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Abstract

Guaranteeing a prescribed level of reliability for a complex multi-component system 

is the problem considered in this thesis. For this, optimal maintenance and inspection 

policies are derived, taking into account the different deteriorations the components in 

the system are subject to. These degradations are described with the use of continuous 

stochastic processes in time and are assumed not to be directly observable. Maintenance 

decisions are based on a performance measure defined by a functional acting on the 

system state process. The transient property of the performance measure enables a 

modified control limit rule, based on last exit times, to be considered. For this a critical 

level is defined and the probability of never returning below it is used in the decision 

making approach. A condition based maintenance policy is investigated with the use of 

a bijective function of the performance measure’s value, that determines the required 

amount of repair. Both periodic and non-periodic inspections are studied. The non-

periodic approach is handled with the use of an inspection scheduling function which 

assigns the amount of time between two consecutive inspections to the value of the 

performance measure at inspection. Two main types of models are proposed. The first 

type considers one threshold and focuses in guaranteeing a prescribed level of reliability 

for systems where crossing of a critical boundary does not cause immediate failure 

but will require action later. Examples include physical infrastructures such as roads. 

Models of the second type take failure of the system into account with the incorporation 

of a second threshold. Examples include aeroplanes where safety regulations imply 

regular inspections and repairs. Occurrence of unfrequent catastrophic failures must 

however be considered.
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Notations

Stochastic processes

• Bf1' , i e  { 1 ,2 , , n}  \ standard Brownian motions

• i E { 1 , 2 , . . . ,  n}  : Brownian motions with drift and volatility terms describ-

ing the state of deterioration of the un-maintained component Cj

• i G {1, 2 , . . . ,  n}  : drift term for

• crj, i 6 {1, 2 , . . . ,  n}  : volatility term for

• W t : n-dimensional Wiener process describing the state of the un-maintained 

system

• Rt : stochastic process describing a performance measure of the considered un- 

maintained system (refers to a Bessel process with drift)

• : stochastic process describing a performance measure of the considered main-

tained system

• Gjr: first hitting time of threshold T  by the process Rt given that it initially 

started from state Rq — x

• Hj: : last exit time from the interval [0,£) for the process Rt given that it initially 

started from state Rq =  x

• f* : transition density function for Rt from state x after a time interval of length 

r

• : probability density function for

• gjr: probability density function for GXT
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Notations

• gyr : Laplace transform of gxT

Cost models

General notation

• £ : critical threshold for the one-threshold models, repair threshold for the two- 

threshold models

• T  : failure threshold in the two-threshold models

• Ci : cost of inspection of the system

• Cf\ cost of failure of the system

• Crep : cost of repair of the system

• Cr : cost of repair function

• d : maintenance function

• k : parameter describing the amount of maintenance undergone on the system

• Xi, yj, i , j  € ( 1 ,2 , . . . ,  N } : points used for the Gauss-Legendre rule

• Wi, i € ( 1 ,2 , . . . ,  N } : weights of the Gauss-Legendre rule

• II : inspection policy

Periodic inspections

• r : period of inspection

• t * : optimal period of inspection resulting in a minimum expected cost of main-

tenance per unit time
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Notations

• One-threshold, model

— VT(x)\ cost of inspection and maintenance per cycle with period of inspec-

tion r, given that the value of the considered critical threshold is £ — x

— vT (x) : expected cost of inspection and maintenance per cycle with period 

of inspection r, given that the value of the considered critical threshold is

— Lt  (x ) : length of a cycle with period of inspection r, given that the value of 

the considered critical threshold is £ — x

— lT (x) : expected length of a cycle with period of inspection r, given that the 

value of the considered critical threshold is £ — x

— CT (x) : expected cost of maintenance per unit time, with period of inspection 

r, given that the value of the considered critical threshold is £ — x

• Two-threshold model

— V* : cost of inspection and maintenance per cycle with period of inspection 

r, given that at inspection time (prior to any maintenance action) RT =  x

— v* : expected cost of inspection and maintenance per cycle with period of 

inspection r, given that at inspection time (prior to any maintenance action) 

Rt  =  x

— L* : length of a cycle with period of inspection r, given that at inspection 

time (prior to any maintenance action) Rr =  x

— I* : expected length of a cycle with period of inspection r, given that at 

inspection time (prior to any maintenance action) RT =  x

— C* : expected cost of maintenance per unit time, with period of inspection 

r, given that at inspection time (prior to any maintenance action) RT — x

Non periodic inspections

• Ti, i € N : times at which the system is inspected

• Tj+, i E N : times after maintenance of the system

• t *, i G N : times at which the system is replaced (renewal points)
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Notations

• Tj, i G N : amount of time between inspections at times Tj_i and t *

• m : inspection scheduling function determining the amount of time until the next 

inspection

• a, b: parameters of the inspection scheduling function m

• One-threshold model

-  Vç_x : total cost of maintenance, given that the value of the considered crit-

ical threshold is £ — x

— v^-x : expected total cost of maintenance, given that the value of the con-

sidered critical threshold is £ — x

• Two-threshold model

— Vx : total cost of maintenance, given that at inspection time (prior to any 

maintenance action) RT = x

-  vx : expected total cost of maintenance, given that at inspection time (prior 

to any maintenance action) RT =  x

Mathematical notation

• 1{.} : indicator function

• P, E : probability and expectation symbols

• R : modified Bessel function of the first kind

• Kv : modified Bessel function of the second kind

Other

• Ci, i € { 1 ,2 , . . . ,  n} : components of the system

• Ki, i 6 {1, 2, . . .  ,p} : classes in which the components in the system fall into
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Chapter 1

Introduction

Motivations

Reliability plays a key role in all technological systems. It determines the success of 

investment in plant and machinery, and the level of customer satisfaction. When tack-

led with efficiency, it has been shown that considerable improvements in both system 

safety and maintenance expenses may be achieved. However, the increasing complexity 

of the systems often requires adaptiveness of the techniques considered. In the case 

of a highly reliable system for instance, its actual failure may only rarely be observed 

making models based on systems’ lifetime distributions inappropriate. Focusing on the 

actual system’s deterioration has proved to be an efficient way to handle the matter, 

see for instance [23], [46], [55], [62], [86]. The deterioration through time is usually 

described with the use of an appropriate stochastic process and interests are based on 

the time at which the process first reaches a particular value, called a critical threshold. 

These times usually define times at which the system must be maintained (repaired or 

replaced) and such a maintenance policy is often referred to as a “condition based main-

tenance policy with a control limit rule” . Such a method usually involves one stochastic 

process describing the deterioration of the whole system and taking into account the 

degradations of all the components present does not seem to have been considered yet. 

The study of multi-component systems usually involves the use of structure functions, 

[12]. The approach consists in deriving a system’s reliability from its components’ relia-

bility and requires knowledge on the structure of the system. This appealing technique 

has its limit when the size of the system becomes too large, leading to extremely com-

plex or even untractable expressions for the structure functions. Hence, the study of

1



Chapter 1: Introduction

multi-component systems usually refers to series/parallel systems, [14], [78] [83], [93]. 

The apparent lack of models considering both condition based maintenance policies and 

complex multi-component systems set the initial motivation for the research proposed in 

the thesis. A complex multi-component system refers to a system consisting of several 

types of components, where each component endures its own type of degradation. The 

subjacent idea is to propose a condition based maintenance policy for a system, taking 

into consideration the different deteriorations. For this, the system’s state is described 

by a multi-variate process made out of processes describing the different components’ 

degradations. Whereas many proposed models are based on the assumption that the 

components’ degradations are directly observable, this is often not the case in real life 

situations. Information on the system’s state is generally gained at inspection times by 

evaluating a performance measure. Common examples include modern cars, these use 

extensive condition monitoring and built in testing: the On-Board Diagnostics system 

(OBD). When a car is serviced, a repair technician has access to the state of health 

information for various vehicle sub-systems with the use of the OBD. If the usage of 

the car has been exceptionally heavy a repair is undertaken.

'... all major functions of an automobile are controlled, and monitored, by computers 

on their own networks. If something goes wrong with the car, the computer will know 

and record a fault code long before a light comes on on the dashboard (the automotive 

industry calls that a MIL, or Malfunction Indicator Light) alerting us that something 

is wrong. Some of those problems are simple and will be taken care of next time you go 

in for a service. Others are not and, if unchecked, can damage or destroy the engine

[17].
An approach proposed in the literature to deal with this kind of situation, is the use 

of a functional A  acting on the state process, [38], [60], [61], [82], This new process 

represents the observable performance measure and decisions related to the system’s 

maintenance are made on the basis of its value at inspection time. This technique has 

also been considered as an alternative to deal with non-monotone processes by looking 

at the maximum of the process, [61]. Rather than forcing the performance measure to 

have monotone trajectories, other important characteristics of the chosen performance 

process are exploited here. The Bessel process is the process considered to describe 

the system’s performance measure and corresponds, under certain assumptions stated 

in Chapter 3, to the Euclidean norm of a multi-variate Wiener process. As mentioned 

above, the general control limit rule focuses on first hitting times of particular thresholds

2
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by a process, generally monotone. The reason for this being that first hitting times are 

stopping times: knowledge of the process’ past history only is required to be informed 

of their occurrence with certainty. The fact that Bessel processes have non-monotone 

trajectories motivated the elaboration of a different control limit rule. It is the tran-

sient property of such processes that is exploited and rather than concentrating on first 

hitting times only, the method proposes the use of last exit times from intervals. Last 

exit times are non-stopping times as knowledge of their occurrence requires knowledge 

of the future history of the process: the process can cross a threshold and return below 

it in the future (this may be seen as various intensities of use of the system). The extra 

complexity added to the models with the use of non-stopping times implies working 

with the probability of occurrence of such events.

A more general approach towards system maintenance was also wished to be included 

in the proposed models. Indeed, a considerable amount of models only consider per-

fect repairs of the system, meaning that after a repair the system is as good as a new 

one. Many examples in life show that this assumption is not always valid, increasing 

the will to consider a wider range of repairs. The fact that the Euclidean norm of a 

multi-variate Wiener process corresponds to a Bessel process only when it starts from 

the origin forces repairs to be treated differently. When considered, imperfect repairs 

are usually modelled by lowering the state of the process found at inspection, [26], [61]: 

the amount by which the state of the process is decreased represents the amount of 

repair undergone on the system. In the proposed models, repairs are tackled with the 

use of a repair function, which determines the amount by which the threshold(s) must 

be lowered. The process describing the performance measure is then re-set to zero. 

Particular attention is paid to the considered inspection policies. Both cases of periodic 

and non-periodic inspections are treated. The periodic case consists in determining the 

optimal period of inspection resulting in a minimum expected cost per unit time. The 

non-periodic approach is inspired by the one proposed in [34]. The concept is based on 

the realistic assumption that the amount of time between two consecutive inspections 

depends on the system’s state: the worse the system gets, the more frequently it should 

be inspected. This is put into mathematical form by defining a function (called the 

inspection scheduling function) that determines the next time of inspection from the 

value of the process describing the system’s state at inspection time. In this thesis, it is 

the amount by which the threshold is decreased (given by the repair function), or the 

value of the performance measure, that determines the inspection times. Extensions

3
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are provided with the study of different inspection scheduling functions with various 

convexity properties, enabling cases such as infant mortality to be considered.

Two types of models are derived, with both periodic and non-periodic inspection poli-

cies investigated in each case. The first type considers one threshold only and focuses in 

guaranteeing a prescribed level of reliability. Concrete examples of systems this model 

may apply to are roads: regular maintenance actions are usually undertaken to keep a 

certain level of reliability and even if they have not failed, reconstructions are usually 

planned after a certain amount of time for safety issues. For the second type of mod-

els, a second threshold is added in order to incorporate failure of the system. Repair 

is undertaken on the system to guarantee a fixed level of reliability but failure of the 

system is now plausible. Examples of systems thought of are airplanes, where regular 

inspections and repairs are usually undertaken to maintain a certain level of safety but 

unfrequent failures of such systems are to be taken into account.

The Chapters

The purpose of Chapter 2 is to provide a description of the problem considered in 

the thesis. The set up for the investigated system’s performance measure is defined and 

so are the different types of control limit rules explored. The fundamental notions used 

when considering maintenance policies are stated: these concern the inspection policies, 

the maintenance actions and the type of process usually considered. A brief literature 

review is given to illustrate some of the important maintenance policies investigated in 

the past.

Chapter 3 focuses on the processes considered in the derived models. The chapter begins 

with a description of the properties required for the process describing the degradation 

of the components, the desired continuity property implies the consideration of Brow-

nian motions. The stochastic process describing the system’s performance measure is 

then introduced. The process considered is the Bessel process with drift: justifications 

for this choice and important properties are provided.

The methodology adopted constitutes the content of Chapter 4. The consideration 

of last exit times necessitates a discussion on stopping and non-stopping times. The 

chapter then concentrates on the approach chosen to deal with repairs and inspections. 

Repairs are modelled with the use of a maintenance function d that takes into con-

4
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sideration the state of the performance measure at inspection time to determine the 

amount of maintenance to be undertaken on the system. Non-periodic inspections are 

dealt with with the use of an inspection scheduling function m that deduces the next 

inspection time from the state of the process describing the system’s performance. 

Chapter 5 concentrates on models with one threshold, for both periodic and non-

periodic inspection policies. The features of the models, expressions for the expected 

costs and descriptions of the methods used to obtain the solutions are provided. The 

chapter ends with an analysis of the numerical results obtained.

Chapter 6 constitutes an extension of Chapter 5. The models proposed consider a sec-

ond threshold that is introduced in order to incorporate instant failures of the system. 

This requires the numerical computation of the probability density function for the 

first time the process hits a threshold. The two types of inspection policies are also 

considered and so are particular cases of maintenance strategies. Explorations of the 

numerical results computed are also provided.

5



Chapter 2

Problem statement

2.1 Introduction

The purpose of the present chapter is to provide a concise description of the problem 

investigated in the thesis. For this, the fundamental concepts encountered in the theory 

of reliability and maintenance need to be described. A considerable amount of problems 

in this field concentrate on the state of an item. Under the reasonable assumption that 

most systems deteriorate through time (possibly in different ways), one can distinguish 

between two states:

1. the working state: the system’s intended tasks or performance are ensured,

2. the failure state: the system does not perform its required function.

When no maintenance is undertaken on the system, its state will usually gradually 

evolve from the working state to the failure state. However, this evolution can be 

modified by considering maintenance policies and it must be noted that different main-

tenance policies on a given system have different repercussions on its state. Rather 

than concentrating only on the state of deterioration of a system, our interest also lies 

in its performance. We assume that the considered system’s task may be ensured with 

different levels of efficiency and propose to determine an optimal maintenance policy 

that guarantees a prescribed level of performance.

In the glossary of maintenance terms in Terotechnology, [1], maintenance is defined 

as ‘the combination of all technical and associated administrative actions intended to 

retain an item or a system in, or restore it to, a state in which it can perform its re-

quired function’. According to Dekker, [27], its objectives can be summarized under
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four headings:

(i) ensuring system function (availability, efficiency and product quality);

(ii) ensuring system life;

(iii) ensuring safety;

(iv) ensuring human well-being.

A maintenance policy on the other hand is understood to be a combination of an in-

spection policy and one or more maintenance actions that act on the actual system’s 

state of deterioration. The maintenance policies in the thesis aim at ensuring the sys-

tem’s efficiency and life. A similar approach may be adopted in the case where ensuring 

safety is of interest.

This chapter is organized as follows: section 2.2 explains how the performance of the 

system is evaluated and in particular how it is related to the deterioration of all the 

components in the system, bringing a multi-dimensional aspect to the problem. Major 

concepts related to inspection policies and maintenance actions are then described in 

section 2.3. This section also provides a description of the stochastic process’ character-

istics usually exploited when deriving cost expressions for the considered maintenance 

policies. Both inspection policies and maintenance actions are summarized in figure 2.3 

and examples of different models considered in the literature are provided in section 

2.4.

2.2 The system’s performance measure

2.2.1 The set up

The main concern of the research is to derive optimal maintenance policies that 

guarantee a prescribed level of performance for a system. Since we extend the usual 

single component case to a case where the number of parts in the system is not restricted, 

it is a major issue that the proposed tool defining the item’s performance takes the 

number of components present in the system into consideration. The idea is to take 

into consideration the degradation of all the components, denoted by C\, C2 , ■ ■ ■, Cn, 

and to let the performance measure depend on these degradations, which seems to 

be a reasonable assumption. For this we assume that the state of each component is

7
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described by a continuous stochastic process in time, for component C\ say. The 

system’s state can therefore be described by the multi-dimensional stochastic process

w t=(w}1\w?\...,w}n))

The performance of the system is then assumed to be described by another stochastic 

process being defined by a functional acting on W (:

Rt =  A (W t)

In such a way, the system’s performance directly depends on the components’ states. 

We further make the assumption that W t is not observable, which is generally true in 

the case of large systems. However, at inspection times, the performance measure, Rt, 

is known.

The general set up required to deal with the performance of the system is the following. 

The performance of the system is described by values taken in the interval K+ and 

therefore the functional is chosen accordingly so that it also belongs to the interval 

(this is explained later in Chapter 3). The interval R+ is called the state space of 

the process Rt. When Rt — 0 the system’s performance is assumed to be maximal 

(this corresponds to the case of a new system), and as the value for Rt increases the 

performance is understood to decrease. This set up seemed to be the most convenient, 

since it allows the performance of the system to get as low as possible (when Rt tends 

to Too) and only deals with positive values describing the performance. It is however 

possible to redefine the problem by setting a maximum value M  and considering the 

process Rt =  M  — Rt on the interval [0, Ai), setting Rt — M  to denote a maximal 

performance and Rt =  0 to denote the lowest performance the system may attain. 

The convenience of this being that the process Rt now decreases when the performance 

decreases. We shall however stick with Rt rather than Rt.

2.2.2 Control limit rule

Since we wish to guarantee a certain level of performance for the system, we must 

somehow define under which conditions the performance criteria are met. To deal with 

this, we introduce a value £ £ M+ called a critical threshold and partition the state 

space in two intervals

M +=  [(U ) U [£, Too)

8
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In the general case, a control limit rule is considered. A process, usually monotone, 

describing the system’s state of deterioration is considered and the approach consists 

in determining the first time at which the process hits the threshold, called the first 

hitting time:

Gl =  inf {X t =  £|X0 =  x }

Such a time defines a failure time for the system and appropriate maintenance is un-

dertaken on the system.

We propose an extension to the general control limit rule in the sense that the process 

of interest now defines the performance of the system and is not assumed to be mono-

tone anymore. Indeed, the performance of a system may fluctuate with time due to 

the system’s usage at particular moments. Thus, rather than considering the first time 

at which the process hits the critical threshold, we are now interested in the time after 

which the process definitely stays above the critical threshold called the last exit time:

HI =  sup{Xt <  £|Ao =  x }
ieM+

We note that for some non-monotone process this time may not exist (as illustrated in 

figure 2.1): its existence with the chosen process is explained in Chapter 3.

Figure 2.1: Example of a non-monotone process, where HI does not exist.

The reason for considering such a time is the following: the non-monotonicity of 

the process implies that it may leave the interval [0,£) to return to it later. Hence

9
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the performance of the system varies from being low for a certain amount of time {i.e. 

when it belongs to the interval [£, +oo)) to being acceptable (i.e. when it belongs to the 

interval [0,£)). The value for the threshold £ is chosen accordingly so that this type of 

scenario is accepted. However, due to the property of the chosen process (involving the 

transience property, see Chapter 3), it will eventually definitely escape from the interval 

[0, £) meaning that the performance will never reach an acceptable level anymore. After 

such a time, the system is assumed to be aging in such a way that it needs to be replaced. 

The proposed models improve in complexity in the way that a second threshold T  is 

then added. This new threshold allows to incorporate failures in the model. This is 

done by assuming that the new threshold satisfies T  > £ and by considering the first 

hitting time of T\

G% =  inf {X t =  X\X0 =  x }
te K+

With this new set up consisting of two thresholds £ and T , the state space is now 

partitioned as

M+ =  [ 0 , O u [ C ^ ) u [ ^ , + o o )

If at inspection times the process has definitely escaped from the interval [0, £), it needs 

to be repaired. Moreover, when the process hits the critical threshold T  the system is 

assumed to be in a failed state and needs to be replaced with a new one.

We note here the analogy of the approach with a sequential probability test. Such a test 

is used when it is desired to test that a sample A\, A 2, . . .  came from one distribution 

against the possibility that it came from another, i.e it is wished to test Ti0 : X, ~  f 0 (.) 

versus Ti\ : X, ~  (.) say. The values Ai, A2 , . . . ,  where

,  „ I E i A M
m nr=i/i (*i)’

are computed sequentially and decisions are made corresponding to the value obtained 

for Am: if Xm < ko reject Tío, if Am > k\ accept Tío and if ko < Am < k\ compute 

Am+1, m G N, for fixed k0 and k\ satisfying 0 < A:0 < k\. The strategy opted in our 

model is similar in the sense that at inspection time decisions on the maintenance action 

to carry out depend on the probability of occurrence of the last exit time: repair, replace 

or do nothing and test at the next inspection.
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2.3 Maintenance policies: fundamental concepts

2.3.1 Inspection policies

Ensuring the good functioning of a system requires accurate knowledge of its state 

of deterioration. In many cases errors in measurement arise, [26]. These are not taken 

into account here and make no difference to the models derived later. Indeed, this type 

of error is usually incorporated in the models with the use of a normally distributed ran-

dom variable. The process describing the components’ deteriorations being a Brownian 

motion with drift (see Chapter 3), errors in measurements may be taken into account 

with a change in the drift and volatility terms of the process: the sum of two normally 

distributed random variables is a normally distributed random variable.

In some cases, the state of degradation of a system is continuously observable: one may 

think of a light bulb for example. In most cases however, the state of the system (or 

subsystem) may only be known after an inspection. Hence knowledge of the state of de-

terioration may only be available at particular times and may require dismantling of the 

system. An optimal maintenance policy strongly depends on a appropriate inspection 

policy. Moreover, failing to determine such a policy may not only result in suboptimal 

maintenance policies but also in failures which may have catastrophic consequences, 

e.g. nuclear power plants.

In this section we propose an overview of the most considered inspection policies in the 

field of reliability and maintenance. We distinguish between instantaneous and non- 

instantaneous inspections, perfect and imperfect inspections, periodic and non-periodic 

inspections. This does not constitute an exhaustive list since combinations of the pro-

posed policies may be considered.

No inspection

Under such an inspection policy, the system is never inspected and usually runs 

until it fails. The ‘no inspection’ policy is often associated with cases of technical and 

economic obsolescence: a repair on the system induces a higher cost than a replacement. 

Typical examples include light bulbs, first price DVD or CD players, where replacement 

of such items with new ones is usually more appropriate than a repair.

11
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Instantaneous/Non-instantaneous inspections

The time required for an inspection may vary from system to system. It is often 

the case that the inspection time can be neglected when compared to the system life. 

However, for large systems it is sometimes the case that inspections require considerable 

amount of time and the associated cost may depend on the time required to inspect it. 

To deal with that matter, we define the concept of instantaneous inspection.

(i) Instantaneous inspections: This type of inspections refers to inspections whose time

length may be neglected compared to the system’s life time or to the time between 

any two consecutive inspections. If an inspection is planned at time t =  r  say, 

the system’s state is assumed to be known instantaneously. The time at which 

this state is known is usually denoted by t =  t + (sometimes t =  r ) . A fixed cost 

of inspection Ci is usually associated to such an inspection.

(ii) Non-instantaneous inspections: Here the inspection times are not neglected. This

is often the case when an ‘in-depth’ inspection is considered or when the system is 

large and inspections require a major dismantling. The time required to inspect 

it needs not be neglected anymore and if the system is inspected at time t =  Ti, 

its state of deterioration is known at time t =  72 , with t \ < r̂ . The resulting 

cost of inspection is usually a function of the time required to inspect the system, 

C i  ( r 2  -  t i ) .

Perfect/Imperfect inspections

It is essential to know up to what extend the information gained after inspection 

can be trusted. For this the concepts of perfect and imperfect inspections is introduced.

(i) Perfect inspections: After being inspected, the true state of degradation of the

system is assumed to be known.

(ii) Imperfect inspections: The system state of degradation is not fully available. This

may come from several reasons, the main ones being that the system was only 

partially inspected (leaving some parts uninspected) or that errors in assessing 

the state of the different parts occurred. In this last case we need to distinguish 

between two types of errors:

12
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• False positive: the inspection incorrectly reports a positive result, i.e. the 

system is incorrectly reported to be in a satisfactory state.

• False negative: the inspection incorrectly reports a negative result, i.e. the 

system is incorrectly reported to be in an unsatisfactory state.

Periodic/Non-Periodic inspections

Another important feature of inspections is the time at which they occur. There 

may be conditions on such times due to the type of the considered item. For instance, in 

the aerospace industry one can reasonably assume that inspections of airplanes require 

appropriate tools and appropriate engineers, forcing inspections to take place in pre-

determined bases at particular times. Hence, one may think of pre-determined equally 

spaced inspection times. However other type of systems may be inspected at any desired 

time, allowing the inspection planner greater freedom in the planning. This leads us to 

the definition of periodic and non-periodic inspections. For this, let n  =  { iq , . . .  ,rn} 

denote an inspection policy over a finite time, where each of the r.t denotes an inspection 

time (over an infinite time interval, the notation n  =  { i q , . . . ,  rn, . . .} is used).

(i) Periodic inspection policy: The amount of time between any two consecutive in-

spections is constant. This constant is called the period of inspection. Let r  be 

the period of inspection, the corresponding inspection policy is:

n  =  { t i , . . . ,  t „ } ,  with Ti =  i x t , V i e  { 1 , . . . ,  n}

(ii) Non-Periodic inspection policy: The amount of time between any two consecutive

inspections may be different. This amount may be fixed and pre-determined or 

may be random, it may depend on the system state for instance. The correspond-

ing inspection policy is:

n  =  { t i , . . . ,  rn}, where ri+1 -  ±  rj+1 -  t j

for at least one j  e { 1 , . . . ,  n — 1}, with i 6 { 1 , . . . ,  n — 1}, i ^  j.

Remark 2.3.1. The continuous condition monitoring policy is briefly mentioned here. 

This strategy assumes that the system’s state is known continuously. In this special 

case, a cost cccrn per unit time is usually included. Note that this policy may be regarded 

as a limit case of the periodic inspection policy, with r  —> 0.

13
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2.3.2 Maintenance actions

As mentioned in the previous subsection, information on the state of degradation is 

obtained by performing inspections of different types. This new available information 

can then be taken into account to perform appropriate maintenance actions. A good 

inspection policy combined with poor maintenance actions is useless. It is then of 

prime importance to elaborate a concise maintenance strategy. This may involve making 

decisions based on the state of the system known after an inspection and taking actions. 

However other systematic maintenance strategies may consider actions without taking 

into account the system’s state of deterioration.

This subsection aims at defining the important classes maintenance actions fall into.

Instantaneous/Non-instantaneous maintenance actions

Such maintenance actions are defined in a similar way as for instantaneous/non- 

instantaneous inspections. In the instantaneous case, the time length of a maintenance 

action is neglected compared to the system’s life time and a fixed cost is usually asso-

ciated. The non-instantaneous case takes the time needed to perform a maintenance 

action into account and the associated cost may depend on that required time.

Preventive and Corrective maintenance

Maintenance actions are principally considered in order to be able to deal with 

failure of the system. Such actions may be considered prior a failure or after.

(i) Preventive maintenance: Preventive maintenance includes all maintenance actions 

that are planned before observing failure of the system. Such a strategy aims at 

improving the system’s state. We distinguish between the following three cases:

• the preventive maintenance is undertaken at pre-determined time intervals 

and no actions are considered before that time: this constitutes a systematic 

approach,

• the time at which the preventive maintenance is undertaken is chosen on the 

basis of the estimated remaining lifetime of the system,

• preventive maintenance is undertaken on the basis of the known state of 

degradation of the system or its performance.

14
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(ii) Corrective maintenance: Corrective maintenance includes all maintenance actions 

undertaken after failure. Most models usually associate a higher cost with a 

corrective maintenance than with a preventive maintenance. An example of a 

maintenance policy based on corrective maintenance is the no repair strategy. The 

strategy consists in letting the system run until it fails, no maintenance actions are 

considered. This maintenance action is usually combined with the no inspection 

policy. Such a maintenance strategy can be undertaken only in particular cases 

where failure does not involve catastrophic consequences and where safety criteria 

are not an issue (e.g. a light bulb at home). This strategy is also considered in 

cases where the cost of repair of the failed item is less than the inspection cost: 

i.e. the cost induced by letting the system fail is lower than the inspecting cost.

Repairs and replacements

Whether preventive or corrective maintenance are considered, it is essential, when 

possible, to specify the degree of maintenance undertaken on the system. This ranges 

from doing nothing (no maintenance) to a complete replacement. Maintenance actions 

consist of repairs and replacement.

(i) Repair: This includes all maintenance actions that change the system state of 

degradation to a new state. The new state considered often corresponds to a 

lower state of degradation, assuming that repairs improve the system state. How-

ever, one must note that inappropriate repairs can lead to particular cases where 

the system state gets worse; such repairs are not considered in this thesis. By 

perfect repair it is understood a repair that resets the system state to the state of 

a new system: such a repair is said to change the system state to an ‘as good as 

new’ state. By imperfect repair it is understood any other kind of repair than a 

perfect repair. Imperfect repairs include the special case of minimal repair: such 

a repair leaves the system’s state to its state prior to inspection, the system is 

said to be in an ‘as good as old’ state.

Excluding the cases of minimal and perfect repairs where the new state of degrada-

tion is fully known, the degree of repair might be known or only partially known. 

We distinguish between deterministic repairs and random repairs:

• deterministic repair: the state of degradation of the system after a repair is
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known with certainty:

X T+ =  K

with

0 < K  < X T,

where X T is the state of the system at inspection time, X T+ is the state of 

the system after the maintenance action (assumed instantaneous here with 

the notation) and K  is a constant. Hence, the state of the system K, after 

a repair, is improved.

• random repair: the state of degradation of the system after a repair is not 

fully known. The amount of repair undertaken is usually modelled with the 

use of a random variable 0  whose realizations belong to a known sample 

space Cl. In the case where improvement of the system’s state is certain but 

the amount is random, one has

CL Ç [0, X T\

If the random repair on the system does not necessarily improve its state, 

i.e. possibility of failed repair or damage, then

Cl Ç [0, oo)

(ii) Replacement: Parts of the system or even the whole system is replaced with a new 

one. This has the same effect as a perfect repair. Examples of replacement strat-

egy include the block replacement policy: the considered component is replaced 

on failure and at periodic times.

2.3.3 Regenerative phenomena

When dealing with maintenance policies for an item, it is of prime importance 

to model its deterioration accurately. This can be done by looking at the physics of 

the actual degradation and selecting the corresponding appropriate characteristics that 

the process, responsible for the description of this degradation, must satisfy. This 

is the matter of interest discussed in Chapter 3, where the choice of an appropriate 

stochastic process representing the performance measure of the un-maintained system 

is discussed. However, maintenance policies and expressions for the costs of maintenance
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of the system are made using a process representing the maintained system’s state of 

deterioration. This process is derived from the initial one, representing the performance 

of the un-maintained system, by considering the effects of maintenance at appropriate 

times. Let Rt and R% denote the processes modelling the un-maintained and maintained 

system respectively. The usual framework models repairs on the system by changing 

the value of the stochastic process R* at inspection time r  to a lower value at time t + 

(to denote instantaneous repair), satisfying:

0 <R*t + < r ;

hence assuming that the repair improves the performance of the system. At particular 

times though, the system’s performance gets sufficiently low that replacement of the 

whole system is considered. Assume this happens at times (r*)i n, hence:

K r + =  0' i

i.e. the process restarts from its initial state at time t — 0. This property leads us to 

the following definitions:

Definition 2.3.2. (Regenerative process). Consider a process (X t)t>0 having the prop-

erty that there exist points at which the process (probabilistically) restarts itself. That 

is, suppose that with probability one, there exists a time T\, such that the continua-

tion of the process beyond Tj is a probabilistic replica of the whole process starting 

at 0 (note that this implies the existence of further times T2,T3, ... ,  having the same 

property as 7\). Such a process is known as a regenerative process.

Definition 2.3.3. (Renewal process). Consider a counting process for which the inter-

arrival times are independent and identically distributed with an arbitrary distribution. 

Such a counting process is called a renewal process. Formally, let (X k)keN be a sequence 

of nonnegative independent random variables with a common distribution F. To avoid 

trivialities, suppose that P [Xk =  0] < 1. Let
n

Sn =  Y JX u n > l
i=1

Define

Nt =  sup {n  : Sn < t}
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Then, the process {Nt)t>0 is a renewal process.

Remark 2.3.4. We shall say that a cycle is completed every time a renewal occurs.

We note that generalizations to the renewal process may be considered:

• Alternating renewal process: it is sometimes the case that renewal processes have 

intervals of different types, characterized by different probability density func-

tions. For instance, suppose that (Xk)ke  ̂ and (Ffc)fceN are two independent se-

quences of random variables, each sequence consisting of mutually independent 

and identically distributed random variables. Let be a type 1 interval ending 

with a type 1 event and Yk a type 2 interval ending with a type 2 event. Suppose 

further that random variables are alternatively taken from the two series, the re-

sulting process is illustrated in figure 2.2. The (2n — l)th event is a type 1 event 

and occurs after time X\ + . . .  +  X n +  Yi + . . .  +  Yn x and the 2nth event is a type 

2 event occurring after time X\ +  . . .  +  X n +  Yi +  . . .  +  Yn. This system is called 

an alternating renewal process. In a reliability context, one may think of (Xk)keN 

as representing the lengths of operations of a system and (Ffc)fceN the lengths of 

repairs of the system. Models dealing with such scenarios are studied in [5].

• Modified renewal process: consider the case where the first random variable X\ in

definition 2.3.3 has a distribution G that is not identical to F. The process is then

referred to as a modified renewal process (or delayed renewal process). A typical

example of such a scenario being when the considered component at time t =  0

is not new. After failure it is replaced by a new one and so on: the distribution

for the first failure-time is therefore not identical to the remaining ones. In the
rx i — f  (u)

special case where G (x) =  / ^ . , , .  7 du, the process is called an equilibrium
Jo E (X j)

(or stationary) renewal process, [25].

*3

___: type 1 interval
___: type 2 interval

Figure 2.2: Alternating renewal process.
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From the above definitions, one may deduce that R* is a regenerative process and 

the sequence of regeneration points (Ti )ieN defines a renewal process. These properties 

of the investigated process are then exploited to derive expressions for the costs of 

maintenance.

In the special case where inspections occur periodically, the renewal reward theorem, 

[76], is usually used to calculate the expected long run cost per unit time.

T heorem  2.3.5. Consider a renewal process with interarrival times Xi, X 2, .. .  Suppose 

further that a reward Yn is earned at the time of the nth renewal. Yn may (and will 

usually) depend on X n (the length of the renewal interval), but suppose that the pair 

(.X n, Yn) , n =  1 ,2 , . . .  are independent and identically distributed. Let

N t

y* = X >
n— 1

denote the total reward earned by time t.

IfE[\Yn\\ and E [X„] are finite, then

(i) with probability 1,
Yt ; E[Y] 
t E [X]

as t Too

(ii)
E [Yt] _+ E [Y] 

t ^  E[X]
as t Too

i.e. the renewal reward theorem states that the expected long-run return per unit 

time is just the expected return earned during a cycle divided by the expected length 

of a cycle.

Thus, when dealing with periodic inspections, the aim consists in deriving an expression 

for the expected cost of maintenance over a cycle and the expected length of a cycle by 

considering the different possible scenarios. Once these are obtained, the expected long 

run cost of maintenance per unit time may be computed with the use of theorem 2.3.5. 

In the more general case where inspections are non-periodic, the renewal reward theorem 

may also be considered. However, rather than calculating the expected cost per unit 

time over an infinite time horizon, the expected total cost over a finite time horizon is 

usually evaluated: such an expression is also obtained with the use of renewal points and 

provides more insight since it allows to price a maintenance strategy for a pre-defined 

project length.
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2.4 Models investigated

2.4.1 Maintenance policies considered in the literature

Many maintenance policies have been considered in the literature. These consist 

in combinations of the different concepts introduced in sections 2.3.1 and 2.3.2. To 

summarize, figure 2.3 states the different inspection policies and maintenance actions 

encountered in the two previous sections.

Figure 2.3: Maintenance Policies.

To start with, we mention the extension to the above inspection policies proposed by 

Scarf and Deara, [77], [78]. The models proposed consist in determining an optimal
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maintenance policy for a two-component system (a clutch system used in a bus fleet), 

taking into account both failure and economic dependence. In order to deal with that 

kind of scenario, various age-based replacement policies and block replacement policies 

(such as simple block replacement and modified block replacement) were investigated. 

Age-based replacement policies replace a component on failure or at age T, whichever 

is sooner. As mentioned in subsection 2.3.2, a simple block replacement policy replaces 

a component on failure (corrective maintenance) and at time t =  kA, k =  1,2, .. . .  

A modified block replacement policy replaces a component on failure and at time 

t =  kA, k =  1,2, . . . ,  if the component’s age r > b for some suitable threshold b. 

Due to the presence of economic interaction, opportunistic replacement are also intro-

duced: at an opportunity (e.g. an inspection time), a component is replaced if its age 

t  > b' for some l! < b. These block replacement strategies are also combined to give 

more complex maintenance policies and results show that the modified block replace-

ment policies provide lower maintenance costs. However, as mentioned in the article, 

the implementation of such policies requires more level of maintenance reporting and 

control to gain successful results. Thus the economic gains from using a more complex 

policy have to be weighted up against the additional investment required to implement 

them. Block replacement models have also been studied by Aven and Dekker. In [4], a 

decision variable T > 0, which affects the times of maintenance renewing the system, 

is introduced. Such a decision variable can be the time at which the system is replaced 

preventively or a critical time after which the first suitable moment is awaited to renew 

the system. The aim consists in determining the value for T that would minimize a 

long term average cost expression g (T) of the form:

9 CO c +  Jq m (t) h (t) dt 
d +  JQr  h (t) dt

with c and d representing the cost and the time of a preventive replacement respectively. 

The generality of the proposed framework enables to develop a number of different 

models (depending on the chosen expression for the functions m and h) such as:

(i) the standard minimal repair model: m is the cost of a minimal repair times the 

rate of occurrence of failures, h(t) =  1 implying that a cycle always has length T 

and d — 0 meaning that preventive replacements take no time;

(ii) the age replacement model: m is the failure replacement costs times the hazard 

rate, h is the survival function and d =  0;
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(iii) a block replacement model: m corresponds to the expected failure replacement 

costs times the renewal density, h(t) =  1 and d =  0.

As far as imperfect inspections are concerned, we mention the work form Barros, [13]. 

The author investigates the effects of the quality of inspections on maintenance policies. 

The considered maintenance actions consist in replacing the components in the system 

(two components in parallel) preventively or correctively. The complexity of the model 

is introduced by assuming that the components’ state of degradation is only partially 

known. This kind of assumption enables problems such as delay in assessing failure of 

a component, false-alarm and no-detection to be considered. The situation considered 

here is the no-detection one: a probability p that a component fails and failure is 

not detected is introduced. One may think of such a scenario in the case where the 

inspection tool fails before failure of one of the components in the system. The proposed 

method utilizes the stochastic process l{r<t} (where T represents the life time of the 

system), whose expression is given as a smooth semi-martingale:

is called the failure rate process, Qs is a sub-cr-algebra and Mt is a Q martingale with 

the properties E [Mt+u\Gt] =  Mt, V m > 0 and E [Mt\Q0] =  E [M0\ =  0. This process uses 

the available information on the system’s components given by the supervision, taking 

into account that the information given is subject to errors.

An important contribution to the case of periodic and non-periodic inspections with 

both deterministic and random maintenance can be found in the work of Newby and 

Dagg, [26], [61]. The proposed models aim to determine an optimal inspection and 

maintenance policy with the use of a maintenance cost as a measure of policy. Mainte-

nance decisions are taken on the basis of the value of a bivariate process { (X t, Mt) ,  0 <  

t < oo}, where Mt represents the maximum of a non-monotone process X t (a Wiener 

process with drift). In the periodic case, the problem consists in finding the optimal 

inspection period t * determined from

where C (r) denotes the average maintenance cost per unit time. Different models, 

such as the no inspection policy, the continuous condition monitoring and the age

where

T* =  argmin{C (r)},
re R+
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replacement model are considered. A discounted cost criterion is also introduced and 

the case of non-periodic inspections is dealt via dynamic programming.

Another way of handling the complexity of non-periodic inspections is proposed by Grail 

et al. in [34], At inspection times, decisions on both the type of maintenance action and 

the next inspection time are being taken. The next inspection time is chosen with the 

use of a function m, called the inspection scheduling function. It is a decreasing function 

of the state of the system after an instantaneous maintenance action. This framework 

assumes the sensible argument that the worse the system is, the more frequently it 

needs to be inspected. Both preventive and corrective maintenance are included in the 

model by partitioning the state space, in which the state of the system evolves, into 

three intervals: [0,L), [L,M), [M, oo). Upon inspection, if the state of the system is 

found in the first interval the system is left unchanged, if it is found in the second 

region a preventive perfect maintenance is performed bringing the state to an ‘as good 

as new’ state and if the state is greater than M  a corrective maintenance is performed 

(M  corresponding to the failure threshold). The optimal policy, which minimizes a long 

run expected cost, is then determined by choosing the appropriate inspection scheduling 

function and threshold L.

2.4.2 Covariates

An important factor acting on the way a system deteriorates is the environment in 

which it evolves. Hostile environments (e.g. humidity, frost, dryness, high pressure, etc) 

may result in accelerated degradations. Moreover, a system’s degradation is certainly 

affected by its operating history: an old item which has already experienced some kind 

of failure and/or repairs will not deteriorate in the same manner as a new one. It is 

possible to include these ideas by introducing variables in the model representing factors 

that affect the deterioration. Such factors that affect the reliability of the system are 

called covariates.

One of the most important models is the proportional hazard rate proposed by Cox, 

[24], This model treats the presence of covariates in the case of perfect repairs. If we 

let T denote the lifetime of an item, its hazard rate is given by:
f i t )

A (i) = R ity
with /  and R being the density and reliability function of the random variable T 

respectively. The covariates are introduced in the model by considering a hazard rate
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of the form:

A (t;z) =  A0 (t) .ip (*;/?),

where A0 is the baseline hazard rate (system’s hazard rate under the assumption of no 

covariates), 2  is a row vector with each of the z, representing covariates associated to 

the system, (3 a column vector with each of the fa being unknown parameters of the 

model defining the effect of the covariates and ip a function of the covariates. A common 

expression for ip is the exponential function, resulting in the following expression for 

the hazard rate:

A (t; z) =  A0 (t)

Numerous extensions to this model have been proposed, among these Kumar et al. 

investigated the issue of time-dependent covariates, [41], [42], [43]. Percy and Alkali, 

[67], developed the Generalized Reduction of Intensity Model, which considers intensity 

functions instead of hazard rates and allows the case of minimal repair to be considered.

2.5 Summary

Most items experience deterioration through time and thus evolve from a working 

state towards a failure state. For both economic reasons and safety issues, it is of inter-

est not only to prevent such failures but also to guarantee a certain level of performance 

for the system. This is done by considering maintenance policies. A maintenance policy 

consists in an inspection policy and some maintenance actions. An appropriate choice 

of maintenance policy may result in considerable savings and/or increase of the system’s 

safety.

In this chapter, we first introduced a way to relate a performance measure of a system 

with the deterioration of its components. The possible characteristics of an inspec-

tion policy and the different types of maintenance actions usually considered were then 

defined. Part of the chapter also concentrates on the stochastic process’ properties 

required to calculate the maintenance costs. Some examples of maintenance strategies 

considered in the literature were given to illustrate a few of the many possible combina-

tions between inspection policies and maintenance actions. Eventually, we ended this 

chapter mentioning that factors such as the environment in which the system evolves 

or its operating history may affect the system’s deterioration: such factors are called 

covariates.
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The processes

3.1 Introduction

The present chapter focuses on the choice of appropriate stochastic processes for the 

description of the components’ deteriorations on the one hand, and for the description 

of a performance measure of the whole system on the other hand. The chosen process 

describing the system’s performance measure must somehow take into consideration the 

state of degradation of a complex multi-component system. For this we wish to take 

into account the degradation of each component in the system and have a summary 

description of these at any desired fixed time in the future. This summary description 

can be seen as a performance measure that is used to make decisions on the type of 

maintenance to be undertaken on the system. For this, we assume that the considered 

system S consists of n components. The n chosen processes modelling the degradation 

of the components in the system are then grouped to form an n-dimensional process. 

The only available information on the system’s deterioration through time is given 

by the performance measure, which is described by an appropriate functional acting 

on the n-dimensional stochastic process. This concept of applying a functional to an 

underlying process describing the system’s state has been investigated in the past by 

considering bivariate processes, [26], [60], [61]. The approach consists in beginning 

with the underlying process X t and work with a bivariate process (X t. Yt), where Yt 

is a performance metric. The process Yt may be constructed by applying a functional 

to the basic process, Yt =  A (X t). The advantages of the approach are that decisions 

can be based on X t, Yt or even on the pair (X t,Yt). The associated process Yt can 

incorporate the process history or some other important aspect of the process. The
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system is inspected to determine its state (X t, Yt) and a repair or replacement is chosen 

on the basis of the system state at the inspection. Many examples are available in risk 

analysis for engineering projects. Fatigue crack growth in pressure vessels and in aircraft 

structures has been described by Sobczyk and Spencer [82] and Newby [57], [58]; optimal 

inspection and maintenance policies for degradation processes are studied by Newby and 

Dagg [61]. Similar approaches are used in epidemiology: Jewell and Kalbfleisch [38] use 

marker processes in the study of CD4 counts in HIV infected patients; Betensky [15] 

used Wiener process models in designing sequential tests for differences in treatment 

effect of drugs. All of these mentioned examples construct a decision making process 

through using a stochastic process and using an associated process, usually a transform 

of the underlying process, as a decision variable. Natural examples of functionals of an 

underlying process X t are:

(i) the maximum process, Yt =  sup X s;

(ii) the Euclidean norm of a multivariate process Yt — ||Xt|[2;

(iii) an accumulation process Yt =  j X sds;

(iv) a usage measure Yt =  J \ X s \ ds;

(v) errors in measurement Yt =  u(Xt,e) where e is a noise term;

(vi) covariate processes where a distribution F (X t | Yt) describes the dependence of X t 

on covariate Yt.

When the underlying process X t is a Wiener process (i) was extensively studied by 

Dagg and Newby, see [26], (ii) is a Bessel process (if the Wiener process starts at the 

origin), and (iii) is the Kolmogorov diffusion [53].

The first section of the chapter focuses on modelling the components’ degradation: 

attention is paid to the required properties the chosen stochastic process must satisfy. 

For this the class of Markov and Levy processes is introduced. The second section deals 

with the actual stochastic process representing the performance measure of the system: 

relevant properties of this process for the considered models are then stated.
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3.2 Modelling degradation

The present section introduces the processes used to model the state of degradation 

of the considered components and system. Justifications for these particular choices 

are given. This is of prime importance for the rest of the thesis since all the models 

derived in Chapters 5 and 6 clearly depend on the chosen stochastic processes.

To start with, Levy processes are defined and their relevant properties to the problem 

stated. An argument based on the desired continuity property for the chosen process 

leads to Brownian motions with drift: justifications for this choice of Levy process as 

the underlying process modelling the state of degradation of a component are given.

3.2.1 Levy processes

In order to find an appropriate maintenance strategy for a considered system (by 

appropriate we understand one which minimizes a maintenance cost function, or one 

which maximizes some kind of safety of the system), decisions must be made under un-

certainty. This uncertainty mainly comes from the way the system deteriorates through 

time and our main concern is to be able to define a time at which the system is either 

considered as unsafe or as failed. Two strategies have been opted in the past. The first 

being based on the lifetime distribution of the system through time, and the second one 

based on the physics of failure and the characteristics of the operating environment. 

The disadvantage of the lifetime distribution are that the only information available is 

whether the system is functioning or not. In order to represent ageing, failure rates 

are considered. However, failure rates cannot be observed or measured for a particular 

component. Hence, for engineering structure it is generally more interesting to base the 

modelling of degradation on the physics of failure, [81]. It is therefore recommended 

to model the deterioration of the system with the use of a time-dependent stochastic 

process. Moreover, according to Barlow and Proschan in [11], deterioration is usually 

assumed to be a Markov process. A Markov process is defined as follows

Definition 3.2.1. A process (X t)t>0 with values in M.d is called a Markov process if

P [Xt < x\Xto =  x0, X tl =  x1, . . . , X tn =  xn\ =  P [Xt < x\Xtn =  xn] (3.1) 

whenever to < t\ <  . . .  <  tn < t.

27



Chapter 3: The processes

Hence a process is Markov if the conditional distribution of the future given the 

present and the past, is independent of the past. We will see in Chapter 4 that the 

Markov property of the process enables the extension of perfect repair models to more 

general repairs. An extensive amount of work in the held of maintenance and reliability 

has been done using time-dependent Markov stochastic processes, the most commonly 

used being the compound Poisson process, the gamma process and the Brownian mo-

tion: definitions of these processes are now given.

Definition 3.2.2. (Compound Process, Compound Poisson process). Given a counting 

process (Nt)t>0 and a sequence of independent random variables (-Xi)ieN., which are also 

independent of Nt, the random variable

N t

St =  J 2 X >
i=1

is called a compound process.

If (Nt)t>0 is a Poisson process and (X j)i£N* is a sequence of independent and identically 

distributed random variables also independent of Nt, St is called a compound Poisson 

process.

Definition 3.2.3. (Gamma Process). The gamma process with shape function v (t) > 0 

(non-decreasing, right continuous, real valued function for t > 0 with v (0) =  0 ) and 

scale parameter u >  0 is a continuous-time stochastic process (Xt)t>0 with the following 

properties

(i) X q — 0 with probability one;

(ii) X T — X t has a gamma distribution T (v (r) — v (t) , u) , V r  > t >  0;

(iii) X t has independent increment.

Remark 3.2.4. The gamma process can be regarded as a compound Poisson process of 

gamma-distributed increments in which the Poisson rate tends to infinity and increment 

size tend to zero in proportion, [44].

Definition 3.2.5. (Brownian motion). Let (£l,F, P) be a given probability triple. A 

real-valued stochastic process (Bt)teR+ is a Brownian motion if it has the properties:

(i) B0 (u) =  0, V oj €

28



Chapter 3: The processes

(ii) the map t Bt (u) is a continuous function of t £ R +, V u;

(iii) V t,h > 0, Bt+h — Bt is independent of { Bu : 0 < u < t}, and has a Normal 

distribution with mean 0 and variance h.

Among the many publications using the gamma process to model deterioration, we 

refer to [3, 26, 34, 55, 84, 85, 87, 88, 89, 86] and as for the one based on Brownian 

motion we refer to [6, 7, 8, 9, 10, 26, 45, 47, 61, 62, 63, 90].

The reason why such Markov processes (the gamma process and the Brownian motion) 

have been and still are extensively used being that they belong to a smaller class of 

time-dependent stochastic process known as Lévy processes.

Definition 3.2.6. (Lévy process) A processes {X t)t>0 with values in Rd is called a Lévy 

process (or process with stationary independent increments) if it has the properties

(i) for almost all w, t —> X t(w) is right continuous on [0,+oo), with left limits on 

(0,+oo);

(ii) for 0 < i0 < ¿i <  . . .  <  tn, the random variables Y) :=  X t. — X tj_1 {j =  1 ,... ,n) 

are independent;

(iii) the law of X t+h — X t depends on h, but not on t (stationary increments).

Remark 3.2.7. We note here that Lévy processes may have non-continuous paths. Prop-

erties {ii) and {iii) imply that Lévy processes have independent and stationary incre-

ments.

To understand why Lévy processes constitute good candidates for deterioration 

modelling we must first make sure how deterioration and failure of a system are viewed. 

These are commonly seen as the result of accumulation of shocks, wear and tear through 

the lifetime of the system. Shocks on the system are usually dealt with shock models: 

these assume that the considered system is exposed to shocks at random times, with 

each shock causing a random accumulating amount of damage. The main interest is the 

time at which the accumulated amount of damage exceeds a fixed amount. According 

to van Noortwijk, [84], [85], [88], [89], in many cases where the system is subject to 

shocks the order in which these accumulating shocks occur is immaterial, hence suggest-

ing that the random deteriorations in equal interval of time are exchangeable random 

variables. Moreover this also suggests that the amount of deterioration in a fixed in-

terval is independent of the starting time of that interval, implying the stationarity
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property of the process. Exchangeable and stationary increments are similar to the 

stronger properties of stationary and independent increments of Lévy processes, [20]. 

The restriction to stationary increments is outweighed by the analytical advantages of 

using Lévy processes, [59]. We note that the stationary property of the increments 

assumes that the deterioration does not take into account the age of the system, which 

may seem inaccurate for certain types of systems. The use of Lévy processes has also 

been considered in the degradation-threshold-shock models proposed by Lehmann, [45], 

[46]: these consist in a combination of degradation threshold model (control limit rule) 

with a shock model.

The following result about Lévy processes plays an important role in the choice of 

process made to describe the deterioration of the components:

T heorem  3.2.8. (Lévy -Khintchine Formula) A function f  is the characteristic func-

tion of an infinitely divisible distribution if and only if it has the form

4> [u] =  exp {T  (n)}, m ê K

where

T (u) =  iau — <̂r2u2 — J ( l — elux +  iux:l{|x|<i}) p (dx)

for some real a, a >  0 and Lévy measure p.

Moreover, the distribution of a Lévy process is infinitely divisible and consequently 

its characteristic function is given by theorem 3.2.8. These results allows the following 

construction of Lévy processes:

Theorem  3.2.9. Let (X t)t>0 be a Lévy process, then

xt = x[l) + xt(2) + xt(3)

where the Xfj1 are independent Lévy processes: xj:1'1 is Gaussian, X j2’1 is a compound 

Poisson process with jumps of modulus greater or equal to 1 and X\ ‘ is a compensated 

countably infinite sum of jumps of modulus strictly less then 1 independent of X  ̂ .

See [16] or [74] for more details. Hence Lévy processes may be expressed as the sum 

of a Brownian motion with a drift and two jump processes. If continuous paths are 

required, the appropriate choice of Lévy process is given by the following theorem:
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Theorem  3.2.10. (Lévy ). If (X t)t>0 is a continuous Lévy process in Rd then X t is 
expressible in the form

X t =  a Bt +  pi (3.2)

where Bt is a Brownian motion in p G M.d and a a d x d matrix.

In other words, the only continuous Lévy processes are Brownian motions with drift 

and therefore the choice of continuity property implies non-monotonicity: Lévy pro-

cesses cannot be monotone and continuous at the same time. We note that a Brownian 

motion with drift can appear monotone by choosing a large drift and a small volatility. 

If the monotonicity property of the process is required the Brownian motion part needs

to be abandoned in order to deal with the jump processes only: the compound Poisson
(2)process X £ ' is usually considered, with the gamma process as a particular case (see 

remark 3.2.4).

3.2.2 Brownian motion with drift describing the degradation 

of a component

Taking into account the previous subsection, the process chosen to represent the 

evolution of the system’s deterioration will belong to the class of Lévy processes. How-

ever, it must be specified whether the chosen process will be continuous or not. Keeping 

in mind the various applications of such processes in the field of reliability and mainte-

nance, the choice must be made between the gamma process and the Brownian motion 

with drift. Moreover, the required tools to solve the considered models, such as the 

transition density functions and probability density functions of time to reach a certain 

threshold, are available for both of the processes, [74]. Whereas the Brownian motion 

is a continuous process, it is not monotone and can be negative. On the other hand, the 

gamma process is not continuous (since it is a jump process) but has positive jumps. 

Hence it is a monotone increasing positive process. As far as deterioration of a system 

through time is concerned, the positivity and monotonicity of the gamma process seem 

to be relevant properties. Indeed, it implies that the system’s state through time does 

not improve by itself and the state of the system does not get better than when it is new 

(i.e. when it is equal to zero). These are the main reasons why a gamma process may 

be preferred to a Brownian motion. However, in our particular case the continuity of 

the Brownian motion is given preference to the appealing monotonicity of the gamma
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process. In the case of a process with continuous paths, the first hitting and last exit 

time may be determined with greater accuracy. It must be taken into consideration, 

however, that the deterioration of a component cannot improve by itself through time 

and the way the non-monotonicity of the chosen process is interpreted is as follows. 

It is assumed that the chosen process not only models the natural deterioration of 

the considered component but also takes into account the minor repairs undertaken 

on the component. These types of small repairs are neglected in the maintenance ac-

tions considered due to the resulting small change in the state of the process but are 

somehow incorporated in the model through this choice of non-monotone process. For 

example, one may think of the maintenance of a road, which may include rebuilding 

parts of the pavement or parts of the way as major maintenance actions. However, 

filling in small holes constitutes some sort of minor maintenance for the road that can 

be neglected compared to more important actions. These are the type of minor main-

tenance actions that are assumed to be included in the process and therefore justify 

its non-monotonicity. The effect of such minor repairs on the state of the component 

may be handled by choosing an appropriate value for the volatility term associated to 

the Brownian motion in comparison with the value for the drift term. The approach 

usually consists in choosing a large value for the drift term compared to the value of 

the volatility term, preventing the process from being negative. We note that the use 

of non-monotone processes to model crack and growth was justified by Sobczyk [82]. 

Moreover, Whitmore [90] used Wiener processes to model degradation. In the following 

section we explain under which criteria decisions are made: rather than being based 

on the considered processes, they depend on the value of a functional acting on an 

multi-dimensional Brownian motion with drift. This new process is also non-monotone 

and this is handled with the use of last exit times, as will be shown.

So far, we have chosen to model the degradation of each component in the system 

with the use of a Brownian motion with a drift and a volatility term, referred from 

now on as a Wiener process. The framework is as follows: let S denote the system 

of interest and assume that S consists of n components, Ct, i e  { l , . . . , n } ,  each of 

which experiences its own way of deteriorating through time. The n deteriorations are 

assumed to be independent, i.e. the deterioration of any component in the system has 

no influence on the deterioration of the n — 1 remaining ones. The proposed model 

takes into account the different n deterioration processes. Each component undergoes 

a deterioration described by a Wiener process. For i G { 1 , . . . ,  n}, W denotes the
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Wiener process describing the state of degradation of component Ci, where

W0(i) =  0
(3.3)

with p,i,a E R+.

The above Wiener processes have different drift terms (the /Vs) but the volatility 

terms (cr) are identical and each component is assumed to be new at time t =  0. The 

independence of the degradations is modelled by considering n independent Brownian 

motions B^'s.

The next step consists in considering the following n-dimensional Wiener process:

w t= (wtw,wt{2\...,wtM)
=  pt +  aBt (3.4)

W 0 =  0

with

f t * )
(  ^

a = ,Bt =

V hn / V B[n) )
(3.5)

Two strong assumptions are made: the first being that the degradation of each of the 

components can be described by a Wiener process with drift and the second being 

the consideration of a similar volatility term for all the considered Wiener processes. 

Justifications for the first assumption have already been given and the assumption 

on the volatility terms is purely made for simplifications purposes and tractability of 

the models. The initial thoughts were to consider different drift terms and volatility 

terms for each of the considered Wiener process, making the model more general: each 

component would experience its own way of deteriorating through time. Difficulties 

immediately arose when dealing with this scenario. Indeed, in the case of possibly 

different volatility terms cp, equation (3.4) needs to be re-written as:

w t=(w}1\w?\...,wln))
=  fd +  S B t (3.6)

W 0 =  0
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with n, Bi defined as above and

0 \

0 a2 0 . . .  0
(3.7)

V 0
This corresponds to a multi-dimensional Wiener process with a diagonal volatility ma-

the following section, maintenance decisions for the models are made with the use of a 

performance metric, which is a functional of the considered n-dimensional process. The 

complexity arises when performing the desired functional (the Euclidean norm) on that 

kind of process. This is explained in the final chapter, where possible methods (such 

as considering the distribution of the trace of a Wishart matrix) to solve that issue are 

presented as part of extensions to the thesis.

A simplifying way of dealing with this case of different volatility terms is to group com-

ponents whose corresponding Wiener process have the same variance into subsystems 

and look at these subsystems individually. Consider the same system S, where the 

degradation of Ci is now modelled by:

for 1 <  i <  n, fa, Oi E M+.

We then perform a grouping of the components into different classes. Classes of com-

ponents differ according to the volatility a, chosen to model their degradation. If 

K i , . . . ,K p denote the p different classes which the degradation models of the compo-

nents fall into, we classify components in the following way:

Clearly 1 <  p < N  and Ki D Kj =  0 , for i /  j, 1 < i , j  <  p. Note that only the 

value Gj for the volatility term, and not the value Hi ° f  the drift, is taken into account

presence of identical components in almost all large systems, hence whose degradation 

may possibly be modelled with the use of an identical volatility term.

Let’s now focus on a particular class of components, Ki say. Assume that Ki contains

trix E (since the Brownian motion are assumed to be independent). As explained in

W ® =  fiit +  aiB® 

W0(i) =  0
(3.8)

Ci G Kj W f  =  Hit +  cT j B ii] (3.9)

for the classification of the components. A justification for such a classification is the
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rii components. Relabelling them, assume that these n* components are C\, C2 , . . . ,  Cni. 

The corresponding degradation processes considered are:

=  iiib +  aiB™ 

W{2) =  M2t +  aiBt(2)

Wt(n'} =  finit +  a M ni)

With initial values:

Wq '* =  0, for 1 <  j  < rii

(3.10)

Hence:

Wtij) ~  V 1 <  j  < rii

Let:

w tKi =  { w ^ M 2\ . . . M ni))

where the superscript iL, refers to the considered class of components. 

Clearly:

with

WtKi =  pK"t +  at W f 1 -  0

M«  =

 ̂ Mi ^

\ tlnt )

B Ai —> ■Di —

b P  \

Bp> J

(3.11)

(3.12)

3.3 The performance metric

The process in hand that describes the state of the system is an n-dimensional 

Wiener process. However, this does not really reflect the overall amount of deterioration. 

We are not interested in making maintenance decisions based on the individual state 

of deterioration of each component but we wish to be able to deal with situations such 

as: all the components are in a satisfactory state but the overall performance of the 

system is sufficiently low so that the system is considered as unsafe. Moreover, the 

only available information on the system’s state at inspection time is often given by 

evaluating a performance measure, the true state of degradation of the components is 

not known. For this a functional is applied to the multi-dimensional process (recall the 

examples given in section 3.1) that encapsulates the overall degradation of the system.
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The functional considered in this thesis is the Euclidean norm and rather than looking 

at the bivariate process (X t. ||Xt||2), decision are made using the functional ||Xt||2 itself. 

We shall define Bessel processes and more particularly Bessel processes with drift and 

state some of their properties relevant for the rest of the thesis. We then explain how 

such processes are used as a performance measure in our models.

3.3.1 Properties of the Bessel process

This section aims at defining the Bessel process. Some important definitions and 

properties are stated. An extensive amount of work on such processes has been pub-

lished and among the many contributions we refer the reader to the work of Shiga and 

Watanabe [80], Revuz and Yor [73], Pitman and Yor [70], Going-Jaeschke and Yor [31] 

and Dufresne [29]. The field of applications of the Bessel process is quite wide and 

ranges through finance (option pricing) [21], health related issues [15] and queuing the-

ory [48]. What we propose here is the use of such processes in the field of reliability and 

maintenance, something that as far as we know does not seem to have been considered 

in the past.

Bessel process

A natural and convenient way to define the Bessel process is to define it as the 

square root of another process, namely the square of a Bessel process.

Definition 3.3.1. For every n >  0 and xq > 0 the unique strong solution to the 

equation

Xt =  xq +  nt +  2 f  y/\Xs\dBs 
Jo

is called the square of an n-dimensional Bessel process started at x0 and is denoted by 

BesQnX0.

Definition 3.3.2. The square root of BesQn2, n >  0, x0 >  0 is called the Besselx0
process of dimension n started at xq and is denoted by BesXQ.

For n >  1, a Besxo process X t satisfies E 

equation
n — 1 E d s

X t =  xo +  — -  /  —  +  Bt, n >  1 (3.13)
* Jo -X-s

r  i AiJo l x s < oo and is the solution to the
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We will use the number u =  | — 1, called the index of the process, and write BesXo (v) 

instead of BesfQ.

The process X t is called the n-dimensional Bessel process because its generator is the 

Bessel differential operator

Remark 3.3.3. The Bessel process can also be defined for n <  1, [31]. This case is less 

simple and will not be treated here since it is not relevant to our work.

The reason why Bessel processes caught our attention is that when the dimension 

n is equal to an integer greater or equal to two and Xq =  0 (the process starts at 0), 

this process is the radial part (Euclidean norm) of an n-dimensional Brownian motion, 

i.e. let Bt , . . . ,  B[n'> be n mutually independent one-dimensional Brownian motions

defines a Bessel process with index u =  | — 1, [73], [80]. From now on we shall only 

consider Bessel processes that correspond to the Euclidean norm of a multi-dimensional 

Brownian motion, hence assuming that n G N, n >  2 and x0 =  0.

Another important result dealing with the dimension of the process is given in the 

following theorem.

T heorem  3.3.4. For a Bessel process of dimension n € N, n >  1, the point 0 is

(i) a reflecting boundary if n =  1,

(ii) an entrance boundary if n >  2.

Equivalently, for n >  2 the process will never reach 0 for t >  0, and for n =  1 

reaches zero almost surely, [37] and [80].

Before stating any other relevant properties of Bessel processes we first need to give a 

few definitions.

Af  0 )  =  \ f"  0 )  +  (x ) >

see [65].

and B t j ,  then
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D efinition 3.3.5. (Filtration). By a filtration {Qt : t G M+} on the probability triple 

(fi, Q, P), we mean an increasing family of sub-a-algebras of Q:

The setup (fl, Q, P, {Qt : t G M+}) is then called a filtered space. A cr-algebra Gt being 

the collection of events which may occur before or at time t, i.e. the set of possible 

pasts up to time t.

Let (fl, G, P, {Gu t G R+}) be a filtered space. A {^ t}-stopping time may be defined 

as

D efinition 3.3.6. (Stopping time). A map T : Q —> [0,+oo] is called a [[-stopping 

time if

on the basis of the knowledge of Gt, the history up to time t.

Bessel processes are Markov processes (they even enjoy the strong Markov property, 

[73]) with continuous paths in M+, [73], and clearly inherit the non-monotonicity prop-

erty from the Brownian motions. Moreover, for n >  3 such processes are transient. 

More precisely (with v =   ̂ — 1, nGN) :

T heorem  3.3.7. Let X t be a Besxo (v) with u > 0. Then:

almost surely.

We now introduce two processes associated to the Bessel process , which are going 

to play a major role in the models developed later. Namely the first hitting time and 

the last exit time

D efinition 3.3.8. Let X t be a Beso (^), with v >  0 and £ G (0, +oo).

1. By first hitting time of the threshold £ for the process X t starting from x0, we 

mean the process:

{T  < t} := {uj : T (cu) <  t} G Gt, V t < oo

where Gt is a sub-a-algebras of G-

In other words, it should be possible to decide whether or not T < t has occurred

lim Xt =  Too

G f  =  inf =  ^|X0 =  x0}
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2. By last exit time from the interval [0,£) for the process X t starting from x0, we 

mean the process

Hl° =  sup{X t <Z\X0 =  x0}
te K+

Figure 3.1: First hitting time and potential last exit time for a Bessel process.

Figure 3.1 shows both up and down-crossings of the critical threshold £ by a Bessel 

process, with the first hitting time and a potential last exit time.

Remark 3.3.9.

(i) The existence of both the last exit time and first hitting time for a Bessel process 

is justified by theorem 3.3.7.

(ii) Note that the first hitting time is a stopping time, whereas the last exit time for 

a Bessel process is not a stopping time.

(iii) As mentioned earlier, Bessel processes are not increasing processes. However they 

are processes that ‘tend’ to increase. By this it is meant that for a fixed threshold 

value £, there exists time after which the process will always be greater than 

£, he:

v t > rc, xt > £
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The transition density function for Bessel processes and the probability density 

functions for both the first hitting time and last exit time are known, [39], [70]. A 

part of Patie’s thesis, [66], concentrates on the first time a Bessel process hits a curve 

(whose equation is given by /  6 C (IR ,̂ M+)): an explicit expression in the case f(t) =  

a +  bt, t >  0, a > 0, b G R is given. Shao and Yin derived an expression for the joint 

distribution of the future infinimum and its location for a transient Bessel process, 

[79]. Other interesting and useful properties, such as the inversion property and the 

additivity property of Bessel processes were derived by Shiga and Watanabe, [80]. To 

avoid any redundancy in the thesis, these are not given in this section but can be found 

in the referenced literature. We prefer to state these properties and give the analytic 

expressions for the transition and probability density functions in the more general 

case of a Bessel process with drift. The reason for this being that these are the type of 

processes that are considered in the rest of the thesis.

Bessel process w ith  drift

In this section and the rest of the thesis, Rt will denote a Bessel process with drift. 

By Bessel process with index is >  0 and drift p >  0 , we mean a diffusion with values 

in IR+ and generator:

We use the notation BesXo (is, p) to denote such a process starting at x0.

Remark 3.3.10. Note that BesXo (is, 0) corresponds to Besxo (is).

The terminology ‘drift’ is being used since in the particular case where x0 — 0 and 

n G N, Beso (is, p) corresponds to the radial part (Euclidean norm) of an n-dimensional 

Brownian motion with drift, [69], [75], where is =  | — 1. More precisely, let W t be an 

n-dimensional Brownian motion (n >  2, n € N) with a drift p =  (p^\ . . . ,  P{n)Y-

where

(3.15)
=  1, if px =  0

W  t =  pt +  Bt

(  h{1) \ (  s t(1) \ (3.16)
t +

)  \ s,(n) /
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where the B'fL> are independent Brownian motions. Then

(3.17)

is a Beso (i/, p), with

h =  Whh

= \ E ^
\  3= 1

n (3.18)

As mentioned earlier, we will be working with that particular kind of Bessel process 

only, i.e. making the assumptions Xq =  0 and n G N, n >  2.

Bessel processes with drift have continuous non-monotone paths in R +. They are

still apply here and so does the transience property, [70].

We now state two relevant properties for Beso{u,p). The first one dealing with the 

sum of such processes and the second with the inversion of time.

T heorem  3.3.11. Let (Xt)t>0 be a Beso (yi, pf), and let (Yt)t>Q be an independent 

Bes0 {v2,P2), where vi,v2 >  1 and p\,p2 >  0. Then the process

Theorem  3.3.12. (Watanabe). For all u > —1, pi, p2 >  0 a process (Rt, t >  0) is a 

BesXo {y, p) if and only if (tR i, t > Ôj is BesM (u, x0).

Both of the above theorems were first derived by Shiga and Watanabe in the case 

of a BesXQ (u), [80]. Pitman and Yor proposed these extensions to the case of Bessel 

processes with drift in [70].

The expressions for the transition density functions of such processes are known and 

are given now. For this let pf^ (x ,y),t > 0, denote the transition density from state x 

to state y for a Bessel process with drift

• For x, y > 0:

Markov processes (and also enjoy the strong Markov property), result of theorem 3.3.4

X? +  Yt\ t >  0
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• For x =  0 and y > 0:

L (yy)e

where Iv denotes the modified Bessel function of the first kind. The second expression 

(for x =  0) is derived from the first one using the series expansion for the modified 

Bessel functions of the first kind, we refer to Appendix A for details.

In a similar way that we defined the last exit time for a Beso(u) we may define the last 

exit time for a Beso(is, ¡a). Using the same notation, the expressions for the probability 

density functions of H^° are:

• For pi > 0, Xq > 0, v >  0

T>v,H[ t f f  g  dt] =
C C -f)e

2 , f 2 , 2*2

2tlv (pLXo) K v (//£) -At (3.19)

• For ¡i > 0, Xq =  0, v >  0

[Hi G dt] =
2 t(jit)v K v {p^)

At (3.20)

where K v denotes the modified Bessel function of the second kind. Explanations on 

how the above expressions are derived can be found in [69] and [70]. Expressions for the 

density functions of the first time a Bessel process with drift hits a line [y =  at], with 

slope a > 0, are given in [70]. However, as far as we know, no analytical expression for 

the density functions of the first time a Bessel process with drift hits a fixed threshold is 

given in the literature. Since some of the models considered later require the expression 

for such a density functions, several attempts were made to derive such an expression 

but did not produce any convincing results. Nevertheless, in [70] Pitman and Yor (and 

Yin in [91]) managed to derive an expression for the Laplace transform of such a density 

function. Let L$ denote the first time Beso (v, p) hits the value £, it was derived that:

yj(32 +  p?\ /„  (fj4)

^ J I»
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The expression in the case of xq > 0 can also be found in the referenced papers: it is 

not given here since it is not relevant to the model developed in this thesis.

Symbolic computations for the inverse of the Laplace transform given by equation (3.21) 

did not produce any coherent results because of singularities, due to the presence of the 

modified Bessel function Iu +  ¡a2j  at the denominator. The same problem arose

when considering rational approximations, such as the Pade approximation. Since we 

were unable to find an expression for the density function of the first hitting time and 

were in possession of its Laplace transform only, a second thought was to solve the 

proposed cost models in the Laplace domain rather than in the time domain. If the 

expression for the density function of the first hitting time is only known in the Laplace 

domain, expressions for the Laplace transform of the transition density function for a 

Bessel process with drift can be computed, and so can the Laplace transform of the 

last hitting time, [70]. However, this change of domain required the computation of 

convolutions in the Laplace domain (due to the presence of products of functions of 

time in the time domain), adding to the model some extra complexity. This idea was 

dropped and the way the problem was handled was to consider a numerical inversion of 

this Laplace transform. This was done using the EULER method proposed by Abate 

and Whitt in [2]. Simulations for the first hitting times were performed and compared 

to the results obtained with the numerical approximation and the conclusions drawn 

were more than satisfactory. Description of the method, explanation on how it was 

used and comparisons with simulation results can be found in Appendix B.

We end this section on Bessel processes by stating a theorem relating a Brownian 

motion, its maximum and a three dimensional Bessel process, [75].

Theorem  3.3.13. Let (Bt,t > 0 )  be a Brownian motion on the line with drift p and 

B0 =  0. Let

Mt =  max Bs,
o < s< t

Yt =  2 Mt -  Bt
(3.22)

Then the process (Yt,t  > 0 )  is a time homogeneous diffusion identical in law to the 

radial part of a three dimensional Brownian motion with drift of magnitude \p\, started 

at the origin.

Figure 3.2 illustrates the three considered processes of theorem 3.3.13. The special 

case of theorem 3.3.13 with no drift was first established by Pitman, [68].
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Figure 3.2: The processes considered in theorem 3.3.13.

Remark 3.3.14. The reader should not confuse the process of interest, the Bessel process 

with drift , with what is called the Bessel process with naive drift: the latter was 

introduced in [92] and corresponds to a Bessel process with an added drift (and not the 

radial part of an Mn Brownian motion with drift).

3.3.2 The Bessel process as a performance measure

Recall from section 3.2.2 that the following n-dimensional Wiener process was con-

sidered:

W  t =  (wM,wi2\...,wln))
=  fat +  ffB(

W 0 =  0

where Wjl> is used to model the deterioration of component Cl. As mentioned, the 

degradation process used to describe a performance measure of the system is a functional 

on the underlying n-dimensional process W t. The chosen functional is the radial part 

Rt of W t:
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R t =  | | W t ||2

, E i » ' , ® ) 2
\ i = 1

(3.23)

Rt is the radial part of a drifting Brownian motion with volatility term a starting 

at the origin: hence using the results of section 3.3.1, it corresponds to the process 

aBeso(u, n): a times a Bessel process starting at the origin with index v and drift p, 
[73, 75], where:

N

T = N
(3.24)

Figure 3.3 illustrates the sample paths for three Wiener processes with drifts and the 

corresponding Bessel process with drift.

Remark 3.3.15.

(i) Note that V a A 0

P[Rt <A]  = P  [||Wi||2 < A] 

A= P cr < 71a~ 2 -

p IMh- — at +  B/ < A
a~ 2 _

1 4 "p - a t  +  B t < ra — 2 ^ Ik

(3.25)

Therefore, without loss of generality, we may assume that a =  1 for the rest of 

the thesis.

(ii) We emphasis on the fact that the radial part of a Brownian motion with drift 

starting from x0 corresponds to a Bessel process with drift Besxo (a, p) only if 

x0 = 0.

Remark 3.3.15(h) will play a major role in the next chapter where expressions for 

the expected costs of maintenance are derived. Indeed, we will see that, rather than 

considering a recursive argument on the state of the system after maintenance, the
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Figure 3.3: Wiener processes with drift and corresponding Bessel process with drift Rt.
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models consider a recursive argument on the critical threshold levels.

The reasons why the Bessel process with drift was chosen as a performance measure 

of the system are the following. First of all we decided to deal with Wiener processes 

to describe the state of deterioration of the components in the system (the reasons 

are explained in section 3.2.2), hence the functional had to be a functional acting on 

Wiener processes. The desired functional needed to preserve the continuity property 

satisfied by the Wiener processes, as this was the main reason for choosing them as 

our underlying deterioration processes. Moreover, the state space of the process needs 

to be bounded below in order to define a point (the lower bound) as a starting point 

for the process (corresponding to the state of a new system). This is the case for the 

Bessel process with drift since it has path in R+. Hence the performance measure’s 

value of a new system corresponds to the process being equal to 0 and as this value 

increases, the system’s performance is assumed to decrease. Besides, for t > 0, v >  0 

the point 0 is never reached (3.3.4) meaning for the model that the system can never be 

as good as new unless appropriate maintenance is undertaken. The Markov property 

was also required in order to consider more general repair models than a simple perfect 

repair model. We note that it is not a monotone process: this is not a major issue 

since performance measures of a system need not be monotone and may fluctuate with 

respect to the particular usage of the system. Non-monotone trajectories usually result 

when system usage is followed. For example, gas turbines have a maximum power 

output rating and users are advised not to exceed a fixed percentage of the maximum 

in normal operation. Use above the advised output indicates extra maintenance at the 

next service action. Built in test equipment records this type of information and reports 

it to a diagnostic computer.

The models derived in Chapters 5 and 6 use a control limit policy, based on one or 

two thresholds (a replacement threshold and a failure one). However, these differ from 

the usual control limit rules, as explained in Chapter 4, due to the consideration of 

non-stopping times but also due to the multi-dimensionality of the underlying process 

W t describing the deterioration of all the components in the system. To explain this, 

we consider the case of a two dimensional Bessel process illustrated in figure 3.4. Let 

X t and Yt be the two Wiener processes with volatility term set to be equal to one and 

Rt the corresponding Bessel process. Figure 3.4 shows the two planes in which both 

of the Wiener processes evolve and clearly illustrates the control limit rule considered 

here. As decisions for the maintenance of the system are entirely based on the Bessel
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process , our interest lies in times at which the process escapes from a cylinder, with 

base centered at the origin and radius equal to the critical threshold £. For clarity 

reasons, the illustrating figure shows the first hitting time of the cylinder rather than 

the last exit time. The angle at which the cylinder is hit is irrelevant here. If more than 

one threshold is considered, the different non-overlapping areas between cylinders may 

be seen as different levels of performance of the system and we may define the cylinder 

with base of greatest radius as representing the critical failure threshold. Figure 3.5 

illustrates the fact that even if the individual Wiener processes have not reached a 

critical value, the functional (the Bessel process ) may itself exceed a critical value. 

Recall that this is the reason why we decided to base our decisions using this functional 

rather than the n-dimensional Wiener process itself.

Plane in which 
the secón' 
Wiener process 
Y evolves

First hitting Time: t |

Cylinder, radius of the base 
equal toÇ

Plane in which 
the first
Wiener process 
Xt evolves

Hitting point

The Bessel process: F} = (X2 + Y2)1/2

Figure 3.4: Two-dimensional Bessel process and first hitting time of a cylinder.

The interesting fact about theorem 3.3.11 is its application in the case where a new 

set of components is added to the considered system and this can be seen as an upgrade
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Time t

Figure 3.5: First hitting time for a 2-dimensional Bessel process and corresponding 
position of the two underlying Wiener processes.

for the system. The new components’ deteriorations however must be modelled with 

the same common volatility a, but are allowed different drifts (note that one may have 

Mi 7̂  M2 in theorem 3.3.11 ). Moreover we note that the number of such new components 

is irrelevant, as in theorem 3.3.11 one may have Vi ^  u2. From the theorem, the new 

Bessel process with drift to be considered is Bes^ui +  v2 +  1, v Mi + mI)- This result 

makes Bessel processes with drift attractive for cases where upgrades on the system are 

to be considered.

3.4 Summary

A system consisting of n-components is considered. The aim was to decide on 

an appropriate stochastic process that would represent a performance measure of the 

system, taking into account the deteriorations undergone by each of the components 

present in the system. The first concern was to decide on an appropriate stochastic 

process that would be used to model the state of deterioration of a component in the 

system. The independence property of the increment and the Markov property required
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for that kind of process led us to the class of Levy processes. Moreover, among Levy 

processes, we preferred continuity of the paths of the process to monotonicity, hence 

leaving us to deal with Wiener processes: the choice of degradation process for the 

components was then a Wiener process, where the volatility terms are assumed to 

be the same but the drift terms may differ. The following step was to consider the 

corresponding n-dimensional Wiener process, consisting of the n 1-dimensional Wiener 

processes chosen. This represents the underlaying system’s deterioration process but 

does not really reflects the total amount of deterioration. The performance of the 

system through time was then chosen to be described by the Euclidean norm of this 

multi-dimensional process. This corresponds to a Bessel process with drift when the 

starting point is 0. The reasons why the Euclidean norm was chosen is that it preserves 

the desired continuity property and its state space is M+: the point 0 then corresponds 

to the performance of a new system. Moreover this point is never reached again in 

the case where n >  2 suggesting that the performance of the system will never be 

as good as when it is new, unless maintenance actions are undertaken on the system. 

Eventually, we note that the performance measure still inherits the non-monotonicity 

property of the Wiener process. However it is a transient process when n >  3 and the 

non-monotonicity of the performance measure is handled by looking at the last hitting 

times of particular thresholds.
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Methodology

4.1 Introduction

In most earlier work the deterioration state of a system is described by a univariate 

stochastic process X t whose performance as represented by iX t must meet some specified 

requirement’ . The problem is then usually formulated as repair the system on inspection 

if its state has not crossed a critical threshold, and to replace if the system has exceeded 

the critical threshold. The policy is defined as a series of inspection instants with a 

decision rule that determines the action to take after observing the system. Many 

authors have restricted the modelling to the family of Levy processes to retain the 

Markov property. Since a requirement continuity of sample paths restricts the Levy 

process to the non-monotone Wiener process attention has been focused on retaining 

monotonicity through the use of jump processes and, in particular, the gamma process 

(this is further discussed in Chapter 3). Others have used the Wiener process but 

generally force almost monotone behaviour by ensuring that the volatility is much 

smaller than the drift, [90]. In both the Wiener and gamma process, the first hitting 

time distributions for the time to cross a critical threshold are readily obtained. The 

approach can be extended to non-monotone processes by using the maximum process 

Mt =  m ax{X s}, [61]. Because the maximum process is monotone, the apparatus of 

the standard models becomes available. The use of first hitting times also brings a 

simplification to the modelling because they are stopping times. We further extend and 

relax the structure of the model to allow for a multi-variate state description, W t G Mn. 

When the system is inspected a performance measure is calculated. The performance 

measure is a functional on the underlying process: Rt =  A ( W t) ■ The performance
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measure is no longer required to be monotone and to simplify the analysis a different 

set of criteria for the decision process is introduced. The new approach is to define 

a critical threshold which determines the response to an inspection. Because we now 

wish to ensure a minimum level of reliability is maintained we set the critical threshold 

at an acceptable level and examine the probability that the system will never return 

to this level after crossing it. The idea is that the system may exceed the critical level, 

but recover back to or below it. Eventually, the system may cross and never return to 

the acceptable level. When this occurs, the system is aging in such a way that it needs 

to be repaired or replaced.

This chapter sets the methodology used to derive the proposed models of Chapters 5 

and 6. Since decisions are now based on a last exit time of a process, the first section 

introduces the notion of non-stopping time in contrast with the usual first hitting time. 

A thorough description of the considered maintenance actions and inspection strategies 

then follows.

4.2 Last exit time

The framework proposed in this thesis is based on last exit times. The novelty is 

that unlike the first hitting time, the last exit time is not a stopping time.

First recall the definition of a stopping time. Let (Q, G, P, {Gt, t E IR+}) be a filtered 

space. A {£?t}-stopping time may be defined as

D efinition 4.2.1. (Stopping time). A map T : if —> [0,+oo] is called a {f?t}-stopping 

time if

{T  < t } : = { u > : T  (u) < t} E Gt, V t <  oo 

where Gt is a sub-cr-algebras of Q.

In other words, it should be possible to decide whether or not T <  t has occurred 

on the basis of the knowledge of Qt.

From the above definition, we may clearly deduce that the first hitting time is a stopping 

time. Recall that the last exit time is defined as

G f  =  inf {X t =  e|X0 =  x0}

To see this with the non-monotone stochastic process Rt representing the system’s 

performance, let Gt — cr{i?s,s  <  t}  be the past history of the process up to time t. If
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the system is inspected at time t =  r, on the basis of the history of the process up to 

time r it is possible to say whether the process has gone over the threshold £ before r  

or not. Hence, using the same notation as above, G °̂ is a {t/T}-stopping time, V r  >  0. 

Thus, stopping times are said to be observable. On the other hand, dealing with the 

last exit time requires a bit more care. Recall that the first hitting time is defined as

H*° =  su p {X t <£|Xo =  x0} 
ieR+

Knowledge of the past history of the process is now not sufficient to decide whether 

such a time has occurred or not. Last exit times are therefore non-stopping times. To 

see this in our particular case, think of the system being inspected at time t =  r. If 

at inspection time, the process is below the threshold, one may deduce that the last 

exit time is yet to happen. However, if the process lies above the threshold, the past 

history only says that the process has escaped and maybe gone back to the interval 

[0, £) a certain amount of time but no information on whether the process will continue 

doing so is available. Without knowledge of the future history of the process, an up- 

crossing at time r  cannot be classified as a last exit time : such times are said to be 

non-observable. However, probabilities such as P [Rt  > f\H® > r] may be calculated. 

The particularity and originality of the proposed framework lies in the fact that de-

cisions are taken on the basis of the realization of a non-stopping time. However, we 

have just mentioned that such times are non-observable, hence the natural question 

that arises is

‘How can a decision be based on the occurrence of such an event if it is not observable?’ 

To tackle this difficulty, we will base our decision strategy on the probability of occur-

rence of such events

P [Ht < T]

This approach is still a natural way to handle the problem and occurs frequently in 

practice: as decisions cannot be based on non-observable events, these use the com-

putable probabilities of occurrence. Therefore, the models will propose expressions for 

both the cost of maintenance and the expected cost of maintenance: numerical results 

for the latter only will be computed.

Remark 4.2.2. This problem does not arise when we consider first hitting times only, 

since they are stopping times and hence are observable.

53



Chapter 4- Methodology

4.3 Maintenance actions

4.3.1 Maintenance function: d

The different types of maintenance actions considered are now introduced. As men-

tioned in section 2.3, these include both replacement and repairs. Replacements of the 

system simply consist in considering a new system whose performance is assumed to 

be maximal. After a replacement, the system’s performance measure described by the 

process Rt is set back to the initial value 0, corresponding to the performance of a new 

system.

The way repairs are modelled requires more attention, as it differs from the usual 

scheme. The common and natural way consists in considering the state of the process 

Rt  at inspection time r and to decrease it to a new level RT+. If we assume that repair 

on the system improves its state of deterioration, the difference RT — RT+ is positive 

and corresponds to the amount of repair undertaken on the system. This amount can 

be deterministic or random depending on the type of maintenance considered. After 

such a maintenance action, the state of the system is assumed to be equal to R̂ + which 

corresponds to a new starting point for the process Rt. When the system is replaced, 

the process is re-set to the initial value 0, corresponding to a new system. In our 

particular case, the process chosen is the Euclidean norm of an n-dimensional Wiener 

process which corresponds to a Bessel process only when the process starts from the 

initial state 0, as explained in Chapter 3. Hence it is a necessity to always consider 

the process starting from state 0. This makes the usual repair model, described above, 

impossible to be considered. This is tackled by considering changes in the value of the 

critical threshold £, rather than a new starting points for the process and hence affects 

the time taken to traverse the distance to the critical threshold. For this we introduce 

a repair function which models the amount by which the threshold is lowered after 

undertaking a repair on the system. The function introduced is denoted by d and if 

{ 7 1 , 72 , . . . }  refer to the inspection times, d may be defined as

d : M+ -> R+

Rn |—>- d(RTi)
(4.1)

It is a function of the performance measure of the system at inspection times. The 

choice for d is made among the set of bijective functions. The bijective property for d is 

required when the derived cost functions are numerically evaluated with an appropriate
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choice of quadrature points, see Chapter 5.

The idea is that rather than considering Rt starting from a new initial state after the 

maintenance action with the same threshold value £, we reset the value RTi to 0 and 

consider a lower threshold =  £ — d (RTi)- This may also be regarded as a shift of the 

x-axis of amount d(RTi) upwards. Figure 4.1 is given to illustrate this concept.

Figure 4.1: Maintenance actions with periodic inspection policy: information available 
at inspection times only.

Remark 4.3.1.

(i) To model the fact that repair does not worsen the performance of the system, d 

must satisfy the following property

d(y) < y ,V  y e  M+ (4.2)

(ii) The particular cases of no repair and perfect repair may be considered by choosing

d (y) =  y, V y e  R+ 

d (y) =  0, V y e  R+
(4.3)

respectively.
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The amount by which the threshold is lowered must depend on the repair undertaken 

on the system and a little more must be said to validate this choice of repair function: 

this is the matter of interest in the next section. Attention was paid to the fact that the 

new process Rt' =  Rt+Ti ~Rn with initial state 0 does not correspond to a Bessel process 

starting at 0, and therefore this is not the process chosen to model the performance 

after the repair. Indeed this process may take negative values as shown in figure 4.2.

Figure 4.2: The process Rt' =  Rt+n — Rn is not a Bessel process.

4.3.2 Component-wise repair

The way repair is physically treated on the system is now explained. The system is 

inspected and depending on the value of the stochastic process Rt, appropriate repair is 

undertaken. It is assumed that the repair takes place component-wise. To see this, let’s 

assume that at inspection time r, the value of the process, before the repair action, is 

Rn — x. The n-dimensional Wiener process corresponding to the state of degradation 

of the system at inspection time and before the repair must satisfy:

w Ti = (ww,w%\...,wW)
= (xu x2, . . . , x „ )

(4.4)
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with

IWT4||2 =
(4.5)

=  x

Repair is then undertaken on each of the components, resulting in a new value for W  +
' i

(repair is assumed instantaneous):

=  ( y i , y 2 , ■■■ , yn)

with

Vi<Xi, \/i<E {1,2,

The value of the repair function is then set to:

d(RTi) =
\ i=i

(4.6)

(4.7)

(4.8)

Eventually, the new process considered is

FL =  i i w :i II2

= !lw i+r+ - ( y u y 2 , - - - , y n) h

(4.9)

The n-dimensional process W ) — W i+T+ — (yi, y2, . . . ,  yn) corresponds to an n-dimensional 

Wiener process starting at the point 0: Rt' is therefore a Bessel process starting from 0. 

With this new approach to model repairs, replacements are dealt with by re-setting the 

process Rt to 0 (as in the repair case) and by re-setting the critical threshold’s value to 

its initial value £: the set-up becomes the one considered originally, corresponding to 

the case of a new system.

4.4 Inspection strategies

All the models presented in the following chapters consider both periodic and non-

periodic approaches. The former allows the computation of the expected cost per unit 

time in an elegant way whereas in the latter the expected total cost is evaluated. The
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two policies require different techniques and these are explained in this section. The 

periodic inspection policy on one side exploits the renewal property of the maintained 

process and utilizes the regeneration points of the process, the non-periodic one on 

the other side proposes an approach based on an inspection scheduling function that 

determines the next inspection time.

4.4.1 Periodic inspections

In the case of periodic inspection strategies, times between inspections are assumed 

to be constant. Over an infinite time horizon, such a policy is denoted by

II =  { t , 2 r, 3r , . . . }

where r  is the period of inspection. Using the same notation as above, if Rt denotes the 

process modelling the performance measure of the system between maintenance actions 

(i.e. Rt represents the performance of the un-maintained system), let R% denote the 

stochastic process modelling the performance of the maintained system. As described 

above, upon inspection times, repairs on the system are undertaken: these affect both 

the critical threshold £ by lowering its value (if required) and the process R*t by re-

setting it to 0. After a certain amount of time, the performance of the system will fail 

to meet the prescribed criteria and the system will need to be replaced by a new one. 

The threshold value is re-set to its initial value £ and R\ to 0: the overall set up is back 

to the initial one. Let us denote by (ri* )ieN the sequence of times at which the system 

is replaced.

Remark 4.4.1.

(i) In the particular case when information that the system’s performance does not 

meet the criteria is only available at inspection times, one must have

V i G N*, 3 j  > i G N* : t * — j r

However, this may not be (and will almost never be) the case when this informa-

tion is available as soon as the performance criteria are not met.

(ii) In the case where repairs are assumed to be perfect, one has

V j  6 N*, 3 i > j  e N* : r* =  j r
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When the system is replaced, at the time points r* ( i e N), the value of the process 

Ri is re-set to 0 and the process restarts itself: it is therefore a regenerative process. 

Such instants r* are regeneration points and the sequence (r*)ieN defines a renewal 

process. We shall say that a cycle is completed every time a renewal occurs, i.e. every 

time the system is replaced.

The renewal property of the considered process, representing the performance of the 

maintained system, is exploited to evaluate the expected cost per unit time. This is 

done evaluating the expected cost of maintenance over a cycle, the expected length of 

a cycle and using the renewal reward argument, [76]. Let V£, L ,̂ Q  denote the cost 

of maintenance of a cycle, the length of a cycle and the expected cost per unit time 

respectively (where the subscript £ indicates the value for the initial critical threshold), 

one has

r  E M
S E [L{]

(4.10)

Thus, the problem consists in determining expressions for the expected cost of a cycle 

and the expected length of a cycle. This is done by considering the different conceivable 

scenarios at inspection times. Different frameworks are considered depending on the 

models investigated. The resulting expressions for both the expected cost and length 

of a cycle are rearranged into Fredholm equations and solved numerically. More details 

are provided in Chapter 5.

4.4.2 Non-Periodic inspection policy: inspection scheduling 

function

In the case of non-periodic inspection strategies, the time between two consecutive 

inspections may vary and hence is assumed not to be constant. Over an infinite time 

horizon, such a policy is denoted by

h  =  { t i , t 2, t 3i.. .}

with

Ti+i -  n ±  Tj+i -  Tj in general.

The main reason for considering non-periodic inspection policies being that they are 

more general and often more interesting than periodic policies, since they usually result 

in policies with lower costs. As mentioned in Chapter 2, rather than considering the
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expected cost per unit time, the expected total cost over a finite time horizon is usually 

evaluated. A way to deal with such policies is by considering a dynamic programming 

approach, such as the one proposed by Ross in [76]. This was considered by Dagg and 

Newby in [26] and [61], with the use of a policy improvement algorithm combined with 

numerical methods described in Press et al. [71].

The approach opted to include non-periodic inspections in our models was proposed by 

Grail et al. in [34], see also [22], [23], [33]. The optimization problem is simplified by 

defining an inspection scheduling function m which replaces a dynamic programming 

problem by one in which an optimum is sought with respect to the choice of scheduling 

function, m is a continuous function of the amount by which the critical threshold is 

decreased, d (RTi), after a maintenance action and determines the amount of time until 

the next inspection time

777 • * [771mm > T̂ max] (4 11)
d(Rr j  ^ m [ d { R n)}

with Ti (i e N) denoting the times at which the system is inspected and RTi its perfor-

mance. The next inspection time Tj+i is deduced using the relation

Ti+i =  Ti +  m[d(RTi)} (4.12)

Besides, the choice for m is made among the set of decreasing functions

V i , j  6 N : d (Rn) < d [RTj)  m[d (RTi)] > m [d  (i?Tj)] (4.13)

This allows to include the idea that the lower the performance of the system is (and 

hence the lower the value for the new critical threshold after repair is) the more fre-

quently it needs to be inspected. We note that the great advantage with this approach 

is that it preserves continuity within the model.

Remark 4.4.2. The function m ensures a finite number of inspection in a finite time 

interval and the transient property of the Bessel process ensures changes in the amount 

of time between inspections.

The approach here is to optimize the total expected cost with respect to the in-

spection scheduling function. The inspection functions form a two-parameter family 

and these two parameters, a and b1 are allowed to vary to locate the optimum values. 

The function can be thus written m[.\a, b] leading to a total expected cost function
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(a, b) which is optimized with respect to a and b. The two parameters are defined in 

the following way

m [0 | a, b] =  a, 

m [Rt | a, b\ =  a, if Rt > b,
(4.14)

for some fixed chosen value a G [0,a]. From the above, we may deduce that mmin =  a 

and rrimax =  cl. Figure 4.3 is provided to clarify the main features of the inspection 

scheduling functions investigated. These parameters have physical interpretations:

Figure 4.3: Inspection scheduling functions with different convexity properties.

(i) parameter a corresponds to the amount of time elapsed before the first inspection 

(i.e. when the system is new),

(ii) parameter b controls changes in frequency of inspections.

As the choice of inspection scheduling functions is made among the set of decreasing 

functions, one may deduce

V i G N, ri+ 1 - T i  < a

i.e. the amount of time between any two consecutive inspections will not exceed a. 

Moreover, the parameter b sets a lower bound for the process Rt below which the 

system’s performance is assumed to be insufficient, this therefore justifies a periodic
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inspection of the system of period a.

Choices for the appropriate inspection scheduling function are made under the main 

restriction of the decreasing property: this results in more inspections for a system 

with poor performance. To ensure tractability of the optimization and of the effects 

of the chosen function on the optimal cost, choices for m are confined within the set 

of polynomials of order less or equal to 2. We note however that the proposed models 

are not restricted to this choice of inspection scheduling functions and can be extended 

to any other type of function. Particular attention will be paid to the convexity or 

concavity property of m, this allows different rates of inspections as time passes to be 

considered. Figure 4.3 illustrates the effects of convexity on the inspection times.

4.4.3 Extensions to the inspection scheduling function

Expected observations

As mentioned in [34], the upside of the proposed way to handle non-periodic in-

spection is that it can be applied in practice: unlike quantities such as the lifetime 

distribution parameters, the performance measure Rt of the system is a quantity that 

can be measured on the system. However, we note that the optimal policy only reveals 

the next inspection time to the planner at the end of an inspection and repair action: 

the function m and d (Rt) determine the next inspection time. Hence it allows only 

a ‘day to day’ response to the revealed system performance. A long term view of the 

evolution of the plan would be valuable: the whole inspection policy for a life cycle. 

The expected course of the policy can be indicated by calculating the expected inspec-

tion times and repair states. Let (rj)i€N be the sequence of inspection times and let s* 

be the expected performance before undertaking the maintenance at inspection time 

Ti. Define e* =  Ti|sj_i as the time to inspection conditional on the performance of the 

process before maintenance. After the maintenance action, the process re-starts from 0 

and the new threshold is set to £ — d (sj_i). Clearly for a process which starts from new 

So =  0. The expected times e* are calculated recursively by considering the amount by 

which the thresholds are lowered in the following scheme:
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Expected Observation Programme:

Initialization: s0 =  0

ei =  Ti Isq =  m (0) =  a

Iteration: sn =  E [Ren | s„_i] =  / 0+°° yf°n (y) dy

en+i =  rn+i\sn =  m [d(sn)]

where /{? denotes the transition density function from state 0 in an amount of time 

r. The sequence (e,)ieN gives the expected time of occurrence of the inspections and 

can be used to schedule resources.

Inspections guaranteeing a prescribed level of reliability

We note that the method proposed in 4.4.2 assumes that the system may be in-

spected and repaired at any moment in its lifetime. This may not be the case, particu-

larly when system inspections and repairs require extensive dismantling or appropriate 

location. In order to deal with such cases, other types of inspection scheduling functions 

may be considered. We now propose a way to handle this type of situation by introduc-

ing a new inspection scheduling function. We mention however that such an inspection 

strategy will not be considered in the numerical results presented in Chapters 5 and 6. 

For this, assume that the amount of time between any two consecutive inspections is 

restricted to a finite set

n  =  { r i , r2, . . .  ,rn}
(4.15)

n  <  t j , V i , j  e  {1,2, . . . ,n } ,  i ^ j

Equation (4.15) assumes that any two inspections are distanced by at least Ti and at 

most rn units of time. Upon inspection time, the performance of the system is revealed, 

assume it is equal to x. Maintenance is undertaken and changes the critical threshold 

value to £ — d (x). The time r  at which the system will next be inspected is chosen so 

that the probability of occurrence of the event ‘the last exit time of Rt from the interval 

[0,£ — d(x)) is greater than t ’ is superior to 1 — e. Low values for e would usually be 

chosen and depend on the case studied. For instance, in straight economics e is chosen 

in order to ensure a minimum level of availability and in the aerospace sector the value
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of e is chosen with respect to safety regulations: in the case of aircrafts e ~  1CT6 per 

hour. The proposed inspection function m chooses the greatest time that guarantees a 

prescribed minimum level of reliability for the system. Hence, one may define m as

mix) = sup {P
renujo} [H i d(x) > r ] > ! - * } (4.16)

where H®_d̂  in equation (4.16) denotes the last exit time from the interval [0,£ — d (x)) 

and e is a fixed constant that imposes the minimum level of reliability on the model. 

Note that the value 0 is added to the set of possible inspection times: this is to make 

sure that the function m is well defined. Indeed, cases might require inspection times 

smaller than r\ units of time: in such cases the function returns 0 as an output and the 

system needs to be replaced.

Dealing with such a function implies the loss of the continuity property since it now 

corresponds to a step function

m (X) =  T llf'PK 0- liWH < l-e < P [^ _ (iW>r1j}

+  T2l{p[Hl_d(x)>r3]<l-e<p[Hl_d(x)>r2]} (4'17)

+ " .  +  rn1{P[fl̂ )>TB]>i_e}

The function is now fully defined and one need not decide on the appropriate shape 

for it. Moreover, the number of available inspection times r* is not restricted, allowing 

greater flexibility for the model and the inspection planner.

4.5 Summary

The proposed decision framework differs from the ones usually encountered in the 

way that it is related to the occurrence of the last exit time of the performance process 

from a given interval. Such a time is not a stopping time and therefore not an observable 

time and must be handled with care. The proposed approach is therefore based on 

the probability of occurrence of such an event in order to derive an expected cost 

of maintenance. Maintenance actions on the system are modelled with the use of a 

function d. Rather than giving the state of the process after maintenance, the function 

returns the amount by which the chosen critical threshold must be decreased. The 

process then restarts from 0 and a new (lower) critical threshold is considered. Both 

periodic and non-periodic inspections are considered. Whereas the former one is dealt
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with the usual renewal approach, the latter considers an inspection scheduling function 

m, which determines the next inspection time on the basis of the value given by the 

maintenance function d. The considered inspection scheduling functions form a two 

parameter family, which will be optimized to derive an optimal cost of maintenance.
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Models guaranteeing a prescribed 

level of reliability

5.1 Introduction

Safety regulations on particular systems require the guarantee of assigned levels of 

reliability and therefore models preventing a system’s failure only are not sufficient: even 

in a working state a system may not meet the imposed safety criteria. Roads are good 

examples of such systems: regular maintenance actions are undertaken to keep them 

in a satisfactory state and even if not considered as failed, reconstructions are usually 

planned after a certain amount of time for safety issues. The models in this chapter 

exclusively focus on planning optimal inspections and maintenance actions guaranteeing 

a prescribed level of reliability for a complex system (the actual failure of the system is 

not taken into account here but will be considered in Chapter 6). By complex system it 

is understood a system that consists of several components or subsystems. The approach 

to model the degradation of the system taking into account the degradation of all of its 

components is the one described in Chapter 3. The system state is described by a state 

vector W (, which is not directly observed, and decisions are based on a performance 

measure of the system Rt defined as a functional acting on the state vector: its Euclidean 

norm. The decision maker uses this summary description (the performance measure), 

known at inspection times only, to plan the level of action which ranges from doing 

nothing through partial repair to complete replacement. Replacement decisions are 

based on the last crossings of a critical level, hence implying the use of the probability 

of occurrence of such an event as mentioned in Chapter 4. The critical level is defined
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for the performance measure itself and also as the probability of never returning to a 

satisfactory level of performance. The models thus give a guaranteed level of reliability 

throughout the life of the system. Replacement defines a regeneration point of the 

process, which is used, together with the costs and benefits associated with the available 

actions, to construct a cost function. Both cases of periodic and non-periodic inspection 

policies are considered. In the periodic case, the optimal strategy is determined by 

finding the period of inspection minimizing the expected cost per unit time whereas 

the non-periodic approach consists in determining an optimal inspection scheduling 

function resulting in a minimal expected total cost.

5.2 Periodic inspections

A periodic inspection policy II =  {r, 2r , . . . }  over an infinite time interval is con-

sidered. Expressions for the expected cost per cycle and expected length of a cycle are 

derived in order to determine an optimal period of inspection r*, resulting in a mini-

mum expected cost per unit time. The section starts with the features of the model: 

assumptions and settings for the model are stated. A description of the different sce-

narios considered in the life cycle of the system is also provided. The expression for 

the expected cost of maintenance per unit time is then derived and optimized with 

respect to the period of inspection to determine the optimal policy over an infinite time 

horizon. Explanations on the method used to evaluate the expression of the expected 

cost per unit time are given.

5.2.1 Features of the model

Model assumptions

1. The system is assumed to be new at time t =  0, i.e. R0 =  0, with the value of 

the critical threshold being equal to £.

2. Inspections are periodic, perfect and instantaneous.

3. Maintenance actions are instantaneous.

4. The system’s performance is only known at inspection times. However the mo-

ment at which the performance does not meet the prescribed criteria is immedi-

ately known (self-announcing): in real life situation, this may be interpreted as
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an alarm being switched on as soon as the performance criteria are not satisfied. 

The system is then instantaneously replaced by a new one with cost Cf.

5. Each inspection incurs a fixed cost Cj.

6. Each maintenance action on the system incurs a cost determined by a function 

of the performance of the system at inspection time. The function is denoted by

Cr.

Settings for the model

1. The state space in which the process evolves is partitioned as follows:

where £ is the critical threshold.

2. The inspection policy is denoted by II =  {r, 2 r , . . . ,  kr , . . . } ,  where r  denotes the 

period of inspection, r  is the parameter to be optimized in order to minimize the 

expected cost per unit time.

3. At inspection time t =  r  (prior to any maintenance action), the system’s perfor-

mance is Rt .

4. Given that the system’s initial performance is maximum, i.e. Ro =  0, decisions 

on the level of maintenance (replacement or imperfect maintenance) are made on 

the basis of the indicator function l{//o>T}. By this it is meant that decisions on 

whether to replace the system or not are taken on the basis of the process having 

definitively escaped from the interval [0,£) or not.

5. Deterministic maintenance actions are modelled with the use of the following 

maintenance function d:

with constants k E (0,1] and K  E ( l ,+oo) .  The constant k determines the 

amount of repair undertaken on the system, K  is arbitrarily chosen and sets the 

region of repairs for the system. Recall that d must belong to the set of bijective 

functions.

M+ =  [0 ,£)U[£,+oo) , (5.1)

(5.2)
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6. The investigated function Cr is defined accordingly to the above maintenance 

function d:

with constants K  e (1, +oo) (same constant as for d), Crep e  (0, +oo). Note that 

these are increasing functions of the state of the process upon inspection: the 

worse the performance of the system is, the more maintenance is required on the 

system resulting in a higher cost.

The framework

At time t =  0 the system’s performance is assumed maximum, i.e. R0 =  0 and the 

critical threshold is set to £. A periodic inspection policy needs to be chosen in order 

to minimize the expected cost per unit time. Let r  be the period of inspection that 

needs to be optimized. Hence, at the first inspection time, the system is in state Rr. 

Two cases are considered:

1. l {H°>r} — 1; the system’s performance remains acceptable throughout the time 

interval [0,r]. Appropriate maintenance, described in (5.2), is undertaken. We 

keep in mind that we are considering the radial part of a Brownian motion with 

drift hence we do not allow the Bessel process to start from any other point than 

the origin (see subsection 3.3.1). Imperfect maintenance is modelled by consider-

ing the same process again starting from the initial state 0 and by changing the 

value of the critical threshold £ to the lower value £ — d (Rt ), as explained in sec-

tion 4.3. By doing this, we then assume that the new critical level depends on the 

amount of repair undertaken on the system component-wise. Therefore, rather 

than considering a new process starting from state d (Rr) and the same threshold 

value £, we consider the same process Beso(v,n) and a different threshold value 

equal to £ — d(Rr). The process we are dealing with remains a Beso(u,/f), and 

hence a radial Brownian motion with drift.

2. =  0: the system’s performance fails to meet the prescribed criteria before 

the planned inspection. The system is replaced: Rt is set back to 0 and the 

threshold is back to the initial value £.

Therefore, after the first inspection the cycle either finishes or continues. In the latter 

case, another inspection is undertaken at time t =  2r but with the new value £ — d (RT)

(5.3)
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for the critical threshold : the above two cases need to be considered again. This pro-

cedure repeats itself until case 2 eventually happens: this will happen with certainty 

due to the transience property of the Bessel process. This process describing the per-

formance measure of the maintained system through time is a regenerative process. 

Times at which the process restarts from 0 (due to replacement) form a renewal pro-

cess. A cycle is completed every time a replacement of the system occurs. These allow 

to calculate the expected cost per unit time CT using the renewal reward argument:

°T {X) = (5A)
which is the ratio of the expected cost per cycle over the expected length of a cycle.

5.2.2 Optimal policies

Expected cost per cycle

In this section we propose an expression for the expected cost of maintenance per 

cycle. The Markov property of the Bessel process allows the total cost to be expressed 

via a recursive approach: a conditioning argument on the threshold value is considered. 

The notation VT (x) is used to denote the cost of maintenance per cycle, where x refers 

to the threshold value £ — x and r  is the period of inspection. The expression for the 

cost per cycle is derived by considering the different possible scenarios at inspection 

time:

V T ( x )  C f  X  1 {perform ance not acceptable}

+  {Ci +  Cr(RT) +  VT(d{RT))}  x 1 {perform ance acceptable} (5.5)

=  C f  X l{H O _as< r }  +  {C* +  Cr (R T) +  Vt  (d (R T) ) }  X  1 {# 0 _ ^ > T}

We have here expressed the cost of maintenance over an inspection period as the sum 

of a cost of failure (if the last exit time from the interval [0, £ — x) is less then the 

inspection time), an inspection cost, a cost of repair and a future cost made up of the 

system starting from 0 with the new critical threshold after maintenance (when the last 

time the process hits the threshold £ — x is greater than r). We mention here that the 

particular case of no maintenance can be taken into account just by setting d(y) =  y in 

the future cost.

We now take the expectation of (5.5), and get the expression for the expected cost of
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maintenance per cycle: 

vT (x) =  E [VT (x)]

=  E C f x 1 { h °_x < t } +  E
/•+OO

{a + cr(Rr) + vT (d(jy)} x i{jjo_j>T}
=  C ,P [H°_, < t ] +  {C, +  c ,  (y +  W ) }  P > r] / ?  dy

Jo
pT p+OO /  pT \

=  Cf h°_x(t)dt +  { a  +  Cr(y)} ^1 -  j  h\_x (i) dtj f°T (y) dy
r»+OO

+ So 00 ^  /r  (?/) dV10 \ 7o
pT /  /'T \ />+0O

=  C> j( hl_x(t)dt + ( l - J Q h U  (t) dtj J  {Cz +  CT(y)} f°T (y) dy
p+oo

+  y  vt  \^\y))\. >- -  j  ">£-(d ( y) ) ( 1 -  /  h 0*_x (t) d t ) / °  (y) dy

We note that equality 3 requires the computation of

E VT (d{RT)) x l{ii|_x>r}

This is done by noting that

P [Rt  < a\H^_x > t ] =  P [Rt  < a\RT ‘can be in’ (0, £ — x]] ,

hence integrating over the whole range [0,oo). More details are provided in Appendix 

C.

Using the fact that the maintenance function d is a bijection (hence cU1 exists) and 

that vT(x) =  0 for x > £ (as this would correspond to a threshold with a negative 

value £ — x, implying either that the system’s performance always or never meets the 

prescribed criteria), the above equation may be rewritten as:

with:

M TO
v t ( x )  =  Q ( x ) +  K {x ,y }v T(d(y))dy

Jo

Q (x) =  Cf ^  h\_x (t)dt + ( 1 - J Q h U  (t) d t j  Ci

pT \ p+OO
+ ( 1 - y  (t) d t j  J  C r ( y ) f r (y) d y

(5.6)

(5.7)

K {x ,y }  =  ( l  -  J  h°(_x(t)dt) f°  (y)
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Equation (5.6) is of Fredholm type and is solved numerically, as explained at the end 

of this subsection.

Expected length of a cycle

The approach we use to formulate the expected length of a cycle is similar to the 

one adopted for the expected cost per cycle. This is also done by conditioning on the 

new critical threshold value. Let us first derive the expression for the length of a cycle. 

The notation LT (x) is used to denote the length of a cycle, given that the threshold 

value is equal to £ — x and that the period of inspection is r.

We now take the expectation of (5.8) to derive the expression for the expected length 

of a cycle:

Using the same argument as for the expression of the expected cost per cycle, the above 

equation can be rewritten as follows:

(5.8)

— H°_x x l{//o>_x<Ty +  { t  +  Lt  (d(Rr) ) }  x l{tfO_^>T}

(5.9)

with same kernel K {x ,y }  as in (5.7) and:

•T

t x h^_x (t) dt +  t  ( 1 L
■T

(5.10)

Equation (5.9) is also a Fredholm type integral equation.
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Expected cost per unit time

Both of the expressions for the expected cost per cycle and the expected length of a 

cycle have been derived, the expected cost per unit time over an infinite horizon CT (x) 

can thus be calculated. For this we use the standard renewal reward argument in [76]. 

We get:

C r i x )  =  i U '  (5-n)
with expressions for vT (x ), lT (x ) given in (5.6) and (5.9) respectively.

Obtaining solutions

We first note that in order to evaluate the above expressions, one needs to know the 

expression for f f .  This can be derived from the expression of the transition density f f  

of a Bessel process with drift (see Appendix A) and is equal to

m - ( \ Y (*)"W - , r  >  0 (5.12)
k/i j v t  >

Using the expression for h  ̂ given in Chapter 3, one may deduce the expressions for 

K , Q and P  required to solve equations (5.6) and (5.9):

(
K { x , y }  = 1 -

( £ - x ) " e
($-a02+M2t2 21

Io 21 (fit)v K„ (fi (Ç -  x))
dt ;) h ( p y ) e 1 *

Q M  = c, ($ -  x T e
( j - x ) 2+n2t2

0 2t(fit)v K v ( f i ( £ -x ) )  

y ' v+l

dt + 1 - ( £ ~ x ) ve
_l (;-x)2+A

'o 2i (lit)" K„ (p( {  -

£) \
dt

J
r+ o c / 1

x {Ci +  C riy )} '
10 /V  VT

_( y2+ P r 2 \
L{vy)e  v 2" ' dy

P ( x ) =  t x (£ — XY e
_ [  t t -x )2+ p t 2 (

o 2t{ptY x))
■dt +  t 1 - (£ — x Y e

\
l0 2t ^ t y  K u( y ( f - x ) )

~) \
dt

(5.13)

Expressions for both the expected cost and expected length of a cycle, (5.6) and

(5.9), are of the Fredholm type: discretization of the state space and application of the
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quadrature rules produce equivalent matrix equations as we now explain. The Nystrom 

routine with the N  point Gauss-Legendre rule at the points y3 £ [0, d- 1  (£)), V j  E 

{1 ,2 , . . . ,  N}, is applied to (5.6) and (5.9) to get
N

vT (x) =  q (x ) +  Y^ K i x > yj}yT (d (%)) wj

V1 (5-14)
lT (x) -  P (x) +  K i X’ Vj}lr (d (%)) Wj 

1=1

where the set {wj}  are the weights of the quadrature rule.

The above equations are then evaluated at the following appropriate points Xi =  d (yf)
N

Vr (Xi) =  Q (Xi) +  ^  K { XU Vj}Vr (d (%•)) wj

jT  (5-15)
lT {xi) =  P{xi) +  '^ 2 K {x i,yj }lT (d(yj))wj,

l=i

Since vT (xi) and vT (d (yf)) (similarly for lT) are evaluated at the same points, equations 

in (5.15) may be rewritten in the following matrix form

v=Q  + K.v 

l=P + K.l

where:

Vi =  vT (xf) 

li It  (^i)

Kj,i =  K{xi,yj}wj

Qi Q {xf)

Pi = P ( X i )

Rearranging equations (5.16) gives:

(I—K) ,v= Q 

(I—K) J=P

(5.16)

(5.17)

(5.18)

where I denotes the N x N  identity matrix. Equations 5.18 are readily solved numeri-

cally (see [71]) by computing the inverse of matrix I —K.

Remark 5.2.1. K {x ,y }  in (5.13) is the product of a density function by a survival 

function hence it is bounded by the maximum of the density which, by the Fredholm 

alternative, ensures that the equations in (5.15) have a solution ( i.e. I—K  is invertible).
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The optimum policy for the system can then be determined as

r* =  argmin{CT (0)} (5.19)
reR +

t * represents the desired optimum solution: the inspection period resulting in a mini-

mum long run expected cost per unit time.

5.3 Non-periodic inspections

The model proposed in this section constitutes an extension of the previous one 

to the case of non-periodic inspections. The inspection times are now determined 

by a deterministic function of the system state: the inspection scheduling function 

introduced in subsection 4.4.2. As in the previous section, features for the model are 

provided. A non-periodic policy is developed by evaluating the expected lifetime costs 

and the optimal policy by an optimal choice of inspection function. Numerical solutions 

are obtained with a slight reformulation of the expression for the cost: description of 

the method considered is provided at the end of this section.

5.3.1 Features of the model

Model assumptions

1. Without loss of generality, it is assumed that the system’s initial performance is 

maximum, i.e. R0 =  0, with initial critical threshold £.

2. Inspections are non-periodic, perfect (in the sense that they reveal the true state 

of the system) and they are instantaneous.

3. Maintenance actions are instantaneous.

4. The system’s performance is only known at inspection times, however the moment 

at which the performance does not meet the prescribed criteria is immediately 

known (self-announcing) : the system is then instantaneously replaced by a new 

one with cost Cf.

5. Each inspection incurs a fixed cost C).

6 . Each maintenance action on the system incurs a cost determined by Cr: it is a 

function of the performance of the system at inspection time.
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Settings for the model

1 . The state space in which the process Rt evolves is partitioned by a critical thresh-

old £ as follows:

R+ =  [0,0  U [£,+oo) (5.20)

Because the process Rt is non-monotone, the first time at which the process hits 

the threshold £ is not considered as the time at which the system fails. Instead, 

we use the transience and positivity properties of the process, to define the system 

as unsafe when it has definitely escaped from the interval [0 , £).

2. The system is inspected at inspection times { t : , r2, . . . } .  The time between inspec-

tions i and r, is T), i G N, and is determined by using the inspection scheduling 

function m, introduced in Chapter 4. The sequence of inspection times (Ti)iez+ 

is strictly increasing and satisfies:

r0 =  0
i

k=1

T) Ti Tj_x, Ì A 1

At inspection time r*, the corresponding system’s state is RTi and appropriate 

maintenance action (repair or do nothing) is undertaken. Let r* denote the times 

at which the system is replaced. These times allow us to derive an expression for 

the expected total cost of inspection and maintenance.

3. At inspection time t =  r  (prior to any maintenance action), the system’s perfor-

mance is Rr.

4. Given that the system’s initial performance is maximum, i.e. Rq =  0, decisions 

on the level of maintenance (replacement or imperfect maintenance) are made on 

the basis of the indicator function l ^ o >Tp By this it is meant that decisions on 

whether to replace the system or not are taken on the basis of the process having 

definitively escaped from the interval [0 , £) or not.

5. Deterministic maintenance at inspection time is modelled with the use of main-

tenance function (5.2).
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6 . As the cost of maintenance strongly depends on the type of maintenance un-

dertaken on the system, the cost function’s expression must be related to the 

maintenance function’s expression. The considered function for the cost of main-

tenance is given in equation (5.3).

Decision rules

The aim of the model proposed in this section is to give an optimal maintenance 

and inspection policy. The efficiency of the policy entirely depends on the inspection 

times and the type of maintenance on the system. Therefore, the different decisions 

considered are on the inspection times and the different maintenance actions, with their 

corresponding costs.

The proposed model considers a non-periodic inspection policy; the reason for this 

being that it is a more general approach and often results in policies with lower costs, 

particularly in cases where high costs of lost production are taken into consideration. 

Rather than considering a dynamic programming problem, as considered in [61], the 

optimization problem is simplified by using an inspection scheduling function m as 

introduced by Grail and his co-authors, [34], Descriptions of the considered inspection 

functions are provided in section 4.4.2. The scheduling function is a decreasing function 

of d (i?Ts), the amount by which the threshold is decreased, and determines the amount 

of time until the next inspection time. Consequently, it is the state of the performance 

measure that determines the next inspection time. The inspection times are related in 

the following way:

Tj+ 1 =  Ti +  m[d (Rrf)] (5.22)

The approach is to optimize the total expected cost with respect to the inspection 

scheduling function. The inspection functions form a two parameter family and these 

two parameters are allowed to vary to locate the optimum values. The function can be 

written m [x | a, b} leading to a total cost function (a, b) which is optimized with

respect to a and b. Different forms of inspection functions, based on their convexity 

property, are considered. The following three expressions for m are investigated
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mi [x| a, b] — max  ̂ 1 , a — -l— — x

(s -  by
m2 [x| a, b] =   ̂ b2

1,

(a — 1 ) +  1 , 0 ^  x ^  b 

x > b.

m3 [x\ a, b] =
\/a — 1

x )  +  a, 0 ^ x ^ b 

x > b

(5.23)

(5.24)

(5.25)

with a > 1 in all cases. Note that if a =  1 the policy becomes a periodic inspection 

policy with period t  =  a =  1 and in the case where a < 1 the policy inspects less 

frequently for a more deteriorated system.

Remark 5.3.1. In the rest of the thesis, the notations m{x)  and v^-x are used rather 

than m (x\a, b) and v^-x (a, b), for clarity.

Plots of the three considered inspection functions are shown in figure 5.1. The 

function mi resembles to the inspection scheduling function considered in the numerical 

example section of [34] and constitutes a reference for our numerical results. The reasons

Figure 5.1: Inspection scheduling functions considered (examples with a =  4, b =  5). 

for this particular choice of functions can be explained as follows. First of all, we note
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that the three functions differ in the sense that they have different convexity properties. 

The first one is a straight line up to the performance level Rt =  b, the second is convex 

up to the performance level b and the third is concave up to level b. Whereas the time 

until the next inspection decreases rather quickly when dealing with m2 , m% allows 

greater time between the inspections when the state of the system is still small. The 

function m2 might be thought as appropriate for a system experiencing early failures 

(infant mortality), whereas m3 is more appropriate for a system that is unlikely to fail 

in its early age. In the three cases the parameter a corresponds to the time of the first 

inspection, that is when the system is new:

mi [0] =  a, i e  {1 ,2 ,3 }  (5.26)

and parameter b controls change in frequency of inspections

mi [i?t] =  1 , if Rt > b, i E { 1,2 ,3 } (5-27)

As stated in 5.3.1, decision rules for maintenance are made with the help of the mainte-

nance function d. The maintenance actions considered are deterministic and range from 

doing nothing to partial repair. The case of replacement of the system is considered 

separately, and is not included in the maintenance function. Decisions about mainte-

nance actions depend entirely on the state of degradation of the system at inspection, 

as do the related costs.

We note that random maintenance can be included in the proposed model. This can 

be done as in [61] by introducing an extra random variable representing the amount of 

repair that has been undertaken on the system. This results in an extra integral term 

in the expression for the total expected cost of inspection and maintenance.

The framework

The process starts with performance Ro =  0 and at this time the critical threshold 

considered is at a distance £ from the current point. After maintenance the system’s 

performance is returned to R + =  x (the superscript +  in rff is here to indicate that 

it is the time just after the maintenance action, assumed to be instantaneous). The 

distributions for the radial part of a Brownian motion with drift is only fully specified 

for paths starting at the origin. Thus we use the Markov semi-group property to develop 

the unfolding of the distribution in time, the Bessel process is not allowed to start from
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any point other than the origin, see subsection 3.3.1. Hence, rather than considering 

the process starting at the new initial state x with critical threshold still being equal to 

£ we now treat the problem differently. The following equivalent problem is considered: 

we assume that the process starts from new and that the value for the critical threshold 

is now equal to £ — x. As far as the decision problem is concerned, the Markov property 

of the process is exploited and allows a copy of the original process to be considered:

P[/2t <  f  | ñ 0 =  x\ =  <  £ -  x | R'0 =  0] (5.28)

with

Rt = ||wt||2 
K  = !!wr++i-w r+||2

recall that W t is the n-dimensional process describing the state of the system and 

||W_+ H2 =  x , as explained in section 4.3. R't is an equivalent process with the same/ i
probability structure and starting at the origin. In the more usual notation

¥*[& < £ ] =F°[R't < £ - x ]  (5.30)

with the superscript indicating the starting point. The time until the next inspection 

is determined by the inspection scheduling function m and is equal to m(x).

The decisions are made using the exit time from the region of acceptable performance. 

The time F/|_x can never be known by observation since observing any up-crossing of 

the threshold reveals a potential exit time but there remains the possibility of a further 

down-crossing and up-crossing in the future. This is the meaning of the fact that H^_x 

is not a stopping time. In a non-probabilistic context, the process H^_x is described 

by a non-causal model. The difficulty is readily resolved because the probability that 

the last exit time occurs before the next inspection is known. In the light of these 

observations the decision rules are formulated as follows.

• lj/jo =  1: performance of the system (evaluated with respect to the last

time the process hits the critical threshold) meets the prescribed criteria until 

the next scheduled inspection. Upon inspection, the system’s performance is 

Rm(x)- The system is inspected, and a cost of inspection C¿ is considered. The 

maintenance brings the system state of degradation back to a lower level d (Rm(x)) 

with cost Cr (Rm(x))- Future costs enter by looking at the process starting from 

the origin and with the new critical threshold set up equal to £ — d (Rm(x))• The 

system is then next inspected after m [d (i?m(x))] units of time.

(5.29)
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• lj^o >TO(X)} =  0 : the performance fails to meet the prescribe criteria between 

two inspections. The system is replaced with cost Cf and the process restarts 

from the origin. Future costs are then taken into consideration by looking at the 

process starting from the origin and with the new critical threshold set up equal 

to f.

5.3.2 Optimal policies

The Expected Total Cost

We first give the expression for the total cost and then take the expectation. This 

is done by considering the above different scenarios.

(Ci T T) - cl(Rrn(1:̂ ) "t" Cr 1{performance acceptable}

T  (Cf T" 14) 1 {performance not acceptable}
(5.31)

+  (Cf +  1 4 ) 1 {H 0 x<m(x)}

Taking the expectation leads to:

=  E[1 4 _J

E (Cf +  14) l{Hl_x<m(x)}

(Cf +  Vz) E l{//0_x<m(x)}

(Cf +  vt) P [H°_x < m(x)}

+  (Ci +  Cr (y) +  vt-dfy)) P [H%_x > m(x)] f^ (x) (y ) dy 
Jo
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h\_x (£) dt

+ (Cj +  Cr (y) +  V£-d(y)) fm(x) (y) dv

=  a  1 -
(•mix)

ti\_x (£) dt
fm(x)

+  (Cf +  v0  /  (t) dt

(
rm (x) \ /-+00

Jo Cr (y) f m{x) (y) dy

f + o o  {  rm (x) \
+ ^  «i-d(y) ( 1 -  ^ -x  00 d t  J fm (x )  ( V )  d y

(5.32)

In (5.32) the expected value E V _̂d̂ R ( >m(x)} is required. The expected value

is derived by using the conditional independence of and Rr. The independence 

allows the factorization of the integrals as shown in Appendix C.

Rearranging the above gives:

where:

V£-x =  Q{x) +  A (x) vç +

(*m{x)

rd-'i 0
vi-d(y)K  {x ,y }d y

A (x) =  / hç_x (t) dt

Q(x) =  (1 -  A (x)) f a  +  £ ° °  ( ) / ” w +  A (x)

(
/>m(x) \

1 ~ J o hl_x (t)dt\ f 0m[x){y)

(5.33)

(5.34)

Note that now the limit in the integral in (5.33) is finite. The justification for this 

change of limit is that the expected cost v^-x is assumed to be zero when the critical 

threshold is negative. Indeed, a negative threshold in the model would either mean that 

the system never reaches a critical state or that it is always in a failed state: hence no 

maintenance action needs to be considered, setting the expected cost of maintenance 

to zero.
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Determining the Policy

Equation (5.33) is solved numerically in a similar way as the one described in subsec-

tion 5.2.2, with a slight reformulation of equation (5.33) required . An approximation 

to the continuous problem is constructed by discretizing the integrals giving a set of 

linear matrix equations. The discrete problem is solved using the methods described 

in [71]. First, note that at t =  0 the system is new. Under this condition, we rewrite 

equation (5.33) as follows:

v ^ x =  Q (x) +  X (x )v ^ x +  v ^ d(y)K  {x ,y }d y  (5.35)
Jo

yielding to the following Fredholm equation:

{ l - X ( x ) } v ^ x =  Q ( x ) +  vi-d(y)K {x ,y }d y  (5.36)
Jo

Rewriting (5.33) as (5.36) does not affect the solution to the equation and will allow 

the required solution to be obtained by a homotopy argument based on £. Indeed both 

equation (5.33) and (5.36) are identical when x =  0: we therefore solve equation (5.36) 

and get the solution for x =  0. The Nystrom routine with the Appoint Gauss-Legendre 

rule at the points y3, j  E { 1 , . . . ,  N }  is applied to (5.36), we get

N

{1 -  A (z)}we_x =  Q (z) +  va-d{yj)K  {x, y-j} Wj (5.37)
j=i

We then evaluate the above at the following appropriate points Xi =  d (yf) and obtain:

N

{ l  X  (X j )} -W £_ Xi Q  ( Z j )  T  d ( y j ) K  { Z j , y j }  W j  ( 5 . 3 8 )

3= 1

which, since v$-Xi and Vf-d(j/j) are evaluated at the same points, can be rewritten in the 

matrix form

(D — K) v  =  Q, (5.39)

where:

V* =  V£-Xi

D jj (1 A (zj)) 1 {i=j}
(5.40)

K id =  K  {z j, Pjjwj 

Qi Q (jXi)
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Having obtained the solution at the quadrature points by solving inversion of matrix 

D —K  (this can be done using a similar argument as in remark 5.2.1), we get the solution 

at any other quadrature point x by simply using equation (5.37) as an interpolatory 

formula. Hence since we are interested in a system which is new at time t =  0, we just 

choose the quadrature point ay =  0, which justifies that rewriting (5.33) as (5.36) does 

not affect the solution to the equation.

5.4 Numerical results, exploring the solutions

This section presents numerical results for both of the models derived in sections 

5.2 and 5.3. The numerical results are obtained using the discrete versions of the 

optimization problem described by equations 5.18 and 5.39, with N =  20 points for the 

Gauss-Legendre rule. The values of the parameters for the process used to model the 

degradation of the system and the different costs used were chosen arbitrarily to show 

the important features of the inspection policies. The particular choice of maintenance 

functions d and inspection scheduling functions m (in the non-periodic case) is made 

clear throughout the two subsections.

5.4.1 Periodic inspections

The settings for the model are the one described in section 5.2.1. The initial value 

for the critical threshold is chosen to be £ =  10 and the corresponding Bessel process 

used is I?eso(0.5,1): this corresponds to the radial part of a three dimensional Brownian 

motion with drift of magnitude n =  1  and starting from the origin.

The initial values for the cost of inspection and the cost of failure are: C* =  50, Cf =  

250. The cost of repair is chosen to be dependent on the state of the system found at 

inspection as follows:

i.e. Crep =  100, K  =  2.

The maintenance actions are modelled with the following maintenance function:

(5.41)

(5.42)

with different considered values for k G [0,1].
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Figure 5.2: Expected cost per unit time, low maintenance action: k =  0.9.

Figure 5.2 shows the graph of the expected cost per unit time with respect to the period 

of inspection. This was obtained in the case where the parameter k in the maintenance 

function was set equal to 0.9: hence corresponding to a small amount of maintenance. 

The shape of the graph clearly shows the presence of two local minimums, one of 

which is a global minimum, allowing the decision maker to chose between two different 

strategies. The optimal strategy consists in inspecting the system every t * =  13.5 units 

of time, the corresponding cost is then vr» =  24.71. However, one may wish to inspect 

the system more often (when safety regulations are to be considered for instance): the 

optimal strategy would then consist in inspecting the system every r* — 2 .2  units of 

time, yielding to a cost of maintenance equal to vT* =  28.92. This strategy is more 

expensive then the former one but inspects the system more often, hence reducing 

the risk of an instantaneous failure. When the cost of failure is decreased such that 

Cf «  Crep +  Ci, the graph for the expected cost of maintenance per unit time, figure 

5.3, does not show a minimum and keeps on decreasing. This suggests that for a small 

cost of failure compared to the sum of the cost of repair with the cost of inspection, 

the optimal strategy is the ‘no maintenance’ strategy that chooses not to inspect nor 

to repair the system but only to replace it upon failure. This makes sense since failure 

of the system incurs a lower cost Cf than Ci +  Cr. Note however that this strategy

85



Chapter 5: Models guaranteeing a prescribed level of reliability

Figure 5.3: Expected cost per unit time with small cost of failure: (Cf,Ci,Crep) =  
(55,50,100).

does not take any safety criterion into consideration. As shown in figure 5.4(a), both 

the optimal expected cost per unit time and the optimal period of inspection change 

with the initial critical threshold £. Indeed, when the value for £ increases, the optimal 

period of inspection increases and the cost of maintenance decreases. This is due to the 

transience property of the considered Bessel process: the last hitting time of a given 

threshold increases with the value of the threshold. The optimal expected cost per unit 

time decreases since for a higher threshold £, a greater amount of time to optimize 

the maintenance strategy is available. The influence of the quality of maintenance 

on optimal strategy is also treated. This is done by computing the expected cost of 

maintenance for different values of k. When k is close to 0, the maintenance tends to 

a ‘perfect maintenance’ policy (replacement of the system), whereas when k is close to 

1, the maintenance approaches a ‘minimal repair’ policy. It is shown in figure 5.4(b) 

that the optimal cost decreases when the quality of maintenance increases ( i.e. when 

k decreases). However, after a certain amount of time T, no distinction between the 

different curves can be made: if maintenance of the system can only be undertaken at a 

time greater than T, one may not need to consider maintaining the system thoroughly.

86



Chapter 5: Models guaranteeing a prescribed level of reliability

(a) Expected cost per unit time with different initial critical thresholds

(b) Expected cost per unit time for different maintenance strategies

Figure 5.4: Expected cost per unit time with different initial critical thresholds and for 
different maintenance strategies.
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5.4.2 Non-periodic inspections

The model assumptions are the one described in section 5.3.1. The initial value for 

the critical threshold is chosen to be £ =  5 and the Bessel process used is Bes0(0.5,1). 

The initial values for the cost of inspection and the cost of failure are Ct =  50 and Cf =  

200 respectively. The maintenance actions are modelled with the following maintenance 

function:

d(y) =
y, y < I 
ky, y >  |

(5.43)

for k — 0.9 (small amount of maintenance) in a first case and k =  0.1 (large amount 

of maintenance on the system) in a second case. The corresponding costs of repair are 

chosen to be dependent on the state of the system found at inspection as follows:

Cr (y) = (5.44)
0, y <  |

100, y >  2

The purpose of the present model is to find an optimal inspection policy for the expected 

total cost of inspection and maintenance of the system over a finite time interval. Three 

different types of inspection policies are considered with the use of the three inspection 

scheduling functions mi, m 2 and m3 defined in subsection 5.3.1. The expected total 

costs are minimized with respect to the two parameters a and b.

Inspection policies k=0.9 k= 0 .1

ai 5.9 4.5
mi 6* 2.3 2.3

£ 1176.6 628.73
a*2 6 .1 4.5

m2 b*2 3.8 4.7
1310.8 631.71

a3 5.6 4.3
m3 63 2.3 1.9

^3 1089.3 625.67

Table 5.1: Optimal values of the parameters a and b for the three inspection scheduling 
functions.

The numerical results for the case of small maintenance on the system (k — 0.9) are 

shown in figures 5.5 and 5.6. In the case of a large amount of maintenance (k =  0.1), the 

numerical results are shown in figure 5.7 and figure 5.8. The optimal values a*, b* and 

v* (i =  { 1 , 2 ,3 }) for a, b and vç respectively, in the different scenarios, are summarized
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(c) Inspection function considered: m 3

Figure 5.5: Surfaces for the expected total costs with different inspection scheduling 
functions, k =  0.9.

(c) Inspection function considered: m 3

Figure 5.6: Contour representation for the expected total costs with different inspection 
scheduling functions, k =  0.9.
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(a) Inspection function considered: mi (b) Inspection function considered: m 2

(c) Inspection function considered: m3

Figure 5.7: Surfaces for the expected total costs with different inspection scheduling 
functions, k =  0 .1 .

(c) Inspection function considered: m3

Figure 5.8: Contour representation for the expected total costs with different inspection 
scheduling functions, k =  0 .1 .
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Figure 5.9: Optimal inspection scheduling functions.

in table 5.1.

We first note that the surfaces and the contours plotted in figures 5.5 - 5.8 clearly show 

the presence of an optimal policy for each inspection function considered. In the case 

k =  0 .1  with inspection function mo, the optimal inspection policy seems to strongly 

depend on parameter a only, which is the first time of inspection of the system. The 

choice for b does not seem to be of much importance.

Even if the optimal inspection policy gives a value b* which is less than £, we note 

that the choice b >  5 (=  £) is not meaningless: indeed the value Rn of the process at 

inspection time t * may be greater then £: it is the last hitting time of £ by the process 

that defines the process as unsafe.

From table 5.1, we note that the optimal costs are smaller for k =  0.1 than for k — 0.9. 

This makes sense, since in both cases the same values for the costs were considered: 

the case k =  0 .1  corresponding to bigger amounts of repair, the system will tend to 

deteriorate slower and therefore will require less maintenance resulting in a smaller total 

cost. In both cases k =  0.9 and k =  0.1, we note that the value for v* increases with the 

convexity of the inspection function: < v\ < v̂ . The plots of the optimal inspection

functions in figure 5.9 show that the smallest value for a is <23, which corresponds to 

the first inspection time for a new system when inspection function m3 is considered.

91



Chapter 5: Models guaranteeing a prescribed level of reliability

However, when the process reaches some value (rather close to 0), the function m3 

crosses m\ and m2 to lie above them. It then crosses m2 a second time to return below 

it. We may deduce that for this considered process an optimal policy is first to allow 

great time between the inspection times, then to change strategy drastically in a small 

amount of time to an almost periodic inspection policy of period 1 . This change of 

inspection decision within the same policy m3 happens earlier when k =  0 .1 .

5.5 Summary

The proposed models provide optimal inspection policies for a complex multi- com-

ponent system whose state is described by a multivariate Wiener process. Decisions 

are made on the basis of the state of a performance measure defined by the Euclidean 

norm of the multivariate process and the last exit time from an interval rather than 

the first hitting time. The models are optimized in the sense that they result in a 

minimum expected maintenance cost, whose expression uses a conditioning argument 

on the critical threshold’s value.

Cost optimal periodic inspection strategies are derived using a renewal argument. As 

seen with the numerical experiments, the model proposes two different inspection strate-

gies due to the presence of two local minima, allowing the decision maker greater flexibil-

ity in the decision process. Moreover, different types of maintenance can be considered 

when changing the value of parameter k in the maintenance function: for instance 

setting k =  1 extends the proposed model to a minimal repair strategy. In the non-

periodic case, the non-periodicity of the inspection times is modelled with the use of an 

inspection scheduling function, introduced in [34], which determines the next time to 

inspect the system based on the value of the performance measure at inspection time. 

The numerical results obtained show the presence of a cost optimal inspection policy 

in each of the six cases, where different inspection functions and different amounts of 

repair are considered. Attention is paid to the influence of the convexity of the inspec-

tion function on the optimal expected total cost: the value for v*, the optimal cost, 

increases with the convexity of the inspection function.

This chapter outlines an approach and structure which is extended in Chapter 6 by 

considering a second threshold, whose first hitting time by the process defines failure 

of the system.
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Chapter 6

Incorporating failure: two-threshold 

models

6.1 Introduction

The models derived in this chapter constitute a natural extension to the ones con-

sidered in Chapter 5. These still aim at guaranteeing a prescribed level of reliability 

but failure of the system is now also considered. Examples of systems thought of are 

airplanes: regular inspections and repairs are usually undertaken to maintain a certain 

level of safety. However, unfrequent failures of such systems occur and have to be taken 

into account due to the catastrophic consequences induced.

Recall that in the previous chapter, one threshold £ was considered and decisions on 

whether to replace the system or not were made on the basis of the stochastic process 

Rt having definitely escaped from the region [0, £) or not. Repairs were modelled with 

the use of a repair function, that considered the state of the process at inspection times. 

Expressions for the maintenance costs and optimal inspection policies in both the pe-

riodic and non-periodic inspection cases were obtained by considering the state of the 

process after a maintenance action is undertaken. A second threshold T, with T  > 

is now added to the model. This new threshold differs from the initial one: rather than 

being a critical threshold describing the system’s safety, this new threshold corresponds 

to the value at, and above, which the system is considered as failed. Therefore, the time 

of failure of the system is described by the first time at which the process, describing the 

performance measure of the system, hits the new threshold T . Hence, this threshold 

enables catastrophic failures to be to incorporated in the model. The model now uses
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a non-stopping and a stopping time, namely the last exit time from the interval [0, £) 

and the first hitting time of threshold IF:

H£ =  sup {Rt <  £ | Rq =  0}
i£K+ (6.1)

G% =  inf {R t =  F \ R 0 =  0}
i€  K+

The threshold £ deals with the system’s repair actions. As will be shown, it is incorpo-

rated in the maintenance function d with the use of the probability of occurrence of the 

last exit time, introduced in Chapter 4. Different maintenance actions, depending on 

this probability, are considered. For this, a parameter e is introduced: this parameter 

determines the level of reliability for the system below which a repair is required. The 

model therefore ensures that the probability of escaping from a performance region is 

bounded above and thus the reliability bounded below. The threshold T , on the other 

hand, deals with failure of the system and hence with its replacement. The sequence 

of times Gjr_x,x  £ [O,^7), constitutes a renewal process, since at these particular times 

the state of the process is sent back to zero and the thresholds’ values are set back to 

the initial values (due to the replacement of the whole system). These times are then 

used to derive analytical expressions for both the expected cost per unit time over an 

infinite time horizon (for the periodic inspection policy) and the expected total cost (for 

the non-periodic inspection policy). The expected total cost is optimized with respect 

to both the inspection policy and the repair threshold £: the model thus provides an 

optimal inspection and maintenance strategy for the considered system.

6.2 Periodic inspections

6.2.1 Features of the model

Model assumptions

1. The system is assumed to be new at time t =  0, i.e. Ro =  0, with values for the 

thresholds being equal to £ and IF, with £ < IF.

2. Inspections are periodic, perfect and instantaneous.

3. Maintenance actions are instantaneous.

4. The system’s performance is only known at inspection times. However, times at 

which the system fails, defined by the first hitting time of the threshold F  by
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the process, are instantaneously revealed (self-announcing failures): this assump-

tion allows to incorporate catastrophic failure in the model. The system is then 

instantaneously replaced by a new one with cost Cf.

5. Each inspection incurs a fixed cost Cj.

6. Each maintenance action on the system incurs a cost determined by a cost function 

C r .

Settings for the model

1. The state space in which the process evolves is partitioned as follows:

R +  =  [ 0 , t ) U [ t , F ) U [ F , + o o ) , (6.2)

where £ is the threshold related to repairs of the system and IF is the critical 

threshold defining failure of the system.

2. The inspection policy is denoted by II =  {r, 2 r ,. . . ,  hr, . . . } ,  where r  denotes the 

period of inspection.

3. t  and £ are the parameters to be optimized in order to minimize the expected 

total cost. The optimal inspection policy is derived by choosing the period of 

inspection r* which minimizes the cost and an optimal maintenance policy (re-

pairs) is now also provided by choosing the appropriate value £* that induces a 

minimum expected cost.

4. At inspection time t =  r  (prior to any maintenance action), the system’s perfor-

mance is Rt .

5. Given that the system’ s initial performance is maximum, i.e. Rq =  0, decisions 

on the level of maintenance (replacement or imperfect maintenance) are made on 

the basis of the indicator function 1{G°.>t }- By this it is meant that decisions on 

whether to replace the system or not are made on the basis of the occurrence of 

the first hitting time of threshold F  by the process Rt.

6. Deterministic maintenance actions are modelled with the use of a maintenance 

functions d, which determines the amount by which both of the thresholds’ values
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are decreased. The choice for the maintenance function differs from the previous 

ones investigated since it now incorporates the time H| as follows:

d(X )J  x ’ n w ^ < T ] < i - t (63)
[ kx, P[ih°_x <  r] >  1 — e

with constants e, k G [0,1]. Recall that d must belong to the set of bijective 

functions.

Remark 6.2.1. Note that setting e =  0 in the maintenance function d allows the 

case of no maintenance on the system to be considered, whereas setting k — 1 

corresponds to a minimal repair scenario (as bad as old) and k =  0 to a perfect 

repair (good as new).

7. To each maintenance action, a corresponding cost is associated. As maintenance 

is modelled with the use of a function, the cost of maintenance is expressed with 

a corresponding cost function depending on the amount by which the thresholds’ 

values are decreased:

Cr {d(a;)) 0. < r ] < l - t

Crépi ^[Hç-d(x) — T] > 1 — 6
(6.4)

Note that Cr is no longer a function of the state of the process upon inspection 

but a function of the amount by which both of the thresholds are decreased after 

a repair on the system. The transience property of the Bessel process implies that 

Cr is well defined, he.:

Ve G (0, 1) ,  3 r* G M+ :
V r  <  <  r] <  1 — e

V r  >  t * , F [ H % _ x  <  t ] >  1 - e
(6.5)

The framework

At time t =  0 the system’s performance is assumed maximum, he. Ro =  0. The 

threshold responsible for handling repairs on the system is set to £ and the critical 

threshold value representing failure of the system is set to T . A periodic inspection 

policy needs to be chosen in order to minimize the expected cost per unit time. As in the 

previous model with periodic inspections of Chapter 5, let r  be the period of inspection 

that needs to be optimized. Assume that at inspection time t% say, and prior to any 

maintenance action, the performance measure’s value is equal to x. Maintenance on the
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system therefore lowers the initial thresholds value £ and F  to £ — d (x) and T  — d (x). 

The two scenarios considered now correspond to whether the process will hit the failure 

threshold T  — d(x) prior to the next inspection or not:

1. 1 {Go_ )>rj. =  1: this scenario assumes that failure of the system does not happen 

before the next planned inspection in r  units of time. Hence, it is assumed that 

the system will be inspected at time t\ +  r  inducing a cost C\. The cost of repair 

to be considered at this next inspection time is determined now by the function 

Cr and is equal to Cr (d (x)). The performance measure’s value at time t\ +  t  is 

R°t  and will determine the amount by which the thresholds’ value will be lowered.

2. l{G°._dW>T} =  0: the process defining the performance measure of the system hits 

the threshold T  — d(x) before the next inspection planned at time t\ +  r. As soon 

as this happens, the system is considered as failed and is instantaneously replaced 

with a new one, incurring a cost of failure Cf. Such times, at which the system 

fails (and is replaced) define a renewal process which is used to derive expression 

for the expected costs.

Hence, a cycle corresponds to the occurrence of case 1 a certain amount of time and 

ends with case 2: the system fails and is replaced corresponding to the end of a cycle.

6.2.2 Optimal periodic inspection policy

Expected cost per cycle

An expression for the expected cost per cycle is now derived. The technique used 

to derive the following expression differs from the one used in the previous section. As 

explained above, rather than looking at the process after the maintenance action, the 

state of the process at inspection time prior to any maintenance action is considered. If 

the system’s performance measure at inspection time prior to any maintenance actions 

is Rr =  x, its value after maintenance is set to zero and the thresholds’ values IF 

and £ are set to T  — d(x) and £ — d(x) at time r + (as in the previous chapter r + 

denotes the time just after a maintenance action, where maintenance is assumed to be 

instantaneous). Hence, looking at the value of the process Rr , prior to a maintenance 

action, and considering the future costs (first the ones included until the next inspection 

and then the remaining ones with a recursive argument), an analytical expression for 

the cost of inspection and maintenance per cycle may be derived. The notation Vf
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denotes the cost per cycle with periodic inspection of period r, given that at inspection 

time (prior to any maintenance action) RT — x.

Vf  =  C f x 1{system  fails given d(ir)}

+ Ci +  Cr (d (x)) +  V7RÎ x 1{system  dos not fail  given d(x)}

Cf x 1{G°
(6.6)

T — d(x) <T}

+ Ci +  Cr (d{x)) +  VfR° X 1 {G°IF—d(x) >r}

rPThe term VT T indicates the future cost, given that at the next inspection time the 

process will be in state R7, since it started from state 0. Recall that maintenance is 

modelled by decreasing the thresholds’ values by d (x).

Taking the expectation of the above leads to the following expression for the expected 

cost per cycle:

E [VTX]

=  E Cf X + E [(a + Cr (d(x)) +  VrR°)  X 1{G0IF—d(x)>r}

=  C,P <
rR -d { x )

+  I Ci +  Cr (d (x)) +  / vyf f  (y) dy J x P > r ]

(6.7)

Cf /  9r-d(x) (y) dy 
Jo

f‘Jr—d(x)

+  I Ci +  Cr (d (x)) +  J  ̂ vyf f  (y) dy j  x ^1 -  g°T_d{x) (y) dy

=  Cf J  9°R-d(x) (V) dy +  {Ci +  Cr (d (x))} ( l  -  g°T_d{x) (y) dŷ j 

+  ( i  -  Jo g°T-d(x) (y) dŷ j vyTf T (y) dy

Ro
The third equality requires the computation of E VT T x lrGo >Ti*- lF—d(x) -*
using a conditional independence argument, as explained in Appendix C.
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Rearranging equation (6.7) gives:

with:

Vr =  Q{x) +  A (x) [  vvTf T (y) dy 
Jo

A (x) =  1 -  [  g%_d[x) (y) dy 
Jo

Q(x)  =  ( l -A (a ;) )C >  +  A (x){C 'i +  C,r (d (x ))}

(6 .8 )

(6.9)

Expected length of a cycle

Similarly, an expression for the expected length of a cycle may be derived. Let’s 

first write the expression for the length of a cycle. The notation L* is used to denote 

the length of a cycle given that the value of the process prior to a maintenance action 

is x and that the period of inspection is equal to r.

TX _ ŷ O v -I
■ t̂  ^ T —d(x) A {system  fails  given d(x)}

+ T + Lfr X 1 {system  dos not fail given d(x)}

Gf-d(x) X d(x)<r}

+ t  +  L:R°
xF-d(x)~

x 1{G%-d(x)>C

(6.10)

The term Lr T indicates the future length, given that at the next inspection time the 

process will be in state R°, since it started from state 0. Taking the expectation leads 

to the following expression for the expected length of a cycle:

l* =  P (x )  +  X(x) 

with A defined in (6.9) and

r f - d ( x )

l‘r fp y )d y (6 .11)

P ( i )  =  (1 -  A (x)) / (y) (x) T (6 .12)

Expected cost per unit time

The use of the standard renewal reward argument allows to obtain the expression 

for the expected cost per unit time over an infinite horizon:

CTX =  f  (6.13)
LT

with expressions for vf and Z* given in (6.7) and (6.11) respectively.
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Obtaining solutions

Obtaining solutions to equations (6.8) and (6.11) requires the expression for g(f ,  the 

probability density function for the first hitting time of threshold T  by a Bessel process 

with drift. As mentioned in Chapter 3, such an expression is not known explicitly, and 

several attempts to derive an expression for such a density function did not produce 

any convincing results. However, the expression for the Laplace transform of G®- is 

available in the literature. This expression, given in Chapter 3, is recalled here:

I u WE[e-|/32G î = VP2 +  y2 , v >  0 (6.14)

see [70] and [91] for proofs. This motivated the idea to invert this expression back to 

the time domain. Much research in the literature (such as [32, 36, 49, 54, 64, 72]) was 

undertaken in order to derive an analytical expression for the inverse Laplace transform, 

but was unfruitful. The difficulty with finding the inverse Laplace transform of such 

an expression arises from the presence of a modified Bessel function of the first kind at 

the denominator of the fraction:

h  (/¿F)

Hence, solutions to (6.8) were obtained by performing numerical inversions of this 

Laplace transform. The method chosen to perform such an inversion is the EULER 

method from Abate and Whitt, described in [2], The numerical results obtained were 

compared to results from simulations procedure and proved to be more than satisfactory. 

More details on the method and the simulations undertaken may be found in Appendix 

B.

Note that equations (6.8) and (6.11) are Volterra type integral equations, due to the 

presence of the variable x in the integral limit. These equations are reformulated as 

Fredholm type integral equations by incorporating an indicator function inside the 

integral term:

v xt  =  Q (x ) +  A (x ) /  K  {x, y} vyT dy 
Jo

lr =  P  (x) +  A (x) [  K  {x , y} lvT dy 
Jo

with Q,\ defined in (6.9), P  defined in (6.12) and

K  {X, y} =  1 {y<T-d(x)}fr (y)

(6.15)

(6.16)
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The above equations are then solved numerically: the Nystrom routine with the N 

point Gauss-Legendre rule at the points y0 G [0, IF), V j  € { 1 ,2 , . . . ,  N}, is applied. The 

discretized versions of (6.15) are then evaluated at the points x* =  y*, Vz e  { 1 , . . . ,  A^}, 

in a similar way as in subsection 5.2.2.

Remark 6.2.2. Note that for Xi E (£,.A], d{xf) is not defined since £ — Xi <  0. For 

such values, it is assumed that d (x») =  kxi: i.e. repair is undertaken on the system. If 

£ — d (x^ <  0, a cost of repair is automatically included at the next inspection time, 

i.e. Cr (d(xi)) =  Crep. This seems to be a physically reasonable assumption since Rt 

is positive and will therefore always stay above such a threshold with negative value, 

meaning that the last exit time has already happened and hence that repair must be 

considered.

A little more must be said to explain how the expected length of a cycle may be 

calculated. Indeed, this requires the evaluation of the following integral:

y9%-d{x) (y) dy

Using integration by parts, one gets

/  V9r-d{x) (v) dy =  t  G%_d(x) (r) -  [  G%_d{x) (y) dy,
Jo Jo

where Gjr(t) =  f* g(f(s)ds  (the probability distribution function). The first term is 

obtained with the EULER method described in Appendix B. As far as the second term 

is concerned, one may note that:

G°r-d{x) (y) dy =  C
C- i 9 t - cL{x )

Hence, rather than numerically integrating Gp(t) which is rather computationally de-

manding since it requires to run the EULER algorithm n times (where n is the number

of points used for the numerical integration), the integral term is obtained by numer-
als0 1ically inverting _L with the use of the EULER method. M  is any constant

satisfying M  > r  ensuring convergence of the EULER method, since:

f 0 G? - dW ^  dy\ ~ m  < 1

Hence:

f  Gy„w(s ,)Ay =  M C
Jo

i £ n°yx-d(x)
M s2
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The minimum value required for M  may be determined by the values of threshold IF 

and the Bessel process’ drift term ¡x. Indeed these provide sufficient information on the 

time required to hit the critical threshold to be able to give an upper bound for the 

optimal period of inspection.

The optimal period of inspection and repair threshold can then be determined as:

6.3 Non-periodic inspections

6.3.1 Features of the model

An extension of the above model to the case of non-periodic inspection policies is 

now presented. In order to avoid any redundancy, most of the features to the model 

are not stated: these are just the non-periodic version of the ones stated in subsection 

6.2.1, just as the features for the non-periodic inspection policy with one threshold 

were to the corresponding periodic inspection policy. The evolution of the performance 

measure, the different values for the two thresholds and inspection times over one life 

cycle are illustrated in figure 6.1. We note that the process Rt is considered here, and 

not the process Rf. representing the maintained system. Attention must be paid to the 

considered maintenance function d and cost function Cr. The time at which the system 

is inspected now depends on the performance measure’s value: a slight modification to 

the repair function is applied. Let x be the state of the process Rt at inspection time 

before any maintenance is undertaken on the system, the amount of repair considered 

is calculated as follows:

with constants e,k G [0,1]. The probabilities involved in 6.17 should instead be 

F[H®_X <  m(d (x))], making d (x) impossible to be calculated. The amount of mainte-

nance undertaken being determined, the next inspection time can be computed and will 

happen in m (d (x)) units of time. The cost of repair at the next inspection is therefore 

equal to Cr (d (x)), where:

(r*, C) =  argmin {C°}
(r, $)€K+x[0,̂

x, P [H®_x < m (x)] <  1 — e 

kx, F[H^_X <  m (x)] > 1 — e
(6.17)

m i d{x)< m ( d ( x ) ) ] < l - e

<  m (d (x ))] >  1 - e
(6.18)
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Figure 6.1: Evolution of the system’s performance measure over one life cycle, with 
changes in the thresholds’ value.

6.3.2 Expected total cost

Similarly to the way the expression for the expected cost per unit time with a peri-

odic inspection policy was derived, an expression for the expected total cost over a finite 

time horizon in the non-periodic case may be deduced with the use of the inspection 

scheduling function. Recall that for this, the value of the process Rt at inspection time 

and prior to any maintenance action is considered. Hence, if at inspection time n  say, 

Rn = x, the system is next inspected after m (d (x)) units of time. Thus, the expression 

for the total cost of inspection and maintenance is:

V If' f T  V  J X 1 {system fails given d(x)}

+ Ci +  Cr (d (x)) +  V Rm(d(x>) x 1{system dos not fail given d(x)}

-  [Cf +  v° ]  X  1 {G07_dM<mWx))}
(6.19)

+ Ci +  Cr (d (x)) + X  1

Taking the expectation of the above expression gives the expected total cost of inspec-

tion and maintenance of the system. The intermediate steps are omitted to avoid any
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redundancy: these are similar to the ones with periodic inspections. We get: 

vx =  E [Ux]
f*m(d(x)) fm(d(x))

=  iCf + v°) /  9 r - d { x )  (y) dv + { ° i  + ° r  (d(x))} 1 -  /  9 % - d (x )  (y) dy
10

rm{d(x)) rT
+  1 - 9%-d(x) (y) dy My<r-d(x)}Vyf^ Wx)) (y) dy

which may be re-arranged as

rF

with:

vx =  Q (x ) +  ( 1 — A (x)) v° +  X(x) K  {x, y} vvdy

pm(d(x))
\(x) =  i -  /  9%-d(x) (v) dy

Jo
Q (x) =  (1 -  À (x)) Cf +  X (x) {Ci +  Cr (d (x ))} 

K  { x i y} — 1{y<F-d{x)}fm(d{x)) (v)

(6.20)

(6 .21)

(6 .22 )

6.3.3 Obtaining solutions

Using the same homotopy argument as the one proposed in subsection 5.3.2, equa-

tion (6.21) may be rewritten as:

r 1 =  Q (x) +  (1 — A (x)) vx +  A (x) f K { x , y } v ydy (6.23)
Jo

Equation (6.23) is then solved numerically as described in the previous model, allowing 

the solution at x =  0 to be obtained.

6.4 Discounted cost criterion using Laplace trans-

forms

In this section, expressions for the costs of maintenance under particular inspection 

policies are given. These results are well-known and can be found in [61] for instance. 

The reason why they are included in the thesis is that rather than being based on the 

probability density function of the first hitting time, the cost expressions are derived 

with the use of the Laplace transform of the desired density, denoted by 'gf. Hence
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solutions to the given cost expressions, with our particular choice of process, may be

but yield expressions for the costs in the time domain: the idea is to consider discounted 

costs, hence introducing an exponential term in the integral. The discounted cost 

criterion allows future costs to be discounted, which is a real significant factor in life. 

This discounting reflects the time value of money. Benefits and costs are worth more 

if they are experienced sooner. The higher the discount rate, the lower is the present 

value of future cash flows.

The considered models are the ‘no inspection’ and the ‘continuous condition monitoring’ 

models. Note however that these special cases only deal with the failure threshold IF, 

since replacements of the system only are considered.

6.4.1 No inspection policy with discounted cost

The inspection and maintenance policy considered in this particular case are the 

following: the system starts in a new state and is never inspected. It runs until it fails, 

at that particular time only it is replaced by a new one (this is the kind of maintenance 

generally used for light bulbs). The system fails when the process Rt hits the threshold 

IF for he first time, hence at time Gfr.

The total discounted cost of maintenance is denoted by where the subscripts oo 

and 5 refer to the ‘no inspection strategy’ and the discount rate respectively. The 

expression for the total cost of maintenance is given by:

obtained without having to perform any numerical inversion (formally required to invert 

the Laplace transform). These models use the Laplace transform of the desired density

(6.24)

Taking the expectation gives the total expected cost:

ôo,(5 ®

=  ^  (Of +  V°°,s) x e ‘̂5G_Fl{GO.<oo}
'OO

(Cf +  Uoot5) x e stg°r (t)dt (6.25)

= Cf e 5tgfr(t)dt +  0̂0,5 /  e Stg%{t)dt

= C /& (i)+tW & (i)

105



Chapter 6: Incorporating failure: two-threshold models

Hence, it can be deduced:

ôo,(5 C f W )
1 -  W )

(6.26)

6.4.2 Condition monitoring policy with discounted cost

This other special case of condition monitoring policy assumes that the value of the 

process Rt is continuously observed. Thus, the model includes a fixed cost per unit 

time Cd representing the cost of continuous inspection, and a cost of replacement of 

the system Crepi. As the system is continuously monitored it is never let to fail but 

is replaced at an appropriate time, chosen by the decision maker. It is assumed that 

the decision maker decides to change the system when the process Rt reaches the level 

T ~ , IF~ <  T ', for the first time.

Using a similar notation to the one above, the expression for the total expected cost is:

C h, x e -St dt +  (Crevl +  Vs) x e

+  (Crepl +  Vs) x 6 SGr~

x e

(6.27)

Thus, the expression for the expected total cost is

vs =  E[Vs\

= L  ( Crepl ~ ~ f  + uä) x  e~St9%- (t)dt +  “

=  [crepl ~ ~ f +  V̂ j X JQ e~St9 f -  (t)dt +  ^

= (f + ( c repl- (f  +  v ^  g°^(6)

Hence

(C re p t - ^ ) & - ( < ? )

(6.28)

(6.29)

6.4.3 Obtaining solutions

As mentioned above, these two particular inspection policies allow the expected 

total costs (6.26) and (6.29) to be expressed in terms of the Laplace transform of the
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first hitting time of a fixed threshold by a Bessel process with drift. Hence, solutions 

to these equations may be obtained without having to numerically invert the Laplace 

transform, as was required in the previous models. Numerical results for such inspection 

policies are not provided but may readily be obtained by simply inserting the required 

values for the considered costs and discount rate.

6.5 Numerical results

As in the previous section, the results for both the periodic and non-periodic in-

spection policy were obtained with an N =  20 points Gauss-Legendre rule.

6.5.1 Periodic inspection policy

The numerical results in this section were obtained with Bes0 (0.5, 2) as the choice 

for Rt and a failure threshold T  =  12. Unless stated otherwise, the choice for the 

different costs and for the maintenance function’s parameters are

(Ci,Crep,Cf ) =  (50,200,500)

(k,e) =  (0.9, 0.5)

These, however, are allowed to change in order to investigate the behaviour of the 

proposed model. This choice of Bessel process, the values for the considered thresholds, 

the costs and the maintenance function parameters were chosen arbitrarily to show 

some important features of both the inspection and maintenance policies.

The influence of the costs

In this subsection, the behaviour of the model as values for the considered costs 

change is examined. The considered values are: C* G {0.5, 50, 500}, Crep G {2,200,2000} 

and Cf G {5,500,5000}. The optimal period of inspection r*, repair threshold £* and 

expected cost per unit time * (with superscript 0 to indicate that the system starts 

from new) were obtained in each case and are summarized in table 6.1. The expected 

cost per cycle and expected length of a cycle resulting in the optimal expected cost 

per unit time are denoted by * and 1° * respectively. Figure 6.2 shows the surfaces 

representing the expected cost per unit time as a function of £ and r, in the seven 

different cost scenarios investigated.
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(a) (Ci,Crep,Cf ) =  (0.5,200,500) (b) {Ci,Crep,Cf) =  (50,200,500)

(c) (Ci,Crep,C f ) =  (500,200,500)

ii

(e) (Ci,Crep,Cf) = (50,2000,500)

(d) (Ci.Crep,Cf ) = (50,2,500)

( f )  ( a  , Crepi Cf ) = (50 , 200, 5)

(g) (Ci,Crep,Cf ) = (50,200,5000)

Figure 6.2: Expected cost per unit time for different cost values (k — 0.9, e =  0.5).

108



Chapter 6: Incorporating failure: two-threshold models

(Ci, Crep, Cf) ( r * , r ) vo* l°T* c o*

(0.5,200,500) (1.2,9) 9255.1 20781 0.45
(50,200,500) (1.6, 9.5) 6972 208.81 33.39

(500,200,500) (max, any) 500 5.83 85.89
(50,2,500) (1.8, 7.5) 2640.2 81.77 32.29

(50,200,500) (1.6,9.5) 6972 208.81 33.39
(50,2000,500) (1.6,10.5) 5542.3 163.69 33.86

(50,200,5) (max, any) 5 5.83 0.86
(50,200,500) (1.6, 9.5) 6972 208.81 33.39

(50,200,5000) (1.4,8.5) 90295 2350.5 38.42

Table 6.1: Optimal period of inspection, repair threshold, expected cost and length per 
cycle and expected cost per unit time with different values for the maintenance costs 
(k — 0.9, e =  0.5).

• Changing the value for Ci : as Q  increases, both the optimal expected cost per 

unit time and the optimal period of inspection increase. Increasing Q  consists 

in considering more expensive inspections: the optimal strategy therefore decides 

to inspect the system less frequently. This also results in a decrease for /°*: as 

the system is less frequently inspected, knowledge of the performance measure’s 

evolution is restrained and the occurrence of a failure is therefore more likely 

implying the end of a cycle. For a high cost of inspection (he. Ci =  Cf) the 

optimal strategy decides not to inspect the system and to let it run until it fails: 

the resulting cost Cf being smaller than the sum Ci +  Crep. The expected cost 

per cycle is therefore equal to Cf and the expected length of a cycle corresponds 

to E [Ĝ r] (=  5.83), where GQT denotes the first hitting time of threshold IF. The 

value for the repair threshold does not matter here, since the system is never 

repaired.

• Changing the value for Crep : an increase in Crep does not really affect the optimal 

period of inspection and results in higher values for the optimal repair threshold. 

By increasing £*, the optimal strategy decides to reduce the frequency of occur-

rence of repairs hence preventing from high spending in repair costs. As for t * , 

the optimal expected cost per unit time is not really affected by a change in Crep: 

the optimal strategy really seems to be driven by the repair threshold, control-

ling the frequency of maintenance actions on the system and hence preserving an 

optimal expected total cost.
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• Changing the value for Cf : as Cf decreases, r* and £* increase. For a small cost of 

failure (i.e. Cf < <  Ci +  Crep), as in the case of a high inspection cost, the optimal 

strategy decides to let the system fail and then replace it resulting in a lower cost 

than a repair or a simple inspection (v® * = Cf and Z°* = E [G^] =  5.83). The 

value for £ does not affect the optimal strategy since the system is never repaired. 

As Cf increases from 500 to 5000, r* and £* decrease to prevent an expensive 

failure cost. However this results in a higher value for * and * due to the 

occurrence of more frequent inspections and repairs on the system.

Investigating the maintenance actions

The maintenance function considered so far is:

i.e. with the choice of parameters (k,e) =  (0.9,0.5). The effects of parameters £, k 

and e on the model in the case (Ci,Crep,Cf) =  (50,200,500) are now the matter of 

interest. Recall that in this cost configuration, the optimal expected cost per unit time 

was obtained with the following period of inspection and repair threshold (r*,£*) =

(i) The repair threshold:

The dependence of the optimal solution on the maintenance function is first in-

vestigated by allowing £ to vary and keeping t * , k  and e constant. The results 

obtained are shown in figure 6.3. The figure clearly shows the impact of the repair 

threshold’s chosen value on the optimal solution. An inappropriate choice for £ 

may result in an enormous increase for C°, particularly if £ G [0,9.5). Choosing 

a value greater than 9.5 slightly increases the expected cost per unit time. How-

ever, it must be pointed out that even a slight improvement in may result in 

enormous savings at the end of a whole cycle (cost may be expressed in thousands 

of pounds with a large expected cycle length).

(ii) Level of repair:

The level of repair in the considered model (associated to the amount by which 

both of the thresholds are decreased after the maintenance) is represented by pa-

rameter k  G [0,1] in the cost function. The effect on the level of maintenance is

m l x < r] <  I

<  r] > I
(6.30)

(9.5,1.6).
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Figure 6.3: Effect of parameter f  on the optimal solution C° * with parameters 
(k, e, t *) =  (0.9, 0.5,1.6).

now analyzed by letting k vary. The different values considered for this parameter 

are {0, 0.1, . . . ,  1}: the value zero representing a perfect repair, and the value 1 

the minimal repair strategy. Optimal values for the period of inspection and the 

expected costs per unit time are summarized in table 6.2.

The first conclusion that can be drawn concerns the effect of parameter k on 

r*: as k increases the optimal period of inspection decreases. An increase in k 

corresponding to less maintenance undertaken on the system, the occurrence of 

a failure in a shorter amount of time becomes more likely. The optimal strategy 

therefore chooses to inspect more frequently when the amount of maintenance is 

low, preventing a failure of the system which is expected to occur sooner and in-

duces a higher cost (recall that Cf > Cr +  Ci). Secondly, as parameter k increases, 

* increases. This may be explained by noting that as the level of maintenance 

on the system gets smaller, more frequent repairs need to be undertaken in order 

to prevent an expensive failure: as repair are more frequent, the total cost induced 

increases. A more realistic approach would be to let the cost of repair depend on 

the level of maintenance: indeed a higher level of maintenance may require more 

time or more staff, usually associated with a higher cost.

(iii) Decisions on repair:
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k T* C °*
0 3.4 15.72

0.1 3.2 17.04
0.2 3 18.80
0.3 2.8 20.37
0.4 2.4 23.08
0.5 2.4 25.18
0.6 2 28.59
0.7 2 30.02
0.8 1.6 32.78
0.9 1.6 33.39
1 1.4 36.21

Table 6.2: Optimal period of inspection and expected cost per unit time for different 
values of parameter k  (e =  0.5).

The occurrence of repair at inspection times entirely depends on the probability

Hence, considering different values for the parameter e in the repair function allows 

various cases in the decision making process to be considered. The different values 

studied for e are 0.1, 0.5 and 0.9: these may be associated to a decision maker’s 

attitude towards repair. A value close to 1 corresponds to the occurrence of a 

repair on the system almost surely and as the value decreases to 0, the decision 

maker decides to repair less often corresponding to a riskier option. The numerical 

results for the optimal inspection periods, repair thresholds and total costs per 

unit time were obtained with k  — 0.9 and are given in table 6.3. Figure 6.4 shows 

the evolution of as a function of the period of inspection in the three cases 

considered.

The first striking conclusion is that, as parameter e varies, the optimization seems 

to redistribute the actions and effort to meet the reliability criterion without 

changing the overall cost. The model adapts itself to the different decision maker’s 

attitudes to repair (the change in e) by choosing different values for the optimal 

repair thresholds. As e increases and therefore as repairs will be considered more 

often, £* increases: by doing so, the optimal strategy seems to be heading to 

keep the frequency of repairs constant corresponding to the optimal maintenance 

strategy. Whereas the optimal expected cost per unit time remains constant in 

the three cases studied , figure 6.4 clearly shows that this is not the case for
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periods of inspection r  G (r*,re=0.i], where re=0.i is defined as

V t > re=o.i : P [H° < t]  > 1  — 0.1

For most values in this interval, the expected cost per unit time increases with e: 

the model penalizes a costly strategy that favors too many repairs. For a period 

of inspection greater than r€=0.i, the expected costs per unit time are identical 

since in all three cases the approach towards repair is similar: the system will be 

repaired with certainty (P < t] >  0.9 => P [H < i] >  0.5 P [f/| < t] > 

0 .1 ) .

Decision towards repair r T* C°*
e =  0 .1 8 1 .6 33.39
e =  0.5 9.5 1 .6 33.39
e =  0.9 1 1 1 .6 33.39

Table 6.3: Optimal repair threshold, period of inspection and expected cost per unit 
time for different values of e (k =  0.9).

Figure 6.4: Effect of parameter e on the optimal solution Cf * with parameters 
(k, £*, t *) =  (0.9,9.5,1.6).
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Simulation of a cycle

To illustrate the strategy followed by the proposed model, a simulation of the 

behaviour of the maintained performance measure, the repair thresholds and failure 

thresholds was undertaken and is shown in figure 6.5. The case considered is the one 

with the cost configuration (C i , C rep , C f  ) =  (50,2,500): the reason for this being that 

this scenario produces a reasonable expected length for the cycle enabling to obtain a 

clear representation. The value for the parameters are (k, e, r*, £*) =  (0.9,0.5,1.8, 7.5). 

The cycle length obtained is equal to 89.89 units of time and therefore consists of 

L~HpJ =  49 inspections. The two thresholds values evolve through time and are set 

with the use of the maintenance function d. Eventually the process Rt hits the higher 

threshold resulting in a system failure and ends the cycle.

O p t im a l  p e r io d  t im e  t
o f  in s p e c t io n  x

Figure 6.5: Simulation of the proposed model over a cycle, with (Ci, Crep, Cf) =  
(50,2,500) and (k ,e,r* ,C ) =  (0.9,0.5,1.8, 7.5).

6.5.2 Non-periodic inspection policy

The numerical results in this section were obtained with Beso (0.5,2) as the choice 

for Rt and a failure threshold T  =  5. Unless stated otherwise, the choice for the different 

costs and for the maintenance function’s parameters are

(Ci, Crep, Cf) =  (50,100,200)

(k,e) =  (0.1,0.5)
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respectively. These, however, are allowed to change in order to investigate the behaviour 

of the proposed model. As previously, the choice of Bessel process, the values for the 

considered thresholds, the costs and the maintenance function parameters were chosen 

arbitrarily to show some important features of both the inspection and maintenance 

policies.

Three different types of inspection policies are considered with the use of the three in-

spection scheduling functions mi, m2 and m3 defined in subsection 5.3.1. The expected 

total costs over a finite time horizon are minimized with respect to the two parameters 

a and b. The notation a* is used to denote the optimal value of parameter a with 

inspection scheduling function m*, i £ { 1 , 2 ,3 }, similarly for b and v.

The optimal maintenance policy

The parameters leading to the optimal inspection policy with the corresponding cost 

(for each of the three inspection scheduling functions) are listed in table 6.4. The effects 

of the repair threshold on the optimal solution are also investigated by considering 

different values for £ £ [1 ,JF]. We first note the presence of an optimal inspection 

strategy in all the fifteen cases considered. This strategy strongly depends on the 

choice of parameters a and b as can be seen in figures 6.6 - 6.10. Moreover, it can be 

noticed that the optimal expected total cost value is more sensitive to a change in £ 

than a change in the inspection strategy. Indeed as £ increases from 1 to 5, v* increases 

from the order of 1 0 3 to 1 0 6, but for a given value for £, a change in the inspection 

scheduling function slightly affects the optimal expected cost.

For £ fixed, a* (which corresponds to the optimal first inspection time) does not seem 

to be highly affected by a change in the inspection scheduling function: e.g. when 

£ =  3, a{ =  a3 =  2.4 and =  2.5. However, the value b* does get affected and in all the 

encountered cases 63 <  5* <  b*2. This gives greater flexibility to the inspection planner, 

since different types of inspection strategies may be considered in order to obtain an 

almost optimal expected total cost. For instance, we note that the overall optimal 

cost v* =  1169.5 corresponds to the choice of repair threshold £ =  1 and inspection 

scheduling function m2 , with a large value for b* implying that the inspection policy 

switches to a periodic inspection policy only for relatively large values of d(R t), and 

therefore after a considerable amount of time. An alternative to this is to adopt the 

inspection strategy given by mi, which chooses a fast switch to a periodic inspection
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policy (since in this case b* =  0.9) only resulting in a slightly higher cost v* =  1170.4. 

A value for £ > 4 induces a considerable increase in the optimal expected total cost. 

For such values of the repair threshold (close to the failure threshold), failure of the 

system is more likely to happen before a repair is considered. The optimal inspection 

therefore chooses a high value for a* in order to prevent unnecessary costs of inspection, 

with the risk of letting the system fail. In the extreme case where £ =  T, a large value 

for a* is accompanied with a small value for h*\ the optimal strategy chooses to let a 

new system run for a sufficiently long time with the possibility of a failure, reducing 

the value for a* incurs unnecessary inspection costs without the certainty of preventing 

a failure with a repair since £ =  IF. Another important fact that must be mentioned 

is that in all the fifteen different cases, the optimal cost is more sensitive to parameter 

a than to b: it is the first time at which the system is being inspected that is most 

responsible for the optimality of the proposed strategy. This is illustrated in figures 6.6 

- 6 .10  were one may notice that the optimal expected total cost can be reached for a 

smaller range of values for a than for b.

Repair threshold Inspection policy a* b* V*
mi 2.2 1.5 1171.7

£ =  1 m2 2 .1 4.2 1169.5
m3 2 .1 0.9 1170.4
mi 2.2 1.7 1189.1

£ =  2 m2 2.2 2.9 1194
m3 2 .1 1 1189.9
mi 2.4 2.5 1546.3

co m-2 2.5 2.8 1572.1
m3 2.4 1 1547.8
mi 5.2 3.7 2.3283 xlO 5

ii m2 5.2 3.8 2.34 xlO 5

m3 5.2 1.9 2.3264 xlO 5

mi 6.5 0.5 3.8437 xlO 6
£ =  5 m2 6.5 0.7 3.8437 xlO 6

m3 6.5 0.5 3.8437 xlO 6

Table 6.4: Optimal expected total cost with corresponding optimal parameters a and 
b, for different repair thresholds £.
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(c) Inspection scheduling function: m3

Figure 6 .6 : Contour representation for the expected total cost with different inspection 
scheduling function, £ =  1 .

1

(a) Inspection scheduling function: mi (b) Inspection scheduling function: m 2

(c) Inspection scheduling function: m3

Figure 6.7: Contour representation for the expected total cost with different inspection
scheduling function, £ =  2.

117



Chapter 6: Incorporating failure: two-threshold models

(c) Inspection scheduling function: m 3

Figure 6 .8 : Contour representation for the expected total cost with different inspection 
scheduling function, £ =  3.

(c) Inspection scheduling function: m 3

Figure 6.9: Contour representation for the expected total cost with different inspection
scheduling function, £ =  4.
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(c ) Inspection scheduling function: 777,3

Figure 6.10: Contour representation for the expected total cost with different inspection 
scheduling function, £ =  5.

The influence of the costs

As in the previous example, different values for the considered costs are considered. 

The case studied is the one with inspection scheduling function mi and repair threshold 

£ =  3. The optimal parameters a* and b* obtained are summarized in table 6.5 and so 

are the resulting expected total costs. Figure 6.11 illustrates the corresponding optimal 

inspection scheduling functions. It must first be mentioned that as expected, an increase 

in any of the cost results in an increase for v*. Furthermore, as shown in figure 6.11, 

the inspection strategy adapts itself to a change in any of the considered cost. As Ct 

increases, both of the optimal values for a and b increase: the policy chooses to inspect 

less frequently when the cost of inspection increases. The highest values for parameters 

a* and b* are obtained when C* =  50, Cr =  1000 or Cf =  2 : the optimal strategy 

seems to favor long inspection intervals leading to a faster failure of the system in order 

to avoid numerous expensive costs of inspection or repair.

Investigating the maintenance actions

(i) Level of repair: Figure 6.12 illustrates the behaviour of the optimal expected 

total cost as a function of the level of maintenance (parameter k G [0,1]). The
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{Ci, Crep, Cf ) a* b* V*

(5,100,200) 2.4 2.4 1467.6
(50,100,200) 2.4 2.5 1546.3

(500,100,200) 2.5 2.6 2296.7
(50,1,200) 2.4 2.3 1377.3

(50,100,200) 2.4 2.5 1546.3
(50,1000,200) 2.6 2.5 2971.9

(50,100,2) 3.2 2.9 203.67
(50,100,200) 2.4 2.5 1546.3

(50,100,2000) 2.4 2 .2 13134

Table 6.5: Optimal expected total cost with corresponding optimal parameters a and b 
for different values of the maintenance costs, £ =  3.

(a) Different costs of inspection (b) Different costs of repair

(c) Different costs of failure

Figure 6.11: Optimal inspection scheduling functions mi for different inspection and
maintenance costs, £ =  3.
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results are obtained for the three optimal inspection scheduling functions and with 

repair threshold’s value £ =  3. As one might have expected, in all three cases 

the expected total cost is increasing with k: increasing the value for k implies 

a reduction in the amount of maintenance undertaken on the system at repair 

times. The system will therefore require more frequent inspections and repairs or 

will fail sooner implying an increase in the total expected cost value.

Figure 6 .1 2 : Optimal expected total cost as a function of k for the three inspection 
strategies.

(ii) Decisions on repair: As in the periodic case, the attitude of the decision maker 

towards repair is investigated through parameter e G [0,1]. Three values for 

this parameter are considered here, e =  0.1,0.5,0.9, and the optimal expected 

costs obtained with corresponding optimal parameters (for the three inspection 

strategies) are summarized in table 6 .6 . Plots of the resulting optimal inspection 

functions are shown in figure 6.13. Recall that letting e increase to one means that 

the decision maker tends to a safer maintenance approach as the constraints on 

undertaking a repair action are relaxed. The repair threshold’s value considered 

is £ =  3.

As can be seen, changes in the value for e induce changes in both the optimal 

inspection policy (figure 6.13) and the resulting optimal expected total cost (table 

6 .6). In all three cases for e, m\ produces the minimum value for v*. Further more,
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the optimal strategy seems to favor frequent repairs since the minimum values for 

v* are obtained for e =  0.9.

Decision towards repair Inspection policy a* b* V*
mi 2.3 2.4 1535

e =  0 .1 m2 2.3 3.1 1622.7
m 3 2.3 2 .1 1560.3

2.4 2.5 1546.3
e =  0.5 m-2 2.5 2.8 1572.1

m ,3 2.4 1 1547.8
mi 2 .1 2 .2 1169.1

e =  0.9 m2 2 .1 4.1 1169.1
m3 2 .1 0.9 1169.9

Table 6 .6 : Optimal expected total cost with corresponding optimal parameters a and b 
for different values of parameter e, £ =  3.
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(a) Inspection scheduling function: m i (b) Inspection scheduling function: m 2

0 0.9 1.5 2.1 2.5 3
d(Rt)

(c) Inspection scheduling function: m 3

Figure 6.13: Optimal inspection scheduling functions for different values of parameter 
e ,£  =  3.
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6.6 Summary

The aim of the models derived and investigated in the present chapter was to guar-

antee a prescribed level of reliability while considering the occurrence of catastrophic 

failures of the system. This was done by introducing a second threshold T\ failure of 

the system is considered when the stochastic process describing the performance mea-

sure of the system hits T  for the first time. The threshold £, initially investigated in 

Chapter 5, is still taken into account and is now incorporated in the repair function 

d: repair on the system at inspection time is now related to the last exit time of the 

considered process from the interval [0,£). Decision on whether to repair the system or 

not entirely depends on the probability of occurrence of this last exit time before the 

next inspection. The models proposed hence include both a stopping time (the first 

hitting time) and a non-stopping time (the last exit time).

Expressions for the expected cost per unit time (periodic inspection policy) and the 

expected total cost (non-periodic inspection policy) were derived in a slightly different 

way than the one proposed in the previous chapter. Rather than being based on the 

amount by which the critical thresholds are decreased, the recursive argument considers 

the state of the process at inspection time, before a repair is undertaken. The prob-

ability density function of the first hitting time for a Bessel process with drift being 

not known explicitly, it had to be obtained numerically: a numerical inversion of the 

Laplace transform of the first hitting time’s density function was required. However, 

models for special types of inspection policies are derived using the available Laplace 

transform of the first hitting time’s density and a discounted cost criterion.

Numerical results for both periodic and non-periodic inspection policies were obtained. 

In the periodic case, the expected cost per unit time was optimized with respect to 

both the period of inspection and the repair threshold value, hence leading to an op-

timal maintenance policy ( t * , £ * ) .  Changes in the inspection and maintenance costs 

resulted in changes in the period of inspection, the repair threshold and the optimal 

expected cost per unit time. The effects of the repair threshold, the level of mainte-

nance (described by parameter k in the repair function) and the decision taken towards 

repair (described by parameter e) were investigated. The numerical results revealed a 

strong influence of the threshold’s value £ and parameter k on both the optimal pe-

riod of inspection and the optimal expected cost per unit time. Letting parameter e 

vary produced changes in the optimal repair threshold only, suggesting that the opti-
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mal strategy aims at keeping a relatively constant frequency of repairs. A simulation 

of a cycle showing the evolution of the process describing the maintained system and 

the changes for the two thresholds’ values is provided. In the non-periodic case, the 

three inspection strategies m i,m2 and m3 were considered. The total expected cost 

was optimized with respect to the inspection scheduling function’s parameters a and b. 

Different repair thresholds, levels of repair and decisions on repairs were also studied. 

Optimal inspection policies in all the different cases encountered were derived.
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Conclusions

The research reported in this thesis focused on inspection and maintenance poli-

cies guaranteeing an optimal performance for multi-component systems. The models 

derived permit the investigation of various inspection and maintenance scenarios by 

choosing appropriate values for the parameters. The methodological development opted 

to achieve this work necessitated the consideration of new concepts to the field of re-

liability and maintenance. First of all, the multi-dimensionality aspect of the problem 

is assessed by introducing several stochastic processes describing the deteriorations un-

dergone by the system’s components. Whereas these deteriorations are assumed not 

to be directly observable, information on the state of the system is available through 

values taken by a performance metric. This performance metric is represented by a 

functional acting on the multi-variate process describing the system’s state. Secondly, 

whilst most models proposed in the literature tend to favor monotone processes, all the 

processes considered here are non-monotone but have continuous paths. The choice of 

Wiener processes with drift to describe the deterioration of the components is justified 

by assuming that these include minor repairs which improve the system and do not need 

to be implicitly modelled. The non-monotonicity of the Bessel process was tackled with 

the consideration of last exit times: attention was therefore paid to non-stopping times 

whose occurrence in time cannot be known with certainty. The Markov property of the 

Bessel process allowed a recursive formulation for the expected costs of inspection and 

maintenance. The derived Fredholm equations representing the expected costs were 

solved numerically with, when required, the use of an homotopy argument. Some cases 

also required a numerical inversion of the Laplace transform of the first hitting time’s 

density function. Moreover, the consideration of particular properties of the Laplace
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transform allowed improvement of the numerical technics, in particular for the compu-

tation of integrals in the time domain.

The models were derived keeping in mind their applicability to concrete problems in 

the field of reliability and maintenance: roads are examples of systems thought of for 

the first type of models (regular maintenance actions and occasional reconstructions for 

safety issues) and airplanes for the second type (regular inspections and repairs with 

consideration of occurrence of unfrequent catastrophic failures). However, the proposed 

frameworks may also apply to different areas such as supply chain management where 

ensuring a minimum availability of products in the different nodes of the chain might be 

of interest, optimal arbitrage trading where traders are concerned with optimal position 

towards an asset’s price changing through time, [18].

We note that the stochastic process considered in the decision procedure, the Bessel 

process with drift , does not have independent increments and is therefore not a Levy 

process but a diffusion process. This brings up the question of how far the approach 

might be extended to other diffusions? Is an approach to the problem via stochastic 

differential equations worth considering?

The output aimed was to obtain an optimal inspection policy and maintenance strat-

egy for a system, whose components’ degradations are all taken into account. Solutions 

to the task set were obtained but required simplifications to the models. Indeed, the 

different deteriorations were assumed to be independent, when dependency seems more 

plausible. All maintenance actions considered were assumed deterministic whereas in 

practice the state of a system after a repair is not truly known. Consideration of random 

maintenance may be included with the use of a random variable modelling the effect 

of repair on the system’s state. However, such an approach implies an extra integral 

term in the derived expressions for the costs and getting solutions becomes extremely 

computationally demanding. Moreover, the stochastic processes considered to describe 

the components’ deteriorations through time were all of the same kind: this assumes 

similar types of deterioration for all the present parts of the system. Furthermore, as 

mentioned also in sections 5.4 and 6.5, letting the cost of repair depend on both the 

value of the performance measure at inspection time and the amount of repair under-

taken (i.e. Crep(RT,k )) would improve the model significantly. These assumptions 

were made in order to be able to obtain solutions to the problem. Ideas of extensions 

to the models in order to remedy these shortcomings have been thought of and are now 

stated:
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(i) Improving the maintenance function: A natural and rather straight forward 

extension concerning repairs on the system would be to propose different levels 

of repair depending on the state of the performance measure. This may be done 

by partitioning the state space [0, -̂") into n intervals ,[0,.A) =  [0,£i) U [£1 ,^2) U 

. . .  U [£n-i> J7), and considering the following repair function

d(x) =  <

x, <  t ] <  1 -  e

aix, P[Hl_x < t < H l _ x] > 1 -  e
(7.1)

-lX, P [ ^ _ i _ x <  r] >  1

ai G [0,1], Vz G { 1 , . . . ,  n — 1}, with different costs associated to the different 

repair types.

(ii) More generality in the deterioration processes: Recall that the stochastic 

process proposed to describe the deterioration of a component is a Wiener process 

with a drift term and a volatility term. A simplifying assumption was made 

by considering n Wiener processes with different drift terms /iz, i G { l , . . . , n } ,  

but similar volatility terms a. An extension to investigate would be to consider 

different volatility terms, hence considering the processes

W ® = p it +  aiB ? \ \ / ie { l , . . . ,n }  (7.2)

In such a way, each component’s degradation could uniquely be described, en-

abling a more realistic approach. A possible way to handle this new scenario may 

be to consider the square of the Euclidean norm of (w ^ \  W}2\ . . . ,  W.jn̂  rather 

than the Euclidean norm itself. The idea being that this new process would cor-

respond to a weighted sum of non-centrally y 2 distributed random variables, [56]. 

An appealing approach is to look at the trace of non-central Wishart matrices, 

[40], [50], [51], [52]. Moreover, this would also allow to deal with situation where 

more importance to certain components in the system is wished to be paid: at-

taching weights to the processes describing the different deteriorations is a way of 

incorporating a hierarchical partitioning of the components with respect to their 

relevance in the functioning of the system.

(iii) Dependence in the deteriorations: A strong assumption made was the in-

dependence in the different components’ degradations. This was modelled by
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considering independent Brownian motions and may be relaxed. It seems more 

realistic to include cases were the degradation of a component may affect the 

degradations of others. A way to incorporate this scenario is by considering de-

pendent Brownian motions through a Wishart distribution with a non-diagonal 

covariance matrix.

(iv) Dealing with covariates: A multi-dimensional approach was considered here as 

the degradations of all the components were wished to be considered. A similar 

argument may be used if covariates acting on the way the system/component 

deteriorates are wished to be studied. The degradation of the system in its normal 

state is described by a Wiener process with drift and volatility terms, Wt =  

iat +  aBt. Covariates (temperature, pressure, humidity, etc...) or the history of 

the component affect the degradation process as follows. Let zi, z%, ■ ■ ■, zn-\ be 

the n — 1 covariates, and ii, I2 , . . . ,  In-i  the corresponding critical sets: if z, e 

the degradation of the system switches to a new Wiener process

To obtain a full description which allows overlapping time intervals during which 

Zi € Ii, the following n-dimensional Wiener process may be considered

/  ( n —1  ̂ \

w* = II WffW* , 1 l {z2ei2}Wt ,..., l {Zn^ eIn_l } W l
r ( n - 1)

. ¿=1

with corresponding Bessel process

Rt = inl ] n —1

i l l m2 + E wt{i)
l»=l J ¿=1

Dealing with the above process allows us to treat any possible combination for 

the presence of covariates. The indicator functions

rn— 1

I L *  and M^eiih i =  1 • • • n -  1

act as switches as the environment evolves. The decisions are then based on the 

Bessel process with drift associated with the underlying Wiener processes.
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Appendix A

Transition density for the Bessel 

process with drift

We show how the transition density from the state x =  0 to the state y >  0 may 

be derived from the case x >  0. For this, let /j? (y) denote the transition density from 

state x to state y. Using results in [70], for x, y > 0, we have:

fr(y)
y 4  (yy) T ( x y \  _*w +,a 2
t Iv (fj,x) \ i /

-  Iv{fiy) e 4( f )
Iu(yx)

(A.l)

Using the series expansion for the modified Bessel function of the first, kind, [54],

-J-oo / t  \ 2/c

«*) = ? E ( ! ) '

allows us to conclude that

^  k\ x T (A: + v + 1)

4 ( f )
lu(ixx)

(xy'\v y^+oo \2t)
\ 2t ) Ufc=0 i!xr(/:+i/+l)

/ ux \ ̂17 y^+oo V 2 J
V 2 1 Z^k= 0 fc!xr(fc+i/+l)

E+oo (If)
(A.2)

0 fc !xr(/c+ i/+ l)

+ooE -t-cx

k=\ i f )
0 fc!xr(fe+r/+l)

Hence using equations (A.l) and (A.2):

fr(y) - / „ ( / i y ) e _
E+oo

k=
( f ) 2o fc!xr(fe+y+i)

+00E - I - C X

k—
(if)o fc!xr(fc+i/+i)

(A.3)
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Letting x tend to zero in (A.3), we get:

f°r(y) =
v+l

(A.4)
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Appendix B

First hitting time for a Bessel 

process with drift , numerical 

approximation

This appendix first aims at giving a description of the algorithm considered in this 

thesis to numerically invert the Laplace transform of a probability distribution function. 

This numerical inversion was needed to obtain the probability distribution function for 

the first hitting time of a Bessel process with drift. As far as we know, no analytical 

expression has been found. However, we mention that such an expression is available in 

the simpler case of a Bessel process (with no drift), see for example [19]. The description 

given follows the lines of [2] and is given here for consistency purposes. We then apply 

the method to the desired function and compare the results with the one obtained via 

simulations of the first hitting time.

B.l Describing the method

The chosen algorithm is one proposed by Abate and Whitt, [2], called the EULER 

method. We first note that two methods are provided in the referenced paper, namely 

the EULER method and the POST-WIDDER method, both of which have been tested 

for our particular case. We will only consider the EULER method here, since it is the 

method that provided the most accurate results when compared to the one obtained 

via simulations.

Let /  (t) be a real-valued function of a positive real variable t and /  (s) its Laplace
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transform. The method uses the following argument that can be found in

i r  '
/ ( * )  = est f  (s) ds

ra+zoo

(B.l)

2eat r+oc
7r

Re I f  (a +  iu) ) cos (ut) du

where i2 — — 1 and a is chosen such that /  (s) has no singularities on or to the right of 

it.

The above integral is then numerically evaluated by means of the trapezoidale rule. If 

a step size h is used, this gives:

hpat
f ( t )  «  f h(t) = ----- Re I f  {a)7r

2 he'Z h f  v__ / ^  \
4--------- Re ( f  (a +  ikh)\ cos (kht)

71 k= 1

(B.2)

Letting h =  ft and a =  we obtain

A /2  /  ^  /  A

A W - 5 - *  ( / ( a
A  +00es

+  t E  ( - « * * /
fc=l

zl +  2km\
21

(B.3)

The discretization error associated with equation (B.3) is then identified with the use 

of the Poisson summation formula. The idea is to replace the damped function g (t) =

e~btf  ( f ) , b > 0, by the periodic function gp (t) =  g f t H— —  J of period ~ .  This

can be done when \f (t) \ <  1, V ¿.The periodic function gp (t) can also be represented 

by its complex Fourier series as:

h +oo

9p  ( t )  =  7 T  f ( b +  i k h >̂
Akht

2tt
k= —oo

Combining these two representations for gp (t) gives:

+  0 0  /  o  7 \  + ° °

(B.4)

9 p ( t ) =  J] g ( t
k= —oo

2Ttk
h £ /  ‘ +

k = —oo

27rk -b(t+2Ak)

and (B.5)
+ 00

gp ^  =  2fr E  f  (b +  ikh) e
ikht

k= —oo
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Letting h =  f  and b — At, we may deduce from the above:

A -f-ooe 2 +oo

/(') = i  E  <B-«>
k = —o o  '  '  k =  1

Equation (B.6) and equation (B.3) give the error associated with the trapezoidal rule

as
+ 00

ed =  ^ e  kAf  ((2k +  1) t) (B.7)
fc=i

If |/ (t) | <  1, the error is bounded by:
,-A

\e d\ < 1 — e-A

Remark B.1.1. We note that this is the reason why the probability distribution func-

tion is inverted rather than the density function. Indeed, working with a probability 

distribution function F  ensures |F (t) | < 1 and hence enables control on the error term.

As proposed in the referenced paper, the chosen value for A was 18.4 to achieve a 

discretization error of order 10~8.

The next step is to numerically calculate (B.3) which includes an infinite sum. The 

EULER summation is the proposed option. This can be described as the weighted av-

erage of the last m partial sums by a binomial probability distribution with parameters 

m and p =  0.5. Let sn be the approximation of f d (t) to n terms

Sn (t')
A n

+ U E
k = 1

(B-8)

where

ak (t) =  Re ( j <B'9)

EULER summation is applied to m terms after an initial n, so that the EULER sum 

for sn (t) is
m (  \

E (m ,n ,t) =  i 2~msn+k(t) (B.10)
k=o \ h J

In order to estimate the error associated with the EULER summation, it is suggested 

to use the difference of successive terms

E (m, n +  l,t) — E (m, n, t)

We started with the values m =  11 and n =  15 as proposed in the referenced paper, 

and increased when necessary.
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B.2 The algorithm in action

The function f  (s) that is wished to be numerically inverted is the Laplace transform 

of the density function for G°T: the first hitting time of a Bessel process with drift 

starting from 0. Its expression was derived by Pitman and Yor, [70], and also by Yin 

in [91]

E0[ e - ! ^ ]  = ' y/W +
A

V >  0 (B.l l )

where the subscript 0 indicates that the process starts from the point 0. 

Using the change of variable s =  |/32, equation (B. l l )  may be rewritten as:

f(s )  =  E0[e'
\/2.s — Ih(cT)

(B.12)

Note that the EULER method was proposed for a probability function and assump-

tions based on that fact ensured the good functioning of the algorithm. Hence rather
.—. y

than inverting /  (s) numerically, ----- - is considered: this expression corresponds to
s

the Laplace transform of the probability distribution function for the first hitting time. 

This is shown by noting that if a function f  (t) has its Laplace transform equal to /  (s), 

then

where £  [.] denotes the Laplace operator.

On the other hand, simulations for the first hitting time of a Bessel process with drift 

were performed using the mathematical software Matlab. The results of the simulations 

shown in figure B .l are based on the process Beso ^0.5, with critical threshold £ — 4 

and use a sample of size 2000.

The cumulative distribution function corresponding to the simulation results was then

plotted alongside the one obtained via the numerical approximation method, see figure

B.2. Moreover, 50 simulations each of sample size 2000 where undertaken. After each

simulation, the value Ai =  sup |F, — F*| (* =  1 , . . . ,  50) was evaluated, where i7) and F*

denote the probability distribution function obtained with the simulation procedure and

with the numerical approximation respectively. Over the 50 simulations, the average 
— Y)50 Ai

value obtained was: A =  — ^ —- =  0.0689. The accuracy of the numerical method 

convinced us to use this approximation for the cost models requiring the probability 

distribution function of the first hitting time for a Bessel process with drift .

135



Appendix B: First hitting time for a Bessel process with drift , numerical
approximation

150

Time

Figure B.l: Simulations of the first hitting time G° for Beso

Figure B.2: Probability distribution functions obtained with the simulation and the 
EULER method.
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Conditional independence argument

C .l One threshold models

C.1.1 Periodic case:

Let f R Ho be the joint probability density function of the process at time r andT’ £ —:r
the last exit time from the interval [0, f  — x). We may deduce:

E VT (d(HT')) x
p + o o  p + o o

/  /  Vr(d(y)) x l {t>T} fRrtHo (y,t)dydt
lo Jo 5

C+OO /*+oo

/  /  vt  (d(y)) x l {t>T}f Rr\Ho t (y) h\_x (t) dydt
' o io
p + o o  p + o o

I j  vr (d{y)) f r t \h _̂x>t  (y) hç_x (t) dydt
/*+oo /»+ooI  J  vr (d(y))fRr\Ho_x>r(y)dydt
/•+oo /*+oo

I  hl - x (*) dt J vr {d(y)) fnT (y) dy

£ - x ~

.0

=  ( i  -  h\_x [t) dtj vT (d(y)) f Rr (y) dy

/  pT \ /* + 00

=  Jo h°~x ®  J Jo Vt ^° ^ dy

Where the change from f RrH° >T to fnT in the fifth equality comes from a conditional 

independence argument: as x > r, this actually means that the process may still be 

in the region [0,£ — x), hence the region of integration to be considered remains [0, +oo) 

and not [£ — x, +oo).
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C.1.2 Non-Periodic case:

Let f Rrri{rltH° be the joint probability density function of the process at time m (x) 
and the last exit time from the interval [0,£ — x). We may deduce:

/»+oo /»+oo
E V̂ d(Rm(x)) X

JO JO
p + oo  p+ oo

Jo Jo
x h®_x (t) dydt

v Z—d(y) X  ^-{t>m (x)}  f Rrn(xp H ç _ x ( ï / d )  d y d t

v i - d ( y )  x  (y)

r* + 00 /»+00

Jm(x) J 0 
/* + oo

(y) ^Ç-x (i) dydt

r»+00

/ m(x) 
/*+oo

/  m (x)

V* (i) / -̂d(y)/flm(x)|i/|_x>m(x) (y) dydt
r+oo

h -x  (t) dt /  v ^ d(y)f Rrn(x) (y) rfy

pm(x) r*+CxD
=  1 -

=  1 -

hl-x (t) dt /  v ^ d[y)f Rm{x) (y) rfy

pra(x) r»+oo

V x W r f*  /  wç-%)/m (x)(y)rfy

The conditional independence allows the replacement of /tfm(x)|r/“_ > m (x) by fRrnlx) ■ as 

irff-x > m (x), the process may still be in the region [0,£ — x ) and hence the region of 

integration remains [0,+oo).
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C.2 Two thresholds models

C.2.1 Periodic case:

Let f Ro)Go. be the joint probability density function of the process at time r  and the 

first hitting time of threshold T . We may deduce:

p+oo p+oo

10 Jo
f + OO /* + oo

{vyT x l{i>T}}/R0,G0r_(i(x) (yd) dydt

r»+00
fRO\Gj7_d̂>T (y) 9%~d{x) (t) dvdt

p+oo
g°T-d(x)(t) / vrfR°r\Ĝ_ >t (y) dy<& (c.i)

'0
r*+ o o  pJF-d(x)

g°F-d(x) (t) dt J' vyrf R0 (y) dy

/  p T \  pF ~ d {x )

= \ 1 ~JQ 9*~d(x) ® /  Jo ^  dy
The fourth equality is obtained using the following conditional argument: given that 

the process Rt has not crossed the failure threshold T  during the time interval [0, r), 

we know that the process has remained in the interval [0,.7r — d(x)):  the region of 

integration for the transition density / °  is then [ 0 — d (x)).
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