

City, University of London Institutional Repository

Citation: Hafeez, A. B., Alonso, E. & Riaz, A. (2023). DTCEncoder: A Swiss Army Knife

Architecture for DTC Exploration, Prediction, Search and Model Interpretation. Paper
presented at the 21st IEEE International Conference on Machine Learning and Applications
(ICMLA), 12-14 Dec 2022, Nassau, Bahamas. doi: 10.1109/ICMLA55696.2022.00085

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/30137/

Link to published version: https://doi.org/10.1109/ICMLA55696.2022.00085

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

DTCEncoder: A Swiss Army Knife Architecture for
DTC Exploration, Prediction, Search and Model

Interpretation
Author names hidden

for the Review
and Submission

Abstract—Diagnostic Trouble Code (DTC) events, produced in
vehicles, assist in knowing the occurrence of faults in different
modules and can be used for predictive maintenance by detecting
patterns. While performing Exploratory Data Analysis (EDA)
or correlating specific DTC events is an easy task, searching
for patterns in long multivariate DTC sequences can be very
challenging. Instead of performing analysis for individual DTCs,
a self-supervised approach using a Long Short-Term Memory
(LSTM) network was introduced recently to perform the next
DTC prediction. Despite its merits, such an approach is not
interpretable for engineers who need to understand the decision-
making process of the model. In this paper, we introduce the
DTCEncoder, a recurrent neural network that incorporates
Gated Recurrent Units (GRU) and an attention mechanism to
encode DTC sequences into low dimensional representations,
and that serves as a unified approach to (i) efficiently represent
multivariate event sequences and predict the next event, (ii)
interpret what the model learns and what it uses for the
next prediction, and (iii) perform efficient semantic search for
individual DTCs and DTC sequences.

Index Terms—Predictive maintenance, DTCs, RNN, Encoder,
Interpretibiltiy.

I. INTRODUCTION

To prevent the unexpected failure of industrial machines,
periodic and scheduled maintenance is usually performed to
take proactive measures. This periodic approach commonly
named Preventive maintenance, is being replaced by a cost-
effective and data-driven failure prediction approach known as
Predictive Maintenance, which helps to foresee the necessity
of maintenance based on data collected from sensors.

Modern vehicles are also equipped with diagnostic modules
that produce DTCs, which can, in turn, be analyzed to find
patterns for predictive maintenance. These fault events are
characterised by multiple attributes corresponding to differ-
ent granularity levels and the details of previous faults. For
instance, a single DTC event in a sequence of DTCs contains
information about the main module where a fault has occurred,
a sub-module (often called base-dtc), and a fault-type, which
specifies the exact nature and granularity of the fault.

In comparison to sensory data, modeling DTCs is a rela-
tively difficult task as they work on non-numeric attributes
with a high number of unique categories (cardinality). As
a result, most of the research in the area has focused on
developing simple models that only consider individual or

small groups of DTCs and that do not cater to complex
sequential dependencies of sequences. Some models have
introduced learning mechanisms to address such issues, yet
they are not interpretable. For example, [1] used EDA to select
features to train a machine learning algorithm (AdaBoost)
to detect failures associated with a single module, namely a
power motor, and classification approaches (Decision Trees,
Support Vector Machines, and Random Forest) have been
employed to distinguish faulty from non-faulty patterns as well
as to search for fault patterns, in datasets containing limited
groups of DTCs (e.g., [2] [3] [4]).

Deep learning models that consider sequential dependencies
and solve the above-mentioned representation issues have also
been proposed: in [5], a convolutional neural network and a
gated recurrent network were used to learn embeddings for
specific errors and their relationships; more in particular, the
LSTM-based Sequential Multivariate Fault Prediction (SMFP)
model [6] shows a promising direction for fault prediction 1

using a self-supervised end-to-end architecture. This task is
illustrated in figure 1, where instead of providing the labels
explicitly, the last event of each sequence is treated as the next
target label. The predicted DTC event includes three attributes
of different granularity (i.e., fault-type) and can be utilized to
perform primitive measures on the predicted module.

Unlike previous DTC-based approaches, SMFP does not
limit modelling to few DTCs but rather it uses neural em-
beddings [8] to represent non-numeric attributes and han-
dles sequential dependencies with recurrent neural networks.
However, it lacks interpretability, which is often required to
ascertain what the model considers before predicting the next
item. To interpret, verify and compare the prediction of multi-
variate fault events, an engineer will need to perform a tedious,
and often impossible, task of searching millions of similar
multivariate sequences. Engineers are thus forced to develop
different retrieval, modeling, and exploratory techniques for
sequential prediction models, which do not provide a holistic
view.

1 [5] also performs a sample task of part failure predictions to evaluate static
CBOW embeddings [7]. However, these embeddings are not optimized with
the downstream part failure predictions, but rather they are learned separately
and used as a pre-trained layer in such sample task.

Fig. 1. Single sequence showing multivariate DTC events from time tk to
time t. The goal is to predict the multivariate event at time t+ 1.

In this paper we propose an attention-based DTCEncoder,
which aims to learn low compact representations of multivari-
ate event sequences and hence enable interpretable multivariate
DTC event prediction. With the use of the Luong attention
[9] mechanism, these representations explicitly incorporate
information from all previous hidden states according to their
importance, which procures interpretability and also improves
prediction accuracy. The DTCEncoder provides a unified ap-
proach to predict the next DTC event, efficiently represents a
pipeline for model interpretation, reduces search space for the
semantic search of multivariate sequences, and performs event
and sequence level EDA.

In the next section, we comment on related work and on
the background of the proposed model. In section III, we
present the methodology used by DTCEncoder for prediction,
interpretation, and efficient sequence representation learning.
The experiments we carried out and their results are described
in the next section. We shall finish with conclusions.

II. BACKGROUND AND RELATED WORK

In this section, we provide a brief review of the SMFP
model. The sequential event prediction problem, specially
in the context of DTC events, can be defined as predicting
the DTC fault event at timestep t + 1 given a sequence of
DTCs from timestep 1 to the current timestep t. To predict
the next event, the model needs to account for sequential
dependencies in multivariate faults. A single DTC event
comprises of three different attributes (variables), which
provide different levels of information about the fault. A
vehicle can contain several Electronic Control Unit (ECU)
resulting in different DTCs. The first attribute (module)
of a DTC signifies which ECU has generated the DTC
fault. The second attribute (sub-module) corresponds to
a so called base-DTC and the third attribute (fault-type)
provides the information about the type of the fault that has
occurred. For example, in figure 1 we depict a sequence S =

[(ABS,C0040,64),....,(RADIO,B1342,62),(UPC,B1257,15)]
with T DTC events, each consisting of three attributes ,
namely, (i) a module (e.g., ABS), (ii) a sub-module or
base-DTC (e.g., C0040) and (iii) fault-type (e.g., 62). The
goal is to predict an event at timestep t+ 1 with all the three
attributes.

Formally, let sequence S = e1:T of DTC events, containing
T observed events, where each event et at timestep t represents
one DTC event of the form (a1t , a

2
t , a

3
t). Here, ait represents

the i-th attribute (feature) of the event, for example, a main
module where a fault is detected. If θ denotes the parameters
of a model that we want to learn, then given a sequence of T
observed events, the event e ∈ E with the highest probability
will be predicted as the next event, following

argmax
i

P (ei|e1:T , θ) (1)

Since the cardinalities of attributes are high, separate neu-
ral embedding layers were used to learn dense representa-
tions aiEMB for each attribute ai, such that size(aiEMB) <
size(ai). Embedding layers project the One-Hot Encoded
(OHE) representation of textual attributes to a continuous
representation, which is jointly optimized with the downstream
prediction task. SMFP concatenates individual attribute em-
beddings to form an embedding matrix AEMB and passes it
to LSTM layers for identification of sequential dependencies.
Finally, three dense output layers were employed to predict
individual attributes of the events.

III. METHODOLOGY

In this section, we will first briefly introduce the overall ar-
chitecture of the DTCEncoder, followed by details of different
components and downstream tasks.

A. DTCEncoder motivation

In SMFP [6], the authors showed how LSTMs can predict
the next DTC. A LSTM is a Recurrent Neural Network (RNN)
where a recurrent loop acts as a memory to handle sequen-
tial dependencies. It overcomes the vanishing and exploding
gradient problems in RNNs, by introducing gates that channel
access to the long-term memory.

The representations learned by LSTMs are typically high
dimensional, for example, 128 to 512 dimensional vectors.
It is hard to interpret what an LSTM has learned with
these representations. Although different unsupervised learn-
ing techniques like dimensionality reduction [10] can be used
for the sake of interpretation, reducing a large dimensionality
space usually causes loss in information, specially about the
sequential nature of data. By applying the attention mechanism
on hidden states of a special type of RNN, namely Gated
Recurrent Units (GRU) and forcing the information to pass
through a dense bottleneck, the DTCEncoder learns a compact
low dimensional DTC representation (context-vector), which
not only improves the accuracy of the DTC prediction task
but also provides interpretation and efficient semantic search

Fig. 2. The overall architecture of the DTCEncoder. Component-1 shows the encoding unit, which learns a low dimensional representation for each DTC
sequence with the help of the attention mechanism, the GRU, and the dense encoder. The interpretability module (Component-2) utilizes context-vectors and
attention-weights produced by component-1, to perform dimensionality reduction and visualization. Component-3 corresponds to ANN-based semantic search
unit, which enables EDA and fast retrieval of individual DTCs and sequences using hidden representation learned by component (1).

of DTC sequences (and individual DTCs). The overall archi-
tecture of the DTCEncoder can be seen in figure 2 and the
procedure is explained in Algorithm 1.

We are providing the specifics of the encoding mechanism
in the next sub-section.

Algorithm 1 DTCEncoder
Require: s1 . . . sN
Ensure: Predicted DTC event (a1p,a2p,a3p) for s1 . . . sN

for epoch← 1 to N do
a1EMB ← EMB(a1OHE)
a2EMB ← EMB(a2OHE)
a3EMB ← EMB(a3OHE)
aEMB ← a1EMB ∥ a2EMB ∥ a3EMB {Concatenating the

individual embeddings}
gru state ← GRU1(aEMB)
gru state ← GRU2(gru state)
lastSt , stWithoutLast ← slice(gru state)
Score,Context ← Attention(lastSt, stWithoutLast)
Dense1 ← Dense(Context)
DenseBottleneck ← Dense(Dense1)
a1pred ← Dense(DenseBottleneck)
a2pred ← Dense(DenseBottleneck)
a3pred ← Dense(DenseBottleneck)
Calculate loss
Optimize parameters of all layers

end for

B. Attention mechanism and Encoder
The LSTM architecture used in SMFP [6] takes concate-

nated attribute embeddings AEMB and passes them through
encoder LSTM layers. LSTM layers first calculate the new
hidden state from the current input xt and the previous hidden
state ht−1. The prediction is then calculated by utilizing
information learned by the hidden state ht, up to the current
timestep t.

Instead of predicting the next DTC based on the last hidden
state (context-vector), we use a Loung attention mechanism [9]
to obtain a new context-vector by taking a weighted sum of
the hidden states from all time steps, where the weights are
calculated with an attention mechanism.

We use the last T DTC events as training inputs and keep
the event at timestep (T + 1) as the target. The goal of the
model is to predict this event as the next DTC. Moreover, we
append an end-of-sequence (EOS) token to all input sequences.
As figure 3 depicts, to obtain a new weighted context-vector,
we first take a dot product et = hEOS ·ht between each hidden
state ht and the hidden state of the EOS token. We then pass
these scores to a softmax function

αt,j =
exp(et,j)∑T
i=1 exp(et,i)

, (2)

where αt,j is the attention weight at timestep t for the
hidden-state j, and et,j is the attention-score (before applying
softmax) for the same timestep.

Softmax is used to obtain attention weights for all hidden-
states (ht) by normalizing the attention score. We calculate a

Fig. 3. The attention mechanism performs a dot product operation between all hidden-states ht and the EOS hidden-state. The new context-vector ĉt is
obtained by performing the weighted sum of all hidden states. The new context-vector is passed through dense layers with a decreasing number of neurons
(Encoder), and finally to the output layers of all three attributes.

weighted context-vector (ĉt) according to the attention weights
(α) produced by softmax, as shown in the equation below

ĉt =

T∑
i=1

α(t,i) · hi (3)

The new context-vector is passed through dense layers with
a decreasing number of neurons (encoder (E)) to obtain a
compact encoding for the sequence. The output of final hidden
dense layer (bottleneck) is then passed to the three dense
output layers, each corresponding to a different attribute of
the DTC event.

C. Clustering and dimensionality reduction for the inter-
pretable visualization module

The sequence representation (context-vector) learned by the
DTCEncoder is a 24-dimensional vector and much smaller
than the representation learned by a typical RNN network,
which usually is at least a 128 to 512-dimensional vector.
Performing dimensionality reduction from a hidden state of
the RNN layer is difficult, as compared to reducing a 24-
dimensional vector. We apply the dimensionality reduction
technique t-SNE [11] to this 24-dimensional representation to
further reduce it to 2 dimensions, which can thus be visualized.

As seen in component (2) of figure 2, the interactive module
of the DTCEncoder applies the K-means clustering algorithm
to the event-context (EC) of all sequences and clusters them
into K groups. These clusters provide two benefits: first,
they help to visualize the clusters in a 2-dimensional space
by enabling the same color-coding of sequences within a
cluster; second, when performing a semantic search for a

long multi-variate DTC event sequence, they provide an added
performance verification metric for the retrieval mechanism
and can also be used to improve retrieval itself.

As shown in figure 4, we project the sequence onto 2-
dimensions learned with t-SNE and assign them colors ac-
cording to their K-means clusters. We visualize them such that
upon moving the cursor onto each sequence, we can see the
N previous timesteps, the actual next timestep event that the
model needed to predict (in blue), and the prediction made
by the model (in green). The clustering and dimensionality
reduction procedure is defined in Algorithm 2.

Since the representation learned by RNNs regards all se-
quential information, the close sequences in this 2-dimensional
space should be the ones that lead to the same fault or have
the same sequential context. This hypothesis is confirmed by
zooming in on this interactive visualization, which shows that
the sequences in the close neighborhood are similar or have
the same DTC at the last timestep. The attention weights
associated with the hidden state of each timestep show how
important that particular timestep is for the model to predict
the next DTC. We use these attention weights to enhance
the interpretability module by highlighting DTC events in a
way that reflects their importance. As seen in the figure 4,
the events that have higher attention weights score a higher
importance rank (10 being the most important), with higher
opacity than the other events. This interactive module provides
a very efficient way of seeing what the model has learned and
which contextual similarities are present in the dataset.

Fig. 4. The interpretability module maps sequences to a 2-dimensional t-SNE space and color codes them according to the K-means clusters learned on their
context-vector. This figure shows three different sequences in proximity by hovering different positions in the interpretability module. Each sequence presents
all input events (black), the target event (blue), and the predicted event (green). The number in front of input DTC events is an attention score, which signifies
the importance of the event between 1 (least important) and 10 (very crucial). It can also be seen that items near in the visualization have common DTCs.
For example, a few modules (IPMA, TCU, CCM, etc.) and sub-modules (u0001, u0046, u0055, etc.) appear frequently in all three sequences.

Algorithm 2 Clustering and t-SNE
Require: Encoded States for s1 . . . sN
Ensure: Clusters and Reduced dimension R2

K-means ← fit K-means to encoded states of all S
retrieve cluster from K-means
t-SNE ← fit t-SNE to encoded states of all S
Retrieve R2 representation for each S from t-SNE

D. Exploratory analysis and semantic search of DTCs and
DTC sequences

The interactive module explained in the last section provides
an efficient sequence visualization mechanism for explaining
the behavior of the model. It can also be helpful for engineers
to search for similar DTCs (or DTC sequences) to understand
the semantics and context of the faults. Although possible,
searching for the exact match within the whole sequence
dataset or finding patterns can be computationally expensive,
especially with the increase of data points and number of
attributes.

Instead of performing an exact search for sequential or indi-
vidual DTCs, we propose to employ an Approximate Nearest
Neighbors (ANN) search on representations learned by two
components, namely, (i) a concatenated attribute embedding
for individual DTCs, and (ii) a bottleneck encoder repre-
sentation of the DTCEncoder (context-vector) for sequences.
Searching DTCs with the ANN Index reduces retrieval time
and provides semantic information to find patterns in DTC
sequences. Component (3) of figure 2 provides a visual flow
of the Indexing and exploratory analysis pipeline.

We build an ANN Index with an ANN algorithm called
Annoy [12]. Annoy uses a random projection to build a binary
tree, which partitions the space such that it keeps similar
points close in the tree representation. We build an Annoy
Index to learn log(N) trees from the vectors of all N entities
(sequences or individual DTCs) and later use this Index to
search K nearest neighbors for a DTC or a given sequence.

TABLE I
TOP 3 NEIGHBORS OF FREQUENT OCCURRING DTC FAULTS

ANN IPC U0055 135 CHCM U0046 129 ABS U0046 135
1 IPC U0055 130 CHCM U0046 135 ABS U0046 129
2 GWM U0055 135 CHCM U0046 130 ABS U0046 130
3 IPC U0001 135 PAM U0046 129 ABS U0046 136

The procedure for semantic search is defined in Algorithm 3.
For individual DTCs, we retrieve the concatenated attribute

embedding learned by the embedding layer and apply an
Annoy Index on it. Since the embedding learned by the
DTCEncoder is jointly optimized with the task in hand, i.e,
the next fault prediction, the nearest neighbors of the faults
are the ones that appear in the same context. Table I shows
three nearest neighbors to a given DTC, comprising of three
attributes (module sub-module fault-type). For example, in
the third column, all three nearest neighbors share the same
module attribute (ABS) and the same sub-module (U0046).

Algorithm 3 ANN with Annoy Index
Require: All DTC sequences (s1 . . . sN)
Ensure: Annoy Index for DTCs

1: Retrieve context-vector or concatenated attribute embed-
ding for all unique DTC sequences (or faults)

2: Index ← build Index for all Sequences (or DTC events)
3: Return Index

For sequences, we learn an Annoy Index on the 24-
dimensional bottleneck representation (context-vector) of all
the DTC sequences. At the time of query, we retrieve a
representation of the query sequence by passing it to the
encoder and perform an ANN search for such sequence. As
seen in figure 5, the most similar sequences retrieved by the
Index are the ones that have more DTCs in common or end
in the same faults (DTCs).

Fig. 5. Example of three similar sequences provided by ANN, for a selected DTC. DTCs which are common in the selected DTC and similar DTCs are
highlighted in bold. For example, the selected sequence, the second, and the third similar sequence all contain specific DTCs (e.g., vision peripherique b2a02 08)
and end in the same DTC event (tableau de bord b1411 7b)

IV. EXPERIMENTS AND RESULTS

In this section, we are first sharing details about the dataset.
Next, we explain the experimental setup and hyperparameter
choices. Finally, we present the results of different experi-
ments.

A. Dataset
We used the same dataset from [3] to train the DTCEncoder.

This dataset is given by name hidden for the review and sub-
mission. As defined in section I and depicted in figure 1, each
sequence contains multivariate fault events and corresponds
to unique vehicles. Out of 2,50,000 fault sequences, we used
232,750 sequences for training, 12,500 separate sequences for
testing, and 4,750 different sequences for validation.

B. Experimental setup and hyperparameter tuning
The hyperparameters and model parameters defined in this

section are opted with the Hyperband [13] hyperparameter
tuning method using keras-tuner [14]. The attribute embedding
sizes that we considered, along with the sizes selected by tuner,
are mentioned in table II. We took the last 10 timesteps of each
sequence and padded the shorter sequences with 0, which were
later masked (ignored) by subsequent layers. Apart from the
embedding size, other hyperparameter choices (e.g., number
of GRU units in each GRU layer) are listed in table II. We
used Adam optimizer [15] with a learning rate of 0.0066.

We used two GRU layers with 128 GRU cells each. To
improve generalization, we used a recurrent-dropout of 0.3 and
a dropout of 0.2 in encoder layers. For dense output layers,
we used a softmax as an activation function. In GRU layers,
we used tanh as the activation function. We used categorical
cross entropy loss for all outputs.

TABLE II
HYPER-PARAMETER AND PARAMETER CHOICES

Choice min max final
Attribute-1 (module) embedding 4 24 6
Attribute-2 (base-dtc) embedding 4 32 12

Attribute-2 (fault-byte) embedding 12 56 8
GRU layers recurrent-dropout 0.1 0.5 0.3

GRU layers dropout 0.1 0.5 0.2
GRU layer units 128 256 224

Dense first layer units 32 128 64
Learning rate 1e-4 0.1 0.006

C. Results

TABLE III
ABLATION STUDY AND RESULTS OF DTCENCODER IN COMPARISON WITH

THE SMFP’S.

Architecture Validation Loss Top-5 test accuracy
SMFP 4.50 76.15%

DTCEncoder (GRU) 4.36 79.21%
Without Attention and Encoder 4.49 76.0%

DTCEncoder (LSTM) 4.59 75.20%
DTCEncoder (RNN) 4.71 73.0%

The main focus of the proposed model was to provide an
interpretable and unified architecture for multiple DTC-related
tasks. Besides achieving the main objective of interpretability,
the DTCEncoder also improved the previous baseline on the
next event prediction task. We compared the performance of
the DTCEncoder only against the LSTM architecture used in
the SMFP approach [6], since, as far as we know, there is no
other model that performs such task. We achieved the lowest
validation loss of 4.36 and top-5 accuracy of 79% with our

architecture, in contrast to validation loss of 4.52 and top-5
test accuracy of 76% with the architecture used by the SMFP
model. The top-5 prediction accuracy of 79%, achieved for
three combined high cardinality attributes, is different and
more complex to attain than the accuracy metric used in a
binary classification task.

As a part of the ablation study and to understand the im-
portance of the DTCEncoder’s core components, we removed
the attention module and the dense layers preceding output
layers. As shown in table III, the model was not able to meet
the performance of the actual DTCEncoder architecture. We
also used different recurrent networks like LSTM and simple
RNN cells without gating, and we found that LSTMs started
to overfit quite early and RNNs were not able to learn the
patterns accurately.

The dataset used by the DTCEncoder has only 250,000
sequences and shows some limitations like missing events in a
few sequences. So, we can expect improved performance with
larger and better datasets.

V. DISCUSSION AND CONCLUSION

We have presented a unified architecture, the DTCEncoder,
for multi-attribute sequential DTC event prediction, which
interprets the model, learns to represent DTC sequences and
can be used to perform semantic analysis at both sequence
and individual DTC event levels. This model encodes a
DTC sequence into a low-dimension representation, which
encapsulates the sequential information that can be used for
different downstream tasks. Along with enabling multiple
functionalities, it surpasses the performance of SMFP [6].

Although some solutions for representing non-numeric
(high cardinality) attributes and sequential dependencies have
been proposed with neural embeddings and RNNs, such
models still lack interpretability. The DTCEncoder makes the
next DTC prediction mechanism interpretable, without the
need for a separate procedure. The benefit that this unified
architecture introduces is that the performance of the other
components (e.g., interpretation, semantic search) will improve
automatically with the increase of performance in the encoder
component, and thus it does not require to maintain and retrain
separate models for all downstream tasks. We are confident
that with hyperparameter optimization and architectural adjust-
ments, the performance of the DTCEncoder can be improved
further.

REFERENCES

[1] L. Virkkala and J. Haglund, “Modelling of patterns between
operational data, diagnostic trouble codes and workshop history
using big data and machine learning,” Ph.D. dissertation,
Uppsala universitet, 2016. [Online]. Available: https://www.diva-
portal.org/smash/get/diva2:909003/FULLTEXT01.pdf

[2] M. Fransson and L. Fåhraeus, “Finding patterns in vehicle
diagnostic trouble codes : A data mining study applying
associative classification,” 2015. [Online]. Available: http://uu.diva-
portal.org/smash/get/diva2:828052/FULLTEXT01.pdf

[3] U. Shafi, A. Safi, A. Shahid, S. Ziauddin, and M. Saleem, “Vehicle
remote health monitoring and prognostic maintenance system,” Journal
of Advanced Transportation, vol. 2018, pp. 1–10, 01 2018.

[4] P. Pirasteh, S. Nowaczyk, S. Pashami, M. Löwenadler, K. Thunberg,
H. Ydreskog, and P. Berck, “Interactive feature extraction for diagnostic
trouble codes in predictive maintenance: A case study from automotive
domain,” in Proceedings of the Workshop on Interactive Data Mining,
ser. WIDM’19. Association for Computing Machinery, 2019.

[5] K. R. Thoorpu and N. Prafulla, “Sequential dtc vector embedding using
deep neural networks for industry 4.0,” in 2020 IEEE 7th International
Conference on Industrial Engineering and Applications (ICIEA), 2020,
pp. 912–915.

[6] A. Hafeez, E. Alonso, and A. Ter-Sarkisov, “Towards sequential mul-
tivariate fault prediction for vehicular predictive maintenance,” in 2021
20th IEEE International Conference on Machine Learning and Appli-
cations (ICMLA), 2021.

[7] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” Proceedings of Workshop at
ICLR, vol. 2013, 01 2013.

[8] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural proba-
bilistic language model,” Journal of Machine Learning Research, vol. 3,
p. 1137–1155, 2003.

[9] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” 2015. [Online]. Available:
https://arxiv.org/abs/1508.04025

[10] L. van der Maaten, E. Postma, and H. Herik, “Dimensionality reduction:
A comparative review,” Journal of Machine Learning Research - JMLR,
vol. 10, 01 2007.

[11] L. van der Maaten and G. Hinton, “Viualizing data using t-sne,” Journal
of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.

[12] Spotify, “Annoy.” [Online]. Available: https://github.com/spotify/annoy
[13] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,

“Hyperband: A novel bandit-based approach to hyperparameter
optimization,” Journal of Machine Learning Research, vol. 18, no.
185, pp. 1–52, 2018. [Online]. Available: http://jmlr.org/papers/v18/16-
558.html

[14] T. O’Malley, E. Bursztein, J. Long, F. Chollet, H. Jin, L. Invernizzi et al.,
“Kerastuner,” https://github.com/keras-team/keras-tuner, 2019.

[15] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations, 2014.

