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Abstract

The formation of convective patterns in Rayleigh-Bénard and related systems, in particular 

the interaction between orthogonal roll patterns in the neighbourhood of a lateral boundary, is 

studied analytically and numerically. The effects on the patterns of convection of forcing at the 

boundary, the Prandtl number of the fluid, the wavelength perpendicular to the boundary and 

the wavelength parallel to the boundary are also included. Numerical solutions are found using 

an explicit finite difference scheme and appear to be in good agreement with theoretical 

predictions. The evolution of the roll pattern with time is illustrated by contour plots.

Weakly nonlinear theory is used to determine finite-amplitude patterns of convection near 

a lateral boundary x=0, leading to a coupled pair of equations for the amplitudes of x-rolls and 

y-rolls parallel and perpendicular to the boundary respectively. The solution for real amplitude 

functions independent of y is described in detail in chapter 2. This identifies a steady-state 

structure consisting of two main regions, one containing a combination of x-rolls and y-rolls 

and the other containing x-rolls only. The transition zone which occurs between the two regions 

is considered in chapter 3. Complex amplitude functions are then considered, allowing 

variations in the wavelength of the x-roll pattern to be considered in chapter 4 and of the y-roll 

pattern in chapter 5. Finally, phase-winding effects associated with variations in the wavelength 

of the x-roll pattern when there is no lateral forcing are investigated in chapter 6.
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Chapter 1

Introduction

Convective patterns in thin fluid layers uniformly heated from below and uniformly cooled 

above have been the subject of many theoretical, numerical and experimental studies over the 

last 100 years since the attempt by Rayleigh (1916) to describe the experimental observations 

of Bénard (1900). Many of these investigations have concerned unbounded layers (ie. those 

which extend to infinity in horizontal directions) although more recently the desire to make 

realistic comparisons with experimental work has led to studies of the role played by the lateral 

walls of a finite container. A further impetus is provided by the knowledge from experimental 

observations that, however distant, the walls do exert a significant influence on the geometric 

properties of the cellular motions which develop when the state of pure conduction becomes 

unstable. For an infinite layer, linear theory predicts that the conductive state of no motion 

becomes unstable when the applied temperature difference is sufficiently great for buoyancy 

to overcome the frictional resistance of the fluid, as measured by the size of the Rayleigh 

number, R. The main results of this linear theory are summarised by Chandrasekhar (1963).

Davis (1967) studied the influence of lateral walls on the convective process in a rigid, 

perfectly conducting, three-dimensional rectangular box of fluid heated from below using a 

linear analysis combined with a Galerkin method. Finite rolls (cells with two non-zero velocity 

components dependent on all three spatial variables) with axes parallel to the shorter sides were 

predicted to occur at the onset of convection. Davies-Jones (1970) studied convective motions 

in a fluid contained in an infinite rectangular channel heated from below. The results show that 

the preferred mode at the onset of convection is that of transverse rolls with axes perpendicular 

to the channel walls, consistent with the predictions of Davis (1967) for convection in a box. 

The cells which appear at the onset of convection resemble finite rolls very closely for channel
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aspect ratios (height to width) outside the range 0.1 to 1. Inside this range they show noticeable 

departures from roll form, and in fact ’exact’ finite rolls are only obtained if the sidewalls are 

infinitely far apart.

Schluter, Lortz and Busse (1965) studied weakly nonlinear motions in an infinite horizontal 

layer of fluid heated from below for both rigid and free upper and lower boundaries. The 

mathematical difficulties which arise in solving the Navier-Stokes equations imply that 

nonlinear steady-state solutions are not known exactly, but the flows have relatively small 

amplitude if R is close to its critical value R0, enabling the use of successive approximations. 

A multimodal discrete analysis method was used and a relationship was obtained between the 

Rayleigh number and the amplitudes of the nonlinear terms for rolls of arbitrary orientation. 

The nonlinear theory of Bénard convection in an infinite fluid layer confined between horizontal 

boundaries predicts that the amplitude of the motion undergoes a bifurcation as the Rayleigh 

number passes through the critical value for instability predicted by linear theory. Nonlinear 

aspects of the problem were described in the papers of Newell and Whitehead (1969) and Segel 

(1969). Near the critical Rayleigh number for an unbounded fluid, R=R0, the solution may be 

expanded in powers of the small parameter R-Rq and consists of convection cells of horizontal 

width comparable to the height of the layer, modulated in strength by an amplitude function, 

A, varying on large horizontal length scales proportional to (R-R,,)112 and (R-R0)~m and a large 

time scale proportional to (R-R0)4. The solution was developed by using the method of multiple 

scales, rather than a multimodal discrete analysis, and the nonlinear terms incorporated in a 

consistent manner, resulting in a nonlinear equation for A. Segel (1969) considered boundary 

conditions which the amplitude function must satisfy when the flow is confined laterally by 

rigid, perfectly insulating sidewalls although his results were later corrected by Brown and 

Stewartson (1977).
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Daniels (1977) considered the presence of imperfectly insulating rigid lateral walls and 

showed that this alters the onset of Bénard convection in a confined fluid layer from a 

bifurcation to a continuous smooth transition as the Rayleigh number increases through the 

critical value. He obtained solutions for a simplified two-dimensional model with rigid distant 

sidewalls and free upper and lower surfaces and derived boundary conditions for the amplitude 

equation. Similar results were obtained for finite aspect ratios by Hall and Walton (1977). 

Later, Daniels (1978) examined different sizes of the sidewall forcing, X, and its effect on the 

bifurcation structure and the method was extended by Stewartson and Weinstein (1979) to 

incorporate more realistic conditions corresponding to rigid horizontal and vertical boundaries. 

Sidewall forcing effects are also important in other related problems. The onset of Bénard 

convection in a shallow sloping rectangular container of large aspect ratio was considered by 

Daniels (1982). The major effect of the inclination is a combination of the large scale 

circulation driven by the temperature variation in the horizontal direction, and the small scale 

convective motions driven by the gravitational instability. The sidewalls of the container are 

important in the generation of the convective motion, equivalent to a non-zero value of X, and 

it was found that the amplitude of the rolls increases smoothly with increasing Rayleigh 

number. An amplitude equation for the convective motion near onset was determined using the 

method of multiple scales and various solutions were obtained. Other examples of where 

sidewall forcing is important are found in cases where the geometry of the container is 

imperfect (Daniels 1982) or where rotation introduces centrifugal effects (Daniels 1980). 

Geometrical imperfections in a shallow two-dimensional layer uniformly heated from below 

result in two major effects on the pattern of cellular convection that evolves near the critical 

Rayleigh number. Sidewalls which are not quite vertical result in the initial development of 

rolls near the sidewalls and the rolls subsequently spread smoothly inwards as the Rayleigh 

number increases. If the horizontal surfaces are not quite parallel it can be shown that there is 

a lateral modulation of the rolls due to a combination of the misalignment of the horizontal

5



surfaces and the presence of the sidewalls.

Another important aspect of Rayleigh-Bénard convection is the manner in which the 

wavelength of the roll pattern changes as the Rayleigh number increases beyond its critical 

value and, in particular, the influence of lateral walls on the wavelength selection mechanism. 

Cross, Daniels, Hohenberg and Sigga (1981, 1983) determined the steady-state solutions of 

two-dimensional convection for Rayleigh numbers R slightly above threshold in a laterally finite 

container. They found that the allowed wavevectors which can occur as perturbations q to the 

critical wavenumber in the bulk of the container are reduced from a size \q \ ~ [(R-R^/R,,]1'2 

in the laterally infinite system to the range \q\ ~(R-Rq)/R0 in a system with rigid lateral walls. 

Therefore the presence of rigid sidewalls, no matter how far apart, severely restricts the band 

of possible wavenumbers which can occur in the bulk of the system. The hydrodynamic 

equations were expanded in terms of the small parameter [(R-R0)/R0]V2 to obtain amplitude 

equations and boundary conditions to a higher order than obtained by Newell and Whitehead 

(1969) and Segel (1969). It was also noted that the range of allowed wavevectors depends on 

the Prandtl number of the fluid and the thermal properties of the sidewalls. Daniels (1981) 

investigated how the steady-state solutions obtained by Cross et al evolved over time and 

examined the stability of the solutions. The complete evolution of the flow pattern from a static 

state takes place on various long time scales of which the most important are t=O[(R-R0Y'] and 

f = O[(/?-Æ0)'2]. The amplitude of convection (ie. the strength of the rolls) rises from zero to its 

final steady-state value on the time scale t=O[(R-R0) ’], but the final lateral positioning of the 

rolls (which consists of a gradual change in the complex argument of the core-amplitude 

function, the modulus of which remains constant and uniform across the container) is only 

completed on the much longer time scale r= O [(/?-/?0)'2]. The results showed that as the 

Rayleigh number increases beyond its critical value for free horizontal boundaries, the 

wavelength of the rolls depends on the value of the Prandtl number. If the Prandtl number is
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sufficiently high there is a smooth evolution with little change in the wavelength of convection, 

whereas if the Prandtl number is sufficiently small there is a discontinuous evolution in which, 

to preserve stability, the solution must continually jump from one solution branch to another, 

resulting in a decrease in the number of rolls, and the wavelength of convection then steadily 

increases with Rayleigh number.

The question of wavelength selection was also studied by Pomeau and Zaleski (1981) who 

obtained similar results for a one-dimensional model equation. They also discussed the 

likelihood of instability of the one-dimensional solution to cross-rolls near the sidewalls. An 

amplitude equation previously used to calculate steady states of convection in a finite container 

was studied numerically for the case of lateral forcing at the boundaries by Cross, Hohenberg 

and Safran (1982) to observe the evolution of the roll pattern, and in particular the 

wavenumber, with time. It was found that if q is not an allowed wavenumber initially it either 

increases or decreases in value with time to become an allowed wavenumber. The evolution 

of the roll pattern resulting from a change in the Rayleigh number for the case where there is 

no lateral forcing was considered by Daniels (1984), the steady-state solutions being those 

obtained by Cross et al (1983). The main evolution of the roll pattern occurs on the long time 

scale t=O[(R-R0) 2] where the phase of the solution is governed by a one-dimensional heat 

conduction equation which was solved subject to nonlinear boundary conditions imposed by the 

interaction with the sidewalls.

Daniels and Chana (1989) considered the onset of convection in an infinite rigid horizontal 

channel uniformly heated from below. A linearised solution of the three-dimensional Oberbeck- 

Boussinesq equations was obtained using a two-dimensional Galerkin representation of the 

cross-channel dependence, but allowing an analytical description in terms of the third 

coordinate x measured along the length of the channel, which identifies any adjustment in the
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wavelength of the roll pattern. Neutral stability curves and the dependence of the critical 

Rayleigh number on the channel aspect ratio were determined and asymptotic results were 

found for narrow and wide channels which correspond to the limits of small and large aspect 

ratios respectively. These results were extended by Daniels and Ong (1990) to higher levels of 

truncation and to include modes of convection not previously examined, leading to more 

accurate results. This type of linear theory had earlier formed the basis of a model of 

convection in a long box with free boundaries at slightly supercritical Rayleigh numbers 

proposed by Daniels and Chana (1987) in which the wavelength adjustment was predicted 

theoretically in terms of transitions between different multiple-cell solutions of the kind 

previously identified for the two-dimensional model with stress-free boundaries by Cross et al 

(1983). Although in the long box the solutions are fully three-dimensional, a similar structure 

is relevant in the x direction, allowing multiple-scale techniques and matched asymptotic 

expansions to be used to take account of both nonlinear effects and the presence of the ends of 

the box. The results showed that for large Prandtl numbers the number of rolls will remain 

constant in the box as the Rayleigh number is gradually raised, but for smaller Prandtl numbers 

and most aspect ratios the number of rolls must decrease as the Rayleigh number is raised 

above its critical value. The weakly nonlinear theory for convection in an infinite channel 

uniformly heated from below was extended to the case of rigid horizontal boundaries and rigid 

thermally conducting sidewalls by Daniels and Ong (1990a). The overall description of the flow 

consisted of a combination of analytical and numerical techniques along and in the cross-section 

of the channel. They derived an amplitude equation governing the spatial and temporal 

evolution of the flow above the critical Rayleigh number and results were obtained for general 

Prandtl numbers and a wide range of aspect ratios. The linear theory for the corresponding 

system with thermally insulated sidewalls had earlier been investigated by Luijkx and Platten 

(1981).
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Amplitude equations and boundary conditions provide an economical method for studying 

the effect of lateral boundaries on convection close to onset. Boundary conditions for the 

amplitude functions for rolls parallel and perpendicular to a sidewall have been determined for 

convection in large rectangular cells by Segel (1969) and Brown and Stewartson (1977) 

respectively. These results were generalized by Cross (1982) who derived boundary conditions 

for the amplitude function of convective rolls approaching a rigid sidewall at an arbitrary 

orientation. Pomeau and Zaleski (1981) argued that in large rectangular containers the cross-roll 

instability originally identified by Newell and Whitehead (1969) would be relevant near the 

lateral boundaries, so that theories based on purely two-dimensional roll patterns would be 

inadequate. This was confirmed by Greenside and Coughran (1984) who used a two- 

dimensional relaxational model equation introduced by Pomeau and Manneville (1980) to study 

numerically the effect of lateral boundaries on pattern formation near the onset of convection 

in rectangular planform containers. The model equation is an immense simplification of the 

Boussinesq equations and it was solved by a repeated solution of the linear constant-coefficient 

biharmonic problem. An implicit backward-Euler time integration scheme with a variable step- 

size and a variable-order time-step monitor was used as an accurate numerical integration 

method to solve the biharmonic problem. Their results clearly showed that in general whenever 

a roll comes into a sidewall it does so at right angles. They also studied the time scale required 

for the relaxational model to reach a stationary state and the results showed that for small 

planforms the fluid becomes stationary after about one horizontal diffusion time (ie. the time 

for a thermal perturbation to diffuse across a characteristic horizontal dimension of the cell). 

However for large planforms the time scale required for the fluid to become stationary is much 

larger than the horizontal diffusion time. The model equation introduced by Pomeau and 

Manneville (1980) was also studied by Daniels and Weinstein (1992) as a way of simulating 

patterns of convection in a fluid uniformly heated from below and included a description of the 

main features of the finite-amplitude motion near a lateral boundary taking into account the fact
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that a roll pattern parallel to a sidewall is unstable to cross-rolls in the neighbourhood of the 

boundary. The amplitude equations for rolls parallel and perpendicular to the sidewall were 

derived and an analysis of the normal modes of the cross-roll instability was undertaken. The 

nonlinear evolution of a general disturbance was then studied theoretically and numerically and 

a stable finite-amplitude structure consisting of a mixture of rolls parallel and perpendicular to 

the boundary was found in the case when there is a small boundary imperfection, with a 

transition to rolls parallel to the boundary at a certain distance from the wall. It was also found 

that when the boundary imperfection is removed, a steady-state solution is not attained in a 

semi-infinite region extending from the wall and instead there is a continual logarithmically 

slow drift of the roll pattern with time as the region containing the cross-rolls increases in size. 

Investigations of the transition between transverse and longitudinal roll patterns in an infinite 

layer include those by Walton (1982, 1983) and Tesauro and Cross (1987).

There have been many experimental investigations of the Rayleigh-Bénard system. In order 

to determine accurate details about the convective properties of fluids heated from below, 

Dubois and Bergé (1978) measured the velocity in silicone oil by laser anemometry. The 

experimental velocity measurements were compared with the weakly nonlinear amplitude 

equations. Steady convection in a rectangular box heated from below and cooled from above 

was studied experimentally by Bühler, Kirchartz and Oertel (1979) and Oertel (1980). In 

addition, the steady linear Boussinesq equations were solved numerically using a Galerkin 

method and an explicit finite difference scheme to determine the onset of convection. The effect 

of the Prandtl number, P, on the steady flow pattern which develops at supercritical Rayleigh 

numbers was determined experimentally using the test fluids silicone oil (P=1780), water 

fP=7) and nitrogen (P=0.71). The flow configurations in nitrogen and silicone oil were 

observed experimentally using a differential interferometer and the density and velocity profiles 

were measured by means of a laser-differential interferometer and laser-anemo-interferometer.
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The results were consistent with the subsequent theory of Chana and Daniels (1987) that for 

high Prandtl number fluids the number of convection rolls does not alter within the box 

whereas for low Prandtl number fluids the number of convection rolls decreases as the Rayleigh 

number increases. The results also agreed with the original prediction of Davis (1967) that at 

the onset of convection the preferred mode of convection consists of three-dimensional rolls 

(the rolls have a non-zero velocity component perpendicular to the sidewalls) with axes aligned 

perpendicular to the sidewalls of the channel. The experimental findings were also supported 

by finite element calculations of the nonlinear flow field (Oertel 1980). The wavelength of 

convective rolls was measured as a function of the aspect ratio in a long box near the onset of 

convection by Luijkx and Platten (1982). It was found that as the aspect ratio (width/height) 

of the cross-section of the box increases, the corresponding wavenumber decreases, reaches a 

minimum when the aspect ratio is about three and then increases consistent with the theoretical 

predictions by Davies-Jones (1970) and Luijkx and Platten (1981). In general, the flow in 

rectangular containers exhibits a sequence of transitions from steady, laminar to turbulent flow 

and this was studied at Rayleigh numbers ranging from the onset of convective flow to the 

onset of time dependence by Kolodner, Walden, Passner and Surko (1986) and Kessler (1987). 

They also measured the Nusselt number which describes the heat transfer from the bottom to 

the top of the box. A detailed account of much of the experimental work on Rayleigh-Bénard 

convection is contained in the book by Koschmieder (1993).

There have also been a number of theoretical studies of Rayleigh-Bénard convection in non- 

rectangular geometries. Joseph (1971) discussed convection in containers of fluid of arbitrary 

shape heated from below. The onset of finite-amplitude Bénard convection in a shallow 

cylindrical container of large radius with stress-free upper and lower surfaces and a rigid 

imperfectly insulated sidewall was investigated by Brown and Stewartson (1977, 1978), 

extending the linear theory developed by Zierep (1959). Amplitude equations for concentric roll
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patterns were derived as a function of the radial coordinate. Boundary conditions for the 

amplitude equation were found at the centre and on the outer wall of the cylinder. The question 

of wavelength selection in cylindrical structures was investigated by Pomeau and Manneville 

(1981) and Daniels and Golbabai (1984).

There is a similarity between the convective cell pattern in Bénard convection and some of 

the most beautiful and familiar examples of spontaneous pattern formation in nature which can 

be found in the growth of crystals (eg. in snowflakes or the solidification of alloys, Langer 

1980), phyllotaxis in plants (Rivier, Occelli, Pantaloni and Lissowski 1984) and liquid crystals 

(Guazzelli, Guyon and Wesfreid 1983, Dubois-Violette, Guazzelli and Prost 1983). Cellular 

convection is also thought to be important in plate tectonics and the motion of the Earth’s 

mantle (McKenzie and Richter 1976). The present work aims to describe the formation of 

patterns of convection in Rayleigh-Bénard and related systems, in particular the interaction 

between orthogonal roll patterns in the vicinity of a lateral boundary. The effects of forcing at 

the boundary, the Prandtl number of the fluid, the wavelength in the x direction (perpendicular 

to the boundary) and the wavelength in the y direction (parallel to the boundary) on the patterns 

of convection are discussed in detail in the following chapters.

In chapter 2 amplitude equations and boundary conditions are derived for both the model 

system introduced by Pomeau and Manneville (1980) and the Rayleigh-Bénard system with 

rigid upper and lower boundaries. Normal modes of the cross-roll instability in the vicinity of 

a lateral boundary are then found and the nonlinear evolution of a general disturbance is 

examined theoretically and numerically using an explicit finite difference scheme for a range 

of different Prandtl numbers of the fluid and for different levels of forcing at the boundary. 

Attention is restricted to real amplitude functions independent of y.
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The stable steady-state structure identified in chapter 2 involves a transition from a 

combination of rolls parallel and perpendicular to the boundary to a solution consisting entirely 

of rolls parallel to the boundary. The transition zone between these two main outer regions is 

studied in detail in chapter 3 and it emerges that the fourth order spatial derivative term in the 

amplitude equation plays a significant role. Steady-state solutions of the transition zone problem 

are obtained analytically and numerically using a fourth order Runge-Kutta method together 

with Newton iteration.

In chapter 4 the amplitudes of the x and y-rolls (parallel and perpendicular to the lateral 

boundary respectively) are allowed to be complex but still independent of y so that variations 

in the wavelength of the x-roll pattern can be studied. The relevant amplitude equations are 

determined and the range of allowed wavenumbers of steady-state solutions for the model 

system is examined when the amplitude of the y-rolls is both zero and non-zero. The complete 

steady-state solution structure for the case when the amplitude of the y-rolls is non-zero is 

found for the semi-infinite system when the lateral forcing is small, using the method of 

matched asymptotic expansions. The nonlinear evolution of a general disturbance is studied 

numerically using an explicit finite difference scheme for a variety of wavenumbers and 

different levels of forcing at the boundary. The results are also extended to include the effect 

of a second lateral boundary allowing predictions to be made of the possible range of 

wavenumbers in a finite container.

Spatial frequency modulation of the y-roll pattern, equivalent to a range of different 

wavelengths of the rolls perpendicular to the lateral boundary, is investigated in chapter 5. The 

amplitude equations and boundary conditions are obtained, followed by the determination of 

steady-state solutions. The effect of frequency modulation on the location of the transition zone 

is determined and the nonlinear evolution of an initial disturbance is studied theoretically and
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numerically using an explicit finite difference scheme.

In chapter 6 phase-winding effects associated with variations of the wavelength of the x-roll 

pattern are investigated when there is frequency modulation of the y-roll pattern and no lateral 

forcing. Higher order amplitude equations are derived for the model system and the overall 

solution structure is established, consisting of two main outer regions separated by a transition 

zone (where the amplitude of the y-rolls falls to zero) and two wall regions near the lateral 

boundary. Solutions in the transition zone are found which lead to a number of continuity 

conditions for the outer solutions. The wall region solutions are then obtained and provide 

boundary conditions which complete the determination of the various constants which arise in 

the outer solutions. This allows the phase-winding properties of the system to be determined, 

showing how the lateral boundary restricts the range of wavelengths in the main x-roll pattern. 

Finally, the results are discussed with a view to possible future avenues of research.
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Chapter 2

Finite-amplitude patterns of convection near a lateral boundary

2.1 Introduction

In this chapter, a pair of amplitude equations is studied as a means of simulating weakly 

nonlinear patterns of convection in a fluid uniformly heated from below. The aim is to describe 

the main features of the finite amplitude motion near a lateral boundary, incorporating the 

effect of an imperfection or forcing at the boundary measured by a parameter X. In section 2.2 

the analysis is based on a model equation introduced by Pomeau and Manneville (1980) and 

equations for the amplitudes of rolls parallel and perpendicular to the lateral boundary (x-rolls 

and y-rolls respectively) are derived. The boundary conditions for the amplitude functions are 

also determined. In section 2.3 the amplitude equations for the Rayleigh-Bénard system with 

rigid upper and lower boundaries are derived together with the boundary conditions for the 

amplitude functions. Here the coefficient /x of the nonlinear term representing the interaction 

between x-rolls and y-rolls is a function of the Prandtl number of the fluid. The range of 

possible values for ¡x in the amplitude equations is determined using the results of Schluter, 

Lortz and Busse (1965). The model equation of section 2.2 is then seen to be equivalent to the 

special case /x = 2, which has been studied in the present context by Daniels and Weinstein 

(1992), who confirmed the importance of the cross-roll instability mechanism proposed by 

Pomeau and Zaleski (1981). Normal modes of the cross-roll instability are found for general 

lx in section 2.4 and aspects of the nonlinear evolution are studied theoretically in section 2.5. 

In section 2.6 the steady state to which the solution evolves for ¿¿>1 is found theoretically. 

Section 2.7 examines the nonlinear evolution of a general disturbance numerically for general 

ix using an explicit finite difference scheme and section 2.8 describes an analysis of the case 

ix< 1. In section 2.9 the results are discussed and a comparison is made between the analytical 

predictions of the behaviour for different values of fx and the results obtained numerically.
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2.2 Amplitude equations and boundary conditions for a model system

In this section a non-dimensional model equation introduced by Pomeau and Manneville 

(1980) is considered. This equation for \j/(x,y,t) has the form

^  = {e-(V°+ l)2}t|/-tl/3 , (2.2.1)
dt

where V2=d2/dx2+d2/dy2, x and y denote Cartesian coordinates and t denotes time. This simple 

model equation contains the essential ingredients of diffusion (time and spatial dependency) and 

cubic nonlinearity which characterise the Rayleigh-Bénard problem. The parameter e is 

equivalent to the excess of the Rayleigh number above its critical value for an infinite layer. 

A semi-infinite domain x > 0 is examined and at the lateral boundary it is assumed that

i|f = 2Xe1/2 , = 0  at jc = 0 . (2.2.2)
dx

When \  = 0 these conditions imitate those associated with a rigid impermeable wall, while a 

non-zero value of X corresponds to some kind of imperfection which could describe a finite 

porosity or thermal conductivity of the lateral boundary.

To study the stability of zero or near-zero solutions of the above system to non-zero 

disturbances in ip, solutions of the linearised version of the model equation (2.2.1) may be 

sought in the form

* = e°%x,y) , (2-2-3)

where the growth rate <j=or+ioi is to be determined. An arbitrary disturbance may be 

represented as a complete set of normal modes and the stability of each of these modes can be 

examined individually. Therefore a solution for \p describing the perturbation is assumed in the 

form
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i|r = ae{0,+'(*^+V)} (a < i } (2.2.4)

where k= (k2+ky2)'12 is the wavenumber of the disturbance. Substitution of (2.2.4) into (2.2.1) 

leads to the result

o = e - ( -k 2+1)2 . (2.2.5)

In general, there are two states of marginal stability corresponding to the two ways in which 

the amplitude of a small disturbance can grow or be damped. It can grow (or be damped) 

aperiodically, which implies the transition from stability to instability takes place via a marginal 

state exhibiting a stationary pattern of motion and it is said that the principle o f the exchange 

of stabilities is valid. Alternatively the amplitude can grow (or be damped) by oscillations of 

increasing (or decreasing) amplitude, which implies the transition takes place via a marginal 

state exhibiting oscillatory motions with a certain characteristic frequency, and then it is said 

to be a case of overstability. The difference between the two kinds of marginal states depends 

on whether or not the imaginary part a, of a vanishes when the real part or of a vanishes. If 

ar= 0 implies ct,= 0, then the principle of the exchange of stabilities is valid; otherwise it is a 

case of overstability.

In the Rayleigh-Bénard problem a certain critical adverse vertical temperature gradient must 

be exceeded before instability can set in and the motions which follow on exceeding this critical 

temperature gradient have a stationary cellular structure. The model equation (2.2.1) simulates 

the Rayleigh-Bénard problem, and it is seen that at the onset of instability u=0 and

e = ( -k 2+1)2 . (2.2.6)

This relation between e and k represents the neutral stability curve for the system, and the 

critical wavenumber is k= \ at e=0. When e exceeds zero it can be expected that small 

disturbances with wavenumber k close to 1 will grow and that a nonlinear steady-state solution
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for which ip is non-zero will exist.

In an infinite system x[/ may consist of a superposition of modes with arbitrary orientation 

(kx,ky) but in the present work the main interest is in the effect of a lateral boundary along the 

y-axis and modes which represent convection rolls parallel and perpendicular to this boundary 

will be considered, equivalent to x and y dependence of the form <?“ and e'y, respectively. An 

amplitude-equation approach of the type introduced by Newell and Whitehead (1969) and Segel 

(1969) will be adopted, in order to incorporate the effects of spatial modulation, time- 

dependence and nonlinearity near the critical point.

A balance between terms in (2.2.1) suggests that motion develops with an amplitude \[/ of 

order e1/2. Therefore let

t|r = €1/2i|/0+€iJ/1+€3/2i|;2+... , € -  0 . (2.2.7)

In order to determine the most general form of the amplitude equations for the model system 

(2.2.1) and the boundary conditions (2.2.2), the semi-infinite domain x>  0 is allowed to contain 

x-rolls which have slow spatial modulation on length scales X  and Ÿ defined by

X = e1/2x , Ÿ = e1/4y (2.2.8)

and y-rolls which have slow spatial modulation on length scales X and Y defined by

X = e1/4x , Y = emy . (2-2-9)

In addition, both sets of rolls are allowed to vary on a slow time scale r  defined by

T = er . (2.2.10)

These various scales are determined by the expectation of obtaining amplitude equations at 

order e3/2 which contain all of the slow spatial and temporal variations of the amplitudes of both
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x and y-rolls, following the analysis of Newell and Whitehead (1969) and Brown and 

Stewartson (1977).

At order em, substitution of (2.2.7) into (2.2.1) gives

(VM )2!^  = 0 , (2.2.11)

where V2—d2/dx2+d2/dy2 and the solution for \p0 of interest here can be written in the form

%  = , (2-212>

where

i|/0'4 = A(X,Y,x)e'x+c.c (2.2.13)

and

= B(X,Y,‘c)ei9+c.c , (2.2.14)

where c.c denotes the complex conjugate. Here A and B are the complex amplitude functions 

associated with x-rolls and y-rolls respectively. The method of multiple scales is used in the 

sense that in (2.2.1) and (2.2.2), an x-derivative d/dx operating on ip0A must be replaced by 

d/dx+e'/2d/dX and a y-derivative by el/4d/dY. Similarly a y-derivative d/dy operating on \I/0B 

must be replaced by d/dy+el/2d/dY and an x-derivative by e,l4d/dX. At order e it then follows 

that satisfies

(V2+l)2i(;1 = 0 , (2.2.15)

giving

, (2.2.16)

where
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(2.2.17)V  = A .a x x ^ + c . c  ,

Tjfj8 = Bj(X,y,T)eiy+c.c (2.2.18)

and A, and 5, are further complex amplitude functions, to be considered in greater detail in 

chapter 6.

At order e3/2, \J/2 is found to satisfy

(V2*!)2̂  = i|r0- a^ 0
dx

' a4 t 4a4 
^8? ax ax a r

48* '
dx2dX2/

( 8* 48* 48* 'l-----+------------  +----------
,8X* 8y8yaF 8y28 r2y

3

(2.2.19)

The right-hand side contains terms proportional to e±vl, e±3a, e±iy, e±3,y, e±,<x±2y> and e±l(2x±y>. 

In order that the solution for \p2 does not grow with x or y, the secular terms proportional to 

e±u and e±iy must be avoided, and after substitution for \[/0 from (2.2.12) this requires that

BA
dx

A-3A(\A\2+2\B\2)+4f - - 1[dX 2
(2 .2 .20)

and that

dB
dx

B-3B( |2+2 \A |2)+4 ' d i d 2
dY 2 dx 2

(2 .2 .21)

It is worth noting that to a leading approximation these amplitude equations may be restated 

in terms of the original spatial and temporal variables x, y and t by writing

i|; ~ lA(x,y,t)e,x +B(x,y,t)e*} +c.c. (2.2.22)

and then A and B satisfy
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(2.2.23)

(2.2.24)

(Daniels & Weinstein 1992). It should be understood that the validity of (2.2.23) and (2.2.24) 

relies on the assumption that e is small so that the amplitudes A and B are small, of order eI/2,

more difficult to determine because of the coupling between the two modes implied by (2.2.23) 

and (2.2.24). Nevertheless the equations do contain all possible leading order variations with 

x and y and can therefore be used to describe the evolution of the system on appropriate length 

scales to be identified below.

Boundary conditions for the amplitude functions A and B are now determined. Near the 

lateral boundary x=0, the solutions of (2.2.23) and (2.2.24) must adjust to the conditions 

(2.2.2) on the ordinary length scale x and the equation valid in the boundary region is hence 

the steady linearised form of (2.2.1):

Matching of this form near the boundary with the outer solution for \j/ given by (2.2.22) as jr-*0 

gives

and develop on a long time scale t of order e"1. Scales of spatial modulation for Â and B are

(VM )2̂  = 0 , (2.2.25)

which has a solution

t|t ~ te“(a1+è1A:)+e (̂a2+è2A:+c2x2+i/2a:3)}+c.c (2.2.26)
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(2.2.27)«1 = A(0,y,f) , b, = -~-(0,y,t) ,
OX

in which case and therefore to a first approximation (2.2.2) gives

a{+a* = 2Xem , at -a* = 0 , (2.2.28)

where * denotes complex conjugate. Thus ax= \evl and (2.2.23) must be solved subject to

F\A

Â  = Ae1/2 at x = 0 (2.2.29)

Similarly,

a2 = B(0,y,t) , b2 = -|^(0,y,r) ,
OX

226 236
2c 2 = — (0,y,t) , 6d2 = — (Oyjt) ,

dx dx*

(2.2.30)

in which case d1<c1<b2<a2 and therefore to a first approximation (2.2.2) gives O2=Z?2= 0 . 

Thus (2.2.24) must be solved subject to

B -  —  -  0 at x=0 . (2.2.31)
dx

A similar result for the Oberbeck-Boussinesq system was first obtained by Brown and 

Stewartson (1977).

At large distances it will be supposed that a finite-amplitude roll pattern is established 

parallel to the lateral boundary and with no modulation in the y-direction such that

- f e \ 1/2A - — , J 3 - 0 a s x - ° ° . (2.2.32)

It is anticipated that this situation will occur along the shorter lateral sides of a shallow box of 

rectangular planform.
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To summarise this section, the leading order amplitude equations (2.2.23) and (2.2.24) have 

been obtained for solutions of the model equation corresponding to x-rolls and y-rolls, together 

with appropriate boundary conditions (2.2.29), (2.2.31) and (2.2.32). The amplitudes of the 

two sets of rolls are coupled through the nonlinear terms in the equations.

2.3 Amplitude equations for Rayleigh-Bénard convection with rigid surfaces

In this section it is shown that the amplitude equations (2.2.20) and (2.2.21) are in fact a 

special case of the equations governing weakly nonlinear convection in a real fluid layer 

bounded above and below by rigid horizontal surfaces. Here it is convenient to work in terms 

of Cartesian co-ordinates x, y, z non-dimensionalised with respect to the depth of the layer d, 

with z in the vertical direction. The temperature field in the fluid can be expressed in the form

0* = 0q -  A 0*z+A Q*d(x,y,z,t) , (2-3 1 )

where 0O* + (A0*)/2 are the constant temperatures of the upper and lower surfaces, ¿= ±1/2 , 

respectively and 6 is a non-dimensional measure of the temperature relative to that of a state 

of pure conduction. The governing equations in the Boussinesq approximation then depend on 

two non-dimensional parameters, the Rayleigh number

R = agAd*d3 ' (2.3.2)
KV

where a is the coefficient of thermal expansion, g is the acceleration due to gravity, k is the 

thermal diffusivity and v is the kinematic viscosity, and the Prandtl number

P = — . (2.3.3)
K

Linear theory (see Chandrasekhar 1963) predicts that instability first occurs when the Rayleigh 

number reaches a value R0= 1707.76 and the critical wavenumber for rolls is <y() = 3.117. A 

weakly nonlinear theory can then be developed incorporating slow spatial and temporal
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modulation, and nonlinear effects, for Rayleigh numbers R close to R0. A significant amount 

of numerical work is involved in calculating the coefficients of the various terms which appear 

in the amplitude equations and contributions to this have been made by Schluter, Lortz and 

Busse (1965), Kelly and Pal (1978), Wesfried et al (1978), Cross (1980) and Chana and 

Daniels (1989).

Setting

R-R0 = q 2e , (2.3.4)

with q to be specified below, the solution is based on the assumption that e is a small 

parameter, and for rolls with axes aligned perpendicular to the x-di recti on (x-rolls) the 

temperature field 6 can be expressed in the form

0 - ell2q{ e iq̂ Â(X,Ÿ,î) + c.c } g(z) , (2 3 5)

where

x = e~V2q0lX , ÿ = e~il4q0 lŸ , t = e~xq~2jz . (2.3.6)

The function g(z) is determined from linear theory (see Chandrasekhar 1963) and if a 

normalization is assumed such that g(0) = l, the equation for the complex amplitude function 

Â has the form

M a 4
P Jar

A +4 i & 
d X ~ 2 dp

( ^ I V  iV  — +—
4 P P2,

Â\Â\

where it is convenient to choose q=q0q,i'l2/2 and

Pi = 86.91 , |i2 = 44.47 , |î3 = 252.20 ,

p4 = 22281 , |i5 = -150.37 , p6 = 265.05 ,

are coefficients given by Daniels and Ong (1990a).

(2.3.7)

(2.3.8)
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In the present study it is intended to investigate the interaction of x-rolls and y-rolls, and for 

this purpose the amplitude equation (2.3.7) must be extended to incorporate the resulting 

nonlinear interaction. This was first studied by Schluter at al (1965) and is equivalent to the 

addition of an extra term

7 P p2
A\B\ (2.3.9)

on the right-hand side of (2.3.7), the temperature field now being given by

6 ~ e1,2q{ e ‘̂ A  + e ^ B  + c.c )g(z) , (2J10 )

where B represents the amplitude of the y-rolls. The ratio of the two nonlinear terms, in A \A |2 

and A \B \2, can be inferred from the calculations of Schluter et al (1965) as follows. Their 

existence conditions for the third order solution (without spatial or temporal modulation) are

- k * ® 4 e  t - c ' - c -  ■ 0 • ” ■n * (_2' '• * ' 2) ’ <2311)

where KR{1) is a constant. These conditions are equivalent to amplitude equations for A (where 

n= ± 1) and B (where n= ±2), with Ci=A and C2=B, giving respectively for A:

-KR(2)+T12|B|2+Tn | i | 2 = 0
(2.3.12)

and for B.

-K/?(2)+T12| i | 2+ ru |5 |2 = 0
(2.3.13)

The nonlinear terms in A and B are seen to appear in the combinations

| i | 2 + —̂ \È\2 ,i i  j  i i
Ml

(2.3.14)
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2 + (2.3.15)
T
—  Ml2 
V

in the equations forÂ  and Ê respectively. These terms correspond to the nonlinear terms found 

in the amplitude equations (2.2.20) and (2.2.21), and so to determine the equivalent Rayleigh- 

Bénard system it is necessary to find the ratio ¡i = TnITn. The matrix elements 7n and Tn are 

defined by

Tn = 2L(-1,+1) + L (+ l,-l) , (2.3.16)

Tn = 2[2L(0,0) + L(-l,+l)] , (2.3.17)

where for rigid upper and lower boundaries

¿(4>,-<i>) = q'[L_x̂ ) P x + L0(4))P0 + L j ^ P 1] . (2.3.18)

Substitution of the appropriate values of the functions L.,, L0 and L, determined by Schluter et 

al (1965) then gives

4

Tn = y[l25014P 2 - 843.9P + 1487.8] (2.3.19)

and

2<?orTn = -^-[76712P2 + 7564.4P + 10629.2] (2.3.20)

so that

= 2 76712P2 + 7564.4P + 10629.2' 
125014P2 -  843.9P + 1487.8 ;

0 < P  < <x> . (2.3.21)

It follows that the amplitude equation for Â is
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1 A dÀ 2 A( d i & \2 1 —  = A +4
df

a I . H5 1*6A-\ u,+— +—
ax 2 dy2) p  p  P2 w

/  A  A  \

A Fs IVn7+— +—
7 P p2 W

(2.3.22)

where

fl7 = 27338.19 , p.g = 2695.76 , (i9 = 3787.97 . (2.3.23)

This can be simplified by applying the scale transformations

A =
'  3 V/*

P p2

A , B -
\ 1/2

P p2

5 , 1  = / . f 2n

(2.3.24)

to give

a r  , .( / a2—  = ,4+4 
ai

\2

2 gy2 y4-3^4(\A |2+p |B|2) , (2.3.25)

where

i  = F7p2 + F8P + F9 
ji4P 2 + (i5P + |i6

and of course a similar argument implies that B must satisfy

^  = b J ±
5t  (ay 2 die2

\2
B-3S(|fi|2+p |y412)

(2.3.26)

(2.3.27)

where

i  = e ^ 'V x  , y = e mq0lY . (2-3.28)

From (2.3.26),
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p. -  1.227 as P - oo (2.3.29)

and

11 -  14.288 as P -  0 (2.3.30)

(see Figure 2.1) and the range of values of the parameter p in the amplitude equations (2.3.25) 

and (2.3.27) is

1.227 < (i < 14.288 . (2.3.31)

The pair of equations (2.2.20) and (2.2.21) obtained for the model problem is seen to be 

precisely equivalent to the pair (2.3.25) and (2.3.27) for the Rayleigh-Bénard problem with 

rigid horizontal surfaces when the parameter /x takes the value 2.

It should be added that in the Rayleigh-Bénard system the boundary conditions at a lateral 

wall for the amplitude functions A and B are also similar to those derived for the model 

problem in section 2.2. In practice these must be derived by considering the region immediately 

adjacent to the wall. Stewartson and Weinstein (1979) considered the condition on A 

corresponding to lateral forcing at the wall, equivalent, for example, to a non-zero heat transfer 

there, and showed that the physical boundary condition translates into a condition of the form 

(2.2.29) on the amplitude function, \e 1/2 representing the magnitude of the lateral forcing. 

Similarly, Chana and Daniels (1989) considered the relevant boundary conditions for B and 

argued that the conditions first derived for the stress-free case by Brown and Stewartson (1977) 

and derived for the model problem in (2.2.31) must also apply in the case of rigid horizontal 

surfaces. Thus the set of equations and boundary conditions of the model problem are directly 

relevant to the physical Rayleigh-Bénard problem, providing a strong motivation for studying 

this particular system in depth.
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The overall system for the Rayleigh-Bénard problem derived in this section can be

summarised in terms of variables not scaled with e by writing

Â = eI/2A , B = e1/2B , x = e l/2X , y = e l,2Y t = , (2.3.32)

to obtain

ÔÀ
dt

e i - 3 i ( | i |2+p|B|2)+4 _a
dx '2 d y \

(2.3.33)

dB
dt

/
eB-3B(|B|2+ p |i |2)+4 ■

\

_a
dy 2

A .
dx2

\2

B (2.3.34)

Â = Ae1/2 at x -  0 , (2.3.35)

B = —  = 0 at ^ = 0 , (2.3.36)
dx

Â -  , B -* 0 as x -  » t (2.3.37)

and this is seen to be equivalent to the system (2.2.23), (2.2.24), (2.2.29), (2.2.31) and 

(2.2.32) of the model problem when ¡jl-2 .  An investigation of the effect of ¡x on the solution 

of the system is the main aim of this chapter.

2.4 Normal modes of the cross-roll instability for general n

In this section the normal modes of the cross-roll instability are found for the system 

(2.3.33)-(2.3.37), restricting attention to solutions for which the amplitudes are real and 

independent of y. The roll pattern adjusts to its finite-amplitude form on a length scale x  of 

order e Vl and it is convenient to set
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X -  el'2x x = et ,

A(x,y,t) = e1,2A(X,x) , B(x,y,t) = el'2B(X,x) 

giving the reduced system

—  = 4—  +A-3A3-3 \xAB2 ,
dx dX2

—  = B-3B3-3[iBA2-e —  ,
dx 3X4

A = X at X = 0 ,

B = —  = 0 at X = 0 ,ax

(2.4.1)

(2.4.2)

(2.4.3)

(2.4.4)

(2.4.5)

A -* —  , B -  0 as X - o o  . (2.4.6)
f t

One steady-state solution of the above system occurs when B=0 which means that only x-rolls 

parallel to the boundary are present. To simplify the problem the case of no imperfection is 

considered ( \  = 0) and the solution for A is found by substituting B = 0 into the steady-state form 

of (2.4.2) producing

A = — tanh
/3  1

(2.4.7)

The stability of this steady-state solution is now considered. A cross-roll perturbation is 

introduced and it is assumed that these y-rolls have small amplitude so that the equation for B 

can be linearised, giving
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È *  - B

dx

/
1 - ptanh2

\

X
2y[ï /

c^B
ax4

(2.4.8)

A study is made of normal modes of instability of the form

J3(X,t ) = F(X)exp(ot) . (2 -4-9)

Upon substitution of (2.4.9) into (2.4.8) and the boundary conditions for B at X=0 and as 

X-^oo the following eigenvalue problem is obtained:

cPf  „ [ .  . A  x )e------F  1-o-ptanh ——
ax4 \2j 2) = 0 , (2.4.10)

F —  = 0 at X = 0 ,ax
(2.4.11)

F -  0 as X -  <*. . (2.4.12)

Pomeau and Zaleski (1981) used a Rayleigh-Ritz argument to illustrate the existence of positive 

eigenvalues a in the above problem when /x = 2. As e is a small parameter, the eigenvalue 

problem (2.4.10)-(2.4.12) is a singular perturbation problem and a WKB method can in fact 

be used to determine, analytically, the structure of the short-wave normal mode disturbances; 

the appropriate analysis for ¡x — 2 was carried out by Daniels and Weinstein (1992).

On the long length-scale X the solution can be written as

F ~ F0(X)sin e“1/4j  w(X VX'+O , e -  0 , (2.4.13)

where 6 is an arbitrary constant and

o>(X) = l-o-ptanh"
\ 2 f i  )

1/4

(2.4.14)
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Further, terms of order e‘A yield

F0(X) = a0oT3'2 (2-4.15)

where a0 is an arbitrary constant. This solution is valid for X< X0 where X0 is defined to be the 

value of X  at which w=0:

X0 = 2/2tanlT1 l - d 1'2 , 0<o<l, p>0 (2.4.16)

In the region where X< X0, co is real and positive which implies that F(X) is rapidly oscillating. 

It is assumed that /x>0 and then eigenfunctions of the type shown in (2.4.13) correspond to 

growth rates a such that l-/u<<7< 1. As X->Xo, w~^(Xo-X)1/4, where

^ = 2 1/8(^P ^) t,A“1+a]1/4 (2.4.17)

and it follows that

F ~ ajc 3/2(X0-X) "3/8sin| e "1/4 /(a)
4k(X0-X)~y \5I4\

+0 , x -  x0- ,

(2.4.18)

where

*0
1(a) = fw (X )d X ' . (2.4.19)

o

It is now necessary to find the local solution near X(l, where the differential equation for F 

has the form

e— -(X0-X)k4F = 0 ,
ax4 (2.4.20)

from which it can be seen that there is a variation on a local length scale £ defined by
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(2.4.21)X = X0+€1/5£ 4/5$ ,

where

(2.4.21)

F ~ a0e ~ ^ M )  

and

(2.4.22)

■ % r  = o .
dt*

(2.4.23)

Just one of the four fundamental solutions of (2.4.23) avoids exponential growth both as ¿-»oo 

and $-»-oo and this s o lu tio n ,/^ 1’, has the behaviour

5 )  ̂ 5 8,
oo ?

(2.4.24)

/>) -  (2«)-W(-o W - 4(; £)5'4* 3; ]  , e -  -  .
V 5 4

(Ross 1966). The required solution of (2.4.23) is therefore

/  = (2Ti)ll2t 6l5f l) ,

and matching with (2.4.18) gives

(2.4.25)

/(a) = 61/4|^ p - e  . (2.4.26)

The solution for F in the region 0<X <X 0 does not satisfy the boundary conditions at X=0 

and thus a region exists near the lateral boundary in which the solution adjusts to these
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boundary conditions. Near the lateral boundary, the differential equation for F is approximated 

by

d*F n  ne— - - ( l - o ) F  = 0 ,
ax4

from which it can be seen that near the wall there is a variation on a length 

X=e'4X, and the local solution for F is

F ~ F(X) ,

where

and

d*F
dX4

- d  ~o)F = 0

F  = XL. = o at X = 0 .
dx

The general solution avoiding exponential growth as X-»oo is

F(X) = a s in [(l-a)1/4X+0]+t 

and this satisfies the boundary conditions (2.4.30) provided

a sinQ+b = 0 , a cosQ-b = 0

and as X-^oo matches with the form of (2.4.13) as X-^0 provided

a = a0(l-o)~3/8 , 6=0 .

From (2.4.32),

(2.4.27)

scale X defined by

(2.4.28)

(2.4.29)

(2.4.30)

(2.4.31)

(2.4.32)

(2.4.33)
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(2.4.34)0 = -(3 -4 « ) , b = 
4 ( - D

n+1

for any integer «, and it now follows from (2.4.26) that

1(a) = e1/4mr (2.4.35)

This implicit equation for the eigenvalue a produces an infinite sequence of growth rates in the 

limit as e^O and «-*oo, with e'An of order unity.

In order to find a formula for the maximum growth rate, it is noted that this occurs when 

a is near 1. Letting a =1-5 with 5 taken to be small, it follows from (2.4.16) that

j o -  23/Z| ~ j 1/2 (2-4.36)

and then

2U
/  ~ [J0 8 j

1/4

dX , a -  1

A substitution Y=Xfil 2/23 2812 gives

I  -
23/2§3/4

„ 1/2 «l1 0
23/263/4

j [ l  -Y 2]V4dY

t i/2
(2.4.37)

ii1/2 -l1 o
f  cos3/2Z dZ

and this integral can be determined in terms of Gamma functions to give

21/263/4 r ( 2 ) ^

(7N 
.4 ,i

(2.4.38)
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On combining this result with (2.4.35), the maximum growth rates are represented by

o = l-1.377e1/3«4/V 3 , e1/4n<l . (2.4.39)

When the growth rate a is close to 1, it can be readily seen from (2.4.36) that X0 is close to 

zero and hence the disturbances are concentrated near the boundary. As the transition point X(l 

increases in value, the growth rate decreases and is zero when

X0 = 2v5tanh'1 1 (2.4.40)

i/iTj

for n>  1, so that growing modes are confined to a finite region in X. In general, X0-+oo as a 

approaches the value l-/x and if /x < 1 the solution would need to be reconsidered because 

growing modes (with <x>0) would then exist for all values of X  extending to infinity. Since 

A = lA/(3/r) at X=X0 the results of this section indicate that the x-roll pattern is unstable to 

cross-rolls in the locality of the wall where 0 <A < ItV (3¡x), a result equivalent to the cross-roll 

instability for an infinite fluid layer discussed by Newell and Whitehead (1969).

The theory described above does not actually include the maximum growth rates which 

occur for disturbances confined to the neighbourhood of the lateral boundary. As the growth 

rate increases to 1, X0 decreases and the three regions of the WKB solution collapse into a 

single region near the wall. From (2.4.39) it is reasonable to assume that this unified structure 

is identified with growth rates

o -  1 -e 1/3A (2-4.41)n

where A„, « = 1,2..., are finite eigenvalues. The solution for F in this single region where X 

is small is now found. Locally the differential equation for F is approximated by
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cPF 
e dXA

t
(2.4.42)

i p * 21 - a —1-—
\
F = 0

/

and a full balance of terms incorporating (2.4.41) suggests a local length scale X  defined by 

X=eUbX, with F~ F(X). Then F satisfies the system

8

F -  —  = 0 at X = 0
dx

F -* 0 as X -  «>

(2.4.43)

and this needs to be solved numerically to find the eigenvalues A = A„. The leading eigenvalue 

corresponding to the highest growth rate was found numerically to be

A, = 2.29^ Y  . (2-4.44)

Higher eigenvalues up to « = 5 were determined to be

l 2 ,3,4,5,...
V ' 2/3
\ 2 /

(5.53, 9.47, 13.89, 18.69,...) (2.4.45)

As n-*oo,

An ~ 1.377/14/3p2/3 (2.4.46)

and the result (2.4.39) is recovered. It can be seen from the solutions (2.4.45) that the 

asymptotic formula (2.4.46) is rapidly approached as n increases.

2.5 Nonlinear evolution

The nonlinear evolution of the system (2.3.33)-(2.3.37) is now investigated for orthogonal 

roll solutions
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A{x,y,t) = ell2A(X, t ) , B(x,y,t) = e inB(X,x) , (2.5.1)

where x = e 'l2X  and t —eW and the amplitudes are assumed to be real and independent of y. 

Then A and B satisfy the reduced system

—  = A ^ - +A -3A 3-3\i AB2 , (2.5.2)
dX2

—  = B-3B3-3\i A 2B , (2.5.3)
dx

to be solved subject to the boundary conditions

A = k at X = 0 ; A ~ —  , 5 - 0  as X -  <*> . (2.5.4)

Solutions for positive initial profiles

A = A0(X) , B = B0(X) at t  = 0 (2.5.5)

and positive values of X are examined although the results could easily be generalised to other 

cases.

It should be noted that in equation (2.4.3) the term d4B/dXx is formally of order e and is 

therefore neglected relative to the other terms in the equation. Thus the equation for B no 

longer includes any spatial derivatives which means that the boundary conditions for B at X=0 

cannot be satisfied. However, the necessary adjustment of the y-roll amplitude to the conditions

(2.4.5) occurs within an inner region where X=e_!4X = 0(l) and the solution there is now briefly 

considered. Since A = X at X=0 it follows from (2.5.3) that

B( 0,t ) = 5 +(x)
5o( 0)[l-3pX2]e2(1-3,iX2)T 

1 -3 p k2-3fi02(0) [1 -e-2(1-3̂ 2b]

1/2
(2.5.6)
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and in the inner region A ~ X and B~B(X,t ) where

^  = B ( l - 3 ^ 2)-3 fi3- ^  ,
dx4

(2.5.7)

with

= 0 at X = 0 (2.5.8)
dX

B -  B+(t ) as 7  -  » . (2.5.9)

An initial profile at r= 0  is needed to completely specify the problem for B and a full solution 

is not attempted here. However two limiting cases are considered.

First, if B is small the equation for B can be linearised (fi3 is neglected) and there is a 

solution of the form

B = B0(0)/(Ti)e(1-3|a2)T where q = —  , (2.5.10)
T1/4

assuming B0(0)e(l'3llX2)T< 1. The function/satisfies

1 W~  = 0 . 7 = 7 '  = 0 0l = 0) , / - l  (t | — °°) (2.5.11)

and although a complete analytical solution is not possible it is seen that as 77-» oo there are two 

exponentially damped oscillatory solutions for / i n  addition to the constant solution/^ 1. Thus

7  -
4/3

(2.5.12)

where k is an algebraic function of 77 and c and d are arbitrary constants which in principle are 

determined by satisfying the two boundary conditions at 77= 0 .
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Second, it is possible to investigate the limiting form of the solution for large times. From

(2.5.6) it can be deduced that when \ 2< 1/3/x,

* +(T)
t ,\l/2

as t (2.5.13)

and when A2> 1/3/x

B+(x) ->0 as t  -  oo . (2.5.14)

Therefore, as r-»oo, B decays to zero provided A2> 1/3/x which agrees with (2.5.10). However, 

when A2< 1/3/x, B moves towards a finite steady-state form as t -^oo in which

1/2 1-3jiX211/4.< 1/4 1/4
B ~ 1 -3\iX2

{ 3 J - e 2 X

Ceos \-3 \iX 2
2

X + Dsin 1-3 \iX2 
2

X
/

X -  »

(2.5.15)

where C and D are constants. This shows that the nonlinear steady-state solution has a damped 

oscillatory character for large X.

Generally, the results (2.5.12) and (2.5.15) give confidence that an inner solution exists of 

the required form to match with an outer solution of (2.5.2)-(2.5.5) and the main outer problem 

is now investigated. When B —0, steady-state solutions of the outer problem exist in the form

and

A = A0(X) — tanh
x+c1

f i 2 f i
for X < —  ,

f i

(2.5.16)

A = A0(X) — coth
x+c2

f i 2 f i
for X > —  ,

f i
(2.5.17)

where C, — 2v/2tanh"'(\/3A) and C2 = 2\/2coth"1(\/3A). These solutions consist purely of x-rolls 

and the instability to cross-rolls is readily demonstrated by considering a small y-roll
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disturbance of the form

Substitution into (2.5.3) then shows that

o(X) = l-3M o(*) , (2-519>

so that y-rolls grow in any region where AQ{X) < 1 tV (3/x). This agrees with the result obtained 

in the previous section for short-scale disturbances, and if /¿<1 or X < 1 A/(3\x) the x-roll 

solution is unstable. In the next section, consideration is given to what alternative form of 

steady-state solutions may evolve. It is found that such solutions consisting of a combination 

of x-rolls and y-rolls exist for ¡x > 1.

2.6. Steady-state solution for /t > 1

To summarise the results of the previous section, the nonlinear system (2.5.2)-(2.5.5) will 

evolve to the solution (2.5.16) or (2.5.17) as t - > oo when X > 1 A/(3/u.) but when X < 1 h /(3 ¡j l )  the 

solution (2.5.16) will be affected by the amplification of y-rolls in the region where A < lA/(3/x) 

and there is the possibility that a new steady-state solution consisting of a combination of x and 

y-rolls will evolve. To determine the form of this solution, consider the non-zero steady-state 

solution of (2.5.3),

B 2 = j ( l -3 p z l2) . (2.6.1)

Substitution of this into the steady-state form of (2.5.2) gives

p&A 1
4——+3y43(p.2-l)+A(l -p ) = 0  , l  < A < —  . (2.6.2)

ax2 ^

It is assumed that at the point X=Xq where A = 1 A/(3/x) there is a transition from the steady- 

state form of (2.5.2) where B2 = (l-3[xA2)/3 to the steady-state form of (2.5.2) where 5 = 0  

which is then valid in the region away from the wall (X>Ag) where A > \lV(3/r). Note that if

B = B0(X)e°m' (fi0< 1) . (2.5.18)
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this solution for A increases with X it is necessary that /x> 1 in order that A-^liV'b as X-^oo. 

Substitution of £ = 0  into the steady-state form of (2.5.2) shows that for X> X0 the amplitude 

A satisfies

4—  +A-3A3 = 0 
dX2

and the appropriate solution is

1
v/3p

< ^ <  J -
V3

A = -— tanh
f t

x - V C ,

2<j2

where C1 = 2v/2tanh'1(lA//x).

(2.6.3)

(2.6.4)

It is known that A = \lV (3/x) at X=X0 and upon differentiation of (2.6.4) it follows that

dA = 1 (p-1)
d x  2s[6 t 1

Equation (2.6.2) can be integrated once to give

at X=X,o (2.6.5)

J 3 A
(dX

^  3X4(|i2- l )  ^ ( l - p )  = D (2 .6 .6)
4 2

and for continuity of A and dA/dX at X=X0 it follows that D = 0. Equation (2.6.6) may then be 

integrated again to calculate the constant of integration which leads to the solution

v/lFùx-jy

A = 2s[2 ( y /^+ y/M : )e 2

A  [ ( VSiW Fï H  W
, X < x0 , (2.6.7)

provided /x> 1. The remaining boundary condition ,4 = X at X=0 is used to fix the transition 

point X0 as
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-2 , 0 < k < 1
vV -i

'

1 +
v/3|Ä (2.6.8)

from (2.6.8) it can be seen that X0-M) as X->l/V/(3/x), consistent with the existence of a stable 

x-roll solution when A> l/\/(3/x) whereas Z0~(-21n X)A/(^-l) as X-*0. This means that when 

X is small, X0 is large and the y-rolls extend significantly into the fluid. Values of Xq for 

various values of /x and X are given in Table 2.1 and illustrated in Figure 2.2. Curves are 

drawn for values of X in constant proportion to its maximum value of 1A/(3/x) and it can be 

inferred from these that for a fixed X, as /x increases from 1 to 14.288, Xq decreases in value. 

Therefore as the Prandtl number P increases, X0 increases. It is also noted that X0-»oo as /x^l; 

solutions for /x< 1 and for X=0 where the y-rolls extend into the fluid will be considered in 

detail in section 2.8 below.

The steady-state solution obtained here consists of two regions either side of the transition 

point X=X0 at which ^  = 1A/(3/x) and the amplitude of the y-rolls falls abruptly to zero. The 

nature of this abrupt change in the amplitude B can be investigated by considering the local 

solution near X=Xq as r-^oo. Close to Xq, for large time r, it is expected that

A = - J L + iü Z !2(X-y,)+... (2.6.9)
f i t  2|X\/6

and locally B is found to vary on a scale X-2Q) = 0 (r '1) as r-^oo, with

B ~ t ' 1/2g (0  , (2.6.10)

where £=(X-Xq)t . In order to find g(f), (2.6.9) and (2.6.10) are substituted into (2.5.3) to 

obtain
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ÈL
dÇ

(kt-1) J _ 8 V  _ (2.6.11)

The boundary conditions needed to solve (2.6.11) are found using a matching process. Firstly, 

matching with the behaviour of B2 = (l-3/c42)/3 as X->X0- requires

8 '-G i-D C '
3 ^ ü

1/2
as Ç (2 .6 . 12)

Secondly, matching with the solution B=0 in requires

g -  0 as C (2.6.13)

and it follows that for /x > 1

8
6(e( - l )

1/2

where l  = 2^
s/2\x

(2.6.14)

At large times r  the amplitude of y-rolls falls to zero with a square root singularity in the 

neighbourhood of 2^, which is smoothed out on a length scale of order f

It is noted that the equation (2.5.3) for B can actually be solved analytically to obtain

T-6fA2(X,z"Kh'

B = e 0 6/ ‘
2 z ' - 1 2 f Â 2( X , r “ ) d z "

dz‘+B0 (X)

-112

(2.6.15)

where A = (¡jl/2)x lA . Among other things this solution confirms that B remains positive for all 

times.

To summarise the results of this section, it may be concluded that for /x> 1 there is a stable 

finite amplitude steady-state solution which if A> 1A/(3/i ) at 2f=0 consists purely of x-rolls, 

being given by
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1 cothf2^  coth"1( ^ ) +X
\/3 I  2\jl

for \ > —
v's

(2.6.16)

and

1 tanhf2v^
v/3 [ 2 /̂2

for 2. < 1

(2.6.17)

these being the appropriate solutions of (2.6.3) subject to A = A at X=0. Alternatively, if ¡jl > 1 

and A< 1/v(3^) the stable steady-state solution is likely to consist of a combination of x and 

y-rolls in the region X < X() and x-rolls in the region X > X0, where X0 is defined by formula 

(2.6.8). In the next section, numerical solutions of the system (2.5.2)-(2.5.5) are undertaken 

to confirm these ideas and to investigate the situation where < 1.

2.7 Numerical solutions

The system (2.5.2)-(2.5.5) was solved numerically using an explicit scheme based on a 

forward difference approximation in time and a central difference approximation in X. The 

general process consists of subdividing the X , t  plane into sets of equal rectangles of sides 

6X=h, 5r=k, by equally spaced grid lines defined by X=ih , 1=0,1,2,...,7V and r=jk, 

j= 0,1,2,... Approximate solutions to the differential equations are found at the grid points (ij) 

where the values of A(X,t ) and B(X,t ) are denoted by aLj and btJ respectively. The solutions 

for A and B are obtained by approximating the partial differential equations at a given time step 

by 7V-1 algebraic equations involving the values of A and B at the internal mesh points, making 

use of the boundary conditions where necessary.

Solutions were computed at successive time steps starting from initial profiles at t = 0 given 

by
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(2.7.1)

The finite difference approximation to (2.5.2) is

aU+1 aw « a i + i j - 2 a i j + a i - i ?

y+a: -3a l-3 \ia ip l2
i J “ ‘J

(2.7.2)

leading to the explicit formula

CL-iJ+1 4a. , .+«i+ij I>|A 2-3A2aJ-8-3A 2lièJ+ -ij+ 4aI, U (2.7.3)

fory=0,l,2 ,... and i= where /3=k/h2 and Nh=Xx . Although (2.5.3) can be solved

exactly for B in terms of A to give (2.6.15), it is more convenient to use the discretised form 

of the differential equation,

h t i i h i  = b .\\
k ,J[

-3b ~ ^ aij (2.7.4)

which leads to the explicit formula

V 1 - kK l-3 è j-3 p a 5 +^

for y=0,1,2,... and i= l,2 ,...,N -l.

(2.7.5)

The two formulae (2.7.3), (2.7.5) determine the unknown amplitudes aij+, and bij+] at the 

i j + l  mesh point in terms of known amplitudes along theyth time row. Thus a solution can be 

found by ’marching forwards’ in time, starting from the initial profiles at r= 0 ,

a i f i  = M i h > . b i,o  = BoO'/0  , i  = 0 , . . . N  ,  ( 2 . 7 . 6 )

noting that the end values are determined directly from the boundary conditions
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for j  = 0, 1,... (2.7.7)aoj*i ^ * N j + l

f t

and then applying (2.7.3) and (2.7.5) with j= 0,1,2,... to get the solution at successive time 

steps. Step lengths h = 0.1 and k =0.0005 and an outer boundary Xoo = 20 were used for most 

computations.

The results shown in Figures 2.3-2.24 are for 5=0.2 and various values of /r and A. In 

section 2.3 it was found that 1.227</x< 14.288 so results were obtained for the end points 

fi= 1.227 and /¿= 14.288. Computations were also carried out for /x= 1.246, equivalent to water 

at 15 °C and 1 atmosphere, and for air where /jl =1.7. Additional results were generated for 

fx = 2 to check the numerical procedure against the results of Daniels and Weinstein (1992). It 

should be noted that in discussing the time evolution of the system, X0 is regarded as dependent 

on r and is defined as the point at which A = 1 A/(3/a). Its value was estimated numerically by 

applying a linear interpolation procedure.

For fx= 1.227, the cases \= 0 , 0.3 and 0.6 were considered. Results for A = 0 are shown in 

Figure 2.3 and at r=  10 the y-rolls continue to progress outwards slowly with time, as in the 

results for ¡x=2 described by Daniels and Weinstein (1992). A constant value of Xq is never 

obtained. For the case A=0.3 (Figure 2.4), it is found that A reaches a steady-state solution 

with y-rolls in the region X<X0 and no y-rolls in the region X> Xq, where the value of at 

t =  10 is 3.56. This is consistent with the steady-state prediction (2.6.8) which gives X0=3.76 

when ¿i= 1.227 and A = 0.3. For A = 0.6 it is seen in Figure 2.5 that A again reaches a steady- 

state solution, this time with the y-rolls completely disappearing, consistent with the fact that 

here A> lA/(3^). The above numerical solutions thus confirm the analytical results of section

2.6 where it is shown that if 0<A < 1/\/(3/li), the stable steady-state solution in the region 

X<Ar0 is made up of a mixture of x and y-rolls and in the region X> X0 is made up of x-rolls
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only (Figure 2.4). The value of X0 decreases as X increases and if A> \h / (3/x) the stable steady- 

state solution consists of x-rolls only (Figure 2.5).

For fi= 1.246, the cases A=0, 0.3 and 0.6 were again considered (see Figures 2.6 to 2.8). 

Similar results were obtained, with X0 now the point at which A = l/V (3^) = 0.52. It was found 

that X0 = 3.39 for A = 0.3 at r=10, consistent with the steady-state value of 3.54 predicted by 

(2 .6 .8).

Further results were computed for ¡jl = 1.7 with \= 0 , 0.3, 0.5 (Figures 2.9-2.11), ¡jl=2 with 

A=0, 0.2, 0.4, 0.6 (Figures 2.12-2.15) and /x = 14.288 with A=0, 0.1, and 0.2 (Figures 2.16- 

2.18). These exhibited similar behaviour and in each case for which 0< A <  lA/(3¡x) the value 

of Xq at r=  10 was found to be in good agreement with the steady-state value predicted by 

(2.6.8) (see Table 2.1). The results for /x=2 were also found to be in good agreement with the 

earlier computations by Daniels and Weinstein (1992). For A = 0 and general values of n>  1, 

the y-rolls continue to propagate outwards with time at a very slow rate, consistent with the fact 

that the value of X0 given by (2.6.8) tends to infinity as A-»0.

Computations were also carried out for values of /x less than unity, and here a quite different 

behaviour was observed. Results for A=0, 0.5 and 1 (Figures 2.19-2.21) all indicate a similar 

evolution in which the y-rolls propagate steadily outwards with time and a ’plateau’ region 

forms in which the x and y-rolls have equal and virtually constant amplitudes. Beyond this 

plateau region the amplitude of the y-rolls falls to zero, and the amplitude of the x-rolls rises 

to lh /3 , as required by the outer boundary condition (2.5.4). With A< l/\/(3/u) both x and y- 

rolls continue to exist near the wall (Figures 2.19 and 2.20) but if A> 1A/(3/x) (Figure 2.21) 

the amplitude of the y-rolls decreases to zero there. An analysis of the solution when /x< 1 is 

undertaken in section 2.8 to explain the markedly different behaviour of the system in this case.
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Computations were also performed for the marginal case where ¡i= 1 and results for \  = 0, 

0.5 and 0.7 are shown in Figures 2.22-2.24. Here there is a much slower outward propagation 

of the y-rolls with time, similar to that which occurs for fx> 1 when A=0. For the case where 

A> lA/(3/a) (Figure 2.24) the y-rolls play only a relatively minor role in the solution.

2.8 Nonlinear evolution with lateral forcing for fi<, 1

When fi <1 , the x-roll solution A = lh /3 , B= 0 specified as X-*oo is no longer stable 

because the growth rate given by (2.5.19) for this solution is

o = 1-ji (2-8.1)

and this is positive when /x< 1. As a result, a steady-state solution dominated by the form 

A = lA/3, B=0 at large X  can no longer be achieved when /x< 1. The result of this is that the 

region where A = 1A/3, B = 0 continues to move outwards as time progresses and a steady-state 

is never achieved, as shown in the numerical results for ¡x=0.5 in Figures 2.19-2.21. The 

solution instead becomes dominated by a plateau region where the alternative nonlinear solution 

of

0 = A(l-3A2-3 p £ 2) ,

0 = B (l-3B 2-3\iA2) , (2'8'2)

namely

A = B = — 1 , (2.8.3)

prevails at large values of X. The reason for this can be seen by inserting the time derivatives 

dA/dr and dfi/dr on the left hand sides of (2.5.2) and (2.5.3) and investigating the stability of 

the solution to small perturbations in A and B. Setting
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1 1 (2.8.4)A =

and linearising in a and b it follows that

aeaz , B =
v/3 Ô n ô

+ be'

2 4 4(1 V )  nCT +---------0 + —---- = 0 ,
(1 + fO (1 + |i)2

(2.8.5)

which has two solutions,

a = -2 and a = ^  ^  . (2.8.6)
(1 +H)

This combination of x and y-rolls of equal amplitude is thus unstable for /x > 1 but becomes 

stable when /x < 1, and therefore evolves as an extending plateau region in the numerical 

computations.

Computations for ¿x=0.5 and various values of X are shown in Figures 2.19-2.21, and it is 

of interest to consider the structure of the solution which evolves at large times when fx < 1. 

This structure depends partly on whether \ >  l/\/(3/x) or X< lA/(3¿ix) at X=0. In the former 

case the region near the wall is dominated by x-rolls, and there is a transition to a combination 

of x and y-rolls as A descends through the value 1A/(3/x) ahead of the plateau, where 

A — 1A/[3(1 + / x)] (see Figure 2.21). This structure is shown schematically in Figure 2.25. In 

the latter case, the region near the wall is dominated by a combination of x and y-rolls which 

simply extends into the plateau at large values of X  (Figure 2.20). Beyond the plateau region 

the y-rolls subside in order to achieve the outer boundary condition and the plateau itself acts 

as a ’wavefront’ which propagates the combined x and y-roll pattern into the fluid as time 

progresses.

For the situation of Figures 2.19 and 2.20 where X< lb / (3/lx) the steady-state solution which 

develops in the wall region corresponds to B2 = (l-3/x/l2)/3 and thus, from (2.5.2), A satisfies
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(2.8.7)fPa
4 - ^ U ( 1 - h M+3(h 2-1M 3 = 0 ,
dx2

with boundary conditions

A = X (X = 0) , A
V/3ÖRÖ

(X -  oo)
(2 .8.8)

The relevant solutions are

-coth
y3C R 0

2\j2 coth~V3(l + n) X) + / H r  X
2s[2

if X >
V/3Ö nÖ

(2.8.9)

or

>4 = -tanh 2y/2 tanh-y3(l + n) x) + / T j l  X 
2\j2

a x <

(2 .8 . 10)

For the situation of Figure 2.21, where \ >  \fV(3^), the solution for A passes through the 

transition value \tV (3/x) at X=X0, say, and in the region X<Xq, B = 0 and A is given by the 

solution of

4 ^ A +A~3A3 = 0 (2.8.11)
dX2

subject to A = \  at X=0 and A = l/\/(3/x) at X=X0. For X> X0, B2=(1-3/jA 2)/3 and A satisfies

(2.8.7) with boundary conditions

A = —  (X = X0) , A -* ----------  (X -  oo) . (2.8.12)
\/3(TnO

One integration of (2.8.7) gives
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(2.8.13)2 (&4)2 3(1+|JL)A \A 2 _ D 
(l- |i,)(3 x j 4 2

and from the boundary condition as X-̂ -co it follows that D= l/{12(l + /x)}. A further

integration then yields

-coth
2\/2 coth 1 i +g + /R I(x -x 0)

2\fl

(2.8.14)

and it follows that at X=XQ,

dA
ax 2nN

1-n
6(l + n)

(2.8.15)

Equation (2.8.11) in X<Xq can now be integrated once, using the continuity of A and dA/dX 

at X=X0 to give

dA''2
8X

3A 3 4 A 2 1--------—— i---------
8 4 12(l + g)

and application of the boundary condition at X=0 yields

(2.8.16)

/ dA

2 , ( i- n )
[( V 9(l+|x)J

1/2
2 x  . 

N 8

Finally, the transition point X0 is determined by setting A — 1A/(3/x) to give

(2.8.17)

8 / dA
°  N 3 {

\/3i

1/2 (2.8.18)

3) 9(l + p)J

This integral cannot be found analytically but a numerical method of integration yielded the 

result X0 = 0.5801 when \= 1  and \l ~ 0.5.
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Close to Xo, A has the form

A = 1 1
v/3|I

IZH
6(1 + |i)

(X-X0) + ... (2.8.19)

and around this point there is a transition region where B increases rapidly from zero. This is 

similar to the region previously considered in section 2.6 with B ~ t 'hg(X) where £=(X-X0)t . 

The equation for g(f) is obtained from (2.8.19) and (2.5.3) as

dg
dÇ

1-p 1
2 p (l + p) 2Ç

g 3g3 = 0

and the appropriate boundary conditions are

g (0  -  0 as £ -

and

(2 . 8 .20)

(2 .8 .21)

g( 0 c 1-p
L3\ 2p (l + p)J

1/2

as C
(2 . 8.22)

The required solution is

-11/2

g (0  = where C = _2 1-li
N 2p(l + p)

c (2.8.23)

The wavefront region distant from Xq beyond the plateau, where B returns to zero, is not 

easily analysed, but some insight can be gained here by considering the special case where 

/x = 0. Then the equation for B does not depend on A and is given by

—  = B(1-3B2) . (2.8.24)
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(2.8.25)B2 = Cg2T 
1 +3Ce2z

If the initial condition B=B0(X) at r= 0  is applied it follows that

B =
Bp(X)e2'

l+3502(X )[e2*- l]

1/2

(2.8.26)

The solution for B is displayed in Figure 2.26 for the special case B0(X) = 8sech(aX) and it can 

be readily seen that, for large X  and r, the y-rolls ’travel’ outwards with time and adjust to zero 

amplitude as X-+oo. The speed of the travelling wave depends on the initial profile of B, B0(X). 

This is seen by noticing that for large X, where B0(X) ~ 2be'0*,

and so as r+oo,

B2
3+e~2T \-b ~ 2e-2„laX (2.8.27)

B 2 1

3 + - 8 2e
4

(2.8.28)

Thus the solution for B is in the form of a travelling wave B=f(X-cr) moving in the positive 

X  direction with wave speed c=l/a. For the case of Figure 2.26 where a = \!2>/2, the speed 

of the travelling wave is 2>/2 and in general it can be expected that the speed will depend upon 

the initial profile of B. Although it is possible to determine the wave speed of the travelling 

wave for the case /u = 0, it is not attempted here to determine the wave speed for general values 

of fx< 1, although the numerical computations indicate that a similar structure emerges in the 

region beyond the plateau.

Computations were also performed for the marginal case where ¡x= 1 and here it was found 

that a steady-state solution was not achieved as r-^oo. Results for A = 0 and A=0.5 (Figures
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2.22 and 2.23) indicate a slow outward propagation of the y-roll pattern with time. A similar 

slow propagation occurs for general fx when \= 0  and has been analysed in detail by Daniels 

and Weinstein (1992).

2.9 Discussion

The solution structure for Rayleigh-Bénard roll patterns in the neighbourhood of a wall 

subject to lateral forcing of magnitude X has been determined for general values of a parameter 

H depending on the Prandtl number of the fluid. It has been shown analytically and confirmed 

numerically that for fx > 1 there is a stable finite-amplitude steady-state solution which if 

\ >  1A/(3/x) consists purely of x-rolls, whereas if X < 1A/(3/x) it consists of a combination of 

x and y-rolls in the region X<A), and x-rolls in the region X>Xq, where the transition line 

X=X0 is determined in terms of X and /x by the formula (2.6.8). However, for the case X = 0 

no steady-state solution is reached, and the y-rolls progress outwards slowly with time.

For the case ix < 1 a steady-state solution is not achieved and instead the y-rolls travel 

outwards with time. If X> lA/(3 i x) at X=0 the region near the wall is dominated by x-rolls, 

and there is a transition to a combination of x and y-rolls as A descends through the value 

1A/(3[x). When \  < \lV (3¡x), the region near the wall is dominated by a combination of x and 

y-rolls.

Finally, the evolution of the roll pattern with time is illustrated by contour plots for various 

X and ix in Figures 2.27-2.37 using Surfer Version 4 by Golden Software. The program creates 

a regularly spaced grid from irregularly spaced data based on values of
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xj/ = e}12 {eaA(X,x) + e ,yB(X,x)}+c.c 

= 2exl2(Acosx + Bcosy) ,
(2.9.1)

where x=e'mX  and the value of e is taken as 0.1. An interpolation method based on minimum 

curvature is utilised. The grid values are smoothed using a cubic spline interpolation method 

and the contour map is generated. It should be noted that the contour intervals are automatically 

selected and vary from 0.1 to 0.2.
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p X *0

oo 1.227 0.3 3.7552

8.00 1.246 0.3 3.5420

0.72 1.700 0.3 1.4377

0.53 2.000 0.2 1.9057

0.53 2.000 0.4 0.0793

0.00 14.288 0.1 0.2929

Table 2.1 : X0 values for various ¡i and X

V a r i a t i o n  of Mu w i t h  P

Fig. 2.1 : Variation of ^  with the Prandtl number P
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V a r i a t i o n  o f  XD w i t h  Mu a n d  Lam bda

Mu

□ I a m = 0 . 2max !a m = 0 ,4 m a x -¿ r -  !am =O.Gmax

x I a m = 0 . 8max _(_ I am='I . Omax

Fig. 2.2 : Variation of Xq with ¡j. and X

Ampi i t u d e  o f  r o l  Is

O 3 1D 'is 20
x v a  I u e s

_ b - A 0 _ ^ _ B 0  A-1 _* _B 1  — i—  A'lO _ a _  B I O

- Fig. 2.3 : Numerical evolution for fi= 1.227 and \ = 0  showing the amplitudes A 
and B of jc-rolls and y-rolls at successive times t —0, 1, 10 indicated by 

AO, BO, A l, B l, A\0, BIO respectively
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Amp I i t u d e  o f  r o I  I s

□ 5 1 □ i 5  20

x v a I u e s

_ b - A O  _ « _ B 0  _ a _ A 1  - x- B I  _ , _ A 1 0  _ ^ B " I O

Fig. 2.4 : Numerical evolution for /¿= 1.227 and X=0.3 showing the amplitudes A 
and B of x-rolls and j-rolls at successive times r

Amp I i t u d e  o f  r o I  Is

O 5 1 □ ' IS 2D

x v a I u e s

.AO -BO - A1 . B1 . A10 . B10

Fig. 2.5 : Numerical evolution for ¡x= 1.227 and X=0.6 showing the amplitudes A
and B of x-rolls and y-roils at successive times r
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Amp I i t u d e  o f  r o ! I s

□ 5 1C 1 5  2D

x v a  I u e s

—a— AO _ BO - t4 - A 1  - x - B I  — ,—  A I O  - ¿ - B I O

Fig. 2.6 : Numerical evolution for /r = 1.246 and \= 0  showing the amplitudes A 
and B of x-rolls and y-rolls at successive times r

Ampi ¡ t u d e  o f  r o l  Is
M u = 1 . 2 4 6  L a m d a = 0 . 3

x v a  Iu e s

AG _0 _BO  _a _ A 1  B1 _(_A40 _ ^ _ B 1 0

Fig. 2.7 : Numerical evolution for = 1.246 and A = 0.3 showing the amplitudes A
and B of x-rolls and y-rolls at successive times r
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Ampi  i t u d e  o f  r o l  I s

□ 5 -ID 15 20

x v a  I u e s

_ a - A O  _ e _ B 0  -* _ A 1  _x— B1 -b _ A 1 0  _ ^ B 1 0

Fig. 2.8 : Numerical evolution for /x = 1.246 and A=0.6 showing the amplitudes A 
and B of x-rolls and y-rolls at successive times r

Ampi i l u d e  o f  r o l  Is

0 5 10 1 5  20

x v a  I u e s

AO _ « _ B 0  -£ _ A 1  - X - B 1  _ + _ A 1 0  _ ^ _ B 1 0

Fig. 2.9 : Numerical evolution for ¿t= 1.700 and A=0 showing the amplitudes A
and B of x-rolls and y-rolls at successive times r
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Amp I i t u d e  o f  r o I  I s

0 5 10 1 5  2D

x v a I u e s

- b _ A 0  - 0 - B O  - * - A 1  - x - B 1  _ , _ A 1 0

Fig. 2.10 : Numerical evolution for n= 1.700 and \  = 0.3 showing the amplitudes A 
and B of x-rolls and y-rolls at successive times r

Amp I i t u d e  o f  r o I  Is
M u = 1 . 7  L a m d a = 0 .5

x v a I u e s

- b - A Q  _ © -B 0  A1 _x _  B "1 _ f _ A 1 0  _ ^ B 1 0

Fig. 2.11 : Numerical evolution for /x= 1.700 and X=0.5 showing the amplitudes A
and B of x-rolls and ;y-rolls at successive times r
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Ampi  i t u d e  o f  r o l  I s

0 5 1D 1 5  2D

x v a  ! y e s

- b - A O  _e_BO -¿r-A-1 - X - B 1  _|_A10

Fig. 2.12 : Numerical evolution for /x=2.0 and X = 0 showing the amplitudes A 
and B of x-rolls and v-rolls at successive times r

Ampi i t u d e  o f  r o l  Is
Mu=2 L a m d a = 0 .2

x v a  I u e s

AO BO - a- A 1 B1 _|_A'tO 0

Fig. 2.13 : Numerical evolution for yu,=2.0 and A = 0.2 showing the amplitudes A
and B of x-rolls and j-rolls at successive times r
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Amp I i t u d e  o f  r o I  I s
Mu=2 L a m d a = 0 .4

—B_ AO _ $ _ B 0  A1 - ^ _ B 1  _ f _ A 1 0  B 1 0

Fig. 2.14 : Numerical evolution for /u.=2.0 and A = 0.4 showing the amplitudes A 
and B of x-rolls and y-rolls at successive times r

Amp I i t u d e  o f  r o I  Is
Mu=2 L a m d a = 0 .6

x v a I u e s

—B— AO - o - B O  —jflj— A 1 - ^ B l  A2 B2

Fig. 2.15 : Numerical evolution for /x=2.0 and \  = 0.6 showing the amplitudes A
and B of x-rolls and j-rolls at successive times r
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Ampi  i t u d e  o f  r o ! I s
M u=/I 4 , 2 8 8  Lamda=0

x v a  i ues

- e - A O  _ * _ B 0  _ A1 _ x_  B1  |—  A^IO - ^ - B I O

Fig. 2.16 : Numerical evolution for /x = 14.288 and \= 0  showing the amplitudes A 
and B of x-rolls and y-rolls at successive times r

Ampi i t u d e  o f  r o l  Is

□ 5 10 1 5  20

x v a  I u e s

- e - A O  _ $ _ B 0  _ * _ A1  _ x_  B1 _ , _ A 1 0  _ ^ B 1 0

Fig. 2.17 : Numerical evolution for yu. = 14.288 and A=0.1 showing the amplitudes A
and B of x-rolls and y-rolls at successive times r
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Amp I I t u d e  o f  r o I  I s

□ 5 10 15 20

x v a I u e s

—o_ AD _e_BQ - * - A 1  - x - B ' I  _ , _ A 1 0  .i. R i n

Fig. 2.18 : Numerical evolution for /x= 14.288 and A=0.2 showing the amplitudes A 
and B of x-rolls and v-rolls at successive times r

Amp I i t u d e  o f  r o  I Is
M u = 0 ,5 Lamda=0

. A10 . B10 -A2 0 . B20 . ABO - B30

Fig. 2.19 : Numerical evolution for /¿ = 0.5 and A = 0 showing the amplitudes A
and B of x-rolls and y-rolls at successive times t
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Fig. 2.20 : Numerical evolution for ^=0.5 and A = 0.5 showing the amplitudes A 
and B of x-rolls and rolls at successive times r

Ampi i l u d e  o f  r o l  Is
M u = 0 . 5  L a m da = 1 . 0

x v a  I u e s

—a -A 1 G  _£_B10 - ¿ -A 2 Q  _x— B20 __,_A3a _ ^ B 3 G

Fig. 2.21 : Numerical evolution for ¿¿ = 0.5 and A= 1.0 showing the amplitudes A
and B of x-rolls and y-rolls at successive times r
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Amp I i t u d e  o f  r o I  I s

0 1 0  3 0  30 A O

x v a I u e s

—B -  A'lO —O— B10 —¿s— A20 —x — B 2 0  _ + _ A 3 0  _ ^ B 3 0

Fig. 2.22 : Numerical evolution for ¿i=1.0 and X=0 showing the amplitudes A 
and B of x-rolls and j-rolls at successive times r

Amp I i t u d e  o f  r o ! Is
M u = 1 .0 L a m d a = 0 .5

_ b _  A'lO _ ^ _ B 1 0  _ A20 _ x— B20 _ , _ A 3 0  _ ^ _ B 3 0

Fig. 2.23 : Numerical evolution for = 1.0 and X = 0.5 showing the amplitudes A
and B of x-rolls and y-rolls at successive times r
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Amp I i t u d e  o f  r o  I I s
M u = 1 . 0  L a m d a = 0 . 7

x v a  I ues

—g— A70 _ e _ B 1 0  - & - A 2 0  _ * _ B 2 0  - + - A 3 0  _ ^ _ B 3 0

Fig. 2.24 : Numerical evolution for /x= l .0 and X = 0.7 showing the amplitudes A 
and B of jc-rolls and y-rolls at successive times r

Fig. 2.25 : Schematic diagram showing the main flow regions
for /¿< l and X> lh/(3^)
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Fig. 2.26 : Analytical solution showing the amplitude B of y-rolls at sucessive times r
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Fig. 2.27 : Contours of \p at times r = 0, 1,5 and 20 for /¿ = 2,0, \  = 0
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( :. i If • 30 . I H1

Fig. 2.28 : Contours of \j/ at times r = 0, l, 5 and 20 for ¿r = 2.0, X=0.2
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Fig. 2.29 : Contours of \p at times r = 0, 1, 5 and 20 for ¿*. = 2.0, \= 0 .4

73



ill] Ill L

i

JJlil ill Hill l! jlij A

Fig. 2.30 : Contours of \p at times r = 0, 1, 5 and 20 for /x = 2.0, X=0.6
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Fig. 2.31 : Contours of \p at times r = 0, 1, 5 and 20 for ¡i—0.5, X=0
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Fig. 2.32 : Contours of \f/ at times r = 0, 1, 5 and 20 for n = 0.5, X=0.5
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Fig. 2.33 : Contours of \p at times r = 0, 1, 5 and 20 for n = 0.5, X= 1.0
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0.00 30

00

Fig. 2.34 : Contours of \p at times r = 5 and 10 for ¡i = 0.5, X showing the solution structure
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Fig. 2.36 : Contours of \p at times r=0, 1, 5 and 20 for ¿i= 1.0, X=0.5
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1 4 . <:«

Fig. 2.37 : Contours of \p at times r = 0, 1, 5 and 20 for /z=1.0, \= 0 .7
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Chapter 3

Steady-state solution in the transition zone

3.1 Introduction

This chapter considers the solution in the neighbourhood of the transition line X=X0. In 

chapter 2, it is shown that at large time r  the amplitude of the y-rolls falls to zero with a square 

root singularity in the neighbourhood of X0, which is smoothed out on a length scale of order 

t ' \  When r->oo, the region close to X0 decreases in size until X  gets so small that the d4B/dX4 

term can no longer be neglected and in this transition zone a new steady-state solution for B 

evolves. Clearly for very large times r the results of chapter 2 are not valid and a separate 

analysis is needed. In an analysis of grain boundaries in infinite layers, Tesauro and Cross 

(1987) suggest that the solution for B is smoothed out on an inner boundary layer scale 

although they did not consider any details of the solution in this inner region. Earlier, Walton 

(1982) had considered various related problems arising in the transition from longitudinal to 

transverse rolls in fluid layers subject to horizontal differential heating. This led to a general 

form of fourth-order equation incorporating effects of variation in the wavelength of the 

longitudinal roll pattern. He solved the fourth-order equation for B numerically in certain cases 

using a shooting method and also by expressing B in terms of Tchebychev polynomials over 

a finite, but large domain. However, no consideration was given to finding various constants 

arising in the transition zone solution.

In this chapter, the solution of the relevant steady-state transition zone problem is studied 

for /i=2, assuming that both A and B are real and independent of y. Both analytical and 

numerical methods are used to obtain solutions. In section 3.2 the leading order outer steady- 

state solutions for the scaled amplitude functions A and B in the regions X<X> and X>X,j are 

set out; these are the solutions obtained in section 2.6 of chapter 2. The limiting forms of these
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solutions as X-»X0± are determined and this allows the appropriate scalings of B and X  in the 

transition zone to be deduced. In section 3.3 the equations for the transition zone are derived

and the problem for B, the leading term in B, is obtained. This problem is solved in section 

3.4 using a fourth-order Runge-Kutta method combined with Newton iteration. In section 3.5,

analytically and also numerically using Simpson’s rule. These results allow ’bridging’ 

conditions to be obtained for correction terms to the amplitudes of the x-roll patterns in the two 

outer regions X < X() and X>X>- These correction terms to A in the outer regions due to the 

presence of the transitional zone are found to be of order e3/5 and the transition zone itself 

consists of a region of extent |X-X0| ~ e 1/5 surrounding X0. The results are discussed in section

3.6 with particular reference to the manner in which they can be extended to general values of 

M-

3.2 Formulation

Consider the coupled steady-state system for A and B derived in section 2.2, with both A 

and B assumed to be real and independent of y, and written in terms of the scaled variables

having found B, it is possible to calculate its effect on the solution for A in the transition zone. 

This involves integration of the solution for B2 across the layer and results are obtained

A = e mÂ, B = e mÈ, X=emx:

2 0 (3.2.1)

B-3B3-6BA2-e — (3.2.2)
3X4

A = X at X = 0 (3.2.3)
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(3.2.4)B = —  = 0 at X 
dX

A -  —  , B -  0 as X  -  oo . (3.2.5)
15

By neglecting the term ed4B/dX4 in (3.2.2) it is shown in section 2.6 that as e-*0 a steady-state 

solution exists for A< 1A/6 consisting of only x-rolls in the region X>Xq and a combination 

of x-rolls and y-rolls in the region 0<X <X 0, the position X=X0 being defined by the point at 

which A = \tV 6 and given as a function of A by (2.6.8) with ¡i=2. At Xq the amplitude of the 

y-rolls falls abruptly to zero. The nature of this abrupt change in the amplitude B can be seen 

by considering the local solution near X=Xq. For ¡¿=2 the leading order outer steady-state 

solutions for A and B where X<Xo and X>Xq, found in chapter 2, are as follows. For X<Xq,

A =_ 2\j2e 2
>-Xo>

B 2 = 1(1 -6A2)
3

(3.2.6)

and for X>Xq,

x-x0+c1
13 2  s jl

with Cj 2y/2 tanh  1 5 = 0  , (3.2.7)

where

XQ = -21n 3l3A
A 1/2
12 1 + j 9X2

l 2 J .

(3.2.8)

and A< \lV 6. The limiting forms of these outer solutions for A and 5  as X^X)+  may now be 

determined. From (3.2.6) it follows that as X-*XQ~,
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7 (3.2.9)1 , 1 
\[& 4 /̂6 \6s[6 1 9 2 ^

( x - x j 3

B ~ V *
1/2

(3.2.10)

whereas from (3.2.7) it follows that as X->X0 +

A =
-, 6 4^6

(X-Jo) 1
192v/6

(J-X 0)3+... , (3.2.11)

(3.2.12)

The scalings for the solution in the transition zone can now be obtained using (3.2.2). 

Assuming that X-X0=eaX  and B=e®B with a and /3 to be determined, substitution into (3.2.2) 

gives

_ c l - 4 «  + P &B - 3 c 3 P g 3 - C g + P ^

dX4 2
= 0 (3.2.13)

where it is assumed that the terms in A which are linear as remain unchanged across the 

layer. Matching with (3.2.10) requires that j8 = a /2 so that the second and third terms are of 

equal magnitude, and the first term also balances provided that 2/3 = 1-4«, giving

a P 10

Thus the transition zone is defined by the scalings

(3.2.14)

X-X0 = e1/5X , B ~ emoê  , (3.2.15)

with X  and Ê of order one as e-*0. Full expansions for both A and B within the transition zone 

are considered in the next section.
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3.3 Transition zone

From (3.2.9) and (3.2.15) it is supposed that in the transition zone

A = A0(X)+e1/5A l(X)+e2/5A2(X)+€3/5A3(X)+... (3-3 1 )

and

B = €moB(X)+... , (3.3.2)

where X-X0=e1/5X. The expressions (3.3.1) and (3.3.2) are substituted into (3.2.1) and (3.2.2) 

and orders of e compared, leading to:

4— 2̂ = 0 , (3-3-3)
ax2

= 0 , (3.3.4)

and

AZ ^ l +À( -3Âl = 0 , (3-3-5)/V 7 U 0 ydx2

4---- l+Âl -6Â(f i 2-9Â%Âl = 0 (3-3-6)
dX2

—  +3Ô3 + n ê Â 0À1 = 0 . (3.3.7)
ax4

In order to determine the solutions for successive terms in the transition zone, boundary 

conditions for Â as X-»± oo are required. Matching with the outer forms (3.2.9) and (3.2.11)

An
as X-»X0± requires

(X -  ±oc) , (3.3.8)



i j  ~ —  (X ~ ±oo) , (3.3.9)
4^6

Â2 ~ — —  (X -  ±0») , (3.3.10)
16^6

Â3 ----- —  (X -  +») , Â3 ~ --2 Z —  (X -  -oo) . (3.3.11)
192 /̂6 192\/6

Suitable solutions for A0, A, and A2 can now be found as

Â) = ^  » (3-3.12)
7§

= -Â . , (3.3.13)
4^6

i 2 = , (3.3.14)
167*5

where it is assumed that any constants of integration can be taken as zero. This is valid 

provided that there are no correction terms in the outer solution for A at order e1/5 or e2/5 and 

will be discussed in section 3.5 below. Equation (3.3.7) can now be simplified to give

ËÊ.+3 b 3+ M  = 0 . (3.3.15)
ÔX4 2

The boundary conditions for this equation obtained from matching with (3.2.10) and (3.2.12) 

are

B
,\l/2

X as X (3.3.16)

Ê -  0 as X -  «■ . (3.3.17)
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The solution of the system (3.3.15)-(3.3.17) for B is considered in the next section.

3.4 Numerical solution

A fourth-order Runge-Kutta method was used to solve equation (3.3.15). It is convenient 

to set X=-X and B(X)=B(X) to obtain the system

„ 5 3  BX -----+3B - —-
dx4 2

(3.4.1)

B as X oo 3
(3.4.2)

B -> 0 as X -* -oo . (3.4.3)

The asymptotic expansion of B as X-^°o can be determined to higher order by assuming a 

correction term to (3.4.2) of the form k(XI6)a and then finding a and k by substituting into 

(3.4.1) and balancing terms. This shows that

B
/ A 1/2 <X 5 X
UJ 41472 V

-9/2

as X -  oo (3.4.4)

As X-*-oo, the solution for B is exponentially small and can be determined by assuming that 

B is proportional to exp (-co(-X)5/4) where co is a constant. This leads to a general solution of 

the form

B = (-X )"3/8e [ a cos(oo(.(-X)5/4j+&sin(coj(-X)5/4)] as X -  , (3-4-5)

where

o)t 2514
~ Y

(3.4.6)

and a and b are arbitrary constants, the solution in this limit being equivalent to that of the
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linearised version of the equation studied by Ross (1966) (see also section 2.4).

In order to obtain a numerical solution of (3.4.1)-(3.4.3), equation (3.4.1) is represented 

as the system of first-order equations

yi = y2 (3.4.7)

y2 = y3 (3.4.8)

y3 = y4 (3.4.9)

-  > , ( f  3 * j ,

where y, = B and this is solved using a fourth-order Runge-Kutta process. The solution is 

computed on a finite domain < X < Xa> and the initial values for yi (¿ = 1,2,3,4) at X = -X 00 

are specified using the asymptotic form (3.4.5). Correct choice of a and b is needed to ensure 

the required behaviour of B given by (3.4.4) is obtained as X-*oo. Initially the Runge-Kutta 

method was applied with a range of values of a and b such that a varied from -0.2 to 0.2 and 

b from -1 to 1 in steps of 0.1. Values of X±00 were chosen as 1 initially and the solution for 

B monitored in order to allow suitable values for a and b to be selected as initial estimates in 

an iterative scheme. The Runge-Kutta program is run for these estimated values to obtain B in 

the range -X_x to X+00. At X=XC0 condition (3.4.4) is applied to B and its first derivative,

dB
dx 12

‘ x V 2
6

5
55296 9

and with/and g defined by

/  = j{a,b) = yt - 5 ' X )
41472 l 6 J

(3.4.11)

(3.4.12)
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8 = g(a,b) = y2- (3.4.13)y )

12 o /

- 1/2 11/2

V u

it is required that f(a,b) = 0 and g(a,b) = 0. When the Runge-Kutta program is first run, 

f(a,b)^b0 and g(a,b)J= 0 so Newton’s method is used to adjust the values of a and b by 

calculating increments 8a and 8b from the formulae

f+3L
da

'V/' ■~\£
— Sfc = 0

db
(3.4.14)

g+— ba+— bb = 0 . (3.4.15)
da db

In order to calculate 8a and 8b, the gradients in (3.4.14) and (3.4.15) have to be estimated. The 

partial derivative df/da is found by dividing the change in /b y  the change in a for calculations 

based on fixed b and two neighbouring values of a. Similarly df/db is calculated by fixing a 

and dividing the change in /b y  the change in b for two neighbouring values. The gradients of 

g are calculated in the same way. Once 8a and 8b are found from (3.4.14) and (3.4.15) the 

improved estimates

aMW = a+ba , ^  = b+bb (3.4.16)

are obtained and the Runge-Kutta program run again with these values of a and b to recompute 

B from -X_x to X+as. The Newton iteration scheme ensures good convergence, with/ and g both 

tending to zero for the given values of X±ao. The values of X±ao are now gradually increased 

to obtain better results, using the final values of a and b at the previous X±00 as initial guesses. 

In this way results can be achieved for quite large values of X±oc. In addition, final results for 

a and b were compared for several step sizes h in the Runge-Kutta process in order to estimate 

the effect of the step size on the accuracy of the solution.

The results of the computations are now discussed. With a =0.2, ¿>=0, X±00 = l and
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h = 0.025, it was found that 5  — 0.5041 at Xœ which is quite close to the value (Xoo/6)1/2=0.408 

given by the leading term of (3.4.4). These values were therefore used to initiate the iterative 

scheme and after 10 iterations it was found that/and g had decreased to values of order 10"7 

with a and b converging to values of 0.928569 and -0.044601 respectively. Using these values 

as initial guesses it was then found possible to increase the values of X±œ to 8.3 and it is noted 

that X±œ had to be increased in steps of only 0.1 when X±œ reached 6.0 to ensure convergence. 

Any further increase in X±œ led to slower convergence o f / an d  g. Table 3.1 illustrates the 

convergence of a and b values with successive iterations when X±oo = 3.0. Table 3.2 shows 

values of y, (1 = 1,2,3,4) for various X±a, at X=0 and it can be clearly seen that as Z±00 

increases the values of y, converge. To investigate the effect of the step size h on the results, 

the final values of a and b for X±0o = 3.0 are compared for h —0.025, 0.05 and 0.1 in Table 

3.3. This indicates relatively little dependence on h for values less than or equal to 0.1.

Figure 3.1 shows the final graph of B versus X, representing the smooth decrease in 

amplitude of the y-rolls across the transition zone from the square root behaviour (3.3.16) as 

X-*-oo to the exponentially small behaviour associated with (3.3.17) as X-^-oo. Note that the 

solution for Ê contains small oscillations in the region where X  is positive (further detail is 

shown in Figure 3.2), consistent with the damped oscillatory behaviour given by (3.4.5). For 

negative X, the second term in the asymptotic expansion (3.4.4) indicates that B is slightly 

greater than its leading square root form as X-*- oo, and this was also correctly reproduced in 

the computation.

3.5 Reaction in the outer zone

Having found B, it is now possible to find the solution in the transition zone for Â3. 

Equation (3.3.6) can be integrated twice giving
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(3.5.1)4A3 = 1 ^ + 4 8
8i/6 6

+48 f [ f Ê 2dX]dX
x x

+ £ÄjX+ßj ,

where a 3 and /33 are constants. It is convenient to split the integral of B2 

that

f ê 2dX = f ê 2dX + f(ê2+-)dX2 Xwx> X +---
12

and then it follows from the form of B2 as X->-o° that

00 a 2
fB 2dX ~ ^ -+ i0+/1+ A (-X )-3 
J. 12 48x

as X — 00 3

where

and

Now if G(X) is defined by

GO

G(X) = ¡ B 2dX , 
x

then it follows in a similar manner that

00 00 0

j G(X)dX =  [G(X)dX+f G(t)dx
X O x

and that

into two parts such

(3.5.2)

(3.5.3)

(3.5.4)

(3.5.5)

(3.5.6)

(3.5.7)
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00 -3
/ G(X)dX ~ 2 as X -  -co , (3.5.8)

where

J0 = fG(X)dX
o

(3.5.9)

and

J i

o
/  [G(i)
— 00

- - S (3.5.10)

The form of/43 as X - > ± o o  can now be deduced from (3.5.1), with

X 3 “ 3x  p 3

4  4
as X -  » (3.5.11)

and

A, IXs
192^6

- f — do-I,) 
4 2^6

X+ J +J _ ( J o+Jl) + - ^ —(-X)-2 as X -  - 0» . 
64^64 2^6

(3.5.12)

In fact it is possible to prove that the value of /<,+/, is zero, as follows. Equation (3.3.15) 

is multiplied by dB/dX and integrated from X  to o o , resulting in:

c?BdB_+
d t  d i  d f

, 3B
i

¿,4

*  d f  d f  4 4 %
fjfd X  = C , (3.5.13)

where C is a constant of integration. Further simplification then gives

a4
, & B d B  3B' 

d f  d x  2

/ , A 1

d x

i f

\ u a  / 2 2Kx
dX = 2  C (3.5.14)

and application of the boundary condition ( 3 . 3 . 1 7 )  at X =  oo gives C = 0 .  Hence
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XB2
2

(3.5.15)- f i f d X
21x

and it follows using (3.3.16) that

W 2 2 d3BdB  
d f  dX

00 *2
fw a x  = — +0(-X"3) as X -  - 0» . (3.5.16)
J. 12x

Comparison with (3.5.3) then shows that

= 0 . (3.5.17)

This result was also checked from the numerical solution for B using Simpson’s rule to evaluate 

the two integrals (3.5.4) and (3.5.5). The calculation was carried out for several step sizes h 

for X±00 = 8.3 and the results shown in Table 3.4 confirm the analytical prediction.

Since /()+/] =0, there is no discontinuity in terms proportional to X  in the expansion of A3 

as X-^+oo and consequently, if there are no other external effects generating terms in A of 

order e2/5 in the outer regions, it may be assumed that a 3=0. However, it is expected that 

J0+J] is not equal to zero, which implies there is a discontinuity in the finite part of A3 across 

the transition zone. This generates terms in the outer regions of order e3/5 such that

A = i 0+€3/5ii+ ... for X < X0 (3.5.18)

and

A = i 0+e3/5i 1+... for X > X0 , (3.5.19)

where A0 and A0 are the leading terms set out in section 3.2. Matching of A as X-»X0± with 

the solution for A in the transition zone as X-^± oo shows that in the outer region, the terms 

/i, and A t must satisfy the jump condition
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3 (3.5.20)A, -A, =
2 /̂6

at X = J 0

3.6 Discussion

In the transition zone a smooth steady-state solution for B is obtained which generates terms 

in the expansions of the outer solutions for A of order e3/5. The results in this chapter have been 

obtained for n = 2, but they can be generalised to any positive value of /jl in a straightforward 

way by substituting the general form (2.6.9) for A as X->Xg into the equation (3.3.7) for B 

giving

d4È i 3^3| (|i-l)X ff
a i4

= o . (3.6.1)

This can be transformed into (3.3.15) by appropriate scalings for È and X provided that ¡i> \ . 

For ¡x< 1 it is also necessary to replace X  by -X and then the transition is in the reverse sense, 

with a combination of x and y-rolls in the region X>X0 and only x-rolls in the region X< X0. 

This situation is relevant in the structure pertaining to the case 1 described in section 2.8.

It should also be noted that the expansions for A in the outer regions will actually contain 

effects arising from higher order corrections to the amplitude equations derived in section 2.2, 

which so far have been neglected. It is expected that these higher order effects in the amplitude 

equations would generate terms of order em in the solutions for A in the outer regions, which 

will therefore be larger than the terms of order e3/5 identified in section 3.5. These terms will 

be considered in detail in chapter 6 but it is envisaged that they will have no significant effect 

on the form of the transition zone solution discussed here.

95



a i - x j 3'8 b (-xœy™ / 8

0.185059 -0.039785 -0.340894 -0.956241

0.154484 -0.014954 -0.169823 -0.241108

0.130188 -0.023116 -0.020274 -0.020975

0.127428 -0.024760 -0.000406 -0.000569

0.127358 -0.024788 -0.000005 -0.000009

0.127357 -0.024788 -2.536137E-09 -3.789601E-07

0.127357 -0.024788 -2.536137E-09 4.572302E-08

Table 3.1 : Convergence properties of the solution

x±„ yi y2 *3 y4

1.0 1.018495 0.458799 -0.488236 -1.722706

2.0 0.247718 0.179372 0.042980 -0.054583

3.0 0.214778 0.161838 0.046218 -0.040316

4.0 0.212238 0.159253 0.044635 -0.040467

5.0 0.212253 0.159174 0.044581 -0.040530

6.0 0.212186 0.159142 0.044601 -0.040511

7.0 0.212176 0.159138 0.044599 -0.040512

8.0 0.212173 0.159137 0.044599 -0.040512

8.3 0.212172 0.159137 0.044599 -0.040511

Table 3.2 : Values of y2, y3, y4 at X=0

96



h a(X J-3/8 / g

0.025 0.127357 -0.024788 1.0E-08 1.0E-08

0.05 0.127356 -0.024788 1.0E-07 1.0E-07

0.1 0.127355 -0.024789 1.0E-07 1.0E-08

Table 3.3 : Effect of step size h

h /o+/, k

0.025 -0.000351 0.023683 -0.024034

0.05 -0.000113 0.023687 -0.023800

0.1 -0.003982 0.019724 -0.023707

Table 3.4 : Integrals I0, /,
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G r a p h  o f  BD v s  X

- 1 0  - 5 0  5 10

X

Fig. 3.1 : Graphs of B and (-X/6)1/2 versus X

G r a p h  o f  BD vs  X

Fig. 3.2 : Detailed graph of ß  vs X
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Chapter 4

Variation in the wavelength of the x-roll pattern with lateral forcing

4.1 Introduction

In chapter 2 the amplitudes of the rolls were taken to be real only; here the work will be 

extended to incorporate complex values of A and B in order to investigate variations in the 

wavelength of the x-roll pattern. Cross, Daniels, Hohenberg and Siggia (1983) considered the 

question of allowed wavenumbers of stationary solutions for the two-dimensional Rayleigh- 

Bénard problem where B = 0, focusing on the case of stress-free horizontal boundaries. In 

section 4.2 the case B=0 is examined for the model equation where /x = 2 and the results are 

then extended to the case where B=£0. The presence of the lateral boundary is found to restrict 

severely the range of allowed wavenumbers and bounds are obtained on the correction q to the 

critical wavenumber in the x-direction as a function of the parameter X. Here, as in chapter 2, 

X is a parameter equivalent to some kind of imperfection which could describe a finite porosity 

or thermal conductivity of the lateral boundary.

In section 4.3 the entire steady-state solution structure for the semi-infinite system with B 

non-zero and one lateral boundary is determined for small values of X using the method of 

matched asymptotic expansions. In section 4.4 an explicit finite difference scheme is used to 

solve the relevant time-dependent amplitude equations for a finite range of values of X and q 

and in section 4.5 these numerical results are discussed and compared with the predictions of 

section 4.2. In section 4.6 the results for small X are extended to incorporate the presence of 

a second lateral boundary, leading to the determination of a discrete spectrum of steady-state 

solutions in which B is non-zero near the two boundaries.
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4.2 Bounds on phase-winding in the semi-infinite system

The semi-infinite problem outlined in (2.2.23), (2.2.24), (2.2.29), (2.2.31) and (2.2.32) is 

now considered with the amplitude functions considered to be complex but still independent of 

y. The main outer problem is formulated by setting A=eU2A(X,r), B=emB{X,r), x=e'U2X, 

t=e'lr and taking the formal limit as e^O. Here solutions are considered such that A approaches 

a form proportional to e,qX as X-^oo. Thus q is effectively equivalent to a correction to the 

critical wavenumber of the x-roll pattern at large distances from the wall. The full system of 

equations and boundary conditions is

^  = 4—  +A-3A\A\2-6A\B\2 , (4.2.1)
dx dX2

—  = B-3B\B\2-6B\A\2 , (4.2.2)
dt

A - X at X -  0 , (4.2.3)

A -  J-(l-4<?2)1/2e !(«x+C) , B -  0 as X -  » , (4.2.4)
y/3

where C is a constant. In discussing the time evolution of the system in section 4.4 below, 

initial conditions will be taken of the form

A = A0(X) , B = B0(X) at x = 0 . (4.2.5)

Note that the form of A at X= oo is equivalent to the steady-state solutions that would exist 

in an infinite layer, with q restricted to the range

\q\ < -  . (4.2.6)
11 2

Here the intention is to determine how the wall condition (4.2.3) further restricts the allowed 

values of q. It is convenient to recast the steady-state version of the system (4.2.1)-(4.2.4) in
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polar form by setting

¿(X) = r(X)e,0(X) (4-2‘7)

and

B(X) = 5(X)ei<,,(X) , (4.2.8)

giving

,  3 . J  dd )2 . d 2r  ,  2 n -3r -4H—  +4------ 6 rsz = 0 , (4.2.9)
{d X } dX2

A r 2̂  = 0 ,
dX[ dX

(4.2.10)

5(1 -3s2- 6 r 2) = 0 , (4.2.11)

r  = X , 0 = 0  at X = 0 , (4.2.12)

r -  — (1-4q2)112 , 0 ~ qX+C , s -  0 as X -  ~ . (4.2.13)
A

Bounds on the possible values of q are now determined. It is clear from (4.2.11) that steady- 

state solutions may exist with 5 = 0  or 52 = (l-6r2)/3. First the case where only x-rolls are present 

is considered (5 = 0), equivalent to the earlier analysis by Cross et al (1983).

With 5 = 0 , equation (4.2.9) simplifies to

r-3 r3-4rfd d )
\dX)

+4 <rt

dX2
= 0 (4.2.14)

and this, together with equation (4.2.10), may be integrated once to give

1 ( d r \2 3r 4 r 2 Q2 „—I—   ----+— +-¥— = E ,
2 \dX 16 8 2 r 2

(4.2.15)
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(4.2.16)

where Q and E are constants of integration. These constants may be written in terms of q using 

the outer conditions (4.2.13), which imply that

Q = 1(1-4q 2)q (4.2.17)

and

E -  (1 ~4g2)(l + 12g2) (4.2.18)
48

General bounds may be determined on the phase-winding in the region away from the wall 

(X-*oo) by noting that from (4.2.12) and (4.2.15)

(4.2.19)
A2 4 8

Substituting for E and Q from (4.2.17) and (4.2.18), it follows that

(8<72-3A2)(3A,2- l  +4<72)2 < 0 . (4.2.20)

If 3A2-l+ 4 g 2 = 0, the solution is equivalent to an ellipse in the A, q plane. For a given value 

of X this special solution, which corresponds to r = \  for all X >0, therefore exists for just one 

value of q2. More generally, 3X2-l+4^f2> 0  and (4.2.20) then implies q2< 3A2/8 which means 

that only within the wedge \q \ <V3\ll>/2 is there a possibility of obtaining a steady-state 

solution for general X and q. Thus the amount of phase-winding as X-*co is limited by the 

value of r at the lateral boundary, imposing a severe restriction on the range of wavelengths 

that can occur away from the lateral boundary when X is small.

The case where both x and y-rolls are present is now considered. A two-region steady-state 

structure is envisaged of the kind found for real A and B in chapter 2. Thus it is expected that
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there is a region near the wall (X<X0, region I) where s is non-zero and is related to r by 

r  = (l-6r)/3, and a region X>X() (region II) where 5 = 0. Here, with /x = 2, X„ is defined as the 

point at which r= 1A/6. At X=Xq, it is assumed that r, drldX, 6 and dO/dX are continuous. The 

equation for r valid in region I, where 5=£0, is

4 ^
dX2

and this can be integrated once to give

/
-4 r

v
JO)2
dX,

- r+9r3 = 0 (4.2.21)

l ( d r ) 2 Q\ r2 9r4 = (4.2.22)
2 \d x )  2 r2 8 16 1 ’

where E] is a constant of integration. Also, from (4.2.10)

r2̂  = a  , (4.2.23)
dX 1

where Q, is a constant of integration. Similarly, for region II where 5 = 0, it is found that

I f  = E (4.2.24)
2\dX ) 16 8 2 r2 2 ’

r2̂ -  = a  , (4.2.25)
dX 2

where Q2 and E2 are constants of integration. Continuity of r and dO/dX at X=X0 requires that

<?! = Q2 = Q , (4-2-26)

say, while continuity of dr/dX and r ( = lA/6) at X() implies from (4.2.22) and (4.2.24) that

E.-E2 = . (4.2.27)
1 2 48

Also, it follows from (4.2.4), (4.2.24) and (4.2.25) that Q and E2 can be written in terms of 

q as
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(4.2.28)

: = (1 -4g2)(12g2+l) (4.2.29)
’2 AO

<3 = ,

Thus, also

E = g 2(l~6g2) (4.2.30)
1 6

Bounds on the possible values of q can now be obtained by noting from (4.2.22) and (4.2.3) 

that

and substituting for £j and Q from (4.2.30) and (4.2.28) gives

C(q2,k2) ;> 0 ,

where

(4.2.31)

(4.2.32)

C(q2, \ 2) (Sq2- 1 - 16 *74)+A2(8<72 -48# 4) +6 A4 -27 A6 .

The roots of the equation

(4.2.33)

C(q\X2) = 0 (4.2.34)

can be found using the standard solution for a cubic equation to show that when X > 0 there is 

generally one real root for q2 and one pair of complex conjugate roots for q2. When X = 0 there 

are three real roots. For general X, Figure 4.1 shows the real root which forms the boundary 

of the region C(<?2,X2)>  0 in the q, X plane. Possible values of q correspond to points below 

this curve, which touches the straight line q= V 3X/2\/2, corresponding to the pure x-roll 

solution boundary, at X=lA/6. The combined x and y-roll solution is only relevant for
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X< 1A/6 and is seen to exist for a more restricted range of values of q than the corresponding 

pure x-roll solution. Figure 4.2 shows the complex conjugate roots of (4.2.34). Solutions of 

equation (4.2.34) were also found using Newton’s method starting from the point A=0 at which 

the roots are q2=0, 1/4, 1/4 and gradually incrementing the value of X. Note that for small 

values of X, (4.2.32) gives

to a first approximation, which is a much more severe restriction than the linear form in X 

associated with the pure x-roll solution.

To summarise the results so far, for the infinite system with 5 = 0  everywhere it is required 

that | <7 1 < 1/2; for the semi-infinite system with the boundary condition (4.2.3) at the wall and 

B = 0 everywhere it is required that \q \ <v/3A/2v/2 (apart from one exceptional case); and for 

the semi-infinite system with the boundary condition (4.2.3) at the wall and 0 it is required 

that | q | must be less than the real root of the cubic equation (4.2.34). The results for the semi-

infinite system are summarised in Figure 4.1 where the existence and stability of the solution 

depends on the values of q and X. Above the line q=V3\/2V'2 no steady-state solution is found 

unless 3A2+ 4<72= 1. Below the same line, steady-state solutions exist with 6= 0 . The growth 

rate of a y-roll perturbation earB()(X) is given by ct= l-6r  from (4.2.2) and so it is expected that 

when A< 1 tV 6 , y-rolls will grow with time so that the x-roll solution is unstable, whereas if 

y-rolls will decay with time so that the x-roll solution is stable. Below the lower 

curve in Figure 4.1, steady-state solutions exist with A and B both non-zero provided A< 1 h/6 

and these are expected to be the stable finite amplitude states of the system for this range of 

X.
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4.3 Solution structure for small X

In this section an explicit steady-state solution of the semi-infinite system with one lateral 

boundary consisting of both x and y-rolls is found for the case where X is small, incorporating 

the range of values of q<  3X2/2 identified in the previous section. The boundary condition 

(4.2.3) with X<§1 ensures that the amplitude r is small at the lateral boundary. Explicit 

analytical solutions of the amplitude equations can be found in the limit as X-*0 using the 

method of matched asymptotic expansions. It follows from (4.2.28) that | Q\ =0(X2) for small 

X and the solution for r can be calculated using

as a small parameter. The phase variation 6 is then given in terms of Q by (4.2.23) or (4.2.25), 

given that Qi = Q2 = Q

Following the structure of the solution identified in chapter 2 for small values of X and real 

A and B, it is expected that the domain can be divided into a wall region where r is small and 

of order X, a region distant from the wall (region I) where s2=(l-6rz)/3 and r<  \h/6, and 

another region beyond this (region II) where s = 0 and r> ItV6 (see Figure 4.3). The point at 

which r= 1A/6 is defined as X=X() and from the results of chapter 2, it is expected that 

Xa ~ -21nX as X-»0. Since X is small, r can be found analytically in all three regions and the 

constants of integration determined by the boundary conditions and by matching between the 

regions. With q - 0 ( \ 2), it follows from (4.2.29) and (4.2.30) that

Q = A 2Qq + ... (4.3.1)

(4.3.2)

Ei = E2o + + (4.3.3)

where
(4.3.4)
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and

The appropriate orders of magnitude of the variables in each region are now determined 

consistent with (4.2.22)-(4.2.25). Regions I and II are considered first, and here r is of order 

one and from (4.2.23) the variation in d is of order X2; thus in region I,

r = r0(X) + X \(X )  + ... , (4-3.6)

0 = C0 + X%(X) + ... (4-3.7)

and in region II,

r = rQ(X) + X2r,(X) + ... , (4-3.8)

0 = C0 + A.20x(X) + ... , (4-3-9)

where it is convenient to set X=X-XQ.

En = E2l = 0 . (4.3.5)

In order to find r and 6 in each region, it is necessary to substitute the expansions for r, 6, 

Ex, E2 and Q into (4.2.22)-(4.2.25). In region II, the term Q2l2 r  in (4.2.24) is small and may 

be neglected so that at leading order

with solution

(di±\2 = 1 [ 3r04 f02 
[rfx j '  24+ 8 _ 4 ’

(4.3.10)

r0 = — tanh
f t

y[2C+X 
2\f2

(4.3.11)

The requirement that r0= \tV 6 at X=Q gives C=2tanh1(lA/2). Similarly, in region I at leading
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order

'¿ 'o f
ydX,

r2 9 r4' n ** n
4 8

with solution

2yf2Cem
3(c2e *+ l)

(4.3.12)

(4.3.13)

The requirement that r0= 1A/6 at X=0, together with continuity of drJdX, gives C = \h/3.

In order to determine 6 in region II, the expansions for r, 6 and Q are substituted into

(4.2.25), giving

2 dd.
= Qo .

dX
(4.3.14)

which has a solution

0l 6 fîQ 0 -  co th
72C + x l ]

[ 2sjl ^  J j

(4.3.15)

Similarly, for region I,

<2o » (4.3.16)

0! =
27 Ç0 l x  -x 2X —ex-e  A+— (4.3.17)

Continuity of 6 at X=0 requires that
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(4.3.18)

and

Cr 3Q0 = 6X/2Q0 tanh
f t )

(4.3.19)

The correction terms of order X2 in r in each region can also be determined as follows. In 

region II, rx is found to satisfy

with solution

* * * 1  = V i  | 3 ^ ' i  

dX dX 4 4

—̂ -sech2 
2/6

(4.3.20)

(4.3.21)

while in region I, r, is found to satisfy

with solution

2^ o ^ i
dX dX

V i 9ffii 
2 2

(4.3.22)

X / 2 _  1 3 X /2 '/ ¿ ¿ l e —— e

/1 - \2 
3/3 - e M

j

(4.3.23)

However, the requirement that r - \h /6  at Z =0 implies that K=K= 0, so that in fact

= rx =Q (4.3.24)

and there is no order X2 correction to r in regions I and II.
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To summarise, in region I,

r = 2f ' eXß + o(X2) (4.3.25)
f i{ e x+3)

and in region II,

— tanh tanh“1i 1 1 + X
2\ß.

o(X2) . (4.3.26)

The relevant scaling of the solution in the wall region is investigated by studying the form 

of the solution in region I as X-*-<x>. As -X->-oo, (4.3.25) becomes

r
2\/2 xß
3 f i

Rewriting the above expression in terms of X  gives

(4.3.27)

r = y i j x - x ^ i  
3\ß

e (X -X J  ß 2(X-XJ  
1 -------- + - -------- (4.3.28)

It is known that in the wall region r must be of order X which requires that X0 ~  -21nX and by 

studying (4.2.22) it is clear that within the wall region X  is of order one. Also, equation 

(4.2.23) implies that 6 is of order one. Therefore, expansions for r and 6 in the wall region are

r = X7(X) + ... , (4-3.29)

6 = 0O(X) + X20j(X) + ... (4.3.30)

and it is assumed that X0 can be written as

X0 = -2lnX + a + ... , (4.3.31)

where a is to be determined. The expansions for r and Q are substituted into (4.2.22), giving
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which has solution

l +C2e2X
Cex

(4.3.33)

where C is a constant. Since f — 1 at X=0, it follows from (4.3.32) that | Q0 \ < 1/2 and it is 

convenient to define a new parameter y by the relation

Qo = | sinY •

The boundary condition at the wall then implies that

“ 1±cosy

and it follows that in the wall region

r _ ^ (sin2y +e2x(l +c o s y ) 2| 1/2 | 

[ 2ex( l  +cosy) J

(4.3.34)

(4.3.35)

(4.3.36)

Matching between the wall region and region I allows a to be found in (4.3.31). From 

(4.3.36),

r 2 _  A 2( l + c o s Y) e *  x _ œ (4.3.37)

and (4.3.28) is written in terms of a using (4.3.31) and matched with (4.3.37) to obtain

a = In 16
27(l+cosy)

(4.3.38)

Hence



X0 = -21nÀ + In 16
27(l+cosy)

A -» 0 (4.3.39)

Note that when the solution for A is real, y is zero and then (4.3.39) reduces to

X0 = -21nA + In _8_

27
(4.3.40)

which agrees with the formula (2.6.8) for X{) in the limit as A^O when ¡i = 2.

In the wall region, 6 is found by substituting the expansions for r, 6 and Q into (4.2.23), 

leading to

_  Q0
~dX ^2

(4.3.41)

which gives

6 = itan“1 (1+cosy)g x 

siny
+ C J  + 0(A2) (4.3.42)

and the condition on 6 at the wall (X=0) gives

<?0fr~Y] _ y-7t 
Lw (4.3.43)

siny 2

Matching between the wall region and region I now determines the constant C0. The form of 

the solution for 6 in region I as X-+-<x>, rewritten in terms of X, is

0 = C0 +
27 Q. -x) 2A2(X+21nA-a) A4e (y~o) + A2Cj + ... (4.3.44)

and as X-»oo, (4.3.42) becomes

0 = 71
2

siny

(l+cosy)ex
+ Cw + (4.3.45)
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Thus matching requires

The main features of the solution structure for small X are now complete and can be 

summarised as follows. In region I:

Co '  \  * C w-  i  . (4.3.46)

r 2\[2eX12 + o a 2)

In region II:

27siny
16

— tanh tanh'1[— ) X+
73 272.

0(X2) ,

(4.3.47)

(4.3.48)

(4.3.49)

0 = + X2)3\/2smY

In the wall region:

f
tanh-l l '

\ f i )  2^2
-  coth tanh 1

< 1 X
+ CiJ + ... • 

(4.3.50)

 ̂[sin2y +e2x(l +cosy)2| 1/2+ 
[ 2eX(1+cosy) }

(4.3.51)

- I tan 1 (1+cosy)e x
+ ^(y -* )|siny 2 J

(4.3.52)

In region II, 6 is represented by (4.3.50) and it follows that
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+ oo (4.3.53)0 Y
2

3X2siny
2

X
/

In order for 6 to change by a finite amount, equivalent to a change in the number of x-rolls in 

the system, it is seen to be necessary for X  to increase to values of order X'2. In section 4.6 the 

above result is used to estimate how solutions for \p corresponding to different numbers of x- 

rolls can occur in a finite container of large aspect ratio.

4.4 Numerical solution for finite X

The predicted evolution of the system for X > 0 and general values of q was tested by a 

numerical solution of the system based on an extension of the explicit finite difference scheme 

used for the case of real amplitude functions in chapter 2. Here the governing equations and 

boundary conditions are

—  = 4— +y4-3^(U|2+2|fi|2) , (4.4.1)
dX2

—  = B-3B(\B\2+2\A\2) , (4.4.2)

A = X at X = 0 , (4-4-3)

A -  — (1-4q 2)We i(-ix+c) , B -  0 as X -  «
x/3

(4.4.4)

and initial profiles are taken of the form

A = Aq(X) = J— (l-4 ? 2)1/2tanh
[sß 2y/2

+ Xe-x \e iqx at t  = 0 (4-4-5)

and
B = B0(X) = ösech

2\Jl
at x = 0 (4.4.6)
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It is assumed that A>0.

The amplitude functions are written in polar form as

A(X,t ) = r(X,x)emx^  , (4.4.7)

B(X,x) = s ( X , T ) e i<KX-T) , (4.4.8)

and substitution of (4.4.7) and (4.4.8) into (4.4.1)-(4.4.6) and comparison of real and 

imaginary parts yields the equations

dr - 4 ¿Pr ide
dx s x ’ l a x

+r-3r3-6rs2

ae . 0*6 0 dr aer—  = 4r-----+8-------- ,
dx dX2 dX dX

—  = s -3 s3-6r2s ,

3<t> n s—  = 0
5x

with boundary conditions

r = X at X = 0 ,

0 = 0  at X = 0 ,

r ■* — (1-4q2)1'2 as X -  » ,

—  ^ q as X -  °°dx

and initial conditions

(4.4.9)

(4.4.10)

(4.4.11)

(4.4.12)

(4.4.13)

(4.4.14)

(4.4.15)

(4.4.16)
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r = rJX) = _L(i -4<72)1/2tanh
73

' X '
\272 ,

+ A e* at x = 0 , (4.4.17)

0 = 0O(X) = qX at x = 0 , (4.4.18)

5 = s0(X) = ôsech X
2 y/2

at x = 0 (4.4.19)

<j> = 4>0(X) = 0  at x = 0 . (4.4.20)

Approximate solutions to the differential equations are found in the finite difference scheme 

by denoting the values of r(X,r), s (X,t ), 0(X,t ) and </>(X,r) at X=ih, r=jk by rt J, st j , 6:J and 

4>ij respectively. The finite difference approximation to (4.4.9) is obtained by using a forward 

difference approximation for drldr and a central difference approximation for d2r/dX2 and 

dd/dX. The discretised system for the explicit scheme then has the form

ru* i = P 4 r  , • + r. •i+\j ij h2 -  3 /r r J  - 6 h %  -  8 -  (0i+y - 0 , ^ /  + -j~J + 4r(_lj.

(4.4.21)

for i = 1,2,...1V-1 and j= 0,1,2..., where /3=k/h2 and Nh=Xx . Using a similar representation 

of equation (4.4.10), it is found that

0 . = 
,J+1

0i*w(4rw + 2ri+ij - 2ri-u) + -p - 8 + - 2ri+1J + 2ri-u)

(4.4.22)

for i= \,2 ,...N -\ andy'=0,l,2.... Similarly for (4.4.11), it is deduced that

S -Ü+ i = kstj 1 - 3s? - 6r? + - (4.4.23)

for i= l,2 ,...N -l andy'=0,l,2.... Equation (4.4.12), together with (4.4.20), implies that 4> is
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zero for all times and so there is no need to include this equation in the numerical scheme.

The end values of r and 6 are determined directly from the boundary conditions:

V i  = * ’ rNj*i = - jz a -4 q 2)112 for j  = 0,1,... , (4.4.24)
v3

V i  = 0 ’ 0W 1 = W i  + qh for j  = ° ’L" • (4.4.25)

The above formulae (4.4.21)-(4.4.25) allow the unknown amplitudes riJ+I, slJ+1 and phase 

6ij+1 at the (j+l)th  time step to be determined in terms of the known amplitudes and phase at 

the /th time step. Thus a solution can be found by moving forward with time, starting from the 

initial profiles at r = 0:

ri,o = r0(ih) . 0,,o = » si,o = V«*) . l' -  0,l,...N  . (4.4.26)

It should be noted that \= 0  must be treated as a special case since the boundary condition 

at the wall becomes r= 0  at X=0. The condition 6=0 at X=0 is then not appropriate and 

singular behaviour there can be avoided by using the alternative condition

^  = 0 at X = 0 . (4.4.27)
8X

In discretised form this is approximated by

V . = V i  • (4A28)

4.5 Numerical results

Using the numerical method described in the previous section, results were obtained for 

various values of q and X. Values of the parameters were chosen to test the predictions of the
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analysis described in sections 4.2 and 4.3 concerning the existence and stability of steady-state 

solutions. For each evolution from the given initial conditions (4.4.17)-(4.4.19), the location 

2f0 of the position at which r— 1A/6 was monitored as a function of time. Results were obtained 

for values of q in the range 0.005 to 0.25, in each case investigating the effect of different 

values of X.

For £7 = 0.05, the cases A = 0, 0.1, 0.1826, 0.3, 0.4 and 0.5 were considered. For A=0 

(Figures 4.4-4.6) the y-rolls continue to travel outwards with increasing time and 6 continues 

to increase. A steady-state solution for A and B is not obtained, as expected from Figure 4.1. 

It was found that 2Q,=4.04 for t = 20 and the value of X0 continues to increase as r  increases. 

For A< A,, the y-rolls are increasing in amplitude and affect the x-roll amplitude while for 

X> X0 the y-rolls decay, as illustrated in Figure 4.6. For A = 0.1 (Figures 4.7-4.9) the y-rolls 

again travel outwards with increasing time and 6 also increases with time. Again a steady-state 

solution is not reached, consistent with the expectation from Figure 4.1. Flere 2^ = 3.16 for 

r=20 and the y-rolls are confined to a region slightly nearer the wall than in the case A = 0. For 

A = 0.1826, and large times (Figures 4.10-4.12) the solutions for r, s and 6 appear to attain 

almost constant forms. From Figure 4.1 it can be seen that these values of X and q lie on the 

boundary between an unstable x-roll solution and a stable x-roll/y-roll solution which is why 

an almost steady-state solution is reached. Here 2f0 = 2.20 at 7=20 and the y-rolls are confined 

to a region much nearer the wall as r-^oo than in the previous two cases. For A = 0.3 (Figures 

4.13-4.18) r, 6 and s attain constant forms for large times and a steady-state x-roll/y-roll 

solution is obtained consistent with the prediction of Figure 4.1. To verify the attainment of 

a steady-state, r, 6 and s were found for very large times (up to r=200) and were indeed found 

to be constant, with X0= 1.00 at 7=200. Thus the cross-rolls are confined to a region relatively 

close to the wall. For A = 0.4 (Figures 4.19-4.21) r, 6 and s are again constant for large times 

and a stable steady-state solution is obtained consisting of a combination of x-rolls and y-rolls.
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At r= 20, Xo = 0.08 which means that the region where y-rolls occur is very small. This is 

expected because X is close to 1A/6. For A=0.5 (Figures 4.22-4.24) r, 6 and s are again 

constant for large times but here A> 1A/6 and so s decays to zero as r-^oo and no value of Xq 

exists for large times. The final steady-state solution consists entirely of x-rolls, as expected 

from Figure 4.1.

For g=0.2, results were obtained for A=0, 0.3, 0.3651, 0.4 and 0.5. For \  = 0 (Figures 

4.25-4.30) a steady-state solution is not reached, with X0 = 5.16 at r=200 and still increasing. 

There is an ever-expanding region near the wall where y-rolls occur. For A = 0.3 (Figures 4.31- 

4.33) again a steady-state solution is not reached and X0 = 2.34 at r=20. For A = 0.3651 

(Figures 4.34-4.36) an almost steady-state solution is reached because these values of X and q 

lie on the boundary between an unstable x-roll solution and a stable x-roll/y-roll solution (see 

Figure 4.1). In this case 2Q,=0.82 at r=20. For A=0.4 (Figures 4.37-4.39) a stable steady-state 

solution is obtained with X0=0.16 at r=20 so that the region where cross-rolls occur is very 

close to the wall, consistent with the proximity of X to the value 1 A/6. For A = 0.5 (Figures 

4.40-4.42) a stable steady-state solution is attained and O as r-*oo consistent with a solution 

in the region to the right of the vertical line in Figure 4.1.

For <7 = 0.25, results were obtained for A=0, 0.39, 0.4082 and 0.45. As expected, when 

X = 0 no steady-state solution is reached and X0=4.32 at r=20 (Figures 4.43-4.45). When 

A = 0.39 and X=0.4082 (Figures 4.46-4.51), the values of X and q lie near the boundary 

between the unstable steady-state x-roll solution and the stable x-roll/y-roll solution and an 

almost steady-state solution is reached. When A = 0.39, XQ=0.69 at r=20 whereas when 

X = 0.4082, 2f0 = 0 at r=20 which is expected because Xq should be zero when 

X= lA/6 = 0.4082. For A = 0.45 (Figures 4.52-4.54) a stable steady-state solution is attained as 

r - * o o  and since X> 1A/6 this consists entirely of x-rolls.
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Further results for q= 0.1 and X=0.2 (Figures 4.55-4.57) and q=0.005, X=0.02 (Figures 

4.58-4.60) indicate that no steady-state is achieved, consistent with the predictions of Figure 

4.1.

The various solution regions found in Figure 4.1 were confirmed by the numerical solutions 

for different q and X in all cases. Above the line q=V3\/2V'2 no steady-state solution was 

found to exist. Below the line and above the curve the y-rolls grow with time for X< 1A/6 s o  

that although a steady-state x-roll solution exists it is unstable and again no steady-state is 

achieved. Below the curve where X< l/\/6  a stable steady-state x-roll/y-roll solution is attained 

whereas when X> 1A/6 a stable steady-state solution is attained consisting entirely of x-rolls.

The evolution of the roll pattern with time is represented graphically by contour plots of \p 

for various values of q and X in Figures 4.61-4.63 using Surfer Version 4 by Golden Software. 

Here \p is obtained from the formula

t|/ = 2e1/2[rcos(0+x) + scosy] , (4.5.1)

and the value of e was taken to be 0.1.

Finally, the steady-state prediction (4.3.39) of X0 for small X was compared with the results 

of the numerical computations. This result suggests that as X̂ *0,

-2 In A + In
'

16

27
f

1 +

fS 
I

rf 1 1r—H

i/2n

9A4 /

(4.5.2)

provided q<  3X2/2. To compare this with the value of 2^ determined in the numerical 

computation, 2f0 was calculated for q =0.0005 and X=0.02. The formula (4.5.2) gives 2^ = 6.86 

whereas the numerical computation gave 2f0=4.72 at r=200. The discrepancy may well be due

120



to the fact that a very small value of X is needed in order for the asymptotic result (4.5.2) to 

be applicable - the logarithmic dependence on X of the leading term suggests that this may be 

the case. A further cause of discrepancy is the proximity of the x-roll/y-roll solution boundary, 

which suggests that the solution must be computed to very large times in order to achieve the 

steady-state value of X0 at these small values of X and q.

4.6 Finite systems

The results of section 4.3 can be used to obtain phase-winding solutions in the finite region 

between two lateral boundaries, in a similar fashion to the analysis undertaken by Cross et al 

(1983) for the case where only x-rolls are present. In this way it is possible to obtain the whole 

spectrum of solutions for a finite container of large aspect ratio, provided the lateral forcing 

at the boundaries is small (X<̂  1). This family of solutions represents roll patterns with different 

numbers of rolls in the container. The present analysis allows for the existence of y-rolls near 

the two lateral boundaries and is therefore an improvement on the analysis of Cross et al (1983) 

which took no account of the cross-roll instability. The finite region is taken to be defined by 

-5<X<8  where X=X+8.

The boundary condition at the left-hand wall X=-8 is assumed to be

r = r -  X , 0 = 0 = 0  (4.6.1)

and at the right-hand wall X=8 is assumed to be

r = r+ = X , 0 = 0+ = 0 , (4.6.2)

where r and 6 are interpreted as the magnitude and phase of the complex amplitude A of the 

x-roll pattern, as in the preceding sections of this chapter.

The solution near the left-hand wall consists of the structure identified in section 4.3 (Figure
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4.3) with a wall region where r is small and of order X, and regions I and II centred on the 

point X=X0~-21nX where r is of order one, the position X,, marking the extent of the y-roll 

pattern from the wall. A similar structure exists near the right-hand wall and the intervening 

region, or core, extends for most of the length of the container and consists of x-rolls for which 

to a first approximation

A = rem ~ —  eKqX + C) , (4.6.3)
t/3

with q<  3 \2/2. Since the value of q is small, of order X2, it is necessary for the length of the 

container X=25 to be large, of order X 2, in order that phase-winding effects are significant. 

A change in 6 of nm across the container is equivalent to the addition or subtraction of m rolls 

from the number which would exist in the case when 6 is constant across the container.

The change in 6 across the container is estimated by considering the left and right-hand sides 

separately and then combining the results. The left-hand side has been studied in detail in 

section 4.3 and in this section the parameter 7  is replaced by 7 .. Then the result (4.3.53) of 

section 4.3 shows that as X  increases from 0 to 8 across the left-hand side of the container the 

increase in 6 is to a first approximation

A0 = 46 + —  , (4.6A)
2

where <7 = 3X2sin7 _/2 . For the right-hand side, a similar calculation shows that the increase in 

6 from the centre of the container to the right-hand wall is

A0 = qb + —  , (4.6.5)
2

where g = 3 X2sin7 +/2 . Thus the total change in 6 across the finite container is
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A0total
Y-
~2

OR Y-2qb + — 
2

(4.6.6)

and from (4.6.1) and (4.6.2) this must be equal to 6+-6_+2mr where n is any integer. Thus

In addition, the relations

0+-0_+2mt (4.6.7)

<? =
3k2 . 3X2 .—̂ -sm y = — smy + (4.6.8)

imply that

siny+ = siny . (4.6.9)

The results (4.6.7) and (4.6.9) together with the assumption that 6+ =-<?_ = 0 leads to two classes 

of solutions. Firstly, if from (4.6.9), y+=y_=:y, say, then (4.6.7) becomes

2nn = y+2q5 (4.6.10)

and using (4.6.8) it follows that

^  = -^-sin[2«7r-2^ô] = --ysin[2^ô] . (4.6.11)

This represents an implicit equation for q, defining an infinite spectrum of solutions similar to 

those discussed by Cross et al (1983).

Secondly, if from (4.6.9), 7 ++y.=  ±7r then (4.6.7) becomes

2q b = 2mz±— (4.6.12)
2

and this defines a second infinite spectrum of solutions, each with a constant value of q —qn 

limited by \qn \ < 3 \2/2 for each value of X. This is similar to the second class of solutions 

discussed by Cross et al (1983).
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The two results (4.6.11) and (4.6.12) represent the discrete spectrum of solutions for a finite 

container equivalent to the continuous spectrum \q \ <3A2/2 identified for the semi-infinite 

problem in section 4.2.

4.7 Discussion

In this chapter it has been shown that for both finite and semi-infinite systems, the presence 

of a lateral boundary parallel to the y direction restricts the band of wavelengths that can occur 

in the a - roll pattern at large distances from the boundary. For small imperfections measured 

by the parameter A, the presence of cross-rolls near the boundary leads to a larger restriction 

than that previously determined for pure x-roll patterns. In particular, the available steady-state 

wavenumbers for the x-roll pattern around the critical wavenumber are reduced from a band 

of order eI/2A to a band of order e1/2A2 as A-*0. Both of these are small compared with the band 

of order e1/2 available for an infinite layer, and the results obtained here suggest that for 

’perfect’ lateral boundaries a stable configuration with cross-rolls will have a main x-roll pattern 

with wavelength even closer to the critical value than was suggested by previous two- 

dimensional theories (Cross et al 1983). It is clear from the logarithmic structure identified in 

section 4.3 that the special case where A=0 will require separate consideration and this is not 

attempted here.
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S o l u t i  on Reg i ons

Lambda

_ b— c u b i c  s o l u t i o n  f o r  q C r e a i y  

_ o _ q = s q r t ( 1 . 5 y * L a m b d a / 2

—  V-l/JgT

Fig. 4.1 : Real root of C(q2, \ 2) = 0 and the lines g=V'3X/2'/2 and X=lA/6, defining 
the existence and stability of steady-state solutions

Comp lex S o l u t i  ons

Lambda

- s - F t e C q ^ D  _e—  I m C q ^ 2 3

Fig. 4.2 : Complex conjugate roots of C(q2, \ 2) = 0
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Fig. 4.3 : Schematic diagram showing the main flow regions for small X

Ampi i t u d e  o f  r o l  Is
q = 0 . 0 5  Mu=2 L a mbda =0

d i s t a n c e  Cx 5

_q _ R O  _ e _R 1 - A - R 5  _ * _ R 1 0  _ , _ R 1 5  _ x _  R20

Fig. 4.4 : Numerical evolution for #=0.05, /x = 2 and X=0 showing the amplitude of
;t-rolls at successive times r
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Fig. 4.5 : Numerical evolution for <7=0.05, ju = 2 and A=0 showing the phase of
x-rolls at successive times r

□ 5 10 ■I 5 20

d i s t a n c e

_ b _ S 0  _ ^ _ S 1  _ S5 - h - S I O  — i—  S15 _ ^ S 2 D

Fig. 4.6 : Numerical evolution for <7 = 0.05, ¡x = 2 and \  = 0 showing the amplitude of
y-rolls at successive times r
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Amp I i t u d e  o f  r o 1 I s
q = 0 . 0 5  Mu=2 L a m d a = 0 .1

d i s t a n c e  CX D

_ b— RD - e - R d  - a- R 5 _x— R1 □ - t - R d S  _ ^ R 2 0

Fig. 4.7 : Numerical evolution for q=0.05, fi = 2 and \= 0 .1  showing the amplitude of
x-rolls at successive times r

Amp I i t u d e  o f  r o I  Is
q = 0 . 0 5  Mu=2 L a m d a = 0 .1

d i s t a n c e

_ e - T h O  _ * _ T M  _ ^ _ T h 5  _ * _ T h d O  - t - T h l S  - ^ T h 2 0

Fig. 4.8 : Numerical evolution for ¿7=0.05, ¡jl= 2 and \= 0 .1  showing the phase of
x-rolls at successive times r
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Amp I I t u d e  o f  r o i l s

□ 5  10 *15 2D

d i s t a n c e  £>0

_ b _ S 0  - ^ - S 1  - a - S 5  - x - S I O  _ t _ S 1 5  _ ^ _ S 2 D

Fig. 4.9 : Numerical evolution for <7=0.05, p.=2 and \  = 0.1 showing the amplitude of
>’-rolls at successive times t

Amp! i t u d e  o f  r o l  Is
q = 0 . 0 5  Mu=2 L a m d a = 0 . 1 8 2 6

d i s t a n c e

_ b _ R 0  - ^ _ R 1  - ,*_R5 ^ _ R 1 0  - + - R 1 5  _ ^ R 2 G

Fig. 4.10 : Numerical evolution for <7=0.05, /x = 2 and A=0.1826 showing the amplitude of
x-rolls at successive times r
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Fig. 4.11 : Numerical evolution for q = 0.05, /x=2 and \ = 0.1826 showing the phase of
x-rolls at successive times r

Amp I i t u d e  o f  r o I  Is

dI  s t a n c e

- b - S O  _ o - S 1  _ * _ S 5  _ * - S 1 0  - 4 - S 1 5  S20

Fig. 4.12 : Numerical evolution for q=0.05, /x=2 and X=0.1826 showing the amplitude of
>'-rolls at successive times r
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Ampi  i t u d e  o f  R o l l s
q = 0 . 0 5  Mu=2 L a m d a = 0 . 3

d i s t a n c e  £ x }

- b - R O  - © - R I  ^ 4 - R 5  _x _ R 1 0  — |—  R'IS R20

Fig. 4.13 : Numerical evolution for g=0.05, /i=2 and X = 0.3 showing the amplitude of
x-rolls at successive times r

Ampi i t u d e  o f  R o l l s

□ 5 1D -|5 2D

dI  s t a n c e  £>0

- e - T h O  —©_T h1  - ^ _ T h 5  _ * _ T h 1 G  _ , _ T h 1 5  _ ^ _ T h 2 0

Fig. 4.14 : Numerical evolution for <7=0.05, ¡x=2 and X=0.3 showing the phase of
x-rolls at successive times r
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Ampi  i l u d e  o f  R o l l s
q = 0 . 05  Mu=2 L a m d a = 0 . 3

Fig. 4.15 : Numerical evolution for <7=0.05, ¡1 = 2 and \= 0 .3  showing the amplitude of
j-rolls at successive times r

Ampi i l u d e  o f  R o l l s
q = 0 . 0 5  Mu=2 L a m d a = 0 .3

d i s t a n c e

- b - R O  ^ R - 1  - i s -  R5G _x— R 1 00 _ | _ R 1 5 0  _ ^ R 2 0 0

Fig. 4.16 : Numerical evolution for <7=0.05, /x=2 and \  = 0.3 showing the amplitude of
x-rolls at successive times r

132



Amp I I t u d e  o f  R o ! I s

0 5 10 -15 ao

d ( s t a n c e  £>0

- a - T h O  - e - T M  - ^ - T h 5 0  _ * _ T h 1 0 0  _ , _ T h 1 5 G  _ ^ T h 2 0 0

Fig. 4.17 : Numerical evolution for #=0.05, ¿¿ = 2 and \= 0 .3  showing the phase of
x-rolls at successive times r

Ampi i t u d e  o f  R o l l s

□ 5 1U 15 2D

d i s t a n c e

—a -  SO - e - S 1  - ¿ - S 5 0  _ * _ S 1 0 0  - 4 - S 1 5 0  - j r -  S200

Fig. 4.18 : Numerical evolution for # = 0.05, ¡x=2 and A=0.3 showing the amplitude of
y-rolIs at successive times r
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Amp!  i t u d e  o f  r o i l s
q = 0 . 05  Mu=2 L a m d a = 0 ,4

d i s t a n c e  C>0

_ e _ R 0  - ^ _ R 1  —¿r- R5 _ x ^ R 1 Q  _ , _ R 4 5  _ ^ _ R 2 0

Fig. 4.19 : Numerical evolution for <?=0.05, ¡x = 2 and X=0.4 showing the amplitude of
x-rolls at successive times t

□ 5  1D -15 2D

d i s t a n c e

_ B - T h O  _e^-Th1 _ * _ T h 5  _ x _T h' 10  - ^ - T h l S  _ ^ T h 2 0

Fig. 4.20 : Numerical evolution for ^=0.05, /x = 2 and X=0.4 showing the phase of
x-rolls at successive times r
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□ 5 -IO *15 20

d i s t a n c e  C>0

—e— SG —0— S "1 _ * _ S 5  —x— S1 G _ f _ S 1 5  _ ^ S 2 D

Fig. 4.21 : Numerical evolution for g=0.05, /x = 2 and X=0.4 showing the amplitude of
y-rolls at successive times r

Ampi i l u d e  o f  r o l  Is

□ 5 10 -15 20

d i s t a n c e  C x }

- a - R O  —0_  R1 R5 _ * _ R 1 0  _ f _  R15 _ ^ R 2 0

Fig. 4.22 : Numerical evolution for <7=0.05, /x = 2 and X = 0.5 showing the amplitude of
x-rolls at successive times r
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Amp!  i l u d e  o f  r o l  I s

□ 5 1D i 5  2D

d i s t a n c e  £>0

- e - T h Q  Th' l  - A - T h 5  _ x _ T h 1 0  - H - T h l S  - ^ _ T h 2 D

Fig. 4.23 : Numerical evolution for <7=0.05, ¡x=2 and A=0.5 showing the phase of
jc-rolls at successive times r

Amp I i t u d e  o f  r o ! Is
q = 0 . G 5  Mu=2 L a m d a = 0 .5

d i s t a n c e  C x }

_ o _ S 0  _ S I  - a- S 5 - x - S ' l O  _ + _ S i 5  _ ^ _ S 2 0

Fig. 4.24 : Numerical evolution for q=0.05, ^=2 and \= 0 .5  showing the amplitude of
j-rolls at successive times t
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Amp I i t u d e  o f  r o I  I s
q = 0 . 2  Mu=2 Lambda=0

d i s t a n c e  C x }

- b - R O  _©_R'I —¿¡~ R5 —x_ R 1 0 _ , _ R 1 5  _ ^ R 2 0

Fig. 4.25 : Numerical evolution for q= 0.2, ¿i=2 and \= 0  showing the amplitude of
x-rolls at successive times r

Fig. 4.26 : Numerical evolution for q = 0.2, ¡x=2 and \  = 0 showing the phase of
x-rolls at successive times r
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Amp I i t u d e  o f  r o I  I s

D 5 1D i 5  20

dI  s t a n c e  £>0

- a -  SO - « s- S ' l  - A - S 5  _ x _ S - i a  _ , _ S 1 5  _ ^ _ S 2 0

Fig. 4.27 : Numerical evolution for q=0.2, n=2 and X=0 showing the amplitude of
y-rolls at successive times r

Amp I i t u d e  o f  r o I  Is
q = 0 . 2  Mu=2 Lambda=0

d i s t a n c e

—B— RO R50 _ * _R1 0G  _4_R" I50 _ ^ R 2 0 0

Fig. 4.28 : Numerical evolution for q = 0.2, jtt = 2 and X=0 showing the amplitude of
x-rolls at successive times r

138



Amp I ¡ t u d e  o f  r o l l s

□ 5  1D 15 2D

d i s t a n c e

—b — T h  □ - e - T h l  T h 5 0  ^ _ T h 1 0 0  — t - T h l S O  _ ^ _ T h 2 0 0

Fig. 4.29 : Numerical evolution for g=0.2, fx=2 and A = 0 showing the phase of
x-rolls at successive times r

Amp I i t u d e  o f  r o l  Is
q = 0 , 2  Mu=2 Lambda=0

□ . 7 ------------------------------------------------------------------ — — -----------------------------------------------------------------------------------------------------------------------------------------------

0 . 6  -

Fig. 4.30 : Numerical evolution for q = 0.2, ¡x=2 and A=0 showing the amplitude of
y-rolls at successive times r
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A m p i ¡ l u d e  o f  R o l l s
q = 0 .2 Mu=2 L a m d a = 0 . 3

d i s t a n c e

- e - R O  _ e - R 1  - ^ R S  - » « - R I O  -h — R I S  - ^ R 2 0

Fig. 4.31 : Numerical evolution for <7=0.2, /x=2 and X=0.3 showing the amplitude of
x-rolls at successive times r

Ampi i t u d e  o f  R o l l s
q = 0 .2 Mu=2 L a m d a = G . 3

—B - T h O  _ e_ T h 1  _ * _ T h 5  _ » ^ T h 1 0  _ , _ T h 1 5  _ ^ T h 2 0

Fig. 4.32 : Numerical evolution for q = 0.2, ¡jl= 2 and X = 0.3 showing the phase of
x-rolls at successive times r
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Amp!  i t u d e  o f  R o l l s

□ 5  1D 1 5  2D

d i s t a n c e  C>0

_ e _ S O  - e - S " !  - A - S 5  —x— S'! □ _ ^ S 2 0

Fig. 4.33 : Numerical evolution for q= 0.2, q. = 2 and X = 0.3 showing the amplitude of
y-rolls at successive times r

Ampi i t u d e  o f  R o l l s
q = 0 . 2  Mu=2 L a m d a = 0 . 3 6 5 1 4 8 3

d i s t a n c e  C>0

_ b _ R 0 R1 _ ^ _ R 5  _ * _ R 1 0  _i_R15 _ ^ _ R 2 0

Fig. 4.34 : N um erical evo lu tion  for q = 0 .2 ,  =  2 and X =  0 .3 6 5 l  sh ow in g  the am plitude o f
x -ro lls  at su ccess iv e  tim es r
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Ampi  ì t u d e  o f  R o l l s

- T h ü

d i s t a n c e

. T h 1  - A - T h 5  _ x _ T h 1 0 - T h 1 5  T h 2 ü

Fig. 4.35 : Numerical evolution for q= 0.2, fx=2 and X = 0.3651 showing the phase of
x-rolls at successive times r

Ampi i t u d e  o f  R o l l s
q = 0 . 2  Mu=2 L a m d a = G . 3 6 5 1 4 8 3

d i s t a n c e  C x }

- b - S O  ^ _ S 1  _ ^ _ S 5  S 1 0 — |—  S15 _ ^ S 2 0

Fig. 4.36 : N um erical evo lu tion  for q —0 .2 ,  /n =  2 and A = 0 .3 6 5 l  sh ow in g  the am plitude o f
y -ro lls  at su ccess iv e  tim es r
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Amp!  i t u d e  o f  R o l l s
q = 0 . 2  Mu=2 L a m d a = 0 . 4

d i s t a n c e  Cx 3

—b — RG _e _R1  — R5 - h - R I O  _ + _ R 1 5  _ ^ _ R 2 0

Fig. 4.37 : Numerical evolution for q —0.2, 2 and X = 0.4 showing the amplitude of
x-rolls at successive times r

Ampi i t u d e  o f  R o l l s

□ 5 ID  15 3 0

- T h O . T h1

d Í s t a n c e  

a-  T h 5  _x— Th' lO - T h 1 5 . T h 2 0

Fig. 4.38 : N um erical evo lu tion  for q = 0.2, ¡jl =  2 and A=0.4 sh ow in g  the phase o f
x -ro lls  at su ccess iv e  tim es r
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Ampi  i l u d e  o f  R o l l s

o s -io -is an
d i s t a n c e  C>0

- s - S O  - e - S I  _ a _ S 5  _ > ^ S 1 0  — |—  S15 - J . - S 2 D

Fig. 4.39 : Numerical evolution for <7 = 0.2, ¡x = 2 and \= 0 .4  showing the amplitude of
}i-rolls at successive times r

Ampi i l u d e  o f  R o l l s
q = 0 . 2  Mu=2 L a m d a = 0 . 5

d i s t a n c e  C>0

- e - R O  — R1 —a— R5 - « - R I O  - + - R 1 5  _ ^ R 2 0

Fig. 4.40 : N um erical ev o lu tion  for < 7=0.2 , n = 2  and A = 0 .5  sh ow in g  the am plitude o f
x -ro lls  at su ccess iv e  tim es r
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Ampi  i t u d e  o f  R o l l s

□ 5 -!□ 15 20

d i s t a n c e

- B - T h O  _0_Th"1 _ ¿5_ T h 5  _ * _ T h 1 0  _ 4 _ T h 1 5  _ ^ _ T h 2 0

Fig. 4.41 : Numerical evolution for q = 0.2, /x=2 and X=0.5 showing the phase of
x-rolls at successive times r

A m p i ¡ l u d e  o f  R o l l s
q = 0 . 2  Mu=2 L a m d a = ü . 5

d i s t a n c e

- b - S O  —e— S "1 - è - S 5  S'! 0 - < - 5 1 5  S20

Fig. 4.42 : N um erical ev o lu tion  for q = 0 .2 ,  /r =  2 and X = 0 .5  sh ow in g  the am plitude o f
}>-rolls at su ccess iv e  tim es r
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Ampi  i t u d e  o f  r o l  I s
q = G . 2 5  Mu=2 Lambda=0

d i s t a n c e  C>0

_ b _ R O _ ^ _ R 1  - * - R 5  _ ^ _ R 1 0  _ ^ - R 2 0

Fig. 4.43 : Numerical evolution for q= 0.25, /x=2 and A=0 showing the amplitude of
x-rolls at successive times t

Ampi i t u d e  o f  r o l l s

□ 5 1D 15 20

d i s t a n c e  £>0

—B - T h O  — T h1 -¿ j- T h 5  _ x - T h 1 0  _ , _ T h 1 5  _ ^ T h 2 0

Fig. 4.44 : N um erical evo lu tion  for < 7= 0 .25 , ¡ i = 2  and A = 0  sh ow in g  the phase o f
x -ro lls  at su ccess iv e  tim es t
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Amp I i t u d e  o f  r o  Í I s

O 5 10 1 3  20

d i s t a n c e  C>0

—e— SO _ ^ _ S 1  - f r - S 5  - x - S ' l O  _ , _ S 1 5  _ * _ S 2 D

Fig. 4.45 : Numerical evolution for <7 = 0.25, ¿¿=2 and \= 0  showing the amplitude of
y-rolls at successive times r

A m p i ¡ t u d e  o f  R o l l s
q = 0 , 2 5  Mu=2 L a m d a = Q ,39

d i s t a n c e

_ b - R 0 _ ^ R 1  —¿r_ R5 _x _  R 1 0 — | R15 _ ^ _ R 2 0

Fig. 4.46 : N um erical ev o lu tion  for < 7=0.25 , /x =  2 and A = 0 .3 9  sh ow in g  the am plitude o f
x -ro lls  at su ccessiv e  tim es r
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Ampi  i l u d e  o f  R o l l s

□ S 10 15 2D

d i s t a n c e  C>0

T h O  - « - T M  _ T h 5  _x— T h 1 0  _ , _ T h 1 5  - ^ T h 2 0

Fig. 4.47 : Numerical evolution for q= 0.25, fx=2 and X=0.39 showing the phase of
x-rolls at successive times r

Ampi i t u d e  o f  R o l l s

□ S -ID -15 2D

. SO .51

d i s t a n c e

—¿5— S5 - X - S 1 0  _ + _ S 1 5  - J . - S 2 0

Fig. 4.48 : N um erical ev o lu tion  for q = 0 . 2 5 ,  ¡jl=2 and X = 0 .3 9  sh ow in g  the am plitude o f
y -ro lls  at su ccess iv e  tim es r
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Amp! i t u d e  o f  R o l l s
q = 0 . 2 5  Mu=2 L a m d a = Q . 4 0 8 2 4 8 2

. R0
d i s t a n c e

. R1 _a _  R5 _x— R 1 0 ■ R45 R20

Fig. 4.49 : Numerical evolution for <7 = 0.25, p.= 2 and A=0.4082 showing the amplitude of
x-rolls at successive times r

Amp I i t u d e  o f  R o l l s

0 5 10 15 20

d [ s t a n c e  £x3

—a - T h O  _ T h1 - ¿ - T h S  _ * _ T h 1 0  _h — T h 15 _ ^ _ T h 2 0

Fig. 4.50 : N um erical evo lu tion  for q =  0 .2 5 , /x = 2  and A= 0 .4 0 8 2  sh ow in g  the phase o f
x -ro lls  at su ccess iv e  tim es r
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Ampi  i t u d e  o f  R o l l s

□ 5  *10 *15 2D

d i s t a n c e  C>0

_ B _ S O  - ^ - S ^  - * - S 5  _*_S-10 - 4 - 5 1 5  S20

Fig. 4.51 : Numerical evolution for q= 0.25, ¡j l = 2 and X=0.4082 showing the amplitude of
y-rolls at successive times r

Ampi i t u d e  o f  R o l l s
q = 0 . 2 5  Mu=2 L a m d a = Q . 4 5

d i s t a n c e  C x }

- a _ R 0  —e— R1 - * - R 5  _ * ^ R 1 0  _ R15 _ ^ _ R 2 0

Fig. 4.52 : N um erical evo lu tion  for q = 0 .2 5 , /r = 2  and X = 0 .4 5  sh ow in g  the am plitude o f
x -ro lls  at su ccess iv e  tim es r
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A m p i i t u d e  o f  R o l l s

□ 5 -ID 15 20

d i s t a n c e  £ x }

—s _ T h G  T M  - à - T h i  - x — T h' IO - i — T h l S  - ^ _ T h 2 G

Fig . 4.53 : Numerical evolution for q=0.25, /x=2 and A=0.45 showing the phase of
x-rolls at successive times t

Ampi i t u d e  o f  R o l l s
q = 0 . 25  Mu=2 L a m d a - 0 . 4 5

d i s t a n c e  C x }

SG _ « _ S 1  —a— S5 _ * _ S 1 0  — )—  S^I5 S20

Fig. 4.54 : N um erical evo lu tion  for g  =  0 .2 5 , p . = 2  and A =  0 .4 5  sh ow in g  the am plitude o f
y-ro lls at su ccess iv e  tim es r
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Amp!  i t u d e  o f  R o l l s
q = 0 .1 M u - 2  L a m d a = 0 . 2

d i s t a n c e  £>0

- b - R O  - o - R /l — R5D _x— 0 0 _ ( _  R150

Fig . 4.55 : Numerical evolution for <7=0.1, n=2 and X=0.2 showing the amplitude of
x-rolls at successive times r

Fig. 4.56 : N um erical evo lu tion  for <7=0.1, ¡x=2  and \= 0 .2  sh ow in g  the phase o f
x -ro lls  at su ccess iv e  tim es r
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Amp I I t u d e  o f  R o l l s

0 5 -ID -13 2D

d i s t a n c e  O x }

_ B_ SO - e - S I  S50 S100 _ , _ S 1 5 0

Fig. 4.57 : Numerical evolution for <7=0.1, fx = 2 and X = 0.2 showing the amplitude of
y-rolls at successive times r

Amp I i t  ude o f  Ro
q = 0 . 0 0 5  Mu=2 L a m d a = 0 .02

.RO

d i s t a n c e  0x3 

- R 1 - a-  R5 - x - R ^ O

s

. R15 -R20

Fig. 4.58 : N um erical evo lu tion  for < 7= 0 .005 , /x = 2  and \  =  0 .0 2  sh ow in g  the am plitude o f
x -ro lls  at su ccess iv e  tim es r
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Fig. 4.59 : Numerical evolution for q= 0.005, /¿ = 2 and A = 0.02 showing the phase of
x-rolls at successive times r

Ampi i t u d e  o f  R o l l s

d i s t a n c e  C>0

—B -  SO S5 - ^ - S I O  — i—  S^I5 S2Q

Fig. 4.60 : N um erical ev o lu tion  for # = 0 .0 0 5 ,  /r =  2 and A = 0 .0 2  sh ow in g  the am plitude o f
y -ro lls  at su ccess iv e  tim es t
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Fiji. 4.61 : Contours of \p at times r= 0 , 1 and 5 for q = 0.2, fi=2.0, X—0.5
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e.oo 30.00

Fig. 4.62 : Contours of \p at times r= 0  and 150 for q = 0.1, n=2.Q, X = 0.2
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L_<0. 00

Fig. 4.63 : Contours of \p at times r = 0, 1 and 50 for q = 0.05, ¡i — 2.0, X —0.3
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Chapter 5

Variation in the wavelength of the j-roll pattern with lateral forcing

5.1 Introduction

The nonlinear evolution of the system (2.2.23), (2.2.24), (2.2.29), (2.2.31) and (2.2.32) 

was investigated in chapter 2 allowing for only amplitude modulation of the orthogonal roll 

solutions. In this chapter frequency modulation of the y-roll pattern is incorporated to determine 

how the transition point Xq and the solutions for A and B are affected for a range of 

wavenumbers in the y direction close to the critical value.

In section 5.2 the relevant amplitude equations and boundary conditions are set out. 

Attention is focused on the case where A is real and ¡i = 2 although the results could easily be 

extended to include other values of /r and complex amplitude functions in the manner described 

in chapters 2 and 4. The nonlinear evolution of an initial disturbance is studied in section 5.3, 

together with the determination of steady-state solutions for A and B. In section 5.4 the 

nonlinear evolution of an initial disturbance is studied numerically using an explicit finite 

difference scheme. Section 5.5 contains a discussion of the results of this chapter.

5.2 Formulation

The amplitude equations derived in sections 2.2 and 2.3 were studied in chapters 2, 3 and 

4 assuming A and B to be independent of y. The main outer problem is now formulated by 

setting A=ell2A(X,Y,T), B=6U2B(X,Y,t ), x = e mX, y = e mY and i=e 'r  so that the amplitude 

functions A and B are allowed to depend on the slow spatial variable Y as well as X  and r. With 

/x = 2, it follows from (2.2.23), (2.2.24), (2.2.29) and (2.2.32) that to a first approximation A 

and B satisfy the equations
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—  = 4—  ̂ - 3 ^ U I 2-6 ^ |5 j2 , 
dT dX2 11

(5.2.1)

dB
dx

= 4 ^ + B -3 B \B \2-6B\A\2 , (5.2.2)

to be solved subject to the boundary conditions

A = X at X = 0 , (5.2.3)

fi -  0 as X -  °° (5.2.4)

Note that as in the analysis of chapter 2, the fourth derivative of B with respect to X  can be 

neglected at leading order in (2.2.24) and thus no boundary conditions are applied on B at X=0 

in the solution of (5.2.2). The adjustment of B to the boundary conditions B -dÉ /dx= 0 at x =0 

will again occur within a boundary layer region where X=0(1), or x=0(e m) on which scale 

the term d*B/dX? and others will come into play in (5.2.2). Similarly, on the assumption that 

Y is of order one, the derivatives of A with respect to Y are neglected at leading order in

(5.2.1).

In order to investigate the effect of frequency modulation of the y-roll pattern in the y 

direction, it is assumed that B is of the form

where A is real. The parameter 5 represents an adjustment to the wavelength of the y-roll 

pattern in the neighbourhood of the critical value. Substitution of (5.2.5) and (5.2.6) into

(5.2.1) and (5.2.2) shows that A and B satisfy

f i  =  f i ( X , T ) e 'ôy (5.2.5)

where B is real, and it follows that a solution for A may be assumed in the form

A  = À ( X , t )  , (5.2.6)
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= 4 - ^ -  +A-3A3-6AÊ? , (5.2.7)
dX2

= È (l-4b2-6A2)-3È3 , (5-2.8)

with boundary conditions

A = X at X = 0 , (5-2-9)

A -  —  , É -  0 as X - o o  . (5.2.10)

Solutions for positive initial profiles

A = A0(X) , È = B0(X) at t  = 0 (5.2.11)

and positive values of X, will be studied.

dA
3t

<3t

5.3 Nonlinear evolution and steady-state solutions

Steady-state solutions of the system (5.2.7)-(5.2.11) exist when 5 = 0  and are given by

A = A0(X)

A = A0(X)

— tanh
c,+X'

for A < —  , (5.3.1)
V3 2 s/2 f t

— coth
c2+X'

for A > —  , (5.3.2)
f t 2\jl V3

where cl=2\/2tanh‘l(v/3X) and c2=2v/2coth'l(v/3X), as in the analysis of chapter 2.

The instability of this x-roll solution to cross-rolls is shown by considering a small y-roll 

disturbance of the form
B = B0(X)e°Wx , where B0 < 1 . (5.3.3)

160



Substitution into (5.2.8) shows that

a(X) = 1 -462-6Aq (X) . (5-3-4)

Clearly y-rolls will grow in any region where A0< [(l-452)/6]I/2 and the x-roll solution will be 

unstable. Hence the nonlinear system (5.2.7)-(5.2.11) can be expected to evolve to the solution

(5.3.1) or (5.3.2) as t ->oo when X> [(l-452)/6]1/2, but when X< [(l-4<52)/6]1/2 the solution

(5.3.1) will be affected by the amplification of y-rolls in the region where A0< [(l-4<52)/6]1/2. 

In this case, a new steady solution consisting of a combination of x and y-rolls is expected to 

evolve in the region near the wall (region I), where the relevant steady-state solution of (5.2.8) 

is

] j 2  -  1  / I  A X l  H A  2 \-(1-4Ô2-6A“) (5.3.5)

Substitution of this into the steady-state form of (5.2.7) results in the equation

rP“A
4—---A+9A3+&62A = 0
dx2

X < A < 1 -4b2 
6

(5.3.6)

It is expected that a position X=X0 exists at which 4̂ = [(1 -452)/6]1/2 and there is a transition 

from the steady-state form of (5.2.7) where (5.3.5) is valid to the steady-state form of (5.2.7) 

where B = 0 and A>  [(l-4<52)/6]1/2. Substitution of B=0 into the steady-state form of (5.2.7) 

shows that in this region away from the wall where X>Xq (region II), A satisfies

4—  +A-3A3 = 0
dX2

1-4Ô2
6

ni/2
< 4̂ < —

J t/3
(5.3.7)

and the relevant solution is
A =

X~X0+c

2 \jl
(5.3.8)

where c = 2^2taah '{t/[(l-452)/2]}. At X=XQ, A = [(l-462)/6]1/2 and differentiation of (5.3.8) 

gives
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(5.3.9)

Equation (5.3.6) for can now be integrated once to give

cM)2 _ (1-852M 2 9/44 D (5.3.10)
dX 4 8

and, by using continuity of A and dA/dX at Xq, it is found that

D = — (1-262) .
3

(5.3.11)

A further integration of (5.3.6), together with application of the boundary condition at X=0, 

yields

This integral cannot be found analytically in general, but a numerical method of integration 

based on a Romberg technique gives the results shown in Table 5.1 for a range of values of 

X and S2.

It is seen that X()-»0 as A-»[(l-452)/6]'/2 and the y-rolls are then confined to a region close 

to the wall. For 5=0 the result of Daniels and Weinstein (1992) is recovered, equivalent to the 

formula (2.6.8) for Xq obtained in chapter 2 with /¿ = 2. As 52 increases in value, 2^ decreases 

and reaches zero when 52= l/4 . For values of 52 close to 1/4, so that 5 = (l/2)-5 with 5<̂  1, it

A

(5.3.12)

Finally, the transition point Xq is determined by setting A = [(l-452)/6]1/2 to give

(5.3.13)

3 4 8
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may be assumed that A = A0<51/2 with A,, finite and then the result (5.3.13) shows that to a first 

approximation the transition point is located at

X0 * , A0 < 2 lj6  . (5-3.14)

Note that if <52>0, X() does not tend to infinity as A-^0, unlike the situation considered in 

chapter 2 where ¿==0 and X0 has a logarithmic behaviour as A-*0. With <52 > 0 the transition 

point is located at a finite distance from the wall when A=0 and the gradient of A at X=0 

remains non-zero, being given from (5.3.10) by

M fj- o )  = i 52(1 -262) , (1-882)A2 9A4 
dX l 3 4

1/2

/
(5.3.15)

for general values of A. Figure 5.1 shows Xq and dA/dX (X=0) as functions of b2 for A = 0.

5.4 Num erical solution

The system (5.2.7)-(5.2.11) was solved numerically using the explicit finite difference 

scheme of chapter 2, modified to incorporate the term involving b2. The finite difference 

approximations to (5.2.7) and (5.2.8) become

a i j + 1 S34ai.ij+ai^h2- 3h 24 ~ s ~6h 2b‘J+l )  +4tV u (5.4.1)

V  i = kbu l-4 ò 2-3èi2,-6ai2,+ - (5.4.2)

where /3=A//z2 and h and k are the step sizes in X  and r  respectively, with ajj and bi , now 

denoting the values of A and B at X=ih and r=jk. The end values are found from the boundary 

conditions

= A *NJ+ 1 for j  -  0,1. (5.4.3)

and then (5.4.1) and (5.4.2) are applied withy = 0,l,2 ... to obtain the solution at successive
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time steps. Thus the solution is computed by marching forwards in time, starting from 

appropriate initial profiles at r = 0. These were chosen to be

y40(X) = — tarsi:
f t

( X s
2-Jl

+ke ~x , B0(X) > sech J L (5.4.4)

Results are represented graphically in Figures 5.2 and 5.3 for 5=0.2, 52= 0 .1 and \= 0 . As 

t ~*°°, A reaches a steady-state solution, as seen in Figure 5.2, and X0, defined as the point at 

which A = [(l-452)/6]1/2 = 0.3162 was found to be 1.9628 for r=30. For X<Xq, they-rolls grow 

with time whereas for X> X0 the y-rolls decay with time, in the manner anticipated from the 

analysis of section 5.3. For X< X0 the stable steady-state solution consists of a combination of 

x and y-rolls whereas for X>Xo the stable steady-state solution consists only of x-rolls. The 

value of X0 obtained in the computation for r=30 compares well with the value X ^ - 1.9612 

predicted by the analysis of section 5.3 (see Table 5.1).

Finally, the evolution of the roll pattern with time is illustrated graphically by contour plots 

of for 52=0.1 and A = 0 in Figure 5.4 using Surfer Version 4 by Golden Software. Here \p 

is obtained from the formula

i|x = 2e1/2 ¡A cos* + 2?cos{(l +Se1/2)y}] (5.4.5)

and the value of e was taken to be 0.1, with 5 taking its positive value.

5.5 Discussion

When frequency modulation of y-rolls is incorporated in the theory, equivalent to an overall 

y-dependence in ip of the form
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exp(iy+z'6T) = exp[i(l+8e1/2)y] , (5.5.1)

it is found that for 0 < 5 2< l/4 , the transition point X(l at which the y-rolls disappear is a 

function of both X and 5. For fixed 5, it has been shown analytically and confirmed numerically 

that if 0 < X < [(1 -452)/6]1/2, a stable steady-state solution will be obtained consisting of a 

combination of x and y-rolls in the region where X<Xtl, and where X> X„ the solution consists 

of x-rolls only. The transition point X0 is given by (5.3.13), from which it can be deduced that 

as A-»[(l-452)/6]1/2, -Xq-K) and the y-rolls then disappear.

The results show that if the value of 5 can be freely selected, then the highest growth rate

(5.3.4) corresponds to disturbances with the critical wavenumber (5=0) and that these also 

correspond to the situation where the transition point is located at the greatest distance from 

the wall; in general a solution of the type described here with 5 non-zero will be unstable to 

y-rolls in the region where [(l-452)/6]l/2<^4 < 1A/6. Nevertheless, the influence of the 

wavelength of the roll pattern perpendicular to the wall is of intrinsic interest and the solutions 

described here may be relevant in situations where the value of 5 is selected by the presence 

of lateral boundaries parallel to the x direction. The results of this chapter have only been 

obtained for ¿i = 2 and it has been assumed that A is real but they can be generalised in a 

straightforward manner to any value of fi and to complex values of A using the methods 

described in chapters 2 and 4.
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Ô2 X *0 dA/dX (X=0)

0.00 0.00 oo 0

0.00 0.20 1.9057 0.0906

0.00 0.40 0.0793 0.1058

0.00 0.60 - -

0.05 0.00 2.7575 0.1225

0.05 0.20 1.2034 0.1386

0.05 0.36 0.0417 0.1247

0.05 0.40 - -

0.10 0.00 1.9612 0.1633

0.10 0.20 0.7434 0.1639

0.10 0.30 0.1113 0.1485

0.10 0.32 - -

0.15 0.00 1.4266 0.1871

0.15 0.20 0.3411 0.1766

0.15 0.25 0.0498 0.1658

0.15 0.30 - -

0.20 0.00 0.9364 0.2000

0.20 0.10 0.4331 0.1959

0.20 0.18 0.0140 0.1843

0.20 0.20 - -

0.24 0.00 0.4029 0.2040

0.24 0.05 0.1572 0.2025

0.24 0.08 0.0082 0.2002

0.24 0.10 - -

0.25 0.00 0 0.2041

Table 5.1 : X(i and dA/dX (X=0) for a range of values of X and 82
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D e i t a ^ 2  vs XD & d A / d X C X = C Q

D e lta s
XO _e_dA/dXCX=0^^30

Fig. 5.1 : Graphs of X0 and dA/dX (X=0) versus 62 for \  = 0

Amp I i t u d e  o f  r o ! Is
Del  t a ~ 2 = 0 . 1  q = 0  Mu=2 L amda=0

x v a I u e s

___ AO   A 1  A5  A 10  A20  A 3 0

Fig. 5.2 : Amplitude of x-rolls when 52=0.1, q —0, /x = 2 and X=0 at successive times 
r= 0 , 1, 5, 10, 20, 30 indicated by A0, Al, A5, A10, A20, A30 respectively
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Amp! i t u d e  o f  r o I  Is

0 5 1D 1 5  2D

x v a I u e s

. BO -B1 . B5 - B10 . B20 . B30

Fig. 5.3 : Amplitude ofj-rolls with time when 52=0.1, q= 0, fx = 2 and \  = 0
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\ ̂  . 00

30.00

Fig. 5.4 : Contours of \p at times r = 0, 1, 5 and 20 for <52-0 .1 , n = 2.0, X=0
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Chapter 6

Variation in the wavelength of the x  and j-roll pattern 

without lateral forcing

6.1 Introduction

This chapter discusses the possibility of phase-winding solutions for the semi-infinite 

problem with one lateral wall for the case where there is no lateral forcing, X=0. With no 

frequency modulation of the y-roll pattern (5 = 0) the logarithmic behaviour of the transition 

point X() as X-*0 identified in chapter 4 makes a study of the situation where \= 0  particularly 

difficult. However, from chapter 5, it is known that when 5 ^ 0 , dA/dX remains non-zero at the 

wall and the location of the transition point Xq remains finite as X-*0. This makes an 

investigation of phase-winding solutions for X = 0 more straightforward when 5 ^ 0  than in the 

case where 5 = 0. This investigation is the subject of the present chapter.

In order to discuss phase-winding for X=0 it is necessary to consider higher order terms 

in the derivation of the amplitude equations than those considered in chapter 2. Specifically, 

terms of order e2 are studied, i.e. of order e'/2 relative to the smallest terms considered in 

chapter 2. For this reason, attention is restricted to the simpler model system (2.2. l)-(2.2.2) 

introduced in chapter 2 and the required amplitude equations are derived in section 6.2. In 

section 6.3 the overall solution structure is set out, based on the leading order solutions 

obtained in chapter 5 and incorporating the possibility of complex amplitude functions A and 

B. This structure consists of two wall regions (x~ 1 and x ~  e‘1/4) together with the two main 

outer regions (x~e‘l/2) discussed in chapter 5. These outer regions are separated by a transition 

zone at the point where the amplitude of the y-rolls falls to zero. The leading terms in the 

expansion of the solution in the outer regions are given in section 6.3 and, in section 6.4,
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higher order terms are discussed. In section 6.5 the scalings of the transition region are 

determined together with the appropriate expansions for A and B. Solutions in the transition 

region are found which lead to the relevant continuity conditions for the outer solution at 

X=X0. The solutions in the wall regions are discussed in section 6.6 and matching leads to 

conditions to be applied at X=0 to complete the determination of the various constants arising 

in the outer solutions. In particular, in section 6.7, the constant associated with phase-winding 

is determined, leading to a prediction of how the lateral wall restricts the allowed band of 

wavelengths in the main x-roll pattern. The results are discussed with ideas for future work in 

section 6.8.

6.2 Higher order amplitude equations

The amplitude equations derived in chapter 2 are now extended to incorporate higher order 

terms. Attention is restricted to the model equation

^  = {e-(V2+l)2}iJ/-i|/3 , (6.2.1)
dt

where V2- d 2/dx2+d2/dy2, and as in chapter 2, a semi-infinite domain x > 0  is considered. At 

the lateral boundary it is assumed that

i|r -  2Àe1/2 , ^  = 0 , x = 0 (6.2.2)
dx

and subsequently X will be taken as zero. The amplitude equations are derived by assuming an 

expansion for \p of the form

tp = e1/2i|r0+ei|;1+e3/2i|;2+€2ilr3+... , e -  0 . (6.2.3)

The most general form of the amplitude equations for the model system is determined by 

allowing the semi-infinite domain x > 0 to contain x-rolls which have slow spatial modulation 

on length scales X, Y defined by
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X  = e1/2x , Y  = e1/4y (6.2.4)

and y-rolls which have slow spatial modulation on length scales X and Y defined by

X = e1/4x , 7  = e1/2y . (6-2-5)

Also both sets of rolls are allowed to vary on a slow time scale r  defined by

t  = et . (6.2.6)

These scales are the same as those introduced in chapter 2 and, as before, the method of 

multiple scales is applied to obtain a succession of problems for \pi (i=0,1,2...). The solutions 

for \p0 and \p] are precisely as given in chapter 2, except that it is now convenient to replace 

A by A0 and B by B„. Then at order e3/2, it follows that iJ/2 satisfies

(V  + l ) \  = - dr
4d* d4 4d4

dxdXdY2 dY4 dx2dX2 

4d4 d4 4d4

i ^

dX2dydY dX4 dy 2dY2

(6.2.7)

where

♦o = t t o )  + ^0 (yXY,x) , (6-2.8)

with

t|»o = M x ’Y^ eix + cc  (6 2 '9)

and

i|ro = BoiXJ^e** + c.c , (6.2.10)

where c.c denotes complex conjugate. Terms proportional to c±a' and e±iy lead to the amplitude 

equations for A0 and B0 equivalent to those for A and B given in (2.2.20), (2.2.21) and the 

complete solution for \p2 may be written in the form
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-  + B03(X,r,T)e^l
641 J

-  A [^ 02(x ,r>T)B0(x,y>T)e '(2j:+y)]

-  ^ A ^ ( X X z ) B 0*(X,Y,x)e^ > ]

-  -^ [^0(x,y,T)502(x,y,T)e ^ +2»]

-  ^ [ A 0(X,Y,x)B*2(X,Y,x)e‘̂ \  + c.c ,

* 2  =  * 2  (x ,X J ,t ) +  tf(y X Y ,x )

where

i|*2 = A2(X,y,x)e“ + c.c

and

i|/f = B2(X,Y,x)eiy + c.c .

At order e2, is found to satisfy

(V2 + l)2i|i3 = i|ij # i
dx

2 a4

a*2a ?
2 a4

aiPay2
4a4

a.*3ax
4a4 + 2a2 

ay3ay a?

4a4

4a2 + 2 ^
& ax + ajp

dxdXd?

4a 4

a4+ ------  + 4a4

ay4

a4

dx2dX2

4a4

aFayay ax4 ay2ay2

4a2

ayay t 2

1 ^t i

t i

4a4 2 a4 1 ^to  -
4a4 2a4

dxdX3 ax2a? ayay3 diddY2
.  B
t 0

(6 .2 . 11)

(6 .2 . 12)

(6.2.13)

- 3 to t i  , 

(6.2.14)
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where

t|/t = ^ x X Y , t ) +■ i|/?(y,X,y,x) , (6-2.15)

with

i|rf = A,(X,Y, x)e" + c.c (6.2.16)

and

t|rf = + c.c . (6.2.17)

The right hand side of (6.2.14) contains terms proportional to c±ur, e±3lx, e±iy, e±3iy, e±l<2x±y> and 

e±i(x±2y) jn or(jer that the soiution for \p2 does not grow with x or y, the secular terms 

proportional to e±a and e±,y must be avoided, and after substitution for \p(l and from (6.2.8) 

and (6.2.15) this requires that

BA, 4i&A, c?A. 4c?A, 4id*Aa 2d*Aa , * __i _ ^   ____ i_ ___*+__________ 2 -____— ~3AZA*
dz 1 axar2 ay4 ax2 ax3 ax̂ y2

“6 \A012A ; -6A0B0B*-6A0B*B, -6\BQ\2A1 ,

(6.2.18)

BB, 4i&B, d*B, 4a2B. 4 i^B , 2d*B() - *
— - = B,  -------l— =1 +------ ----------5 - ------ «— 3BlB*
dx difdY ax4 ay2 ay3 ax^y2

- 6 1^0 \ %  - 6 1b 0\ %  .

(6.2.19)

The results for^40, B() and A,, B, may be combined in a pair of ’general’ amplitude equations 

which can be formulated by setting

and

A = V e ^ V . . .  (6-2.20)

B = B0+€1/2B1+... (6.2.21)
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and by using the equations for A0 and B0 derived in chapter 2. This leads to the ’general’ 

amplitude equation for A,

\

- ± A  t i  —4e1/2t—  -2e1/2-— ~3A |A |2-6A |B |2 
2 dY2j dX3 dX2dV2 (6 .2 .22)

which can be considered correct up to terms in A and B of relative order e1/2. Similarly, the 

’general’ amplitude equation for B correct to terms of relative order e1/2 is

dB _ J  —  = 5+4 
dx

d i e ?
w ~ 2 ^ i

d*B'2g - 46l/2/^ _ 2el/2. _
dY3 8X2dY2

■-3B\B\2-6B\A\2 (6.2.23)

Finally, it is worth noting that these amplitude equations can be rewritten in terms of 

functions A and 5  of the original spatial and temporal variables x, y and t by writing

i|r ~ \Â(x,y,t)e !X-B(x,y,t)e,y} +c.c , 

and then the amplitude equations are

dA
dt

cA+4 ' d_- i ±  )2
dx 2 d y2Y

2d*A

and

as
dt

= e5+41 d i ô2 1% ..& S  2a45

2 dx2

again correct to relative order e1/2.

(6.2.24)

(6.2.25)

..- 3 5 l 5 |2- 6 5 | i l 2 ,
ay3 dx2dy2

(6.2.26)

6.3 Solution structure and leading order terms

In chapter 5 the amplitude functions A and B are allowed to depend on the slow spatial 

variables X  and Y where x —e mX  and y = e ]l2Y, as well as the slow time scale r. A similar
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assumption is made here although other regions of the flow, near the wall where x ~ \  and 

x ~ e m, and near the transition point, X=X$, will also be considered in some detail. A 

schematic diagram of the main flow regions is shown in Figure 6.1. Apart from the region 

adjacent to the wall, the amplitude equations (6.2.22) and (6.2.23) can be used as a basis for 

finding the solution, even though scalings for x and y will be used which are not necessarily 

the same as those used in deriving the equations.

In order to incorporate the effect of frequency modulation in the y direction, it is assumed 

that

B = B(X,x)ei6Y , (6-3 1 >

where B is independent of Y, and it follows that a solution for A may be assumed in the form

A = A(X,x) , (6-3-2)

where A is complex. Substitution of (6.3.1) and (6.3.2) into (6.2.22) and (6.2.23) and the 

assumption of a steady-state solution, results in the following amplitude equations for A and B\

A+4 ^ - 3 A \ A \ 2-6A\B\2-4ie112—  = 0 , (6.3.3)
dx2 dx3

B (l-482)-3 5 |B |2-6B|A|2-e —  +4e1/28 —  -4S3e1/2B+2eS2—  = 0  . ((t ,
dx4 dx2 dx2 (6 3 -4)

The equation for A depends only on the modulus of B and it is possible to assume without loss 

of generality that B is real.

The main outer region where Z=0(1) is divided into two parts, X<X{) (region I) and X>X) 

(region II), by a transition region centred at X() where there is a smooth adjustment in the 

amplitude of the y-rolls such that for X>X(], B is zero. The transition region is similar to that
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described in chapter 3 but has some significant differences because when 8 is non-zero the term 

e82d2B/dX2 in (6.3.4) is more important than the term edAB/dX. The transition region is 

considered in detail in section 6.5. In the two main outer regions, expansions for A and B must 

be taken in the following forms.

Region I:

A = Aa + ell3Al + e1/2lne A2Q + el/2A2 + ... , (6.3.5)

B = B0 + €1/3flj + e1/2lne B20 + e1/2B2 + ... . (6-3.6)

Region II:

A = A0 + el/3Al + e1/2lne A20 + el,2A2 + ... , (6.3.7)

B = 0 . (6-3-8)

Here the leading terms are similar to those considered in chapter 5 and justification for the 

higher order terms will be given in full below; the terms of order e1/3 are associated with the 

presence of the transition zone, while those of order e1/2 and e1/2lne are related to the existence 

of the higher order terms which appear in (6.3.3) and (6.3.4).

Since \= 0 , it is expected that the leading terms A„ and A0 must have constant complex 

arguments, so that

Aq = R0(X)eiC , (6-3.9)

A0 =R0(X)eiC , (6-3.10)

where R0 and R0 are real and satisfy
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(6.3.11)d %  .. ..3
4------+IL-3R? = 0 ,

dX2 ^  ^

4 ^
dX2

+($b2-1)R0+9Rq = 0 . (6.3.12)

The relevant solutions, subject to the requirement that R0-*lfv/3 as X-^oo, the continuity of R0 

and R0 and their first derivatives at X=X0 (defined as the point at which f?0=/?0 = [(l-452)/6]1/2) 

and the condition R0= 0 at X —0, are identical to those given for A and B in chapter 5 for the 

case where A=0. Thus R0 is defined (implicitly) by the relation

with

o

f
dR0

62(l-2 6 2) , ( 1 - 8 8 X 2 9 <
1/2

3 + 4 8

= X , (6.3.13)

and

«0 = j ( l - 4 6 2-6 J$ (6.3.14)

Rq = — tanh
f t

'x -X o+q

2^2
where Cj 2\j2\aah 1 1-452

2
(6.3.15)

Near the transition point it follows that

R0 = d0 + dtX + d2t  + d3X3 + d4X4 + ... , X -  0+ , (6.3.16)

where X= X-X0 and
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1 -4d2
a , (1+462)

4v/6

V l-452(l+462) = (l+452)(2052-7)
16^6 ’ 3 192y6

/1  -462(1 +462)(1 +2882)
7 6 8 ^

(6.3.17)

and that

= dtX •• v2a2X d3f a4* 0 - (6.3.18)

where

= N
1-462 (1+452)

4^/6

y/'l-4 5 2(l+462) = (1+462)(1-1252)
16^6 ’ 3 \92\[6

\/l-4 6 2(l+452)(l+1252)
768\/6

(6.3.19)

Also, near the wall, the solution for R0 has the form

i t  = — 6(1-2S2)1/2X + 0(X3) , X -  0 .
V3

(6.3.20)

6.4 Higher order terms in the outer regions

In order to obtain the higher order equations for A,, A20, A2 and Bu B10, B2 in region I, it 

is necessary to substitute the expressions (6.3.5) and (6.3.6) into (6.3.3) and (6.3.4) and 

compare orders of e leading to:
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(6.4.1). 4&A. , 2 . , ................................. ..
Al+— -̂SAlAl-6\A0\2Ar nAJl(px-6AxBl = 0 ,

dX1

. 4 c?A
20-3 A X o-6\A0I2A20-12A0B0B20-6A2X  = 0 , (6 -4 .2)20 ax2

4d2A.
A2+^ - l A i A ; - 6 \ A 0\2A2-i2AQB0B2-6A2Bz0 =

dx
4 i&A0

ax3

(6.4.3)

and

( l-4 6 2)B1-9B02fi1-6B0i ^ 1* - 6 V i i 0*-6BiM0|2 = 0 , (6-4.4)

(1-482) 4 0- 9 B X - 6 W ^ - 6 V 2 A * - 6 4 o ^ o I2 = 0 , (6-4-5)

^2^
( l-4 8 2)fi2-9 4 2S2- 6 V A * - 6 V A * - 6 4 A l 2 = 483fi0- 4 8 ^  . (6-4-6)ax

Similarly, the higher order equations for A,, A20, A2 in region II are obtained by substituting 

the expressions (6.3.7) and (6.3.8) into (6.3.3) and (6.3.4) and comparing orders of e to give:

. .  cPA, . . w  . .

A. +4---- l— 3AZA?-6\Aa\2A. = 0 ,t 2 o i i oi i (6.4.7)

A ) +4 2 3AQA2Q-6\A0\2A20 0 ,
a x

(6.4.8)

a2!
V 4 — ^ - 3 i 2i 2* - 6 A l A  = 4 i-

¿A
ax3

(6.4.9)

In order to solve these equations it is convenient to set
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, À2 = R f * (6.4.10)
¿ 1  = Rie iC A =^20

, / C

and

^1 = Rie ’ ^20 = R20e ’ ^2 ~

and then the real and imaginary parts of the complementary solutions can be 

together with the particular solutions for R2 and R,.

The solutions for region I are found to be

R i = K

*0

f ~ à d x  + A
xR o

iRo
'X° F
f — dx  + F. J ¿2 1
xR 0

^20 A)
\
/ '
xR,

'2 0 dX + D.20 + iR0 / % «  * 6 »
X ^0 j

«2
V
f —-d x  + AJ p /2  2
xR o

./ ^  Ô3Â02
* /x

K f Af 0
r E~
H f *  * ^
x R,

*o

‘M
X

(1-8Ô2) 2 7 ^
8 16

where C„ Dt, Er F, and C20, D20, E1(), F20 are real constants

dX ,

The solutions for region II are found to be

(6.4.11)

determined,

(6.4.12)

(6.4.13)

(6.4.14)

181



R, = ——sech2
2 f i

C'+X\
2 f i

6C, - i - s i n h f ^ O
2 f i  f i

i-2v/2sinh C'+X 4 3X + ri
f i 2 u  i

+— tanh
f i

C'+X
2 f i

X-2fico\h C'+X
2 f i

+F,

(6.4.15)

^20
1 uic'+x-sech^

2\[6 [ 2 f i
6 C20

L sinWr2 (Ç ^ 0
2 f i f i

i-2\/2sinh C'+X

[ f i  \

3X +D.20

+— tanh
f i

C'+X
2 f i

"20 X-2ficoÛ\ C'+X
2 f i

+F,201 »

(6.4.16)

R  = -----sech:
2 f i

— t
f i

C'+X
2 f i

6 C, J - s i n h i ^ O
f i2 f i

2̂v/2sinh C'+X

f i

3X +D,

C'+X 3£2
f
X -2ficoih ' C'+X •• 1 +F,+— X-6\/2tanh 'c '+ x j|]

2 f i r i 2^2 J 16 2f i  JJ]

(6.4.17)

where

C' = CI -  X0 = 2\j2 tanh"1 1 - 4ô2
N 2

-  x n

and C„ Dr Ën Fi and C20, D20, Ë20, F20 are real constants.

(6.4.18)

In order to determine the various constants in these solutions it is necessary to apply the 

relevant boundary conditions at X=0 and as X->oo, and the relevant bridging conditions at 

X=X0. The solutions must remain bounded as X-^oo, requiring that

Ct = c 20 = C2 = 0 , (6.4.19)
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and the conditions at X=X0 and X=0 are determined by considering the transition zone centred 

on Xq and the inner wall regions. These are considered in sections 6.5 and 6.6 respectively.

In order to determine the solution in the transition zone it is necessary to note the behaviour 

of the outer solution as X=X-.X0-*O±. From (6.4.12) and (6.4.13) it follows that

Rx = ¿0 + éjX + b2X 2 + b3X 3 + ... , X -  0 - , (6.4.20)

Æjo = c0 + cxX + c2X 2 + c3X 3 + ... , X -  0 -  , (6.4.21)

and from (6.4.14) that

#2 = j^lnlXl + d0 + d10Xln |X| + dxX + ..• , X -  0 -  , (6.4.22)

where

K  W  + to fx

¿1 = Ri(X0) = (-ô ^C j + 2à2D{) + i(-d01£'1+à1F1)

¿0 ~ ^ 20(^0) = ^1^20 + V 20

= Rié-Xç) - (~âx ¿20 + 2d2Z)20) + i(~à0 È2Q + àxF20)

4» 2**°̂

d0 = àxD2 + àxC + iaJF2

^io à()à2àx ô

dx = (-¿j lC2 + 2à2D2 - b3àx ‘ûq + 2à2C + àxD) + i3 -1 ,2
-«o_14  + àÀ  +

(4ô 2-5)ô 0 
32
(6.4.23)

and C and D are constants associated with the finite part and linear term in X-Xq of the 

expansion of the integral
C2b r RoRoBo I —  p 10 0 dXdX J ¿/2J 6
0 Rq o t>0

(6.4.24)
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as X-^Xq. Also, from (6.3.14)

B0 ~ (-X)1/2(1+462)1/2(1-4S2)1/4 ^  ^ 0 _
v/6

(6.4.25)

indicating that the amplitude of the y-rolls falls to zero with a square root singularity as X-^X(!- 

in the outer region.

From (6.4.15), (6.4.17) and (6.4.19) it follows that

where

■t?2

+ ¿>3X3 + .... , X  -  0+ , (6.4.26)

+ a 3 + ••

+0T

lX (6.4.27)

+ d3x 3 + ...

+0T

•X (6.4.28)

. .  . .

b0 = Rx (X0) = a1Dl + ia0 3EXv  _2y,2..-i 
Ao ~ ao

V'3
+ F,

¿'i = R\(Xa) = 2d2Dl + p E x(aQ + d ^ )  + a / J

0̂ 2̂oĈ o) 1̂̂ 20 + *«0 34, [y * 2VV>1 Ao 0̂
\

+ 4
V l/3 )

1̂ 4>  ^o) 2^2^20 + P E 20(d0 + ¿¡jXq) + ¿ijF̂ o}

4> ^ 1^ 2  + ^ 0! 3-®;
2J2 ..- 

-  -b-Oo 
\/3

+ F, + -L  y  
2 16 0

3t/6;

¿1 = 4 ( Xo) = 2a2Z)2 + i{3£2(d0 + dxX J  + a / 2}

+ n 1 3^6..—  - ——a, 
16 8 1

+ a, *o 3^6.---  -  —t— £
1 6  8

(6.4.29)
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6.5 Transition region

The scalings for the solution in the transition region can now be obtained using (6.3.4). 

Assuming that X-X0 = eaX  and B = e'S with a and /3 to be determined and A approximated by 

/t0(X0)+X40'(Xo), substitution into (6.3.4) gives to leading order

4 6 e(i/2-2«+P) ^  _ 3 ^ 3  _ = Q (6 5 l)
dX2 2

and a full balance of terms requires

1 « 1a = -  , P = —  .
6 12

(6.5.2)

Thus the transition zone is defined by the region X=0(1) where

X-X0 -  e1/6X (6.5.3)

and expansions for A and B within the transition region are assumed in the form

A = ÂJX) + e1/6i,(X ) + e1/3i,(X ) + e1/2 lue Â,JX) + e1/2i,(X)
(6.5.4)

+e2/3 lne Â J X )  + e2/3i 4(X) + ... ,

È = e1/l2B0(X) + €1/4Bj(X) + e5inB2(X) + ... . (6.5.5)

The expansions (6.5.4) and (6.5.5) are substituted into (6.3.3) and (6.3.4) using (6.5.3), and 

orders of e compared to obtain in succession

= 0 , (6.5.6)

dx2
= o  , (6.5.7)
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(6.5.8). J À 2 a3̂  . , .
^o+4- 7 f - 4î'— = 0 »ax2 ax3

4d?Â30 0 ,
dXz

(6.5.9)

ePÂ, cPÂ, »2 * * . .  .» » .  - 2
+ 4 ~ ^  “ 4 ï — ^  “ 3A a ^ i  “ 6  \A0\Ai~6A<pl = 0  >

dX2 dX3
(6.5.10)

4dzÂ 40

BX
0 , (6,5,11)

» &Â. (PÂ- . 2 » * * » .  . . .
A2+4— ^  -4<—rf  - 3 ^ 2  - K  K  !2- 6 1^ | ^ 2- 

ax ax

3Â?Â0*-i2Â0ê0êr 6Â1ê02 = o . (6.5.12)

In order to determine the solutions for successive terms in the transition region, boundary 

conditions as X->± °° are required. Matching with the outer forms as X-»X0+ requires

■o -  V ' C as X -  -oo , Â0 -  a0e ,c as X , (6.5.13)

-  àxXeiC as X -  -« - Ai ■~ axXe,c as 1  -  » , (6.5.14)

'■ + i , y c as 8lt , Â2 - (a2X2 + b0)e,c as X - 00 ,

(6.5.15)

*30 ¿0 + ¡¿col** as X 5 ^30 * £0e ^  X

(6.5.16)
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i 3 ~ (à3X3 + éjX + 4 ,  ln|X| + ¿0)eiC 35 * (6.5.17)

i 3 ~ (a3X 3 + é'jX + 4 e ,C as X (6.5.18)

*40 éi + \ d ^ e iC as X  - -oo , ~ c'1X<?lC as X

(6.5.19)

4  ~ (d4X 4 + è2X " + ¿ 10X  ln|X| + dxX)e'u as X  - ,i'C (6.5.20)

i 4 ~ (d4X 4 + ¿ 2X 2 + dxX)eiC as X  - «  . (6.5.21)

The solutions for A0, A, and A2 can now be found as

4  = v iC . (6.5.22)

i j  = a , î e iC , (6.5.23)

A2 = (d2X2+ 4 e
/

,/c ^ [3 d 2- l] x 2 + b0
O

, i C (6.5.24)

These solutions are consistent with the assumptions that à0=a0 and àx=àx already implicit in 

the leading order outer solutions, and in addition require that

bo = K

The expressions for d0 and d, are given in (6.3.17). Also

(6.5.25)

4 o  Ko + g^Oo|e (6.5.26)

and it is required that c0 and c0 are related by
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(6.5.27)co + g«00

The equation for B(] is now determined from (6.3.4) as

&Ô0 \/l-4Ô2(l+4ô2)XB0 
4Ô °-35n3- 0 - 0 .

ax2 0 2

(6.5.28)

From (6.4.25) the boundary conditions required to solve (6.5.28) are

B0 ~ a(-X)112 (6.5.29)

B0 ~ 0 , X -  »  , (6.5.30)

where a is defined as

r /---------11/2
(1+4Ô2)V1-4Ô2

6
(6.5.31)

The asymptotic expansion of B as X^-00 can be determined by assuming a correction to 

(6.5.29) of the form b(-X)n and then finding b and n by substituting into (6.5.28) and balancing 

terms. This shows that

B0 ~ a(-X)1/2 + b(-Xy 5*2 , X-* -00 , (6.5.32)

where b is defined as

[6(l+4ôV l-4Ô 2]1/2

The system (6.5.28)-(6.5.30) can be simplified by a scale transformation of B0 and X  and the 

relevant solution has been discussed by Walton (1982). This provides a smooth adjustment in 

the amplitude of the y-rolls from the outer square-root form (6.5.29) to zero as X-*<x.
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It is now possible to obtain the solution in the transition region for Â3. Equation (6.5.10)

can be integrated twice, giving

3d
a3X 3 + f  fÊ 02dX d l  + a 3X + p3 .  iC (6.5.34)

x x

Since Bn is real it follows that

i 3 -  (à3X 3 + (a3+d0i)X + ry n p i l  + ( p 3 + â / ) ) e i c  a s  X -  -«  , (6.5.35) 

where /  and J  are real constants depending on the integral properties of the solution for Bt). 

Application of the boundary conditions (6.5.17) and (6.5.18) now requires

8*Q°II>1 (6.5.36)

Î>r à J  = 61 . (6.5.37)

The solution for Am can be found as

where it is required that

(. 1 • V
^40 = ¿ l+g*U>J* » (6.5.38)

¿1 + ̂ 1 0  = Cl • (6.5.39)

The equation for S, is obtained from (6.3.4) as

46-
dx

XB, =
ax4

X2B0(1+4ÔZ)(12Ô2-1) 
16~12ao V V

(6.5.40)

and it can be shown that
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ê , = c (-x ÿ ’2 * 0((-X )-1'2) , x - — oo (6.5.41)

where

- /l+ 4 ô 2(12ô2- l)  
16/6(1 -4 ô 2)1/4

(6.5.42)

and

Bt -  0 , X -  « . (6.5.43)

In principle S, can now be found by solving (6.5.40) together with the boundary conditions 

(6.5.41) and (6.5.43).

Once B, is known, it is possible to obtain the solution in the transition region for A4. 

Equation (6.5.12) can be integrated twice to obtain

3 à
à4X4+b2X 2+—± f ( f Ê 2XdX)dX+3à0f ( f É 0É1dX)dX+a4X+P4 ,iC

2
X X X X

(6.5.44)

Since Bn and B, are real it follows that

Â4 ~ [à4X4 + b2X2 + ¿10Xln|X| + (a4 + à̂ K. + à^L^e'0 as X -  -«>

(6.5.45)

where K and L are real constants depending on the integral properties of the solutions for B(l 

and fi,. Application of the conditions (6.5.20) and (6.5.21) now requires, in particular, that

¿ij a0K axL — /  . (6.5.46)

It should be noted that the jump conditions (6.5.25), (6.5.27), (6.5.36), (6.5.37), (6.5.39) 

and (6.5.46) generated by the presence of the transition zone all involve only the real parts of
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the outer solutions for Ru Ru R20, R20, R2 and R2 and that therefore the imaginary parts of these 

outer solutions and their first derivatives must be continuous at the transition point Xq. Phase-

winding effects are associated with this imaginary part of the solution and so it is in fact 

unnecessary to calculate the various integrals /, J, K and L which arise in the preceding 

analysis in order to determine the phase-winding properties of the system.

6.6 Inner wall regions

There are two regions near the wall where the solution must adjust to the full boundary 

conditions (6.2.2). The outer wall region where x ~ e w allows the amplitude of the y-rolls to 

decrease from the value B ~  [(l-452)/3]1/2 attained as X-*0 in region I. Locally,

B = B0(X)+... , (6.6.1)

A = e1/4A0(X)+... , (6-6.2)

where x=e~I/4X  and it is easily established that

A0 = XA'( 0) (6-6.3)

and that B0 is the solution of the system

B*Bn c?Bn -
— “46 —^  -Bq+3Bq +46250 = 0 , (6-6.4)
dX4 8X2

B0 -  J - ( l - 4 6 2)1/2 , X - o o  , (6.6.5)
73

B0 = ~  ^ 0 , X = 0 . (6.6.6)
dX

Here the boundary conditions at X=0 are those discussed in section 2.2, first proposed by 

Brown and Stewartson (1977), and resulting from the behaviour of the solution in the inner
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wall region where x ~  1, to be discussed below. The system (6.6.4)-(6.6.6) would require a 

numerical solution and this is not attempted here, but it is noted that the adjustment represented 

by B0 will first affect the solution for A at order e3/4 in the region where X=0(1). This is then 

expected to influence the outer solution for A in region I at order e3/4 and the solution for \p in 

the inner wall region to be discussed below at order e3/2 but neither of these effects is large 

enough to be significant here.

In the inner wall region where x ~ 1 it is expected that

and substitution into the governing equation (6.2.1) shows that ip0 satisfies the linearised form

i)j = eijj0(x,y)+... , e -  0 (6.6.7)

(VM )2̂  = 0 . (6 .6 .8)

The relevant solution is

i|r0 = {(a1+èIx)e“ +(a2+è2x+c2x2+ii2x3)e 'y}+c.c (6.6.9)

and matching with the outer wall region as x-^oo requires that

\  = À'(0) , aj = i 2(0) (6 .6 . 10)

and

(6 .6.11)

Application of the boundary conditions \l/ = d\p/dx=0 at x =0 also implies that

a.+a* = 0 , ( 6 .6 . 12)

( a ^ - a ^ i + b y + b * = 0  , (6.6.13)
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a2 = b2 = 0 • (6.6.14)

From (6.6.10), (6.6.12) and (6.6.13) it follows that

4 2(0) = iRe {J^(0)e,c> = iJ^(0)cosC (6.6.15)

and thus

/^(O) = i?0(0)cosC(sinC + zcosC) , (6.6.16)

where, from (6.3.20),

0) = —  6(1-262)1/2 .
f t

(6.6.17)

This result shows that the wall region generates a reaction in A of order el/2 in the outer 

regions and it will be shown in section 6.8 below that this creates a phase-winding effect in the 

primary roll pattern at large distances from the wall. It is also noted here that terms in A in the 

outer regions which are larger than order e1/2 will have to vanish at X=0, so that A, and A20 

must satisfy

6.7 Outer solutions

It is now possible to determine each of the remaining constants arising in the outer solutions

.4. = 4 20 = 0 at X = 0 . (6.6.18)

for A,, A,, A20, A20, A2 and A2.

For 7?, and Ru it is required from (6.5.25), (6.5.37) and (6.6.18) that

* i ( 0 )  = 0  , (6.7.1)
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and it follows that

R ^ - R + X J  = 0 , (6.7.2)

R[(X^-R[(X^ = -IR0(X0) (6.7.3)

r  i/l -462(1 +462)/ 
Cl " 24

(6.7.4)

;  c .
Di -  o , -  - / - ; < «  • (6.7.5)

Ex = Ex = 0 , (6.7.6)

Ft = F, . (6.7.7)

The value of Fj remains arbitrary but is just equivalent to a correction to the phase constant C 

and can therefore be taken as zero without loss of generality.

For A20 and A jo it is required from (6.5.27), (6.5.39) and (6.6.18) that

*2o(°) = 0 , (6.7.8)

\2\f6
(6.7.9)

< (X 0) - ^ 0(X0) = - ^ ^
24 /̂6

(6.7.10)

It then follows that

0  , (6.7.11)
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^20  0  ’
(6.7.12)

n  = W ^ S 2 
20 3(1 +452)

9

"20 = o ,

20

The constant F20 remains arbitrary.

For A2 and A2 it is required from (6.5.36), (6.5.46) and (6.6.16) that

7^(0) = 7?0(0) cos C (sin C + icosC) ,

dA  + af  ~ V  + “*0^2 = 4 (x o) >

-dj ^  + 2a2D2 -  6 ^  la l + 2d2C + dxD - a0K -  axL 

\ _!• . (462-5)d0) .. ,
+ ^  + .....32 j  = « . W  .

which leads to

C2 = d(D + dxd2C + ¿ody/ -  d0dxK - a\L - 6 jd(( ,^ 2

*0 *0 „ 2

Z), = — sin2C -  f — dX - 53 f ^ - d X  , 
2 2 J A/2 J a /20 /?0 o

^2  -  D2 + C ~
4y/l-462J  

1+462

(6.7.13)

(6.7.14)

(6.7.15)

(6.7.16)

(6.7.17)

(6.7.18)

(6.7.19)

(6.7.20)

(6.7.21)
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È2 = (0)c os2C , (6.7.22)

, (1-4Ô2)2 
'2~ 48

(6.7.23)

^2 ^ 2  +
l/l-4 ô 2

i ( x 0- 6 / T 4 ? )  .
16

(6.7.24)

The constant F2 remains arbitrary.

The determination of the constants in the solutions for À2 and À2 is now completed and in 

particular the non-zero imaginary component of R2 generated by the reaction with the lateral 

boundary produces a correction to the wavelength at large distances from the boundary. This 

can be seen by noting that

ImiR,} ~ &  as X -  °° , (6.7.25)

where, from (6.7.22), (6.7.23) and (6.6.17),

<7 =
.. 1 ) 

3E7+—
2 16

= ô2(l -2ô2)cos2C (6.7.26)

This represents a correction to the overall wavelength of the primary roll pattern, because

A ~ —  e iCi l  + e1,2iqX\ , X -  °»
/3

(6.7.27)

and so at large distances from the boundary

A/2
~ ----expii[l + eq]x + iC} + c.c .

V3
(6.7.28)

From (6.7.26), the band of possible wavenumbers is restricted to the range

III < —ô 2(1-2ô 2) . (6.7.29)
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It is interesting to note that this range is a maximum when <52 reaches the value 1/4 and that it 

reduces to zero when <5=0. The case where <5 tends to zero corresponds to the situation where 

the transition point X0 moves away from the boundary and a new analysis is required to identify 

the phase-winding properties of the system in the case where both X and <5 are zero.

6.8 Discussion

In this chapter phase-winding effects have been considered for the combined x, y-roll pattern 

adjacent to a lateral wall x=0 with no forcing (X = 0). It has been shown that for y-roll patterns 

along the lateral wall within a waveband of order e1/2 about the critical wavenumber, phase-

winding solutions exist corresponding to adjustments of the wavenumber of the x-roll pattern 

within a band of order e about the critical wavenumber. The precise range of available 

wavenumbers is given by the formula (6.7.29) and shrinks to zero as the value of the parameter 

<5, which defines the correction to the critical wavenumber in the y direction, tends to zero. 

As <5-0, the transition line defining the extent of the y-rolls in the x direction moves away from 

the wall and a new analysis would be required to consider the special case where 6 = 0. The 

implication of the present theory is that there will be a severe restriction on phase-winding of 

the x-roll pattern in this case, more severe than in the (unstable) case of pure x-rolls considered 

by Cross et al (1983). As argued in chapter 5, a solution with the minimum possible value of 

| <51 is needed to ensure stability, and so an analysis of the case where <5 = 0 remains one of the 

most important aims of future work.

The analysis of the present chapter has focused on the case where X=0 and /x=2, but could 

be extended in a straightforward manner to general values of X and /x, with a corresponding 

adjustment to the formula (6.7.29).

This thesis has considered aspects of pattern selection in Rayleigh-Bénard convection and
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a related system, concentrating on the case where the pattern is formed in the region adjacent 

to an isolated lateral wall. Effects associated with the nonlinear interaction parameter /x, the 

lateral forcing parameter X, the wavelength of the x-roll pattern (q) and the wavelength of the 

y-roll pattern (6) have been analyzed using asymptotic and numerical methods. Generally 

speaking the results indicate that the existence of cross-rolls near the wall places a greater 

restriction on the band of wavenumbers of the main x-roll pattern than in the case where the 

cross-rolls are neglected. The present theory has not considered the effect of amplitude 

modulation of the x and y-roll patterns in the y direction, which can be expected to be 

significant where lateral walls also exist parallel to the x direction. In the future, it is hoped that 

relevant aspects of the present theory can be extended to obtain predictions of the structure and 

wavelength of roll patterns in finite rectangular planform containers, both for the simpler model 

and, eventually, for the full Rayleigh-Bénard system, allowing realistic comparisons to be made 

with experimental observations.
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Fig. 6.1 : Schematic diagram showing the main flow regions
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