) the code attributes appear to have been masking any effect that the design

attributes might have had;

(2) no consistent general relationships were found.

The author then decided to apply principal components to investigate how the attributes

within the design-based and code-based groups affected each other.

page 67

The principal component analysis of the design-based attributes showed the first

principal component to be an equal weighting of the number of modules called and the

number of data items. The second component was composed of the number of

parameters.

The result explained why both fan-out and the data items attribute were never significant

in the same equation. Mathematically they could be used as one attribute although this

is not consistent with their meaning and is likely to be a feature of these datasets. Both

datasets showed the same results.

The principal component analysis on the code-based attributes also showed consistency

between the two datasets. The first component indicated that all the code-based

attributes measures of size and the same amount of information could be obtained by

using a single measure which was a weighted average of all the values.

3.4 Identification of Atypical Values

The monitoring mode of COQUAMO required statistical techniques to identify atypical

values. It is possible to use attribute values as anomaly detectors (that is, indicators of

unusual or atypical events or objects) to allow the software development process to be

monitored [21,16]. Anomaly detection can be univariate, bi-variate or multivariate.

Different statistical techniques are required for each type.

3.4.1 Comparison of Single Attribute Values

Univariate detection requires identification of an attribute value as outside the ‘normal’

range compared with the values obtained from other similar products. This can be

achieved by using a measure of central location of a data set plus a measure of the

expected variability about the central location. For example, it may be useful to

determine whether the testing effort used to produce a product of given size and

application type is unusually large or small compared with other similar products. A

measure of central location of a dataset of testing values from various similar products

page 68

plus a measure of the expected variability about this central location is required to

establish whether the testing effort for a new product is in any sense abnormal.

The author’s first step was to calculate a measure for the centre of location. The usual

measure of the centre of location is the arithmetic mean. This is the numerical average

of the values for each attribute. One alternative to the mean is the median, which is the

mid-point of the attribute values for the dataset. To assess which statistic was better,

the author compared the mean and the median for datasets 1 and 2.

Tables 3.6 and 3.7 show the comparison between the mean and the median as measures

of the centre of location for Data sets 1 and 2 respectively. For both of these data sets,

the mean value is usually far larger than the median. This is because of the presence

of extreme values.

Mean Median

MCI 335 161

LOC 162 90

FO 4 4

DI 7 4

PAR 3 2

nl 31 29

n2 50 41

Nl 226 99

N2 200 95

V(G) 21 14

CHG 5 4

l'able 3.6 SSI - Mean and Median

page 69

Mean Median

MCI 263 177

LOC 189 126

FO 5 4

DI 3 2

PAR 4 4

nl 32 32

n2 49 38

Nl 180 128

N2 175 125

V(G) 20 14

CHG 3 2

Table 3.7 SS2 - Mean and Median

Figure 3.14 shows the mean and the median for machine code instructions. It is clear

that the median is a more plausible measure of the centre of location of the datasets

since it is not distorted by atypical values or anomalies. The median, therefore, appears

to be a more stable choice for a ‘centre of location’ statistic.

The boxplot is a useful technique for indicating the distribution of values in a dataset

which also explains why the mean and the median are not the same. A boxplot provides

graphical representation of the following features of the data: •

• centre of location (median);

• spread;

• range of data;

• outlying anomalous data points;

• skewness.

page 70

? Q Q 0 — i— i— i ------- 1-----------1-----------1-----------1-----------1-----------1 1 1 1 1 1 1 1 1 1

U) ■

(I)

> s

3 e° ° ‘ •

« > 1 4 0 0 -
H - .

£= +

O

- 1 2 0 0 -
4 -»

O
z j i o o a -

i _

+ -»
m b o g *

+
- f -

c r

e o o -

Q)
- f -

■ g 4 0 0 -
-f-

u
- T H - H "

2 Q D -
U

+ + ■ - t - + + + +
1 i 4 - l I i | i | i | i J i - i - I

E o h 1 I T I ! 1 1 1 ^ 1
3 B 3 1 2 1 5 1 8 2 1 2 1 2 7 a n

o b s e r v a t i o n s

Figure 3.14 Comparison between Mean and
Median

This compact data display is also very useful for comparing several groups of data.

Figure 3.15 provides an example of the general result the author found when she applied

this technique. The distribution for each metric is shown as a boxplot in Appendix A.

The median value is the value which divides the dataset in half and this is represented

by the line or crossbar in the box. In the example (Figure 3.15) the median values are

161 and 177 bytes for subsystem 1 and 2 respectively. The position of this line within

the box indicates the skewness of the data. The data from both subsystems is heavily

positively skewed since the median lies to the left of the box. If the data was symmetric

then the median would be in the centre of the box.

The average spread of the data is shown by the position of the box. The edges of the

box show the upper and the lower fourths of the data, therefore the box represents the

middle 50% of the data or the fourth spread. In the example the fourth spread is from

93 to 380.5 bytes for subsystem 1 and between 92 and 429.5 bytes for subsystem 2.

The ‘normal’ range of the data is shown by the lines which extend from the edge of the

box to the most remote data values in the dataset which are not outliers. These lines

are called the upper and lower tails of the data distribution. The upper and lower tail

values are defined as Fu+ 3/2dF and FL- 3/2dF where FL, and FL are the upper and lower

page 71

fourths and dF is the difference between the fourths, i.e. the fourth spread. The ‘normal’

range for machine code instructions in the example is between 0 and 812 bytes for

subsystem 1 and between 0 and 936 bytes for subsystem 2.

The outliers are defined as those values which are greater than the upper tail value and

less than the lower tail value. The subsystem 1 outliers are indicated by the crosses at

1350 and 1425 bytes and the subsystem 2 outlier at 994 bytes.

As can be seen from the comparison of the two boxplots of the machine-code

instructions, the distribution of the data values is similar between the two data sets.

Since boxplots for the other metrics were also similar there appears to exist some

consistency in the distribution of software data values in this environment.

Figure 3.15 Boxplots for Machine Code
Instructions

Looking at all the box plots provides some idea of the nature of the data and the dangers

in the use of the mean rather than the median. If the underlying distribution of the data

is symmetrical about its mean then the mean and the median coincide. However, if the

distribution is highly skewed, as it is with the data under study, then the median is a

more intuitively appealing measure of central location than the mean. In addition, there

is a danger in applying the mean when extreme outlying points are present in the dataset

since they will distort the value of the sample mean and give misleading results if the

sample mean is used to construct ‘normal’ ranges. The further the outliers are from the

page 72

rest of the data values the more misleading the mean can be.

Most of the data values, as well as including outliers, were also heavily positively

skewed. This is not unexpected since programmers, as a matter of good programming

practice, tend to keep the modules as small as possible. This trend can, therefore, be

expected to be present in most software data. It is also probable that other software

datasets will reveal a number of outliers. This does not mean that every module will

be small because the optimum size depends on the underlying problem (i. e. the

function being coded). If the problem is large then the module representing the solution

will probably be large.

The boxplot appears to be a very useful technique for automating the detection of

univariate anomalies since it does not make any assumptions about the nature of the data

and is not subjective. The use of the boxplot for automating anomaly detection of the

monitoring mode of COQUAMO is described in Chapter 6 "Component-based Anomaly

Detection”.

3.4.2 Bivariate and Multivariate Detection

Bivariate and multivariate anomaly detection requires a relationship or trend to be

established such that those components which do not follow the identified relationship

can be easily identified. With bivariate detection a simple scatter plot is may be

sufficient. The only problem with a scatterplot is that visual inspection and

identification of anomalies is subjective. The use of scatterplots for bivariate anomaly

detection is discussed in Chapter 6 "Component-based Anomaly Detection".

Regression can be used to establish a relationship between attribute values but a

technique is also required to detect when a component (or components) deviates

significantly from the general relationship. Analysis of the residuals obtained from the

regression line may be used to identify anomalous components because the size of the

residual identifies by how much a particular component deviates from the identified

relationship. For example, to detect particularly error-prone modules within a

subsystem, the error rate per module for the modules within the subsystem can be

page 73

compared with the average (or median) rate. This is achieved by establishing a

relationship between the number of errors and module size.

In order to investigate multivariate anomaly detection the author used untransformed

data. The consequences of abnormalities in multivariate data are intrinsically more

complex than in the univariate case. One reason for this is that a multivariate

abnormality can distort not only measures of location and scale, but also measures of

correlation. The author investigated the use of two techniques to identify anomalies:

• A plot of the first two principal components;

• A residual analysis from a regression.

The type of anomaly that may be detected by the Principal Component plot is one which

is inappropriately inflating the variances and correlations upon which the principal

component analysis is based.

The principal component plots (Figures 3.16 and 3.17) appear to identify modules that

are abnormal only when a number of different attribute values are considered together,

as well as the modules which have extreme values for all attributes. An analysis

technique which considers more than one metric is likely to be more useful to the

project manager than one which only identifies very large or very small modules.

Figure 3.16 SSI - Principal Component
Plot

page 74

Figure 3.17 SS2 - Principal Component
Plot

The second method the author used was to identify the anomalies by visual inspection

of the residual plot. The Ordinary Least Squares regression for data set 1 (Figure 3.6)

highlighted the modules which were relatively change-prone due to their large size. It

is useful to have a technique which identifies these modules but it is likely that a project

manager would already be aware of the potential problems concerning large modules

which exhibited large values for all attributes. More usefully, however, the technique

identified one module that only appeared abnormal when all attribute values were

considered together. This module had relatively high values of fan-out, data items and

number of operators and operands for its size. The residual plot for the robust

regression (Figure 3.8) identified all the modules that the OLS plot identified as

potential anomalies except for the one mentioned above. The residual plots did not

highlight any modules which had a relatively low number of changes with respect to all

the other attribute values.

The residual plots for data set 2 from the OLS regression (Figure 3.7) and the robust

regression (Figure 3.11) were not consistent. The robust residual plot shows five

potential anomalies which can be split into two categories: •

• large modules (i.e. modules for which all the metrics had large values;

page 75

• unusually change-prone modules (i.e. modules which were more change-

prone than would have been expected for their size).

The OLS residual plot did not highlight any anomalous modules.

Therefore, of the two techniques used, the principal components appeared to highlight

the most interesting and useful potential anomalies. It is unclear whether this is because

the regression technique did not detect the best relationships or whether the residual

analysis technique is not useful for detecting multivariate anomalies.

3.5 An Evaluation of Some Design-Based Metrics

COQUAMO-2 assumed that prediction of product quality would be made throughout the

product lifecycle. It was therefore important to investigate attributes that would be

measurable during the early stages of development. Therefore the REQUEST project

undertook an investigation of some design metrics.

The aim of this investigation was to evaluate the Henry and Kafura’s ‘Information Flow’

design metrics, [44], in comparison to the simpler code-based metrics of size (lines of

code) and control flow (number of branches). Henry and Kafura define a local flow of

information from module A to module B as occurring if one of three following

conditions hold:

• A calls B

• B calls A and A returns a value to B, which B subsequently utilises

• C calls both A and B passing a value from A to B.

The comparison involved investigating the ability of the information flow metrics to

identify change-prone, error-prone and complex components in comparison with the use

of code-based metrics. This work is also documented in Software Engineering Journal

[45],

The information flow metrics measure the links among components in terms of the flow

page 76

of information among components and are relevant to any system which has been

developed using a structured design technique or can be represented using a structure

chart [46,47]. The data used in this study was dataset 3 (see section 1.3). The

procedure code size metrics used were lines of code (LEN) and control flow (CF). The

measures used to assess the final characteristics of a procedure were number of known

errors (KE), number of planned changes (CHNG) and subjective complexity (SC). The

design metrics were informational fan-out (IFO), informational fan-in (IFI) and

informational flow complexity (IFC).

The definitions of the design metrics were used in this study are:

• IFI = number of procedures which call the procedure

+ number of data structures from which the procedure receives data

• IFO = number of procedures called by the procedure

+ number of output parameters on the procedure’s interface

+ number of data structures into which the procedure places data

• IFC = (IFI * IFO)1 2

These are not exactly the same as the definitions used in [44] since these definitions of

the information flow metrics caused some problems. Henry and Kafura themselves have

used different definitions in other papers, [48] and [49]. Also, the description of the

conditions under which a flow of information occurs is not sufficient to provide

unambiguous counting rules for information flow. For example, the counting rules are

not fully defined for the third type of local information flow. The counting rules

associated with the third type of information flow are either:

(1) for A, add 1 to fan-out count

for C, add 1 to fan-in count

add 1 to fan-out count

for B, add 1 to fan-in count

or

page 77

(2) for A, add 1 to fan-out count

for C, leave fan-in and fan-out counts unchanged

for B, add 1 to fan-in count

The second counting rule seems more logical but would then appear to contradict the

counting rule implicit in the definition of the second type of local information flow.

Another difficulty with the counting rules occurs if module C processes a value returned

from A, prior to its input to B. The returned value from A should then be regarded as

a fan-in to C but it is not clear whether it should be counted as one fan-in to B (from

C) or two fan-ins to B (one from C and one from A). Therefore, the counting rules for

the third type of local information flow were not totally clear and it would have been

difficult to count such indirect flows manually.

The multiplication of EFC and program size, to obtain a procedural complexity metric,

was ignored, because for both evaluation and interpretation purposes, Henry and Kafura

consider the information flow part of their procedural complexity metric separately from

the code size part. In addition, if information flow metrics are to be used to evaluate

a design prior to coding, they should not include a measure of code size which would

be unavailable.

Henry and Kafura found their metrics were able to identify change-prone metrics in a

UNIX 3 environment. If these metrics were of general use this could be of value to

software engineers and managers. The evaluation procedure used was to investigate the

relationship between the design metrics and:

• the number of changes to components that resulted from system

enhancements;

• the number of changes to components that resulted from component

faults; •

• the subjective assessment of component complexity, provided by team

leader of system developers.

page 78

The work was done in conjunction with Dr. Barbara Kitchenham, who did the actual

evaluation while the author did the statistical analysis. We were looking for attributes

which would identify the largest proportion of change-prone, error-prone and/or complex

components while maintaining a relatively low false identification rate.

The attributes were divided into ‘quality indicator metrics’ (design and code based

attributes) and ‘quality characteristic metrics’ (changes, errors and subjective

complexity). The boxplots showed, as expected, that the data was heavily skewed. The

boxplots are shown in Appendix C. One point worth noting is that the information flow

complexity metric has a large number of anomalies compared to the number found for

its constituent parts. This may cause too many benign anomalies to be identified as a

potential problem if the metric was used for quality control purposes. There is also no

reason why its constituent parts cannot be used instead of the compound metric since

they have to be investigated before the anomaly can be interpreted.

3.5.1 Relationships Between Measures

An initial assessment of the relationships between the ‘indicator’ metrics and the

‘characteristic’ metrics was obtained by a correlation analysis. However, due to the

nature of the software data, described previously, the Pearson correlations shown in

Table 3.8 must be treated with caution. The additional problem of a large number of

"ties" (i.e. components with the same value) for the characteristic metrics meant that

the Spearman’s rank correlation coefficient could not be used instead. This is because

the components with the tied value are randomly allocated a position in the ranking

which may result in a misleading coefficient. Therefore, the non-parametric Contingency

C coefficient was calculated to compare with the parametric coefficients and are shown

in parenthesis in Table 3.8. The contingency tables were constructed by splitting the

metric values into four groups (relating to the boxplot) containing the values:

<= lower fourth

> lower fourth and <= upper fourth

> upper fourth and <= upper tail

> upper tail

page 79

Quality

indicator

metrics

Quality

characteristic

metrics

KE CHNG SC

IFC 0.07 (0.31**) 0.06 (0.35**) 0.12 (0.37**)

IFI 0.03 (0.25) 0.08 (0.18) 0.09 (0.25)

IFO 0.53** (0.43**) 0.45** (0.42**) 0.48** (0.49**)

LEN 0.65** (0.53**) 0.44** (0.35**) 0.58** (0.58**)

CF 0.65** (0.46**) 0.43** (0.37**) 0.57** (0.59**)

Table 3.8 Correlation Coefficients

The Pearson correlation coefficients showed that the informational flow complexity

metric based on Henry and Kafura’s approach was not significantly correlated to any of

the quality characteristic metrics. However, if the components of the informational flow

complexity metric were considered separately, it appeared that informational fan-out was

significantly correlated to all three quality characteristic metrics whereas informational

fan-in was not. The contingency correlations, however, indicated that the informational

flow complexity metric was significantly associated with the quality characteristic

metrics although the association is less than that observed for the other indicator metrics.

Information flow fan-out still significant and informational fan-in remained non-

significant.

The results contradict Henry and Kafura’s results but are consistent with a study by Troy

and Zweben, [50]. They used fan-out and fan-in metrics based solely on procedure

calls. In their study, they observed that fan-out was related to errors and fan-in was not.

The code metrics exhibited larger correlations with known errors and subjective

complexity than the informational fan-out metric. This study is less encouraging than

the Kafura and Canning [39] study, which indicated that informational flow was at least

as good a predictor of error-prone procedures as size, and a better predictor than

McCabe’s cyclomatic complexity metric [16]. There were problems with the extraction

of the metrics and the identification of the underlying causes of the metric values.

page 80

The extraction problems were due to a combination of two problems - ambiguous

published data definitions and difficulty in manually collecting some of the primitive

counts. Metrics cannot be properly validated without good definitions and it is unlikely

that the metrics can be used in practice in a software production environment without

data collection and analysis tools.

The information flow metrics are obtained by combining the values of different counts.

The main problem with the combined metric is that it can have different underlying

causes, for example, the program with the largest informational fan-in value was a

frequently used function which was called by many different paths and therefore was

a critical program. However, the program with the second largest fan-in values had a

large value because it read from a large number of data structures but is only called by

one other program. The different underlying causes may lead to an incorrect diagnosis.

Therefore the study suggested that a simple measure of fan-out was a more useful metric

than the more complex information flow metrics.

The study did confirm that design metrics could be used as early predictors of problem

modules. The results of the study suggested that it might be cost-effective to give special

attention to programs with high informational fan-out values. Extra time spent on 18%

of the programs would have been 82% effective (82% of the programs with high fan-out

values also had high quality characteristic values) and 45% effective (45% of the

programs which required extra development time would have been identified).

3.6 Conclusions of Preliminary Analysis

It is clear that the underlying nature of software data causes a number of problems when

using classical statistical techniques. These techniques generally assume a Gaussian

distribution which is symmetrical, has constant variance and a low expected number of

outliers. In contrast, software data often appears to be skewed, has an increasing

variance and a relatively high number of outliers.

This does not, however, imply that classical techniques are completely inappropriate for

software data but only that care must be taken to check that violation of their

page 81

assumptions do not lead to misleading results. If the effect of the violation is that

results are misleading, or infeasible, then either the data must be transformed so that the

assumptions are met, or robust techniques or non-parametric techniques are required.

In the author’s view statistics does have a place in software engineering, but must be

used with care. It is essential to have a clear idea of why statistical techniques are

required and a ‘hypothesis’ about expected software engineering principles being

investigated. If no expectations exist, statistics cannot be used effectively.

The results from this chapter have implications for the derivation of the COQUAMO-2

model.

• No common relationships were detected between the datasets when module

relationships were considered. Therefore, there is little hope of identifying a

‘general model’ between module attribute and product quality attributes.

• Some techniques were good at identifying outliers/anomalous components

irrespective of the particular attributes. These techniques were boxplots for the

univariate outliers, scatterplots for the bivariate outliers and principal components

for the multivariate outliers.

Therefore, the goal of COQU AMO-2 was changed to monitoring the development

process using quantitative information collected during the development process and

detecting when there was a potential problem. This involves identifying atypical values

with respect to planned values and comparison between individual component values.

These aims are described in chapters 5 and 6. The interpretation of detected atypical

values is described in chapter 7. The work in this chapter (excluding section 3.5) is also

reported in [51] and [52].

page 82

4. Anomaly Detection Survey

This chapter describes a survey which the author organised to identify whether the

concept of controlling anomalous components was easily understood by expert project

managers and quality assurance managers. This was done by investigating the type of

atypical components an expert project or quality assurance manager believed to be

anomalous.

The aim of the thesis is to identify statistical techniques which are appropriate for the

analysis of software development metrics and to investigate how they might be used to

support quality management procedures. The results from the survey were intended to

be used as "best practice" against which various automated statistical techniques could

be compared. The aim was to investigate which statistical technique would best emulate

the expert project manager in detecting anomalous components. This investigation is

described in chapter 6 "Component-based Anomaly Detection" along with the statistical

techniques under review.

Initial analysis of software data (see Chapter 3) indicated that datasets of measures of

software items (modules/projects) usually included items that exhibited unusual values

or unusual combination of values. Such anomalous items often exhibited quality

problems (e. g fault-proneness). The REQUEST project concluded that statistical

techniques that assisted the identification of such items would assist project and quality

managers to monitor and control their software projects. The REQUEST project

assumed that project and quality managers would already be using this sort of approach

informally. Therefore, the author devised an survey to review the way in which project

and quality managers currently assessed unusual components.

The work in this chapter is part of the monitoring mode of the REQUEST model (called

COQUAMO-2). It was intended that the subjective information gained from the project

managers would be used to compare the effectiveness of different statistical techniques

supporting automatic anomaly detection.

The survey had two aims, with the first being the major one:

page 83

(1) to determine what a project manager would identify as an unusual

component from a scatter (or a density) plot;

(2) to determine whether initial standardisation of the attribute values affects

the detection of unusual components.

The reason for the use density plots,as well as scatter plots, was due to the nature of

software data. Software data often has tied values which overlap on a scatter plot.

When this occurs a scatter plot often gives a misleading impression of the density of the

points. An example of this can be seen in Figure 4.1, where 226 data points are shown

as only 24 on a scatter plot (dataset 3).

The author observed that approximately a quarter of the scatter plots in this dataset had

this problem. The author investigated several ideas to see the best way to represent this

data, given the capabilities of the available data presentation tools. The method selected

was a density plot. The density plot shows the number of points in each cell. Within

each cell, the points are randomly scattered although they all have the same value and

would overlap if plotted on a scatter plot. The reason for scattering the points is to

provide some visual impression of the density within each cell. The density plot can

be viewed in a similar way to the scatter plot allowing potentially anomalous points to

page 84

be highlighted.

4.1 Design of Survey

The author chose eleven graphs for the survey. The attributes included in the graphs

were:

• size;

• control flow;

• module enhancements;

• errors;

• parameters;

• data items;

• fan-in (number of calling modules);

• fan-out (number of called modules);

• subjective assessment of complexity.

The author chose the attributes and graphs which were most useful in helping to detect

where problems were in the development of the project. This was assessed by a manual

analysis of the data (by Dr. Kitchenham), [53]. The actual graphs are included in

Appendix D. The managers approached to take part in the survey were chosen because

they were experienced managers and they were expected to have experience of using

measurements to identify software development problems.

Each project manager was given a brief description of the survey, explaining why it was

being run, and a short questionnaire to allow the possibility of any discrepancies in the

managers’ identification of anomalies to be explained by the most likely causes. The

managers were then asked to mark any modules which they regard as unusual on a

range of scatter plots (or density plot, when a scatter plot is not appropriate), indicating

whether the marked module was likely to be unusually favourable or unfavourable (or

no mark at all if it is unclear, or could not be determined by the information provided).

The questionnaire given to managers is given in Appendix D.

page 85

I

Since there were two distinct aims of this experiment, two distinct methods were

required to deal with them. The first, and most important aim, involved identifying a

common set of anomalies for each plot to summarise the information from the project

managers. The resulting plots were then intended to be used as a control for the

automated detection techniques. This meant that each technique’s results were to be

compared with those derived from the manager and checked for similarity. The

anomaly detection technique which identified the majority of the unfavourable anomalies

identified by the project managers would be chosen for inclusion in the COQUAMO

prototype.

The second aim intended to be dealt with using the ‘density grid’ method, which does

not depend on the use standardised values. This technique could be compared to the

control, using both standardised and raw values. If the results of this comparison

showed that there was a difference between the anomalies detected when standardised

metrics are used, then any technique which requires standardised metrics would have to

be rejected.

4.2 Survey Results

This section gives the results of the survey and the problems encountered in the analysis

of the questionnaires.

Two batches of questionnaires were handed out. The first batch of 120 questionnaires

was handed out at the QA Forum. Ten replies were received, three of which were from

the same company. The second batch of questionnaires was given out to various

managers in a software company. Seven replies were received.

Due to the small number of replies and the wide background variety of the respondents,

none of the results could be generalised. Also, the differences between the managers

replies could not be explained.

page 86

4.2.1 Background of Responders

The majority of the respondents, as expected from the QA Forum, were involved with

Quality Assurance although a few used to be project managers. They included a

combination of quality assurance and consultants. A large majority had over ten years

experience in the software field and a few had a software/hardware background. None

of the respondents had a purely hardware background. The software company

responders, which were a combination of project managers and consultants, all had more

than ten years experience and, like the other responders, the majority had software

experience.

With the QA Forum responders, although 6 out of 8 (two did not provide any

information) used metrics during development, only 3 of the responders used them to

detect problems. The majority were not familiar with the use of scatterplots to detect

problems, which might be one of the reasons why the managers had problems viewing

the plots. With the software company responders the situation was slightly different.

Six out of seven responders used metrics to assess project progress and to detect

problems. However, the results from both groups were equally varied.

The QA responders had a wide variety of type of company, implying that they deal with

a wide variety of software products. Although the software product was the same for

the software company responders, it is a large product with a variety of different

functions.

4.2.2 Results of Analysis

The type of response varied from plots being completely unmarked, to the provision

of added information about what would be investigated to identify whether the marked

module was truly anomalous or not. There did not appear to be any significant

difference between the two groups of replies. There was, however, a difference between

the consultants’ replies and the practitioners. The consultants all had some idea of what

they thought was the problem and what they would look for next (although they did not

all agree with each other).

page 87

There was a wide variance in anomalies detected by the managers. This caused a

slightly different approach to be taken when gathering the information from the plots.

It was obvious that different managers would not all mark the same modules as

anomalous but it was envisaged that there would be a common sub-set. However, it was

not possible to identify any common sub-set since there was little consensus of opinion

between the managers as to which modules were anomalous (in fact, no one module was

identified as anomalous by all managers). It was therefore necessary to lower the 100%

agreement for identification of an anomalous module before the module was included

in the set of agreed anomalies. However, even reducing the agreement level to 50% did

not allow the detection of a common sub-set of anomalies.

One reason for the lack of consensus might be that the managers had a poor

understanding of the use of software attributes during development and were only

interested in the attributes which they already use, namely errors and changes which are

commonly used at the end of development. One response which supports this view was

from a manager who stated that the number of data items used was not important to

him. Another said he was only interested in the number of errors and he did not care,

what any of the other attribute values were. In one respect this might be good news for

an automatic system because it would hopefully guide the manager into looking in more

detail for potential problems. However, developing an automatic anomaly detection

system consistent with a manager’s approach appears impossible because there did not

appear to be any consistent approach.

For a small sub-set of the plots (those which contained fan-in and fan-out) there was no

response from the majority of the managers. Since fan-in and fan-out may not be as

familiar to managers as other metrics, it was suspected that one reason for the lack of

response might have been lack of understanding of what the implications were for an

unusual module. Managers did not appear to be familiar with the use of software

attributes. They do not understand how to interpret them or use them.

In some cases, it appeared that the managers were looking for a particular type of

pattern and identifying modules which do not conform to the expected pattern as

anomalous. In many cases the managers did not know which patterns are correct for the

different attribute combinations.

page 88

Some of the responses were screened out after observing the type of modules marked

as anomalous on some of the plots. Examples of this are:

• In a couple of cases the cell of the grid marked, on a density plot with

the highest density was marked. In one case a manager marked the

highest density cell, which represented the modules with average size and

average complexity, as being an unfavourable anomaly;

• There was a tendency to view the plot as a uni-dimensional plot,

especially with respect to errors.

The background information supplied by the managers did not explain the reason why

the variety of replies were found. The replies within the single software company were

as varied as those from many different companies, although the background information

was similar for the single company.

As well as identifying potentially anomalous modules, the project managers were also

asked, if possible, to indicate whether they thought the anomaly was favourable or

unfavourable. The results of this were not conclusive. The only point to emerge from

this, and because of the small sample size cannot be taken as general, was, when a small

set of modules were looked at, that a higher proportion of the anomalous modules

identified were marked as unfavourable. This highlights that managers are only

interested in detection of modules which are regarded as potential problems. However,

a statistical technique which automatically detects anomalous modules cannot

differentiate between unfavourable and favourable anomalies. This highlights the need

for an advice system to be linked to the anomaly detection, to provide some help on

interpretation of the detected anomalies. Anomaly detection on its own is of limited use

to the project manager.

The need for a linked advice system was also confirmed by the result that often

managers did not indicate whether they thought combination of attribute values was

favourable or unfavourable. This was not surprising because each plot was being

regarded independently. This condition is required for the automatic detection of

anomalies but the decision as to whether an anomaly is favourable or not often requires

page 89

more information than can be obtained from a single bivariate plot. However, some

managers identified certain anomalies as having favourable implications and other

managers identified the same anomalies as unfavourable for the same plot. This again

highlighted the managers lack of understanding of the use of software attributes during

the development of a product.

Another situation which was occurring, was the tendency for the managers to assume

that zero or a low number of errors, are an indication of high quality, regardless of any

other attribute values. They did not question whether the module had been adequately

tested. An extreme example was where one responder decided that all components

which had zero errors during development were good and all those which had non-zero

errors were bad. The COQUAMO automatic system should not emulate this but it was

a good advertisement for the need for the COQUAMO model which discourages

considering only one attribute value in isolation.

The overall conclusion from the experiment was that the managers’ replies were not

consistent enough to be used as a control in the experiment for the choice of the most

appropriate technique for automatic anomaly-based detection. The managers may have

confused interpretation with detection and therefore made it difficult to isolate their

detection strategies.

It appeared from the results that managers are not familiar with the use of software

attributes. They do not understand how to interpret and use them. This contradicted the

author’s original assumptions when devising the survey. This highlights two issues:

(1) For such a survey to be effective it would need to be re-done after proper

training;

(2) New attributes need to be related to project management issues if they

are going to be used successfully.

Although they could not be used for the original purpose, the results were useful

because they showed the potential benefit an automatic anomaly detection system might

be to project managers if some help on interpretation of the detected anomalies was

page 90

provided.

Since it was impossible to use the results of the survey, identification of the most

appropriate statistical technique was based on a consultant’s view of what constituted

an anomaly. This was justified because the survey did indicate that consultants are

using measurements to detect anomalies during the development process. The

investigation of statistical anomaly detection and results are described in chapter 6

"Component-based Anomaly Detection".

page 91

5. Project-based Monitoring

This chapter is concerned with monitoring the overall project using quantitative

information collected during the development of the product at specific defined

milestones. This is called project-based monitoring. The aim of the thesis is to identify

statistical techniques which are appropriate for the analysis of software development

metrics and to investigate how they might be used to support quality management

procedures. This chapter shows how summary quantitative information can be used to

help the manager monitor his/her overall project and can therefore control the

development process.

The work identified in this chapter forms part of the monitoring mode of the REQUEST

model (called COQUAMO-2). The REQUEST project team aimed to build a prototype

tool to support COQUAMO. As part of the prototype, the author designed the summary

reports which the COQUAMO-2 prototype would display. She had no involvement with

the implementation of the prototype.

The author’s task was two-fold:

(1) To identify a sub-set of essential information required to allow a project manager

to control his/her project. The sub-set was taken from a list of potentially useful

attribute measurements [54];

(2) To set targets, where appropriate, for each attribute measure identified in (1)

above. Monitoring is based on the principle that when an actual attribute value

exceeds the target value then it is likely to be a potential problem in the

development. Thus, monitoring relies on identifying target values of attributes.

Targets can be derived from past history but if no past history results are

available default targets are needed.

5.1 Introduction to Project-based Monitoring

The aim of the project-based monitoring is to enable a project manager to identify

page 92

whether a project is deviating from what was originally planned or expected. This type

of monitoring is concerned with the behaviour of the whole project, at well-defined

points in time, not the behaviour of particular product components.

In order to assess whether a project is progressing appropriately, a project manager must

have a formal plan or informal expectation. For example, if a project is using too much

effort, an expected or planned value for effort must exist to compare the actual values

with.

The reason for a deviation from expected can be due to one of three causes:

• the planned values (i.e. targets) were unrealistic and inaccurate;

• an unexpected problem has occurred during the project;

• a deliberate or known change has been made to the project but the

planned values have been unaltered. For example, if a problem was

found in high level design it might have required extra effort to correct

it in detailed design. Therefore, the actual values are showing the impact

of the solution not the problem.

Deviations can be due to serious problems and can, therefore, require solutions that can

seriously affect all the plans. An automatic measurement system cannot identify the

reason for a deviation from target, only the project manager can do this but it should

allow for re-planning.

Project managers are trying to control their projects. They want to be able to tell

whether their project is going well or whether there are problems. Since the earlier a

problem can be detected, the easier and cheaper it is to solve, project managers need

regular feedback to maintain a particular standard of product. Early feedback minimises

the time it takes to respond to a potential problem.

Support for timely feedback means collecting information at regular intervals throughout

the product development. The REQUEST approach is to use the end of each lifecycle

page 93

phase as a checkpoint for analysis and reporting on data.

Measurements can help project managers detect potential problems with their projects.

As well as providing a quantitative measure of project progress, they can assist diagnosis

of the particular type of problem that has occurred.

For project planning and control to be effective, a project manager must set targets for

quantitative attributes that are capable of providing appropriate information about the

project environment or development process. For example, there is no benefit in setting

a target on the percentage of re-use in a project, if re-use is not an important issue.

However, whatever specific goals a project or company wishes to achieve, if project-

based monitoring is being used, a base set of goals are assumed to be desired. Three

main goals can be assumed to be general for any development:

(1) Keep the development on time;

(2) Keep the development within budget;

(3) Maintain the quality of the product throughout development.

The user must define what he/she means by quality so that the REQUEST model can

be of most benefit to him/her. It should be noted that, for the purposes of this work,

quality has been taken to mean a fault-free and stable product, and monitoring of quality

in the REQUEST prototype was taken to be similar to that of statistical quality control.

To support the three goals identified above, different types of attribute measurements

will be required:

(1) time;

(2) resources;

(3) quality indicators.

At present the third goal is too imprecise to be quantified. The goal needs to sub-

divided so that the appropriate measurements can be chosen to show whether a particular

sub-goal has been achieved. The following questions can be asked, sub-dividing the

quality goal 3 into issues 3, 4 and 5:

page 94

(3) Is the software faulty?

(4) Is the software unstable?

(5) Are all the tasks such as testing being performed properly?

It is an assumption of the system that the product being developed supports the

requirements, that is, all the required functions are provided. It is possible for the

system to assess this issue by the use of traceability metrics.

The targets can be sub-divided into those which are external to the project and those

which are internal.

(1) External Targets

The external targets are usually those set on timescale and budget. These targets

may not be under the control of the project manager and cannot be changed

without a contract re-negotiation. Monitoring against these targets will highlight

whether the external constraints on the project are feasible or not.

The need to monitor budget and schedule is readily accepted by project

managers. Budget and schedule targets are usually set by higher management,

when a project is approved, and are usually quantified. They are monitored to

ensure that the project will complete within the required time and cost, and to

detect any problems which might mean that the targets would not be met. The

project manager is likely to be pressurised into meeting budget and schedule

targets and the success of a project is often judged on these goals. This is

because when a budget or schedule target is missed it is easily detected and the

effect is easily understood and translated into monetary terms. However, budget

and schedule should not be the only consideration. The original budget and

schedule targets may have been unrealistic or an unforeseen problem may occur.

In these situations, there is a temptation for a project manager to reduce the

product development timescale in later stages of the project, or reduce reviews

and testing of the intermediate products (or even the final product). Although

the effect of budget or schedule compression may not be immediately obvious,

it is likely to result in a poor quality product which will be costly to maintain,

and will reduce customer satisfaction. Therefore, quality indicators should also

page 95

be monitored to ensure that meeting short term productivity goals is not achieved

at the expense of product quality, resulting in higher long terms costs for the

company.

(2) Internal Targets

Internal targets are planning values set by the project manager. They include

defect levels, change levels and the distribution of effort and duration across the

phases.

One of the major problems a project manager has when using measurements, is

to decide which measures are most important to their own particular project.

Some general guidelines can be provided to a manager to help with this task.

Information is required that will help a manger to detect quickly if any major

problems are occurring with the project and, if so, to identify the particular

underlying problems and how they can be resolved.

As part of the REQUEST COQUAMO prototype, a set of screens have been defined

which identify, in general, what information might be required to identify problems in

a project and to show how the project, as a whole, is progressing. The original set was

very detailed, identifying information which would be useful for a complete analysis of

the project.

The author felt that the amount of information asked from the project manager would

be overwhelming with some of the benefits only visible in the long term. This would

discourage many managers from using any automatic system, especially those who are

just starting to collect measures. Therefore, the author identified a sub-set of essential

information which would help a project manager control his/her project by identifying

only major problems. This will hopefully avoid managers wasting time solving minor

problems at the expense of the major problems. Also, if a project manager is asked to

provide too much information, he/she will not feel that the use of the COQUAMO

model (and the prototype of an automatic tool which was developed by REQUEST) has

sufficient cost benefit.

From the questions related to the three goals, appropriate attribute measures can be

page 96

collected to adequately monitor the development process:

(1) within schedule? monitor timescales;

(2) within budget? monitor effort;

(3) software faulty? monitor number of faults;

(4) software unstable? monitor number of changes;

(5) testing done properly monitor test coverage.

This basic set of five measures can be sub-divided into more specialised measures but

they are all extensions to the basic set taken to a greater level of detail and

specialisation for a particular environment or project. For example:

• Total project effort can be split into effort expended to construct the software

and effort expended to review that software once it has been constructed;

• Changes can be classified by cause;

• Fault classification can be sub-divided extensively because faults have a fault

introduction, detection and removal process, all of which can provide specific

information about the product and its development processes. For example fault

classification can identify where the majority of the faults were introduced, how

various types of faults were detected, and how long faults remain in the product.

All this can be used to assess process effectiveness.

5.2 Setting Targets

Target values need to be set at the start of the project but should be amended as

necessary throughout product development. Target-based monitoring can be either

continuous or at defined checkpoints. In the REQUEST terminology, the term

"Continuous monitoring" involves collecting actual values throughout a project phase

at regular points in time. Time-series curves are then drawn and checked against

expected curves. For example, the cumulative number of faults found during testing per

week should flatten out after a point in tine (Figure 5.1). If this pattern is not seen then

page 97

either the testing period has not been long enough or the product is particularly fault-

prone. For each time series to be checked automatically, all the expected curves would

have to be identified in advance. This type of monitoring is not included in the current

version of the prototype.

WEEK NUMBER

Figure 5.1 Typical cumulative
fault v time graph

"Checkpoint monitoring" involves assessing the project status at phase-end or other pre-

determined project milestones. Project managers should choose checkpoints which are

appropriate to their environment and lifecycle/process model. The advantage of using

a lifecycle model is to ensure that the data collection is incorporated into normal

working methods with the minimum of disturbance. The reason for monitoring a project

by looking at attribute values at the different checkpoints instead of waiting until testing

is to provide information early in the development lifecycle about how well the project

is progressing. This permits early detection of problems [3]. The earlier the problem

is detected the less expensive it is to fix, therefore monitoring is intended to help the

project manager to control the project and to reduce the overall cost of the production.

Attributes used for monitoring at each checkpoint are usually environment dependent.

This is because different methods can be used to develop a product, for example, object

oriented methods, formal methods, structured methods, etc. It is important that the

project manager decides what he/she regards as the most useful information to assess

at the start of his/her project, since each environment (and sometimes individual

page 98

projects) have different conditions and influences. The target values that are planned

in the project are also environment dependent and the project manager should not expect

targets set in a different organisation to be relevant in their own.

This raises a problem, because project managers may not know what values they expect

for a particular attribute target, and may not have any data from previous similar

projects from which to assess a reasonable value. Therefore, any automated system

must provide default values for some of the more general planning attributes and some

guidelines for calibrating the system to the users’ own organisation.

The default targets were set on a per phase basis and can be checked against the actual

values at the end of each phase. The default targets can be used as an initial starting

values but would need to be amended as data about a particular organisation is

accumulated. The phases used in the COQUAMO-2 prototype were taken from the

standard V model but the beginning and the end of each phase must still be defined by

the project manager.

The author identified the default target values using a variety of methods:

• experience (values taken from experienced project managers);

• various literature studies;

• industry values;

• values calculated from some existing, available data sets.

The following list identifies the attributes suggested for collecting to allow a project

manager to control the development of a product:

• effort;

• duration;

• re-work;

• faults;

• changes.

The target/planned values were based on a 3GL environment and assumed a well-

page 99

structured and stable environment. These target values are likely to be less relevant to

other organisations, for example a small software house dealing with be-spoke software.

A single value for a target is not sufficient to detect project problems. The project

manager needs to decide what variability he/she will allow in the actual values before

a problem is highlighted and action is required. Therefore, for each target, the author

has provided some guidelines for an acceptable range around the target value. If an

actual value is outside this range then it would be highlighted as anomalous.

The author, jointly with another colleague from the REQUEST project, decided to

classify the checkpoint information into different levels of detail. The higher the level

number is, the more detailed the information is. The top level or phase summary

presents the minimum information required for controlling a project. Table 5.1 gives

the target values associated with this information. The author did not assign any target

values to effort and duration since the REQUEST project assumed that a cost model

(e.g. COCOMO) would provide the resource constraint information. A potential

problem or missed target would be flagged if the actual was larger than the estimate.

Attribute Target Anomaly detection range

resource effort "cost model"

constraints duration "cost model"

re-work 10% total effort +/- 5% re-work

outstanding unresolved faults 5% faults found >0.05 * Fault distribution

problems faults not cleared 10% faults found >0.1 * Fault distribution

outstanding changes 5% faults found >0.05 * Change

distribution

Table 5.' Phase Summary

Included in the Phase summary was the number of unsatisfied targets and that value as

a percentage of the total number of targets. The fault and change distributions show the

percentage breakdown expected of the total number of fault and changes found during

page 100

reviews, inspections and testing. Table 5.2 shows the fault and change distributions

along with the fault origin distribution.

Phase % faults discovered % fault origin % changes

identified

requirements 5 15 25

high level design 20 25 20

detailed design 25 35 15

code 10 10 10

unit testing 15 5 10

integration testing 25 10 20

Ta Die 5.2 Fault and Change Phase Distributions

Table 5.3 shows the targets for the level two information. This identifies the breakdown

of the resource constraints and event information.

Attribute Target Anomaly

detection range

resources effort from "cost model"

duration from "cost model"

checking effort prep. + insp.

effort

+/- 5%

other activities 10% effort actual/total > 0.1

re-work - faults 10% of re-work > 0.1 * re-work

events # changes 0 > #mods,sections

rate/requ’t 0.4 > 0.4

Table 5.3 Level 2 Target Information

page 101

The prototype screen for this information also includes number of agreed and number

of outstanding changes although no targets have been set on this information.

Table 5.4 shows the level three information. This information reports the information

at the inspections/reviews, process assessment and change request classification.

Although the information is reported at the project level, it requires information to be

available at the component level.

page 102

Attribute Target Anomaly Detection Range

Process assessment prop, planned effort

used

from "cost model" actual > 0.1*estimate

prop, planned

duration used

from "cost model" actual >0.1* estimate

fault detection

efficiency

50% estimated faults <50%

Inspection/review av. # inspections 3 per component > 3

prep, effort 2 * # inspectors hrs <0.1 *target+prep.eff

>0.1 *target+prep.eff

av. # inspectors 3<=5 <3, >5

inspection effort #total faults/4 <0.1*target+insp eff

>0.1*target+insp eff

inspection rate 4 faults per hr <3.6 faults per hr

>4.4 faults per hr

clearance rate 2.5 hrs/fault < 2.5

#faults found 5*size/1001oc

5*size/1000words

#faults* 100/size<4.5

#faults* 100/size>5.5

#faults* 1000/size<4.5

#faults* 1000/size>5.5

major faults 25% of faults found > 0.25 *faults found

changes user requirements 25% of changes > 0.25 * #changes

internal standards 25% of changes > 0.25 * #changes

external standards 25% of changes > 0.25 * #changes

others 25% of changes > 0.25 * #changes

quality assessment fog index 9-instruction man.

12-technical docs

> 9

> 12

Table 5.4 Level Three Targets

All the figures for effort and number of faults need to be multiplied by the relevant

phase percentage taken from the fault and change distribution value for the required

page 103

phase. This level of screen also includes a check both on the number of test cases run

against those planned and on the test coverage achieved although there are no targets.

The quality assessment was assumed to assess subjectively for "completeness",

"correctness" and "traceability" attributes.

The information at level four only includes the detailed fault and structural information.

The author only set targets on the fault information. Table 5.5 shows the targets for

fault classification which is linked to the inspection information.

Fault classification type of fault Target Anomaly

Detection

Range

Discovery of fault missing phase distribution * 0.4 > target

+0.1*target

wrong phase distribution * 0.45 > target

+0.1*target

extra phase distribution * 0.1 > target

+0.1 ̂ target

query phase distribution * 0.05 > target

+0.1*target

Origin of fault missing phase distribution * 0.4 > target

+0.1 * target

wrong phase distribution * 0.45 > target

+0.1*target

extra phase distribution * 0.1 > target

+0.1* target

query phase distribution * 0.05 > target

+0.1* target

fable 5.5 Level 4 fault classification

page 104

The total number of faults was estimated at 5 faults per 100 loc or 1000 words. The

reviews and inspection were assumed to be 60% efficient, therefore the residual number

of faults is 2 per 100 loc or 1000 words. The author only looked at major faults since

she assumed that project managers were more concerned with the major faults.

Reasons for collecting the information and setting a target depend on the intended use

of the information. Suggested reasons are given in Chapter 7 "Interpretation".

The default targets are unlikely to be representative of any particular organisation but

should help the project manager to set his/her own targets. Targets require calibration

to the particular environment in which the project is taking place. They can be

calibrated in several ways:

(1) Use of experience - where the project manager knows what to expect if the

project is running well from past experience and therefore knows what target to

set.

(2) Past project development history data - use of values obtained from previous like

projects. If enough project data existed it would be useful to compare actual

values from projects which were successful and projects which failed.

(3) Use of models (e. g. COCOMO) to obtain synthetic estimates for a particular

measure (e.g. effort, size, etc. for cost prediction).

(4) Use of REQUEST defaults amended with actual values when available - this

establishes a database of past projects (see 2 above).

Since default values should only be used in the absence of any other information, this

means that calibration of the target values will be the first and most important task of

any automated monitoring system. Therefore, it is important to ensure that the

calibration facilities are simple enough to encourage project managers to use them. In

the current prototype, we have been able to provide tool support in the form of an

analysis package (to analyse past project data) but we have not yet included any help

facilities.

page 105

5.3 The Automatic System

In the prototype of the automatic system, the information is organised into a hierarchy

with the most important global information being presented to the manager first. From

the global information, the project manager can see at a glance how the project is

progressing through the checkpoints or phases, and can identify any major problems.

After this, the project manager can ask to see more detailed information on any

particular values shown at the global level. The information is arranged to allow the

manager to choose the level of detail he/she wishes to see or has collected the relevant

information for. The more detailed levels provide more information and therefore help

in diagnosing the cause of problems but they require more detailed data to be collected

which may not always be possible.

The prototype did not go through a verification and validation process. The current

status of the prototype is that it is a working prototype which is linked to the

component-based monitoring and interpretation prototypes which are described in

chapter 6 and 7 respectively.

page 106

6. Component-based Anomaly Detection

This chapter is concerned with monitoring individual components using quantitative

information collected during the development of the product. This is called component-

based monitoring. The aim of the thesis is to identify statistical techniques which are

appropriate for analysis of software development metrics and to investigate how they

might be used to support quality management procedures. This chapter shows how

attribute measures obtained throughout the development can be used to detect potential

problem components. This work forms part of the monitoring mode of the REQUEST

model (called COQUAMO-2). The author had no involvement with the implementation

of the prototype of COQUAMO-2 after the specification stage.

The author’s tasks were:

(1) To investigate different statistical techniques with a view to identifying

anomalous components;

(2) To identify statistical techniques which would automatically detect univariate and

bivariate anomalous components;

(3) To specify the automatic anomaly detection algorithms.

The aim of component-based anomaly detection is to enable the project manager to

detect potential problem components as early as possible in a project. It should be noted

that the attribute measures are being used to monitor the process not the final product.

This is because the quality indicators available throughout the development do not have

a strong enough relationship with the final product to predict the effect that a particular

value will have on the final product quality (as shown in Chapter 3).

In order for the monitoring to be effective, managers must identify the goals they wish

their projects to meet in order to select the attributes which are most suitable for

tracking those goals. For example, a manager may be interested in the quality control

of the process but uninterested in the re-use of the product (or parts of it).

page 107

As with project-based monitoring, the choice of attributes to measure may be different

for different environments since many attributes are dependant on how the software is

being developed, e.g. whether the design is predominantly driven by control flow or data

flow. However, as a guideline only, the following are examples of the type of

attributes which can be used for monitoring and detecting anomalies, on a per

component basis:

• size;

• control flow;

• data flow;

• information flow;

• faults;

• enhancements;

• effort - construction and review.

All of these attributes can be viewed as quality indicators for the individual components

throughout the development. Size is often used to normalise attribute values for

comparison purposes e.g. defects/100 lines of code, control flow paths/100 lines of code.

This allows component attribute values to be compared for different components. In

addition, it is possible to identify quality trends against size e.g. large modules with low

defect rates or small modules with large control flow complexity.

In order to achieve early detection of problem components, measurements need to be

collected at each stage of the development process. This serves two purposes in that it

provides information that a particular component is a potential problem early in the

development process (permitting remedial action to take place), and can track a

particular component over-time to indicate whether or not the remedial action was

effective. One way of identifying an anomalous component is simply by subjective

judgement, for example, looking at a scatterplot of two attributes. There are

disadvantage with this method: 1

1. It is very time consuming, especially when trying to keep track of all the

attribute values of a component to provide information about the likely

cause of the anomaly.

page 108

2. Lack of consistency. No rules are laid down to define what constitutes

an anomaly therefore it depends on individual judgement. This also

makes it more difficult to justify taking remedial action, since a particular

component is not necessarily regarded as a problem by everyone.

Therefore, there appears to be a good case for automating the anomaly detection process.

The advantages which can be gained are:

1. an objective, and therefore, consistent way of identifying anomalies;

2. a reduction in time required to monitor project progress;

3. a defined base for identifying what constitutes an anomaly, and therefore

a basis for changing system if required;

4. a means of de-skilling the process which is useful for training

inexperienced managers and introducing a company standard.

In theory, three different types of anomalies can exist:

1. a particular component with an attribute value significantly higher or

lower than the rest of the component values;

2. a particular component has a pair of attribute values which do not exhibit

the same pattern as other components;

3. a combination of attribute values for a particular component that is

significantly different from the combinations observed on other

components.

The first type of anomaly is found when a single attribute is being examined. Each

component value is compared with the distribution of the attribute values and

components with unusual values can be identified. This depends on a method of

defining the distribution of attribute values.

page 109

The second type of anomaly is concerned with the relationships between attributes. The

general relationship for all the components can be identified and each component

compared to this to identify whether it follows the general relationship. This indicates

the need for a bivariate technique which deals with relationships among pairs of

attributes.

The third type of anomaly is concerned with how metrics relate to each other when a

combination of metrics are examined together. This indicates the need for a multivariate

technique which deals with relationships (among many attributes).

The author investigated which of the three types of anomalies described above exist in

practice using values from dataset 3 (see section 1.2). She subjectively identified

anomalies using:

• the distribution of the attribute values;

• bivariate plots to identify general relationships (subjectively);

• Principal Component Analysis leading to a bivariate plot of the first two

principal components.

The author discovered that any components exhibiting the third type of anomaly, had

already been identified by either the first or the second type. Therefore, since no new

anomalies were being highlighted, she decided not to investigate automation of

multivariate detection except as a check on the anomalies detected by the univariate and

bivariate techniques (this was felt to be required since relatively few data sets have been

investigated). Therefore, the research effort reported in this thesis concentrated on

finding statistical techniques which would automatically detect univariate and bivariate

anomalies.

6.1 Automatic Univariate Anomaly Detection

Automatic univariate anomaly detection is employed to detect components which have

page 110

an attribute value which is significantly higher or lower than the rest of the components’

values for that attribute. The technique the author considered for this was a modified

version of Tukey’s boxplot [38]. The reason this technique was considered is because

it:

• provides a summary of the distribution of attribute values;

• does not require the values to follow a Normal distribution (or any other

distribution);

• provides quantitative values outside which the value can be regarded as

anomalous;

• for heavily skewed data boxplots provides more accurate summaries than

the more conventional mean and variance statistics (see chapter 3 for

examination of nature of software data);

• was designed to assist the detection of anomalies (outliers).

However, the technique only identifies statistically significant anomalies, which tend to

be so extreme, that a project manager would already be aware of the problems.

Anomaly detection was intended to do more than just highlight problems which were

obvious to the project manager. It was intended to highlight components which were

not necessarily a problem at present but might become problems later in the

development process when it would be more difficult and expensive to correct. In

software development, project managers are used to (and accept) the hypothesis that

20% of the components cause 80% of the problems, known as the Pareto effect.

Therefore it was envisaged that a system which identified approximately 20% of

components, as potential problems would be acceptable.

Working with Dr. Kitchenham and Sue Linkman, the author attempted to evaluate how

successful a quality approach to the analysis of attribute values would be, [45]. Unusual

quality indicator values at the design and code stage were identified and three factors

were investigated:

page 111

• what proportion of components were anomalous with respect to each

indicator metric and each quality characteristic (where a quality indicator

was a metric collected during the design or coding phases of the

development and a quality characteristic was an attribute collected during

testing, e.g. faults and changes);

• the efficiency with which the indicator metrics identified ‘critical’

components, i.e. the proportion of components with anomalous indicator

metrics that were also anomalous with respect to the quality

characteristics metrics;

• the effectiveness with which the indicator metrics identified the ‘critical’

components, i.e. the proportion of components with anomalous quality

characteristics metrics that were anomalous with respect to the indicator

metrics.

Figure 6.1 shows the difference between effectiveness and efficiency.

Figure 6.1

The total number of components is (A+B), where A is the number of components with

normal characteristic attribute values and B is the number of components with unusual

characteristic values. The total number of components with unusual indicator values is

page 112

(C+D). Therefore:

Efficiency D/(C+D)

and

Effectiveness D/B

The components were regarded as anomalous if the attribute values were greater than

the upper fourth (i.e. lay in the top 25% of the data). In the boxplot terms this means

that the cut-off values (Q, and CL) were changed from:

where Fp, and FL are the upper and lower fourths respectively of the attribute value’s

distribution and dF is the difference between the upper and lower fourths.

However, for an automatic anomaly detection system the percentage of components

identified as anomalous by the above cut-off values is likely to be too high. This is

because they will cause too many components to be identified as anomalous in a large

system and this may lead to unacceptable burden on the project manager. Therefore,

an automatic detection system should identify those components which are not

necessarily formal outliers but are most likely to cause the project managers problems

later in the development process. If the automatic system identifies too many

components that the project manager may not have the time or the inclination to

investigate them all and may stop using the system. This defeats the main purposes of

the automatic system which is to increase the benefit of using measurement and provide

more information in return for a minimum amount of time spent. This led to the author

choosing cut-off values for the detection of univariate anomalies to lie between the

original Tukey’s values (i.e. + 1.5 dF) and those given above (i.e. + dF).

The most effective value of the dF multiplier was chosen by examining which anomalies

Qj = Fa + 3/2dF

CL = FL - 3/2dF

to

page 113

were detected for three attributes of dataset 3 and then subtracting 0.25 of the tail

lengths from the value and repeating the process. The value was taken to be too low

if the cut-off points were classifying more than 20% of the data as being anomalous.

Table 6.1 gives a summary of the results of this process and shows the average

percentage of anomalies which the value of the dF coefficient was detecting.

dF multiplier % of data identified as

anomalous

0.75 -20-25

1 -10-15

Table 6.1 Percentage ot Data identified

With the multiplier higher than 1, the technique was identifying only one or two more

components as outliers each time the procedure was invoked. However, when the

coefficient was lower than 1, then there was a large increase in the percentage identified.

This is probably due to the presence of a large number of tied values in some of the

attribute measures and when the cut-off value close to a value with many ties it is

starting to identify part of the majority of the data as anomalous. Therefore, the cut-off

points which were implemented into the automatic system are:

Qj - Fu + dF
CL = FL - dF

The results from the investigation, using the upper fourth cut-off values, suggested that

although detailed project control activities still rely on the expertise of the project

manager, metrics could provide useful input to the design process both at the design and

coding stages of the development process. For example, extra time spent on the 18%

of the components with high fan-out values would have been 82% efficient and 45%

effective, compared to 17% and 8% respectively, if extra time was spent on a randomly

selected 18% of the components.

Percentiles of the data could be used by managers if they only wished to detect

page 114

univariate anomalies, e.g. look at the top 10% of the high valued components.

However, the advantage of the boxplot technique is that it also provides an input for

automatic interpretation of the anomalies.

6.2 Automatic Bivariate Anomaly Detection

A bivariate technique is required to detect anomalies that occur when a component has

an unusual combination of two attributes. The relationship between any two attributes

is not necessarily a linear one and it is difficult, if not impossible, to predict the

relationship in advance.

In the absence of a known underlying distribution, no simple statistical technique exists

which is designed to detect bivariate anomalies. The author decided to use a bivariate

plot to show the relationship because a manager might use scatterplots and therefore

would be likely to understand. While the univariate anomaly detection can be easily

understood, using a bivariate plot it is not as easy to define an outlying point. This

makes automation difficult, although more useful.

The author provisionally chose three statistical techniques as potentially useful for

automatic detection purposes since they were capable of identifying atypical values when

a combination of values were unusual. These techniques are described below in section

6.2. 1.

6.2.1 Suggested Techniques for Bivariate Anomaly Detection

Three techniques for detecting bivariate outliers were considered. These techniques

were:

(1) Nearest neighbour clustering;

(2) Sum of Euclidean distances from all other points;

page 115

(3) Frequency of points in a grid (i.e. density plot).

Investigation of other techniques, such as tensor analysis, was rejected due to lack of

time.

It was envisaged that one technique would not identify the anomalies on every scatter

plot, and that two techniques may be required. Visual inspection of scatter plots showed

that problem components are not necessarily those that have attribute values which

deviate from a direct relationship but can be those which fall between two clusters of

points.

If two techniques had been necessary, then both of the techniques would have had to be

automated as part of the automated tool or prototype. Both of the techniques would

have to be applied and outliers identified by each method combined to produce one set.

6.2.1.1 Nearest Neighbour Clustering technique

This technique starts with each of the points (i.e. values related to a particular

component) on a plot being regarded as a separate, individual group. A distance matrix,

giving the Euclidean distances between each point and all others, is obtained. The

technique then fuses the groups according to distance between the groups, with the

smallest distance being fused first. Each fusion decreases the number of groups by one.

A dendogram [55] shows graphically which groups have been fused, and in which order.

Any point which is separate or outlying from the other point(s) should be easily detected

since it will be the last point(s) to be fused. It was envisaged that this technique would

probably be capable of detecting the type of anomalies shown in Figure 6.2.

Potential Problems Identified Prior to Use

This technique requires the attribute values to be standardised. It was unclear whether

standardising measurements drawn form non-Normal distributions would have

unexpected side-effects.

page 116

i t t i-.

to o -

f 50 -m
è * •• .

i
c . r *Z * 0 -

. / ’- * •

1 2 0 -

S ' '

1 0 0 2 0 0 300 4 00 500 S 00 7 0 0 • 0

dim (frm t of coda)

Figure 6.2 Size against
Control Flow

The technique is unlikely to work when the points on the plot form a composite pattern,

i.e. a pattern which has been derived from one or more patterns, as shown in Figure 6.3

There might be difficulty in transferring the information from dendograms directly into

an automated interpretation system. The information is used by the statistical packages

but the output from such packages is usually in graphical form, not numerical form.

The points added to the cluster last, which would be regarded as potential outliers, still

have to be identified. This entails deciding what distance will be used as the cut-off

point i.e. what is the maximum summed distance allowed before an individual

component is identified as anomalous. This value may have to be related to the actual

data rather than independent of the particular data set. This problem might be resolved

by standardising the data first.

page 117

6.2.1.2 Sum of Euclidean Distances

This technique also requires a distance matrix with the Euclidean distance from each

individual point to all other points. All that is then required is to sum all the distances

from an individual point to all others and compare the sums. This may be automated

by drawing a boxplot based on the summed value for each point.

Potential Problems Identified Prior to Usage

This technique requires the attribute values to be standardised. It was unclear whether

standardising the metrics would alter the number of and which particular components

would be detected as anomalous.

The technique is unlikely to work when the points on the plot form a composite pattern.

The points which would be regarded as potential outliers, still had to be identified. This

entails deciding what distance the cut-off point will be, which this may have to be

related to the actual data. This problem may be resolved by standardising the data first.

6.2.1.3 Density plot

This technique involves dividing the plot into grid areas and calculating the frequency

of points in each area, as shown in figure 6.4. All the points which are in grid areas

with less than a certain percentage of points in them will be regarded as potential

outliers. At present, there appears to be no reason why this technique will not detect

anomalies from all types of pattern.

Potential Problems Identified Prior to Usage

The optimum percentage cut-off level still had to be decided. There was also the

problem of relating the grid to the range of attribute values. Standardising the metric

page 118

values might ease the problem because it is likely that only one standard grid would

then need to be chosen.

LL Œ LL Li

LL . • .. ur. Œ

LL [3

lit • . LL j-5

IÜ l_i

II-IOO

Figure 6.4 Size against
Subjective Complexity Assessment

6.2.2 Choice of Statistical Technique

Since the object of the automatic detection was to emulate the performance of an expert

project manager in detection of problems, it was decided to investigate what types of

anomaly an expert project manager would detect and choose the statistical technique

which detected the most of those anomalies. The author ran an experiment to identify

what type of anomalies an expert project manager would detect (see chapter 4). The

experiment had two aims, with the first being the major one:

(1) to determine what a project manager would identify as an unusual

component from a scatter (or a density) plot;

(2) to determine whether initial standardisation of the attribute values affects

the detection of unusual components.

The full description of the experiment was given previously in Chapter 4. The results

from the experiment indicated that the managers’ replies were not consistent enough to

be used as a control in an experiment to identify the most appropriate technique to use

for automatic anomaly detection.

page 119

Since the project manager’s replies from the experiment could not be used to identify

which of the techniques identified and described in section 6.2.1, was the most

appropriate technique for automatic bi-variate anomaly detection, another way of

choosing the technique had to be employed. The method used was to identify the

technique which best replicated an expert consultant’s subjective detection of anomalies

on an available project.

Frequently, it is useful to consider pairs of variables as ratios, for example lines of code

per month or defects per 1000 lines. At first glance this would appear to make the

anomaly detection easier because it would reduce bivariate detection to univariate

detection. However, the same ratio value can have different meanings, e.g. a large

component with a large number of faults can have the same ratio value as a small

component with a small number of faults. The individual attribute values are required

for interpretation of the anomaly. For example, a large module with a small number of

faults would have a low defect rate, and using ratio values would be assumed to be a

good module. This would be incorrect if the low number of faults was actually a result

of poor testing.

The technique of ‘nearest neighbour’ clustering was initially regarded as the most

promising. One advantage of this technique was that as well as identifying the majority

of the anomalies detected by the expert consultant, it also divided them into clusters of

different types of anomalies. This helped with the interpretation of the anomaly. When

the technique was used to identify the clusters, it showed some initial promising results

from the identification viewpoint. However, the trial investigation also highlighted a

problem with completely automating the technique. The data required to automatically

identify the different clusters was not easily accessible from SPSS, the statistical

package used. Also, if this technique was used in the automatic system the user would

need to have available a large statistical package, which is expensive and requires a

substantial amount of memory. Therefore, a technique was sought which could be

relatively easily automated internally as part of the REQUEST prototype and therefore

could be provided as an integrated part of the automated system to the user with

minimum overhead cost.

The technique investigated was an amended version of the density technique. It was

page 120

amended to capture some of the capability of the clustering technique and because the

density in the different grid cells alone was not sufficient to detect the anomalies. This

was because it would identify all points in a grid cell as being anomalous if the density

was low but took no account that the cell might be surrounded by the majority of the

data, due to the placing of the grid not the distribution of the data.

The author decided to add a neighbouring concept to the density grid, which removed

the above problem. The advantage of this approach was ease of implementation and

linking to other facilities, like the interpretation prototype which is an important part of

monitoring the development process. The reason that the link is so important is that the

automatic detection system can only detect that a component has attribute values which

are different to the majority of the components, it cannot detect whether this difference

is likely to cause a problem or not. Since this would result in the project manager

having to check many components that are not problems, it might discourage the use of

anomaly detection tool unless a method of interpretation is also provided.

Certain analysis criteria had to be decided before the technique could be automated and

implemented in the prototype:

• Size of grid to place on scatter plot;

• Rules for identifying whether a component is anomalous or not.

The initial grid size was chosen for software engineering reasons, not for statistical

reasons. In software it is quite common to collect information on a five level ordinal

scale. For example, defining complexity to be very low, low, average, high or very

high. This led to the choice of dividing each axis into five equal sections. A useful

enhancement would be to set a grid size which made more use of the information

contained in the numerical measures in the data set and would therefore be more

sensitive, e.g. use of percentile information.

The rules for identifying whether a component is anomalous or not were derived by

analysing the values obtained from dataset 3, the same dataset that was used to choose

the univariate detection technique. The objective was to find a set of rules which

combined the influences of both the density of each grid cell and whether it was near

page 121

any other highly populated grid cells, to produce a technique which most consistently

identified the anomalies that had already been identified subjectively by an expert

consultant for the project. Different combinations of density and number of

neighbouring cells were investigated on plots with different combinations of attributes.

The plots used were the same as those used by the expert consultant. The set of rules

eventually chosen for inclusion into the automatic system were those which identified

most anomalies (if not all) on the majority of the plots.

The final set of rules which were implemented into the prototype are:

(1) density of grid cell is either one or two

and

number of non-empty neighbouring cells is less than three.

(2) density of grid cell is greater than two

and

density of grid cell is less than 10% of the total number of components

and

the number of non-empty neighbouring cells is less than two.

A component (or components) is identified as anomalous if either of the above rules is

true. The implementation of these rules was carried out by another member of the

REQUEST project who followed the author’s specification.

6.3 Verification and Validation of Automatic Detection Prototype

The basic approach was to compare the results of the automatic anomaly detection

routine with an analysis which was undertaken to show that the COQUAMO-2 model

worked when the principles applied by an experienced analyst. The analysis was carried

out using data from dataset 4. The analysis was carried through to the advice and the

developers of the product verified that the majority of the components identified

subjectively as anomalous by the expert were problem components. The analysis was

completed prior to the Verification and Validation exercise and completely

page 122

independently of the tool. This analysis also met the criterion that the data set used had

not been used to derive any of the anomaly detection rules.

Two anomaly detecdon routines were implemented in the prototype. These routines

were an implementation of the rules for univariate and bivariate anomaly detection

outlined in this chapter. They were implemented by a mixture of shell script and C

programs, details of which are given in [56]. The aim of the prototype was to

demonstrate that the techniques could be automated and were capable of detecting the

same type and level of anomalies as an experienced consultant detected in the

COQUAMO-2 model simulations, [53] and [57].

Since the results of the anomaly detection routines is part of the input to the

interpretation system, verification and validation of the output of the routines was felt

to be necessary to avoid advice being given on misleading information.

6.3.1 Verification Process

The tester who performed the verification was given a description of the rules that the

univariate and bivariate anomaly detection should follow and then used this information

to check whether the tool was executing the rules correctly.

The process used to implement the tests was to make use of the anomaly detection

routines which were available as an user’s option on the "User’s Analysis Tool". This

tool allows the users the option of inspecting and analysing their data at the lowest level

of the summary report prototype.

The tester called up each of the analyses used in the manual analysis and checked

whether the prototype obeyed the anomaly detection rules identified in this chapter. If

the rules were not obeyed, the problem was flagged to the implementor who diagnosed

the problem and implemented the solution. The analysis where the problem was

detected was re-run and checked to see if the implemented solution had solved the

problem. The verification uncovered four implementation problems. Once they were

corrected the prototype appeared to be detecting anomalies correctly with regard to the

page 123

rules.

6.3.2 Validation Process

Once the verification process had been completed and the problems solved, the

validation process was started. The tester looked at the same set of analyses but this

time checked whether the anomalies which the tool had detected were the expected

anomalies. The expected anomalies were the ones detected by the subjective

identification performed by the expert. Any problems found were reported to the author.

6.3.2.1 Validation Results

The validation showed that the automatic univariate technique detected all the expected

anomalies. The automatic bivariate technique detected 96% of the expected anomalies

when all the anomalies from all the graphs were considered. Many of the anomalies

were found on more than one plot and therefore were detected more than once, in fact

81% of the anomalies which the expert detected were found on every graph which the

expert used. The automatic technique also identified a component as anomalous which

the expert consultant had not. This component was not diagnosed as being problematic

in the system under investigation but it caused serious problems when the particular

component was ported to another application. This may have been coincidence but it

would be interesting to check if the anomaly detection routines are capable of detecting

components which will be problematic when ported or re-used in another application.

However, this is outside the work of this thesis.

Four conditions were highlighted as problems, where the technique would have been

expected to have identified the anomaly but did not (although the rules were correctly

applied). The following plots show the anomalies which were only subjectively

identified as anomalous in bold type-face and the anomalies only identified by the tool

in italics. The rest of the marked anomalies were identified subjectively and by the tool. 1

(1) Figure 6.5 shows an example of where more anomalies have been identified than

page 124

expected. Component 4 has a combination of attribute values which is both

feasible and acceptable but the rules have detected it as anomalous because it is

the only component in the grid cell which has only one neighbour. This occurs

when the majority of the data is captured in one cell of the grid and the rest

randomly scattered around the plot. This will mainly be a problem with

classified errors, which have many zeros, but will also cause a problem with any

other attribute which has a large number of tied values and a low range of

values.

Figure 6.5 also highlights the need for the grid setting to be different for

attributes with a small range of values to avoid the situation of a line of grid

cells whose limit boundaries fall between integers with no whole integer value

contained in them and can therefore have no values in them.

*8
3

\

1
©

“ 27“
0 4

■ - CD® 2
31

26 10
----' I 'V VJ I 1

0 100 200 300

«LreQine* of code)

Figure 6.5 Size against Coding Errors

(2) Figure 6.6 shows an example of where the neighbouring rules are failing to

detect all of the expected anomalies. The component marked with an arrow has

not been identified because its grid cell has three neighbours although component

26 has been identified as anomalous.

This occurs when most of the values of one of the attributes fall in a small

range. The range of the other attribute causes most of the data points to lie in

page 125

a vertical or horizontal line.

*8
Ï
é

Ì

300

200

2
<X>

f?

3 1

31

S

• 26

II ■
7*
« . . .« h — ^

© 30

— 1----- ^----1-----»

0 7 ?

— i— »—
10 20 30 40 50

informational fan-in

Figure 6.6 Informational Fan-in against
Size

(3) Figure 6.7 shows another example of where the neighbouring rules are not

detecting all of the expected anomalies. Component 10 has not been detected

because it has three neighbours.

200

I

3 1

- 26
® /

31 2

■ ® JO

m

. h f a h :
l a ■
\ m J , -------

100 200

sizeGinea of code)
300

Figure 6.7 Size against Paths

This occurs due to the positioning of the grid lines on the plot. Although the

page 126

two components 31 and 2 have similar values for number of paths (or branches),

the grid line has, by chance, been placed between these two values. This has

resulted in the components being in different cells and they are both acting as

neighbours to component 10, which is undetected since its grid cell has three

neighbours.

(4) Figure 6.8 shows another example of where the neighbouring rules are not

detecting all of the expected anomalies. Component 1 has not been detected

because it has three neighbours.

30

H 20o,
Ì

10

0
0 2 4 6 8

number of toting error«

Figure 6.8 Testing Errors against Exit
Paths

fc
Xi

<I>26 o|H

! • 2

© 1

® 3 I
■

m
■

— t - m • m ■

This occurs due to the positioning of the grid lines for the plot, similar to

problem 3. However, this problem is caused by components 10 and 1 falling in

neighbouring, diagonal cells, although they are relatively far apart in value.

Therefore, they are both having an influence as a neighbour.

Problem 5 was not directly detected from plots in the validation exercise but could be

foreseen as a result of those which were. The circled components are those which the

anomaly detection rules would detect as anomalous. 5

(5) When all the data points lie in a diagonal line (see Figure 6.9), the cells with less

page 127

than 10% of the data in them will be detected as anomalous. This is because the

grid cells will only have two neighbours, on the diagonal. The extreme case of

this could cause all the components to be detected as anomalous.

Figure 6.9

6.4 Summary of Verification and Validation Results

The system appears to be successfully detecting anomalous components and is largely

consistent with the expert consultant, with only a few exceptions. The anomaly

detection routines have been shown to be effective on a data set which was not used in

the original definition of the rules and routines. The validation problems are mainly

sensitivity problems caused by the process of setting the grid on the plot. However,

these problems occur relatively rarely, except for the problem with attributes with a

large number of tied values and low variability. Any future enhancements to the

routines would have to include the solutions to the above mentioned problems. The

rules for anomaly detection have only been used with data sets in the range of 50 to 240

data points. It is unlikey that the rules will be valid for either very small data sets (e.g.

less than 20 data points) or very lrage data sets. More reserach is required to identify

more appropriate rules for very large data sets. These rules would have to take account

of the size of the data set.

page 128

7. Interpretation

This chapter is concerned with the interpretation of anomalies detected by project-based

and component-based monitoring. The aim of the thesis is to identify statistical

techniques which are appropriate for the analysis of software development metrics and

to investigate how they might be used to support quality management procedures. This

chapter shows how the likely cause of the anomaly can be detected with the help of a

simple expert system which looks at a combination of attribute values for diagnosis.

The author’s task was two-fold:

(1) To liaise with an expert consultant to obtain knowledge about what an expert

considers when diagnosing a problem;

(2) To set up an simple expert system, or advice system which incorporates the

knowledge obtained from the expert.

The potential anomalies were identified by the anomaly detection routine as described

in chapter 6. The development of the system diagrams involved turning the expert’s

knowledge into interpretation trees and then into a set of rules for input into a rule-based

system. The author did not write the expert system shell but was responsible for

deriving the rules.

The interpretation system is intended to automate the interpretation of project and

component anomalies. For automatic anomaly detection to be of any significant benefit

to a project manager, some interpretation is required to identify the likely cause of the

anomaly and its effect on the project. This was emphasised by the results of the

experiment described in chapter 4. Automatic anomaly detection can only identify a

component as being significantly different from other components, it cannot identify

why it is different. An anomalous component may differ because there is a problem but

it may differ because it has been exceptionally well developed. Beneficial anomalies

occur for many different reasons, for example, a complex component might have been

given to an experienced developer or subjected to more rigorous testing. To minimise

time spent checking components, it is useful to differentiate between components that

page 129

are potential problems and those that are not. Without this facility, project managers

may find an automatic monitoring system inefficient.

The objective of the automated interpretation system is to diagnose the likely cause of

any anomalous components detected by the automatic detection routines. It cannot

replace the project manager’s experience, and was not intended to, because there can be

many causes of an anomaly, the majority of which will be unforeseen or unknown to

any general interpretation system.

7.1 Project -based Interpretation

Like anomaly detection, anomaly interpretation can occur at two different levels, project

and component level. The concept of interpretation is the same for both except that a

project-based anomaly detection is always assumed to be a problem. Project targets are

set so that a missed target is a problem. However, unusual component values are not

necessarily indicative of a problem.

Although both levels of interpretation need to identify the likely cause of the anomaly,

the method used differs between the two types of monitoring.

For project-based monitoring, the interpretation of an anomaly, or missed target, depends

on what the goal was when the target was originally set. For example, if project

managers want to keep a check on how stable their projects are, they may want to set

a maximum target on the rate of change per requirement (number of changes/number

of requirements). If a project exceeds this target it may indicate instability of the

requirements resulting in an unstable development.

The following tables provide suggestions as to why a project manager may wish to

monitor the attributes on which initial default targets have been set in Chapter 5

"Project-based Monitoring.

Table 7.1 provides some suggestions as to why a project manager may want the

information contained in the Phase Summary (see Table 5.2 for targets).

page 130

Attribute Reason for Monitoring

Resource constraints effort Check spending too much/little effort up to

current phase. Too much effort may result

in insignificant effort for testing. Too little

effort spent may indicate some activity has

not been properly completed

duration Check for schedule slippages

re-work Check for excessive amount of rework

Outstanding problems Check efficiency of problem clearance

process

Table 7.1 Reasons for Fhase summary mlormation

Table 7.2 suggests some reasons why a project manager may want to have the Level 2

Target information.

page 131

Attribute Reason for Monitoring

Resources effort Check adequate amount of

effort spent on current

phase

duration Check adequate amount of

time available for current

phase

checking effort Check adequacy of

reviewing and inspecting

other activities Check amount of effort on

activities other than

development

rework-faults Check software/document

not becoming unstable

Events rate of change /req’t Check stability of

requirements

Table 7.2 Reasons tor Level 2 Information

Table 7.3 suggests some reasons why a project manager may want a review summary.

page 132

Attribute Reason for Monitoring

av. # inspections per

document/item

If number > 3 then inspection/review not being

effective and software should be checked with a

view to rewriting problem areas.

preparation effort Check if spending adequate amount of time

preparing for reviews.

av. # inspectors Check on having too many (waste of money) or too

few (not effective reviewing) inspectors.

inspection effort Check spending adequate amount of effort in a

review.

inspection rate Check inspections are effective at finding faults.

clearance rate Check clearing detected faults effectively.

faults found Check fault removal process is adequate (not too

few) and check product not too faulty and likely to

be fault-prone later.

category of fault Likely problem if more than 25% of faults found

are major.

Table 7.3 Reasons tor Review/lnspection information

Table 7.4 suggests some reasons for monitoring process assessment.

page 133

Attribute Reason for Monitoring

Process assessment prop.planned effort used Check planned effort used

too quickly with a danger

of no effort left to test.

May also indicate

existence of unplanned for

functions

prop, of planned duration

used

Check if likely to produce

product on time

check effort/ production

effort

Check software/document

produced too quickly at

expense of testing effort.

Test plan number of test cases Check that planning of test

cases is adequate and no

unplanned functions

developed

Readability Fog Index Check documents are

readable.

Subjective assessment Check quality attributes

are at least average

Table 7.4 Reasons tor Process assessment

Table 7.5 suggests reasons why a project manager may wish to see fault and change

classification information.

page 134

Distribution Reason for Monitoring

Change classification change request Detect which type of fault is

predominant.

Fault classification discovery distribution Check efficiency of review

process.

origin distribution Check for problem phases

category Detect unexpected levels of

fault types.

Table 7.5 Reasons for Fault and Change Classifications

It is not the intention of the interpretation system to collate the advice provided for each

missed target and produce an assessment of the most likely problem for the project. The

final view of how well the project is developing and the final identification of any

problems remains the responsibility of the project manager. The automatic system is

only intended to provide some additional information and advice to help the manager

in this task.

7.2 Component-based Interpretation

Automatic interpretation is more important at the component level because it is not

obvious what impact an anomaly may have on the development. Project managers are

more likely to be interested in the underlying cause of the anomaly and what they have

to do to resolve it. This was also emphasised by the results of the experiment, described

in chapter 4, where some of the responders did not understand what the measurements

or attributes meant and therefore could not identify when a component was anomalous.

Therefore, interpretation is an important part of the monitoring process.

In the COQUAMO-2 prototype the results of both the project and the component-based

detection are input to the interpretation system, however, the results of the component-

based detection are not shown to the project managers as they are for the project-based

page 135

detection (via summary reports). The list of anomalous components detected is passed

directly to the interpretation system, where the likely cause of the anomaly is assessed.

The component-based interpretation falls into two distinct parts:

• identification of likely cause of anomaly;

• corrective action for likely cause.

This chapter concentrates on describing the techniques that were used to identify the

likely cause of a component-based anomaly. There are two distinct stages involved in

the identification of the likely cause of the anomaly. The first stage requires

summarising the nature of the anomaly by classification of the attribute values. The

classified values are then used as input for the second stage which involves

interpretation of the likely cause of the anomaly.

7.2.1 Classification

Prior to investigating the underlying cause of the anomalies, the nature of the anomaly

needed to be summarised. This was done by classifying the attribute values onto a

simple ordinal scale. This was required because the absolute values are not as important

as relative values for interpretation. The classification scheme developed by the author

was intended to be meaningful to project managers. It was based on defining an

attribute values on the following five point scale:

• very low

• low

• medium

• high

• very high.

A consistent method was required to transfer all the attribute values to this form. The

univariate automatic detection technique already required the calculation of a five-point

summary of the attribute values, therefore the author used the boxplot information to

page 136

map the values onto the ordinal scale. This information is shown in Table 7.6 below.

Boxplot Range Ordinal scale

classification

below lower tail value very low

between lower tail value and lower fourth low

between lower fourth and upper fourth medium

between upper fourth and upper tail value high

above upper tail value very high

1'able 7.6 Transformation to Ordinal Scale Values

7.2.2 Interpretation System

The first step in choosing a method to automate component-based interpretation was to

investigate what a consultant did. Although the component-based detection method was

not based on multivariate methods, interpretation of anomalies is often based on many

different attributes. Also, consultants use more information than the comparison of

attribute values. They incorporate software experience when they decide what should

be examined to explain why a particular combination of attribute values has occurred.

However, a consultant also takes into account the variety of conditions under which the

project is operating. Dr. Kitchenham suggested that these different conditions could be

captured by the use of scenarios. A study [58], incorporating the simulation of possible

scenarios, showed the infeasibility of coping with many different possible conditions.

The interpretation system was therefore restricted to the development of a simple expert

system.

The interpretation system was required to cover all the phases which the anomaly

detection system covers (from requirements to integration testing). The component-

based interpretation deals with the phases:

page 137

• high level design;

• detailed design;

• coding/implementation;

• unit test.

The requirements and integration test phases are concerned with the project as a whole,

so anomaly detection and interpretation is not relevant. These phases are covered by

phase-based monitoring.

Due to the lack of available experts in the metrics area and the variation between expert

opinion, only one recognised expert was used to obtain the original knowledge for the

expert system rules. The expert was Dr. Barbara Kitchenham. The author and the

expert decided to limit the identification of the likely cause to major problems which

could occur in the development. This would inform the user whether the anomalous

component was likely to be a major problem although it would not provide any help for

more minor problems.

The expert’s knowledge was documented in the form of a hierarchical tree for each

phase and the attribute chosen to start each tree was the size of the component. A list

of general problems which a project manager may face was identified. This list was

reduced to major problems that could be found from investigating the component’s

attribute values. The resultant list of potentially dangerous conditions included:

• fault-prone components;

• inadequately tested components;

• unstable/difficult to enhance components;

• insufficient or excessive effort per component;

• complex component;

• difficult to test components.

The above set of conditions are relevant to the first three phases. Most conditions are

detected at different stages of the development and can be either causes or symptoms.

Causes and symptoms of problems are difficult to distinguish because at one stage of

the development a condition might be regarded as a cause of another problem and the

page 138

next stage as a symptom. The automatic interpretation system was only concerned with

identifying potentially dangerous conditions. It was not concerned with whether the

condition was a cause or a symptom of some other problem, only that if would result

in a major product problem. In practice, conditions can be caused or compounded by

other conditions e.g. a component may be fault-prone because it is complex. Further,

if the component is also given to inexperienced staff then the condition is even more

serious. Currently, the automatic interpretation system stops when it identifies a

potentially dangerous condition which is likely to result in a problem. This problem

may have many causes which are not explicitly identified. A useful enhancement of the

system would be to deal with multiple causes by continuing diagnosis after the first

dangerous condition is identified. This would result in a more complete interpretation

of the anomaly.

Unit test is conceptually different so it is not surprising that different types of problems

are encountered:

• test planning inappropriate;

• test coverage not achieved;

• testing unsuccessful;

• unstable/difficult to enhance components.

If none of the problems are likely to be affecting the component then, within the

limitations of the advice system, the component is assumed not to be a problem.

The different types of problem are investigated in a particular order (the same for all

phases) by the comparison of attribute value classifications for each anomalous

component. In many cases the attributes can only narrow the scope of the problem to

its likely area. Additional information is required to identify the particular problem or

explain the reason why the combination of attribute value classifications has occurred

but it does not constitute a problem. The most common reasons for the combinations

are queried by asking the project manager relevant questions when a particular

combination is found. The interpretation tree for each phase is given in the following

pages and has the following key:

page 139

plain text

underlined

bold

questions internally answered (by attribute value);

questions externally answered (by user). These require a

yes/no reply,

likely cause of anomaly.

Figure 7.1 shows the interpretation tree for the high level design phase. The first

characteristic looked at is the relative value of the high level design size. The answer

to whether it is large or small will dictate which branch of the tree the user will be

directed down and which set of questions will be asked.

The system will continue down the tree asking questions until a likely cause is

identified. The main path down the tree represents the "no problem" path derived from

the attribute value classifications. The branches either examine more attributes, ask

clarifying questions or identify the likely cause. The answers to the questions either

identify a likely cause, or identifies "no problem" and the flow of the tree returns to the

main path. The interpretation trees for the other phases are as follows:

detailed design - Figure 7.2

coding - Figure 7.3

unit test - Figure 7.4

They all have the same structure.

At present, the interpretation trees are limited to major problems which may exist in the

environment. However, because of the way they have been designed, the trees can be

modified relatively easily. This means that the interpretation can be modified to reflect

the problems which are most prevalent in the intended user’s own organisation. Also,

if particular attributes cannot be measured, and/or the problems they can highlight are

uncommon in an environment, the attribute can be removed from the main path, with

all its branches, without the need for modification to the rest of the tree.

Since the structure of the trees is consistent across the phases, it is easy to see where

an attribute would need to be inserted into the tree for all the phases once its position

in one tree is decided. At present, the system assumes the existence of only one likely

page 140

cause and stops when it identifies one. Therefore, the order in which the problems are

investigated can be important. If a tree is amended to include checks for an additional

problem, the significance of the problem should determine the position in the tree where

the check should be inserted.

Once the system has identified a likely cause and terminates the diagnosis, it suggests

a corrective action for that problem with the suggested diagnosis. A summary report

is presented which provides the complete list of the anomalous components identified

in a particular phase, their likely causes, and what diagnosis was identified in a previous

phase (if any).

page 141

Figure 7.1 High level design phase

page 142

page 143

Figure 7.1 High level design phase (continued)

page 144

L a r g e d e s i g n " s i z e "

yes

L a r g e f a u l t s (r e l a t i v e)
I

Is i t c o m p l e x ?

l a r g e
f a n - i n

Figure 7.2 Detailed design phase

page 145

page 146

Large design size
yes-

no '

Large high level design

m

p Is detailed des ign
large faults (relative) .incomplete?

no

f F a u l t prone
Change prone(relative)

yes

no

Large construction
effort

U n s t a b l e /
d i f f i c u l t to enhance

Figure 7.2 Detailed design phase (continued)

page 147

page 148

L o w c o n s t r u c t i o n
e f f o r t (r e l a t i v e)

D i f f i c u l t to test

Figure 7.3 Coding phase (continued)

page 149

page 150

page 151

Faulty (relative to size)

Low number of test cases
successfully run (relative to number of paths)

Low test coverage?

Is fault rate per week
increasing?

no

Change prone

Is the testing
adeguate?

T e s t i n g of
component
u n su c c e s s fu l

to enhance

Figure 7.4 Unit test phase (continued)

page 152

7.3 Rules and Expert System Shell

The author implemented the interpretation trees as a file of Prolog rules for each phase.

The expert system shell used to verify the rules is called "go", a proprietary STL

product which was specially written for the this expert system. It is a primitive expert

system shell written in Prolog and uses backward chaining logic. Figure 7.5 shows the

architecture of the system.

Since the expert system was developed using Prolog, all the names used in the rules

must be valid Prolog atoms and each rule must end with a full stop. The system expects

possible hypotheses, in this case "likely causes", and its rule-base must be supplied on

page 153

file. The attribute values can either be entered in a file or will be prompted for by the

system. The system can save the conclusions from each run into a file if required.

The hypotheses are supplied in a file called "goals" and can either be explicitly affirmed,

or denied, or voted on. Hypotheses which are affirmed when the system is run are

reported in alphabetic order if the term "find_all_conclusion" is included in the rule-

base. If this term is not included then only the first conclusion or likely cause is

identified. If no hypothesis can be affirmed then the votes cast for all hypotheses are

reported in numerical order. The format of the hypothesis is:

conclusion(<name of hypothesis>,<name of information file>)

At present, the interpretation system does not use the voting procedure since the rules

are designed to generate one affirmed conclusion only. The voting system has been

included because of the likelihood of enhancement to the rule-base (possible

enhancements are described later in this chapter). The "information file" is used to store

the corrective actions for the likely causes. The rule-base is supplied in a file called

"rules". The rule-base contains both the knowledge base and the meta rules that allow

the evaluation to be re-started. The knowledge-based rules are expressed in the form:

show(<name of intermediate hypothesis>,true/false) if <condition>.

or

conclude(<name of hypothesis>,true/false) if <condition>.

The attribute values are supplied in a file called "metrics". The system can deal with

both absolute values and ordinal scale values as input since the classification routine

converts the absolute values to ordinal scale. If any attribute value is not available the

file then the user is prompted to input the value. As seen in the trees some of the

questions asked of the user do not require any quantitative information they require a

yes/no reply.

page 154

7.4 The Interpretation System Evaluation

The data set which was used to validate the anomaly detection procedure was used to

validate the Interpretation system (dataset 4). This was also the dataset used for the

evaluation of design metrics which was described in Chapter 3. The evaluator, who

owned the data set, had not revealed what the problems were with the project prior to

viewing the automatic system. He was asked to use the automatic system to identify

potential problems, inputting his own data, and compare the results with what he had

found during the development.

The results were very encouraging. The data set had two sub-system with a total of 56

components altogether. Of these, in the high level and detailed design, 8 components

were detected as being a problem by the system. The user himself had detected 7 out

of the 8 but had detected them at least one phase later in the project than the system

had. Also, all the likely causes, except one, were correctly identified by the system.

The one likely cause which was not identified was found to be the result of a minor

error in the rules which, when corrected, resulted in the correct identification of the

likely cause.

There was one potential problem component which the system identified but which the

evaluator felt was not a problem. However, when the relevant component was re-used

in another project, it caused many problems. The cause of these problems had been

correctly identified by the system in the original project.

The evaluation of the implementation and unit test phases was completed after the work

on REQUEST was stopped. This meant that the author did not receive a formal

evaluation report from the evaluator. Informally, the major problems were detected and

diagnosed correctly but many of the other identified components were diagnosed as "no

problem". Therefore, it appears that the advice system is working correctly but the

detection system was identifying too many components at the implementation and unit

testing phases as anomalous to allow a detailed examination of whether the components

were correctly diagnosed as no problem. The main difficulty appears to be that the

detection threshold of the anomaly detection routine is too low for the implementation

and unit test phases, resulting in too many components being classed as anomalous and

page 155

being passed to the advice system for diagnosis. It appears that the automatic

monitoring system can correctly identify the majority of the project’s major problems

and can do so earlier than the project manager. However, further testing is required,

using completely new data sets from different environments, before it can be inferred

that the results are generally valid.

7.5 Future Enhancements

Two enhancements to the automatic interpretation system are envisaged. The first one

is the addition of a "don’t know" category for replying to questions. At present the

worst case is assumed, for example, if the project manager is asked if a component is

complex and does not know whether it is or not, the system assumes it is complex, and

infers that this is the likely cause of the anomaly.

The second enhancement would only be undertaken if interest is shown in the system

in its current state. The enhancement is to remove the assumption that an anomaly has

a single underlying cause. This requires the advice to be enhanced to consider the

situation when one cause has been identified but the others still have to be checked. At

present, when a specific cause is identified the system exits from the diagnosis

procedure. If the diagnosis were to check for coincident causes, the system would need

to revert to processing subsequent parts of the tree. In practice, multiple causes are not

uncommon [38], so this could be a useful enhancement.

page 156

8. Conclusions

The aim of my thesis was to identify statistical techniques appropriate for the analysis

of software development metrics, and to investigate how they might be used to support

quality management procedures.

The approach taken to achieve this aim was to:

• identify consistent/general relationships between software measurements

collected during the development, and the subsequent fault or change-

proneness of the product;

• identify measurements and methods for detection of atypical software

components;

• construct stable, predictive models.

The results reported in Chapter 3 indicated that my first objective was not achievable.

I was unable to identify any common relationships between datasets 1 and 2 when

considering module relationships. Therefore identifying a consistent or general model

between module attributes and product quality attributes seemed unlikely to be possible.

However, I did find that there were techniques capable of identifying outlier/anomalous

components irrespective of the particular attribute. This led to the research goals being

changed to:

• identify methods to automate anomaly detection;

• set up an advice system to help diagnose problems, that is, automate the

interpretation of the detected anomalies.

Chapters 5 and 6 show that it is possible to use software measurements and statistical

techniques to detect anomalies automatically. Chapter 5 also demonstrates that setting

page 157

targets or identifying expected values for particular software measurements can help a

project manager control a project. Some default target values were suggested together

with an acceptable range of actual values. Values outside the acceptable range would

be recorded as a potential problem.

Chapter 6 described the statistical technique used to identify atypical values in the

REQUEST prototype. The technique is a simple adaptation of the scatterplot principle

that includes a measure of density to identifying atypical values objectively and

automatically. The verification and validation exercise showed that, in this environment,

the atypical values detected using this technique correspond to those that an expert

consultant also identified as atypical.

The survey described in chapter 4 aimed to investigate how expert managers identify

anomalous modules. The survey did not have the desired results because REQUEST

incorrectly assumed that managers were familiar with the use of metrics for controlling

their projects. The survey indicated that this assumption was not correct. However, it

did produce some useful results since it identified the need for an advice system to

interpret the reason for the atypical value and identify the problem components. It was

clear that managers would not benefit from anomaly detection unless they were given

some indication of what an anomaly meant.

Chapter 7 demonstrated that it was possible to develop an automatic anomaly

interpretation tool. In general, use of a simple rule-based advice system should be

capable of being calibrated to any environment by the input of the relevant advice in the

rules.

Although the work reported in this thesis was incorporated into the COQUAMO-2

prototype, the prototype was never upgraded to a commercial tool. This is probably

because project managers were not familiar enough with the use of software metrics for

the control of projects for a tool to have been commercially viable at the end of

REQUEST. However, consultants do appear to be aware of the benefits of measurement

and are using measurements to identify problems during development. Therefore, it is

likely that the prototype and the analysis techniques will be useful in the future but only

after project mangers become more familiar with the concept of software measurements

page 158

and have had some training in its potential benefits.

The work since the thesis appears to be concentrating on the detection of unusual

components. There is still a debate about whether intensive statistical analysis using

sophisticated tools is better than simple non-parametric techniques. There seems to be

a case for both, starting with the simple techniques and then, if necessary, applying the

relevant sophisticated techniques.

There is still a major problem in moving between the different levels of the system (i.e.

from component to system). Most of the current work on metric validation is being

done at the module level, using faultcounts as a surrogate for reliability and number of

changes for maintainability. There appears to be no evidence of any research addressing

the problem of how to move between the levels. In fact, there has even been a step

back in the standards arena, ISO 9126 is promoting the McCall et al’s principle of a

fixed number of general quality factors with a hierarchical decomposition in spite of the

REQUEST criticisms. The ISO standard identifies six factors but does not suggest how

these factors can be measured directly.

On a more positive note, although the COQUAMO-2 prototype has not been

commercialised it is currently being used in a European funded research project called

SQUID. In addition, the idea of using quantitative measurements for anomaly detection

is generally accepted as a useful technique and is used in current text books [34],

page 159

9. References

[1] Frewin G D, Hamer P, Kitchenham B A, Ross N and Wood L M

Quality measurement and modelling - state of the art report

ESPRIT REQUEST Project Report Rl.1.1, 1985

[2] Petersen P G

The Constructive QUality Modelling System

ESPRIT REQUEST Project Report Rl.8.0, 1986

[3] Boehm B W

Software Engineering Economics

Prentice-Hall, 1986

[4] Gilb T

Design by Objectives

North Holland, 1985

[5] McCall J A, Richards P K and Walters G F

Factors in Software Quality, Vols I-III

Rome Aire Development Centre, 1977

[6] Boehm B W, Brown J R, Kasper H, Lipow M, Macleod G J and Merritt M J

Characteristics of Software Quality

North-Holland Publishing Company, 1978

[7] Bowen T P, Wigle G B and Tsai J

Specification of Software Quality Attributes

Final Technical Report, Vols I-III

Boeing Aerospace Company Engineering Technology, 1985

18] Kitchenham B A, Wood L M and Davies S P

Quality factors, criteria and metrics

ESPRIT REQUEST Project Report Rl.6.1, 1986

page 160

[9] Kitchenham B A

Towards a constructive quality model,

part 1: Software quality modelling, measurement and prediction

IEEE Software Engineering Journal, July 1987

[10] Petersen P G, Andersen O, Heilesen J H, Klim S and Schmidt J

Software Quality Drivers and Indicators

Proceedings from the 22nd Hawaii International conference on System Science,

Jan 1989

[11] Musa J D, Iannino A and Okumota K

Software Reliability: Measurement, Prediction and Application

McGraw-Hill International Editions, 1987

[12] MellorP

Modelling Software Support Cost

ICL Technical Journal, Nov 1983

[13] Halstead M H

Elements of Software Science

Elsevier North-Holland, 1977

[14] McCabe T J

A Complexity Measure

IEEE Trans. Software Engineering, Vol SE-2, No.4, 1976

[15] DeMarco T

Controlling Software Projects

New York: Yourdon Press, 1982

[16] Garvin D A

What does ‘Product Quality’ really mean?

Sloan Management Review, 1984

page 161

[17] Brown P G

QFD: echoing the voice of the customer

AT&T Technical Journal 70(2): 18-32, 1991

[18] Kogure M and Akao Y

Quality Function Deployment and CWQC in Japan

Quality Progress (October): 25-29, 1983

[19] Kitchenham B A and Walker J W

A Quantitative Approach to Software Development

Software Engineering Journal, 4, (1), 1989

[20] Doerflinger C W and Basili V R

Monitoring Software Development through Dynamic Variables

Proc IEEE International Conference on Computer Software and Applications,

Nov 1983

[21] Basili V R and Ramsey C L

Arrowsmith-P - A Prototype Expert System for Software Engineering

Management

Proc. Symposium on Expert Systems in Government, 1985

[22] Huff K E, Stroka J V and Strubble D D

Quantitative Models for Managing Software Development Processes

Software Engineering Journal, Jan 1986

[23] Selby R W and Porter A A

Learning from Examples: Generation and Evaluation of Decision Trees for

Software Resource Analysis

IEEE Trans. Software Engineering, voi 14, No. 12, Dec 1988

[24] Munson J C and Khoshgoftaar T M

Detection of Fault-Prone Programs

IEEE Trans. Software Engineering, Voi 18, No.5, May 1992

page 162

[25] Briand L C, Basili V R and Hetmanski C J

Developing Interpretable Models with Optimized Set Reduction for Identifying

High Risk Software Components

IEEE Trans. Software Engineering, Voi 19, No. 11, Nov 1993

[26] Briand L C, Basili V R and Hetmanski C J

A Pattern Recognition Approach for Software Engineering Data Analysis

IEEE Trans. Software Engineering, Voi 18, No.ll, Nov 1992

[27] Selby R W and Basili V R

Analyzing Error-prone System Structures

IEEE Trans. Software Engineering, Voi 17, No.2, Feb 1991

[28] Agresti W W and Evanco W M

Projecting Software Defects from Analyzing Ada Programs

IEEE Trans. Software Engineering, Voi 18, No.ll, Nov 1992

[29] Courtney R E and Gustafson D A

Shotgun Correlation in Software Measures

Software Engineering Journal, Voi 8, No.l, Jan 1993

[30] Schneidewind N F

Methodology for Validating Software Metrics

IEEE Trans. Software Engineering, Voi 18, No.5, May 1992

[31] Khoshgoftaar T M, Munson J C, Bhattacharya and Richardson G D

Predictive Modelling techniques for Software Quality from Software Measures

IEEE Trans. Software Engineering, Voi 18, No.ll, Nov 1992

[32] Henry S and Lattanzi M

Measurement of Software Maintenance and Reliability in the Object Oriented

Paradigm

Process and Metrics Workshop, OOPSLA 1993

page 163

[33] Rising L

An Information Hiding Metric

Process and Metrics Workshop, OOPSLA 1993

[34] Brooks I

Object Oriented Metrics Collection and Evaluation with a Software Process

Process and Metrics Workshop, OOPSLA 1993

[35] Anderson O

The Use of Software Engineering Data in Support of Project Management

Software Engineering Journal, Voi 5, No.6, Nov 1990

[36] Fenton N E

Software Metrics: A Rigorous Approach

Chapman and Hall, 1991

[37] Siegal S

Nonparametric Statistics for the Behavioural Sciences

McGraw-Hill, 1956

[38] Hoaglin D C, Mosteller F and Tukey J W

Understanding Robust and Exploratory Data Analysis

J Wiley & Sons Inc, 1982

[39] Kafura D and Canning J

A Validation of Software Metrics using many Metrics and Two Resources

Proc 8th International Conference on Software Engineering, 1985

[40] Meyer A & Sykes A

Probability Model for Analysing Complexity Metrics Data

Software Engineering Journal, Voi 4, No. 5, 1989

page 164

[41] Snedor G W and Cochran W G

Statistical Methods (7th Edition)

The Iowa State University Press, 1980

[42] Sprent P

Applied Nonparametric Statistical Methods

Chapman and Hall, 1989

[43] Dunn G and Everitt B S

An Introduction to Mathematical Taxonomy

Cambridge University Press, 1982

[44] Henry S and Kafura D

Software Structure Metrics based on Information Flow

IEEE Trans Software Engineering, SE7, 5, pp510-518, 1981

[45] Kitchenham B A, Pickard L M and Linkman S J

An evaluation of some design metrics

Software Engineering Journal, Jan 1990

[46] Yourdon E and Constantine L

Structured Design

Prentice-Hall Inc, 1979

[47] Myers G J

Composite Structured Design

Van Nostrand Reinhold Company Inc, 1978

[48] Henry S and Kafura D

The evaluation of software systems structure using quantitative software metrics

Software Pract. Exp. 14 (6) pp561-573, 1984

page 165

[49] Kafura D and Henry S

Software quality metrics based on interconnectivity

Journal Systems Software 2, pp 121 -131, 1982

[50] Troy D A and Zweben S H

Measuring the quality of structured designs

Journal System Software, 1982

[51] Kitchenham B and Pickard L

Part II: Statistical Techniques for Modelling Software Quality in the ESPRIT

REQUEST Project

Software Engineering Journal, Voi 2 No.4, July 1987

[52] Pickard L M

Analysis of Software Metrics

Measurement for Software Control and Assurance (B A Kitchenham and B

Littlewood eds.)

Elsevier Applied Science, 1989

[53] Kitchenham B A

A COQUAMO-2 Evaluation Study

ESPRIT REQUEST Project Report R l.18.13, Mar 1988

[54] Kitchenham B A

Specification of COQUAMO-2 Report Format

ESPRIT REQUEST Project Report R 1.7.8, Dec 1988

[55] Everitt B

Cluster Analysis

Halstead Press, 2nd Ed., 1980

[56] Linkman S G

Description of the Implementation of Report Component

ESPRIT REQUEST Project Working Paper, May 1989

page 166

[57] Kitchenham B A, Andersen O and Klim s

A COQUAMO-2 Analysis of the DK-OOl/COM Data Set

ESPRIT REQUEST Project Report Rl.10.1, Nov 1988

[58] Heilesen J H

Possible Scenario for COQUAMO-2

ESPRIT REQUEST Project Report Rl.7.4, June 1988

[59] Walker J G and Kitchenham B A

Quality Requirements Specification and Evaluation

Measurement for Software Control and Assurance (B A Kitchenham and B

Littlewood eds.)

Elsevier Applied Science, 1989

page 167

Appendices

page 168

Appendix A: Boxplots for Dataset 1

page 169

page 170

page 171

page 172

Appendix B: Boxplots for Dataset 2

page 173

X

D I D B □ 3 0 4 0 9 0 7 0

McCabe* ' © V C GO

page 174

page 175

page 176

Appendix C: Boxplots for Dataset 4

page 177

SCSI r . I

o rn r°. e :i *.

' V H 03'MS

h

instruct ion

boxes

f an-in

k n — i fan-out

_'0

page 178

S C S I

h : 06: nn e " c rs

___ I design e~o-s
:l

coding errors

J _________ I_________ I_________ I
10 20 30 40

__ 1 lines of code
n

100 1 50 200
-V \A -

594

page 179

TC& 00 on óto

!
1 :• n m -oro

H I ___ } oatOS

HHQ return:.

m
instructed

KO
m

fan-out

H H fan-in

m

L j _________ i
40 60

n ooxes

page 180

rc&

I 1-------------—/W — I " a'-'
ì

L _J-----------1------/W — I
60 60 13:

m
SDec ' i 'c a t ’oo erro

[]—1 coding orro-s
Tl

CH design errors

[Q -----1 testing errors

m

j ______________ I-----------------------1
20 -10 60

page 181

Appendix D: Questionnaire

page 182

Automated Quality Control Experiment

T h a n k y o u fo r a g re e in g to ta k e p a r t in th is e x p e r im e n t.

O n e m e th o d o f q u a l i ty c o n tro l is to u s e so f tw a re m e tr ic s to h e lp d e te c t w h e n th e re is s o m e th in g

u n u s u a l a b o u t a n in d iv id u a l p ro g ra m . T h is c a n b e d o n e b y s tu d y in g th e m e tr ic v a lu e s a n d

c o m p a r in g th e m e tr ic v a lu e fo r ea c h p ro g ra m w ith all o th e r p ro g ra m s . H o w e v e r , m o re in fo rm a tio n

c a n b e o b ta in e d b y c o m p a r in g tw o d if fe re n t m e tr ic s i.e. a s c a tte r p lo t c a n b e u s e d to a s se ss th e

re la t io n s h ip b e tw e e n tw o m e tr ic s . If th e m a jo r i ty o f th e p r o g r a m s s h o w a d ir e c t re la t io n s h ip (i.e.

b o th m e tr ic s h a v e e i th e r h ig h v a lu e s o r lo w v a lu e s fo r th e s a m e p ro g ra m) th e n th e p ro g ra m th a t

h a s o n e h ig h m e tr ic v a lu e a n d o n e lo w o n e w ill b e c o n s id e re d a s u n u s u a l .

T h e a im o f th is e x p e r im e n t is to in v e s tig a te w h a t ty p e o f p ro g ra m , re p re s e n te d b y p o in ts o n a tw o

d im e n s io n a l s c a t te r p lo t o f v a r io u s so f tw a re m e tr ic s , a re id e n t if ie d a s u n u s u a l b y e x p e r ie n c e d

p ro je c t m a n a g e rs . In so m e c a se s w h e n th e s c a tte r p lo t c o u ld p ro v id e n o in fo rm a tio n d u e to a la rg e

n u m b e r o f o v e r la p p in g d a ta p o in ts , a d e n s i ty p lo t h a s b e e n u s e d to r e p re s e n t th e d a ta in s te a d .

T he r e s u l ts w ill b e u s e d to id e n tify a te c h n iq u e to a u to m a te th e d e te c tio n o f u n u s u a l p ro g ra m s .

B a c k g ro u n d to th e E x p e r im e n t

T h is w o r k fo rm s p a r t o f a n ESPR IT p ro je c t, c a lle d R E Q U E ST , w h ic h is le d b y STL a t N e w c a s tle -

u n d e r-L y m e . T h e p ro je c t is s p l i t in to th re e su b -p ro jec ts :

o d e v e lo p m e n t o f a q u a li ty m o d e l

o d e v e lo p m e n t o f re l ia b il i ty a n d u l t r a - h ig h r e l i a b i l i ty / f a u l t - to le r a n t m o d e ls

o p ro v is io n o f a d a ta b a s e to s u p p o r t th e o th e r s u b -p ro je c ts

STL a n d E le k tro n ik C e n tra le n a re p r im a r i ly in v o lv e d w ith th e d e v e lo p m e n t o f th e q u a l i ty m o d e l,

a l th o u g h w e h a v e a c c e ss to th e re su lts o f th e re s t o f th e p ro jec t.

T h e d e v e lo p m e n t o f a C o n s tru c tiv e Q u a li ty M o d e l (C O Q U A M O) w a s in s p ir e d b y th e

C o n s tru c tiv e C o s t M o d e l d e v e lo p e d b y B. W . B o e h m .T h e a im o f th e m o d e l is to g iv e h e lp to th e

q u a l i ty a n d p ro je c t m a n a g e r s in q u a li ty re la te d is su e s . It h a s b e e n re c o g n ise d th a t th e id e a o f o ne

page 183

p re d ic tiv e m o d e l, c o v e r in g a ll p h a s e s o f th e d e v e lo p m e n t , is n o t fea s ib le s in c e s tro n g p re d ic t iv e

m e tr ic s a re n o t a v a ila b le th r o u g h o u t th e c o m p le te d e v e lo p m e n t. T h e re fo re , it is n o w in te n d e d

th a t th e m o d e l w ill h a v e th re e m o d e s w h ic h re la te to th e th re e s ta g e s o f a s o f tw a re

d e v e lo p m e n t; p la n n in g , m o n ito r in g a n d a sse ssm e n t. EC h a s th e re sp o n s ib ilty o f th e p la n n in g m o d e

p ro to ty p e a n d STL h a s th e re s p o n s ib il ty o f th e m o n ito r in g m o d e p ro to ty p e a n d th e a s s e s s m e n t

m o d e p r o to ty p e (th e la t te r h a s m a in ly b e e n s u b -c o n tra c te d to C ity U n iv e rs ity) .

P la n n in g m o d e

T h e p la n n in g m o d e w ill b e u s e d d u r in g th e e a r ly s ta g e s o f sy s te m p la n in g a n d fe a s ib ilty

a s se s sm e n t a n d is in te n d e d

o to h e lp th e u s e r to id e n tify a n d sp e c ify q u a l i ty re q u ire m e n ts .

o to p re d ic t f in a l p r o d u c t q u a lit ie s f ro m th e v a lu e s o f m e a s u re s (q u a li ty d r iv e rs)

a v a ila b le a t th e s ta r t o f a p ro je c t f ro m p la n s a n d c o n s tra in ts .

T h is m o d e is th e c lo se s t to C O C O M O 's id e a s

M o n ito r in g M o d e

T h e m o n i to r in g /s te e r in g m o d e is in te n d e d to a s s is t th e p ro je c t m a n a g e r to m o n ito r a n d

c o n tro l th e d e v e lo p m e n t , w i th q u a n ti ta t iv e m e a s u re s th a t c a n b e c o lle c te d d u r in g

d e v e lo p m e n t . T h is m o d e fa lls in to tw o a re a s :

o A ra n g e o f s ta tis tic a l te c h n iq u e s (f ro m s im p le s u m m a ry in fo rm a tio n to m o re

s o p h is t ic a te d te c h n iq u e s) , w h ic h w ill b e u s e d to id e n tify u n u s u a l v a lu e s .

o A n a d v is o r y sy s te m , w h ic h w ill p r o v id e so m e p o s s ib le in te rp re ta t io n s o f th e c a u se of

th e u n u s u a l v a lu e .

T h is m o d e w ill b e a c tiv e th r o u g h o u t th e d e v e lo p m e n t p e r io d f ro m th e re q u ire m e n ts p h a s e

u n ti l th e p ro je c t h a s b e e n c o m p le te d .

A sse ssm e n t m o d e

T h e a s s e s s m e n t m o d e is in v o k e d n e a r th e e n d o f in te g ra t io n te s tin g . It is in te n d e d to a s s is t

f in a l p r o d u c t a s s e s s m e n t in d e te rm in in g w h e th e r th e p ro d u c t c h a ra c te r is tic s o b se rv e d

page 184

c o n fo rm to th o se in it ia l ly sp e c if ie d d u r in g th e p la n n in g m o d e . T h e se re s u lts w ill b e of

in te re s t in d e c is io n s o n p r o d u c t re le a se a n d in p la n n in g s u p p o r t fo r th e o p e ra tio n a l p h a se .

T h is e x p e r im e n t is c o n c e rn e d w i th th e s ta tis tic a l te c h n iq u e s se c tio n in th e m o n ito r in g m o d e . T he

re s u lts w ill b e u se d to t ry a n d a u to m a te th e p ro c e d u re o f id e n tif ic a tio n o f u n u s u a l m e tr ic v a lu e s .

T h e r e s u l t in g in fo rm a tio n fro m a n a u to m a tic d e te c tio n c a n th e n b e a u to m a tic a lly fe d in to th e

a d v is o ry s y s te m w h ic h is c o n c e rn e d w i th th e in te rp re ta t io n o f th e u n u s u a l v a lu e s .

P ro c e d u re fo r C o m p le tin g Q u e s tio n n a ire

T h e e x p e r im e n t c o n s is ts o f tw o sec tions:

o S e c tio n o n e is a b r ie f q u e s t io n n a ire w h ic h y o u s h o u ld fill in a t th e s ta r t o f th e e x p e r im e n t to

g iv e in fo rm a tio n a b o u t y o u r b a c k g ro u n d a n d ex p e rien ce .

o S e c tio n tw o c o n s is ts o f b i-v a r ia te sc a tte r p lo ts a n d so m e d e n s i ty p lo ts . T h e p ro c e d u re is to

s im p ly c irc le th e v a lu e s y o u re g a rd a s u n u s u a l (if a n y) , a n d w o r th fu r th e r in v e s tig a tio n , o n

e a c h p lo t in d iv id u a l ly . P le a se a d d a m in u s s ig n b e s id e th e m a rk e d p o in ts w h ic h y o u re g a rd

a s p o te n tia l ly p ro b le m a tic a n d a p lu s s ig n b e s id e th o se m a rk e d w h ic h y o u r e g a rd a s

fa v o u ra b le (a d d n o th in g if y o u c a n n o t d e te rm in e w h ic h). If y o u feel th a t y o u re q u ire m o re

in fo rm a tio n th a n th a t p ro v id e d o n a n in d iv id u a l p lo t , p le a se s ta te th e in fo rm a tio n y o u feel

y o u r e q u ir e b e s id e th e re le v a n t p lo t.

Size against Control Flow

T h e d e n s i ty p lo t s h o w s th e n u m b e r o f p o in ts in e a c h cell. W ith in e a c h cell, th e p o in ts a re

r a n d o m ly sc a tte re d to s h o w th e d e n s i ty b u t th e y a ll h a v e th e s a m e v a lu e a n d w o u ld

o v e r la p if p lo t te d o n a s c a tte r p lo t. A p a r t f ro m re m e m b e r in g th a t th e p o s it io n o f a n y p o in t

page 185

w ith in a cell is r a n d o m , a n d th e re fo re n o e m p h a s is s h o u ld be p u t o n w h e re th e p o in ts lie, a

d e n s i ty p lo t c a n b e tre a te d in a s im ila r w a y a s a sc a tte r p lo t.

Subjective Complexity Assessment «gainst Total Known Errors

. L L

. u .

L L

.-----------L*_ U _

. L L

l i . . • • *-*■ • • _ U .

• - . u l J

L L l u T T l l _ U .

L L I L 7 ; .• : I U Lü _ • . LA

V L ïh • • . I L : • % - v m • _ U _

l i . : v ; Li* 1 5 Ü L

E i ’ • *• U - — :— c e

\ 2 I 4 3

(u k jM tlo * «O fM fkxItv u i K f i n n t

It is in te n d e d th a t th e e x p e r im e n t s h o u ld fo llo w th e n o rm a l p ra c tic e s o f th e m a n a g e r , a s fa r a s

p o ss ib le . T h e re fo re if a n o th e r m e m b e r of y o u r te a m is n o rm a lly re sp o n s ib le for q u a lity co n tro l,

th is q u e s tio n n a ire s h o u ld b e c o m p le te d b y th a t p e rso n .

E ach p lo t is in te n d e d to b e tr e a te d in d iv id u a lly . D o n o t a t te m p t to c o m p a re th em .

A fte r c o m p le tio n o f b o th se c tio n s p le a se s e n d th e m to th e fo llo w in g a d d re ss :

L esley P ic k a rd

STC T e c h n o lo g y L td

C o p th a ll H o u s e

N e ls o n P la c e

N e w c a s t le -u n d e r -L y m e

ST5 1EZ

If y o u w o u ld lik e to rece iv e a r e p o r t o n th e re su lts o f th is e x p e r im e n t, a n d / o r fu r th e r in fo rm a tio n

a b o u t R E Q U EST, p lease a t ta c h y o u r n a m e a n d a d d r e s s to th e Q u e s tio n n a ire w h e n y o u re tu rn it.

P lease in d ic a te if y o u w o u ld lik e to rece iv e o n ly th e r e s u l ts o f th e e x p e r im e n t o r in fo rm a tio n a b o u t

R EQ U EST as w ell.

page 186

Description of Data Used

T iie d a ta u s e d fo r th is e x p e r im e n t a re m e a su re s , ta k e n o n a p e r p ro g ra m b as is , f ro m a s u b -sy s te m of

a la rg e m a in f ra m e o p e ra tin g sy s tem . It c o n s is ts o f 226 p ro g ra m s . F o r ea c h p ro g ra m n in e m e a su re s

w e re c o lle c te d .

1. th e n u m b e r o f p ro g ra m s w h ic h ca ll a sp e c if ie d p ro g ra m (i.e. F an -in)

2. th e n u m b e r o f p ro g ra m s c a lle d b y a sp e c if ie d p ro g ra m (i.e. F a n -o u t)

3. th e n u m b e r o f to ta l p a ra m e te rs o n th e p ro g ra m in te rface .

4 . th e n u m b e r of d a ta i te m s u se d b y th e p ro g ra m .

5. p ro g ra m size in lin es o f co d e , i.e. n o n -c o m m e n t, n o n -b la n k lines, in p ro g ra m

6. p ro g ra m co n tro l flow m e a s u re d in te rm s o f th e n u m b e r o f b ran ch es .

N o tio n a l b ra n c h e s w e re in c lu d e d so th a t IF -T H E N -E L S E a n d IF -T H E N -E L S E -IF w e re

b o th c o u n te d a s tw o b ra n c h e s . T he n u m b e r o f b ra n c h e s fo r lo o p s w ith a s in g le c o n tro l

s t ru c tu re (i.e. FO R , W H IL E , o r U N T IL) w a s c o u n te d a s tw o , a n d fo r lo o p s w ith a d u a l

c o n tro l s t ru c tu re (i.e. FO R a n d W H IL E , o r FO R a n d U N T IL) w a s c o u n te d a s th ree .

T h e c o m p ile r e v a lu a te d c o m p o u n d b o o le a n s la z ily , so each A N D a n d O R in a

c o n d itio n a l s ta te m e n t o r lo o p c o n tro l w a s c o u n te d se p a ra te ly .

7. p ro g ra m e n h a n c e m e n ts , i.e. th e n u m b e r o f tim es th e p ro g ra m w a s a m e n d e d e x c lu d in g

c h a n g e s fo r fa u lt c le a ra n ce .

T h is in fo rm a tio n w a s o b ta in e d f ro m fo rm a tte d c o m m e n ts in e a c h p ro g ra m w h ic h

re c o rd e d e a c h c h a n g e to th e p ro g ra m d u r in g its d e v e lo p m e n t a n d su b se q u e n t ev o lu tio n .

8. th e n u m b e r o f k n o w n e rro rs , i.e. th e n u m b e r of fa u lts c o rre c ted in the p ro g ra m .

T h is in fo rm a tio n w a s o b ta in e d f ro m fo rm a tte d c o m m e n ts in e ach p ro g ra m , re c o rd in g

e ach fa u lt c le a re d d u r in g i ts d e v e lo p m e n t a n d s u b s e q u e n t m a in te n a n c e .

page 187

su b je c tiv e co m p lex ity , i.e. a n a s s e s s m e n t o f th e c o m p le x ity o f th e p ro g ra m on a scale o f

1 (v e ry s im p le) to 5 (v e ry co m p lex) p r o v id e d b y a m e m b e r o f th e d e v e lo p m e n t g ro u p

page 188

Section 1 - Questionnaire

Reference N um ber

1. N u m b e r o f y e a rs o f c o m p u te r ex p erien ce?

a 0 - 2

b 2 - 4

c 4 - 6

d 6 - 1 0

e 10+

E x p e rie n c e d o m a in ?

a s o f tw a re

b h a r d w a r e

c m ix tu re o f b o th

F o rm a l E d u c a tio n

(i) L e v e l

a P o s t g ra d u a te

b D e g re e

c H N D / H N C

d S c h o o l q u a lif ic a tio n s

e N o fo rm a l q u a lif ic a tio n s

(i i)S u b je c t

a c o m p u te r science

b sc ience / m a th e m a tic s / e n g in e e r in g

c a r t s

d o th e r

page 189

R e fe ren ce N um ber4 . T y p e o f jo b (p re d o m in a te ly)?

a p ro jec t m a n a g e r

b q u a l i ty a s s u ra n c e m a n a g e r

c m e m b e r o f Q A g ro u p

d te a m le a d e r

e d e v e lo p e r

f o th e r (p le a se sp e c ify)

A re y o u a c u r re n t o r p a s t m an ag er?

a c u rre n t

b p a s t

5(ii) If p a s t - n u m b e r o f y e a rs since?

a 0 - 2

b 2 - 6

c 6 - 1 0

d 10+

Please state current position

6. D o y o u u s u a lly u s e so f tw a re m e tric s to d e te c t p ro b le m s?

a u s u a l ly

b se ld o m

c n e v e r

7. A re y o u fa m ilia r w i th th e u se o f sc a tte r p lo ts fo r so f tw a re q u a li ty a s s u ra n c e ?

a no

b p a r t i a l l y

c c o m p le te ly

8. A re y o u u s e d to u s in g m etrics d u r in g d e v e lo p m e n t?

a y e s

b no

9. W o u ld y o u b e w il l in g to ta k e p a r t in a m o re d e ta i le d s tu d y c o n c e rn in g in te rp re ta t io n of

s o f tw a re m e tr ic s?

a y e s

b no

If y e s , p le a se a tta c h y o u r n a m e a n d a d d re s s to th e Q u e s tio n n a ire w h e n y o u re tu rn it

page 190

Contents List of Flots

S iz e

S ize

S iz e

S iz e

S iz e

S iz e

T o ta l P a r a m e te r s

T o ta l P a r a m e te r s

C o n tro l H o w

D a ta I te m s U se d

C a ll in g M o d u le s (F an -in)

S u b jec tiv e A sse s sm e n t

T o ta l K n o w n E rrro rs

a g a in s t C o n tro l F low

a g a in s t S u b jec tiv e C o m p le x ity A sse s sm e n t

a g a in s t M o d u le s C a lle d (F a n -o u t)

a g a in s t C a llin g M o d u le s (F a n -in)

a g a in s t T o ta l K n o w n E rro rs

a g a in s t M o d u le E n h a n c e m e n ts

a g a in s t S iz e

a g a in s t T o ta l K n o w n E rro rs

a g a in s t T o ta l K n o w n E rro rs

a g a in s t S iz e

a g a in s t M o d u le s C a lle d (F a n -o u t)

a g a in s t T o ta l K n o w n E rro rs

a g a in s t M o d u le E n h a n c e m e n ts

page 191

co
nt

ro
l f

lo
w

 (b
ra

nc
he

s)

Size against Control Flow

120

100 -

80 -

60 -

40 -

20 -

0 ■ p —I---1----- 1----1----1 1----1---- 1----1----1---- t----1----.----1—
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0

size (lines of code)

8 0 0

page 192

su
bj

ec
ti

ve
 c

om
pl

ex
it

y
as

se
ss

m
en

t

Size against Subjective Complexity Assessment

0 - 5 0 5 1 - 1 0 0 1 0 1 -2 0 0 2 0 1 - 3 0 0 301+

size (lines of code)

page 193

si
ze

 (l
in

es
 o

f c
od

e)

Programs Called (Fan-out) against Size

number of programs called (Fan-out)

page 194

si
ze

 (l
in

es
 o

f c
od

e)

Calling Programs (Fan-in) against Size

number of calling programs (Fan-In)

page 195

nu
m

be
r o

f k
no

w
n

er
ro

rs

Size against Total Known Errors

size (lines of code)

page 196

nu
m

be
r

of
 m

od
ul

e
en

ha
nc

em
en

ts

Size against Module Enhancements

size (lines of code)

page 197

si
ze

 (l
in

es
 o

f c
od

e)

Parameters against Size

total number of parameters

page 198

nu
m

be
r

of
 k

no
w

n
er

ro
rs

Parameters against Total Known Errors

17

1 6

1 5

1 4

1 3

1 2

1 1

10

9

8

7

6

5

4

3

2

T U

. il
. li

. il ■ 1

. Il
li ■ • 3 . 3 * ■ ■■■4

" 2 2 • ■ 3 li 1

' • i l ■ LI . • li
. il ■■ 2 •. 5 ■ .•

• ■ 12 . 1*
■• ■3 ■ l

•■ ■10 . 5 . " .■ 8 . . [l ■ li • •
. Il ■ 6 ■ ■■• ■

8 •\ 13
■ B ■■ ■*• • •. ■■

19■ : t . li . ii
■ ■
•. - ■ ■

10 ■ ■ 22■ ■ ■ ■ • V 11 ■ ■ " - •••• ■ .li \ ^ . Il . ii
2 3 4 5 6 7 8

total number of parameters

1 o

page 199

to
ta

l
nu

m
be

r
of

 k
no

w
n

er
ro

rs

Control Flow against Total Known Errors

20 T

18 -

16 -

14 -

12 -

10 -

control flow (branches)

—I----- r
1 00

page 200

si
ze

 (l
in

es
 o

f c
od

e)

Data Items Used against Size

number of data items used

page 201

nu
m

be
r

of
 m

od
ul

es
 c

al
le

d(
fa

n-
ou

t)

Calling Modules(Fan-in) against Modules Called(Fan-out)

120

110

100

90

80

70

60

50

40

30

20

10

0

0 5 10 15 20 25 30

number of calling modules(fan-in)

page 202

n
u

m
b

e
r

o
f

k
n

o
vn

 e
rr

o
rs

Subjective Complexity Assessment against Total Known Errors

17

16

15

14

13

12

11
l

■

10 . LL

9

8
1 ■ 1

7 . U L

6 • ■ Li_
■ ■

- . L i_
■

. • Ll

5 . i s - ■ ; . L L

4 Li_
■

■ • ■
. ■ Li_

■
L l

3 ~ m LL. • ■ ; . . - . I l i
« ■ • ■ ■ • • Li_ . Ll

2 3
■

■ • ■ 9
• ■■ ■ ■

■ 117

T |
. a a • a

1 . . 3 ■ * ■ • - 13
. * * ' ■ •

. . . > • .. aa
- ■ ----

■ " m ■■ ■

. . . ■ ¡ I T
• • *

0
■ ■ ■ ; . - ‘ 24
■ • . ■ . • ■ ■ —

■ ■ ■ ■ ■ ■ ■
Lil

...

■ ■ ■ ■ m m I2E
■ ■ ■ * ■ : * LL.

■ ■ ■ .
LL_

1 2 3 4 5

su bjective com plexity assessment

page 203

nu
m

be
r

of

kn
ow

n
er

ro
rs

Program Enhancements against Total Known Errors

17 . l i

16

15

14

13

12

1 1 . l i

10 ■ h

9

8 l i . Li

7 l i
B

6 ■■ 2 . . Li . lia . ■ k

5 4 • 12. .■ k _ l i

4
■• 12. . ; i l ■ a k • l i . l i . l i

3
■ ■

■ ■ 5 ■ ■■ l l * ■ a
aa a a

10
a■

. Li . l i l i

2
■■■ i± ■. ■ - ■" " a " * .

15■
■ ■ a

a a ■
9a ■ k . l i . l i

1
- - / . • . 20

■
■ a ■• a■ a■ “

11 "a ■ ■ “ a ■ 12 ■ . l i li

0 ■ t ■
.— •

39
77 •.

. " • " a ■ « ■a " "
26
■a a •

a " ■
a . “L i . o . l i l la

0 1 2 3 4 5 6 7 8

number of program enhancements

page 204

