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Abstract

Petroleum markets are undergoing rapid financializationand integration, leading to
increased volatility and exposing participants to potentially much greater risks. This
thesis addresses the explicit modeling of petroleum price volatility in a multivariate
framework and analyzes the relative merits of multivariate models to describe change
in the context of petroleum markets risk. Tie focus of this thesis will be on xplaining
the dynamic interdependencies in petroleum markets and further demonstrate
whether the existence of such interdependencieprompt for the need to assess risk
differently, by which tis thesis contributes to the existing economic or econometric
theories in three aspects The first empirical part examines the importance of volatility
spillovers and asymmetry in petroleum markets and their influence on optimal hedging
strategy. To address in a realistic way the dynamic conditional correlation of petroleum
spot and futures markets,we develop a new theoretical framework by accounting for
the effect of timevarying conditional correlations in the conditional volatility processes
of the VARMAAGARCHmModel in what is termed the VARMAAGARCEFDCC model
Results demonstrate thathe proposed model is the best for OHR calculation in terms of
the variance of portfolio reduction and tail risk analysis The second empirical part for
the first time in the literature of energy economics,examines the volatility and
correlation interdependence between oil market and China stock market at the
sector-level. Results indicate thatoil price fluctuations constitute a systematic asset
price risk at the sector leveland information content embedded in oil market volatility
is an effective and valuable variable for construatg an optimal oilstock hdding.
Finally, the third empirical part, for the first time in the literature of energy economics,
investigates the volatility transmission mechanism among three benchmark oil markets
and quantifies the size and persistence of these connectiorthrough employing the
Volatility Impulse Response Function (VIRF) methodologyResults suggest markedly
different responsiveness to historical events and volatility/correlation dynamics across
crude oil benchmark markets. Overall, the findings of this thesis have important
implications for crude oil market trading and risk management, as well as stock market
investors, by providing valuable information on the oil price volatility dynamics and
will help market participants develop efficient risk measurement schemes and devise
sound risk management strategies.
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Chapter 1

Introduction, Motivation, and Significance of the Study

1.1 Thesis motivation

Following the two oil price shocks and the development of derivatives markets in the 1980the
total trading volume of oil-related futures contracts has far exceeded total world oil production.
Since then, cude oil markets have been transforming from a purely physical goods market into a
sophisticated financial market, i.e. the ‘paper’ oil market. This transformation has been
highlighted by two significant changes: the strengthening of the globalization trend of theil
markets and its increasing relation to the macroeconomic and financial markets such as the
exchange rate market, stock market and bond market. The transformation of crude oil markets
and their size, scope and complexity could allow a wide range of participants beyond the scope of
traditional crude oil producers, physical traders, and refining and oil companies, to financial
investors who consider it as a popular asset class. As a result, crude oil prices have experidnce
an unparalleled growth over the last decade with the most pronounced price boom between
2002 and mid-2008 and have been more volatile than prices of most other commodities since the
oil crisis in 1973 (Fleming and Ostdiek, 1999Regnier, 2007)2 The main contributors of this
phenomenon are geopolitical factors regarding the destabilization of the Middle East situation, as
well as changes in supphdemand fundamentals.Oil-specific shocks, especially on the supply
side, have generally played a key role in this respect. Rapidly growing demand for crude olil,
especially in emerging economies, as well as the debate about the future use of fossil fuels in the

light of global climate change, and about the link between crude oil production and climate

 qil consumption has increased by more than 20 million barrels per day whereas the total trading volume of futures contracts
has far exceeded total world oil production

% Regnier (2007) finds that crude aifd energy pricesare more volatile than prices for about 95% of other commigsisold

by domestic producers over the period January 1945 through August 2005. Plourde and Watkins (1998) discover that crude olil
price volatility is higher thaprice volatility for nine other commodities during the 198994 periods.
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change more generally, has clearly had an impact on recent oil price fluctuations beyond simple

oil-specific shocks

The volatile condition of crude oil markets has significant imacts and policy implications at both
macroeconomic and microeconomic level. Considerable oil price fluctuations often have great
impacts on the macro economy. High volatility of crude oil prices creates uncertainty, as a result,
the economic instability may be observed from both oiexporting and oilimporting countries.
Moreover, fluctuations in oil prices increase uncertainty about future prices and thus cause
delays in business investments. Ferderer (1996) has shown that it is ideal for companies to
postpone irreversible investment expenditures when they experience increased undainty
concerning the future oil price.Volatility is an indispensable input for pricing oil derivatives and
various financial instruments (Arouri et al., 2011). Furthermore, the volatility of crude oil
markets suggests that individuals and firms trading in crude oil markets have to face significant
challenges when trying to manage the risk associated with the changes, over time, in crude oil
prices. Substantial changes in voldity of crude oil markets translate to significantly adverse

effects for risk-averse investors.

Gven the important role played by volatility of crude oil prices,forecasting crude oil prices,
quantifying and managing the risks inherent to their frequentvolatilities has become critical
issues for both academicians and markets participants. Indeed, a better understanding of the
return volatility of crude oil markets should allow the improvement of portfolio allocation using
the estimated conditional variance matrix. An accurate measure of volatility also helps to
improve the interference one can draw from an estimatelTherefore, the main motivation of this
thesis is to build on modern quantitative techniques with a view to address several issues of oil
price modelling and risk management which are very relevant topics in the industry. The driving

force for developing such models of oiinarkets is the desire, by market participants, to ensure

% At the macroeconomic level, it can lead to the deterioration in the balance of payments and in public finances, and the
associated uncertainty is likely to curtail investment and to significantly depresddongyrowth. At the microeconomic level,

high and volatile crudeibprices have severe impacts on the most vulnerable, especially emesggare households (UNCTAD,
2011)
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accurate estimation of risk measures, successful implementation of hedging strategies as well as
athorough evaluation of investment policies.This thesis is a compilation of three closely related
essays in petroleum risk modelling and risk management, dealing with several practically
relevant issues in empirical energy economics. That said, three central aims are determined. The
first is to develop a methodology for futures hedog designed to support risk management
programmes in petroleum markets. The second is to understand and explore fundamental
relationships and interdependencies between crude oil market and China stock market for
optimal portfolio management. The third is to quantify the risk of the more liquid and volatile

near to maturity crude oil contracts where market activity is mainly concentrated.

Empirical stylised facts of petroleum returns series suggest that volatility is time&arying. This
thesis addresses the explicit modeling ogpetroleum price volatility in a multivariate framework
and analyzes the relative merits of multivariate models to describe change in the context of
petroleum markets risk. We argue that univariate models cancapture the volatility dynamics of
individual assets but cannot reveal the relationships among petroleurmarkets. Thus, the focus
of this thesis will be on explaining the dynamic interdependencies ipetroleum markets and
further demonstrate whether the existence of such interdependencies for the need to assess risk
differently. In doing so, we benefit from the flexible family of multivariate GARCH (MVGARCH)
modelsthat permit us to investigate hedging strategy, volatility spillover and correlations among
petroleum markets or between petroleummarkets and other financial markets.Haigh and Holt
(2002) for instance, show that moddéing of time-variation in hedging strategy according to
MVGARCH models, and taking into account volatility spillover between marsecan lead to
significant reductions in uncertainty. The information content derived from MVGARCH models
will be thoroughly discussed with the aim to assess their role and effectiveness in quantifying

risk and tofinally uncover fundamental interactions in a multivariate framework.

The topics studied range from risk quantification, volatility/correlation modelling, futures

hedging as well as optimal portfolio management and Valu&t-Risk analysis and management.
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All essays have many things in common. First, they all focus on time series properties of
petroleum prices. Second, they all explicitly model the return volatilities and correlations of these
assets in a multivariate framework.Third, they all aim on accurate risk assessment and enhanced

forecasting ability.

1.2 Thesis objectives and contribution

This thesis consists of three sel€ontained essays that discuss both theory and applications of
multivariate GARCH models to petroleum markets. The thesis contributes tthe existing
literature by addressing three main issuesthe development of the VARMAAGARCH model with
DCC structure and its application to minimum variance hedging in petroleum markets, the
application of the asymmetric BEKK model to analyzeolatility dependencies between crude oil
and China stock market at the sector level with the aim of optimal portfolio management, and
empirical evidence of volatility transmission mechanism among three benchmark oil markets
with quantifying the size and persistence of these connections through the analysis of volatility
impulse response functions.This thesis will provide useful information to energy traders and

portfolio managers regarding risk control and profitable opportunities.

In the second chapterwe review fundamental concepts of the petroleum market structure and
dynamics. The chapter begins with an introduction on why crude oil and its price volatilitare
important. This section is followed by an overview of the oil pricing mechanisms that makee

oil markets special and the impact of financialization of oil markets on oil pricing mechanisms.
After an outline of the underlying forces for oil price changes including market fundamentals
(supply-demand) and speculative activities in oil derivative markets, we provide a literature
review with the objective to present several applications of MGARCH models in energy
economics, touching upon issues of volatility spillovers among oiharkets or between oil and

stock markets.
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In the third Chapter, which is the first enpirical chapter of the thesis, we propose the use dhe
VARMAAGARCH model of McAleer et al. (2009) with dynamic conditional correlation structure
(VARMAAGARCHDCC)in the petroleum markets for constructing optimal hedging strategy.
Although volatility modeling and hedging strategies in a multivariate framework have been
widely documented in crude oil markets, few studies have analyzed in depth the nature of
volatility spillovers and asymmetric effects of spot and futures prices iroil-related products
market, such asgasoline and heating oil marketsWe develop a new theoretical framework by
accounting for the effect of time-varying conditional correlations in the conditional volatility
processes othe VARMA AGARCH model in what is termed the VARMAGARCKFDCC model To
the best of our knowledge, this is the first time thathe VARMAAGRACHDCC models applied in
petroleum markets. Implementing such model allows us to draw some new interesting insights
regarding the effects of volatility spillovers, asymmetric effects and timevarying conditional
correlations for petroleum markets hedging strategiesOur model specification is found superior
in constructing optimal hedging strategy in comparison to the hedging strategies derived from
other alternative multivariate GARCH models through applying the hedging effectiveness index.
In addition, we link the new theoretical framework with tail estimation by examining the tails of
the conditional distributions of the model and extending the above framework to a tail risk
analysis.Overall, by identifying more accurate interaction between petroleum spot and futes
markets, market participants may benefit fromthis analysis in terms of more accurate risk

guantification.

In the fourth Chapter, we propose the use of the asymmetric version of the BEKK model
introduced by Grier et al. (2004) to examine the volatility spillovers as well as asymmetric effects
between oil and China stock marketat the sectorlevel. This model offers the possibility to
explore the timevarying conditional correlation as well as the conditional cross effects and
volatility transmission between these markets, which permit a greater understanding of

cross-correlation volatility spillovers between these interconnected markets.Only few studies
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have analysed in depth the nature of the volatility dependencies between crude oil and stock
markets. Nb such study has been conducted explicitly so far to disentangle the role of oil price
shocks from other underlying determinants driving China stock market volatilities. The
innovation of this chapter is in analyzing the volatility dependencies betweethese marketsat
the sector level to allow for detailed discussion for optimal portfolio management, which has
never been investigated in the literature of energy economicdVe find significant evidence of
volatility transmission between these marketsat the sectorlevel, and the intensity of volatility
transmission varies across the stock sectors, which supports the idea of crasgrket hedging by
investors and validates the argument that the sector perspective is more informative and
generates more accurate implications for portfolio risk management. Then, we derive the
implications of the estimated results on variances and covariances for effectirsy optimal
portfolio management in the presence of oil assets, which suggesimt stock market investors in
China should consider the additional source of uncertainty resulting from oil markets and then
consider oil assets as a dynamic and valuable asselass that improves the risk adjusted
performance of a diversified portfolio of sector stocks. Overall, by identifying timearying state
dependent hedge ratiosand optimal portfolio weights between oil and China stock market
market participants in China may be able to obtain significantly superior gains, measured in

terms of variance reduction and increase in utility.

In the fifth Chapter,we apply the Volatility Impulse Response Functions model to investigate how
a shock to one market influences the dynamic adjustment of volatility to another market and the
persistence of these volatility transmission effectsThen, for the first time in the literature, we
guantify the size and persistence of these connections through analyzitigree historical shocks,

namely the 2008 Financial Crisis, the BP Deepwater Horizon oil spilland the OPEC

* The Deepwater Horizon Oil Spill is an oil spill in the Gulf of Mexico which flowed unabated for three months in 20%9. It is t
largest accidental marine oil spill in the history of the oil industry. It stemmed from-ficeraoil gusher that resulted from the
April 20, 2010, explosion of Deepwater Horizon. Please refer to http://en.wikipedia.org/wiki/Deepwater_Horizon_dr spill
detailed explanation.



Chapter 1: Introduction, Motivation, and Significance of the Study

announcements. Quantifying the impact of a shock on volatility is of practical interest to
financial practitioners for determining the cost of capital, for assessing investment and leverage
decisions, and for computing the optimal hedge ratio and portfolio weights as many financial
instruments, especially optiors, are prices according to the entire price distribution as well as the
distribution of volatility. While other financial markets, such as foreignexchange market, stock
market and electricity market, have been thoroughly investigated in terms of volatility impulse
response function, to our knowledge, no such study has been undertaken so far in crude oil
markets. Therefore, it is within the context of previous limited empirical work that the present
study is concentrated on the quantification of the impact of a shock on oil price volatility.
Furthermore, for the first time in the literature of energy economics, we are able to test the
responsiveness of different crude oil markets on historical shocks and then investigate the level
to which crude oil markets are integrated. Results indicate that Brent and Dubai crude are highly
responsive to market shocks, whereas WTI crude shows the least responsiveness of the three
benchmarks, which creates questions about its predominance as a benchmark crude oil and its
integration into global oil markets. Moreover the fitted distributions are asymmetric showing
that the probability of observing a large impact of a shock is lower while the probability of a
relatively smaller impact is much higher.While the model can in principle be employed to
analyze the impact of historical shocks on conditional volatility, we also aim to fill in the gap in
the literature by providing a new approach to obtain forecasts of the Valuat-Risk. Results from
this exercise indicate that only a “large” shock (derived from a smaller probability) will result in
an increase in expected conditional volatilities. These results provide useful insights into the
volatility transmission mechanism in crude oil markets and their asociated risk estimation, and

may have significant implications for various market participants and regulators.

® In 1982, OPEC established a system to regulate oil production among its members. Several times a year, the OPEC schedules a
conference to agree on further oil productiomlies, based on its assessment of the current market condition. The OPEC’s
decision usually takes the form of an announcement, setting an overall oil production ceiling for the cartel and individual
production quotas for its members (see OPEC Secret20a3).
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In the sixth Chapter, we conclude this thesis by summarizing the main empirical findings of this
study. We also suggest a number of potential directions in which fruitful future research can be
undertaken to some degree complement the study and consequently shed some light on the

issues not covered in this thesis.

To sum up, for the first time in energy economics literature, all the above topiese examined in
the particular approaches as offered by this thesis, thus making its contribution an original
source of reference for academics and a practical tool for financial practitionershe findings of
this thesis have important implications for energy market participants who deal with trading and
risk management by providing valuable information on volatility behaviour and transmission as
well as their predictability. Overall, market participants may benefit from the thorough
understanding of voldility transmission among energy markets and between energy markets
and stock markets in terms of improving the forecasting accuracy and enhancing the

performance of their hedging strategies.

1.3 Organization of the thesis

The original contribution of this study commences in Chapter S/ith empirical body of the thesis
involving Chapter 3to 5. Note that each chapter covers a topic on its own, so that they can be
read independently of previous and subsequent chapter. Part of Chapter 4 was presented at the
2nd |nternational Conference of the Financial Engineering and Banking Society of European
Business School in London this Jun®art of Chapter 5 has been published ithe Journal of
Energy Economics (Jin et al., 2012) arah earlier version was presented at the 3# International
Association for Energy Economics (IAEE) Conference in Stockhollast June. The specific
organisation of the thesis follows the objecties mentioned above in &ction 1.2and the rest of

this study is organized as follows:



Chapter 1: Introduction, Motivation, and Significance of the Study

Chapter 2 offers an outlook of crude oimarkets and the market structure, and also provides the
necessary literature review on the employd MGARCH models in terms of volatility spillovers
among energy markets or betweeril and stock markets. Gapter 3 is the first empirical chapter
of the thesis in which we propose the use of the VARMAGARCKDCC modein the petroleum
markets for constructing optimal hedging strategy. Chapte# investigates how and to what
extent oil price shocks impact China stock market at sector leyeémphasizing on the volatility
transmission mechanisms by using an asymmetric version of BEKK model. Chafénvestigates
crude oil markets integration on the second moment and further quantifes the size and
persistence of these conections through the analysis of Volatility Impulse Response Functions
for three historical shocks, namely the 2008 Financial Crisis, the BP Deepwater Horizon oil spill
and the OPECannouncements. Finally, Chapte6 summarizes the main empirical findings of this
thesis, discusses the implications, and suggests potential interesting paths of future research as

directed by the findings of this thesis.



Chapter 2: Introduction to Petroleum Markets

Chapter 2

Introduction to Petroleum Markets

2.1 Introduction

Oil is the most important energy source, accounting for more than a third of the world primary
energy mix. It is expected to continue to hold the largest share in the coming decades, although
the share will decline marginally. In volume terms, oil production and consumption fell after the
second oil crisis in 1979 and bottomed in 1983. Since then, however, the volume has been
continuously increasing, despite variations in the price. In comparea to other physical
commodities, the size, scope and complexity of global crude oil trade are unique. Currently more
than 80 million barrels of oil are produced and consumed evergay. Furthermore, the strategic
importance of oil and the crucial role thatt plays in the broad economy make it a commodity like

no other.

Because of its importance in theworld economy, the change of oil price has caused great
concerns among academic researchers, policy makers as well as market participamslatility is

a key input into macroeconomic models and option pricing formulas and oil price uncertainty has
important implications on economic activity (Hamilton, 1983).Thus, it is of considerable interest
to energy economists to understand ad model oil price volatility and promote applications in
risk management. For the purpose of capturing the dynamics of volatility, Engle’s (1982) ARCH
model and the generalized version developed by Bollerslev (1986) are arguably the most popular
methods for modeling volatility of oil markets. However, univariate models can capture the
volatility dynamics of individual assets but cannot reveal the dynamic relationship among
petroleum markets. Thus, multivariate GARCH (MGARCH) models have been useéxamine

volatility spillover and correlations among energy markets or between energy markets and other
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financial markets. Empirical evidenae suggess that volatility spillovers, asymmetric effects on
the conditional variances and timevarying conditional correlations exist for most pairs of

returns in major oil markets (see Chang et al., 2010).

The increasing integration of crude oil markets all over the world, spurred by deregulation,
securitization, globalization and advances in information technology, has generated a good deal
of interest in understanding the volatility spillover effects from one market to another. Malik and
Ewing (2009) suggest thatthere are two plausible explanations as to why these spillovers exist.
First, volatility spillovers may result from crossmarket hedging and changes in common
information, which may simultaneously alter expectations across markets. A second reason given
to explain the volatility spillover effects is that offinancial contagian, specfically, a shock to one

country's asset market may cause changes in asset prices in another countfifr@ncial market.

In this chapter, we describe lhe structure of the oil markets.Section 2.2 presents an overview of
oil pricing mechanisms thatmake the oil market special and the impact of financialization of oil
markets on oil pricing mechanisms. Section 2.3 presents thenderlying forces for oil price
changes Section 2.4 provides a brief introduction of MGARCH models with a selective overview
of MGARCH literature in energy economig¢gouching upon issues of volatility spillovers among
energy markets or between energy markets and stock markets. Section 2.5 concludes this
chapter. The application of thismultivariate framework is demonstrated in empirical analysis in

later chapters.

2.2 QOil pricing mechanisms

It is important to distinguish between pricing mechanisms and the underlying forces which
determine prices. The pricing mechanisms refer to the organization of trade, exchange and
marketplaces, as well as the ways prices are determined. It does not necessarily shed an insight

into what influences decisionmaking by buyers and sellersphor about the resulting maiket
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balance and price level. The price mechanissifor crude oil can lead to a transparent and liquid
market without any pressure for lower prices. However, the underlyingorces which determine
prices will have an influence on pricing mechanismslin this section, we look into pricing
mechanisms in the oil sector, particularly into thecommodity-type pricing mechanisns that
make oil special which has developed since the official selling price system within lorgrm oil
contracts established by OPECcame to an end in the mid1980s. The commodity pricing
mechanism in the oil sector has gradually evolved from the spot trading to the oil derivatives
markets. This section gives a brief review about the history and mechanism of the oil market with

a small subsetion focusing on the financialization of oil markets.

Commodity pricing in the oil sector is well established and spot markets for oil have developed
the full range of commodity pricing instruments. The current spot markets have been developed
since the arly 1970s with the aim of finetuning oil demand and supply and cover no more than
3-5% international oil trade. Prior to the 1970s, however, the vertical value chain for
internationally traded oil was almost under the full control of the Seven Sisters.They held
concessions covering vast areas, with only very low royalty payment3hey received their oil
mostly through long-term concession agreements with host countries and dominated the market
through bilateral long-term contracts. During this period, dmost all crude oil stayed within the
integrated companies, and was transferred among affiliates, from producing via transport to
refining-marketing affiliates. Crude oil prices were mostly internal transfer prices, kept low to
minimise the rent-taking of producing countries. As transfer pricing dominated during this
period, spot market was only served as a tool fothe Seven Sisters to adjust surplus and

deficiency and exchange oil products witleach other.

! OPEC is the abbreviation of Organization of Petroleum Exporting Countries. OPEC is an intergovernmental organization of 12
oil-producing countries made up of Algeria, Angola, Ecuador, Iran, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi Arabia, the United
Arab Emirates, and Venezuela. According to its statues, one of the principal goals is to ensure the stabilization of prices in
international oil markets with a view to eliminating harmful and unnecessary fluctuations

2 seven Sistarrefer to the western oil companies dominating the global petroleum industry from thel@848s to the 1970s.

For detailed history of oil market developments at their earlier stages, please see Yergin (1991) and other publications.
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A structural transformation of the world petroleum industry began to occur in the early 1970s.
The main symbol of this transformation was the establishment ofthe Organization of
Petroleum-Exporting Countries (OPEC) and the decoupling of the upstream and downstream oil
industry. The upstream assets of iternational oil companies in OPEC countries were
nationalised and formed the basis on which the new national oil companies were created.
Although the market was still dominated by longterm contracts, spot trading increased
gradually and the spot market was no longer a residual market but became a marginal market
which reflected the production and refinery cost of crude oil. As the share of volumes traded
under long-term contracts diminished, their prices began to be established on the basis of spot
deals,which were illustrated by the significant increase of volumes traded on the spot market.
The spot market began to balance supply and demand and began to be used as a reference point

for price levels both for exporters and importers.

In the early 1980s, newpricing mechanisms, including discounting government selling price and
netback pricing, were introduced because the ollashioned pricing mechanism adopted by OPEC
in the 1970s could not withstand the formidable competitive pressures due to the combined
impact of significant growth from nonOPEC production and decreasing world oil demand. Key
benchmark grades, West Texas Intermediate (WTI), Brent and Dubai, emerged, and served as the
reference for crude of similar qualities and locations. Previously the role was played by Arabian
Light under OPEC’s official selling price systenThe main spot markets or trading centres for
crude oil are Rotterdam for Europe, Singapore for Asia and New York for the United States. Their
benchmarks are: Brent, Dubai and WTI. Accompanying the sharp fluctuations in spot oil prices
was the introduction of risk management techniques into oil operations, which became the
driving force for the standardized oil trade operations as one of the risknanagement
instruments operated at the existing commodities exchange and for the establishment of

specialized oil exchange.
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At the same time, futures markets have also developed in Western countritsThese arose from
a desire on the part of oil companies to reduce risk in light of high priceolatility. The New York
Mercantile Exchange (NYMEX) and the International Petroleum Exchange (IPE) are two major
financial markets for oil. In 1979 heating oil became the first new futures contract at the NYMEX,
and the International Petroleum ExchangelPE) in London followed in 1981. Gasoline (petrol)
futures trading started on the NYMEX in 1981. WTI trading started in 1983 on the NYMEX and

Brent in 1988 on the IPE.

Finally, the “market” was ushered into the central stage following the collapse of thePGC
administered pricing mechanism in 1986. From then on, financial specialists began itovolve in
the oil markets, introducing the techniques of financial markets and specialized oil derivatives.
By the end of the 1980s, the current complex contractual structure of the oil market was in place.
By that time, the complex structure of interlinked oil markets which consisted of spot, forwards,
futures, options and other derivatives markets declared the advent of the era of ‘paper’ oil

markets.

It is now the oil exchange and ovethe-counter where oil prices are determined mainly. It may be
argumentative that the general trend of the oil markets has been moving from trade in ‘physical’
oil to trade in ‘paper’ oil, and it is oil derivatives that now play a predominant role in establishing
oil prices. As oil derivatives have grown to be the dominant part of the oil pricing mechanisms,
the role of price discovery in the market has moved away from physical markets oil derivatives
markets and financial innovations have become the bridge interlinkg physical markes and
derivatives markets of crude oil. Fhancial institutions, for example investment banks, pension
funds, hedge funds, and sovereign investment funds, have been exerting influence in crude oil
markets as traditional suppliers and demaders (seeHaigh et al., 208; Lombardi and Robays,

2011). Especially in recent years, the sharp fluctuations in oil prices and the sheer increase in

3 Oil futures markets are not new. Price volatilitythe early days of the US oil industry resulted in the first oil futures contracts
in Pennsylvania in 1860s, which took the form of pipeline certificates.
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volatility have spurred the possibility that crude oil has acquired the characteristics of financial

assets such as stocks or bonds.

2.2.1Financialization of oil markets

The striking increase in crude oil prices from the beginning of 2002 has been beyond the
common expectation of academic community, and many arguments have been focused on the
so-called financialization of oil markets, which means the vastly expanded role of financial
motives, financial markets, financial factors and financial institutions in the operation of crude oil
markets.# The participation of financial institutions into crude oil makets suggests that the
fundamental analysis which only concentrates on physical supplgemand sides will present a
biased view if it is not totally wrong. The core of the pricing mechanisms has been shifted from
physical markets decided by the equilibriumof supply and demand to financial derivatives
markets involving more stakeholders rather beyond producers and consumers alone. Some argue
that the main reason for the rising of oil prices and the sheer volatility in the 21century lies in
the funds swaming into the oil futures markets from large banks, hedge funds and other

speculative capital in recent years.

Crude oil is not only the industrial blood and economic lifeline but also one kind of investment
product, similar to stocks and securitieslnvestors have been engaging in crude oil trading for the
purpose of portfolio diversification ever since it became clear that crude oil futures contracts
exhibited the same average returns as investments in equities, while over the business cycle their
returns were negatively correlated with those on equities and bonds (see Gorton and
Rouwenhorst, 2006). Crude oil market has been financialised and is now more like other
traditional financial markets, which is illustrated in two aspects: the scale of financial derivatives

has grown to surmount that of physical spot markets and financial participants have become

* Tang and Xiong (2011) suggest that the significant increase in oil prices since 2002 isltioé mesny financial institutions

flooding into commodities markets as a new asset class following the collapse of equity markets in 2000. The asynchronous
business cycle of equity and commodities markets suggests a negative correlation that is eféeqgborfdélio management

and investment diversification (see Erb and Harvey, 2006; Gorton and Rouwenhorst, 2006).
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more active than nonfinancial participants (Yin, 2008). Therefore, thedynamics of crude oil
prices have been characterized by high volatility, higintensity jumps, and strong upward drifts,
and have been driven by underlying supphdemand factors of crude oil markets and potential
impact of the participation of finandal investors into crude oil markets. The process of
financializaton of crude oil markets is likely to persist as long as commaodity investment remains
popular among financial investors as diversification incentives for portfolio management still
motivate them to invest incommodities, and thus causing commaodity prices to comove posiely

with other asset classes.

2.3 Underlying forces for oil price changes

Oil price changes have always been at the centre of academic research agenda not only because of
their effect on the risk management of oirelated businesses, but also due to tlefar-reaching
implications on economic growth and inflation, the price movements of other energy futures
contracts, and other financial assets.Due to the importance of oil, resources deficiency and
climate change, understanding the force behind oil price changes gets unprecedented attention
and is important in its own right. Particularly, since 2000, the international oil market has
undergone significant changes in two aspects. First, the globalization trend of the oil markets has
been strengthening. Second, the oil markets are becoming increasihg related to the
macroeconomic and financial markets. As a result of these significant changes, oil prices are no
longer fully subject to the impact of the market fundamentals measured by the supptemand
relationship, but show new characteristics. For example, many arguments have been focused on
the so-called financialization of energy market. Indeed, energy commodities have become a
recognized asset class within investment portfolios of financial institutions as a means to

diversify risks such as inflation, or equity market weakness.

In this context, the longstanding debate surrounding the underlying forcedor oil price changes

has been more intensified due to the dramatic fluctuations in oil prices in pent years. This issue
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has been much investigated in the literature (see Kaufmann et al., 2008; Kilian, 2009; Kaufmann,
2011), the general findings among which suggest that oil price changes areven by market

fundamentals as well aspeculative activities in oil derivatives markets.

2.3.1 Market fundamentals

Market fundamentals, i.e. supply and demandside factors, are the basis of analysing the
formation of the global oil market and its operating principles. In the long run, oil price is mainly
determined by demandsupply fundamentals, and all the other factors can have influence on oil
price by changing the demandsupply relationship or people’s expectation of the demandupply

relationship (see Chai et al., 2011).

On the supply side,crude oil markets all over the world have witnessed growing integration
within as well as across boundaries, spurred by deregulation, globalization and advances in
information technology. A considerable portion of the literature on crude oil markets focusesn
the degree to which they are integrated (see Adelman, 1984; Bentzen, 2007). However, the
supply-side of the dobal crude oil markets is yet imperfectly competitive, and many suggest that
crude oil prices are partially affected by the different behaviouof two supplier groups, i.e. OPEC
and non-OPEC nations. OPEC is the most important player in the oil market. Aiming to sustain
world demand for oil rather than replacing it with alternative energy sources, OPEC has to
balance market share and prbts. The oil cartel’s market power comes from three aspects. First,
it has thelargestsize of proven oil reserves (891 bhillion barrels) and exports (19.5 milliorbarrels

per day) — 78.3% and 48.7% respectively of the 2003 world totalsSecond, the Gulf countries
within the cartel have the lowest production costs: USD 4.00 per barrel for Saudi Arabia or USD
4.50 for Iran, as compared with USD 9.85 for the North Sea and USD 12.50 for Brazil (Energy
Intelligence, 2004). Third, most OPEC oil is produced by fully statavned companies (Algeria,
Iran, Kuwait, Qatar, Saudi Arabia and Venezuela) or majority statavned companies (Libya,

Nigeria and United Arab Emirates). Only in Indonesia is government participation in the oil
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sector very limited. The nonOPEC exporting countries, on the other hand, increased their
international oil market share following the 1973-74 oil crises at the expense of OPEC and the
resulting geographical dispersion of the oil fields served to smooth the supply process. However,
by contrast with the Middle Eastern countries, their oil production is characterized by
technological difficulties and high transportation costs for instance in North Sea and Alaska.
Kaufmann and Cleveland (2001) argue that ne@PEC nations genaily are viewed as price
takers and their output is negatively related to the cost of production and positively related to
international oil price. In particular, unlike OPEC nations, there is little evidence for strategic

considerations for nonrOPEC prodaers (Kaufmann et al., 2004).

Blaming OPEC nations for the episodes of crude oil upsurge is quite understandable because of
its central position in the global crude oil markets. In order to better understand the role played

by OPEC nations in the globalrede oil markets, many empirical analyses have devoted to
investigate OPEC’s behaviour. For example, Griffin (1985) tests OPEC’s behaviour across the four
alternative hypotheses including competitive, cartel, target revenues, and property rights models.
His findings suggest that the partial markesharing cartel model could be the most suitable one

to explain OPEC'’s behaviour. Jones (1990) suggests that most OPEC members continue to behave
like a “partial market sharing” while nonrOPEC nations behave moreompetitively. Smith (2005)
argues that there is a significant cooperative effort among OPEC nations to restrict output and
then raise prices, which indicates that OPEC is much more than a roooperative oligopoly, but
less than a frictionless cartel. Howeer, Kaufmann et al. (2008) find that OPEC does not fit neatly
into a single behavioural model Actually, neither statistical tests nor economic theory supports

modelling OPEC as a cartel or as a competitive model (see Alhajii and Huettner, 2000).

Unlike supply, demand for crude oil depends on the choices of many individual households and
firms, given the transportation, industrial and residential needs. Obvioushthis is directly linked
to the global economic activity.Kilian (2009) finds that demand-driven shocks caused by the

global economic activity result in a large, persistent and statistically significant increase in real
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price of crude oil, which has very different effects on the real price of crude oil from
supply-driven shocks. He et al. (2010) lao find that real futures prices of crude oil are
significantly influenced by fluctuations in the global economic activity through both longun

equilibrium conditions and short-run impacts. However, due to oil's importance for the economy
and national seurity, the demand side is also influenced by various private interest groups, for
example the domestic oil refiners.Price controls and government policies, such as fiscal
instruments, antitrust policies, public funds for alternative energy research, petieum

exploration activities and strategic oil reserves, are also key elements of the demand side.

Among the consuming countries, the United States is the dominant player, being the world’s
largest producer, consumer and importer of petroleum.In 2011 over 11 million bpd were
imported in the United States Canada, Mexico and South and Central America feed more than half
of the US oil needs, whereas imports from the Middle East and Africa account for more that¥d
and 15% of the total figure, respectivdy (see BP, 2011).Although worldwide demand still
originates chiefly from OECD countries, since the mid-1990s, emerging economies, especially
China and India, have seen their consumptions surgeAfter decades of selsufficiency on its oil
needs, Chinabecame a net importer of crude oil with accelerated volume since 1996, and almost
at the same time, India follows China’s step to importrude oil with increased volume. Some
prevailing viewpoints forecast that China and India will continue to increasingly import crude oil
and develop overseas resources for keeping their economy growing. This has become a “great
concern” for many countries, and the role that emerging markets play in the global oil markets

becomes the object of study for many academi@sThis rapid growth may seem the driving force

® OECD is the abbreviation of Organization for Economiop@ration and Development. OECD is an international economic
organization of 34 cauries founded in 1961 to stimulate economic progress and world trade. Most OECD members are
developed, higincome economies.

¢ : According to theU.S. Department of Energ@ECDronsumptionrepresented 53% of world consumption in 2011 (see EIA,
2011)

" This concern is directly declared by CNN (2004) that “Surging Chinese demand is underpinning the recent spike in the price of
oil, figures from the International Energy Agency (IEA) show. This ‘China factor’ has more bearing on oil prices than the ‘risk
factor’ coming from global tensions, some experts say”.
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behind the recent rise in the world’s energy demand and the surge in crude oil prices frond@

to mid-2008 (seeHamilton, 2009a; Li and Lin, 2011).

2.3.2 Speculative activities

One striking characteristic of the oil markets in the past decades is that large financial
institutions, hedge funds, and other investment funds have been investing billions of dollars in
the futures market to take advantage of oil price changes (Masters, 2008jamilton (2009a)
argues that speculators can affect the incentives faced by oil producers by purchasing large
amount of future contracts and pushing future pices to even higher levels than current prices.
The unusual upsurge in oil future prices will finally be transmitted into oil spot markets.
According to Hamilton (2009b), there is a case in which a futures bubble could lead to spot price
increases with no clear storage effects. This would be, if the spot price is completely price
inelastic in the short run. Then an increase in the futures price would increase the spot price with

the exact same amount.

Although speculators serve an important role regarding market efficiency, transparency and
enhancing liquidity, some side effects cause deviations from the equilibrium prices and increased
volatility, at least temporarily. There is strongevidence showing that increasing speculation has
been one of the important driving forces in the surge of oil prices since 2000. For example,
Chevillon and Rifflart (2009) find that speculative activity is a driving force to explain the surge
of oil prices since 2004. By investigating the information flows over the global crdoil spot and
futures markets, Kaufmann andJliman (2009) show that the upsurge of oil prices before 2008 is
caused by fundamentals and speculative activityogether. Moreover, by using a multivariate
modified Capital Asset Pricing Model approach, Cifatebnd Paladino (2010)find evidence that
speculative activity plays a significant role in the strong oil price changeis recent years.In

particular, Kaufmann (2011) argues that repeated and extended breattewns in the

8 Hamilton (2009a) that defines a speculator as a unit who does not produce or use the commodity, but risks his or her own
capital trading futures in that commaodity in hopes of making a profit on mtesnges.
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cointegrating relationship between spot and far month futures prices since 2004 is an indication

of the existence of speculation on crude oil markets.

To sum up oil price at any point in time should reflect the balance between demand and supply
fundamentals as well asthe other factors that have influence on oil price by changing the
demand-supply relationship or people’s expectation of the demandupply relationship.
Short-run price elasticity of demand for crude oil is very low as there are no substitutes to its use
that are readily available. The demand curve becomes elastic as quantity increases. The
long-term demand curve is more elastic thn the shortterm demand curve (see Fattouh, 2007).
An important characteristic of the oil supply curve is the existence of capacity constraints. The
curve is elastic below the capacity constraint but becomes drastically inelastic as supply quantity
approaches the constraint. It is almost vertical at the capacity limit. The shertin inelasticity and
long-run elasticity imply that supply shortages or severe positive demand shocks are translated
to large price movements, which in turn induce significant volatility and then have direct

implications for market participants who deal with trading and risk managements.

2.4 Multivariate GARCH models and applications in the oil markets

Understanding and measuring the temporal interdependence in the secoratder moments of
assets returns is one of the hottest topics in finance as risk management, asset pricing, asset
allocation, and the pricing of derivatives written on multiple assets all depend heavily on the
forecast of the comovement between financial assetslt is now widely accepted that financial
asset returns volatility, covariance and correlations are timevarying with persistent dynamics.
Recognizing thesdeatures through a multivariate modelling framework leads to more relevant

empirical models than working with separate univariate models (Bauwens et al., 2006).

Since the eminal paper of Engle (1982), many considerations have been extended to

multivariate GARCH (MGARCH) models to accommodate thermovements of financial returns
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MGARCH models were initially developed in the late 1980s and the first half of the E@Dafter a

period of tranquility in the second half of the 1990s, this area seems to be experiencing again a quick
expansion phaselhere are generally two directions for modeling the multivariate time series, i.e.
modeling varianceovariance matrix dictly and modeling the correlation between the time series
indirectly. Bollerslev, Engle, and Wooldridge (1988) proposed the first multivariate GARCH model for
the conditional varianceovariance matrix, namely the VEC model. This VEBRCH model is a
straghtforward generalization of the univariate GARCH model. The generality of the VEC model is an
advantage in the sense that the model is very flexible, but it also brings disadvastéigesvery

difficult to impose the positive definiteness of the variaogeariance matrixBollerslev, Engle, and
Wooldridge (1988) presented a simplified version of the VEC model, namely the Didge@ahodel.

This model reduced the number of parameters greatly and it is relatively easier to derive the conditions
to guaantee the positive definiteness of the variatweariance matrix. However, thésmplified VEC

model seems too restrictive since no interaction is allowed between the different conditional variances

and covariances.

A model that can be viewed as a resé&il version of the VEC model is the BdbagleKraft-Kroner
(BEKK) defined in Engle and Kroner (1995yhe BEKK model has the attractive property that
conditional varianc&ovariance matrix is positive definite by construction. The disadvantage of the
BEKK model is that it is computationally complicated and the estimated coefficients for the
variancecovatiance matrix is not easy to be interpreted on an individual basis (see Caporin and
McAleer, 2009).A further simplified version of the BEKK mod&hich has diagonal mates is the
DiagonatBEKK model. DiagonalBEKK model faces the same problem of the Dizg}VEC model

even if the number of parameters has been reduced significantly. The most restricted version of the
DiagonatBEKK model is the ScalaBEKK model. ScalaBEKK model is too restrictive as it imposes

the same dynamics to all the variances and covaria@eethe other hand, a more complicated version

of the BEKK model which accommodates the asymmetric effects is slgenietric version of the

BEKK model introduced by Grier, Olan, Nilss, and Kalvinder (2006émely the ABEKK modelThe
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ABEKK modd relaxes the assumption of symmetry, thereby allowing for different relative responses

to positive and negative shocks in the conditional vari@os@riance matrix.

The main problem of multivariate GARCH models in most specification is the very large number of
parameter. Those specifications which bypass this problem have to trade off the severe loss of
generality. A potential way to reduce the number of parameters in the model is to introdadedso
factors. The saalled factor models are motivated by economic theory. Engle, Ng, and Rothschild
(1990) introducd the first factor GARCH model. In this model it is assumed that the observations are
generated by underlying factors that are conditionally heteroskedastic and possess a-t§#&RCH
structure. The approach has the advantage that it can solve the problem of dimensionality by
modeling the factors which is much less than the number of assets in terms of number. However,

it has the undesirable property that the factors are generally correlated as it may turn out that
several of the factors capture similar characteristics of the dataln order to avoid this
disadvantage, several factors models with uncorrelated factors have been proposed in the
literature, for example the Orthogonal GARCH model of Akander (2001) and the Generalized
OrthogonatGARCH model of Van Der Weide (2002jurthermore, the Generalized Orthogonal
Factor-GARCH model proposed by Lanne and Saikkonen (2007) can be seen as combining the
advantages of both the factor models (having eeduced number of heteroskedastic factors) and

the orthogonal models (relative ease of estimation due to the orthogonality of factors). However,

one potential disadvantage of this approach is that it is difficult to interpret the parameters as the

BEKK malel.

Another direction for MGARCH models is to model the correlation indirectly between the time series
instead of modeling the variancevariance matrix directly. Correlation models are based on the
decomposition of the conditional variarcevariance matrixnto conditional standard deviations and
correlations. Bollerslev (1990) first proposed a class of constant conditional correlation (CCC) models
in which conditional correlation matrix iBme-invariant and thus the conditional covariances are

proportional to the product of the corresponding conditional standard deviationsorder to
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accommodate interdependencies of volatility across different assets and/or markets, Ling and McAleer
(2003) proposed a vector autoregressive moving average (VARMBARCH mocl. The
VARMA-GARCH model assumes that negative and positive shocks of equal magnitude have identical
impacts on the conditional variance. McAleer, Hoti and Chan (2009) extended the V/AFNREH

model to accommodate the asymmetric impacts of the uncoralisbocks on the conditional variance,

and proposed the VARMAGARCH model. Both VARMAGARCH and VARMAAGARCH

models assume constant conditional correlation matrix. Especially, theGARCH model of
Bollerslev (1990) could be included into the VARMPMRCH or VARMA-AGARCH model as
special case. The estimation of MGARCH models with constant correlations is computationally
attractive and the positive definiteness of the variaa@riance matrix is automatically guaranteed.
However, the assumption of congtaonditional correlations may be too restrictive and unrealistic in

many empirical applications.

The CCCGARCH model may be generalized by making the conditional correlation matrix
time-varying. There are many ways to interpret the tiragding conditionhcorrelation matrix. Tse

and Tsui (2002) imposed GARCH type of dynamics on the conditional correlations in their
VC-GARCH model in which the conditional correlations are functions of the conditional correlations
of the previous period and a set of estedatcorrelations. Engle (2002) proposed a Dynamic
Conditional Correlation (DCg GARCH whose dynamic conditional correlation matrix is similar to
that of the VEGARCH model.Both the VG and the DCEGGARCH model extend the CCGARCH

model, but do it with fewextra parameters. Howeverpropared to the CGGARCH models, the
advantage of numerically simple estimation is lost, as the correlation matrix has to be inverted for each
Pduring every iteration. Another disadvantage of the Bigf@ models is that it stricts all the

correlation processes to obey the same dynamic structure.

To avoid these limitations, several variants of the BEARCH model are proposed in the literature.
Billio and Caporin (2006) proposed a Quadratic Flexible DCC (GFPGARCH modelwhere the

conditional correlations follow a BEKK structure. However, the number of parameters governing the
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correlations in the GFDGGARCH model in its fully general form is unfeasible in large systems.
Cappiello, Engle, and Sheppard (2006) generalized@GGARCH model in a similar manger, but
also including asymmetric effects their Asymmetric Generalized DCC (ABCC) GARCH model

the AGDCC process allows for serigpecific news impact and smoothing parameters and permits
conditional asymmetries in conditional dynamics. The AGDCC specification is well suited to
examine correlation dynamics among different asset classes and investigate the presence of

asymmetric responses in conditional variances and correlations to negative returns.

2.4.1Evidencefrom the oil marketgor volatility spillovers

Volatility is important in the oil markets and is typically unobservable, and volatility spillovers appear
to be widespread in energy futures markets (see Lin and Tamvakis, 2001; Chang et al., 2010). The
spillovers effect holds even when markets it necessarily trade at thensatime. Substantial
research has been conducted to investigate volatility spillover effects in energy futures osankets
various multivariate conditional volatility models. Lin and Tamvakis (2001) examine the volatility
spillover effects between New York Mercantile Exchange (NYMEX) and International Petroleum
Exchange (IPE) crude oil contracts in both mwerlapping and simultaneous trading hours. Their
finding suggests #t substantial spillover effects exist when both markets are trading simultaneously.
Ewing et al. (2002) investigate the volatility transmission between the oil and natural gas markets using
the BEKK model of Engle and Kroner (1995). Their finding indisatet changes in volatility in one
market may have spillovers to the other market. Chang et al. (2009) examine the volatility spillovers
and dynamic conditional correlations for the spot, forward and futures returns on Brent, WTI and

Dubai crude oil markds using various multivariate conditional volatility models. Their finding
indicates that there are significant volatility spillovers and the constant conditional correlations

are not supported in the empirical analysis Furio and Chulia (2012) investigatethe volatility

linkage between the Spanish electricity, Brent crude oil and Zeebrugge (Belgium) natural gas
1-month-ahead forward prices through employing the asymmetric version of the BEKK model

proposed by Grier et al. (2004). Their finding suggests there are significant volatility spillovers and
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asymmetric effects between the Spanish electricity, Brent crude oil and Zeebrugge (Belgium)

natural gas markets.

Significant volatility spilloves are also found between oil and stock markets (see Agren, 2006;
Tansuchat et al., 20090r example, Malik and Hammoudeh (2007) examined the volatility and shock
transmission among U.S. equity, global crude oil market, and Gulf equity markets usingkte BE
model of Engle and Kroner (1995). Théinding shows thatGulf equity markets are sensitive to
volatility from the oil markets, while stock market volatility spills over into the oil markets only in
Saudi Arabia. Malik and Ewing (2009) investigate ity spillover between oil prices and five U.S.
equity sector indices using the BEKK model of Engle and Kroner (1995) and find evidence of
significant volatility transmissionArouri et al. (2011) utilize the VARGARCH model of Ling and
McAleer (2003) toexamine the extent of volatility transmission between oil and stock markets in
Europe and the United Statest the sectelevel. Their findings point to the existence of significant
volatility spillover between oil and sector stock returns.However, the spillover is usually

unidirectional from oil markets to stock markets in Europe, but bidirectional in the United States.

2.5 Conclusion

In this chapter we discussed the structure of the oil markets. We distinguished the oil pricing
mechanisms and the unddying forces for oil price changes surrounding the markets from the
basic fundamental forces (demandsupply) to the power of OPEC throughout time and the role of
speculative activities. Finally, we gave a brief review of MGARCH models and some of the
empirical evidence regarding the use of KBARCH models in the oil markets for detecting

volatility spillover effects.

Next, in Chapter 3, we will focus on analyzing the nature of volatility spillovers, asymmetric
effects and timevarying conditional correlations of spot and futures prices in petroleum markets

and then constructing optimal hedging strateges. We extend previous research by including the
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time-varying conditional correlations in the specification of the VARMAAGARCH model of
McAleer et 4. (2009) in what is termed the VARMAAGARCH model with dynamic conditional
correlation DCC structure. Our model specification is found superior in constructing optimal
hedging strategy in comparison to the hedging strategies derived from other alternative

multivariate GARCH models through applying the hedging effectiveness index.
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Chapter 3

Volatility Spillovers, Asymmetries and Hedging Strateg iesin

Petroleum Markets

3.1 Introduction

The past few years have witnessed a newed interest in modeling petroleumprice volatility and
then constructing optimal hedging strateges.! A number of factors may have contributed to that
interest. First, petroleum price volatility has significant effect on the risk management of
oil-related businessand far-reaching implications on the economic variables (Ferderer, 1996;
Lardic and Mignon, 2@6)2 and other financial assets (Sadorsky, 2003; Aloui and Jammazi,
2009)3. Second, over the last decade, tHmancialization of petroleum markets has allowed a
wide range of participants to hedge petroleunyprice risk. Third, a recent finding of JalaiNaini
and Manesh (2006) indicates thatpetroleum price is typically characterized by high volatility,
which entails the necessity for market participants to actively search foan effective way to

hedgepetroleum price risk.

Among other strategies, an investor facing volatile price movements in spot markets could
reduce uncertainty by simultaneously holding an opposite futures position on underlying assets.
It has been argued that the futures/spot hedging strategy can substantially reduce petroleum

price volatility without significantly reducing returns, and with the added benefit of greater

! See for instance Cotter and Ha(®010, 2012) and Chang et al. (2011).

2 Further discussion about the impact of crude oil price volatility on the macroeconomy could be found in Hamilton (2003),
Chang and Wong (2003), Doroodian and Boyd (2003), and Chen and Chen (2007).

3 Further discussh about the impact of crude oil price volatility on the financial markets could be found in Sadorsky (1999,
2000), Ewing and Thompson (2007), and Driesprong et al. (2008).

* A futures contract is an agreement between underlying parties to buy and siettm gmount of a commodity at an agreed
upon certain date in the future, at an agreed upon price, and at a given location. Furthermore, a futures contract i$ the too
primarily designed to minimize one’s exposure to unwanted risk. Conceptually, hedginmhhholding futures contract is a
process uses to restrain or reduce the risk of unfavourable price movements because futures prices and cash for the same
commodity tend to move together. Therefore, changes in the value of a cash position are mitigateanigges in the value of

an opposite futures position.
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predictability and certainty.5 Qil futures contracts have proven to be very popular among the
participants in the oil industry and the volume of these derivatives has grown significantly since
2000. In addition, futures contracts are favoured as a hedging tool because of their liquidity,

speed and lower transaction costs (Chang, et al., 2011).

In order to successfully reduce price risk of futures trading, it is important to employ the hedging
strategy which is capable of capturing the dynamic interaction between futures and its
underlying spot prices. Theoretically, the “optimal” hedge ratio (OHR) is a proper way to capture
the dynamics between futures and its underlying spot prices. Under the measmriance
framework of Markowitz (1952) and the martingale assumption, the “optimal” hedge ratio (OHR)
can be defined as a ratio of covariance between spot and futures returns to the variance of
futures returns. However, as financial assets return volatility, covariances and correlations
usually display time-varying characteristics with persistent dynamics, estimating a static hedge
ratio may not be appropiiate (see Baillie and Myers, 1991). Therefore, much literature has
focused on identifying the optimal hedge ratio through employing various econometric models
with time -varying characteristics® Among other models, the multivariate GARCH models have
been poven to be successful in capturing the timevarying variance-covariance matrix of

financial variables and appear to be ideal for estimating timgarying OHRS’

In the literature, research has been conducted on estimating tirmearying hedge ratios of crude
oil spot and futures returns using multivariate GARCH modefs.However, few studies have been
conductedto investigate the same issue for oil products markets. This chapter tends to fill this
gap by modeling timevarying hedge ratios among crude oil (WT) gasoline and heating oil
futures contracts. Furthermore, volatility spillovers, asymmetric effects and timearying

conditional correlations between spot and futures markets for crude oil, gasoline and heating oil

® See for instance Daniel (2001) and Chang et al. (2011).

® See for instance Baillie and Myers (1991), Myers (1991) and Bystrom (2003).

" For instance an earlier study by Baillie and Myers (1991) documents superior hedging effectiveness in the US agricultural
commodities market through employing a multivariate GARCH model.

8 See section 3.2 for detailed discussion.
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are likely to be important for construding optimal hedge ratios. Therefore, this chapter has three
main objectives as follows. Firstly, we want to investigate the importece of volatility spillovers,
asymmetric effects of negative and positive shocks of equal magnitude on the conditional
variance for modeling petroleum price volatility in the returns of spot and futures prices
Secondly, we apply the estimated results to compute the optimal hedge ratios and optimal
portfolio weights for optimal portfolio design and hedging strategies, which provides important
policy implications for risk management in petroleum markets. Finally, the performance of the
OHRs from the estimatednodels iscompared through applying the hedging effectiveness index.
Further analysis with regard to the tail risk in terms of semivariance reduction and

Value-at-Risk is also presented.

In doing so, the contributions of this chapter compare with the existing literature in at least two
points. First, we employ the VARMAGARCH model of McAleer et al. (20) to analyse in depth
the nature of volatility spillovers and asymmetric effects of spot andutures prices in gasoline
and heating oil markets, which has not been done previouslySecond, we extend previous
research by including the timevarying conditional correlations in the specification of the
VARMAAGARCH model of McAleer et al. (2009) in what is termed the VARMSARCH model
with dynamic conditional correlations (DCC) structuwe. A principal feature of this specification is
that the assumption of constant conditional correlations may be too restrictive given changing
economic conditions, thereby entailing the need to incorporate time&arying correlations (see
Lanza et al., 2008 To the best of our knowledge, this is the first time the VARMAGARCH model
with DCC structure is applied in petroleum market$. Implementing such model allows us to
draw some new interesting insights regarding the effects of volatility spillovers, asymmetric

effects and timevarying conditional correlations for petroleum markets hedging strateggs.

° Sadorsky (2012) applies the approach to investigate the correlations and wokgilibvers between oil prices and the stock
prices of clean energy and technology companies.
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The plan of the chapter is as follows. Section 3.2 provides a brief literature review. Section 3.3
discusses the VARMAGARCH model with DCC structure to be estimated, and the derivation of
the optimal portfolio weights, optimal hedge ratios and hedging effectiveness index. Section 3.4
explains the data, descriptive statistics, unit root test and cointegration test statistics. Section 3.5
describes the empirical results and presents the economic implications for optimal hedge ratios

and optimal portfolio weights. Section3.6 provides someconcluding remarks.

3.2 Literature review

In the literature, substantial research has been undertaken on analyzing the volatilityas well as
the correlations in the shocks to wlatility, in petroleum spot, forward and futures markets. The
dynamic conditional correlations are crucial for deciding whether or not to hedge against
unforeseen circumstances, as well as for pricing options and other derivatives. Actually, there can
be substantial differences among the estimated constant and dynamic conditional correlations.
For example, Maera et al. (2006) estimate the volatility and dynamic conditional correlations in
the returns on Tapis oil spot and onemonth forward prices using various multivariate
conditional volatility models. Their results suggest that there are significant interdependences in
the conditional volatilities between the spot and forward markets and the significance of
time-varying conditional correlations makes it clear that the assumption of constant conditional
correlation is not supported empirically.Lanza et al. (2006) investigatehe dynamic conditional
correlations between WTI crude oil forward and futures markets by employing the constant
conditional correlation model of Bollerslev (1990) and the dynamic conditional correlation
model of Engle (2002) Their results suggest that the dynamic correlations fter a more
comprehensive explanation ofwhether the shocks to the volatilities in theforward and futures
returns are substitutes or complements.Chang et al. (2009 examinethe volatility spillovers and
dynamic conditional correlations for the spot, forward and futures returns on Brent, WTI and

Dubai crude oil markets using various multivariate conditional volatility models. Their fidings
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indicate that there are significant volatility spillovers and the constant conditional correlations

are not supported in the empirical analysis.

With regard to the estimated time-varying hedge ratio using multivariate conditional volatility
models, Haigh and Holt (2002) examine the hedgg effectiveness of using crude oil, gasoline and
heating oil futures contracts to reduce price uncertainty for energy traderdy employing an
innovative multivariate GARCH model allowing for timevarying variances/covariances and
volatility spillovers in the volatility equations. The model performs relatively well and provides
insightful information on risk management in the oil industry. Jdali-Naini and Manesh (2006)
estimate the hedge ratios for WTI crude oil spot and futures contracts with different maturigs

by employing the BEKK model of Engle and Kroner (1995). Their results suggest that the optimal
hedge ratios are timevarying and futures contract with longer maturity has higher perceived
risk, higher OHR mean and standard deviations. Chang et al. (2010) estimate the OHR and
optimal portfolio weights of the crude oil portfolio using only the VARMAGARCH modebf Ling
and McAleer (20@) without comparing their results in terms of risk reduction such that their
policy implications for risk management in crude oil markets may be misleading. Recently, Chang
et al. (2011) estimate the OHR and optimal portfolio weights of the crude oil portfolio using a
wide range of multivariate conditional volatility models and compare their results in terms of
risk reduction or hedge strategies. However, they did not consider the asymmetric effect and
time-varying conditional correlations within the same multivariate conditional volatility mode |

specification.

3.3 Econometric model s

3.3.1Multivariate GARCH models
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The econometric specification used in this chapter has two components. A vector autoregression
(VAR) with two lags is used to model the returng® This allows for autocorrelations and
cross-autocorrelations in the returns. The multivariate GARCH modelsare used to modelthe

time-varying variances andcovariances.

In order to capture interdependencies of volatility across different marketsand/or assets, Ling
and McAleer (2003)! assumed symmetry in the effects of positive and negative shocks of equal

magnitude on the conditional volatility, which is given by

o= "Gd (9 + % (3.1)
0()(;cFa=2()Y (3.2)
%= &R (3.3)

*o= 9+ | Vot | $p* cop (3.4)
@ £@3

where Eq. 8.1) denotes the decomposition of ;. into its predictable (conditional mean) and
random components, (5 is the past information available at time R &= @E(:q:;ﬁ),
B= (Rg.s 39 fiis a sequence of independently and identically distributed (i.i.d.) random
vectors, 9, #;and $zare | Ul matrices, with typical elements gvand Ukepresenting
the ARCH and GARCH effecgspectively, *¢= (..., D" ¥ (%,... ¥9" 0(.)= 4 F
05. F®.F05.%and 2(.)= 4 F25. F®. F24.2 are polynomials in ., the lag operator.
Although Bollerslev (1986) argues that )# 4 %(*,1) captures infinite ARCH process, on a
practical level, a multivariate GARCH model with a greater number of lags can be problematic.

Spillover effects, or the dependence of conditional variances across different markets/assets, are

0 As is often the case in applied research, different criterion functions select different lag lengths for the VAR models.
Preliminary regression analysis showeaty little differences between a VAR with two lags compared to a VAR with one or
three lags. Consequently, in the interest of parsimony and accuracy, a VAR with two lags is chosen.

1 Recent examples of the VARMBARCH approach include Change et al. (2048mmoudeh et al. (2009) and Hammoudeh

et al. (2010).
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given in the conditional volatility for each market/asset in Eq. 8.4) as it allows large shocks to

one variable to affect the variances of the other variables.

The abovementioned model assumes that positive and negative shocks of equal magnitude have
identical impacts on the conditional variance. However, this may not be the case in some
empirical analysis. Therefore, McAleer et al. (2009) extended th# ARMAGARGE model to
accommodate the asymmetric impacts of the unconditional shocks on the conditional variance,

and proposed the VARMAAGARCH specification of the conditional variance as follows:

a e a
*Q:: 9§+ i #U%')&i' i &*G?Y‘F i W%ou%o& (35)
Uas Y@ R@d
where 9% are | Ul matrices for E 1,...,N with typical element Uy, and

t= @EE=E...., %), is an indicator function, given as:

0, %O

'( G;'J)g: \1, YU(;QO (36)

If 1 =1, Eqg. 8.5) reduces to the asymmetric GARCH (or GJR) model of Glosten et al. (1992).
Meanwhile, the VARMAAGARCH model reduces to the VARMBARCH model when%= 0 for

all EIf %= 0 and #gand $; are diagonal matrices for all Eand Fthen the VARMAAGARCH
model reduces to the constant conditional correlation (CCC) multivariate GARCH model of
Bollerslev (1990). For further details about the necessary and sufficient conditions for
stationarity and ergodicity of the VARMAAGARCH model, please see McAleer et al. (2008he
parameters of Eq. (31) to Eqg. 8.5) are obtained by maximum likelihood estimation (MLE) using
a joint normalized distribution. However, it is well known that the normality of the innovations is
always rejected in most applications dealing with daily data in commodity markets. In particular,
the kurtosis of most commodities prices returns is larger than three, which means that they have
too many extreme values to be normally disibuted and could be considered as conditional

leptokurtosis. Harvey et al. (1992) and Fiorentini et al. (2003) indicate that an alternative to the
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multivariate Gaussian distribution is the Student’s Pdistribution, which has an extra scalar
parameter, the degrees of freedom parameter, denoteda hereafter. Therefore, when R does
not follow a joint multivariate normalized distribution, the appropriate estimator is

QuastMaximum Likelihood Estimation (QMLE)!2

With regard to the conditional correlation, we can assume it to followthe Bollerslev (1990)

model, in which the conditional volatility matrix is defined as:

FeT & & (3.7)
where &= @ E(:Iis,...., Dz 6) | is the number of returns, and P=1,...,J, and =
E(DQOF,,) = E(DO), where = {Qhfor EF 1,...1,is the constant conditional correlation

matrix of the unconditional shocks, Dis equivalent to the constant conditional covariance
matrix of the conditional shocks, Y, from Eq. 8.1), % ¥= &DO&, and E( L VYF 0 = *.=
& &, where *.is the conditional covariance matrix. Tie conditional covariance matrix is

positive definite if and only if all the conditional variances are positive and is positive definite.

As the assumption that the conditional correlations across different markets are constant may
seem unrealistic in many empirical analyses (see Lanza et al., 2006; Manera et al., 2006), it will be
appropriate to use the dynamic coditional correlation (DCC) structure proposed by Engle (2002)

to capture the time-dependent conditional correlation matrix , which is defined as:

5 5
= {@E(89"43{ @E=3g "8 (3.8)
where 3.= (Mg isa | Ul symmetric positive definite matrix given by:

3;=[1 FaFad3+ &RosRhs+ 33c0s (3.9)

where & is a positive and 3 a nonnegative scalar parameter to capture the effects of previous

shocks and previous dynamic conditional correlations on the current dynamic conditional

12 please refer to McAleer et al. (2009) for detailed log likelihood function. They state that Binsenot necessarily assumed
to be normal, the estimation of the log likelihood function is thelICGE.
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correlation respectively. Their sum is less than unity to ensure the positive definite of the
variance-covariance matrix .. 3 is the 2x2 unconditional correlation matrix of the
standardized residuals R.,s Engle (2002) presents the conditional correlation as a weighted
sum of past correlations. For the DCC structure, the null hypothesis a= a;= 0 is tested to
determine whether imposing constant correlations is relevantWhen a= 3= 0, 3;in Eq. 8.9)
is equivalent to the CCC structureThe disadvantage of the DCC specification is thads and &
are scalars, therefore, the conditional correitions feature the same dynamics. This is a necessary
condition to ensure  is positive definite for all t. The DCC structure may be estimated simply

using a two-step method based on the likelihood function (see Caporin and McAleer, 2009).

An alternative dynamic conditional correlation model featuring thevolatility transmission effects
is the BEKK model of Engle and Kroner (1995), which has the attractive property that the
conditional covariance matrices are positive definite. However, McAleer et al. (@9) argue that
the BEKK model suffers from the sealled “curse of dimensionality. The BEKK model for

multivariate GARCH (1, 1) is given as:
*o= U0+ #Ys s $* 58T (3.10)

where the individual element for the matrices %# =J @ are given as:
n -
% 25, h#= B2° °Cs= 5
¢ 65 766
for a two-market/asset portfolio with Afg Al # @ #py+ Ajg Abad $o+8 $p), where &
denotes the Kronecker product of two matrices, are less than one in the modulus for covariance
stationary (Silvennoinen and Terasvirta, 2008). Matrix # measures the extent to which
conditional variances are correlated with past squared unexpected returnand consequently the
effects of shocks on volatility. At the same time, matrix B depicts the extent to which current level
of conditional variancecovariance matrix is related to past conditional varianceovariance

matrices. The disadvantage of the BEKK model is that it is computationally complicated and the
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estimated coefficients for the variancecovariance matrix cannot be interpreted on an individual

basis (see Caporin and McAleer, 2009).
3.3.2 Optimal hedge ratios and optimal portfolio weights

The objective of market participants in futures markets is to minimie risk of their portfolio
without reducing their expected returns. Consider an investor in petroleunmarkets intending to
protect their exposure to petroleum price fluctuations, the return on the investor’'s portfolio of

spot and futures positions can be denoted as:
4ac= 4o F U4 (3.11)

where 44 is the return on holding the portfolio between PF1 and P 4; . and 4, are the
returns on holding spot and futures positions between PF1 and P and Q is the hedge ratio,
which is the number of futures contracts that the hedger should sell for each unit of spot

commodity on which price risk is borne13

Johnson (1960}4 explains that the variance of the returns of the hedged portfolio, conditional on

the information set available at time PF1, is described as:
8 = MAQBQ'?SO: 8 = mi,QBQ?SOFZ q% KkRLQ 4&(;"3(;?50+ @8 = MLQBQ?SO (312)

where 8 =N} B850 8=K, B,s0and % KR , 4, .B,50are the conditional variance
and covariance of the spot and futures returns, respectively. Therefore, the optimal hedge ratio
(OHR) is defined as the value on which minimizes the conditional variance (the proxy of risk)
of the hedged portfolio returns. Baillie and Myers (1991) derive the OHR from Eq3.02) after
taking the partial derivative of Eqg. (312) with respect to Q, setting it equal to zero and solving

for (as:

'3 |n this chapter weassume that a hedger in petroleum markets, suctpetsoleum producerr consumersis always short

on the futures contractsSimilardiscussion could be attained for someone who is short on the physical and has to buy it at
some future time.

* Please also see Stein (1961) and Ederington (1979).
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l,:ér3 - %KHR]YQ 4CQBQ?50
6?5 8:m&(;‘|3g?50

(3.13)

in which the returns are defined as the logarithmic differences of spot and futures prices.

Based on the VARMAGARCH model described previously, the OHR could be described as:

A 3cos= Bec (3.14)
D&.G

where D, is the conditional covariance between spot and futures returns, andD, . is the
conditional variance of futures returns.This equation is consistent with the functiongiven by
Kroner and Sultan (1993).In order to minimize risk, a long position of one dollar taken in one
petroleum spot asset should be hedged by a short position dﬂ;f’in its corresponding futures

asset at time P(see Hammoudeh et al., 2009).

Alternatively, estimating the right time-varying variance-covariance matrix is essential for the
optimal portfolio design. Following Kroner and Ng (1998)’s instruction, we assume here that the
expected returns are zero, making the problem equivalent to estimatinthe risk-minimizing
portfolio weights. Then we can define

S, .= D¢FD.¢
“¢ D¢F2D0,.+ D

(3.15)
Under the assumption of a meavariance utility function, the optimal portfolio weight of
petroleum spot/futures holding is given by:
0, E E] ac< 0
Sic= PSiso EB< S, <1 (3.16)

1, EB,>0

where S, .and 1 F Sj, . are the optimal weight of the spot and futures in a one dollar

portfolio of petroleum commodity spot/futures at time P
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Furthermore, it would be interesting to look into hedging effectiveness (HE) by actually running
the portfolio simulations with the optimal portfolio designs. The effectiveness of the portfolio
diversification is measured by comparing the realized risk and return characteristics of the
considered pottfolio. Ku et al. (2007) propose that the effectiveness of hedging across each

considered portfolio can be evaluated by examining the realized hedging errors, which is given
by:

— 8:“@XU®E SZ%XUQX
8=Nw~ugx

(3.17)

where the variance of the hedged portfolio is obtained from the variance of the rate of
return, 44, and the variance of the unhedged portfolio is the variance of spot returns (see,
Arouri et al., 2011). A higher HE ratio suggests superior hedging effectiveness in terms of the
portfolio’s variance reduction, which thus implies that the associated investment method can be

deemed a better hedging strategy.

3.4 Data

The data set for this chafer comprises daily synchronousclosing prices of spot and thenearby
futures contract (that is, the contract for which the maturity is closest to the current datejor
three petroleum commodities: NYMEX WTI crude oil, gasoline, and heating oil from October 7,
2005 to October 23, 201225 All daily closing prices of 1768 observations are obtained from the
Energy Information Agency of US government websitéé The returns of petroleum commodity E
attime Pin a continuous compound basis are calculated ady. = log( 23/ 25, where 2 and

2y»5 are the closing prices of petroleuntommodities Efor days Pand PF1, respectively.

* The reason for us to choose this particular starting date is thatfutures contact with regard to gasoline has changed
specification in late 2009n order to keep datasetsonsistency across three petroleum commodities, we have chosen this
particulardate.

% The abbreviation for the spot prices of WTI crude oil, gasoline and heating oil are WTI_S, GASO_S and HEAT_S, respectively.
The abbreviation for the futures prices of WTI crude oil, gasoline and heating oil are WTI_F, GASO_F and HEAT_F, respectively.
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The criteria for selecting the data seffor this analysis include: (1) the petroleumcommodities
must be actively traded; (2) F.O.B. price is preferable. F.O.B. price (Free on board, which is the
price charged at the exporting country’s port of loading) for oil products will eliminate the impatc

of transportation and insurance cost in comparison with C.I.F. price (Cost, Insurance and Freight,
which is the price charged at the importing country’s port of discharging).

Table 3.1
Descriptive statistics.

Returns Mean (%) Std. Dev. (%) Skew. Kurt Max Min JB 3(10) 3%10)

WTI_S 0.019 2.533 0.105 7.877 0.164 -0.128 1754.7>>> 35.387>>> 1065.3>>>
WTI_F 0.019 2.525 0.130 7.942 0.164 -0.131 180337 25.051>>> 1121.9>>>
GASGCS 0.018 3.090 0.111 7.255 0.222 -0.187 1336.37>> 13.798 349.02>>>
GASCOF 0.023 2.544 -0.162 6.357 0.153 -0.135 8375>>> 19437>> 372.74>>>
HEAT.S 0.026 2.141 -0.094 4.490 0.106 -0.099 166.2>>> 3.179 299.05>>>
HEATF 0.025 2.122 -0.125 4.852 0.088 -0.102 257.2>>> 4.396 449.16>>>

Notes: This table reports the basic statistics of the return series of WTI crude oil, gasoline and heating oil, including m@dean), standard deviation
(Std. Dev), skewness (Skew.), kurtosis (Kurt.), minimum (Min), and maximum (Max). JB refers to the @iopl statistic of the JarqueBera (1980) test

for normality based on skewness and excess kurtosis. Q(10) representset Ljung-Box (1978) tests for autocorrelations of order 10 applied to
standardized residuals. 3%10) representsthe Engle’s (1982) ARCH test, carried out as the LjurBox (1978) Q statistics on the squared series:*

and ++indicate the rejection of the null hypothesis of associated statistical tests at the 18hd 5%levels, respectively.

Table 3.1 reports thedescriptive statistics of the return series. The means of the six return series
are quite small in comparison to the standard deviations, but the corresponding volatility of
returns measured by standard deviation is much higherBoth skewnessand kurtosis statistics,
accompanied with extreme value statistics (Minimum and Maximum), indicate essentially that
pre-eminence of large jumps in the datasets leads up to the rejection of the normality
assumptions for the return series, which is also cditmed by the &Arque-Bera (1980) test. The
Ljung and Box (1978) Q statistic on the first ten lags of the sample autocorrelation function is
significant only in the WTI crude oil market at the 1% significance level. Engle’s (1982) ARCH test,
carried out as the LjungBox Q statistic on the squared series, indicates the existence of

heteroscedasticity for all six return series.

Table 3.2 reports the results of unit roots tests for the price and returns series of petroleum

markets based on Augmented Dicke¥ruller (1979) (ADF) and Phillips and Perron (1988)(PP)
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unit root tests. Under the hypothesis of both intercept and trend in test equations, both ADF and
PP test statistics fail to reject the null hypothesis of a unit root for all price series. For each of the
return series, the results of a stationary process can be obtained from unit root tests. Thus, we
can say that the petroleum price process follows a unit root, whereas the return process is
stationary. The market efficiency hypothesis requires that the auwent futures prices and the
future spot price are cointegrated, meaning that futures prices are unbiased predictors of spot
prices at maturity (see Moosa, 1996). Consequently, the agent can buy or sell a contract in the
futures market for a commodity and undertakes to receive or deliver the commodity at a certain
time in the future, based on a price determined today (Chang et al., 2011).

Table 3.2
Unit root tests.

Panel A: price series

Prices ADF test PP test

None Cons. Cons. & trend None Cons. Cons. & trend
WTI_S -0.2103 -2.1099 -2.2077 -0.1728 -2.0452 -2.1366
WTI_F -0.2041 -2.1025 -2.1979 -0.1673 -2.0581 -2.0985
GASGCS -0.2822 -2.3689 -2.6822 -0.3357 -2.5027 -2.8346
GASOF -0.0702 -2.0175 -2.2925 -0.1051 -1.9998 -2.2166
HEATS 0.1644 -1.4240 -1.8661 0.1817 -1.4113 -1.8556
HEATF 0.1541 -1.4347 -1.8811 0.1686 -1.4179 -1.8653
Panel B: return series
Returns ADF test PP test

None Cons. Cons. & trend None Cons. Cons. & trend
WTI_S F19.418>>> F19.416>>> F19.411>>> F42.396°>> F42.388>>~ F42377>>>
WTI_F F24212>>> F24.207>>> F24.201>>> F44.067>>> F44.058>>> F44.046>>>
GASQOS F43.057>>> F43.047>>> F43.035>>> F43.0817>~ F43.069”>~ F43.057>>>
GASOF F41.685~>~ F41.677>>> F41.665>>~ F41.686~>~ F41.677>>> F41.665>>~
HEATS F43.536°>> F43.5307>~ F43.521>>> F43.532>>> F43.526>>> F43517>>>
HEATF F42.812>>> F42.806>>> F2797>>> F42.818>>> F42.812>>> F42.803>>>

Notes: ADF is the Augmented Dicke¥uller (1979) unit root test statistic. PP is the PhillipsPerron (1988) unit root test statistic. The null
hypothesis in the ADF and PP tests is that the underlying series has a unit root. +++ indicates the rejection of the nulbthgsis at the
significance levels of 1%Numbers of augmenting lags are chosen using the Hann@uinn Criterion. Significance levels probabilities from
MacKinnon (1996) use the number of observations. Asymptotic values have a higher significance level.
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The Johanson (1995) cointegratiortest between spot and futures prices is reported in Table 3.3
through employing the trace ( & 36)&nd maximal ( &4 eigenvalue test statistics. Both tests
suggest that the null hypothesis of no cointegrating vector,G= 0, can be rejected at the
significance level of 1%, while the alternative hypothesis of at least one cointegrating vector,
G= 1, can not be rejected at the significance level of 10% at least. Therefore, we can draw the

conclusion that spot and futures price are cointegrated with one cointegrating vector.

Table 3.3
Cointegration test using the Johansen approach.

Market Lag number %000 Aoe

G0 GQ1 G0 GQ1
WTI 2 381.3>>> 4.125 377.2>>> 4.126
GASO 2 64.608>>> 4.431 60.177>>> 4.431
HEAT 2 1015>>> 3.585 979°>>> 3.586

Notes:+++ indicates the rejection of the null hypothesis at the significance levels of 1%ignificance levels probabilities from MacKinnon
(1996) use the number of observations. Asymptotic values have a highsignificance level.

Fig.3.1 displays the evolution of the synchronous petroleum commodities priceall prices move

in the same pattern, suggesting they are contemporaneously correlatedhe behaviour of
petroleum commodities prices shows distinctly three main patterns: a modest stable trend from
October 2005 to February 2007, followed bya strong upward deterministic trend and
persistence over the period from March 2007 to July 2008, with prices rising progressively to
cross the peak point in July 208, showing no sign for stability around a mean. However,
following the impact of financial crisis of 2008, the persistent upward trendis dramatically
reversed within a very short period from August 2008 to December 2008. Subsequently, the
upward trend comes back and becomes predictable. Fi®.2 shows the plot of petroleum
commodities returns, which indicates that the periods of high volatilities are followed by the

periods of relative tranquillity. Fig. 3.3 presents the dynamics of volatilities of petrelum
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commodities, whereas volatilities are proxied bythe squared dailyreturns.1” These plots also

confirm the existence of volatility clustering.

Table 3.4

Engle and Ng (1993) tests for sign and size bias in variance.

Variable Sign Negative size Positive size Joint
WTI_S 2375 6.801>>> 9.119>>> 133.95>>>
WTI_F 2262>> 7.056>>> 6.929>>> 111.16>>>
GASO_S 0.315 5.469>>> 3.941>>> 46.28>>>
GASO_F 1.935> 43177 6.883>>> 66.79”>>
HEAT_S 0.073 5.096>>> 2.857>>> 37.76>>>
HEAT_F 0.049 46797 1577 30.13>>>

Notes:*+ ++and *indicate the rejection of the null hypothesis of the Engle and Ng (1993) test the 1%,5% and 10%levels, respectively.

Finally, as we are interested in the asymmetry of the volatility response to news, in Table 3.4, we

present Engle and Ng (1993) test statistics for “sign bias”, “negative size bias”, “positive size bias
and their “Joint effect”. As can be seen from Table 3.4, the conditional volatilities of petroleum
commodities prices are sensitive to the sign and size of the innovation. In particular, the joint test

for both sign and size bias is significant at 1%ignificance level.

' Kang et al. (2009) take the same approach to assess daily actual volatility (variance). Another way to measure the daily
volatility is to calculate the square of the estimated residuals of the returns series from an ARMA (1, 1) process (s&teaChang
2011). The plotted patterns are similar no matter which approach has been employed, which suggests the existence of volatility
clustering.
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Fig. 3.1 Petroleum commodities spot and futures prices.
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Fig. 3.2 Logarithm of daily petroleum commodities spot and futures returns.
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3.5 Empirical results

In this section, we will first discuss our findings related to volatility transmission between
petroleum commodities spot and futures markets within the empirical framework of the
VARMAAGARCH modedith DCC structuret8. We will then use the estimation results to compute
the optimal weights as well as the optimal hedge ratios and to discuss the optimal hedging

strategies.

Table 3.5 reports the estimates of the conditional mean and variance for VAR {RARCH (1, 1)
models with DCC structurel® The results with regard to the conditional mean equation indicate
that returns for all petroleum spot and futures prices are interdependent but these
interdependencies are not the same across the petroleum markets order to investigate the
information flow between petroleum spot and futures returns, we also examine the daily
Granger-causality relationship in returns. Granger causality test (Granger, 1969) is designed to
detect causal direction between two time series. More precisely, Granger causality test detects a
correlation between the current value of one variable and the past values of another valole.
Based on Granger’s definition of causality, Sims (1980) provided a variaftonsider a bivariate

VAR model with two time seriesfor up to five lags©:

9 9

b= =+ i N+ | LN o+ Y 3.18

NJ = Y@E%Yl}j?Y - SYN’?Y % ( 3
e 9 - 9 1 s

= =+ 0 Myt | %yt ¥ 3.18

N= = - sy v - evl},‘?y g ( J

where M, and N are the log returns on petroleum markets spot and futures prices,Y, is an

error term, b and c are parameters for estimationThe VAR model is estimated usg ordinary

'8 The other two models, i.e. the VARMYGARCH model with CCC structure and the BEKK model, are also estimated, but the
results are not shown here as they are used especially to compare the results of hedging effectiBettesaodels are
estimated under the distributional assumption of a joint normalized distribution. The computations presented in this study
were conductedby means of RATS and R programs.

! Note that we also estimated the models under the distributional assumption of a joint normalized distribution. Model
parameters were found to be robust irrespective of the distribution chosen and results were similar to those reported in Table
3.5.

% We use five lags to represent a typical trading week. The results are robust to differing numbers of lags.
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least squares with heteroskedasticityconsistent standard errors.To test whether the Granger

causality runs from spot to futures market or from futures to spot market, the null hypothesis is:
*45 Zy=J@vy= 0 BKNHH 1,...,5
“46 Ay 2y =J @ %9= 0

The first null hypothesis tests that all of the crossnarket coefficients are jointly equal to zero.
The second tests that the sum of all the coefficients is equ zero. Hereafter, the first and
second tests are defined as the joint and sum coefficient tests, respectivelfe results for the
Grangercausality tests are reported in Table 3.6. For the WTI crude oil market, there is
significant bi-directional lead-lag relationship between spot and futures markets, since the joint
tests are significant at the 1% level. The results for the heating oil markets are also significant.
Regardingthe gasoline market, the results demonstrate that neither gasoline spot market returns
lead futures market returns nor dofutures market returns lead spot market returns as both the

joint and sum tests are not significant ireither direction.
3.5.1 Volatility dependencies and dynamic conditional correlations

The results with regard to theconditional volatility equation show that the volatility sensitivity

to its own lagged conditional volatility (GARCH terms) is significant for all spot and futures
returns series. Changes in the current conditional volatility of both spot and futures returns are
also dependent upon their own lagged shocks (ARCH terms), which are indicated by the
significance of the estimates of ARCH coefficients. Furthermore, ethlarger magnitude of
GARCHerm estimates, combined with the smaller size of ARCGtérm estimates, indicates the
gradual fluctuations of conditional volatility over time for petroleum markets, which suggests
that investors participating in petroleum markets may consider active asset management
strategies based on volatility persistence and current market trendsThese properties can be
further apprehended through plotting the time-variations of conditional volatility estimated over

the sample period in Fig3.4.
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Table 3.5

Estimates of VAR (2AGARCH (1, 1) model with DCC structure.

Variables WTI_SWTI_F GASO_&ASO_F HEAT_SHEAT_F
WTI_S WTI_F GASO_S GASO_F HEAT_S HEAT_F

Conditional mean equation
Constant 0.0002 0.0002 0.0001 0.0002 0.0002 0.0002
#41) 0.1058 0.0374 F0.0698 1 0.0079 F0.2275 "W 0.2958 W
#41)¢ -0.1204 -0.0822 21701 @ 0.0017 0.2095 %0 F0.3002 10
#42) F0.1493 W 0.1527 %W -0.0111 -0.0176 -0.0085 0.1847 %W
#42)¢ 1.9207Y F0.1969 10 -0.0335 F0.0156 U 0.0072 F0.1834 10
Conditional variance equation
Constant 0.00004 W0 0.00004 {0 0.00001 %Y 0.00002 % 0.00001 %Y 0.00002Y
(%9 ® F0.0924 W0 0.4884 W0 0.1265 W0 F0.1241 W0 0.0193%W F0.0719 W0
(Y%9° 0.4759 W F0.0765 Y F0.0056 Y F0.0045 Y 0.0952 W0 F0.0506 "W
O,s 0.6968 W F0.0378 ¥ 0.8085 W0 01723 W0 0.9541 W0 0.0155Y
Doos 0.0753 0.5827 W 0.2437 W0 0.7492 W0 F0.0954 10 1.0954 90
Asymmetry 0.3312 %W 0.3324 90 0.0544 0 0.0736 W 0.0296 10 0.0354 10
5D= L(8) 319W0 48810 66190
Dynamic Conditional Correlation (DCC)
X 0.4075 %0 0.0364 W0 0.0779 %0
% 0586290 0.9557 W0 09157 %0
A+ % 0.9937 0.9921 0.9936
Average DCC 0.9656 (0.0909) 0.6799(0.1211) 0.9428(0.0780)

Diagnosticstatistics

Log L 11807.2
JB 207.4>>> 1716>>>
ARCH(10) 14.971 16.817>
Q(10) 5.987 8.251

8736.3
1345>>> 197.9>>>
19.001>> 19.977>>
4.749 10.896

11207.1
4113>>> 51.76>>>
9.409 7.483
4.212 3.764

Notes: *, **, and *** indicate significance at the 10%, 5% and 1% respectively. Model is estimated usi@WILE with robust
(heteroskedasticity/misspecification) standard errors. The Log L (Log Likelihood) criterion measures the relative goodness fif of the
estimated model. JB, ARCH(10), and Q(10) refer to the empirical statistics of the Jar@sza (1980) test for normality based on skewness
and excess kurtosis, the Engle (1982) test for conditional heteroscedasticity of order 10, and the LjuBgx (1978) tests for
autocorrelations of order 10 applied to standardized residuals in levelsThe Average DCC refers to the average value of dynamic
conditional correlations between petroleum spot and futures markets. The two entries for each Average DCC are their respective value and
the corresponding standard deviation, ++, and+++indicate the rejection of the null hypothesis of associated statistical tests at the 10%, 5%

and 1% respectively.
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Table 3.6
Granger causality in returns.

N= = i@s SO j@s T % (3183
: . 9 : - 9 i -

Ng= =+ | @ vyt | @ vt Y% (3183
Panel A: WTI Crude oil N N

i§5) statistic p-value i§5) statistic p-value
* 45 Joint coefficient test 2.9452 000980 3.2419 0.00645 %0
* 46 Sum coefficient test 1.3167 0.2512 12.722 0.0004 W
Panel B: Gasoline N N

i§5) statistic p-value i§5) statistic p-value
* 45 Joint coefficient test 1.5476 0.1719 0.3228 0.8995
* 46 Sum coefficient test 24517 0.1174 0.3507 0.5537
Panel C: Heating Oil N N

i45) statistic p-value i§5) statistic p-value
* 45 Joint coefficient test 26132 00231% 5.6585 0.0001 %0
* 46 Sum coefficient test 22722 0.1317 15.341 0.0001 %

Notes: This table presents results for the initial Grangetausality tests specified by Eq. (3.18a) and (3.1. *** and ** indicate the null
hypothesis is significant at thel% and 5% level, respectively.

The estimates of volatility spilloversand asymmetric effecs between spot and futures returns
are also found in all petroleum markets. This means that the conditional variances of spot returns
of petroleum markets are affected by the previous short run sitks and long run persistence
from their corresponding futures returns and the conditional variances of futures returns of
petroleum markets are also affected by the previous short run shocks and long run persistence
from their corresponding spots returns. Furthermore, the significance of the coefficients
associated with asymmetry indicates that the positive and negative shocks of equal magnitude
have different impacts on the conditional variance, which in turn suggests that the
VARMAAGARCH model is more ppropriate than the VARMAGARCH model in terms of

modeling dynamic volatility of petroleum markets.
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The DCC estimates of the conditional correlations between the volatilities of spot and futures
returns are also given in Table &. The estimated coefficiets on & and &; are each positive
and statistically significant at the 1% level, which indicates that the assumption of constant
conditional correlation for petroleum markets is not supported empirically. The short run
persistence of shocks on the dynamic conditional correlations is greatest for WTI crude oil at
0.4075, while the largest long run persistence of shocks to the conditional correlations is 0.3B
(=0.4075+05862) for WTI crude oil. Furthermore, these estimated coefficients sum to a value

which is less than one, meaning that the dynamic conditional correlations are meagverting.

The time-varying conditional correlations between spot and futures returns are plotted in Fig. 3.5.
It is clear that there is significant variation in the conditioné correlations over time, especially in
the spot and futures returns of gasoline which has the highest standard deviation d¢ifie dynamic
conditional correlations reported in Table 3.5.It is also observed that the dynamic conditional
correlations can vary a lot from the average conditional correlations
( & %pa= 0.9656, & %096 = a7 446799, =J @ %266 4 520.8428) emphasizing the need to
compute dynamic canditional correlations. The time series plots in Fig. 5 show that, for each
pair of series, the dynamic conditional correlations provide much more useful information than
do the correlations from the constant conditional correlations model, which indicates that any
calculations associated with correlations from the constant conditional correlation model would

have been very misleading.
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Fig. 3.4 Time-variations of conditional volatility for petroleum markets.
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Fig. 3.5 Time-varying conditional correlations for petroleum markets.
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Table 3.7
Diagnostic tests based on the news impact curve.

(H°Fd VY F o (W°Fo
WTI_S - WTI_F
€%, <0) 0.9656 0.8589 0.8732
¥ < 0) 0.9569 0.8717 0.8260
%1 <0, ¥ < 0) 0.9268 0.8233 0.7882
¥ < 0, ¥ > 0) 0.0902 0.0742 0.1213
¥ > 0, ¥ < 0) 0.1887 0.1856 0.2475
¥ > 0, ¥ > 0) 236597~ 22142>> 20932>>
(Yo ¢ Yos < 0) 05119 1.9254> 0.0064
(Yo ¢ Yos< 0) 5.4003>>> 5.9963>>> 0.7884
(Y ¢ Yos< 0) 0.3379 0.1704 0.0345
(Y ¢ Yos< 0) 0.4618 0.1572 0.1287
GASO_S - GASO_F
€%, <0) 0.2759 1.4307 0.9226
¥ < 0) 0.1766 18176~ 0.6727
%1 <0, ¥ < 0) 1.0940 22088>> 0.8657
%1 <0, ¥ > 0) 0.2489 54369 0.5131
¥ > 0, ¥ < 0) 0.7479 0.5022 0.4690
¥ > 0, ¥ > 0) 1.3954 0.7341 1.5672
(Yo ¢ Yos < 0) 0.0836 0.3853 2.7016>>>
(Yo ¢ Yos< 0) 0.3643 1.0421 28634>>>
(Yo ¢ Yos < 0) 29182>>> 0.1296 255217~
(Y ¢ Yos< 0) 0.2515 0.1809 0.3001
HEAT_S - HEAT_F
€%, <0) 1.3263 19530~ 1.8736>
¥ < 0) 1.1812 1.8902> 1.8189>
¥ <0, ¥ < 0) 1.2745 1.9404> 1.8377>
¥ < 0, ¥ > 0) 0.2145 0.2399 0.1578
¥ > 0, ¥ < 0) 0.2274 0.1789 0.2393
¥ > 0, ¥ > 0) 251827~ 1.5289 29194>>
(Yo ¢ Yos < 0) 0.0476 0.2041 0.4436
(Yo ¢ Yos< 0) 0.6928 2.3199>> 0.8892
(Y ¢ Yos< 0) 0.3469 0.3701 0.2522
(Y9 ° ¢ ¥s5< 0) 1.5917 0.5971 0.1463

Notes: +++, ++and *indicate the rejection of the null hypothesis of t of no asymmetric effects at the 1%, 5% and 10% significance leve
respectively.
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Lastly, the results of diagnostic tests based on standardized residuals are also shown in Table 3.5.
The diagnostic tests for the standardized residuals and standardized residuals squared show no
evidence of serial autocorrelation and ARCH effects at th@gsificance level of 1%. However, the
JB statistics still reject the normality hypothesis even though that departure from normality is
greatly reduced. We regard the departure from normality as well as the significance of the
estimated degrees of freedomdr the Student’s Pdistribution as strong evidence for favouring a

Student’s Pdistribution for Y,

The diagnostic tests suggested by Engle and Ng (1993) and Kroner and Ng (1998), based on the
‘generalized residuals’, defined as\'é \rg F Q° ae also conducted. A generalized residual can be
thought of as the distance between a point on the scatter plot oﬁf; Yg from a corresponding
point on the news impact curve. If the conditional heteroskedasticity part of the model is correct,
generalized residuals should be uncorrelated with all information known at time PF1. The
Engle and Ng (1993) and Kroner and Ng (1998) misspecification indicators test whether we can
predict the generalized residuals by some variables observed in the past, but iwh are not
included in the model. In this regard, we follow Kroner and Ng (1998) and Shields et al. (2005)
and define two sets of misspecification indicators. In a two dimensional space, we first partition

( %?5 %75) into four quadrants in terms of the possible sign of the two residuals. Then, we define
the series of indicator functions as  ¥,5< 0), € ¥5< 0), £ ¥os5< 0, ¥o5< 0), £ Yos<

0, s> 0), -(\’ré?5> 0, ¥%5< 0), and f\’ré?5> 0, %5> 0), where {® equals one if the
argument is true and zero otherwise. Furthermore, we further define a second set of indicator
functions, (Y9 °t¥%<0), (Y9t ¥%<0), (%9 t¥<0), and (%9°t¥%<0), to
examine the possible effect of both the size and the sign of a shock. These indicators are
technically scaled versions of the former ones, with the magnitude of the shocks as a scale
measure. We conduct indicator tests and report the results in Table73.1t can be observed from
Table 37 that most of the indicators fail to reject the null hypothesis of no misspecification all

test statistics in Table 3.7are distributed as 1%1). Hence, our model captures the effects of all
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sign bias and sizesign scale depended shocks in predicting volatility and there is no significant
model misspecification error in the standardized residuals. Therefore, the VARMAGARCH
model with DCC structure provides a sufficient and parsimonious representation of the volatility
process of petroleum commoditiesreturns in terms of volatility spillovers, asymmetric effects

and time-varying conditional correlations.

Summarizing all, the empirical VARMAAGARCH model with DCC structure appears to
satisfactorily capture the volatility transmission for all petroleum markets under consideration.

The analysis of volatility interdependence shows significant volatility spillovers and asymmetric
effects between petroleum spot and futures markets. It is worth noting that the estimation
results will allow us to compute the ogimal weights as well as the optimal hedge ratios and to

discuss the optimal hedging strategies in the following section.

3.5.2 Portfolio management with optimal hedging strategies

Our previous findings suggest that potential gains from diversification aresubstantial by

investing in both petroleum spot and futures markets. However, their volatility transmissions
require investors to quantify the optimal weights and hedging ratios in order to deal adequately
with the risk. To illustrate this purpose, we nowconsider a portfolio composed of petroleum spot
and futures assets for which we attempt to minimize the risk without reducing expected returns.
The average values of optimal portfolio weights( S, J using estimates from various

multivariate models, namely the VARMAAGARCH modelvith DCC or CCC structure and the

BEKK model, are presented in the seconthird and fourth columns of Table 38.

For all petroleum markets, the optimal portfolio weights from each model are not particularly
different, suggesting that the portfolio constructions give similar results. In the case of the WTI
crude oil market, the largest average value ofS;, . of the portfolio consisting of crude oil spot
and futures from the VARMAAGARCH model with CCC structure is 0.6714, meaning that

investors should have more crude oil spot than futures in their portfolio in order to minimize risk
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without lowering expected returns. In addition, the optimal holding of spot in a onelollar
spot-future market portfolio should be 67.14 cents, and the remaining budget of 32.86 cents is
invested in futures. With regard to the gasoline market, the largest average value @&,
obtained from the VARMAAGARCH model with CCC structure, which is 0.7411, suggests that
investors should have more gasoline spot than futures in their portfolio and the optimal holding
of spot in a onedollar spot-future market portfolio should be 74.11 cents and the remaining
budget of 25.89 cents is invested in futures. In the case of the heating oil market, the largest
average value of §;, . obtained from the BEKK model, which is 0.4533, suggests that investors
should have less heating oispot than futures in their portfolio and the optimal holding of spot in

a onedollar spot-future market portfolio should be 45.33 cents, and the remaining budget of

54.67 cents is invested in futures.

Table 3.8
Optimal hedging strategies.

Model Optimal portfolio weights Optimal hedge ratio

WTI Gasoline Heating oil WTI Gasoline Heating oil
VARMAAGARCH with DCC 0.6420 0.7343 0.4473 0.9578 0.5762 0.9638
VARMAAGARCH with CCC 0.6714 0.7411 0.4197 0.9682 0.5941 0.9673
BEKK 0.6356 0.7123 0.4533 0.9442 0.5929 0.9546

Note: The optimal portfolio weights given are for the spotcrude oil/gasoline/heating oil, and thus 1-spot weights for futures in the
portfolio are warranted.

The average values of the optimal hedge ratig LB using estimates from various multivariate
models are presented in the fifthsixth and seventhcolumns of Table3.8. It can be observed that
different multivariate conditional volatility models generate different OHR. The average OHR
values of the gasolie market obtained from different multivariate conditional volatility models
are lowest among all three petroleum commaodities markets. By following the estimated hedge
strategy from the VARMAAGARCH model with DCC structure, the average value of the optimal
hedge ratio between spot and futures petroleum commodities is 0598, 0.5762, and 0.9638for

WTI crude oil, gasoline and heating oil, respectively. These results are important in establishing
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that a onedollar long position in spot WTI crude oil market ca be hedged for 95.7&ents with a
short position in futures WTI crude oil market; A onedollar long position in spot gasoline market
can be hedged for 57.62ents with a short position in futures gasoline market; and a ondollar

long position in spot heding oil market can be hedged for 96.3&ents with a short position in
futures heating oil market. Fig.3.6 presents the calculated timevarying optimal hedge ratios

(OHRs) from the VARMAAGARCH model with DCC structug

Table 3.9
Hedging effectiveness.
Mean Variance (%) 4AP QMY HEI (%) 8=4-(9) SemiVariance HEI (%)
WTI_S-WTI_F
Unhedged 0.0173 0.0641 0.6837 41642.2 0.0240
VARMAAGARCHDCC 0.0273 0.0089 2.9050 86.17 15486.8 0.0045 81.19
VARMAAGARCHCCC 0.0213 0.0097 2.1626 86.13 15558.3 0.0046 81.17
BEKK 0.0112 0.0106 1.0878 83.45 16942.8 0.0047 80.26
GASO_SGASO_F
Unhedged 0.0180 0.0956 0.5817 50871.4 0.0349
VARMAAGARCHDCC 0.0315 0.0573 1.3159 40.08 39379.5 0.0208 40.31
VARMAAGARCHCCC 0.0304 0.0576 1.2667 39.80 39469.3 0.0211 39.62
BEKK 0.0298 0.0584 1.2331 38.94 39751.6 0.0210 39.92
HEAT_S-HEAT_F
Unhedged 0.0239 0.0458 1.1178 35219.7 0.0165
VARMAAGARCHDCC 0.0258 0.0071 3.0619 84.41 13798.5 0.0034 79.64
VARMAAGARCHCCC 0.0245 0.0080 2.7392 82.52 14724.3 0.0041 75.31
BEKK 0.0196 0.0084 2.1385 81.65 13907.1 0.0037 77.58

Notes: This table reports the realized riskadjusted returns, portfolio variance, semivariance, Valueat-Risk (VaR) and hedging
effectiveness ratios. 4 A P @'NsJthe realized riskadjusted returns, measured by calculating the ratio of each portfolio’s mean to it
standard deviation, of different portfolios. Variance denotes the variance of the unhedged/hedged portfolios. Sevariance denotes the
semi-variance of the unhedged/hedged portfolio. 8 =4 is the Valueat-Risk estimated using Eqg. (3.19with 0( 9 equal to
the normal distribution 5% quantile, i.e. 1.645HEIl denotes the hedging effectiveness. HEI denotes the hedging effectiveness and
measures the ncremental variance reduction of various models. HEII denotes the hedging effectiveness and measures the incremental
semi-variance reduction of various models.

% The timevarying optimal hedge ratios (OHRs) from the VARMARCH model with CCC structure and the BEKK model are
presented in Appendix 3.A and 3.B respectively.
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Fig. 3.6 Optimal hedge ratios for petroleum markets from VARMAGARCH model with DCC structure.
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The results from portfolio simulations in the second,third and fourth columns of Table 3 show
that the risk-adjusted return ratios have been improved in the hedged prtfolios. More
importantly, these results hold for all cases and for all models we consider. The benchmark
VARMAAGARCH model with DCC structure provides the best risldjusted return ratios in all
markets. The hedging effectiveness documented in thith column of Table 39 show that all
numbers are positive, implying the superior performance of hedged portfolios over unhedged
portfolios. All three multivariate conditional volatility model s effectively reduce the variance of
the portfolio, and perform better in the WTI crude oil and heating oil markets than in the gasoline
market (the HE indices are above 80% for WTI crude oil and heating oil markets and only around
40% for gasoline market) Among all three multivariate conditional volatility models, the
VARMAAGARCH model with DCC structure produces the highest hedging performance across all
petroleum markets, such that the VARMAGARCH model with DCC structure is the best model
for OHR catulation in terms of the variance of portfolio reduction. In contrast, the lowest HE
value in all markets is obtained from the BEKK model. Therefore, the BEKK model is the worst

model in terms of the variance of portfolio reductionz2

The relatively poor peformance of all three models for gasoline market could be explained as
follows. First, as the volume and open interest of gasoline is lower than crude oil or heating oil, in
terms of the volume or the number of market participants, gasoline has lower ligdity than
crude oil or heating oil. cond, as traders profit from wide price swingsjncreasing volatility
makes it more expensive for producers and consumers to use futures as a hedge. Table 3.1 shows

that the standard deviation of the gasoline returns is higher than for crude oil and heating oil

Similarly, we can consider the economic benefits dm the proposed hedging strategies through
investigating the reduction in the Valueat-Risk (VaR) exposure. Under the assumption of a

normal distribution, if we denote 9, asthe initial value of the portfolio and 0( 9 the inverse of

2 Even we consider the transaction costs, the changes in hedging effectiveness resulting from including transaction costs is
found to be very small and mostly negative. In this case, the VARBMRCH model thiDCC structure is still the best model

for calculating the optimal hedge ratio and the BEKK model is the worst. Similar approach has been adopted by Alexander et al
(2012).
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the standard Gaussiarcumulative distribution function, the portfolio VaR is simply a constant
multiple of the diversified portfolio standard deviation where the multiple is determined by the

VaR confidence levell F 2

8=4 9,B(N)+ 0(9¥8=(\y) C (3.19)

with N representing the returns from the hedgedoortfolio.

The results of the daily VaR for a portfolio value of $1m with 95% confidence level are reported
in the sixth column of Table 3.9which indicates that the VaRs have been reduced in the hedged
portfolios for all petroleum commodities and across all models we consider. For example, the
results for the WTI crude oil market indicates that one obtains a daily VaR$41642.2 if the
unhedged portfolio is considered and a VaR of15486.8 when the hedge ratio derived from the
VARMAAGARCH model with DCC structure is used. Hence, by using the VARM¥ARCH model
with DCC structure, hedgers in the market can benefit from a decrease in the avggadaily VaR of
$26155 over the unhedged portfolio.Similarly, hedgers can also benefit from a decrease in the
average daily VaR of $ 11492 and $ 21421 by using the VARMGARCH model with DCC
structure in the gasoline and heating oil markets, respectivelyAmong all three models, the
VARMAAGARCH model with DCC structure produces the highest decrease in the average daily
VaR across all petroleum markets, which is consistent with the results derived from the hedging
effectiveness (HE) ratio previously.Therefore, investors would prefer the hedging strategy
derived from the VARMAAGARCH model with DCC structure to the hedging strategies derived

from other models or unhedged portfolio.

Another way of considering the hedging effectiveness from the proposed hedging strategies is to
look at the reduction at the downside risk arising from the different hedging strategiesThe
motivation for investigating this stems from both the pitfalls associated with variance as a
measure of hedging effectiveness and the spéci properties inherent in the VARMAAGARCH

model.
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Because the variance metric assigns the same weight to positive gains and negative losses, it may
not be the appropriate measure for the risk averse investor who is more concerned about the
downside risk of a hedged portfolio. In practice a number of metts have been proposed in the
literature that is able to deal with possible asymmetries in the profile of risk averse investors. For
instance, Cotter and Hanly (2006) evaluate the hedging performance based on Lower Partial
Moments (LPM) and find differencesn terms of the best strategy compared to the traditional
variance metric. On the other hand, it is of interest to examine whether the VARMMGARCH
model is capable of adequately capturing the skewness and kurtosis typical of financial data and,
if this is true, whether this can be used effectively to eliminate downside risk within the
minimum-variance framework. In this regard, we propose to use the semiariance metric that
acts as a measure for a downside risk averse investor. Mathematically, this candxpressed as:

i
OR = 56|’ {min(0, Nos F Q} (3.20)

Uab

This is equivalent to the second order lower partial momen{LPM) where the target return Qis
set to zero in order to distinguish between positive andegative realized portfolio returns N.s
A short hedging position is equivalent to selling futures contracts against the purchase of the

underlying spot assets; hence the investor is more concerned about negative serariance.

The seventh and eighth columns of Table 39 present the negative semivariance figures where
negative semivariance reflects the downside variation inthe performance of short hedging
strategies and the hedging effectiveness ratios. Overall, the results indicate that the improvement
in the semivariance using the VARMAAGARCH model with DCC structure is seacross all

petroleum markets, thus supporting the suggested strategy.
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3.6 Conclusion

The main purpose of this chapteris to examine the optimal hedging strateges in petroleum
markets using the VARMAAGARCH modebf McAleer et al. (2009) with DCC structure The
rationale behind the use of this modektems from the fact that there may be volatility spillovers
and asymmetric effects between petroleum spot and futuresnarkets and the assumption of
constant conditional correlations between petroleum spot and futures markets is not supported
empirically. Therefore, by applyingthe VARMAAGARCH model with DCC structure, one may
obtain more efficient volatility estimates and hence, superior hedging strategy compared to the
methods which are currently being employed, such as the BEKK model or the VARKNBARCH

model with CCC structure.

The empirical results show that, for the WTI crude oil and gasolinemarket, the optimal portfolio
weights obtained from all multivariate volatility models suggest holding spot in larger proportion
than futures. On the contrary, for the heating oil market, the optimal portfolio weights obtained
from all multivariate volatility models suggest holding futures in larger proportion than spot.In
the case of minimizing risk by using a hedge, a long position of one dollar in the petroleum spot
markets should be shorted by a large cents in the petroleum futures market3he hedging
effectivenessindices indicate that the VARMAAGARCH model with DCC structure is the best for

OHR calculation in terms of the variancand semivariance of portfolio reduction.

The findings of this chapter offer several avenues for future research. First, our empirical results
are available for only insample time horizon. So it would be interesting to assess the optimal
hedging strategy for the outef-sample time horizon which in turn may provide more information
about petroleum marketsrisk to central governments and businessg Second, our results may be
sensitive to the choice of the return innovation’s distribution. Thus, it would be interesting to
consider other innovation’s distributions. Finally, it would be interesting to expand the current

study to cover wider energy maket, such as natural gas market and electricity market.
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In the following chapter, we will turn our attention to the impact of oil price changes on stock
markets. Crude oil plays a pivotal role in modern economies. Stock markets, as a barometer of the
state of our economy, are unlikely to escape the influence from oil market fluctuations. Therefore,
we will investigate how and to what extent the information embedded in oil price shocks is
transmitted into China stock market We will focus our research on the volatility transmission
between oil markets and China stock market. The potential findings will help investors optimize

their portfolio management.
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Fig. 3.A Optimal hedge ratios for petroleum markets from VARMAAGARCH model wittCCC structure.
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Chapter 4

Volatility Spillovers and Asymmetries between Oil Prices and
Chinese Stock Sector Returns: Implication s for Portfolio

Management

4.1 Introduction

The financialization of energy market means that crude oil has become a recognized asset class
within investment portfolios of financial institutions as a means to diversify risks such as
inflation, and/or equity market weakness (see Gorton and Rouwenhorst, 2006). This has resulted
in increased inter-relationship between stock markets and oil prices. It is @ommon theoretical
assumption thatstock prices shouldequal the sum of discounted values of expected future cash
flows at different investment horizons. Therefore, it will be central for market participants to
identify the factors affecting these discounted cash flows to support their decision making.
Empirical analysis in the energy finance literature has documented severahannels through
which oil shocks are transmitted to stock markets. For examplenahe one hand, changes on the
prices of oil, a key factor in the production process, affect financial performance or cash flows of
firms, which in turn influence equity prices (e.g. Huang et al., 1996; Jones and Kaul, 1996). On the
other hand, oil prices affect interest rates in the economy via inflation and monetary policy of the
central bank, which in turn influence discount rate and equity prices (e.g. Apergis and Miller,
2009). Furthermore, the interaction between oil and stock markets does not dwell on the level of
return variables, it also appears in volatility. Tauchen and Pitts (1983) and Ross (1989) suggest
that it is the volatility of an asset rather than its returnthat is related to the rate of information
flow in a market. This information flow is the pivotal point of risk management, asset pricing as

well as its underlying derivatives pricing.
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Although understanding the comovements of volatility between oil and stock markets is of great
practical importance, relatively little empirical work has been conducted on the extent of
volatility transmission between oil and stock markets at the sectetevel and such study may
provide interesting insights into the nature ofthe volatility interaction between different asset
classes. Work has been carried out in the OEE€Bountries to detect the impact of oil shocks on
the stock markets of these largely oilmporting nations. To the best of our knowledge, no such
study has ben undertaken for Chinese stockmarket. It is within the context of previous limited
empirical work that the present chapter is conducted to fill this gap by examining the information
flow between oil and Chinese stockmarket. In the meartime, one of the most important
motivations for considering Chinese stockmarket is that Chinais considered the growth engine
of the world economy and its stock marketis a very promising area for regional and global
portfolio diversif ication. The impact of oil markets on the stock market and their sectdrased
stocks may have significant implications for investors. Furthermore, China is now the second
largest oil importer in the world and its economy is increasingly dependent on imported oil.
Variations in economic growth may well be reflected in stock markets, then transmitted directly
into oil prices (Li and Lin, 2011). Our results would have significant implications for oil users,

traders, regulators and investors.

In this study we aim to examine the extent of volatily transmission between oil and Chinese
stock market from a sector perspective.This permits a greater understanding of information
transmission via volatility flows among these interconnected markets. Five majoindustrial
sectors are sudied: Basic Materials, Consumer Goods, Consumer Services, Financials, and
Industrials sectors. Our nexbbjective is to apply the estimated results to derive optimal portfolio
weights and hedgeratios, which will effectuate optimal portfolio management in the presence of

oil assets.

! OECD is the abbreviation of Organization for Economiop@mtion and Development. OECD is an international economic
organization of 34 countries founded in 1961 to stimulate economic progress and world trade. Most OECD members are
developed, higincomeeconomies.
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We employ the asymmetric version of the BEKKnodel introduced by Grier et al. (2004) to
examine the volatility spillovers as well as asymmetric effectdetween oil and stock markets
(sectors) in China. Using dailylata over the period from November 1, 2000 through October 31,
2011, we examine volality transmission between five industrial sectors and crude oil
benchmark. The empirical results offer four major findings. Firstly, there is evidence that the
correlation between oil and stock markets (sectors) in China is not constant but timearying. It
tends to increase with the volatility in the market. Secondly, there is significant transmission of
shocks and volatiity between oil and stock sectors. Thirdly, the extent of volatility transmission
varies across the fivestock sectors, which validates the argument that the sector perspective is
more informative and generates more accurate implications for portfolio rik management.
Finally, our analysis shows that Chinesstock market investors should consider the additional
source of uncertainty resulting from the strong connection between crude oil and Chinestock
markets in terms of volatility transmission and then consider oil assets as a dynamic and valuable

asset class that improves the risladjusted performance of a diversified portfolio of sector stocks.

The remainder of this chapter is organized as follows. Sectioh2 provides a brief literature
review. Section4.3 presents the dataSection 4.4escribes the multivariate GARCH framework to
be used in the analysis. Section 4.Biscusses the empirical results. Section 4.6hows the
implications on portfolio managemert in the presence of oil assets. Section Z4provides some

concluding remarks along with a few possible areas for future research.

4.2 Literature review

The relationship between oil price and macroeconomic variables isvell documented in the
literature through the studies on the impact of oil price changes on macroeconomic variables (e.g.
Hooker, 1996, Hamilton, 2008). The majority of these studies have found that rising oil prices

and price volatility serve to stifle e&onomic activity (Hamilton, 2003), whereas a reduction in oil
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prices does not necessarily lead to noticeable output growth (Mork and Olsen, 1994). Recently,
the interconnection between oil price and stock markets has been added to the literature (Jones
and Kaul, 1996; Jones et al., 2004).This research aims to uncover the information flow between
the two markets. Detailed analys has been conducted to examine the relationship between

sector indices and oil prices.

From a theoretical perspective, stock market returns and their price levels should reflect the
effects of current and expected future impacts of oil price shocks (Jones et al., 2004). The study
by Kaul and Seyhun (1990) is the first to examine the reactioof stock markets to oil shocks. The
authors consider the US stock market over 1949984 and report a detrimental effect of oil price
shocks on the US stock market. Jones and Kaul (1996) propose a standard cash flow/dividends
valuation model to examine stock market efficiency in the US, Canada, Japan, and UK in terms of
the degree to which stock prices changé response to oil price changes. They find that the
changes of oil price on the current and future casfiows have a partially decisive effect on ta
four countries’ real stock returns. A similar conclusion is drawrfrom the Greek stock market as
positive oil price shocks suppress real stock returns (Papapetrou, 2001). As to -ekporting
countries, stock market prices are expected to be affected positively by oil price changes through
positive income and wealth effect8, which has been confirmed by Park and Ratti's (2008)
findings that stock markets in Norway, an oHexporting country, respond positively to oil price
shocks? Furthermore, as global economy shifts to emerging markets, the importance of the oil
factor for stock prices is also discovered as Basher and Sadorsky (2006) suggest that emerging

economies are more exposed to oil price shocks than more developed economies becausg the

% In comparison with the research on the links between oil prices and macroeconomic variables, the strand of research on the
potential links between oil prices and stock markets has gained ground only recently. The possible explanatiotessr the
emphasis on this issue is that oil price shocks are not the only factor affecting the stock price and oil price shoggs influe
various industries’ stock prices differently (Cong, et al., 2008). However, if oil plays an important role in the ecommy,
would expect oil price changes to affect stock markets (Huang et al., 1996), and oil shocks on real cash flows can partly account
for fluctuation in aggregate stock prices (Jones and Kaul, 1996).

® The wealth effect is an economic term referring to mcrease (decrease) in spending that accompanies an increase
(decrease) in perceived wealth. Mehra and Ptersen (2005) indicate that changes in oil prices have asymmetric influence on
consumption expenditures via wealth transfers. The negative impact afcaease in oil prices is greater than the stimulus of
economic growth as a result of a fall in oil prices.

* Jones and Kaul (1996) argue that the impact of oil price shocks to a country’s economy of which reflected on stoekeeturns
likely to vary across countries depending on their oil production and consumption level.
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are less able to reduce oil consumption and thus more energy intensive, which causes significant

changes in stock returns over both the shortun and long-run.

A number of studies have investigated the impact of oil price changes on the stocks of individual
sectors, as it is important to know which sector indices are more sensitive to oil price fluctuations.
A common belief is that oil price shocks are beneficial for eielated companies (e.g. Esharif et
al., 2005; Boyer and Filion, 2007) and also havan impact on other sectors (e.g. Arouri and
Nguyen, 2010; Arouri et al., 2011). Recently, Elyasiani et al. (2011) examine the impact of
changes in the oil returns and oil return volatilities on excess stock returns and return volatilities
of thirteen US industries and show that oil fluctuations constitute a systematic asset price risk at
the industry level as nine of the thirteen sectors analysed show a statistically significant
relationship between oil-futures return distribution and industry excess return. Surprisingly, the
paper of Cong et al. (2008) shows that oil price shocks do not exert a statistically significant
impact on the real stock returns of mostChinese stockmarket sectors indices, except for

manufacturing index and some oil companies.

More recently, the research emphasis has broadened to include not only the effects of changes in
the oil price level but also the effects of price volatility. The evidence confirms that oil volatility
has a considerable influence on the stock market. For example, Malik and Ewing (2009) employ a
bivariate GARCH model to detect volatility spillover betweenpil prices and five different US stock
sector indexes, i.e. Financials, Industrials, Consumer Services, Health Care, and Technology. They
find evidence of significant volatility transmission between oil prices and some of the examined
market sectors. Aroui et al. (2011) usea VARGARCH1, 1) model of Ling and McAleer (2003) to
study the volatility transmission from oil prices to European equity markets. The authors show

strong evidence of volatility spillover from oil to thesector stock markets studied.

In summary, volatility spillovers among oil and stock markets have been tested in several

countries. However, little is known abouthow volatility is transmitted between oil and stock
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markets in China. This chapter tries to fill this gap and also adds the literature on financial

liberalisation and integration in a global context.

4.3 Data

Our sample data for the equity segments cover five industrial sectors in Chin®gtaStream
Global Sector Indices Basic Materials, Consumer Goods, Consumer Services, Financials, and
Industrials.> One marketwide index, the DataStream Global Country Index, is also included to
compare the empirical results across sector and market levél.The use of sector data allows us

to uncover relationships between individual sectors with crude oil market, hence equipping us
better for making risk management and portfolio diversification decisions. Furthermore, by
design, the sector indices may offer an alternative view of the performance of the Céseequity
market. All stock sectors data are extracted from DataStream Internationabdatabaseand all

indices are expressed in local currencies.

For the crude oil market, we choose theBrent crude oil price, taken from DataStream
International database In this study, we use tk nearby futures contract(that is, the contract for
which the maturity is closest to the current dat¢ because of the advantage of its liquidity,
transparency, and flexibility in comparison to spot prices (Sadorsky, 2001)he ot prices are
more heavily affected by temporary random noise than the futures prices. Finally, we convert
Brent futures prices into local currency using the US dollar exchange rates from DataStream

International database.

® A representative sample of 100 stocks has been chosen for Chinesensaoioit Using FTSE Actuaries classifications, the
constituent stocks are allocated into industries/sectors, and the DataStream Global Indices calculated. DataStream classifies
each company by industry, and a sector is any group of stocks with the same industrial classification. Each sector on the
DataStream system comprises a reggptative sample of major stocks within that market and with that industrial classification.
DataStream uses these constituent stocks when calculating an index for a specific sector. An aggregate index of all sectors is the
Market Index. The abbreviatiowif the five sectors indices of Basic Materials, Consumer Goods, Consumer Services, Financials,
and Industrials are BASIM, CONSG, CONSS, FINAN, and INDUS, respectively.

® ForChinese stocknarket, the Market Index is the Chinainlex comprising of class A shares of mainland Chinese companies
traded on Shanghai and Shenzhen exchanges and is investable only by Chinese nEtiemdibreviation for the Market Index

is MARKT.
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We employ dailydata over the pe&iod from November 1, 2000 through October 31, 2011with
2870 observations Although some empirical analyses suggest that weekly data is superior to
daily data when being employed to examine the e#tock market relationships (see Arouri and
Nguyen, 2010) daily datais more convenientand effectiveto capture the information cortent of
changes in volatilities due to avoiding time aggregation and compensation effects associated with
other data frequencies. As usual, stock market, sectors, and oil returnseacomputed by taking
the natural log of the ratio between two successive pricest is worth noting that all data are
expressed in RMB (China’s currency unit) inasmuch as our primary focus is on China where the

links between oil prices andChinese stocksector returns have received only little attention.

Table 4.1

Summary statistics for daily returns.

Returns Mean (%) Std. Dev. (%) Skew. Kurt. JB 3%10) Q(10) Corr. with oil
BRENT 0.035 2.125 -0.104 6.877 180197~ 24357~ 13.242

MARKT 0.005 1.629 -0.079 7.370 22862777 329.1>>> 205507~ 0.0646 10
BASIM 0.018 1.946 -0.200 6.293 13151>>> 516.0>>> 33.272>>> 00738 W
CONSG 0.025 1.758 -0.223 6.620 1590.5>>> 389.27>> 27.499>>> 002719

CONSS 0.023 1.814 -0.350 6.909 1885.5>>> 504.9>>> 29.821>>> 0.02979

FINAN 0.004 1.838 0.125 6.569 1530.2>>> 279.9>>> 11.758 0.0442W
INDUS -0.034 1.759 -0.266 6.927 1877.6>>> 4418>>> 23.754>>> 0.0503 10

Notes: This table reports the basic statistics of return series of oil and stock sectors indices, including mean (Mean), caath deviation
(Std. Dev), skewness (Skew.), kurtosis (Kurt.), and correlation between stock sectors and crude oil Brent (Corrhvatl). JB refers to the
empirical statistic of the JarqueBera (1980) test for normality based on skewness and excess kurtosis. Q(10) represents the LjBax
(1978) tests for autocorrelations of order 10 applied to standardized residuals.3%10) represents the Engle’s (1982) ARCH test, carried
out as the Ljung-Box (1978) Q statistics on the squared seriest* and **indicate the rejection of the null hypothesis of associated statistical
tests at the 1% and 5% levels, respectively. With regard to the cefation between stock sectors and crude oil Brent, we calculate the
Spearman’s rank correlation coefficient. ***, ** ad * indicates significance at the 1%5% and 10% levels, respectively.

The summary statistics for the log return series are shown in Table 4.1. The crude oil market
experiences higher returns than Chiaseequity segments over our study period. With regard to
the equity segments, Consumer Goods has the highest sector returns (0.025%) and Industrials
has the lowest sector returns {0.034%). It is clearly shown that the means of the return series
are relatively small compared to the corresponding standard deviations. Kurtosis coefficients are

significantly greater than three and all return seriesexcept the Financials sector have negative
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skewness values, which indicate that the distribution of almost all return series are typically
asymmetric and that the probability of observing large negative returns is higher than that of a
normal distribution. As a result, the JarqueBera (1980) test statistics (JB) clearly confirm the
rejection of the null hypothesis of normality for all return series at the significance level of 1%.
Results from the LjungBox (1978) Q statistic indicate the presence of serial autocorrelations for
five of seven return series. Engle’s ARCH test (1982), carried out as the LjtBgx Q statisic on
the squared return series, indicates the existence of heteroscedasticity for all return series at the
1% level, which thus supports the argument to employ a GARCH modeling approach to
examining volatility spillovers between oil and stock marketsWe also calculatethe Spearman’s
rank correlation coefficient of equity and oil returns.’ It varies substantially across industries:
from 0.0271 (Consumer Goods) to 0.238 (Basic Materials), which are all positive and
significantly from zero. This finding swgests that oil price increases over the last decade may be

indicative of higher expected economic growth and corporate earnings (Arouri et al., 201%).

A battery of unit root tests is conducted in Table 4.2 for the prices and log returns series of crude
oil and Chirese equity segments. As can be seen, according to the Augmented Dickejler
(1979) (ADF) and Phillips and Perron (1988) (PP) unit root tests, performed on the levels and
log-differences, all pricesseries under consideration follow the unitroot processes, while their
first differences are stationary as large negative values support the rejection of the null
hypothesis of a unit root at the 1% significance level. We thus conclude that the return series of

Brent crude oil and Chirese equitysegmentsare stationary.

" We prefer the copula based Rank correlation measure, i.e. the Spearman’s rank correlation coefficient, to the Pearson
correlation measure. The estimation process is implemented through MatLab.

8 The weak positive correlation between stock and oil market is also observed in the Europe and Gulf Coopenatib (GZz0)
countries.
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Table 4.2
Unit root tests.

Panel A: index series

Indices ADF test PP test

None Cons. Cons. & trend None Cons. Cons. & trend
BRENT 0.3584 -1.1365 -2.2413 0.3471 -1.1494 -2.2617
MARKT -0.3803 -1.2788 -1.5246 -0.3736 -1.2768 -1.5246
BASIM -0.3916 -1.4414 -1.8075 -0.4653 -1.5635 -1.9632
CONSG 0.2806 -0.9090 -1.7746 0.3192 -0.8767 -1.7333
CONSS -0.2846 -1.3329 -1.7680 -0.2398 -1.2878 -1.6941
FINAN -0.4680 -1.3532 -1.5735 -0.4791 -1.3747 -1.6026
INDUS F2.3761>> F2.8914>> -2.4968 F2.2389~> F2.8576>> -2.5114
Panel B: return series
Returns ADF test PP test

None Cons. Cons. & trend None Cons. Cons. & trend
BRENT F54.362>>> F54.366~>~ F54.358>>> F54.355>>> F54.360~>~ F54.352>>>
MARKT F53.665>>> F53.6567>> F53.6497>> F53.681>>> F53.672>>> F53.6657>>
BASIM F50.674>>> F50.669>>> F50.661>>> F50.947>>> F50.941>>> F50.933>>>
CONSG F51.385>>> F51.386>>> F51.391>>> F51.402>>> F51.401>>> F51.405>>>
CONSS F51.052>>> F51.049>>> F51.042>>> F51.053>>> F51.051>>> F51.043>>>
FINAN F53.425>>> F53.715>>> F53.707>>> F53.726>>> F53.717>>> F53.709>>>
INDUS F51586>>> F51597>>> F51.622>>> F51.736>>> F51.731>>> F51.749>>>

Notes: ADF is the Augmented Dicke¥uller (1979) unit root test statistic. PP is thePhillips-Perron (1988) unit root test statistic. The null
hypothesis in the ADF and PP tests is that the underlying series has a unit root. +++ indicates the rejection of the nulbthgsis at the
significance levels of 1%Numbers of augmenting lags are chosen using the Hann&uinn Criterion. Significance levels probabilities from
MacKinnon (1996) use the number of observations. Asymptotic values have a higher significance level.

Finally, as we are interested in the asymmetry of the volatility response to news, we report Engle
and Ng (1993) test statistics for “sign bias”, “negative size bias”, “positive size bias” and their
“Joint effect” in Table4.3. The sign bias test examinethe impact that positive and negative

shocks have on volatility. In particular, if the response of volatility to shocks is asymmetric, then
the “sign bias” statistics will be statistically significant. Furthermore, the size of the shock could
also affect wlatility. Therefore, the “negative size bias” statistics focuses on the different effects
that large and small negative shocks have on volatility and the “positive size bias” statistics
focuses on the different effects that large and small positive shocksve on volatility. And the

“joint test” statistics focuses on the joint effects of sign and size on volatility. It can be observed
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that the conditional volatility of Brent crude oil is sensitive to the sign and size of the innovations.
In particular, there is strong evidence of sign and both positive and negative size bias in the Brent
crude oil volatility, and the joint test for both sign and size bias is highly significant. Also, the
conditional volatilities of the change in Chinese equitygegments indexes display both negative
and positive size bias and the joint test for both sign and size bias is significant at conventional

significance levels.

Table 4.3
Engle and Ng (1993) tests for sign and size bias in variance.

Variable Sign Negative size Positive size Joint

BRENT 17796~ 3.0072>>> 24102>> 2350177
MARKT 0.2691 5.9704>>> 45318>>> 56.8166>>>
BASIM 1.0224 6.9614>>> 3.6940>>> 62.2075>>>
CONSG 0.0172 75869>>> 4.5434>>> 79.7997>>>
CONSS 0.2174 8.1053>>~ 45274>>> 87.0229>>>
FINAN 1.6599~ 3.7313>>> 44914>>> 40.0577>>>
INDUS 0.3115 6.5144>>> 484677 66.0611>>>

Notes:*+and ++indicate the rejection of the null hypothesis of the Engle and Ng (1993) test at the 1% and 5% levels, respectively.

4.4 Econometric methodology

Multivariate GARCH (MGARCH) models have been commonly used to estimate the volatility
spillover effects among different markets. Andersen et al. (1999) show that MGARCH models
perform well relative to competing alternatives, for example, the continuous stochastic diffusion
models. Especially, MGARCH models have been used in the energy economics and finance
literature to study oil prices (see Chang et al., 2010, 2019,)and to study volatility transmissions

in equity markets (see Khan and Batteau, 20119. Given the evidence of volatility spillovers and

asymmetric effects in Brent crude oil and Chinese equisegments, we characterize the joint data

° Further discussion about this issue could be found in Jdtii and Kazeranesh (2006) and Lanza et al. (2006).
1 Further discussion about this issue could be found in Hassan and Malik (2007) and &itiyo (2011).

76



Chapter4: Volatility Spillovers and Asymmetries between Oil Prices and ChineseSsittok Returns: Implicatiorfer Portfolio Management

generating process underlying the return series of Brent crude oil and Chinese equiggments

as follows:

a

4,= &t i c@_)oo4g70+ %, \'(JJg?s*(UtQ

o _ 56
Yc_ Q;*t;

(4.1)

N

where 4.= BNEGS the vector of the returns on Brent oil price and Chinese equitgegments

indices respectively, a= I‘n’iz(js the deterministic vector specifying the unconditional means of

4. and 4., yis used to model the interdependence between oil aneéquity segments return

[T . v
series with its coefficient matrix given as o= H'g [ggl, Y BéiCis the stochastic vector
5 6

specifying the random error term of the mean equation for the returns on Brent oil price and

Chinese equitysegments indices respectively, .= EfriiCis a sequence ofndependently and

identically distributed (i.i.d.) random vectors. The market information available at time PF1 is

D5

denoted as 4,5 and * .= d[% I%6‘;his the matrix of conditional variances of oil and stock

sc Dbec

returns.

Multivariate GARCH models require that we specify volatility matrix* . Several different
specifications have been proposed in the literature, including the VECH model of Bollerslev et al.
(1988), the CCORR model of Bollerslev (1990), the BEKK model ofgle and Kroner (1995), the
DCC model of Engle (2002), and the VARMMRCH model proposed by Ling and McAleer (2003).
However, none of these specifications is capable of capturing the asymmetry of the volatility
response to news!! In this regard, given theasymmetric effects of news on volatility in the
return series of Brent crude oil and Chinese equitgegments,we use an asymmetric version of

the BEKK model, introduced by Grier et al. (2004), as follows:

' McAleer et al. (2009) extended the VARIGARCH model to accommodate the asymmetric impacts of the unconditional
shocks on the conditional variance, and proposed the VARBARCH specification of the conditional variance. However, the
VARMAAGARCH model de not accommodate the timearying conditional correlations which are more realistic in many
empirical analyses. In chapter 3, we take the extended version of the VARMRCH model with dynamic conditional
correlations to analyze empirical issues. In this chapter, we choose the asymmetric version of the BEKK model to accommodate
volatility spillovers, asymmetry and dynamic conditional correlations simultaneously.
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*o= W% | ’ #o Yo Yoptpt | U B vt &1Qrs sk (4.2)
b@ Y@s

where % #, $s =J @ are 2 (2 matrices (for all values of Fand G2, Q= max( \’(,0) are
the Glosten et al. (1993) dummy series collecting the stylized negative asymmetry from the
shocks, with  %being a triangular matrix to ensure positive definiteness of *.. Matrix #
measures the extent to which conditional variances are correlatedith past squared unexpected
returns and consequently the effects of shocks on volatility. At the same time, matrix B depicts
the extent to which current level of conditional variancecovariance matrix is related to past
conditional variance-covariance matices. Matrix D shows the asymmetric volatility effect. This

specification allows past volatilities, * .,y as well as lagged values of¢,p ¥, and Q55 to
show up in estimating current volatilities of oil and equity, where Q= E’%i@captures potential

asymmetric responses. In particular, if the price of oil is higher than expected, we consider that in
general to be bad news to Chinese equityarket, although oil price shocks may have differential
effects on Chinese equitgegments. In addition, the introduction of the Q;?SQZ‘?S termin Eq. (42)
extends the BEKK model by relaxing the assumption of symmetry, thereby allowing for different

relative responses to positive and negative shocks in the conditial variance-covariance matrix,

*

¢

Estimation is done by maximum likelihood, where the contribution of \g to the joint Gaussian
log-likelihood of a sample with Tobservations is given by:
i i

I TP
¢@d ¢@b

KA (4.3)

In empirical application of univariate GARCH processes it has often been found that standardized
residuals have excess kurtosis. To take the conditional leptokurtosis into account, Bollerslev

(1986) advocates to evauate and maximize the sample logikelihood under the assumption of

2 The coefficient matrices are described As= E’;Zz

! ot

6~ — 5 %6 d@s @s %5
B= hD= hand G h
ec d:; @s @ d?es %6

5 %6
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Student’s tdistributed innovations. For this reason we alternatively use a product of
standardized univariate t distributions to specify the loglikelihood function, which is given by:

,i ?—5 ., ,i ?_5

=1 Iog(F*GGY;G I |*g6| (4.4)

¢@b c@b
with  ( is the density function of the multi standardized Student’s Pdistribution. Because the
conditional distribution of \(; is governed by a nomormal distribution, i.e. Student’s t
distribution, the estimation procedure given by Eq. 4.4) is interpreted as quasimaximum

likelihood (QML) estimation.

Therefore, the econometric specification used in this chapter has two compents. A vector
autoregression (VAR) given in Eg. 41) is used to model the returns. This allows for
autocorrelations and crossautocorrelations in the returns. A multivariate GARCH model given in
Eq. @.2) as the asymmetric version of the BEKK mod&d used to model the volatility spillovers,
asymmetry and dynamic conditional correlations. As is often the case in applied research,
different criterion functions select different lag lengths for the VAR models. Preliminary
regression analysis showed very lite difference between a VAR with two lags compared to a
VAR with one or three lags. Consequently, in the interest of parsimony and accuracy, a VAR with
two lags is chosen. Furthermore, in order to deal with estimation problems in the large
parameter spacewhich is clearly the case of Eq.4(2), we assume thatB= C= 1 in Eq. @.2),
which is consistent with recent empirical evidence regarding the superiority of GARCH (1, 1)
models (see Hansen and Lunde, 2005T.herefore, the conditional variance for Brent crude oil

kD 5.-50and Chinese equitysegments ( Dy -5 returns can be expanded as:
Dses5= Bt L5t 25556%c %ot 5%t st 255560 6

+>E(335DS6Q+ @5@@"’ Z@S@GQQQQ+ @5@(; (4-5)
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Dees= Bet Bet =Relet 256 50%c et Re%et Folsct 2356% 6D o
+>8eD6ct @6+ 2 @s@eQQc+ @ (4.6)

In Eq. (45) and Eq. 4.6), the elements contained in the matrices of Eq4.@) are given by their
corresponding lowercase letters, where shscripts ( G F P denote row, column and time period,
respectively. Eq. 4.5) and Eq. 4.6) reveal how shocksand volatility are transmitted across time

and across the Brent crude oil and Chinese stoskctors 13

4.5 Empirical re sults and analysis

In this section weestimate the VAR(2) —ABEKK(1,1) model for all pairs of oil and stock market
(sector) returns in China using quasi maximum likelihood methods and allow necessary
adjustments for standard errors by using robustversions. We used a range of starting values to

ensure that the estimation procedure onverged to the global maximunt4

Table 4.4 shows the estimation results of our8#42) F#$'--(1,1) model for six pairs of
oil-stock market returns in China, together with statistical tests applied to standardized r@guals.
Taking a close look at the conditional mean equations for all equity segments, we find that the
returns for Brent crude oil and Chinese equitysegments are not interdependent as current oil
returns in all cases are only affected by the orperiod or two-period lagged oil returns, denoted
by #41) E and #42) E respectively. This finding thus suggestsome evidence of shorterm
predictability in oil price changes throughtime and corroborates the conclusions of some recent
papers that the weakform informational efficiency of international oil markets is rejected most

of the time (see Elder and Serletis, 2008; Arouri et al., 2010\t the sane time, none of the

¥ In Eq. (4.2), the elements oft $, =J @ matrices cannot be interpreted individually. Instead, we have to interpret the
non-linear functions of the parameters which form the intercept terms and the coefficients of the lagged variances, covariances
and error terms presented in Eq. (4.5) and Bgp), We follow Kearney and Patton (2000) and calculate the expected value and
the standard error of those nalinear functions. The expected value of a Hmear function of random variables is calculated

as the function of the expected value of the variabkesorder to calculate the standard errors of the functionfist-order

Taylor approximation is used. This linearizes the function by using the varianegiance matrix of the parameters as well as

the mean and standard error vectors.

* The computations presented in this studeme conducted by means of RATS and R programs.
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autoregressive terms in the returngenerating process for the stock market is statistically
significant from zero, which indicates that past information of Chinese stodieturns do not help
predict current Chinesestock returns. Our finding is consistent with Arouri et al. (2011)’s
conclusion with regard to the European and U.S. stock markets that past realizations of stock

returns do not help predict stock returns.

Moreover, in order to assess the information flonbetween oil price and Chinese stockmarket
returns, the daily Grangercausality relationship among the oil and Chinese stocknarkets

returns is examined through the VAR model usintyvo lags!s, which is given as:

R 6 R 6 R
= =+ | Moyt | v+ Y 4.7
N= = Y@%Y'}F?Y @ 5Y|}!.Y ¥ (4.73

Al

i 6 i 6 X )
N= =+ 1 eyt T 2ehvt Y% (4.73
e V@5

where I\E and hJJ are the log return on the respective crude oil and stock markets. The VAR
model is estimated using ordinary least squares with heteroskedasticitgonsistent standard
errors. The coefficients >y and >v in Eq. (4.7a) and (4.7b) describe the leathg relationship
between the respective crude oil and stock markets own returns, while the coefficient®y and
%y quantify Grangercausality between the respective crude oil and stock markets. In order to
test the significance of the leadag relationships, two restriction tests are employed on the

cross-market coefficients %y and 7%y in Eq. (4.7a) and (4.7b) as follows:
*45 By=J@vy= 0 BKNHMH 1,2
“16 Ay =J @ %= 0

The first null hypothesis tests that all of the crossnarket coefficients are jointly equal to zero.
The second tests that the sum of all the coefficients is equal to zero. Hereafter, the first and

second tests are defied as the joint and sum coefficient tests, respectivelithe results for the

' The results are robust to differing numbers of lags.
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Grangercausality tests described in Table &. suggest that there is no Grangecausality
relationship between the oil and Chinese stockiarket returns.26 None of the coefficient tests for
the oil and Chinese stocknarket returns reject the null hypothesis of no leadag relationship

among all the crossmarket coefficientsat the significance level of 1947

% In order to examine the separate effects of signed returns, the VAR model is modified to include the effects of lagged
positive and negative returns describing Granger causality from positive and negative shocks from Brent crude oil and Chinese
stockmarkets. The results suggest that there is no evidence that significantdgaeélationships persist among Brent crude oil
andChinese stocknarkets positive/negative returns.

7 |t is noteworthy that the dynamic relationship between oil and stock returns is sensitive to the stage of the business cycle,
and if this dependence is not accounted for, it may become unstable. In particular, when the economy is down and subject to
high uncertainty, as in the aftermath of the recent financial crisis of 20, oil prices may not reflect expected future
macroeconomic conditions accurately. Therefore, we examined the coefficients stability of the mean equation in Eq. (4.1)
across businessycles by extending our model to include a dummy variable indicating the aftermath of the financial crisis of
2007-2010 following the bankruptcy of Lehman Brothers on September 15, 2008. For the most part, the results support the
argument thatthe returnsfor Brent crude oil and Chéiseequity segmentsre not interdependat. Elyasiani et al. (2011) tak

the similar method to clarify the impact of business cycle on the dynamic relationship between oil and stock returns.
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Table 4.5
Granger causality in returns.

= e 0 i@ iyt 1 i@?sy@?w % (473
A 6 , 6 .
b= =+ 1 eyt T %ot Y% (473
Yes @

Panel A: Market Index Iﬂf I\IJ

i%2) statistic p-value i%2) statistic p-value
* 45 Joint coefficient test 1.0413 0.3531 1.7592 0.1511
* 46 Sum coefficient test 0.0109 0.9167 2.0151 0.1621
Panel B: Basic Materials Iﬂf I\IJ

i%2) statistic p-value i%2) statistic p-value
* 45 Joint coefficient test 1.6792 0.1867 3.1588 0.0645°
* 46 Sum coefficient test 0.0543 0.8158 4.9240 0.0265%
Panel C: Consumer Goods Iﬂf I\IJ

i%2) statistic p-value i%2) statistic p-value
* 45 Joint coefficient test 0.6198 0.5381 0.5197 0.5948
* 46 Sum coefficient test 0.1909 0.6621 0.1109 0.7391
Panel D: Consumer Services l\l} I\),

i%2) statistic p-value i%2) statistic p-value
* 45 Joint coefficient test 0.5032 0.6046 0.7099 0.4918
* 46 Sum coefficient test 0.0105 0.9185 0.0396 0.8422
Panel E: Financials l\l} I\),

i%2) statistic p-value i%2) statistic p-value
* 45 Joint coefficient test 0.8029 0.4481 25190 0.0807Y
* 46 Sum coefficient test 0.0059 0.9389 2.0163 0.1556
Panel F: Industrials l\l} I\),

i%2) statistic p-value i%2) statistic p-value
* 45 Joint coefficient test 1.5910 0.2039 1.3631 0.2560
* 46 Sum coefficienttest 0.4193 05173 0.0371 0.8473

Notes: This table presents results for the initial Grangecausality tests specified by Eq. (4.7a) and (4.7b). ** and * indicate the nu
hypothesis is significant at the 5% and 10% level, respectively.
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4.5.1 Volatility spillovers and asymmetric effects: the marketevel perspective

The results of estimating the ABEKK parameterization from the markdevel perspective are
reported in Panel A of Tablet.4. Our findings indicate that volatility (conditional variance) in oll
returns is directly affected by its own volatility and by the volatility in the Chinese stockndex
returns. High level of conditional volatility in the past are associated with higher conditional
volatility in the current period (see the positive and significant coefficients on ;5. and Dy ).
Moreover, the coefficient for the covariance term( I;§ in the conditional variance equation for
oil returns is statistically significant. This latter finding implies indirect volatility transmission
through the covariance term from Chinese stockndex returns to oil returns. Thus, we find
significant direct and indirect transmission of volatility from the Chinese stockmarket to the
Brent crude oil market. Furthermore, our results indicate that volatility in oil returns is also
affected by shocks originating in the Chinese stocknarket (note the significant estimated
coefficient on Yg() but not shocks originating in the oil market (note the insignificant estimated
coefficient on ). In addition, the estimated coefficient on the cros®rror term (%.%J is
insignificant, suggesting the absence of an indirect effect of shocks in the Chinese stoekket on
the Brent oil market.l8 Finally, the coefficientson @g and ng are significant indicating that
Brent oil market volatility responds asymmetrically to its own shocks and Chinese stoakarket
shocks, i.e. negative events originating in these markets increase volatility more than positive

shocks.

The behaviour of stock return volatility is similar to that of oil. The results indicate that volatility
in stock returns is directly affected by itsown volatility and by the volatility in the oil returns

(note the significant estimated coefficient on Iy 5 and Dy g). Moreover, the coefficient for the
covariance term ( 9 in the conditional variance equation for stock returns is statistically

significant. This latter finding implies indirect volatility transmission through the covariance

'8 The analysis of the impacts of the previous day’s shocks of crude oil and stock markets on the conditional variance of crude
oil market and the conditional variance of stock market, in some degree, is similar to the news impact surfaces analysis
developedby Kroner and Ng (1998), which is a multivariate generalization of the univariate news impact analysis of Engle and
Ng (1993) involving plotting conditional variance against lagged shocks.
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term from oil returns to Chinese stockindex returns. Thus, we find significant direct and indirect
transmission of volatility from the Brent crude oil market to the Chinese stocknarket. Moreover,
our results indicate that volatility in stock returns is also affected by shocks origating in the
Chinese stock market (note the significant estimated coefficient on ch) but not shocks
originating in the oil market (note the insignificant estimated coefficient on \ég In addition, the
estimated coefficient on the crossrror term ( \gg\gg is insignificant, suggesting the absence of
an indirect effect of shocks in the Brent oil market on the Chinese stookarket. Finally, the stock
returns volatility responds asymmetrically to its own shocks and to shocks originating in the oil
market (@g and ng are both significant), suggesting that negative events in these markets

increase volatility more than positive shocks.

Panel A of Table 4.4also provides estimates of the persistence in volatility for each return
series!® The estimates of volatility persistence will provide clue about the extent to which future
conditional variance is influenced by past shocks and volatility. The greater thersistence, the
more weight should be given to recent observations of volatility in terms of explaining future
volatility. On the contrary, less weight on recent observations of volatility should be given under
the condition of lesser degrees of persistate for forecasting future values of volatility. This is
because the volatility of the series will return to its unconditional variance faster than would be
the case when there is greater persistence. In the case of no persistence, forecasts of future
volatility will simply be given by the long-run variance of the series. The results presented here
indicate that both Brent crude oil andChinese stockreturns series are persistent with their
persistencevalue and the reversbn of volatility to its long-run value isa little bit of quicker for

stock than for oil returns.

In general, the estimated conditional volatility series do not change very rapidly under the

impulsion of return innovations given the small size of the coefficients associated with shocks.

! Analogous to the univariate GARCH model, the persistence ofligglat the multivariate GARCH model is computed by
taking the sum of coefficients of lagged variances, covariances, squared error terms angredoss$ of error terms (see
Ewing et al., 2002).
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They tend instead to evolve gradually over time with regard to substantial effects of past
volatility given the large values of the coefficients associated with current volatilityAccordingly,
investors seeking prdit from trading oil and Chinese stoclkassets may consider active investment
strategies based on volatility persitence and current market trends and should keep in mind
that the viability of such strategies depends on the stability and the strength of performance

between successive periods.

The volatility interdependence between the Brent oil market and the Chinese stockarket may
result from the fact that China’s oil consumption has quadrupled during the last three decades,
and it has become the second largest oil consumer only after the US. At the same time, because
the domestic oil production of China has reached its full capacity in recent years, the increase in
consumption is mainly satisfied by increases in import such that China hasrned from an oil
exporter into the world’s second largestoil import er. Furthermore, China has accounted fothe
largestincrease in world oil consumption. Therefore, one would expect fluctuations in oil market
would have a significant impact on China’s stock market as a result. Unambiguously, with its
amount of oil consumption, higher dependence on imported oil supply and more
market-oriented domestic oil pricing mechanism, the interaction between the world oil price and

China’s macreeconomy and its stock market should have been more significant (Du et al., 2010).

4.5.2 Volatility spillovers and asymmetric effects: the sectelevel perspective

The results for oil and basic materials models are reported in Panel B of Table 43ur findings
indicate that volatility (conditional variance) in oil returns is directly driven by past volatilities in

oil and sector returns, as well as indirectly influenced by the covariance term from sector returns
to oil returns. Thus, we find significant direct and indirect transmission of volatility from basic
materials sector to the Brent crude oil market. Moreover, only past sector shocks are found to
drive volatility changes in oil market. Furthermore, crude oil volatility responds asymmetrically

to its own shocks and to shocks originating in the basic materials sectddn the other hand, the
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behaviour of sector return volatility is similar to that of oil as both direct and indirect
transmission of volatility from the Brent crude oil market to thebasic mateials sector has been
detected. Interestingly, only unexpected changes in sector returns influence sector return
volatility. Furthermore, sector volatility responds asymmetrically to its own shocks and to shocks
originating in the oil market. Finally, the estimates of the persistence in volatility suggest that
both Brent crude oil and basic materials returns series are persistent and the version of
volatility to its long-run value is a little bit of quicker for sector returns than for oil returns.The
possible explanation for the volatility transmissions between crude oil and basic materials sector
is that the relatively heavy use of oil in the &sic materialssector is a key determinant of the oll
effects (see Arouri et al., 2011) Indeed,the sector return volatility could be intensified by oil
prices increases through changes in the oil supply for this industry as well as consumer demand
for its manufactured products. Therefore, it is their own interest to minimize the unfavorable

impact of rising oil prices through an effective hedging strategy.

For the oil-consumer gads model reported in Panel C of Table.4, our finding suggests that
there are no significant direct and indirect crossvolatility effects and shock transmissions from
sector returns to oil returns. Volatility in oil returns depends on own past return inrovations and
own past volatility. On the other hand, we essentially find unilateral volatility transmission from
oil returns to sector returns as volatility in sector returns is driven by not only its own past
shocks and volatility but also past volatilityin oil returns. The unilateral volatility transmission
from crude oil to consumer goods sector is expected as rising oil prices are likely to strongly
influence consumer and investment sentiment, and consequently their appetite for consumer
goods. With respect to the asymmetric effects, our finding suggests that oil and sector returns
only respond asymmetrically to their own shocks. In addition, the estimates of the persistence in
volatility suggest that both Brent crude oil and consumer goods returns sexs are persistent with
their persistence valueand sector returns are slower than oil returns in terms of the reversion of

volatility to its long-run value.
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The results for oil and consumer services model reported in Panel D of Table 4.4 reveal
bidirectional volatility transmissions even though the transmisgon patterns are not similar for

oil and sector returns. Volatility (conditional variance) in oil returns is only driven by past
volatilities in oil and sector returns. On the other hand, volatility in sector returns is directly
driven by own past volatility as well as indirectly influenced by the covariance term from oil
returns to sector returns. Furthermore, there are no significant direct and indirect shock
transmissions between sector and oil returns as only own unexpected changes influence
volatility. The significant volatility transmissions from oil returns to sector returns may be
primarily the result of the direct impact of oil price changes on uncertainty over demand for the
products of companies in consumer services sector. In addition, both oih@ sector volatilities
respond asymmetrically to the shocks originating in the oil and sector markets. Finally, the
estimates of the persistence in volatility suggest that both Brent crude oil and consumer services
returns series are persistent with their persistence value to be very close to one and the return of

volatility to its long-run value is a little bit of slower for sector returns than for oil returns.

For the oil-financials sector model reported in Panel E of Table 4.4ur finding suggests that
there are no significant direct and indirect shock transmissions between sector returns and oil
returns. However,we essentially find bidirectional volatility transmissions as there are direct
and indirect interaction for volatility in oil and sector returns. Although financial institutions are
not directly involved with oil production or consumption, their association with oil occurs via
their lending to and/or holdings of corporate bonds issued by firms with significant exposure to
oil price fluctuations, their speculative positions in oitrelated instruments, and portfolio
readjustments that take place by market players in response to oil price movements (see
Elyasiani et al., 2011). In addition, both oil and sector volatilities respond asymmetrically to the

shocks originating in the oil and sector markets.

The results reported in Panel F ofable 44 reveal that the industrials sector and the oil market

experience significant direct and indirect shock trasmissions and crossvolatility effects. Their
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conditional volatility depend on both own and counterpart past return innovations and past
volatilities. As a heavy user of petroleum and related products and the limited development of
effective hedges againsthe impact of oil price fluctuations, it is not surprising to observe the
volatility transmission effects for industrials sector in China. Our results are the counterevidence
of Malik and Ewing (2009), who note that the development of effective hedges agst the effects
of ail price changes is the most likely explanation of the insignificant volatility transmission from
the world oil markets to the USindustrials sector. In addition, both oil and sector volatilities
respond asymmetrically to the shocks dginating in the oil and sector markets. Finally, the
estimates of the persistence in volatility indicate thaboth Brent crude oil and industrials returns
series are persistent and theeturn of volatility to its long-run value is a little bit of quicker for

sector returns than for oil returns.

4.5.3 Dynamic conditional correlations and diagnostic tests

Fig. 4.1shows the timevarying conditional correlations from the ABEKK modelThe dynamic
conditional correlations can vary a lot from their average valuereported in Table 4.4
emphasizing the need to compute dynamic conditional correlations. Up until 2008 there was no
significant trend in each pair of correlations. After 2008, there is a slight upward trend in each
pair of correlations. It has been observed that the dynamic cditional correlations for each
series are all smaller than 0.5. This indicates that there is sufficient scope for portfolio
diversification between Brent crude oil and Chinese stockectors. Furthermore, these dynamic
conditional correlations do alternate in sign and cover a range of values betwee.2 and 0.4.
These periods of negative correlatioa provide an opportunity for meaningful portfolio
diversification. Furthermore, the significant variation in the conditional correlations over time
indicates that any inferences from the constant conditional correlation model would be

misleading.
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Lastly, the results of diagnostic tests based on standardized residuals are also shown in Table 4.4.
Tests on the standardized residuals and standardized residuals squared indicate that there are
no significant signs of autocorrelation and ARCH effects at the 1% significance level. However,
the JB statistics still reject the normality hypothesis even thagh that departure from normality is
greatly reduced. We regard the departure from normality as well asthe significance of the
estimated degrees of freedom for the Student’'sPdistribution as strong evidence for favouring a

Student’s Pdistribution for Y,

We also present diagnostic tests suggested by Engle and Ng (1988)d Kroner and Ng (1998)
based on the ‘generalized residuals’, defined aé'g\% F [f' For all symmetric GARCH models,
the news impact curve is symmetric and centred at\'(;?S: 0 (see Engle and Ng, 1993). A
generalized residual can be thought of as the distance between a point on the scatter plotﬁg\%
from a corresponding point on the news impact curve. Therefore, if the conditional
heteroskedasticity part of the mockl is correct, generalized residuals should be uncorrelated with
all information known at time PF1. In other words, the unconditional expectation of\'rf\'é
should be equal to its conditional one, @' The Engle and Ng (1993) and Kroner and Ng428)
misspecification indictors test whether we can predict the generalized residuals by some
variables observed in the past, but which are not included in the model. In this regard, we follow
Kroner and Ng (1998) and Shields et al. (200%p define a battery of misspecification indicators.

In a two dimensional space, we partition( \5,5 %75) into four quadrants in terms of the possible
sign of the two residuals. Then, to shed light on any possible sign bias of the model, we define the
setof indicator functions as € ¥5< 0), £ Yo5< 0), € ¥5< 0, Yo5< 0), £ ¥65< 0, Yos5> 0),
f\?g?5> 0, \%75< 0), and f\?g?5> 0, \%75> 0), where {®equals one if the argument is true
and zero otherwise. Significancef any of these indicator functions indicates that the model, Eq.
(4.2), is incapable of predicting the effects of some shocks to either oil or stock markets.
Moreover, due to the fact that the possible effect of a shock could be a function of both the size

and the sign of the shock, we define another set of indictor functioni,\}f?s)ﬁ-(\}f< 0),
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(B9 €Y< 0), (o€ Y <0), and (¥,9 ®¢ ¥ < 0). These indicators are technically scaled
versions of the former ones, with the magnitude of the shocks as a scale measure. We conducted
indicator tests and report the results in Table 4.6 As can be seen in Table &, most of the
indicators fail to reject the null hypothesis of no misspecification -all test statistics in Table 46

are distributed as i %1). Hence, our model captures the effects of all sign bias and sigiae scale
depended shocks in predicting volatility and there is no significant model misspecification error

in the standardized residuals. Therefore, the8 #42) F #$'-- (1,1) model we employ is
flexible enough to capture the dynamics of oil and Chinese stoc&turns in terms of volatility

spillovers, asymmetric effects and timevarying conditional correlations.

In summary, our results imply the existerwe of widespread volatility transmissions between oil
and stock sector returns. Moreover, the degree of volatility transmissions from oil market to
stock market varies from one sector to another, which confirms the argument that the degree
with which stock sector returns are sensitive to oil volatility depends on severahdustry -specific
factors such as the degree of oil consumption, competition and concentration in the industry, and
the effectiveness of hedging oil risk (see Arouri et al., 2011). It is obvious that the significant
volatility transmissions we show previously require portfolio managers to quantify the optimal

weights and optimal hedge ratios to properly deal with oil risk.
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Table 4.6
Diagnostic tests based on the news impact curve.

(B°FE ey F L (Y°Fg
BRENT MARKEINDEX
¥, < 0) 36251>>> 1.4249 1.7606>
£ ¥ < 0) 1.1915 1.1914 1.3574
%<0, ¥y < 0) 0.9247 0.5865 1.4529
%<0, ¥ >0) 1.2748 1.4003 0.3238
% >0, % < 0) 0.5709 1.1422 0.3993
% >0, V% > 0) 0.2390 1.3745 0.9887
(B98¢ Bs< 0) 0.6757 1.2871 0.0167
(B9 8¢ ¥hs< 0) 0.8880 16612> 0.0010
(Yo 8¢ B5< 0) 0.0066 0.5344 0.0889
(Y0 8¢ ¥hs< 0) 2.6402>>> 21334>> 0.8066
BRENT_BASIC MATERIALS INDEX
V% < 0) 3.4832>>> 22074>> 0.7355
£V < 0) 1.3113 1.0738 17011
%<0, %< 0) 0.9348 0.8193 2.1244>>
V%1 <0, %> 0) 0.0225 1.6111 0.6471
V% >0, ¥ < 0) 0.5577 1.0881 0.5302
% >0, ¥ > 0) 0.2830 1.0684 1.2082
(G4 Es< 0) 0.7627 0.4794 0.3362
(9t ¥s< 0) 0.9218 0.6258 0.2704
(Y29 ¢ E5< 0) 0.0013 0.3793 0.4356
(¥ £ ¥y5< 0) 3.0229>>> 1.3850 1.6349
BRENT_CONSUMER GOODS INDEX
{¥%, < 0) 0.1364 0.9588 0.6236
£, < 0) 1.0592 0.4860 0.5753
V%<0, %< 0) 0.9373 1.5524 0.9109
V%1 <0, %> 0) 1.0215 19259 0.2969
% >0, %< 0) 0.7353 0.0281 0.6310
% >0, V%> 0) 0.0703 0.9255 0.3861
(Gt Es<0) 0.7315 1.4279 0.0001
(9t ¥s< 0) 0.9327 0.0239 0.1934
(¥ 8¢ B5< 0) 0.0074 0.4427 0.8112
(Yoo 8¢ ¥hs< 0) 2.6828>>> 1.1667 0.6626
BRENT CONSUMER SERVICES INDEX
£ ¥ < 0) 0.1820 0.7626 18117>
£V < 0) 1.0388 1.4052 0.2864
%<0, %< 0) 0.8886 1.3856 1.4485
%<0, ¥ >0) 1.1090 18629 0.6539
% >0, %< 0) 0.7669 18382 0.1880
% >0, % > 0) 0.5368 0.8753 1.3239
(B98¢ Bs< 0) 1.0110 0.7573 0.1147
(B9 8¢ ¥hs< 0) 0.9608 0.4394 0.2067
(%94 s< 0) 0.0039 0.4499 0.0107
(0 £ ¥y5< 0) 2.8875>>> 0.6844 1.9499>>
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Table 4.6 (continued.)
Diagnostic tests based on the news impact curve.

(B ELFD (pFg

BRENT FINANCIALS INDEX

¥ < 0) 0.1537 1.1579 0.9273
£ < 0) 1.2505 0.4933 0.7642
¥ <0, ¥ < 0) 1.0216 0.7534 0.2465
¥ <0, ¥ > 0) 1.2257 0.9984 0.1340
¥ >0, ¥ < 0) 0.6844 1.6030 1.3547
¥ >0, ¥ > 0) 0.2445 1.5922 0.9440
(B¢ Es< 0) 0.7407 33198>>> 0.1259
(B0 € os< 0) 0.9098 0.5849 0.3039
(Yoo S € E5< 0) 0.0025 0.0279 0.1081
(Yoo ® € Yos< 0) 2.1449>> 17531> 16822>
BRENT_INDUSTRIALS INDEX

£, < 0) 0.0634 1.0234 18374>
€%, < 0) 1.0342 1.0558 0.6697
¥ <0, ¥ < 0) 0.7625 0.8867 1.6044
¥y <0, ¥ > 0) 1.4455 1.5956 0.8231
¥ > 0, ¥y < 0) 0.6930 1.4424 0.0514
¥ >0, % > 0) 0.2490 0.7386 0.3218
(B9 €< 0) 0.8622 0.8082 0.4915
(B9 € ¥hs< 0) 0.8583 03113 0.1626
(Yoo € 5< 0) 0.0053 0.0925 0.3182
(Y0 £ ¥ps< 0) 21606 18145> 0.4176

Notes: +++, ++and *indicate the rejection of the null hypothesis of no asymmetric effects at the 1%, 5% and 10% significance leve
respectively.
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Fig.41 Timevarying conditional correlations (red lines) and corresponding average value of dynamic conditional
correlations (dotted black lines) for pairs of Brent crude oil and stock sector indices in China
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4.6 Implications for portfolio management

The additional source of uncertainty resulting from the strong connection between oil and stock
markets in Chinamay present a new challenge, and the same time, a new opportunity fetock
markets participants. Investors may need to reevaluate their risk management strategy to deal

with this additional source of risk.

To illustrate the implications of our findings on optimal portfolio design and oil risk hedging, we
consider a portfolio of oil and stocks in which an investor attempts to minimize portfolio risk
without lowering expected returns.20 Let I:f Q and EE‘ be the conditional volatility of the oil
market, the conditional volatility of the stock market (sector), and the conditional covariance
between oil and stock returns at time P respectively. According to Kroner and Ng (1998) and
Hammoudeh et al. (210), define
i =
g (49

Then it is easy to show thatunder the condition of a mearvariance utility function, the optimal

portfolio weight of oil -stock holding is

0, EBf'<o0
sf'= PsgLEB QS Q1
1L,EBE'>1

where SE‘ and (1 F SgEi) are the optimal weight of the oil and stock assets in a ordbpllar

portfolio of oil -stock at time P

Summary statistics for portfolio weights computed from the 8 #42) F #3$'--(1,1) model are
reported in Table4.7.A glance at the coefficients shows that the optimal weights for the oil asset
in the oil-stock portfolios vary substantially across sectors. At the aggregate market level, we
observe that, b maximize the riskadjusted return of the onedollar oil-stock portfolio, China
investors should have more stock assets than oil assets in their portfolio in order to minimize

risk without lowering expected returns. In addition, the optimal holding of oil assets in a

% |n order to avoid forecasting expected returns, we assureee that the expected returns are zero, making the problem
equivalent to estimating the riskinimizing portfolio weights, which is consistent with Kroner and Ng (1998).
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one-dollar oil-stock portfolio should be 33.12 cents, and the remaining budget of 66.88 cents is
invested in stock assets. By sector, the optimal weight for oil ranges from 36.86% (Industrials) to
41.55% (Basic Materials) from the 8#42) F#%$'--(1,1) model for China sectorbased
portfolios. This result suggests that for Industrials the optimal allocation for oil in a on€ollar
oil-stock portfolio should be 36.86 cents, with the remainder, 63.14 cents, invested in the
Industrials stock sector index. For Basic Materials, these optimal investments are 41.55 cents for
oil and 58.45 cents for stocks. On the whole, our results indicate that, to minimize the risk
without lowering the expected return, investors in China should have more stockthan oil in

their portfolios.

Table 4.7
Portfolio weights summary statistics.
Mean St. Dev. Min Max

BRENT_MARKT 0.3312 0.0231 0.0747 0.7491
BRENT_BASIM 0.4155 0.0362 0.0783 0.8467
BRENT_CONSG 0.3778 0.0257 0.0396 0.8368
BRENT_CONSS 0.3820 0.0329 0.0313 0.8581
BRENT_FINAN 0.4013 0.0207 0.1088 0.7891
BRENT_INDUS 0.3686 0.0320 0.0001 0.8461

Notes: This table reports the basic statistics of portfolio weights fooil, including mean (Mean), standard deviation (Std. Dev), minimun
value (Min) and maximum value (Max)using conditional variance and covariance estimated from the VARBEKK(1,1) model.The oil
asset is represented by the Brent crude oil of future contracts, whereas investment in stocks is represented by the DataStream Global
Country Indices (China) or each of five stock sector indices in China represented by the DataStream Global Sector Indices.

As to the optimal hedge ratios, Kroner and Sultan (1993) consider a twasset portfolio,
equivalent to a portfolio composed of oil and the stock market (sector) index in our analysis. To
minimize the underlying portfolio risk, a long position of onedollar on the stock segment should
be hedged by a short position onEdoIIars on the oil assets, where QE is given by

{E= %E (4.9)

Fig. 4.2 plots the calculated timevarying optimal hedge ratios from the 8 #42) F#$'--(1,1)
model. For all of the hedge ratios, the graphs show considerable variability after January 2007.
For many of the hedge ratios it is also the case that the maximum value was recorded after
January 2007.
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