Abstract—We show that the big-O problem for max-plus automata, i.e. weighted automata over the semiring \((\mathbb{N} \cup \{-\infty\}, \max, +)\), is decidable and PSPACE-complete. The big-O (or affine domination) problem asks whether, given two max-plus automata computing functions \(f\) and \(g\), there exists a constant \(c\) such that \(f \leq cg + c\). This is a relaxation of the containment problem asking whether \(f \leq g\), which is undecidable. Our decidability result uses Simon’s forest factorisation theorem, and relies on detecting specific elements, that we call witnesses, in a finite semigroup closed under two special operations: stabilisation and flattening.

I. INTRODUCTION

Weighted automata are a generalisation of finite state automata, assigning values (integers, rationals, strings...) to input words, and modelling probabilities, costs or program running times. They have been introduced by Schützenberger [1] and found applications in quantitative verification [2], text and speech recognition [3], and probability of systems [4], text and speech recognition [3], and verification problems correspond to the language equivalence [5]. Similarly, in [15], two restrictions of the big-O problem, also known to be undecidable in general, are studied on specific subclasses: the boundedness problem (a.k.a. limitedness), and the zero isolation problem.

The big-O problem, called the big-O problem asks whether an automaton \(A\) is big-O of an automaton \(B\), that is, if there exists a constant \(c\) such that:

\[[A](w) \leq c[B](w) + c \text{ for all words } w \]

where \([A]\) (resp. \([B]\)) denotes the function computed by \(A\) (resp. \(B\)). Intuitively the problem asks whether, asymptotically, \([B]\) grows at least as fast as \([A]\) on every sequence of words.

Chistikov, Kiefer, Murawska and Purser [13], [14] study the big-O problem over the non-negative rational semiring, where it is shown to be undecidable in general, but decidable for certain restrictions on the ambiguity or the accepted language.

In this paper, we consider a relaxation of the containment problem, called the big-O problem which asks whether an automaton \(A\) is big-O of an automaton \(B\), that is, if there exists a constant \(c\) such that:

\[[A](w) \leq c[B](w) + c \text{ for all words } w \]

where \([A]\) (resp. \([B]\)) denotes the function computed by \(A\) (resp. \(B\)). Intuitively the problem asks whether, asymptotically, \([B]\) grows at least as fast as \([A]\) on every sequence of words.

For the tropical semirings, the big-O problem has also been proved to be decidable in the \((\mathbb{N} \cup \{+\infty\}, \min, +)\) setting via the study of another problem: the domination problem [16], [17]. This later asks whether there is a function \(\alpha : \mathbb{N} \rightarrow \mathbb{N}\) such that \([A] \leq \alpha \circ [B]\). Affine domination requires that \(\alpha\) be affine, and is equivalent to the big-O problem that we consider. Colcombet and Daviaud [18] show that domination and affine domination are equivalent and decidable for min-plus automata. More specifically, it turns out that if some function \(\alpha\) exists then an affine \(\alpha\) suffices. This result superseded the decidability of the boundedness problem for min-plus automata.

In this paper, we turn our attention to \((\mathbb{N} \cup \{-\infty\}, \max, +)\) for which the (un)decidability of the big-O problem was open. First, note that there is no obvious way to use the results obtained for min-plus automata. The natural transformation - given \(f\) computed by a min-plus automaton, \(-f\) is computed by a max-plus automaton - does not preserve positivity, and the standard way to go back to \(\mathbb{N}\) implies adding a big enough function to \(-f\) which does not preserve the growth rate. In fact, we prove that the equivalence between domination and affine domination does not hold any more for max-plus automata (see Running Example 2). Second, the boundedness problem in this case is trivially decidable and does not

The boundedness problem is the special case of the big-O problem when \([B] = 1\). The zero isolation problem is the special case when \([A] = 1\). It is dealt with in [13] for the problem whether \([A] \leq c[B]\) - so without \(+c\), but the two problems are equivalent (see Remark 1).
provide any help. The problem for max-plus automata requires individual attention and the introduction of new tools. We show that it is PSPACE-complete and our proof provides new insights in the description of the behaviour of these automata. In [5], some description of the asymptotic behaviour of the functions computed by max-plus automata is given, but this is somehow orthogonal to the big-O problem. While providing a precise description, it is not sufficient to solve the big-O problem and new techniques are required.

Building on some standard techniques, in particular Simon’s factorisation forest theorem and the stabilisation operation [22], [16], [23], [24], [25], [18], [15], we construct a finite semigroup closed under the stabilisation operation and a new flattening operation. The stabilisation operation identifies unbounded behaviour, while the flattening operation identifies maximal growth rates. The problem reduces to detecting the presence of witnesses of this semigroup. A naive search through the semigroup gives decidability, but may require exponential space. The PSPACE complexity comes from searching witnesses of a particular shape only requiring polynomial space. The hardness comes from the PSPACE-hardness of the universality problem for Boolean automata.

Organisation of the paper: In Section II, we give the definition of max-plus automata and introduce a running example that we will use all along the paper. In Section III we state the big-O problem and a simplified version of it, prove their PSPACE-hardness and reduce our result to prove that the simplified big-O problem is PSPACE (Theorem 1). In Section IV we give a high-level description of this proof and define the semigroups that will be used and the stabilisation and flattening operations. In Section V we define witnesses and give a decision procedure that we show to be PSPACE. Sections VI, VII, VIII, and IX are then dedicated to prove that the decision procedure is sound and complete. The organisation and content of these sections are explained at the end of Section V when the suitable notions have been introduced.

II. MAX-PLUS AUTOMATA

Let \(\mathbb{N}_{\text{max}} \) denote the set \(\mathbb{N} \cup \{-\infty\} \) and note that \((\mathbb{N}_{\text{max}}, \max, +) \) is a semiring. For some positive integers \(i, j \), let \(M^{i \times j} \) denote the set of matrices of dimension \(i \times j \) with coefficients in \(\mathbb{N}_{\text{max}} \). We define the product of matrices as usual on a semiring: \((A \otimes B)_{q,q'} = \max_{q''} (A_{q,q''} + B_{q'',q'}) \), provided the numbers of columns of \(A \) matches the number of rows of \(B \). We will use the symbol \(\otimes \) to denote the product of matrices on several semirings, but the context will always clearly identify which one.

Definition 1. A max-plus automaton is a tuple \((Q, \Sigma, M, I, F)\) where \(Q \) is a finite set of states (and \(|Q| \) denotes the number of states), \(\Sigma \) is a finite alphabet, \(M : Q \to M^{(|Q| \times |Q|)} \) maps each letter to a matrix, \(I \) is a row vector in \(M^{1 \times |Q|} \) and \(F \) a column vector in \(M^{(|Q| \times 1)} \). Moreover, the automaton is said to be deterministic if \(I \) has at most one entry different from \(-\infty\) and for all \(a \in \Sigma \), every row of \(M(a) \) has at most one entry different from \(-\infty\).

\[A: \text{Computes word length } |w|. \]
\[B: \text{Computes the maximum between the longest block of a’s and the number of b’s.} \]

Fig. 1: Running examples

Given a max-plus automaton \(\langle Q, \Sigma, M, I, F \rangle \), we extend \(M \) by morphism to \(\Sigma^* \).

Definition 2. The \textit{weighting function} computed by a max-plus automaton \(A = \langle Q, \Sigma, M, I, F \rangle \) is defined as the function \([A] : \Sigma^* \to \mathbb{N}_{\text{max}} \) mapping a word \(w = w_1w_2 \ldots w_k \), where \(w_i \in \Sigma \) for all \(i = 1, \ldots, k \), to:

\[[A](w) = I \otimes M(w_1) \otimes M(w_2) \otimes \cdots \otimes M(w_k) \otimes F. \]

These definitions can be expressed in terms of graphs as usual, and we will rather use the usual automaton vocabulary (transitions, runs, accepting runs, initial and final states, etc.) when appropriate in some proofs. We will often write \(p \xrightarrow{w} q \) for a run from state \(p \) to state \(q \) labelled by the word \(w \) with weight \(x \neq -\infty \), the weight of a run being the sum of the weights of the transitions in the run. In matrix terms, this means that, for \(w = w_1w_2 \ldots w_k \), where \(w_i \in \Sigma \) for all \(i = 1, \ldots, k \), there are \(p = j_0, \ldots, j_k = q \) such that \(M(w_i)_{j_{i-1} \ldots j_k} = x_i \) and \(x = x_1 + \cdots + x_k \). The run is accepting if \(p \) is initial and \(q \) is final, i.e. \(I_p \neq -\infty \) and \(F_q \neq -\infty \) and \([A](w) \) is equal to the maximum of the weights of the accepting runs labelled by \(w \).

We assume that all the states in the automata under consideration in this paper are accessible and co-accessible.

The size of an automaton is the number of bits required to encode \(M, I \) and \(F \) which is bounded by \(|\Sigma| \cdot |Q|^2 + 2|Q| \cdot |\log(\Delta)|\), where \(\Delta \) is the maximal weight appearing in an entry of \(M \) or \(F \).

Throughout the paper we will illustrate the results and proofs using a running example that we detail now.

Running Example, Part 1. Let us consider two example automata \(A \) and \(B \) over \(\Sigma = \{a, b\} \), depicted in Fig. 1. \(A \) computes the length of the input word and \(B \) computes the maximum between the length of the longest block of consecutive \(a \)'s, and the number of \(b \)'s.

In the following matrix descriptions, to avoid cluttering notation, we use \(-\) instead of \(-\infty\) to denote that there is no path.

Formally \(A \) is defined by a single state \(Q_A = \{p\} \), alphabet \(\Sigma = \{a, b\} \) and \(M_A(a) = (1), M_A(b) = (1) \) with \(I_A = F_A = (0) \).
Formally \mathcal{B} is defined by states $Q_B = \{q_1, q_2, q_3, q_4\}$, alphabet $\Sigma = \{a, b\}$ and

$$M_B(a) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad M_B(b) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

with $(I_B)_{q_1} = (I_B)_{q_2} = (I_B)_{q_3} = (F_B)_{q_2} = (F_B)_{q_3} = (F_B)_{q_4} = 0$, and the unspecified entries of I, F are $-\infty$.

III. DECIDABILITY OF THE BIG-O PROBLEM

The big-O problem for max-plus automata asks whether, given two max-plus automata A, B on the same alphabet Σ, there is a positive integer c such that for all words w in Σ^*, $|A|(w) \leq c|B|(w) + c$. In this case, we say that A is big-O of B.

Running Example. Part 2. Observe that A is not big-O of B, since $|A|((a^{n-1}b)^n) = n^2$, while $|B|((a^{n-1}b)^n) = n$ for all positive integers n.

However, $|B|(w) \leq |A|(w)$ for all words w, so B is big-O of A.

Note also that $|A| \leq ([B] + 1)|B|$, hence $|A|$ is dominated by $|B|$ as explained in the introduction, but not big-O, showing the discrepancy between the min-plus and the max-plus cases.

The main contribution of this paper is the following result.

Theorem 3. The big-O problem for max-plus automata is decidable and is PSPACE-complete.

The rest of this paper is devoted to prove this theorem. The first step is to make a number of simplifications on the automata taken as input.

Theorem 4. The following problem, called the simplified big-O problem, is PSPACE-complete:

- Input: Max-plus automata A, B such that A is deterministic and $|B| : \Sigma^* \to \mathbb{N}$.
- Output: Yes if and only if A is big-O of B.

Compared to the big-O problem, the simplified big-O problem requires that A be deterministic and no word w has $|B|(w) = -\infty$.

Running Example, Part 3. Recall A, B from the running example in Running Example, Part 1. Observe that A is deterministic and $|B|(w) \geq 0$ for all w, so A and B form an instance of the simplified big-O problem.

Proposition 5. If the simplified big-O problem is decidable in PSPACE then the big-O problem is decidable in PSPACE.

Proposition 6. The simplified big-O problem is PSPACE-hard.
in growth rates as illustrated in Running Example, Part 2. This leads to introducing the so-called semigroup of paths (denoted \(\mathcal{M}_{A, B}\)) in Definition 7 which is finite and contains elements \((p, x, q, M)\) where \(p, q\) are states in \(A\), \(x\) is in \(\{0, 1\}\) and there is a word \(w\) such that there is a run in \(A\) from \(p\) to \(q\) labelled by \(w\) with weight 0 if \(x = 0\), and positive weight if \(x = 1\). Moreover, \(M\) is the matrix \(M_B(w)\) where all the (strictly) positive entries are replaced by 1. This semigroup is easily computed starting from the letters and closing under an appropriate product.

This semigroup witnesses the existence of runs with 0 or positive weights, but is not enough to compare the growth rates in \(A\) and \(B\). The next step is to add a value \(\infty\): an entry will be \(\infty\) if there is a sequence of words with paths with unbounded weights for this entry. We introduce the semigroup of asymptotic behaviour (denoted \(\mathcal{M}_{A, B}\)) in Definition 10 which contains elements \((p, x, q, M)\) where \(p, q\) are states in \(A\), \(x\) is in \(\{\infty, 0, 1\}\) and \(M\) is a matrix with entries in \(\{\infty, 0, 1\}\). We introduce a first operation - the stabilisation operation (as defined in Definition 8) - which essentially iterates a word many times and puts value \(\infty\) in the entries that are unbounded as the word is repeated. If starting from the letters and closing under an appropriate product and the stabilisation operation, we would get the following: for an element \((p, x, q, M)\) in the semigroup of asymptotic behaviour, there is a sequence of words \((w_i)\), labelling paths in \(A\) from \(p\) to \(q\) with weights 0 if \(x = 0\), positive but bounded weights if \(x = 1\), unbounded weights if \(x = \infty\). Moreover, an entry of \(M\) is 0 if it is 0 in all \(M_B(w_i)\), is 1 if it is positive and bounded for the \(M_B(w_i)\) and \(\infty\) if it tends to \(\infty\) when \(i \to \infty\) in the matrix \(M_B(w_i)\) and \(\infty\) if it it tends to \(\infty\) when \(i \to \infty\) in the matrix \(M_B(w_i)\).

Up to now the semigroup of asymptotic behaviour witnesses unboundedness of sequences of words, but not yet the difference in growth rates in \(A\) and \(B\). This is where our proof gives new insight. We introduce a second operation, which we call flattening, and behaves as follows: consider an element \((p, x, p, M)\) in the semigroup of asymptotic behaviour such that \(x = \infty\), so witnessing some sequence of words with unbounded weights in \(A\) from \(p\) to \(p\). We would like to iterate the words in this sequence, no longer looking at unboundedness, but rather at which entries in \(M\) will grow linearly as the elements of the sequence are repeated. We define the flattening operation to do exactly that. After flattening, we obtain an element \((p, x, p, M')\) witnessing a sequence of words \((w_i)\), such that it is possible for an entry in \(M'\) to have value 1, corresponds to paths with unbounded weights, but only if the asymptotic growth rate of these weights is little-o of the respective weights in \(A\) from \(p\) to \(p\). In other words, unbounded runs of maximal growth rate continue to be represented by \(\infty\), but runs which are not of the maximal growth rate are ‘flattened’ back to 1, even if they are unbounded.

The semigroup of asymptotic behaviour can be easily computed starting from the letters, closing under an appropriate product and stabilisation and flattening operations. Witnesses are those elements \((p, x, q, M)\) where \(x = \infty\), with \(p\) initial and \(q\) final in \(A\), and all the entries of \(M\) between an initial and a final state in \(B\) have value at most 1. We will use Simon’s factorisation theorem [22] (see Theorem 15) in two ways. In the case where there is no witness, this will allow us to bound a constant \(c\) such \(|A| \leq c|B| + c\). In the case where there is a witness, this will allow us to limit our search to a specific type - called tractable witness of non-domination (Definition 12) - ensuring the PSPACE complexity of our algorithm.

Remark 3. We could have introduced a single operation, somehow defined as a stabilisation in some cases, and as flattening in others. We chose not to as the definition felt ad-hoc and we believe the two operations of stabilisation and flattening are more intuitive. This might have slightly simplified parts of the proof, however an added benefit we gained with two operations is to characterise exactly the shape of these special witnesses we define: the tractable witnesses of non-domination.

B. Semigroup of paths

Projection in \(\{-\infty, 0, 1, \infty\}\): Let \(\Omega\) be the semiring \((\{-\infty, 0, 1, \infty\}, \max, +)\) where the operations are defined as follows: the \(\max\) operation is given by the order \(\infty < 0 < 1 < \infty\) and the sum operation is commutative and given by \(-\infty + x = -\infty\) for any element \(x\) (including \(x = \infty\)), \(0 + x = x\) for any \(x \in \{0, 1, \infty\}\), \(1 + 1 = 1\) and \(1 + \infty = \infty + \infty = \infty\).

Let \(M^{(i,j)}_{\Omega}\) be the set of matrices of size \(i \times j\) over the semiring \(\Omega\). We use again \(\otimes\) to denote the product of matrices induced by the operations in \(\Omega\).

Given a finite set \(Q\) and a positive integer \(i\), we denote by \((\mathcal{M}_Q, \otimes)\) the semigroup where:

- \(\mathcal{M}_Q\) is the union of the sets \(Q \otimes Q \otimes Q \otimes M^{(i)}_{\Omega} \otimes \{\perp\}\).
- \((p, x, q, M) \otimes (p', x', q', M') = (p, x \otimes x', q', M \otimes M')\) if \(q = p'\) and \(\perp\) otherwise.

We will often denote the product of two elements \(e, e'\) in \(\mathcal{M}_Q\) as \(ee'\) instead of \(e \otimes e'\).

Projection in \(\{-\infty, 0, 1\}\): We denote \(\infty \infty = -\infty\), \(\overline{0} = 0\) and for any positive integer \(x, \overline{x} = \infty = 1\). For a matrix \(M\) in \(M^{(i,j)}_{\overline{\Omega}}\), we denote by \(\overline{M}\) the matrix \(M\) where the coefficients are replaced by their barred version.

Let \(\overline{\Omega}\) be the semiring \((\{-\infty, 0, 1\}, \max, +)\) where the operations are defined as follows: the \(\max\) operation is given by the order \(\infty < 0 < 1 < \infty\) and the sum operation is commutative and given by \(-\infty + x = -\infty\) for any element \(x\), \(0 + x = x\) for any \(x \in \{0, 1\}\) and \(1 + 1 = 1\).

Let \(M^{(i,j)}_{\overline{\Omega}}\) be the set of matrices of size \(i \times j\) over the semiring \(\overline{\Omega}\). We use again \(\otimes\) to denote the product of matrices induced by the operations in \(\overline{\Omega}\).

Note that \(x \mapsto \overline{x}\) is a morphism over \(\mathbb{N}_{\max}\), as well as over \(M^{(i,j)}_{\overline{\Omega}}\). We will use this without further referencing it. Full details can be found in Appendix C.

Analogously to \((\mathcal{M}_Q, \otimes)\), given a finite set \(Q\) and a positive integer \(i\), we denote by \((\mathcal{M}_Q, \otimes)\) the semigroup where:
• $\mathbb{M}_{Q,i}$ is the union of the sets $Q \times \Omega \times Q \times M_{\tilde{\Omega}}^{x \times i}$ and $\{1\}$.
• $(p, x, q, M) \otimes (p', x', q', M') = (p, x \otimes x', q', M \otimes M')$ if $q = q'$ and \bot otherwise.

Semigroup of paths of A and B: Recall we have fixed a deterministic max-plus automaton $A = \langle Q_A, \Sigma, M_A, I_A, F_A \rangle$ and a max-plus automaton $B = \langle Q_B, \Sigma, M_B, I_B, F_B \rangle$ over the same alphabet Σ.

Definition 7. The semigroup of paths of A and B, denoted $\mathbb{M}_{A,B}$, is the subsemigroup of $\mathbb{M}_{Q_A \times \{q\}}$ generated by \{(p, x, q, M_B(a)) \mid a \in \Sigma, p \overset{a, q}{\rightarrow} q \text{ in } A\}.

Running Example, Part 4. From a and b respectively we construct $e_a = (p, 1, p, \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix})$ and $e_b = (p, 1, p, \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix})$.

Observe that $e_a e_a = e_a$, and, for example, $e_a e_b$ and $e_b e_b$, in $\mathbb{M}_{A,B}$, are given by $e_a e_b = (p, 1, p, \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix})$, $e_b e_b = (p, 1, p, \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix})$.

C. Semigroup of asymptotic behaviours

The idempotent elements of a semigroup are elements e such that $e \otimes e = e$. A matrix M in $M_{\tilde{\Omega}}^{x \times i}$ is called path-idempotent if \mathbb{M} is idempotent in $M_{\tilde{\Omega}}^{x \times i}$. Similarly, an element (p, x, q, M) of $\mathbb{M}_{Q,i}$ is called path-idempotent if $p = q$ and M is path-idempotent.

Stabilisation operation: The semigroup $\mathbb{M}_{Q,i}$ is equipped with a unary operation on its path-idempotent elements, called the stabilisation operation and defined as follows: The stabilisation of elements in Ω is defined as: $(-\infty)^2 = -\infty$, $0^2 = 0$ and $1^2 = 1^2 = \infty$. Given a path-idempotent matrix M in $M_{\tilde{\Omega}}^{x \times i}$, the stabilisation of M, denoted M^\flat, is defined as the product $M \otimes M^\flat \otimes M$ where M^\flat is the matrix M where all the diagonal elements are replaced by their stabilisation.

Definition 8. The stabilisation operation of $\mathbb{M}_{Q,i}$ is defined on its path-idempotents as follows: $(p, x, p, M)^\flat = (p, x^4, p, M^\flat)$.

Running Example, Part 5. Observe e_a is idempotent and $e_a^\# = (p, \infty, p, \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix})$ indicating that the sequence of words $(a^n)_n$ has unbounded values in A, and the sequence $(M_B(a^n))_{q_2,q_3}$ is also unbounded.

Consider $e_a^\# e_b = (p, \infty, p, \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix})$.

Recall from Running Example, Part 2 we are aiming to represent a word of the shape $(a^n b)^n$. Hence, we would expect to iterate $e_a^\# e_b$ again, however it is not path-idempotent. Instead we can make one iteration manually resulting in $e_a^\# e_b e_a^\# e_b$ which is idempotent,

$$e_a^\# e_b e_a^\# e_b = (p, \infty, p, \begin{pmatrix} 0 & 0 & 0 \\ 0 & -\infty & 0 \\ 0 & 0 & -1 \end{pmatrix})$$

Let us consider the effect of stabilisation on it. We have $(e_a^\# e_b e_a^\# e_b)^\flat = (p, \infty, p, \begin{pmatrix} 0 & -\infty & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix})$.

The purpose of this operation is to identify unbounded entries after arbitrarily many iterations of either the first, the second, or both, stabilisation operations. Note that $[A][((a^n b a^n)^k)] = 2n^2 + 2n$ while $M_B((a^n b a^n)^n)_{q_3,q_3} = \infty$ and $M_B((a^n b a^n)^n_{q_3,q_3} = n$ and $M_B((a^n b a^n)^n_{q_3,q_3} = 2n$. Both sequences are unbounded as witnessed by the ∞ but this does not allow us to identify the different rates of growth between the entries.

Flattening operation: The semigroup $\mathbb{M}_{Q,i}$ is also equipped with another unary operation on its path-idempotent elements, called the flattening operation and defined as follows: Given a path-idempotent matrix M in $M_{\tilde{\Omega}}^{x \times i}$, the flattening of M, denoted M^\flat is defined as the product $\mathbb{M} \otimes (M^\flat) \otimes \mathbb{M}$ where $\langle M \rangle$ is the matrix M where all the non diagonal elements are replaced by their barred version.

Definition 9. The flattening operation of $\mathbb{M}_{Q,i}$ is defined on its path-idempotents as follows: $(p, x, p, M)^\flat = (p, x, p, M^\flat)$.

Running Example, Part 6. Let us consider the effect of flattening on $e_a^\# e_b e_a^\# e_b$:

$$(e_a^\# e_b e_a^\# e_b)^\flat = (p, \infty, p, \begin{pmatrix} 0 & 0 & 0 \\ 0 & -\infty & 0 \\ 0 & 0 & -1 \end{pmatrix})$$

Here observe that ∞ corresponds to an entry with growth rates n^2 on the sequence of words $(a^n b a^n)^n$. Other entries, even unbounded sequences, with asymptotically smaller growth rates – such as n – are projected to 1 (or 0). The flattening behaviour allows us to capture differences in growth rates (not fully, but enough for our purpose), by, roughly speaking, keeping only the fastest growing elements. Intuitively $(e_a^\# e_b e_a^\# e_b)^\flat$ demonstrates that A can grow faster than B and so A is not big-O of B, we formalise this intuition as a witness of non-domination in the next section.

The semigroup of asymptotic behaviours of A and B: Recall we have fixed a deterministic max-plus automaton $A = \langle Q_A, \Sigma, M_A, I_A, F_A \rangle$ and a max-plus automaton $B = \langle Q_B, \Sigma, M_B, I_B, F_B \rangle$ over the same alphabet Σ.

Definition 10. The semigroup of asymptotic behaviours of A and B, denoted $\mathbb{M}_{A,B}$, is the subsemigroup of $\mathbb{M}_{Q_A \times \{q\}}$ generated by \{(p, x, q, M_B(a)) \mid a \in \Sigma, p \overset{a, q}{\rightarrow} q \text{ in } A\} and closed under the stabilisation and flattening operations.

V. DECISION PROCEDURE

A. Witnesses

Given a deterministic max-plus automaton A and a max-plus automaton B over the same alphabet, an element
(p, x, q, M) in \(\mathcal{M}_{A, B} \) is called a witness of non-domination if:

- p is initial in A,
- q is final in A,
- \(x = \infty \),
- \(F_B \otimes M \otimes F_B < \infty \).

Theorem 11. Given two max-plus automata A, B such that A is deterministic and \(\mathbb{B} : \Sigma^* \rightarrow \mathbb{N} \), the two following assertions are equivalent:

- A is big-O of B.
- There is no witness of non-domination in \(\mathcal{M}_{A, B} \).

We will not prove Theorem 11 directly, rather we will prove a refined version of the theorem incorporating tractable witnesses, which are defined next.

B. Tractable witnesses

A witness could be any element in \(\mathcal{M}_{A, B} \), found through arbitrary application of product, stabilisation and flattening, satisfying the conditions. We now consider a restricted form of witness in which we place a restriction on the sequence of operations to construct it.

Definition 12 (Tractable witness of non-domination). We say an element \(g \) in \(\mathcal{M}_{A, B} \) is a *tractable witness of non-domination* if it is both a witness of non-domination and of the form

\[
g = g_0 (g_1 \cdots (g_{k-2} (g_{k-1} (g_k)^{\#} g_{k-1}^{\#}) g_{k-2}^{\#} \cdots) g_1^{\#})^g_0,
\]

for \(k \leq 3|\mathcal{M}_{A, B}| \) and \(g_i, g'_i \in \mathcal{M}_{A, B} \cup \{\text{id}\} \), where id is an added identity element of \(\mathcal{M}_{A, B} \) such that \(e \otimes \text{id} = \text{id} \otimes e = e \) for all \(e \in \mathcal{M}_{A, B} \).

Running Example, Part 7. \((e_a^m e_b e_a^m e_b)^g \) is a witness but not a tractable witness of non-domination. However, \((e_a e_b e_a^m e_b)^g \) will turn out to be a tractable witness. Intuitively it represents the sequence of words \((aba^m)^n \), which is almost the same as the sequence used to show \(A \) is not big-O of B in Running Example, Part 2.

We will now strengthen Theorem 11 in which we add the condition that there is a tractable witness; this allows us to limit our search to tractable witnesses.

Theorem 13. Given two max-plus automata A, B such that A is deterministic and \(\mathbb{B} : \Sigma^* \rightarrow \mathbb{N} \), the following assertions are equivalent:

- A is big-O of B.
- There is no witness of non-domination in \(\mathcal{M}_{A, B} \).
- There is no tractable witness of non-domination in \(\mathcal{M}_{A, B} \).

The benefit of a tractable witness will be that we can identify the existence of one in PSPACE. In the next section we describe the PSPACE algorithm to detect a tractable witness and then we will prove the equivalence of Theorem 13 to conclude the result.

C. PSPACE algorithm

We define a non-deterministic procedure to construct a tractable witness from middle out, that runs in polynomial space. Since NPSPACE = PSPACE (from Savitch’s theorem), this will allow us to conclude.

Any element \(g \in \mathcal{M}_{A, B} \) can be constructed using at most \(|\mathcal{M}_{A, B}| \) product operations from the generators. Suppose \(g = g_1 \otimes \cdots \otimes g_m \) such that \(g_i \) are generators and \(m \) is minimal, then we can assume that \(g_i \otimes \cdots \otimes g_j \) is different from \(g_i \otimes \cdots \otimes g_j \) for each \(i \neq j, i, j \leq m \). Thus \(m \leq |\mathcal{M}_{A, B}| \).

The procedure is as follows:

- Non-deterministically choose \(k \leq 3|\mathcal{M}_{A, B}| \).
- Let \(g \) be a non-deterministically chosen idempotent element of \(\mathcal{M}_{A, B} \), constructed in at most \(|\mathcal{M}_{A, B}| \) steps.
- Update \(g \) to be the stabilisation \(g^\# \).
- Repeating for \(i = k \) to \(i = 0 \), we update \(g \) with \((g_i g_i^\#)^g \) for some \(g_i, g_i^\# \in \mathcal{M}_{A, B} \cup \{\text{id}\} \) in the following way:
 - Update \(g \) by non-deterministically choosing a generator or id and multiply on the left of \(g \). Repeat up to \(|\mathcal{M}_{A, B}| \) many times.
 - Update \(g \) by non-deterministically choosing a generator or id and multiply on the right of \(g \). Repeat up to \(|\mathcal{M}_{A, B}| \) many times.
 - Except for \(i = 0 \), check that \(g \) is path-idempotent and update \(g \) to be the flattening of \(g \).
- Check if \(g \) is a witness.

At any moment we are only storing one element \(g \) of \(\mathcal{M}_{A, B} \), plus the space needed for doing the product, iteration and stabilisation operations, the current iteration and number of iterations \(i \) and \(k \), and how many elements we have multiplied (on the left or on the right) with \(g \). This requires only polynomial space. This results in an NPSPACE algorithm, which is equivalent to a PSPACE algorithm.

D. Proof of Theorem 13

To prove Theorem 13 we are going to prove the following result - the notions of factorisation trees and faults will be introduced in due course.

Theorem 14. Given two max-plus automata A, B such that A is deterministic and \(\mathbb{B} : \Sigma^* \rightarrow \mathbb{N} \), the following assertions are equivalent:

1. A is not big-O of B.
2. There is a witness of non-domination in \(\mathcal{M}_{A, B} \).
3. There is a tractable witness of non-domination in \(\mathcal{M}_{A, B} \).
4. Some word has a factorisation tree, of height at most \(3|\mathcal{M}_{A, B}| \), with a fault.

Since a tractable witness is a special case of a witness, it is clear that (3) implies (2). The remainder of the paper will prove the remaining implications.

In Section VI we introduce the notions of factorisation trees and faults. In Section VII we prove that (1) implies (4) - by proving its contrapositive. In Section VIII we prove that (4) implies (3). Sections VII and VIII are independent of each other, but rely on Section VI. Finally, in Section IX
we prove that (2) implies (1). This later section can be read independently of the other ones.

VI. FACTORIZATION TREES AND FAULTS

Recall we have fixed a deterministic max-plus automaton $A = (Q_A, \Sigma, M_A, I_A, F_A)$ and a max-plus automaton $B = (Q_B, \Sigma, M_B, I_B, F_B)$ over the same alphabet Σ.

A. Factorisation trees

Let $w = w_1 \cdots w_k$ with $w_1, \ldots, w_k \in \Sigma$ such that $[A](w) \neq -\infty$ and let:

$$p_0 \xrightarrow{w_1; x_1} p_1 \xrightarrow{w_2; x_2} p_2 \cdots p_{k-1} \xrightarrow{w_k; x_k} p_k$$

be its unique accepting path in A. Let $\alpha_w(w_i)$ be the element of $\mathbb{M}_{A,B}$ defined as $(p_{i-1}, x_i, p_i, M_B(w_i))$.

A factorisation tree on w is a finite ordered tree in which every node ν in the tree is labelled by a element in $\mathbb{M}_{A,B}$, denoted $\alpha(\nu)$, such that:

- there are k leaves labelled by $\alpha_w(w_1), \ldots, \alpha_w(w_k)$,
- internal nodes have two or more children, and are labelled by the product of the labels of their children: a node ν with children ν_1, \ldots, ν_m, $m \geq 2$ is labelled with $\alpha(\nu) = \alpha(\nu_1) \otimes \alpha(\nu_2) \otimes \cdots \otimes \alpha(\nu_m)$. A node with two children is called a product node,
- if a node has at least three children then the children and the node are all labelled by the same idempotent element — such a node is called an idempotent node (in particular, $\alpha(\nu) = \alpha(\nu_i)$ for all $i \leq m$).

Note that for a word w such that $[A](w) \neq -\infty$, no node in a factorisation tree on w can be labelled by \perp. It is also clear that the labelling of the root of the subtree with leaves $\alpha_w(w_i), \ldots, \alpha_w(w_j)$ for some $i < j$, corresponds to the element in the semigroup of paths witnessing the existence of 0 or positive weights paths in A and B on the word $w_i \cdots w_j$.

Theorem 15 (Simon’s Factorisation Theorem [22]). There exists a positive integer H such that for all $w \in \Sigma^*$, there exists a factorisation tree on w of height at most H.

Note that H does not depend on the word w, only on the size of $\mathbb{M}_{A,B}$. Further we have that $H \leq 3|\mathbb{M}_{A,B}| - 1$ due to the bound of [23], which is tighter than the $3|\mathbb{M}_{A,B}|$ bound of Colcombet [16], and the original bound of $9|\mathbb{M}_{A,B}|$ by Simon.

B. Contributors

Let t be a factorisation tree on a word w, such that $[A](w) \neq -\infty$. For each node ν of the tree, we define its set of contributors C_ν as follows, in a top-down manner:

- if the root is labelled (p, x, q, M), the contributors of the root is the set of pairs (i, j) such that i is initial in B, j is final in B and $M_{i,j} \neq -\infty$.
- if a node has a set of contributors C, and has two children labelled (p, x, q, M) and (q, x, r, P),
 - the set of contributors of the left child is: $\{(i, j) : (i, j) \in C, P_{i,j} \neq -\infty, M_{i,j} \neq -\infty\}$,
 - the set of contributors of the right child is: $\{(i, j) : (i, j) \in C, M_{i,j} \neq -\infty, P_{i,j} \neq -\infty\}$.

- if a node has a set of contributors C and has at least three children, labelled by an idempotent element (p, x, p, M), then:
 - the left-most child has set of contributors: $\{(i, j) \mid \exists j : (i, j) \in C, M_{i,j} \neq -\infty, M_{i,j} \neq -\infty\}$,
 - the right-most child has set of contributors: $\{(i, j) \mid \exists i : (i, j) \in C, M_{i,j} \neq -\infty, M_{i,j} \neq -\infty\}$,
 - the other children have set of contributors: $\{(i, k) \mid \exists (i, j) \in C, M_{i,j} \neq -\infty, M_{i,k} \neq -\infty, M_{k,j} \neq -\infty\}$.

Contributors indicate which elements of the matrix meaningfully contribute to a valid run for the whole word. For example, at the root, not every entry is a weight on a run from an initial state to a final state, so not all entries contribute to the value computed on the word. The choices for the root and product nodes are uncontroversial, however the choice is non-trivial for the middle children of an idempotent node. Here only entries that could be repeated many times are taken; this is because, whilst other transitions could contribute to a valid run, they could contribute only once, whereas the entries we consider can be used in many of the idempotent children.

Running Example, Part 8. Fig. 2 depicts a factorisation tree for the word $(a^n b a^n b)^n$ of height 5. Every node is depicted with the sub-word and a partial description of its α-labelling: every node is α-labelled by $(p, 1, p, M)$, where M is the matrix depicted. The contributors are highlighted in the matrix for each node. Only a representation of the middle children is depicted for idempotent nodes. We will return to the fault label and the sequence ν_1, \ldots, ν_5 after defining faults.

Fig. 2: A possible factorisation tree for the word $w = (a^n b a^n b)^n$. Nodes are labelled by the sub-word of w and the path-behaviour of M_B. The contributors of each node are indicated by highlighting the corresponding matrix entries. A node with a fault is also indicated, inducing the sequence of nodes ν_1, \ldots, ν_5 from the fault to the root.

We will make use of the property that every node has at
least one contributor, stated in the following proposition and proven in Appendix [D].

Proposition 16. Given a word \(w \) such that \([B](w) \neq -\infty \), every node in any factorisation tree on \(w \) has a non empty set of contributors.

C. Faults

Given a word \(w \) such that \([A](w) \neq -\infty\) and a factorisation tree on \(w \), a node labelled with \((p, x, q, M)\), is called a fault if:

- it is the child of an idempotent node, but is neither the left-most nor the right-most child,
- \(x = 1 \),
- \(M_{i,j} = 0 \) for all pairs \((i, j)\) in its set of contributors.

Running Example. Part 9. Let us return to the factorisation tree for \((a^nba^nb)^n\) depicted in Fig. [2]. Observe that the node indicated by \(\nu_1 \) is a middle-child of an idempotent with only zero entries in the contributors and is therefore a fault. Since the two subtrees below \(\nu_1 \) are identical the other node labelled by \(a \) is also a fault. In Running Example, Part [10] we will use the indicated fault \(\nu_1 \) to construct a (tractable) witness of non-dominance.

VII. NO TREE HAS A FAULT IMPLIES BIG-O

In this section, we suppose that no word has a factorisation tree of height at most 3\(3[\mathcal{MN}^[A,B]]\) with a fault, and we construct a positive integer \(c \) such that:

\[
[A](w) \leq c[B](w) + c \quad \text{for all } w \in \Sigma^*. \tag{1}
\]

Recall that we can also assume that \([B](w) \neq -\infty\) for all words \(w\).

Let \(w = w_1 \cdots w_k \) with \(w_1, \ldots, w_k \in \Sigma \) such that \([A](w) \neq -\infty\) and let:

\[
p_0 \xrightarrow{w_1} p_1 \xrightarrow{w_2} \cdots \xrightarrow{w_{k-1}} p_k
\]

be its unique accepting path in \(\mathcal{A} \). Given a factorisation tree \(t \) on \(w \), for a node \(\nu \) in \(t \), root of the subtree with leaves \(\alpha_w(w_1), \ldots, \alpha_w(w_k) \), we denote by:

- \(\nu_A(\nu) \) the weight \(x_1 + \ldots + x_j \) of the path in \(\mathcal{A} \) corresponding to the factor \(w_1 \cdots w_j \),
- \(\nu_B(\nu) \) the matrix \(M_\nu(w_1 \cdots w_j) \).

Let \(\Lambda \) be the largest value occurring on a transition in \(\mathcal{A} \), and let \(c_h = (4[Q_B] + 4)^h \Lambda \) for positive integers \(h \). We prove the following property:

Proposition 17. Let \(w \) be a word such that \([A](w) \neq -\infty\) and \(t \) a factorisation tree on \(w \) with no fault. Let \(\nu \) be a node in \(t \) of height \(h \) for some positive integer \(h \). Then:

\[
\nu_A(\nu) \leq c_h \max_{(i,j) \in C_\nu} \nu_B(\nu)_{i,j} + c_h
\]

Observe that Eq. (1) is trivial for \(w \) such that \([A](w) = -\infty\). For \(w \) such that \([A](w) \neq -\infty\), Eq. (1) is a direct corollary of Proposition [17] choosing \(c = c_H \) where \(H = 3[\mathcal{MN}^[A,B], \nu \) as the root of a factorisation tree on \(w \) of height at most \(H \), which exists by Theorem [15].

Proof. The proof is by induction on \(h \).

Case 1 (If \(\nu \) is a leaf and \(h = 0 \)). By definition of \(\Lambda \) as the largest value occurring on a transition in \(\mathcal{A} \), and by definition of \(c_0 \), we have:

\[
\nu_A(\nu) \leq \Lambda \leq c_0 \leq \max_{(i,j) \in C_\nu} \nu_B(\nu)_{i,j} + c_0.
\]

The last inequality holds only if the set of contributors \(C_\nu \) is not empty, which is the case by Proposition [16] and assumption \([B](w) \geq 0 \) for all \(w \in \Sigma^* \).

Case 2 (If \(\nu \) is a product node). Let \(\nu_1 \) and \(\nu_2 \) be the two children of \(\nu \). Then \(\nu_A(\nu) = \nu_A(\nu_1) + \nu_A(\nu_2) \). By induction, for each child \(m \in \{1, 2\} \) we have:

\[
\nu_A(\nu_m) \leq c_{h-1} \max_{(i,j) \in C_{\nu_m}} \nu_B(\nu_m)_{i,j} + c_{h-1}
\]

Suppose \(\nu_A(\nu_1) \geq \nu_A(\nu_2) \) (the case \(\nu_A(\nu_2) > \nu_A(\nu_1) \) is symmetric). Then:

\[
\nu_A(\nu_1) + \nu_A(\nu_2) \leq 2\nu_A(\nu_1) \leq 2c_{h-1} \max_{(i,j) \in C_{\nu_1}} \nu_B(\nu_1)_{i,j} + 2c_{h-1}
\]

Consider \((d, f) \in C_{\nu_1} \) for which this maximum is attained. Since \((d, f) \) is a contributor of a left child then there exists \(g \) such that \(\nu_B(\nu_2)_{f,g} \neq -\infty \) and \((d, g) \) is a contributor of \(\nu \). We get:

\[
\nu_A(\nu) \leq \nu_A(\nu_1) + \nu_A(\nu_2) \leq 2c_{h-1} \nu_B(\nu_1)_{d,f} + 2c_{h-1}
\]

\[
\leq 2c_{h-1} \nu_B(\nu_1)_{d,f} + 2c_{h-1} + 2c_{h-1}
\]

\[
\leq 2c_{h-1} \max_{(i,j) \in C_{\nu_1}} \nu_B(\nu_1)_{i,j} + 2c_{h-1}
\]

Case 3 (If \(\nu \) is an idempotent node). Let \(\nu_1, \ldots, \nu_d \) be the children of \(\nu \). By definition and idempotency, \(\nu_A(\nu) = \nu_A(\nu_m) \) for all \(m = 1, \ldots, d \). If \(\nu_A(\nu) = 0 \), then we directly get the result since the set of contributors \(C_\nu \) is not empty by Proposition [16] (because we assume that \([B](w) \geq 0 \) for all \(w \in \Sigma^* \)). Let’s suppose now that \(\nu_A(\nu) = \nu_A(\nu_m) = 1 \) for all \(m = 1, \ldots, d \).

By inductive hypothesis, for all \(m = 1, \ldots, d \), we have:

\[
\nu_A(\nu_m) \leq c_{h-1} \max_{(i,j) \in C_{\nu_m}} \nu_B(\nu_m)_{i,j} + c_{h-1}
\]

Since there is no fault in the tree, then for all \(m \), there is some \((i, j) \in C_{\nu_m} \) such that \(\nu_B(\nu_m)_{i,j} \geq 1 \), and hence:

\[
\nu_A(\nu_m) \leq 2c_{h-1} \max_{(i,j) \in C_{\nu_m}} \nu_B(\nu_m)_{i,j} \leq 2c_{h-1} \max_{(i,j) \in C_{\nu_m}} \nu_B(\nu_m)_{i,j} + c_{h-1}.
\]

Let \((i_m, j_m)\) be a pair in \(C_{\nu_m} \) on which this maximum is attained. Note that \(\nu_B(\nu_m) \) are the same for all \(m \) as \(\nu_B(\nu) \), and that this is an idempotent matrix. Let us define \(i \sim j \) if and only if \(\nu_B(\nu)_{i,j} = \nu_B(\nu)_{i,j} \neq -\infty \). By idempotency, this gives an equivalence relation, and we denote by \(S_1, \ldots, S_z \) its equivalence classes. Note that \(z \) is bounded by the number of states of \(\mathcal{B} \). We now partition the
set \{1, \ldots, d\} (the children of the node \nu) as the union \Phi of the sets \{1\}, \{d\}, \Gamma_{S_f, \text{even}} and \Gamma_{S_f, \text{odd}} for all \(f = 1, \ldots, z\), where:

\[
\Gamma_{S_f, \text{even}} = \{m \in \{2, \ldots, d-1\} \mid i_m, j_m \in S_f \text{ and } m \text{ is even}\}
\]

and

\[
\Gamma_{S_f, \text{odd}} = \{m \in \{2, \ldots, d-1\} \mid i_m, j_m \in S_f \text{ and } m \text{ is odd}\}.
\]

This gives a partition of \{1, \ldots, d\} since \((i_m, j_m)\) is in the set of contributors of \nu_m and then \(i_m\) and \(j_m\) are in the same \(S_f\) for some \(f\). We partition this way into even and odd indices to be able to reconstruct a path: if we select for example the even indices in one of the \(S_f\), by definition, we can construct a path in the automaton taking the transitions corresponding to these indices. Note that the number of sets forming \(\Phi\) is bounded by \(2(|Q_B| + 1)\), where we recall that \(|Q_B|\) is the number of states of \(B\).

For each \(\Gamma\) in \(\Phi\), let \(x_{\Gamma} = \sum_{m \in \Gamma} \text{val}_A(\nu_m)\), and denote by \(\Gamma_{\text{max}}\) one for which this sum is maximal. Observe that:

\[
\text{val}_A(\nu) \leq 2(|Q_B| + 1)x_{\Gamma_{\text{max}}}.
\]

Sub-case 3.1 (\(\Gamma_{\text{max}} = \Gamma_{S_f, \text{odd}}\) for some \(f\)). We have:

\[
\text{val}_A(\nu) \leq 2(|Q_B| + 1)\sum_{m \in \Gamma_{S_f, \text{odd}}} \text{val}_A(\nu_m)
\]

\[
\leq 2(|Q_B| + 1)\sum_{m \in \Gamma_{S_f, \text{odd}}} (2c_{h-1}\text{Val}_B(\nu_m)_{i_m, j_m})
\]

(by Eq. (2))

\[
= 4c_{h-1}(|Q_B| + 1)\sum_{m \in \Gamma_{S_f, \text{odd}}} \text{Val}_B(\nu_m)_{i_m, j_m}.
\]

By definition of contributors, and construction of \(\Gamma_{S_f, \text{odd}}\), there exists \((i, j)\) in \(C_B\) and \(i = l_0, l_1, \ldots, l_d = j\) such that \(i_m = l_{m-1}\) and \(j_m = l_m\) for all \(m\) in \(\Gamma_{S_f, \text{odd}}\) and \(\text{Val}_B(\nu_m)_{\ell_{m-1}, \ell_m} \neq -\infty\) for all \(m = 1, \ldots, d\), hence

\[
\sum_{m \in \Gamma_{S_f, \text{odd}}} \text{Val}_B(\nu_m)_{i_m, j_m} \leq \sum_{m=1}^d \text{Val}_B(\nu_m)_{\ell_{m-1}, \ell_m}.
\]

Since we also have:

\[
\max_{(i, j) \in C_B} \text{Val}_B(\nu)_{i, j}
\]

\[
= \max_{(i, j) \in C_B} \max_{i = l_0, l_1, \ldots, l_d = j} \sum_{m=1}^d \text{Val}_B(\nu_m)_{\ell_{m-1}, \ell_m}
\]

we obtain:

\[
\text{val}_A(\nu) \leq 4c_{h-1}(|Q_B| + 1)\sum_{m \in \Gamma_{S_f, \text{odd}}} \max_{(i, j) \in C_B} \text{Val}_B(\nu)_{i, j}.
\]

Sub-case 3.2 (\(\Gamma_{\text{max}} = \Gamma_{S_f, \text{even}}\) for some \(f\)). This is similar to the previous case.

Sub-case 3.3 (\(\Gamma_{\text{max}} = \{1\}\)). This is similar to the product case. We have:

\[
\text{val}_A(\nu) \leq 2(|Q_B| + 1)x_{\Gamma_{\text{max}}}
\]

\[
= 2(|Q_B| + 1)\text{val}_A(\nu_1)
\]

\[
\leq 4(|Q_B| + 1)c_{h-1} \max_{(i, j) \in C_B} \text{Val}_B(\nu_1)_{i, j}
\]

\[
\leq 4(|Q_B| + 1)c_{h-1} \max_{(i, j) \in C_B} \text{Val}_B(\nu)_{i, j}
\]

(by definition of contributors of the left-most child.)

Sub-case 3.4 (\(\Gamma_{\text{max}} = \{d\}\)). This is symmetric to the previous case.

VIII. Construction of a Witness if There is a Tree with a Fault

We suppose that some word has a factorisation tree of height at most \(3|\varnothing_A, B|\) with a fault. We are going to construct a tractable witness of non-domination in \(\varnothing_A, B\).

Let \(\nu\) be a fault of maximal height in this tree. Let \(\nu_1 = \nu\) and let \(\nu_{h+1}\) be the direct parent of \(\nu_h\) for \(h = 2, \ldots, m\), where \(\nu_m\) is the root node. Before giving the construction of the tractable witness formally, we will see how to construct it on our running example.

Running Example, Part 10. We consider the tree depicted in Fig. 2. We define \(\nu_1, \ldots, \nu_5\) as explained above. A tractable witness is constructed by doing the stabilisation operation on the labelling of \(\nu_1\), then doing the product on the right with the labelling corresponding to \(b\) and on the left with the one corresponding to \(ab\). This gets us to \(\nu_3\). At this point, we take the flattening of what we have obtained. We define the \(\beta\)-labelling of the nodes \(\nu_h\):

\[
\beta(\nu_2) = (p, 1, p, (\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{array})) = (p, \infty, p, (\begin{array}{ccc} 0 & \infty & 0 \\ 0 & 0 & -1 \end{array})),
\]

\[
\beta(\nu_3) = \beta(\nu_2) \otimes (p, 1, p, (\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}))
\]

\[
= (p, \infty, p, (\begin{array}{ccc} 0 & 0 & \infty \\ 0 & \infty & -1 \\ -1 & 0 & 1 \end{array})),
\]

\[
\beta(\nu_4) = (p, 1, p, (\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array})) \otimes \beta(\nu_3)
\]

\[
= (p, \infty, p, (\begin{array}{ccc} 0 & 0 \infty & 0 \\ 0 & \infty & -1 \\ -1 & 0 & 1 \end{array})),
\]

\[
\beta(\nu_5) = \beta(\nu_4) \otimes (p, \infty, p, (\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}))
\]

Observe that \(\beta(\nu_5)\) is a witness of non-domination.

Running Example, Part 11. Recall that the contributors are defined top down, thus whether a node is a fault depends on the context in which it sits. Observe that \(\nu_5\) of Fig. 2 which is a fault in that context, would not be fault if the tree were rooted at \(\nu_3\). This is because the contributors are different in this scenario, which is depicted in Fig. 3. In this case the node corresponding
to a has a 1 in an entry of the contributors, and is therefore not a fault, and does not induce a witness.

Formally, every node \(\nu \) in the tree is labelled by an element \(\alpha(\nu) \) of \(\mathfrak{M}_{A,B} \). We now associate nodes \(\nu_2, \ldots, \nu_m \) with elements of \(\mathfrak{M}_{A,B} \), which we denote by \(\beta(\nu) \), defined by the following:

- If \(h = 2 \), let \(\beta(\nu_2) = \alpha(\nu_1)^\# \). This means we take stabilisation of the child’s label.
- If \(\nu_h \) is a product of \(\nu_{h-1} \) and \(\nu' \), we let \(\beta(\nu_h) = \beta(\nu_{h-1}) \otimes \alpha(\nu') \).
- If \(\nu_h \) is a product of \(\nu' \) and \(\nu_{h-1} \), we let \(\beta(\nu_h) = \alpha(\nu') \otimes \beta(\nu_{h-1}) \).
- If \(\nu_h \) is the idempotent product, with \(\nu_{h-1} \) a middle child (that is, neither the left child nor the right) we let \(\beta(\nu_h) = \beta(\nu_{h-1})^\# \). This means we flatten the \(\beta \)-label of the child.
- If \(\nu_h \) is the idempotent product, with \(\nu_{h-1} \) as the left child (resp. right child), we let \(\beta(\nu_h) = \beta(\nu_{h-1}) \otimes \alpha(\nu_{h-1}) \) (resp. \(\beta(\nu_h) = \alpha(\nu_{h-1}) \otimes \beta(\nu_{h-1}) \)).

Note we only associate \(\beta \)-labels with nodes on the path \(\nu_2, \ldots, \nu_m \), and not other nodes in the tree.

We will observe that the \(\beta \)-labelling of the root, \(\beta(\nu_m) \), is a tractable witness of non-dominance. First, by construction, it has the correct shape: it is constructed with a single stabilisation at \(\beta(\nu_2) \), and subsequently only products with elements of \(\mathfrak{M}_{A,B} \) and nested flattening operations. Since the height of the tree is bounded by \(|\mathfrak{M}_{A,B}| \) then so to is the number of flattening operations defining \(\beta(\nu_m) \). All is left is to show that it is a witness, which we do with the following property (in which we recall \(C_i \), are the contributors of a node \(\nu \)).

Proposition 18. For all \(h \in \{2, \ldots, m\} \), we have \(\beta(\nu_h) = \alpha(\nu_h) \) and denoting \(\beta(\nu_h) = (p, x, q, M) \), we have \(x = \infty \) and \(M_{i,j} \leq 1 \) for all \((i, j) \in C_{\nu_h} \).

Observe that this immediately implies that \(\beta(\nu_m) \in \mathfrak{M}_{A,B} \) is a witness.

Proof. We proceed by induction on \(h \) starting from \(h = 2 \).

Case 1 (Base case, \(h = 2 \)). Recall that \(\beta(\nu_2) = \alpha(\nu)^\# \). Due to \(\nu \) being an idempotent fault we can assume \(\alpha(\nu) \) takes the form \((p, 1, p, M) \), hence \(\beta(\nu_2) = (p, \infty, p, N) \) where \(N = M \otimes M' \otimes M' \) and \(M' \) replaces diagonal elements of \(M \) with their stabilisation, i.e. \(M'_{\ell,\ell} = (M_{\ell,\ell})^\# \). Since \(\nu \) is a fault \(M_{\ell,\ell} = 0 \) for \((\ell, \ell) \in C_{\nu} \), hence \(M'_{\ell,\ell} = 0 \). Thus for \((i, j) \in C_{\nu_2} \), \(M_{i,j} = \max \{ M_{i,k} + M'_{k,j} + M_{k,j} \} \leq 1 \). Indeed for \((\ell, k) \) that could contribute to the maximum, \(M_{\ell,\ell}, M_{k,k} \leq 1 \) by definition, and either \(\ell \neq k \) and \(M'_{\ell,k} \leq 1 \), or \(\ell = k \), \((\ell, k) \in C_{\nu} \) and hence, \(M'_{\ell,k} = 0 \).

Case 2 (\(\nu_h \) is a product). Let us assume \(\nu_h \) is a product of \(\nu_{h-1} \) and \(\nu' \). We have \(\beta(\nu_h) = \beta(\nu_{h-1}) \otimes \alpha(\nu') = \beta(\nu_{h-1}) \otimes \alpha(\nu') = \alpha(\nu_{h-1}) \otimes \alpha(\nu') = \alpha(\nu_h) \).

By induction hypothesis, \(\beta(\nu_{h-1}) = (p, \infty, r, N') \) for some \(p, r, N' \). Let \(\alpha(\nu') = (r, x, q, M) \) for some \(q, M \) and some finite \(x \). Then \(\beta(\nu_h) = (p, \infty, q, N' \otimes M) \). Let \(N = N' \otimes M \).

Consider \((i, j) \in C_{\nu_h} \). We have \(N_{i,j} = \max \{ N'_{i,j} + M_{\ell,\ell} \} \).

Observe that \((i, \ell) \in C_{\nu_{h-1}} \) whenever \(M_{i,j} \neq -\infty \) and \(N'_{i,j} \neq -\infty \). Hence \(N'_{i,j} \leq 1 \) by induction and \(M_{i,j} \leq 1 \) by definition, since \(\alpha(\nu) \in \mathfrak{M}_{A,B} \). Hence \(N_{i,j} \leq 1 \).

The case \(\nu_h \) is a product of some \(\nu' \) and \(\nu_{h-1} \) is similar.

Case 3 (\(\nu_h \) is idempotent such that \(\nu_{h-1} \) is the left-most child). Note that \(\alpha(\nu_h) = \alpha(\nu_{h-1}) \) by definition, and \(\beta(\nu_h) = \beta(\nu_{h-1}) \otimes \alpha(\nu_h) \).

By induction hypothesis, \(\beta(\nu_{h-1}) = (p, \infty, p, M) \), for some \(p, M \), so \(\beta(\nu_h) = (p, \infty, p, M \otimes M) \).

Let \((i, j) \in C_{\nu_h} \). Then by definition of contributors, for all \(\ell \) such that \(M_{i,\ell} \neq -\infty \) and \(M_{i,j} \neq -\infty \), we have \((i, \ell) \in C_{\nu_{h-1}} \). Hence, by induction hypothesis, for such \(\ell, M_{i,\ell} \leq 1 \).

We then have \(M \otimes M_{i,j} = \max \{ M_{i,j} + M_{\ell,\ell} \} \leq 1 \).

Case 4 (\(\nu_h \) is idempotent such that \(\nu_{h-1} \) is the right-most child). This case is symmetric to the previous one.

Case 5 (\(\nu_h \) is idempotent such that \(\nu_{h-1} \) is a middle child).

By idempotence, note that \(\alpha(\nu_h) = \alpha(\nu_{h-1}) \). Also note that for idempotent \(e \in \mathfrak{M}_{A,B} \) we have \(e^p = e \), thus \(e^{\#} = e \). Therefore we have \(\beta(\nu_h) = (\beta(\nu_{h-1}))^\# = \alpha(\nu_{h-1})^\# = \alpha(\nu_h) \).

By induction hypothesis, \(\beta(\nu_{h-1}) = (p, \infty, p, M) \), for some \(M \), and thus we have \(\beta(\nu_h) = (p, \infty, p, M') \).

Let \(N = M' \).

Consider \((i, j) \in C_{\nu_h} \). We have \(N_{i,j} = \max \{ M_{i,\ell} \} \).

Observe that \((i, \ell) \in C_{\nu_{h-1}} \).

Thus it remains to verify \(M_{i,\ell}, (M')_{i,\ell} \) cannot be \(\infty \), as each entry has been replaced by its barred version.

IX. PRESENCE OF WITNESS IMPLIES NON-BIG-O

In this section, we assume that there is a witness of non-dominance in \(\mathfrak{M}_{A,B} \) and we construct a sequence of words \((w_i)_{i \in \mathbb{N}} \) such that for all positive integer \(c \), there is \(i \) such that:

\[\|A\| w_i > c \cdot \|B\| w_i + c. \]

We will prove the following property:
Proposition 19. For all \((p, x, q, M)\) in \(M_{A,B}\), for all \(s \in \mathbb{N}\) there exists a pair \((w_s, x_s)\), with \(w_s\) a word over \(\Sigma^+\) and \(x_s \in \mathbb{N}\) with the following properties:

1. \(p \xrightarrow{w_s x_s q} q\) in \(A\) with \(\pi = \pi_x\).
2. \(M_B(w_s) = M\).
3. if \(x = \infty\), for all \(i, j\) such that \(M_{i,j} \leq 1\),
 \[x_s \geq s(M_B(w_s))_{i,j} + s\].

Note that applying this property to a witness of non-dominance gives the expected result and concludes the proof.

Proof. We prove the proposition by structural induction on \(M_{A,B}\). Consider an element \((p, x, q, M)\) in \(M_{A,B}\). By definition of \(M_{A,B}\), \((p, x, q, M)\) is either a generator representing a letter, the product of two elements of \(M_{A,B}\), the stabilisation or the flattening of an element of \(M_{A,B}\).

Case 1 (Base case: generator representing letters). Consider an element \((p, \pi, q, M_B(\pi))\) such that \(a \in \Sigma, p \xrightarrow{a} q\) in \(A\).

We associate with every \(s\) the word \(w_s = a\). Since \(\pi < \infty\), there is nothing to prove for (3).

Case 2 (Product of two elements). Suppose \((p, x, q, M) = (p, y, r, N) \otimes (r, z, q, P)\) with \((u_s, y_s)_{s \in \mathbb{N}}\) and \((v_s, z_s)_{s \in \mathbb{N}}\) given by induction.

- If \(y \leq 1\) and \(z \leq 1\) (and so \(x \leq 1\)), we define \(w_s = u_s v_s\) and \(x_s = y_s + z_s\).
- If \(y = 1\) and \(z = 1\) we define \(w_s = u_s v_s\) and \(x_s = y_s + z_s\).
- If \(y = z = \infty\) we define \(w_s = u_s v_s\) and \(x_s = y_s + z_s\).

\((1)\) and \((2)\) are immediate by definition and there is nothing to prove for (3).

Case 3 (Stabilisation of an element). Suppose \((p, x, p, M) = (p, y, p, P)\) and \((u_s, y_s)_{s \in \mathbb{N}}\) given by induction.

- If \(x = 0\) (and hence \(y = 0\)), let \(w_s = u_s\) and \(x_s = y_s\).\((1)\) and \((2)\) are immediate by definition - since \(F^0 = M\) as \(P\) is path-idempotent - and there is nothing to prove for \((3)\).\((3)\).
- If \(y = \infty\) (and hence \(x = \infty\)), let \(w_s = u_s\) and \(x_s = y_s\).\((1)\) and \((2)\) are immediate by definition. Observe that if \(M_{i,j} \leq 1\) then \(P_{i,j} \leq 1\), thus
 \[s(M_B(w_s))_{i,j} + s = s(M_B(u_s))_{i,j} + s \leq y_s = x_s\].

Case 4 (Flattening of an element). Suppose \((p, x, p, M) = (p, y, p, P)\) and \((u_s, y_s)_{s \in \mathbb{N}}\) given by induction.

- If \(x = y \leq 1\) let \(w_s = u_s\) and \(x_s = y_s\).\((1)\) and \((2)\) are immediate by definition - since \(F^0 = M\) as \(P\) is path-idempotent - and there is nothing to prove for (3).
- Otherwise, we have \(x = y = \infty\). Let \(\Theta\), be the maximum value appearing in the matrix \(M_B(u_s)\) and \(Q_{|B|}\) the number of states of \(B\). We define \(w_s = u_s^\Theta q\) and \(x_s = s_0 s_{\Theta}(Q_{|B|} + 1)\), \((1)\) and \((2)\) are immediate by definition. For \((3)\), intuitively if \(M_{i,j} \leq 1\), then the repetition of \(u_0\) cannot access a positive cycle between \(i\) and \(j\), hence bounding the weight of \(M_B(u_s)_{i,j}\) while iterating \(u_0\) sufficiently many times makes \(x_s\) as large as needed.

By induction, \(M_B(u_s)_{i,j}\) has value at most \(\Theta\|Q_{|B|}\). On the other hand, the weight of \(w_s\) in \(A\) from \(p\) to \(p\) is at least \(s(\Theta)|Q_{|B|}| + 1\), since \(y = 1\). Hence,
 \[s(M_B(w_s))_{i,j} + s \leq s(\Theta)|Q_{|B|}| + s \leq x_s\].

Consider \(i, j\) such that \(M_{i,j} \leq 1\). Since \(P\) is path-idempotent and by definition of flattening, necessarily for all \(\ell\) such that both \(P_{i,\ell}\) and \(P_{\ell,j}\) are different from \(-\infty\), we have \(P_{i,\ell} \leq 1\).\((*)\).

We have:
 \[M_B(w_s)_{i,j} = \max_{s_0, i_0, i_1, \ldots, i_{K_s}} M_B(u_{s_0})_{i_0,i_1} + M_B(u_{i_1})_{i_1,i_2} + \ldots + M_B(u_{i_{K_s-1}})_{i_{K_s-1},i_{K_s}}\].

Consider the path \(i_0, i_1, \ldots, i_{K_s}\) that achieves the maximum in Eq. (4). Since \(K_s \geq |Q_{|B|}|\), there exists \(n < m\) such that \(i_n = i_m\) and all elements
i_{0}, \ldots, i_{n}, i_{m+1}, \ldots, i_{K_{s}}$ are distinct. By (\ast), we have $P_{t,i_{n}} \leq 1$ and furthermore, $P_{t,i_{n+1}} \leq 1$ for $n \leq \ell \leq m - 1$ since $P_{i_{n},i_{m+1}} \leq 1$. By definition of R_{s}, we then have $M_{B}(u_{s})_{i_{n},i_{m+1}} \leq R_{s}$. Hence all components of Eq. (3), except those between $(t_{0}, \ldots, i_{n}, i_{m}, \ldots, i_{K_{s}})$, are bounded above by R_{s}, and the remaining, of which there are at most $|Q_{B}|$, are bounded above by Θ_{s}. We have:

$$M_{B}(w_{s})_{i,j} \leq |Q_{B}| \Theta_{s} + K_{s} R_{s}. \quad (5)$$

So, we have:

$$s(M_{B}(w_{s})_{i,j}) + s(\{Q_{B}| \Theta_{s} + K_{s} R_{s}\} + s) \quad \text{(by Eq. (5))}$$

$$= s(K_{s} R_{s} + |Q_{B}| \Theta_{s} + 1)$$

$$= s(K_{s} R_{s} + K_{s})$$

$$\quad \text{(by choice of } K_{s})$$

$$\leq K_{s}(s R_{s} + s)$$

$$\quad \text{(by Eq. (3))}$$

$$= x_{s}.$$

Running Example, Part 12. We compute the sequence w_{s} for the nodes inducing the tractable witness in our example:

- The leaves, labelled by a and b, induce the sequences $w_{s} = a$ for all s, and $w_{s} = b$ for all s respectively.
- $\beta(\nu_{j})$ is generated as the stabilisation of an element with word $w_{s} = a$ in which $y = 1$ (Case 3.3), hence $w_{s} = a^{\Theta+1}(Q_{a}s_{1})$, where $\Theta = \max_{i,j} M_{B}(a)_{i,j} = 1$ and $|Q_{B}| = 4$.
- $\beta(\nu_{j})$ is the product of elements with $w_{s} = a^{5}s$ and $w_{s} = b$, where $y = \infty$, but not z, and so we have $w_{s} = u_{s} = \nu_{s}(Q_{a}s_{1})v_{0} = a^{10}s_{b}$, where $\Theta = \max_{i,j} M_{B}(a)_{i,j} = 1$.
- $\beta(\nu_{j})$ is the product of elements with $w_{s} = ab$ and $v_{s} = a^{10}s_{b}$, where $z = \infty$ but not y, and so we have $w_{s} = abv_{s}(Q_{a}s_{1}) = ab^{20}s_{b}$, where $\Theta = \max_{i,j} M_{B}(ab)_{i,j} = 1$.
- The tractable witness $\beta(\nu_{j})$ is the flattening of an element with $u_{s} = abv_{s} = ab^{20}s$, where $y = \infty$, thus (by Case 4.2) $w_{s} = u_{s} = \nu_{s}(Q_{a}s_{1}) = (ab^{20}s_{b})^{2} > s_{b}$, where $\Theta = \max_{i,j} M_{B}(a)_{i,j} = 20$s.

Hence, our witness shows that for every s, $w_{s} = (ab^{20}s_{b})^{2} > s_{b}$ is a contradiction to $|A| \leq s|B|$. So, the sequence matches our expectations from Running Example, Parts 2 and 7.

Indeed, $|A|(w_{s}) = (20s) + (80s + 1) = 800s^{2} + 260s + 3$ increases quadratically in s, while $|B|(w_{s}) = 160s + 2$, maximised by counting b’s, only increases linearly in s, and in particular:

$$800s^{2} + 260s + 3 > s(160s + 2) + s \quad \text{for every } s \in \mathbb{N}. \quad \uparrow$$

X. CONCLUSION

In this paper, we develop new techniques – in particular a new flattening operation – to describe the behaviour of max-plus automata. It would be interesting to see if such insight can be applied to other problems, particularly for min-plus automata. Another direction would also be to construct a series of examples of max-plus automata requiring tractable witnesses with an increasing number of nested flattening operations.

ACKNOWLEDGMENT

The first author has been supported for this work by the EPSRC grant EP/T018313/1. The second author was partially supported by the ERC grant INFYS, agreement no. 950398.

REFERENCES

2We thank Ismael Jecker for interesting discussions on this.

APPENDIX

A. Proof of Proposition 5

Proposition 5. If the simplified big-O problem is decidable in PSPACE then the big-O problem is decidable in PSPACE.

Proof. We reduce an instance of the big-O problem to the simplified big-O problem. The instance of simplified big-O problem will be of polynomial size with respect to the initial input, but a PSPACE pre-processing step is used.

- Let \mathcal{A}, \mathcal{B} be max-plus automata. Let us first construct $\mathcal{A'}, \mathcal{B'}$ with $[\mathcal{B'}] : \Sigma^* \to \mathbb{N}$ such that \mathcal{A} is big-O of \mathcal{B} if and only if $\mathcal{A'}$ is big-O of $\mathcal{B'}$. Let L_A (resp. L_B) be the (rational) language of words w such that $[\mathcal{A}](w) \neq -\infty$ (resp. $[\mathcal{B}](w) \neq -\infty$). Checking whether $L_A \subseteq L_B$ can be done in PSPACE (consider the Boolean automata obtained from \mathcal{A} and \mathcal{B} by ignoring the weights - they accept L_A and L_B, and inclusion of rational languages is PSPACE [28]). If L_A is not included in L_B then \mathcal{A} cannot be big-O of \mathcal{B}. Take $\mathcal{A'}$ that computes the length of the words and $\mathcal{B'}$ that computes the function 0. If L_A is included in L_B, take $\mathcal{A'} = \mathcal{A}$ and $\mathcal{B'}$ being \mathcal{B} augmented with a new state which is both initial and final and has a self loop on all letters with weight 0. In both cases, \mathcal{A} is big-O of \mathcal{B} if and only if $\mathcal{A'}$ is big-O of $\mathcal{B'}$ and $[\mathcal{B'}] : \Sigma^* \to \mathbb{N}$.

- We now reduce this to the case where automaton \mathcal{A} is deterministic. Consider two automata $\mathcal{A} = \langle Q_A, \Sigma, M_A, I_A, F_A \rangle$ and $\mathcal{B} = \langle Q_B, \Sigma, M_B, I_B, F_B \rangle$ with $[\mathcal{B}]: \Sigma^* \to \mathbb{N}$. We construct $\mathcal{A'}, \mathcal{B'}$ with $\mathcal{A'}$ deterministic and $[\mathcal{B'}]: \Sigma^* \to \mathbb{N}$ such that \mathcal{A} is big-O of \mathcal{B} if and only if $\mathcal{A'}$ is big-O of $\mathcal{B'}$. Automata $\mathcal{A'}$ and $\mathcal{B'}$ are over the alphabet $\Sigma' = \{a_q | a \in \Sigma, q \in Q_A\}$ and:

- $\mathcal{A'}$ is constructed from \mathcal{A}, with set of states $Q_A \cup \{r\}$ with r a new state (the new unique initial state), $(I_A)_r = \emptyset$ and all the other entries of I_A' being $-\infty$, final states $(F_A')_p = (F_A)_p$ for $p \in Q_A$ and $(F_A')_p = \max\{ (F_A)_p \mid p \text{ initial in } A \}$, a transition $p \xrightarrow{a_i, x} q$ for each transition $p \xrightarrow{a_i} q$ in \mathcal{A}, and a transition $r \xrightarrow{a_i, x+(I_A)_p} q$ for each transition $p \xrightarrow{a_i} q$ in \mathcal{A}. Note that $\mathcal{A'}$ is deterministic.

- $\mathcal{B'}$ is constructed from \mathcal{B}, with set of state Q_B, initial and final states I_B and F_B respectively, and a transition $p \xrightarrow{a_i, x} q$ for each transition $p \xrightarrow{a_i} q$ in \mathcal{B} and each $r \in Q_A$. Note that $[\mathcal{B}']: \Sigma^* \to \mathbb{N}$.

Suppose that \mathcal{A} is big-O of \mathcal{B} and let us prove that $\mathcal{A'}$ is big-O of $\mathcal{B'}$. Let w be a word over Σ' and \bar{w} over Σ defined as w where the subscripts of the letters are removed. Then $[\mathcal{A'}](w) \leq [\mathcal{A}](\bar{w})$ and $[\mathcal{B'}](\bar{w}) = [\mathcal{B'}](w)$ by construction and hence $\mathcal{A'}$ is big-O of $\mathcal{B'}$. Conversely, suppose that $\mathcal{A'}$ is big-O of $\mathcal{B'}$. Let $w \in \Sigma^*$. Consider an accepting run in \mathcal{A} labelled by u which has maximal weight and $q_0, q_1, q_2, \ldots, q_k$ the corresponding sequence of states. Let $\bar{w} = a_i^1 \cdots a_i^{q_k}$ word over Σ' where $w = a^1 \cdots a^k$ and $a^i \in \Sigma$ for all i. Then $[\mathcal{A}](w) = [\mathcal{A'}](\bar{w})$ and $[\mathcal{B'}](\bar{w}) = [\mathcal{B'}](w)$ by construction. Hence \mathcal{A} is big-O of \mathcal{B}. \hfill \Box

B. Proof of Proposition 6

Proposition 6. The simplified big-O problem is PSPACE-hard.

Proof. We reduce from the CFINITENESS problem, which asks whether the language of a non-deterministic finite automaton is co-finite, that is, accepts all but a finite set of words.

Lemma 20. CFINITENESS is PSPACE-hard

Proof. We reduce from the universality of non-deterministic finite automata. Let \mathcal{A} be an instance of universality over alphabet Σ; we construct $\mathcal{A'}$ over $\Sigma \cup \{\#\}$ where $\#$ is a new letter not in Σ. $\mathcal{A'}$ is such that for all words w over Σ^* and for all words u over $\Sigma \cup \{\#\}$, $w#u$ is accepted by $\mathcal{A'}$ if and only if w is accepted in \mathcal{A}. This is achieved by augmenting \mathcal{A} with an accepting sink state reachable on $\#$ from every accepting state of \mathcal{A}. We observe \mathcal{A} is universal if and only if $\mathcal{A'}$ is co-finite. In particular, if \mathcal{A} is universal, so too is $\mathcal{A'}$, and in particular, co-finite. If \mathcal{A} does not accept w then \mathcal{A} does not accept the language $w\#\Sigma^*$, and thus is not co-finite.

Let \mathcal{B} be an input to CFINITENESS; we construct an instance of the simplified big-O problem. Let $\mathcal{A'}$ and $\mathcal{B'}$ such that $[\mathcal{A'}](w) = |w|$ for all $w \in \Sigma^*$ and $[\mathcal{B'}](w) = |w|$ for all w accepted by L_B and 0 otherwise. The automaton $\mathcal{B'}$ is constructed from \mathcal{B} by associating every edge in \mathcal{B} with the weight 1 and augmented with a new state which is both initial and final and has a self loop on zero for all letters.

We observe \mathcal{B} is co-finite if and only if \mathcal{A} is big-O of \mathcal{B}.

- If \mathcal{B} is co-finite there exists a longest word w_L not recognised by \mathcal{B} and $[\mathcal{A'}](w) \leq |\mathcal{B'}|(w) + |w_L|$ for all $w \in \Sigma^*$ and \mathcal{A} is big-O of \mathcal{B}.

- If \mathcal{B} is not co-finite then there is an infinite sequence of words not accepted by \mathcal{B} and in particular one of increasing length words, $(w_i)_{i \in \mathbb{N}}$. Hence we have $[\mathcal{A'}](w_i) \to \infty$ while $[\mathcal{B'}](w_i) = 0$ as $i \to \infty$ and $\mathcal{A'}$ is not big-O of $\mathcal{B'}$. \hfill \Box

C. Basic properties of the projection

Recall the projection into the semi-group $\Omega = \{-\infty, 0, 1\}$, defined in Section IV-B. We prove the following basic properties of the projection.

Lemma 21.

Let $a, b \in \mathbb{N}$, and let \bar{a}, \bar{b} be the projection of a and b into $\bar{\Omega}$, we have:

1. If $a \leq b$ then $\bar{a} \leq \bar{b}$
2. $\bar{a} + \bar{b} = \bar{a + b}$ where $\bar{a + b}$ is taken in the $\bar{\Omega}$ semiring.

Let $M, N \in (\mathbb{N}_{\text{max}})^{d \times d}$ and let $\overline{M}, \overline{N}$ be the pointwise projection of M and N into $\overline{\mathbb{N}}^{d \times d}$, we have:

3. $\bar{M} \odot \bar{N} = \bar{M} \odot \bar{N}$ where $\bar{M} \odot \bar{N}$ is taken in the $\bar{\Omega}$ semiring.

Proof.
1. Suppose \(a = -\infty \) then \(-\infty = a \leq b\) and \(-\infty = \pi \leq \bar{b}\).
 - Suppose \(a = 0 \), we have \(a \leq b \iff b \in \mathbb{N} \).
 - Suppose \(a \in \mathbb{N} \), we have \(a \leq b \iff b \in \mathbb{N}_{\geq 2}, \) thus \(\bar{b} = 1 \). Then \(1 = \pi \leq \bar{b} \).
2. Suppose \(a = -\infty \) (or, \(b = -\infty \)) then \(a + b = \overline{a + b} = \overline{-\infty} = -\infty \).
3. Suppose \(a = b = 0 \), then \(a + b = \overline{a + b} = \overline{0} = 0 \).
4. Suppose \(a \in \mathbb{N}_{\geq 1}, b \in \mathbb{N} \). Then \(a + b = \overline{a + b} = 1, \pi = 1, \bar{a} = 1 \).

D. Proof of Proposition 16

Proposition 16. Given a word \(w \) such that \(\lVert B \rVert(w) \neq -\infty \), every node in any factorisation tree on \(w \) has a non empty set of contributors.

Proof. We show that if a node has a contributor then all its children have a contributor. Since we assume \(I_B \otimes M_B(w) \otimes F_B \neq -\infty \) we observe that the root in any factorisation tree has non-empty contributors, this would imply that every element of the tree has non-empty contributors.

First observe, that the definition of a contributor requires that for every \(\nu \), with \(\alpha(\nu) = (p, x, q, M) \), if \((i, j) \in C_{\nu} \) then \(M_{i,j} \neq -\infty \). We consider two cases for both type of internal node. Suppose \((i, j) \in C_{\nu} \) and \(M_{i,j} \neq -\infty \).

Case 1 \((\nu \text{ is a product node}) \). Suppose \(\alpha(\nu) = (p, x, q, M) \) is the product of two children \(\nu_1 \) and \(\nu_2 \) with \(\alpha(\nu_1) = (p, x_1, r, P_1) \) and \(\alpha(\nu_2) = (r, x_2, q, P_2) \) then \(M = P_1 \otimes P_2 \), and \(M_{i,j} = (P_1)_{i,k} + (P_2)_{k,j} \) for some \(k \). Thus \((i, k) \in C_{\nu_1} \) and \((k, j) \in C_{\nu_2} \).

Case 2 \((\nu \text{ is an idempotent node}) \). Suppose \(\nu \) has children \(\nu_1, \ldots, \nu_k, k \geq 3 \), with \(\alpha(\nu) = \alpha(\nu_1) = (p, x, P, M) \) for all \(1 \leq i \leq k \). Since \(M \) is idempotent, we have \(M = M^d \) for any choice of \(d \geq 1 \). Note that there is no requirement that \(d \leq k \), the equivalence holds for all \(d \) by idempotence. In particular, let us fix a choice of some \(d \geq |Q_B| + 3 \). Choose a contributor of \(\nu, (i, j) \in C_{\nu}, \) and so we have \(M_{i,j} \neq -\infty \). Further, since \(M \) is idempotent, we have \(M_{i,j} = M^d_{i,j} \). Thus there exists a sequence \(i = \ell_1, \ldots, \ell_{d+1} = j \) such that \(M^d_{i,j} = M_{\ell_1, \ell_2} + M_{\ell_2, \ell_3} + \cdots + M_{\ell_d, \ell_{d+1}} \), where \(M_{\ell_n, \ell_{n+1}} \neq -\infty \) for every \(n \leq d \).

Note then that \((\ell_1, \ell_2) \in C_{\nu_1}, (\ell_d, \ell_{d+1}) \in C_{\nu_k} \). Furthermore, by simple application of the pigeon hole principle,