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Abstract
The term aposematism or "warning colouration" (as first characterised by Alfred Russel Wallace in 1877)
describes the process by which defended organisms (animals or plants) advertise their unprofitability to
potential predators to gain selective advantage. The first part of the thesis explores the relationship between
evolutionarily stable levels of signalling and defence within the context of a game-theoretical, prey-predator
setup in which the prey population consists of a single type. While it is implicitly assumed that the prey
population is large enough to be considered effectively infinite the evolution of prey traits is also explored
for intermediate-sized populations within the context of genetic algorithm approach. In the later chapters
considerable effort is devoted to extending the mentioned predator-prey description to systems in which the
prey population consists of two types, including a model and a mimic. This modification leads us naturally
into the celebrated adaptive mechanism named after Henry Walter Bates, Batesian mimicry. In Batesian
mimicry complexes individuals from a palatable (mimic) species resemble individuals from an unpalatable
(model) species to gain protection against predators. While there is ample empirical evidence to suggest
that individuals from one species may gain selective advantage by resembling individuals from another, the
mathematical modelling of Batesian mimicry is rather limited. We predict that models and mimics can
co-exist along a continuum of solutions (representing the conspicuousness, noxiousness, and average mimic-
to-model proportion) that are both ecologically and locally evolutionarily stable. We establish a number of
novel results that confirm both common sense intuition and a considerable body of related works.
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Preface
In this thesis we provide a mathematical description of aposematism (the conspicuous signalling of secondary
defences) by building on and extending an existing game-theoretical model of the process. The thesis consists
of two major parts with individual chapters as follows: the first chapter is introductory; the second, third
and fourth deal with aposematic prey populations of a single species and in chapters five and six we deal
with populations that consist of two types (of either the same or of a different species). In the last chapter
we provide a novel extension of the model to systems of Batesian mimicry, which is notable considering the
lack of mathematical modelling of this phenomenon.

In the first chapter we provide a brief historical overview of the theory of classical and evolutionary games;
we introduce notions of strategy (pure or mixed), and payoff, and explain how the assumption of evolution
by natural selection renders these notions appropriate in the context of biology. Of critical importance is
the notion of an Evolutionarily Stable Strategy (ESS), which we define and explore through a number of
theorems and worked examples (see Hawk-Dove and more notably The War of Attrition in which we recover
a continuum of solutions that are similar to those seen in chapter 3). Indeed, while the War of Attrition
is a linear game that is considerably simpler than the (non-linear) game that we explore in this thesis the
mentioned ESS continuum is a remarkable common feature. The reader familiar with these notions may
skip this first chapter entirely, although perhaps not the ESS analysis of the War of Attrition provided at
the end of the chapter.

In the second chapter we introduce aposematism in the context of predator-interaction, following (mostly)
the layout of the original publication. The prey population is initially treated as consisting of a single-species
(although see chapters 5 and 6), wherein each individual is distinguished by means of two continuous and
independently varying traits (signalling and defence). There are a number of differences between the presen-
tation in this chapter and the original. For instance, we demonstrate how the known expressions for perceived
aversiveness may be recovered in the limit as the overall proportion of mutants vanishes, which is insightful,
particularly from then modelling perspective. Previous readership has found the relationship between the
overall proportion of mutants and the role of local relatedness in influencing perceived aversiveness confusing.
To that, we provide detailed explanations of how a territorial division of the habitat among predators can
allow for a cluster of identical (focal) individuals to pose threat of invasion without contributing significantly
to the overall proportion of prey. We include detailed verbal explanations of the conditions for ESS by means
of a marginal fitness interpretation, which has, perhaps, previously been lacking. In addition, we make a
number of clarifications relating to the properties of the functional forms involved, which leads us smoothly
onto chapter 3.

In the third chapter we argue that the original model can be extricated from two restricting conjectures
that were made upon its publication and hence demonstrate that it can account for a larger plethora of
physical systems than had previously been assumed. The chapter is based on a publication co-authored by
myself and Prof. Mark Broom in 2022 in which we argue that evolutionarily stable levels of defence need
not be positively related with the conspicuousness and further that for given level of signal strength may
correspond more than one optimal levels of defence. Through example we demonstrate that it is not generally
possible to arrive at an explicit relationship between evolutionarily stable levels of signalling and the defence
being signalled and argue that in such a general class of examples the Implicit Function Theorem (in R2) is
required to describe the monotonicity of the continuum. The honest signalling of prey defences (i.e. whether
more conspicuous morphs are better defended) remains puzzling not only among empiricists but also among
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those seeking to model aposematism. Our deduction that the mentioned model can account for both honest
and dishonest signalling (within the context of evolutionary stability) is therefore an important one.

In the fourth chapter we implement a genetic algorithm approach to determine the evolution of prey traits
in a finite (intermediate-sized) population of prey subject to small random mutations. The chapter is based
on the paper (status: submitted) co-authored by myself, Prof. Mark Broom, Prof. Graeme Ruxton and Ms.
Anna Rouvière in 2022 - we are indebted to Ms. Rouvière for the countless runs of requested simulations
using the statistical package R. In this we explore the possibility of evolutionarily stable outcomes in which
predation is not the only source of death, such that the parameter describing the rate of background mortality
is in some cases assumed to be non-vanishing. Previous attempts (including those of chapters 3,5 and 6)
have taken the mentioned parameter to be zero. Among the various different insights of this chapter we
predict (and confirm via simulation) the perhaps intuitive result that the equilibrium level of defence shrinks
with increasing levels of background mortality. We also predict that while marginal differences in the mutant
fitness is the stronger driver of prey trajectories in intermediate-sized populations the absolute resident fitness
is also important, especially when local relatedness is considerable.

The notion of bi-stability is central both to chapter 5 and to chapter 6 and describes a situation in which
two types co-exist over the short-term (ecological) time-scale and over the prolonged (evolutionary) time-
scale such that the latter relies on the former holding true. We should also remark that evolutionary stability
is in this context understood as the requirement that each type is evolutionarily stable against mutations
that are local to its type. While the focus of chapter 5 is to model co-existence in the context of mimicry the
presentation is initially kept general and indeed a number of interesting conclusions are drawn that do not
strictly relate to mimicry. In particular, it is observed that the co-existence of: (i) two attractive types in
which at least one has non-zero signalling component is not evolutionarily stable - this also implies that the
mimicry complexes involving two conspicuous and attractive types is unstable; (ii) one aversive type and one
attractive type is not evolutionarily stable if the attractive type has the stronger signalling component; (iii)
two aversive types with vastly different signalling components is not ecologically stable. In the second part of
this chapter we narrow our attention to instances of co-existence that are strictly mimetic and hence recover
solutions that are manifest as a continuum over the extended (to account for mimetic load) strategy space.
While throughout the thesis mutation is facilitated by means of local clustering the specific implementation
of the relatedness parameter in this chapter renders the later discussion more adept to the modelling of
(automimetic/Browerian) mimicry complexes in which the two types belong to the same species.

The sixth chapter deals explicitly with mimicry complexes and while the intention is still to determine
outcomes that are bi-stable the approach to modelling co-existence in this varies considerably in comparison
with chapter 5. For instance, while previously the presence of the second type is accounted for using a real
variable that measures the background concentration of mimics this is now treated as a continuous (beta-
distributed) random variable such that the proportion of models to mimics is naturally taken to fluctuate
about some mean value throughout the habitat. In addition, even though mutation is still facilitated through
local clustering the presence of, say type-1 (model) mutants in some locality does not influence the proportion
of models to mimics in that site. That is, the operational definition of the relatedness parameter is in this
chapter understood as the concentration of focal types taken as a proportion over the number of individuals
of that type and not as a proportion over the total number of individuals in the site (chapter 5). This is a key
distinguishing feature that renders the approach of this chapter better-suited to modelling Batesian mimicry
complexes in which models and mimics belong to different species. Much like in the previous chapter through
an explicit worked example we recover bi-stable solutions manifest as a continuum in the extended strategy
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space and observe an increasing relationship between the mimetic load and the signal strength associated
with the complex.

Readers familiar with the theory of games and evolutionary games may skip the first chapter completely;
that said, perhaps a revisiting of the ESS analysis on the War of Attrition is a worthwhile investment.
Since exact knowledge of the mathematical modelling of aposematism cannot be assumed we encourage
readers to go through chapter 2 before focusing on any specific chapter thereafter. Readers interested in the
mathematical modelling of aposematism in prey populations that consist of a single type are thus encouraged
to read chapters 2, 3 and 4. Readers interested in the applications of aposematism to genetic algorithms
should read chapters 2 and 4. Readers interested in the automimicry and or Batesian mimicry systems are
encouraged to read chapters 2,5 and 6 (and if time is of essence perhaps chapters 2 and 6 only).
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Chapter 1

Game Theory and Evolution

The purpose of this chapter is to motivate the connection between mathematics and the life sciences. It
begins with a historical account of how classical and evolutionary games first developed, mentioning some
of the main contributors in these areas and how some of the key concepts have branched out into sub-fields
of evolutionary games that remain active at present. A distinction is drawn between the static and the
dynamical approach in evolutionary games, differing primarily on the timescales that these consider and in
the techniques that are implemented for analysis. The focus of the report is on the former and in closing
some useful definitions and results from game theory are provided (with proofs omitted but with references
to these indicated suitably) and two characteristic examples are analysed (namely the Hawk-Dove game and
the War of Attrition).

1.1 Introductory remarks

The connection between the life sciences and mathematics is not been an obvious one and has grown more
strong over the past decade than over any other period in the past. Arguably, the earliest developments
in mathematical biology began during the early 20th century with the birth of population genetics (the
study of changes in allele frequencies within single-species populations) with characteristic works comprising
Hardy (1908), Weinberg (1908), Wright (1930) and Fisher (1930) among others, and the subsequent study
of population dynamics in predator-prey systems (see for example Lotka, 1925 and Volterra, 1926). In this
report we consider a model in the context of evolutionary game theory, a branch which developed out of these
earlier works in mathematical biology but which borrowed many of the fundamentals from game theory.

The emergence of game theory

Games have been played by people for thousands of years and within these players have devised different
methods for optimising their play to increase their chances of winning (see Broom and Rychtár, 2013). There
exist (and have existed) countless numbers of games, some involving perfect information (in which players
have complete knowledge of the state of the game at every turn - examples of these are board games, such
as chess) and others involving imperfect information (typical examples being card games, in many of which
the hand of the other player is unknown and can only be guessed). A game of chess involves a finite number
of moves and in principle the optimal choice for each of these can be established (a process which is now
configured using chess computers/programs). In 1913 it was proposed by Ernst Zermelo (and proved in 1928
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by Laszlo Kalmár - see Zermelo, 1913 and Kalmár, 1928) that in any two-person zero-sum game with perfect
information one or the other player can force a win (namely have a winning strategy) or the game will end
in a draw. But is a solution to a game (such as the above) guaranteed to exist, can the process of finding
an optimal strategy be generalised to study any game, and more furthermore, is there a framework within
which games can be studied in a systematic fashion?

Optimal play is dependent on the choices that other players in the game make and determining this
involves choosing the best out of a number of choices, whose outcomes are uncertain. Uncertainty and
random events have admitted a challenge to mathematics outside of games 1 and (roughly speaking) admit
the object of study of probability (whose foundations were first laid out in the form they have now during
the 17th century). Related problems have been (more narrowly) addressed within the realm of optimisation
and (normative) decision theory (developed during the 20th century), in which an optimal decision is sought
subject to number of (known) constraints. This is quite similar to the subject of game theory, but where the
latter has the added complexity that instead, these constraints are imposed by the remaining players of the
game whose behaviour is uncertain (yet assumed to be rational) - see Broom and Rychtár (2013). In fact,
the games to which Zermelo’s theorem applies (an example of which is chess) are ones in which (assuming
players are rational and have full knowledge of all past moves made) there exists an optimal move at every
round and can therefore be solved in a similar way as optimisation problems of decision theory. In general
however, problems in game theory exhibit uncertainty (as opponent strategies are unknown) making the
question of how a game is solved very relevant and the answer to this not an obvious one.

Some could argue that game theory started in the 1713 when James Waldegrave provided a solution to
a two-player game of cards known as le Her, although this feat was isolated and at the time considered an
achievement of probability theory. The theory of games in the form that this now exists began in the 1920s,
when Emil Borel introduced the minimax solution to two-player games. This was subsequently proved in
von Neumann (1928), who later (in 1944) co-authored and published (together with Oskar Morgenstern) the
book Theory of Games and Economic behavior - see von Neumann and Morgenstern (1944) - which is to this
day considered one of the classics on the topic. A characteristic example of a two-player, non-cooperative
game is that of the Prisoner’s Dilemma, which originates in the 1950s when it formed part of an experiment
conducted as part of a non-profit research initiative. Its game-theoretical formalisation is credited to Albert
Tucker in the 1980s and has drawn increasing attention since its emergence - see Tucker (1980).

Another important development in the theory of (non-cooperative) games (especially so for the purposes
of this report) is the concept of a Nash Equilibrium (N.E.), which was introduced by John Forbes Nash Jr.
in the early 1950s - see Nash (1950) and Nash (1951) - and provides an answer to the question of finding
the "best strategy". Furthermore, it provided footing for the various branches of game theory that emerged
subsequently (including that of evolutionary game theory) and drew the important distinction between
cooperative and non-cooperative games. Nash together with Reinhard Selten and John Harsanyi received
the Nobel prize in economics (1994), where the latter two not only provided refinements to Nash’s original
N.E. concept but also contributed otherwise (and substantially) to economics and game theory. Selten
introduced the notion of sub-game perfect equilibria (see Selten, 1965), which he used to study dynamic,
extensive form games (cases of this included competition with only a few sellers) and the "trembling hand
perfect equilibrium" for perturbed games in Selten (1975). During the 1960s Harsanyi introduced the notion
of equilibrium selection - see Harsanyi (1966), addressing the issue of how one equilibrium can be chosen

1That said, it is true that some of the first challenges in probability had been inspired by games and gambling problems -
see for example Broom and Rychtar (2013) for the insight provided by the Mersenne salon (including Fermat and Pascal) into
the solution to gambling problems given in response to a challenge set by Chevalier de Mere.
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over an other and proposed methods of analysing games with incomplete information (known as Bayesian
games).

The emergence of evolutionary game theory

Up until this point we have discussed games that are played by rational individuals that seek to optimise
their playing strategy. The rationality assumption is so fundamental to game analysis that it would appear
strange for its principles to be applicable in the biological setting. Animals cannot be assumed to behave
rationally, and further, the notion of "reward", "strategy", or even of a "game" for that matter, would have
to be relaxed substantially to cater for interanimal interaction. Interestingly, however, the connection is a
strong one, with Darwin’s theory of evolution by natural selection providing firm footing (see Darwin, 1859).
In particular, rationality may be replaced by natural selection, reward to an individual may be replaced by
its fitness (Darwinian - usually measured in terms of the number of offspring produced) and with a strategy
describing the genetic programming of a certain animal individual (subsequently passed onto its offspring).
This setup thus describes (usually large) populations of individuals playing different strategies and engaging
in contests (examples of which are commonly drawn from classical game theory) so as to maximise their
own fitness (once more, see Broom and Rychtár, 2013 for many examples of contests). By definition, the
fittest strategies will prevail over others (more offspring) and the compositions will change over successive
generations. Broadly speaking, this is the subject of evolutionary game theory, although depending on the
time-scale of the process considered, the nature of the analysis may vary quite noticeably (see a comparison
of the static versus the dynamical approach in the next section). Adaptations of this description are also
(but less so) used by economists, from which ideas that are central to evolution were believed to have been
borrowed (including Malthus) by biologists, with some but not all of the key features retained - see Friedman
(1998) for more on evolutionary games in economics.

The first arguments in the spirit of evolutionary game theory were given (descriptively) by Charles Darwin
in the Descent of Man (1871) in which he details why (from an evolutionary standpoint) the ratio of the sexes
should be one-to-one. Shortly after Carl Dúsing gives the first mathematical account of Darwin’s sex-ratio
argument (see Edwards, 2000), which was continued in Fisher (1930) through Fisher’s principle. A solution
to Fisher’s principle was given by William Hamilton in Hamilton, 1967 (after he was assigned to help Fisher’s
student Anthony W.F. Edwards), in which he introduces the notion of an "unbeatable strategy". This notion
inspired John Maynard Smith and George R. Price, who coined the term Evolutionarily Stable Strategy (ESS)
in Maynard Smith and Price (1973). Arguably, ESSs admit the most central topic of evolutionary biology
and constitutes the main subject of this report.

In tandem with the idea of an ESS, significant developments in evolutionary games were made in different
directions many of which remain active to this day or have laid the foundation for work that is carried out
presently. One example includes work that was initiated by Hamilton during the 1960s (see Hamilton,
1964), which was further developed by Robert Trivers in Trivers (1971). The latter emphasised relatedness,
altruism and inclusive fitness and successfully explained seemingly curious instances of cooperative behaviour
in nature. Another example includes the works of Richard Lewontin, particularly Lewontin (1961) on group
selection, which although considered unrealistic can also be thought to have sparked more recent interest in
multi-level selection (see Boyd and Richerson, 2002). Finally, Maynard Smith (and less so, Price) besides
introducing methods of analysis also invented examples of games that are now considered classic in the realm
of evolutionary game theory (such as the Hawk-Dove game and the War of Attrition). Given the breadth
of topics that are considered within evolutionary game theory, it makes sense to decide on a starting point
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depending on which of these is most relevant to the research question at hand. Our work will be primarily on
ESSs and invadability of strategies (although see discussions relating to ecological stability in later chapters),
we will naturally take the early works of Maynard Smith and Price as our starting point.

Important work on ESSs was carried out by John Haigh (see Haigh, 1975) shortly after the formal coining
of the term by Maynard Smith and Price, in which he introduced a systematic way of identifying all ESSs
in a two-player matrix game. Following this, David T. Bishop together with Chris Cannings (still in the
1970s) provided the Bishop-Cannings theorem, which bears important consequences for the co-existence
of multiple ESSs (see Bishop and Cannings, 1976). Subsequently, Cannings and Glenn Vickers produced
numerous works on the patterns of ESSs (see for example Vickers and Cannings, 1988 and Cannings and
Vickers, 1988). An invaluable reference summarising much of this subsequent work on ESSs is Maynard
Smith (1982). Up until this point, much of the theory had been applied to linear games (in which the payoff
is linear in the strategies - two player matrix games are an example of this), although realistic biological
examples (including the model studied in this report) are better described by non-linear games. Notably,
theoretical progress on the general theory of non-linear evolutionary games is quite restricted (possibly to
Bomze and Pötscher, 1989) although related to non-linear games is the theory of multi-player games which
is presently active. This was first developed by Günther Palm in Palm (1984) and has subsequently received
attention from Haigh, Cannings and Mark Broom, among others.

Another common simplification in evolutionary game theory is the treatment of populations as being
well-mixed and effectively infinite. Realistically, there are circumstances (especially in finite populations)
where due to inherent habitat structures, for instance, certain individuals may be more likely to interact with
others. Although the evolution of populations with specific structures had been studied beforehand (see for
example Maynard Smith and Parker, 1976 or Moran, 1958) it gained popularity when its connection with
the existing theory on cellular automata (first studied by Neumann and Stanislaw Ulam in the 1940s) in the
Game of Life, which was introduced by Gardner (1970) and developed to consider more general structures
using evolution on graphs (see Lieberman et al., 2005 and Nowak, 2006).

1.2 Concepts from classical and evolutionary games

In this section we discuss some of the key principles of game analysis and underpin how these are applied in
the biological setting. We will most closely follow the introductory chapters of Broom and Rychtár (2013),
although most textbooks on game theory should cover these basics. Readers familiar with these concepts are
encouraged to skip this section entirely. We will refer to a game as a mathematical model of a situation in
which a collection of entities (finite or infinite) that interact with each other (through conflict or cooperation)
by making strategic decisions that influence each other’s welfare. A game played by two players is the simplest
that may be considered and is commonly used to describe situations in which randomly chosen individuals
from a large population of animals engage in pairwise contests (the precise nature of which may vary). It is
worth noting at this point that the type of game we consider in later chapters is quite different to the setup
described below.

Within a game there may be various points (at least one) at which a player is called upon to make a
strategic decision. These decisions constitute what are known as actions. A complete specification of the
actions to be made at every point in the game is known as a strategy and can be viewed as an element
drawn from the player’s strategy set. There is a distinction between pure and mixed strategies depending on
whether players choose any one strategy (from their strategy sets) with certainty. That is, a pure strategy
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constitutes a single choice of what strategy to play, whereas a mixed strategy describes the probability with
which the players choose any one strategy. More specifically, if a player in a certain game can choose from
(finitely many) strategies (S1, S2, ..., Sn), one may assign the probability vector p = (p1, p2, ..., pn) to this
set so that pi indicates the probability that strategy Si is chosen (where i = 1, 2, ..., n). It is therefore clear
that elements Si of the strategy set constitute the pure strategies, which we treat as an orthonormal basis
spanning our strategy space. In particular, any mixed strategy may be expressed as the convex combination
(since the coefficients are probabilities that must sum to one)

p = (p1, p2, ..., pn) =
n∑

i=1

piSi. (1.2.1)

We proceed by defining the support of a mixed strategy.

Definition 1.2.1. (Support) Let p be a mixed strategy. The support of p, denoted S(p) consists of those
indices of pure strategies that have non-zero chance of being played by an individual playing p so that S(p) :=
{i : pi > 0}.

Notice that this definition applies also to the case for which p is mixed over an infinite set of strategies. An
example of this in the War of Attrition, which we detail in the next section of this chapter.

One of the key assumptions of game theory is that the entities make decisions so that the outcomes
of those decisions maximise their own welfare. Some of the most famous examples of games are those
of the Rock-Scissors-Paper (RSP) game and the Prisoner’s Dilemma (PD). In order for the mathematical
description of a game to be complete one must specify the rules of the game, including how and when
players are to make their decisions (for example in static games it is assumed that all players make decisions
simultaneously). If the number of pure strategies is infinite (as is the case in the model of Broom et al., 2006
which is introduced in the next chapter) we may identify the strategy set with the interval [0,∞) and thus
use a probability measure p on [0,∞) such that for any measurable subset A ⊂ [0,∞) containing the mixed
strategy in question p(A) is the probability that mixed strategy x ∈ A is picked.

The notion of payoff is central in game analysis and describes the reward received by each player upon
choosing a certain strategy. In the context of evolutionary games reward is associated with an individual’s
level of fitness 2 and the assumption of natural selection necessitates the prevalence of strategies that are
associated with higher fitness. It is worth noting that various distinct definitions of fitness have been proposed
throughout the history of evolutionary games (see for example Hamilton, 1964 and Dawkins, 1999) showing
that a certain choice may be more appropriate than others depending on the assumptions that better suited
the situation in question (indeed more specific definitions are introduced in the following chapter). The
payoff to a game is usually understood as making up a certain part of the individual’s overall fitness, the
rest being made up by its background fitness.

Assume that a game has m players, with Si being the set of pure strategies available to player i. The
fitness of this player is a scalar-valued function fi, which depends on the strategy choices of all players
(including itself). We write

fi : R|S1| × ...× R|Sm| → R such that S1 × ...× Sm 7→ fi(S1, ...,Sm).

The normal form representation of such a game (as opposed to the extensive form representation, which
2The expected number of offspring which survive to breeding age is usually a good indicator of fitness - see for instance

Broom and Rychtár (2013).
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we do not discuss here) involves the complete specification of each player’s strategy set together with their
payoffs (defined above)

{S1, ...,Sm; f1, ..., fm}.

For the case in which a game involves two players3 with associated strategy sets S and T the payoff
functions

f1 : R|S| × R|T | → R such that S × T 7→ f1(S,T ) and

f2 : R|T | × R|S| → R such that T × S 7→ f2(T ,S).

lead to the more compact normal form representation

{S,T ; f1(S,T ), f2(T ,S)}.

By introducing indices i = {1, ..., |S|} and j = {1, ..., |T |} to label the pure strategy components of S

and T we can introduce matrix

A = (aij)i=1,...,|S|,j=1,...,|T | : R|S| × R|T | → R,

whose (i, j)-component aij represents the payoff to the first player when he/she plays the ith strategy from
its set S and the other plays the jth strategy from its set T . Likewise we introduce a second matrix

B = (bij)i=1,...,|T |,j=1,...,|S| : R|T | × R|S| → R (1.2.2)

whose (i, j)-component bij represents the payoff to the second player when it plays the ith strategy from
the set T and the first player plays the jth strategy from its set S. It is common practice to convey
this payoff information through a so-called bi-matrix, whose entries contains the payoff to both players i.e.
(A,BT )i,j := (aij , bji). That is, the (i, j)th entry of the bi-matrix (A,BT ) gives the payoff to the first and
second player when the first chooses the ith from S and the second chooses the jth from T .

While matrices A and B completely specify the payoffs to players choosing pure strategies, it remains
for us to consider payoffs to players playing mixed strategies. In such cases, there is uncertainty regarding
the particular choice of pure strategy the players make and it is thus only sensible for us to consider their
expected payoffs. If player I plays mixed strategy p and player II plays mixed strategy q, the proportion of
of games that involve I playing Si and II playing Tj is piqj and the associated rewards to the players are aij

and bij . The expected payoffs are achieved by averaging over all such probabilities

EI [p, q] =
∑
i,j

aijpiqj = pAqT , and (1.2.3)

EII [q,p] =
∑
i,j

bijpiqj = qBpT . (1.2.4)

Games for which the roles of players I and II are indistinguishable are called symmetric games. In such
cases it is assumed that players I and II share the same strategy set, say S and furthermore, that the payoff
to I when he/she plays strategy Si and II plays Sj (given by aij) is the same as the payoff to II when he/she

3Such games may be played within much larger populations in which individuals engage in pairwise contests
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plays Si and I plays Sj (given by bji). That is, in this situation we have aij = bji for all i, j ∈ {1, ..., |S|},
which holds if and only if B = AT . Simple algebra can show that for symmetric games EI [p, q] = EII [p, q],
it therefore only makes sense to consider payoffs to player I (as that of player II can be directly obtained),
which we denote by E[p, q] without subscript.

It is common in evolutionary games to consider large (effectively infinite) populations (denoted Π) made
up of individuals playing different strategies; a natural way of describing their structure is to consider the
density of individuals playing any one strategy. A homogeneous population is one that consists of (almost
all) individuals playing a certain strategy p and which can be described using the delta distribution Π = δp.
In these, the probability that a randomly selected individual plays p is precisely one. If there is a finite
number of pure strategies to be chosen from, δi (naturally) denotes a population consisting of individuals all
playing strategy Si and thus in an inhomogeneous population we let pi denote the proportion of individuals
playing Si. Recall that in (1.2.1) we allowed mixed strategies to be represented as convex combinations
of pure strategies Si, which we subsequently identified as an orthonormal basis (of row vectors) spanning
the strategy simplex. Similarly, we identify population structure δi with the column vector ST

i and express
composite population structures as convex combinations of these, so that

Π =
∑
i

piδi (1.2.5)

describes a population in which the proportion of individuals playing Si is pi.
The analogy with mixed strategies may be extended further so that the column vector pT =

∑
i piδi

denotes a mixed population, while the row vector p =
∑

i piSi denotes a mixed strategy. An interesting
connection between the two analogies is that δp describes a uniform population playing mixed strategy p,
while pT =

∑
i piδi denotes a mixed population playing pure strategies pi. In this sense δp describes the

average strategy of a mixed population and is analogous to the barycenter of a rigid body in mechanics. A
focal individual in the mixed population would play (a matrix game) against randomly chosen individual Si

with probability pi, which is the same as if the individual were in the uniform population δp.
Of central importance is the function E [σ; Π] which represents the fitness of an individual playing strategy

σ in a population represented with Π. As with mixed strategies we are interested in the expected payoff
(the exact reward is hard to evaluate) to an individual playing (pure or mixed) strategy σ in a population
Π =

∑
i piδi. For simplicity, we consider matrix games. Assume that the focal individual plays k games

with randomly-chosen opponents from the population, whose strategies cannot be known in advance. The
expected number of games against an individual playing Si is pik and the total reward from these encounters
is ∑

i

pikE[σ, Si] =
∑
i

pik
∑
j

σjaji,

and the average payoff from one such encounter is obtained by dividing through by k, which gives

E [σ,pT ] =
∑
i

pi
∑
j

σjaji = σApT = E[σ,p]. (1.2.6)

Given that the quantity E[σ,p] is bilinear, it follows that E [σ,pT ] is linear both in the strategies of the focal
individual and also in the composition of the population pT . This is an important consequence and one
that allows important results to be established both in the static and in the dynamic approaches, which we
briefly describe below.
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Two approaches in evolutionary game theory

When modelling change in populations it is important to notice that not all processes evolve on the same
time-scale. It is therefore natural to adopt different notions of stability depending on the types of dynamics
observed (see Hofbauer and Sigmund, 1998 for a systematic review). There exists a (generally accepted)
hierarchy of time-scales governing the various processes, which are usually taken to evolve independently.
If a fast-paced and a slower process evolve simultaneously, the latter is taken to be fixed when focus is on
the former, while when the slower process is considered the fast one is assumed to be in equilibrium. In
particular, it is assumed that animal behaviours (including resting and foraging strategies) change rapidly,
while population dynamics (describing how the frequencies of individuals playing a certain strategy change
over successive generations as a result of natural selection) is slower than the behavioural dynamics, although
still considered short-term. Furthermore, the evolutionary dynamics describing how new mutant strategies
can invade an existing population is even slower (long-term). Finally, beneficial mutations are so rare that
they are assumed to occur only after competition with a previous mutant has been concluded. Mutant
strategies are therefore (more questionably) introduced ’one-at-a-time’ and in this sense, mutation is an even
slower process than the evolutionary dynamics.

Interestingly, the relevant literature in evolutionary games can be broadly categorised into those works
that follow a dynamical approach versus those that follow a static one. The main difference between these
is the time-scale of the processes considered, with dynamical approaches focusing more on the short-term
(including animal behaviour and population dynamics) and static approaches focusing on the long-term
(including evolutionary dynamics and mutation) without paying great attention to how replacement of one
strategy by another takes place. In the second part of the report (chapters 5 and 6) we consider stability on
two different time-scales and determine the conditions required to achieve stability in a more general sense.

The dynamical approach has seen much development over the past decades; it has subsequently been
subdivided into various strands with the replicator dynamics maintaining focal importance. The replicator
dynamics considers a population Π =

∑
i piδi = pT of size N in which the number of individuals playing Si

is Ni = piN and are assigned fitness fi(p). The key assumption here is that the size of a group playing a
certain strategy grows in proportion to its fitness. In the discrete case in which generations do not overlap
and reproduction is asexual (a reasonable assumption for studying a number of insect species and/or annual
plants), we have

Ni(t+ 1) = Ni(t)fi(p(t)),

from which it follows that
pi(t+ 1) = pi(t)

fi(p(t))

f̄i(p(t))
, (1.2.7)

where f̄(p) =
∑

i pifi(p) is the average fitness of the population4. In the continuous replicator dynamics
(with overlapping generations and asexual reproduction) a similar assumption which is key holds, namely

Ṅi(t) = Nifi(p(t))

from which it can be shown that
ṗi(t) = pi(t)

(
fi(p(t)− f̄(p(t))

)
. (1.2.8)

Comparing (1.2.7) and (1.2.8) it is clear that the density of individuals playing Si grows in proportion to the
4Recall that in the case of pairwise contests the fitness can be described in terms of a payoff matrix
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fitness of that strategy compared with the average fitness of the population. Further, these equalities make
it clear that fixed points and further stability characterisations can be employed very much in the spirit of
dynamical systems theory.

The replicator dynamics study the replacement of one strategy by another by looking at the variations in
the frequency of individuals in the population who play a a given strategy. An important distinction to remark
here is that the set of potential strategies from which prey can choose is fixed and pre-determined5. The latter
constitutes the object of study of adaptive dynamics, which typically considers population compositions of
the form Π = (1 − ε)p + εp′, involving a majority playing the resident strategy p and a mutant minority
playing a strategy p′ that is local to p such that p ≈ p′ and 0 < ε ≪ 1. If the fitness of individuals
playing the mutant strategy is greater than the fitness of individuals playing the resident strategy then we
say that the mutants have the potential to invade the residents. The time-scale of the described dynamics is
slower compared with the replicator dynamics and the concepts of stability employed are closer in spirit to
those employed later in the report. Indeed, a key concept in adaptive dynamics is that of an Evolutionarily
Singular Strategy, which describes a strategy for which no local mutation has higher associated fitness. A
central component of this report is the study of static properties associated with the evolutionary model
proposed by Broom et al. (2006) in hope that neglecting the underlying dynamics will not have a significant
impact on our conclusions.

1.3 Static concepts in evolutionary game theory

In a static approach the specific faster-evolving dynamics (including changes in animal behaviour and/or
population dynamics) are considered constant so that the quality of a strategy (best or worst) is determined
solely through a game-theoretical standpoint. In practice, this is achieved by first assuming that the popu-
lation can be described in terms of a certain strategic composition and by hence determining whether there
is incentive for this composition to change (i.e. for players to switch to strategies with higher associated
fitness). Therefore, how a certain population composition can be achieved is not an immediate concern when
adopting a static approach. From the purely game-theoretical standpoint, equilibrium points are identified
by assuming intelligence among players: the best strategy for one player is the best response strategy to
the other player’s best strategy, where the other player’s best strategy is his/her best response to the first
player’s best strategy. In particular, we have the following definition (due to Nash)

Definition 1.3.1. (Best response) A strategy S is a best response to strategy T if

f(S′, T ) ≤ f(S, T ) for all strategies S′, (1.3.1)

where f(S,T) denotes the payoff to player using S against a player using T.

This leads us to the definition of a Nash Equilibrium (N.E.), which is describes a point in the strategy
space at which players have no incentive to change their strategies

5An evident restriction of the adaptive dynamics description is that it does not account for the emergence of new strategies
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Definition 1.3.2. (Mixed Nash equilibrium) In a two-player game in which players are allowed to play
mixed strategies, the pair (p∗, q∗) is a (mixed) Nash equilibrium if p∗ is best response to q∗ and vice-versa.
That is, if

EI [p
∗, q∗] ≥ EI [p, q

∗] for all p ̸= q∗, and

EII [q
∗,p∗] ≥ EII [q,p

∗] for all q ̸= q∗, (1.3.2)

where Ei[p, q] denotes the payoff to player i if he/she plays strategy p while the other plays q.

Notice that for symmetric games this definition amounts to any player playing the best-response against
him/her self, so that (p∗,p∗) is a Nash equilibrium if

E[p,p∗] ≤ E[p∗,p∗] for all p ̸= p∗. (1.3.3)

In the framework of biology one does not explicitly assume intelligence among players but tends to assume
that strategies/traits evolve in the context of natural selection. In particular, if an individual plays strategy
S as a result of evolution then any other strategy played by the remaining players will also be a result of
evolution. It is therefore clear that the best strategy must again be a best response strategy against itself.
In fact, if everybody in the population were to play S, so that Π = δS and this were not the best response
to itself then a single individual playing some different strategy M ̸= S would have higher payoff than when
playing S. Nonetheless, imposing that a strategy is best response to itself does not necessarily imply that if
the population were to play it that it would be stable. Rather, for a population to be stable while playing S

that they have higher payoff than that of a mutant group playing some competing strategy M . In particular,
we consider composition Π = (1− ε)δS + εδM and hence arrive at the following definitions

Definition 1.3.3. (Evolutionarily Stable Strategy) We say that a strategy S is evolutionarily stable against
strategy M if there exists εM > 0 so that for all ε < εM we have

E [S; (1− ε)δS + εδM ] > E [M ; (1− ε)δS + εδM ]. (1.3.4)

Furthermore, S is an Evolutionarily Stable Strategy (ESS) if it is evolutionarily stable against M for every
other strategy M ̸= S.

An ESS is a strategy that cannot be invaded by any other strategy if the associated mutant group was
below a certain size. In general, this threshold is different for every strategy, and we thus arrive at yet a
stronger condition than that of an ESS, which is that of a strategy being (uniformly) uninvadable.

Definition 1.3.4. (Uniform Invasion Barrier) A strategy p is uniformly uninvadable if there exists εp > 0

such that for every other strategy q ̸= p and for all 0 < ε < εq we have

E [p; (1− ε)δp + εδq] > E [q; (1− ε)δp + εδq]. (1.3.5)

Stability theory is well-developed for matrix games and we detail the adaptations of the general theory
here. From (1.2.6) we have that E [σ,pT ] = E[σ,p] and we therefore have the following natural adaptation
of the above definition.
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Definition 1.3.5. (ESS in matrix games) A (pure or mixed) strategy p is an ESS for a matrix game if for
every other strategy q ̸= p there exists εq > 0 such that for all 0 < ε < εq, we have

E[p, (1− ε)p+ εq] > E[q, (1− ε)p+ εq]. (1.3.6)

This definition was a direct adaptation to the two-player setup of the general definition provided earlier. A
more useful definition is the following, which can be shown to be equivalent to the above (see for example
Broom and Rychtár, 2013).

Definition 1.3.6. (ESS in matrix games #2) A (pure or mixed) strategy p is an ESS for a matrix game if
and only if for any mixed strategy q ̸= p we have

E[p,p] ≥ E[q,p] and if E[p,p] = E[q,p], then E[p, q] > E[q, q]. (1.3.7)

For matrix games in particular, the connection between and ESS and a uniform invasion barrier is straight-
forward, as indicated by the following theorem (for a proof see Broom and Rychtár, 2013)

Theorem 1.3.7. For a matrix game, strategy p is an ESS if and only if it is uniformly uninvadable, namely
there exists εp > 0 such that for all q ̸= p and for all 0 < ε < εp we have

E [p; (1− ε)δp + εδq] > E [q; (1− ε)δp + εδq]. (1.3.8)

There is another important result for mutations that are local, namely (once more for a proof of this result
the reader is encouraged to consult Broom and Rychtár, 2013)

Theorem 1.3.8. (Local superiority) For a matrix game, p is an ESS if and only if

E[p, q] > E[q, q] for all q ̸= p sufficiently close to p. (1.3.9)

Finally, recalling the definition of the support S(p) of a mixed strategy as given in definition 1.2.1, we
present the following lemma, which we apply in the examples that follow. This says that the pure strategies
in the support of p do equally well against p as does p against itself. In particular, we have the following.

Lemma 1.3.9. Let p = (pi) be an ESS. Then for any i ∈ S(p) we have E[Si,p] = E[p,p].

Motivated by this, we may identify those indices of an arbitrary mixed strategy q associated with the pure
strategies that do equally well against p as does p against itself and so for this, we write T (q) := {i :

E[Si,p] = E[p,p]}. For arbitrary mixed strategy S(p) ⊆ T (p), while if p is an ESS then S(p) = T (p) as
suggested by lemma 1.3.9. Furthermore, we have the following lemma (for a proof of which see Broom and
Rychtár, 2013).

Lemma 1.3.10. Let p be an ESS. Then E[q,p] = E[p,p] if and only if S(q) ⊆ T (p).

We close this section by presenting two further consequences about ESSs (with proofs once again given
in Broom and Rychtár, 2013), both of which are especially useful for ruling out ESSs.

Theorem 1.3.11. (Bishop and Cannings 1976) If p is an ESS of a matrix game and there exists mixed
strategy q ̸= p with S(q) ⊆ T (p) then q is not an ESS of that game.
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This final result follows as a corollary of the above theorem of Bishop and Cannings and will prove useful in
the analysis of the War of Attrition in the analysis that follows.

Remark 1.3.12. Let p be an internal ESS (with pi > 0 for all i) of a matrix game. Then p is unique.

Classic Examples of Games

We devote this part to the discussion of two classical examples of evolutionary games, namely the Hawk-Dove
game and the War of Attrition. Of course, there are many, many others such as the Prisoner’s Dilemma, the
Rock-Scissors-Paper or the Sex Ratio game, but unfortunately their presentation would exceed our scope.
We have chosen the Hawk-Dove game, merely to demonstrate the general ideas discussed thus far in the
context of a straightforward, two-player matrix game and the War of Attrition as an example involving
continuous traits which is an example of playing the field. The central game of this thesis is non-linear
(differences in the value of the trait are not proportional to the associated differences in the payoff) and yet
despite this exhibits a number of similarities (ESSs are manifest as continua in the strategy space) with the
War of Attrition, which is a typical example of a game that is linear.

The Hawk-Dove game

The Hawk-Dove game was introduced in Maynard Smith and Price (1973) and has seen numerous variations
since - here we look at its basic formulation. It is was originally known for describing animal contests over
territory (such as that played by stags during the breeding season - see Broom and Rychtár (2013)) although
it may also model more general situations in which contestants are called upon to decide whether to fight
(play Hawk) or to flee (play Dove). Assuming a population made up of identical individuals (in terms of
strength and related attributes), the game is taken to be symmetric with the associated payoffs provided by
the bi-matrix

Hawk Dove

Hawk
(

V−C
2 , V−C

2

)
(V, 0)

Dove (0, V )
(

V
2 ,

V
2

)
.

In particular, if a Hawk encounters a Dove, the former is victorious (V ) and gains the full reward (i.e.
control over territory) and the latter gains nothing and backs away without fighting. If a Hawk encounters a
Hawk, they both share the same reward and both bear a certain cost (C/2) on account of engaging in conflict.
Finally, if a Dove encounters a Dove then they both share the reward (control over territory) equally (V/2)
and without baring any costs (as they do not fight). The static analysis identifies three cases, depending on
whether the reward outweighs the cost of conflict over this namely V > C, V = C (this is non-generic) and
V < C. For the first, (H,H) is the unique (pure) N.E.. Furthermore, it is strict and symmetric and thus the
associated strategy Hawk is an ESS. In the second case (V = C), we can identify three (pure) N.E., namely
(H,H), (H,D) and (D,H) of which only the former is symmetric. In particular, E(H,H) = E(D,H) but
since E(H,D) > E(D,D) then by Definition (1.3.6), Hawk is still an ESS. In the latter case (V < C), the
two (pure) N.E. are (D,H) and (H,D) are non-symmetric, from which we deduce that there is no pure ESS.
It can be shown that mixed strategy p = (V/C, 1−V/C) is the unique ESS when V < C. In particular, this
shows that the H-D game has a unique ESS, irrespective of the values of V and C.

For the sake of comparison with the static it is worth mentioning the applicability of the dynamical
approach to a population consisting of individuals engaging in pair-wise Hawk-Dove contests. For the
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continuous replicator dynamics we substitute the fitness in (1.2.8) with the expected payoff (in terms of the
payoff matrix given above) and by set p = (p, 1−p), with p representing the proportion of individuals playing
Hawk. We may visualise the dynamics through a phase portrait and thus characterise ESSs as attractors of
the dynamics - a very different approach to the static one, yet yielding the same conclusions about optimal
strategy.

The War of Attrition

The War of Attrition is an example of playing the field. As before, this is a game in which two individuals
are competing over a reward, but now the players can choose from an infinite (and uncountable) number
of strategies. The players each display themselves for some time, the first to leave gets no reward and the
one who waits the longest gets the full reward. In this situation there is no physical cost incurred from
playing the game, but there is a certain opportunity cost associated with waiting, on account of the fact that
the time spent waiting could have been utilised (more productively) otherwise. Another assumption is that
the game is static, namely that the players decide their strategies before engaging and cannot change them
subsequently.

A pure strategy is denoted by St and is played by an individual who is prepared to wait for a time of
exactly t ≥ 0. A mixed strategy p is a probability measure on the set [0,∞), and is much like a density
function p(x) defined on x ≥ 0 in the sense that the probability of an individual leaving between times x

and x+ dx is p(x)dx and the probability of leaving before time t is
∫ t

0
p(x)dx. We mention for completeness

that a pure strategy St can be seen as a Dirac measure at the point t. Indeed, any continuous function
f : [0,+∞) → R can be expressed as

f(t) =

∫ ∞
0

f(x)dSt(x).

The payoff is the reward minus the cost of waiting for the reward, where the former is assumed to be a
fixed positive constant V and the cost C(x) is assumed to be proportional to the time spent waiting so that
C(x) := cx for some fixed constant c. In particular, the payoff to individuals playing pure strategies Sx and
Sy is given by

E[Sx, Sy] =


V − cy, x > y

V/2− cx, x = y

−cx x < y,

(1.3.10)

whereas for mixed strategies p and q (and associated density functions p(x) and q(x)) we have

E[p, q] =

∫ ∫
(x,y)∈[0,∞)2

E[Sx, Sy]dp(x)dq(y). (1.3.11)

From the above payoff functions and from Definition 1.3.6 it is concluded that there are no pure ESSs.
Consider the payoff to a player playing pure strategy St for some t > 0. Then, for any τ > 0, from (1.3.10)
we deduce that

E[St+τ , St] = V − ct >
V

2
− ct = E[St, St], (1.3.12)

and by the equivalence of Definition 1.3.6 and Definition 1.3.5 this is equivalent to saying that a minority of
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St+τ players can invade a majority of St players. Namely that for some small ε > 0

E [St+τ ; (1− ε)δSt
+ εδSt+τ

] > E [St; (1− ε)δSt
+ εδSt+τ

]. (1.3.13)

So as to find suitable ESS candidates, we must therefore restrict our attention to mixed strategies. The
support of a mixed strategy was introduced in Definition 1.2.1 and can be extended for this case, in which
players may choose from an infinite (and uncountable) number of strategies. Namely, the support of mixed
strategy p with associated density function p(t) is precisely the set S(p) = {t ≥ 0 : p(t) > 0}. Adapting
lemma 1.3.9 appropriately, we conclude that if p is an ESS then it must satisfy

E[St,p] = E[p,p] for almost all t ∈ S(p). (1.3.14)

The LHS of this equality can be evaluated using definition 1.3.11

E[St,p] =

∫ ∫
(x,y)∈[0,∞)2

E[Sy,p]dSt(y)dp(x) =

∫
x∈[0,∞)

p(x)dx

∫
y∈[0,∞)

E[Sy,p]St(y)

=

∫
x∈[0,∞)

E[St,p]p(x)dx =

∫ t

0

E[St,p]p(x)dx+

∫ ∞
t

E[St,p]p(x)dx

In light of (1.3.10) and the above, equality (1.3.14) reads∫ t

0

(V − cx)p(x)dx+

∫ ∞
t

(−cxt)p(x)dx = E[p,p]. (1.3.15)

Differentiating both sides with respect to t (and noting that the RHS does not depend on t) we deduce that

(V − ct)p(t)− c

∫ ∞
t

p(x)dx+ ctp(t) = 0 ⇔ V p(t)− c

∫ ∞
t

p(x)dx = 0. (1.3.16)

Setting p(x) = P ′(x) on all x ≥ 0 for some function P implies that the above amounts to

V P ′(t)− c

∫ ∞
t

P ′(x)dx = 0 ⇔ P ′(t) =
c

V
P (t) ⇔ P (t) = K exp

(
− c

V
t
)
,

for some constant K ∈ R. From p(t) = P ′(t), we deduce that

p(t) = −K
c

V
exp

(
− c

V
t
)

(1.3.17)

solves (1.3.15) for almost all t with p(t) ̸= 0 and imposing that the constant K is chosen so that p is a
probability measure, i.e. so that

∫∞
0

p(x)dx = 1 gives K = 1. It should be remarked that while we have
demonstrated that (1.3.17) is an ESS, we have not shown it is unique. For instance, one could conclude that

pESS(t) =
c

V
exp

(
− c

V
t
)

and p(t) =


0, t ∈ [0, 1)

c

V
exp

(
−

c

V
(t− 1)

)
, t > 1

(1.3.18)
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are both ESSs since they satisfy (1.3.15) and the necessary condition for normalisation
∫∞
0

p(t)dt = 1. To
demonstrate that (1.3.17) is the unique ESS we evoke a result from Bishop and Cannings (1976). The
theorem is as follows. Let q and r be two different mixed strategies with associated densities admitting
differences on sets of non-zero measure (i.e. their difference is non-trivial). The result due to Bishop and
Cannings (1976) states that for these we must have

E[r, r]− E[q, r]− E[r, q] + E[r, r] < 0 for all q ̸= r. (1.3.19)

Notice that at most one ESS can satisfy the above inequality, the reason being that if q cannot invade r

(namely E[r, r] > E[q, r]) then r invades q (E[r, q] > E[q, q]). Further, from (1.3.14) it follows that PESS

must satisfy
E[pESS ,pESS ] = E[q,pESS ] (1.3.20)

for any pure strategy q = St with t ≥ 0 since pESS has positive density pESS(t) > 0 for all t ≥ 0. Identifying
r with pESS and q as described, inequality 1.3.19 now implies

E[pESS , q] > E[q, q] for all q ̸= pESS , (1.3.21)

which identifies pESS as the unique ESS of the game.
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Chapter 2

Aposematic Defence

In this chapter we discuss how prey individuals defend themselves against attack from potential predators
and focus on those changes in their visual appearance that achieve this. Depending on the time at which
defence mechanisms are activated relative to encounter, these serve a different purpose and may bear different
costs to an animal that acquires them. We focus on a particular instance of defence in which prey individuals
invest in unpalatable toxins that are transmitted to predators during or after encounter but whose presence
is signalled beforehand through bright colourations. This phenomenon is called aposematism and is curious
from an evolutionary standpoint as it seems to provide no direct benefit to the prey individuals that acquire
it upon first inspection. The chapter opens with some background into prey defences and aposematism,
including a brief overview of some existing mathematical approaches in aposematism. In the second section,
we introduce the game-theoretical description of Broom et al. (2006). We distinguish between the more
general version of this model and the prey-predator description, which will hence occupy the remaining
portion of the thesis. We present and prove a number of fascinating results from Broom et al. (2006), which
relate to the evolutionary stability of aposematism and form the foundation for later chapters.

2.1 Background

The purpose of this section to provide some brief background into the biology and mathematical modelling
of aposematism, with emphasis in those areas that are more relevant to the game-theoretical description of
Broom et al. (2006).

The biology of aposematism

Organisms from anywhere within the tree of life exhibit defence mechanisms that are deployed to prevent
potential predators from mounting attacks. These exist in a variety of guises, are manifested in a range of
different ways, trigger the senses differently and pose different fitness advantages to those who deploy them
(see Ruxton et al., 2019 for a more elaborate overview of this topic). Defences can be effectively classified
depending on whether they are permanently present (static constitutive) in the prey individuals that acquire
them or whether these are deployed during conflict (induced). While the latter have lower costs associated
with maintenance and may be better suited against attacks that take place over a longer time period, they
tend to be less effective against the type of attack that we consider here (mounted at a fast pace), particularly
because the deployment of induced defences typically takes time. The reader is directed to Irie and Iwasa
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(2005) or Shudo and Iwasa (2001) for model-based studies, to the case study by Hammill et al. (2008)
analysing the costs of induced defences on water fleas (Daphnia pulex ) or finally to the more recent study
by Boots and Best (2018) on the evolution of induced and constitutive defences against infectious diseases.
The focus of this report is on rapid (and potentially lethal) attacks and considers mechanisms of defence
that are most relevant in this context.

On a more basic level, prey defend themselves against attacks by reducing the chance of that they are de-
tected or encountered by means of primary defences, which include crypsis (resemblance to the background)
or masquerade (resemblance to items that are of no inherent interest to the predator such as leaves, twigs or
stones). If an attack has been mounted by a predator, prey may still be able to defend themselves through
secondary defences, whose role is typically two-fold: to reduce the probability that a mounted attack is
lethal and to reduce the probability that similar-looking prey are attacked in the future (see Gols, 2014 for
a breakdown of "direct" and "indirect" defences in a large array of chemically-defended plants or chapter
8 of Dickinson et al. (1981) titled apetite-aversive interactions and inhibitory processes by Dickinson and
Boakes).

Secondary defences are present in a vast range of taxonomic groups throughout the tree of life and
are remarkably variable; we coarsely classify these as follows. Prey may possess chemical defences (such
as olfactory deterrents, repellent secretions or internally stored toxins that are transferred to the predator
either after or during encounter), mechanical defences (which could include the possession of sharp spines,
tough integuments, the ability to change shape) or behavioural defences (including aggressive retaliation
or social-defensive grooming). We should remark that while some forms are readily visible by predators
at a distance, other forms are not and in those cases the defence is often paired with additional signalling
cues. On p.232 of Wallace (1889) it is remarked for such prey that they "require some signal or danger flag
which shall serve as a warning to would-be enemies not to attack them, and they have usually obtained this
in the form of conspicuous or brilliant coloration, very distinct from the protective tints of the defenceless
animals allied to them". This is often observed in chemically-defended prey including many species from the
Poison dart (Dendrobatidae) frog family (see Summers and Clough, 2001a for a discussion on the evolution
of colouration and toxicity or the more recent study by Barnett et al., 2018, emphasising how protective
colouration triggers a variety of different visual systems at various distances).

Aposematism is the signalling by prey individuals (animals or plants) to predators that they are unprof-
itable to consume. A succinct description of the process is provided in Wallace (1877), p. 651: "...warning
colours are exceedingly interesting, because the object and effect of these is, not to conceal the object, but to
make it conspicuous. To these creatures it is useful to be seen and recognised, the reason being that they have
a means of defence which, if known, will prevent their enemies from attacking them, though it is generally
not sufficient to save their lives if they are actually attacked." Indeed, these warning colourations or signals
are associated with some form of prey defence and may be manifest in a wide range of physical charac-
teristics perceivable to the predator through sensory stimuli beyond just sight but which may also include
smell, touch, taste or combinations of these (see Rowe and Guilford, 1999 for a discussion on the evolution
of "multimodal warning displays" or Yack (2022) discussing the more poorly understood acoustic defence
mechanisms deployed by caterpillars ). The term aposematism literally means to keep predators at a distance
and stems from the Greek apostasis (meaning distance) and sima (signal) and was coined in Poulton (1890)
as an adaptation that more explicitly describes a warning colouration as a signal that warns predators off1.

From this description we establish that the process of warning colouration may effectively be phrased
1For a very brief, up-to-date description of aposematism a good first option is Rojas et al. (2021)
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as "aposematic prey sacrifice their primary defence in favour of a signalling appearance that (i) signals
to predators the presence of a secondary defences and which in turn (ii) acts as a deterrent and hence a
substituted form of primary defence." Indeed, aposematism is a complex process involving the coordinated
(and often synchronous) mobilisation of primary and secondary mechanisms. It may come as no surprise that
in most taxonomic groups aposematic individuals are rare compared with their camouflaged counterparts -
see Santos et al. (2003), Vences et al. (2003) and Ruxton et al., (2019). Chemical defences (in the form of
toxins stored within the body) are typically not detectable by the predator at a distance; their presence is
perceived only after an attack has been mounted, which distinguishes them from a large group of defences
(although behavioural defences including ability flee or fight back also fall under this category).

It is common to refer to an aposematic signal as a phenotype that informs potential predators of the
presence of a defence that may otherwise not be readily detectable. While an exhaustive list of the exact
differences between phenotypes and aposematic signals would be rather hard to draw, we mention three of
the most important differences here - the reader is referred to chapter 6 of Ruxton et al., (2019) for a more
detailed discussion. First, aposematic signals are necessarily paired (at least in the mind of a predator) with
some form of secondary defence (e.g. bright skin pigmentation is paired with unpalatable toxins). That is,
the predator’s response to the signal will be linked to a cognitive association the predator has formed between
the signal and the defence or other aversive trait that makes prey unprofitable to predators. Second, they
have evolved as signals through natural selection and are therefore effective in altering predator behaviour
so that it favours prey survival (e.g. fewer recognition errors, enhanced wariness, accelerated learning and
decelerated forgetting). Third, these alone can act as a primary defence mechanism in the sense that it is
deterring for predators (through learned aversion - see Broom et al., 2006) and thus reduces the probability
that an attack is mounted2.

The observation of aposematism in the natural world would (upon first inspection) seem troubling from
the evolutionary standpoint as it is sensible to surmise that conspicuous individuals run a clear disadvantage
compared with their non-signalling relatives. Furthermore, there is considerable empirical evidence suggest-
ing that chemical defences induce fitness costs (see the study by Dahl and Peckarsky, 2003 on chemically-
defended fish showing "a negative relationship between female allocation to eggs and to morphological defence
character" or those by Darst et al., 2006 or Zvereva and Kozlov, 2016 and those mentioned in the bibliog-
raphy therein). Fitness costs are most likely associated with the costs of synthesising and/or acquiring (e.g.
through dietary modifications) and/or storing toxins - see Daly (2003) or Darst et al. (2005). In several
instances, these costs are directly manifested through reductions in growth and adult size, while in others,
the cost can be calculated indirectly using energetic terms3.

During the early stages of the evolution of aposematic defence prey may not have adapted completely
to the defence on an organic/physiological level. For instance, in a study by Tarvin et al. (2017) poisonous
Dendrobatidae frogs appeared to undergo a period of "self-poisoning", which was notably less apparent
among later-generation prey in which, perhaps due to observed ever-increasing amino acid replacements in
toxin-binding sites. Aposematism is conceivably more interesting during these early stages because selec-
tive advantages associated with reduced predation are directly traded off against such "self-poisoning" (or
equivalent) effects. In addition, chemical defences can be modelled as continuous trait characteristics and
their frequent coupling with signalling cues that are external renders them especially interesting from the

2There are marginal cases (see Halpin et al., 2008) in which acoustic and/or visual signals are emitted by prey items
exclusively during encounter. We do not consider these here.

3It should also be mentioned that there are cases in which there is no evidence of costs being incurred at all; such is the case
with Diprion pini larvae discussed in Lindstedt et al. (2011) for example.
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mathematical-modelling perspective. Indeed, much of the mathematical description provided here and in
Broom et al. (2006) could best be thought to describe such systems (although it is by no means limited to
this). Our description assumes that investment in toxicity is costly by involving a trade off in fecundity and
is in this sense more early-stages focused.

It is argued that both predators and prey can benefit from honest signalling of chemical defences, par-
ticularly if there are costs to both parties associated with prey capture prior to detection of defences (such
as time and energy invested in chasing and fleeing, and/or risk of injury). The review by Summers et al.
(2015) reveals that there is a discrepancy both among empirical and among model-based studies relating to
how conspicuousness and defence are related. One of the main objectives of Broom et al. (2006) had been
to rephrase this question as (a) how conspicuous and (b) how well-defended should a prey individual be so
that a population made up entirely of one type can maintain their composition? and to hence address this
question within the context of an evolutionary model. We presently propose adaptations to the answers that
had been provided therein by exploring a broader class of example functions (chapter 3). In the subsection
that follows we review the first major contribution in this direction (Leimar et al., 1986), compare it with
the model of Broom et al. (2006) and hence motivate the relevance of our own insight into this challenge.

The mathematical modelling of aposematism

To date, the co-evolution of defence and of the signalling of that defence (aposematism) has received limited
theoretical attention and the systematic treatment of optimality in this context is also lacking compared
with the study of defence in isolation. We begin our review of the mathematical treatments of aposematism
with the celebrated work of Leimar et al. (1986), upon which the later work of Broom et al. (2005), Broom
et al. (2006) and subsequently Broom et al. (2008) were developed. This work introduced complexity both
in the behaviour of the predator (through varied rates of learning and attack probability) and also in the
behaviour of prey, by allowing variations in the effectiveness of their strategies, which are measured in terms
of their contribution to survival, their effects on predator learning rates and biological costs of defence and
conspicuousness.

Leimar et al. (1986) considered structures in prey populations that emerge as a consequence of the
assumptions described above and specify the patterns of ESS that are associated with these. The model of
Leimar et al. (1986) predicts the possibility of a single cryptic ESS with non-trivial levels of defence and
suggests that crypsis may be destabilised in favour of conspicuousness providing predation rates and kin
grouping are sufficiently high. Moreover, it proposes that kin grouping is not necessary for the maintenance
of aposematism but rather, a positive relationship between conspicuousness and learning is required together
with increased avoidance of those more conspicuous than average phenotypes. In contrast to the model of
Broom et al., 2006, the model of Leimar et al., 1986 considers a set of initially naive predators whose attack
probabilities are highest before they have their first encounter (G(0)(x) = e(x), with x representing the level
of prey unprofitability) and which continuously decrease over successive encounters according to an inhibitory
gradient h(x, x1, y1) (with x1 being the unprofitability of encountered prey and y1 its conspicuousness), so
that

G(n)(x, x1, y1) = e(x)[1− h(x, x1, y1)]
n, (2.1.1)

where n is the number of previous encounters4

4this is eq. (2) in the original publication; remark that we reserve the lowercase symbol g to describe a different quantity in
the next section.
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The model of Leimar et al. (1986) was the first to consider the joint action of aposematic traits and its
accounting of the effects of predator behaviour on the evolution of aposematism is novel and self-contained.
We should remark that equality (2.1.1) suggests that the attack probability is non-increasing with respect
to n; in particular, it predicts that over successive encounters with prey (regardless of their conspicuousness,
level of defence or the outcome of encounters) the predator’s learned aversion is ever-increasing. This implies
that the predator’s consumption of prey is ever-decreasing and we contend that foraging strategies of this
type would be unstable for predators in the long-run. Furthermore, the model was developed under the
assumption of specific functional forms that make the results provided hard to generalise.

It should be noted at this stage that there are a number of studies in which it is incorrectly claimed
that Leimar et al. (1986) suggest that optimal levels of conspicuous and defence are negatively correlated
across populations. This is most recently done in Summers et al. (2015), which constitutes an otherwise
indispensable review of empirical and model-based approaches on honest signalling and indeed one that we
consult in our discussions in later chapters. As it happens, the model of Leimar et al. (1986) does not
consider signal strength at all, it only compares a non-signalling (camouflaged) phenotype to a signalling
phenotype. In particular, it is argued that if the signalling phenotype is associated with a reduced rate
of attack by predators (perhaps through learned aversion) such that the non-predatory cost of producing
toxins increases with its effectiveness in reducing predator attack rates then the optimal strategy may be for
the signalling phenotype to invest less in costly toxins than the non-signalling phenotype. The possibility
of a true, negative correlation between signal strength and level of defence within a causal game-theoretical
framework is conceived in Scaramangas and Broom (2022) and forms a novel extension to the predictions of
Broom et al. (2006). We return to this point in chapter 3.

There are a number of key considerations that are different between this presentation and that of Leimar
et al. (1986), which make the two approaches complementary to each other. For instance in their model,
predators are initially naive and through repeated experiences engage in aversive learning, which changes the
level of predation pressure over time. We contend that such a description would be especially purposeful for
studying the initial evolution of aposematism in a set of seasonal predators who arise inexperienced at the
start of the season (see Kauppinen and Mappes, 2003 for an example of a dragonfly species Aeshna grandis
or Brown hawker who typically fly between the months of July and September and in this period learn to
avoid aposematic wasps Vespula norwegica). In this instance, predators are short lived compared to the
time taken to learn about the prey population, such that the process of learning is important to overall prey
mortality.

By contrast, the model of Broom et al. (2006) describes an equilibrium situation among prey-predator
populations in which aposematism has already become established and such that there is no change in
predation pressure over time. That is, the equilibrium in Broom et al. (2006) refers to average rates of
learning, hunger, experience, age, etc. among predators and is perhaps maintained through a balanced
mix of young and old individuals in overlapping generations. We should remark that while equilibrium is
assumed, how it is reached (presumably through aversive learning and/or genetic inheritance and/or strong
transmission of foraging behaviours among kin groups) is not explicitly a feature of the model. Implicit
is the assumption that the process of learning involves only a short fraction of the predator’s lifetime and
the overwhelming majority of the mortality that the prey population experiences is caused by experienced
predators that have completed their learning and the process of learning itself can be ignored from the prey
perspective.

In Broom et al. (2006) we establish that while learning is important it is assumed that predators learn
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quickly, so that most of their life they impose morality based on their understanding of prey traits gathered
during a short investigative learning phase early in life. The type of system that this model might best
describe are insectivorous birds – these birds might eat hundreds of insects a day and live for several years. If
the prey population is consistent under that timescale, which might suggest a tropical rather than temperate
region (putative predators could include the Greater rhea or species of heron, although this geographical
restriction is not a hard one) then we might expect that birds can learn about prey that they readily encounter
on a timescale of days which is much shorter than their lifetime. For instance, there is ample evidence to
suggest that the diet of the American robin (Turdus migratorius) includes caterpillars - see capter 2 of Martin
et al. (1961) and cuckoos in particular are known to attack even the most unpalatable ones - see Barbaro
and Battisti (2011).

The theoretical implications of Broom et al. (2006) are developed further in Broom et al. (2008). Both
papers consider non-point solutions and the reader is encouraged to consult those which are presently mostly
omitted. It is worth noting that many of the more recent mathematical models focus on the signalling
component of aposematism, its effectiveness in promoting aversive learning (see for example Summers et al.,
2015, Merilaita and Ruxton, 2007, Broom et al., 2013). Other works focus more heavily on the component
of defence and on the costs that these incur on the prey that acquire them (see for example L. Wang and
Broom, 2019, or Broom et al., 2010). Other important work aims at underpinning the connections between
static and the dynamical approaches in evolutionary games (see Argasinski and Broom, 2018 or Argasinski,
2006). Notable is also the vast array of numerical and simulation techniques that have been implemented
and which have provided unique insight into the evolutionary process (see Teichmann et al., 2015,Teichmann
et al., 2014a,M. P. Speed et al., 2010, G. D. Ruxton et al., 2009, or M. P. Speed and Ruxton, 2007).

2.2 Model description

In this section we describe a more generalised version of the model by Broom et al. (2006) by accounting
for a non-negligible proportion of mutant prey and arriving at the description presented in Broom et al.
(2006) by taking the limit as this tends to zero (see also Scaramangas and Broom, 2022). We begin with a
generalised description (which we use in chapter 4) before proceeding the resident-mutant description, which
is used in the following section to derive the conditions for evolutionary stability. We should remark that a
number of novel clarifications are made in this section that (hopefully) admit an improvement to the original
presentation in Broom et al. (2006). The majority of these improvements are also seen in Scaramangas and
Broom (2022) and in Scaramangas et al. (2022).

Unrestricted prey strategies

We begin by considering a population of prey of a certain species who occupy some habitat. Assume that
the habitat can be partitioned into effectively infinite, non-overlapping localities consisting of approximately
N prey, where N is taken to be large. In addition, assume that each locality is visited by n predators,
who visit a single locality only. Implicit in this layout is that there is a uniform territorial division of the
habitat among the predators so that each locality can be perceived as the territory of a specific number of
n predators (n is too taken to be large). It is also generally assumed that the overall population of prey
and predators are in dynamic equilibrium (predators are on average characterised by fixed states of hunger
level, age, experience etc. - see earlier discussion) so that in any one locality predation has no effect on the
relative sizes N and n. Within each locality prey are labelled by index i such that {i = 1, 2, ..., N}.
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Prey defend themselves against predators by investing in secondary defences of strength ti ≥ 0, which
they advertise through recognisable signals of conspicuousness ri ≥ 0; naturally completely inconspicuous
(or cryptic) prey have ri = 0. In addition to the possession of a conspicuous signalling trait prey assume a
colouration trait θi ∈ [0, 2π), which is distinct to the conspicuousness. The assumption that these traits are
distinct (most plausible for chemically-defended prey5 whose levels of unpalatability, pigmentation intensity
and colouration are separate - see earlier discussion on signalling cues that are external) is for the purposes
of mathematical modelling synonymous with the assumption that these can be varied individually and
independently from one another and can therefore represented by the 3-vector (ri, ti, θi), which denotes the
strategy of prey individual i in a cylindrical coordinate system. It is worth mentioning that while this 3-
vector description is used in Broom et al. (2006) we suppress this third variable in the chapters that follow
and continue the remainder of the discussion by representing prey strategies as vectors (ri, ti) ∈ R≥0 ×R≥0.
In addition, it is assumed that individual i reproduces with fecundity rate F = F (ti), where F is a declining
function of ti (indicating that investment in toxins is costly), dies of causes other than predation at some
fixed background mortality rate λ and defend themselves against predators by acquiring aposematic traits
(ri, ti).

It has been mentioned that the model of Broom et al. (2006) is static and does not impose specific
dynamics to describe prey-predator interactions. We surmise that on average predators encounter prey at
some fixed rate σ. Detection of individual i is an event that is conditional on the predator encountering that
prey such that the rate of detection D(ri) can be defined as the product of this fixed rate of encounter and
the probability that i is detected given encounter has occurred. We write

Rate of detection of i = σ × P(i is detected | i is encountered) (2.2.1)

Upon detecting prey, predators can decide to mount an attack, which may or may not lead to capture. We
express the detection rate as D(ri), which we assume to be an increasing function of ri, which tends to unity
as prey conspicuousness assumes arbitrarily large values - indeed an interval of unit time can be defined as
the time taken for a very bright prey item to be detected by a predator - while D(0) = d0 > 0, since even
fully-cryptic prey can be detected. The probability that a mounted attack results in capture is given by
K = K(ti), where K is declining with ti, indicating that more defended individuals are harder to capture.
A detected individual will be attacked with probability Q = Q(Ii), where Ii represents the average aversive
information that the average predator has on item i. It is assumed that Q is a declining function of Ii and
such that Q(Ii) = 1 for Ii ≪ −1 and Q(Ii) ≈ 0 for Ii ≫ 1; these assumptions suggest that a prey individual
perceived by the predator as very attractive (Ii ≈ 0) are most-likely to be attacked, while those perceived
as very aversive (Ii ≫ 1) are unlikely to be attacked. We return to this point once we have discussed the
significance of the perceived aversiveness.

Predators assign Ii to individual i by comparing it to a certain (weighted) base-line level of aversive
information, which is generated through encounters with the prey population, such that

Ii =
1

n

N∑
j=1,j ̸=i

L(rj)H(tj)S(ri, rj). (2.2.2)

It is understood that each locality is sizeable (or rather, it can occupy a large number of prey individuals such
5A robust example can be drawn from species of the Poison dart frog (Dendrobatidae) family who signal chemical defences

through bright skin pigmentation with an array of colours. In our description toxicity, brightness and colouration are treated
as traits that are independent and fully identify them as aposematic.
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that N can be taken to be large) and is visited by a group of predators n, who visit this locality only. Tacit
in this discussion is that it is (usually) not possible for any one predator to experience every single prey item
within its life-cycle; rather, we assume that predators experience the locality collectively and the aversiveness
of their experiences is shared equally among them (see factor of 1/n in (2.2.2)). Even though as a collective,
predators have complete experience of the locality, their perceived aversiveness of a particular individual i is
not drawn directly by their experience of it, but through successive experiences with its neighbours (notice
that the sum in (2.2.2) excludes i, but includes the remaining locality).

An important assumption of our model is that predators learn quickly, so that most of their life they
impose mortality based on their understanding of prey traits gathered during a short investigative learning
phase early in life. Since learning involves only a short fraction of the predator’s lifetime it can be mostly
ignored from the prey perspective. Indeed, it is assumed that the overwhelming majority of prey mortality
is caused by experienced predators, who have completed the learning process described in (2.2.2) - see
discussion in the latter part of section 2.

Predators find chemically-defended prey aversive and the experience of consuming them is measured by
H = H(ti), which is an increasing function of ti and is zeroed at a critical value of the toxicity ti = tc. We
write

H(ti)


< 0, ti < tc

= 0, ti = tc

> 0, ti > tc.

(2.2.3)

The level of defence of prey with ti < tc is not sufficient to outweigh the nutritional benefit received from
predators by consuming them and are perceived as attractive or negatively aversive. By construction, the
defence of prey with ti = tc describes the limiting value at which the nutritional benefit is exactly outweighed
by their distastefulness and such prey are perceived as neutrally aversive. Finally, prey with ti > tc are
perceived as (positively) aversive by the potential predator. The second term on the RHS of (2.2.2) requiring
explanation is L = L(ri), which represents the rate at which encounters that have occurred can be recalled by
predators. This is assumed to be a growing function of ri indicating that encounters with more conspicuous
prey can be better recalled. In much of the later work we will assume perfect predator recollection, which
involves taking taking L = D.

The third term that warrants explanation is that which appears on the RHS of (2.2.2) and is the similarity
function

S : R≥0 × R≥0 → [0, 1] such that (ri, rj) 7→ S(ri, rj), (2.2.4)

which describes how predators perceive the visual similarity of different-looking prey. In contrast, the
(generalised) similarity function S of (2.2.4) - denoted with calligraphy is naturally bi-variate. In Broom
et al. (2006) and indeed for the remainder of this report we treat this as a a uni-variate function S of the
Euclidean distance separating their visual appearance. In particular we impose that

S(ri, rj) = S(|ri − rj |), where S : R → [0, 1] is s.t. x 7→ S(x). (2.2.5)

We should remark that it is only in Scaramangas and Broom (2022) that the distinction between the uni-
variate and the bi-variate functions associated with perceived similarity as in (2.2.5) is drawn. The uni-variate
function S on the RHS of (2.2.5) is assumed to be Cl with l ≥ 2 (at least sufficiently near the origin) and
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has the following properties

[i] S(x) ∈ [0, 1] for all x ≥ 0 (2.2.6)

[ii] S(0) = 1 − i.e. S(|ri − rj |) = 1 if and only if i and j are equally conspicuous with ri = rj (2.2.7)

[iii] lim
x→∞

S(x) = 0 − i.e. S(|ri − rj |) = 0 iff i and j are very dissimilar, s.t. ri ≫ rj or rj ≫ ri (2.2.8)

[iv] S′(x) ≤ 0 for all x > 0 − i.e. S does not increases as |ri − rj | increases (2.2.9)

[v] S′(0) < 0 − i.e. variations in conspicuousness (incremental) are perceptible at the baseline (2.2.10)

[vi] S′′(x) ≥ 0 − i.e. predator sensitivity to incremental variations is non-increasing (2.2.11)

While properties [i], [ii] and [iii] are a matter of definition, properties [iv], [v] and [vi] are dependent
on our underlying assumptions about predator psychology. We deliberate on this last point presently. In
order to do so, we may, for the time being (and without loss of generality in any of the claims that follow)
imagine that predators are (on average) used to encountering individuals resembling i, so that ri represents
some baseline level of appearances. In addition, we consider individual j that is more conspicuous than i

(i.e. 0 < ri < rj) such that |ri − rj | =: x∗, where x∗ is sufficiently near the origin (so that condition S being
Cl with l ≥ 2 holds - see later discussion). Incremental variations in ri and rj are described by quantities
r ∈ [ri − δr, ri + δr] and r̂ ∈ [rj − δr, rj + δr], where 0 < δr ≪ 1 and can be used to express the derivative
with respect to x at x∗ as

S′(x∗) = lim
x→x∗

S(x)− S(x∗)

x− x∗
= lim

r̂→rj

S(|ri − rj |)− S(|ri − r̂|)
|r̂ − rj |

. (2.2.12)

This quantity captures the rate at which the average predator perceives incremental variations in the visual
appearance of prey at some "distance" x∗ away from the baseline. A basic reading of condition [iv] is that as
this distance x away from the baseline increases the elevation of S does not increase. Namely that if i and j

are assigned some level of similarity S(x∗) then the associated level of S corresponding to a more conspicuous
individual playing r̂ ∈ (rj , rj+δr] is not larger. Indeed, condition [iv] guarantees that a first-order expansion
about x∗ in this direction6 S(|ri − rj |) + |r̂ − rj | × S′(x∗) ≤ S(x∗), as required. It also follows that small
differences from the baseline itself can be determined by evaluating the derivative S′(x) at x = 0. That is

S′(0) = lim
r→ri

S(|r − ri|)− S(|ri − ri|)
|r − ri|

. (2.2.13)

Possible violations of condition [v] would include cases with S′(0) > 0 or S′(0) = 0. The former is
immediately rejected as it violates requirement [i] - indeed S(|r − ri|) ≈ S(|ri − ri|) + |r − ri| × S′(0) > 1.
As for the possibility S′(0) = 0 - examples could include Gaussian forms on x ≥ 0 (discussed below) - we
remark the following. Since S is bounded from above and from below (condition [i]), it is non-increasing
within these bounds (condition [iv]) and approaches the lower bound for large enough x (condition [iii]) it
follows that j could be chosen so that S′(x∗) < 0, once more maintaining the requirement that S is Cl with
l ≥ 2 at this value. Without loss of generality, we assume that r ∈ (ri, ri + δr] and r̂ ∈ (rj , rj + δr] so that

6Expansion in the opposite direction can be achieved by setting r̂ ∈ [rj − δr, rj) and yields the reverse inequality, namely
S(|ri − rj |)− |r̂ − rj | × S′(x∗) ≥ S(x∗)
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from (2.2.12) it now follows that the change in elevation of S at such an x = x∗ can be approximated by
S(|r̂ − ri|) − S(|ri − rj |) ≈ |r̂ − rj | × S′(0) < 0. From (2.2.13) and the assumption that S′(0) = 0 it also
follows that the elevation of S does not change at x = 0 since S(|r− ri|)−S(|ri − ri|) ≈ |r− ri| ×S′(0) = 0.

We have demonstrated that S′(0) = 0 is the only potential alternative to [v] and that if this were to
hold it would imply that predators are (on average) more sensitive to variations in appearance when these
occur far from the baseline but not at the baseline itself. Such a conclusion seems to suggest that predators
can distinguish small changes in the appearance of prey types that they are not used to encountering but
not in the types that they are used to encountering. We might expect that such a result is less relevant
for keen-sighted avian predators feeding on Poison dart frogs, to which the model of Broom et al. (2006) is
adept (but not limited) to describing. Throughout this manuscript we insist on condition [v] and exclude
similarity functions that are flat-peaked at the origin from our discussions. The reader is encouraged to
consult Balogh and Leimar (2005) for an illustration of the use of flat-peaked generalisation curves - this is
done in the context of the evolution of mimicry - and a discussion of restrictions on the shapes that these
can assume.

We have discussed how the derivative in (2.2.12) describes the predator’s sensitivity to small changes in
the visual appearance of prey at some arbitrary distance away from the baseline. It follows that if the reverse
of condition [vi] were to hold (i.e. S′′(x) < 0) that predators would become increasingly sensitive to small
variations as this distance increased. This is not a consequence we wish to entertain and deems condition
[vi] necessary. Requiring [vi] is to say that predators gradually become less sensitive (or remain equally
sensitive) to these variations as the distance away from the baseline increases. In all worked examples we
consider in this manuscript, we make use of the function S(x) = max(1− vx, x) for which S′′(x) = 0 for all
x ≥ 07. With such a generalisation the predator is equally sensitive to small variations at all distances away
from the baseline (this also applies to individuals that are perceived as completely dissimilar with x > 1/v).
We argue that such a function is favourable for modelling purposes as it imposes no specific condition on
how predator sensitivity varies away from the baseline.

If we did not place this level of importance on condition [v] perhaps the natural choice for us to consider
would be a Gaussian similarity function of the form S(x) = exp(−x2/ε). Despite being flat-peaked at the
origin, allowing parameter ε > 0 to assume arbitrarily small values enables us to think of the predator as
being sensitive to small variations in appearance near (though not exactly at) the baseline. While for the
reasons mentioned this is an example worth considering (and we would if time resources were ample), it is
also worth noting that it violates condition [vi]. Indeed, S′′(x) < 0 on [0,

√
ε/2) so that on this interval

predator sensitivity drops rapidly (S′(x) ∼ 1/ε with ε ≪ 1) away from the baseline. This is is not an
effect we consider plausible and in addition, the function imposes specific requirements on the behaviour of
predator sensitivity away from the baseline. Indeed, S′(x) admits a local minimum at x =

√
ε/2 so that the

predator generalises at an (absolute) equal rate pairs of points that are at vastly different distances away
from the origin. For instance for ε = 0.01 points x ≈ 5.01 × 10−4 and x ≈ 2.492 × 10−1, differing by three
order of magnitude admit the same value of predator sensitivity).

The rate at which predators encounter prey occurs on average with some fixed rate σ. An encountered prey
may or may not be detected (see (2.2.1)) and it is assumed that the more conspicuous the encountered prey
is, the likelier it is for this to be detected (although most plausible functional forms for D(ri) should exhibit
some plateau indicating diminishing impact of ever-increasing conspicuousness on the rate of detection).

7As we establish the exclusion of x = 1/v from this claim (the derivative of S(x) = max(1− vx, 0) is not defined at x = 1/v)
is of limited importance for exploring evolutionary stability
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Symbol Meaning

r the conspicuousness of a prey individual

t the toxicity of a prey individual

N the size of the prey population

n the size of the predator population

D(r) the rate at which r-individuals are detected

L(r) the rate at which r-individuals are detected and recalled

S(ri, rj) the generalised (bi-variate) similarity between individuals with conspicuousness ri and rj

S(x) the uni-variate similarity function of individuals differing in appearance by x

H(t) the aversiveness of prey individuals with toxicity t

tc the critical level of toxicity such that H(tc) = 0

F (t) the fecundity of a prey individual with toxicity t

K(t) the probability that an attacked t-individual is captured

Q(I) the probability that a detected I-individual is attacked

I the level of aversive information of an individual

λ the prey background mortality rate (not due to predation)

a the average relatedness of prey individuals in the population

Table 2.1: The parameters and functions of the model.

Detected prey may or may not be attacked and for prey who are known to be aversive this is less likely -
see Q(Ii) and explanations of (2.2.2). Finally, attacked prey may or may not be captured and for better
defended prey this is less likely. We can determine the rate at which prey are captured by predators by
observing that for any individual i capture is conditional on attack, which is conditional on detection, which
is in turn conditional on encounter. We write

Rate that i is captured =σ × P(i is detected | i is encountered)

× P(i is attacked | i is detected)× P(i is captured | i is attacked)

=D(ri)K(ti)Q(Ii)

to describe the predator-induced mortality rate of i in terms of the functional forms of Table 2.1. For the
total mortality rate of i we write

Rate that i is killed = λ+D(ri)K(ti)Q(Ii). (2.2.14)

We should remark that since the mortality rate is naturally in units of inverse time, the reciprocal of the
total mortality rate (in units of time) describes the average life-cycle of i. Since the fecundity rate F (ti)

describes the number of offspring produced by i in units of inverse time it follows that

P (ri, ti) =
F (ti)

λ+D(ri)K(ti)Q(Ii)
(2.2.15)
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is a unitless quantity describing the number of offspring produced per life-cycle by individual i and is therefore
a measure of its fitness. We have reserved the letter P to identify the quantity on the RHS of (2.2.15) with
the payoff to i. The payoff (or fitness) is perhaps the most central of this manuscript and we will continue to
refer back to this throughout. The presentation of the model of Broom et al. (2006) has been kept general; in
the part that follows we will assume a specific structure for the prey population and focus on combinations
of the defensive and signalling trait that are evolutionarily stable.

Residents vs. mutants

In keeping with the focus of Broom et al. (2006) we consider a resident-mutant prey setup in order to study
the evolutionary stability of aposematic traits. That is, we imagine that the majority of prey play some
resident strategy (r1, t1), while a much smaller fraction ε≪1 play some mutant strategy (r, t). Mutations in
the genomes associated with aposematic phenotypes are rare and are typically manifest as small errors and
from the mathematical modelling perspective we assume that the mutant strategy is local to the resident
strategy. It is immediately obvious that the local vicinity of a resident strategy depends on where in the
strategy space the resident strategy is drawn from. We identify four sets (D0, D1, D2 and D3) as making up
the strategy space D such that

{ρ ≥ 0, τ ≥ 0}︸ ︷︷ ︸
D

= {(0, 0)}︸ ︷︷ ︸
D0

⊔{ρ > 0, τ = 0}︸ ︷︷ ︸
D1

⊔ (ρ = 0, τ > 0)︸ ︷︷ ︸
D2

⊔{ρ > 0, τ > 0}︸ ︷︷ ︸
D3

. (2.2.16)

Assuming that quantities δr and δt are positive and arbitrarily small (i.e. 0 < δr ≪ 1 and 0 < δt ≪ 1) we
distinguish the following cases of local neighbourhoods for the mutant strategy. We have that

if (r1, t1) ∈ D0 then (r, t) ∈ [0, δr]× [0, δt], (2.2.17)

if (r1, t1) ∈ D1 then (r, t) ∈ [r1 − δr, r1 + δr]× [0, δt], (2.2.18)

if (r1, t1) ∈ D2 then (r, t) ∈ [0, δr]× [t1 − δt, t1 + δt] and (2.2.19)

if (r1, t1) ∈ D3 then (r, t) ∈ [r1 − δr, r1 + δr]× [t1 − δt, t1 + δt]. (2.2.20)

As we discover in the section that follows, distinguishing between the types of neighbourhood as in (2.2.17)
through to (2.2.20) is key to determining the conditions for evolutionary stability that prevail in these (as it
happens, in the ε → 0 limit, these are distinct).

Before doing so, we establish a number of clarifications that describe the model of Broom et al. (2006) in
a more general setting. We now consider a certain focal individual, whose strategy (ρ, τ) we leave unspecified
by setting (ρ, τ) ∈ {(r, t), (r1, t1)}. To that, we introduce imperfect mixing to the prey population by
suggesting that in a small, finite number of localities there are relatives of the focal individual. We assume
that these relatives are perfect copies of the focal individual and form mutant colonies that are assumed to
be rare. Examples of colonies are seen in a number of different populations. In Cole (1946) the phenomenon
of "clumping of individuals into groups" is described such that each group may be relatively or entirely
independent of all similar groups and, therefore, that these distributional units may be randomly distributed" .
A more elaborate discussion of the spatial distribution of insect populations can be found in Taylor (1984).
Interestingly, examples of amphibian populations, whose chemical defences are in keeping with the description
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also form colonies. For instance, this is the case for Polypedates leucomystax frogs that are examined in Roy,
1997).

Imperfect mixing is introduced by imposing local clustering on an otherwise well-mixed population, which
simply means that the prey population is mostly well-mixed except for certain regions of the habitat where
this is not the case. In practice, we imagine that in almost all sites of the habitat there is a fixed proportion of
εN mutants and (1− ε)N residents except for a small number of these in which this proportion is perturbed
(either there are slightly more residents than usual or slightly more mutants than usual). The extent to
which the proportion is different in these localities is controlled by the local relatedness parameter a ∈ [0, 1],
so that when a = 0 there is no impact on the background mutant/resident proportion and we recover the
well-mixed regime (see (2.2.25) and (2.2.26)). If a = 1 this corresponds to a scenario in which the localities
are made up entirely of one or the other type. More generally, if a is non-zero we expect that there are
aN − 1 relatives making up the colony (excluding the focal individual) and (1− a)N non-relatives of which
(1−a)εN play the mutant strategy and (1−a)(1−ε)N play the resident strategy. Parameter a is interpreted
as a quantity that measures the concentration of relatives in the local area and implicit in this is that the
focal individual breeds true.

By introducing a suitable partitioning {1, ..., N − 1} = T0 ⊔ T1 ⊔ T2, with T0 = {1, ..., aN − 1}, T1 =

{aN, ..., (1− a)εN + aN − 1} and T2 = {(1− a)εN + aN, ..., N − 1} and labelling with Iε(ρ, τ ; r, t; r1, t1) the
perceived aversiveness of the focal individual it is clear that through (2.2.2) this amounts to

Iε(ρ, τ ; r, t ; r1, t1) =
1

n

∑
j∈T0

L(rj)H(tj)S(|ρ− rj |) +
1

n

∑
j∈T1

L(rj)H(tj)S(|ρ− rj |)

+
1

n

∑
j∈T2

L(rj)H(tj)S(|ρ− rj |)

=
1

n
(aN − 1)L(ρ)H(τ)S(|ρ− ρ|) + (1− a)ε

N

n
L(r)H(t)S(|ρ− r|)

+ (1− a)(1− ε)
N

n
L(r1)H(t1)S(|ρ− r1|). (2.2.21)

We emphasize that parameters ε and a are distinct and describe fundamentally different quantities. While
the former describes the background proportion of mutants over the entire prey habitat the latter describes
the proportion of focal relatives in a (rare) site in which clustering is present. Implicit in (2.2.21) is that
we are working is such a (rare) site. In addition we remark that if most localities can hold a large enough
number of prey (i.e. N ≫ 1) it is safe to assume for most reasonable values of the local relatedness a that
the inclusion or removal of the focal individual from within its group of relatives will not have a notable
impact on its perceived aversiveness so that we can take (aN − 1)/n ≈ aN/n on the RHS of (2.2.21). So
now the aversiveness of the focal individual is provided by the slightly simpler expression

Iε(ρ, τ ; r, t; r1, t1 ) ≈ a
N

n
L(ρ)H(τ) + (1− a)ε

N

n
L(r)H(t)S(|ρ− r|) + (1− a)(1− ε)

N

n
L(r1)H(t1)S(|ρ− r1|),

(2.2.22)
which we use to generate the aversiveness of the mutant and the resident as follows. If the focal individual
is a mutant this means that there are aN + (1 − a)εN mutants and (1 − a)(1 − ε)N residents present in
the mentioned locality. Setting (ρ, τ) = (r, t) into (2.2.22) gives us the mutant aversiveness (denoted in
non-calligraphy), through the focal expression as Iε(r, t; r1, t1) := Iε(ρ = r, τ = t; r, t; r1, t1). Because this
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quantity is determining for the probability of attack of the mutant type and features as an argument in Q -
see (2.2.15) - we tend to suppress its argument and use the shorthand Iε ↔ Iε(r, t; r1, t1). This quantity is
given by

Iε = a
N

n
L(r)H(t) + (1− a)ε

N

n
L(r)H(t) + (1− a)(1− ε)

N

n
L(r1)H(t1)S(|r − r1|). (2.2.23)

Similarly, if the focal individual is a resident this means that there are aN + (1 − a)(1 − ε)N residents
and (1 − a)εN mutant prey in the locality. The resident aversiveness (denoted in non-calligraphy) is given
through the focal aversiveness in (2.2.22) as Iε1(r1, t1; r, t) := Iε(ρ = r1, τ = t1; r1, t1; r, t). As with the case
of the mutant, we tend to suppress the arguments of the resident aversiveness to write Iε1(r1, t1; r, t) ↔ Iε1 .
This quantity reads

Iε1 = a
N

n
L(r1)H(t1) + (1− a)ε

N

n
L(r)H(t)S(|r − r1|) + (1− a)(1− ε)

N

n
L(r1)H(t1). (2.2.24)

It was mentioned previously that the measures of mutant and resident aversiveness (as given through
(2.2.23) and (2.2.24)) are evaluated in sites on which clustering is present. Imperfect mixing is realised by
imposing rare clustering in an otherwise well-mixed population of prey. The associated levels of mutant
and resident aversivess evaluated as averages would correspond to an effectively well-mixed population. In
practice, this is recovered by considering the limit in which the local relatedness parameter tends to zero
(a → 0). Taking a → 0 by definition amounts to considering a rare site in which the background proportion
of mutants and residents is perturbed, but the extent to which it is is negligible (the focal individual is
in among too few relatives). This picture is equivalent to perfect mixing, which is turn representative of
the average predator’s experience. Their perceived aversiveness is evaluated by taking the a → 0 limit of
expressions (2.2.23) and (2.2.24), which amounts to

lim
a→0

Iε = ε
N

n
L(r)H(t) + (1− ε)

N

n
L(r1)H(t1)S(|r − r1|) (2.2.25)

and
lim
a→0

Iε1 = (1− ε)
N

n
L(r1)H(t1) + ε

N

n
L(r)H(t)S(|r − r1|). (2.2.26)

So far we have discussed the significance of parameters a and ε in the context of the habitat structure
and assumed that the mutant traits are fixed and given by (r, t). For consistency, we mention that if there
is no mutation present, i.e. if (r, t) = (r1, t1) that we recover the scenario we would expect. Indeed, setting
(ρ, τ) = (r, t) = (r1, t1) into (2.2.22) gives

Iε(ρ = r1, τ = t1; r = r1, t = t1; r1, t1) =
N − 1

n
L(r1)H(t1) ≈

N

n
L(r1)H(t1), (2.2.27)

which corresponds to the aversiveness of prey as perceived by predators visiting a habitat made up entirely
of residents.

In closing, we introduce the notion of payoff. From expressions (2.2.23) and (2.2.24) it is clear that
specifying the mutant and resident strategies together with their relative abundances specifies their perceived
aversiveness; in light of (2.2.15) this also specifies their fitness. The fitness of the mutant reads

P ε(r, t; r1, t1) =
F (t)

λ+D(r)K(t)Q(Iε)
, (2.2.28)
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while the fitness of the resident reads

P ε
1 (r1, t1; r1, t1) =

F (t1)

λ+K(t1)D(r1)Q(Iε1)
. (2.2.29)

Since both Iε and Iε1 as given in (2.2.23) and (2.2.24) evaluated with (r, t) = (r1, t1) correspond to the
common expression (2.2.27) it follows that P (r = r1, t = t1; r1, t1) = P1(r1, t1; r1, t1), which is consistent
with the intuition that the mutant fitness matches the resident fitness precisely when the mutant traits match
the resident value.

So far in this section we have re-introduced the model of Broom et al. (2006) by incorporating into this
the amendments that are present in Scaramangas and Broom (2022). Indeed, in this section can be found
the more up-to-date (and accurate) discussions of Scaramangas and Broom (2022) relating to the territorial-
division of the habitat, the concept of local relatedness in the more generalised setting of mutation that
includes a finite proportion of mutants ε. In this section we have also distinguished between the bi-variate
similarity function and the uni-variate function through (2.2.5), which are found under one common (and
slightly misleading) symbol in Broom et al. (2006). In the section that follows we demonstrate how the
conditions for local evolutionary stability provided in Broom et al. (2006) correspond to the ε → 0 regime
introduced in this section. The joint consideration of residents with mutants in negligible proportions best
describes the initial evolution of mutation and is the correct setting in which to study the evolutionary
stability of aposematic traits. Indeed, if the residents can withstand invasion against mutants that have
strong presence on the local level (controlled by a) but still an insignificant presence overall (ε → 0) then
this is sufficient to guarantee the evolutionary stability of the residents.

2.3 The evolutionary stability of aposematism

It is of particular interest to consider the resident-mutant representation (introduced in the latter part of the
previous section) in the limit as ε → 0, in which the overall proportion of mutants in the prey population
is effectively zero. At first sight it may seem like a static model that considers a prey population in which
everyone plays the same strategy is of no interest. Indeed, the contrary is true. It is possible to consider
the limit in which ε → 0 and still maintain that mutation is present. From the mathematical modelling
perspective, this is achieved in two ways. First, by allowing potentially large clusters of focal relatives (the
focal individual may be a mutant - see earlier discussion) to be present scarcely in among the habitat patches
in a way that their contribution to the population inhabiting the entire habitat structure is negligible. Second,
by maintaining that the habitat structure is territorially-divided among predators so that each site/patch is
inhabited by N prey and visited by n predators who visit that patch only.

In the ε → 0 limit predators visiting a site containing a cluster of mutants will have a different level
of perceived aversiveness compared with the average predator who visits sites consisting only of residents.
To be specific, the sign and magnitude of this difference will depend on the resident strategy being played,
the mutant strategy being played and on the abundance of mutants in the given site. It is this territorial
division of the habitat among predators that allows us to account for differences in the perceived aversiveness
of mutants, which in turn results in differences in their associated levels of fitness. Measurable differences in
fitness between mutant (evaluated locally) and resident (evaluated over the entire habitat) suggest that it
is straightforward to determine when a resident strategy can be invaded by a mutant strategy. We provide
detailed derivations of the conditions for such a resident strategy to be locally uninvadable by mutants
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playing a similar strategy. A large portion of the discussion is not considered in Broom et al. (2006), and
therefore in addition to this the reader is strongly encouraged to consider Scaramangas and Broom (2022)
on which much of the presentation of this chapter is based.

Statement and derivation of conditions for local ESS

By construction, in the ε → 0 limit almost all sites consist entirely of residents playing (r1, t1). If the focal
individual plays a (local) mutant strategy (r, t) then in a site that contains a cluster of focal relatives we
have precisely aN mutants and (1 − a)N residents. We arrive at expressions for their associated levels of
aversiveness by considering the ε → 0 limit of the more general expressions involving ε > 0 discussed in the
previous section. Indeed, taking the limit as ε → 0 of Iε in (2.2.23) and relabelling its limiting value as I

(i.e. Iε → I as ε → 0) we have

I = a
N

n
L(r)H(t) + (1− a)

N

n
L(r1)H(t1)S(|r − r1|), (2.3.1)

which confirms our intuition that there are aN mutants contributing the first term and (1 − a)N residents
contributing the second term. Similarly, taking the limit as ε → 0 of (2.2.24) and using the shorthand
I1 to denote its limiting value (i.e. Iε1 → I1 as ε → 0) we recover the simpler expression for the resident
aversiveness

I1 =
N

n
L(r1)H(t1). (2.3.2)

The payoffs associated with the mutant and resident are evaluated in much the same way. The mutant payoff
is given by

P (r, t; r1, t1) =
F (t)

λ+D(r)K(t)Q(I)
, (2.3.3)

where I is given as in (2.3.1), while the resident payoff is given by

P (r1, t1; r1, t1) =
F (t1)

λ+D(r1)K(t1)Q(I1)
(2.3.4)

with the resident information I1 given given as in (2.3.2). An important assumption of the model is that
functions F,D,K,Q,L and H are assumed to be Cl with l ≥ 2 and that the function S is Cl with l ≥ 2

sufficiently near the origin (for ESS analysis this is what matters since mutations are taken to be local such
that |r − r1| can be taken to be small). This, together with the fact that I in (2.3.1) depends on quantity
|r − r1| suggests that the mutant fitness P (r, t; r1, t1) in (2.3.3) depends is almost everywhere Cl with l ≥ 2

except at r = r1 where its (partial) derivative with respect to r is not defined. It should be remarked that
while quantity |r − r1| is not differentiable with respect to r at r = r1 it is continuous at that value so
that by extension P (r, t; r1, t1) is continuous at r = r1. We remark that while (2.3.1) is evaluated on some
local area of the habitat, which contains a cluster of mutants, expression (2.3.2) represents the average level
of prey aversiveness as perceived by predators who mostly visit sites consisting entirely of residents. This
suggests that while the mutants are present in local areas of the habitat they threaten to invade the resident
on the global level. This brings us to the central theme of this section, which is the evolutionary stability of
aposematism.

In this manuscript we discuss evolutionarily stability in the spirit in which it had originally been intro-
duced in Maynard Smith and Price, 1973 (see also Maynard Smith, 1982). That is, a local ESS is used to
describe a strategy that is resistant to invasion by alternative strategies and in particular, one which when
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common could not be invaded by an initially rare alternative strategy.

Definition 2.3.1. A resident strategy (rESS , tESS) is (locally) evolutionarily stable - local ESS - if it is
best-response against itself and in particular, if all mutant strategies (r, t) receive lower fitness (P ) when
interacting with the ESS strategy than does the ESS strategy when interacting with itself. We distinguish the
following cases for local ESS

[i] (0, 0) ∈ D0 is a local ESS if P (0, 0; 0, 0) > P (r, t; 0, 0)

for all (r, t) ∈ [0, δr]× [0, δt]\(0, 0);

[ii] (rESS , 0) ∈ D1 is a local ESS if P (rESS , 0; rESS , 0) > P (r, t; rESS , 0)

for all (r, t) ∈ [rESS − δr, rESS + δr]× [0, δt]\(rESS , 0);

[iii] (0, tESS) ∈ D2 is a local ESS if P (0, tESS ; 0, tESS) > P (r, t; 0, tESS)

for all (r, t) ∈ [0, δr]× [tESS − δt, tESS + δt]\(0, tESS);

[iv] (rESS , tESS) ∈ D3 is a local ESS if P (rESS , tESS ; rESS , tESS) > P (r, t; rESS , tESS)

for all (r, t) ∈ [rESS − δr, rESS + δr]× [tESS − δt, tESS + δt]\(rESS , tESS),

where it is assumed that quantities δr and δt are positive and arbitrarily small (i.e. 0 < δr ≪ 1 and
0 < δt ≪ 1).

Recent progress in evolutionary game theory has given rise to a plethora of terms used to describe a
rather limited number of properties relating to evolutionary stability. Among these, we identify resistance
to invasion (ESS) and convergence stability as fundamentally separate and refer the reader to Apaloo et
al. (2009) and Waxman and Gavrilets (2005) for detailed discussions about the attributes of evolutionary
stability and the array of terminologies used to describe these. A strategy is said to be convergence stable if it
can be approached through a sequence of selectively advantageous mutations and as it happens, resistance to
invasion is not sufficient for characterising a local ESS as a likely outcome of evolution by natural selection.
Indeed, an ESS strategy might not be favoured if the current population is using a nearby strategy that is
not convergence stable.

For cases where there is a continuum of strategies, Eshel and Motro (1981) define the notion of a contin-
uously stable strategy (CSS) as an ESS with the additional property that whenever the entire population has
a strategy which is close enough to it there will be a selective advantage to some individual strategies which
are closer to the CSS. While we do not deal with CSS’s in this manuscript, we mention this definition here,
as it forms the basis for the distinction between resistance to invasion (ESS) and convergence stability. In
fact, a CSS is an ESS that is convergence stable. Subsequent works by Eshel (1983, 1996) and particularly
the work by Vincent et al. (1993) have helped incorporate the notion of convergence stability into the fabric
of adaptive dynamics, which explores how a population’s mean strategy evolves in time through it’s adaptive
landscape. In Abrams et al. (1993) it is showcased that in absence of ESS convergence stability can drive a
population to a point of minimum fitness in the adaptive landscape, which prompted subsequent research in
adaptive dynamics (see Metz et al., 1995).

Instances in which a mutant strategy does equally well against the resident strategy are considered non-
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generic and are omitted from Definition 2.3.1 but discussed subsequent to the proof of Theorem 2.3.2. The
focus of this manuscript is to provide a static approach to the evolutionary stability of aposematism by
considering prey populations that are monomorphic (although see revised definitions in chapters 5 and 6).
Such monomorphic populations are considered in the adaptive dynamics framework, in which Definition
2.3.1 would best describe a non-invasible evolutionarily singular strategy (ess). We should remark that in
the context of adaptive dynamics a non-invasible ess as described in Definition 2.3.1 is related to but not
identical to the notion of an ESS, since a strategy that is non-invasible (by neighbouring strategies) may still
be invaded by a distant mutant - see chapter 13 of Broom and Rychtár (2013). We should also mention that
because distant mutants of the type discussed are not considered in this manuscript (mutations are assumed
to be local) we can think of uninvasible ess’s in this context as identical to local ESSs.

It is immediately clear from Definition 2.3.1 that (in the ε → 0 limit) if the mutant fitness admits a
strict local maximum at the resident value (r, t) = (rESS , tESS) then (rESS , tESS) is a local ESS. It is worth
mentioning that if the local maximum is not strict it may include nearby strategies that do equally well
against the resident strategy and could be considered non-generic. The reader is directed to chapter 7 of
Vincent and Brown (2005) for a more systematic discussion of the ESS maximum-principle. Throughout the
remainder of this manuscript we rely on a theorem (Theorem 2.3.2) that provides a set of rules for determining
whether a resident strategy is a local ESS. We make a number of clarifications about the mutant fitness before
proceeding to state and prove this theorem.

The mutant payoff in (2.3.3) is a scalar function of four variables since it depends on the strategy played
by the mutant and the strategy played by the resident. In addition to this it is important to remark that
on account of the absolute value present in the expression for the mutant aversiveness (2.3.1) the mutant
payoff is not differentiable with respect to the first mutant trait when r = r1. Indeed, after suitable positive
scaling (see exact derivation in (2.3.57) ) the r-derivative of the mutant payoff ∂rP (r, t; r1, t1) one obtains

D′(r)

D(r)
− a

N

n
L′(r)H(t)

Q′(I)

Q(I)
− (1− a)I1

Q′(I)

Q(I)
S′(|r − r1|)

(
− 1(−∞,r1) + 1(r1,+∞)

)
, (2.3.5)

which is not defined at r = r1 unless S′(0) = 0 - a possibility we exclude (see (2.2.5)). An important
consequence is that the conditions for maximising the mutant fitness at the resident value (at ESS) cannot
be deduced using the standard linearisation techniques from vector calculus. Notice that the mutant payoff
exhibits this issue of differentiability only with respect to the first mutant trait (r) while along the second
mutant trait (t) this is not the case particularly because the functional forms in Table 2.1 (except for the
mentioned bi-variate similarity S(ri, rj)) are assumed to be Cl with l ≥ 2.

As is clear from Definition 2.3.1 the precise conditions for a local maximum depend on where on the
boundary-inclusive, right-upper-hand plane {(ρ, τ) : ρ ≥ 0, τ ≥ 0} the resident strategy is evaluated. We
distinguish between the origin D0 = {(0, 0)}, the boundaries D1 = {ρ > 0, τ = 0}, D2 = {ρ = 0, τ > 0}
and the interior D3 = {ρ > 0, τ > 0}. It is shown in Broom et al. (2006) that the non-aversive subset of
the interior {ρ > 0, τ ≤ tc} ⊂ D3 does not contain local ESSs and we return to this point in due course.
The conditions for local ESS are provided in the theorem below, which is central to the remainder of this
manuscript.

For clarity we provide limit definitions for the derivatives that are considered in Theorem 2.3.2 below. Let
h be positive and arbitrarily small quantity (i.e. 0 < h ≪ 1). We emphasize that ∂tP (r, t; r1, t1)|r=r1,t=t1

describes the partial derivative of the mutant payoff with respect to the mutant trait t evaluated at the
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resident value (r, t) = (r1, t1) with remaining resident traits r1 and t1 held fixed. In particular, we write

∂tP (r, t; r1, t1)|r=r1,t=t1 := lim
h→0

P (r1, t1 + h; r1, t1)− P (r1, t1; r1, t1)

h
(2.3.6)

and define higher order derivatives in a similar way. If the resident value is drawn from the boundary
D0 ⊔ D1 = {ρ ≥ 0, τ = 0} mutations in t can only be positive so that quantity

→
∂ tP (r, t; r1, 0)|r=r1,t=0

describes the rate at which the mutant fitness changes in response to changes in the mutant trait for toxicity.
We have

→
∂ tP (r, t; r1, 0)|r=r1,t=0 = lim

h→0

P (r1, h; r1, 0)− P (r1, 0; r1, 0)

h
. (2.3.7)

It is is clear from (2.3.5) that precisely at r = r1 the partial derivative of the mutant payoff with respect to
mutant conspicuousness is not defined. Exactly at r = r1 we use the left and right partial derivatives used
above, which are defined through

←
∂ rP (r, t; r1, t1)|r=r1,t=t1 := lim

h→0

P (r1 − h, t1; r1, t1)− P (r1, t1; r1, t1)

h
(2.3.8)

and
→
∂ rP (r, t; r1, t1)|r=r1,t=t1 := lim

h→0

P (r1 + h, t1; r1, t1)− P (r1, t1; r1, t1)

h
. (2.3.9)

We remark that (2.3.8) describes the rate with which the mutant fitness changes in response to a reduction
in the level of conspicuousness. The change in fitness associated with a negative step −h along r is given
by P (r1 − h, t1; r1, t1)− P (r1, t1; r1, t1) - i.e. the value after mutation minus the resident value - and can be

approximated (to first-order) by −h×
←
∂ rP (r, t; r1, t1)|r=r1,t=t1 . For interpreting simulations in chapter 4 we

find that it is often more meaningful to use −
←
∂ rP (r, t; r1, t1)|r=r1,t=t1 because this accounts for the sign of

the mutation step (see also (4.1.15), (4.1.16) and (4.1.19) for the explicit forms used in the simulation some
40 pages ahead). In the theorem that follows we discuss how evaluating derivatives of the mutant fitness at
the resident value can be used for determining whether that strategy is a (local) ESS.

34



Theorem 2.3.2. Assume that the mutant fitness P (r, t; r1, t1) is given through (2.3.3) such that it is almost
everywhere Cl with l ≥ 2 in the local vicinity of the resident strategy except at r = r1 where it is not r-
differentiable, but is continuous at that value. Then the following conditions hold for determining when a
resident strategy is locally evolutionarily stable.

[i] If for (0, 0) ∈ D0

→
∂ tP (r, t; 0, 0)|r=0,t=0 < 0, and (2.3.10)

→
∂ rP (r, t; 0, 0)|r=0,t=0 < 0 (2.3.11)

then (0, 0) is a local ESS.

[ii] If for (r1, 0) ∈ D1

→
∂ tP (r, t; r1, 0)|r=r1,t=0 < 0, (2.3.12)

←
∂ rP (r, t; r1, 0)|r=r1,t=0 > 0 and (2.3.13)

→
∂ rP (r, t; r1, 0)|r=r1,t=0 < 0 (2.3.14)

then (r1, 0) is a local ESS and is denoted (rESS , 0).

[iii] If for (0, t1) ∈ D2

∂tP (r, t; 0, t1)|r=0,t=t1 = 0, (2.3.15)

∂ttP (r, t; 0, t1)|r=0,t=t1 < 0 and (2.3.16)

→
∂ rP (r, t; 0, t1)|r=0,t=t1 < 0, (2.3.17)

then (0, t1) is a local ESS and is denoted (0, tESS)

[iv] If for (r1, t1) ∈ D3

∂tP (r, t; r1, t1)|r=r1,t=t1 = 0, (2.3.18)

∂ttP (r, t; r1, t1)|r=r1,t=t1 < 0, (2.3.19)

←
∂ rP (r, t; r1, t1)|r=r1,t=t1 > 0 and (2.3.20)

→
∂ rP (r, t; r1, t1)|r=r1,t=t1 < 0, (2.3.21)

then (r1, t1) is a local ESS and is denoted (rESS , tESS).

Proof. We show the theorem above by demonstrating in each of cases [i] through [iv] that the mentioned
conditions lead to a local ESS (in the sense of Definition 2.3.1). More specifically, we show that the marginal
difference between the mutant fitness and the resident fitness is strictly negative (although see subsequent
discussions about resident strategies that do not satisfy the conditions of the theorem).
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We begin by considering case [i]. In order to demonstrate that the mutant fitness P (r, t; 0, 0) is lower
than the resident fitness P (0, 0; 0, 0) for any mutant value (r, t) ∈ [0, δr]× [0, δt] \ (0, 0) we express the mutant
traits in terms of spherical coordinates x and ϕ, where we let x denote the size of the mutation and ϕ denote
the angle between the mutant strategy and the horizontal t = 0. Unless ϕ = π/2 - a situation we consider
separately - the following transformations hold

(r, t) → (x, ϕ) : x =
√

r2 + t2 and ϕ = arctan
t

r
, (2.3.22)

and
(x, ϕ) → (r, t) : r = x cosϕ and t = x sinϕ. (2.3.23)

We can make use of (2.3.23) in order to express the mutant fitness P in terms of x and ϕ so that

P : R≥0 ×
[
0,

π

2

]
→ R≥0 s.t. P(x, ϕ) := P (r = x cosϕ, t = x sinϕ; 0, 0). (2.3.24)

In order to show that the mutant fitness is lower than the resident fitness it remains for us to show that

P(x, ϕ)− P(0, ϕ) < 0 for all ϕ ∈ [0, π/2], (2.3.25)

which we show by considering cases ϕ = 0, ϕ ∈ (0, π/2) and ϕ = π/2 separately.
If ϕ = 0 it follows that x = r so that mutation is along the r-direction and where

P(x, ϕ = 0)− P(0, ϕ = 0) = P (r, 0; 0, 0)− P (0, 0; 0, 0) ≈ r ×
→
∂ rP (r, t; 0, 0)|r=0,t=0︸ ︷︷ ︸

<0

< 0. (2.3.26)

If ϕ ∈ (0, π/2) the incremental difference between the mutant and the resident fitness reads

P(x, ϕ)− P(0, ϕ) ≈ x∂xP(x, ϕ)|x=0, ϕ∈(0,π/2)

= x∂xP (r = x cosϕ, t = x sinϕ; 0, 0)|x=0, ϕ∈(0,π/2)

= x cosϕ︸ ︷︷ ︸
>0

×
→
∂ rP (r, t; 0, 0)|r=0,t=0︸ ︷︷ ︸

<0

+x sinϕ︸ ︷︷ ︸
>0

×
→
∂ tP (r, t; 0, 0)|r=0,t=0︸ ︷︷ ︸

<0

< 0. (2.3.27)

Finally, if ϕ = π/2 mutation is along the t-direction so that

P(x, ϕ = π/2)− P(0, ϕ = π/2) = P (0, t; 0, 0)− P (0, 0; 0, 0) ≈ t×
→
∂ tP (r, t; 0, 0)|r=0,t=0︸ ︷︷ ︸

<0

< 0. (2.3.28)

We conclude that we have shown case [i] by showing that (2.3.25) holds.
Similar to case [i] we show [ii] by showing that

P(x, ϕ)− P(0, ϕ) < 0 for all ϕ ∈ [0, π], (2.3.29)

where now the mutant strategy is centred at the resident value (rESS , 0) ∈ D1 so that unless mutation is solely
along t (this is case ϕ = π/2, which we consider separately and without making use of the transformations
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below) we have

(r, t) → (x, ϕ) : x =
√

(r − rESS)2 + t2 and ϕ = arctan
t

r − rESS
(2.3.30)

and
(x, ϕ) → (r, t) : r = rESS + x cosϕ and t = x sinϕ. (2.3.31)

We show inequality (2.3.29) by showing it holds for (the five) cases ϕ = 0, ϕ ∈ (0, π/2), ϕ = π/2, ϕ ∈ (π/2, π)

and ϕ = π separately.
If ϕ = 0 it follows that x = r− rESS > 0 so that the difference between mutant and resident fitness reads

P(x, ϕ = 0)− P(0, ϕ = 0) = P (r, 0; rESS , 0)− P (rESS , 0; rESS , 0)

≈ (r − rESS)︸ ︷︷ ︸
>0

×
→
∂ rP (r, t; rESS , 0)|r=rESS ,t=0︸ ︷︷ ︸

<0

< 0. (2.3.32)

If ϕ ∈ (0, π/2) it follows that

P(x, ϕ)− P(0, ϕ) ≈x∂xP(x, ϕ)|x=0, ϕ∈(0,π/2)

=x∂xP (r = rESS + x cosϕ, t = x sinϕ; rESS , 0)

=x cosϕ︸ ︷︷ ︸
>0

×
→
∂ rP (r, t; rESS , 0)|r=rESS ,t=0︸ ︷︷ ︸

<0

+x sinϕ︸ ︷︷ ︸
>0

×
→
∂ tP (r, t; rESS , 0)|r=rESS ,t=0︸ ︷︷ ︸

<0

< 0.

(2.3.33)

If ϕ = π/2 mutation is along the t-direction and we have

P(x, ϕ = π/2)− P(0, ϕ = π/2) = P (rESS , t; rESS , 0)− P (rESS , 0; rESS , 0)

≈ t×
→
∂ tP (r, t; rESS , 0)|r=rESS ,t=0︸ ︷︷ ︸

<0

< 0. (2.3.34)

Furthermore, if ϕ ∈ (π/2, π) we have

P(x, ϕ)− P(0, ϕ) ≈x∂xP(x, ϕ)|x=0, ϕ∈(π/2,π)

=x∂xP (r = rESS + x cosϕ, t = x sinϕ; rESS , 0)

=x cosϕ︸ ︷︷ ︸
<0

×
←
∂ rP (r, t; rESS , 0)|r=rESS ,t=0︸ ︷︷ ︸

>0

+

+x sinϕ︸ ︷︷ ︸
>0

×
→
∂ tP (r, t; rESS , 0)|r=rESS ,t=0︸ ︷︷ ︸

<0

< 0. (2.3.35)

Finally, if ϕ = π it follows that x = r − rESS < 0 and therefore that

P (r, 0; rESS , 0)− P (rESS , 0; rESS , 0) ≈ (r − rESS)︸ ︷︷ ︸
<0

×
←
∂ rP (r, t; rESS , 0)|r=rESS ,t=0︸ ︷︷ ︸

>0

< 0 (2.3.36)

and this concludes case [ii].
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Much like in cases [i] and [ii] we show case [iii] by showing that

P(x, ϕ)− P(x = 0, ϕ) for all ϕ ∈ [0, π/2] ⊔ [3π/2, 2π), (2.3.37)

where the transformations now read

(r, t) → (x, ϕ) : x =
√

r2 + (t− tESS)2 and ϕ = arctan
t− tESS

r
(2.3.38)

and
(x, ϕ) → (r, t) : r = x cosϕ and t = tESS + x sinϕ. (2.3.39)

From (2.3.38) it is clear that the transformation should not be utilised when mutation is along the t-direction
so that cases ϕ = π/2 and ϕ = 3π/2 will require separate attention. In order to show (2.3.37) we must show
that the inequality holds for (the four) cases ϕ = 0, ϕ ∈ (0, π/2), ϕ = π/2, 3π/2 and ϕ ∈ (3π/2, 2π)

individually.
If ϕ = 0 we have

P(x, ϕ = 0)− P(0, ϕ = 0) = P (r, tESS ; 0, tESS)− P (0, tESS ; 0, tESS)

≈ r ×
→
∂ rP (r, t; 0, tESS)|r=0,t=tESS︸ ︷︷ ︸

<0

< 0. (2.3.40)

If ϕ ∈ (0, π/2) we have

P(x, ϕ)− P(0, ϕ) ≈x∂xP(x, ϕ)|x=0, ϕ∈(0,π/2)

=x∂xP (r = x cosϕ; t = tESS + x sinϕ; 0, tESS)

=x cosϕ︸ ︷︷ ︸
>0

×
→
∂ rP (r, t; 0, tESS)|r=0,t=tESS︸ ︷︷ ︸

<0

+

+ x sinϕ× ∂tP (r, t; 0, tESS)|r=0,t=tESS︸ ︷︷ ︸
=0

< 0 (2.3.41)

If ϕ = π/2 or ϕ = 3π/2 we have that x = t− tESS so that mutation is along the t-direction and thus

P(x, ϕ)− P(0, ϕ) =P (0, t; 0, tESS)− P (0, tESS ; 0, tESS)

≈(t− tESS)× ∂tP (r, t; 0, tESS)|r=0,t=tESS︸ ︷︷ ︸
=0

+

+
1

2
(t− tESS)

2︸ ︷︷ ︸
>0

× ∂ttP (r, t; 0, tESS)|r=0,t=tESS︸ ︷︷ ︸
<0

< 0. (2.3.42)
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Finally, if ϕ ∈ (3π/2, 2π) we have

P(x, ϕ)− P(0, ϕ) ≈x∂xP(x, ϕ)|x=0, ϕ∈(3π/2,2π)

=x∂xP (r = x cosϕ, t = tESS + x sinϕ; 0, tESS)|x=0, ϕ∈(3π/2,2π)

=x cosϕ︸ ︷︷ ︸
>0

×
→
∂ rP (r, t; 0, tESS)|r=0,t=tESS︸ ︷︷ ︸

<0

+x sinϕ× ∂tP (r, t; 0, tESS)|r=0,t=tESS︸ ︷︷ ︸
=0

< 0.

(2.3.43)

We can now safely conclude that statement [iii] of Theorem 2.3.2 holds true by means of inequality (2.3.37).
As with all previous cases, in case [iv] we show that the mutant fitness is lower than the resident fitness

by showing that
P(x, ϕ)− P(0, ϕ) < 0 for all ϕ ∈ [0, 2π), (2.3.44)

where now the mutant traits are defined in the local vicinity of the resident trait (rESS , tESS) so that
transformation to spherical coordinates reads

(x, ϕ) → (r, t) : x =
√

(r − rESS)2 + (t− tESS)2 and ϕ = arctan

(
t− tESS

r − rESS

)
(2.3.45)

and
(r, t) → (x, ϕ) : r = rESS + x cosϕ and t = tESS + x sinϕ. (2.3.46)

We show (2.3.44) by showing that the inequality holds for (the seven) cases ϕ = 0, ϕ ∈ (0, π/2), ϕ = π/2, 3π/2,
ϕ ∈ (π/2, π), ϕ = π, ϕ ∈ (π, 3π/2) and ϕ ∈ (3π/2, 2π) separately.

If ϕ = 0 mutation is solely along the r-direction so that

P(x, ϕ = 0)− P(0, ϕ = 0) = P (r, tESS ; rESS , tESS)− P (rESS , tESS ; rESS , tESS)

≈ (r − rESS)︸ ︷︷ ︸
>0

×
→
∂ rP (r, t; rESS , tESS)|r=rESS ,t=tESS︸ ︷︷ ︸

<0

< 0. (2.3.47)

If ϕ ∈ (0, π/2) the difference between the mutant and the resident fitness reads

P(x, ϕ)− P(0, ϕ) ≈x∂xP(x, ϕ)|x=0, ϕ∈(0,π/2)

=x∂xP (r = rESS + x cosϕ, t = tESS + x sinϕ; rESS , tESS)

=x cosϕ︸ ︷︷ ︸
>0

×
→
∂ rP (r, t; rESS , tESS)|r=rESS ,t=tESS︸ ︷︷ ︸

<0

+

+ x sinϕ︸ ︷︷ ︸
>0

× ∂tP (r, t; rESS , tESS)|r=rESS ,t=tESS︸ ︷︷ ︸
=0

< 0. (2.3.48)
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If ϕ = π/2 or ϕ = 3π/2 mutation is along the t-direction so that x = t− tESS and thus

P(x, ϕ)− P(0, ϕ) =P (rESS , t; rESS , tESS)− P (rESS , tESS ; rESS , tESS)

≈(t− tESS)× ∂tP (r, t; rESS , tESS)|r=rESS ,t=tESS︸ ︷︷ ︸
=0

+
1

2
(t− tESS)

2 × ∂ttP (r, t; rESS , tESS)|r=rESS ,t=tESS︸ ︷︷ ︸
<0

< 0. (2.3.49)

If ϕ ∈ (π/2, π) we have

P(x, ϕ)− P(0, ϕ) ≈x∂xP(x, ϕ)|x=0, ϕ∈(π/2,π)

=x∂xP (r = rESS + x cosϕ, t = tESS + x sinϕ; rESS , tESS)|x=0, ϕ∈(π/2,π)

=x cosϕ︸ ︷︷ ︸
<0

×
←
∂ rP (r, t; rESS , tESS)|r=rESS ,t=tESS︸ ︷︷ ︸

>0

+

+ x sinϕ︸ ︷︷ ︸
>0

× ∂tP (r, t; rESS , tESS)|r=rESS ,t=tESS︸ ︷︷ ︸
=0

< 0. (2.3.50)

If ϕ = π mutation is along r so that x = r − rESS < 0 and thus

P(x, ϕ = π)− P(0, ϕ = π) = P (r, tESS ; rESS , tESS)− P (rESS , tESS ; rESS , tESS)

≈ (r − rESS)︸ ︷︷ ︸
<0

×
←
∂ rP (r, t; rESS , tESS)|r=rESS ,t=tESS︸ ︷︷ ︸

>0

< 0. (2.3.51)

If ϕ ∈ (π, 3π/2) we have

P(x, ϕ)− P(0, ϕ) ≈x∂xP(x, ϕ)|x=0, ϕ∈(π,3π/2)

=x∂xP (r = rESS + x cosϕ, t = tESS + x sinϕ; rESS , tESS)|x=0, ϕ∈(π,3π/2)

=x cosϕ︸ ︷︷ ︸
<0

×
←
∂ rP (r, t; rESS , tESS)|r=rESS ,t=tESS︸ ︷︷ ︸

>0

+

+ x sinϕ︸ ︷︷ ︸
<0

× ∂tP (r, t; rESS , tESS)|r=rESS ,t=tESS︸ ︷︷ ︸
=0

< 0. (2.3.52)
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Finally, we show that mutations with ϕ ∈ (3π/2, 2π) lead to lower fitness since

P(x, ϕ)− P(0, ϕ) ≈x∂xP(x, ϕ)|x=0, ϕ∈(3π/2,2π)

=x∂xP (r = rESS + x cosϕ, t = tESS + x sinϕ; rESS , tESS)|x=0, ϕ∈(3π/2,2π)

=x cosϕ︸ ︷︷ ︸
>0

×
→
∂ rP (r, t; rESS , tESS)|r=rESS ,t=tESS︸ ︷︷ ︸

<0

+ x sinϕ︸ ︷︷ ︸
<0

× ∂tP (r, t; rESS , tESS)|r=rESS ,t=tESS︸ ︷︷ ︸
=0

< 0. (2.3.53)

We conclude that we have shown case [iv] of Theorem 2.3.2 by means of (2.3.44) and through a breakdown
of the (seven) cases therein. This concludes the proof of all cases [i] through [iv] and of Theorem 2.3.2.

We emphasise that Theorem 2.3.2 outlines a direct procedure for determining when a strategy is a local
ESS but is not exhaustive. That is, there are possible local ESSs that would not be discovered through
Theorem 2.3.2, as well as a number of cases which we classify as non-generic. All of these we discuss
presently and by means of example. Let us consider a resident strategy (r1, t1) ∈ D2 ⊔ D3 that violates
conditions (2.3.17) and (2.3.15) (and (2.3.21)/(2.3.18) respectively) along the t-direction. This can be realised
in three different ways. It could be that both ∂tP (r, t; r1, t1)|r=r1,t=t1 = 0 and ∂ttP (r, t; r1, t1)|r=r1,t=t1 =

0. This is a case we discount as non-generic and classify as inconclusive, since more information would
be required about higher order derivatives of the fitness function along t to draw conclusions regarding
invasibility. It could be that ∂tP (r, t; r1, t1)|r=r1,t=t1 = 0 and ∂ttP (r, t; r1, t1)|r=r1,t=t1 > 0, which is not a
local ESS, since it is possible for mutants to invade. Lastly, it could be that ∂tP (r, t; r1, t1)|r=r1,t=t1 < 0

or ∂tP (r, t; r1, t1)|r=r1,t=t1 > 0, both of which describe non-ESSs, since there is risk of invasion by mutants
that are less-defended and better-defended respectively. Strategy (r1, 0) on the boundary D0 ⊔ D1 with
→
∂ tP (r, t; r1, 0)|r=r1,t=0 > 0 would likewise describe a non-ESS as it would risk invasion against mutants that
are better-defended.

We can also consider a strategy (0, t1) on the boundary D0 ⊔ D2 that fails condition (2.3.11)/(2.3.20)

along the r-direction. This can be achieved in four ways. It could be that
→
∂ rP (r, t; 0, t1)|r=0,t=t1 = 0 and

→
∂ r ◦

→
∂ rP (r, t; 0, t1)|r=0,t=t1 < 0, and this could describe a local ESS but is not accounted for by Theorem

2.3.2. The situation with
→
∂ rP (r, t; 0, t1)|r=0,t=t1 = 0 and

→
∂ r◦

→
∂ rP (r, t; 0, t1)|r=0,t=t1 = 0 describes a scenario

we would discount as non-generic and which is inconclusive (further information about the fitness function

along r is required to draw conclusions about invasibility). The scenario
→
∂ rP (r, t; 0, t1)|r=0,t=t1 = 0 with

→
∂ r ◦

→
∂ rP (r, t; 0, t1)|r=0,t=t1 > 0 describes a non-ESS, since such a strategy risks invasion by mutations.

Finally, the situation
→
∂ rP (r, t; 0, t1)|r=0,t=t1 > 0 clearly describes a non-ESS since such a strategy risks

invasion by mutants that are more conspicuous. A similar breakdown of possibilities could be provided for
strategies (r1, t1) ∈ D1 ⊔ D3 along r and in either direction.

We devote the remainder of this section to re-writing the functional forms in (2.3.11) through to (2.3.18) in
terms of the remaining functional forms of Table 2.1. We begin by evaluating ∂rP (r, t; r1, t1), ∂tP (r, t; r1, t1)

and ∂ttP (r, t; r1, t1) in the neighbourhood of (r1, t1). From the definition of the payoff in (1.3.12) we have

∂rP (r, t; r1, t1) = − F (t)K(t)(
λ+D(r)K(t)Q(I)

)2 [D′(r)Q(I) +D(r)Q′(I)∂rI] . (2.3.54)
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Introducing the (strictly positive) scaling function

C : D → R>0 : C(r, t) :=
(λ+D(r)K(t)Q(I))2

F (t)D(r)K(t)Q(I)
, (2.3.55)

(2.3.54) reads

C(r, t)∂rP (t, r; t1, r1) = −D′(r)

D(r)
− Q′(I)

Q(I)
∂rI, (2.3.56)

where scaling by C(r, t) is sign-preserving for all (r, t) ∈ D so that

∂rP (r, t; r1, t1) ≥ 0 ⇔ C(r, t)∂rP (r, t; r1, t1) ≥ 0

∂rP (r, t; r1, t1) < 0 ⇔ C(r, t)∂rP (r, t; r1, t1) < 0.

Now from the aversiveness in (2.3.1) we have that

∂rI = a
N

n
L′(r)H(t) + (1− a)

N

n
L(r1)H(t1)S

′(|r − r1|)∂r|r − r1|

= a
N

n
L′(r)H(t) + (1− a)I1S

′(|r − r1|)
(
1(−∞,r1) + 1(r1,+∞)

)
, (2.3.57)

where S′(|r−r1|) denotes the derivative of the uni-variate similarity function S with respect to its argument.
The RHS of (2.3.56) now reads

D′(r)

D(r)
− a

N

n
L′(r)H(t)

Q′(I)

Q(I)
− (1− a)I1

Q′(I)

Q(I)
S′(|r − r1|)

(
−1(−∞,r1) + 1(r1,+∞)

)
(2.3.58)

and thus we have

C(r, t)∂rP (r, t; r1, t1) =


−D′(r)

D(r)
− a

N

n
L′(r)H(t)

Q′(I)

Q(I)
+ (1− a)I1

Q′(I)

Q(I)
S′(|r − r1|), r < r1

−D′(r)

D(r)
− a

N

n
L′(r)H(t)

Q′(I)

Q(I)
− (1− a)I1

Q′(I)

Q(I)
S′(|r − r1|), r > r1.

(2.3.59)

Considering mutations that are local amounts to evaluating the derivative on the LHS of the latter at
(r, t) = (r1, t1) such that we end up with the following directional derivatives

C(r1, t1)
←
∂rP (r, t; r1, t1)

∣∣
r=r1,t=t1

= −D′(r1)

D(r1)
− aI1

L′(r1)

L(r1)

Q′(I1)

Q(I1)
+ (1− a)I1

Q′(I1)

Q(I1)
S′(0) (2.3.60)

and

C(r1, t1)
→
∂rP (r, t; r1, t1)

∣∣
r=r1,t=t1

= −D′(r1)

D(r1)
− aI1

L′(r1)

L(r1)

Q′(I1)

Q(I1)
− (1− a)I1

Q′(I)

Q(I)
S′(0). (2.3.61)

If the resident plays a cryptic strategy (with r1 = 0) mutation in the signalling trait can only lead to
more conspicuous mutant types. Naturally, such a resident is presumed to be stable along the r-direction if
the single condition

−D′(0)

D(0)
− aI1

L′(0)

L(0)

Q′(I1)

Q(I1)
− (1− a)I1

Q′(I)

Q(I)
S′(0) < 0 (2.3.62)
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holds true. Strategies with non-zero signalling component (r1 > 0) can give rise to mutants that are either
less or more conspicuous. Naturally, such strategies are described as stable in the r-direction if they can
resist invasion against the less conspicuous type, which is guaranteed by

−D′(r1)

D(r1)
− aI1

L′(r1)

L(r1)

Q′(I1)

Q(I1)
+ (1− a)I1

Q′(I1)

Q(I1)
S′(0) > 0, (2.3.63)

and against the more conspicuous mutant type, which is guaranteed through

−D′(r1)

D(r1)
− aI1

L′(r1)

L(r1)

Q′(I1)

Q(I1)
− (1− a)I1

Q′(I)

Q(I)
S′(0) < 0. (2.3.64)

It remains for us to determine explicit expressions for the t-stability conditions. We begin by differenti-
ating the expression for the mutant payoff in (2.3.3) partially with respect to t

∂tP (r, t; r1, t1) =
F ′(t)

λ+D(r)K(t)Q(I)
− F (t)D(r)K ′(t)Q(I)

(λ+D(r)K(t)Q(I))2
+

F (t)D(r)K(t)Q′(I)

(λ+D(r)K(t)Q(I))2
∂tI. (2.3.65)

Noting that I is given as in (2.3.1), we evaluate the above at (r, t) = (r1, t1) in terms of the scaling function
C(r, t) given in (2.3.55)

C(r1, t1)∂tP (r, t; r1, t1)
∣∣
r=r1,t=t1

=
λ+D(r1)K(t1)Q(I1)

D(r1)K(t1)Q(I1)

F ′(t1)

F (t1)
− K ′(t1)

K(t1)
− aI1

H ′(t1)

H(t1)

Q′(I1)

Q(I1)
(2.3.66)

and that strategies with t1 = 0 resist invasion from better defended types if

λ+D(r1)K(0)Q(I1)

D(r1)K(0)Q(I1)

F ′(0)

F (0)
− K ′(0)

K(0)
− aI1

H ′(0)

H(0)

Q′(I1)

Q(I1)
< 0. (2.3.67)

Strategies with t1 > 0 resist invasion from types that are better defended if in addition to satisfying
(2.3.17)/(2.3.21)

∂tP (r, t; r1, t1)|r=r1,t=t1 = 0 (2.3.68)

these also satisfy the convexity condition provided in (2.3.18)/(2.3.15)

−∂ttP (r, t; t1, r1)
∣∣
r=r1,t=t1

> 0. (2.3.69)

This is equivalent to

−C(r1, t1)∂tA(r, t)
∣∣
r=r1,t=t1

+ C(r1, t1)∂tB(r, t)
∣∣
r=r1,t=t1

+ C(r1, t1)∂tC(r, t)
∣∣
r=r1,t=t1

> 0, (2.3.70)

where we have defined A(r, t),B(r, t) and C(r, t) as the three terms on the RHS of the expression for
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∂tP (r, t; r1, t1) (2.3.65), namely

A(r, t) :=
F ′(t)

λ+D(r)K(t)Q(I)
(2.3.71)

B(r, t) := F (t)D(r)K ′(t)Q(I)

(λ+D(r)K(t)Q(I))2
(2.3.72)

C(r, t) := F (t)D(r)K(t)Q′(I)

(λ+D(r)K(t)Q(I))2
∂tI. (2.3.73)

We proceed to evaluating the t-derivatives of these quantities as follows. We have that

∂tA(r, t) =
F ′′(t)

λ+D(r)K(t)Q(I)
− F ′(t)D(r)K ′(t)Q(I)

(λ+D(r)K(t)Q(I))2
− F ′(t)D(r)K(t)Q′(I)

(λ+D(r)K(t)Q(I))2
∂tI, (2.3.74)

which, when scaled and evaluated at (r, t) = (r1, t1), with t1 ̸= tc reads

−C(r1, t1)∂tA(r1, t1) = −λ+D(r1)K(t1)Q(I1)

D(r1)K(t1)Q(I1)

F ′′(t1)

F (t1)
+

F ′(t1)

F (t1)

K ′(t1)

K(t1)
+ aI1

H ′(t1)

H(t1)

F ′(t1)

F (t1)

Q′(I1)

Q(I1)
. (2.3.75)

Similarly for B(r, t) we have that

∂tB(r, t) =
F ′(t)D(r)K ′(t)Q(I)

(λ+D(r)K(t)Q(I))2
+

F (t)D(r)K ′′(t)Q(I)

(λ+D(r)K(t)Q(I))2
+

F (t)D(r)K ′(t)Q′(I)

(λ+D(r)K(t)Q(I))2
∂tI

− 2
F (t)D2(r)K ′

2

(t)Q2(I)

(λ+D(r)K(t)Q(I))3
− 2

F (t)D2(r)K(t)K ′(t)Q(I)Q′(I)

(λ+D(r)K(t)Q(I))3
∂tI. (2.3.76)

Again, scaling and evaluating at (r, t) = (r1, t1) such that t1 ̸= tc amounts to

C(r1, t1)∂tB(r, t)
∣∣
r=r1,t=t1

=
F ′(t1)

F (t1)

K ′(t1)

K(t1)
+

K ′′(t1)

K(t1)
+ aI1

H ′(t1)

H(t1)

Q′(I1)

Q(I1)

K ′(t1)

K(t1)

− 2D(r1)K
′2(t1)Q(I1)

K(t1)(λ+D(r)K(t)Q(I))
− 2aI1

H ′(t1)

H(t1)

D(r1)K
′(t1)Q

′(I1)

λ+D(r)K(t)Q(I)
. (2.3.77)

Finally, we have that

∂tC(r, t) =
F ′(t)D(r)K(t)Q′(I)

(λ+D(r)K(t)Q(I))2
∂tI +

F (t)D(r)K ′(t)Q′(I)

(λ+D(r)K(t)Q(I))2
∂tI +

F (t)D(r)K(t)Q′′(I)

(λ+D(r)K(t)Q(I))2
(∂tI)

2

+
F (t)D(r)K(t)Q′(I)

(λ+D(r)K(t)Q(I))2
∂ttI − 2

F (t)D2(r)K(t)K ′(t)Q(I)Q′(I)

(λ+D(r)K(t)Q(I))3
∂tI

− 2
F (t)D2(r)K2(t)Q′

2

(I)

(λ+D(r)K(t)Q(I))3
(∂tI)

2, (2.3.78)
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which when scaled and evaluated at (r, t) = (r1, t1) with t1 ̸= tc, reads

C(r1, t1)∂tC(r, t)
∣∣
r=r1,t=t1

=aI1
H ′(t1)

H(t1)

F ′(t1)

F (t1)

Q′(I1)

Q(I1)
+ aI1

H ′(t1)

H(t1)

K ′(t1)

K(t1)

Q′(I1)

Q(I1)

+ a2I21

(
H ′(t1)

H(t1)

)2
Q′′(I1)

Q(I1)
+ aI1

H ′′(t1)

H(t1)

Q′(I1)

Q(I1)

− 2aI1
H ′(t1)

H(t1)

D(r1)K
′(t1)Q

′(I1)

λ+D(r1)K(t1)Q(I1)

− 2a2I21

(
H ′(t1)

H(t1)

)2
D(r1)K(t1)Q

′2(I1)

Q(I1)(λ+D(r1)K(t1)Q(I1))
. (2.3.79)

Summing the terms in expressions (2.3.75), (2.3.77) and (2.3.79) gives

− λ+D(r1)K(t1)Q(I1)

D(r1)K(t1)Q(I1)

F ′′(t1)

F (t1)
+

K ′′(t1)

K(t1)
+ 2aI1

H ′(t1)

H(t1)

Q′(I1)

Q(I1)

K ′(t1)

K(t1)

+ aI1
H ′′(t1)

H(t1)

Q′(I1)

Q(I1)
+ a2I21

(
H ′(t1)

H(t1)

)2
Q′′(I1)

Q(I1)

+ 2
F ′(t1)

F (t1)

K ′(t1)

K(t1)
+ 2aI1

H ′(t1)

H(t1)

F ′(t1)

F (t1)

Q′(I1)

Q(I1)
− 4aI1

H ′(t1)

H(t1)

D(r1)K
′(t1)Q

′(I1)

λ+D(r1)K(t1)Q(I1)

− 2D(r1)K
′2(t1)Q(I1)

K(t1)(λ+D(r1)K(t1)Q(I1)
− 2aI21

(
H ′(t1)

H(t1)

)2
D(r1)K(t1)Q

′2(I1)

λ+D(r1)K(t1)Q(I1)
> 0. (2.3.80)

As per the conditions of Theorem 2.3.2 we require the latter to hold in tandem with (2.3.17)/(2.3.21), which
amounts to

aI1
H ′(t1)

H(t1)
=

λ+D(r1)K(t1)Q(I1)

D(r1)K(t1)Q(I1)

F ′(t1)

F (t1)
− Q(I1)

Q′(I1)

K ′(t1)

K(t1)
. (2.3.81)

Indeed, (2.3.81) can be used in order to simplify inequality (2.3.80). With appropriate scaling the former
reads

−2a2I21

(
H ′(t1)

H(t1)

)2
D(r1)K(t1)Q

′2(I1)

Q(I1)(λ+D(r1)K(t1)Q(I1))
=− 2

(
F ′(t1)

F (t1)

)2
λ+D(r1)K(t1)Q(I1)

D(r1)K(t1)Q(I1)

− 2
D(r1)K

′2(t1)Q(I1)

K(t1)(λ+D(r1)K(t1)Q(I1))

+ 4
F ′(t1)

F (t1)

K ′(t1)

K(t1)
. (2.3.82)

Furthermore, it holds that

−4aI1
H ′(t1)

H(t1)

D(r1)K
′(t1)Q

′(I1)

λ+D(r1)K(t1)Q(I1)
= −4

F ′(t1)

F (t1)

K ′(t1)

K(t1)
+ 4

D(r1)K
′2(t1)Q(I1)

K(t1)(λ+D(r1)K(t1)Q(I1))
, (2.3.83)
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and also that

2aI1
H ′(t1)

H(t1)

Q′(I1)

Q(I1)

F ′(t1)

F (t1)
= 2

λ+D(r1)K(t1)Q(I1)

D(r1)K(t1)Q(I1)

(
F ′(t1)

F (t1)

)2

− 2
F ′(t1)

F (t1)

K ′(t1)

K(t1)
. (2.3.84)

Substituting (2.3.82), (2.3.83) and (2.3.84) into (2.3.80), simplifies the latter, so that (2.3.69) amounts to

− λ+D(r1)K(t1)Q(I1)

D(r1)K(t1)Q(I1)

F ′′(t1)

F (t1)
+

K ′′(t1)

K(t1)
+ 2aI1

H ′(t1)

H(t1)

Q′(I1)

Q(I1)

K ′(t1)

K(t1)

+ aI1
H ′′(t1)

H(t1)

Q′(I1)

Q(I1)
+ a2I21

(
H ′(t1)

H(t1)

)2
Q′′(I1)

Q(I1)
> 0. (2.3.85)

We are now in position to provide explicit conditions for an arbitrary strategy (r1, t1) to be local ESS. In
keeping with our presentation thus far, we identify four regions and re-express (2.3.11) through to (2.3.18)
explicitly.

From Theorem 2.3.2 it follows that if (0, 0) ∈ D0 satisfies (2.3.11) and (2.3.10) then it is a local ESS.
Considering the mutant fitness is given as in (2.3.3) these conditions amount to

λ

D(0)K(0)Q(I1)

F ′(0)

F (0)
+

F ′(0)

F (0)
− K ′(0)

K(0)
− aI1

H ′(0)

H(0)

Q′(I1)

Q(I1)
< 0, and (2.3.86)

−D′(0)

D(0)
− aI1

D′(0)

D(0)

Q′(I1)

Q(I1)
− (1− a)I1

Q′(I1)

Q(I1)
S′(0) < 0. (2.3.87)

In the proof of case [i] of Theorem 2.3.2 it was shown that condition (2.3.86) guarantees that a resident
playing (0, 0) can resist invasion holds such a strategy is it was shown that if only condition It should also
be mentioned that if only (2.3.86) is satisfied it In Theorem 2.3.2 it was also shown that if a strategy with
non-zero signalling component and zero component for defence - i.e. a point of the form (r1, 0) ∈ D1 satisfies
(2.3.13), (2.3.14) and (2.3.12) then it is a local ESS and we denote it by (rESS , 0). On account of (2.3.3)
these amount to

λ

D(rESS)K(0)Q(I1)

F ′(0)

F (0)
+

F ′(0)

F (0)
− K ′(0)

K(0)
− aI1

H ′(0)

H(0)

Q′(I1)

Q(I1)
< 0, (2.3.88)

−D′(rESS)

D(rESS)
− aI1

D′(rESS)

D(rESS)

Q′(I1)

Q(I1)
+ (1− a)I1

Q′(I1)

Q(I1)
S′(0) > 0 and (2.3.89)

−D′(rESS)

D(rESS)
− aI1

D′(rESS)

D(rESS)

Q′(I1)

Q(I1)
− (1− a)I1

Q′(I1)

Q(I1)
S′(0) < 0. (2.3.90)
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From Theorem 2.3.2 it follows that strategies of the form (0, t1) ∈ D2 satisfying (2.3.16), (2.3.17) and
(2.3.15) are locally evolutionarily stable and denoted (0, tESS). With the mutant fitness given through (2.3.3)
we have shown that these conditions amount to

λ

D(0)K(tESS)Q(I1)

F ′(tESS)

F (tESS)
+

F ′(tESS)

F (tESS)
− K ′(tESS)

K(tESS)
− aI1

H ′(tESS)

H(tESS)

Q′(I1)

Q(I1)
= 0, (2.3.91)

−λ+D(0)K(tESS)Q(I1)

D(0)K(tESS)Q(I1)

F ′′(tESS)

F (tESS)
+

K ′′(tESS)

K(tESS)
+ 2aI1

H ′(tESS)

H(tESS)

Q′(I1)

Q(I1)

K ′(tESS)

K(tESS)

+aI1
H ′′(tESS)

H(tESS)

Q′(I1)

Q(I1)
+ a2I21

(
H ′(tESS)

H(tESS)

)2
Q′′(I1)

Q(I1)
> 0 and (2.3.92)

−D′(0)

D(0)
− aI1

D′(0)

D(0)

Q′(I1)

Q(I1)
− (1− a)I1

Q′(I1)

Q(I1)
S′(0) < 0. (2.3.93)

Finally, Theorem 2.3.2 implies that strategies of the form (r1, t1) ∈ D3 that satisfy (2.3.19), (2.3.20), (2.3.21)
and (2.3.18) are locally evolutionarily stable and we denote these as (rESS , tESS). We have established that
with the mutant fitness given as in (2.3.3) these amount to

λ

D(rESS)K(tESS)Q(I1)

F ′(tESS)

F (tESS)
+

F ′(tESS)

F (tESS)
− K ′(tESS)

K(tESS)
− aI1

H ′(tESS)

H(tESS)

Q′(I1)

Q(I1)
= 0, (2.3.94)

−λ+D(rESS)K(tESS)Q(I1)

D(rESS)K(tESS)Q(I1)

F ′′(tESS)

F (tESS)
+

K ′′(tESS)

K(tESS)
+ 2aI1

H ′(tESS)

H(tESS)

Q′(I1)

Q(I1)

K ′(tESS)

K(tESS)

+aI1
H ′′(tESS)

H(tESS)

Q′(I1)

Q(I1)
+ a2I21

(
H ′(tESS)

H(tESS)

)2
Q′′(I1)

Q(I1)
> 0, (2.3.95)

−D′(rESS)

D(rESS)
− aI1

D′(rESS)

D(rESS)

Q′(I1)

Q(I1)
+ (1− a)I1

Q′(I1)

Q(I1)
S′(0) > 0, (2.3.96)

−D′(rESS)

D(rESS)
− aI1

D′(rESS)

D(rESS)

Q′(I1)

Q(I1)
− (1− a)I1

Q′(I1)

Q(I1)
S′(0) < 0. (2.3.97)

Notice that in the special case that the resident toxicity is equal to the critical level (i.e. t1 = tc) we
would re-write the term aI1H

′(t1)/H(t1) as aN/nL(r1)H
′(t1). Now that we have effectively catalogued the

conditions for local ESS (by region) we proceed to remarking the physical significance of these inequalities.
This will provide us with physical intuition into the details of the model that is perhaps lacking. Broom
et al. (2006) is in fact very in depth and covers a large breadth of topics; perhaps the reason that these
details are omitted are to maintain succinctness.

2.4 A marginal fitness interpretation of evolutionary stability

The purpose of this section is two-fold: To discuss the physical significance of the conditions for evolutionary
stability and to establish how that discussion leads us into a known result of Broom et al. (2006), namely
that strategies with non-zero signalling component that are non-aversive are not evolutionarily stable. In
doing so, we consider the conditions along the t-direction and along the r-direction separately. We should
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also emphasise that while the content of this chapter is based on Broom et al. (2006) there are a number of
differences between this and the latter (indeed the reader is strongly encouraged to read Broom et al., 2006
together with Scaramangas and Broom, 2022 for a more complete view of the model). One key difference
is in the interpretation of the habitat as a structure consisting of sites that are territorially-divided among
the predators. This means that the perception of predators is shaped by their experience of the prey that
reside in the site that they visit so that the presence of prey with marginally varying traits naturally leads
to marginal differences in their fitness. The latter also agrees with our perception of the physical world; it
guarantees that organisms playing slightly different strategies also have very similar values for the different
consequences of their strategies. Finally, much of the discussion found here forms the basis for interpreting
the results from the simulations in Chapter 4.

Marginal differences in fitness along the t-direction

We consider mutations in t and explore the landscape of the mutant payoff function in the vicinity of the
resident value along this direction. To that end, we consider8 some mutant strategy with r = r1 and
t ∈ [t1 − δt, t1 + δt] \ {t1}. To first order, the rate at which the mutant fitness varies with respect to the
resident fitness when the mutant trait for defence varies incrementally in the vicinity of the resident value
is provided by the (partial) derivative of the mutant payoff along t, whose normalised form is provided
in (2.3.66). The terms on the RHS of (2.3.66) correspond to incremental differences associated with the
fecundity (first term) and rate of predation of the mutant compared with the resident. The latter are seen
as differences in the rate of capture (second term) and in the rate that detected mutants are attacked (third
term).

If mutation lead to an increase increase in the defensive trait such that t ∈ [t1, t1 + δt] \ {t1}. Secondary
defences are assumed to be costly to the prey that acquire them, which is why better-defended mutants
suffer reduced fecundity (sign of first term is negative since F ′(τ)/F (τ) < 0 for all τ ≥ 0). On the other
hand, better-defended prey are generally harder to capture, which is why the second term has positive
sign (−K ′(τ)/K(τ) > 0 for all τ ≥ 0). The habitat is territorially divided among predators so that their
perception of prey is shaped by their experience of the individuals inhabiting the site that they visit and most
groups of predators experience prey playing the resident strategy, since we are working in the ε → 0 regime.
Collectively predators are assumed to have complete experience of prey (this is described as an equilibrium
for states of hunger, experience etc. in section 2.1) so that incrementally better-defended mutants present
in a cluster are perceived as marginally more aversive by the predators visiting their site and are therefore
less likely to be attacked. This is accounted for by the third term, which is positive (Q′(I)/Q(I) < 0 for all
I ∈ R) and represents the marginal fitness advantage associated with reduced rate of attack.

A resident that is completely undefended (i.e. t1 = 0) can give rise to a mutant that is better defended
and risks invasion only from such a mutant. We therefore say that such a strategy can resist invasion along
the t direction if mutants that are incrementally better-defended exhibit marginally lower fitness compared
with the resident. This is precisely when the RHS of (2.3.66) is negative, which holds if the disadvantage
associated with reduced fecundity is not outweighed by the reduction in predation. So that, despite its longer
life-cycle the more toxic type cannot replace the resident because it still produces fewer offspring within its
life-cycle.

For a defended resident (i.e. t1 > 0) it is not sufficient to regard only the first order marginal differences
8Implicit in this treatment is that (r1, t1) ∈ D2 ⊔D3. A discussion involving mutation in t for residents that are undefended

with (r1, t1) ∈ D0 ⊔ D1 would be very similar bu in that case we would set t ∈ [t1 − δt, t1] \ {t1}.

48



in mutant fitness e.g. through (2.3.66). If the RHS of (2.3.66) is negative it is true that such a resident can
resist invasion from a better defended mutant but it is also true that is invaded by the less defended mutant.
Indeed, if reduced fecundity cannot outweigh reduced predation in the more toxic mutants then form the
the differentiability9 property of the functional forms - assumed to be Cl with l ≥ 2) for the less toxic type
it follows that increased fecundity can outweigh reduced predation and can therefore invade the resident.
Likewise, if the RHS of (2.3.66) is positive such a resident can resist invasion from mutant types that are
less toxic but is invaded by the more toxic types.

Instead, to guarantee that the defended resident is stable against invasion both from the less and the
better defended mutant we impose that the RHS of (2.3.66) is zero and that the second-order marginal
differences in fitness, which when solved in tandem with (2.3.94)/(2.3.91) are provided by (2.3.92)/(2.3.95)

Imposing that the RHS of (2.3.92)/(2.3.95) is negative is equivalent to imposing that the landscape of the
mutant payoff along t in the vicinity of the resident value is flat (first order) and concave-down (second order)
and therefore a local maximum guarantees that the resident can resist invasion from both the less defended
and the better defended mutant. So that while to first order we require differences in fitness associated with
fecundity to be exactly outweighed by those due to predation to second order it is possible for fecundity
disadvantages to outweigh the benefits of reduced predation for t > t1 and for increased fecundity to be
outweighed by reduced increased predation for t < t1.

Through this discussion we establish that if strategy (rESS , 0) is evolutionarily stable then if the prey
population played resident strategy with t1 > 0 we expect successive generations of such a population to be
invaded by less-defended types (who exhibit marginally higher fitness on account of their fecundity) until
the population converges to tESS = 0. If strategy (rESS , tESS) is evolutionarily stable with tESS > 0

then (forgetting mutation along r) a population playing t1 < tESS is invaded by the better-defended types
(who benefit from reduced predation) until after many successive generations the population stabilises to
the evolutionarily stable level of defence tESS from below. Likewise if the prey population played t1 > tESS

we would expect that they are invaded by less-defended types (who pose a fitness advantage on account of
increased fecundity) such that after several successive generations the population converges to the ESS level
from above.

Marginal differences in fitness along the r-direction

Let us assume10 that the residents play some strategy (r1, t1) and that mutation occurs in the signalling
trait, so that r ∈ [r1 − δr, r1 + δr] \ {r1} and t = t1. This would correspond to a prey population made up
almost exclusively of prey playing (r1, t1) except for a small number of sites in which there are clusters of
mutants who are equally aversive, but whose signalling trait varies marginally with respect to the resident
value. Since we have assumed that the functional forms F,D,K,Q,L,H and S (sufficiently near the origin)
are Cl with l ≥ 2 of Table 2.1 except for S at r = r1 on account of (2.2.5) are of class Cl with l ≥ 2 it is safe
to conclude that marginal differences in the mutant trait (compared with the resident value) correspond to
marginal differences in the mutant fitness.

Remark from definition (2.3.3) of the mutant fitness that the term D(r)K(t)Q(I) represents the predator-
induced mortality rate. This suggests that mutants with varying signalling traits experience different fitness
because they are predated at different rates compared with their resident counterparts. It follows that a

9For instance, if a differentiable function is increasing at a certain point it is equivalent to say that its value increases as the
argument increases away from that point or that its value decreases as the argument decreases away from that same point.

10Implicit in this discussion is that the resident is conspicuous so that (r1, t1) ∈ D1 ⊔ D3. A discussion involving cryptic
residents with (r1, t1) ∈ D0⊔D2 would be simpler and would involve only positive mutation in the signalling trait i.e. r ∈ (0, r].
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strategy is uninvadable in this direction if more/less conspicuous mutants suffer higher rates of predation. It
may appear conflicting that a single change in conspicuousness could act to both lower or raise threat due
to predation (and therefore fitness). We can gain a deeper understanding of how this is possible by more
carefully reviewing the terms involved in the normalised derivatives of the mutant payoff along r provided
in (2.3.60) and (2.3.61). From the first term on the RHS of (2.3.60)/(2.3.61) we deduce that the less/more
conspicuous type is less/more detectable and thus experiences lower/greater predation on account of this.
Our conclusions about the second and third terms are reversed depending on whether t1 < tc or t1 > tc. If
t1 < tc the second terms in (2.3.60)/(2.3.61) are negative (since L′(ρ)/L(ρ) > 0) and the third terms are
positive (S′(x) < 0 for all x ≥ 0). That is, the less/more conspicuous type could on the one hand experience
lower/higher rates of attack on account being less/more easily recollectable as a type that is attractive and
on the other hand a reduced attack rate from not perfectly resembling the majority of attractive residents. If
t1 > tc the signs of the second and third terms are reversed so that less/more conspicuous types are expected
to be attacked more/less on account of being less/more easily recollectable as types that are aversive and
both types to be attacked more on account of not perfectly resembling the majority of aversive residents.
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Chapter 3

An exploration into the ESS continuum

In the previous chapter we described aposematism as the conspicuous signalling of a defence for the deterrence
of predators and assigned two continuous traits (r1, t1) ∈ R≥0 × R≥0 to describe the aposematic strategies
in prey. This description is most suitable to the mathematical modelling of chemically-defended prey, who
make use of external signalling cues in the form of bright skin pigmentation to signal their unprofitability.
Although it was discussed that this description most closely describes poison frog species of the Dendrobatidae
family it is by no means restricted to these. Indeed, the mathematical presentation found herein is plausible
and transferable to other forms of secondary defence; it is also natural: the strength of aposematic traits
(signalling and defence) are realised as continuously quantifiable quantities that can be varied independently
from one another and which together define a two-dimensional strategy space within which the aposematic
behaviour of any one organism can be represented by a single point. It is also worth remarking that while the
central game of this thesis is non-linear and perhaps more multifaceted than the War of Attrition described
in the first chapter, evolutionarily stable outcomes are manifest as a continuum in the strategy space and
this is a similarity worth remarking.

The focus of this chapter is to release the model of Broom et al. (2006) from two restricting conjectures
that were made upon its publication: (i) that evolutionarily stable levels of signalling and defence define a
continuum on which increasing levels of conspicuousness are associated with higher levels of defence; (ii) that
to a given level of signalling strength is assigned a unique evolutionarily stable level of defence. As we discuss,
empirical and model-based studies are conflicting regarding how aposematic traits are related to one another
in nature. Although it is true that the majority of works allude to a positive relationship between these
quantities (i.e. more conspicuous animals are better defended), this is by no means a definitive conclusion.
Even if this were the case, there is no one accepted mechanism by which this is facilitated (although we do
discuss a number of these). In this section we demonstrate that both positively and negatively correlated
combinations of traits can achieve evolutionarily stable outcomes and further, that for a given level of signal
strength there can be more than one optimal level of defence. As we discover, our findings could bare interest
both to the mathematical-oriented readership and to the biologist alike. It is especially intriguing that the
model of Broom et al. (2006) can account for such a vast range of outcomes.
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3.1 The monotonicity of the ESS continuum

We spent a considerable portion in the closing section of the previous chapter demonstrating how and why the
conspicuous signalling of non-aversive levels of defence i.e. strategies drawn from {ρ > 0, τ ≤ tc} ⊂ D2 ⊔D3

is not evolutionarily stable. To that, much of the discussion of this chapter is focused on the conspicuous
signalling of aversive strategies and the possibility of such outcomes co-existing (as ESSs) alongside crypsis.
We recall from Theorem 2.3.2 that for a strategy (r1, t1) ∈ D2 ⊔ D3 with non-zero levels of defence to be
locally evolutionarily stable it must satisfy equality (2.3.17)/(2.3.21).

We emphasize that throughout this manuscript mutations are assumed to be local so that mutant traits
are defined in the local vicinity of the resident value - see (2.2.17) through to (2.2.20) for a careful definition
of the term local vicinity. Since there are two independent choices for the mutant traits (providing these are
drawn locally) and two independent choices for the resident traits such that all four choices are determining
for the value of mutant fitness it follows that this quantity, which is given in (2.3.3) is a scalar-valued function
of four variables. Since the conditions of Theorem 2.3.2 involve derivatives of the mutant fitness evaluated
at the resident strategy it follows that (2.3.17)/(2.3.21) is an equality involving the resident traits r1 and t1

only (non-dependence on mutant traits is also immediately clear from the limit definition provided in (2.3.6))
and hence specifies a curve in D2 ⊔ D3.

In section 2.4 it was explained that resident strategies satisfying (2.3.17)/(2.3.21) exhibit the unique
property that mutations in the trait for defence lead to an exact trade-off (evaluated to first order) between
reproduction and life-span, which can be interpreted as a form of equilibrium on the level of the trade-offs.
That is to say, better-defended mutants produce fewer offspring but survive more attacks such that on
average the number of offspring they produce per life cycle (i.e. their fitness) is the same as that of their
resident counterparts. Strategies satisfying (2.3.17)/(2.3.21) - denoted (r∗1 , t

∗
1) - are elements of the curve

{
(r∗1 , t

∗
1) : ∂tP (r, t; r1, t1)|r=r∗1 ,t=t∗1

= 0
}
, (3.1.1)

on which the equilibrium level of defence is defined implicitly in terms of the conspicuousness. Evolutionarily
stable outcomes are manifest as sections of this continuum specified through the remaining inequalities in
(2.3.16) through to (2.3.15) and (2.3.19) through to (2.3.18).

Since we deal exclusively with trait mutations that are local, the landscape of the mutant fitness in the
immediate vicinity of the resident value is sufficient to determine the evolutionary stability of the associated
resident strategy - see Definition 2.3.1. Mutations are continuous and taken to be so small that information
about the derivatives of the mutant payoff at the resident value can be used to determine (through the use
of Theorem 2.3.2) whether the associated resident strategy is an ESS. As the conditions in Theorem 2.3.2
involve taking derivatives at the resident value only, we make use of the following shorthand notation

∂tP (r1, t1) ↔ ∂tP (r, t; r1, t1)|r=r1,t=t1 , (3.1.2)

where the limit definition of the RHS of (3.1.2) is given in (2.3.6). The choice of notation in (3.1.2) suppresses
the resident traits, which is sensible (considering the derivatives of the mutant fitness are evaluated at the
resident value) but raises a number of important technical questions, which we discuss.

The functions F,D,K,Q,L,H and S are all Cl with l ≥ 2 sufficiently near the origin. From condition
(2.2.5) it follows that S(r, r1) = S(|r − r1|) and in particular that (with respect to the mutant traits) the
mutant fitness is almost everywhere Cl with l ≥ 2, except for r = r1. An immediate consequence of the latter
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is that (for fixed levels of r1 and t1) the quantity ∂tP (r, t; r1, t1) is Cl−1 with l ≥ 2 almost everywhere (except
at r = r1). The latter, together with the fact that |r− r1| is continuous at r = r1 implies that ∂tP (r, t; r1, t1)

is continuous at the resident value, suggesting that ∂tP (r, t; r1, t1)|r=r1,t=t1 corresponds to ∂tP (r, t; r1, t1)

evaluated at (r, t) = (r1, t1) and in particular that the shorthand notation in (3.1.2) is well-defined.
Thus far, we have discussed the properties of the mutant fitness P (r, t; r1, t1) by assuming that the

resident traits are fixed and allowing the mutant traits to vary in the local vicinity of the resident value. We
should stress that once the quantity ∂tP (r, t; r1, t1) has been evaluated at the resident value the resulting
quantity ∂tP (r1, t1) is a function of the resident traits only.

Observing that ∂tP (r1, t1) is composed of Cl−1 functions, where S and |r − r1| do not feature, it follows
that this is a Cl−1 function (with respect to the resident traits). In particular, this suggests that the curve
(3.1.1) is given as the zero level set of a bi-variate Cl−1 function involving only the resident traits r1 and t1.
Zero-level sets are invariant under non-zero scaling, so that setting

g1(r1, t1) := C(r1, t1)∂tP (r1, t1), (3.1.3)

with non-zero scaling factor

C(r1, t1) :=
(λ+D(r1)K(t1)Q(I1))

2

F (t1)D(r1)K(t1)Q(I1)
(3.1.4)

suggests that
g1(r

∗
1 , t
∗
1) = 0 ⇔ ∂tP (r∗1 , t

∗
1) = 0. (3.1.5)

From the latter we conclude that the equilibrium curve (3.1.1) can be expressed as

{(r∗1 , t∗1) : g1(r∗1 , t∗1) = 0}. (3.1.6)

The scaling parameter C(r1, t1) is composed exclusively of the functions F,D,K,Q,H and L and is therefore
Cl with l ≥ 2. Since ∂tP (r1, t1) is Cl−1 it follows that the product C(r1, t1)∂tP (r1, t1) i.e. g1(r1, t1) is also
everywhere Cl−1 with l ≥ 2. The scaling parameter is positive so that additional restrictions on curve (3.1.1)
for local ESS - see (2.3.92) through to (2.3.93) as well as (2.3.95), (2.3.96) and (2.3.97) - are maintained. We
have thus concluded that local ESSs are manifest as subsets of the curve (3.1.6), which is given as the zero
level-set of a (bi-variate) Cl−1 function with l ≥ 2 involving the resident traits. We build on this observation
in the discussion that follows.

While it is not generally possible to arrive at an explicit expression for the equilibrium level of defence
in terms of the conspicuousness in (3.1.6), this can be achieved (locally) providing the mentioned curve is
given through the zero-level set of a continuously differentiable function (Implicit Function Theorem). The
Implicit Function Theorem is an existence theorem and in two dimensions states precisely that a curve in
R2 defined implicitly as the zero-level set of some continuously differentiable function - see (3.1.7) - can
be expressed locally as the graph of some continuously differentiable function. Furthermore, the theorem
provides such that the slope of the line tangent to this curve is calculated through the (3.1.9). Given below
is the theorem as provided in Baxandall and Liebeck (1986) for two dimensions.

Theorem 3.1.1. (Implicit Function Theorem in R2) Let F : D ⊆ R2 → R be a real-valued, continuously
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differentiable function defined in a neighbourhood D of a point (a, b) ∈ R2, such that

F (a, b) = 0, (3.1.7)

∂yF (a, b) ̸= 0. (3.1.8)

Then there exists a neighbourhood N of a ∈ R, a neighbourhood M of b ∈ R and a continuously differentiable
function f : N ⊆ R → R, such that

f(a) = b and f(N) ⊆ M ; (3.1.9)

for each x ∈ N the equation F (x, y) = 0 is uniquely solved by y = f(x) ∈ M , provided that the possible
values of y are restricted to lie within M . Moreover, the derivative of f is given by

f ′(t) = −∂xF (t, f(t))

∂yF (t, f(t))
, t ∈ N. (3.1.10)

Having demonstrated that the equilibrium curve is provided as the zero level set of continuously differ-
entiable function g1(r1, t1) it follows that from (3.1.10) of Theorem 3.1.1 that the slope of the line tangent
to point (r∗1 , t

∗
1) of the equilibrium curve is provided by

−
∂r1g1(r1, t1)|r1=r∗1 ,t1=t∗1

∂t1g1(r1, t1)|r1=r∗1 ,t1=t∗1

. (3.1.11)

Since the zero-level sets of g1(r1, t1) and ∂tP (r1, t1) are identical we would expect their associated equilibrium
curves to be indistinguishable (by definition). Naturally, we also expect the slope of the line tangent to some
element (r∗1 , t∗1) of the level set of g1(r1, t1) to be the same the slope of the line tangent to the same strategy
perceived as an element of the zero level set of P (r1, t1). Indeed, we have

−
∂r1g1(r1, t1)|r1=r∗1 ,t1=t∗1

∂t1g1(r1, t1)|r1=r∗1 ,t1=t∗1

= −
∂r1C(r1, t1)|r1=r∗1 ,t1=t∗1

× ∂tP (r, t; r1, t1)|r=r1=r∗1 ,t=t1=t∗1
+ C(r∗1 , t

∗
1)× ∂r1 [∂tP (r, t; r1, t1)|r=r1,t=t1 ] |r1=r∗1 ,t1=t∗1

∂t1C(r1, t1)|r1=r∗1 ,t1=t∗1
× ∂tP (r, t; r1, t1)|r=r1=r∗1 ,t=t1=t∗1

+ C(r∗1 , t
∗
1)∂t1 [∂tP (r, t; r1, t1)|r=r1,t=t1 ] |r1=r∗1 ,t1=t∗1

= −
∂r1 [∂tP (r, t; r1, t1)|r=r1,t=t1 ] |r1=r∗1 ,t1=t∗1

∂t1 [∂tP (r, t; r1, t1)|r=r1,t=t1 ] |r1=r∗1 ,t1=t∗1

, (3.1.12)

as required, where the last step follows from the fact that

∂tP (r, t; r1, t1)|r=r1=r∗1 ,t=t1=t∗1
= 0. (3.1.13)

For purposes of clarity we remark that

∂t1 [∂tP (r, t; r1, t1)|r=r1,t=t1 ] |r1=r∗1 , t1=t∗1
̸= ∂t1tP (r, t; r1, t1)|r=r1=r∗1 ;t=t1=t∗1

, (3.1.14)

which follows from the fact that

∂t1 [∂tP (r, t; r1, t1)|r=r1,t=t1 ] |r1=r∗1 , t1=t∗1
= ∂t1tP (r, t; r1, t1)|r=r1=r∗1 ;t=t1=t∗1

+ ∂ttP (r, t; r1, t1)|r=r1=r∗1 ;t=t1=t∗1
.
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Resident strategies (r1, t1) are chosen from the boundary-inclusive, right-upper-hand plane D = {ρ ≥
0, τ ≥ 0} where the conditions for maximising mutant payoff (over its local vicinity) are different at the
origin D0 = {ρ = 0, τ = 0} to what these are on the boundaries D1 = {ρ > 0, τ = 0}, D1 = {ρ = 0, τ > 0}
or the interior {ρ > 0, τ > 0}. It is shown in Broom et al. (2006) that the region {ρ > 0, τ ≤ tc} does not
contain local ESSs; presently we focus on aversive strategies with non-zero signalling component drawn from
{ρ > 0, τ > tc}. Such strategies are evolutionarily stable if conditions (2.3.94) trough to (2.3.97) hold.

Alongside strategies with non-zero signalling component we also consider evolutionarily stable levels of
crypsis. If the curve defined through (2.3.94) intersects the r1 = 0 axis and the associated intersection point
satisfies the convexity condition (2.3.92) and (2.3.93) then the associated cryptic solution is a local ESS. As
a candidate for crypsis, we also consider the origin, which is evolutionarily stable if it satisfies (2.3.86) and
(2.3.87).

Theorem 3.1.1 provides the conditions under which the equilibrium toxicity provided through (3.1.6)
can be expressed (locally) as the graph of a function of one variable such that a tangent line (and slope)
are well-defined. While we have demonstrated that the equilibrium curve satisfies the conditions required
by Theorem 3.1 (provided that the functional forms in Table 2.1 are Cl with l ≥ 2) one should not be
confused and conclude that the curve can be expressed as the graph of a single uni-variate (Cl−1) function
over the entire domain. To be exact, the theorem only provides the conditions that the slope of the tangent
is well-defined and as we discover it is not generally possible to arrive at an explicit relationship between the
evolutionarily stable levels of defence and the signalling of that defence (while this is achieved in the example
that follows, the relationship is not straightforward). We should also highlight that there are two critical
cases to consider. These are: (a) the tangent line is vertical - this is the case if ∂t1g1(r1, t1)|r=r∗1 ,t=t∗1

= 0

vanishes and (b) there are multiple curves passing though the given point. Case (b) is prohibited by the
restriction that g1(r1, t1) is Cl with l ≥ 2.

In Broom et al. (2006) it was assumed that the equilibrium curve can be expressed as the graph of some
continuously differentiable function and in Broom et al. (2008) examples for the functional forms in Table
2.1 were provided, which through (3.1.15) lead to such a picture. Presently, we are not rejecting that this
is a possibility but contend that a more general procedure is required to account for a larger plethora of
outcomes. We explore an explicit set of example functions that relies on this discussion.

In this chapter we deal explicitly with the case λ = 0 in which the equilibrium curve given by g1(r
∗
1 , t
∗
1) = 0

in (3.1.6) amounts to
F ′(t∗1)

F (t∗1)
− K ′(t∗1)

K(t∗1)
− aI1

Q′(I1)

Q(I1)

H ′(t∗1)

H(t∗1)
= 0, (3.1.15)

where the LHS is Cl−1 with l ≥ 2.

3.2 An explicit procedure for determining local ESSs

In this section we demonstrate that the model of Broom et al. (2006) can be extricated from two restrictive
conjectures that were made upon its publication. In particular, we show that both positive and negative
combinations of aposematic traits can achieve locally evolutionarily stable outcomes and further that for
given level of conspicuousness there can be more than one optimal level of defence. A number of empirical
(and model-based studies) suggest that aposematic traits co-evolve so that increased conspicuousness is
coupled with increased unpalatability. Although this is a sensible assumption to make (more conspicuous
prey are expected to suffer higher predator attack rates hence necessitating increased levels of defence), we
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contend that this is neither indicative of the full breath of real physical systems that have been considered
nor is it a necessary prediction of Broom et al. (2006).

To showcase our findings we determine evolutionarily stable outcomes for a set of example functions that
are much like those considered in Broom et al. (2008), except for the predator attack probability Q, which
now exhibits a rather less-idealised dependence on the perceived aversiveness. The section is structured as
follows: we demonstrate the general process for solving the conditions for (local) evolutionary stability and
propose a partitioning of the parameter space from which emerge three distinct types of solution. Choices
of parameters are made from within each partition and explicit continua of evolutionarily stable solutions
are depicted (second subsection) in the strategy space.

Example functions

We begin by assigning examples of functions to the general forms introduced in section 2 as in Broom et al.
(2008), but with Q now showing stronger dependence on aversive information

F (t) := f0 exp(−ft); H(t) := t− tc; K(t) :=
k0

1 + kt
;

L(r) = D(r); Q(I) := q0 exp
(
−qI2

)
; S(x) = max(1− vx, 0); λ = 0. (3.2.1)

While the functional form for Q(I) = q0 exp(−qI), which is utilised in Broom et al. (2006) and later in
Broom et al. (2008) is perfectly plausible, it is also quite special in the sense that for this the derived
quantity −Q′/Q ◦ (I) is equal to the constant value q for all levels of the perceived aversiveness. The
quantity −Q′/Q represents the rate at which a marginal change in the perceived aversiveness impacts the
attack probability as a proportion of the absolute probability of attack (i.e. the slope of the line tangent to
the graph of Q divided by the value of the function at I).

More importantly, the term −Q′/Q which has previously been treated as a constant is ubiquitous in the
conditions for evolutionary stability - see (2.3.86) through to (2.3.97) - and has therefore lead to a perhaps
simplified family of cases in which the level of defence at equilibrium can be expressed explicitly in terms of
the conspicuousness. We are not arguing that a squared-dependence on I in the exponent of Q is necessarily
more plausible than a linear one and in fact we do employ the latter in chapters 4 and 6. Instead, we argue
that precisely because with a squared-dependence we have −Q′/Q ◦ (I1) = qI1 - where the RHS depends on
both resident traits - this provides a good framework within which to explore a larger plethora of examples in
which the relationship between aposematic traits is naturally more complex. The example we consider here
is one of (perhaps) many that necessitate the more careful mathematical details provided in the previous
section. In addition, while S(x) = max(1− vx, 0) is not C2 everywhere, it is C2 sufficiently near the origin,
which, as we establish is what matters for ESS analysis.

Interestingly, this modification in Q implies that investment in conspicuousness is more effective at
reducing predator attack rate (given by the product D(r)Q(I)) when compared with the original setup
considered in Broom et al. (2008) and hence provides good grounds within which to challenge the notion
that more conspicuous prey are attacked more (and thus need be better defended). Indeed, Darst et al. (2006)
studied different genera of the Dendrobatidae (poison frog) family and observed that the most conspicuous
morphs are the least toxic, while the least conspicuous ones were the most toxic. It was suggested therein
that once aposematism has become established in a population of prey that the aposematic traits become
decoupled so that arbitrary combinations of these can provide optimal protection against predation and
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indeed that potentially costly unprofitability may be traded off in favour of bright colouration so that optimal
investment in secondary defence will diminish when more cost-effective conspicuousness evolves as a primary
defence. Notably, similar observations were made by I. J. Wang (2011), who looked at different populations
of the Oophaga granulifera species within the Dendrobatidae family and considered the mechanisms proposed
by Darst et al. (2006) to justify his findings.

Darst et al. (2006) were the first to uncover negatively correlated aposematic traits in nature and indeed
the first to ever provide a sound explanation for this (using a differential costs analysis based around optimis-
ing energy expenditure to reduce predator attack rate). We presently recover solutions in which aposematic
traits appear decoupled and negatively correlated, with the underlying mechanism detailed in terms of a
robust mathematical framework. In particular, we suggest that traits are selected so as to optimise fitness
in the sense of the conditions detailed in the previous section, which we presently solve for the functional
forms provided here.

Local evolutionary stability

Substitution of (3.2.1) into (3.1.15) provides an explicit expression for (3.1.15) in terms of general rate of
detection

−f +
k

1 + kt∗1
+ 2αD2(r∗1)(t

∗
1 − tc) = 0, (3.2.2)

where the quantity α = aqN2/n2 has been introduced. For the remainder of the discussion, changes in α

are attributed to changes in the fraction N/n representing the relative proportion of prey to predators, with
a and q held fixed.

For (3.2.2) we note two interesting facts: first, for given level of conspicuousness there can be (at most)
two solutions for t∗1. Second, the solutions t∗1 can be both increasing and decreasing with increasing conspic-
uousness and changes in its monotonicity occur on vertices at which the tangent to the curve is vertical. We
can see the first by noticing that with appropriate scaling (3.2.2) amounts to

t∗1
2 +A(r∗1)t

∗
1 +B(r∗1) = 0, (3.2.3)

with
A(r∗1) = − f

2αD2(r∗1)
+

1

k
− tc and B(r∗1) =

1

2αD2(r∗1)

[
1− f

k

]
− tc

k
.

With remaining parameters specified, fixing r1, plotting the concave-up parabola given by the LHS of (3.2.3)
over t1 > tc and repeating the process for all r01 is an intuitive way of visualising the surface on the LHS of
(3.2.3). The surface of (3.2.3) therefore consists of a family of concave-up parabolas in t1 parametrized by
r1 and crosses the (r1, t1)-plane along the roots

t∗1(r
∗
1) =

−A(r∗1)±
√

A2(r∗1)− 4B(r∗1)

2
. (3.2.4)

We should remark that while (3.2.4) provides an explicit relationship between the level of signalling and
the level of defence being signalled at equilibrium (3.2.2), expression (3.2.4) is less useful from a practical
standpoint. In fact, we proceed to drawing a number of interesting conclusions about the form of (3.2.2)
through the Implicit Function Theorem. In agreement with the notation in (3.1.6), the equilibrium curve
can be identified with the set

{(r∗1 , t∗1) : r∗1 > 0; t∗1 = t∗1(r
∗
1)},
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which is generated by plotting the roots of (3.2.3) for over r∗1 ≥ 0.
For the second fact, we apply (3.1.11) to (3.2.2) - it should be evident that (3.2.2) indeed satisfies the

necessary conditions for theorem 3.1.1 - and deduce that the slope of the line tangent to any point (r∗1 , t
∗
1)

of the curve (3.2.2) is given by
4αD(r1)D

′(r∗1)(t
∗
1 − tc)(

k

1 + kt∗1

)2

− 2αD2(r∗1)

. (3.2.5)

Substitution of (3.2.2) into the denominator of (3.2.5) above yields the equivalent expression

− 4α

f

D(r∗1)D
′(r∗1)(t

∗
1 + 1/k)2(t∗1 − tc)

2

t∗1
2 + 2t∗1

(
1

k
−

1

f

)
+

tc

f
+

1

k2
−

1

fk

. (3.2.6)

The numerator of the fraction in (3.2.6) is strictly negative (except at t∗1 = tc - a level of defence, which is
not evolutionarily stable when signalled conspicuously), whereas the sign of the denominator is not restricted
in this manner. Indeed, the denominator is a concave-up, second-order polynomial which has two real roots
(providing b < 1) that are given by

T±SIGN =
1

f
− 1

k
± 1

f

√
1− b, where b := f

(
1 + ktc

k

)
. (3.2.7)

Clearly if b = 1 the polynomial has one root only, while if b > 1 the polynomial is strictly positive. This
implies that expression (3.2.7) provides a natural partitioning of the parameter space with respect to b (at
b = 1) so that there are two distinct descriptions: b < 1 and b > 1 with b = 1 admitting a border-line case.

Parameters f, k and tc with b ≥ 1 correspond to instances when the polynomial in the denominator of
(3.2.6) is positive and where the equilibrium curve in (3.2.2) is manifest as a continuum wherein t∗1 decreases
with increasing levels r∗1 . In this case (b ≥ 1), the strategy space is partitioned so that the t∗1 is decreasing
with respect to r∗1 whenever 0 < t1 < T−SIGN or t1 > T+

SIGN and increasing when T−SIGN < t1 < T+
SIGN .

Intersections of (3.2.2) with the horizontal lines T±SIGN are realised as vertices at which a line tangent to
the curve is vertical. This is where the branches of the curve described in (3.2.4) meet, which can either be
achieved at an intersection with T−SIGN where the curve exhibits a local minimum in the r-direction (rmin-
type vertex) or at an intersection with T+

SIGN , where the curve exhibits a local maximum in the r-direction
(rmax-type vertex).

Considering (3.2.1) it is clear that for given level of investment in defence increasing values of f are
associated with higher reductions in fecundity, while increasing values of k are associated with reduced
likelihood of an attack resulting in capture. Therefore b can be interpreted as an honest measure of prey
sensitivity to investment in toxicity such that prey individuals with b < 1 can be thought of as t-insensitive,
while those with b > 1 are t-sensitive. Ceteris paribus, when b is high, low fecundity is not compensated by
lower predation.

Suitable substitution of f in terms of b, k and tc allows us to re-write (3.2.7) as

T±SIGN =
(
tc +

1

k

)(1±
√
1− b

b

)
− 1

k
. (3.2.8)

This reformulation indicates that T−SIGN assumes ever-increasing values over the interval
(
0.5tc − 0.5/k, tc

]
58



as b increases, while T+
SIGN assumes ever-decreasing values over the interval [tc,+∞) as b increases. In

particular, this shows that the width of the region of increasing solutions (T−SIGN , T+
SIGN ) is greatest for

b ≈ 0 and least for b ≈ 1 and shrinks monotonically as b increases in between these end values. Furthermore,
since T−SIGN < tc for all choices of b, the equilibrium curve cannot exhibit rmin-type vertices in the aversive
region, so that only rmax-type vertices can be expected for b < 1.

Thus far, we have established an effective partitioning of the parameter space and utilised Theorem 3.1.1
to classify the solutions. However, Theorem 3.1.1 is an existence theorem; in order to determine the set of
strategies that satisfy the equilibrium condition (3.2.2) we proceed by the suitable re-arrangement

1

D2(r∗1)
=

2α

f

(t∗1 + 1/k)(t∗1 − tc)

t∗1 − 1
f + 1

k

. (3.2.9)

The latter is convenient because solutions can be understood as intersections of the r1-dependent LHS and
the t1-dependent RHS, which can be plotted separately as graphs of uni-variate functions. Indeed, this
process is outlined explicitly in Figures 3.3 and 3.4. Using the substitution

f =
bk

1 + ktc

equality (3.2.9) amounts to
1

D2(r∗1)
=

2α(1 + ktc)

bk

(t∗1 + 1/k)(t∗1 − tc)

t∗1 − t∗
. (3.2.10)

with
t∗ :=

1

k

(
1

b
− 1

)
+

tc
b
.

It is evident from the definition of t∗ that we have recovered the same partitioning of the parameter space
at b = 1. Indeed, if b < 1 then t∗ > tc and the denominator is zeroed at a value greater than tc, while the
opposite is true for b > 1. The critical case b = 1 is simpler, since t∗ = tc and the expression on the RHS of
(3.2.10) is linear in t1.

Strategies on the curve defined through (2.3.94) can resist invasion against mutants that are better/worse
defended if they satisfy the convexity condition (2.3.95), which in conjunction with (3.2.3) read(

k

1 + kt∗1

)2

− a

t∗1 − tc

(
f − k

1 + kt∗1

)
> 0. (3.2.11)

Under the assumption that t∗1 > tc this amounts to

t∗1
2 +

(
− 1

af
− 1

f
+

2

k

)
t∗1 −

1

fk
+

1

k2
+

tc
af

< 0. (3.2.12)

Since the LHS of (3.2.12) consists of a concave-up, second-order polynomial in t1 the inequality can only be
satisfied if the parabola has two distinct real roots and t∗1 ≥ 0 is chosen to lie between these. Indeed, we
require that the discriminant of the parabola in (3.2.12) is strictly positive, which amounts to

a2 + 2a(1− 2b) + 1 > 0. (3.2.13)

Once more we deduce that stability in the t-direction is conditional on the sign of a certain second-order

59



polynomial. Indeed, the parabola in a on the LHS of (3.2.13) is concave-up and there are three cases
to consider depending on whether its discriminant is negative, zero or positive. The discriminant of the
polynomial in (3.2.13) equals 16b2(1− 1/b), which suggests that if b < 1, all choices of a ∈ [0, 1] give rise to
a stable region through (2.3.85). If b = 1 all values of a ∈ [0, 1) will yield a stable region, while for b > 1

values of a ∈ [0, a−(b)) work - see Figure 3.1(a). Notice that we have labelled

a±(b) := 2b− 1± 2b
√

1− 1/b for b > 1, (3.2.14)

as the roots of the polynomial in (3.2.13). Values of a that yield a stable region should in principle also
be drawn form the interval (a+(b), 1], but it is clear that a+(b) > 1 for b > 1. Furthermore, the smaller
root a−(b) is decreasing over b > 1 with a−(1+) ≈ 1 and a−(b) ≈ 0 for b ≫ 1. It is also self-evident that
no strategy satisfying the equilibrium condition (3.2.2) can be stable in the t-direction whenever b > 1 and
a ∈ [a−(b), 1]. In conclusion, given an appropriate choice of f, k, tc and α the value of b = f(1 + ktc)/k is
such that when it is below unity t-stable strategies can resist invasion against mutant groups of any size,
whereas if it is above unity t-stable strategies can withstand invasion against mutant groups of maximum
size a−(b). Arguably, choices of f, k and tc corresponding to b = 1 are non-generic.

1

1

STABLE UNSTABLE

b

a

k

f

Figure 3.1: On the left figure 3.1(a) are shown the sizes a of mutant groups, against which the residents can
withstand invasion (along the t-direction) for given choice of b. A t-stable strategy with f, k and tc giving b ≥ 1
have a maximum associated mutant group size of a−(b) as described in (3.2.14) - which decreases down to zero as
b increases - whereas t-stable strategies with b < 1 can withstand invasion against mutant groups of all sizes. The
three x marks with colours blue, green and magenta have coordinates (b, a) given by (0.5, 0.4), (1, 0.3) and (1.5, 0.2)
respectively. Figure 3.1(b) on the right shows the b-level curves of the map (f, k) 7→ f

(
1+ktc

k

)
, with tc = 0.5. Blue,

green and magenta correspond to b = 0.5, b = 1 and b = 1.5 (as do the x marks in (a)) and the x marks in this figure
are positioned at coordinates (f, k) = (0.5, 2), (f, k) = (1, 2) and (f, k) = (1.5, 2).

In particular, we have established that for the appropriate choices of a and b described above - see Figure
3.1 - a strategy (r∗1 , t

∗
1) satisfying (3.2.2) satisfies (2.3.92)/(2.3.95) providing that T−STAB < t1 < T+

STAB ,
where

T±STAB =
1

2f

(
1

a
+ 1

)
− 1

k
± 1

2af

√
a2 + 2a(1− 2b) + 1 (3.2.15)

are the roots of the polynomial on the LHS of (3.2.12). These roots provide upper and lower bounds to
region defined through inequality (2.3.92)/(2.3.95) and are realised as horizontal lines(as they do not depend
on r1) in the strategy space. In particular, points (r∗1 , t∗1) on the curve (3.2.2) with T−STAB < t1 < T+

STAB are
stable against invasion from mutants (of maximum group size determined by b) that are more or less toxic,
while those outside of this region are unstable.

60



It can be shown that the level of the upper bound T+
STAB shrinks as the proportion of mutants (a) in the

local area grows. Indeed the partial derivative of this bound with respect to parameter a gives

∂aT
+
STAB = −

1 +
√

p(a)

2a2f
+

1 + a− 2b

2af
√
p(a)

where we have used the shorthand
p(a) := a2 + 2a(1− 2b) + 1.

Clearly, p(a) is negative for choices b > 1 and a ∈ [0, a−(b)), while also for the non-generic case b = 1 and
a ∈ [0, 1). For choices b < 1 and a ∈ [0, 1] we consider the re-scaled inequality

2a2f
√

p(a)∂aT
+
STAB < 0, (3.2.16)

which is equivalent to the trivially-true inequality

4a2b2
(
1− 1

b

)
< 0. (3.2.17)

We implement similar reasoning for the lower bound T−STAB

2a2f
√

p(a)∂aT
−
STAB < 0 ⇔ 4a2b2

(
1− 1/b

)
< 0 (3.2.18)

to conclude that for b < 1 and a ∈ [0, 1] the term T−STAB is shrinking with growing mutant group size a, while
it increases for growing a, whenever b > 1 and a ∈ [0, a−(b)). For non-generic choices b = 1 and a ∈ [0, 1)

the term T−STAB is constant over all mutant group sizes. Our observations on the bounding region T±STAB

are summarised in Figure 3.2.

0.4 1
0.5

a

t1

0.3 1

0.5

a

t1

0.2 0.5
0.5

a

t1

Figure 3.2: Plots showing TSTAB
+ (darker colour shades - top branches) and TSTAB

− (lighter colour shades -
bottom branches) versus a are shown in accordance with (3.2.15), where tc = 0.5 (dashed horizontal lines) has
been used. The specific values of b used in Figures 3.2 (a), (b) and (c) have been generated using the values of
f and k that are indicated by the x marks in Figure 3.1(b). The x marks in Figure 3.1(a) indicate the values of
a at which the dotted vertical line segments are drawn (their lengths indicating the width of the stable bands in
Figure 3). Notably the monotonicities of the curves are in agreement with conditions (3.2.16) and (3.2.18). In
particular, Figure 3.2(a) contains curves TSTAB

±(a) = 1
a
+ 0.5 ± 1

a

√
a2 + 1, line drawn at a = 0.4. Figure 3.2(b)

shows TSTAB
±(a) = 1

2a
±

√
a2 − 2a+ 1/2a, with TSTAB

− = tc, dotted line drawn at a = 0.3. Figure 3.2(c) shows
1
3a

− 1
6
± 1

3a

√
a2 − 4a+ 1 with the dotted line drawn at a = 0.2.

Strategies with non-zero signalling component r1 > 0 are stable in the r-direction providing they can resist
invasion against mutants that are either less or more conspicuous. This is guaranteed through conditions
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(2.3.92)/(2.3.96) and (2.3.93)/(2.3.97), which in terms of the functional forms in (3.2.1) amounts to

−D′(r1)

D(r1)
+ 2αD(r1)(t1 − tc)

2

[
D′(r1) + v

(
1

a
− 1

)
D(r1)

]
> 0 (3.2.19)

and
−D′(r1)

D(r1)
+ 2αD(r1)(t1 − tc)

2

[
D′(r1)− v

(
1

a
− 1

)
D(r1)

]
< 0. (3.2.20)

We should remark that for cryptic strategies with r1 = 0 only (3.2.20) is required to hold, since these types
risk invasion only from the more conspicuous morphs.

3.3 Explicit examples of evolutionarily stable outcomes: A numer-

ical analysis

In this subsection we make use of all results established thus far by assigning specific functional form to the
detection rate D(r) and choosing parameters within the partitions introduced in the previous subsection. In
particular, we consider

D(r) =
d0

d0 + (1− d0) exp (−r)
(3.3.1)

and without much loss in generality take d0 = 1/2 - this also suggests that completely cryptic prey that
are encountered run a 50% chance of being detected. In addition, we set the critical toxicity level at
tc = 0.5. It remains for us to constrain the remaining parameters α, a and v so as to explore a suitable
range of admissible solutions. Henceforth, specific plots are produced by making the appropriate choice
of parameters for a limited set of equalities and inequalities. From (2.3.94) through to (2.3.97) it is clear
that local ESSs consist of subsections of the curve satisfying the equilibrium condition (2.3.94). Before
determining explicit outcomes of ESS as subregions of the continuum we utilise the root-finding process
presented in (3.2.9) and (3.2.10) to account for the complete breadth of equilibria, all the while maintaining
the distinction b < 1, b = 1 and b > 1 - see Figures 3.3 and 3.4). The reader is directed to Figures 3.3 and 3.4
for a demonstration of the root-finding process that is described above. For fixed levels of prey-sensitivity
(and associated parameter values) the free parameter is the predation pressure (realised through α) and it
is curious to observe its impact on the solutions (r∗1 , t

∗
1) of (3.2.2).

Direct substitution of the detection rate (3.3.1) into condition (3.2.2) for (r∗1 , t
∗
1)

−f +
k

1 + kt∗1
+ 2α

t∗1 − 0.5

(1 + exp (−r∗1))
2
= 0 (3.3.2)

and is generated by interpreting it as an intersection of the LHS with the RHS in the equality below

(1 + exp (−r∗1))
2
=

2α

f

(t∗1 + 1/k)(t∗1 − 0.5)

t∗1 − t∗
. (3.3.3)

The root-finding process of (3.2.10) and (3.3.3) is illustrated directly in the plots of Figure 3.3 and
consists of a bifurcation in parameter α. Intersections of the LHS with the RHS in (3.3.3) generate the curve
(3.3.2), whose bifurcations in the level of predation pressure α are seen in Figure 3.4 and should be viewed
in tandem with Figure 3.3. It should also be noted that although the blue shades have been reserved for
b < 1, green ones for b = 1 and magenta ones for b > 1 the parameters of α used in Figure 3.3 and those
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used in Figure 3.4 are not the same. In Figure 3.3, solutions to (3.3.3) can be realised as intersections of
the coloured curves and the horizontal lines LHS = c with c ∈ (1, 4]. Intersections with c = 4 correspond
to cryptic solutions with r∗1 = 0 while those with c = 1− correspond to solutions of (3.3.2) that are very
bright such that r1 ≫ 1. Intersections with ever-decreasing values of c in this interval smoothly generate t∗1

parametrized with increasing r1 (an explicit formulation in the general setting can be seen in (3.3.2)). The
three plots are indicative of the partition-sensitive behaviour discussed thus far and correspond to choices of
parameters indicated in Figure 3.1.

As is clear from Figures 3.3 and 3.4 the b < 1 regime is especially interesting and there are two critical
values for the parameter α, which we define here. The root-finding process is summarised in equalities
(3.2.9), (3.2.10), the RHS of which admit a local minimum. The critical values of α are thus defined with
respect to their crossing of the limiting values of the LHS of the same equalities (3.2.9) and (3.2.10). That
is, the local minimum crosses the bottom dash-dotted line in Figure 3.3(a) for a value of α = α1 defined by

−f +
k

1 + kT+
SIGN

+ 2α1D
2(∞)(T+

SIGN − tc) = 0. (3.3.4)

The same minimum crosses the upper (at value four) dash-dotted line for α given by

−f +
k

1 + kT+
SIGN

+ 2α2D
2(0)(T+

SIGN − tc) = 0. (3.3.5)

From these definitions it is clear that there are three different types of solution to (3.3.2) depending on which
partition α is chosen from [0, α1) ∪ [α1, α2] ∪ (α2, 1].

In Figures 3.3(a) and 3.4(a) the two critical values of α are given by α1 = (3− 2
√
2)/4, α2 = (3− 2

√
2).

For α < (3−2
√
2)/4 the aversive maximum lies below unity (lower dash-dotted line) and the curve (3.3.2) in

Figure 3.4(a) consists of two disjointed roots in the aversive region that come closer with increasing r1. For
(3− 2

√
2)/4 < α < 3− 2

√
2 the minimum of Figure 3.3(a) lies between unity and four and so curve (3.3.2)

in Figure 3.4(a) exhibits an rmax-type vertex in the aversive region. For 3 − 2
√
2 < α ≤ 1 the minimum is

above four, which is why in Figure 3.4(a) curve (3.3.2) is not defined.
As explained earlier, the b-partitioning of the parameter space reflects prey sensitivity to investment in

defence, such that two distinct regimes are understood: prey with b < 1 are t-insensitive, while prey with
b > 1 are t-sensitive (b = 1 is a non-generic description that can be explained using the remaining cases).
This means that for given level of investment in toxicity the latter benefit less on account of a comparatively
lower rate of reproduction (lower f) and/or a lower level of protection against potentially-lethal attacks
(higher k). The differences between the two regimes are manifest in the equilibrium curves (3.3.2), which we
explore by varying the level of predation pressure (see Figure 3.4) in these. Comparing Figures 3.4(a) and
3.4(c) one observes that while t-insensitive prey exhibit both increasing and decreasing correlation among
aposematic traits (providing predation pressure is moderate-high), t-sensitive prey with b > 1 allow for
negatively correlated traits only.

A related observation is that when predation pressure is high, b < 1 individuals that are moderately
aversive tend to advertise increasing levels of defence, while their highly-aversive counterparts tend to adver-
tise reduced levels of toxicity - see disjointed roots in Figure 3.4(a). As predation pressure drops (not below
moderate) those moderately-defended prey advertise defence investment up to a certain point (rmax-type
vertex) beyond which increased toxicity is advertised less. This implies that as predation pressure shifts from
high to moderate the range of appearances shrinks so that highly conspicuous morphs become less and less
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likely. The effect is compounded as levels of predation pressure drop below moderate such that t-insensitive
prey have no conspicuous solutions (recall strategies with t∗1 < tc fail condition (2.3.93)/(2.3.97)).

This phenomenon makes sense since the only purpose of increased conspicuousness is to reduce the
probability of attack (given detection has occurred); as the threat of predation drops this may not be worth
increased rates of detection. This should be contrasted with those t-sensitive prey that exhibit aposematic
solutions for all levels of predation pressure. The situation is simpler for b > 1 individuals for which it holds
that as predation pressure drops a certain level of conspicuousness is associated with ever-decreasing (not
below the aversive) levels of defence. Once more, this is a sensical effect since for t-sensitive individuals
investment in defence is inherently not so beneficial and can therefore only be justified if threat due to
predation is considerable. As the latter diminishes, so does the need for investment in defences. A final remark
is that when predation pressure is high (regardless of sensitivity to investment in toxicity) evolutionarily
stable outcomes are most likely aversive.
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Figure 3.3: Plots show variation in α of the RHS of (3.2.9) for the regimes b < 1 (blue), b = 1 (green) and
b > 1 (magenta), such that in each plot the darker shades correspond to higher values of α. Only sections of curves
contained inside the unshaded region correspond to real ESSs and there are two grey-shaded regions that are empty
of solutions: (i) the diagonally-checkered vertical strips, on which the RHS of (3.2.10) is negative; (ii) the vertically-
striped horizontal sections, on which the LHS of (3.2.10), i.e. 1/D2(r1) assumes values outside of the admissible
range (1, 4]. (a) Values f = 0.5, k = 2, tc = 0.5 and α = 0.035, 0.065, 0.1 have been used; curves with α < 0.042 have
minima inside the bottom grey region, curves with 0.042 ≤ α ≤ 0.171 have minima inside the unshaded region and
curves with α > 0.171 are entirely contained in the top grey-shaded region - see also (3.3.4) and (3.3.5). (b) Values
b = 1, f = 1, k = 2, tc = 0.5 and α = 0.25, 0.4, 0.8 are used and curves with α > 4 (not shown) would be entirely
outside the unshaded region. (c) Values b = 1.5, f = 1.5, k = 2, tc = 0.5 and α = 0.4, 0.6, 1.2 have been used and all
values of α yield solutions.
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Figure 3.4: Plots show curves of (3.3.2) that result from the root-finding process illustrated in Figure 3.3, such that
like-coloured curves correspond to outcomes with equal parameter values. For instance, the bottom curve in Figure
3.3(a), with the lightest shade of blue corresponds to the right-most equilibrium curve of Figure 3.4(a) with the same
colour-shading. The diagonally-checkered vertical strips of Figure 3 are seen here as horizontal grey-shaded strips.
In Figure 3.4(a) the equilibria are disjointed for small values of α and join together at a local rmax, which shifts
toward lower conspicuousness until undefined at r1 < 0. In Figures 3.4(b) & (c) The level of toxicity t∗1 satisfying
(??) shrinks with increasing levels of r∗1 and α.

Having explored the full breadth of equilibria in Figure 3.4, we presently provide examples of these that
are locally evolutionarily stable. Sections of the curve (3.3.2) with t∗1 > 0 that satisfy (2.3.92)/(2.3.95) if
they are contained within T−STAB < t∗1 < T+

STAB , with T±STAB given as in (3.2.15). Strategies (r∗1 , t
∗
1) with

non-zero signalling component satisfy (2.3.96) and (2.3.93)/(2.3.97) if in addition these are contained within
the regions bounded by inequalities (3.3.6) and (3.3.7). With parameter values as specified these amount to
the pair

− 1

1 + exp (r1)
+ 2α

(t1 − 0.5)2

(1 + exp (−r1))
2

[
exp(−r1)

(1 + exp(−r1))
+ v

(
1

a
− 1

)]
> 0 (3.3.6)

− 1

1 + exp (r1)
+ 2α

(t1 − 0.5)2

(1 + exp (−r1))
2

[
exp(−r1)

(1 + exp(−r1))
− v

(
1

a
− 1

)]
< 0. (3.3.7)

The discussion thus far has concerned the evolutionary stability of strategies that are aversive (i.e. I1 > 0)
and for good reason; these map out the largest region in the strategy space and therefore consist of the
overwhelming majority of cases to be considered. Indeed, since the conspicuous signalling of non-aversive
strategies is not evolutionarily stable on account of (3.2.19) the only possibility for a non-aversive strategy
to be ESS is crypsis. That is, we now briefly account for those strategies with r1 = 0 and 0 ≤ t1 ≤ tc. The
evolutionary stability of aversive strategies has been accounted for by means of the Q(I1) = q0 exp(−qI1)

branch of the attack probability function in (3.2.1), for non-aversive strategies the simpler branch Q(I1) = q0

is employed for all levels of aversiveness I1 ≤ 0.
Alongside cryptic strategies that are aversive, there are now two additional possibilities for a non-aversive

cryptic solution: either (0, t∗1) with 0 ≤ t∗1 ≤ tc or the origin (0, 0), but not both. On account of (3.2.1) we
have

Q(I1) = q0 and in particular that
Q′(I1)

Q(I1)
= 0 for all I1 ≤ 0.

This assumption suggests that predators do not distinguish between different levels of defence among prey
that they find attractive to consume and attack these with some fixed rate. While this assumption is crude it
is perhaps not too far from the truth. Furthermore, an immediate consequence is that marginally better (or
less)-defended mutant types are attacked by the predators visiting their site at the same rate as residents.
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Since Q′/Q features strongly in the conditions for ESS - see (2.3.94) through to (2.3.97) these are notably
simpler here. To that, we observe immediately that stability in the r-direction for non-aversive cryptic
strategies is guaranteed automatically since (2.3.87) amounts to the trivially-true inequality

−D′(0)

D(0)
< 0. (3.3.8)

The latter is straightforward; since detectability is the only factor influencing marginal differences in fitness
the more conspicuous mutant admits a clear disadvantage compared with the resident. It also follows that
the evolutionary stability of non-aversive strategies is governed by their stability along the t-direction.

The origin is a local ESS if (2.3.86) holds. Setting λ = 0 and Q′/Q = 0 into (3.1.6) suggests that this is
true if f > k. Strategy (0, t∗1) with t∗1 < tc must satisfies (2.3.91), which is true if

−f +
k

1 + kt∗1
= 0 ⇔ t∗1 =

1

f
− 1

k
. (3.3.9)

As it happens, any solution (0, t∗1) of (3.3.9) satisfies inequality (2.3.92) since setting Q′/Q = 0 into this
amounts to the trivially true statement

−f2 +
2k2

(1 + kt∗1)
2
> 0 ⇔ t∗1 <

√
2

f
− 1

k
. (3.3.10)

In summary, we deduce that if f > k then the origin is a non-aversive ESS, while if f < k and 1/f−1/k < tc

then the LHS of the latter is an ESS.
We have mentioned that the surface provided in the LHS of (3.2.3) consists of a family of concave-up

parabolas parametrized by r1 such that the equilibrium curve consists of the points in the strategy space
where it intersects the (r1, t1)-plane. With regards to this picture, the partitioning of the parameter space
is as follows. If b < 1 the family of polynomials crosses the (r1, t1)-plane twice (in approaching and receding
the minimum surfaces local t1-minimum). As r∗1 increases the associated level of defence for the top root
sinks while the defence for the bottom root crossing increase until for some critical level of the signalling
the two roots meet - see Figure 3.5(a). The case b = 1 describes the borderline case (non-generic) in which
the surface of polynomials in (3.2.3) doesn’t cross but "touches" the (r1, t1)-plane along a family of local
t1-minima shown in Figure 3.5(b); if b > 1 the surface crosses the (r1, t1) - plane at most once for given r1

at a level that corresponds to the top root - the other root is non-sensical - which naturally decreases with
increasing r1 as shown in Figure 3.5(c).

Figure 3.5 contains important examples of ESSs, which constitute distinct realisations emerging from the
choices for parameters a, b, f, k and tc that are indicated by the x marks in the plots of Figure 3.1; additional
choices for a and v are specified in the caption. In Figure 3.5(a), strategies in the region below the bottom
brown curve fail condition (3.3.6), while strategies above the top brown curve fail condition (3.3.7), which
implies that the section of (3.3.2) that lies between these two curves satisfies both (3.3.6) and (3.3.7). The
subsection that is also contained within the blue solid lines (as indicated by the solid markers) satisfies
T−STAB < t∗1 < T+

STAB with T±STAB given as in (3.2.15) and therefore contains local ESSs, whereby traits
can either be positively or negatively correlated. There are two intersections of (3.3.2) with the vertical axis
r1 = 0. The first is not shown and is not a cryptic ESS as it has t∗1 < T−STAB , while the other intersection
(shown) is a true cryptic ESS (0, t∗1), since it satisfies (3.3.7) and T−STAB < t∗1 < T+

STAB , i.e. it sits below
the top brown curve and between the two solid blue lines. It follows directly that the origin is not a cryptic
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ESS.
Figure 3.5(b) is more straightforward to analyse because (3.3.7) is everywhere satisfied. The pair of

brown dash-dotted lines are the zero level sets of the LHS of (3.3.6), so that only the region inbetween these
fails the condition in (3.3.6). Since the curve in (3.3.2) is entirely above the top brown curve, the section of
this that is below the top solid green line (as indicated by the marker) consists of local ESSs, all of which
suggest a negative correlation between conspicuousness and defence. The intersection of (3.3.2) with r1 = 0

is given as (0, t∗1) with t∗1 > T+
STAB and is therefore not an ESS as it fails (2.3.92); the origin (0, 0) is a true

cryptic ESS.
In Figure 3.5(c) the top brown dash-dotted curve is the zero level set of the LHS of (3.3.7), so that the

region above it fails the condition in (3.3.7), while the pair of brown curves below this constitute the zero
level set of (3.3.6) so that the region inbetween them fails inequality (3.3.6). This means that the section
of the curve (3.3.2) in between the top and middle brown satisfies both (3.3.6) and (3.3.7) and therefore
contains local ESSs; the next section (as indicated by the solid markers) below the middle brown curve fails
(3.3.6) and the last section of the curve above the brown curve again satisfies both (3.3.6) and (3.3.7) and
therefore contains local ESSs. The intersection of the curve (3.3.2) with r1 = 0 is a cryptic ESS (0, t∗1) since
it satisfies T−STAB < t∗1 < T+

STAB and (3.3.7). The origin is not a cryptic ESS.
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Figure 3.5: All three figures contain plots of local ESSs in strategy space as subsections of the t-equilibrium curve
(3.3.2) shown as black solid lines and partitioned by black markers (filled X marks indicate cryptic solutions). The
dashed-dotted lines mark the natural cut-off at tc = 0.5, while the brown dashed lines represent the zero level sets of
the LHS of (3.3.6) and (3.3.7). In (a) we have set b = 0.5, a = 0.4, f = 0.5, k = 2, α = 0.0445 and v = 0.04. The solid
curve has an rmax-type vertex at t1 = T+

SIGN = 1.5 +
√
2 and unique cryptic ESS at the aversive level t1 ≈ 1.601.

In (b) we have set b = 1, a = 0.3, f = 1, k = 2, α = 0.3 and v = 0.4. The section of the t-equilibrium curve that lies
under the upper green solid line and above the brown dashed line consists of a continuum on which the ESS level of
defence decreases with increasing level of the conspicuousness; t1 = 1/2 is the unique cryptic ESS, although this may
be non-generic. In (c) we have set b = 1.5, a = 0.2, f = 1.5, k = 2, α = 1.6 and v = 0.05. The section of the solid
black curve in between the lower and upper brown dotted lines consists of a decreasing continuum of local ESSs, the
section under the lower brown curve does not contain ESSs, while the last section that is once more in between the
middle and top brown lines consists of a second decreasing continuum of ESSs. The intersection of the equilibrium
curve with r1 = 0 is an aversive cryptic ESS, while t1 = 1/6 admits a non-aversive cryptic solution.

3.4 Remarks on the convergence stability of local ESSs

A trivial re-arrangement of (3.3.2) reads

k

1 + kt∗1
+ 2αD2(r∗1)(t

∗
1 − tc) = f. (3.4.1)

The two terms on the LHS account for the marginal advantage of the more conspicuous mutant associated
with (i) a reduced probability of being captured and (ii) a reduced rate of attack (perceived as more aversive).
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The term on the RHS represents the marginal disadvantage of the more toxic mutant associated with reduced
fecundity. A resident strategy (r∗1 , t

∗
1) is an element of (3.4.1) if the LHS equals the RHS, or rather, to first

order, the marginal advantage of the better-defended mutant exactly matches it’s fecundity disadvantage.
The mutant fitness is almost everywhere Cl for l ≥ 2 and therefore the argument can be reversed when
analysing the trade-off to a less-defended mutant. For (r∗1 , t

∗
1) ∈ D2 ⊔ D3 to be locally evolutionarily stable

we also require that it satisfies (2.3.92)/(2.3.95). Physically, this condition guarantees that more/less toxic
mutants ultimately do experience a fitness disadvantage compared with their resident counterparts but these
enter in as second order terms.

Strategies failing the equilibrium condition (3.4.1) in such a way that the LHS is less than the RHS are
situated on a down-slope of the mutant payoff along t1 in the sense that the marginal fitness advantage of
the better-defended mutant is less than its fecundity disadvantage. Increasing the mutant defence in the
vicinity of such a resident strategy leads to a drop in the mutant fitness. Conversely, resident strategies for
which the LHS is greater than the RHS in (3.4.1) are on an up-slope of the mutant payoff along t1 in the
sense that increasing the mutant toxicity in the vicinity of the resident strategy will increase its marginal
advantage more than fecundity disadvantages will decrease it.

It is clear that the LHS of (3.4.1) is increasing with respect to r∗1 on account of the term proportional
to D2; its monotonicity with respect to t∗1 however is less straightforward. The LHS is t∗1-increasing if and
only if

∂t∗1LHS > 0 ⇔ 2αD2(r∗1)−
k2

(1 + kt∗1)
2
> 0. (3.4.2)

As we established in our discussion of 3.1.1, the above inequality is satisfied whenever t∗1 > T+
SIGN , whenever

b < 1 and is trivially true over the aversive and conspicuous region whenever b ≥ 1. Indeed, this provides
a more tangible explanation of why the curve in (3.2.4) in these instances is understood as the graph of
a function t∗1(r

∗
1) whose value decreases with increasing levels of the conspicuousness r∗1 . Since the LHS of

(3.4.1) is increasing with respect to r∗1 this means that for a marginal increase in r∗1 the associated quantity
t∗1 decreases (by an amount that depends on the slope of the curve) so as to compensate and keep the LHS
constant and equal to the RHS, i.e. f . The only instance in which the curve defined through (3.4.1) is
increasing is for t∗1 < T+

SIGN , whenever b < 1. In this case, the reverse of inequality (3.4.2) holds, which
means that the LHS of (3.4.1) is decreasing with respect to t∗1. A direct implication of this is that an increase
in r∗1 must be coupled by an increase in t∗1 to maintain equilibrium.

We now restrict our attention to regions of the strategy space in which both (3.3.6) and (3.3.7) hold,
which can be achieved by picking large enough v. We can use the above reasoning to determine which subsets
of the equilibrium continuum are convergence stable and which are not. The general result is that sections
of the continuum on which conspicuousness and defence exhibit a decreasing relationship are unstable, while
those on which the relationship is increasing are stable. Stability in this instance is understood as follows.
We begin by considering the instance b < 1 and the branches of the curve (3.4.1) separately. Assume that
(r∗1 , t

∗
1) is contained in the bottom branch of (3.2.4) the resident population is playing some strategy (r̂1, t̂1)

with t̂1 < t∗1. Since t̂1 < t∗1 < T+
SIGN it follows that the LHS of (3.4.1) is decreasing with respect to the

resident level of defence, implying in turn that the mutant payoff in the vicinity of (r∗1 , t̂1) is situated on a
down-slope of the resident defence. If we hypothesise a process whereby the resident strategy shifts toward
increasing fitness through a sequence of selectively advantageous mutations then it is clear that over time
resident strategy will tend to the equilibrium strategy (r∗1 , t

∗
1).

Making use of the property that the mutant fitness is almost everywhere Cl with l ≥ 2 in the vicinity of
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the resident value it also holds that if the residents were playing a strategy (r∗1 , t̂1) with t∗1 < t̂1 < T+
SIGN

then such a strategy would be situated on a down-slope of the mutant payoff along t. By the same token,
a sequence of beneficial mutations would send the resident strategy to the equilibrium value vertically and
along r1. In this conception it is also notable that mutations in r cannot invade as we can freely pick sections
of the curve that are contained in the region specified by inequalities (3.2.19) and (3.2.20). Convergence
stability of the bottom ESS branch in the b < 1 description is therefore summarised by a sequence of vertical
arrows pointing toward the branch.

Continuing with the b < 1 example, we consider the top branch of (3.2.4) and in particular, the conver-
gence stability of a point (r∗1 , t

∗
1) on this. Assume that the prey population is playing some strategy (r∗1 , t̂1),

where T+
SIGN < t̂1 < t∗1. Since for t̂1 > T+

SIGN the LHS of (3.4.1) is increasing with respect to t∗1 it is clear
that such a resident strategy is on a t down-slope of the mutant payoff. This means that the LHS of (3.4.1)
is less than the RHS and that a less toxic mutant has a fitness advantage. This also means that selectively
advantageous mutation will send the prey strategy toward the lower branch of the equilibrium curve along
the r1 = const. vertical line. Strategies between the two branches are shifted toward the bottom branch
under this process. It is also true that if the prey were to play some strategy (r∗1 , t̂1) with t̂1 > t∗1 that the
LHS of (3.4.1) would exceed the RHS, implying that the strategy is situated on a t up-slope of the mutant
payoff. As is expected from the differentiability of the mutant payoff along t it is the case that successive
mutation along the direction of increased fitness will eventually send the population toward ever-increasing
values of toxicity along the vertical r1 = const. line.

In particular, we have established that for b < 1 the top branch of the equilibrium curve is not convergence
stable and indeed, in an r- stable vicinity, neighbouring strategies with higher toxicity are "repelled" along
a vertical line, while strategies with lower toxicity are "repelled" along vertical lines that point toward
the bottom branch. The bottom branch is convergence stable in the sense that neighbouring strategies in
an r-stable vicinity with toxicity greater or lower than the equilibrium value are "attracted" toward the
branch along vertical lines. The convergence stability analysis described above can be extended easily to
the equilibrium curves with b ≥ 1. Indeed, in such instances the curve of (3.4.1) is manifest as a decreasing
toxicity-conspicuousness continuum that is convergence unstable in the same sense that the top branch of
the b < 1 equilibrium curve is convergence unstable. Furthermore, this also means that the continuum (on
which conspicuousness and defence are increasing) described by the example functions of Broom et al. (2008)
is also convergence stable in the same sense. That is, in the vicinity of a strategy (r∗1 , t

∗
1) that satisfies (3.3.6)

and (3.3.7) resident strategies are attracted toward equilibrium along vertical lines.

3.5 Some discussion on the honest signalling of aposematism

In this chapter we have built on the game-theoretical model of Broom et al. (2006) in accordance with
Scaramangas and Broom (2022), whose findings constitute an important exploration into the far-reaching
implications of the former. We have established that Broom et al. (2006) can be released from some restrictive
conjectures that were made upon its publication and hence argue that it is the only model-based study
to provide sound justification for some more curious instances of aposematic behaviour observed among
species of the Dendrobatidae family. In particular, we have shown that evolutionarily stable combinations
of aposematic traits can be either positively or negatively correlated (on an across-populations basis) and
that for given level of conspicuousness there can exist more than one optimal levels of defence. Our results
were demonstrated in section 3.3, in which we consider a set of functional forms that lead us to explore
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a larger plethora of evolutionarily stable outcomes, in which the relationship between aposematic traits is
naturally more complex. The example of (3.2.1) is biologically plausible and the procedure for studying its
properties relating to evolutionary stability are indicative of the complexities associated with the stability of
natural systems. Indeed, we have discovered that the sensitivity of prey to investment in defence, which is
an inherent property and perhaps indicative of the stage of evolution of the defence in question (early-stage
defences tend to incur larger costs as suggested in Tarvin et al., 2017) plays an important role in the outcome
that we expect to see.

In addition to the game-theoretical treatments of Leimar et al. (1986) and Broom et al. (2006) that are
discussed in the introduction, there exists a range of publications that examine the co-evolution of aposematic
traits from the mathematical modelling perspective and within these a variety of driving mechanisms and
notions for optimality are considered (see Summers et al., 2015 for a systematic review). Among these,
the majority (see for example M. P. Speed and Franks, 2014, Holen and Svennungsen, 2012, Lee et al.,
2011, Blount et al., 2009, and Franks et al., 2009) alludes to the idea that conspicuousness and defence
should be positively correlated, with M. P. Speed and Ruxton (2007) admitting the only exception to this.
The latter suggests that this correlation can be either positive or negative depending on the variation in
marginal costs of aposematic display across populations. Although sound and intuitive, the mechanism
presented therein is not expounded in the level of detail that is used here, nor are strategies ’assessed’ in
terms of their evolutionary stability. Another contribution is that of Svennungsen and Holen (2007), who
investigate the possibility of a stable dimorphism using a game-theoretical description that is similar to our
own. However, their focus is automimicry and deal with a single defensive trait as opposed to considering
the joint co-evolution of a defensive and signalling trait.

Scaramangas and Broom (2022) is the only theoretical study suggesting that negatively correlated apose-
matic traits (across different populations) could be evolutionarily stable (as mentioned in the introduction
claims that Leimar et al., 1986 identified negatively correlated solutions are not correct). It is important
to stress that in our study correlations between aposematic traits are made on an across-populations basis.
This is neither true among all model-based studies, nor among empirical studies, some of which additionally
consider within population variations while others consider variations across species.

An important assumption of Broom et al. (2006) that is perhaps not emphasised in that publication is
that predators learn quickly to avoid prey that are unpalatable and that aversive learning occupies a short
investigative period that takes place early on in their life. Insectivorous birds residing in tropical regions may
consume hundreds of insects a day and live several years; for the duration of their life they impose mortality
based on these early experiences and could closely fit the predator assumptions of Broom et al. (2006) detailed
above. There is a considerable volume of evidence in support of this "fast learner" assumption, including
the field observations of L. P. Brower (1969) on blue jay - monarch butterfly systems, the commentary of
Mallet (2001) and the observations of Darst et al. (2006) among others, on chickens feeding on poisonous
Dendrobatidae frogs.

Among empirical studies, the majority observe that aposematic traits are positively correlated. In par-
ticular, Arenas et al. (2015), Blount et al. (2012), Maan and Cummings (2012a), Vidal-Cordero et al. (2012),
Santos and Cannatella (2011), Cortesi and Cheney (2010), Bezzerides et al. (2007) and Summers and Clough
(2001b) have all observed positive correlations, while I. J. Wang (2011) and Darst et al. (2006) observed neg-
ative correlations and lastly Daly and Myers (1967) observed no correlation whatsoever. These studies have
considered samples of taxa ranging from marine opisthobranchs, wasps, beetles and frogs and while some
consider within-population variations, others look at variations across populations and others yet consider
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different species of a given genus. Prior to Scaramangas and Broom (2022), no model-based approach could
provide sound reasoning to support the possibility of negative correlations and indeed we argue that the
latter is the only study containing causal confirmation that evolutionarily stable combinations of aposematic
traits need not be positively correlated (but instead follow a more complex relationship).

The authors of Broom et al. (2006) had originally anticipated that conspicuousness and defence should
be positively correlated. Indeed, this result was confirmed by the functional forms considered therein and
subsequently in Broom et al. (2008) and is in fact a sensible assertion to make: not only does this appear
to be the prevailing pattern in nature but one would expect that more conspicuous prey should be better
defended as they are more likely to be attacked. As we have demonstrated, this reasoning is not entirely
accurate, especially once aposematism has become established within a population of prey (although it
may better apply during the evolutionary transition from crypsis to aposematic signalling) and instances in
nature that appear to negate this cannot be ignored. Indeed, using reflectance spectra and toxicity assays on
different populations of Oophaga granulifera (a species of poison frog) I. J. Wang (2011) observed that the less
conspicuous morphs were the most toxic, while the most conspicuous ones were the least toxic. Darst et al.
(2006) observed a similar effect among different genera of the Dendrobatidae family and hence hypothesised
that aposematic traits become decoupled so that arbitrary combinations can reduce anti-predator attack
rates. This suggestion supports our own conclusion that for given level of conspicuousness the optimal
level of toxicity (providing this exists) need not be unique. Furthermore, Darst et al. (2006) propose that
potentially costly unprofitability may be traded off in favour of bright colouration so that optimal investment
in secondary defence will diminish when more cost-effective conspicuousness evolves as a primary defence.

It should be noted that this differential costs analysis of Darst et al. (2006) is based on the following
assumptions: both the production of the signal and production of the defence are physiologically costly, even
if no attacks occur on a particular prey individual (by contrast, we assume that only investment in toxicity is
physiologically costly); increased conspicuousness is both increasingly physiologically costly and increasingly
effective in reducing the likelihood that a predator successfully kills discovered prey; the same assumptions
are true of increased investment in the defence. Thus there is a natural trade-off between investment in
either signal or defence that leads to the reported negative correlation; although this may provide a sufficient
explanation, it may in fact not be necessary, since the same effect can be explained by evolutionary stability
considerations alone. A concise explanation of how we retrieved negatively correlated solutions in this chapter
cannot be given in an equally similar manner; the model at hand is far more elaborate and as has become
clear from comparison with Broom et al. (2008) that the particular results retrieved depend strongly on
the functional forms chosen. While in Broom et al. (2008) only increasing solutions are possible, the slight
modification in Q has opened up the possibility for both positively and negatively correlated traits. Indeed, it
is notable herein that individuals that are more sensitive to investment in toxicity (b ≥ 1) exhibit a negative
correlation, while less sensitive individuals (b < 1) can have both positive and negative correlations; such an
effect is unlikely to hold generally.

As far as empirical testing of the model goes, this is a difficult process; the model is elaborate and
controlling all the parameters involved would admit an unrealistic task for the biologist. Nonetheless, the
connection between Broom et al. (2006) and Darst et al. (2006) can be clarified to some extent. In particular,
although the latter is most concerned with the effectiveness of choice of strategy on reducing attack by
predators, we are more concerned with its contribution to overall prey fitness. Fitness is understood as the
number of offspring produced per life cycle and naturally depends on predator-induced mortality, suggesting
that the work of Darst et al. (2006) is important, but which should be supported by additional demographic
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measurements. For example, a population consisting of mainly young prey would indicate high fecundity
and predator-induced mortality, while a population consisting mainly of old prey suggests low fecundity and
low predation pressure; these data can be cross-examined with strategy considerations by means of toxicity
assays and reflectance measurements as in Darst et al. (2006) to establish a connection between strategy
and fitness. Such measurements rely on knowledge of average lifespan among camouflaged prey and should
be carried out on an across-populations basis; in practice it may be difficult to identify populations of a
given species playing a range of different strategies. Finally, it would be interesting to establish whether
investment in conspicuousness is physiologically costly; this would require that we find two populations that
are equally toxic and differ only in conspicuousness and even so, demographic differences may not be directly
related to differences in the fecundity but to the overall fitness instead.

This brief accounting of empirical and model-based studies (and indeed of this present chapter’s relevance
to these) would be incomplete if some inherent difficulties in interpreting empirical findings were not pointed
out. For example (i) studies on certain animals may be naturally more/less relevant to a given model and
further, (ii) some are carried out on an intrapopulation basis, others on an across-populations and others
yet on an across-species basis (Summers et al., 2015). Notably (i) and (ii) limit the number of potentially
relevant studies (there are already not that many) to any given model. (iii) It is believed that there are
several factors driving aposematism in real systems (such as variation in life history or community structure
for example) and the extent of their individual contributions in any given system may not be generally
known (see M. P. Speed and Ruxton, 2007). (iv) Experimentalists use different operational definitions of
conspicuousness and toxicity and the specific techniques used for determining these may make it difficult
to compare empirical studies to each other, even if the variables in (i) and (ii) are fixed (see chapter 6 of
Ruxton et al., 2019).

This chapter and Scaramangas and Broom (2022) constitute a significant advancement to the model
of Broom et al. (2006), which to this day is among the leading model-based treatments of aposematism.
Nonetheless, there are areas that remain to be explored within this and which we invite the reader to
consider. For instance, while the original model does account for the impact of prey appearance and the
degree of kin grouping on the evolutionarily stable levels of defence within the population, this is ignored
in Scaramangas and Broom (2022) and indeed throughout this manuscript. Indeed, while our omission of
the contribution of colouration to prey appearance (and the existence of non-point solutions) was to avoid
unnecessary complexity with regard to studying the co-evolution of conspicuousness and defence, it remains
an omission, which we encourage the reader to consider together with the new ideas in this chapter.

For example, although we provide explicit examples of local ESSs and discuss in section 3.4 whether
these can be attained through small, selectively advantageous mutations (see convergence stability) we do
not provide explicit calculations on this but rely on verbal explanations. Indeed, it would be of interest to
determine whether a population playing an unstable strategy in the locality of the an ESS could eventually
converge to the latter. This is precisely the theme of the following chapter.

The model of Broom et al. (2006) can be extended to consider mimicry systems as well as more general
co-existence regimes. For example, we may conceive of a scenario wherein the prey population is made up
two types (belonging or not to the same species) each playing a different strategy such that the intention is
to determine whether these can co-exist in a certain proportion over the long term. This is a possibility if
the prey population is in a state of stable equilibrium, whereby the more fast-paced population dynamics are
stable and in addition, each type is (locally) evolutionarily stable in the sense of the definition provided in
section 2. Stable co-existence is an interesting problem to consider in generality and particularly so because
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Batesian and automimicry systems are specific examples of this. Indeed, imposing that both types of prey
are equally conspicuous and such that one is positively aversive, while the other is attractive describes a
mimicry situation. Although the most immediate extension is automimicry, in which both types belong to the
same species, our own interest is in Batesian mimicry - this is also more challenging because to each species
pertains a different set of functional forms (such as those considered in section 3).The work of Svennungsen
and Holen (2007) is particularly relevant to the extension of our own model to automimicry systems; they
investigate the possibility of an evolutionarily stable dimorphism within a game-theoretical framework that
resembles our own. As mentioned previously, however, our model studies the joint co-evolution of aposematic
traits as opposed to aposematic defences in isolation. Finally, whether or not conspicuous signals can be
better recollected by predators in not fully understood and so it may be interesting to consider instances
in which the rate of recollection is not simply a scalar of the rate of detection, but is instead scaled by a
function that increases with prey conspicuousness.
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Chapter 4

Theoretical and genetic algorithm
predictions on ESSs with non-zero rates
of background mortality

Our understanding of aposematism (the conspicuous signalling of a defence for the deterrence of predators)
has advanced notably since its first observation in the late nineteenth century. The purpose of this chapter
is two-fold: first, to determine the relationship between evolutionarily stable levels of defence and signal
strength under various regimes of background mortality and colony size (previous attempts have assumed
predation to be the only source of death). Second, to compare these predictions with simulations of finite
prey populations that are subject to random local mutation. We consider jointly the roles of absolute resident
fitness, marginal mutant fitness and stochasticity in the evolution of prey traits and discuss the importance
of population size in the above. The work presented here provides new insight into Wallace’s first recorded
"warning colouration" in animals. Indeed, it extends the scope of the celebrated model by Broom et al.
(2006) both from the analytical standpoint (by accounting for regimes of varying background mortality and
colony size) and from the practical standpoint (by assessing its efficacy and limitations in predicting the
evolution of prey traits in finite simulated populations). Both developments constitute new contributions
to the theory of aposematic signalling. The presentation in this chapter follows closely the (submitted)
publication by Scaramangas et al. (2022), which the reader is encouraged to consult alongside this.

The observation of aposematism in the natural world would seem troubling from the evolutionary stand-
point as it is sensible to surmise that conspicuous individuals run a clear disadvantage compared with their
non-signalling counterparts. It would be unfeasible to control all the parameters of the model in a free
experimental setup and at the very least, challenging in a laboratory setup; we therefore seek to compare
our predictions for a finite population of prey within the context of a genetic algorithm model. We seek to
address three areas that appear less acknowledged in the literature: (a) In a large enough (effectively infinite)
population of prey is there a certain manner in which defence should be advertised to make the population
more likely to retain its composition over successive generations and under the presence of mutation? (b)
how might our answer in (a) change under different regimes of background levels of mortality? (c) how might
our answers in (a) and (b) be adapted to a population of prey that is finite but large enough that its traits
are not fully driven by stochasticity?
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4.1 ESS analysis for the genetic algorithm model

In the previous chapter we considered the functional forms used in Broom et al. (2008) with modification
in the dependence of Q on the perceived aversiveness - see (3.2.1). While plausible, this modification in Q

allowed us to demonstrate that it is not generally possible to arrive at an explicit expression involving the
equilibrium level(s) of defence and the conspicuousness. In this section we re-visit the forms of Broom et al.
(2008) and introduce non-zero rates of background mortality, which we consider alongside non-zero levels of
the local relatedness (a circumstance not previously explored). Presently we predict that (for fixed signalling
component) the equilibrium level of defence decreases as the background mortality rate increases. In addition,
we predict that an increase in the same parameter may cause a shift from a decreasing relationship to an
increasing one. The above results are confirmed numerically in sections 4.3 and 4.4 and are interesting
not only from the mathematical modelling perspective but are perhaps of innate interest to the biologist,
particularly since there is no clear consensus regarding how different components of aposematic traits are
and should be related in the natural world - see Summers et al. (2015).

In this section we outline a general procedure for interpreting the evolution of prey traits in the simulated
populations by considering (i) the marginal mutant fitness along the t-direction; the marginal mutant fitness
along the r-direction and (iii) the dependence of the absolute resident fitness on the equilibrium conspic-
uousness. The developments of this section form the building block for the analysis of the simulations in
sections 4.3 and 4.4, in which we discuss explicit examples with λ = 0 and λ > 0, treating occasions with
zero and non-zero colony size separately therein. The functional forms are given as

F (t) := f0 exp(−ft); H(t) := t− tc; K(t) :=
k0

1 + kt

L(r) = D(r) =
1

1 + exp(−r1)
; Q(I) := min (1, q0 exp(−qI)) ; S(x) = max(1− vx, 0) (4.1.1)

and are shown in Figure 4.1 below. We emphasise that while previous works including Broom et al. (2008)
have considered (4.1.1) only alongside λ = 0 we presently account for scenarios with λ = 0 and λ ̸= 0

alongside zero and non-zero levels of local clustering.
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Figure 4.1: The example functions of (4.1.1) as used in the genetic algorithm model with specific parameter values
chosen for purposes of demonstration only. (a) [Top Left] The functional forms for the probability of escaping
a mounted attack (K), the fecundity (F ) and the aversiveness of an experience (H) plotted as functions of prey
toxicity. Parameter values given as k0 = 0.75 and k = 4; f0 = 1.5 and f = 3 and tc = 0.5 respectively. (b) [Top
Right] The functional form for the (uni-variate) similarity function S plotted with respect to the generic variable x
and parameter v = 0.8. (c) [Bottom Left] The form for the probability of attack Q with q0 = 0.8 and q = 2 plotted as
a function of the perceived aversiveness; (d) [Bottom Right] The form for the rate of detection plotted as a function
of prey conspicuousness D with d0 = 0.5.

Mutant fitness

We now narrow our attention to the functional forms of (4.1.1) and draw analytical conclusions about the
behaviour of the system at ESS. For a strategy (r∗1 , t

∗
1) ∈ D2 ⊔D3 to be locally evolutionarily stable it must

satisfy (2.3.91)/(2.3.94). Through the forms in (4.1.1) equality g1(r
∗
1 , t
∗
1) = 0 reads

− λf

q0k0
(1 + kt∗1)(1 + exp(−r∗1)) exp

(
q
N

n

t∗1 − tc
1 + exp(−r∗1)

)
− f +

k

1 + kt∗1
+

aqN
n

1 + exp(−r∗1)
= 0. (4.1.2)

There is an immediate conclusion to be drawn from the above, which confirms our intuition that anti-
predatory defences are of diminishing value in regimes of increasing non-predatory threat. Indeed, suppose
that for some level of background mortality λ = λ∗, the strategy (r∗1 , t

∗
1) is a solution to (4.1.2). Since the

LHS of that equality decreases with increasing values of either t∗1 and/or λ∗ it follows that an increase in
λ would lead to a decrease in the equilibrium toxicity t∗1 associated with conspicuousness r∗1 . That is, for
fixed conspicuousness, the equilibrium level of defence decreases with increasing levels of the background
mortality. We would expect there to be little value in investing in defences that are costly to the fecundity
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in regimes where these have limited capacity to increase prey life-span and it is worth mentioning that this
result is confirmed in the simulated plots of Figure 4.7 (see end of section 4.4).

It is immediately clear from (4.1.2) that if λ > 0 and a > 0 it is not possible to obtain the ESS level of
toxicity explicitly in terms of the conspicuousness. This is unlike the situations encountered previously in
Broom et al. (2006) and Broom et al. (2008) and is indicative of a broader class of examples in which one
trait can only be determined in terms of the other at ESS through a rule that is implicit. In chapter 3 as
well as in Scaramangas and Broom (2022) it is demonstrated that in such cases the relationship between
conspicuousness and defence along the curve given through g1(r

∗
1 , t
∗
1) = 0 in (3.1.6) can be better understood

through the Implicit Function Theorem in R2. Presently we provide a derivation for the slope of the line
tangent to the (implicitly defined) curve by utilising (3.1.11) and identifying the LHS of (4.1.2) with g1(r1, t1).
The r1-derivative of the LHS of (4.1.2) reads

− λf

q0k0
(1 + kt1) exp

(
qN

n (t1 − tc)

1 + exp(−r1)
− r1

)[
qN

n (t1 − tc)

1 + exp(−r1)
− 1

]
−

aqN
n exp(−r1)

(1 + exp(−r1))2
, (4.1.3)

while the t1-derivative reads

− λf

q0k0
(1 + exp(−r1)) exp

(
qN

n (t1 − tc)

1 + exp(−r1)

)[
k +

qN
n (1 + kt1)

1 + exp(−r1)

]
− k2(

1 + kt1
)2 . (4.1.4)

Evaluated at (r1, t1) = (r∗1 , t
∗
1) the slope of the line tangent to the equilibrium curve is given by

λf

q0k0
(1 + kt1) exp

(
qN

n (t∗1 − tc)

1 + exp(−r∗1)
− r∗1

)[
qN

n (t∗1 − tc)

1 + exp(−r∗1)
− 1

]
+

aqN
n exp(−r∗1)

(1 + exp(−r∗1))
2

λf

q0k0
(1 + exp(−r∗1)) exp

(
qN

n (t∗1 − tc)

1 + exp(−r∗1)

)[
k +

qN
n (1 + kt∗1)

1 + exp(−r∗1)

]
+

k2(
1 + kt∗1

)2
. (4.1.5)

It is immediately clear that the denominator in (4.1.5) is always positive so that the monotonicity of the
equilibrium curve can change only through changes in the sign of the numerator. This is unlike the example
discussed in Scaramangas and Broom (2022) where sign changes were attributed to the denominator and
manifest as vertices at which the line tangent were vertical. Here, we observe that if t∗1 is sufficiently low
(this can be the case when λ is low) the term in square brackets can be made negative enough to make the
numerator negative, such that t∗1 decreases as r∗1 increases. Likewise, when the background mortality rate
λ is high enough the associated term in square brackets is positive so that the numerator (and fraction)
is positive overall and the level of defence t∗1 increases with increasing levels of conspicuousness. Changes
in monotonicity are observed in Figures 4.6/7 at the end of section 4.4 (following forward 20 pages) and
discussed therein.

From (4.1.4) it is clear that the terms on the LHS of (4.1.2) are decreasing with respect to t∗1. Likewise,
it is observed from (4.1.3) that when t∗1 is sufficiently low/high (e.g. λ is high/low) the first term in (4.1.2)
is increasing/decreasing with respect to r∗1 while the fourth term is monotonically increasing with respect
to r∗1 (independent of t∗1). Suppose that (r∗1 , t

∗
1) satisfies the equilibrium condition (4.1.2) for some low

enough value of λ that the overall sign of (4.1.3) is negative. In this case, a marginal increase in r∗1 will (by
assumption) reduce the LHS of (4.1.2) which, on account of (4.1.4) being negative, must be compensated
by a reduction in t∗1. The latter suggests that when λ is sufficiently low the equilibrium level of defence
(defined implicitly through (4.1.2)) is decreasing with respect to conspicuousness. Likewise, we can assume
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that (r∗1 , t
∗
1) satisfies (4.1.2) for some value of λ that is sufficiently high that (4.1.3) is positive. In such a

situation increasing r∗1 would cause the LHS of (4.1.2) to increase so that to restore equilibrium this must
be compensated with an increase in t∗1, suggesting that for high enough λ the equilibrium defence increases
with conspicuousness.

We remark that if a = 0 - this relates to cases (i) and (iii) examined below - the numerator of (4.1.5) is
zeroed when

t1 = tc +
1 + exp(−r1)

qN
n

=: c(r1). (4.1.6)

Suppose that (r∗1 , t∗1) satisfies (4.1.2). If t∗1 < c(r∗1) the slope of the line tangent to the curve (4.1.2) at (r∗1 , t∗1)
is positive; if t∗1 = c(r∗1) the slope of the line tangent to the curve (4.1.2) at (r∗1 , c(r

∗
1)) is zero and finally, if

t∗1 > c(r∗1) it follows that the slope of the line tangent at (r∗1 , t
∗
1) is negative. As discussed more extensively

in the previous chapter as well as inScaramangas and Broom (2022) and contrary to what prevailing theory
contends the relationship of aposematic traits may not need not be an increasing one. As for case (iv)
there is (to our knowledge) no way of determining the resident fitness at equilibrium and one may resort to
numerical methods to achieve this.

In case (i) it is immediately clear that setting λ = 0 and a = 0 into (4.1.2) eliminates the first and fourth
terms on the LHS so that prey defence (at ESS) is not associated with the conspicuousness. That is

t∗1 =
1

f
− 1

k
, (4.1.7)

for all r∗1 ≥ 0. This suggests that mutants with incrementally higher levels of defence (compared with the
residents) pay a price for reproducing at a slower rate, but are better defended against attacks that are
potentially lethal so that at the (unique) ESS level of defence the two components balance as in (4.1.7).
An important assumption of the model (see chapter 2) is that investment in defences (but not in bright
colourations) is costly and this is reflected in the negative dependence on t of the fecundity function F (t).
Indeed, once the level of toxicity described in (4.1.7) is reached, resident strategies with different signalling
component may have different overall levels of fitness, but cannot be invaded by mutants that are (incre-
mentally) more/less defended (since the trade-off between F and K is exact). An alternative (but more
equation-intensive) approach would be to impose that investment in bright colourations also impacts the
fecundity negatively. Doing so would introduce a dependence on the conspicuousness of the ESS level of
defence, even within the regime described by (i).

In case (ii) the level of defence satisfying (4.1.2) can be provided explicitly in terms of the conspicuousness
as

t∗1(r
∗
1) =

1

f −
aqN

n

1 + exp(−r∗1)

− 1

k
(4.1.8)

for all r∗1 ≥ 0. The latter suggests that the ESS level of defence is increasing with increasing levels of the
conspicuousness and that the increase is sharper for larger values of the parameter a; we direct the reader
to Broom et al., (2008) for a more careful consideration of this example. The situation in (ii) is different
to (i) in that mutation is now assumed to occur in clusters of size a, whose size influences their perceived
aversiveness and the probability that predators visiting their site mount attacks on them. So while it is true
that for mutants with incrementally larger levels of defence the cost to fecundity must be counterbalanced
by the benefit of escaping potentially lethal attacks, there is in (ii) the effect of additional protection against
predation accrued by the presence of better-defended mutants in a group that is sizeable. The relationship
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between conspicuousness and defence is more sharply increasing when the associated level of defence is
smaller (see Fig. 4.3a) since prey must broadcast their aversiveness more strongly to reduce predation.
Beyond a certain level of defence further increases in the conspicuousness have diminishing returns on the
rate that they are attacked.

We should add that if (r∗1 , t
∗
1) satisfies (4.1.2) then strategy (r∗1 , t1) with t1 < t∗1, which includes the

origin, fails (2.3.92)/(2.3.95). This is attributed to the fact that the LHS of (4.1.2) decreases with respect
to positive changes in the argument t1 and since (by assumption) the LHS is zero for t1 = t∗1 and r1 = r∗1 it
follows that the LHS is positive for values t1 < t∗1. The argument could be repeated for choices of t1 > t∗1

in which case the LHS of (4.1.2) would be negative by the property that the mutant fitness in the vicinity
of the resident value is almost everywhere Cl with l ≥ 2. The interpretation in either case suggests that
levels of with t1 < t∗1 are at risk of invasion against mutants that are more toxic - LHS of (4.1.2) is positive
- while levels of defence with t1 > t∗1 risk being invaded by less toxic mutants - LHS of (4.1.2) is negative.
Through inspection we have deduced that strategies (r∗1 , t

∗
1) satisfying (4.1.2) uninvadable along t (since

levels of defence below t∗1 are invaded by the more toxic types and levels beyond t∗1 are invaded by the less
toxic types). We make this claim more formal in the lines that follow.

In Broom et al. (2008) it was shown that such strategies are satisfy (2.3.92)/(2.3.95) for the case λ = 0.
We extend the substitution method found therein in a straightforward manner to establish that it holds for
all values of λ ≥ 0. We proceed by considering the cases t∗1 > 0 and t∗1 = 0 separately.

Consider strategy (r∗1 , t
∗
1) satisfying (4.1.2). Substitution of (4.1.1) into (2.3.95) now amounts to

− λf2

q0k0
(1 + exp(−r∗1))(1 + kt∗1) exp

(
q
N

n

t∗1 − tc
1 + exp (−r∗1)

)
− f2 +

2k2

(1 + kt∗1)
2

+
2aqN

n

1 + exp(−r∗1)

k

1 + kt∗1
+

a2q2N2

n2

(1 + exp(−r∗1))
2
> 0. (4.1.9)

We set
Λ :=

λf

q0k0
(1 + kt∗1)(1 + exp(−r∗1)) exp

(
q
N

n

t∗1 − tc
1 + exp(−r∗1)

)
(4.1.10)

and re-arrange (4.1.2) so that
aqN

n

1 + exp(−r∗1)
= Λ + f − k

1 + kt∗1
. (4.1.11)

Condition (4.1.9) now amounts to

−Λf − f2 +
2k2

(1 + kt∗1)
2
+

2k

1 + kt∗1

(
Λ + f − k

1 + kt∗1

)
+

(
Λ + f − k

1 + kt∗1

)2

> 0 (4.1.12)

and simplifies to the trivial inequality

Λ2 + Λf +
k2

(1 + kt∗1)
2
> 0. (4.1.13)

We have therefore demonstrated that for all values of the parameter λ ≥ 0 strategies (r∗1 , t
∗
1) on the curve

given through (4.1.2) satisfy (4.1.9).
Strategies with t∗1 = 0 must satisfy (2.3.88) if r∗1 > 0, which is the same as equality in (4.1.2) is replaced

with inequality < 0. Since from Broom et al. (2006) it is known that strategies of the form {(ρ, τ) : ρ >

0 τ = 0} fail (2.3.90) it follows that the origin {(0, 0)} is the only possibility for a non-toxic strategy to
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be ESS. For strategy (r∗1 , t
∗
1) = (0, 0) to be a local ESS it must satisfy (2.3.87), which considering (4.1.1)

amounts to
− 2λf

q0k0
exp

(
−q

N

2n
tc

)
− f + k + aq

N

2n
< 0 (4.1.14)

and it is clear that there is sufficient freedom on the parameters to either satisfy or fail to satisfy the above
inequality.

From looking at (2.3.92)/(2.3.96) and (2.3.93)/(2.3.97) it is clear that these conditions are unaffected by
the rate of background mortality λ. From a practical standpoint, this is the case because it is convenient for
purposes of stability to consider the normalised gradient of the mutant fitness, which factors this dependence
out. Going beyond this, we observe that differences in the mutant fitness (along r) are associated with
differences in the average life-span of prey through influencing the rates of predator detection, recollection
and perceived aversiveness (by comparison with the resident appearance); it should be remarked that none
of the above are affected by whether the threat of predation is large (i.e. by the value of λ) compared with
threats outside of predation. Indeed, a given regime of background mortality applies to both the resident
and the mutant and since incremental changes in the fitness of the latter (along r) are unaffected by the
value of λ, the prospect of invasion by the latter is also unaffected by the value of λ.

While invasion along r does not depend on the parameter λ it does depend on the local clustering
parameter a. This too comes from direct observation of (2.3.96) and (2.3.97) and admits a sensible remark;
larger groups tend to be better recollected by predators that experience their type and further, the larger a
group whose appearance deviates from (say, an aversive) resident majority the larger the fitness cost incurred
to the mentioned group collectively.

A resident strategy with r1 > 0 is stable in the r-direction if (2.3.96) and (2.3.97) both hold, which on
account of (4.1.1) read

−
←
∂ rP (r1, t1) ≈ exp(−r1)− q

N

n
(t1 − tc)

[
a

1 + exp(r1)
+ (1− a)v

]
< 0 (4.1.15)

and
→
∂ rP (r1, t1) ≈ − exp(−r1) + q

N

n
(t1 − tc)

[
a

1 + exp(r1)
− (1− a)v

]
< 0. (4.1.16)

The normalised gradient of the mutant fitness along r (corresponding to quantities −
←
∂ rP and

→
∂ rP defined

above) are referred to collectively as the invasion fitness gradient throughout this chapter. Cryptic strategies
are stable in r if (4.1.16) holds with r1 = 0. The ≈ notation is used to remind readers that the quantities

on the LHS of the inequalities are not equal to the derivatives −
←
∂ rP and

→
∂ rP but have been scaled by

(λ + DKQ)2/FDKQ. For purposes of notational convenience - specifically in (4.1.18) and (4.1.17) - we
treat these as equal. The difference in fitness (compared with the resident) of a mutant with incrementally

smaller conspicuousness is to first order given as −
←
∂ rPdr. We should mention that the quantities on the

RHS of (4.1.15) and (4.1.16) exhibit horizontal asymptotes as r1 → ∞ which can be attributed to the choice
of function for D(r) in (4.1.1), which plateaus in this limit.

A linear aversiveness function H(t) as in (4.1.1) is both a technically sensible and a biologically plausible
choice. As a consequence the LHS of the inequalities in (4.1.15) and (4.1.16) are linear in t1, which allows

us to express explicitly the toxicity in terms of the conspicuousness and −
←
∂ rP or

→
∂ rP . We have the useful
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substitutions

t1 =

[
−(−

←
∂ rP ) + exp(−r1)

]
(1 + exp(r1))

q
N

n
[a+ v × (1− a)(1 + exp(r1))]

+ tc =: g−
(
r1,−

←
∂ rP

)
(4.1.17)

and

t1 =

(
→
∂ rP + exp(−r1)

)
(1 + exp(r1))

q
N

n
[a− v × (1− a)(1 + exp(r1))]

+ tc =: g+
(
r1,
→
∂ rP

)
, (4.1.18)

which we can utilise in (4.1.2) to obtain implicit expressions for the invasion gradient of the mutant along r

−
←
∂ rP (r∗1 , t

∗
1) and

→
∂ rP (r∗1 , t

∗
1) at equilibrium. These are

λf

q0k0
(1 + kg∓)(1 + exp (−r∗1)) exp

(
q
N

n

g∓ − tc
1 + exp (−r∗1)

)
+ f − k

1 + kg∓
−

aqN
n

1 + exp (−r∗1)
= 0, (4.1.19)

which we represent as orange and cyan curves in Figures 4.2c, 4.4c and 4.5c. The substitution method
outlined above is general and especially useful in cases where the level of defence t∗1 in (4.1.2) cannot be
expressed explicitly in terms of the conspicuousness (such as when λ > 0). However, in cases where λ = 0

we observe that −
←
∂ rP

∗ and
→
∂ rP

∗ can be evaluated directly by setting t1 = t∗1 in the RHSs of (4.1.15) and
(4.1.16), making the above method superfluous.

The parameter v, which was introduced in (4.1.1) and which is present in (4.1.15) and (4.1.16) above can
be understood as the predator’s perception of small differences in the visual appearances of prey. We could
for all intents and purposes think of this as the time a predator spends investigating a prey animal before
deciding to mount an attack. The larger this quantity is the better the predators are at telling apart small
differences in the conspicuousness of warning signals (they spend less time investigating it); the smaller this
is the worse they are. As we detail, the significance of this term is different for attractive prey with t1 < tc

than it is for aversive prey with t1 > tc.
If t1 < tc it is easy to observe that (4.1.15) cannot be solved for any sensible choice of v. This result is

in line with the more general reasoning of Broom et al. (2006), in which it is argued that the conspicuous
signalling of strategies that are non-aversive - i.e. drawn from {ρ > 0; 0 ≤ τ ≤ tc} - risk invasion from
mutations with incrementally smaller signalling component through failing. The same is not true for (4.1.16)
however, which can be solved for values of v below the threshold on the RHS of

v <

exp(−r1) + aq
N

n

|t1 − tc|
1 + exp(−r1)

(1− a)q
N

n
(t1 − tc)

. (4.1.20)

The direction of this inequality demonstrates that for an attractive resident strategy (cryptic) to successfully
resist invasion of a more conspicuous mutant, the predator cannot be exceptionally observant, otherwise it
would avoid attacking the mutant altogether making the latter comparatively fitter.

Residents playing aversive strategies with t1 > tc can resist invasion by less/more conspicuous mutants
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if (4.1.15) and (4.1.16) can be solved for values of v large enough that

v >

∣∣∣∣∣exp(−r1)− aqN
n

t1 − tc

1 + exp(−r1)

∣∣∣∣∣
(1− a)q

N

n
(t1 − tc)

. (4.1.21)

The direction of the inequality is also justified in this instance; we would expect an aversive majority of res-
idents to withstand invasion provided the predator is sufficiently observant to detect incremental differences
in conspicuousness. Mutants that look different to a majority of prey that is perceived as aversive pay a
price for this and the cost of that decision is magnified by the predator’s ability to perceive such differences.

Absolute resident fitness

We now discuss resident fitness, which was introduced in (2.3.4). Considering the example function in (4.1.1)
this amounts to

P1(r1, t1) =
f0 exp(−ft1)

λ+
q0k0

(1 + exp(−r1))(1 + kt1) exp

(
qN

n

t1 − tc

1 + exp(−r1)

). (4.1.22)

For the purposes of understanding the outcomes of the simulations in the next section it is of interest to
determine how this quantity varies when the resident traits are drawn from the curve (4.1.2). There are four
cases to consider: (i) λ = 0, a = 0; (ii) λ = 0, a > 0; (iii) λ > 0, a = 0 and (iv) λ > 0, a > 0.

The method for (i) and (ii) involves solving for t∗1 explicitly in terms of r∗1 in (4.1.2) - observe from (4.1.7)
and (4.1.8) that this is possible - and replacing t1 in (4.1.22) with the equilibrium value t∗1. For (i) the
equilibrium condition we set t∗1 = 1/f − 1/k in (4.1.22) to obtain the required result. Likewise for (ii) we set
(4.1.8) into (4.1.22).

For (iii) we proceed by re-arranging (4.1.22) so that

q0k0

(1 + exp(−r1))(1 + kt1) exp

(
q
N

n

t1 − tc

1 + exp(−r1)

) =
f0 exp(−ft1)

P1
− λ. (4.1.23)

Substitution of this term into the equilibrium leads to expression

− λfP ∗1
f0 exp(−ft∗1)− λP ∗1

− f +
k

1 + kt∗1
= 0, (4.1.24)

which is equivalent to

t∗1 =
1

f
− 1

k
− λP ∗1

ff0
exp(ft∗1). (4.1.25)

The latter can be solved in terms of the principal branch of the Lambert W-function (this is such that
W0(x) exp(W0(x)) = x provided x ≥ 0 - the more mathematically-minded reader is encouraged to consult
Corless et al., 1996 for an in-depth discussion of the properties and applications of this function). Using a
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known ansatz we arrive at an explicit expression for the level of defence t∗1 in terms of the resident fitness

t∗1 =
1

f
− 1

k
− 1

f
W0

(
λP ∗1
f0

exp (1− f/k)

)
=: G(P ∗1 ). (4.1.26)

We note that we have made use of the shorthand notation P ∗1 ↔ P1(r
∗
1 , t
∗
1) to denote the value of the resident

fitness along the curve (4.1.2). Swapping t∗1 for G(P ∗1 ) in equality (4.1.2) leads to an implicit expression for
the resident fitness along this curve

λf

q0k0
(1 + exp(−r∗1))(1 + kG(P ∗1 )) exp

(
q
N

n

G(P ∗1 )− tc

1 + exp (−r∗1)

)
+ f − k

1 + kG(P ∗1 )
= 0. (4.1.27)

4.2 A description of the simulation

Our simulations explicitly model all the individual members of a finite prey population. Individuals will
potentially play different strategies, and the performance of individuals will depend on both their own
strategy and the distribution of strategies of individuals that they interact with. A similar approach to
addressing questions in the evolution of aposematism was taken by M. P. Speed and Ruxton (2005), and
we further develop their approach. Here we represent evolution by selectively removing individuals from the
population and replacing them with versions of other individuals. Prey phenotypes that perform well in the
current population are more likely to contribute versions of themselves to the next generation. This mimics
the effect of differential fitness in real populations, and is a common approach in evolutionary studies and
beyond – often being labelled a genetic algorithm approach (G. D. Ruxton and Beauchamp, 2008). More
generally, individual-based modelling is well established in the study of questions in evolutionary ecology
(Zakharova et al., 2019).

The simulation assumes a population of N prey predated by n predators and playing strategies (ri, ti)

with i = 1, ..., N - to avoid confusion we restrict notations involving the iteration number only to where
necessary (see the birth-death process detailed below). The specification of an individual’s strategy directly
determines the rate at which it reproduces (as Fi = F (ti) = f0 exp(−fti)), the rate at which it is detected
by predators (Di = D(ri) = 1/(1 + exp(−ri))) and the rate at which a mounted attack results in death
(Ki = K(ti) = k0/(1+kti)), as well as the aversiveness of the predator’s experience (as Hi = H(ti) = ti− tc)
and the rate at which such experiences are recollected (Li = L(ri) = 1/(1+ exp(−ri))). The specification of
such quantities over the population is realised using lists (1 ×N vectors). In contrast, the perceived visual
similarity of prey is stored in the N ×N symmetric and unit-diagonal matrix S defined as

(S)ij := S(ri, rj) = max (1− v |ri − rj | , 0) for all i, j = 1, ..., N. (4.2.1)

The realisation of the ith row of the matrix in (4.2.1) specifies the aversiveness Ii of that prey as perceived
by the average predator through the rule

Ii =
1

n

(aN − 1)L(ri)H(ti) +
(1− a)N

N − 1

N∑
j=1,j ̸=i

L(rj)H(tj)S(ri, rj)

 , (4.2.2)
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where the term
1

N − 1

N∑
j=1,j ̸=i

L(rj)H(tj)S(ri, rj) (4.2.3)

in (4.2.2) is the aversivess of the average prey (excluding the focal individual i). Implicit in (4.2.2) is the
assumption that (a) when encountering a prey and calculating its aversiveness Ii, a predators weighs the
prey individual it is currently facing as a proportion a of the entire population (independent of phenotype,
mutant-status, or even population size), and this happens with every prey that is encountered by a predator
in the simulations. The implementation of the local relatedness in the infinite population ESS analysis
is different (a is evaluated as a proportion of individuals in the site). (b) Expression (4.2.2) represents
an average (factor 1/n) over the predator’s experiences of prey and indeed an average over the prey that
these encounter (factor 1/(N − 1) excludes the focal individual - see related explanation in section 2). The
probability Qi that an attack is mounted on i depends on (4.2.2) through Q(Ii) = q0 exp(−qIi) and its
fitness is hence given as

Pi = P (ri, ti) =
f0 exp(−fti)

λ+
k0q0

(1 + exp(−ri))(1 + kti) exp(qIi)

. (4.2.4)

We should remark that parameter a plays a role in the calculation of the fitness of individuals in the simulation
(through Q), which in turn affects the likelihoods of reproduction – however it plays no part in the nature
of that reproduction (i.e. in the number of offspring, or the effect of mutation).

The simulation tracks the evolution of traits for a number of distinct prey populations in the following
manner. It commences at m = 0 where the index m = 0, 1, 2, ...,M specifies the iteration number and can be
understood as the number of birth-death events that have preceded the population in question (the details
of this processes are provided below). After a fixed number of iterations has passed, which is determined by
the averaging frequency g the population traits are averaged and the averaged pair of values is represented
as a point in the strategy space of averages. A straight line segment (starting at the initial strategy) is
drawn between consecutive points, such that the union of segments forms a trajectory for that population.
The number of segments making up a population’s trajectory is given as M/g. Trajectories of this type are
drawn for populations playing a number of distinct starting strategies.

Prey populations succeed one another by means of a birth-death process, whose details are as follows.
A small sample of pN prey is selected at random to reproduce and their offspring replace an equally-sized
sample. We remark that prey may be selected to reproduce more than once (i.e. give birth to more than one
offspring) and are thus considered with multiplicity on the list consisting of parents. It is also possible for
the same individual to reproduce and to be replaced (by its own offspring) at the end of the same iteration.
The probability that an individual is selected to reproduce l times after pN trials (with replacement) is a
binomially-distributed random variable

P(i becomes parent l times) =
(
pN

l

)
W l

i (1−Wi)
pN−l, for l = 1, ..., pN (4.2.5)

where Wi is a comparative measure of fitness defined as

Wi :=
Pi∑N
j=1 Pj

(4.2.6)
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with Pi given as in (4.2.4). We should add that for large enough populations we expect the comparative
fitness of any one individual to be relatively small and therefore the distribution in (4.2.5) to be approximately
Poisson distributed with parameter pNWi. A generation can be understood as the average number of
iterations (birth-death events) required for all the individuals in a population to be replaced. We stress
that while alternative interpretations of a generation are possible, from the point of view of the simulation
a generation is synonymous with the average number of birth-death events required for the individuals
comprising a certain population to be completely replaced.

Prey traits are subject to random mutation (in the sense that the offspring values can vary continuously
within a small margin of error centred at the parent value) and this is encoded into the birth process. We
remark that toxicity and conspicuousness are traits determined by common environmental factors (including
predation threat and availability of food resources among others) and are likely polygenic, since few pheno-
typic traits have a single gene origin. Aposematic traits exhibit notable differences depending on the species
in question (the genetic origin of traits could provide a possible explanation for this). Furthermore, the
specific mode of interaction of one trait with the other is (to our knowledge) mostly unknown. It is therefore
the natural option for purposes of simulation to assume that mutation in one trait does not influence mu-
tation in the other (i.e. mutation in either trait is independent) versus a more specific (and controversial)
assumption about their mode of interaction. In the same spirit, we remark that it is possible for mutation to
occur in both traits during a single birth process. To be specific we say that if the offspring of individual i
replaces individual j in transitioning from the mth to the m+ 1st iteration, the probability that either trait
is carried through to the offspring is given as 95%. We write

P
(
r
(m+1)
j = r

(m)
i

)
= P

(
t
(m+1)
j = t

(m)
i

)
= 0.95, (4.2.7)

while the probability that any of the traits change is given as

P
(
r
(m+1)
j ∈

[
r
(m)
i − δr, r

(m)
i

)
⊔
(
r
(m)
i , r

(m)
i + δr

])
=

=P
(
t
(m+1)
j ∈

[
t
(m)
i − δt, t

(m)
i

)
⊔
(
t
(m)
i , t

(m)
i + δt

])
= 0.05. (4.2.8)

From context it should be clear that the mutation range during the described birth process is precisely the
closed rectangle with dimensions 2δr × 2δt centred at the parent value. As a consequence of independence
in trait mutations we also remark that the probability that both parent traits are carried through to the
offspring is 0.952 ≈ 0.9025, while the the probability that both traits change is 0.052 = 0.0025. We should
also remark that if a trait changes the step length is chosen uniformly from within the mutation range of
the trait in question. For the first trait we write

P
(
r
(m+1)
j ∈ δx

)
= 0.05

δx

2δr
(4.2.9)

to demonstrate the probability that if it increases (or decreases) its precise value is within the interval
δx ⊂

(
r
(m)
i , r

(m)
i + δr

]
or within

[
rmi − δr, r

(m)
i

)
if it decreases.
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4.3 Solutions with vanishing background mortality

In this section we consider the simplest scenario in which λ = 0 and treat cases (i) a = 0 and (ii) a > 0

separately. We make use of the theory developed earlier and focus our attention on (a) the predicted form
of ESS, (b) the resident fitness at equilibrium and (c) the invasion fitness gradient (along r). This style
of presentation exposes the reader to gradually increasing levels of complexity and is also adopted in the
section following this, which deals with the cases (iii) and (iv) in which λ > 0. We should also remind the
reader that the theoretical/predictions component of this section is based on the existing works of Broom
et al. (2006) and Broom et al., (2008).

The a → 0 limit

The plots of Figure 4.2 showcase our findings for case (i) in which λ = 0 and a = 0.

r1

t1

r1

P ∗
1

r1

∂rP
∗

r̄1

t̄1

Figure 4.2: Parameter values λ = 0, a = 0, f0 = q0 = k0 = 1, f = 1, k = 2.5, tc = 0.25, q = 0.1, N = 100, n = 10
and v = 1 (a) [Top left] Strategies within the grey-shaded region {(r1, t1) : r1 > 0, t1 ≤ 0.25} fail (4.1.15). Unique
cryptic ESS at (r∗1 , t

∗
1) = (0, 0.6) shown with blue marker, succeeded by strategies on (4.1.7) that fail (4.1.15) for

r∗1 < 1.05 but are stable beyond that value (blue section). (b) [Top right] Resident fitness evaluated along (4.1.7)
as per (4.1.22). (c) [Bottom left] Invasion fitness gradient along r - see (4.1.19) as well as (4.1.15) and (4.1.16) -
for incrementally less (cyan curve) and incrementally more conspicuous mutants (orange curve). (d) [Bottom right]
Average population traits plotted as trajectories with averaging frequency g = 2, 000. Black markers represent the
average traits of a single population after 10, 000 iterations.

The black markers in Figures 4.2(d) and 4.3(d) indicate that the majority of prey populations eventually
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converge close to the predicted equilibrium toxicity level of 1/f−1/k as given in (4.1.7). We also remark that
the lower the initial conspicuousness of the population the stronger the component of its associated trajectory
toward crypsis. In Figure 4.2d this would be expected for initial conspicuousness values below the cut-off
specified through (4.1.15) but we observe that even populations starting from evolutionarily stable strategies
are invaded by less conspicuous types. In observing the plots of Figure 4.2 alone one could speculate that
this is attributed to the resident fitness being higher at crypsis. However, from Figure 4.3 (below) we deduce
that this is unlikely the case, since there populations evolve against increasing resident fitness and toward
crypsis where the less conspicuous mutants are increasingly advantageous. Presently, we make a number
of important remarks about the invasion fitness gradient, which we use throughout to interpret the results
of simulations. Following this, we discuss resident fitness and compare its impact on the evolution of prey
traits alongside invasion fitness.

As it happens, plots of the invasion fitness gradient (orange and cyan curves in Figures 4.2c, 4.3c as well as
in 4.4c and 4.5c) are consistent with the mutant landscape in the vicinity of the resident value along r. That
is, when the cyan/orange curve is above the r-axis a resident population with that level of conspicuousness
is predicted to be invasible by less/more conspicuous types (see cyan curves for r̄1 < 1 in Figures 2c as
well as for r̄1 < 0.5 in 4c and the observed pull toward crypsis in 4.2d and 4.4d). In the majority of the
cases we explore both the cyan and orange curves sit below the r = 0 axis (infinite population ESS analysis
would deem such cases as evolutionarily stable along r) and the height below which they do so indicates how
"worse-off" mutation in that direction is. An interesting effect of finiteness of the prey population is that
strategies predicted as being evolutionarily stable (along r) still have a chance of being invaded if alternative
mutations are not too worse-off. For instance, strategies with initial conspicuousness 1 < r̄1 < 3 in Figure
2(d) and r̄1 < 3 in Figure 4.3 that are still invaded (through chance) by less conspicuous mutants.

For high enough levels of conspicuousness it is observed that the orange and cyan curves in Figures 4.2(c)
and 4.3(c) converge (horizontally) to a common value. Technically, this can be attributed to our chosen
forms for D (and therefore L - see (4.1.1)), which exhibit a plateau for high enough levels of conspicuousness
(already bright signals do not impact detection/recollection further). In such situations mutation in either
direction leads to equally bad outcomes suggesting there is no directional selection associated with the
invasion fitness gradient along r. The further below the r-axis the asymptote is reached the more worse-off
mutations are predicted to be so that not only is invasion equally likely in either direction, the probability
of this occurring shrinks. Indeed, from a quick reading at r̄1 > 3 it is clear that the trajectories in Figure
4.3(d) appear less incidental than in Figure 4.2(d), where the associated asymptote is above −0.5 (compared
with −3 in Figure 4.3c). We conclude that the smaller the distance between the cyan and orange curves the
smaller the difference in selection between either direction and the smaller the value that these converge to
the more unlikely invasion (in either direction) is overall.

While the simulations in Figures 4.2 and 4.3 fall under the same regime with respect to local clustering
and background mortality (a = 0 and λ = 0) these show two principal differences, whose impact we explore
further. The first difference is with respect to the invasion fitness gradient: In Figure 4.2, overall selection for
smaller conspicuousness is strongest (and manifest as a stronger pull toward crypsis) and when selection is
absent (high r̄1) randomness (seen in the time evolution of trajectories) is higher because invasion is likelier
(though equally so in either direction). In addition, we have concluded that identifying strategies as "stable"
or "unstable" is of limited use when studying prey populations that are finite, unless these are complemented
with more precise statements describing "how stable"/"how unstable" those strategies are.

The second difference is with respect to the resident fitness at equilibrium. Viewing Figure 4.2 it is
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difficult to set aside the impact of absolute resident fitness because this is highest for low r̄1 where (mutant
fitness led) selection for less conspicuous types is also strongest. However, we observe that reversing the
direction of increase of absolute resident fitness (Figure 3) does not significantly affect the outcome of the
simulations. For sufficiently high values of r̄1 (where directional selection associated with the invasion fitness
gradient is low) we could have expected prey trajectories in Figure 4.3(d) to evolve in the direction of
increasing conspicuousness. Instead, these appear to evolve in mostly a random fashion and we conclude
that this measure of fitness has little effect on the evolution of prey traits. This could be because under low
local relatedness (a = 0), resident fitness does not predict mutant fitness (which is the quantity determining
the direction of evolution).

In particular, through the examples in Figures 4.2 and 4.3 we establish three important facts relating to
the evolution of traits in finite prey populations: (i) ESS analysis provides accurate insight into the behaviour
of finite populations even though notions of stability are not completely deterministic. (ii) Mutant fitness
along r appears to be the stronger driver of changes in prey traits compared to the resident fitness. In fact,
the probability of invasion along the r-direction depends continuously on how worse-off the mutant type
is compared with the resident, as opposed to some absolute rule describing stability. (iii) In the absence
of directional selection associated with incremental increases in mutant fitness (along r) and/or absolute
resident fitness the evolution of traits is mostly random.
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Figure 4.3: Parameter values λ = 0, a = 0, f0 = q0 = k0 = 1, f = 5/6, k = 5, tc = 0.25, q = 0.4, N = 100, n = 10 and
v = 1 (a) [Top left] Grey-scale region {(r1, t1) : r1 > 0, t1 ≤ 0.25} contains strategies that fail (4.1.15). Solid blue
marker at (0, 1) is the unique cryptic ESS followed by a horizontal blue line of conspicuous ESSs evaluated at (4.1.7).
(b) [Top right] Plot of resident fitness along (4.1.7) as per (4.1.22). (c) [Bottom left]: Invasion fitness gradient along
r evaluated at equilibrium for incrementally less (cyan) and incrementally more (orange) conspicuous mutants as in
(4.1.15) and (4.1.16) (d) [Bottom right]: Average population traits plotted as trajectories with averaging frequency
g = 2, 000. Black marks represent the average traits of a population after 10, 000 iterations.

Incorporating a > 0

The black markers in Figure 4.4(d) suggest that for most populations the average level of toxicity converges
to the predicted equilibrium provided in (4.1.8). Populations starting with low conspicuousness risk being
invaded by less conspicuous mutant types (the cyan curve in Figure 4.4(c) sits above the r-axis for r̄1 < 0.5)
and the associated trajectories quickly converge to crypsis, as expected. For increasing levels of initial
conspicuousness the leftwards component of the trajectories diminishes (more drastically than with a = 0 in
Figures 4.2d and 4.3d) until it changes direction. This change in direction is recorded at r̄1 ≈ 1.5, beyond
which directional selection associated with the invasion fitness gradient vanishes (the cyan and orange curves
in Figure 4.4c converge) while the absolute resident fitness continues to increase. A considerable proportion
of the trajectories with initial conspicuousness r̄1 > 2 in Figure 4.4(d) are observed to evolve toward higher
conspicuousness and we speculate that this can be traced back to the resident fitness.

Comparing these observations with those in Figures 4.2 and 4.3 we deduce that the impact of absolute
resident fitness is more substantial when the size of the local relatedness parameter is greater. Indeed, in
Figure 4.4(d) we observe evolution towards higher levels of resident fitness, especially in regions where there
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is no directional selection associated with mutant fitness and in which mutants that are less conspicuous are
notably worse-off compared with the residents. Crypsis tends to be the default and preferred strategy for a
multitude of chemically defended prey and it is of interest to determine how and why aposematic solutions
with a strong signalling component could instead admit a more viable option.

A plausible explanation for the above results can be found by considering positive frequency-dependent
selection. Consider a mutant invading a resident population whose r strategy is similar but distinct. For
our model there is a continuum of r values that are stable against invaders playing different r (both smaller
and larger; this is because there is an inherent disadvantage for looking different from everybody else). For
a pair of such strategies, A and B, an A population is stable against B invaders and a B population is
stable against A invaders. Mutants can appear with higher or lower r values, and there will be a small
probability of successful invasion, which is amplified by the size of the local relatedness parameter a. If this
parameter is large enough then due to positive frequency dependence on initial invasion and the finiteness of
the population, invaders can quickly reach a sufficiently high overall frequency through a sequence of drift
related invasions. It is likely that once a certain (threshold) frequency is reached selection turns positive for
the mutant (as there is now an inherent disadvantage to the residents for looking unlike the invading mutant
group) leading such an invader to go to fixation.

As we observe in the simulations of Figure 4.4 the type with the higher resident fitness generally has
a higher probability to invade the type with lower resident fitness than for the reverse invasion. Thus a
sequence of drift related invasions of the kind discussed will tend to move the population in the direction of
higher resident fitness. The higher the value of parameter a the greater the local frequency of the mutant
at the start, and so the lower the advantage to the resident. This increases the probability of any invasion
in either direction, but the increase is more marked in the direction of higher resident fitness because of its
relative stability, so that increasing a amplifies the above effect.
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Figure 4.4: Parameter values λ = 0, a = 0.5, f0 = k0 = q0 = 1, f = 2.8, k = 5, tc = 0.25, q = 0.4, N = 100, n =
10, v = 1 (a) [Top left] Strategies inside grey-scaled region {r1 > 0, t1 ≤ 0.25} violate (4.1.15). Blue marker at
(0, 0.356) represents the unique cryptic solution, which co-exists alongside a continuum of conspicuous unstable (red)
and stable ESSs (blue) on the curve of (4.1.8). (b) [Top right] Resident fitness as a function of conspicuousness
along (4.1.8) conspicuousness. (c) [Bottom left] Cyan and orange curves represent the invasion fitness gradient given
through (4.1.15) and (4.1.16) and evaluated along (4.1.8) (d) [Bottom right] Average population traits plotted as
trajectories with averaging frequency g = 2, 000. Black markers represent traits averaged over the population after
10, 000 iterations and mostly converge to t∗1(r

∗
1) in (4.1.8) in Figure 4.4(a).

4.4 Solutions with non-zero background mortality λ > 0

In the previous subsection we established a set of empirical rules that can serve as a guide in our understanding
of how aposematic traits evolve in finite prey populations that are subject to random mutation. We observed
that while in the t-direction populations mostly evolve toward the predicted value, evolution along the r-axis
is less straightforward. That is, one first has to consider whether there is directional selection for less or
more conspicuous mutant types (for less conspicuous resident populations it tends to be the former) and
particularly how much better/worse the type in question is compared with the resident. Second to this,
we gauge the size of the directional selection (at equilibrium) with regards to the absolute resident fitness.
It appears that this secondary cause can select for conspicuous solutions provided the local relatedness
parameter is large enough and invasion in either direction is unlikely from the mutant fitness perspective.

In the present section we introduce non-zero rates of background mortality, initially in absence of local
relatedness effects and finally including these. The presentation in this part places stronger emphasis on the
outcomes of numerical simulation so as to showcase a larger breadth of examples within this less-explored
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regime and more effectively observe the impact of varying the background mortality rate on finite populations.

The a → 0 limit

In the plots of Figures 4.5 and 4.6 we showcase our predictions and findings for the case (iii) in which λ > 0

and a = 0.
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Figure 4.5: Parameter values λ = 0.0015, a = 0, f = 5/6, k = 5, tc = 0.25, q = 0.4, N = 100, n = 10, v = 1 (a) [Top
left] Unique cryptic ESS represented as a solid marker at (0, 0.927) co-exists alongside a continuum of conspicuous
ESSs shown in blue and defined implicitly through setting a = 0 into (4.1.2). Strategies (r∗1 , t

∗
1) on the curve (4.1.2)

are such that t∗1 > c(r∗1) so that the level t∗1 is predicted to decrease (slowly) with respect to r∗1 . (b) [Top right]
Absolute resident fitness defined implicitly through (4.1.27) and plotted as a function of the conspicuousness. (c)
[Bottom left] Invasion fitness gradient associated with less (cyan) and more conspicuous (orange) mutant types at
equilibrium given through (4.1.15) and (4.1.16). (d) [Bottom right] Average population traits plotted as trajectories
with averaging frequency g = 2, 000. Black markers show strong converge to crypsis, which is mostly supported from
Figures 4.5(b) and 4.5(c).

Before discussing Figures 4.5 and 4.6 individually, we should remark that these relate to the same example
but where in Figure 4.6 different sets of trajectories are plotted for different levels of background mortality
(Figures 4.5d and 4.6b are identical). In Figure 4.5(d) prey traits are mostly observed to converge to the
equilibrium level shown in Figure 4.5(a), which is determined implicitly through setting a = 0 in (4.1.2). The
level of defence in t∗1 in (4.1.2) is predicted to decrease with increasing levels of conspicuousness, although
this effect is not captured in Figure 4.5(d) due to stochastic effects (for reasons discussed in due course
these tend to be stronger when parameter a is small). The trajectories in 4.5(d) exhibit a strong pull
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toward crypsis and this is more pronounced for lower values of the conspicuousness, where the cyan curve is
highest. Presently, we confirm existing intuition (drawn from our discussions of Figures 4.2 and 4.3), namely
that absolute resident fitness has limited impact on trait evolution when the local relatedness parameter is
small/vanishing. Indeed, even in absence of strong directional selection, resident conspicuousness evolves
against the resident fitness and toward lower values of r̄1.

These conclusions are valid for the remaining three plots in Figure 4.6, from which two additional con-
clusions can be drawn: As the background mortality increases the level of defence t∗1 decreases with respect
to r∗1 in (4.1.2) and its relationship to r∗1 switches from decreasing (Figures 4.6a and 4.6b) to increasing
(Figures 4.6c and 4.6d). The simulated plots in Figure 4.6 (this includes Figure 4.5d) exhibit considerably
more randomness than their counterparts in Figure 4.7, which is likely attributed to the larger value of the
local relatedness parameter in the latter (and its impact on initial invasion and fixation/drift). For this
reason we elaborate on (i) and (ii) in the context of Figure 4.7 below and compare these to the analytical
predictions in section 4.2.
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Figure 4.6: Parameters a = 0, f = 5/6, k = 5, tc = 0.25, q = 0.4, N = 100, n = 10, v = 1 with plots in increasing
order of the parameter λ with (a) [Top left] λ = 0.0001; (b) [Top right] λ = 0.0015; (c) [Bottom left] λ = 0.2 and (d)
[Bottom right] λ = 2. Together the plots (mostly) confirm that increasing λ causes a decrease in the associated level
of toxicity (for fixed conspicuousness) and that the relationship between t∗1 and r∗1 switches from decreasing (in 4.6a
and 4.6b) to increasing (in 4.6c and 4.6d) as the predicted level of defence t∗1 drops below c(r∗1) as λ increases. The
accumulation of black markers suggests strong selection for crypsis, likely driven by directional preference of mutant
fitness in that direction. We also remark that trajectories in (a) convey a mostly flat equilibrium at t ≈ 1/f − 1/k
and that in (d) trajectories are traced out within the non-aversive - and unstable in the sense of (4.1.15) - region
t̄1 ≤ tc = 0.25.

93



Incorporating a > 0

We have established - this is done analytically in section 4.2 - that the level of defence at equilibrium
decreases with increasing values of the parameter λ, such that for small values of λ, the associated level of
defence is high enough that prey are highly aversive for predators. In such cases the plots in Figures 4.6/7
(a),(b) suggest that prey can increase aversiveness further by increasing conspicuousness while simultaneously
(slightly) decreasing investment in defence. In contrast, if λ is high, the overall level of defence is low and
prey are not very aversive so that larger conspicuousness selects for slightly more investment in defence (see
Figures 6/7 c, d). The latter is likely because the gain in terms of (signalled) aversiveness outweighs the
costs, which in turn can be traced back to with the choices of functional forms in (4.1.1).

The predicted slope of the equilibrium curve is provided by the Implicit Function Theorem in R2, which
for the functions (??) used in the simulation takes the form shown in (4.1.5). As discussed in section 4.2
the single term in (4.1.2) can accommodate changes in monotonicity is (λ/DKQ)× F ′/F and describes the
impact on fecundity (of increased defence) scaled as a proportion of background to predator-induced deaths.
This quantity can be seen as an honest measure for the capacity of investment in aposematic defences to
increase prey fitness (through favourable trade-off involving life-span and reproduction). When λ is low
(and prey are aversive) it is optimal for prey to increase their reproductive success by reducing their toxicity
in favour of slightly higher mortality (seen through increased conspicuousness). The functional forms are
such that when λ is high (and prey are non-aversive) the optimal trade-off regime changes so that it is best
for prey to reduce their reproductive success (by increasing toxicity) in favour of reduced predation (seen
through an increased conspicuousness). The reader is strongly encouraged to compare the findings of Figures
4.6/7 with the analysis in section 4.2.

Third, we remark that when the invasion fitness gradient along r is flat enough in either direction
(i.e. more and less conspicuous mutants are worse-off alike) and provided the local relatedness parameter
is strong enough, absolute resident fitness can have a notable influence on the evolution of prey traits.
This is likely attributed to an amplification of the group effect that larger values of the parameter a has
(see earlier explanation about frequency-dependence) and could explain why strategies with considerable
signalling component are selected for when λ is sufficiently small (see Figures 4.7a and 4.7b). The latter is
rather clearly showcased in Figure 4.7, where trajectories evolve against the invasion fitness gradient and
toward increasing levels of the absolute resident fitness.
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Figure 4.7: Parameter values a = 0.5, f0 = q0 = k0 = 1, f = 5/6, k = 5, tc = 0.25, q = 0.4, N = 100, n = 10, v = 1.
Plots are positioned in increasing order of λ such that (a) [Top left] λ = 0.0001; (b) [Top right] λ = 0.0015; (c)
[Bottom left] λ = 0.2 and (d) [Bottom right] λ = 2. The plots validate more clearly than in Figure 4.6 that
increasing λ is associated with a decrease in the associated level of toxicity and that the relationship between toxicity
and conspicuousness switches from negative (in 4.7a and 4.7b) to positive (in 4.7c and 4.7d). In Figures 4.7(a)
and 4.7(b) there is strong selection for solutions with strong signalling component, likely on account of the absolute
resident fitness being highest in that direction. In Figures 4.7(c) and 4.7(d) it is clear that the resident fitness is not
sufficient to counterbalance the impact of a strong invasion fitness gradient (from the left and along r). Large spaces
between black markers (such as at r̄1 ≈ 1 in Figure 4.7c) are likely due to a balancing effect of these opposite pulls.

4.5 Discussion

The results presented in the previous section have demonstrated both the strengths and limitations of
applying (infinite population) ESS analysis within the broader mathematical development of Broom et al.
(2006) to study the evolution of prey traits in finite populations. To that end, had smaller populations been
considered the outcomes of the simulations would have generally been driven by randomness. We should
remark that spatiotemporal variations in the various environmental factors (including territory quality)
and in the predator’s community structure are not explicitly accounted for in our model, even though we
acknowledge their importance in the selection for/against aposematism in real populations. For instance, as
discussed in Mappes et al. (2005) the genetic predisposition and cultural transmission of foraging strategies
within families could lead to strongly localised selection for/against aposematism. In this closing section
we call attention to these points and argue that the simulation model as described in section 4.3 can be
generalised to prey populations consisting of more than one species including Batesian mimicry complexes
among others.

In an infinite population ESS analysis is all that matters, while in a very small population, stochastics
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dominates. For intermediate numbers, stochastic mechanisms will eventually prevail in theory, but this may
take a really long time, so effectively the ESS analysis is indeed all that is needed. In the t-direction, in any
mixed population where all prey have similar conspicuousness, the optimal toxicity level is approximately
the same, independent of the precise composition of the population, as long as the average conspicuousness
does not change too much, or indeed often even if it does). In the r-direction, we often have a series of
populations that are stable, but where the neighbouring mutants are not so much worse, so there is the
prospect of invasion due to chance. It is when we get to a substantial mutant sub-population that the
mutants "resident fitness" (i.e., the mutants’ fitness after fixation) comes into play. Indeed full invasion is
more likely to happen from the higher fitness side, so there will tend to be movement in that direction. The
latter is manifest in Figure 7, where when the background mortality is sufficiently low aposematic strategies
with considerable signalling component are selected (likely due to the higher associated fitness).

In this manuscript we have considered the functional forms of Broom et al. (2008) and compared regimes
with and without background mortality. The conclusions drawn in previous works on aposematism have been
constrained by the assumption that predation is the only source of prey death and the impact of varying
regimes of background mortality has prior to now not been explored. In addition to accounting for sources
of prey death outside of predation, we have explored the effect of local clustering through parameter a and
utilised ESS (and fitness) analysis to draw conclusions about the evolution of prey traits in intermediate
populations that are subject to stochasticity. While simulation models have been used in G. D. Ruxton and
Beauchamp (2008) and in Zakharova et al. (2019) and elsewhere over the recent decades, these have never
before been put to use to study aposematism. We have made contributions to the game-theoretical model
of Broom et al. (2006) by broadening the scope of ESS analysis, by implementing it into a novel simulation
model and by gauging the capacity of ESS (and fitness) analysis to predict the evolution of aposematism in
finite prey populations.

In Broom et al. (2008) and previously in Broom et al. (2006) the use of simple functional forms and the
suppression of background mortality had allowed to express the toxicity explicitly in terms of the conspicuous-
ness and to conjecture that more conspicuous appearances are associated with prey that are better-defended.
This conjecture was disproved in Scaramangas and Broom (2022) and also presently, where a decreasing rela-
tionship between conspicuousness and defence was observed (see simulations in Figure 4.7) in regimes where
prey death outside of predation is rare. In Scaramangas and Broom (2022) as well as in chapter 3 the justi-
fication of a decreasing relationship involved the implementation of a more elaborate (plausible nonetheless)
association between the predator’s propensity to attack based on its perception of prey aversiveness (through
a modification of the form for Q). Interestingly, such a modification had also allowed us to disprove another
conjecture of Broom et al. (2006) and to demonstrate that a certain level of signal strength may be associated
with more than one ESS level of the defence.

Although the observation of a decreasing signalling-defence continuum is in this manuscript linked with
functional forms that are different to those of Scaramangas and Broom (2022), perhaps the underlying
mechanism is common. In the first simulations of Figure 4.7 (a and b) we observe that when the overall
ESS level of defence is sufficiently high (background mortality is low) prey can afford to broadcast weaker
defences through stronger signals because predator propensity to attack is already low and saturated. This
is also complemented by the fact that a further investment in toxicity is costly to the fecundity and this is
a cost worth bearing if it is manifest through reductions in predation, which in this case is not. In contrast,
when background mortality is high and the associated toxicity is low (see simulations in Figures 7c and
d) brighter appearances signal stronger defences because the reduction in fecundity is compensated with a
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reduction in predation and an increase in average prey life-span.
Indeed, of considerable importance to the theory of aposematic signalling is whether aposematic signals

are honest (i.e. whether brighter prey are better defended) and the reader is encouraged to consult the review
article by Summers et al. (2015) for a thorough account of this topic. While there is more empirical evidence
reporting a positive relationship between conspicuousness and defence (Summers and Clough, 2001b, Santos
and Cannatella, 2011 and Maan and Cummings, 2012b are among several cited in Summers et al., 2015)
there are noteworthy studies (including those of I. J. Wang, 2011 and Darst et al., 2006) suggesting that
conspicuous signals could be dishonest. As argued in Scaramangas and Broom (2022) the model of Broom
et al. (2006) is the only detailed exposition that can account for the full breadth of phenomena and this is
observed presently.

The theory presented here makes clear predictions that would allow empirical testing. Perhaps our more
interesting predictions stem from the comparison between the analytic theory and the simulations. It seems
clear that when prey populations are large then the predictions of both modelling approaches converge, but
for smaller populations the stochastic fluctuations captured in the simulation model should have a strong
bearing. It would be valuable to explore experimentally with living prey how small a population has to be
for these stochastic effects to have a strong bearing on evolutionary trajectories, how strong these effects
are, and how exactly they alter the course of evolution. It seems more easy to imagine how such empirical
explorations could be achieved in the laboratory than in natural populations. But even here there will be a
challenge in finding a suitable prey type that can readily be kept in large numbers and shows the combination
of appearance and toxicity characteristics of interest to us and that has a short enough generation time that
meaningful evolutionary trajectories can be followed. A candidate here might be one of the stored-product
beetles that are increasingly becoming model species for studies in evolution and population dynamics (of
much relevance is the review article by Pointer et al., 2021). The most commonly-used species in such studies
(Tribolium castaneum) is chemically defended and shows variation in coloration from red, through browns
to black (see McLean, 2011).

We imagine that such experiments would involve not natural predators but artificial predation imposed
by the experimenters – with different types of predation represented by removal of prey individuals from the
population as defined by different sets of rules (mimicking the assumptions about predator behaviour in our
theory). As well as exploring the consequences of prey population size (and indeed the size of the artificial
predator population – as represented by the intensity of predator-mimicking mortality) on evolutionary
trajectories – it would be straightforward to also explore our predictions about the effect of additional
external non-predatory mortality in these experiments.

We also think that experiments with real predators would also be valuable in the context of testing our
predictions. Well-developed systems for investigating why predators learn about aposematic prey and how
this affects subsequent prey choice decisions already exist. These can use completely prey-naïve newborn
domestic chicks (as in Rowland et al., 2013) or wild-caught insectivorous birds temporarily exposed to
artificial prey in a laboratory setting (such as in Hämäläinen et al., 2020). Our model assumptions and
predictions related to how predators respond in successive encounters with different types of prey items –
particularly the assumptions about the spatial distribution of mutant types encapsulated in our parameter
(a) could very naturally be explored empirically with such a system.

Furthermore, we see value in co-evolutionary experiments that allow us to explore whether the assump-
tions we make for predator behaviour in our models are likely a reasonable representation of those that
evolve in real predators. For this, we might return to the evolutionary experiments with a simple laboratory
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prey organism like stored flour beetles discussed above, but rather than subjecting them to an unchanging
predation regime, we allow the predatory regime to co-evolve with the prey. We have in mind here a popu-
lation of artificial predators – each of which follows a set of rules about how it treats prey of different types,
and thus imposes mortality on the prey population. However, variation in these rules will not only lead to
variation in the form of mortality imposed on the prey but also on the fitness of the artificial predators –
where a fitness score is awarded according to how well the predator exploits lower-defended prey and avoids
higher-defended prey. If at each generation of the real prey the artificial predator population is changed such
that more successful rule-systems become more prevalent in the artificial predator population, then we can
effectively mimic predator-prey co-evolution – and most pertinently we can explore whether the predator
population coalesces to rules that have commonality with those assumed in our theory. There is a collection
of interesting studies examining the co-evolution of aposematic prey in a prey-predator complex including
Teichmann et al. (2014b) and Teichmann et al. (2015), whose results may be of particular insight to the
experimenter.

We have seen how stochastic mechanisms can impact the evolution of aposematism in finite prey popula-
tions to varying degrees. While our conclusions about the evolution of prey traits in regimes (i), (ii), (iii) and
(iv) cannot be considered generic, the choice of parameter values is important and related to the size of the
mutation step. Throughout the simulations we have assumed a (maximum) mutation step of fixed size (the
same value regardless of the resident strategy from which mutation is occurring) so that depending on the
regime considered, different sets of parameter values can lead to different predicted outcomes (seen through
the level of t∗1). In every regime the exact choices of values were gauged manually so as to mitigate the impact
of stochasticity. While this method proved effective, it is by no means optimal. As such, future efforts could
consider a large number of identical systems (identical in the sense of sharing the same parameter values)
and showcase the time evolution of prey traits as an average over these. This type of averaging is known
as an ensemble average and is especially effective for mitigating the impact of stochasticity (likely more so
than the averaging process used currently in individual runs of the simulation). 1

In closing, we would like to highlight the success of the simulation in showcasing the evolution of apose-
matism in prey populations that are finite. We would also like to argue that it is possible to extend the
game-theoretic treatment of Broom et al. (2006) to account for Batesian mimicry systems, which are ar-
guably among the most important (and most studied) mimicry complexes encountered in nature. Work
of this type could utilise the territorially-divided habitat structure referred to in Scaramangas and Broom
(2022) and introduce on this a proportion of (beta-distributed) undefended mimics. Achieving stability of
a model and a mimicking species in a certain habitat on the (longer) evolutionary time-scales requires that
the individual sub-populations are stable on the (shorter) ecological time-scales and such a condition need
be considered jointly with the ESS conditions detailed here. Research in this direction is promising and
currently underway.

4.6 Code

In this section of the appendix we include a sample of the code that was used in R to run the simulation in
Figure 4.4(d). The plots for the remaining simulations were generated in a similar fashion.

1Ensemble averages were originally used in statistical physics to describe the averages of quantities that depended on the
microstate (e.g. the individual configuration of the components) of the system. They are now used extensively in other fields
outside of statistical physics, such as in machine learning, weather forecasting and signal processing.
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### Figure 4(d) ###

lamda <- 0

a <- 0.5

nprey <- 100

npred <- 10

frac_die <- 0.5 # The fraction of the population dying at the end of each iteration

ndie <- trunc(nprey*frac_die)

f0 <- 1

d0 <- 1

k0 <- 1

q0 <- 1

f <- 2.8

k <- 5

tc <- 0.25

q <- 0.4

v <- 1

iterations <- 10000

rmin <- 0

rmax <- 5

rdiff <- rmax-rmin

tmin <- 0

tmax <- 1.5

tdiff <- tmax-tmin

listt <- c(rep(tmin,6), rep(tmin + tdiff/5,5), rep(tmin + 2*tdiff/5,6), rep(tmin + 3*tdiff/5,5),

rep(tmin + 4*tdiff/5,6), rep(tmax,5))

listr <- c(seq(rmin, rmin + 10*rdiff/11, rmin + 2*rdiff/11),

seq(rmin + rdiff/11, rmin + 9*rdiff/11, rmin + 2*rdiff/11),

seq(rmin + (1/3)*rdiff/11, rmin + (10+1/3)*rdiff/11, rmin + 2*rdiff/11),

seq(rmin + (1+1/3)*rdiff/11, rmin + (9+1/3)*rdiff/11, rmin + 2*rdiff/11),

seq(rmin + (2/3)*rdiff/11, rmin + (10+2/3)*rdiff/11, rmin + 2*rdiff/11),

seq(rmin + (1+2/3)*rdiff/11, rmin + (9+2/3)*rdiff/11, rmin + 2*rdiff/11))

progt <- c()

progr <- c()

99



for(d in 1:length(listt)){

meant <- c(rep(0, iterations))

meanr <- c(rep(0, iterations))

iterrs <- c(rep(seq(1,iterations,1),2))

progt <- append(progt, listt[d])

progr <- append(progr, listr[d])

# Initialise individual prey properties

P <- c(rep(0,nprey))

D <- c(rep(0,nprey))

K <- c(rep(0,nprey))

Q <- c(rep(0,nprey))

I <- c(rep(0,nprey))

t <- rep(listt[d], nprey)

r <- rep(listr[d], nprey)

tstart <- t

rstart <- r

rsum <- 0

tsum <- 0

iters <- 0

print(d)

for (iter in 1:iterations){

meant[iter] <- mean(t)

meanr[iter] <- mean(r)

if(iter%%(iterations/5)<0.5){

avt <- sum(meant[(iter-(iterations/5-1)):iter])/(iterations/5)

avr <- sum(meanr[(iter-(iterations/5-1)):iter])/(iterations/5)

progt <- append(progt, avt)

progr <- append(progr, avr) }
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# Determine prey fitness

F <- f0*exp(-(f*t))

D <- 1/(1+exp(-r))

K <- k0/(1+(k*t))

for (x in 1:nprey){

sum <- 0

for (y in 1:nprey){

if ((abs(x-y)) > 0.01){

L <- D[y]

H <- t[y] - tc

S <- 1-(v*(abs(r[x]-r[y])))

if (S<0){S<-0}

sum <- sum +(L*H*S)}}

L_self <- D[x]

H_self <- t[x] - tc

S_self <- 1

I[x] = (((nprey*(1-a)/(nprey-1))*sum)+((a*nprey-1)*L_self*H_self*S_self))/npred}

Q <- q0*exp(-q*I)

for (z in 1:length(Q)){

if (Q[z]>1){Q[z]<-1}}

P <- F/(lamda+(D*K*Q))

# Update population w.r.t. fitness

wts_reproduce <- P/sum(P)

wts_die <- 1-wts_reproduce

sumwts <- sum(wts_die)

wts_die <- wts_die/sumwts

parents <- sample(nprey, size = ndie, replace = TRUE, prob = wts_reproduce)

replaced <- sample(nprey, size = ndie, replace = FALSE, prob = wts_die)

copyr <- r

copyt <- t
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for (x in 1:ndie){

p1 <- parents[x]

q1 <- replaced[x]

mutr <- rbinom(1,1,0.05)

if(mutr>0.5){

r[q1] <- copyr[p1]+((-0.05)+(0.1*runif(1)))

if(r[q1]<0){r[q1] <- 0}}

else{r[q1] <- copyr[p1]}

mutt <- rbinom(1,1,0.05)

if(mutt>0.5){

t[q1] <- copyt[p1]+((-0.05)+(0.1*runif(1)))

if(t[q1]<0){t[q1] <- 0}}

else{t[q1] <- copyt[p1]}} # End of change

}

# End of iteration

}

# Produce plot for Figure 4(d)

length(progr)

length(progt)

lines <- rep(1:33, each=6)

lines <- as.factor(lines)

idealfig <- data.frame(progr, progt, lines)

markersr <- progr[seq(0, length(idealfig$progr), 6)]

markerst <- progt[seq(0, length(idealfig$progt), 6)]

markers <- data.frame(markersr, markerst)

plot4d <- ggplot(idealfig, aes(x=progr, y=progt)) +

geom_path(aes(group=lines, col=lines), size=1.05) +

theme(legend.position="none", axis.text.x = element_text(size=20),

axis.text.y = element_text(size=20))

+ xlab("") + ylab("") +

geom_point(data=markers, mapping=aes(x=markersr, y=markerst))+

scale_x_continuous(breaks=seq(0,4,1))+

scale_y_continuous(breaks=seq(0,1.2,0.3))
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plot4d

# End of code
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Chapter 5

Co-existence & mimicry: a first approach

The purpose of this and the following chapter are to extend the model of Broom et al. (2006) to account for
instances in which the prey population is made up of either two types belonging to the same species (but
playing different strategies) or to instances in which the prey population is made up of two distinct species
altogether. Although from an evolutionary point of view these two cases are quite different, we demonstrate
presently and in chapter 6 that from the mathematical modelling perspective these can be considered jointly.
Indeed, we develop the conditions that are required for two types to co-exist in a sense that is stable both
from the ecological and from the evolutionary point of view (we call this eco-evolutionary stability). Following
the approach of Broom and Rychtár (2013) we treat the time-scale in which the population dynamics evolve
to be notably shorter than the time-scale in which evolutionary processes occur, such that when considering
ecological stability we imagine that the evolutionary processes are fixed and vice versa, when accounting for
evolutionary stability we imagine that the population dynamics are in equilibrium. We should also remark
that while ecological stability is considered alongside the ESS analysis, the treatment remains static and
independent of specific assumptions regarding the dynamics.

So as to focus the attention to those aspects of the mathematical modelling that are novel, we make a
number of simplifying assumptions during the numerical analysis portion of the chapter, which we consider
plausible. For instance, we keep with the assumption that predation is the only source of prey mortality 1

or that predators have perfect recollection of encounters (so that regardless of whether a detected individual
is attacked and/or captured the encounter is remembered). The structuring of this chapter is similar to
the structuring of the sixth chapter and is as follows: first, we explain how the setup described in chapter
2 is extended to account for a two-type prey population; second, following this we discuss what it means
for the types to co-exist in a sense that is eco-evolutionarily stable (and express the conditions in terms of
general functional forms); third, we identify by means of elimination the admissible forms for the function Q

describing the probability of attack that are best-suited for studying mimicry under the specific assumptions
of this chapter. In closing, we provide a working example of a system that is eco-evolutionarily stable, initially
in the form of a point solution (i.e. exact values for the type-1 and type-2 strategies and proportions) and
hence extend the method detailed therein to demonstrate how one can recover a continuum of solutions
(with the type-1 and type-2 strategies and proportions drawn from intervals of values). The mathematical

1Indeed, it was demonstrated in chapter 4 that regimes with non-zero rates of background mortality can be inherently more
challenging to model, even for the case in which the prey population consists of a single species. Accounting for sources of
death outside of predation within a two-type prey population and the possibility of testing these predictions against a genetic
algorithm model (see section 4.3) provide a potentially fruitful future objective.
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modelling of mimicry is strikingly limited in the literature and for this reason we have decided to provide more
detail in the calculations than in the previous chapters and to include specific workings for the numerical
analysis.

5.1 Two-type co-existence

While the motivation behind this chapter is mimicry, the presentation in this first section does not impose
a specific relationship between the strategies of one or the other type and may in principle be considered
as a basis from which to explore a wider variety of co-existence problems involving three protagonists: a
predator and two prey types. That said, due to time resources being limited we consider co-existence only
on a preliminary level and do not explore explicit numerical examples beyond the strictly mimetic cases.
Indeed, while the discussion is kept as general as possible wherever possible, the larger portion of this chapter
is devoted exclusively to co-existence in the form of mimicry. This is achieved by interpreting the first type
as the model (consisting of aversive prey emitting signals of given conspicuousness) and the second type as
the mimic who resembles the model and is completely undefended (although we do include cases where this
can still be defended - see Definition 5.1.1 and Theorem 5.1.2). In the worked examples that are provided
later in the chapter (see sections 5.3 and 5.4) we discuss mimicry in a rather idealised context of perfect
resemblance in which the mimic is completely indistinguishable to the model from the point of view of the
predator.

Payoff and perceived aversiveness

We imagine an extended habitat structure that is territorially-divided among the predators such that each
site consists of N prey and is visited by n predators who visit that site only. In the ε → 0 limit of the
resident-mutant description provided in chapter 2 it was assumed that almost all sites consist of prey playing
the resident strategy (r1, t1) except for a small, effectively negligible number of sites containing clusters (of
size a) of copies of a certain focal individual. In keeping with the ε → 0 limit description, we presently
extend the latter in a straightforward way by assuming that in almost all sites can be found a proportion
(1 − γ) of prey of a certain type (type-1) playing strategy (r1, t1), with remaining prey (type-2) playing
strategy (r2, t2) in proportion γ ∈ [0, 1] .

We impose mutation by imagining that while in almost all sites there is a (1−γ)/γ split between type-1s
and type-2s that there is a small number of sites containing clusters of focal relatives in which this proportion
is perturbed. 2 Under this description we account for local mutation in the traits of either the first or the
second type by maintaining that the mutant trait (r, t) can assume values that are local to either the type-1
or the type-2 strategy (see Definition 5.1.1 for a more precise description of local based on where on the
strategy space each type draws its strategy from).

In both this and in chapter 6 we conceive that mutation is facilitated by means of local clustering, so
that while mutants make up a negligible proportion of the overall prey population their presence on the
local level can have considerable impact on their aversiveness as perceived by the group of predators visiting
their site. In this chapter in particular, the local relatedness parameter a is understood as the proportion of
relatives of the (focal) individual who play strategy (r, t) over the total number of prey residing in that site.

2We should remark that the limiting cases γ = 0 and γ = 1 describe situations where either only the first type or only the
second type is present and therefore does not strictly describe co-existence. This remark is more relevant when it comes to
considering specific outcomes; for now it is safe to assume that γ assumes value on the closed interval [0, 1].
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This interpretation of the relatedness is quite different to the one provided in chapter 6, in which the focal
individual is of either one or the other type and in which that parameter measures the local concentration
of relatives as a proportion over the number of individuals of the focal type - see section 6.1. In addition,
while in this chapter γ is understood as a background proportion of type-2s (i.e. almost every site has
this proportion) in chapter 6 we model this as a (beta-distributed) continuous random variable so that one
expects to see different type-2 individuals in varying proportions in the habitat. We motivate the possibility
of an alternative approach to modelling co-existence in the end of this chapter.

The interpretation of relatedness as used in this chapter suggests that in a site that does contain relatives
there are aN relatives playing (r, t), while from the remaining (1−a)N prey in that site there are (1−a)(1−
γ)N type-1s playing (r1, t1) and (1−a)γN type-2s playing (r2, t2) - strictly speaking the focal individual itself
should be discounted but discussions of this type have already been made. From the perceived aversiveness
as defined on the level of the individual in (2.2.2) as

Ii =
1

n

N∑
j=1,j ̸=i

L(rj)H(tj)S(|ri − rj |) (5.1.1)

we recover the expression for the aversiveness of the focal individual as perceived by the group of predators
visiting the local area as

I ′ = a
N

n
L(r)H(t) + (1− a)(1− γ)

N

n
L(r1)H(t1)S(|r − r1|) + (1− a)γ

N

n
L(r2)H(t2)S(|r − r2|)

= aI + (1− a)(1− γ)I1S(|r − r1|) + (1− a)γI2S(|r − r2|). (5.1.2)

This level of perceived aversiveness is to be contrasted with the perceived aversiveness of a type-1 individual,
which is recovered through (5.1.2) by setting (r, t) = (r1, t1) and reads

I ′1 = [a+ (1− a)(1− γ)]
N

n
L(r1)H(t1) + (1− a)γ

N

n
L(r2)H(t2)S(|r1 − r2|)

= [a+ (1− a)(1− γ)]I1 + (1− a)γI2S(|r1 − r2|). (5.1.3)

Likewise, the perceived aversiveness of a type-2 individual is recovered through (5.1.2) by setting (r, t) =

(r2, t2) and reads

I ′2 = (1− a)(1− γ)
N

n
L(r1)H(t1)S(|r1 − r2|) + [a+ (1− a)γ]

N

n
L(r2)H(t2)

= (1− a)(1− γ)I1S(|r1 − r2|) + [a+ (1− a)γ] I2. (5.1.4)

We make use of the quantities I, I1 and I2 to describe the associated level of aversive information if the
habitat were made up entirely of a focal individuals, type-1s or type-2s respectively such that

I1,2 :=
N

n
L(r1,2)H(t1,2). (5.1.5)

Thus far, we have referred to the groups making up the prey population as types and have (purposely)
left unspecified whether these belong to the same or to different species. From the mathematical modelling
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perspective there are a number of items to consider on this front. The description of Broom et al. (2006) is
one that models aposematism in prey and is not intended to explicitly model predator learning. In keeping
with this, we use a single set of functional forms for L,H, S and Q to describe the predator’s perception
of prey as we do in (5.1.2), (5.1.3) and (5.1.4), as opposed to two sets. That is to say, we do not use one
functional form for say Q to evaluate the perceived aversiveness of a type-1 and a different functional form
for evaluating the aversiveness of a type-2 individual. Incorporating a second type to the prey population in
such a manner we keep the predator parameters with respect to the learning process fixed.

On the other hand, we account for inherent differences between the types of prey by making use of
different sets of functional forms to describe prey-related processes. Investment in secondary defences is
costly to the individuals that deploy them and the extent to which this influences their fecundity should
in principle depend on the type of prey in question. For this reason we consider two functional forms F1

and F2 to describe the relationship to defence of the fecundity for type-1s and type-2s. We could also argue
that the extent to which a given level of investment in defence is effective at reducing that prey’s chance
of escaping an attack is also an inherent property of the prey in question and use forms K1 and K2 to
distinguish between the types; in the chapter that follows we indeed use two sets of functions for both F

and K. In this chapter we distinguish between the two types of prey only through F . The reader is also
encouraged to review the related discussion in chapter 3 where in (3.2.7) was introduced parameter b as a
measure describing the sensitivity of prey to investment in secondary defences that included both F and K;
interestingly, it was shown that the outcomes for ESS exhibit strong dependence on this parameter.

Since the two types exhibit different sensitivity to investment in defence (through F ) we introduce the
payoff to a type-1 individual as

P1(r1, t1; r2, t2) =
F1(t1)

λ+D(r1)K(t1)Q(I ′1)
(5.1.6)

and the payoff to a type-1 mutant as

P †1 (r, t; r1, t1; r2, t2) :=
F1(t)

λ+D(r)K(t)Q(I ′)
(5.1.7)

with (r, t) defined in the local vicinity of the type-1 strategy (r1, t1). Likewise, the payoff to the second type
is given as

P2(r1, t1; r2, t2) :=
F2(t2)

λ+D(r2)K(t2)Q(I ′2)
(5.1.8)

and for a mutant playing a strategy local to the type-2 strategy the payoff is given as

P †2 (r, t; r1, t1; r2, t2) :=
F2(t)

λ+D(r)K(t)Q(I ′)
. (5.1.9)

For completeness, we remark that the mutant fitnesses are continuous at the value of each type on account
of (5.1.2). Indeed, if (r, t) = (r1, t1) we recover that I ′ = I ′1 so that

P †1 (r = r1, t = t1; r1, t1; r2, t2) =
F1(t1)

λ+D(r1)K(t1)Q(I ′1)
= P1(r1, t1; r2, t2). (5.1.10)

Likewise, it is true that if (r, t) = (r2, t2) that I ′ = I ′2 so that the mutant fitness is continuous at the type-2
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strategy

P †2 (r = r2, t = t2; r1, t1; r2, t2) =
F2(t2)

λ+D(r2)K(t2)Q(I ′2)
= P2(r1, t1; r2, t2). (5.1.11)

In chapter 2 it was discussed that the functional forms for F,D,K,Q,L and H are (by construction)
of class Cl with l ≥ 2 and the same applies to S sufficiently near the origin. The mutant fitness functions
P †1 and P †2 as defined in (5.1.7) and (5.1.9) are composed of such functions and of the bi-variate similarity
function S(ri, rj) = S(|ri − rj |) - see definition in (2.2.5) - which depends only on the conspicuousness trait
and is not differentiable with respect to ri or rj at ri = rj . From the above we draw the following conclusions
about the fitness functions P †1 and P †2 . From this it follows that the mutant fitness functions are almost
everywhere Cl with l ≥ 2 except at r = r1 and r = r2. The latter is much like in (2.3.5) of chapter 2, where
it was shown that the mutant fitness is non-differentiable along r at r = r1; it now follows that the mutant
fitness functions P †1 and P †2 are non-differentiable (but are continuous) at r = r1 and at r = r2 respectively.
Indeed, we have

C1,2(r, t)∂rP
†
1,2(r, t; r1, t1; r2, t2) =− D′(r)

D(r)
− aIL

′(r)

L(r)

Q′(I ′)

Q(I ′)

− (1− a)(1− γ)I1
Q′(I ′)

Q(I ′)
S′(|r − r1|)

(
− 1(−∞,r1) + 1(r1,∞)

)

− (1− a)γI2
Q′(I ′)

Q(I ′)
S′(|r − r2|)

(
− 1(−∞,r2) + 1(r2,+∞)

)
(5.1.12)

with
C1,2(r, t) =

(λ+D(r)K(t)Q(I ′))2

F1,2(t)D(r)K(t)Q(I ′)

as per usual for the scaling factor. In Theorem 5.1.2 of the following section we discuss how fitness functions
with these properties can be used to determine when the prey population is (locally) evolutionarily stable.
Besides providing evidence that the mutant payoffs P †1 and P †2 are not differentiable along r at r = r1 and
r = r2 the RHS of (5.1.12) suggests that the relative ordering of the quantities r1 and r2 is determining;
such that cases with r1 < r2, r1 > r2 and r1 = r2 need be considered separately (this is discussed in greater
detail at the end of this section, following the proof of Theorem 5.1.2).

Fitness is in this manuscript understood as a measure describing the number of offspring produced per
life cycle so that high-fitness individuals are those who produce many offspring and/or those with longer life-
cycles. This interpretation has allowed us to draw conclusions about the future composition of a population,
based on its present composition using an approach that is static. For instance, we contend that if the overall
fitness to a type-1 is greater than the overall fitness to a type-2 that the population of the first type will
eventually outgrow the population of the other. While this process is not explicitly modelled it is presumed
to take place on a time-scale that is shorter than the time taken for mutation to occur and potentially disrupt
the composition.

Ecological stability

There is perhaps little sense in determining whether or not two types can co-exist on the longer time-scale
if from a fitness perspective one type has the potential to outgrow the other. In keeping with an approach
that is exclusively static we impose a set of conditions (separate to ESS) on the fitnesses of each type to
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define what we describe as ecological stability in this and in the following chapter. In particular, we say that
two types playing strategies (r1, t1) and (r2, t2) are in ecological equilibrium if when played in proportions
(1− γ∗) and γ∗ - providing there exists such a proportion - the associated fitnesses of each type are equal

P1(r1, t1; r2, t2) = P2(r1, t1; r2, t2), (5.1.13)

which from (5.1.6) and (5.1.8) amounts to

F1(t1)

λ+D(r1)K(t1)Q(I ′1)
=

F2(t2)

λ+D(r2)K(t2)Q(I ′2)
. (5.1.14)

From the definitions of the quantities I ′1 and I ′2 provided in (5.1.3) and (5.1.4) it is clear that the fitness of
either type is sensitive to their relative abundance. Indeed, it is possible for two types to satisfy (5.1.14)
for some proportion γ∗ but for the composition to be violated when the proportion is perturbed marginally
away from the equilibrium level. To eliminate this prospect, we impose that the equilibrium proportion is
stable under such perturbations by means of the following inequality

∂γ

(
P2(r1, t1; r2, t2)− P1(r1, t1; r2, t2)

)∣∣∣∣
γ=γ∗

< 0. (5.1.15)

The reader is directed to the classic Hawk-Dove game analysis in chapter 2 of Maynard Smith (1982) for
more insight into what we presently describe as ecological equilibrium. The discussion there, as well as in
chapter 4 of Broom and Rychtár (2013) - see Figure 4.2 therein - includes an analysis of the behaviour of a
population as it deviates from a state of polymorphic equilibrium. It is shown that such deviations (due to
stochastic effects or due to the finiteness of the population) lead to a reduction in (average) fitness so that
polymorphism is restored and eventually the population evolves toward the ESS strategy.

Inequality (5.1.15) guarantees that if the types play (r1, t1) and (r2, t2) in a proportion that is marginally
smaller than the equilibrium value given through (5.1.14) that this will be compensated by a marginally
larger type-2 fitness that acts to restore the population back to the equilibrium proportion. Likewise, if the
types co-exist in proportion that is marginally larger than the equilibrium level this is compensated by a
marginally larger type-1 fitness that tends to restore the population to the equilibrium proportion in (5.1.14).
From context it should be clear that the sign of the term in brackets ("type-2 fitness minus type-1 fitness")
in (5.1.15) is as such on account of the definition of γ as the proportion of type-2 individuals. Indeed, if the
direction of the inequality were reversed, a negative deviation away from the equilibrium proportion would
lead to the extinction of the type-2 population (γ → 0), while a positive deviation away from the equilibrium
proportion would lead to the extinction of the type-1 population (γ → 1).

Substitution of (5.1.6) and (5.1.8) into (5.1.15) leads to

− F2(t2)D(r2)K(t2)Q
′(I ′2)(

λ+D(r2)K(t2)Q(I ′2)
)2 ∂γI ′2∣∣γ=γ∗ +

F1(t1)D(r1)K(t1)Q
′(I ′1)(

λ+D(r1)K(t1)Q(I ′1)
)2 ∂γI ′1∣∣γ=γ∗ < 0 (5.1.16)

Solving this inequality at equilibrium (5.1.14) gives

− D(r2)K(t2)Q
′(I ′2)

λ+D(r2)K(t2)Q(I ′2)
(−I1S(|r1 − r2|) + I2) +

D(r1)K(t1)Q
′(I ′1)

λ+D(r1)K(t1)Q(I ′1)
(−I1 + I2S(|r1 − r2|)) < 0. (5.1.17)

Scaling this inequality by −F1(t1)F2(t2) and making use of condition (5.1.14) once more we recover the

109



simplified condition for ecological stability

F1(t1)D(r2)K(t2)Q
′(I ′2)(I1S(|r1 − r2|)− I2)− F2(t2)D(r1)K(t1)Q

′(I ′1)(I1 − I2S(|r1 − r2|)) < 0. (5.1.18)

We refer to the latter directly when discussing ecological stability in the context of explicit examples. Eco-
logical stability is showcased in Figure 5.1 for which we remark that, while in principle both quantities P1

and P2 are scalar functions of five variables (r1, t1) and (r2, t2) and the proportion γ the plot is showing a
picture of a section of the surface P2 − P1 in the vicinity of the equilibrium proportion γ∗ given through
(5.1.14) for fixed traits (r1, t1) and (r2, t2). We emphasize that the plot is showing the difference in payoffs
P2−P1 in the local vicinity of γ∗ to avoid confusion about the dependence on γ of P2−P1 following a linear
drop-off.

*

P2( ) P1( )

Figure 5.1: The figure illustrates condition (5.1.15). It is clear that values of γ < γ∗ result in the first type having
smaller payoff than the second type playing (r2, t2), which leads to the fractional increase in the size of the latter (γ)
until it reaches the critical value γ∗, at which both types grow at the same rate. If, on the other hand γ > γ∗, the
converse is true so that γ decreases until it re-settles at γ∗, indicating that γ∗ is a parameter value associated with
stable co-existence.

Although it is true that ecological stability is necessary for the stable co-existence of two types over the
long-run this condition is not sufficient. Indeed, we can conceive of a scenario in which the two types play
(r1, t1) and (r2, t2) in a proportion that satisfies conditions (5.1.13) and (5.1.15) but in which the fitness of
some mutant (say, a type-1 mutant) is larger than the resident fitness of that type, so that for some (r̂, t̂)

in the local vicinity of (r1, t1) we have P †1 (r̂, t̂; r1, t1; r2, t2) > P1(r1, t1; r2, t2). In such a scenario the type-1
resident risks invasion from mutants of its type, which could in turn jeopardise that type’s stable co-existence
with the type-2 group over longer time-scales. In the part that follows we extend the notions of evolutionary
stability as introduced in section 2 to describe evolutionary stability for a prey population consisting of two
aposematic types. This is extended in a straightforward way by imposing that each type is evolutionarily
stable against mutations that are local to its type.

Evolutionary stability

We say that two types can co-exist in a sense that is (locally) evolutionarily stable if each type is non-invasible
by (rare) local mutations (i.e. if each type is a local ESS - see Definition 5.1.1 below). From Definition 2.3.1 it
should be clear that the precise conditions for a type to be a local ESS depends on which subset D0,D1,D2

or D3 it draws its strategy from. Since for each type there are four possibilities, it follows that one can

110



conceive of sixteen distinct instances in which the conditions for the system to be (locally) evolutionarily
stable are unique. While studying any number of these might be of interest for general modelling purposes,
we presently narrow our attention to a subclass of these that more closely resemble mimicry systems.

In order to keep the discussion both focused and general, we account for two features of mimicry systems
that will help us narrow our attention. The first is that one type (type-1) is more aversive than the other
(i.e. 0 ≤ t2 < t1). This restriction alone means that of the sixteen regimes of co-existence there are now eight
that are of interest (as we are now excluding the possibility that type-1s draw their strategy from either D0

or D1). The second is that both types produce signals that are conspicuous. 3 This last restriction forces us
to exclude regimes in which either type is cryptic and therefore through the earlier restriction we are now left
with two regimes, since for the first type we have (r1, t1) ∈ D3 and for the second type we have (r2, t2) ∈ D1

or (r2, t2) ∈ D3. We hence proceed to give a formal definition of what it means for a prey population in
which the first type draws its strategy (r1, t1) from D1 and the second type draws its strategy (r2, t2) either
from D1 or from D3

4.

Definition 5.1.1. In a prey population in which the proportion of type-1s playing (r1, t1) is γ and the
proportion of type-2s playing (r2, t2) is (1− γ) we have that:

[i] The type-1s are locally evolutionarily stable if they receive higher fitness when interacting with the type-1
strategy than do the mutants (that are local to the type-1 strategy) when interacting with the type-1 strategy.
That is, we say that the type-1s are locally evolutionarily stable if

P †1 (r = r1, t = t1; r1, t1; r2, t2) > P †1 (r, t; r1, t1; r2, t2) for all (r, t) ∈ [r1−δr, r1+δr]×[t1−δt, t1+δt] \ (r1, t1).
(5.1.19)

[ii] The type-2s are locally evolutionarily stable if they receive higher fitness when interacting with the type-2
strategy than do the mutants (that are local to the type-2 strategy) when interacting with the type-2 strategy.

(a) If the type-2s are completely undefended - i.e. t2 = 0 with (r2, 0) ∈ D1 - then they are locally evolutionarily
stable if

P †2 (r = r2, t = 0; r1, t1; r2, 0) > P †2 (r, t; r1, t1; r2, 0) for all (r, t) ∈ [r2− δr, r2+ δr]× [0, δt] \ (r2, 0). (5.1.20)

(b) If the type-2s are defended - i.e. 0 < t2 < t1 with (r2, t2) ∈ D3 - then they are locally evolutionarily stable
if

P †2 (r = r2, t = t2; r1, t1; r2, t2) > P †2 (r, t; r1, t1; r2, t2) for all (r, t) ∈ [r2−δr, r2+δr]×[t2−δt, t2+δt] \ (r2, t2).
(5.1.21)

Finally, we say that the prey population is locally evolutionarily stable if both the type-1s and the type-2s are
locally evolutionarily stable.

For the remainder of this chapter we make use of a theorem (Theorem 5.1.2) - this is a direct extension
of Theorem 2.3.2 used in chapter 2 - to determine when systems involving the co-existence of two types as
described in Definition 5.1.1 are locally evolutionarily stable. We state and prove this theorem below.

3In the worked examples of sections 5.3 and 5.4 we impose that the conspicuousness of these signals is identical.
4The remaining fourteen regimes of co-existence mentioned above could have been included in Definition 5.1.1, but such a

task would go beyond our scope and would interrupt the flow of the manuscript.
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Theorem 5.1.2. Assume that the prey population is made up of a proportion 1−γ of type-1s playing (r1, t1) ∈
D3 and a proportion γ of type-2s playing (r2, t2) ∈ D1 ⊔ D3. Assume that the fitnesses received by mutants
playing strategy (r, t) local to the type-1/2 values are denoted P †1 /P

†
2 and given through (5.1.7)/ (5.1.9). The

quantities P̄ †1 an P̄ †2 are almost everywhere Cl with l ≥ 2 except at r = r1 and r = r2 where they are not
r-differentiable but are continuous at those values. Then the following conditions hold for determining when
a resident strategy is a local ESS.
[i] If

∂tP
†
1 (r, t; r1, t1; r2, t2)|r=r1,t=t1 = 0 (5.1.22)

∂ttP
†
1 (r, t; r1, t1; r2, t2)|r=r1,t=t1 < 0 (5.1.23)

←
∂ rP

†
1 (r, t; r1, t1; r2, t2)|r=r1,t=t1 > 0 and (5.1.24)

→
∂ rP

†
1 (r, t; r1, t1; r2, t2)|r=r1,t=t1 < 0, (5.1.25)

then the type-1s are locally evolutionarily stable.

[ii] If either

(a) (r2, t2) ∈ D1 (i.e. t2 = 0) such that

→
∂ tP

†
2 (r, t; r1, t1; r2, 0)|r=r2,t=0 < 0 (5.1.26)

←
∂ rP

†
2 (r, t; r1, t1; r2, 0)|r=r2,t=0 > 0 and (5.1.27)

→
∂ rP

†
2 (r, t; r1, t1; r2, 0)|r=r2,t=0 < 0, (5.1.28)

or

(b) (r2, t2) ∈ D3 (i.e. t2 > 0) such that

∂tP
†
2 (r, t; r1, t1; r2, t2)|r=r2,t=t2 = 0 (5.1.29)

∂ttP
†
2 (r, t; r1, t1; r2, t2)|r=r2,t=t2 < 0 (5.1.30)

←
∂ rP

†
2 (r, t; r1, t1; r2, t2)|r=r2,t=t2 > 0 and (5.1.31)

→
∂ rP

†
2 (r, t; r1, t1; r2, t2)|r=r2,t=t2 < 0, (5.1.32)

then the type-2s are locally evolutionarily stable

If [i] holds together with either (a) or (b) of [ii] then the prey population is locally evolutionarily stable.

Proof. We show that inequalities (5.1.22), (5.1.23), (5.1.24) and (5.1.25) in [i] lead to local ESS for type-1 in
the sense of (5.1.19) of Definition 5.1.1 by first expressing the mutant traits in terms of spherical coordinates
(x, ϕ) in R2 so that

(x, ϕ) → (r, t) : r = r1 + x cosϕ and t = t1 + x sinϕ (5.1.33)
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and hence expressing the type-1 mutant fitness P†1 in terms of the transformed coordinates x, ϕ so that

P†1 : R≥0 × [0, 2π) → R≥0 : P†1(x, ϕ) := P †1 (r = r1 + x cosϕ, t = t1 + x sinϕ; r1, t1; r2, t2). (5.1.34)

From the latter it is clear that the desired inequality (5.1.19) amounts to showing

P†1(x, ϕ)− P†1(0, ϕ) < 0 for all ϕ ∈ [0, 2π). (5.1.35)

We proceed to showing this for cases ϕ = 0, ϕ ∈ (0, π/2), ϕ = π/2, 3π/2, ϕ ∈ (π/2, π), ϕ = π, ϕ ∈ (π, 3π/2)

and ϕ ∈ (3π/2, 2π).
If ϕ = 0 mutation occurs along the r-direction so that

P†1(x, ϕ = 0)− P†1(0, ϕ = 0) = P †1 (r, t1; r1, t1; r2, t2)− P †1 (r1, t1; r1, t1; r2, t2)

≈ (r − r1)︸ ︷︷ ︸
>0

×
→
∂ rP†1(r, t; r1, t1; r2, t2)|r=r1,t=t1︸ ︷︷ ︸

<0

< 0. (5.1.36)

If ϕ ∈ (0, π/2) we have

P†1(x, ϕ)− P†1(0, ϕ) ≈ x∂xP†1(x, ϕ)|x=0,ϕ∈(0,π/2)

= x∂xP
†
1 (r = r1 + x cosϕ, t = t1 + x sinϕ; r1, t1; r2, t2)|x=0,ϕ∈(0,π/2)

= x cosϕ︸ ︷︷ ︸
>0

×
→
∂ rP

†
1 (r, t; r1, t1; r2, t2)|r=r1,t=t1︸ ︷︷ ︸

<0

+x sinϕ︸ ︷︷ ︸
>0

× ∂tP
†
1 (r, t; r1, t1; r2, t2)|r=r1,t=t1︸ ︷︷ ︸

=0

< 0. (5.1.37)

If ϕ = π/2 or ϕ = 3π/2 mutation is along the t-direction so that x = t − t1. Furthermore, since we are
assuming that the mutant fitness P†1 is as in (5.1.7) it follows that we can evaluate the difference in fitness
between the mutant and the type-1 value using a second order expansion, so that

P†1(x, ϕ)− P†1(0, ϕ) = P †1 (r1, t; r1, t1; r2, t2)− P †1 (r1, t1; r1, t1; r2, t2)

= (t− t1)× ∂tP
†
1 (r, t; r1, t1; r2, t2)|r=r1,t=t1︸ ︷︷ ︸

=0

+
1

2
(t− t1)

2︸ ︷︷ ︸
>0

× ∂ttP
†
1 (r, t; r1, t1; r2, t2)|r=r1,t=t1︸ ︷︷ ︸

<0

< 0. (5.1.38)

If ϕ ∈ (π/2, π) the difference between the mutant and the type-2 fitness is given by

P†1(x, ϕ)− P†1(0, ϕ) ≈ x∂xP†1(x, ϕ)|x=0,ϕ∈(π/2,π)

= x∂xP
†
1 (r = r1 + x cosϕ, t = t1 + x sinϕ; r1, t1; r2, t2)|x=0,ϕ∈(π/2,π)

= x cosϕ︸ ︷︷ ︸
<0

×
←
∂ rP

†
1 (r, t; r1, t1; r2, t2)|r=r1,t=t1︸ ︷︷ ︸

>0

+x sinϕ︸ ︷︷ ︸
>0

× ∂tP
†
1 (r, t; r1, t1; r2, t2)|r=r1,t=t1︸ ︷︷ ︸

=0

< 0. (5.1.39)
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If ϕ = π we have mutation along the r-direction so that x = r − r1 < 0 and thus

P†1(x, ϕ = π)− P†1(0, ϕ = π) =P †1 (r, t1; r1, t1; r2, t2)− P †1 (r1, t1; r1, t1; r2, t2)

= (r − r1)︸ ︷︷ ︸
<0

×
←
∂ rP

†
1 (r, t; r1, t1; r2, t2)|r=r1,t=t1︸ ︷︷ ︸

>0

< 0. (5.1.40)

If ϕ ∈ (π, 3π/2)

P†1(x, ϕ)− P†1(0, ϕ) ≈ x∂xP†1(x, ϕ)|x=0,ϕ∈(π,3π/2)

= x∂xP
†
1 (r = r1 + x cosϕ, t = t1 + x sinϕ; r1, t1; r2, t2)|x=0,ϕ∈(π,3π/2)

= x cosϕ︸ ︷︷ ︸
<0

×
←
∂ rP

†
1 (r, t; r1, t1; r2, t2)|r=r1,t=t1︸ ︷︷ ︸

>0

+x sinϕ× ∂tP
†
1 (r, t; r1, t1; r2, t2)|r=r1,t=t1︸ ︷︷ ︸

=0

< 0. (5.1.41)

Finally, if ϕ ∈ (3π/2, 2π) it follows that

P†1(x, ϕ)− P†1(0, ϕ) ≈ x∂xP†1(x, ϕ)|x=0,ϕ∈(3π/2,2π)

= x∂xP
†
1 (r = r1 + x cosϕ, t = t1 + x sinϕ; r1, t1; r2, t2)|x=0,ϕ∈(3π/2,2π)

= x cosϕ︸ ︷︷ ︸
>0

×
→
∂ rP

†
1 (r, t; r1, t1; r2, t2)|r=r1,t=t1︸ ︷︷ ︸

<0

+x sinϕ× ∂tP
†
1 (r, t; r1, t1; r2, t2)|r=r1,t=t1︸ ︷︷ ︸

=0

< 0. (5.1.42)

We conclude that we have shown case [i] of Theorem 5.1.2 by showing that inequality (5.1.35) applies for all
possible directions.

We proceed to showing case [ii] of Theorem 5.1.2. As such, we will show case (a) first, and in particular
that inequalities (5.1.26), (5.1.27) and (5.1.28) lead to a local ESS for the second type in the sense of (5.1.21)
in Definition 5.1.1. Much like in case [i], we show this by showing that

P†2(x, ϕ)− P†2(0, ϕ) < 0 for all ϕ ∈ [0, π], (5.1.43)

where P†2 represents the type-2 mutant fitness expressed in terms of polar coordinates x, ϕ. That is

P†2 : R≥0 × [0, π] → R≥0 : P†2(x, ϕ) := P †2 (r = r2 + x cosϕ, t = x sinϕ; r1, t1; r2, 0) (5.1.44)

with
(x, ϕ) → (r, t) : r = r2 + x cosϕ and t = x cosϕ. (5.1.45)

We show (5.1.43) by showing that it applies for cases ϕ = 0, ϕ ∈ (0, π/2), ϕ = π/2, ϕ ∈ (π/2, π) and ϕ = π

individually.
If ϕ = 0 mutation is along the (positive) r-direction and in the vicinity of (r2, 0) so that

P†2(x, ϕ = 0)− P†2(0, ϕ = 0) =P †2 (r, 0; r1, t1; r2, 0)− P †2 (r2, 0; r1, t1; r2, 0)

≈ (r − r2)︸ ︷︷ ︸
>0

×
→
∂ rP

†
2 (r, t; r1, t1; r2, 0)|r=r2,t=0︸ ︷︷ ︸

<0

< 0. (5.1.46)
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If ϕ ∈ (0, π/2) we have

P†2(x, ϕ)− P†2(0, ϕ) ≈ x∂xP†2(x, ϕ)|x=0,ϕ∈(0,π/2)

= x∂xP
†
2 (r = r2 + x cosϕ, t = x sinϕ; r1, t1; r2, 0)|x=0,ϕ∈(0,π/2)

= x cosϕ︸ ︷︷ ︸
>0

×
→
∂ rP

†
2 (r, t; r1, t1; r2, 0)|r=r2,t=0︸ ︷︷ ︸

<0

+x sinϕ︸ ︷︷ ︸
>0

×
→
∂ tP

†
2 (r, t; r1, t1; r2, 0)|r=r2,t=0︸ ︷︷ ︸

<0

< 0. (5.1.47)

If ϕ = π/2 mutation is solely along the t-direction so that

P†2(x, ϕ = π/2)− P†2(0, ϕ = π/2) = P †2 (r2, t; r1, t1; r2, 0)− P †2 (r2, 0; r1, t1; r2, 0)

≈ t×
→
∂ tP

†
2 (r, t; r1, t1; r2, 0)|r=r2,t=0︸ ︷︷ ︸

<0

< 0. (5.1.48)

If ϕ ∈ (π/2, π) the incremental difference between mutant and mimic fitness is negative since

P†2(x, ϕ)− P†2(0, ϕ) ≈ x∂xP†2(x, ϕ)|x=0,ϕ∈(π/2,π)

= x∂xP
†
2 (r = r2 + x cosϕ, t = x sinϕ; r1, t1; r2, 0)|x=0,ϕ∈(π/2,π)

= x cosϕ︸ ︷︷ ︸
<0

×
←
∂ rP

†
2 (r, t; r1, t1; r2, 0)|r=r2,t=0︸ ︷︷ ︸

>0

+x sinϕ︸ ︷︷ ︸
>0

×
→
∂ tP

†
2 (r, t; r1, t1; r2, 0)|r=r2,t=0︸ ︷︷ ︸

<0

< 0. (5.1.49)

To conclude part (a) of case [ii] of Theorem 5.1.2 we show that for the scenario ϕ = π in which mutation is
solely along the r-direction we have

P†2(x, ϕ)− P†2(0, ϕ) =P †2 (r, 0; r1, t1; r2, 0)− P †2 (r2, 0; r1, t1; r2, 0)

≈ (r − r2)︸ ︷︷ ︸
<0

×
←
∂ rP

†
2 (r, t; r1, t1; r2, 0)|r=r2,t=0︸ ︷︷ ︸

>0

< 0. (5.1.50)

To show case (b) in part [ii] of Theorem 5.1.2 it remains for us to show that equality (5.1.29) together
with inequalities (5.1.30), (5.1.31) and (5.1.32) imply that the second type admits a local ESS in the sense of
(5.1.21) of Definition 5.1.1. We begin by expressing the mutant traits in the vicinity of the type-2 strategy
in terms of spherical coordinates x and ϕ so that

(x, ϕ) → (r, t) : r = r2 + x cosϕ and t = t2 + x sinϕ. (5.1.51)

In terms of the transformed coordinates x, ϕ the type-2 mutant fitness P†2 reads

P†2 : R≥0 × [0, 2π) → R≥0 : P†2(x, ϕ) := P †2 (r = r2 + x cosϕ, t = t2 + x sinϕ; r1, t1; r2, t2). (5.1.52)

From the latter it is clear that the desired inequality (5.1.21) amounts to showing

P†2(x, ϕ)− P†2(0, ϕ) < 0 for all ϕ ∈ [0, 2π). (5.1.53)

We proceed to showing this for cases ϕ = 0, ϕ ∈ (0, π/2), ϕ = π/2, 3π/2, ϕ ∈ (π/2, π), ϕ = π, ϕ ∈ (π, 3π/2)
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and ϕ ∈ (3π/2, 2π) individually.
If ϕ = 0 mutation occurs along the r-direction so that

P†2(x, ϕ = 0)− P†2(0, ϕ = 0) = P †2 (r, t2; r1, t1; r2, t2)− P †2 (r2, t2; r1, t1; r2, t2)

≈ (r − r2)︸ ︷︷ ︸
>0

×
→
∂ rP†2(r, t; r1, t1; r2, t2)|r=r2,t=t2︸ ︷︷ ︸

<0

< 0. (5.1.54)

If ϕ ∈ (0, π/2) we have

P†2(x, ϕ)− P†2(0, ϕ) ≈ x∂xP†2(x, ϕ)|x=0,ϕ∈(0,π/2)

= x∂xP
†
2 (r = r2 + x cosϕ, t = t2 + x sinϕ; r1, t1; r2, t2)|x=0,ϕ∈(0,π/2)

= x cosϕ︸ ︷︷ ︸
>0

×
→
∂ rP

†
2 (r, t; r1, t1; r2, t2)|r=r2,t=t2︸ ︷︷ ︸

<0

+x sinϕ︸ ︷︷ ︸
>0

× ∂tP
†
2 (r, t; r1, t1; r2, t2)|r=r2,t=t2︸ ︷︷ ︸

=0

< 0. (5.1.55)

If ϕ = π/2 or ϕ = 3π/2 mutation is along the t-direction so that x = t − t2. Since we are assuming the
mutant fitness P†2 is as in (5.1.9) it follows that we can evaluate the incremental differences in fitness between
the mutant and the the type-2 value using an expansion with terms of up to second order. We have

P†2(x, ϕ)− P†2(0, ϕ) = P †2 (r2, t; r1, t1; r2, t2)− P †2 (r2, t2; r1, t1; r2, t2)

= (t− t2)× ∂tP
†
2 (r, t; r1, t1; r2, t2)|r=r2,t=t2︸ ︷︷ ︸

=0

+
1

2
(t− t2)

2︸ ︷︷ ︸
>0

× ∂ttP
†
2 (r, t; r1, t1; r2, t2)|r=r2,t=t2︸ ︷︷ ︸

<0

< 0. (5.1.56)

If ϕ ∈ (π/2, π) the difference between the mutant and the model fitness is given by

P†2(x, ϕ)− P†2(0, ϕ) ≈ x∂xP†2(x, ϕ)|x=0,ϕ∈(π/2,π)

= x∂xP
†
2 (r = r2 + x cosϕ, t = t2 + x sinϕ; r1, t1; r2, t2)|x=0,ϕ∈(π/2,π)

= x cosϕ︸ ︷︷ ︸
<0

×
←
∂ rP

†
2 (r, t; r1, t1; r2, t2)|r=r2,t=t2︸ ︷︷ ︸

>0

+x sinϕ︸ ︷︷ ︸
>0

× ∂tP
†
2 (r, t; r1, t1; r2, t2)|r=r2,t=t2︸ ︷︷ ︸

=0

< 0. (5.1.57)

If ϕ = π we have mutation along the r-direction so that x = r − r2 < 0 and thus

P†2(x, ϕ = π)− P†2(0, ϕ = π) =P †2 (r, t2; r1, t1; r2, t2)− P †2 (r2, t2; r1, t1; r2, t2)

= (r − r2)︸ ︷︷ ︸
<0

×
←
∂ rP

†
2 (r, t; r1, t1; r2, t2)|r=r2,t=t2︸ ︷︷ ︸

>0

< 0. (5.1.58)
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If ϕ ∈ (π, 3π/2) we write

P†2(x, ϕ)− P†2(0, ϕ) ≈ x∂xP†2(x, ϕ)|x=0,ϕ∈(π,3π/2)

= x∂xP
†
2 (r = r2 + x cosϕ, t = t2 + x sinϕ; r1, t1; r2, t2)|x=0,ϕ∈(π,3π/2)

= x cosϕ︸ ︷︷ ︸
<0

×
←
∂ rP

†
2 (r, t; r1, t1; r2, t2)|r=r2,t=t2︸ ︷︷ ︸

>0

+x sinϕ× ∂tP
†
2 (r, t; r1, t1; r2, t2)|r=r2,t=t2︸ ︷︷ ︸

=0

< 0. (5.1.59)

Finally, if ϕ ∈ (3π/2, 2π) it follows that

P†2(x, ϕ)− P†2(0, ϕ) ≈ x∂xP†2(x, ϕ)|x=0,ϕ∈(3π/2,2π)

= x∂xP
†
2 (r = r2 + x cosϕ, t = t2 + x sinϕ; r1, t1; r2, t2)|x=0,ϕ∈(3π/2,2π)

= x cosϕ︸ ︷︷ ︸
>0

×
→
∂ rP

†
2 (r, t; r1, t1; r2, t2)|r=r2,t=t2︸ ︷︷ ︸

<0

+x sinϕ× ∂tP
†
2 (r, t; r1, t1; r2, t2)|r=r2,t=t2︸ ︷︷ ︸

=0

< 0, (5.1.60)

which concludes our proof for case [ii] of Theorem 5.1.2.

We now proceed to expressing these conditions in terms of the functional forms F,D,K,Q,L,H and
S, which is achieved by direct substitution of (5.1.7) into (5.1.22) through to (5.1.24) and of (5.1.9) into
(5.1.26) through to (5.1.32). Careful consideration of (5.1.12) leads us to the conclusion that inequalities
describing mutant invasion along r, including (5.1.24), (5.1.25) for the first type and (5.1.27), (5.1.28) or
(5.1.31), (5.1.32) for the second type need be considered separately from those along the t-direction. We treat
cases r1 < r2, r1 = r2 and r1 > r2 individually and in closing this section deduce that this treatment quickly
allows us to rule out a number of co-existence regimes as unstable without relying on specific functional
forms for the claims to hold true.

Since we have narrowed our attention to cases in which the first type is conspicuous and aversive (and
therefore draws its strategy from D3) it follows from substitution of the fitness function (5.1.7) into (5.1.22)
that

λ+D(r1)K(t1)Q(I ′1)

D(r1)K(t1)Q(I ′1)

F ′1(t1)

F1(t1)
− K ′(t1)

K(t1)
− aI1

H ′(t1)

H(t1)

Q′(I ′1)

Q(I ′1)
= 0. (5.1.61)

Requiring sections of the curve in (5.1.61) to satisfy (5.1.23) amounts to condition

−λ+D(r1)K(t1)Q(I ′1)

D(r1)K(t1)Q(I ′1)

F ′′1 (t1)

F1(t1)
+

K ′′(t1)

K(t1)
+ 2aI1

H ′(t1)

H(t1)

Q′(I ′1)

Q(I ′1)

K ′(t1)

K(t1)

+aI1
H ′′(t1)

H(t1)

Q′(I ′1)

Q(I ′1)
+ a2I2

1

(
H ′(t1)

H(t1)

)2
Q′′(I ′1)

Q(I ′1)
> 0. (5.1.62)

As for the second type, there are two possibilities for uninvasibility along t. If it is undefended such that
(r2, t2) ∈ D1 with t2 = 0 then inequality (5.1.26) suffices to describe non-invasibility along t. Through (5.1.9)
this reads

λ+D(r2)K(0)Q(I ′2)

D(r2)K(0)Q(I ′2)

F ′2(0)

F2(0)
− K ′(0)

K(0)
− aI2

H ′(0)

H(0)

Q′(I ′2)

Q(I ′2)
< 0. (5.1.63)

In the case that the second type is defended with (r2, t2) ∈ D3 it follows from (5.1.7) that (5.1.29) and
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(5.1.30) amount to

λ+D(r2)K(t2)Q(I ′2)

D(r2)K(t2)Q(I ′2)

F ′2(t2)

F2(t2)
− K ′(t2)

K(t2)
− aI2

H ′(t2)

H(t2)

Q′(I ′2)

Q(I ′2)
= 0 (5.1.64)

and

−λ+D(r2)K(t2)Q(I ′2)

D(r2)K(t2)Q(I ′2)

F ′′(t2)

F (t2)
+

K ′′(t2)

K(t2)
+ 2aI2

H ′(t2)

H(t2)

Q′(I ′2)

Q(I ′2)

K ′(t2)

K(t2)

+aI2
H ′′(t2)

H(t2)

Q′(I ′2)

Q(I ′2)
+ a2I2

2

(
H ′(t2)

H(t2)

)2
Q′′(I ′2)

Q(I ′2)
> 0. (5.1.65)

We now consider invasion along r. If r1 < r2 then for the first type (5.1.24) and (5.1.25) read

D′(r1)

D(r1)
+ aI1

Q′(I ′1)

Q(I ′1)

L′(r1)

L(r1)
− (1− a)(1− γ)I1

Q′(I ′1)

Q(I ′1)
S′(0)− (1− a)γI2

Q′(I ′1)

Q(I ′1)
S′(|r1 − r2|) < 0 (5.1.66)

and

D′(r1)

D(r1)
+ aI1

Q′(I ′1)

Q(I ′1)

L′(r1)

L(r1)
+ (1− a)(1− γ)I1

Q′(I ′1)

Q(I ′1)
S′(0)− (1− a)γI2

Q′(I ′1)

Q(I ′1)
S′(|r1 − r2|) > 0. (5.1.67)

Still with r1 < r2 conditions (5.1.27)/(5.1.31) and (5.1.28)/(5.1.32) for the second type read

D′(r2)

D(r2)
+ aI2

Q′(I ′2)

Q(I ′2)

L′(r2)

L(r2)
+ (1− a)(1− γ)I1

Q′(I ′2)

Q(I ′2)
S′(|r1 − r2|)− (1− a)γI2

Q′(I ′2)

Q(I ′2)
S′(0) < 0 (5.1.68)

and

D′(r2)

D(r2)
+ aI2

Q′(I ′2)

Q(I ′2)

L′(r2)

L(r2)
+ (1− a)(1− γ)I1

Q′(I ′2)

Q(I ′2)
S′(|r1 − r2|) + (1− a)γI2

Q′(I ′2)

Q(I ′2)
S′(0) > 0, (5.1.69)

where it is assumed that (r2, t2) ∈ D1 ⊔ D3.
The second case we consider has r2 < r1. For the first type (5.1.24) and (5.1.25) now read

D′(r1)

D(r1)
+ aI1

Q′(I ′1)

Q(I ′1)

L′(r1)

L(r1)
− (1− a)(1− γ)I1

Q′(I ′1)

Q(I ′1)
S′(0) + (1− a)γI2

Q′(I ′1)

Q(I ′1)
S′(|r1 − r2|) < 0, (5.1.70)

and

D′(r1)

D(r1)
+ aI1

Q′(I ′1)

Q(I ′1)

L′(r1)

L(r1)
+ (1− a)(1− γ)I1

Q′(I ′1)

Q(I ′1)
S′(0) + (1− a)γI2

Q′(I ′1)

Q(I ′1)
S′(|r1 − r2|) > 0, (5.1.71)

respectively. For the second type (5.1.27)/(5.1.31) and (5.1.28)/(5.1.32) read

D′(r2)

D(r2)
+ aI2

Q′(I ′2)

Q(I ′2)

L′(r2)

L(r2)
− (1− a)(1− γ)I1

Q′(I ′2)

Q(I ′2)
S′(|r1 − r2|)− (1− a)γI2

Q′(I ′2)

Q(I ′2)
S′(0) < 0, (5.1.72)

and

D′(r2)

D(r2)
+ aI2

Q′(I ′2)

Q(I ′2)

L′(r2)

L(r2)
− (1− a)(1− γ)I1

Q′(I ′2)

Q(I ′2)
S′(|r1 − r2|) + (1− a)γI2

Q′(I ′2)

Q(I ′2)
S′(0) > 0. (5.1.73)
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The conditions detailed thus far provide a generalised extension to the single-species description of Broom
et al. (2006) to account for a prey population that consists of two types. Although co-existence regimes
outside of the mimetic case are not a priority there are a number of conclusions that are general and worth
noting.

Examples of systems that are unstable

In Broom et al. (2006) it was demonstrated that the conspicuous signalling of non-aversive strategies is
not evolutionarily stable, since such types risk invasion from their mutant counterparts that are marginally
less conspicuous. Presently, we recover a related conclusion, namely that the co-existence of two attractive
types is not evolutionarily stable if both of these advertise their attractiveness through conspicuous signals.
Indeed, if both types are attractive it follows that I1 and I2 are negative quantities so that if, say r1 < r2

it is clear that the terms on the LHS of (5.1.66) are positive and therefore inequality (5.1.66) is violated.
This suggests that a mutant type that is marginally less conspicuous exhibits a marginal fitness advantage
compared with the type-1 resident, which is reasonable, since it is predicted to experience lower rates of
detection (first term), to be recollected less as a type that is attractive (second term) and to benefit from its
imperfect resemblance to the attractive type-1s (third term) but also to the attractive type-2s (fourth term).
In particular, since the first type is not locally evolutionarily stable, the complex as a whole is not stable -
see Definition 5.1.1. Notice that if we had set r1 > r2 the argument would still hold for the terms on the
LHS of (5.1.72) suggesting that the type-2 risks invasion from the less conspicuous mutant type. As we see
in the section that follows and as is perhaps expected, the co-existence of two types that are attractive and
equally conspicuous with r1 = r2 > 0 (non-cryptic) is also not possible, since both types would risk invasion
from the less conspicuous mutant.

Maintaining that 0 < r1 < r2 but considering the case in which the first type is aversive and the second
type is attractive such that t2 < tc < t1 and I1 > 0 but I2 < 0 leads us to the observation that the
described scenario is also not stable. Indeed, by inspection we conclude that the terms on the LHS of
(5.1.68) are all positive so that (5.1.68) is violated, which suggests that the second type risks being invaded
by the less conspicuous mutant. This is a sensible conclusion to draw since the less conspicuous mutant is
predicted to experience a fitness advantage associated with a reduced rate of detection (first term), reduced
rate of recollection as a type that is attractive (second term) a higher fitness associated with more closely
resembling the aversive type-1 and a higher fitness associated with not perfectly resembling its own type,
which is attractive (fourth term). Once more, we mention that these arguments would hold by inspection
of (5.1.72) in the case that r2 < r1 providing that now type-1s are the attractive types, i.e. t1 < tc < t1.
We therefore conclude that an aversive and an attractive type where the latter exhibits a stronger signalling
component than the former cannot co-exist in the sense of Definition 5.1.1, precisely because the second type
risks being invaded by less conspicuous mutations.

As a final example, we mention that it is not possible for two aversive types (such that I1 > 0 and
I2 > 0) and with with vastly different signalling components to co-exist in the sense of (5.1.6) and (5.1.15)
- i.e. over the shorter (ecological) time-scale. Indeed, if we assume that either r1 ≫ r2 or r2 ≫ r1 such that
S(|r1 − r2|) ≈ 0 we recover a condition which is simplified in comparison with condition (5.1.18). This now
reads

F1(t1)D(r2)K(t2)Q
′(I ′2)I2 + F2(t2)D(r1)K(t1)Q

′(I ′1)I1 > 0 (5.1.74)

and does not hold. Indeed, since Q is almost everywhere monotonic decreasing it follows that Q′(I ′1) < 0
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and Q′(I ′2) < 0 so that since I1 and I2 are both positive it follows that both terms on the LHS of (5.1.74)
are negative. We have made three interesting observations: (i) the co-existence of two attractive types in
which at least one has non-zero signalling component is not evolutionarily stable; (ii) the co-existence of
one aversive type and one attractive type is not evolutionarily stable if the attractive type has the stronger
signalling component; (iii) the co-existence of two aversive types with vastly different signalling components
is not ecologically stable.

5.2 Models vs. mimics

Introducing a second type has not only doubled the conditions required for ESS analysis, but has urged us
to consider a new set of conditions altogether (for ecological stability), such that if the latter do not hold
there is no sense in discussing the former. One could rightly argue that there is no value in determining the
evolutionary stability of a complex over the prolonged (evolutionary) time-scale if this is not stable on the
shorter time-scale: a pair of strategies that is evolutionarily stable when played in specific proportions may
not be ecologically stable in those proportions so that the composition is likely to change within a timescale
that is shorter than the timescale under which we would consider its evolutionary stability. In keeping with
the mimicry focus of this chapter, we presently identify the first type with the aversive model and the second
type with a completely undefended mimic who perfectly resembles the model; that is, we set r1 = r2 and
0 = t2 < tc < t1. While it could be argued that the assumptions of perfect mimetic resemblance and the
exclusion of the possibility that the mimic is even slightly defended such that 0 < t2 < tc are restrictive we
contend that they are biologically plausible and a constitute a meaningful starting point for the analysis.

Setting r1 = r2 suggests that S(|r1 − r2|) = 1 so that the expressions for perceived aversivess of either
type as given in (5.1.3) and (5.1.4) amount to

I ′1 =
[
a+ (1− a)(1− γ)

]
I1 + (1− a)γI2 (5.2.1)

and
I ′2 = (1− a)(1− γ)I1 +

[
a+ (1− a)γ

]
I2. (5.2.2)

So that while from the modelling perspective the described mimicry setup is notably simpler than when
compared with the more general class of co-existence problems the presence of two types remains a challenge.

Eco-evolutionary stability & special remarks about the functional forms

In light of this complexity we restrict our attention to a special class of examples in which the rate of
background mortality is taken to be zero (predation is the only source of prey death) so that λ = 0 and that
predators have perfect recollection of encounters with prey. We remark that the latter has been integral in
all worked examples considered thus far (we also use it in chapter 6) and amounts to setting L(r) = D(r) so
that there is one less form to consider. Recall that to model mimicry we set r1 = r2 and assume that type-1s
are aversive and that type-2s are completely undefended so that t1 > tc and t2 = 0. Equal conspicuousness
suggests that S(|r1 − r2|) = 1 and together with the assumption that λ = 0 the condition for ecological
equilibrium given in (5.1.14) amounts to

Q(I ′1)

Q(I ′2)
=

F1(t1)

K(t1)

K(t2)

F2(t2)
. (5.2.3)
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It is also straightforward to demonstrate that the condition for ecological stability given in (5.1.18) now
simplifies to

F2(t2)K(t1)Q
′(I ′1)− F1(t1)K(t2)Q

′(I ′2) > 0, (5.2.4)

which when solved simultaneously with (5.2.3) results in a restriction on the Q functions only

−Q′(I ′2)

Q(I ′2)
> −Q′(I ′1)

Q(I ′1)
. (5.2.5)

Since we identify type-1s with the aversive models and type-2s with the attractive mimics it follows from
(5.2.1) and (5.2.2) that we have I ′2 < I ′1 and therefore this condition suggests that in order for a given
equilibrium solution to be stable, the Q function should be chosen such that −Q′/Q is a positive quantity
that decreases with increasing values of I ′. Graphically, this means that the slope of the line tangent to a
point along the graph of Q over the value of the function at that point is a negative and ever-decreasing (in
absolute value) quantity. That is, ecological stability for a model-mimic complex in the λ = 0 regime requires
us to consider forms for Q whose slope shrinks faster than the value of the function itself. This suggests that
functions that would otherwise be natural candidates to consider such as Q(I ′) = max(1, q0 exp(−qI ′)) shall
not be considered.

Indeed, while the form Q(I ′) = max(1, q0 exp(−qI ′)) is used extensively throughout, the specific restric-
tions presented in this chapter render it less suitable for considering mimicry (although it is used in chapter 6
where the specific assumptions relating to mimicry are different). Indeed, for such a form −Q′(I ′)/Q(I ′) = −q

for all I ′ > 0, which violates (5.2.5). Indeed, as it happens exponential forms for Q with powers greater than
or equal to one violate (5.2.5) - for instance Q(I ′) = exp(−qI ′

2
) considered on I ′ > 0 give Q′/Q = −2qI ′,

which satisfies the reverse of (5.2.5). For this reason, we restrict our attention to exponential forms with
power less than unity. A natural form to consider on I ′ > 0 is Q(I ′) = q0 exp(−q

√
I ′), which clearly satisfies

(5.2.5). We return to this point once we discuss evolutionary stability in the context of mimicry.
For the model to be a local ESS in the sense of (5.1.19) it must satisfy conditions (5.1.22) through to

(5.1.25). In the previous section it was shown that through substitution of (5.1.7) with = 0 into P †1 (5.1.22)
and (5.1.23) amount to (5.1.61) and (5.1.62). Setting r1 = r2 and 0 = t2 < tc < t1 to model mimicry we
now have for the model that

F ′1(t1)

F1(t1)
− K ′(t1)

K(t1)
− aI1

H ′(t1)

H(t1)

Q′(I ′1)

Q(I ′1)
= 0. (5.2.6)

and

−F ′′(t1)

F (t1)
+

K ′′(t1)

K(t1)
+ 2aI1

H ′(t1)

H(t1)

Q′(I ′1)

Q(I ′1)

K ′(t1)

K(t1)
+ a2I2

1

(
H ′(t1)

H(t1)

)2
Q′′(I ′1)

Q(I ′1)
> 0, (5.2.7)

where we have assumed a linear form for H as in (3.2.1) and (4.1.1) so that the term involving H ′′ in (5.1.62)
is taken to be vanishing.

Invasion along the t-direction is more straightforward for the mimic and is guaranteed through the single
inequality in (5.1.63). Setting λ = 0, r1 = r2 and 0 = t1 < tc < t1 into this gives

F ′2(0)

F2(0)
− K ′(0)

K(0)
− aI2

H ′(0)

H(0)

Q′(I ′2)

Q(I ′2)
< 0. (5.2.8)

In addition to (5.2.6) and (5.2.7) the model must satisfy inequalities (5.1.66) and (5.1.67) so as to be a
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local ESS in the sense of Theorem 5.1.2. When setting λ = 0, r1 = r2 and 0 = t2 < tc < t1 these amount to

D′(r1)

D(r1)
+ aI1

Q′(I ′1)

Q(I ′1)

D′(r1)

D(r1)
− (1− a)(1− γ)I1

Q′(I ′1)

Q(I ′1)
S′(0)− (1− a)γI2

Q′(I ′1)

Q(I ′1)
S′(0) < 0, (5.2.9)

and

D′(r1)

D(r1)
+ aI1

Q′(I ′1)

Q(I ′1)

D′(r1)

D(r1)
+ (1− a)(1− γ)I1

Q′(I ′1)

Q(I ′1)
S′(0) + (1− a)γI2

Q′(I ′1)

Q(I ′1)
S′(0) > 0. (5.2.10)

As for the mimic, in addition to (5.2.8) imposing local ESS through Theorem 5.1.2 suggests that (5.1.68)
and (5.1.69) must also hold. Considering we are working in the mimetic regime, where λ = 0, r1 = r2 and
0 = t1 < tc < t2 these amount to

D′(r2)

D(r2)
+ aI2

Q′(I ′2)

Q(I ′2)

D′(r2)

D(r2)
− (1− a)(1− γ)I1

Q′(I ′2)

Q(I ′2)
S′(0)− (1− a)γI2

Q′(I ′2)

Q(I ′2)
S′(0) < 0, (5.2.11)

D′(r2)

D(r2)
+ aI2

Q′(I ′2)

Q(I ′2)

D′(r2)

D(r2)
+ (1− a)(1− γ)I1

Q′(I ′2)

Q(I ′2)
S′(0) + (1− a)γI2

Q′(I ′2)

Q(I ′2)
S′(0) > 0 (5.2.12)

From the above it is immediately clear that a complex consisting of two attractive types with non-zero
signalling component is not evolutionarily stable. Indeed, inspection of conditions (5.2.9) and (5.2.11) leads
us to the conclusion that these consist of positive terms only. Based on the assumptions we have made thus
far this is a reasonable conclusion to make since less conspicuous mutations occurring in either type threaten
to invade on account of reduced rate of predation, reduced rate of recollection attractive types and a fitness
advantage associated with imperfectly resembling a complex that is collectively perceived as attractive by
the average predator. It is typical of mimicry complexes to consist of a defended type and an undefended
type and it is interesting to uncover that under the present description this is the only sensible choice to
consider.

In keeping with the simplifying restriction λ = 0, we restrict our attention to Q functions of an
exponentially-decaying form on the domain I ′ > 0 that satisfy (5.2.5) and therefore require that the power
on the exponent is less than one. We have developed a framework within which to model the co-existence of
two types that are inherently different with respect to their degree of adaptation to the defence, since this
would be a natural feature of real mimicry complexes in which one undefended species resembles a defended
one. However, as a preliminary example we may wish to consider a more simple scenario in which the types
are indistinguishable by means of their inherent properties so that any differences are solely attributed to
differences in the strategies they play and the proportions in which they do so. We begin by imposing
F1 = F2 and incorporate increasing layers of complexity over the sections that follow. Given the discussions
about the Q function that have been brought up thus far, we remark that the most natural example to
consider would be

F1(t) = F2(t) := f0 exp(−ft); H(t) := t− tc; K(t) :=
k0

1 + kt
;

L(r) = D(r); Q(I) := q0 exp
(
−q

√
I
)
; S(x) = max(1− vx, 0). (5.2.13)

Upon inspection, however, we observe that this is not possible, since substitution of (5.2.13) into the type-1
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equilibrium condition (5.2.6) amounts to the equality

−f +
k

1 + kt1
+ aq

N

2n
D(r1)

1√
I ′1

= 0. (5.2.14)

We remark that this cannot be solved in tandem with condition (5.2.8) for the second type, since on account
of (5.2.13) condition (5.2.8) reads

−f + k + aq
N

2n
D(r1)

1√
I ′2

< 0, (5.2.15)

which together with (5.2.14) leads to the contradicting inequality

√
I ′2 >

aq N
2nD(r1)

f − k
>

aq N
2nD(r1)

f − k
1+kt1

=
√

I ′1. (5.2.16)

As it is not possible to solve the example of (5.2.13) we provide a modification to the form of K to demonstrate
that even in the simplest case in which F1 = F2 we can at least obtain a stable point solution. Following
this in section 5.4 we show that if we relax the condition F1 = F2 the mentioned modification in K is not
required and demonstrate how we can recover a stable continuum of solutions.

5.3 A stable point solution

We closed the last section by demonstrating that the seemingly simplest regime of mimicry in which there are
no intrinsic differences between the types (i.e. F1 = F2) comes at a price so that more careful consideration
of the form for K is required. In this section we provide detailed numerical analysis through which we
demonstrate how the example in (5.3.1), in which the modifications in K are made can be used to generate
a stable point solution. We clarify that point solutions (to be contrasted with a continuum of solutions)
consist of a specific choice of strategy for the model and the mimic and a proportion for these to be played
in that satisfies the conditions for evolutionary and ecological stability.

We consider the following set of example functions

F1(t) = F2(t) := f0 exp(−ft); H(t) := t− tc; K(t) :=
k0

1 + kt2
;

L(r) = D(r); Q(I) := q0 exp(−q
√
I); S(x) = max(1− vx, 0). (5.3.1)

Notice that since F1 = F2 we do not distinguish between the forms of the type-1 and type-2 mutant payoffs.
Partial differentiation of the mutant payoff t-derivative of P †1 /P †2 given in (5.1.7)/(5.1.9) gives

C(r, t)× ∂tP
† = −f +

2kt

1 + kt2
+ aq

N

2n
D(r)

1√
I ′
, (5.3.2)

where C(r, t) := D(r)K(t)Q(I ′)/F (t). Notice that K(t) has a maximum at t = 1/
√
k, whose value is

K(t = 1/
√
k) =

√
k and minimum of zero at t = 0. Setting t1 = 1/

√
k and t2 = 0 maximises the

contribution of the second term on the RHS of (5.3.2) for the model and minimises the contribution of this
term for the mimic. We emphasise this fact merely to demonstrate that the third term in (5.3.2) is higher for
the mimic than it is for the model (notice that Q satisfies (5.2.5) and the mimic is perceived as less aversive)
and is crucial in resolving the issue encountered with the forms in (5.2.13) when attempting to satisfy (5.3.3)
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and (5.3.4) jointly.
Indeed, setting t1 = 1/

√
k and t2 = 0 into (5.3.2) we obtain the condition for the first type to be in

equilibrium along the t as

−f +
√
k + aq

N

2n
√
I ′1

D(r1) = 0 (5.3.3)

and from (5.2.7) we recover

−f + aq
N

2n
√

I ′2
D(r1) < 0, (5.3.4)

where I ′1 and I ′2 are provided as in (5.2.1) and (5.2.2). Notice that the condition for ecological equilibrium
in (5.2.3) now reads √

I ′2 =
√
I ′1 −

f
√
k log 2

q
√
k

. (5.3.5)

From comparing (5.2.1) and (5.2.2) it also holds that

I ′2 = I ′1 − a
N

n
√
k
D(r) (5.3.6)

and indeed that
I ′1 =

N

n
D(r)

[( 1√
k
− tc

)
− γ(1− a)

1√
k

]
. (5.3.7)

Since we have restricted t1 = 1/
√
k and t2 = 0 we seek to find an optimal proportion of mimics γ and an

optimal level for the common signalling of the complex r1. We proceed as follows, noting from (5.3.3) that
f >

√
k. Re-arranging (5.3.3) gives √

I ′1 =
aqN

n D(r)

2(f −
√
k)

(5.3.8)

and squaring (5.3.5) gives

I ′2 = I ′1 − 2
√
I ′1

(
f −

√
k log 2

)
q
√
k

+

(
f −

√
k log 2

)2
q2k

. (5.3.9)

From (5.3.6) and the re-arrangement (5.3.8) the latter amounts to

a
N√
kn

D(r)

(
f −

√
k log 2

f −
√
k

− 1

)
=

(f −
√
k log 2)2

q2k
(5.3.10)

and can be solved for D(r1) to yield the following implicit condition on the optimal value of r1 through

D(r) =
1

1− log 2

(f −
√
k)(f −

√
k log 2)2

aq2kN
n

. (5.3.11)

The precise optimal level of conspicuousness depends on the specific choice of D, but can be realised as the
pre-image of the RHS in (5.3.11). The optimal value of γ can be solved for by looking at (5.3.7) and (5.3.3)
in conjunction, such that

a2q2ND(r)

4n(f −
√
k)2

=
1−

√
ktc√
k

− γ
(1− a)√

k
. (5.3.12)
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Appropriate re-arrangement and substitution of (5.3.11) reduces the latter to

γ =
1−

√
ktc

1− a
− 1

4− 4 log 2

a

1− a

(f −
√
k log 2)2√

k(f −
√
k)

. (5.3.13)

The recovered values for r1, t1 and γ must now be reviewed in tandem with the bound provided in (5.3.4),
which is

1√
I ′2

<
2f

aqN
n D(r1)

, (5.3.14)

and may be solved in tandem with (5.3.5) and (5.3.3) to give

aq
N

2n
D(r1)

(
1

f −
√
k
− 1

f

)
>

f −
√
k log 2

q
√
k

. (5.3.15)

Substitution of (5.3.11) for D(r1) simplifies the latter substantially so that we recover a lower bound on f

f −
√
k log 2

2f(1− log 2)
> 1 ⇔ f >

log 2

2 log 2− 1

√
k. (5.3.16)

We now show that condition (5.2.7) for the first type holds. From (5.3.1) and setting t1 = 1/
√
k gives

−f2 + k + aq
N

n
D(r1)

√
k × 1√

I ′1
+

1

4
× a2q2

N2

n2
D2(r1)

(
1

q
√
I ′1

+ 1

)
> 0 (5.3.17)

Substitution of (5.3.3) and (5.3.11) gives rise to multiple term cancellations so that the latter amounts to
the following, trivially true inequality

2k(f −
√
k)2 > 0. (5.3.18)

It remains for us to consider invasion along r through inequalities (5.2.9) and (5.2.10) for the first type and
(5.2.11), (5.2.12) for the second type. As it happens, all four inequalities can be satisfied providing v in the
form for S(x) = max(1− vx, x) in (5.3.1) is chosen to be large enough.

Substitution of functional forms (5.3.1) into (5.2.9) and (5.2.10) give the required conditions for the model

−D′(r1)

D(r1)
+ aq

N

n
D′(r1)

(
1√
k
− tc

)
× 1

2
√

I ′1
+ (1− a)(1− γ)qv

N

n
D(r1)

(
1√
k
− tc

)
× 1

2
√

I ′1

−(1− a)γqv
N

n
D(r1)tc ×

1

2
√

I ′1
> 0 (5.3.19)

and

−D′(r1)

D(r1)
+ aq

N

n
D′(r1)

(
1√
k
− tc

)
× 1

2
√

I ′1
− (1− a)(1− γ)qv

N

n
D(r1)

(
1√
k
− tc

)
× 1

2
√

I ′1

+(1− a)γqv
N

n
D(r1)tc ×

1

2
√

I ′1
< 0. (5.3.20)
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Substitution of (5.3.1) into (5.2.11) and (5.2.12) gives

−D′(r1)

D(r1)
− aq

N

n
D′(r)tc ×

1

2
√
I ′2

+ (1− a)(1− γ)qv
N

n
D(r1)

(
1√
k
− tc

)
× 1

2
√

I ′2

−(1− a)γqv
N

n
D(r1)tc ×

1

2
√
I ′2

> 0, (5.3.21)

and

−D′(r1)

D(r1)
− aq

N

n
D′(r1)tc ×

1

2
√
I ′2

− (1− a)(1− γ)qv
N

n
D(r1)

(
1√
k
− tc

)
× 1

2
√

I ′2

+(1− a)γqv
N

n
D(r1)tc ×

1

2
√
I ′2

< 0 (5.3.22)

respectively. It remains for us to identify a set of numerical values that is consistent with the conditions for
eco-evolutionary stability described above. We provide evidence of all working in the hope of demonstrating
that the specific values chosen do not consist of a choice that is non-generic. For instance, we have assumed
that the model plays t1 = 1/

√
k and is aversive so that

t1 > tc ⇔ tc
√
k < 1. (5.3.23)

As shown in the discussion of condition (5.3.4) - for given choice of k there is a lower bound on the value of
f provided by

f >
log 2

2 log 2− 1

√
k ≈ 1.8

√
k. (5.3.24)

For example, setting f = 2
√
k would be a consistent restriction on the parameters. Before proceeding with

the re-reading of the above as restrictions on the parameter space we note the following.
Implicit in this section has been the assumption that I ′2 > 0, which suggests that the complex is collec-

tively perceived as aversive despite the presence of a type that is attractive. This is a reasonable assumption
to make, especially on account of our previous remark that the co-existence of two attractive types that
resemble each other is unstable in this context. Furthermore, it is achievable providing the proportion of
mimics is not too large. On account of (5.2.2) the restriction I ′2 > 0 amounts to

I ′2 > 0 ⇔ (1− a)(1− γ)(1−
√
ktc)− a

√
ktc − (1− a)γ

√
ktc > 0, (5.3.25)

which is equivalent to the following upper bound on the mimic proportion

γ < 1−
√
ktc

1− a
=: γMAX . (5.3.26)

That is, the results established thus far are subject to the above condition, and indeed, for purposes of
consistency one should check that the value of γ from (5.3.13) really is below the bound γMAX . In particular,
we wish to identify the values that parameter a can assume such that the following inequality holds

0 < γ < γMAX < 1. (5.3.27)
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First, recall that

γ =
1−

√
ktc

1− a
− a

1− a

1

4− 4 log 2

(f −
√
k log 2)2√

k(f −
√
k)

(5.3.28)

and note that from the definition of of γMAX in (5.3.26) it is clear that γMAX < 1. To guarantee that the
bound on γ is a sensible one we must impose that

γMAX > 0 ⇔ a < 1−
√
ktc =: a1. (5.3.29)

Continuing this argument, in order for γ in (5.3.28) to admit an accurate description of the mimic fraction
it must be that

γ > 0 ⇔ a <
4(1− log 2)

√
k(f −

√
k)(1−

√
ktc)

(f −
√
k log 2)2

=: a2 (5.3.30)

As is expected, the upper bound on a from (5.3.30) is smaller than the upper bound of (5.3.29). By comparing
these bounds it is clear that this is the case providing that

(f −
√
k log 2)2 − 4(1− log 2)

√
k(f −

√
k) > 0,

or equivalently that the following concave-up (notice that the leading coefficient is positive) polynomial in√
k is strictly positive

(4 + log2 2− 4 log 2)k − 2f
√
k(2− log 2) + f2 > 0. (5.3.31)

Since the discriminant of this polynomial is zero, it has a double root, which occurs at

f =
4 + log2 2− 4 log 2

2− log 2

√
k,

but this root is smaller than the feasible solutions for f in (5.3.24) and therefore the latter inequality holds
true. In particular, we have established that a2 < a1 so that if γ > 0 then γMAX > 0, as expected. As a
final remark, we demonstrate that the bound γMAX is a true upper bound in the sense that

γMAX − γ > 0.

Indeed, substitution of γ and γMAX from (5.3.28) and (5.3.26) and through scaling by (1 − a)/a the latter
amounts to

1

4− 4 log 2

(f −
√
k log 2)2√

k(f −
√
k)

− 1 > 0.

With appropriate re-arrangement the above amounts to

(4 + log2 2− 4 log 2)k − 2f
√
k(2− log 2) + f2 > 0,

which is the same as (5.3.31) and which was subsequently demonstrated to hold true for admissible choices
of f and k. Indeed, the latter demonstrates that if γ > 0 then γMAX really does act as an upper bound such
that γ < γMAX . If this bound condition were violated (i.e. there were some positive value of γ < 1 such that
γ > γMAX) then this would mean that I ′2 < 0 for some admissible combination of the parameters. Clearly,
this would give rise to a contradiction since the very conditions (see (5.3.3) through to (5.3.7)) that the
parameters are restricted to satisfy were derived on the assumption that I ′2 > 0, or rather, that γ < γMAX .
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In summary, feasible solutions to γ are guaranteed by choosing a such that

a <
4(1− log 2)

√
k(f −

√
k)(1−

√
ktc)

(f −
√
k log 2)2

. (5.3.32)

From (5.3.11) it is clear that this amounts to choosing q and the ratio N/n such that

q2
N

n
>

(f −
√
k)(f −

√
k log 2)2

ak(1− log 2)
. (5.3.33)

Finally, we are left to identify an appropriate bound on v that will solve (5.3.19), (5.3.20) and(5.3.21),
(5.3.22). Working pair-wise with (5.3.19) and (5.3.20), we deduce that these can be satisfied providing

v >

∣∣∣∣aqN
n D′(r)(1−

√
ktc)− 2

√
k
√
I ′1

D′(r)
D(r)

∣∣∣∣
aqN

n D(r)(1−
√
ktc − γ)

=: v1. (5.3.34)

Similarly, working in pairs with (5.3.21) and (5.3.22) for the mimic type we deduce that these can be
solved provided that

v >
aqN

n D′(r)
√
ktc + 2

√
k
√
I ′2

D′(r)
D(r)

(1− a)qN
n D(r)(1−

√
ktc − γ)

=: v2. (5.3.35)

In particular, we require that both (5.3.34) and (5.3.35) are satisfied, such that

v > max
(
v1, v2

)
. (5.3.36)

Now that an appropriate lower bound has been identified for v, we can proceed by implementing specific
numerical examples. We begin by setting k = 1. With regards to (5.3.23) we set tc = 0.2 < 1. As mentioned
earlier (see (5.3.24)) an appropriate restriction on the parameters is f = 2

√
k = 2 < 2 log 2/(2− log 2). We

can estimate the bound on the parameter a from (5.3.30), which reads

a <
4(1− log 2)

√
1(2−

√
1)(1−

√
1× 0.2)

(2−
√
1 log 2)2

= 3.2
(1− log 2)

(2− log 2)2
≈ 0.57. (5.3.37)

For convenience we can set a = 0.5. Now that parameters k, f, tc and a have been specified, we are in
position to determine γ through (5.3.28), which reads

γ =
8

5
− 1

4

(2− log 2)2

1− log 2
≈ 0.21. (5.3.38)

Notice that, as expected this value is below the bound γMAX defined in (5.3.26), namely

γ ≈ 0.21 < γMAX = 1− 1× 0.2
√
1

0.5
= 0.6. (5.3.39)

We proceed by approximating the lower bound on the product q2n/n through (5.3.33) by imposing that the
rate of detection of prey does not exceed unity such that

q2
N

n
>

(2−
√
1)(2−

√
1 log 2)2

0.5× 1(1− log 2)
=

2(2− log 2)2

1− log 2
≈ 11.13. (5.3.40)
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For example, we may set q = 2 and the fraction N/n equal to 3, such the product q2×N/n is 12. Naturally,
the optimal level of conspicuousness is defined through the D-pre-image

r1 = D−1

(
(2− log 2)2

6(1− log 2)

)
. (5.3.41)

If we set the base-line rate of detection as d0 = 0.5 with

D(r1) =
d0

d0 − (1− d0) exp(−r1)
=

1

1 + exp(−r1)
(5.3.42)

then from (5.3.41) we have

r1 = log

(
(2− log 2)2

6(1− log 2)− 2(2− log 2)2
≈

)
≈ 2.55 (5.3.43)

so that the rate of detection now amounts to

D(r1) =
(2− log 2)2

6(1− log 2)
≈ 0.93. (5.3.44)

The final step that remains is for us to specify a numerical value for v and from (5.3.36). It is clear that
knowledge of v1 and v2 is a pre-requisite. Substitution of the parameter values into (5.3.34) implies that

v1 =
1.2×D′(r1)− 2

√
I ′1 ×

D′(r)
D(r1)

3D(r1)× (0.8− γ)
, (5.3.45)

where the terms D(r) and γ have precise analytical expressions as provided in (5.3.44) and (5.3.38). Indeed,
the denominator of the fraction in (5.3.45) reads

3D(r1)× (0.8− γ) =
(2− log 2)2

1− log 2
×
(
1

8
× (2− log 2)2

1− log 2
− 2

5

)
≈ 1.64, (5.3.46)

while for the numerator of the fraction in (5.3.45) we must first evaluate D′(r1), D′(r1)/D(r1) and
√
I ′1. We

have

D′(r1) =
exp(−r1)

(1 + exp(−r1))2
=
[
6(1− log 2)− (2− log 2)2

]
× (2− log 2)2

62(1− log 2)2
≈ 0.067, (5.3.47)

where for the latter we have made use of (5.3.43). In addition, it is true that

D′(r1)

D(r1)
=

6(1− log 2)− (2− log 2)2

6(1− log 2)
≈ 0.072 (5.3.48)

and using the exact forms for D(r1) and γ - see (5.3.44) and (5.3.38) - we have

√
I ′1 =

(2− log 2)2

4(1− log 2)
≈ 1.39. (5.3.49)

Substitution of (5.3.47), (5.3.48) and (5.3.49) implies that the numerator of the fraction in (5.3.45) is ap-
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proximately

1.2×D′(r)− 2
√
I ′1 ×

D′(r)

D(r)
≈ 3.14, (5.3.50)

so that
v1 ≈ 1.91. (5.3.51)

In order to determine v2 we proceed as follows. From (5.3.35) it is evident that the denominator in v1 is
also common to v2 and given as in (5.3.46). The numerator in v2 reads

aq
N

n
D′(r1)

√
ktc + 2

√
k
√
I ′2 = 2

√
I ′2 ×

D′(r1)

D(r1)
+ 0.6×D′(r1), (5.3.52)

where the exact numerical expressions for D′(r) and D′(r)/D(r) are provided in (5.3.47) and (5.3.48). The
missing term therefore is

√
I2
′ and can be assigned an exact numerical expression using (5.3.44) and (5.3.38),

such that √
I ′2 =

log 2

4
× 2− log 2

1− log 2
≈ 0.74. (5.3.53)

The numerator in v2 can thus be approximated as

2
√
I ′2 ×

D′(r1)

D(r1)
+ 0.6×D′(r1) ≈ 0.15, (5.3.54)

and so the entire fraction v2 amounts to
v2 ≈ 0.089 < v1, (5.3.55)

so that through (5.3.36) we require that

v > max(v1, v2) ≈ 1.91, (5.3.56)

and so setting v = 2 solves (5.3.19)/(5.3.20) and (5.3.21)/(5.3.22) concludes the present numerical analysis.
In this, we have demonstrated that if parameters f, k, tc, a, q,N/n and v chosen such that f = 2, k = 1, tc =

0.2, a = 0.5, q = 2, N/n = 3 and v = 2 a complex consisting of a model playing (r1, t1) ≈ (2.55, 1) and a
mimic playing (r2, t2) ≈ (2.55, 0) where the latter resides in proportion γ ≈ 0.21 is eco-evolutionarily stable
in the sense of short-term ecological stability and longer scale evolutionary stability seen in Definition 5.1.1
and Theorem 5.1.2. We argue that on account of the manner in which specific numerical values were picked
the point solution (r1, t1) ≈ (2.55, 1) and (r2, t2) ≈ (2.55, 0) is part of a continuum of solutions, whose exact
extent over the strategy space we do not discuss presently. Nonetheless, the explicit workings provided in
this section should convince the reader that we have not come across an example that is non-generic.

Mimicry as discussed in this section is conceivably the most straightforward adaptation of the single-type
description provided in chapter 2 and serves as a preliminary introduction to the mathematical modelling of
mimicry. In this, we have treated mimics as a group of undefended individuals that resemble the remaining
(defended) group of prey (through the emission of equally conspicuous visual signals) but who beyond
the level of the strategy they play exhibit no inherent differences (such as in terms of their physiological
adaptation to the defence) when compared with the defended type. While it may seem that this scenario is
a simpler one to consider from the mathematical modelling perspective (only a single form for the fecundity
F is considered) it also necessitates the use of a functional form for K that is not monotone - see (5.3.1).
Related to this is the perhaps restrictive assumption that the model aversiveness is selected precisely at the
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maximum value of K, which occurs at t1 = 1/
√
k. The described scenario is not inaccurate and indeed it

is interesting to observe that a prey population can exhibit an eco-evolutionarily stable dimorphism on the
level of the defences - in Darst et al. (2006) it explained that once aposematism has become established
in a population of prey stable levels of signalling and defence may become dissociated to allow for this.
Nonetheless, the non-accounting of inherent inter-type differences is an omission that perhaps renders the
setup less suitable for modelling mimicry, since mimicking types (Batesian or automimics) are expected to
be different on some level, especially if these belong to a different species altogether. In keeping with a
presentation that is progressively more elaborate (this also extends to the next chapter) we account for such
differences on the level of the fecundity in the section that follows.

5.4 A stable continuum of solutions

In this section we explore an example in which the model and the mimic are assumed to vary not only in
terms of their sensitivity to investment in secondary defences but also in terms of their base-line rates of
reproduction. The functional forms that we consider are as follows

F1(t) := f01 exp(−f1t); F2(t) := f02 exp(−f2t) H(t) := t− tc; K(t) :=
k0

1 + kt
;

L(r) = D(r); Q(i) := q0 exp(−q
√
I); S(x) = max(1− vx, 0). (5.4.1)

We set c := f01/f02 to describe the base-line rates of fecundity as a proportion and remark that F1 and F2

represent the fecundities of the model and the mimic respectively. In the analysis we typically assume that
while the mimic has a higher base-line for fecundity such that f01 < f02 that this comes at a price since it is
assumed that investment in defences is costlier to the mimic than it is to the model so that f1 < f2. These
restrictions do not reflect hard rules but rather are grounded on the idea that the defended type is better
adapted to secondary defences compared with its mimicking counterpart.

Conditions for eco-evolutionary stability

The aversive model (with t1 > tc) must satisfy equality (5.2.6) alongside inequality (5.2.7), which considering
(5.4.1) amount to

−f1 +
k

1 + kt1
+ aq

N

n
D(r)× 1

2
√
I ′1

= 0. (5.4.2)

and

−f2
1 + 2

(
k

1 + kt1

)2

+
2k(f1 − k + f1kt1)

(1 + kt1)2
+

(f1 − k + f1kt1)
2

(1 + kt1)2

2k(f1 − k + f1kt1)
2 [kt1 − (1 + kt1) log (c+ ckt1)]

(1 + kt1)3(f1t1 − log (c+ ckt1))
> 0. (5.4.3)

Much like in the previous section we consider a totally undefended mimic with t2 = 0 so that inequality
(5.2.8) for the mimic reads

−f2 + k + aq
N

n
D(r)× 1

2
√
I ′2

< 0. (5.4.4)
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The condition for ecological equilibrium (5.2.3) necessitates that the (resident) payoffs to the model and
mimic are equal so that form (5.4.1) we have

√
I ′2 =

√
I ′1 −

f1t1 − log (c+ ckt1)

q
. (5.4.5)

The aversive information of the model and the mimic are precisely as in (5.2.1) and (5.2.2) from which it is
implied that

I ′2 = I ′1 − a
N

n
D(r1)t1 (5.4.6)

and indeed that
I ′1 =

N

n
D(r)

[
t1 − tc − (1− a)γt1

]
. (5.4.7)

We have argued in generality that a mimicry complex that is perceived collectively as attractive is unstable
and in addition we impose that the perceived aversiveness of the mimics exceeds a certain lower bound Iε of
aversiveness, such that

N

n
D(r1) [(1− a)(1− γ)t1 − tc] > Iε, (5.4.8)

where a precise value of Iε will be considered in the discussion that follows.
With functions (5.4.1) conditions (5.2.9) and (5.2.10) for invasion along r of the model amount to

−2
√
I ′1

D′(r1)

D(r1)
+ aq

N

n
D′(r1)(t1 − tc) + v(1− a)q

N

n
D(r1) [(1− γ)t1 − tc] > 0 (5.4.9)

and
−2
√

I ′1
D′(r1)

D(r1)
+ aq

N

n
D′(r1)(t1 − tc)− v(1− a)q

N

n
D(r1) [(1− γ)t1 − tc] < 0. (5.4.10)

For the mimic conditions (5.2.11) and (5.2.12) these are

−2
√

I ′2
D′(r1)

D(r1)
− aq

N

n
D′(r1)tc + v(1− a)q

N

n
D(r1) [(1− γ)t1 − tc] > 0, (5.4.11)

and
−2
√

I ′2
D′(r1)

D(r1)
− aq

N

n
D′(r1)tc − v(1− a)q

N

n
D(r1) [(1− γ)t1 − tc] < 0. (5.4.12)

Now that the conditions necessary to achieve eco-evolutionary stability in the mimicry complex have been
identified we proceed to reducing these into a set of restrictions that can be readily manipulated numerically.

A strategy for determining eco-evolutionarily stable outcomes

Re-arrangement of (5.4.2) reads √
I ′1 =

aqN
n D(r1)(1 + kt1)

2
(
f1 − k + f1kt1

) (5.4.13)

Squaring both sides of (5.4.5), using the latter re-arrangement of (5.4.2) and equality (5.4.6) leads to the
following equality

a
N

n
D(r1)

[
(1 + kt1)(f1t1 − log (c+ ckt1))

f1 − k + f1kt1
− t1

]
=

(f1t1 − log (c+ ckt1))
2

q2
, (5.4.14)
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which can be solved for D(r1) to give

D(r1) =

(
f1t1 − log (c+ ckt1)

)2
(f1 − k + f1kt1)

aq2N
n

[
kt1(1− log (c+ ckt1))− log (c+ ckt1)

] . (5.4.15)

Observing that the RHS of the latter depends only on the resident level of defence suggests that for some
value of this is a unique associated level of the conspicuousness, which is given as the D pre-image of the
vale on the RHS of (5.4.15).

We can work towards uncovering the optimal value of γ by first re-arranging (5.4.7) to give

γ =
1

1− a
× t1 − tc

t1
− 1

1− a
× I ′1

N
n D(r1)t1

. (5.4.16)

We can specify a unique value for the optimal size of the mutant group, by re-arranging (5.4.7) and
substituting this into (5.4.15) such that

γ =
1

1− a
× t1 − tc

t1
− a

1− a
×

(
f1t1 − log (c+ ckt1)

)2
(1 + kt1)

2

4(f1 − k + f1kt1)
[
kt1(1− log (c+ ckt1))− log (c+ ckt1)

]
t1
. (5.4.17)

Having obtained D(r1) and γ as expressions involving the model defence t1 only, we can express (5.4.8) as
an inequality in the variable t1 only. Indeed, substitution of (5.4.15) and (5.4.17) amounts to

(f1t1 − log (c+ ckt1))
2(f1 − k + f1kt1)

q2 [kt1 − (1 + kt1) log (c+ ckt1)]
×
[
0.25

(f1t1 − log (c+ ckt1))
2(1 + kt1)

2

(f1 − k + f1kt1) [kt1 − (1 + kt1) log (c+ ckt1)]
− t1

]
> Iε.

It remains for us to explore the consequences of (5.4.15), which can be re-arranged to read

√
I ′2 >

aqN
n D(r)

2(f2 − k)
, (5.4.18)

where we notice that the LHS can be re-expressed through (5.4.5) as

√
I ′1 −

f1
q
t1 +

log (c+ ckt1)

q
>

1

2
×

aqN
n D(r)

f2 − k
. (5.4.19)

Substitution of (5.4.13) for
√
I ′1 results in the inequality

aq
N

n
D(r)

[
1 + kt1

f1 − k + f1kt1
− 1

f2 − k

]
− 2f1

q
t1 +

2

q
log (c+ ckt1) > 0, (5.4.20)

which through substitution of (5.4.15) gives rise to inequality

(f1t1 − log (c+ ckt1))
2
[
kt1(f2 − f1 − k) + f2 − f1

]
(f2 − k)(kt1 − (1 + kt1) log (c+ ckt1))

− 2f1t1 + 2 log (c+ ckt1) > 0, (5.4.21)

which is equivalent. From (5.4.5) and (5.4.6) it follows that f1t1 − log (c+ ckt1) > 0 and by factoring out
this term we deduce that the latter inequality is equivalent to

[f1t1 − log (c+ ckt1)] [kt1(f2 − f1 − k) + f2 − f1]− 2(f2 − k)(kt1 − (1 + kt1) log (c+ ckt1)) > 0. (5.4.22)
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Through suitable re-arrangement this inequality amounts to

f1k(f2 − f1 − k)t21 + k(f1 + f2 − k) log (c+ ckt1)t1 + (f1f2 − f2 − 2kf2 + 2k2)t1 > 0, (5.4.23)

which we make use of in the discussion that follows.
As far as solving the conditions (5.4.9), (5.4.10) and (5.4.11), (5.4.12) we observe the following: the factor

(1 − γ)t1 − tc in the third terms is positive then either pair of inequalities ((5.4.9) - (5.4.10) and (5.4.11)
- (5.4.12)) can be satisfied providing the associated value for v is chosen to be large enough. Since we are
working under the regime that I ′2 > Iε (i.e. that both model and mimic are perceived by the predator as
types that are aversive) this implies that

(1− γ)t1 − tc > (1− a)(1− γ)t1 − tc > 0. (5.4.24)

In particular, the first pair of inequalities (5.4.9),(5.4.10) describing the stability of the model along r can
be satisfied providing a large enough v is chosen such that

v >

∣∣∣∣aqN
n D′(r)(t1 − tc)− 2

√
I ′1

D′(r)
D(r)

∣∣∣∣
(1− a)qN

n D(r)
[
(1− γ)t1 − tc

] =: v1 (5.4.25)

and in a similar fashion the mimic inequalities (5.4.11) and (5.4.11) are satisfied providing

v >
aqN

n D′(r)tc + 2
√
I ′2

D′(r)
D(r)

(1− a)qN
n D(r)

[
(1− γ)t1 − tc

] =: v2. (5.4.26)

It therefore follows that if both model and mimic are perceived as aversive then both pairs of conditions
(5.4.25) and (5.4.26) can be satisfied providing that

v > max
(
v1, v2

)
. (5.4.27)

Numerical analysis

At this stage we are ready to explore specific numerical examples. We begin by specifying the rate of
detection D as

D(r1) =
0.01

0.011 + 0.99 exp(−r1)
with d0 = 0.01. (5.4.28)

In principle the ratio f01/f02 can assume any positive value but we will assign to this the value f01/f02 = 0.5,
suggesting that the base-rate of reproduction of the mimic is higher (specifically, twice the value) than that
of the model. Equality (5.4.2) for the model requires that parameters f1 and k must be chosen such that

f1 >
k

1 + kt1

and in fact, we use the stronger bound f1 > k and hence assign the values f1 = 3 and k = 2 to the parameters.
Considering (5.4.15) it is clear that specifying the product aq2N/n fully specifies the curve in (5.4.2) for the
model. We set aq2N/n = 80 and obtain the following implicit equality, which for r∗1 > 0 identifies level of
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defence t∗1(r
∗
1) uniquely as function that increases with respect to r∗1 such that

0.01

0.01 + 0.99 exp(−r1)
=

(3t1 − log (0.5 + t1))
2
(1 + 6t1)

80 (2t1 − (1 + 2t1) log (0.5 + t1))
. (5.4.29)

A section of the curve in (5.4.29) is plotted in Figure 5.2. An initial lower and upper bound for t1 are
provided through (5.4.29) corresponding to r1 = 0 and r1 → ∞, since the LHS is bounded between [0.01, 1).
Within this interval the LHS and RHS are individually monotonically increasing functions and therefore we
can express the value t1 not only implicitly through r1(t1) but also explicitly as t1(r1). The bounds are
therefore defined through

t1(r1 = 0) ≈ 0.0214 and t1(r1) ≈ 1.0765 for r1 ≫ 1. (5.4.30)

As we establish, the latter is one of several competing lower-bounds on t1, from which we ultimately consider
the largest. As it happens, the upper bound in (5.4.30) will prove to be the least of these.

For a model strategy (r(t1), t1) that solves (5.4.29) we must now identify a value of a and a value of
tc < t1 such that there exists at least one associated value of γ within the interval (0, 1). Setting a = 0.2

and tc = 0.2 we observe that (5.4.17) amounts to

γ(t1) = 1.25− 0.25

t1
− 0.125

(3t1 − log(0.5 + t1))
2(1 + 2t1)

2

(1 + 6t1)
[
2t1 − (1 + 2t1) log(0.5 + t1)

]
t1

(5.4.31)

where for the range of values of t1 ∈ (0.0214, 1.0765) satisfying (5.4.29) it is true that

γ(t1) > 0 ⇔ t1 ∈ (0.2524, 1.1599) . (5.4.32)

The lower bound of (5.4.32) is larger than that of (5.4.30) and therefore imposes a stronger restriction on
the lowest admissible values for the level of t1. Meanwhile, the upper bound on t1 is higher than that of
(5.4.30) and can be disregarded.

It should be noted that for our choices of parameters f1, k and c strategies (r1, t1) satisfying (5.4.29) also
satisfy (5.4.3), which from (5.4.1) reads

−9 + 2

(
2

1 + 2t1

)2

+
4 (1 + 6t1)

(1 + 2t1)
2 +

(1 + 6t1)
2

(1 + 2t1)
2 +

4 (1 + 6t1)
2
(2t1 − log (0.5 + t1) (1 + 2t1))

(1 + 2t1)
3
(2t1 − log (0.5 + t1))

> 0. (5.4.33)

As it happens this inequality is trivially true for all values of t1 = t1 that satisfy (5.4.29). Implicit in this
discussion has been the validity of the regime I ′2 > Iε for some choice of Iε. Setting Iε = 0.05 and q = 2 (the
latter also implies that N/n = 100) we deduce that

(3t1 − log (0.5 + t1))
2
(1 + 6t1)

4 (2t1 − (1 + 2t1) log (0.5 + t1))
×

(
0.25 (3t1 − log (0.5 + t1))

2
(1 + 2t1)

2

(1 + 6t1) (2t1 − (1 + 2t1) log (0.5 + t1))
− t1

)
> 0.05, (5.4.34)

which holds true for
t1 > 0.4456.

The lower bound for t1 of (5.4.34) is the largest encountered thus far and represents the smallest value of t1
(although see discussion that follows) for which the curve assumes the form of (5.4.15). In fact, for values of
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t1 < 0.4456 the curve in (5.4.15) would have to be evaluated using a different branch of the Q-function. The
scenario that is not explored presently is that in which I ′2 < Iε < I ′1. Should solutions be present in that
regime, they should simply be considered jointly with those that we detail here and not influence them.

In order to address condition (5.4.23) for the mimic we must select a value for the parameter f2 such
that this is possible. Viewing (5.4.2) and (5.4.4) in tandem we infer that f2 > f1 and that f2 > k. In this
instance we have the ordering f2 > f1 > k. Indeed, this reflects that fact that although mimics have higher
base-fecundity rate, their fecundity is more sensitive to marginal increases in their fecundity (the F2 exhibits
a steeper drop-off than the F1 curve, even though the base-rate fecundity of the mimic is taken to be exactly
double that of the mimic - see c = 0.5). Taking f2 = 5 inequality (5.4.23) reads

12 log (0.5 + t1)− 2t1 > 0 ⇒ t1 > 0.612. (5.4.35)

This is the greatest lower bound on t1 yet and is represented as the top dash-dotted vertical line in the
plots of Figure 5.2. This revised range of admissible defence given approximately as t1 ∈ (0.612, 1.0765)

also specifies the range of admissible conspicuousnesses through (5.4.15). In particular, the lower bound
t1 ≈ 0.612 corresponds to the lower bound of conspicuousness given approximately as r1 ≈ 3.0577, while
the upper bound of the defence t1 ≈ 1.0765 is achieved asymptotically as r1 → ∞. As is clear from Figure
5.2(b) the equilibrium mimic proportion γ provided through (5.4.17) has a local maximum of γ ≈ 0.5179 at
t1 ≈ 0.6586 and decreases monotonically for larger values of t1 so that γ assumes values within (0.188, 0.5179].
We establish that eco-evolutionarily stable solutions for (t1, r1(t1), γ∗(t1)) should exist within the 3-rectangle
(0.612, 1.0765)× (3.0577,+∞)× (0, 188, 0.5179] of the extended strategy space.

We have demonstrated that model strategies (r1, t1) drawn from the curve (5.4.29) are stable against
invasion along t and for each strategy on the continuum exists an associated mimic that is undefended and
in turn also can resist invasion along t on account of (5.4.35). The mimic resides in proportion γ as given
in (5.4.31) and for that level shares the same payoff as the mimic such that the payoff balance is stable in
small perturbations around the mimetic load in the sense of (5.1.17).

It remains for us to determine whether there is a subset of the strategy space on which the model and
mimic are resist invasion along r and in particular whether there exists a choice for parameter v such that
the two pairs of inequalities (5.4.9) through to (5.4.12) can be satisfied over some non-empty subset of the
strategy space. Experience tells us that these inequalities can be solved for a value of v that is sufficiently large
- reflecting the intuition that a careful enough predator will punish visually dissimilar mutants sufficiently
to make the type-1 and type-2 residents safe against potential invaders of this type. Indeed, the assumption
that both model and mimic are perceived as aversive allows us to solve (5.4.9), (5.4.10) and (5.4.11) and
(5.4.12) as pairs of inequalities by choosing a v that is large enough - see (5.4.25) through to (5.4.27). While
choosing a very large value for v is sure to achieve this result we seek plausible values for this parameter by
finding sensible bounds - see v1 and v2 below.

We observe that v1 and v2 in (5.4.25) have a common denominator, which we can bound from below

(1− a)q
N

n
D(r1)[(1− γ)t1 − tc] > 0.8× 2× 100×D(r1 ≈ 3.0576)× [(1− γ(t1 ≈ 0.6586))× 0.612− 0.2]

≈ 2.690.
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The numerator in the expression for v2 provided in (5.4.26) can be bounded from above as follows

aq
N

n
D′(r1)tc + 2

√
I ′2

D′(r1)

D(r1)
< 0.2× 2× 100× 0.2×D′(r1 ≈ 3.0576)

+ 2×
√
I ′2(t1 ≈ 1.0765)× D′

D
(r1 ≈ 3.0576)

≈ 1.165 + 11.632 ≈ 12.797, (5.4.36)

so that
v2 <

12.797

2.690
≈ 4.757. (5.4.37)

We use a similar process of bounding for v1; we keep the lower bound on the denominator of 2.690,
since this is common to both expressions (5.4.25) and (5.4.26) and proceed to finding an upper bound
on the numerator. Noticing that the numerator involves the absolute difference of two terms, it is not
immediately clear which of these has a leading maximum. Making use of (5.4.5) we deduce that the first
term 2

√
I ′1D

′(r1)/D(r1) is bounded between

0 ≈ 2×
√

I ′1(t1 ≈ 0.612)× D′

D
(r1 → ∞) < 2

√
I ′1

D′(r1)

D(r1)
< 2×

√
I ′1(t1 ≈ 1.0765)× D′

D
(r1 ≈ 3.0576) ≈ 2.594

and that for the second term it is true that

0 ≈ 40×D′(r1 → ∞)(0.612− 0.2) < aq
N

n
D′(r1)(t1 − tc) < 40×D′(r1 ≈ 3.0576)× (1.0765− 0.2) ≈ 5.105.

Therefore,

v1 <
5.105

2.690
≈ 1.898. (5.4.38)

In particular, choosing v = 5 guarantees that the solutions of Figure 5.2 satisfy inequalities (5.4.9) through
to (5.4.12). The results of the numerical analysis can be seen in Figure 5.2 in which is shown that models
and mimics can co-exist in a sense that is stable both from the (long-term) evolutionary time-scale and from
the short-term ecological time-scale providing the model aversiveness is drawn from the black section of the
curve in Figure 5.2(a) and the associated mimetic load is drawn from the black section of the solid curve in
5.2(b). Figure 5.2(a) shows that stable levels of model defence are observed to increase with increasing levels
of conspicuousness, although a plateau is observed such that beyond a certain level the associated stable
level of defence does not change. Interestingly, in Figure 5.2(b) we observe that while initial increases in
conspicuousness are associated with higher levels of stable mimetic loads the relationship is reversed beyond
a certain point so that the more conspicuous complexes consist increasingly of models.
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t1

r1

t1

γ

Figure 5.2: The shaded regions span the interval 0.4456 < t1 < 0.612 in condition (5.4.35) for the mimic fails - the
curves mentioned in (a) and (b) are drawn in red over these regions. The region t1 < 0.4456 is not shown because
on this I ′2 < Iε, which is also a violation. (a) [Top] Solid curve shows conspicuousness versus model defence as
provided implicitly through (5.4.29); the red section is unstable in the sense of failing (5.4.35) while the black section
beyond t1 ≈ 0.612 admits a continuum that is eco-evolutionarily stable when viewed in tandem with the continuum
in (b). (b) [Bottom] Solid curve shows the mimetic load vs. model defence as provided explicitly through (5.4.31); as
mentioned earlier only the black section on t1 > 0.612 admits an equilibrium that is eco-evolutionarily stable. Plots
(a) and (b) can be viewed in tandem and thus perceived as a single curve (t1, r(r1), γ(t1)) defined through (5.4.29)
and (5.4.31) within the subregion (0.612, 1.0765)× (3.0577,+∞)× (0, 188, 0.5179] of the extended strategy space.

An alternative approach to modelling mimicry

In the previous section we demonstrated that the mimetic co-existence of two types that differ only on the
level of the strategies they play and the proportions in which they do so can be achieved and hence argued
that the specified solution likely lies on a continuum, which we did not explore. This example served more as
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an introduction to the study of mimicry within the framework of evolutionary stability and perhaps models
a situation that is rather idealised; in most instances of mimicry be it Batesian or automimicry inherent
differences between the model and the mimic are likely present. Furthermore, while in our first approach
we made use of fewer functional forms (by setting F1 = F2) we saw that more careful consideration of
the form for K had to be taken to make the system stable. In this section we accounted for type-specific
differences by considering two sets of functional forms for F so that the types are assumed to differ with
respect to how a given level of defence impacts their fecundity. In the latter, we were able to demonstrate
that eco-evolutionarily stable solutions are manifest as an increasing continuum in the (extended) strategy
space (t1, r1, γ) that includes the conspicuousness, model defence and proportion of mimics. While these
results certainly appear promising there are a number of areas that could have been addressed differently to
model mimicry complexes involving two distinct species.

In this chapter we have assumed that there is some background proportion of mimics, which is given
by γ such that in every site one is expected to encounter approximately (1 − γ)N models and γN mimics.
Much like in the single-species description of chapters 2,3 and 4 mutation is facilitated by means of local
clustering so that in a small number of sites there are nests of size a containing relatives of a certain focal
relative, which could play a strategy that is local to the type in question. The definitions of the mutant
perceived aversiveness as introduced in (5.1.2) suggests that the parameter a measures the concentration of
focal relatives as a proportion over the total number of prey residing in that site, which in turn suggests
that the proportion of models and mimics is perturbed in the given site. It can be argued that if the types
were of a different species that such an assumption would be less plausible. In the chapter that follows we
model the proportion of mimics as a continuous (beta-distributed) random variable, which is perhaps a more
realistic assumption in the sense that while it is true that on average one expects to encounter a certain mean
proportion of mimics in a given site, there is considerable variation around this value. In addition, while
mutation is still facilitated through local clustering parameter a measures the proportion of mutants with
respect to the number of individuals of that type so that the presence of type-1 mutants does not influence
the proportion of type-2s in that site and likewise the presence of type-2 mutants does not influence the
proportion of type-1s. In this way the presence of, say type-1 mutants impacts the proportion of type-1
residents to type-1 mutants without affecting the proportion of type-1s to type-2s.

One could argue that our understanding of the local relatedness parameter as provided in this chapter
best describes a scenario in which the two types belong to the same species, while the description provided
in the next chapter better describes types belonging to different species. The approach of the next chapter
is more general and while it may best describe Batesian mimicry it may be applicable to a broader range of
mimicry complexes; on the other hand it is likelier that the results in this chapter are better suited to model
automimicry systems but perhaps not to the modelling of Batesian mimicry systems. Furthermore, while
we have accounted for inherent differences between the types of prey in this closing section we have done
so only from the point of view of the fecundity and neglected that the impact of investment in defence on
the escaping attacks is also a type-specific property; in the chapter that follows we account for this too by
considering two sets of forms for K, the probability that attack results in capture. While the approach of
this chapter consists of a more straightforward adaptation of the single-species description of aposematism
it is also easier to work with and perhaps more straightforward to validate or not a certain conclusion with
respect to the underlying assumptions; we discover in the chapter that follows that the numerical analysis
is notably more involved. We also leave discussions of the literature to the end of the chapter that follows
for the reason that these can more confidently be related to observed instances of mimicry.
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Chapter 6

Batesian Mimicry

Mimicry systems are manifest in a large number settings in the natural world and common to a broad range
of taxa. Even though, in practice, the various kinds may not be straightforward to distinguish, we clarify
that the content of this chapter is specifically dedicated to deceptive and protective forms of Batesian mimicry
(although the reader may find its relevance to Browerian mimicry, its automimicry analogue). We discuss
some biological background, including explanations of some key details in the first section but encourage the
reader to consult chapters 9 of Ruxton et al., (2019) for a more complete and organised overview.

The mathematical modelling of Batesian mimicry is considered from the second section and onwards. It
commences with a bridging of the model by Broom et al. (2006) from the single to the two-species case;
initially the presentation draws on ideas coming from sampling theory and is quite general in the sense of
it (perhaps) being more relevant to real, finite populations that can be studied numerically. In the third
section the same setting is re-introduced and expanded, but now with with the adoption of more abstract
notions from probability theory (such as the formal assumption that the proportion of mimics-to-models is
a randomly distributed variable). The fourth section deals with ecological stability, while in the fifth we
expand our usual conception of a local ESSs to describe the co-evolutionary stability of the model and mimic
as a complex. In the sixth section we consider specific functional forms for the predator generalisation and
express the conditions for bi-stability (ecological and evolutionary) in terms of the confluent hypergeometric
function. In the closing section we consider specific functional forms for the prey and provide a working
example of a Batesian mimicry system that is eco-evolutionarily stable in the sense discussed. We contend
that our findings, especially of this last section are novel; we discuss their relevance with existing bodies of
work and address areas for future consideration.

6.1 Background into Batesian mimicry

In this section we provide some essential non-mathematical background relating to Batesian mimicry. It is
beyond our scope to provide a through description of the process here - the reader is directed to chapter
9 of Ruxton et al. (2019) and the vast bibliography sited therein for this. We focus our attention to four
themes, which we find are most relevant to the mathematical analysis that follows. Namely (i) what are the
distinguishing characteristics of a Batesian mimicry system and how do they "work"? (ii) Does the success
of a mimic necessitate the presence of a model? If so, how do (iii) the noxiousness of the model and (iv) the
proportion of mimics to models influence the success of the mimic?
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Mimicry (or deceptive mimicry) can be broadly understood as a means of deception for the gaining of
a selective advantage. There are a number of forms in which mimicry systems can arise and these can be
challenging to classify in practice. Nonetheless, there is now ample evidence to suggest that individuals from
one species may gain selective advantage by mimicking the appearance of individuals from another species,
with the example of Kirby and Spence (1817) now dating over 200 years. The first to conceive of mimetic
resemblance as a potential mechanism for selection was Henry Walter Bates in his prolific work - Bates
(1862) - on Amazonian butterflies. Although that study examined various different forms of mimicry he is
better known for the form we now identify as Batesian mimicry, in which individuals from a palatable species
(mimics) gain protection from predators by resembling an unpalatable (or otherwise defended species) known
as the models.

Batesian mimicry is a form of protective mimicry as it is thought to have evolved to provide prey with
protection against predators. It is to be contrasted with aggressive mimicry in which individuals from one
species resemble individuals from another to gain access to prey, hosts, or other resources (see Ruxton et
al, 2019 for more on this). Forms of aggressive mimicry are altogether not considered here. We mention
three related forms of protective mimicry and underline their key differences. These are: (a) Masquerade,
(b) Müllerian mimicry and (c) Browerian mimicry. As we explain (a) and (b) are not accounted for in our
mathematical description, while (c) is.

Masquerade is the resemblance of a species to individuals or objects (such as leaves, twigs or stones)
that are of no inherent interest to the predator (see Skelhorn, 2015 and/or Skelhorn et al., 2010). It
may appear that masquerade is indistinguishable from crypsis, which has concerned an important portion
of the manuscript. As explained in Allen and Cooper (1985) crypsis is an adaptation that reduces the
chance of predator detection, while masquerade reduces the chance of predator recognition of prey (as a
nutrient-rich items) without necessarily influencing their detectability. (b) Müllerian mimicry (named after
Johannes Friedrich Müller - see Müller, 1879) describes the evolution of a shared warning signal among
different unpalatable species. While Batesian mimics are palatable species that resemble less palatable ones,
Müllerian mimics are unpalatable species that resemble other unpalatable ones to achieve a potentially
greater protection against predators than they would through individual signals. It is speculated that this
shared signal could itself serve as a stabilising mechanism by better facilitating aversive learning in predators.

Finally, (c) Browerian mimicry (named after Lincoln Pierson and Ane Van Zandt Brower) can be thought
of as the automimicry (coined in the classic study by Brower et al., 1967) equivalent of Batesian mimicry
in the sense that palatable mimics resemble unpalatable individuals that belong to the same species. Brow-
erian mimicry is present among populations of a given species that exhibit a spectrum of palatability -
see Gamberale-Stille and Guilford (2004); Skelhorn and Rowe (2007); Jones et al. (2013) for examples on
bird-insect systems including chemically-defended prey and the review by Speed et al., (2012) discussing au-
tomimicry in a number of different taxa - and are in that respect intrinsically different to Batesian mimicry
complexes. As discussed in Brower et al., (1967) for instance, the noxiousness of individual monarch butter-
flies (Danaus plexippus) depends on the availability of "cardenolide secondary metabolites" that are acquired
from the host plant during the larval stage of development. Therefore, while in some instances automimicry
may result from a natural variability in a specie’s palatability the evolution of Batesian mimicry may involve
a number of more complex mechanisms. Interestingly, we treat much of their mathematical modelling in an
all-inclusive way such that the distinction between Batesian mimics and automimics only becomes relevant
when it comes to choosing exact prey functional forms (see section 6.6 some 20 pages following forward).

So far we have provided some descriptive background relating to Batesian mimicry (what it is, what it
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is not, how it related to other forms etc.). One obvious question, which we address presently is, does it
work? As mentioned earlier, Batesian mimicry relies on the successful deception of predators and indeed
there is ample empirical evidence to suggest that this does happen. Laboratory experiments (such as Mostler
(1935), or the three-volume studies Brower, 1958,a,b,c or Platt et al., 1971 or the more recent Kuchta et al.,
2008) provide direct evidence of this. Possibly due to the larger number of inherent complexities associated
with experiments conducted in the wild, laboratory studies are more conclusive with respect to this duping
effect compared with associated field studies. Early field studies, such as those by Brower et al. (1964),
Brower et al. (1967) and Cook et al. (1969) are remarkably fascinating but have arguably reported mixed
results. The study by Jeffords et al. (1979) was (perhaps accurately) described by the authors as the first
field experiment to verify the efficacy of Batesian mimicry, which when viewed in tandem with Waldbauer
and LaBerge (1985) could suggest that the success of the mimic could necessitate the presence of a noxious
model. We elaborate on the latter presently.

Both Bates and Wallace were strong advocates of the hypothesis that the role of the presence of the
model for the success of the Batesian mimic is vital. In Pfennig et al. (2001) and later also in Pfennig
et al. (2007) it was demonstrated that attacks on (artificial) mimics were higher in locations without models
compared with those in which models were also present. But there is also intriguing indirect evidence of
the importance of the presence of the model, which can be made out through the forms mimics assume in
those areas in which models are and those in which models are not present (see the works of Hecht and
Marien, 1956 and Edmunds and Edmunds, 1974 on the non-venomous Lampropeltis doliata snake, which
mimics the Erythrolamprus aesculapii snake). M. Edmunds and Reader (2014) observed that the relative
frequency of the black and yellow hoverfly mimic (Volucella bombylans plumata) was positively related to the
relative frequency of the black and yellow bumblebee model. Overall it seems important to the maintenance
of mimicry for model and mimic to co-occur in a certain geographical location, although interestingly these
may not have to co-occur at the same time (see Rothschild, 1963, Brodie, 1981 or Waldbauer and LaBerge,
1985 for seasonal prey). Very exceptional cases of mimics that exist without models do exist (see Clarke and
Sheppard, 1975), but these remain the overwhelming exception.

As we have already established in earlier chapters an important mechanism for the maintenance of apose-
matism (and perhaps of mimicry) is aversive learning, which broadly describes the formation of cognitive
associations from the point of view of the predator with respect to encountered prey. It would be natural
to presume that, ceteris paribus, the success of the mimic is increasingly likely as it resembles increasingly
noxious models. Laboratory experiments by Skelhorn and Rowe (2006) showed that domesticated chick
predators are reluctant to consume palatable food items after having been previously subjected to identical
foods injected with quinine sulphate. This intuitive prediction has also been confirmed by similar laboratory
studies such as that by Alcock (1970), which showed that white-throated sparrows (Zonotrichia albicollis)
attacked neither (mealworm) model or mimic when the latter was sufficiently aversive. The study by Lind-
ström et al. (1997) showed that great tit predators attacked mealworm prey less when the model chloroquine
concentrations were highest although these were able to distinguish mimics that were imperfect and attack
them at the same rate.

This brings us onto the fourth and final theme of this introductory section, namely in what way does
the success of the Batesian mimic depend on its relative abundance in the complex? An educated guess
would tell us that there is a continuously decreasing relationship between the (model and mimic) fitnesses
with respect to increasing mimic proportions in the population, perhaps due to a sequential reduction in
the predator’s perceived aversiveness of the complex. A study conducted by Brower (1960) on European
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starling predators (Sturnus vulgaris) showed that as the proportion of model mealworms (immersed in
quinine dihydrochloride) increased the rates of attack on both the model and mimic decreased. Notably this
decrease was non-linear so that there was no observed increase in the rate of attack as the proportion of
models decreased marginally below a certain threshold. The laboratory study by Jones et al. (2013) on bird
predators feeding on mealworm larvae consisting of either edible mimics or unpalatable models confirmed
both these findings. Namely, through varying the proportion of so-called cheats from 0 to 1 by increments
of 0.25 they discovered that the proportion of prey attacked increased non-linearly with the frequency of
cheats. A negative (and non-linear) relationship between Batesian mimic fitness and relative abundance was
also established through a series of Monte Carlo simulations in Turner et al. (1984).

6.2 A sampling theory approach

We begin by considering a habitat that is occupied by two distinct types of prey and which is territorially
divided among the predators who visit it. In particular, we consider a habitat partitioned into M distinct
localities (indexed by i = 1, 2, ...,M), each consisting of precisely N prey. Within these there is a proportion
(1−γ[i]) of prey individuals who are aversive (type-1) and play strategy (r1, t1) with t1 > tc and a proportion
γ[i] of individuals (type-2) who reproduce the signal of the first but who do not invest in toxins at all; these
individuals play strategy (r1, 0).

Territorial division of the habitat is in this context the assumption that the predator population is divided
into distinct sets of size n who each visit a specific locality only (this is a direct extension of the single-species
description considered thus far). Overall, it is presumed that each locality has the capacity to carry a large
enough number of prey, such that the approximation N ≫ 1 is thought to hold (see calculations below -
although strictly speaking the limit N → ∞ is considered at a separate step). It should also be remarked
that the above description is one of a perfect mimicry system in that the mimic (type-2) reproduces the
signals of the model (type-1) exactly.

The prey individuals within a locality are enumerated with index j and we may order these for convenience
such that the index values j = 1, ..., nint

(
(1− γ[i])N

)
correspond to type-1 individuals, while remaining

indices j = nint
(
(1− γ[i])N

)
+ 1, ..., N are assigned to type-2’s. Schematically, we write

j =

focal︷︸︸︷
1 , 2, ..., nint

(
(1− γ[i])N

)︸ ︷︷ ︸
type-1

,

focal︷ ︸︸ ︷
nint

(
(1− γ[i])N

)
+ 1, nint

(
(1− γ[i])N

)
+ 2..., N︸ ︷︷ ︸

type-2

i = 1, ...,M. (6.2.1)

We make use of the nearest integer function as defined in WolframAlpha (2022), such that nint(x) returns
the nearest integer to x ∈ R with odd half-integers being rounded up and even half-integers are rounded
down. This type of rounding function is preferable to the likes of ⌈x⌋ used in Hastad et al. (1989), as it
uses the simpler rule ⌈x⌋ = x − 0.5 when x is a half-integer, which could lead to statistical biasing. In the
calculations that follow nint is omitted so as to avoid making the notation excessively tortuous; the reader
is encouraged to think of (1− γ[i]N) as nint

(
(1− γ[i]N)

)
etc..

Aversive information

We are interested in determining the aversiveness of a type-1 individual as perceived by the average predator
visiting its site. We consider some focal individual from the type-1 subgroup (we pick j = 1 from the
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ordering introduced in (6.2.1)) and apply definition (2.2.2) from the model description in section 2. In doing
so, we implement a modified notation with subscripts in square brackets {[i, j] : i = 1, ...,M ; j = 1, ..., N} to
indicate that the quantity in question is evaluated for individual j of site i. With the ordering of (6.2.1) in
place, the aversiveness of j = 1 in site i reads

I[i,j=1] =
L(r1)

n

N∑
j=2

H(tj)

=
L(r1)

n

(1−γ[i])N∑
j=2

H(tj) +
L(r1)

n

N∑
j=(1−γ[i])N+1

H(tj)

=
(1− γ[i])N − 1

n
L(r1)H(t1) + γ[i]

N

n
L(r1)H(0). (6.2.2)

We work in a similar fashion to determine the aversiveness of a type-2 individual as perceived by the
average predator visiting its site. That is, we select focal individual j = (1− γ[i])N + 1 from site i using the
enumeration in (6.2.1) to write

I[i,j=(1−γ[i])N+1] =
L(r1)

n

N∑
j=1

j ̸=(1−γ[i])+1

H(tj)

=
L(r1)

n

(1−γ[i])N∑
j=1

H(tj) +
L(r1)

n

N∑
j=(1−γ[i])N+2

H(tj)

= (1− γ[i])
N

n
L(r1)H(t1) +

γ[i]N − 1

n
L(r1)H(0). (6.2.3)

It should be clear that the RHS of (6.2.2) does not depend on the choice of focal individual from within
the type-1 subgroup, such that

I[i,j] =
(1− γ[i])N − 1

n
L(r1)H(t1) + γ[i]

N

n
L(r1)H(0) holds for all j = 1, ..., (1− γ[i])N (6.2.4)

holds. The same reasoning applies for the RHS of (6.2.3) and so we write

I[i,j] = (1− γ[i])
N

n
L(r1)H(t1) +

γ[i]N − 1

n
L(r1)H(0) holds for all j = (1− γ[i])N + 1, ..., N. (6.2.5)

Equalities (6.2.4) and (6.2.5) suggest that our subscript notation [i, j] : i = 1, ...,M ; j = 1, ..., N is superflu-
ous. Instead, we modify the subscript notation so that the second entry denotes only the type number of
the individual in site i, i.e. {[i, π]; i = 1, ...,M ;π = 1, 2}. With this simpler notation in mind we write the

144



aversiveness for the average type-1 individual in site i as

I[i,1] :=
(1− γ[i])N − 1

n
L(r1)H(t1) + γ[i]

N

n
L(r1)H(0) (6.2.6)

and for the average type-2 individual in site i as

I[i,2] := (1− γ[i])
N

n
L(r1)H(t1) +

γ[i]N − 1

n
L(r1)H(0). (6.2.7)

Simulations of the model for finite populations may call for expressions (6.2.6) and (6.2.7) in which exclusion
of the focal individual from the remaining population in the site is important.

We keep such ideas open and remark that for a large enough number of prey occupying a given site (i.e.
N ≫ 1) and providing the proportion of each type in these is not negligible that the contribution of the focal
individual to the average perceived experience of each type becomes less and less important. In particular,
we take it that (1 − γ[i])N ≫ 1 and deduce that the average perceived aversiveness of type-1s in site i is
approximately given as

I[i,1] ≈ (1− γ[i])
N

n
L(r)H(t1) + γ[i]

N

n
L(r)H(0) (6.2.8)

≈ (1− γ[i])I1 + γ[i]I2, (6.2.9)

where we have used the shorthand notation I1,2 = (N/n)×L(r1)H(t1,2) to denote the perceived aversiveness
of a type-1/2 individual if it made up the entire locality. Extending the argument to type-2’s, i.e. that
γ[i]N ≫ 1 it is clear that under their average perceived aversiveness (6.2.7) is approximately equal to the
quantity on the RHS of (6.2.8)

I[i,2] ≈ (1− γ[i])I1 + γiI2 ≈ I[i,1]. (6.2.10)

In particular, we establish that if a locality can carry a large enough number of prey and the proportions
of each type within this are not negligible (i.e. we do not consider the γ[i] → 0 and (1 − γ[i]) → 0 limits)
then both types are perceived as equally aversive by the average predator visiting their site. Under this
approximation the aversiveness of a prey individual depends on the relative proportion of type-1-to-type-2
individuals in its site and on the strategies that these play. We can therefore further simplify the subscript
notation used so far so that it consists of just one index, i = 1, ...,M . We express the perceived aversiveness
of a prey individual in locality i as

I[i](r1, t1) := (1− γ[i])
N

n
L(r1)H(t1) + γ[i]

N

n
L(r1)H(0) (6.2.11)

or more compactly as
I[i] = (1− γ[i])I1 + γ[i]I2. (6.2.12)

The significance of the square brackets in the subscript of I[i] should be pointed out here. While I[i] denotes
the perceived aversiveness of a prey item in locality i consisting of a mix of (1 − γ[i])N type-1 and γ[i]N

type-2 individuals; I1/2 is the aversiveness of a prey residing in a population made up entirely of its type; it
is not a site-dependent property is used mostly for notational convenience as in (6.2.12).

The following are true about the predator experience on the level of the site. Even though (i) individual
experiences with type-1s are more aversive than those with type-2s (H(t1) > H(0)) it is also true that (ii)
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both classes of encounters are cognitively associated with a fixed appearance and that (iii) type-1s and type-
2s are collectively perceived as equally aversive by the average predator visiting their site. This latter result is
especially meaningful when considering Batesian mimicry systems and indeed one we would expect to recover
in this representation of mimicry; if models and mimics were to be perceived as different and therefore to be
attacked at different rates then this would not be consistent with the representation of mimicry systems in
this chapter.

The proportion of type-1’s and type-2’s evaluated as averages over the sites is given as

1− γ̄ =

∑M
i=1 1− γ[i]

M
and γ̄ :=

∑M
i=1 γ[i]

M
. (6.2.13)

The spread of the proportions γi around this mean quantity is provided by the variance Var(γ), which is
given as

Var(γ) :=

∑M
i=1

(
γi − γ̄

)2
M

=

∑M
i=1 γ

2
i

M
− γ̄ 2. (6.2.14)

It is straightforward to show that Var(1− γ) = Var(γ). From this we deduce the useful equality∑M
i=1(1− γ[i])

2

M
= Var(γ) + (1− γ̄)2, (6.2.15)

which we make use in the discussion that follows.
The aversive information as perceived by the average predator anywhere in the habitat is given by

Ī1 =

∑M
i=1(1− γ[i])I[i]N∑M
i=1(1− γ[i])N

(6.2.16)

=
I1
∑M

i=1(1− γ[i])
2 + I2

∑M
i=1 γi(1− γ[i])∑M

i=1(1− γ[i])

=
I1

1− γ̄
×
∑M

i=1(1− γi)
2

M
+

I2
1− γ̄

×
∑M

i=1 γ[i]

M
− I2

1− γ̄
×
∑M

i=1 γ
2
[i]

M

=
I1

1− γ̄
×
[
Var(γ) + (1− γ̄)2

]
+ I2 ×

γ̄

1− γ̄
− I2

1− γ̄
×
[
Var(γ) + γ̄ 2

]
= I1 × (1− γ̄) + I2 × γ̄ + (I1 − I2)×

Var(γ)

1− γ̄
. (6.2.17)

Similarly, we remark that the aversiveness of a type-2 individual as perceived by the average predator
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anywhere in the habitat is

Ī2 =

∑M
i=1 I[i]γ[i]N∑M
i=1 γ[i]N

(6.2.18)

=
I1
∑M

i=1 γ[i](1− γ[i]) + I2
∑M

i=1 γ
2
[i]∑M

i=1 γ[i]

= I1 −
I1
γ̄

×
∑M

i=1 γ
2
i

M
+

I2
γ̄

×
∑M

i=1 γ
2
i

M

= I1 −
I1
γ̄

× (Var(γ) + γ̄ 2) +
I2
γ

× (Var(γ) + γ̄ 2)

= I1 × (1− γ̄) + I2 × γ̄ − (I1 − I2)×
Var(γ)

γ̄
. (6.2.19)

Equalities (6.2.17) and (6.2.19) provide expressions for the aversivess of type-1 and type-2 individuals
over the entire habitat in terms of an average base-line quantity (1− γ̄)I1 + γ̄I2 and an additional quantity,
which controls the which is either added or subtracted from this. We write both these expressions here for
ease of reference

Ī1 = I1 × (1− γ̄) + I2 × γ̄ + (I1 − I2)×
Var(γ)

1− γ̄
(6.2.20)

and
Ī2 = I1 × (1− γ̄) + I2 × γ̄ − (I1 − I2)×

Var(γ)

γ̄
. (6.2.21)

From comparing (6.2.20) and (6.2.21) one concludes that Ī1 > Ī2, which is a sensible conclusion. We would
expect that since individual experiences with models are more aversive (H(t1) > H(0)) that this is reflected
in their overall perception by an average predator visiting the habitat.

Payoff

We now discuss and compare the fitness of models and mimics when this is perceived in the usual way (i.e. as
a rate describing the number of offspring produced per life cycle). Drawing from our discussion on perceived
aversiveness, we define this quantity on the level of the site and hence consider its average over the habitat
in terms of a distribution of proportions. We should also remark that for purposes of avoiding excessive
complexity, we only consider the case in which predation is the only source of death (i.e. λ = 0). We thus
have that the fitness of a type-1 individual residing in site i is evaluated as

P[i,1] :=
F1(t1)

D(r1)K1(t1)Q(I[i])
(6.2.22)

and likewise for a type-2 in that site this is

P[i,2] :=
F2(0)

D(r1)K2(0)Q(I[i])
, (6.2.23)
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where I[i] = (1− γ[i])I1 + γ[i]I2 as in (6.2.12). We remark that expressions (6.2.20) and (6.2.21) are used to
describe the payoff to an average type-1 and and average type-2 individual as

P1̄ =
F1(t1)

D(r1)K1(t1)Q(Ī1)
and P2̄ =

F2(0)

D(r1)K2(0)Q(Ī2)
. (6.2.24)

The latter quantities are to be contrasted with the average payoff to a type-1 and type-2 individual (it is
important to notice that the average behaviour of a system in general does not necessarily coincide with it’s
behaviour at the average).

Indeed, the procedure for evaluating the average type-1 and type-2 fitness is similar to that outlined in
the lines following (6.2.16) and (6.2.18). For the first type we write

P̄1 :=

∑M
i=1 P[i,1](1− γ[i])N∑M

i=1(1− γ[i])N

=
F1(t1)

D(r1)K1(t1)

1

1− γ̄

1

M

M∑
i=1

1− γ[i]

Q(I[i])
(6.2.25)

and similarly for the second type we have

P̄2 :=

∑M
i=1 P[i,2]γ[i]N∑M

i=1 γ[i]N

=
F2(0)

D(r1)K2(0)

1

γ̄

1

M

M∑
i=1

γ[i]

Q(I[i])
. (6.2.26)

We should remark that most of the discussion in this section applies to populations that are finite
and would therefore constitute a good starting point for considering real examples. But as we are also
mathematically-minded we seek to find analytical results regarding the ecological and evolutionary stability
(bi-stability) of Batesian mimicry systems in a manner that is efficient (and plausible). We proceed by re-
introducing the Batesian complex described thus far in a manner that is more abstract and more convenient
for the purposes of calculations. In particular, we treat the proportion of mimics as a random variable
that is bound to a certain mass function and consider the limit as N → ∞ in which the random variable
is approximately continuous. The remainder of this chapter relies on the probability-theoretic approach
discussed next.

6.3 A probability theory approach

In this section we consider the proportion of models to mimics as a discreet random assuming countably-
many values on the unit interval (i.e. γ = l/N with l = 0, 1, ..., N − 1, N). We denote its probability mass
function as p(γ), its mean as γ̄ and its associated cumulative mass function as F . In the previous section
we remarked that quantities such as the perceived aversiveness are approximately equal on the level of the
site but different on average as they are assigned to types that exist in different proportions; compare for
instance (6.2.12) with the average counterparts (6.2.20) and (6.2.21).
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Continuous random variables

There is a clear analogy in the probabilistic picture, which we describe in generality here. Let G(γ) be some
quantity whose value depends on the proportion of mimics. For the moment we suppress any dependence
on the strategies to emphasize that G may be perceived as discreet random variable sharing the same mass
function p(γ) as γ itself. As is clear from the previous section, we are especially interested in the average
behaviour of the system and therefore on the expected value of such quantities.

An intuitive description of the expected value is that of an average weighted over the mass function∑
γ:p(γ)>0

G(γ)p(γ), (6.3.1)

where the latter is clearly equivalent to

N∑
l=0

G(l/N) [F(l/N)−F((l − 1)/N)]. (6.3.2)

We define the partition of the closed interval [a, b] ⊂ R as a finite subset of [a, b] containing the end-points
a and b (see definition provided in section 5.2 of Salas et al., 2007). Namely, if

V = {x0, x1, ...xv} (6.3.3)

is a partition of [a, b], then it breaks up [a, b] into v subintervals of lengths ∆x1,∆x2, ...,∆xv. The norm
|| · || of partition (6.3.3) is defined as the length of the largest subinterval, i.e. ||V|| := max(∆xv)

The set {0, 1/N, 2/N, ..., 1} is a partition of the unit interval [0, 1] and in the limit as N → ∞ the norm of
this partition tends to zero. In this limit the sum in (6.3.2) and can be approximated by the Stieltje integral,
which in turn provides a more general definition for the expectation

lim
N→∞

N∑
l=0

G(l/N) [F(l/N)−F((l − 1)/N)] =

∫ 1

0

G(γ)dF(γ) =: Ḡ. (6.3.4)

We should also remark that in this limit the cumulative mass function F is approximately continuous
and provided this is almost everywhere C2 we may apply linearisation to the quantity in the integrand
dF(γ) ≈ f(γ)dγ, where f(γ) = F ′(γ) is the density function of the (continuous) random variable γ.

In this continuum limit we therefore express the expectation of the quantities as

Ḡ =

∫ 1

0

G(γ)f(γ)dγ. (6.3.5)

As we have seen in the previous subsection, certain quantities such as the perceived aversiveness or indeed
measures of fitness are type-specific, in the sense that they describe individuals of one type or the other
uniquely; one can contrast (6.2.22) and (6.2.23) for instance. Indeed, such a type-1 quantity can be perceived
as a continuous random variable G1 with distribution

f1(γ) :=
(1− γ)f(γ)∫ 1

0
(1− γ)f(γ)dγ

=
(1− γ)f(γ)

1− γ̄
, (6.3.6)
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and similarly that the type-2 quantity G2 follows the distribution

f2(γ) :=
γf(γ)

γ̄
. (6.3.7)

In accordance with (6.3.5) it follows that the expected values of such type-specific quantities are provided as

Ḡ1 =

∫ 1

0
G1(γ)(1− γ)f(γ)dγ

1− γ̄
(6.3.8)

and

Ḡ2 =

∫ 1

0
G2(γ)γf(γ)dγ

γ̄
. (6.3.9)

Aversive information

We can use expressions (6.3.8) and (6.3.9) to determine the expected values for the aversiveness and fitness.
In the previous section it was shown that in the N → ∞ limit the perceived aversiveness in any given
site depends only on the mimic/model proportion in that site, such that either type is perceived as having
the same aversiveness by the average predator visiting that site. By analogy and by maintaining these
assumptions we define the perceived aversiveness for fixed model and mimic strategies (r1, t1) and (r1, 0) as
the random variable

I(γ) = (1− γ)I1 + γI2. (6.3.10)

We should remark that in spite of (6.3.10) the perceived aversiveness is by construction a type-specific
quantity, such that among type-1s follows the distribution f1(γ) and among type-2s the distribution f2(γ).
The expected type-1 aversiveness is given as

Ī1 =

∫ 1

0
I(γ)(1− γ)f(γ)dγ

1− γ̄

= I1
∫ 1

0
(1− γ)2f(γ)dγ

1− γ̄
+ I2

∫ 1

0
γ(1− γ)f(γ)dγ

1− γ̄

= (1− γ̄)I1 + γ̄I2 + (I1 − I2)
Var(γ)
1− γ̄

(6.3.11)

and indeed the expected type-2 aversiveness is

Ī2 =

∫ 1

0
I(γ)γf(γ)dγ

γ̄

= (1− γ̄)I1 + γ̄I2 − (I1 − I2)
Var(γ)

γ̄
, (6.3.12)

both of which validate our findings of (6.2.20) and (6.2.21) from the previous section.
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Payoff

The fitness is also a type-specific quantity and by extension, with λ = 0 the type-1 fitness is defined as the
variable

P1(γ) =
F1(t1)

D(r1)K1(t1)Q(I)
(6.3.13)

that is randomly distributed with probability density f1(γ) of expression (6.3.6). Likewise and for some
choice of strategies the type-2 fitness is defined as the random variable

P2(γ) =
F2(0)

D(r1)K2(0)Q(I)
(6.3.14)

with density function f2(γ) as in (6.3.7). We remark that while for given model and mimic strategy choices,
expressions (6.3.13) and (6.3.14) can be perceived as random variables, it is also the case that for some
observation of γ these may also be perceived as R2 ×R2 → R functions - note that the same applies to I in
(6.3.10). Indeed, according to (6.3.8) and (6.3.9) the expected values of fitness for either type are

P̄1(r1, t1; r1, 0) =
F1(t1)

D(r1)K1(t1)

1

1− γ̄

∫ 1

0

1− γ

Q(I)
f(γ)dγ (6.3.15)

and

P̄2(r1, t1; r1, 0) =
F2(0)

D(r1)K2(0)

1

γ̄

∫ 1

0

γ

Q(I)
f(γ)dγ. (6.3.16)

The beta distribution & payoff

The process of sampling prey at random from within their localities (with replacement, although this is less
important under the N ≫ 1 assumption) consists of repeating Bernoulli trials, where "success" is understood
as the event that a type-2 individual is encountered. The random variable defined as the number of type-2
individuals encountered follows the binomial distribution with probability γ of success. The usual conjugate
prior for this random variable is the beta distribution with hyper-parameters α, β ∈ R>0, both of which are
shape parameters (the reader is encouraged to consult chapter 5 of Ross, 2019 for introductory details into
the beta distribution and chapter 25 of Johnson et al., 1995 for a more formal presentation on the topic).
The distribution for γ is given as

f(γ) =
γα−1(1− γ)β−1

B(α, β)
, (6.3.17)

where the term B(α, γ) is known as the beta function and is defined in terms of α and β as

B(α, β) :=

∫ 1

0

xα−1(1− x)β−1dx. (6.3.18)

We remark that if α < β the distribution is skewed left, while if α > β the distribution is skewed right. If
α = β the distribution is dispersed equally around γ̄ and in the special case α = β = 1 the distribution is
uniform. Equalities

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
and Γ(x+ 1) = xΓ(x), (6.3.19)
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where Γ(x) is the gamma function can be used to show that the expectation γ̄ and variance Var(γ) of (6.3.17)
amount to

γ̄ =
α

α+ β
(6.3.20)

and
Var(γ) =

αβ

(α+ β)2(α+ β + 1)
. (6.3.21)

Figure 6.1: Plots of beta probability density functions with shape parameters as specified in the legend. By
construction in our context the x-axis represents the proportion of mimics γ over the population. The black curve
with parameters α = 2, β = 5 is used in section 6.6 to generate a working example of a Batesian mimicry complex
that is eco-evolutionarily stable.

In light of (6.3.17) the average payoffs of type-1 and type-2 can be expressed as

P̄1 =
F1(t1)

D(r1)K1(t1)

1

1− γ̄

1

B(α, β)

∫ 1

0

γα−1(1− γ)β

Q(I)
dγ (6.3.22)

and

P̄2 =
F2(0)

D(r1)K2(0)

1

γ̄

1

B(α, β)

∫ 1

0

γα(1− γ)β−1

Q(I)
dγ (6.3.23)

We define parameter δ as the sum of the shape parameters δ := α+ β, which allows us to re-express the
shape parameters in terms of the mean γ̄ and δ

α = δγ̄ and β = δ(1− γ̄). (6.3.24)

Expressing the variance in terms of the new substituted variables γ̄ and δ allows us to conclude that δ is
indeed an honest measure of the closeness of spread of the distribution around the mean. From (6.3.21) we
have

Var(γ) =
γ̄(1− γ̄)

δ + 1
. (6.3.25)
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Carrying through the variable substitution of (6.3.24) into the density (6.3.17) and using notation ·̂ to
distinguish the substituted quantities we write

f̂(γ) =
γδγ̄(1− γ)δ(1−γ̄)−1

B̂(γ̄, δ)
, (6.3.26)

with

B̂(γ̄, δ) := B(δγ̄, δ(1− γ̄)) =

∫ 1

0

xδγ̄−1(1− x)δ(1−γ̄)−1dx. (6.3.27)

Following the above discussion it is straightforward to establish that type-1 quantities have density functions

f1(γ) =
γδγ̄−1(1− γ)δ(1−γ̄)

(1− γ̄)B̂(γ̄, δ)
and f2(γ) =

γδγ̄(1− γ)δ(1−γ̄)−1

γ̄B̂(γ̄, δ)
. (6.3.28)

It should be noted that (6.3.11) and (6.3.12) transform in the straightforward way, such that

Ī1 = (1− γ̄)I1 + γ̄I2 +
γ̄

1 + δ
(I1 − I2) (6.3.29)

and
Ī2 = (1− γ̄)I1 + γ̄I2 −

1− γ̄

1 + δ
(I1 − I2). (6.3.30)

From the latter it is clear that for some fixed distribution mean γ̄ the larger the parameter δ the smaller the
difference between Ī1 and Ī2, indeed we have

lim
δ→∞

Ī1 = lim
δ→∞

Ī2 = (1− γ̄)I1 + γ̄I2. (6.3.31)

Conversely, the smaller δ is (for fixed mean γ̄) the larger the difference Ī1− Ī2 between the average perceived
aversiveness of the two types. We should remark that while it is possible to consider the limit δ → ∞,
the limit δ → 0 would imply that the shape parameters vanish so that α → 0 and β → 0 where the Beta
distribution diverges.

Finally, we carry through the substituted variables of (6.3.24) into the expected payoff to arrive at the
more convenient forms

P̄1(r1, t1; r1, 0) =
F1(t1)

D(r1)K1(t1)

1

1− γ̄

1

B̂(γ̄, δ)

∫ 1

0

γδγ̄−1(1− γ)δ(1−γ̄)

Q(I)
dγ (6.3.32)

and

P̄2(r1, t1; r1, 0) =
F2(0)

D(r1)K2(0)

1

γ̄

1

B̂(γ̄, δ)

∫ 1

0

γδγ̄(1− γ)δ(1−γ̄)−1

Q(I)
dγ. (6.3.33)

We have now established two key integral forms (6.3.32) and (6.3.33) for the expected type-1 and type-2
payoffs, which apply in the limit as N → ∞ where the proportion of mimics to models can be approximated
as a continuous random variable. In the sections that follow, we discuss eco-evolutionary (similarly to how
this was done for chapter 5) and determine the conditions under which two types forming a Batesian mimicry
complex can co-exist. In order to achieve this we introduce two separate notions of stability, which act on
separate time-scales: ecological (shorter) and evolutionary (longer); for the latter we extend the ideas that
were introduced in the single species description.
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6.4 Ecological stability

In this section we build on the results of the previous section, which assume that the proportion of mimics
to models is an approximately continuous, beta-distributed random variable and develop the conditions
for ecological stability. These conditions are summarised by the requirement that (on average) models
and mimics produce the same number of offspring per life-cycle (i.e. achieve equal fitness) and that this
equilibrium is stable in small perturbations of their proportions. We should remark that in this section
the ecological stability conditions are discussed in absence of mutation and although necessary are as such
not sufficient to describe co-existence on the (longer) evolutionary timescales. To complete the picture, we
introduce mutation separately in the next section and extend the notion of evolutionary stability from its
definition the single-species case to Batesian mimicry complexes that have been the subject of this chapter.
Following this, ecological and evolutionary stability are considered jointly

We say that the population is in ecological equilibrium if on average models and mimics produce the same
number of offspring per life-cycle. Such a situation suggests that on average neither population is increasing or
decreasing compared with the other and that these must co-exist in some equilibrium proportion (1− γ̄∗, γ∗).
This is provided by

P̄1(r1, t1; r1, 0) = P̄2(r1, t1; r1, 0). (6.4.1)

Substitution of (6.3.32) and (6.3.33) suggest that γ̄∗ is defined through equality

F1(t1)

K1(t1)

1

1− γ̄∗

∫ 1

0

γδγ̄−1(1− γ)δ(1−γ̄)

Q(I)
dγ =

F2(0)

K2(0)

1

γ̄∗

∫ 1

0

γδγ̄(1− γ)δ(1−γ̄)−1

Q(I)
dγ. (6.4.2)

The situation in (6.4.2) is stable under perturbations of the mimic/model proportions (γ∗, 1 − γ∗) if in
addition to (6.4.2) we impose [

∂γ̄P̄2 − ∂γ̄P̄1

]
|γ̄=γ̄∗< 0. (6.4.3)

The latter is equivalent to inequality

B̂(γ̄, δ)D(r1)∂γ̄P̄1 − B̂(γ̄, δ)D(r1)∂γ̄P̄2 > 0, (6.4.4)

which will prove more convenient for the body of calculations that follow. Indeed, substitution of (6.3.32)
into the first term of (6.4.4) amounts to

B̂(γ̄, δ)D(r1)∂γ̄P̄1 =

=
1

(1− γ̄)2
F1(t1)

K1(t1)

∫ 1

0

γδγ̄−1(1− γ)δ(1−γ̄)

Q(I)
dγ − 1

1− γ̄

F1(t1)

K1(t1)

∂γ̄B̂(γ̄, δ)

B̂(γ̄, δ)

∫ 1

0

γδγ̄−1(1− γ)δ(1−γ̄)

Q(I)
dγ

+
δ

1− γ̄

F1(t1)

K1(t1)

∫ 1

0

γδγ̄−1(1− γ)δ(1−γ̄) log
(

γ
1−γ

)
Q(I)

dγ (6.4.5)
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while substitution of (6.3.33) for the second term in (6.4.4) gives us

−B̂(γ̄, δ)D(r1)∂γ̄P̄2 =

= − 1

γ̄2

F2(0)

K2(0)

∫ 1

0

γδγ̄(1− γ)δ(1−γ̄)−1

Q(I)
dγ − 1

γ̄

F2(0)

K2(0)

∂γ̄B̂(γ̄, δ)

B̂(γ̄, δ)

∫ 1

0

γδγ̄(1− γ)δ(1−γ̄)−1

Q(I)
dγ

+
δ

γ̄

F2(0)

K2(0)

∫ 1

0

γδγ̄(1− γ)δ(1−γ̄)−1 log
(

γ
1−γ

)
Q(I)

dγ > 0. (6.4.6)

From scaling the equilibrium condition by ∂γ̄B̂(γ̄, δ) we observe that the second terms in (6.4.5) and (6.4.6)
are identical. From the same condition we also express the first terms in (6.4.5) and (6.4.6) in terms of a
single common integral. In particular, condition (6.4.4) now amounts to

1

γ̄2(1− γ̄)

F2(0)

K2(0)

∫ 1

0

γδγ̄(1− γ)δ(1−γ̄)−1

Q(I)
dγ

+
δ

1− γ̄

F1(t1)

K1(t1)

∫ 1

0

γδγ̄−1(1− γ)δ(1−γ̄) log
(

γ
1−γ

)
Q(I)

dγ

− δ

γ̄

F2(0)

K2(0)

∫ 1

0

γδγ̄(1− γ)δ(1−γ̄)−1 log
(

γ
1−γ

)
Q(I)

dγ > 0. (6.4.7)

For the subset of Beta distributions with some fixed mean γ̄ the equal payoffs condition in (6.4.2) specifies
a curve in the strategy space. Intersections of this curve with subregions identified by inequality (6.4.7)
contains strategies that are stable under small perturbations in the mimic and model proportions. In the
majority of the analysis that follows we tend to think of the mean γ̄ as a variable and not as a parameter
such that the equal payoffs condition (6.4.2) can be thought to describe a surface in the (r1, t1, γ̄)-space and
inequality (6.4.7) as specifying regions of the surface where the condition for equal payoffs is consistent under
small perturbations in the average mimic/model proportions.

In the following section we introduce local mutation to the model and mimic strategies and observe a
similar effect, namely that the complex is locally evolutionarily stable when the model and mimic strategies
and associated mean proportions are drawn from sections of a surface in the (r1, t1γ̄)-space. Following ESS
analysis we unify the two pictures and hence discuss explicit examples of systems that are eco-evolutionarily
stable (i.e. satisfy the conditions for stability mentioned in this and the following chapter).

6.5 Evolutionary stability

In this section we extend the notion of co-existence introduced in the previous section to account for mutation.
In addition to the stability conditions discussed therein, we now require that the model and mimic populations
are individually uninvadable by mutations occurring locally to their type. A Batesian mimicry complex is said
to be eco-evolutionarily stable if the two types on average achieve equal payoffs in the sense of (6.4.1) - and
this condition is consistent under (6.4.3) and in addition, each type is uninvadable by mutations occurring
locally to its type. As in the previous section, we work in the N → ∞ limit in which the mimic/model
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proportion is effectively a continuous random variable.
For some given proportion γ, the model and mimic fitness are

P1(r1, t1; r1, 0) =
F1(t1)

D(r1)K1(t1)Q(I)
(6.5.1)

and
P2(r1, t1; r1, 0) =

F2(0)

D(r1)K2(0)Q(I)
(6.5.2)

and follow beta distributions, as discussed earlier. The payoff associated to a mutant playing strategy
(r, t) ∈ [r1 − δr, r1 + δr]× [t1 − δt, t1 + δt]\(r1, t1) is given by

P †1 (r, t; r1, t1; r1, 0) =
F1(t)

D(r)K1(t)Q(I†1)
(6.5.3)

where
I†1 = a(1− γ)I + (1− a)(1− γ)I1S(|r − r1|) + γI2S(|r − r1|) (6.5.4)

describes its aversiveness as perceived by the average predator. Likewise, the payoff to a mutant playing
strategy (r, t) ∈ [r1 − δr, r1 + δr]× [0, δt]\(r1, 0) local to the mimic strategy is given by

P †2 (r, t; r1, t1; r1, 0) =
F2(t)

D(r)K2(t)Q(I†2)
, (6.5.5)

where
I†2 = aγI + (1− a)γI2S(|r − r1|) + (1− γ)I1S(|r − r1|) (6.5.6)

denotes its aversiveness as perceived by the average predator. We remark that the † superscript is used to
distinguish mutant quantities from their resident (model/mimic) counterparts, which are (as usual) indicated
with the subscripts 1 and 2. In addition, since the functional forms F,D,K,Q,L,H and S (sufficiently near
the origin) are Cl with l ≥ 2 and quantities I†1 and I†2 depend on |r − r1| it follows that the mutant fitness
functions P †1 and P †2 are almost everywhere Cl with l ≥ 2 except at r = r1 (where they are not differentiable
with respect to r). It should be clear that when the mutant plays the model strategy (r1, t1) or the mimic
strategy (r1, 0) that both expressions (6.5.4) and (6.5.6) both amount to the same quantity, which we denote
I. This is

I = (1− γ)I1 + γI2. (6.5.7)

We should remark that expressions (6.5.4) and (6.5.6) are consistent with our intuition that a is the
average local relatedness on the level of the type, such that a level of local relatedness a corresponds to a
total of a(1 − γ)N type-1 or aγN type-2 mutants in a site containing mutants. The reason for this is that
usually the competing mimic is of a different species.

Notice that there are three pairs of strategies on the arguments of the quantities on the LHSs of (6.5.3)
and (6.5.5), which account for the mutant, model and mimic strategies. To retain consistency, we remark
the following, namely that while the model and mimic payoffs in (6.5.8) and (6.5.9) depend only on the
model and mimic strategies (indeed these are R2 × R2 → R functions), while their mutant counterparts (†)
naturally depend also on the mutant strategy which is defined in the local vicinity of either of the first two.
For consistency we make explicit the fact that the (expected) mutant payoffs of (6.5.3) and (6.5.5) when
evaluated at the model/mimic strategy return the original model/mimic fitness.
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As discussed in the previous section, we tend to consider the limit as N → ∞ where the proportion of
mimics in a given site/observation can be approximated as a continuous random variable with at least C1

density function f(γ) - it should also be remarked that although f is kept general at this stage, in later
stages f(γ) will represent some choice of Beta distribution. Following the reasoning of the previous section it
should be clear that the quantities in (6.5.3) and (6.5.5) are also random variables sharing this distribution.
Their expected values over the distribution are

P̄ †1 (r, t; r1, t1; r1, 0) =
F1(t)

D(r)K1(t)

1

1− γ̄

∫ 1

0

(1− γ)f(γ)

Q(I†1)
dγ (6.5.8)

and

P̄ †2 (r, t; r1, t1; r1, 0) =
F2(t)

D(r)K2(t)

1

γ̄

∫ 1

0

γf(γ)

Q(I†2)
dγ. (6.5.9)

We emphasize that while the mutant fitness functions P †1 and P †2 provided in (6.5.3) and (6.5.5) are almost
everywhere Cl with l ≥ 2 in the vicinity of the model and mimic strategies (r1, t1) and (r1, 0) these are not
differentiable with respect to the mutant conspicuousness at r = r1. It should be clear to the reader that
the same claims are valid for the averages of these quantities P̄1 and P̄2 given in (6.5.8) and (6.5.9). In the
definition that follows - Definition 6.5.1 - we explain what it means for each type to be locally evolutionarily
stable.

Definition 6.5.1. Assume that in a Batesian mimicry complex in which the aversive models play (r1, t1)

with r1 > 0 and t1 > tc in proportion 1 − γ, where γ is a continuous, Beta-distributed random variable
such that γ ∼ Beta(δγ̄, δ(1 − γ̄)) and the mimics play (r1, 0) in proportion 1 − γ. In addition, assume that
the (average) fitness received by mutants playing strategy (r, t) local to the model/mimic strategy are denoted
P̄ †1 /P̄

†
2 . We say that:

[i] The models are locally evolutionarily stable if (on average) they receive higher fitness when interacting
with the model strategy than do the mutants (that are local to the model strategy) when interacting with the
model strategy. That is, we say that the model strategy is locally evolutionarily stable if

P̄ †1 (r1, t1; r1, t1; r1, 0) > P̄ †1 (r, t; r1, t1; r1, 0) for all (r, t) ∈ [r1−δr, r1+δr]×[t1−δt, t1+δt] \ (r1, t1). (6.5.10)

[ii] The mimics are locally evolutionarily stable if (on average) they receive higher fitness when interacting
with the mimic strategy than do the mutants (that are local to the mimic strategy) when interacting with the
mimic strategy. That is, we say that the mimic strategy is locally evolutionarily stable if

P̄ †2 (r1, 0; r1, t1; r1, 0) > P̄ †2 (r, t; r1, t1; r1, 0) for all (r, t) ∈ [r1 − δr, r1 + δr]× [0, δt] \ (r1, 0). (6.5.11)

Finally, we say that the complex is evolutionarily stable if both the models and the mimics are locally evolu-
tionarily stable in the sense of [i] and [ii] as above.

The above definition for local ESS follows as a direct extension of the original definition (Definition 2.3.1)
provided in chapter 2. From this it is clear that if the (average) type-1 mutant fitness admits a strict local
maximum at the model strategy and the (average) type-2 mutant fitness to admits a strict local maximum
at the mimic strategy then the Batesian mimicry complex is locally evolutionarily stable. In the section
that follows it is clarified that we require both the model and the mimic to be locally evolutionarily stable
(in addition to being ecologically stable - see previous section) for the complex to be considered stable as a
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collective. We make use of the following theorem (Theorem 6.5.2) in order to determine whether a model or
mimic strategy is local ESS, which is a direct extension of the theorem (Theorem 2.3.2) used in chapter 2 to
determine whether a resident strategy is a local ESS. We state and prove this theorem presently.

Theorem 6.5.2. Assume that in a Batesian mimicry complex the aversive models play (r1, t1) with r1 > 0

and t1 > tc in proportion 1 − γ, where γ is a continuous, beta-distributed random variable such that γ ∼
Beta(δγ̄, δ(1− γ̄)) and the mimics play (r1, 0) in proportion 1−γ. Assume that the average fitnesses received
by mutants playing strategy (r, t) local to the model/mimic value are denoted P̄ †1 /P̄

†
2 and given through

(6.5.8)/ (6.5.9). The quantities P̄ †1 and P̄ †2 are almost everywhere Cl with l ≥ 2 except at r = r1 where they
are not r-differentiable but are continuous at that value. It then follows that if:
[i]

∂tP̄
†
1 (r, t; r1, t1; r1, 0)|r=r1,t=t1 = 0, (6.5.12)

∂ttP̄
†
1 (r, t; r1, t1; r1, 0)|r=r1,t=t1 < 0 (6.5.13)

←
∂ rP̄

†
1 (r, t; r1, t1; r1, 0)|r=r1,t=t1 > 0 and (6.5.14)

→
∂ rP̄

†
1 (r, t; r1, t1; r1, 0)|r=r1,t=t1 < 0 (6.5.15)

then the model strategy (r1, t1) is a local ESS.
In addition, if
[ii]

→
∂ tP̄

†
2 (r, t; r1, t1; r1, 0)|r=r1,t=0 < 0 (6.5.16)

←
∂ rP̄

†
2 (r, t; r1, t1; r1, 0)|r=r1,t=0 > 0 and (6.5.17)

→
∂ rP̄

†
2 (r, t; r1, t1; r1, 0)|r=r1,t=0 < 0, (6.5.18)

then the mimic strategy (r1, 0) is a local ESS.

Proof. We show that inequalities (6.5.12), (6.5.13), (6.5.14) and (6.5.15) in [i] lead to local ESS for the model
in the sense of (6.5.10) in Definition 6.5.1. First, we assume that mutation is present in the model strategy
(r1, t1) and express the mutant traits in terms of spherical coordinates, such that

(x, ϕ) → (r, t) : r = r1 + x cosϕ and t = t1 + x sinϕ. (6.5.19)

Hence, we express the average fitness P̄†1 received by such a mutant in terms of the transformed coordinates
x, ϕ so that

P̄†1 : R≥0 × [0, 2π) → R≥0 : P̄†1(x, ϕ) := P̄ †1 (r = r1 + x cosϕ, t = t1 + x sinϕ; r1, t1; r1, 0). (6.5.20)

From the latter it is clear that the desired inequality (6.5.10) in Definition 6.5.1 amounts to showing

P̄†1(x, ϕ)− P̄†1(0, ϕ) < 0 for all ϕ ∈ [0, 2π). (6.5.21)
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We proceed to showing this for cases ϕ = 0, ϕ ∈ (0, π/2), ϕ = π/2, 3π/2, ϕ ∈ (π/2, π), ϕ = π, ϕ ∈ (π, 3π/2)

and ϕ ∈ (3π/2, 2π) individually.
If ϕ = 0 mutation is solely along the r-direction so that

P̄†1(x, ϕ = 0)− P̄†1(0, ϕ = 0) = P̄ †1 (r, t1; r1, t1; r1, 0)− P̄ †1 (r1, t1; r1, t1; r1, 0)

≈ (r − r1)︸ ︷︷ ︸
>0

×
→
∂ rP̄†1(r, t; r1, t1; r1, 0)|r=r1,t=t1︸ ︷︷ ︸

<0

< 0. (6.5.22)

If ϕ ∈ (0, π/2) we have

P̄†1(x, ϕ = 0)− P̄†1(0, ϕ = 0) ≈ x∂xP̄†1(x, ϕ)|x=0,ϕ∈(0,π/2)

= x∂xP̄
†
1 (r = r1 + x cosϕ, t = t1 + x sinϕ; r1, t1; r1, 0)|x=0,ϕ∈(0,π/2)

= x cosϕ︸ ︷︷ ︸
>0

×
→
∂ rP̄

†
1 (r, t; r1, t1; r1, 0)|r=r1,t=t1︸ ︷︷ ︸

<0

+x sinϕ︸ ︷︷ ︸
>0

× ∂tP̄
†
1 (r, t; r1, t1; r1, 0)|r=r1,t=t1︸ ︷︷ ︸

=0

< 0. (6.5.23)

If ϕ = π/2 or ϕ = 3π/2 mutation is along the t-direction so that x = t− t1 and thus

P̄†1(x, ϕ)− P̄†1(0, ϕ) = P̄ †1 (r1, t; r1, t1; r1, 0)− P̄ †1 (r1, t1; r1, t1; r1, 0)

= (t− t1)× ∂tP̄
†
1 (r, t; r1, t1; r1, 0)|r=r1,t=t1︸ ︷︷ ︸

=0

+
1

2
(t− t1)

2︸ ︷︷ ︸
>0

× ∂ttP̄
†
1 (r, t; r1, t1; r1, 0)|r=r1,t=t1︸ ︷︷ ︸

<0

< 0. (6.5.24)

If ϕ ∈ (π/2, π) the (average) incremental difference between the mutant and the model fitness is given by

P̄†1(x, ϕ)− P̄†1(0, ϕ) ≈ x∂xP̄†1(x, ϕ)|x=0,ϕ∈(π/2,π)

= x∂xP̄
†
1 (r = r1 + x cosϕ, t = t1 + x sinϕ; r1, t1; r1, 0)|x=0,ϕ∈(π/2,π)

= x cosϕ︸ ︷︷ ︸
<0

×
←
∂ rP̄

†
1 (r, t; r1, t1; r1, 0)|r=r1,t=t1︸ ︷︷ ︸

>0

+x sinϕ︸ ︷︷ ︸
>0

× ∂tP̄
†
1 (r, t; r1, t1; r1, 0)|r=r1,t=t1︸ ︷︷ ︸

=0

< 0. (6.5.25)

If ϕ = π we have mutation along the r-direction so that x = r − r1 < 0 and thus

P̄†1(x, ϕ = π)− P̄†1(0, ϕ = π) =P̄ †1 (r, t1; r1, t1; r1, 0)− P̄ †1 (r1, t1; r1, t1; r1, 0)

= (r − r1)︸ ︷︷ ︸
<0

×
←
∂ rP̄

†
1 (r, t; r1, t1; r1, 0)|r=r1,t=t1︸ ︷︷ ︸

>0

< 0. (6.5.26)

If ϕ ∈ (π, 3π/2)

P̄†1(x, ϕ)− P̄†1(0, ϕ) ≈ x∂xP̄†1(x, ϕ)|x=0,ϕ∈(π,3π/2)

= x∂xP̄
†
1 (r = r1 + x cosϕ, t = t1 + x sinϕ; r1, t1; r1, 0)|x=0,ϕ∈(π,3π/2)

= x cosϕ︸ ︷︷ ︸
<0

×
←
∂ rP̄

†
1 (r, t; r1, t1; r1, 0)|r=r1,t=t1︸ ︷︷ ︸

>0

+x sinϕ× ∂tP̄
†
1 (r, t; r1, t1; r1, 0)|r=r1,t=t1︸ ︷︷ ︸

=0

< 0. (6.5.27)
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Finally, if ϕ ∈ (3π/2, 2π) it follows that

P̄†1(x, ϕ)− P̄†1(0, ϕ) ≈ x∂xP̄†1(x, ϕ)|x=0,ϕ∈(3π/2,2π)

= x∂xP̄
†
1 (r = r1 + x cosϕ, t = t1 + x sinϕ; r1, t1; r1, 0)|x=0,ϕ∈(3π/2,2π)

= x cosϕ︸ ︷︷ ︸
>0

×
→
∂ rP̄

†
1 (r, t; r1, t1; r1, 0)|r=r1,t=t1︸ ︷︷ ︸

<0

+x sinϕ× ∂tP̄
†
1 (r, t; r1, t1; r1, 0)|r=r1,t=t1︸ ︷︷ ︸

=0

< 0. (6.5.28)

We conclude that we have shown case [i] of Theorem 6.5.2 by showing that inequality (6.5.21) applies for all
possible directions.

We now proceed to showing case [ii] of Theorem 6.5.2, and in particular that inequalities (6.5.16), (6.5.17)
and (6.5.18) lead to a local ESS for the mimic in the sense of (6.5.11) in Definition 6.5.1. Much like in case
[i], we show this by showing that

P̄†2(x, ϕ)− P̄†2(0, ϕ) < 0 for all ϕ ∈ [0, π], (6.5.29)

where P̄†2 represents the average type-2 mutant fitness expressed in terms of polar coordinates x, ϕ. That is

P̄†2 : R≥0 × [0, π] → R≥0 : P̄†2(x, ϕ) := P̄ †2 (r = r1 + x cosϕ, t = x sinϕ; r1, t1; r1, 0) (6.5.30)

with
(x, ϕ) → (r, t) : r = r1 + x cosϕ and t = x cosϕ. (6.5.31)

We show (6.5.29) by showing that it applies for cases ϕ = 0, ϕ ∈ (0, π/2), ϕ = π/2, ϕ ∈ (π/2, π) and ϕ = π

individually.
If ϕ = 0 mutation is along the r-direction so that

P̄†2(x, ϕ = 0)− P̄†2(0, ϕ = 0) =P̄ †2 (r, 0; r1, t1; r1, 0)− P̄ †2 (r1, 0; r1, t1; r1, 0)

≈ (r − r1)︸ ︷︷ ︸
>0

×
→
∂ rP̄

†
2 (r, t; r1, t1; r1, 0)|r=r1,t=0︸ ︷︷ ︸

<0

< 0. (6.5.32)

If ϕ ∈ (0, π/2) we have

P̄†2(x, ϕ)− P̄†2(0, ϕ) ≈ x∂xP̄†2(x, ϕ)|x=0,ϕ∈(0,π/2)

= x∂xP̄
†
2 (r = r1 + x cosϕ, t = x sinϕ; r1, t1; r1, 0)|x=0,ϕ∈(0,π/2)

= x cosϕ︸ ︷︷ ︸
>0

×
→
∂ rP̄

†
2 (r, t; r1, t1; r1, 0)|r=r1,t=0︸ ︷︷ ︸

<0

+x sinϕ︸ ︷︷ ︸
>0

×
→
∂ tP̄

†
2 (r, t; r1, t1; r1, 0)|r=r1,t=0︸ ︷︷ ︸

<0

< 0. (6.5.33)

If ϕ = π/2 mutation is solely along the t-direction so that

P̄†2(x, ϕ = π/2)− P̄†2(0, ϕ = π/2) =P̄ †2 (r1, t; r1, t1; r1, 0)− P̄ †2 (r1, 0; r1, t1; r1, 0)

≈ (t− t1)︸ ︷︷ ︸
>0

×
→
∂ tP̄

†
2 (r, t; r1, t1; r1, 0)|r=r1,t=0︸ ︷︷ ︸

<0

< 0. (6.5.34)
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If ϕ ∈ (π/2, π) the (average) incremental difference between mutant and mimic fitness is negative since

P̄†2(x, ϕ)− P̄†2(0, ϕ) ≈ x∂xP̄†2(x, ϕ)|x=0,ϕ∈(π/2,π)

= x∂xP̄
†
2 (r = r1 + x cosϕ, t = x sinϕ; r1, t1; r1, 0)|x=0,ϕ∈(π/2,π)

= x cosϕ︸ ︷︷ ︸
<0

×
←
∂ rP̄

†
2 (r, t; r1, t1; r1, 0)|r=r1,t=0︸ ︷︷ ︸

>0

+x sinϕ︸ ︷︷ ︸
>0

×
→
∂ tP̄

†
2 (r, t; r1, t1; r1, 0)|r=r1,t=0︸ ︷︷ ︸

<0

< 0. (6.5.35)

Finally, if ϕ = π mutation is solely along the r-direction so that x = r − r1 < 0. We have

P̄†2(x, ϕ)− P̄†2(0, ϕ) =P̄ †2 (r, 0; r1, t1; r1, 0)− P̄ †2 (r1, 0; r1, t1; r1, 0)

≈ (r − r1)︸ ︷︷ ︸
<0

×
←
∂ rP̄

†
2 (r, t; r1, t1; r1, 0)|r=r1,t=0︸ ︷︷ ︸

>0

< 0, (6.5.36)

which concludes our proof of (6.5.29) and of case (ii) of Theorem 6.5.2.

For the remainder of the section we focus on making explicit the conditions for (local) ESS that are
provided in Theorem 6.5.2 by substituting P̄ †1 as given through (6.5.8) into (6.5.12), (6.5.13), (6.5.14), (6.5.15)
and P̄ †2 as given through (6.5.9) into (6.5.16), (6.5.17) and (6.5.18). We begin with (6.5.12). Evaluating
∂tP̄

†
1 (r, t; r1, t1; r1, 0) at (r, t) = (r1, t1) and scaling through by (1 − γ̄)F1(t1)/[D(r1)K1(t1)] we arrive at

equality

[
F ′1(t1)

F1(t1)
− K ′1(t1)

K1(t1)

] ∫ 1

0

γδγ̄−1(1− γ)δ(1−γ̄)

Q(I)
dγ − aI1

H ′(t1)

H(t1)

∫ 1

0

γδγ̄−1(1− γ)δ(1−γ̄)+1

Q(I)
dγ = 0. (6.5.37)

Strategies satisfying (6.5.37) must also satisfy (6.5.13), which on account of (6.5.8) reads[
K ′′1 (t1)

K1(t1)
− F ′′1 (t1)

F1(t1)

] ∫ 1

0

γδγ̄−1(1− γ)δ(1−γ̄)

Q(I)
dγ

+2aI1
H ′(t1)

H(t1)

F ′1(t1)

F1(t1)

∫ 1

0

Q′(I)

Q2(I)
γδγ̄−1(1− γ)δ(1−γ̄)+1dγ

−2a2I2
1

(
H ′(t1)

H(t1)

)2 ∫ 1

0

(Q′(I))2

Q3(I)
γδγ̄−1(1− γ)δ(1−γ̄)+2dγ

+a2I2
1

(
H ′(t1)

H(t1)

)2 ∫ 1

0

Q′′(I)

Q2(I)
γδγ̄−1(1− γ)δ(1−γ̄)+2dγ

+aI2
1

H ′′(t1)

H(t1)

∫ 1

0

Q′(I)

Q2(I)
γδγ̄−1(1− γ)δ(1−γ̄)+1dγ > 0. (6.5.38)
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Using the same scaling factor we can show that (6.5.14) amounts to

−D′(r1)

D(r1)

∫ 1

0

γδγ̄−1(1− γ)δ(1−γ̄)

Q(I)
dγ −

[
aI1

D′(r1)

D(r1)
− (1− a)I1S′(0)

] ∫ 1

0

Q′(I)

Q2(I)
γδγ̄−1(1− γ)δ(1−γ̄)+1dγ

+I2S′(0)
∫ 1

0

Q′(I)

Q2(I)
γδγ̄(1− γ)δ(1−γ̄)dγ > 0 (6.5.39)

and similarly that (6.5.15) reads

−D′(r1)

D(r1)

∫ 1

0

γδγ̄−1(1− γ)δ(1−γ̄)

Q(I)
dγ −

[
aI1

D′(r1)

D(r1)
+ (1− a)I1S′(0)

] ∫ 1

0

Q′(I)

Q2(I)
γδγ̄−1(1− γ)δ(1−γ̄)+1dγ

−I2S′(0)
∫ 1

0

Q′(I)

Q2(I)
γδγ̄(1− γ)δ(1−γ̄)dγ < 0. (6.5.40)

Using the scaling factor γ̄F2(0)/[D(r1)K2(0)] for the mimic it can be shown that (6.5.16) amounts to[
F ′2(0)

F2(0)
− K ′2(0)

K2(0)

] ∫ 1

0

γδγ̄(1− γ)δ(1−γ̄)−1

Q(I)
dγ

−aI2
H ′(0)

H(0)

∫ 1

0

Q′(I)

Q2(I)
γδγ̄+1(1− γ)δ(1−γ̄)−1dγ < 0. (6.5.41)

Using the same scaling factor it is also straightforward to show that (6.5.17) and (6.5.18) amount to

−D′(r1)

D(r1)

∫ 1

0

γδγ̄(1− γ)δ(1−γ̄)−1

Q(I)
dγ −

[
aI2

D′(r1)

D(r1)
− (1− a)I2S′(0)

] ∫ 1

0

Q′(I)

Q2(I)
γδγ̄+1(1− γ)δ(1−γ̄)−1dγ

+I1S′(0)
∫ 1

0

Q′(I)

Q2(I)
γδγ̄(1− γ)δ(1−γ̄)dγ > 0 (6.5.42)

and

−D′(r1)

D(r1)

∫ 1

0

γδγ̄(1− γ)δ(1− γ̄ − 1)

Q(I)
dγ −

[
aI2

D′(r1)

D(r1)
+ (1− a)I2S′(0)

] ∫ 1

0

Q′(I)

Q2(I)
γδγ̄+1(1− γ)δ(1−γ̄)−1dγ

−I1S′(0)
∫ 1

0

Q′(I)

Q2(I)
γδγ̄(1− γ)δ(1−γ̄)dγ < 0. (6.5.43)

It should be remarked that cases with non-zero rates of background mortality (λ > 0) are not considered in
the context of Batesian mimicry so as to avoid excessive complexity. The reader is directed to chapter 4 for
an account of this with prey populations consisting of a single species.

6.6 Eco-evolutionary stability and the confluent hypergeometric

function

In this section we explore some of the interesting mathematical consequences that occur when considering an
exponentially-decaying Q function along with the following biologically plausible functional forms relating
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to predator generalisation

L(r) =
1

1 + exp(−r)
; H(t) = t− tc; λ = 0

S(|r − r1|) = max (1− v|r − r1|, 0); Q(I) = q0 exp(−qI). (6.6.1)

We leave the remaining forms general for the time-being. The aversive information of (6.3.10) with (6.6.1)
in place can be expressed as the difference of two terms, only one of which depends on γ. We have

I(γ) = (1− γ)I1 + γI2 =
N

n

t1 − tc
1 + exp(−r1)

− N

n

γt1
1 + exp(−r1)

, (6.6.2)

where in the equal payoff condition (6.4.2) we can factor out the exponential that involves the first factor
on the RHS to obtain the simplified expression

F1(t1)

K1(t1)

1

1− γ̄

∫ 1

0

γδγ̄−1(1− γ)δ(1−γ̄) exp

(
−

qN
n t1γ

1 + exp(−r1)

)
dγ

− F2(0)

K2(0)

1

γ̄

∫ 1

0

γδγ̄(1− γ)δ(1−γ̄)−1 exp

(
−

qN
n t1γ

1 + exp(−r1)

)
dγ = 0. (6.6.3)

We should remark that the integrals appearing on either side of the latter equality coincide with the
integral representations of the family of confluent hypergeometric functions, which are denoted M(x, y, z) in
the standard handbook of mathematical functions Abramowitz and Stegun (1964). We have

M(x, y; z) =
Γ(y)

Γ(x)Γ(y − x)

∫ 1

0

exp(zu)ux−1(1− u)y−x−1. (6.6.4)

Setting

x ↔ δγ̄, y ↔ δ, z ↔ −
qN

n t1

1 + exp(−r1)
(6.6.5)

and using the relation Γ(x+ 1) = xΓ(x) we observe that equality (6.6.3) amounts to

F1(t1)

K1(t1)
M(δγ̄, δ + 1; z)− F2(0)

K2(0)
M(δγ̄ + 1, δ; z) = 0. (6.6.6)

The transformed condition for equal payoffs given in (6.6.3) is consistent under small perturbations in
the mimic and model proportions if it holds together with (6.4.7). We remark that the latter cannot be
expressed in terms of the confluent hypergeometric function on account of the logarithms present in the
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integrands of the last two terms. Through (6.6.1) condition (6.4.7) transforms to

Γ(δγ̄)Γ (δ(1− γ̄))

γ̄(1− γ̄)Γ(δ)

F2(0)

K2(0)
M(δγ̄ + 1, δ + 1, z)

+
δ

1− γ̄

F1(t1)

K1(t1)

∫ 1

0

exp(zγ) log

(
γ

1− γ

)
γδγ̄−1(1− γ)δ(1−γ)dγ

− δ

γ̄

F2(0)

K2(0)

∫ 1

0

exp(zγ) log

(
γ

1− γ

)
γδγ̄(1− γ)δ(1−γ̄)−1dγ > 0. (6.6.7)

The second equality necessary for achieving eco-evolutionary stability is provided by (6.5.37), which
account of (6.6.1) reads

[
F ′1(t1)

F1(t1)
− K ′1(t1)

K1(t1)

] ∫ 1

0

exp

(
−

qN
n t1γ

1 + exp(−r1)

)
γδγ̄−1(1− γ)δγ̄dγ

−aI1
H ′(t1)

H(t1)

∫ 1

0

exp

(
−

qN
n t1γ

1 + exp(−r1)

)
γδγ̄−1(1− γ)δγ̄+1dγ = 0. (6.6.8)

Working as before it is straightforward to show that the latter can be expressed in terms of the hypergeometric
function so that it reads[

F ′1(t1)

F1(t1)
− K ′1(t1)

K1(t1)

]
M(δγ̄, δ + 1; z)− aI1

H ′(t1)

H(t1)

δ(1− γ̄) + 1

δ + 1
M(δγ̄, δ + 2; z) = 0. (6.6.9)

In fact all remaining stability conditions (excluding ecological stability) can be expressed in terms of hy-
pergeometric functions. For the first type we have stability in the t-direction guaranteed when the equilibrium
satisfies [

K ′′1 (t1)

K1(t1)
− F ′′1 (t1)

F1(t1)

]
M(δγ̄, δ + 1, z)− 2aqI1

H ′(t1)

H(t1)

F ′1(t1)

F1(t1)

δ(1− γ̄) + 1

δ + 1
M(δγ̄, δ + 2, z)

−a2q2I2
1

(
H ′(t1)

H(t1)

)2
(δ(1− γ̄) + 2) (δ(1− γ̄) + 1))

(δ + 2)(δ + 1)
M(δγ̄, δ + 3, z) > 0. (6.6.10)

Still for the first type, stability in the r-direction holds if (6.5.39) holds, which amounts to

−D′(r1)

D(r1)
M(δγ̄, δ + 1, z) +

[
aqI1

D′(r1)

D(r1)
+ (1− a)qvI1

]
δ(1− γ̄) + 1

δ + 1
M(δγ̄, δ + 2, z)

−qv|I2|
δγ̄

δ + 1
M(δγ̄ + 1, δ + 2, z) > 0 (6.6.11)

and in addition, if (6.5.40) holds, which amounts to

−D′(r1)

D(r1)
M(δγ̄, δ + 1, z) +

[
aqI1

D′(r1)

D(r1)
− (1− a)qvI1

]
δ(1− γ̄) + 1

δ + 1
M(δγ̄, δ + 2, z)

+qv|I2|
δγ̄

δ + 1
M(δγ̄ + 1, δ + 2, z) < 0. (6.6.12)
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For the second type stability against better-defended mutants is guaranteed through (6.5.41), which reads[
F ′2(0)

F2(0)
− K ′2(0)

K2(0)

]
M(δγ̄ + 1, δ + 1, z) + aq|I2|

H ′(0)

H(0)

δγ̄ + 1

δ + 1
M(δγ̄ + 2, δ + 2, z) < 0. (6.6.13)

Along the r-direction for the second type we have (6.5.42) for non-invasion of the less conspicuous mutant
type

−D′(r1)

D(r1)
M(δγ̄ + 1, δ + 1, z)−

[
aq|I2|

D′(r1)

D(r1)
+ (1− a)qv|I2|

]
δγ̄ + 1

δ + 1
M(δγ̄ + 2, δ + 2, z)

+qvI1
δ(1− γ̄)

δ + 1
M(δγ̄ + 1, δ + 2, z) > 0 (6.6.14)

and (6.5.43) for non-invasion of the more conspicuous type

−D′(r1)

D(r1)
M(δγ̄ + 1, δ + 1, z)−

[
aq|I2|

D′(r1)

D(r1)
− (1− a)qv|I2|

]
δγ̄ + 1

δ + 1
M(δγ̄ + 2, δ + 2, z)

−qvI1
δ(1− γ̄)

δ + 1
M(δγ̄ + 1, δ + 2, z) < 0. (6.6.15)

6.7 An example of eco-evolutionarily stable Batesian mimicry

From the previous section it is clear that although eco-evolutionarily stable solutions are likely to manifest
as pairs of curves in the r1, t1, γ̄ - plane these are hard to evaluate explicitly. In this section we demonstrate
that a pair of strategies for the model and mimic are eco-evolutionarily stable in the sense detailed thus
far and proceed to demonstrating that these lie on an extended continuum. We begin by specifying the
remaining functional forms that relate to prey behaviour in a non-stop style for ease of reference. We have

Conversions

M̂(δγ̄, δ, z) =

∫ 1

0

exp(γz)γδγ̄−1(1− γ)δ(1−γ̄)−1dγ

z = −
qN

n t1

1 + exp(−r1)

Ecological stability

F1(t1)

K1(t1)
M̂(δγ̄, δ + 1; z)− F2(0)

K2(0)
M̂(δγ̄ + 1, δ + 1; z) = 0 (6.7.1)
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Γ(δγ̄)Γ (δ(1− γ̄))

γ̄(1− γ̄)Γ(δ)

F2(0)

K2(0)
M̂(δγ̄ + 1, δ + 1, z)

+
δ

1− γ̄

F1(t1)

K1(t1)

∫ 1

0

exp(zγ) log

(
γ

1− γ

)
γδγ̄−1(1− γ)δ(1−γ̄)dγ

− δ

γ̄

F2(0)

K2(0)

∫ 1

0

exp(zγ) log

(
γ

1− γ

)
γδγ̄(1− γ)δ(1−γ̄)−1dγ > 0 (6.7.2)

Model ESS

[
F ′1(t1)

F1(t1)
− K ′1(t1)

K1(t1)

]
M̂(δγ̄, δ + 1; z)− aI1

H ′(t1)

H(t1)

δ(1− γ̄) + 1

δ + 1
M̂(δγ̄, δ + 2; z) = 0. (6.7.3)

[
K ′′1 (t1)

K1(t1)
− F ′′1 (t1)

F1(t1)

]
M̂(δγ̄, δ + 1, z)− 2aqI1

H ′(t1)

H(t1)

F ′1(t1)

F1(t1)

δ(1− γ̄) + 1

δ + 1
M̂(δγ̄, δ + 2, z)

−a2q2I2
1

(
H ′(t1)

H(t1)

)2
(δ(1− γ̄) + 2) (δ(1− γ̄) + 1))

(δ + 2)(δ + 1)
M̂(δγ̄, δ + 3, z) > 0 (6.7.4)

−D′(r1)

D(r1)
M̂(δγ̄, δ + 1, z) +

[
aqI1

D′(r1)

D(r1)
+ (1− a)qvI1

]
δ(1− γ̄) + 1

δ + 1
M̂(δγ̄, δ + 2, z)

−qv|I2|
δγ̄

δ + 1
M̂(δγ̄ + 1, δ + 2, z) > 0 (6.7.5)

−D′(r1)

D(r1)
M̂(δγ̄, δ + 1, z) +

[
aqI1

D′(r1)

D(r1)
− (1− a)qvI1

]
δ(1− γ̄) + 1

δ + 1
M̂(δγ̄, δ + 2, z)

+qv|I2|
δγ̄

δ + 1
M̂(δγ̄ + 1, δ + 2, z) < 0 (6.7.6)

Mimic ESS[
F ′2(0)

F2(0)
− K ′2(0)

K2(0)

]
M̂(δγ̄ + 1, δ + 1, z) + aq|I2|

H ′(0)

H(0)

δγ̄ + 1

δ + 1
M̂(δγ̄ + 2, δ + 2, z) < 0 (6.7.7)

−D′(r1)

D(r1)
M̂(δγ̄ + 1, δ + 1, z)−

[
aq|I2|

D′(r1)

D(r1)
+ (1− a)qv|I2|

]
δγ̄ + 1

δ + 1
M̂(δγ̄ + 2, δ + 2, z)

+qvI1
δ(1− γ̄)

δ + 1
M̂(δγ̄ + 1, δ + 2, z) > 0 (6.7.8)
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−D′(r1)

D(r1)
M̂(δγ̄ + 1, δ + 1, z)−

[
aq|I2|

D′(r1)

D(r1)
− (1− a)qv|I2|

]
δγ̄ + 1

δ + 1
M̂(δγ̄ + 2, δ + 2, z)

−qvI1
δ(1− γ̄)

δ + 1
M̂(δγ̄ + 1, δ + 2, z) < 0. (6.7.9)

Before proceeding to a worked example of these conditions (see Figure 6.3) it is of interest to make two
remarks. The first is that the conditions for evolutionary stability for the model and mimic have a certain
physical significance, which becomes apparent when regarding the individual terms on the LHSs as marginal
differences in fitness between the mutant and the model/mimic. For instance, looking at conditions for
non-invasion along r e.g. (6.7.5), (6.7.6) for the model and (6.7.7), (6.7.9) for the mimic we revise our
interpretation as follows. In (6.7.5) we deduce (subject to scaling by −δr) that the first term (+) represents
a marginal fitness advantage of the mutant compared to the model associated with being less detectable; the
second term (−) represents a marginal advantage associated with being less memorable as an aversive type;
the third term (−) represents a fitness disadvantage associated with the mutant type looking marginally
unlike the model, whose appearance is registered by the predator as aversive and finally the fourth term
(+) represents the advantage associated with the mutant type looking unlike an attractive mimic type. We
examined the terms of (6.7.5) merely as a demonstration; the reader is encouraged to scrutinise the remaining
ESS conditions in this manner.

Although fundamentally this term-by-term marginal fitness interpretation is much the like in the single
species case (see chapter 2) there are two distinguishing differences. The first is that there are four terms
making up the LHSs of (6.7.5), which is attributed to the fact that the prey population is now made up of
two types with common appearance (perfect mimicry) and therefore a slightly less/more conspicuous mutant
pays a price for not looking like the aversive models and gains an advantage for looking unlike the attractive
mimics. Perhaps the reader may find it more intuitive to view these two terms as a single term by looking
at the perceived aversiveness of the mimicry complex as a whole and the associated advantage/disadvantage
of the mutant as derived from that.

We proceed by assigning the same functional forms for the model and the mimic and set

F1(t) = f01 exp(−f1t); F2(t) = f02 exp(−f2t)

K1(t) =
k01

1 + k1t1
; K2(t) =

k02
1 + k2t

D(r) =
1

1 + exp(−r)
. (6.7.10)

A stable point solution

We proceed by setting a = 0, which simplifies the conditions for eco-evolutionary stability conditions (6.7.1)
through to (6.7.9) considerably. For this example we also wish to fully specify the distribution of mimics in
the habitat. We set α = 2 and β = 5 which implies that δ = 7 and furthermore that the average proportion
of mimics is γ̄ = 2/7. In chapter 9 of Ruxton et al. (2019) it is mentioned that real Batesian mimicry
systems are likelier to be stable (stability is used in a more general sense) when the models are considerably
larger in density and their aversiveness is also considerable compared with the mimics. We account for the
first requirement by considering a distribution from the Beta family that gives γ̄ = 2/7 and 1 − γ̄ = 5/7.
Since we take it that mimics are completely undefended making the latter requirement superfluous; we will
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still consider cases where the model toxicity is safely beyond the critical level tc, which we arbitrarily set to
tc = 0.25.

We impose that qN
n t1 = 1 and set r1 = 1 so that

z =
1

1 + exp(−1)
(6.7.11)

so that now it is straightforward to establish that when a = 0 the level of defence satisfying (6.7.3) is fixed
for all levels of conspicuousness. This is given as[

−f1 +
k1

1 + k1t1

]
M(2, 8, z) = 0 ⇔ t1 =

1

f1
− 1

k1
. (6.7.12)

We should remark that checking (6.7.4) for the model is superfluous since this condition is automatically
satisfied at t1 given through (6.7.12). Indeed, the LHS of (6.7.4) with a = 0 reads[

−f2
1 +

2k21
(1 + k1t1)2

]
M̂(2, 8, z). (6.7.13)

The equal payoffs condition (6.7.1) with k01 = k02 - the latter suggests that models and mimics are equally
likely to escape capture when undefended - amounts to

f01 exp(−f1t1)(1 + k1t1)M̂(2, 8, z) = f02M̂(3, 8, z) (6.7.14)

and setting k1 = 1 gives

f1 =
1

e

f01
f02

M̂(2, 8, z)

M̂(3, 8, z)
exp(f1). (6.7.15)

Solutions to equalities involving a certain variable and the same variable as an exponent can be solved by
means of the following ansatz

x = a+ b exp(cx) ⇒ x = a− 1

c
W (−bc exp(ac)) (6.7.16)

with a, b and c generally being complex constants and W being of any integer order. The ansatz implies

f1 = −W

(
−1

e

f01
f02

M̂(2, 8, z)

M̂(3, 8, z)

)
(6.7.17)

and solutions are sensible (real and positive) providing

0 <
f01
f02

M̂(2, 8, z)

M̂(3, 8, z)
< 1.

Since

M̂(2, 8, z)

M̂(3, 8, z)
=

∫ 1

0
exp

(
−γ

1+exp(−1)

)
γ(1− γ)5dγ∫ 1

0
exp

(
−γ

1+exp(−1)

)
γ2(1− γ)4dγ

≈ 2.7353 (6.7.18)

setting f01/f02 = 1/6 achieves the desired result and also suggests that the model fecundity (in absence of
investment in secondary defences) is smaller than the mimic fecundity, which is a safe assumption to make.
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From (6.7.17) we have

f1 ≈ −W

(
1

e

2.7353

6

)
≈ 0.2061 (6.7.19)

and from (6.7.12) we deduce that the model toxicity is

t1 ≈ 1

0.2061
− 1 ≈ 3.8522, (6.7.20)

which is aversive (and notably so compared with the critical level at 0.25). For consistency we should remark
that the recovered values are consistent with the equal payoffs condition in (6.7.14), which reads

f01
f02

M̂(2, 8, z)

M̂(3, 8, z)
exp(−f1t1)(1 + k1t1) ≈

2.7353

6
exp (−0.2061× 3.8522) (1 + 3.8522) ≈ 1.0000, (6.7.21)

as required.
With the parameter values specified thus far the equal payoffs condition (6.7.14) is consistent under small

perturbations in the mimic/model proportions if (6.7.2) holds. Th latter reads

+
49

300
Γ(2)

∫ 1

0

exp

(
−γ

1 + exp(−1)

)
γ2(1− γ)4dγ

49

30
exp(−0.2061× 3.8522)× (1 + 3.8522)

∫ 1

0

exp

(
−γ

1 + exp(−1)

)
γ(1− γ)5 log

(
γ

1− γ

)
dγ

−49

2

∫ 1

0

exp

(
−γ

1 + exp(−1)

)
γ2(1− γ)4 log

(
γ

1− γ

)
dγ ≈ 0.02344 > 0. (6.7.22)

We have therefore established that the pair of strategies (r1, t1) ≈ (1, 3.8522) for the model and (r1, 0) = (1, 0)

for the mimic played in average proportions 5/7 and 2/7 respectively are ecologically stable in the sense of
receiving equal payoffs P̄1 and P̄2 - condition (6.7.1) - in such a way that this condition is consistent under
small perturbations in the mimic/model proportions -condition (6.7.2). In addition, we have also shown that
model and mimic can resist invasion along t in the sense of (6.7.3), (6.7.4) and (6.7.7). We now proceed
to identifying a suitable set of parameter values that are consistent with (6.7.5), (6.7.6) for the model and
(6.7.8), (6.7.9) for the mimic.

Scaling (6.7.5) and (6.7.6) by (1 + exp(−1)) and setting v = 8 gives

− exp(−1)

∫ 1

0

exp

(
−γ

1 + exp(−1)

)
γ(1− γ)5dγ

+2.6× 1×
(
1− 0.25

3.8522

)
× 3

4

∫ 1

0

exp

(
−γ

1 + exp(−1)

)
γ(1− γ)6dγ

−2.6× 1× 0.25

3.8522
× 1

4

∫ 1

0

exp

(
−γ

1 + exp(−1)

)
γ2(1− γ)5dγ

≈ −0.007336 + 0.02780− 0.0001979 ≈ 0.02027 > 0
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as required. Doing the same for condition (6.7.6) gives

−0.007336 + 0.02780 + 0.0001979 ≈ −0.03494 < 0. (6.7.23)

It therefore remains for us to show that conditions (6.7.8) and (6.7.9) hold for the mimic. We have seen
that with a = 0 the mimic satisfies (6.7.7) provided that f2 > k2. Consistent with this (6.7.7) amounts to

− exp(−1)

∫ 1

0

exp

(
−γ

1 + exp(−1)

)
γ2(1− γ)4dγ

−2.6× 0.25

3.8522
× 3

8

∫ 1

0

exp

(
−γ

1 + exp(−1)

)
γ3(1− γ)4dγ

2.6×
(
1− 0.25

3.8522

)
× 5

8

∫ 1

0

exp

(
−γ

1 + exp(−1)

)
γ2(1− γ)5

≈ −0.002682− 0.0001644 + 0.007130 ≈ 0.004284 > 0 (6.7.24)

Similarly, condition (6.6.15) is consistent with the above parameter values and amounts to

−0.002682 + 0.0001644− 0.007130 ≈ −0.009649 < 0.

We have demonstrated how one can generate examples of mimicry complexes that are consistent with the
conditions for eco-evolutionary stability outlined in (6.7.1) through to (6.7.9) by choosing parameter values
appropriately. As far as the functional forms of (6.6.1) and (6.7.10) are concerned, their efficacy has been
discussed more carefully in Broom et al. (2006) as well as in Broom et al. (2008) and indeed elsewhere in
this manuscript. In following with the presentation of the previous chapter (5) on Batesian mimicry and for
the purpose of maintaining simplicity, we have imposed that models and mimics are fundamentally described
through a common set of functional forms but allow for the specific functions to be different by assigning
different parameter values - see (6.7.10) K1 and K2 have the same form but differ in terms of the parameters
k01, k02 and the k1, k2.

It should be clear to the reader that the example presented here is not designed as one of a kind (non-
generic). First, we should remark that the process detailed above is general and can be made to work for
a variety of instances. Indeed, setting k1 = 1 was an arbitrary choice and the reader is invited to show
that working examples can be generated using other values. The same applies to implemented restrictions
of the type k01 = k02 or specifically setting f01/f02 = 1/6 (smaller values for this fraction are also viable
options). In addition, our conclusions regarding the eco-evolutionary stability hold for arbitrary choices of
the parameters f2 and k2 that satisfy the inequality f2 > k2 used for generating examples. Second, as we
demonstrate in the supplementary analysis that follows the point solution we have uncovered in this section
lies on a continuum of strategies (i.e. choices for r1, t1 and γ̄ are drawn from intervals of values) that is
eco-evolutionarily stable (see Figure 6.3). Specifically, we show that for a given choice of the parameters -
here we have set a = 0, f1 ≈ 0.2061, k1 = 1, tc = 0.25, qN/n ≈ 0.2596, k01 = k02, f01/f02 = 1/6, v = 2.6, δ = 7

- there is a range of values that (r1, t1, γ̄) can assume in the vicinity of (r1, t1, γ̄) = (1, 3.8522..., 2/7).
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From point solutions to continua

In this section we demonstrate that for the specified parameter values the point solution discussed above
can be shown to be eco-evolutionarily stable over a continuum for strategies r1, t1 and γ̄. In particular
that for a = 0, f1 ≈ 0.2061, k1 = 1, tc = 0.25, qN/n ≈ 0.2596, k01 = k02, f01/f02 = 1/6, v = 2.6 and
δ = 7 the point solution (r1, t1, γ̄) = (1, 3.852..., 2/7) is eco-evolutionarily stable within the sub-region
[0.1145, 9.0000]× 3.8522..., [1.965/7, 2.0466/7] of the strategy space.

We begin by remarking that condition (6.7.18) can be solved for values of r1 and γ̄ that lie on the curve
shown in Figure 6.2, which on account of a being zero is contained on the t1 ≈ 3.8522... cross section -
indeed, it should be clear from condition (6.7.3) for the model that setting a = 0 results in curves that are
planar in R3. The curve shown in Figure 6.2 is defined implicitly through condition (6.7.12) for the model,
which amounts to t1 = 1/f1−1 with f1 defined through the ecological equilibrium condition (6.7.1), which in
turn amounts to (6.7.18) and (6.7.12). The form of the continuum in Figure 6.2 was determined numerically
by varying γ̄ in the vicinity of γ̄ = 2/7 and then identifying the value of r1 such that equality (6.7.18) is
maintained. The analytic expression for the extended equilibrium (ecological and evolutionary) of Figure
6.3 is given implicitly through the aforementioned equalities and is not simplified further.

Now that we have established that the points on the curve of Figure 6.2 satisfy the ecological and
evolutionary equilibrium conditions it remains for us to establish which sections of the curve satisfy which of
the remaining stability conditions from (6.6) through to (6.7.9). Stability in the t-direction is not influenced
by changes in the strategies r1 and γ̄ and therefore the associated conditions for the model (6.7.4) and mimic
(6.7.7) hold true on all points along the curve. Table 6.1 shows a number of coordinate points that are
contained in the curve shown in Figure 6.3. The red X-marks and green check-marks indicate whether the
coordinates satisfy the conditions for eco-evolutionary stability. From Table 6.1 it is clear that although for
those lower values of the conspicuousness the mimics risk invasion from the less conspicuous mutant types
this seizes to be the case as the conspicuousness (and associated proportion of mimics) increases. While it
has not been possible to show analytically that every point with r1 > 0.145 along the continuum of Figure
6.3 is eco-evolutionarily stable we have done so for the sequence of points that are mentioned in Table
6.1. Furthermore, on account of the functional forms of (6.6.1) and (6.7.10) being smooth and the size of
the perturbation around γ̄ = 2/7 is small (within 2% of the initial value) the reader may safely convince
themselves by looking at the variation in the associated values of Table 6.1 that sections with r1 < 0.1145

are unstable and that sections above that are stable.
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Figure 6.2: Solid black curve shows plot of probability density for the proportion of mimics (γ) in the population of
prey, which is beta distributed with mean γ̄ = 2/7 and δ = 7. The interior of the grey rectangle is shown in greater
detail in the close-up figure on the top right, in which the shaded region represents a perturbation of the density
function about the mean value γ̄ = 2/7 within the interval (1.965/7, 2.045/7) keeping δ = 7 fixed.
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Figure 6.3: Solid black curve shows the continuum of eco-evolutionarily stable solutions that are defined in the
vicinity of the initial example (r1, t1, γ̄) = (1, 3.8522..., 2/7), which is shown as a solid black marker. The red section
of the curve shows that the continuum is unstable (mimic invaded by the less conspicuous type) for smaller values of
the conspicuousness and becomes stable for increasing values (black section of the curve). The figure is to be viewed
in tandem with Table 6.1 in which the exact values at each coordinate of the curve provide an indication of how
stable each is and with respect to which potential invader.
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The solid curve in Figure 6.3 consists of strategies satisfying both (6.7.1) and (6.7.3) as a continuum
that is contained in the t1 ≈ 3.8522 plane. It is clear from the plot that the mean mimic proportion and
associated conspicuousness are positively related along this curve. The confinement of the curve in the
t1 ≈ 3.8522 plane is justified by our choosing a = 0 in the particular example. That is, while (6.7.3) in
general imposes a restriction on all three variables r1, t1 and γ̄ when setting a = 0 the last term on the LHS
of the named equality is eliminated as is any restriction on r1 and γ̄ leading to a restriction solely on the
variable t1; the associated plane of values therefore represents those strategies that satisfy (6.7.3). The eco-
evolutionarily stable curve is generated through the intersection of this plane with the surface of strategies
(not plotted) that satisfy equality (6.7.1). To that end it is important to emphasize that by construction the
eco-evolutionarily stable curve is defined within a fixed pair of endpoints associated with when the surface
"enters" and when the surface "exits" the plane. These are located precisely at (0.009, 1.9601/7, 3.8522) and
(9, 2.0466/7, 3.8522) so that the curve is not defined outside these bounds.

The relationship between γ̄ and conspicuousness along this curve is increasing. We should recall that since
γ̄ represents the proportion of mimics a marginal increase in this quantity is paired with an overall decrease
in the perceived aversiveness of the complex. It is therefore plausible that the models need to advertise
their aversiveness more strongly (aversive learning is crucial for the maintenance of aposematism - see
Mappes et al., 2005 but also the discussion below - and stronger signals could facilitate this). Interestingly,
the continuum exhibits a plateau where the surging effect on perceived aversiveness (and survival) of a
marginally increasing proportion of mimics cannot be counterbalanced by ever-increasing signal intensity
and the solution ceases to be defined beyond a certain point - the level of defence satisfying (6.7.3) would
have to increase to maintain ecological equilibrium (6.7.1) but this would violate (6.7.3). The more specific
reason for the observed plateau is likely the assumed plateau in rates of prey detection (D(r)) and predator
recollection (L(r) = D(r)); while this assumption is reasonable for D(r) the plausibility of perfect predator
recollection is more questionable. In fact, it would be interesting to consider worked examples of the above
in which predator recollection is given by the product of the detection rate and a function that increases
with prey conspicuousness.

r1 δγ̄ Ecol. stab Model r-stab [L] Model r-stab [R] Mimic r-stab [L] Mimic r-stab [R] Stability

0.0009 1.9601 0.02865 0.008794 -0.05324 -0.0003000 -0.01595 X

0.0101 1.9605 0.02859 0.1292 -0.1731 -0.0002259 -0.01586 X

0.1145 1.965 0.02800 0.01103 -0.05017 0.0005582 -0.01487 ✓

1 2.000 0.1013 0.02027 -0.03494 0.004284 -0.009649 ✓

2.245 2.03 0.02001 0.02335 -0.02724 0.005673 -0.007096 ✓

4.665 2.045 0.01854 0.02405 -0.02438 0.006052 -0.006173 ✓

9.000 2.0466 0.09278 0.02410 -0.02410 0.006083 -0.006085 ✓

Table 6.1: In any given row are shown the equilibrium conspicuousness and associated mean proportion of mimics for
the worked example (i.e. a = 0, f1 ≈ 0.2061, k1 = 1, tc = 0.25, qN/n ≈ 0.2596, k01 = k02, f01/f02 = 1/6, v = 2.6 and
δ = 7). Note that all such coordinates are contained in the curve of Figure 6.3. The remaining columns correspond
to the quantities on LHSs of the conditions for bi-stability (6.7.1) through to (6.7.10) that are not trivially true (for
instance, t-stability for the model (6.7.4) and mimic (6.7.7) are omitted). Red crosses in the far-right column indicate
that the data point(s) in question violates at least one of the conditions for bi-stability - in our case the mimic types
corresponding to the first two coordinates are invaded by the less conspicuous mutant types (6.7.8), while all other
coordinates are stable, as indicated by the green check-marks.
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6.8 Items for discussion

In the last couple of sections we have used the theory developed earlier in the chapter to demonstrate that
models and mimics may co-exist in a sense that is stable both on the short-term ecological time-scale and
on the longer evolutionary time-scale. This was achieved by considering a point in the (expanded) strategy
space (r1, t1, γ̄) and showing that it satisfies all the necessary conditions. The next step was to show that by
marginally varying the assumed mean proportion of mimics γ̄ = 2/7 one can uncover a range of associated
levels for the conspicuousness that would achieve the same result - see Table 6.1 and the continuum of
Figure 6.3. While these results have been reached successfully it is worth noting a number of facts that bare
significance not only to the calculations but also to observed complexes of Batesian mimicry. In particular, we
contend that the stability of a Batesian mimicry complex is sensitive to the resident toxicity being sufficiently
high (in this case it was greater than fifteen times the critical level) and to the average proportion of mimics
being not too high (we have used a mean values of γ̄ = 2/7). We discuss our findings in the broader context
of Batesian mimicry below.

Even in its original presentation (e.g. involving a single species - see chapter 2) the model of Broom et al.
(2006) had been too complex for all of its parameters to be tested empirically and we expect this effect to
be compounded in its extension to mimicry systems. While our success in predicting stable outcomes for
Batesian mimicry systems is notable, there are a number of criticisms (and points for improvement) to be
made and on different levels. For instance, in these last two chapters we have treated Batesian mimicry
as a complex involving only two species, but there is ample evidence to suggest that Batesian mimics form
mimicry rings in their natural habitats. In Ruxton et al. (2019) it is argued that perhaps a whole community
approach, such as that taken in Pekár et al. (2017) is the more appropriate evolutionary context to study
mimicry and we encourage the reader to consult this.

Furthermore, the laboratory experiments on avian predators (such are plausible candidates for the overall
setup of Broom et al., 2006) conducted by Gamberale-Stille and Guilford (2004) and Skelhorn and Rowe
(2006) seem to provide evidence in favour of the possibility that predators are able to selectively distinguish
between noxious models and more palatable mimics after sampling. This sample-rejection behaviour could
have repercussions (unknown precisely how large) on the stability of Batesian mimicry and is therefore worth
considering. The works of Holen (2013) conclude that if a mimicry complex is unprofitable (such as in the
example of this section) and alternative prey are available that predators are less likely to attack (stable),
while if the system is profitable a taste-rejecting predator could reject models and consume more mimics
(unstable). Interestingly, even though our model does not account for taste-rejection, these conclusions are
not misaligned with the reasoning in our last example in which we predict stability subject to the assumption
that the models on average constitute a severely (t1 ≈ 3.8522 compared with the base-level of tc = 0.25)
toxic majority (γ̄ ≈ 2/7).

Laboratory studies dating back to the start of the 20th century have examined the genetics of Batesian
mimicry with those of Fryer (1914), Punnett (1915) and Gabritschevsky (1924) providing invaluable pre-
cursory insight into the genetics of polymorphism (a common and important feature in many systems of
mimicry encountered in the natural world). Since then the more recent employment of advanced genomics
has lead to a number of significant breakthroughs and the reader is referred to Deshmukh et al. (2018) for a
review of these. The mentioned studies and indeed the majority of those focusing on the genetics of Batesian
mimicry have considered lepidopteran groups (including butterflies and moths); there is evidence to suggest
that frogs (see Darst and Cummings, 2006 or Twomey et al., 2013) and/or snakes (see Kikuchi and Pfennig,
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2010 and Kikuchi and Pfennig, 2012) to which the model of Broom et al. (2006) is more adept also form
Batesian mimicry structures and more work would be required to understand the genetics in these taxa. It is
worth mentioning the three extensive works by Charlesworth and Charlesworth of 1975 , which incorporated
a large number of different elements into an early computer simulation model of these genetics. Indeed, it is
conceivable that the effort to fully understand the genetics of mimicry is largely interdisciplinary (involving
realms of developmental and molecular biology) and such a combined endeavour is still at the outset.

While the original model of Broom et al. (2006) had considered two distinct traits to describe the
visual appearance of aposematic prey (conspicuousness and colouration), we have only considered the first.
Although it is probably true that without this omission the extension of the model to prey populations
consisting of two species would not have been possible it also becomes clear that an obvious area to further
develop would be its inclusion. Interestingly, this point brings us to the discussion about multi versus single-
trait mimicry. A number of questions remain unanswered regarding how predators decide to attack or not
to attack prey animals and especially in instances where the rules that these employ involve the interactions
of several visual traits. In our discussion we have assumed that the conspicuousness trait is also the (single)
trait involved in deceiving the predator, but the reality may well be that there are other correlated traits
that could influence this (including colouration and/or size). As mentioned earlier in the section, it is not
fully understood whether more conspicuous signals are better recollected by predators and the assumption of
perfect predator recollection could be revised to consider rates of predator recollection is that is not simply a
scalar of the rate of detection, but is instead scaled by a function that increases with prey conspicuousness.

In closing, we focus the discussion on studies which have relied on mathematical models to examine
Batesian mimicry. A detailed investigation would reveal that there is a limited number of such studies
and that none deal with the evolutionary stability of mimicry in the sense of a local ESS. Nonetheless, the
ones we discuss below (apologies for undue omissions) are noteworthy and provide insight into the aspects
(particularly the dynamics) that are lacking in our own. After all, our own approach is static and the reader
can doubtlessly benefit from supplementing their reading. The mathematical model of Kato and Takada
(2019) takes a dynamical-systems theory approach to consider the model-mimic community dynamics of
the prey population. Through bifurcation methods they numerically predict regions in the parameter space
where ratio-dependent equilibria between models and mimics are to be expected. We should remark that
while mutation is not present their notion of stability (which is explored to considerable depth) is limited
to the dynamics and in a sense this approach is complementary to our own. The earlier work by Oaten
et al. (1975) uses a signal detection theory approach to considers a joint population of models and mimics.
Interestingly, this study can account for predators utilising sophisticated discriminative rules by regarding
prey signals as k-dimensional vectors with normally-distributed traits of appearance. There are several works
in the realm of signal detection theory but their inclusion is beyond our scope. Matessi and Cori (1972)
develop a detailed mathematical model, which investigates the effect of selective predation on the frequency
of a certain gene that induces Batesian mimicry. In this, a predator’s decision to attack mimics depends on
their relative abundance to models in the population and the authors predict a number of different outcomes,
including both stable and unstable equilibria (as we also do), where in the latter case they predict a series
of stable oscillations in the gene frequency about the equilibrium. Matessi later co-authored Matessi and
Gimelfarb (2006), which explores the evolutionary stability of polymorphism in a continuous trait. The
model is not about Batesian mimicry; although colour polymorphisms do arise in Batesian mimicry systems.

The more recent mathematical model-based study by Kikuchi et al. (2022) explores the effect on the
stability of Batesian mimicry systems of specific predator population dynamics. It is perhaps the only
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attempt to integrate community ecology and evolutionary ecology approaches to Batesian mimicry and is
therefore worth noting. They make two predictions, which we also confirm here. (i) They predict that when
the proportion of mimics was highest the number of attacks experienced by the complex as a whole increased
and they cite the empirical works by Kristiansen et al. (2018) done on butterflies and Pfennig et al. (2007) to
validate this. Indeed, this assumption is fundamentally built into (6.3.10), which determines the predator’s
decision on whether to mount an attack (through the perceived aversiveness of the complex). (ii) The more
protected the models were the larger the predicted mimic load (proportion of mimics). As we have previously
mentioned, the eco-evolutionarily stable proportion of mimics can increase along the continuum of Figure
6.3 providing the model conspicuousness was sufficiently high.

Much of the cited works discuss Batesian (and not Browerian) mimicry. This is mostly because Batesian
mimicry is the main focus of this chapter but also because far fewer studies have been done specifically
on automimics. Nonetheless, as reported in Ruxton et al., (2019) the extent to which automimics can
invade a population of automodels "depends on critically on the response of predators. If predators attack
rates increase as cheats increase in frequency, then the mortality risk to cheats increases more quickly than
it would for non-cheats because cheats are less likely to survive an attack". The mathematical model by
Svennungsen and Holen (2007) builds on that by Broom et al. (2005) and investigates the scenaria in which
the shapes of the fecundity (e.g. log-concave, log-linear and log-convex) and survival functions (e.g. concave,
convex and sigmoid) influence the possibility of an evolutionarily stable dimorphism. Their approach is
insightful within itself and could be of additional interest to the empiricist due to its organised cataloguing
of outcomes.
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Closing remarks

In this thesis we discuss how prey individuals gain selective advantage by signalling their unprofitability
to potential predators. This phenomenon, which had originally been described by Wallace as a process
of "warning colouration" is presently referred to using the more general term "aposematism" and it is
remarkable how our understanding of the process has advanced since its first observation. To that, we point
out that the biology of defence is vast with different types of defence being present at different times relative
to encounter and bearing an array of different benefits/costs to organisms that acquire them. The central
game of this thesis is more adept to (but not restricted to) the modelling chemically-defended prey whose
unpalatable toxins are transmitted to predators during or after encounter and whose presence is signalled
through the external signalling cues (such as bright skin pigmentation). Upon first inspection the evolution of
such a mechanism seems curious as it seems to provide no direct benefit to the prey individuals that acquire
it. We model the process using a static approach in such a way that the values of their traits (signalling
and defence) are realised as continuously quantifiable quantities that can be varied independently from one
another and which together define a two-dimensional strategy space. Within this the aposematic behaviour
of any one organism can be represented by a single point. It is also worth observing that while the central
game of this thesis is non-linear and perhaps more multifaceted than the War of Attrition described in the
first chapter, evolutionarily stable outcomes are manifest as a continuum in the strategy space.

For prey populations consisting of a single type we successfully demonstrate that evolutionarily stable
levels of signal strength may exhibit both a positive or a negative relationship with the defence and further,
that for a given level of signal strength there can be more than one optimal level of defence. As we discuss,
empirical and model-based studies are conflicting regarding how aposematic traits are and should be related
to one another in nature (this includes Broom et al., 2006), which renders the above results all the more
relevant. Although it is true that the majority of works allude to a positive relationship between signalling
and defence, this is by no means a definitive conclusion. Furthermore, even if this were the case, there is
no one accepted mechanism by which this is facilitated (although a number of proposed mechanisms are
considered). It is especially intriguing that using an exclusively static approach we can accommodate for
such a vast range of outcomes.

By means of example we also explore the relationship between evolutionarily stable levels of defence
and signal strength under various regimes of background mortality and colony size; notably all previous
efforts have assumed predation to be the only source of death. These predictions are compared with novel
simulations on populations of prey that are finite and subject to random local mutation in the context of a
genetic algorithm model, which we define. For the first time the roles of absolute resident fitness, marginal
mutant fitness and stochasticity are considered jointly in the evolution of prey traits and in so doing we
discuss the importance of population size in the above. We contend that we have extended the scope of the
celebrated model by Broom et al. (2006) both from the analytical standpoint (by accounting for regimes
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of varying background mortality and colony size and by considering a broader class of examples in which
aposematic traits are related implicitly) and from the practical standpoint (by assessing its efficacy and
limitations in predicting the evolution of prey traits in finite simulated populations). Both developments
constitute new contributions to the theory of aposematic signalling that are worth noting and the reader is
encouraged to consult Scaramangas and Broom (2022) and Scaramangas et al. (2022) alongside this thesis.

Finally, we have provided two approaches that extend the original game to account for populations of
prey population that consist of two types. While in the penultimate chapter the approach is general enough
to account for a potentially large breadth of co-existence regimes the focus of that and the last chapter is
on mimicry complexes. In these an undefended type known as the mimic resembles a defended type, known
as the model so as to gain protection from predators. While there is ample empirical evidence to suggest
that individuals from one species may gain selective advantage by resembling individuals from another, the
mathematical modelling of Batesian mimicry is rather limited. We predict that models and mimics can
co-exist along a continuum of solutions (representing the conspicuousness, noxiousness, and average mimic-
to-model proportion) that are both ecologically and (locally) evolutionarily stable. While the approach of
the penultimate chapter may be better suited to the modelling of automimicry the latter is more general
and could better describe strict forms of (Batesian) mimicry. In the penultimate chapter we observe that
that higher levels of conspicuousness are typically associated with higher levels of the defence and a lower
mimetic load. Owing to the complexity of the presentation it was not possible to explore the impact of
varying model defence on the continuum in the last chapter. Nonetheless, it was observed that the success
of the mimic depends critically on the response of the predator and that this is likelier when the model is
sufficiently aversive or that the relationship between the "mimetic load" and the equilibrium conspicuousness
is an increasing one. The sensitivity of stability on the noxiousness of the model is perhaps a new an exciting
development in the theory of Batesian mimicry.

If resources were ample we would seek to explore mimicry on three levels. The first would be to explore
different sets of parameter values for the given example of chapter 6; the second would be to consider a
larger breadth of examples through which to more clearly establish patterns of stability within the extended
strategy space that include model defence. Third, would be to test our hypotheses against a more generalised
genetic algorithm model that can account for evolution of traits in prey populations that consist of a model
and a mimic (more general co-existence regimes may also be of interest to examine). It has been argued that
controlling all parameters of the model (even in the single-species description) is a perhaps an unrealistic
task and therefore the validation of stability predictions through genetic algorithm simulations are important
especially since these rely on the assumption that prey populations are infinite. Much like for intermediate-
sized populations of a single species we examined the roles of marginal mutant fitness, absolute resident
fitness and stochasticity in the evolution of prey traits it would likewise be of interest to better understand
the evolution prey traits of an intermediate-sized mimetic complex. On a separate note, it would also be
of interest to incorporate aposematic colouration back into the single-type description and to examine the
sensitivity of our more recent findings to the effects of kin grouping through non-point solutions.

178



Bibliography

Abramowitz, M., & Stegun, I. A. (1964). Handbook of mathematical functions with formulas, graphs, and
mathematical tables (Vol. 55). US Government printing office.

Abrams, P. A., Matsuda, H., & Harada, Y. (1993). Evolutionarily unstable fitness maxima and stable fitness
minima of continuous traits. Evolutionary Ecology, 7, 465–487.

Alcock, J. (1970). Punishment levels and the response of white-throated sparrows (zonotrichia albicollis) to
three kinds of artificial models and mimics. Animal Behaviour, 18, 733–739.

Allen, J., & Cooper, J. (1985). Crypsis and masquerade. Journal of Biological Education, 19 (4), 268–270.
Apaloo, J., Brown, J. S., & Vincent, T. L. (2009). Evolutionary game theory: Ess, convergence stability, and

nis. Evolutionary Ecology Research, 11 (4), 489–515.
Arenas, L. M., Walter, D., & Stevens, M. (2015). Signal honesty and predation risk among a closely related

group of aposematic species. Scientific reports, 5 (1), 1–12.
Argasinski, K. (2006). Dynamic multipopulation and density dependent evolutionary games related to repli-

cator dynamics. a metasimplex concept. Mathematical biosciences, 202 (1), 88–114.
Argasinski, K., & Broom, M. (2018). Interaction rates, vital rates, background fitness and replicator dy-

namics: How to embed evolutionary game structure into realistic population dynamics. Theory in
Biosciences, 137 (1), 33–50.

Balogh, A. C., & Leimar, O. (2005). Müllerian mimicry: An examination of fisher’s theory of gradual evolu-
tionary change. Proceedings of the Royal Society B: Biological Sciences, 272 (1578), 2269–2275.

Barbaro, L., & Battisti, A. (2011). Birds as predators of the pine processionary moth (lepidoptera: Notodon-
tidae). Biological control, 56 (2), 107–114.

Barnett, J. B., Michalis, C., Scott-Samuel, N. E., & Cuthill, I. C. (2018). Distance-dependent defensive
coloration in the poison frog dendrobates tinctorius, dendrobatidae. Proceedings of the National
Academy of Sciences, 115 (25), 6416–6421.

Bates, H. W. (1862). Contributions to an insect fauna of the amazon valley. lepidoptera: Heliconidae. Trans-
actions of the Linnean Society of London, 23, 495–566.

Baxandall, P. R., & Liebeck, H. (1986). Vector calculus. Oxford University Press, USA.
Bezzerides, A. L., McGraw, K. J., Parker, R. S., & Husseini, J. (2007). Elytra color as a signal of chemical

defense in the asian ladybird beetle harmonia axyridis. Behavioral Ecology and Sociobiology, 61 (9),
1401–1408.

Bishop, D., & Cannings, C. (1976). Models of animal conflict. Adv. Appl. Probl., 8, 616–621.
Blount, J. D., Rowland, H. M., Drijfhout, F. P., Endler, J. A., Inger, R., Sloggett, J. J., Hurst, G. D.,

Hodgson, D. J., & Speed, M. P. (2012). How the ladybird got its spots: Effects of resource limitation
on the honesty of aposematic signals. Functional Ecology, 26 (2), 334–342.

179



Blount, J. D., Speed, M. P., Ruxton, G. D., & Stephens, P. A. (2009). Warning displays may function as
honest signals of toxicity. Proceedings of the Royal Society B: Biological Sciences, 276 (1658), 871–
877.

Bomze, I., & Pötscher, B. (1989). Game Theoretical Foundations of Evolutionary Stability. Springer-Verlag.
Boots, M., & Best, A. (2018). The evolution of constitutive and induced defences to infectious disease.

Proceedings of the Royal Society B: Biological Sciences, 285 (1883), 20180658.
Boyd, R., & Richerson, P. (2002). Group beneficial norms can spread rapidly in a structured population.

Journal of Theoretical Biology, 215 (3), 287–296.
Brodie Jr, E. D. (1981). Phenological relationships of model and mimic salamanders. Evolution, 988–994.
Broom, M., Speed, M., & Ruxton, G. (2006). Evolutionarily stable defence and signalling of that defence.

Journal of theoretical biology, 242 (1), 32–43.
Broom, M., Higginson, A. D., & Ruxton, G. D. (2010). Optimal investment across different aspects of anti-

predator defences. Journal of Theoretical Biology, 263 (4), 579–586. https://doi.org/10.1016/j.jtbi.
2010.01.002

Broom, M., Ruxton, G. D., & Schaefer, H. M. (2013). Signal verification can promote reliable signalling.
Proceedings of the Royal Society B: Biological Sciences, 280 (1771), 20131560.

Broom, M., Ruxton, G. D., & Speed, M. P. (2008). Evolutionarily stable investment in anti-predatory defences
and aposematic signalling. Mathematical modeling of biological systems, 2, 37–48.

Broom, M., & Rychtár, J. (2013). Game-theoretical models in biology. CRC Press.
Broom, M., Speed, M. P., & Ruxton, G. D. (2005). Evolutionarily stable investment in secondary defences.

Functional Ecology, 19 (5), 836–843.
Brower, J. V. Z. (1958). Experimental studies of mimicry in some north american butterflies: Part ii. battus

philenor and papilio troilus, p. polyxenes and p. glaucus. Evolution, 123–136.
Brower, J. v. Z. (1958a). Experimental studies of mimicry in some north american butterflies: Part i. the

monarch, danaus plexippus, and viceroy, limenitis archippus archippus. Evolution, 32–47.
Brower, J. v. Z. (1958b). Experimental studies of mimicry in some north american butterflies. part iii. danaus

gilippus berenice and limenitis archippus floridensis. Evolution, 273–285.
Brower, J. v. Z. (1960). Experimental studies of mimicry. iv. the reactions of starlings to different proportions

of models and mimics. The American Naturalist, 94 (877), 271–282.
Brower, L. P., Brower, V. J., & Corvino, J. M. (1967). Plant poisons in a terrestrial food chain. Proceedings

of the National Academy of Sciences of the United States of America, 57 (4), 893.
Brower, L. P. (1969). Ecological chemistry. Scientific American, 220 (2), 22–29.
Brower, L. P., Brower, J. V. Z., Stiles, F., Croze, H., & Hower, A. (1964). Mimicry: Differential advantage

of color patterns in the natural environment. Science, 144 (3615), 183–185.
Brower, L. P., Cook, L. M., & Croze, H. J. (1967). Predator responses to artificial batesian mimics released

in a neotropical environment. Evolution, 11–23.
Cannings, C., & Vickers, G. (1988). Patterns of ESS’s 2. Journal of Theoretical Biology, 132, 409–420.
Charlesworth, D., & Charlesworth, B. (1975a). Theoretical genetics of batesian mimicry i. single-locus models.

Journal of Theoretical Biology, 55 (2), 283–303.
Charlesworth, D., & Charlesworth, B. (1975b). Theoretical genetics of batesian mimicry ii. evolution of

supergenes. Journal of Theoretical Biology, 55 (2), 305–324.
Charlesworth, D., & Charlesworth, B. (1975c). Theoretical genetics of batesian mimicry iii. evolution of

dominance. Journal of Theoretical Biology, 55 (2), 325–337.

180



Clarke, C., & Sheppard, P. M. (1975). The genetics of the mimetic butterfly hypolimnas bolina (l.) Philo-
sophical Transactions of the Royal Society of London. B, Biological Sciences, 272 (917), 229–265.

Cole, L. C. (1946). A theory of analyzing contagiously distributed populations. Ecology, 27 (4), 329–341.
Cook, L. M., Brower, L. P., & Alcock, J. (1969). An attempt to verify mimetic advantage in a neotropical

environment. Evolution, 339–345.
Corless, R. M., Gonnet, G. H., Hare, D. E., Jeffrey, D. J., & Knuth, D. E. (1996). On the lambertw function.

Advances in Computational mathematics, 5 (1), 329–359.
Cortesi, F., & Cheney, K. (2010). Conspicuousness is correlated with toxicity in marine opisthobranchs.

Journal of Evolutionary Biology, 23 (7), 1509–1518.
Dahl, J., & Peckarsky, B. L. (2003). Does living in streams with fish involve a cost of induced morphological

defences? Canadian journal of zoology, 81 (11), 1825–1828.
Daly, J. W. (2003). Ernest guenther award in chemistry of natural products. amphibian skin: A remarkable

source of biologically active arthropod alkaloids. Journal of medicinal chemistry, 46 (4), 445–452.
Daly, J. W., & Myers, C. W. (1967). Toxicity of panamanian poison frogs (dendrobates): Some biological

and chemical aspects. Science, 156 (3777), 970–973.
Darst, C. R., & Cummings, M. E. (2006). Predator learning favours mimicry of a less-toxic model in poison

frogs. Nature, 440 (7081), 208–211.
Darst, C. R., Cummings, M. E., & Cannatella, D. C. (2006). A mechanism for diversity in warning signals:

Conspicuousness versus toxicity in poison frogs. Proceedings of the National Academy of Sciences,
103 (15), 5852–5857.

Darst, C. R., Menéndez-Guerrero, P. A., Coloma, L. A., & Cannatella, D. C. (2005). Evolution of dietary
specialization and chemical defense in poison frogs (dendrobatidae): A comparative analysis. The
American Naturalist, 165 (1), 56–69.

Darwin, C. (1859). On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured
Races in the Struggle for Life. London: John Murray.

Dawkins, R. (1999). The extended phenotype: The long reach of the gene. Oxford University Press, USA.
Deshmukh, R., Baral, S., Gandhimathi, A., Kuwalekar, M., & Kunte, K. (2018). Mimicry in butterflies:

Co-option and a bag of magnificent developmental genetic tricks. Wiley Interdisciplinary Reviews:
Developmental Biology, 7 (1), e291.

Dickinson, A., Boakes, R. A., & Sjödén, P.-O. (1981). Mechanisms of learning and motivation: A memorial
volume to jerzy konorski.

Edmunds, J., & Edmunds, M. (1974). Polymorphic mimicry and natural selection: A reappraisal. Evolution,
402–407.

Edmunds, M., & Reader, T. (2014). Evidence for batesian mimicry in a polymorphic hoverfly. Evolution,
68 (3), 827–839.

Edwards, A. (2000). Foundations of mathematical genetics. Cambridge University Press.
Eshel, I. (1983). Evolutionary and continuous stability. Journal of theoretical Biology, 103 (1), 99–111.
Eshel, I. (1996). On the changing concept of evolutionary population stability as a reflection of a changing

point of view in the quantitative theory of evolution. Journal of mathematical biology, 34, 485–510.
Eshel, I., & Motro, U. (1981). Kin selection and strong evolutionary stability of mutual help. Theoretical

population biology, 19 (3), 420–433.
Fisher, R. (1930). The Genetical Theory of Natural Selection. Clarendon Press, Oxford.

181



Franks, D. W., Ruxton, G. D., & Sherratt, T. N. (2009). Warning signals evolve to disengage batesian mimics.
Evolution: International Journal of Organic Evolution, 63 (1), 256–267.

Friedman, D. (1998). On economic applications of evolutionary game theory. Journal of evolutionary eco-
nomics, 8 (1), 15–43.

Fryer, J. C. F. (1914). Vii. an investigation by pedigree breeding into the polymorphism of papilio polytes,
linn. Philosophical Transactions of the Royal Society of London. Series B, Containing Papers of a
Biological Character, 204 (303-312), 227–254.

Gabritschevsky, E. (1924). Farbenpolymorphismus und vererbung mimetischer varietäten der fliege volucella
bombylans und anderer „hummelähnlicher “zweiflügler.

Gamberale-Stille, G., & Guilford, T. (2004). Automimicry destabilizes aposematism: Predator sample-and-
reject behaviour may provide a solution. Proceedings of the Royal Society of London. Series B:
Biological Sciences, 271 (1557), 2621–2625.

Gardner, M. (1970). Mathematical games: The fantastic combinations of John Conway’s new solitaire game
“life". Scientific American, 223 (4), 120–123.

Gols, R. (2014). Direct and indirect chemical defences against insects in a multitrophic framework. Plant,
Cell & Environment, 37 (8), 1741–1752.

Haigh, J. (1975). Game theory and evolution. Adv. Appl. Prob., 7, 8–11.
Halpin, C. G., Skelhorn, J., & Rowe, C. (2008). Being conspicuous and defended: Selective benefits for the

individual. Behavioral Ecology, 19 (5), 1012–1017.
Hämäläinen, L., Mappes, J., Thorogood, R., Valkonen, J. K., Karttunen, K., Salmi, T., & Rowland, H. M.

(2020). Predators’ consumption of unpalatable prey does not vary as a function of bitter taste
perception. Behavioral Ecology, 31 (2), 383–392.

Hamilton, W. (1964). The genetical evolution of social behaviour. I and II. Journal of Theoretical Biology,
7 (1), 17–52.

Hamilton, W. (1967). Extraordinary sex ratios. Science, 156, 477–488.
Hammill, E., Rogers, A., & Beckerman, A. P. (2008). Costs, benefits and the evolution of inducible defences:

A case study with daphnia pulex. Journal of evolutionary biology, 21 (3), 705–715.
Hardy, G. (1908). Mendelian proportions in a mixed population. Science, 28, 49–50.
Harsanyi, J. (1966). A general theory of rational behavior in game situations. Econometrica: Journal of the

Econometric Society, 613–634.
Hastad, J., Just, B., Lagarias, J. C., & Schnorr, C.-P. (1989). Polynomial time algorithms for finding integer

relations among real numbers. SIAM Journal on Computing, 18 (5), 859–881.
Hecht, M. K., & Marien, D. (1956). The coral snake mimic problem: A reinterpretation. Journal of Morphol-

ogy, 98 (2), 335–365.
Hofbauer, J., & Sigmund, K. (1998). Evolutionary Games and Population Dynamics. Cambridge University

Press.
Holen, Ø. H. (2013). Disentangling taste and toxicity in aposematic prey. Proceedings of the Royal Society

B: Biological Sciences, 280 (1753), 20122588.
Holen, Ø. H., & Svennungsen, T. O. (2012). Aposematism and the handicap principle. The American Natu-

ralist, 180 (5), 629–641.
Irie, T., & Iwasa, Y. (2005). Optimal growth pattern of defensive organs: The diversity of shell growth among

mollusks. The American Naturalist, 165 (2), 238–249.

182



Jeffords, M., Sternburg, J., & Waldbauer, G. (1979). Batesian mimicry: Field demonstration of the survival
value of pipevine swallowtail and monarch color patterns. Evolution, 275–286.

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous univariate distributions, volume 2 (Vol. 289).
John wiley & sons.

Jones, R., Davis, S., & Speed, M. (2013). Defence cheats can degrade protection of chemically defended prey.
Ethology, 119 (1), 52–57.

Kalmár, L. (1928). Zur theorie der abstrakten spiele. Acta Sci. Math. Univ. Szeged, 4, 65–85.
Kato, H., & Takada, T. (2019). Stability and bifurcation analysis of a ratio-dependent community dynamics

model on batesian mimicry. Journal of Mathematical Biology, 79 (1), 329–368.
Kauppinen, J., & Mappes, J. (2003). Why are wasps so intimidating: Field experiments on hunting dragonflies

(odonata: Aeshna grandis). Animal Behaviour, 66 (3), 505–511.
Kikuchi, D. W., Barfield, M., Herberstein, M. E., Mappes, J., & Holt, R. D. (2022). The effect of predator

population dynamics on batesian mimicry complexes. The American Naturalist, 199 (3), 000–000.
Kikuchi, D. W., & Pfennig, D. W. (2010). Predator cognition permits imperfect coral snake mimicry. The

American Naturalist, 176 (6), 830–834.
Kikuchi, D. W., & Pfennig, D. W. (2012). A batesian mimic and its model share color production mechanisms.

Current Zoology, 58 (4), 658–667.
Kirby, W., & Spence, W. (1817). An introduction to entomology. An Introduction to Entomology, Volume

2, 2.
Kristiansen, E. B., Finkbeiner, S. D., Hill, R. I., Prusa, L., & Mullen, S. P. (2018). Testing the adaptive

hypothesis of batesian mimicry among hybridizing north american admiral butterflies. Evolution,
72 (7), 1436–1448.

Kuchta, S. R., Krakauer, A. H., & Sinervo, B. (2008). Why does the yellow-eyed ensatina have yellow
eyes? batesian mimicry of pacific newts (genus taricha) by the salamander ensatina eschscholtzii
xanthoptica. Evolution: International Journal of Organic Evolution, 62 (4), 984–990.

Lee, T. J., Speed, M. P., & Stephens, P. A. (2011). Honest signaling and the uses of prey coloration. The
American Naturalist, 178 (1), E1–E9.

Leimar, O., Enquist, M., & Sillen-Tullberg, B. (1986). Evolutionary stability of aposematic coloration and
prey unprofitability: A theoretical analysis. The American Naturalist, 128 (4), 469–490.

Lewontin, R. (1961). Evolution and the theory of games. Journal of theoretical biology, 1 (3), 382–403.
Lieberman, E., Hauert, C., & Nowak, M. (2005). Evolutionary dynamics on graphs. Nature, 433 (7023), 312–

316.
Lindstedt, C., Huttunen, H., Kakko, M., & Mappes, J. (2011). Disengtangling the evolution of weak warning

signals: High detection risk and low production costs of chemical defences in gregarious pine sawfly
larvae. Evolutionary Ecology, 25 (5), 1029–1046.

Lindström, L., Alatalo, R. V., & Mappes, J. (1997). Imperfect batesian mimicry—the effects of the frequency
and the distastefulness of the model. Proceedings of the Royal Society of London. Series B: Biological
Sciences, 264 (1379), 149–153.

Lotka, A. (1925). Elements of physical biology. Williams & Wilkins company.
Maan, M. E., & Cummings, M. E. (2012a). Poison frog colors are honest signals of toxicity, particularly for

bird predators. The American Naturalist, 179 (1), E1–E14.
Maan, M. E., & Cummings, M. E. (2012b). Poison frog colors are honest signals of toxicity, particularly for

bird predators. The American Naturalist, 179 (1), E1–E14.

183



Mallet, J. (2001). Mimicry: An interface between psychology and evolution. Proceedings of the National
Academy of Sciences, 98 (16), 8928–8930.

Mappes, J., Marples, N., & Endler, J. A. (2005). The complex business of survival by aposematism. Trends
in ecology & evolution, 20 (11), 598–603.

Martin, A. C., Zim, H. S., & Nelson, A. L. (1961). American wildlife & plants: A guide to wildlife food
habits: The use of trees, shrubs, weeds, and herbs by birds and mammals of the united states. Courier
Corporation.

Matessi, C., & Cori, R. (1972). Models of population genetics of batesian mimicry. Theoretical population
biology, 3 (1), 41–68.

Matessi, C., & Gimelfarb, A. (2006). Discrete polymorphisms due to disruptive selection on a continuous
trait—i: The one-locus case. Theoretical Population Biology, 69 (3), 283–295.

Maynard Smith, J. (1982). Evolution and the theory of games. Cambridge University Press.
Maynard Smith, J., & Parker, G. (1976). The logic of asymmetric contests. Animal Behaviour, 24, 159–175.
Maynard Smith, J., & Price, G. (1973). The logic of animal conflict. Nature, 246, 15–18.
McLean, I. (2011). The relationship between chemical defence and death feigning in the red flour beetle

(tribolium castaneum) (Doctoral dissertation). Carleton University.
Merilaita, S., & Ruxton, G. D. (2007). Aposematic signals and the relationship between conspicuousness and

distinctiveness. Journal of Theoretical Biology, 245 (2), 268–277.
Metz, J. A., Geritz, S. A., Meszéna, G., Jacobs, F. J., & Van Heerwaarden, J. S. (1995). Adaptive dynamics:

A geometrical study of the consequences of nearly faithful reproduction.
Moran, P. (1958). Random processes in genetics. Mathematical Proceedings of the Cambridge Philosophical

Society, 54 (01), 60–71.
Mostler, G. (1935). Beobachtungen zur frage der wespenmimikry. Zeitschrift für Morphologie und Ökologie

der Tiere, 29 (3), 381–454.
Müller, J. F. (1879). Ituna and thyridia; a remarkable case of mimicry in butterflies. Transactions of the

Entomological Society of London, xx–xxix.
Nash, J. (1950). Equilibrium points in n-person games. Proceedings of the national academy of sciences,

36 (1), 48–49.
Nash, J. (1951). Non-cooperative games. The Annals of Mathematics, 54 (2), 286–295.
Nowak, M. (2006). Evolutionary dynamics, exploring the equations of life. Harward University Press, Cam-

bridge, Mass.
Oaten, A., Pearce, C., & Smyth, M. (1975). Batesian mimicry and signal detection theory. Bulletin of

Mathematical Biology, 37 (4), 367–387.
Palm, G. (1984). Evolutionary stable strategies and game dynamics for n-person games. Journal of Mathe-

matical Biology, 19 (3), 329–334.
Pekár, S., Petráková, L., Bulbert, M. W., Whiting, M. J., & Herberstein, M. E. (2017). The golden mimicry

complex uses a wide spectrum of defence to deter a community of predators. Elife, 6, e22089.
Pfennig, D. W., Harcombe, W. R., & Pfennig, K. S. (2001). Frequency-dependent batesian mimicry. Nature,

410 (6826), 323–323.
Pfennig, D. W., Harper, G. R., Brumo, A. F., Harcombe, W. R., & Pfennig, K. S. (2007). Population

differences in predation on batesian mimics in allopatry with their model: Selection against mimics
is strongest when they are common. Behavioral Ecology and Sociobiology, 61 (4), 505–511.

184



Platt, A. P., Coppinger, R. P., & Brower, L. P. (1971). Demonstration of the selective advantage of mimetic
limenitis butterflies presented to caged avian predators. Evolution, 25 (4), 692–701.

Pointer, M. D., Gage, M. J., & Spurgin, L. G. (2021). Tribolium beetles as a model system in evolution and
ecology. Heredity, 126 (6), 869–883.

Poulton, E. B. (1890). The colours of animals: Their meaning and use, especially considered in the case of
insects. D. Appleton.

Punnett, R. C. (1915). Mimicry in butterflies. University of Cambridge.
Rojas, B., Nokelainen, O., & Valkonen, J. K. (2021). Aposematism. In Encyclopedia of evolutionary psycho-

logical science (pp. 345–349). Springer.
Ross, S. M. (2019). A first course in probability. Pearson Boston.
Rothschild, M. (1963). Is the buff ermine (spilosoma lutea (huf.)) a mimic of the white ermine (spilosoma

lubricipeda (l.))? Proceedings of the Royal Entomological Society of London. Series A, General En-
tomology, 38 (7-9), 159–164.

Rowe, C., & Guilford, T. (1999). The evolution of multimodal warning displays. Evolutionary Ecology, 13 (7),
655–671.

Rowland, H. M., Ruxton, G. D., & Skelhorn, J. (2013). Bitter taste enhances predatory biases against
aggregations of prey with warning coloration. Behavioral Ecology, 24 (4), 942–948.

Roy, D. (1997). Communication signals and sexual selection in amphibians. Current science, 923–927.
Ruxton, G., Allen, T., W.L.and Sherratt, & Speed, M. (2019). Avoiding attack: The evolutionary ecology of

crypsis, aposematism, and mimicry. Oxford University Press, USA.
Ruxton, G. D., & Beauchamp, G. (2008). The application of genetic algorithms in behavioural ecology,

illustrated with a model of anti-predator vigilance. Journal of theoretical biology, 250 (3), 435–448.
Ruxton, G. D., Speed, M. P., & Broom, M. (2009). Identifying the ecological conditions that select for

intermediate levels of aposematic signalling. Evolutionary ecology, 23 (4), 491–501.
Salas, L. S., Etgen, G. J., & Hille, E. (2007). Calculus: One and several varialbles. Wiley Sons.
Santos, J. C., & Cannatella, D. C. (2011). Phenotypic integration emerges from aposematism and scale in

poison frogs. Proceedings of the national academy of sciences, 108 (15), 6175–6180.
Santos, J. C., Coloma, L. A., & Cannatella, D. C. (2003). Multiple, recurring origins of aposematism and

diet specialization in poison frogs. Proceedings of the National Academy of Sciences, 100 (22), 12792–
12797.

Scaramangas, A., & Broom, M. (2022). Aposematic signalling in prey-predator systems: Determining evolu-
tionary stability when prey populations consist of a single species. submitted.

Scaramangas, A., Broom, M., Ruxton, G. D., & Roùviere, A. (2022). Evolutionarily stable levels of apose-
matic defence in prey populations. submitted.

Selten, R. (1965). Spieltheoretische behandlung eines oligopolmodells mit nachfrageträgheit: Teil i: Bestim-
mung des dynamischen preisgleichgewichts. Zeitschrift für die gesamte Staatswissenschaft/Journal
of Institutional and Theoretical Economics, 121 (2), 301–324.

Selten, R. (1975). A reexamination of the perfectness concept for equilibrium points in extensive games.
International Journal of Game Theory, 4, 25–55.

Shudo, E., & Iwasa, Y. (2001). Inducible defense against pathogens and parasites: Optimal choice among
multiple options. Journal of Theoretical Biology, 209 (2), 233–247.

Skelhorn, J. (2015). Masquerade. Current Biology, 25 (15), R643–R644.

185



Skelhorn, J., & Rowe, C. (2006). Prey palatability influences predator learning and memory. Animal Be-
haviour, 71 (5), 1111–1118.

Skelhorn, J., & Rowe, C. (2007). Automimic frequency influences the foraging decisions of avian predators
on aposematic prey. Animal Behaviour, 74 (5), 1563–1572.

Skelhorn, J., Rowland, H. M., Speed, M. P., & Ruxton, G. D. (2010). Masquerade: Camouflage without
crypsis. Science, 327 (5961), 51–51.

Speed, M., Ruxton, G. D., Mappes, J., & Sherratt, T. N. (2012). Why are defensive toxins so variable? an
evolutionary perspective. Biological Reviews, 87 (4), 874–884.

Speed, M. P., & Franks, D. W. (2014). Antagonistic evolution in an aposematic predator–prey signaling
system. Evolution, 68 (10), 2996–3007.

Speed, M. P., & Ruxton, G. D. (2005). Warning displays in spiny animals: One (more) evolutionary route
to aposematism. Evolution, 59 (12), 2499–2508.

Speed, M. P., & Ruxton, G. D. (2007). How bright and how nasty: Explaining diversity in warning signal
strength. Evolution, 61 (3), 623–635.

Speed, M. P., Ruxton, G. D., Blount, J. D., & Stephens, P. A. (2010). Diversification of honest signals in a
predator–prey system. Ecology Letters, 13 (6), 744–753.

Summers, K., Speed, M., Blount, J., & Stuckert, A. (2015). Are aposematic signals honest? a review. Journal
of evolutionary biology, 28 (9), 1583–1599.

Summers, K., & Clough, M. E. (2001a). The evolution of coloration and toxicity in the poison frog family
(dendrobatidae). Proceedings of the National Academy of Sciences, 98 (11), 6227–6232.

Summers, K., & Clough, M. E. (2001b). The evolution of coloration and toxicity in the poison frog family
(dendrobatidae). Proceedings of the National Academy of Sciences, 98 (11), 6227–6232.

Svennungsen, T. O., & Holen, Ø. H. (2007). The evolutionary stability of automimicry. Proceedings of the
Royal Society B: Biological Sciences, 274 (1621), 2055–2063.

Tarvin, R. D., Borghese, C. M., Sachs, W., Santos, J. C., Lu, Y., O’connell, L. A., Cannatella, D. C., Harris,
R. A., & Zakon, H. H. (2017). Interacting amino acid replacements allow poison frogs to evolve
epibatidine resistance. Science, 357 (6357), 1261–1266.

Taylor, L. (1984). Assessing and interpreting the spatial distributions of insect populations. Annual review
of entomology, 29 (1), 321–357.

Teichmann, J., Broom, M., & Alonso, E. (2014a). The evolutionary dynamics of aposematism: A numerical
analysis of co-evolution in finite populations. Mathematical Modelling of Natural Phenomena, 9 (3),
148–164. https://doi.org/10.1051/mmnp/20149310

Teichmann, J., Broom, M., & Alonso, E. (2014b). The evolutionary dynamics of aposematism: A numerical
analysis of co-evolution in finite populations. Mathematical Modelling of Natural Phenomena, 9 (3),
148–164. https://doi.org/10.1051/mmnp/20149310

Teichmann, J., Alonso, E., & Broom, M. (2015). A reward-driven model of darwinian fitness. 2015 7th
International Joint Conference on Computational Intelligence (IJCCI), 1, 174–179.

Trivers, R. (1971). The evolution of reciprocal altruism. The Quarterly Review of Biology, 46 (1), 35–57.
Tucker, A. (1980). On Jargon: The Prisoner’s Dilemma. UMAP Journal, 1 (101).
Turner, J. R., KEARNEY, E. P., & EXTON, L. S. (1984). Mimicry and the monte carlo predator: The

palatability spectrum, and the origins of mimicry. Biological journal of the Linnean Society, 23 (2-
3), 247–268.

186



Twomey, E., Yeager, J., Brown, J. L., Morales, V., Cummings, M., & Summers, K. (2013). Phenotypic and
genetic divergence among poison frog populations in a mimetic radiation. PloS one, 8 (2), e55443.

Vences, M., Kosuch, J., Boistel, R., Haddad, C. F., La Marca, E., Lötters, S., & Veith, M. (2003). Convergent
evolution of aposematic coloration in neotropical poison frogs: A molecular phylogenetic perspective.
Organisms Diversity & Evolution, 3 (3), 215–226.

Vickers, G., & Cannings, C. (1988). Patterns of ESS’s 1. Journal of Theoretical Biology, 132, 387–408.
Vidal-Cordero, J., Moreno-Rueda, G., López-Orta, A., Marfil-Daza, C., Ros-Santaella, J., & Ortiz-Sanchez,

F. (2012). Brighter-colored paper wasps (polistes dominula) have larger poison glands. Frontiers in
zoology, 9, 20.

Vincent, T. L., & Brown, J. S. (2005). Evolutionary game theory, natural selection, and darwinian dynamics.
Cambridge University Press.

Vincent, T. L., Cohen, Y., & Brown, J. S. (1993). Evolution via strategy dynamics. Theoretical Population
Biology, 44 (2), 149–176.

Volterra, V. (1926). Variazioni e fluttuazioni del numero dindividui in specie animali conviventi. Mem. Accad.
Sci. Lincei, 2, 31–113.

von Neumann, J. (1928). Zur theorie der gesellschaftsspiele. Mathematische Annalen, 100 (1), 295–320.
von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton University

Press, Princeton, NJ.
Waldbauer, G., & LaBerge, W. (1985). Phenological relationships of wasps, bumblebees, their mimics and

insectivorous birs in northern michigan. Ecological Entomology, 10 (1), 99–110.
Wallace, A. R. (1877). The colors of animals and plants. The American Naturalist, 11 (11), 641–662.
Wallace, A. R. (1889). Darwinism-an exposition of the theory of natural selection with some of its applications.

MacMillan & Co, London.
Wang, I. J. (2011). Inversely related aposematic traits: Reduced conspicuousness evolves with increased

toxicity in a polymorphic poison-dart frog. Evolution: International Journal of Organic Evolution,
65 (6), 1637–1649.

Wang, L., & Broom, M. (2019). A theory for investment across defences triggered at different stages of a
predator-prey encounter. Journal of Theoretical Biology, 473, 9–19.

Waxman, D., & Gavrilets, S. (2005). 20 questions on adaptive dynamics. Journal of evolutionary biology,
18 (5), 1139–1154.

Weinberg, W. (1908). On the demonstration of heredity in man. Papers on Human Genetics, 4–15.
WolframAlpha. (2022). Nearest integer function. https://mathworld.wolfram.com/NearestIntegerFunction.

html
Wright, S. (1930). Evolution in Mendelian Populations. Genetics, 16, 97–159.
Yack, J. E. (2022). Acoustic defence strategies in caterpillars. In Caterpillars in the middle (pp. 195–223).

Springer.
Zakharova, L., Meyer, K., & Seifan, M. (2019). Trait-based modelling in ecology: A review of two decades

of research. Ecological Modelling, 407, 108703.
Zermelo, E. (1913). Über eine anwendung der mengenlehre auf die theorie des schachspiels. Proceedings of

the Fifth International Congress of Mathematicians, 2, 501–504.
Zvereva, E. L., & Kozlov, M. V. (2016). The costs and effectiveness of chemical defenses in herbivorous

insects: A meta-analysis. Ecological Monographs, 86 (1), 107–124.

187


