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ABSTRACT

The work presented in this thesis is particularly concerned with a robust 
integral equation formulation of acoustic scattering and radiation problems, 
which are essentially exterior Neumann boundary-value problems. Both layer 
theory and the Helmholtz formula, used in the classical formulation (pre- 
1968), result in a non-uniqueness problem. This non-uniqueness is purely 
mathematical and has no bearing on the actual physical problem. Various 
workers over the past two decades or so developed alternative formulations, 
which resolve the problem of non-uniqueness but also suffer from 
computational drawbacks.

Kussmaul (1969) developed a formulation involving the superposition of a 
simple-layer potential and a double-layer potential, combined by a coupling 
parameter. Kussmaul also presented a uniqueness proof valid for all wave- 
numbers. However his formulation involves an integral operator which has a 
hypersingular kernel. This creates computational difficulties. My thesis 
presents a new integral equation formulation which involves the superposition 
of a layer potential generated by simple sources on the given boundary, plus 
a layer potential generated by dipole sources located on an interior boundary 
similar and similarly situated to the given boundary. These two potentials are 
also combined by a coupling parameter. However, unlike the Kussmaul 
formulation, this avoids the integral operator containing the hypersingular 
kernel. An argument towards uniqueness is presented. Some test radiation 
problems and some scattering problems are investigated. Numerical results are 
given which show that the new formulation gives excellent agreement with the 
analytical results.

The thesis also presents a derivation of wave-functions via layer potentials 
generated by a uniform distribution of sources on a spherical surface. This is 
utilized in the discussion of the hypersingular kernel of a certain integral 
operator, and the analysis is used to verify Terai’s (1980) result for a 
hypersingular integral on a flat plate.
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INTRODUCTION

The formulation of acoustic scattering and radiation problems presents 

formidable difficulties. The problems entail solving a partial differential 

equation in an infinite domain with given conditions on an internal boundary 

and at infinity. Progress is only possible by first recasting the partial 

differential equation as an integral equation. This enables effective numerical 

solutions to be achieved using the Boundary Element Method (BEM). This 

method has developed over the last two decades as an alternative to the more 

traditional numerical methods i.e. the Finite Element Method (FEM) and the 

Finite Difference Method (FDM). As regards acoustic problems BEM has 

advantages over the traditional methods both in terms of applications and 

accuracy.

The essential difference between the BEM and FEM/FDM is immediately 

evident, in that the latter require the discretisation of a full domain, in some 

cases an infinite domain, whereas the former requires the discretisation of the 

boundary only. Thereby BEM reduces the dimension of the domain of 

operation by one. Over the years texts by Brebbia [8], Jaswon and Symm [36] 

and Banneijee and Butterfield [20] have given a very useful and extensive 

account of BEM. Although Jaswon and Symm [36] deal only with harmonic 

and biharmonic problems, the numerical treatment therein can equally well be 

applied to wave problems (Helmholtz problems).

The BEM can be applied equally well to both interior and exterior boundary- 

value problems. For exterior problems both FEM and FDM face 

complications in regard to the discretisation of an infinite exterior domain. 

These may be applied to such problems by assuming a fictitious boundary in 

the far-field, discretising the domain bounded by the given boundary and the
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outer boundary, and then applying the condition at infinity to the outer 

boundary. Generally, these can only be achieved with great difficulty. For 

such problems the BEM is a more effective tool as only the boundary needs 

be discretised.

For some interior problems the BEM provides a competitive numerical method 

of solution to FEM or to FDM. The performance of each method depends on 

the particular partial differential equation, the nature of the surface, the 

boundary condition and the method of discretisation. Symm [88] gives a useful 

comparative analysis of numerical methods applied to a particular problem. 

He found that FEM and certainly FDM can be awkward to apply in 

irregularly shaped domain for which the BEM emerges as a more appropriate 

method.

Acoustic scattering or radiation problems are essentially exterior boundary- 

value problems subject to Dirichlet or Neumann boundary conditions. The 

central theme of this thesis is to present a new robust BEM formulation, the 

Adapted Kussmaul Formulation (AKF), for the exterior Neumann problem. 

The thesis divides naturally into four parts.

Part I (chapters 1-4) introduces the Helmholtz equation and its fundamental 

solutions, so opening the way to the theory of simple-layer and double-layer 

Helmholtz potentials. We show how these potentials may be utilized to 

formulate boundary integral equations, and also point out that the classical 

integral equation formulation for exterior problems breaks down at a certain 

spectrum of "critical" wave-numbers. These wave-numbers may be identified 

as the eigen frequencies (eigenvalues) of the corresponding interior problem. 

The eigenfrequencies are widely separated at low values of the frequency (i.e.
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low wave-numbers) but become more and more closely bunched together as 

the frequency increases. It is well understood that this breakdown feature is 

purely mathematical and has no bearing on the actual physical problem, for 

which a unique solution always exists. Details of the equivalence between 

exterior and interior problems are discussed in chapter 4.

In part II (chapters 5, 6), we generate interior and exterior Helmholtz 

potentials from uniform source distribution on a spherical surface. These 

enable us to verify boundary properties of Helmholtz potentials at any 

Liapunov surface. Also, these help us to understand alternative definitions of 

the hypersingular operator Nk (defined in chapter 2 p25), and to choose the 

one which appears to be most physically significant. It may be noted that the 

evaluation of Nk presents the greatest computational difficulties involved in the 

numerical solution.

Burton [13], and also Kleinmann and Roach [42], give well-documented 

reviews of various alternative BEM formulations of the exterior acoustic 

problem. In part III (chapters 7, 8), we briefly review the most significant 

formulations to date, which attempt to resolve the breakdown problem 

discussed in part I. Most important of these are that of Burton and Miller 

[17], of Schenck [82] and that of Kussmaul [48]. Burton and Miller [17] 

utilize SHE (Surface Helmholtz Equation) in combination with its normal 

derivative equation, in order to ensure a unique solution even at critical values 

of the wave-number k. However the Nk problem remains. Burton [13, 14] and 

Terai [93] present ways of circumventing this. The former suggests a 

régularisation process (originally propounded by Panich [70]), for which the 

numerical implementiation is very cumbersome. The latter presents a contour 

integration method, but only applicable to planar boundary elements. Schenck
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[82] avoids Nk by combining SHE with a Helmholtz relation at selected 

interior points. However, since the resulting system of equations is over-

determined, he only achieves a solution by an optimisation procedure. This 

optimisation procedure is wholly dependent on a judicious selection of the so 

called "good" interior points which provide the Helmholtz interior relation. 

As yet no consensus has been reached as to how one selects these points.

Kussmaul’s [48] formulation involves a superposition of a simple-layer 

potential and a double-layer potential, both generated by the same continuous 

source distribution on a given surface. This provides a unique solution. 

However, due to the presence of the dipole potential, a highly singular kernel 

appears in the boundary integral equation i.e. it too involves the Nk difficulty. 

This motivated the development of a new formulation AKF (see earlier 

paragraph) which also utilizes a superposition of layer potentials except that - 

unlike Kussmaul - the dipole potential is now generated from an interior 

surface similar (and similarly situated) to the given boundary. This avoids the 

Nk operator but still provides a unique solution. Kussmaul proved uniqueness 

within a 2-D context. We provide (in chapter 8) an alternative proof which 

holds for 3-D problems and which can also be adapted for the AKF.

Over the last two decades, Burton and Miller [17], Schenck [82] and to a 

certain extent Kussmaul [48] have been in the forefront. More recently, Jin 

[40] has developed a formulation which involves an integral equation of the 

first kind. He makes use of Sobolov space in order to provide a unique 

solution. But the numerical implementation still remains to be reported.

In part IV (chapters 9, 10), we describe our numerical methods for the AKF 

and apply them to achieve numerical solutions of some exterior Neumann
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and acoustic scattering problems. Naturally, the surface of the scatterer is 

assumed to be rigid, as prescribed by the Neumann boundary condition. The 

scattering pattern of an incident wave on a sphere, and the pressure 

distribution around the sphere, are computed. As part of our test problems, 

we find the radiation pattern of a pulsating sphere and that of an oscillating 

sphere. All our results have been displayed in terms of graphs.

To summarise, the most original material of the thesis appears in chapter 8 

plus its applications in chapters 9 and 10. Also, much of the analysis in 

chapters 5 and 6, in particular the analysis of the hypersingular operator Nk, 

appears to be original.

As regards future research, I aim to apply the AKF method to hard acoustic 

scattering by a set of prolate spheroids of axial ratios varying from b/a = 1 

(i.e. a sphere) to b/a = 5, where a is the radius of the central cross-section 

of the prolate spheroid and b is its semi-length. I hope that my results will 

provide benchmark solutions for future methods of attack.

Part of this thesis has been published [104], under the title " A new BEM 

formulation of acoustic scattering problems", in Proceedings of BEM XV, 

Vol.I, 1993.
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PART I

BACKGROUND THEORY



Chapter 1
Helmholtz Equation

In this chapter we give a brief discussion of the Helmholtz equation, which is 

the equation satisfied by an acoustic wave in a homogeneous continuum. For 

a given obstacle in the medium, an analysis of the behaviour of a wave 

function on the boundary of the obstacle and at infinity requires a study of the 

boundary features i.e. conditions on the boundary and at infinity. These are 

also discussed later in this chapter.

1.1 Equations of the acoustic medium

Supposing a region in space is filled with a homogeneous acoustic medium of

density p and speed of sound c. A small amplitude acoustic wave propagates 

through this given homogeneous medium according to the linear wave 

equation [60]

V20(/>,i) = (1.1)
c2 dt2

where $  plays the role of a scalar velocity potential at any point p  in the 

medium at time t. This means that the particle velocity, denoted by y, is 

defined by
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¥ = Vi> (1.2)

Let the acoustic pressure at time t be denoted by P. Then from Newton’s 

equation of motion we have

P
dx
~dt

= -VP

which becomes

p | [ V $ ]  = -VP
at

From which

P = (1.3)

Specialising $  into the form

H P ,t)  = <J)(p) e ~iu>t (1-4)

we find that <J> satisfies the reduced wave equation (or more commonly the 

Helmholtz equation)

V^Q*) + £2<1>(P) = 0 (1.5)

at any field point p  in the medium. In relation (1.4), e ~iwt represents the 

time harmonic dependence i.e. the representation (1.4) is specialised for 

steady monochromatic waves. Here

a) = 2n  v
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where v denotes the frequency of propagation in hertz. Also

k = o)c-1 = 2 it X ^

is the acoustic wave number, where X denotes the wave-length.

We consider the propagation of small-amplitude acoustic waves in a medium 

of negligible viscosity. From the relation (1.3) and (1.4) we have

P(p,t) = iw  p <!>(/>)e~,u>t (1-6)

at any field point p  in the medium. Although both P and y satisfy the wave

equation (1.1), it is convenient to work in terms of a single function (J> from

which the scalar velocity potential $  may be computed using the specialised 

form (1.4) with the time-harmonic part having been incorporated. Likewise

the excess pressure and the particle velocity are computed using the same <J> . 

Usually the time-harmonic component is omitted in the calculation and the 

pressure is found as

P(p) = i <*>p 4>(/>) 0-7)

at any field point p, where <f> satisfies the Helmholtz equation as noted 

before.

1.2 Liapunov smoothness

The boundary features of an obstacle in an acoustic medium play an essential 

role in any boundary-value problem (details in chapter 4). In this thesis we
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restrict ourselves to boundaries which satisfy a certain smoothness condition 

formulated by Liapunov [31].

In fig.l dB denotes the boundary of an obstacle in an acoustic medium,

nq,n0,ni denote normals at q,q0,qi respectively on the surface dB ■ A surface

dB is said to be Liapunov if it satisfies the following three conditions (see 

Smirnov [79], Gunter [31]):

(i) A tangent plane and a normal exists at every point p  on dB •

(ii) VqedB , 3 a single fixed number e>0 such that the (see fig.l) 

neighbourhood surface

{peR 3: \p~q\<i) n  3B (1-8)

intersects lines parallel to the normal at q (i.e. nq) in at most one 

point only. It is clear that if the above property holds for any given value

e0>0 it also holds for any other smaller values i.e. for

e0>e1>e2>...>0

(iii) If 0 is the acute angle formed by the normals n0,n, at two points 

(fig.l) </,„<//, then 0 satisfies the Holder condition [65], [25]

6 ^ D lio - ii l“

where D ,a  are constants and D > 0 , 0 < a ^ l  •

9



F ig .l Boundary features for a general Liapunov surface; B~, B+ 
are respectively the regions interior and exterior to the
surface dB .
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A consequence of condition (ii) is that the neighbourhood surface in (1.8) may 

be represented in terms of a tangent-normal system of coordinates centred

around the point q, with £ -axis coinciding with the normal at q, and £ , t | 

being two orthogonal axes in the tangent plane such that the neighbourhood 

surface in (1.8) has the equation

C = i ( S , n )

where £ is single-valued at least over part of the tangent plane, and by 

conditions (i) and (iii) £ possesses first derivatives.

It may be mentioned that Kellogg in his classic work [41] introduced a 

somewhat more general smoothness condition than Liapunov. However, in this 

thesis we find that Liapunov smoothness condition is sufficient for our 

requirement. Indeed restriction to Liapunov surfaces is necessary for 

formulations of boundary-value problems of acoustics with the aid of potential 

theory.

In this thesis we shall be concerned with a closed boundary (denoted by dB ), 

in a linear isotropic homogeneous continuum. This boundary encloses an 

interior domain denoted by R  and it also forms an internal boundary of an 

infinite exterior domain denoted by B+, see fig. 1. Note that

B~ U dB U B' = M3

More generally we may assume that dB consists of a number of sub-

surfaces dBi such that

11



dB = Ui3Bi (l<,izn) , dBfidBj = 0 for i*j

where each sub-surfaces dBi is assumed to satisfy Liapunov smoothness 

conditions as detailed in the previous section.

1.3 Conditions on the boundary

Any boundary-value problem of finding the unknown function (in the acoustics

situation it is the wave function <J> ) which satisfies a certain equation (in this 

case the Helmholtz equation (1.5)) in the interior domain B , requires the

knowledge of the behaviour of the unknown function on the boundary dB , 

and in the case of the exterior domain B+, one also needs to know the 

behaviour of the function at infinity.

Boundary conditions

Any of the following classical boundary conditions may be assumed on dB •

(a) Dirichlet condition, <}>(/?) = f(p )  > pedB  (1.9)

(b) Neumann condition , —  (p) = f(p ) , pedB  (1.10)
dn

(c) Robin condition , —  (p) + h(p)$(p) = f{p) , pedB  (1.11)
dn

where f h  are given functions. However, in this thesis we primarily consider 

Neumann problems i.e. condition (b) only.

12



Radiation condition

This condition is in fact the boundary condition at infinity i.e. on the boundary 

of a sphere with infinite radius and completely encloses the obstacle or the

structure with boundary dB • In fact this condition ensures a regular

behaviour of the functions at infinity. Also, this is in keeping with the 

requirement that all scattered or radiated acoustic waves are out-going at 

infinity. The so called radiation condition was first formulated by Sommerfeld 

[80] though later works by Kupradze [46], Atkinson [6], Rellich [72], and 

Wilcox [96] sharpened its formulation. In 3-D it has the form

lim [r{— (r) + iife<f>(r)}] = 0 (1.12)
r-™ dr

where r= \p \ ,  the distance of a general field point p  from a fixed origin 

within R. Any function which satisfies (1.5) and (1.12) is known as a 

radiating wave function.

According to a fundamental theorem (see Smirnov [79]), the solution of a 

wave function in the exterior domain satisfying the Helmholtz equation (1.5) 

in that domain and subject to the radiation condition (1.12) and one of the 

boundary conditions (1.9),(1.10) or (1.11) is unique, provided that

3t(£)>0, %(k)*0

where k denotes,as before,the acoustic wave-number. This thesis only deals

with k real and k > 0  i.e. g(£)=0 as dictated by the real situation where the

wave number k is the ratio of two real quantities i.e. c 1 . This implies 

that the exterior Helmholtz problems under consideration always have unique 

solutions.
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Chapter 2
Helmholtz Potentials

The integral equation method is widely used in solving boundary-value 

problems of acoustic scattering and radiation. The main advantage of this 

method is the fact that numerical procedures refer only to the boundary (2-D 

surface) of the domain (finite or infinite) under consideration, thereby 

reducing the domain of discretisation by one dimension. To embark on 

integral equation formulations for Helmholtz boundary-value problems, we 

first of all define layer potentials and examine their properties.

2.1 Simple-layer Potential

A simple-layer potential has the form

Lko(p) = f  gk(p,q)a{q)dq ; p  e ®3 . (2.1)

This is a Helmholtz potential generated at a field point p  by a continuous

distribution of simple sources extending over a Liapunov surface dB , and

of surface density a(q) at q on the surface dB which is assumed to be

Holder continuous over dB (see section 1.2 in chapter 1). Here dq is a 

surface differential (or an area element) at q, see fig.2.
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Fig.2 Boundary features for a surface with continuous
distribution of simple sources generating a simple-layer

potential at p ± ; the double arrow signifies the continuity

of the simple-layer potential across the surface dB .
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In 3-D

gk(p S
e -ik\p-q\

\P~<l\
(2.2)

This is the free-space Green’s function for the Helmholtz equation which, 

from the physical point of view, represents the potential at p  generated by a 

unit point source at q (and vice-versa). This potential is a continuous function 

of p, differentiable to all orders, and it satisfies the Helmholtz equation

^ g k(P,q) + k2gk(p,q) = 0 (2.3)

everywhere except at the source point q. Formally gk satisfies (in both 

variables)

V2gk(p,q) + k2gk(p,q) = -47r6(|/>-tf|) (2.4)

everywhere i.e. it is a fundamental solution of the Helmholtz equation,

where 6 is the Dirac delta function centred upon q, see Dirac [28], Lighthill 

[54], Jones [38].

Clearly gk also satisfies the radiation condition (chapter 1, 1.12). Note that gk 

is a close generalisation of the free-space Green’s function

g(p,q) = ”7 ~ r (2.5)\p-q\

for Laplace’s equation; in particular they have the same order of singularity

as \p~q\-® , as may be seen by expanding the functions for small \p-q\ . 
In 3-D we find that

16



gk(p,q) “ -r-̂ —r + 0(1) -  g(p,q) , as \p -q \-0  . (2.6) 
\P~Q I

An immediate consequence is that the jump and continuity properties of the

Helmholtz potential at dB parallel those of the Laplace potential at dB • 

Apart from the property (2.6) the existence of the integral (2.1) depends on 

the smoothness of layer density o and the smoothness properties of the

surface dB (see section 1.2 in chapter 1). The smoothness condition

on dB may be expressed by writing

dB = 11 dBt , (1 zizn , n e N)

as detailed in chapter 1 ; and requiring that each dBt is a Liapunov surface. 

We also require that <j be Holder continuous over dB (as already 

mentioned) i.e. a satisfies the following inequality

|o($i) -  o(02)l -  q2\P ; 0<p^l , A >0 (2.7)

for any two distinct q1,q2edB .

Subject to these conditions the simple-layer potential Lk has the following 

principal properties:

(i) It exists, and it is continuous and differentiable, everywhere in 

B+U R  and satisfies the Helmholtz equation i.e.

17



VeLka(p) + k2Lko(p) = 0  ; V p e  M3\3f i

and it also satisfies the radiation condition (1.12).

(ii) It exists and is continuous on dB despite the singularity (2.6), since this

is essentially a weak singularity. Also, its value atp  in dB is continuous 

with its neighbouring values (see fig.2) in B+ and in fi" i.e.

where p +<=B+,p -e B -

(iii) There exist two distinct normal derivatives dLJdnp , dLk/dnp~ at p in

dB , one on each side of dB ■ We adopt the convention that these 

two derivatives have equal status in the sense that the relevant variables

np+,np both increase moving away from dB (see fig.2). At any point

p ±eB +l)B~ on the normal line through p  in dB , other than the initial 

point p, we have

where gk'(p±,q) signifies the derivative of gk in the direction of the

normal passing through p * keeping q fixed, see Jaswon and Symm [36], 

But at the initial point, i.e. p,

lim Lko{p+) = Lko(p) = lim Lka(p~) ; pedB  (2.8)

(2.9)

18



dL.o r /
— —(p) = -2no(p) + | gk(p,q)o(q)dq ; p<=dB . (2.10)
dn JdB

It is often convenient to replace (2.10) by either the form

dL.o r dg.
------ (p) = -2 Tia(p) + / — ~(p,q)o(q)dq ; p€dB  (2.11)
Bn' JdB dn~

p  p

or

dL.o c dg.
------ (p) = -2 Ti o(p) + / — L(p,q)o(q)dq ; peòB . (2.12)
3n„+ JdB dn +

p  p

Superposing (2.11) and (2.12) yields the jump,

dL.o dL.o
------ (P) + -------0 )  = -47 to (»  ; . (2.13)
dnn+ dn ~

p  p

in the normal derivative dLJdnp at dB ■ This follows since 

gk(p,q) remains continuous as p crosses the surface dB so that

dg. dg.
— ~(p,q) + — ~(p,q) = 0 . (2.14)
dnp+ dnp~

Note that (2.13) is a consequence of the singular behaviour (2.6).
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L Fig-3 Boundary features for a surface with continuous
I distribution of dipole sources generating a double-layer

I potential at p * ; the double arrows signify the

discontinuity of the double-layer potential across the 
I surface dB .
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2.2 Double-layer potential

We introduce a dipole source at qedB  , again following Jaswon and Symm 

[36], defined by

, dgt d e~Uĉ q\
gfr4)' = ~P<pS = -f- l- . r l (2.15)dnq \p-q\

where nq (normal at q) points into the domain under consideration. From one 

point of view it can be regarded as the normal derivative of gk(p,q) at q 

keeping p  fixed. On the other hand, we find it convenient to regard it as the 

potential at p  generated by a unit dipole source at q, see fig.3. A useful

formula for computing gk(p,q)' is to write

d |.e -ik\p-q\ -«*!/>-91

dna \p-q\ -] = \p-q\
e -ik \p -q \

[1 + ik \p -q \\------- ( P~q)-n
\p-q\

where nq denotes the unit normal vector at q, and p  y q denote the position 

vectors of the points p,q respectively.

Note that gk(p,q)' satisfies in p  the Helmholtz equation

Ÿ2gk(p,q)' + k2gk(p,q)' = 0

everywhere except at the source point q. Formally gk(p,q)' satisfies

^ g k(P,qy + k2gk(p,q)' = -4Tzà(\p-q\') ; V p  (2.16)
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where the prime on 6 function denotes the normal derivative at q. This 

shows that it is a second fundamental solution of the Helmholtz equation (1.3). 

Also, this potential is a continuous function of p  and is differentiable to all

orders. As in the simple-layer case, gk(p,q)' is also a close generalisation of

g(p,qY , which is the second fundamental solution of Laplace’s equation

*<M)' -  -^ -0 .4 )  -  ^ - [ |/> -4 |- ']  . (2.17)on dn<7 9

Also, gk(p,qY behaves in the same manner as g(p,qY as \p-q\^0 , as may 

be seen by expanding this function for small \p-q\ ■ In 3-D we find that

gk(P,q)' “ ~ - 1 + 0(1) “ g(P&' > as r=\p-q\^0  .(2.18)
\p-q\2 dnq

We may now introduce a layer potential using gk(p,q)' as the Green’s 

function i.e.

Mk\i(p) = J gk(p,q)'\i(q)dq . (2.19)J oB

This is a Helmholtz double-layer potential generated at a field point p  by a 

continuous distribution of dipole sources extending over a Liapunov 

surface dB and surface density at qedB . Here, as before, dq is a

surface differential (i.e. an area element) at q.
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weak since for points on a Liapunov surface, see Mikhlin [61],

£ 1 ',T ; 0 < y s l
Sn,

where ri, y are constants. Consequently, for small /•= \p-q | we find for 3-D 

that [25], [65],

\gk(P>4)'\ * , 1].2£ ,
\p-q\

which demonstrates that the singularity in the kernel of the double-layer 

potential is weak (details in chapter 3), indeed the resulting integral operator

Mk is compact on L2(jdB) (see chapter 3). This singularity (2.18) is 

responsible for the jump and continuity properties of the double-layer potential

at dB , which parallel those of the Laplace double-layer potential.

As before, the existence of the integral in (2.19) depends on the layer 

density p , the singularity of the kernel function gk{p,q)' (noted before) and 

the smoothness properties of dB ■ We make the same assumptions on the 

layer density p and the surface dB as in the simple-layer case.

Subject to these conditions Mk has the following properties:

(i) It exists, and is continuous and differentiable everywhere in B+ and R  

and satisfies the Helmholtz equation
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and satisfies the Helmholtz equation

V2Mk\i(p) + k2Mk\i(p) = 0 ; V peR 3\dB

and in B+ it satisfies the radiation condition (1.12).

(ii) It exists on dB even though there is a singularity as \p-q\^0 , which 

is essentially a weak singularity (as noted before) and consequently

for pedB

MkV-(P) = L g k(P,q)'iïq)dq < ~ .
J  dB

However its value at p  in dB is not continuous (see fig.3) with its 

neighbouring values in B+UB' i.e.

lim M k[i{p+) = 2 k  ii(p) + M k\i(p) ; pedB
p '~ p

(2 .20)

and

lim Mk\i(p ) = -2 n\i(p) + Mk\i(p) ; pedB
p-~p (2 .21)

i.e. the jump as it crosses the surface is

lim Mk\x(p ) -  lim Mk\i(p+) = - 4 tc p(p) ; pedB  (2.22)
p--p p+~p

(iii) Normal derivatives are continuous i.e. denoting by
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d = lim d
drip- p-p dnP

d = lim d

a*/ p*-p dnP

we have

3Mk\i

dnp-
(P l +

dMk\i
(p +) = o . (2.23)

We denote the normal derivatives of Lk and Mk by Mk and Nk respectively i.e.

dL,o _ r de.
-(p) = MkTa(p) = \ —^(p,q)o(q)dqj drdn„ ids Qn. (2.24)

and

dMkn 
dn_ (P) = w t |»&>) -  - i - l • (2.25)dnnJM dnp i

Note that Mkr is the transpose of Mk, hence the symbol. The kernel of Mk has 

the same weak singularity as that of Mk. The derivative with respect to np in 
(2.25) can not be taken inside the integral sign because

&8k
dndnp Q

(PA)
1

\P~Q I
0(1) \p-q\-*0 , (2.26)
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consequently the kernel of Nk becomes hypersingular ( to be discussed in 

chapter 3) i.e. non-integrable. Some integral equation formulations involve 

integral operators with such hyper-singular kernels. This poses difficulties in 

numerical treatment and requires special techniques. This can also be 

interpreted in the sense of Hadamard’s finite-part integration [33]. Régo Silva 

et al [77, 78] exploit this in their treatment of the hypersingular kernel.
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Chapter 3
Basic Integral Equation Theory

In this chapter we review some of the classical theory relating to Fredholm 

integral equation of the type

(-AI + K )t = /  (3-1)

where A is a complex constant parameter, K is a linear integral operator

and I denotes the identity operator. Most of the integral equations which 

arise from the formulation of acoustic problems are of the type (3.1), which 

is usually referred to as a Fredholm integral equation of the second kind. 

Integral equation formulations of acoustic scattering or radiation problems via 

layer potentials involve questions of the existence and uniqueness of solutions. 

In order to resolve these questions we have to examine the properties of the 

integrals in some detail, in particular the nature of the kernels involved in the

operator k  • Mikhlin [61] deals with this subject within the framework of 

completely continuous operators, otherwise known as compact operators, a 

class of integral operators which contains most of the usual integral operators 

of potential theory. Roach has given a clear review of the subject in one of 

his papers [76]. In the light of these discussions we shall later examine the 

features of integral operators arising from the layer definition. The theory may 

then be utilized to deduce whether or not the solution to an integral equation 

exists and whether it is unique if it does exist. In the case of the Helmholtz
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equation the operator K is a function of the wave-number k and we shall find 

that solutions do not exist for a spectrum of denumerable values of k whilst 

a unique solution exists for the remaining values of k. The results that follow 

are classical results whose proofs may be found in [7], [25], [68].

3.1 Compact operators

A compact operator K : X-*Y is defined to be a linear operator such that it 

maps any bounded set in X into a compact set in Y.

A set is said to be compact if every sequence in the set contains a convergent 

subsequence.

We mention below some of the principal results from the classical theory 

concerning compact operators which impinge upon our present discussion:

(i) All compact operators are bounded.

(ii) Any linear combination of compact operators is compact.

(iii) The product of two bounded operators is compact if one of the operators 

is compact.

Let Q be a set in 3-dimensional Euclidean space. Let p ,q e  Q - A function 

k (p,q) defined on Q XQ for which

is known as Fredholm kernel (or Hilbert-Schmidt kernel). The integral 

operator generated by a Fredholm kernel is called a Fredholm operator, i.e.

(3.2)
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K u(p) = f  k (p,q)u(q)dqJ Q (3.3)

It may be proved that the operator in (3.3) is compact in L2(Q) (see Smithies 

[81]) i.e. the space of Lebesgue squared integrable functions. All the operators 

with which we will be concerned with have the form (3.3),

where ueX  and K :X^Y .

The Transpose of K is given by

(K Tu)(p) = f  K(q,p)u(q)dq ; ueX  . (3.4)J o

The Adjoint of K is given by

(K*«)(p) = f * g 0 u (q )d q  ; ueX  (3.5)J Q

w^ere *(q,p) denotes the complex conjugate of K(q,p) •

An integral operator K is said to be symmetric if

K(p,tf) = <q,p) , V p ,q  e Q 

and is said to be self-adjoint or Hermitian (see Dirac [28]) if

k (P»9) = <q,p) , V p ,q e Q  ■

Clearly, Lk and Nk (see chapter 2) are symmetric operators and Mk is the
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transpose of Mk as noted before. Next let us recall an important result from 

classical Fredholm theory concerning the existence and uniqueness of the 

solution of (3.1).

3.2 Fredholm theory for compact integral operators

Let us suppose that K is a compact integral operator (as defined in (3.3)), 

which is defined on the complex Hilbert space ¿ 2(Q) where Q is bounded. 

The inner product of two functions ijj, (p of this space is defined as follows

(ijr,<p) = f^(q)(p(q)dqJ U

where bar denotes complex conjugate.

The adjoint operator K’ is related to the operator k  by

(i|r,K<p> = (K*\Jf,<p> • (3.6)

Let us now consider the equation (3.1) and its adjoint equation

(-Xl + K*)<p = g • (3.7)

As a first step towards examining the equation (3.1) we look at the 

corresponding homogeneous integral equation

(-AI + K)i|r = 0 • (3.8)

The main features of the Fredholm theory are contained in the following 

theorem:
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Fredholm alternative [61], [47]

Either the homogeneous equation (3.8) has only the trivial solution i.e.

(3.8) is satisfied only for ^  =o , in which case the inhomogeneous

equation (3.1) has a unique solution for any choice of / e L 2(Q) >' 

or the homogeneous equation (3.8) has a finite number of linearly

independent non-trivial solutions ( \Jr ; i=l,2,...,n} ; which gives rise 

to two possibilities:

(1) the orthogonality condition (3.10) is satisfied, yielding a non-unique 

solution of (3.1).

(11) the orthogonality condition (3.10) is not satisfied in which case the 

equation (3.1) does not have a solution at all.

If the first alternative holds then the adjoint homogeneous equation

(-Xl + K*)(p = 0 (3.9)

also has only the trivial solution,i.e. <p =0 , in which case the inhomogeneous

adjoint equation (3.7) has a unique solution for any choice of geL2(Q) • 

Whilst if the second alternative holds then the adjoint homogeneous equation

(3.9) also has a finite number of linearly independent non-trivial solutions

{<pi ; i=l,2,...,n) .

Any value of x for which the homogeneous equation (3.8) has a non-trivial 

solution is called an eigenvalue or a characteristic value of the equation and
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the corresponding solutions are called the eigenfunctions or the charecteristic 

functions.

If X is an eigenvalue of (3.8), with corresponding eigenfunctions

; i=l,2,...,n} , then the integral equation (3.1) only has a solution 

provided the inhomogeneous term / i s  orthogonal to all the eigenfunctions 

{<pi ; ¿=1,2,...,n) corresponding to the eigenvalue X of the homogeneous 

adjoint equation (3.9) i.e. if

However,this solution is not unique since any linear combination 

of li^} would satisfy (3.8).

According to Fredholm theory the equation (3.8) (and hence (3.9)) has either 

a finite or a countable set of eigenvalues. If the set is countable it has no finite 

limit point.

For our purpose we can restate the Fredholm alternative in terms of the 

transpose k 7 » by taking the complex conjugate of the equations involving 

K* i-e. equation (3.7) takes the form

(3.10)

( - «  + K 7) ^  = g  > (3.7a)

and the equation (3.9) takes the form

( - X I  + K/)<p = 0 • (3.9a)

The orthogonality condition takes the form
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<Pi> = 0 » (3.11)

So the theorem may be restated in the same form by incorporating equations 

(3.7a),(3.9a), which replaces equations (3.7) and (3.9) respectively, and

(3.11).

The wave numbers k are related to the quantities X and so the uniqueness of 

the solution of the integral equation is dependent on certain categories of the 

wave-numbers k.

Before we look at the situations which give rise to weak and hyper-singularity 

of the kernel functions, we must review the properties of the kernel functions 

of the integral operator involved in this thesis.

3.3 Properties of the kernel functions

The results mentioned in this section may be found in [13] and [14]. 

Henceforth, ga will denote the free space Green’s function for the Laplace 

equation, as defined in chapter 2.

3.3.1 gk(p,q) and its derivatives with respect to r=\p-q\

In 3-dimensions we have

gk(p,q)
e -ik\p~q\

1 H
(3.12)
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dr rz

— (p , q ) = — (2 + 2ilr -  ifc2r2) . (3.14)
dr2 r 3

(3-13)

Putting k=0 in (3.12), (3.13) and (3.14) we obtain the analogous 

situations for the free space Green’s function of the Laplace equation.

3.3.2 Expressions for the normal derivatives of gk

£ < m ) ■dnq dr dnq
(3.15)

dnp
, . d8k. . ar 
fotf) = — M —dr dn_

(3.16)

dfrfc ^  } = # r  + &8k dr dr 
dnpdnq ’ dr dnpdnq dr2 dnp dnq

(3.17)

where

dr = 
dnp r

(3.18)
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dn
(3.19)

r

(3.20)

Substituting for (3.13),(3.14),(3.18),(3.19) and (3.20) in (3.17) we get

Putting k=0  in (3.15), (3.16), (3.17), (3.18), (3.19), (3.20) and (3.21) 

we find the analogous situations for the free space Green’s function of 

Laplace’s equation.

3.3.3 Behaviour near sigularity

In the following, p ,qeQ  , where Q is smooth at p

8k(PA) = g0(p,q) + 0 (1 ) = 0(\p-q \-')  + 0 (1 ) , \p -q \-0  , (3.22)

= - y K 1 + ikr)(np-nq)

~ —Ar-n )(r-n )(\ + ikr - k2r2)] 
r

(3.21)

gk(p,q)' = 0 (\p -q |~2) + 0 (1 ) = g0(p,q)' , \p-q\^0 (3.23)
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(3.24)
dtrdn

P  9

&8k (P,q) = 0 ( \p -q \-3) + 0(1) , \p -q \-0  .

Moreover

[gk(P,q) ~ g0(P S \  = 0(1) ; as \p--q|-0  , (3.25)

[ ^ ( p ,q )  -  ^ -(p ,q )] = 0(1) ; as \p-q \-o  , dn„ onnp p
(3.26)

-  P-(P,q)] = 0(1) ; 05 \p-q\-~0 ,dnn on„
9 9

(3.27)

-  - ^ c P,q)] = 0 (\p -q \-1) + 0(1) ; 05 |p-<zbO .(3.28) 
dnP dnq dnq

Clearly from (3.25) and (3.28)

¿j2 d2
km -------- [£* ~ £01 * —  ^  Um [gt -  g0] .

Lp - o I-o  d n p d n q dnpdnq Ip-oI-o

3.4 Weak singularity

Let Q be a bounded set in 2-dimensional Euclidean space. An integral 

operator K with a kernel function K(p,q) , which satisfies
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\K(p,q)\ <l M\p-q\e~2 , V p ,q  e Q , p*q > (3.29)

where M > 0 and 0<e^2 , is said to have a weakly singular kernel.

Some examples are as follows.

(i) The kernel function of Lk:

*(p,q) = gk(p,q)

where gk is as defined in (3.12). From which we get

\gk(p,q) I = -—7
Ip-il

Clearly this kernel function satisfies the condition (3.25), therefore it is 

weakly singular.

(ii) The kernel function of Mk:

, p)r
K(p,q) = gk(p,q) = -(1 + ik\p-q\)~------ , (3.30)

\p-q\ dnQ

where gk(p,q)' is as defined in chapter 2.

Now

dr
I— | < r ilp - i l’ , 0 < y s l , i i > 0 ,

for a Liapunov surface [61], from which

\gk(p,q)'\ * & \p-q\y~z , as \p —q |~*0 ,
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where 6>0 • This clearly satisfies the condition (3.29). Hence the 

kernel is weakly singular.

In a similar way it can be shown that the kernel function of the operator 

MkT is also weakly singular.

(iii) The kernel function of Nk:

* (p S  = -^-\gk(p,q)f] .
d T lP

From (3.21) and also,(3.24)

= I — ■ (P,q) |  “ 1 as \p-q\-0
dnP dnPd\  \p~q\3

i.e. M=1 but e = - l  , clearly showing that it does not satisfy the

condition (3.25), therefore the kernel fails to be weakly singular. 

Moreover, Maue [63] and later Mitzner [65] have shown by a 

complicated series of vector transformations that Nk operator may be 

expressed in the form

NkV- = - j -  LK̂ -(p,q)\i(q)dq =dnn J 3B dn„ J 9B dn dn
P Q P  q

= L i ’( v V * ) + k2(np n} 8 kv(q))dq  • (3-31)
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Analysing the integrand in (3.31) we find that the singularity is of 

Cauchy type operating on tangential derivative of the layer density and 

so Nk is not a weakly singular operator. In fact the integral in (3.31) 

is non-integrable.

However, it can be shown that

~ gQ(p,q)) “ -¡ ~ t + 0(1) as \p-q \-0  . (3.32)dnpdnq \p-q\

Consequently the operator (Nk-NJ becomes weakly singular if treated as a 

single operator. This is utilized in some of the singularity treatments of 

integral equation formulations where the hyper-singular kernel of Nk arises, 

see chapter 7.



Chapter 4

Boundary Value Problems and 
Classical Formulations

In this chapter we review the classical formulations of Helmholtz problems. 

There are two methods of approach. One is indirect which makes use of the 

layer theory and the other involves the unknown wave function directly.

4.1 Boundary value problems

We have seen how time-harmonic wave problems in acoustics and also in 

electro-magnetism (not considered in this thesis) can be reduced to finding 

solutions of the Helmholtz equation, and we have also mentioned some 

important boundary conditions. Many other branches of mathematical physics 

(e.g. hydrodynamics, elasticity) give rise to the same equation with similar 

boundary conditions. In acoustic scattering or radiation problems, we seek 

wave functions in the exterior domain B+ which satisfy specified boundary 

conditions at the scattering or radiating surface, and also the radiation 

condition at infinity. In the scattering case, the total wave is expressed as the 

superposition of the incident wave and scattered wave i.e.

4>(p) = <binc(p) + 4>JC(p) ; p  e  b + . (4.1)

The mathematical formulation of scattering problems now reads as follows:
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(4.2a)(i) Solve V ^O ) + k^{p) = 0  ; V p  e B+

subject to

(ii) either <j>(p) = 0  ; p e dB ( Dirichlet condition )

or —  (p) = 0 ; p  e dB ( Neumann condition ) (4.2b)
dn

(iii) where <{)jc satisfies the radiation condition (1.12), (4.2c)

Sometimes it is convenient and appropriate to work in terms of the scattered 

wave rather than the total wave, in which case the scattering problem becomes 

as follows:

(i) Solve Tpfyjp) + k2<$>sc(p) = 0  ; V p  e B* (4.3a)

subject to

(ii) either 4>sc(p) = -«{»¡̂ (p) 1 p e dB ( Dirichlet condition )

eld) cM>.
or — —(p) = -----—(p) ; p e dB ( Neumann condition ) (4.3b)

dn dn

(iii)where <J>ic satisfies the radiation condition (1.12). (4.3c)

Our radiation problem concerns a fictitious test source enclosed by a 

(mathematical) surface dB within an infinite domain. In this case both 

4>rad and )rad/dn are known on the surface dB . We may now formulate 

a test Dirichlet problem for which §rad is given on dB or a test Neumann
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problem for which d<brad/dn is given on dB . In either case the unknown 

data may be calculated from the given data for the purposes of a comparative 

analysis. Of course the test problems may be interior or exterior depending on

the direction chosen for d$rad ¡dn . We always choose the exterior case in

line with the scattering problem which means that tyrad becomes analogous

to 4>ic of the exterior scattering problem. As a result the solution behaves like 

a scattered wave satisfying the radiation condition, and therefore the problem 

can be expressed in the form (4.3a,b,c). The incident wave terms appearing 

in (4.3b) are in this case replaced by given functions.

4.2 Indirect formulations

Since both Lko and Mka are radiating wave functions in B+, it would be 

convenient to express the exterior solution of the Helmholtz equation by 

means of layer potentials. By enforcing the appropriate boundary condition on 

the surface dB we obtain integral equations for the unknown density function.

Exterior Dirichlet problem (EDP1

We seek a solution in the form of a simple-layer potential

<KP+) = Lko(p+) ; p e B + . (4.4)

Taking the limit as p+^pedB , using the continuity of Lk at dB and applying 

the Dirichlet boundary condition, we immediately obtain the boundary relation

fìp) = Lka(p) ; p e dB (4.5a)
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flp) = ( g j p r f o t o d q  ; pedB  ,
J  dB

w here/is the prescribed boundary value of <(> . This is a Fredholm integral 

equation of the first kind for the surface density a in terms of f(p).

Alternatively, we may seek a solution in the form of a double-layer potential

<i>0+) = Mk\i(p+) ; p e B + . (4.6)

Taking the limit as p+^pedB > using the jump properties and applying the 

Dirichlet condition, we obtain the boundary relation

flp) = 2n \i(p) + Mk\x(p) ; p  e dB (4.7a)

i.e.

flp) = 2 7tp(p) + [ g k(p,q)'\i(q)dq ; p e dB . (4.8)
J  dB

This is a Fredholm integral equation of the second kind for ^ in terms off. 

Exterior Neumann problem fENPl

We first seek a solution in the form (4.4). Differentiating in the direction of

the normal at p  passing through p +, taking the limit as p+^pedB and 

applying the Neumann boundary condition (1.10) yields

cM>
~r~(p) = —2 7t o(p) + MkTo(p) ; pedB  . (4.9a)

i.e.
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i.e.

ftp) = ~2no(p) + f  gt(p,q)o(q)dq ; pedB  ,
J  oB

which is a Fredholm integral equation of the second kind for a in terms of

/

On the other hand, seeking a solution in the form (4.6), then differentiating 

in the direction of the normal at p  passing through p + and taking the limit

as p *^pedB » yields the boundary relation

-^-(p) = Nk\i(p) ; p e d B  , (4.10a)
d f l P

where Nk has been defined in chapter 2. On applying the Neumann boundary 

condition (1.10) this becomes the integral equation

flP) = -— ¡ ^ —^ (pS v-i^ dq  ; pedB  , 
dnJdB dn„

which is a (non-Fredholm) equation of the first kind for ^ in terms o f/. It 

is usual to write

dnp
r dgk
\ ̂ — (pS v-i^ dq  =J m  on„ L &8k

dB dnjdnn
p  Q

(p,q)\i(q)dq ,

even though the right-hand integral is well known to be hypersingular. Such 

integrals can only be given a meaning by using specialised methods, in 

particular, utilizing Hadamard’s finite-part integration [33,77], A formulation
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on these lines has recently been proposed by C.Jin [40].

Once o or n has been computed, (4.4) or (4.6) may be used to generate

<j)(p+) . For a solution valid in the interior, we proceed in a similar way 

except that the solution obviously need not satisfy the radiation condition 

(1.12). Brief details follow.

Interior Dirichlet problem (IDP1 

Seeking a solution in the simple layer form

4>(iO = Lka(p-) ,

and using the Dirichlet boundary condition, yields the boundary integral 

equation

ftp) = Lko(p) ; pedB  , (4.5b)

for o in terms off.

Also the double-layer formulation yields

4>(p') = Mk\x(p~) ,

which gives the boundary integral equation

fip) = -2iz\i(p) + Mk\i(p) ; pedB  , (4.7b)

for in terms of f
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Interior Neumann problem (INP)

The Neumann boundary condition applied to a simple-layer formulation yields 

the integral equation

jip) = 2ito(p) + M ja(p ) ; pedB

(4.9b)
= 2 n a (P) + f g 'k(P,4)o(q)dq ; pedB

J  SB

Also, the Neumann condition applied to a double-layer formulation yields the 

boundary integral equation

Note that (4.9a) which refers to ENP, is the transpose of (4.7b) which refers 

to IDP. Also note that (4.7a) which refers to EDP, is the transpose of (4.9b) 

which refers to INP. This interior and exterior connection will be detailed in 

section 4.4 .

4.3 Direct formulations

This method is based on Green’s second theorem

(4.11)

-  (t>2v 24>y))dv
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where B is a domain enclosed by a boundary dB , not necessarily simply- 

connected. Applying Green’s second theorem (4.11) to an exterior wave 

function (j)+ in B+ which satisfies the radiation condition (1.12), and to the

free space Green’s function gk , we obtain

f  ( 4 -  gk(p,q)^-(q)}dq = 4 t z<\>+(p) ; p e B + . (4.12a) 
J3B dn„ dn„

The first integral on the l.h.s. of (4.12a) is seen to be a double-layer potential 

generated by a source density <j)+ on dB ; also, the second integral is seen 

to be a simple-layer potential generated by a source density 3<Jy/dnq on dB . 

The second integral remains continuous as p+^pedB but the first integral 

jumps by 27r<J>+ as p+^pedB ■ Accordingly the formula now becomes

M < t > " Sk(P,Q)^-(q)^dq = 2rt<i)+(p) ; pedB  . (4.12b) 
J3B dn„ dn

9 9

By contrast with (4.12a), this is a functional relation between (j)+ and 

d<j>7dn on dB which constrains one in terms of the other i.e. it provides 

boundary integral equations for ^  or d$+/dn on dB •

As we move from pedB to p ^B~ a further jump of 2 t i§* occurs, 

yielding the identity

L { <fr*(9)-/*(M) ~ 8k(PS^-(,q)^dq  = 0  : p<=B~ . (4.12c)JdB on„ dn
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The boundary equation (4.12b) is known as the Surface Helmholtz Equation 

(SHE), which in operator form becomes

Mt 4>+(p) -  ¿* [ |r-](p )  = 2it(j>+(p) , pedB  . (4.14)

For the Dirichlet boundary condition we have

Lk[^ - ] (p )  = Mk^ (p) - 2 n V ( p )  , pedB  , (4.15)
d n „

i.e. a Fredholm integral equation of the first kind for d$*ldnq in terms of 

(j)+ given on dB .F o r the Neumann boundary condition we have

-2 t z<\>'(p ) + Mk^ (p)  = Lk[^ -](p )  , pcdB  ,(4 .1 6 )
d\

i.e. a Fredholm integral equation of the second kind for ^  in terms of 

3<J>7dnq given on dB .

A Similar application of Green’s second theorem to an interior wave function 

(jredfi yields the following:

¿ ‘♦ 'I t  '  g ^ t ]dq= 0 : <413a><? ?

= -2n<b~(p) ; pedB  , (4.13b)
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= -4  n <t>~(p) ; p e B ~  • (4.13c)

4.4 Interior - exterior connection

Integral equation formulations for Helmholtz problems in the exterior region 

have an implicit relation to the corresponding problems in the interior region. 

Although there is no physical connection between the two regions, yet the 

formulations for the two regions have equivalent integral operators. Burton 

[13] has given a very clear analysis of this equivalence.

As already noted, whenever the wave-number k equals certain discrete values, 

the interior problem with homogeneous boundary condition has a non-trivial 

solution. These values are the eigenvalues of the problem and the 

corresponding non-trivial solutions are the eigenfunctions. It may be shown 

[13] that the eigenvalues of the interior homogeneous problem must be real. 

At these eigenvalues (see chapter 3), the corresponding integral equation 

governing the exterior case breaks down i.e. it may either fail to yield a 

unique solution or it may be insoluble for the given inhomogeneous term (cf. 

chapter 3 section 3.2).

In the subsections that follow we demonstrate the connection between the 

interior and the exterior problems i.e. we show that the Neumann/Dirichlet 

formulation (ENF/EDF) of the exterior problem breaks down whenever the 

wave-number k equals the eigenvalue of the interior Dirichlet/Neumann 

problem. First we consider the integral equations governing the interior 

problems.
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4.4.1 Equations derived from the Helmholtz formulae

Let the infinite set of wave-numbers, for which the interior homogeneous 

Dirichlet problem has non-trivial solutions, be denoted by KD. Likewise let KN 

denote the infinite set of wave-numbers for which the interior homogeneous 

Neumann problem has non-trivial solution.

Homogeneous Dirichlet case

Inserting the boundary condition (¡>=0 into the boundary equation (4.13b), 

and writing the results in integral operator form, we find that dtyldn satisfies

Lk[% (p )  = 0 ; pedB  . (4.17)
dn

Now differentiating the boundary equation (4.13b) with respect to the normal

at pedB , inserting the same boundary condition and writing the result in 

operator form, we get

(—2 7tI + A O t-^ K p ) = 0 ; pedB  .(4.18)
dn

Clearly the boundary values of d<\>/dn satisfy both (4.17) and (4.18) 

simultaneously. Now, when keKD , the interior homogeneous Dirichlet 

problem has non-trivial solutions, which means <{>*0 in R  even 

though <[)=o on dB ■ Therefore it follows from (4.13c) that d<\>/dn *0 on 

dB , implying that (4.17) and (4.18) have non-trivial solutions. This result

has an important implication to the exterior Neumann formulation.
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Homogeneous Neumann case

We insert the boundary condition d$/dn =0 into the boundary equation 

(4.13b). Then, writing the result in operator notation we get

(27cI + MkM ](p) = 0  ; pedB  . (4.19a)

Now differentiating (4.13b) with respect to the normal at pedB , inserting 

the same boundary condition and writing the result in the operator form, we 

get

Nkm (p)  = 0  ; pedB  , (4.19b)

where the operator Nk is as defined in chapter 2. Now, when keKN , the 

interior homogeneous Neumann problem has non-trivial solutions, which

means (J>̂ 0 in R  even though d<\>/dn=0 on dB . Therefore, it follows from

(4.13c) that <j)*o , pedB , implying that (4.19a,b) have non-trivial solutions.

corresponding interior problem. This result has an important implication to the 

exterior Dirichlet formulation.

4.4.2 Equations; derived from layer theory

Homogeneous Dirichlet case

Inserting the boundary condition $=0 (i.e ./= 0) into (4.5b) and into (4.7b), 

and writing the equations in operator form we get

Lk[o](p) = 0 ; pedB  , (4.20)
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(-2*1  + Mk)[ jx](p) = 0 ; p e d B  . (4.21)

We readily see that (4.20) is mathematically identical to (4.17) but that (4.21) 

is the transpose equivalent of (4.18). This means that (4.20) and (4.21) have 

non-trivial solutions whenever (4.17) and (4.18) respectively do.

Homogeneous Neumann case

Inserting the boundary condition d<b/dn=0 into (4.9b) and into (4.10b) we get

(2*1 + MkT)[o](p) = 0 , pedB  , (4.22)

Nk[\i](p) = 0 , pedB  . (4.23)

Again we readily see that (4.23) is mathematically identical to (4.19b) but that

(4.22) is the transpose equivalent of (4.19a). This means that (4.22) and

(4.23) have non-trivial solutions whenever (4.19a) and (4.19b) respectively do.

4.4.3 Connection with exterior problems

We seek a solution of the exterior Neumann problem in the form of a simple- 

layer potential

4>(p) = Lk[a](p) , peB *  .

Taking the normal derivative and introducing the Neumann condition, we get

(-2*1 + M flioKp) =f{p) , pedB  . (4.24)

This boundary equation has a unique solution if the homogeneous equation
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(—2 it I + M j )  [a](p) = 0 , p e d B  , (4.25)

has only the trivial solution (cf. chapter 3). However, since (4.25) is 

mathematically identical to (4.18), it has non-trivial solutions for wave- 

numbers keKD , i.e. for these wave-numbers ENF fails. Arguing similarly

one may show that the EDF fails to give unique solution if keKN .

Using the Helmholtz formula we arrive at similar conclusion, i.e. ENF breaks 

down when keKD . Likewise the EDF breaks down when keKN . Note that 

in these situations an essential distinction may be drawn between the layer 

formulation and the Helmholtz formulation, i.e. the inhomogeneous equation

(4.24) is insoluble because the free term /  is not orthogonal to the 

eigenfunctions of the homogeneous adjoint equation; by contrast with the 

Helmholtz formulation which yields non-unique solutions since the free term 

satisfies the compatibility condition (cf. chapter 3).

See Appendix V for an illustration, with reference to a sphere, of the 

connection between the interior and the exterior problem.
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PART II

ANALYSIS FOR A SPHERICAL BOUNDARY



Chapter 5
Wave functions via layer-potentials

In this chapter we verify the properties of the layer potentials, detailed in 

chapter 2, with reference to a sphere.

5.1 Simple-layer case

We consider a sphere of radius a. The source density at any q in dB , the 

surface of the sphere, is denoted by o(q) , see Fig.4. Then the simple-layer 

Helmholtz potential, generated at a field point peR3 by a continuous 

distribution of source points q in dB , is given by

where dq is the area element at q and

e -ik\p-q\

If we assume a uniform distribution of sources over the spherical surface i.e.

(5.1)
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Fig.4 One octant of the surface of a sphere of radius a displaying 
cartesian coordinates of points on it. Note that point p  is in 
the exterior or in the interior depending on whether r > a  or 
r < a .

55



then this generates the wave-function (or potential)

4>(P) = ° 0 L  Sk(P,Q) dq ; p  e R3 .
J  oB

(5.2)

It is possible to integrate (5.2) analytically by choosing the field point

p=(0,0,r), utilizing spherical polar coordinates with 0=O,i|r=O (see Fig.4), 

involving no loss of generality.

Interior wave-function

For this let r<a.  An arbitrary boundary point q has the form

q = (a s in 0 cos\|/, a s in 0 sini|r, acos0 ) , (5.3a)

in which case

\p-q\ = (a2 + r2 -  2 racos0)I/2 > (5.3b)

dq = a 2sin0</0di|r • (5.3c)

If so, then (5.2) yields the interior wave-function

n g -ik(a2 +r2 -2racos0)1/2
«2sin0<i0<ii|r ; \p \ -r<a  ,(5.3)

(a2+r2- 2racos0)1/2

and substitution yields

- « o /027  F+a e~ik*dpdty ; r<a  ,
/• Jo Ja -r

where

p = (fl2+r2 - 2 racos0)1/2
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which on integration (see App.I) gives

[e -i«r+d)_e -ik(fi-r)] . \p\=r <a

4izao0e sinfcr
k r

\p\=r<a  . (5.4)

This is radially symmetric as expected.

Exterior wave function

A similar integration (replacing a-r by r-a as the lower limit) shows that the 

corresponding exterior wave function is

Again this is radially symmetric as expected. A simpler line of argument is 

to note that

\p-q \ “ \p\~ k |cos0 , as \p|-°°

\p-<lYX~ Lp I"1 > as |pI

in which case the asymptotic behaviour of gk(p,q) is as follows

where q is any surface point and 0 is the angle between the position vectors

£
<t>+(p) = 47r a a 0sin£a[—

-ikr

kr ] \p\=r>a . (5.5)

gk(p,q) -  [e
i*|?|coseMj

\P\
(5.5a)
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p  and q. In the case of a sphere the angle Qpq is simply the polar angle 0 . 

Substituting for p  and q, and integrating (5.5a) with respect to q we have

where p ,  p + denote interior and exterior field points of the sphere

respectively. The relation (5.7) clearly confirms the continuity at SB of this 

simple-layer potential despite the weak singularity (cf. 2 . 1 ) of the integral

operator in (5.2) as q-+pedB ■ These results conform with the general theory 

of Helmholtz potentials described in section 2.1 in chapter 2. It may be noted 

from (5.4) and (5.5) that both the interior and the exterior functions vanish on

the boundary when the wave-number ka=nn,neN  also,that the exterior
function vanishes everywhere at these wave-numbers.

Normal derivatives

The normal derivatives of these wave-functions are as follows:

- ik r
f eJo

which yields (5.5).

Note that (5.4) and (5.5) give the common boundary function

<j>(p) = 4 n a o 0e _ika sirtfca .; \p\ =r = a . (5.6)
ka

Clearly

lim <{> (p ) = <t>(p) = lim<i>+(p+) ; pedB
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(5.8a)84> -

dn
= [ - ^ 1 ] = 4 n o 0e-ika[ ^ ^ - c o s k a ]  ,

dr r=a ka

d T  _ a r ,
dn dr rmar=a

-471 O0 SlXl k&  — jfrsi r *i 4 -a—— e ,ka[ika+l] , 
ka

(5.8b)

where each normal points into the region concerned. Note that (see App.II)

+ <01 = _4 (5.9)
dn dn 0

which confirms the jump at dB of the normal derivatives of a simple-layer 

potential,in line with the general theory of Helmholtz potentials, Smirnov 

[79]. Putting k=0  in (5.4), (5.5) and (5.6) we retrieve the analogous static 

results i.e.

r i p )  = ao0 ; |p| =r<a

r i p )  = 4 n a 2o0r~l ; \p\=r>a (5.10)

4>(p) = 47r a a 0 ; \p\ =r=a ,

in which case also

a<i>- + d r
dn dn

-4 tx a0 ,

which may alternatively be obtained by putting k=0  in (5.8a), (5.8b) and 

superposing the normal derivatives.
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Now let us consider the right-hand side of (5.2) with o0=l i.e.the integral

( z k(p&dq  ; p e R 3 ,J oB

where 3B denotes the surface of a sphere of radius a. We may show that

—  I L s J P A W  = ~2n + L — <M)<& 5
0n - JaB JdB dn ~p p

8k(P,<l)dq] = -2n + f - ^ - ( p , q ) d q  
dn* JdB JdB dn *p p

p zd B  , (5.11a)

pedB  ,(5.1 lb)

where np , np+ denote the normals at pedB pointing respectively into the 

interior and the exterior regions. To compute the integrals on the right hand 

sides of (5.11), choose p=(0,0,r)r=a, and note that

—  = [± j -1 .dn; dr r=a

Therefore

(P4)
Q g~ik\p~q\

—  [ - -------- ]
d n /  \p~q\

a _- ik (a 2+r2-2arcosQ)lr2
± — [ — ----------------------------- ]

dr (a2 +r2- 2 arcos0)1/2

= ± - \ - i k  -  — ]e-ik" 
2 a t]

60



where

r| = 2 a sin (0/2)

Using (5.3c), now yields

L — t o W  = ±T '/ o 2,l/n2<,[_l^T1 ~ ^ e ~ik"dr\dty ,•*dB dn * 2a
p

which can be evaluated to give

/ .
dSk (p,q)dq = 2 t z [— ie~l2ka -  1} -  e~i2ka] ; pedB , (5.12a) 

3B dn ~ ka

L — :-(p,q)dq = 2 n [e -nka -  -¡- {e ~i2ka -  1}] ; pedB  .(5.12b) 
3B dn + ka

The left hand side of (5.1 la,b) may be obtained by putting o0=l in (5.8a,b). 

Relations (5.11a,b) follow at once by using (5.8) and (5.12) in the respective 

equations. An immediate deduction from (5.11a) and (5.11b) is that

~— 1 / ^ 0 , 9 ) ^ ]  + ——[ f g k(p,q)dq] = -4 7i ; pedB  (5.13) 
dn ~ 3B dn 3B

p p

since it readily follows from (5.12a) and (5.12b) that

f - ^ ( p , q ) d q  + f  -^L(p,q)dq = 0 ; pedB .
JdB dn~ JdB dn +

Note that (5.13) can be obtained by simply putting o0=l in (5.9). The 

formulae (5.11a) and (5.11b) are particular cases of the more general normal 

derivative formulae
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p e d B  , (5.14a)-^ —(p) = -2na(p) + f  — p,q)o(q)dq ; 
dnp~ JdB dnp-

P) = - 2 no(p) + f  ——(p,q)o(q)dq ; pedB , (5.14b)
dn + JdB dn*

p p

which readily gives

_^_(p) + - ^ t -(p) = -4 Jt a(p) ; pedB  
dn~ d n *

p p

since

[  - ^ ( p ,q ) d q  = - f - ^ ( p , q ) d q  ; pedB  , 
JdB dn ~ d̂B dn *

p  p

where dB is a general closed Liapunov surface.

5.2 Double-layer case

As discussed in chapter 2, a second fundamental solution of the Helmholtz 

equation is obtained by differentiating the free-space Green’s function gk in the

normal direction at qedB ,i.e.

dgk,n , d ,e  
— (P>$) = —  Ldn_

-ik \p -q \

to. \p-q\ -] ; /?eR3

which is the dipole potential generated at/? by a unit dipole source at qedB , 

where the normal points into the exterior region. As before we consider a

62



sphere of radius a with the source density ,̂(<7) at any qedB , see Fig.4.

Then the double-layer Helmholtz potential generated at the field point p E 

by a continuous distribution of source points is given by

■ (5.1.5)JdB

If we assume a uniform distribution of dipole sources over the spherical 

surface i.e.

= F0 > VqedB , 

then this generates a wave-function (or potential)

$ 0 )  = \ i J D̂ ( p , q ) d q  ; p e R 3\d B  .(5.16)
JdB d n „

As before, write without loss of generality

p = p ±=(0,0,r) , r*a  . 

also now in place of (5.3a) write

q = (/?sin0 cosij/,/2sm0 simJrj/icosO)^^ .

For the sphere

dn<1
(p,q) = I

R=a

A e -‘k\p-q\
—  [ - -------- ]dR \p-q\ R-a

Therefore the interior wave-function takes the form
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$
-ikVl2+r2-2RrcosQ)in

(p) = ii0 f  f  —  [— ----------------------- ] a2smddddilr ( * )h°Jo Jo dR (R2+r2_2Rrcosd)l,2 ^

r2n fit ik 1 ,
” '‘»Jo Jo[' 7 i ■ T5 1

x e"'*p(a -rc o s0 )a 2sin0i/0JiJ/ ; \p\=r<a

where

p = (a 2 + r2 -  larcosd)1/2 >

Note that the term enclosed by the parenthesis [ ] in (*) is given in (5.3) with 

a replaced by R. Detailed integration of (**) gives

<&~(p) = - 4 ji \ iJ ik a  + l)e~ika—--~ ; \p\=r<a . (5.17a)
kr

A similar analyses give the following:

e -ikr
®+(p) = 4n \i.Q[kacoska -  sinfoz]-----  ; \p\=r>a , (5.17b)

kr

3>(p) = lTz\20e-i2ka -  4Tzn0e~ikâ ^ -  ; \p\=r=a  .(5.17c)
ka

Note that (5.17b) may be obtained by utilizing the asymptotic behaviour

of dS j dnq • This is obtained by differentiating the asymptotic behaviour 

(5.5a) of gk(p,q) in the normal direction at q i.e.
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• ^ ( M )  - i | (l e“ ' ' " e]£ T T )dnq dR \p\ R=a

_ —fit l/> I
-  [¿fccos9ea lq|cose] g , as |/>| —«>

Ip  I

(5.17d)

where q is any surface point. Substituting for p and q, and integrating (5.17d) 

with respect to q we get

f - ^ ( p,q)\i„dq = 2 n a 2i i j k - — [ ncosOe,kacosesinOdd ,
JdB dn r Jo

which yields (5.17b).

Putting k=0  in (5.17a),(5.17b) and (5.17c) yields the corresponding statics 

results (see Jaswon and Symm [36]):

$(p) = -4 t i p0 ; |p| =r<a

= - 2 n p 0 ; \p\=r=a

= 0 ; \p\=r>a

(5.18)

From (5.17a) and (5.17b), note the following limiting values as we approach 

the boundary:

$ '(p ) -  - 47rp 0(ifoz + l)e -Ha sinka
ka

®*(p) -  471 p0(a cosfo -  ~'n ĉa) l —  t
k a

as |p| =r^a

as \p\=r-+a

(5.19)
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showing clearly how the double-layer potential jumps at dB i.e.

[0~(p) -  0 +(p)] -  -4 k  p0 , as \p\-*a .

Limiting values in (5.19) are related to the boundary values of $  given in 

(5.17c), by the following formulae:

0 +(p) -  O(a) + 2 k  p0 , as |/? |= r-a

3> (p) -  0 (a) -  2 k  p0 , as \p\ = r -a

(5.20)

where $(a) denotes the boundary value of $  given in (5.17c). Note that

(5.20) is a particular case of the more general jump relation of the double-

layer potential i.e.

0 +(p) -  O(p0) + 2 k p O 0) , as p-+p0e dB

(5.20a)

0"(p) -  O(p0) -  2 k  p(p0) , as p-+p0EdB

Normal derivatives

Normal derivatives of the wave-functions given by (5.17a) and (5.17b) may 

be obtained by noting that for a sphere

00  . . , 0 0 . __
------(P) = ±[— (p)l ; pedB
a» .1 dr r=a
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where

p  = (0,0,r)r=a .

Therefore we have the following:

d$  3 , . , . ,  n  -ika sink r ,
---------  =  - — [ - 4 r c ( i f c a  +  l ) e  ,K a ------------ ]
an." dr kr ,

(5.21a)

a ka

. ~ikr
= — [4 tc (kacoska-sin k a ) - ----]

d n + dr kr r

(5.21b)

= - 4 n W ^ e - « « ( c o s k a - ™ ^ )
a ka

From which we see that

3®- 3®+
[— (p) + — m  = 0 ,

dn~ dn +P P \p\=a
(5.22)

where the notations np+, np carry the same meaning as before. This shows 

clearly the continuity of the normal derivative of a double-layer potential

despite its jump at dB . So we have verified a general property (see chapter 

2) of the Helmholtz double-layer potential with respect to a Liapunov surface. 

For k=0  the right-hand sides of (5.21a,b) become zero as expected. The result 

in (5.20) have been verified for a sphere of radius a. The boundary behaviour 

of a double-layer potential for k=0  is depicted in Fig.5, which graphs the 

magnetostatic potential generated by a uniform magnetic shell having the form

67



of a circle transverse to the j; -axis. This graph is due to Jaswon and El- 

Damanawi [37] for their work on dislocation. See Appendices III, IV for full 

details of the calculations described so far.
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Fig.5 Magnetostatic potential W, generated by a uniform
magnetic shell having circular shape oriented transverse

to the £ -axis.
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Chapter 6
Discussion of integral operator Nk

In this chapter we look at the integral

dB P -Po d n p d n q

which plays a decisive role in various BEM formulations such as Burton and 

Miller [17], Kussmaul [48] and Jin [40]. In (6.1a) p  is a point sufficiently

close to the surface on the normal at p0edB . Note here that both normal 

derivatives are to be performed, followed by the limiting process, before the 

integration. The following singularity behaviour has been noted in chapter 3:

Consequently the integrand in (6.1a) becomes hypersingular as q-+p and as 

a result the integral fails to yield a finite value.

Some effective alternative definitions of Nk are as follows:

(ID
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where p  has the same status as in (6. la) except that the limit is taken after the 

integration has been performed;

(III) N.(p) = l i m [ ^ -  f  -fi(p,q)dg] ; p€dB  , p0edB , (6.1c) 
p -po dnp->3Bdnq

where here p  is initially kept fixed within the integral, after which the normal 

derivative operation with respect to p  is performed, followed by the limit

as p->p0edB .

The definition (III) is physically plausible since it provides the normal

derivative of a double-layer potential at dB (see chapter 5). In all these 

operations we use the convention that the normals on the surface are pointing 

outward. Note that the definitions (II) and (III) are mathematically equivalent 

(which always yield finite values) i.e. the integral (6. 1c) is a continuous and 

differentiable function of p  everywhere except at dB, therefore we may 

differentiate under the integral sign to obtain (II) from (III). In particular, for 

a sphere we shall verify that

= lim[ /  8k (p,q)dq] ; p$dB , p0edB ■ 
P-Po d n p J 9B dnq p~Po JdBdnpdnq

However (III) is clearly simpler to evaluate than (II) and we therefore adopt 

(HI) as the standard definition of Nk in this thesis. Also, note that (III) (and

(II)) necessarily remains continuous across dB , as mentioned in chapter 2 
(section 2.2) and chapter 5. These properties and features of the definitions 

may be verified with reference to a spherical surface in the following section.
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6.1 Tests of definition (II) and definition (HI) for a sphere

We first look at the definition (II). Using spherical polar coordinates for a 

sphere of radius a write

p = (0,0,r)r-a , p0 = (0,0,a) ,

q = (/?sin0cosi|i,/?sm0sini|r,.Rcos0)R - a  >

which gives

\p-q\ = (R2 + r2 -2  Rr cos0)1/2R -a , r -a

Now for a sphere

3 - [ 4 idn dR '

3 - i 4 idnn dr' np  r-*a

Therefore

dndnn
P 9

0 0 -̂¿*(^2+f2-2J?rcos0)1/2

0r [ + r2 _ 2 / j r cos 0 )1/2)]
/? -a  , r - a

r ikcosQ cosd-k2̂  3 i*C,C2 3C,C2 l= L---------  + -----------------  + ----------  + --------] g , (6.2)
R -a ,r -a

where
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£ = \p~<l\ = ( ^ 2 + r2 -  2/Jrcos0)1/2

Cj = R -  rcosQ (6.2a)

C2 = r -  /?cos0

It is now necessary to take the limit as R^a , since the integration in (II) is

to be performed with respect to qedB ■ If so then the form of (6.2) remains 

the same except that now

£ = (a2 + r2 -  2 a rco s0 )1/2

Cj = a -  rcos0 (6.2b)

C, = r -  a c o s 0

Taking p  just inside the surface, i.e. r<a,  using (5.3c) and integrating gives

f  - ^ ( P 4 ) d q -  P T t  —
JdB Pin Pin ^  ^  * Jo Jo L c 2 c 3>dB dn dn

P 9

(6.2c)

3lkZ^2 1 ^ 2  0̂ -ik\n2]e '^^a^sinddddxlr ; r<a

where £, Cx, C2 refer t0 the expressions given in (6.2b). Substitution of these 

into (6.2c) gives

73



1

+ {1 + ik£ -  k2£2} + (a2- r 2)2{—  — } ] « ' * * * ;  r<a
e e v

i.e.

f  ---- — dq = -4Tcg~tfca( l  + ika) [cos k r -  s n̂ ^r ](—) ; \p\=r<a  .
JdB dndn„ kr r

p  Q

Now taking limit as p-*p0 (i.e. as r^a ), it follows at once that

lim f  ■ ^ 8k (p,q)dq = -4ne~ika( l+ lk a )  [cos k a - ^ ^ ]  . (6.3)
p -Po JdB dnpdnq a ka

For the case r>a,  definition (II) gives the same value as in (6.3), as may be 

expected from the identification of (II) with (III).

To test the definition (III) we need only recall (5.17) and (5.21) from chapter 

5, from which we readily get the following for the case r<a:

~S~] (ika + l ) e - a a ®±*L\
dnp JdBdnq dr kr r_a

(6.4a)

= - 4 n(ika+ l)e~lka[coskr -  s*n ^r ] 1_
kr r .
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also for the case r> a  we get

^ f  - ^ ( p,q)dq = —  [4% (ka coska -s inka )-— ]
J dB Fir lc.rdnnJSB dn

P 9

. (6.4b)

= -4 tr(/:acos/:a-sin  ka) ( ikr + l ) e -ikr

r kr

It readily follows from (6.4a), (6.4b) that

lim [ —  (  — ~(p,q)dq ] = -4ir(iJfcfl + I ) e - ,*a( c o s Ä a - ^ ^ ) -  
p -Po* dnpJ9Bdnq ka a

, (6.5)

where the superscripts indicate the approach to the surface point from the 

inside(-) and from the outside(+). We have thus recovered (6.3), using (HI), 

with much less effort.

The preceding discussion clearly shows for a spherical surface that as long as 

the point p  is not initially on the surface and only coincides with the surface 

after the integration has been performed, then the operator Nk in (6.1a) could 

be given a meaning. Next we look at the failure of (I) with reference to a 

spherical surface when the point p  is already on the boundary.

6.2 Test of definition (I) for a sphere

We test Nk with reference to the sphere with the same forms for p, pa, q as in

section 6.1 . Putting r=a  i.e. letting p^p0edB in (6.2), and simplifying the 

terms, yield the following:
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= f U f n[k2a2 sin2(0/2) — -ifcsin(0/2)---- —
Jo Jo 2 4a

(6.6)

— ik ----------
2 sin(0/2)

1 ] e -«*2asinm ) cos(d/2)dedilr
4asin2(0/2)

Note that the first three terms of the integrand on the right hand side of (6.6) 

are readily seen to be integrable, whereas the last two terms are clearly

singular when 0=0 . Therefore, letting 0<e  for these terms, and

integrating, we find

which clarifies the behaviour of the integral as e -0  • This demonstrates the 

failure of (I) as a definition of Nk.

6.3 Surface Helmholtz Equation (SHE)

Confirmations of (III) (and by the same token (II)) as advantageous 

definitions of Nk may be obtained by exploiting the Surface Helmholtz 

Equation (SHE) applied to a sphere. We therefore recall the Surface

—ik ----------
2 sin(0/2) 4asin2(0/2)

1 ] e ‘k2asmm)cos(QI2)dQ

e-ik2a(2ayx -  e -«'i2«sin('/2)(2asin(e/2))_1 ; e>0
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Helmholtz Equation (equation (4.14) in chapter 4),

Xa [ -  ^ { q ) g k(p,q) \ d q =  l PCdB ,(6.7a)
°B on on„9 9

where nq points into the exterior region. Operating with d/dnp on SHE yields

f  [ < fog) -  ^ ( g ) - ^ f o g ) l< J ?  = 2 *-^-(p ) ; -i6-715)«'ofi Hm Hm Hm Hm (jn,3B dndn„
P 9 dnn dn9 p

Now introducing the simple exterior wave function

4>(p) = — e l*r a) ; \p\=r>a
r

We note that

4>0) = 1 ; pedB

^  0 )  = (ika + 1) ; pedB
dn

(6.8)

Substitution of (6.8) into (6.7b) gives

= _j£i*2_Ll)[2« + ; peSB  .(6.9)
' p

,3B dndnn
p  9

Note that (see chapter 5) for a spherical surface 

_w_ , _ r « ' i 2 k - l
= 2ixtJas dn + e l2ka] ; />eôfi ,

ika
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which is substituted for the integral on the right-hand side of (6.9) to obtain

f  — — (P,q)dq = - 4 n [ +- ] [acoska -  ; pedB  .
JdB dndnq a 2 k

Accordingly we see that it would be consistent to define Nk by referring to 

(6.5) i.e. (III).

In the section that follows we test the definitions (I), (II) and (III) for a plate.

6.4 Tests of Nk for a flat plate

Consider a flat surface J, see Fig.6, with boundary contour equation given by

r = r(0 ) ,

i.e.

J  = {(r,0); Ozrzr(Q), O^0^27i) , 

where a cylindrical coordinate system is used i.e.

p = (0,0 ,z )^ 0 

p0 = (0,0,0)

q = (rcos0,rsm 0,/i)A, o 

\p-q\ = [r2 + (z-h)2]112 ; z -0  , h^0  •

Now
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Fig.6 Surface features of a flat plate J.
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a
dnq h-0

_a_

d\ z- 0

and therefore

d2** = J . r ^ i  
dnpdnq dz dh

; z-0  , /t-0  ;

However to test (II), we put h=0  and keep z>0 ,  i.e.

&8k
dndn

P 9

(nn, a dgk

h=0 z>0

= [ ik 1 +k2z2 3 ikz2 —  ]e-* Y ; z>0
Y5

(6.10)

where

Y = (r2 + z2)1/2 •

Therefore we have:

dndn
P 9

-  + ^  ^  -  —  l « '" ’ rd r M
J° Jo Y2 Y3 Y4 YS

80



2xrmQ) T ik 1 +k2z 2 3 ikz2r 2 * r m  j. lie 
J 0 J z y

^ ] e ' iky d y d 0 ,(6. 1 1 )
Y z>o

where

*(0) = f t e j V z>0

Since the contour function r(0) is not prescribed it is not possible to integrate 

(6.11) exactly. However, writing the integral in (6.11) in the form

f  2nf m  [** + — ]e~ikydydQ + [ 2nf m  
J o  J z  y  y 2  J o  J z  l y 2 y 3 y 4 J

x z2e ikyd y d d ; z>0

and integrating with respect to y give

2* e ~ikz e~ikm)
o

]de + z 2 (  [
Jo

2*r ifc + —i—]e -«*e>j0
Z Æ(0) '  J 0 ^ ( 0 ) 2  £ ( 0 ) 3

-  /‘2” [ijt + - ] e - ,kzJ 0 
Jo z

= -2 n ik e ' iki -  [ 2k e ,km
Jo R(Q)

dd

+ z 2 f 2lc[ - ^ - + - l — ] e -ik m dd ; z> 0 
Jo R(d)2 R(QŸ
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Note that for very small z the last integral in the above is negligible and 

consequently, taking limits

r d2g klim f  [ (p,q)]dq = - 2 7zik -
p-p0e jJJ dnpdnq

dQ . (6.12)

Note that the integral on the right hand side of (6.12) represents a simple-layer 

potential generated at p = (0,0,z) by a continuous distribution of unit sources

on the contour r=r(0) • Therefore we may write

e -iks/m2*z2

vV(0)2+z2

r  271 p]de = [  *-------de  ,(6.i3)
Jo r(d)

Therefore for a given contour equation r=r(0) of the boundary of a flat plate, 

definition (II) gives

r rin p-ikĤ>
Hm f  —  (p,q)dq = - I n ik  -  f  -  —■ dO . (6.14)
z~oJj dnpdnq Jo r(0)

To test definition (III) for the flat plate J we write

JJdn Jo Jo ah
. . .  ,________] rdrdQ ; z>0 ,
dh \Jr2 +(z-h)1 h=Q

where p, q have the same form as previously. The right-hand integral after 

some manipulations becomes
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= z f 2n[ v/*e>2̂ 2[ I *  + J - ] e -*yd y d Q . £> o  >
JO j  Z y y 2

(6.15)

where y has already been defined. Performing the integration with respect 

to y , the right-hand side of (6.15) becomes

7P- i k ^ ?
z 1 J 6

v/r(0)2+z2
z>0 ,

i.e.

= 2 Tt e _,*z
p -ik\Jtip? +z2
-------------]J0
s / m 2+zz

z>0 .

Then operating with d/dz yields

. (6.16)

\p | =z>0

For z=0, i.e.p=p0 it follows at once that the third term of (6.16) vanishes, 

so that we recover (6. 12) i.e.

Um
P-Poej dnp J J dnq

= —2 TC
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We therefore obtain

a f, dg' r 2it P -ikr{Q)
lim “ ■ [ f  z~(PtQ)dq 1 =~2 nik - f  - -¿ 6  . (6.17)
p-p0ej dnp J j dnq Jo r(0)

Therefore (III) gives an identical result to that of (II) as expected.Note that 

the right hand sides of (6.17), (6.14) are identical, as expected. Note that 

putting k=0  in the formula (6.17) gives the expected magnetostatic result. We 

remark that Formula (6.17) has also been obtained by Terai [93], using a 

method based upon Hadamard’s limiting procedure [33]. See Appendix VI for 

an alternative viewpoint of this Terai result i.e. the formula in (6.17).

Finally, to test the usual definition (I) for the flat surface J, put z=0,  i.e. 

p=p„, in (6.11), which yields

&8k 
dn dn

p <i

( p S l d q  =
jo Jo p + — ]e~ikrdrdQ . 

r 2
(6.18)

Clearly the right-hand integral of (6.18) does not yield a finite value since the 

interval of r contains the origin.
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PART III

INTEGRAL EQUATION FORMULATIONS



Chapter 7
Review of improved formulations

In chapter 4 it was noted that the straightforward classical integral equation 

formulations of the exterior Helmholtz problem are defective, in that these 

formulations fail at certain critical values of the wave-number k, which are the 

eigenvalues of the corresponding homogeneous interior problem. This 

difficulty arises whether one utilizes layer-potentials or Helmholtz formula. 

As mentioned before this is purely a mathematical complication and has no 

bearing on the physical problem. This phenomenon has been known for at 

least fifty years [55]. A considerable amount of work has been done over the 

last three decades in developing formulations valid for all wave-numbers. 

Burton [13] and Harris [34] give very useful surveys of improved formulations 

which were proposed before 1973. In the ensuing sections we present a brief 

review of the most significant formulations.

7.1 Brundrit

Brundrit in his paper [18] utilized a layer potential i.e. indirect formulation 

(see chapter 4), and developed a numerical method which did not suffer from 

the effect of critical wave-numbers. For the problem of hard acoustic

scattering by a fixed obstacle of boundary dB , he proposed that the scattered 

wave be represented as
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4>0) = Lka(p) ; peB* , (7.1)

where B+ is the infinite region outside the obstacle. Applying the Neumann

boundary condition, one notes that the source density a satisfies the 

boundary integral equation

Q ( p )  = [ - 2 tz l  + M.r] a(p) ; pedB  . (7.2)
dn

However the homogeneous equation

0 = [-2 7 t/ + MkT]a(p) ; pedB  (7.3)

has non-trivial solutions a* at any failing (characteristic) values of k which 

are also the eigenvalues of the corresponding interior Dirichlet problem. One 

can therefore write the general solution of (7.2) in the form

o + V  c o *o J J ,
j

at any choice of k, where ao is a particular solution, and c, are arbitrary 

constants. Brundrit noted that the non-trivial eigensolutions of (7.3) are the

boundary-values of dfy/dn , for the interior Dirichlet eigenfunctions, which 

satisfy (see equations (4.17), (4.18) in chapter 4)) simultaneously

Lk[ ^ ] ( p )  = 0 ; pedB
on

(-27xl + M j ) [ ^ ] ( p )  = 0 ; pedB
on

as a result of using Helmholtz formula, which yield
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pedB  r  >¿*E W 0» - E - o
j j

i.e.

i J ° 0 + E C; 0/](P )
j

-  Ll i < > . m + ' E eM < ’P<p)
j

= Lk[ao](p) ; p e d B

Brundrit further noted that by continuity of a simple-layer potential and by 

uniqueness, the wave-function generated by the eigensolutions of (7.3) must 

vanish identically in the exterior, i.e.

M E  c j o / m  = E  c/ j o / K p ) = 0 ; p .
) j

So he argued that o7 component of a general solution of (7.2) would make 

no contribution in the exterior.

Alternatively, one can utilize the non-trivial eigensolutions a* to generate an 

exterior potential i.e.

V(p) = LkOj*(p) ; p e B  + , 

for each j .  Then, using (7.3)

j^-(p) = [ - 2 t i/  + MkT]a/(p) = 0 ; pedB  ,
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where the (+) signifies that the normal points into the exterior. Now Since

dV/dn+= 0 for each j ,  it follows, by uniqueness, that V vanishes identically 

in the exterior i.e.

Lka*(p) = 0  ; peB* ,

and by continuity

V+(p) = Lko*(p) = 0  ; pedB

for each j .  Therefore, as noted by Brundrit, the a* component of the general 

solution does not make any contribution in the exterior.

However, in this proposal Brundrit overlooks the fact that the boundary 

integral equation (7.2) has no solution whenever k coincides with any of these 

critical values, since the eigenfunctions of the corresponding adjoint equations 

of (7.3) are not orthogonal to the inhomogeneous term in (7.2). Note that 

Brundrit’s approach can also be formulated via the Helmholtz formula which 

yields a consistent non-unique solution.

7.2 Panich

Utilizing layer potentials, Panich [70] initially proposed 

4>(P) = [Lk + \iMk]a(p) ; peB*  ,

where ^ is a complex constant, chosen to be +/' if 

[14], [15]. Therefore o satisfies

-^ O )  = [ - 2 t zI + Mk + pN JoO ) ; pçdB  . (7.5)

(7.4) 

, see Burton
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Since (7.5) contains the hypersingular operator Nk, which is not compact (see 

chapter 4), Panich [70] proposed replacing (7.4) by the hybrid layer potential

<KP) = [Lk + pM ^0]o(p) ; p e B '  , (7.6)

where the subscript 0 denotes putting k= 0 in the definition of Lk. 

Therefore a satisfies

Q ( p )  = [ - 2 t i7 + M j  + \iNkL0\a(p) ; . (7.7)

Writing

= (Nk -  N0)L0 + iV0L0 ,

and using the identity

N0L0 = (Mq t  + 2 iz I)(M0t  -  2 7i7) ,

we get
-

[ - 2 t t 7 + A 7/ + p{(Nt -7/0) I0 + (M /)2-47i2/}]a(p) ; pedB ■ (7.8)

Here all the operators are weakly singular and hence compact. This is one of 

the earliest examples of the régularisation technique for weakening the 

singularity of the kernel. By using Fredholm theory, Colton and Kress [25] 

deduced that (7.8) has a unique solution for all non-negative real k 

provided $?(p) >0 • However numerical implementation is very expensive and

cumbersome due to the involvement of the product of matrix approximations 

to the operators.
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7.3 Copley

Copley [26] proposed applying the Helmholtz formula (see equation (4.12c) 

chapter 4) at points in the interior region i.e.

Í [4 > (i)^ (p ,9 ) -  gk(p,q)-^-(<l)]dq = 0  ; p e B -  .
JdB dn dn

9 9

So avoiding the singularity problem. This idea was originated by Kupradze 

[46]. In operator notation

Mkm  = LkA ( p ) ; p € B -  , (7.9)
on

which is a functional relation between <j) and dfy/dn on dB , involving the 

non-singular kernel gk. This becomes an integral equation of the first kind for 

<}) in terms of d$/dn • Copley calls it the interior Helmholtz integral 

relation. He proves two uniqueness theorem:

I. if (7.9) holds vp eB~ , the solution of the functional equation is unique.

II. if the surface dB is axisymmetric and (7.9) holds for all p  along the 

axis of symmetry in R, the solution is unique.

Copley [26] proposed a scheme for enforcing (7.9) at a finite number of 

points {pi,p2p 3>---}, denoted by P, in R . However a bad choice of p  could

cause an interference with the interior eigenfunctions ^  , which satisfies
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(7.10)[4 t i7 + MkU (p ) = LkA ( p )
on

p eB '

A typical bad choice is when p  lies on a nodal surface of eigenfunctions «j, .

These nodal surfaces are such that 4>(p)=0 i-e- (7.10) is the same as (7.9).

If this is true for the choice P then the eigenfunctions ^  will also satisfy 

(7.9), thereby causing an interference. Cunefare et al [27] suggested a linear 

combination of (7.9) and its normal derivative, but as the points in P do not 

lie on dB the normal derivative operation can not be well defined. It is also

noted that any numerical implementation of this fails as the number of such 

points increases, see Schenck [82]. Copley solved some axisymmetric 

radiation problems but noted that his method fails to give accurate results for 

bodies which are not sufficiently smooth. Fenelon [29] obtained results for 

acoustic radiation by a finite cylinder.

7.4 Schenck

Schenck [82] proposed a method using the SHE (Surface Helmholtz Equation) 

and supplementing it by the interior Helmholtz relation i.e.

[-271/ + MkW p )  -  L A ( p )  ; pedB , (7.11a)
on

Mkm  = L A ( p )  ; p e B -  . (7.11b)
dn

Schenck showed that for any k there is only one solution to (7.1 la) which also
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satisfies (7.11b) for all points in the interior region. Discretisation of (7.11a) 

and (7 . 1 1 b) for only few points in R  gives a non-square system of linear 

equations, which is solved by a least-square method. This method is better 

known as the Combined Helmholtz Integral Equation Formulation (CHIEF). 

For lower ranges of values of k, successful applications of CHIEF have been 

reported [4], [84]. Seybert et al [84, 85, 86, 87] have used CHIEF 

successfully to model radiation and scattering problems using quadratic 

isoparametric elements. However,the major drawback of this method is that 

we do not know how many and where best to locate the interior points. A 

point selected on the nodal surface of an interior eigenfunction gives rise to 

a non-unique problem, as noted in the preceding section. No criterion has yet 

been reported which enables one to isolate these "bad" interior points.

7.5 Kussmaul

Kussmaul in his paper [48] proposes for a scattered wave

4><P) = \Lk + \xMk\a(p) ; peB* . (7.12)

Note that it is essentially a superposition of a simple and double-layer 

distribution over the boundary. The method we propose in the next chapter is 

an adaptation of this. The hard boundary condition on (7.12) yields

4^(p) = [~ 2 n l  + Mk + \iNk]o(p) ; pedB  . (7.13)
on

This proposal is analogous to the mixed potential used by Brakhage and 

Werner [19], Leis [57, 58, 59] in their treatment of the Dirichlet case. The

constant p, is chosen to be +i  if Sft(^)^0 and -i if dt(k)<0 (8 (k )z0 ) . 

This choice ensures the uniqueness of the solution of the equation (7.13). As
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the operator Nk is non-compact, the operator on the right hand side of (7.13) 

also becomes non-compact, and as a result, Fredholm theory can not be 

applied to deduce whether or not a solution exists. Kussmaul uses a 

régularisation technique which, by eliminating the non-compactness, enables 

him to prove the existence of solution. Due to the complexity of the 

régularisation technique few numerical implementations have been reported. 

Kirkup and Henwood [51] used this method to compute solutions of some 

acoustic radiation problems.

7.6 Burton and Miller

Burton and Miller [17] proposed a method which is the direct analogue of the 

indirect formulation of Panich [70]. They proposed a linear combination of the 

SHE (see eq.4.14) and its normal derivative form, i.e.

[ - 2 n l  + Mk + aNk]$(p) = [Lk + a (2 i t /+Mk7) ] ^ ( p )  ; pedB  ,(7.14)
dn

where a is an arbitrary coupling parameter. It is proved, see [17],[92], that,

if a is chosen to be a complex constant with the $(<*)> 0 , then the 

homogeneous equation

[ - 2 t i/  + Mk + aNk]<b = 0 , (7.15)

has only the trivial solution <j>=0 for real values of k, ensuring that (7.14) has 

a unique solution for each wave number. Harris [34] in a similar way to Tzu-

chu Lin [92] extends the uniqueness proof to the case where a is taken to be

a function of p  i.e. provided %(a(p))>0, VpedB , then (7.15) has only the 

trivial solution. This result is used in the study of the conditioning of the
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formulation.

Though the Burton and Miller proposal is undoubtedly elegant analytically, it 

suffers from a numerical drawback due to the involvement of the non-compact 

(i.e. hypersingular) integral operator Nk . To resolve this problem Burton [15], 

following Panich [70], regularises Nk (see section 7.2) to obtain the 

Regularised Burton and Miller formulation (RBM):

[ - 2 n /  + Mk + a (p){L0(Nk-N0) + M 2 -  4n2D]<\>(p)

= [L. + a(p)LJ2nI  + M.T)]^-(p)  ; pedB
dn

where all the integral operators are weakly singular and compact. The choice

of a (p) is such that $$(a(p))>0 for k > 0 . The main drawback of RBM 

is having to compute the product of operators (by multiplying their matrix 

approximations) which proves to be very expensive and cumbersome, the 

reason for the regularised version is twofold. Firstly to establish the 

uniqueness of solution using classical Fredholm theory, and secondly to make 

it amenable to numerical treatment despite its complexities. However it seems 

possible to compute a direct approximation to Nk. Terai [93] (see chapter 6) 

gives an approximation to Nk for a flat surface, and Stallybrass [83] introduced 

a pointwise variational principle to approximate Nk, which Meyer et al [66, 

67] utilized in order to show that

/ a a i r t r 0’,?)‘i ! '  k2L g‘-<M)n>'n*dq ■

which may be used in
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p2
Ntm = f  .  8 * [4>(g)-4>(p)]dq + k24>(p)f' gk(p,q)np- nqdq ; pe d B  .

J  dB Q f i  ( j f l  J oB
P  9

The second integral on the right hand side is weakly singular and the first 

integral can be interpreted in the sense of Cauchy principal value.

Amini and Harris [4] give a comparison between the RBM and the direct 

Burton and Miller form. Reut [75] has developed a Burton and Miller 

formulation which he calls Composite Outward Normal Derivative 

Overlapping Relation (CONDOR), based in part upon the work of Terai [93].

7.7 Ursell and Jones

Ursell [94, 95] noted that gk(p,q) can be replaced by any fundamental solution 

to the Helmholtz equation in the exterior domain B+ which satisfies the 

radiation condition, i.e. a modified Green’s function

G(p,q) = gk(p,q) + r (p,q) , (7.16)

is used where T(p,q) is an analytic wave function in B+. Using this in the 

classical formulations (layer potential or Helmholtz formula) with (7.16) 

replacing the classical free-space Green’s function, and applying the hard 

boundary condition, one obtains (see chapter 4) the boundary equations

(Layer) ^-(p) = -2n o(p) + f -^-(p ,q)o(q)dq  ; pedB  (7.17) 
dn dn
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(Helmholtz formula) .(7.18)

j G(p,<ù^-(q)dqJdB dnq

= -2 n <J>(p) + f  ~(p,q)<t>(q)dq ; pedB  
JdB dnq

Now if

^ f- (p ,q ) + y? (p ,q ) = o ;dn
p e S R<zB- ,

where y is a complex constant such that g(y)>0 and SR is a sphere

enclosed completely within dB , then Ursell [94] shows that the solutions to

(7.17) and (7.18) are unique. Ursell [94, 95] noted that T(p,q) may be 

chosen to be an infinite series of spherical wave functions, which converges 

quickly for small k but slowly as k increases.

Jones [39] proposed a modification to this by replacing the infinite series with 

a finite one. He suggested

F(p,q) = E E  ’ <7-19>
m=0 n=0

where

Kn<P) = hm(krJPmH(.CQsBJcQ&$p 

= hm( t r } P mn(cosBp)srn$p
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The point p  has spherical polar coordinates ( r  ,0 ,<|> ) . The functions

hm(krp) are spherical Hankel functions of the first kind and Pmn are 

associated Legendre functions. Supposing

K = { k. \ 0 <kl <k2<k3<...} ,

Jones [39] showed that if k < kM+2 then (7.17) and (7.18) have unique 

solutions provided the bmn's are real and non-zero. Kleinmann and Kress [43] 

suggested that bmn be chosen so as to minimise the condition number of the 

resulting integral operator. The major drawback of this method is that for an 

arbitrary surface one does not know how large to take M since K is usually 

unknown. Also it is known [15] that the number of elements in K less than a 

given k is proportional to k3, and so for a moderately large k we have to take

a considerably large number of terms. Consequently T(p,q) becomes very 

costly. As such there has been little or no report of its implementation in 

practical problems.

7.8 Piaszczyk and Klosner

Piaszczyk and Klosner [71] proposed a method similar to CHIEF, but using 

the exterior Helmholtz relation

4>(P) = iMkW(p) ~ Il M ] ( p ) ; p e B + , (7.19)

in addition to the SHE equation. Naturally (J> is not known for points in B+, 

and for hard scattering d<\>/dn only is known on dB . Therefore it is
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supposed [71] that there exists some function Z(p) which gives a simple 

impedence relationship

<I>(P) = Z(p)Q(p)  ; P <=dB . (7.20)
drt

Using (7.20) in (7.19), one can compute <{> for a few points in B+. Utilizing 

these values and a suitable discretisation of SHE, an overdetermined system

for <j) in dB can be formed. Using a least-squares procedure one can solve

this system of linear equations and find <J> on dB ■ And then one can

recompute (j> in B+ and repeat the process until a convergence criterion is 

satisfied. The proposal is analytically sound since a uniqueness proof is given 

[71]. However this method also suffers from a major drawback in that it 

requires the solution of an over-determined system at each iteration, which is 

very costly from a computational point of view. Also the rate of convergence 

depends on the choice Z(p) and it is doubtful whether or not the iteration 

process will converge at all [27].
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Chapter 8
A new integral equation formulation of exterior 
acoustic scattering problem

The classical integral equation method viz. [23], [24], gives unreliable results 

for all but a relatively low range of wave-numbers, (see section 7.7 chapter 

7). They are generally reliable only for wave-numbers satisfying kD<6,  

where D is a characteristic dimension of the surface. In the preceding chapter 

we reviewed some of the significant proposals which attempt to resolve this 

complication. Of these, Schenck [82], and Burton and Miller [17] have been 

widely tested and implemented using various numerical techniques. Recently, 

Rego Silva et al [77], following the Burton and Miller approach, evaluated the 

hypersingular integral numerically by an algorithm of Guiggiani et al [32] 

building essentially upon Hadamard’s finite part integration. Both Harris [34] 

and Liu and Rizzo [56] have used the Burton and Miller approach, but the 

hypersingular integral is first weakened by a régularisation technique. Wu et 

al [98] followed on the line of Schenck [82], and by using supercomputers, 

proposed an improvement on CHIEF. Kirkup and Hen wood [51], following 

Kussmaul, presented some computational solutions of acoustic radiation 

problems. Here the hypersingular integral was evaluated by the method of 

Terai [93], (see chapter 6). All these formulations have been implemented 

numerically, exploiting BEM techniques, but they involve computational 

difficulties, mainly arising from the presence of the hypersingular operator Nk,
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(see chapter 6). Although Schenck [82] avoids the Nk operator, it requires a 

set of interior points to be chosen. This choice greatly influences the 

performance of the method. However, little guidence is given in the literature 

on how to isolate the so called "bad" interior points. Also, at higher wave- 

numbers more interior points are required for an accurate result and so 

adversely affecting the numerical conditioning.

Burton and Miller [17] require a free coupling parameter r\ to be chosen. 
Apart from the requirement that $(q)*0 , no consensus has yet arisen as to 
the precise choice of this parameter. Also, this method involves the difficulty 

of having to discretise the Nk operator or at least its regularised form. 

Documented analysis of the boundary integral equation suggests that this 

approach is potentially reliable across the wave-number range. In fact Reut 

[75] reported that his BEM approach, code named CONDOR (Composite 

Outward Normal Derivative Overlapping Relation) based upon Burton and 

Miller, is superior to that of CHIEF.

There remains the Kussmaul [48] approach for consideration. Unlike Schenck 

and, Burton and Miller he uses layer potentials. This is conceptually simple 

and provides a unique solution but suffers from the presence of the Nk 

operator. In the ensuing sections we describe this approach and show how this 

may be improved by eliminating the Nk.

8.1 KussmauPs approach

Recalling from chapter 7, it was suggested by Kussmaul [48] (within a 2-D 

context) that an alternative representation of any solution of the Helmholtz 

equation in the infinite exterior domain B+ would be
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<J>(p) = [Lk + r \Mk] o ( p ) ; p e B  + , (8.1)

where n is a coupling parameter and the operator notations carry the same 

meaning as before (see ch.4 and ch.7). Note that (8.1) is a superposition of 

a simple and a double-layer potential generated by the same source 

density o on the surface 3B • The hard scattering boundary condition gives

Q ( p )  = [ - 2 t i/  + M. t  + x]Nk]a(p) ; pedB , (8.2)
dn

where d$/dn is supposed known i.e. (8.2) is an integral equation of the

second kind for 0 in terms of dfy/dn ■ Kussmaul proved an existence and 
uniqueness theorem within a 2-D context. Here we present a uniqueness proof 

from a different point of view.

Consider the corresponding homogeneous equation

0 = [ - 2 t t /  + M j  + x)Nk]o  , (8.3a)

and its associated transpose equation

0 = [ - 2 t i/  + Mk + i)Nk] \  . (8.3b)

These equations are related, in that the existence of a non-trivial solution of 

the one implies a corresponding non-trivial solution of the other.

Suppose there exists a non-trivial solution v=v*0 of (8.3b) i.e.

0 = [-27i l  + Mk + T)Nk]v  . (8.3c)

We can use this v to generate a double-layer potential in the interior i.e.
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W(p-) = Mkv(p-) ; p  eB-  ,

from which

Wt(p) = [ - 2 t t /  + Mk] v(p) ; pedB  ,

where signifies the limit of W from a point in the interior region just off 

the boundary. Also

dW
dn:

(p) = Nkv(p) ; pedB  ,

where n, denotes the normal into the interior region. Utilizing (8.3c) we find 

that

Wt(p) + t i ^-(P)  = 0 ; pedB  , (8.4a)
on.

with complex conjugate

w*(p) + n *— (p) = 0 ; P GdB . (8.4b)
Oil;

Now apply Green’s second theorem to w,W* in frllO fi • Omitting the 

variables we readily obtain

L {w^  -  -  (*2 - * - H - w 2dB • <8-5>

Since k is assumed to have only real values (see chapter 1), the right-hand side 

of (8.5) vanishes yielding, from (8.4a), (8.4b)
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( I  -  — ) /  | W^q)\2dq =0  ,
n t j * JdB

i.e.

- 0  ■| Tl|2 JdB

where 55 signifies the imaginary part of a complex number. If $$(r|)*0 then 

clearly

Wt(p) = 0 ; pedB  . (8.6a)

Hence, by using (8.4a),

|^ ( p )  = 0 ; pedB  . (8.6b)
dn.

Using the continuity properties of the normal derivative of a double-layer 

potential we find

dW
dne(P )

dW,  ̂ n 
+ = 0

pedB  ,

which by (8.6b) gives

0 ; pedB f (8.6c)

where ne denotes the normal pointing into the exterior region. Accordingly, 

by a fundamental existence and uniqueness theorem [79] for a well-behaved 

exterior solution of the Helmholtz equation, we conclude that
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W(p) = 0 p e B  + ,

i.e.

We(p) = 0 ; pedB  . (8.6d)

Now from the jump properties of a double-layer potential we note that

Wt(p) -  We(p) = - 4 nv(p) ; pedB ,

where We signifies the limit of W from a point in the exterior just off the 

boundary. Noting (8.6a), (8.6d) we have

4rtv(p) = 0 ; pedB , (8.7)

which contradicts the assumption v *0 - It follows that the transpose equation 

(8.3b), and consequently the equation (8.3a), has only the trivial solution. As 

a result the Kussmaul boundary equation (8.2) has a unique solution provided 

3(ri)*0 •

Alternatively one can argue as follows:

Suppose there exists a non-trivial solution d of the homogeneous boundary 

equation (8.3a), which we rewrite in the form

-2 tt d(p) + [MkTa](p) = (-r|)[iVjka](p) ; pedB

i.e.

[Lkd](p) [ ( - t\)Mka](p) pedB  . (8.7a)

The left-hand side of (8.7a) represents the normal derivative of a simple-layer
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potential generated by 6 on dB , whereas the right-hand side represents the 

normal derivative of a double-layer potential generated by the same source 

density on dB (incorporating into the right-hand side integral). As the

normal derivatives of these potentials are equal on the same boundary dB , 

they must define the same wave function in the exterior region by virtue of the 
exterior Neumann uniqueness theorem i.e.

[Lka](p) = (-T1 )[Mka](p) ; p e B + .

But this is not possible, since for instance in the case of a sphere of radius a

we may generate the following potentials from a uniform source density a( 

on the surface:

e -ik\p\
[Lt d 0](p) = 4 n a ô  0smka-

k\p\ ; \p\>a

(-ti)[M t ô 0](p) = - 47i q d0[kacoska-sin£a]
k\p\

; \p\>a

Note that (i) the coefficients differ considerably,

(ii) normal derivatives at the spherical surface dB could not be 

equal everywhere on dB for any real choice of k, irrespective 

of the choice of ^ , provided g(q )*0 •

This contradiction can only be resolved by choosing ô o=0 which implies that 

(8.7a) is possible only when ô o=0 .
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8.2 Adapted Kussmaul formulation (AKF)

The formulation (8.1) may be improved by introducing an internal fictitious 

surface ¿35* (see fig.7 on the following page), similar and similarly situated 

to the given surface 8B , i.e. for each qedB there corresponds 

a q*edB* such that

q* = tiq ,

where ft is a real constant such that 0<b<l . According to our 

computations, it is found that ft =0.5 gives the best results.

We now introduce a continuous distribution of dipole sources on gp* 

characterised by the source density

o(q*) = o(q) ; q* edB* , qedB  •

This generates a double-layer potential

; peB+UdB .
JdB dn .

Thus we define

r »  -  »/a
dSk

M dn . ?
(p,q')o{q')dq p e B +\JdB , q*çdB* ,

for each given ûe(0 ,l] . Note that the integrand
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o - ^ i y
/ V

Fig.7 Boundary features for the Adapted Kussmaul Formulation 
(AKF). Note that the interior region ¿Tincludes the whole 
of the region interior to the given boundary dB .
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dnq.

remains regular as q^pedB since q*$dB ■ Consequently this potential,

denoted by r *  , remains finite and differentiable at any pedB , with a 

readily evaluated normal derivative

Unlike the Nk operator as found in the Kussmaul boundary equation, the

kernel of the operator N*  in (8.8) remains completely regular over the 

surface since the dipoles are no longer located on the given surface. Note that

for b= l , reduces to the usual double-layer potential generated by a

continuous distribution of sources on the boundary dB and the normal 

derivative operation becomes the usual Nk operator.

Now we represent any solution of the Helmholtz equation in the infinite region 

exterior to the surface dB , by combining a simple-layer potential with the 

newly defined double-layer potential r *  with a coupling parameter r\

<KP) = [Lk + n r / ] o ( p )  ; peB+UdB , 0 < b * l  , (8.9)

where we choose ^ • This choice ensures that the coupling parameter

between the layer-potentials eventually takes the form +/. This formulation

3a dn dn.
p  Q

&Sk (P,9 *)o(^)rf^ ; p ed B ,q * $ d B  . (8.8)
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we call the Adapted Kussmaul Formulation (AKF). This is a hybrid potential 

distribution except that the dipole components are located away from the 

surface. It may be regarded as a classical simple-layer potential with the free- 

space Green’s function gk replaced by the modified Green’s function

dgk
Gk(p,q) = gk(p,q) + r\ -— (p,q*) ,

dn .

where Gk satisfies in p  the equation

V*Gk(p,q) + k2Gk(p,q) = -4n6( \p -q \ )  .

Note that Gk has the same singularity behaviour as that of gk when \p-q\-0  . 

The hard acoustic boundary (Neumann) condition applied to (8.9) yields

P) = - 2 7i a(j>) + f  J ^ (p ,q )o (q )d q  ; pedB , (8. 10)
dn JdB dnp

where

dnp

dg,
(p,q) = ~ (p ,4 )

Snp
+ 11

&8k 
dn dn.p 9

( p , q l pedB, q*edB* .

Relation (8.10) is a Fredholm integral equation of the second kind for o in

terms of the given term dfy/dn on the left hand side. Note that in (8.10), the

only sigularity in the kernel is the weak singularity of dgjdnp , which 

presents no computational difficulties.

109



8.3 Uniqueness argument

Since the formulation (8.9) is mathematically similar to the original Kussmaul 

formulation (8. 1) with the exception that the dipole contributions are now

generated from a fictitious surface BB * within the given surface BB , it is 

expected that (8.9) also has a unique solution. However we present an 

argument similar to the one presented at the end of section 8.1 where we dealt 

with the uniqueness of the Kussmaul formulation.

In order to establish the uniqueness of solution of (8.9) it is 

sufficient to show that the corresponding homogeneous equation

r 3G.
-2 7i a(p) + f —±(p,q)o(q)dq = 0 ; p<=dB , (8.11)

J dB Bn
p

has only the trivial solution. Suppose there exists a non-trivial 

solution 6*0  of (8.11). This means that (8.11) may be rewritten in the form

- 2 * 6  +
J s b  Bnp 

r d28k= -  .  (p,q*)°(q*)dq ; p e d B , q * e d B *
JdB dn3n„.

p <t

i.e.

T ~  { , J k(P,q)3(q)dq 
Bnp J sb

. (8. 12)

= f j ~ r \  b ]^ - ( p , q *)o(q*)dq ; pedB, q* edB* dn„J°B Bn .
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Now the left hand side of (8.12) provides the normal derivative on dB of a 

simple-layer potential. While the right hand side provides the normal 

derivative on dB of a double-layer potential generated from a dipole

distribution on dB* . Since their normal derivatives are equal on dB (by 

virtue of the equation (8. 12)), they must define the same unique solution of 

the Helmholtz equation in the infinite region exterior to dB i.e.

f g k(p,q)°(< l)dq = [-nG]f- -^-(PA*)&(a“)dq ; p e B + , (8.13)Jab * J3B dn ,

by virtue of a fundamental existence and uniqueness theorem [79]. However 

since the asymptotic behaviour of a dipole potential must differ from that of 

a simple-layer potential generated from same sources, it follows that the two 

solutions can not be equal. For instance, in the case of a sphere of radius a 

(cf. chapter 5) one can obtain an exterior wave function as the simple-layer

potential generated from a uniform distribution of source densities Q=1 i.e. 

f g k(p,q)o(q)dq
J OB

= f  **(p(r,6,*),«(«,0,*))a2sin0 dB dty (8.14)

e  -ikr
= 4 n a sin ka------ ; r=\p\

kr

for any point p in the infinite region exterior to the sphere or on the boundary. 

For the same sphere, one can also obtain an exterior wave function as the

potential generated from the same uniform source densities as before i.e.

I l l



0 J° ¡>**.1.

= - 4 tc r| [kacostJka -
d kr r=\p  I

for the same point p in the exterior region. Clearly the coefficients of (8.14) 

and (8.15) are not equal. Therefore the only way (8.13) could hold is

when d=0 • Hence (8.11) could only permit trivial solution which means 

(8.9) has unique solution.

See Appendix VII for an alternative argument for the uniqueness. For this 

purpose, an adjoint of the homogeneous boundary equation (8.11) is 

considered therein. It is argued that the adjoint equation can only admit the 

trivial solution, analogous to the argument in 8.1 .
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PART IV

NUMERICAL TREATMENTS AND RESULTS



Chapter 9

Numerical Treatments

For the purpose of testing the viability of the new integral equation 

formulation, code named AKF, some numerical test radiation problems have 

been performed. AKF has also been utilized for the analysis of the acoustic 

scattering by a spherical surface. These problems will be addressed in the next 

chapter. For ease of computation, all the problems that we consider are axially 

symmetric in terms of the boundary and the radiation-scattering field. BEM 

has been used which reduces the domain problem into a boundary problem 

thereby reducing the dimension of the problem by one. A first step towards 

this is the discretisation process.

9.1 Discretisation process

First we recall, from the previous chapter, the AKF boundary integral 

equation for a given Neumann condition (equivalent to a hard scattering 

surface)

p

(9.1)
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where the bold i=rjO denotes the complex imaginary number. The left hand 

side of (9.1) represents the boundary values of the normal derivative of the 

unknown wave function which satisfies the Helmholtz equation in the infinite 

exterior domain and also the radiation condition. The equation (9.1) is an

integral equation of the second kind for the unknown source density o in

term of the given d^/dn ■

In this thesis we consider problems involving a sphere, cube and cylinder. In

these cases the boundary dB is simply divided into M sub-intervals which are 

the boundary elements S}, j = l ,2,3,...,M, so that

where S ’ is the boundary element on dB * corresponding to the element 5}

on dB • Although the original boundary is retained throughout, the unknown 

source densities and the boundary values are to be approximated on each

element. Now the boundary values of d$/dn and the unknown source

densities 0 are approximated over each boundary element through a constant

M
SkC\Sl = 0 , fork*l  ; US;. = dB ,

which give the preliminary discretisation

(9.2)
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interpolation function % i.e. the approximate source densities d can be 

represented by

M
o(i) = 52 ; qedB , (9.3)

j-1

and the approximate boundary values of dfy/dn can be represented by

= E  ; qedB , (9.4)
Oft j=i Oft

where ^ is a characteristic function with the properties

(0 Xj(q) = 1 ,

= 0 , i f q t S j  

M
(»■) X/tf) = 1 » VqedB

7=1

here oy is the unknown uniform source density on Sj and d$j/dn is a 

constant boundary value on Sj defined by the given Neumann data, i.e.

d<}>, . - . . .  _----  = —̂ (q) , for a convenient location q.€S. •
dn dn 1 1 1

We now use (9.3) and (9.4) in (9.2) to derive the discretised approximated 
version of (9.2)
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A/

+ i 8k (p,g*))£ Xi(^)o,)dq] ; pedB , q* e S f  
d n p d n q • M

which, on noting that

Af
E  x,(?)°,
/=i

O j ' fo rq e S j  ,

yields

E  X ;(P )-^  = “2 « E  X,(p )° ,
y-i an j=i

+ E  aj [ j ^ ( P > y )  + ' f t *  (Py9*)]dq ; pe0fi,

(9.5)

Note that (9.5) is a linear equation with M unknowns, ioy.: 1 <.jzM) . To 

solve it we require a system of M linear equations satisfied by these same 

unknowns. This can be obtained by collocating the equation at chosen 

collocation (pivotal) points on the surface. This choice is dependent on the 

particular boundary element configuration. Before considering the collocation 

points we look at the residual methods.

9.2 Weighted residual methods

The residual function for the AKF formulation is defined to be the residual in
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approximation (9.5), i.e.

M M r  d g .
R(SL',P) = Xj(p ) ° j + Y  Ojf \ —±(p,q)

U  H  J s J d n p

(9.6)

+ < f*  (p,q*)]dq -  Y  x/ p ) - ^  ;

where n  is the M-vector representing the unknown approximate source 

density. Imposition of conditions on the residual function (9.6) gives rise to 

various weighted residual methods. For instance, through minimisation over

si of the norm of the residual vector, defined by

|Æ(ffi;/?)|| = i f  w(p)ÎR(ji;p)ladp},/a ,

where w(p)>0  for p  on the boundary, gives rise to the least-square method 

and other related methods. Typically the least-square method takes w(p)=l  for

p  on the boundary and a, =2 • The Galerkin method, the Collocation method

and other related methods arise by finding the g_ which satisfies

Î R U  ,P) i,(p) dp = 0 ; for i = 1,2,... M ,
J oB

where is a set ° f ^  linearly independent functions defined on

the boundary dB • These functions are known as the test (basis) functions. 

The Galerkin method is obtained by putting Çi(p)=xi(p) , for i = l and 

the collocation method is obtained by putting Çfp) =ô (p -p )  , for / = 1,2,... ,M;
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where 6 is the Dirac delta distribution. In this thesis we follow the

collocation method, i.e. we seek g_ so that

R(s.;p) = 0 ,

where the p,’s are selected surface collocation points on each boundary 

element i.e. p izSi for each i = 1,2,...,M.

9.3 Collocation points

Convenient collocation points : 1 ¿izM }  are selected at each boundary

element 5,. Its location in Si is purely determined by the optimum 

computational accuracy i.e. it is to some extent user-defined. These points are 

usually taken at the centroid of each boundary element.

Collocating the equation (9.5) at these M selected points gives

M

(9.7)

1 ¿i <>M

where for each i
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and npi denotes the normal at pt. Note that each collocation point determines 

a linear equation with M unknowns i.e. (9.7) determines a system of M linear 

equations with M unknowns. Defining

where

5,y = 1 , i f i= j  

= 0 , if i *j

one can rewrite (9.7)

where each i determines a boundary value of d$/dn on the boundary element 

5, and also the coefficients Ay, referring to the collocation point /?, with 

integral over the boundary element Sj, thereby yielding a linear equation with 

M unknowns. Consequently we have a system of M equations with M 

unknowns which may be expressed in the matrix form

Asl  = v , (9.8a)

where

A = (Atp  , 1 <.if<.M

a = [a ,,  o

. at>‘ at.2 a t . " /
dn ’ dn ’ dn
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i.e.

d<b'
dn

a<J)2
dn

=

3<j>M
dn

. (9.8b)

The system (9.8b) can be solved by utilizing the Gaussian elimination 

procedure. But first the matrix elements Ay are to be computed, which involve 

both non-singular and singular integrals depending on the location of the 

matrix element.

9.4 Numerical Integrations

Each non-singular integral in the matrix approximation is replaced by a 

quadrature formula

n

[ / ( q )d q  -  £  w.F(q) ,

where qI,q2,---,qn are the quadrature points and w,,w2,...,wn are the quadrature 

weights.

Having established the matrix equation form (9.8b) corresponding to the
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system of equations determined by (9.7) one is left to compute the integrals 

in the matrix elements as defined in (*) in the preceding section. For distinct 

i and j  (i.e. the non-diagonal elements) the matrix elements contain only 

regular integrals for which standard Gaussian quadrature is sufficient; 

otherwise (i.e. for the diagonal elements) the first integral in (*) becomes 

singular, for which special treatment is necessary.

Case when / and / are distinct

For this situation standard Gaussian quadrature is utilized. First the following 

coordinate transformation is used

so that both | £ x | , | £21 s 1 and (q^qj are the coordinates of the surface at q. 

Therefore, (*) becomes

where J(£)=J(£V £2) is the Jacobian of the transformation. Since the integral 

in (9.9) is also non-singular, the standard Gauss-Legendre procedure can be 

employed to compute it.

Case when / coincides with /

This is the situation for the diagonal elements. In this situation the elements 

contain a singular term i.e.

^2(^ 1» ̂ 2̂
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As noted in chapter 3, the singularity is of the weak type since its behaviour

is of the order 0 ( \pt- q |~2) as \pi-q\-*0 . These singular integrals are 

computed by using a treatment depending on the surface configuration, which 

we address in section 9.5.

Having computed all the elements of the matrix A and the known terms

v=(3<J>‘/0/i) we can apply the Gaussian elimination process to solve

for g_=(op . Note that these discrete values give the approximate source 

density over the surface, as given by (9.3). Utilizing these discrete values of

the approximate source density d , we can generate an approximate quasi-

hybrid potential ^  at any point in the exterior or on the surface, i.e. 

following the integral representation of (8.9) we have

t o  = fdBtekM

dg.
+ r]— ^(p,q*)]d(q)dq ; peB'VdB , q* edB* ,q*=tlq

dnq.

Using the boundary elements S/s and (9.3) for the approximate 0 , we get



M
t o  = ¿  f ( [ g t(p,q)+i

I .t JS,i* i *V

M
X E  Xj(fÙox)dq  ; p e B +U35, q*eS*

which yields

The singular integrals which occur in the discretisations (9.7) and (9.11) will 

be dealt with in the following section.

9.5 Treatment of singularities

For the test problems and other related problems that are considered, the 

boundary is chosen so that it has an axis of rotation and also the boundary 

conditions are such that they are symmetric about that axis. It is natural to 

build the axisymmetry into the BEM, thereby reducing the number of elements 

required to obtain a satisfactory result. In this thesis we have considered three 

types of surfaces viz. spherical, cuboid and cylindrical. The integrals 

occurring in the diagonal elements of the matrix A involve a weak singularity. 

Let us recall the diagonal elements

ls i 'á M  .(9.12)

The second term under the integral is non-singular as
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Ip , -  9*1 = Ip , -  ûg| * O , V qeS i ; 0 <û< l  .

Therefore standard Gauss-Legendre quadrature rule can be applied to compute 

this integral. However, the first term under the integral sign has a singularity

as q~pt . This singularity is of weak type, as noted before (chapter 3), hence 

special singularity treatments are required which we detail in the folloing 

subsections.

9.5.1 Spherical Surface

For a spherical surface dB of radius a, following Jaswon and Symm [36], we 

determine the singular integral in the diagonal term (9.12) as follows:

Pi Pi }T \  Pij*i

It readily follows that since p t€Sj the integrals under the summation are non-

singular. As for the integral over the whole of the boundary we write

a 2sin0dBdi|r , (9.14)JdBQn jo  Jo do
Pi r  p =a

where by utilizing spherical polar coordinates (p,0,ijj)

q = tf(a,6,i|r) ,

and due to spherical symmetry one can assume
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Pi = (0,0, a) .

This yields by direct integration (cf. chapter 5) the following:

f  .JdB dn t/>Pi ka

Note that the above relation is independent of the position of /?, on the 

surface dB , hence the generality. We therefore have

l  ^ ( P i ,q ) d q  = l i z e ^ e ^  -  
Jst dnPi ka

m „ d e
-  X  LP Jsjdnpi

The computed approximate source densities lo.} which are uniform on each 

boundary element Sh enable us to calculate the approximate acoustic potential

at any point p. Clearly when pedB a singular integral is involved (although 

of the weak type). The approximate potential on the boundary is given by

t o  = X  ai f j S k(P,q) + i^^(p ,q*)]dq  ; pedB  .
/=i Js‘ onq.

Note that the first integral on the right hand side is singular when p  is on the 

zth boundary element. For this we write
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M
\v8kip,q)dq = f gk(pq)dq - ]T f gk(p,q)dq ; />eS, .
»Uj "OD y _ i ‘'Ay'

j+i

Note that the integrals under the summation are all non-singular and are 

amenable to standard quadrature rule. As for the first integral, one can again 

make use of the radial symmetry of the point p  i.e. without loss of generality 

one can assume

p = (0,0, a) 
q = q(a,d,ty)

where 6, 1)/ are the spherical polar coordinates and a is the radius of the 
sphere. We have

¡5BSk(p S d q  = //" f * g k(P4)a2sm8dddty

e ~ika
= Ajiasmka-----

ka

9.5.2 Cylindrical Surface

Test problems are performed on cylinder of cross section radius a with flat 

ends hence, only the singular integrals which are taken on the curved surface 

need be treated as the singular integrals on the flat ends are zero due to the 

orthogonality of the normal to the radial vectors which are parallel to the flat 

planes. The singular integrals are written
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Pi Pi Pi Pi

Note that the first integral on the right hand side is non-singular since for

small \pt-q\ the integrand behaves like 0(1), (cf. Chapter 3). As for the 

second integral on the right hand side we make use of the elliptic integrals, 

the subscript o denotes the free space Green’s function for the Laplace 

equation. Kirkup [50] gives a useful discussion of the elliptic integrals to 

which we refer here.

Elliptic Integrals

The elliptic integrals 3(j\m) are defined as follows

where j= -2 , - l ,0,1, using the notation used by Jaswon and Symm [36] and by

Banaijee and Butterfield [20]. ;m) and S(0;m) are available in subroutine

libraries. Abramowitz and Stegun [1] gives a method of 

approximation. and 3(-2;m) can be computed from the

3(1 ;m) and 3(0,m) using the following relation, see Gradshteyn and Ryzhik

[100],

3(j;m) = [ n,2( 1 -  msin20y 1/2J0 ; 0^m<l ,Jo

^ - 1  ;m) =
1 -m

; 0 s m < l

30-2 ;m) = i ^D;w)
3(1 -m) 3(1 -my
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where 0^  are the cylidrical coordinates, a is the radius of the cylinder and 

Mc is the number of boundary elements on the curved surface. These give

where

A = 2a2 + (z'-z)2 

B = 2a2 

C = a2

D = -a2

A standard Gaussian quadrature method is applied on the right hand side of 

(9.15) provided the quadrature points do not coincide with the z”s.

A singular integral is also involved when calculating the approximate acoustic 

potential at any point p=(0,0,b) on a flat end, where b is the semi-length of 

the cylinder and the cylinder radius is a. The relevant integral is

f j k(PA)dq ; peSczdB ,
J S

where S is an element on a flat end, see Fig.8 on the following page, which 

encloses the point p. Our cylinder test problems are such that we need only 

divide the boundary into axisymmetric elements i.e. S signifies a circular 

element on the flat surface where z=b. Utilizing cylindrical polar coordinates 

we write
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y

Fig.8 Circular elements on the flat surfaces of a cylinder. The 
singularity is located at the origin.
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q = q(p,Q,b)

p = \p-q\

S = { (p,0) : O^p <.a<.a , O^0^2tt }

where a is a constant. By taking p to be the origin we can write

¡Ssk(p4)dq = foI 2’ fo" ^ Pd Pde = / o27%-'*"dpde ,

which is then evaluated directly.

9.5.3 Cubical Surface

An experiment was performed on a cube of side 2a. The singular integrals 

here do not pose any problem since

= \ 8 k' \  = 0 , VtfGS. ,

as npt is orthogonal to V? gk on the planar elements St. As for the calculation 

of the approximate acoustic potential at any p  in the element S on the cube 

surface, again a singular integral arises. A polar transformation, (see Fig.9 on 

the following page), yields

I  8kM d q  = £  f  6w/ Pi(6)e ~'*p(9)dpdQ ; p e S  ,
J A /=1 JO, JO
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I ^ f > )

P ^ P /< o

Fig.9 Flat element on the side of a cube. The singularity is 
located at the origin.
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where p = \p-q \ , 05 coincides with 0X and p  is taken as the origin and the 

element S is such that

S : 0 ^ 0 * 0 . ^  , 0 £ p £ p4(0) , \<.i<.4 .

here p=pi(0), l^j‘̂ 4 make up the outer contour of the element S. Standard 

Gaussian quadrature is then applied to evaluate the integrals under the 

summation.
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Chapter 10 

Numerical Results

For the purpose of testing the new formulation code named AKF some test 

problems on a sphere, cube and cylinder are to be performed. The test 

problems considered here are Neumann problems defined by the prescribed 

boundary values of the normal derivative of the unknown acoustic potential.

In particular we consider the radiation effect at the boundary of a sphere, a 

cylinder and a cube, produced by a point source within the given boundary. 

We also consider the radiation pattern from a pulsating sphere and from an 

oscillating sphere. Analytical results for the radiation patterns are known in 

both the cases. We also examine the scattering pattern of a plane wave 

incident on a sphere. Here too the analytical results for the scattered acoustic 

pressure per incident wave pressure are known.

All these test problems in this thesis are studied for a given range of wave- 

numbers.

10.1 Sphere test problem

Consider a sphere of radius a, see Fig. 10 on the following page, centre O, 

enclosing a point source located at Q having cartesian coordinates

Q = (0,0,o/2) ,
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T est « S o u r c e

Z

Fig. 10 Test source and the axisymmetric elements on a 
sphere.
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relative to a coordinate system centred at O. The potential (j> generated at any 

point p  by this source is given by

<Kp) = ; p e R 3\{<?} , (10.1)
\ p - Q  I

which possesses known values at every point of the surface, denoted by dB , 

of the sphere. This potential has an associated normal derivative at p  , given 

by

i i ( p )  = - 1 + lk\p - Q \(p -Q yn e-*\r-Q\ ; pcdB  , (10.2)
dn \P~Q\3

where the unit normal vector np at p  points into the region B+ exterior to the 

boundary dB ■ Writing (10.2) in spherical polar coordinates, note that

p  = p (r,e ,t)r=<J

P = \P~Q\ = (r2 + a 2/4 -  racosQ)inr=a 3)

&<p) = &  = _ J _ ^ P e -*Pa [2 -cos0] ; r=a
d n  ^ r - a  2  p 3

it is clear from (10.3) that dfy/dn is symmetric about the z-axis since it

depends only on the polar angle 0 . We utilize this fact in our BEM 

discretisation. We now formulate the following Neumann problem:

Given the values of d$/dn on dB calculate the approximate values

of cj) which we denote by ^  , at any point on the boundary or in the 

exterior region.
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In order to apply the BEM discretisation process as described in the previous 

chapter, the sphere surface is subdivided into (see Fig. 10) M axisymmetric 

boundary intervals S p j = l defined by

Sj = {(a,0,ijf) : , (/-l)ir/M  £0 zjn/M  } ; 1 ¿jzM  ,

as depicted in Fig. 10, where 0}ljj are the spherical polar coordinates. 

Henceforth, the term "boundary element" will be used to mean the boundary 

intervals just defined. A convenient collocation point Pj is chosen in Sj as 

follows:

p, : i|r = 0 , 0 = k(2; 1} ; l i j i M  .
'  2 M

Utilizing these collocation points in the BEM discretisation process and using 

treatments as described in the chapter 9, we arrive at a system of M linear

equations with M unknowns (crl .These Oj ’s are the unknown approximate 

source densities at collocation points p/s. Using (10.3) the boundary value at 

each collocation point is calculated. The approximate acoustic potential at 

surface point (0,0,a) is computed (cf. chapter 9) utilizing the approximate

source densities cr ’s, and the amplitudes |^ | of the approximate potential 

are compared with the exact potential calculated using (10.1) and that of the 

classical method, for a given range of wave-numbers. Fig. 14 shows an 

excellent agreement of the AKF with the exact solution, whereas the classical 

formulation fails at wave-numbers viz. 4.5, 5.7, 6.9 etc. In fact, the wave- 

number 4.5 is known to be a characteristic eigenfrequency of the interior 

Dirichlet problem. We also compute the approximate potentials for ka=50. 

at each surface collocation point and compare them with the exact potential 

(see Figs. 15,15a, 16). At this large wave-number AKF agrees quite well with
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the exact whereas the classical result fails at all but few collocation points.

10.2 Cylinder test problem

A cylinder of aspect ratio a:b=l:5  is considered. Here a is the radius of the 

cylinder and b is its semi-length. The two ends are flat, see Fig. 11. The 

Neumann boundary condition is that which is produced by a fictitious point 

source at

P = (0,0,0) .

The exact potential generated at any point p  by this source is given by

e -ik\p-fi\ e ~*\p\ , ,
4>0) = f —r r  = V r  i /?eR3\{ (0,0,0)} •

\P~P I \P I

This generates the Neumann boundary conditions

i i ( p )  = - 1  + lk\P\(p-n )e-iklp\ ; pedB  , (10.4)
dn Ip  I3

where the normal np at p points into the region exterior to the cylinder and

dB here denotes the boundary of the cylinder. Writing (10.4) in cylindrical

polar coordinates, denoting the flat surfaces by T+ and T represented by 

the equations z — +b and z=-b  respectively, and denoting the curved surface

by Tc i.e.

dB = r cU r+Ur_ ,

we get
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«*

F ig.11 Test source and the axisymmetric elements on a cylinder 
of aspect ratio 1:5.
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p  = P(a,6,z)lzlib , peVc

p = p(r,Q,±b)ria , />er+Ur_

®*(p) = i *  = - 1 1  a IPlj,e-»W ; p e r  U r
a» *« ..»  Ip P *

i* ,p )  = * \p \ a e -*\,\ . p 6r
|p |3 '

Due to the rotational symmetry of the boundary condition only the top flat 

surface and the top curved surface need be subdivided. Utilizing the

cylindrical polar coordinates (r,0,z) , divide the top flat surface I \  into M+

elements and the top curved surface into Mc elements so that 
*

{(r,6,fe) : —V  ^  < .r < . - ^ L  , 0 ^ 0 >  ; 1
M+ M+

, b(j - M )  b ( j - M - 1)
{ (a,6,z)  : b ------------------<.z<.b------------------------ , 0 ^ 0  <2t z}; M ++ l  <.j<.M

A/ AT

where M is the total number of elements so that M=M+ +MC and M+:MC=1:5, 

in line with the aspect ratio. Using cartesian coordinates the collocation points 

are chosen as follows:

( a(2; l ) ,0,b) 
2 M.

Pj = '
, nL  b(2(j-M J-1)
(a’° ’6--------2 5 “ }

1 z jzM +

M+ +1 <.j <.M
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Having computed the approximate source densities (o;) by solving the system 

of M linear equations using the Gaussian elimination process, we calculate the

approximate potential <j> at the surface point (0,0,b) and compare, (see Fig.

18), the amplitudes |^ | of the approximate potential at this point with that 

of the analytical (i.e. the exact) and the classical results, for a given range of 

wave-numbers. The figure clearly demonstrates the agreement of the AKF 

results with that of the exact result.

10.3 Cube test problem

We consider a cube of side 2a centred at the origin. The Neumann boundary 

condition is that which is produced by a (fictitious) test point source at

P = (0,0,0) .

The exact potential generated at any point p  = (x,,x2,x3) in cartesian coordinates 

is given by

- ik (X ,2 +*22 +X32) 112

f y ( p )  ~  ~  r  > (*1 >x 2 ’ x i )  *  ( 0 , 0 , 0 )  .
(Xj +X2Z +x3,)

This generates the Neumann boundary condition

(̂P)-  ; s=l,2,3dn p3

p = ( X j 2 + x 2 + x 2)m
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Fig. 12 Test source and the square elements on a quarter of a 
cube side.
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where the vector n is parallel to the ¿.-axis for each s. For a point p  on any 

side of the cube, for which |.xj=a , for some s= l,2 ,3 ,  we have

| t o »  -  [ ± f han ox.
1 + ik pae -ikp

Due to the symmetry of the boundary condition only one side of the cube need 

be subdivided. Without loss of generality we subdivide the side x3=a, see

Fig. 12. Divide this cube-side into M(=mxm) square elements i.e.

2a(j- l)  2aj
S. = l(Xj,x2,a) : -a + --------¿x ¿ - a  +----  , f=l,2) ; 1 <.jt <m ,
1 m m

where j  =j(ji,ji) such that \±j<M ■ Collocation points are chosen as

0(2/,-1) o(2y2- l)
P j  = ( ~ a  + ------- — — > ~ a  + ----------— — )M M

l z j vj2zm , j=jl +m(j2- l )  .

Having solved for the unknown {o;i from the system of M2 linear equations 

by using Gaussian elimination process we compute the approximate

potential ^  at the surface point p=(0,0,a) and compare the

amplitude |^ | with the exact and that of the classical solution. Fig. 17 shows 

clear agreement of the AKF with the exact.

10.4 Pulsating Sphere

Sound waves radiating by a pulsating sphere were looked at. The exact 

analytical solution for the acoustic pressure P at distance r from the centre of
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the sphere of radius a, pulsating with a uniform radial velocity U„ is ([101], 

[60]) given by

m  = u0z0
ika , -ikafala)-1]

1 + ika (r/a)

where z0 is the acoustic characteristic impedence of the medium such

that z0=pc . In order to calculate the acoustic potential on the surface of the 

sphere for a given range of wave-numbers ka, the radius a, the normal surface 

velocity U0 and z„ are all assumed to be unity i.e. in this case

P(r) = ; |r| >0 .
1 +ik

Using the relation, see references [100], [60],

P(r) = -ik$(r) ; |r | >0 , (10.5)

the exact acoustic potential at distance r from the origin is

<J)(r) = - — -— r -ie -ik(r-i) . | r |>0 .
1 + ik

The same BEM analysis is executed as in the sphere test problem (cf. 10.1).

For prescribed boundary values of the normal derivative of the potential ({> , 

we compute the approximate source densities and then calculate the amplitude

of the approximate potentials |^ | , and c ^ )  . We then calculate the

same for the pressure. These are compared with the analytical for a range of 

wave-numbers, see Figs. 19,20.
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10.5 Oscillating Sphere

Radiation from an oscillating sphere of radius a is also investigated. We have

taken 0=0 to be the direction of oscillation of the sphere, where 0 is the 

polar angle. The exact analytical solution, see [101], [60], for the acoustic 

pressure P at distance r from the centre of the sphere oscillating is given by

P(r) = (a/r)2U0cosQz0 lhl l̂+lkr] g-*»-«> ; | r |>0 , (10.6)
2(1 +ika) -  k2a2

where Uocos0 is the radial velocity and z„ is the acoustic characteristic 

impedence. For the purpose of our test a, Ua and z„ are assumed to be unity. 

The exact acoustic potential is computed using the relation (10.6) i.e. the 

exact acoustic potential takes the form

<Kr) = ------ — ---- (l+ifcr)#-"2«-**-» ; |r |>0 .
2(1 + ik) -  k2

Hence the normal derivative of the potential is given by

= COS0 ; 0 ^ 0  <;n , p=p(r,Q,i|r) ,(10 .7)

where (r,0,i|f) are spherical polar coordinates. The same BEM analysis is 

executed as in the case of the test (radiation) problem on a sphere. By 

prescribing the boundary values obtained by using (10.7) a system of M linear 

equation is solved by using the standard Gaussian elimination process, which 

yields the values of the unknown source densities {o;) . This is utilized to
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compute the values of the approximate potential ^  at the surface point 

(0,0,1). We then compute the pressure at the same point. The real part and 

the imaginary part of the pressure are calculated and compared with the exact 

and that of the classical formulation for a range of wave-numbers. Figs.21,22 

show a marked failure of the classical and an excellent agreement of the AKF, 

particularly at the wave-number 4.5 which is a known eigenfrequency of the 

corresponding Dirichlet interior problem. Fig.23 shows the normalised far 

field pressure distribution.

10.6 Scattering from a sphere

A case study of scattering of a plane wave from a rigid sphere is also looked 

at. The incident plane wave is assumed to be travelling in the positive z- 

direction, see Fig. 13. A sphere of radius a is positioned with the centre at the

origin i.e. 0 =k  is the nearest point on the sphere facing the plane wave,

where 0 is the polar angle. The incident wave (function) potential is given 

by

<j).n(p) = ; peM? .

The total acoustic potential <j) at any point is the superposition (cf. chapter 

4) of the scattered potential and the incident potential at that point i.e.

4>(p) = + <U?) ; p e B V d B  ,

where the subscript sc signifies the scattered potential, B+ the region exterior

to the sphere and dB the boundary. Hence the boundary values of the normal 
derivative of the total potential is

146



Fig. 13 Scattering of plane waves incident on a sphere. Plane 
waves are moving in the direction of positive z-axis

where 0 is the polar angle. Note that e=7t is the 
first point on the sphere facing the incident wave.
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at>*^■(p) =
dn dn ip) a»«

3« (P) />e0£ • (10.8)

For scattering from a rigid boundary the normal component of the velocity 

potential vanishes

V<t>* = 0 ; pedB

i.e. — ip) = 0  ; pedB
dn

i.e.

ckb 0<b.
~ ^ ip )  = ~ i p )  ; pedB  . (10.9)
on dn

Here the incident wave is known. We therefore solve the following Neumann 

problem:

Given a wave <f)in incident on a spherical obstacle with the known

d<\>Jdn on the surface, calculate the scattered wave 4>sc at any point 

on the surface or in the exterior.

BEM features are the same as in the sphere test problem i.e. boundary 

elements Sfs and the collocation points p/ s  are defined as in 10.1 . We now 

apply the procedure described in chapter 9 by prescribing the boundary values 

at each collocation point using (10.9) and calculate the unknown source

densities Oj ’s at p/s. These computed approximate source densities oy are 

utilized to compute the unknown approximate scattered potential <f> which
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gives the approximate total potential

4>(p) = <Up ) + 4>x(p) ; pedBVB'  . (10.10)

The analytical solution, see [101], for the scattered potential at any point p is 

given by

oo
<Kp ) = £  i2m+i Lm(cos0)sin6m e'*m hma\k\p\)  ; pedBl)B + , (10.11)

m= 0

where i is the imaginary number and 

Lm : Legendre Polynomials 

bm : Phase angle for a given wave-number

hj® : Complex conjugate of Hankel function of order m

Approximate acoustic pressure of the scattered wave is calculated using the 
relation

PJp)  = -ikpc<bsc(p) ; pedBUB' ,

where pc signifies the characteristic acoustic impedence of the medium,

which is assumed to be unity. Incident acoustic pressure P is calculated 

similarly by using the incident potential. Clearly the approximate total acoustic

pressure is the superposition of p ^ and P^ at any point. The analytical 

solution of the total acoustic pressure at any point is given by [101],

Pip) = ¿ V ~ i0,,(M -2£
OT= 0

2m+ 1

~ B ~
Lmi cos0)<? />=/>(/•,e,i|/) (10.12)
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where (r,0,ijr) are the spherical polar coordinates and Bm is the phase 

amplitude for a given wave-number. Figs.24,25,26,27 show a comparison of 

the angular distributions of the amplitude of the scattered acoustic pressure per

unit incident pressure, i.e. IPjJ / I ^ J  , for both AKF, which gives the 

approximate, and the analytical. These are plotted for wave-numbers ka=0.1,

1.0 at field points r=5a and for wave-numbers ka=it,4A93 at field point 

r=3a, where a is the radius of the sphere. Fig.28 shows a graph which is 

plotted for a range of wave-number of the pattern of the amplitude of the total

acoustic pressure per unit incident pressure at the point 0 =7! which is the

nearest point on the surface facing the incident wave i.e. \P\l\Pin\ is 

computed using the AKF and is compared with the analytical and that of the 

classical for the given range of wave-numbers. Note that the graph in Fig.28 

clearly shows that for wave-numbers which are very small the total pressure 

amplitude almost equals that of the incident wave at that point i.e. for small 

wave-number the wave-lengths of the incident waves are large compared to 

the dimension of the obstacle, hence the occurrence of this phenomenon, 

which is as expected [60], [101]. But as the wave-numbers increase, thereby 

decreasing the wave-lengths of the incident waves, causing a variation in the 

pressure amplitudes at that point. The AKF method demonstrates a very good 

agreement with the analytical solution, especially near the wave-numbers 

ka=4.5, 5.7, 7.2, 9. . As noted before, the wave-number 4.5 is known to be 

situated near an eigenfrequency (in this case 4.493) of the interior Dirichlet 

problem, for which the classical method fails.
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FIG. 14. Computed [4>[at (0,0,a) on a sphere of radius a, a=0.12; for a range 
of wave-numbers. The exact potentia ls6.6. Test source=(0,0,a/2)
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FIG, 15 Angular distribution of potentials at the collocation points on a sphere of radius a, where a> 
for wave-number ka=50„ test source at (0,0,a/2), with 32 axially symmetric elements
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Polar angles
FIG. 15a. Angular distribution of potentials at the collocation points on a sphere of 

radius a, where a=1. ; for wave—number ka=50.., test source at (0,0,a/2)
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FIG. 16. Angular distribution of potentials at surface points of a sphere of radius^ 

for wave—number ka=50., test source=(0,0,a/2), 32 axially—symmetric elements.
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Wave numbers ka----=>•
Fig. 17. Amplitudes of $ at (o,o,a) on a cube of side 2a. Here a=0.1, with test source 
at (0,0,0), 150 Boundary elements



at
 (

0,
0,

a)

pg.17a. Amplitudes o^ [ at (0,0,a) on a cube of side 2a. Here a=0.1, with test source at (0,0,0). 
The exact solutionis 10.0 .

1 5 5  a.



FIG. 18. Computed[<£(at (0,0,a) on a cylinder of aspect ratio 1:5. Here radius is 

a/5 and a=0.3, so that the exact potential is 3.333
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FIG. 1
ka

Imaginary part of the pressure on the surface of a pulsating sphere of radius 

a=1.. Sphere is pulsating with a uniform radial velocity.
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FIG.20.
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Real part of the pressure on the surface of pulsating sphere of radius 

a=1. . Sphere is pulsating with a uniform radial velocity
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0.0 2.0 4.0 k a 6.0 8.0 10.0

FIG.21. Imaginary part of the pressure on the surface of an oscillating sphere of 
radius=1. . The sphere is oscillating with a radial velocity of cos ^where 
i5 is the polar angle. Oscillation of the sphere is in the directioni?=0.

159



RG.22. Real pari of the pressure on the surface of an oscillating sphere of

radius=1. .The sphere is oscillating with a radial velocity of cosiJ 

where ¡s the polar angle. Oscillation is in the direction, $ =Q
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tf=0

- 0.12 - 0.06 0.00 0.06 0.12
T?=7V

FIG.23. Normalised far field pressure distribution for oscillating sphere at r=10a for 
wave-numbers ka=0.5,1.0,10. .Here a is the radius of the sphere and 

is the polar angle. 64 Elements are considered.
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i3=0

T>=7V
FIG..24. Angular distribution of the pressure amplitude of the scattered sound

Per unit incident pressure, for ka=0.1, r=5a, where a is the radius of 
the sphere.
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i5=0

1?=7V

FIG.25. Angular distribution of the pressure amplitude of the scattered sound 

per unit incident pressure for ka=1.0, r=5a, where a is the radius of 

the sphere _
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FtG.26. Angular distribution of the pressure amplitude of the scattered sound per

unit incident pressure for ka= rr ,r=3a, where a is the radius of the 

sphere.

164



tf=0

1?=7T
FIG.27. Angular distribution of the pressure amplitude of the scattered sound per

unit incident pressure, for ka=4.493, r=3a, where a is the radius of the 
sphere
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FIG.28. Amplitude of the total acoustic pressure per unit incident pressure on the 

surface of a sphere at This is the nearest point on the sphere

facing the incident wave.
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APPENDICES

I. Interior wave-functions generated bv simple-Iaver potentials

Sphere of radius a is considered. The field point p  = (0,0,r) and the source 

points using spherical coordinates are

q = (flsinScosiJj, asinSsimJ;, acos0) ; ,

so that

For r<a ,  i.e. p  inside the sphere and uniform source density o=ag

P = Lp ~#I = (a2 + /*2-2iircos0)1/2 •

2 n a a ... .0 [ e  -iMa+r) _  e  -ik(a-r)-i
ikr

Since

e lkT -  e *■ = lism kr  >

therefore
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\p\=r<a .

Similar treatment for the case r>  a gives the result as mentioned in chapter.5. 

II. Normal derivative properties of the simple-laver integral

Assuming a uniform source density a =o0 over the surface dB of a sphere 

of radius a and taking the derivative of gk at p=(0,0,r)r=a in the normal

direction pointing into the region exterior to dB , we get

where the expression for q is as before. This integral now takes the form

r 2* r* [2ikasin2(6/2) + sin(6/2)] 
'° '° 4 a 2sin2(0/2)

e -2i*asin(6/2)a 2 s j.a 2sin0J0Jij;

-a O
0 2 a 4 a 2 sin (0/2)

] e -2l*asm(0/2)a 2sin0J0Jl|r

Substituting

u = sin(0/2) , 2du = cos(0/2) J 0

gives
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-8it o a 2 f 1[—  + —-— ]ue~2tkaudu 
0 Jo 2a 4 a2u

= -2n a0J^[2ikau + l]e~2lkaudu

= ~2n a0[(-u
ika

)e -2ikau-i H-l

w=0

But

= - 4 i o sink a 
’ ka

-ika + 2ite -2 ika

d r  d e ~ikr
~d^JdB8k(p,q^0(>dq = -^t*'liaoosìnka- j^ r l  y Ip\=r*a

d_
dr kr

a  - ik a  SITika r • * < -|4 it a0e lKa------- [-ika -  1]
ka

showing that

-  l as-^ (p 4 )o„ d q  = - 2 k o „ ; p e S B  ,
P P

as is expected. A similar treatment may be applied to the approach of the 

normal derivative from the interior which would show the expected jump.

Ill- Exterior wave-functions generated bv double-laver potentials

Without loss of generality, let p=(0,0,r), r>a ,  be a general point in the 

exterior of dB , the surface of a sphere of radius a. Assume a uniform 

source distribution p=p0 over dB and take
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q = ( /? s in 0 c o s i|f ,/2 s in 0 s in T |i,Rcosd)R=a ; 0 ^ 0  , 0 ^xjr^2 tc ,

at a general point on the surface, so that

P = \p~q\ = (r 2 + R2 -  2rRcosQ)V2R=a ; p = p(/?,0) , r>a •

If so, then

4>(p) = f  J ^ (p ,q ) \ iQdq = p  J . 2" / " - ¿ t - — " I  a 2 s in 0 i f 0 J i } rJdBdnq Jo Jo dR p R=a

= Pof** f *   ̂ ^ P3— — - rcos0]a2sin0d0£filr .

(*)

Putting /?=a in p and substituting the following in (*), we get 

p = [ r2 + a 2 -  2 racos0]1/2 

pdp = ra  sin 0 ¿10

p2 + a 2 -  r 2—---------------  = a -  r cos0 ,
2a

which gives

7t r (r+a) [-/&p -  1]
= ~ f ( 'r  J (r-a)

e ,kp[p2 +a2- r 2]dp

— /  ^  i [ - ik p - l ] e ~ ikp + (a2 - r 2) [~— ~— ]e~ikp r J(r-a) p p2

7tr/ 2 a 2- r 2 p=r+a
— [ ( p +r r +-------- )« P]r ik pr p =r-a

e ~ikr= 4n \i0[kacoska-sm ka]--------- ;
Jc /* \p\ =r>a .
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Similar analysis for the case r< a  gives the result as stated in chapter 5.

IV. Surface values of the double-layer potential

Here p=(0,0,a), with q as before and

p = \p-q\ = 0a2 + Rz -2aRcosd)ll2R=a ; p = p(*,0) •

So we have

p edB

]—  a2smddddty
dRR=a

= -cos0]sin0dddty ; p = p(a,6)

Now writing

2

p =2 a sin (0/2) ; -5— = 1 -cos0
2 a 2

dp = a cos (0/2) ¿0 ,

the above integral becomes

2 it u a 3 f M - j * P - 1] e H*p_pj.P j p
° Jo  p3 2 a 2 a a

= —  [ ^ [ - i k p - l j e - ^ d p  
a Jo
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Hence

it u„ , 2 ,  ,i P’2"
- ^ [ { p + 4  }e -ikn

a  l k  p=0

= ^ [ { 2  a + — )e-2ika-  — ] 
a ik ik

m —2 i k n  a  SHI k d  - i  k u=271 li e  ̂ -47in -------e
0

We also have the following:

l unL ^ - [— — i IP+ \=r>ar~aJMdnq \p+-q\

e ~ika= 4 ti p0[fcacosfoz-sinfca]------  ,
ka

so demonstrating the jump property

■ L - ^ C p^ ) »*.<*? = 27t p ; .p'~pJdBonq J3Bdnq

Similar treatment for the case r< a  yields the expected result as stated in 

chapter 5.

V. The interior/exterior correspondence with respect to a sphere.

Exterior Neumann Problem (ENP) requires the construction of an exterior 

wave-function, usually represented by a simple-layer potential generated by

a continuous source distribution over the boundary dB , i.e.
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EDP <J>(p) = 4 t i p [fcacosfca-sin&a]-----
ka

e -ik a
\p\=a , (in)

INP = 47to fsin£a-kacoska'i — \p \= a  . (iv)

Notice that the equations (i) and (ii) are identical, as are the equations (iii) 

and (iv), which clearly show that the corresponding pairs of homogeneous 

boundary equations are equivalent. And therefore that a breakdown of the one 

at any characteristic frequency implies a breakdown of the other.

VI. An alternative view of the Vf[ operator for a flat plate.

It has been shown (see chapter 6) that

where p =p(0) is the polar equation, relative to the singular pointp = (0,0,0),

of the contour bounding a flat element dB . If the element becomes a disc of 

radius R then the above integral evaluates to

This may also be obtained by considering the integral (*) defined on a 

spherical cap Qp of extent defined by a polar angle p , i.e.

-271 [ik + —
R ] •

Qp = { (a,0,i|r) : O<;0<;p , Osiji <;27i} .
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q  = (/? sin 0 cos <t>, i?sin 0 sin <{>,/? cos 0)r=a

6 = \p~q\ = (a2+z2-2azcos0)1/2 ,

Writing p = ( 0 ,0 , z )  and q  as before, we obtain

and therefore

f
f  „ * (P,4)dq
'Q d n d n

p  i

‘ /* P r / kcO S 0 COS0-fc2X 3 i k x  3 t ,  . ilo  2 - Q ,a  , ,  (***)
— — + ----------------+ --------- + — ] e  *ca 2sm 0  J0J<J);
e e Q4 Q5= r i >

t  = (a-zcos0)(z-acos0)

Substitution of

cos0 = a * z ; >4(P) = (a2+z2-2azcosP)1/2.
jLCIZ z=a

sin0d0 = — 
az

x _ e4- ( a 2-z 2)2
4  az

into the integral yields

71 /  ^  {2(a2+z2) [ — + — ] + (a2-z2)2[ — — ]
l~a e e2 e2 e3 e42z:

+ [1 + i k Q - k 2 Q2] ) e  ikQdQ  ; z > a  ,
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it {———-------  -  —— +3>4(P) +Ẑ ( P ) 2]e-*^(iJ> -  2/A: + —=—) .
^(P) 2a 2 ik ika2

Note that the a 2 terms cancel each other out, so the above takes the form 

, e ,-2 i t i ik  + -------- } + O(B) ,
A( P)

therefore, as p -0  i.e as the cap reduces to an approximate flat disc, the 
above behaves as

e -itA(P)
-2 n [ ik  + — —  ] ; A(P) = 2asin(P/2)-aP .

^(P)

This agrees with the result in (**), since for a given a and for p =o we may 
write A(p)=R .

VII. An alternative argument for uniqueness of AKF

Recall the AKF formulation in the form

4>(P) = [Lka](p) + r) [  J ^ - (p ,q * )0(q*)dq* ; peB+VdB .
J3B dnq.

Applying the Neumann boundary condition, the homogeneous boundary 
equation takes the form

0 = -2 na(p)+ M ja(p)+ x\f  —^ — (p,q*)a(q*)dq9 ; pedB  .
J 33 dnjdn.

now integrating, putting in the limit values and letting z = a ,  we obtain
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The homogeneous adjoint equation becomes

0 = -2n\i(p) + [Mk\i](p) + r\ f  ^  (qj>*)\i(q)dq
JdBdn.dn„

P <1

0 = -2n\i(p) + [Mk\i](p)+r\[Nk\i](p*) , pedB ,p *  = t p

where 0<6< 1 . Suppose there is a non-trivial solution ^ - |l  of the above 

equation. Using this source density, generate a double-layer potential

W(p) = [Mk\i](p) ; peB~ ,

which satisfies

W(p) + n ■— (?*) = 0 ; pedB ,p*=fJp .
an

By letting p * approach p, we find for the same £ that W also satisfies

W(p) + n ^ -(p )  = 0 ; p€dB ,
on

as dW/dn is continuous across the boundary as it is the normal derivative of 

a double-layer potential. Now applying the Green’s identity on W and W* 

analogous to the uniqueness proof in chapter 8 of Kussmaul formulation one

can show that £ can only be trivial.
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