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Abstract

The main area of concern of this thesis is the development of the area of pension 

mathematics dealing with the funding of Defined Benefit pension schemes.
Particular attention is directed to the modelling of a stochastically evolving struc-

ture, whereby the demographic and financial variables may differ from the expecta-

tions, according to specific probability distributions.
In such a framework, we investigate how to efficiently combine exogenous variables, 

such as the level of contributions and the asset allocation, with the goal of devising 
an optimal risk management of pension funds.

The development of a stochastic model for the demographic evolution of the 
scheme is central for describing the dynamics of a pension scheme. Thus, the popu-
lation plan theory, as presented in the literature, is extended, allowing for a random 
evolution of the membership population. Furthermore, the impact of this uncertainty 
is measured with and without the coexistence of a randomly evolving financial world.

For a pension scheme, the main sources of funding are the contribution paid by 
the sponsor and the returns from investing the available funds. The way of combining 
these two sources of income is a key issue in the determination of the risk profile and 

the costs of implementing a pension plan.
Using mathematical models and numerical algorithms, several contribution strate-

gies are investigated, emphasising the aspects related to the risk and cost borne by the 
pension scheme. Specifically, the following intuitive insight, tha t a higher security is 
achieved by spending more, is found in analysing the profiles of different contribution 
strategies. Moreover, the impact on this tradeoff between risk and cost is illustrated 
by separating the different effects of several sources of uncertainty. Finally, optimal

13



contribution strategies are found analytically and numerically.
The allocation of the available funds is also taken into account, with the specific 

aim of identifying the optimal proportions of investment in a range of three possible 

assets. This issue, which is part of a broader discussion on the fundamentals of pension 
funding, is also considered together with the choice of the contribution strategy. The 
main result is that, when the two strategies are contextually developed, optimality 
is reached when there is support between the two strategies. In other words, within 
certain boundaries, it is optimal to combine a contribution strategy, which extensively 
relies on investment returns, with a high proportion of risky assets in the investment 

portfolio.
Avenues for further research are also suggested.
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Chapter 1 

Introduction

Defined Benefit (DB) pensions schemes axe structures which aim to provide workers at 
retirement with a benefit. This benefit is normally linked to the final pre-retirement 
salary (or an average of salaries in a short period before retirement). In order to meet 

this future and uncertain liability, contributions are paid by the scheme’s sponsor into 
a fund, which is subsequently invested with the aim of adding investment income to 

the already mentioned contribution income.
Pension mathematics provides a scientific approach to the funding of a DB pension 

scheme, leading to several tools for calculating contributions and valuing both assets 

and liabilities.
The aim of this thesis is contributing to the development of this area of pension 

mathematics, through the understanding of the laws governing the funding process 

of a DB pension scheme.
In order to do so, we benefit from the use of mathematical models, which, loosely 

speaking, have the advantage of enabling us to derive universally valid solutions to 
the problems being posed. Such a mathematical approach is of great value, because 
it helps in providing a deeper understanding of the object of study, as well as insights 
which at times are difficult to achieve by simple intuition.

However, this comes at the cost of a necessary simplification of the reality. In 
fact, while trying to capture the fundamental aspects of the investigated phenomenon, 
mathematical models seldom describe the reality in its entire complexity, but usually
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focus on a simplified version of it.
However, there are some situations where more realism may be desirable, such as 

when practical applications are required; or when there is the need to test whether 
the simplifications required by the mathematical model distort reality, and thus, the 
results. In these situations a mathematical approach may be not convenient, because 
it may be too cumbersome, and sometimes not viable at all. Therefore, when we 
need to work with this higher degree of complexity, we integrate the mathematical 

approach with numerical routines, which simulate a more realistic description of a 
DB pension scheme.

Simulation techniques allow us to push further the results derived from the math-
ematical approach, and hence, to gather extra information and insight.

Although realistic and intricate assumptions can be incorporated in a numerical 
exercise, this approach can only focus on an area of investigation which is narrower 
than the most general description of the phenomenon. Hence, computer simulation 

is not the panacea for all the limitations of a mathematical approach, as it cannot 
cope with the complexity of the world.

Being aware of these limitations, in this thesis we direct the attention to the 
subject of pension funding, using both mathematical and numerical approaches

The thesis is organised in seven chapters, which are briefly introduced below.

Chapter 2 - The Defined Benefit pension model. Chapter 2 introduces the 

equations of the mathematical model describing an idealised DB pension scheme.
Specifically, there are a number of quantities which are characteristic of a pension 

fund: such as, contributions and investment returns, that are the main source of 
income; the benefits which are the main source of outflow of a pension fund. These 
cash-flows are the elementary amounts from which it is possible to compose the assets 
and the liabilities of the scheme. Furthermore, since these components vary according 
to the current economic and demographic situations, the dynamics of the assets and 
liabilities depend on the way all of these factors evolve and interact with each other.

For each of these elementary components, the literature provides a wide range of 
models which are introduced and discussed in chapter 2, together with some issues
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related to employing such models.

Chapter 3 - Population Plan Theory. This chapter is dedicated to extending the 

so-called population plan theory, introduced by Trowbridge (1952), and subsequently 
studied in Bowers et al (1976), in order to describe the evolution of the membership 
population of a pension scheme.

The importance of this theory is that a direct link does exist between the dynamics 
of the population and the dynamics of the liabilities of the pension scheme.

The proposed model is based on a deterministic stable population, as described in 
Keyfitz (1985), and it is currently used in most of the actuarial literature on pension 
funding.

By using this model, several results relating to the maturity of a pension scheme 
have been obtained in the actuarial literature. The contribution of this chapter is to 
extend this theory including the addition of the stochastic evolution of the member-
ship population.

Sections 3.1 and 3.2 introduce the well established idea of stable and stationary 
population. Sections 3.3 and 3.4 extend the existing theory to the case of stochastic 

new entrants and stochastic membership, respectively. Section 3.5 analyses the risk 
of a mismatch between assets and liabilities of the whole scheme when both the 

demographic evolution and the investment returns are stochastic.
Further, the two cases of independence and dependence between demographic and 

financial risks are considered.

Chapter 4 - C ontribution strategies. Chapter 4 focuses on studying the general 
issue of the classification of normal cost methods (also called contribution strategies). 
A contribution strategy is the set of contributions to be paid in order to fund a 

pre-defined benefit at retirement. A comprehensive, risk-based, classification of these 
strategies would provide a valuable tool for the risk management of a pension scheme.

Several classifications have been proposed in the literature, mainly based on the 
distinction between individual and aggregated methods, and between projected and 
non-projected methods; see for instance Winklevoss (1993) or Aitken (1996).
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As an alternative, a wide family of normal cost methods can be classified according 
to the corresponding accrual density function, as introduced in Cooper and Hickman 

(1967).
By employing this second approach (introduced in §4.1), in section 4.2 we study 

the contribution strategies from a disaggregated point of view, i.e. for each member 

of the scheme. Specifically, we proceed to classify the contribution strategies by 
measuring the risk of mismatch between the value of the accrued fund at a specific 

time and its expected value. In detail, we separately model the effects of the financial 
risk, the demographic risk and the risk of default of the sponsor.

Further, we include the cost of pension provision of a contribution strategy. This 
has the effect of creating a tradeoff in the decision of which normal cost method should 
be used. Specifically, a tradeoff between cost and risk of contribution strategies arises. 
This aspect is investigated in section 4.3.

Chapter 5 - Optim al contribution strategies. Starting from the tradeoff be-

tween risk and cost, we aim to devise a methodology to find optimal contribution 
strategies, by means of identifying an efficient frontier in the cost-risk plane.

In section 5.1, we set the optimal problem in a general form, without specifying 
whether the risk to be minimised refers to the mismatch between the value of an 

individual member’s accrued fund at a specific time and its expected value (disaggre-
gated approach); or whether it refers to the mismatch between the scheme’s assets 
and liabilities (aggregated approach).

By using optimisation techniques for constrained quadratic problems, we show 

that a solution exists under some fairly general assumptions.
In section 5.2, the methodology devised is applied to the disaggregated case, and 

a numerical application is then implemented in order to display the optimality of 
the solution when rates of return and the sponsor’s risk of default axe the sources of 

uncertainty.
Similarly, the aggregated case is analysed in section 5.3, focusing on the particular 

case of a random number of annual new entrants in the pension scheme, where a 
systematic, deterministic, mismatch exists between the expected rate of return and
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the valuation rate.

Chapter 6 - Optimal funding strategies. In this chapter we focus on investi-
gating the asset allocation of a pension scheme, with the aim of identifying optimal 
strategies. In fact, changing the proportion of risky asset alters the risk/reward pro-

file of an investment portfolio. Thus, the asset allocation is a tool for controlling the 

flow of investment income.
Moreover, results from the previous chapters on contribution strategies are further 

extended to the more general case of managing a DB pension scheme when the rates 
of investment return are random and evolve according to stochastic processes.

In §6.2 we introduce several models proposed in the literature for describing the 
dynamics of the rates of return of three different assets: namely, a short term as-
set (cash), a fixed income security (bond) and a stock market index (equity). Fur-

thermore, we find conditions on the spreading period such that the stability of the 

unfunded liability is assured in the long term.
A number of issues arise in the choice of the valuation rate when the asset allo-

cation is allowed to change. Two different approaches - a “classical actuarial” and a 

“financial economic” one - are discussed in §6.3.
The implications of the two schools of thought on the “equities vs bonds” dispute 

are illustrated in §6.4. In this section, optimal investment strategies are identified in 

the cases of two and three available assets.
In section 6.5, we consider random demographic evolution for different sizes of the 

scheme’s membership population.
Section 6.6 deals with the more general problem of optimal funding strategies. 

Specifically, we illustrate how to combine efficiently contribution and investment in-
comes, using results from chapter 5 together with the devised optimal investment 

strategies.
Throughout chapter 6, the work is developed following the classical actuarial ap-

proach. However, in section 6.7, we briefly implement the same analysis following an 

approach consistent with the financial-economic school.
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Chapter 7 - Conclusions. The last chapter summarises the main findings and 
the conclusions in each of the previous chapters. Furthermore, avenues for possible 
extensions are presented, with respect to all the topics discussed.
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Chapter 2

The Defined Benefit pension model

The pension scheme is modelled using a discrete-time stochastic model, first described 
and investigated in Dufresne (1986, 1988, 1989, 1990). We choose to work with this 
discrete model, believing that, while offering a good description of the reality, it has 
shown in the literature the potential to lead to results of interest.

Nonetheless, a continuous time model in the fashion of Bowers (1976, 1979, 1982) 
is also used in chapter 4, because of mathematical convenience and consistency with 

parts of the literature.
In this chapter we introduce the fundamental equations and we discuss the main 

issues related to the use of them.

2.1 Fund level.

The fund level is the value of the assets belonging to the scheme at a specified time 

t. The literature provides a number of different methodologies to evaluate the assets, 
among which the Discounted Cash Flow and the market-based methods are the most 
used. It is not the aim of this work to analyse the features of these methodologies, a 
comprehensive review of which can be consulted in Exley et al (1997) and Owadally 
and Haberman (2003).

Whatever the method of valuation, the dynamics of the fund value may be de-
scribed by the following recursive equation:
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f ( t  + 1) = \f{t) + c{t) -  B(i)](l + r(i)) (2.1)

where

• r(t) is the rate of return of the investment portfolio gained during the year(i, f +  

!)■

• c(i) — NC(t ) +  adj(t) is the annual contribution at time t and it is computed 
by adding an adjustment, adj(t), to the normal cost, NC(t).

• B(t) the benefit paid to the pensioners at the beginning of year t.

All this quantities are due at the beginning of each year and are also evaluated 

net of price inflation b

2.2 Actuarial Liability.

The actuarial liability (AL), also known as the reserve, is the difference between the 
actuarial discounted values of liabilities and future contributions for current members 

of the scheme.
Similarly to the fund level, also the AL might be calculated in different ways. An 

important concern lies in the choice of the valuation discount rate applied at time t 
and in the methodology used to determine it. Here, we define the discount rates as 
a constant quantity i , although dynamic discount rates {p} could be considered in a 

more complex model. A more detailed discussion about the choice of the valuation 
discount rate is in Chapter 6.

The dynamic of AL  is dependent on the assumptions regarding the demographic 
evolution of the membership population. As proposed in Winklevoss (1993), the 
following equation provide a general, but not unique, way of describing this dynamic:

1The assumption on inflation might actually overestimate the risk due to the benefit variations. 
This happens because benefits axe usually adjusted according to price inflation; while all of the 
other amounts vary according to salary inflation. According to classical economics, the rate of wage 
inflation is equal to the price inflation rate plus the rate of productivity growth (usually nonnegative), 
see Samuelson (1989). Hence, salary inflation is normally higher than price inflation.

22



E[AL(t +  1)| J t] =  [AL(t) +  NC(t) -  B(£)](l +  i) (2.2)

Analogously to the notation belonging to stochastic calculus, {Tt} indicates the 
filtration generated by the whole process of the pension scheme. Specifically, an inter-

pretation of this filtration would suggest that 3rt represents the information available 
at time t and therefore, in equation (2.2), the value of the reserve at that specific 
point in time, AL(t), is known. Equation (2.2), to which we will refer as the general 

liability growth (GLG) equation, states that if the assumptions on the demographic 
evolution are actually borne out by experience, then the AL dynamic can be described 

by a recursive equation.

2.3 Unfunded Liability

Prom the previous two quantities an amount is computed, which provides valuable 
information about the financial status of the scheme: the unfunded liability (ul). At 

any time ul is defined by the difference between the actuarial liability and the fund 

value; in formula:

ul(t) = AL{t) -  f(t)  (2.3)

It is straightforward to notice that a positive value happens only when the fund at 
time t, f(t), is not sufficient to cover the actuarial liability, i.e. the current and future 
liability towards the existing scheme members. Conversely, a negative ul indicates 
that the value of the assets is higher than the actuarial liability.

Thus, it is common practice to refer to ul, when evaluating the financial status of 

a DB pension scheme.
Mathematically, the model allows ul to diverge to (±) infinity, and thus, the 

parameters must assume appropriate values in order to avoid such inconvenience. 
Practically, the appropriate settings of parameters avoid the case of systematic growth 
and assure the convergence of the unfunded liability.

From the model perspective, a situation of perfect funding happens when the ul
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is null; i.e. when no surplus nor deficit exist. Thus, specific methods are developed 
in order to assure this condition in the long run and on average. In actual practice, 
a pension scheme may be required by the regulating authority to be over-funded; i.e. 

the fund level should be higher than the AL, and hence, the ul should converge to a 
finite value lower than 0.

2.4 Individual amounts.

The quantities introduced above, AL, NC  and B, are aggregated amounts; i.e. they 
refer to the whole scheme. However, the previous quantities can be disaggregated by 
age and written as the corresponding individual amount multiply by the number of 
existing members. Further decompositions are also possible.

For instance, if an individual funding method is employed, NC(t) can be broken 
down by age and expressed in a formula as:

where n (a+ x , t) is the membership function, which represents the number of members 
aged a +  x at time f; a  is the minimum age and r  is the length of the working life 
time (r =  R  — a — 1, with R  fixed retirement age). NC a+x is the contribution paid

introduced, while in chapter 4 a general cost method is introduced.
In chapter 3 we analysis potential models for the membership function, including 

the case of a randomly evolving population.

2.4.1 Past service.

Similarly to the Normal Cost, the annual total Benefit and the Actuarial Liability 
can be disaggregated by age. However, for these quantities it is necessary to take into 

account the number of years of past service; i.e. the number of years during which 
each active member has contributed into the fund.

T

(2.4)

by all the members aged a + x. In section 2.6.1, classical normal cost methods are
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It is reasonable to assume that all new members, older than a, transfer into the 
scheme a previously accrued fund. The size of this fund would depend on the period of 
contributions, as well as on the underlying actuarial assumptions used by the former 

scheme.
Differently, in the case of elimination from the scheme before retirement, a mone-

tary transfer out of the fund is not allowed. This assumption is made for the sake of 
simplicity, in order to limit the outflows to only the retired population. Nonetheless, 

a more comprehensive structure could be considered, by allowing for the payment of 
special benefits (perhaps on the form of lump sums) to those active members elim-
inated prior to retirement. However, it is important to note that the extra fund 
derived from these early eliminations is consistently accounted for by the actuarial 
assumptions. Thus, the contributions are expected to grow in time by means of both 
financial and demographic compounding.

If the size of transferred fund is equal to the AL  accrued by members of same age 

who joined the scheme in a , then the plan sponsor could grant to the new members 
a full past service. In this way, the new scheme would effectively make no distinc-
tion between new and old members and there would be no need to decompose the 
membership function in order to take into account the past service of each member.

However, this assumption is not likely to be accurate for two main reasons: first, 
young workers are probably in their first job, therefore may have not accrued any 
fund; second, usually, pension schemes apply a penalty on withdrawal, which has the 

effect of decreasing the value of the transferable fund and, consequently, the number 

of years granted by the new sponsor.
Therefore, it seems reasonable to allow for members joining the scheme at an age 

z older than a and transferring into the scheme a previously accrued fund of any 

size. According to the size of the transferred fund, a number of years of past service 
between 0 and z — a  are credited to the new member.

In the light of this, the membership function is further decomposed, as in the 
following formula:
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M

n (z,t) = ^ n ( z , i , / i ) ,  , z  = a , . . . , u
K=0

where n(z, t, k ) is the number of members aged z, at time t and with k  years of past 

service. Summing n(z, t, k ) by k  determines the aggregated membership function as 
previously defined, i.e. regardless of the years of past service. The upper extreme 
M  varies according to the age z: for ages in retirement (z >  R), M  is the longest 
possible past service, M  = R — a\ while in ages of working activity (z < R) the past 

service cannot be longer than the age z less the minimum age a, so M  = z — a.
In order to ease the notation, instead of using a varying upper extreme, we assume 

that the number of active members with a past service longer than their age less 

minimum age a  is zero. Mathematically, this means

n(z, i,/c) =  0 \ /K > z  — a  (2.5)

Henceforth, the Actuarial Liability and the annual total Benefit at time t have 
the following expressions:

uj—ot R—a

AL(t) =  EE ALa+XtK n{a +  x, t, k ) (2.6)
2=0  /c=0

u —R R —a

m  =  EE B r +V.K. n(R + y,t,  k ) (2.7)
y= 0 0

where u  is the extreme age; ALa+x,K is the Actuarial Liability corresponding to a 
member aged a  +  x with k  years of past service; and, finally, B R+y ii is the annual 
benefit received by a pensioner, aged R+y,  who contributed for k  years into the fund.

For the purpose of this work, there is no need to go in to further detail in analysing 
the composition of AL  and B  by past service. It is sufficient to note that this model
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implicitly assumes that all the members having the same age and past service have 
accrued the same actuarial liability, and are thus entitled to an equal benefit.

Disaggregating the membership function by years of past service allows the model 

to account for liabilities and benefits, that vary according to how long each member 
has actually contributed into the fund. Moreover, the membership function does not 
need to be necessarily decreasing, thus allowing for new entrants at any age before 
retirement.

Specifically, the following relation between the new entrants function g and the 

membership function n exists:

n(z, t, k ) = g { z -  K , t -  k ) Kpz- K(t -  k ) (2.8)

where g(x,t) is the number of new entrant aged x, at time t; and Kpz(t) is the prob-

ability that an individual aged z at time t remains in the scheme for k  years. These 
probabilities are actually assumed to be time-invariant, thus excluding from the anal-
ysis the evolution of the decrement process in time. A more realistic model would 

allow for time-varying probabilities; however, such an extension would come at the 
cost of mathematical tractability. In this instance, we prefer to work with a less realis-
tic but more manageable model. Nonetheless, in chapter 3, when focusing exclusively 
on a randomly varying retired population, time evolution of these probabilities is 
taken into account. Moreover, some of the results achieved in Chapter 6 are tested 
using different life tables in a sensitivity analysis fashion.

2.5 Benefit

In a DB scheme at retirement each individual member receives a benefit in the form 
of periodical payments until the age of death. Usually, the amount of such a benefit 
is linked to the last received salary (or to an average of some of the last salaries) and 
to the number of years of contributions.

W ithout loss of generality, we assume that payments are made once per year, and 

tha t the amount of pension remains constant year after year.
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Specifically in this work, a pension equal to a fraction b of the last received salary 
sR is paid for each year of contribution at the fixed retirement age R.

Therefore, the pension BR+y paid to all the retirees - used in equation (2.7) - has 
the following expression, also known as the benefit formula2:

BR+y,K =  K-b- sR, My € (0, uj -  R) (2.9)

where, consistently with the previous section, k  is the number of years of past service.
A benefit provision paying a pension equal to (2.9) at the beginning of each year 

to a retired member, who contributed for k  years, has a present value at retirement 

age R  given by the following:

LJ— 1
P V F B r  =  BR+VtK yPR vy = K-b-  sR - aR (2.10)

y = 0

where Hr  is the present value of an annuity paid in advance as long as the pensioner 
is alive. The discount rate is i and the post retirement probabilities of surviving are 

assumed to be static.
This present value can be computed at different ages as well. Specifically, distin-

guishing between pre and post retirement ages, the present value of future benefits 

(P V F B ) at age x is given by the following equation:

{ hi ' b ' Sr  'R—x/ fix ^  ^  P

(2.11)

k, ■ b ■ sR ■ ax x > R

where h _x/Hr  is the present value of a deferred annuity of R — x years (i.e. until 
retirement age) and paid in advance as long as the pensioner is alive. Hence, the 

following relationship holds:

P V F B X — vR~x R- xPxP V F B R for x < R  (2.12)

2Refer to Winklevoss (1993) and Owadally (1999) for similar definitions of the benefit.
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2.6 Contributions.

In order to fund the pension benefit to the the retirees, contributions are periodically- 
paid over the working-life into a fund. This fund is then invested in a variety of assets 
with the aim of maintaining, and possibly increasing, its real value.

Two parts give the annual contribution: the normal cost and the supplemental 

cost or adjustment.
The normal cost is the amount that provides the adequate funding for future 

liabilities, under the assumption that the actual experience of the scheme would follow 

the actuarial expectations. Hence, if the assumptions are borne out by experience, the 
set of normal costs and the returns from the investments will match the retirement 

benefit.
However, deviations from the assumptions are likely to happen, thus generating 

a surplus or a deficit. According to the methodology implemented for dealing with 
this mismatch, contributions are adjusted in order to keep the scheme balanced.

This adjustment is usually referred to as the supplemental cost, and it could be 
positive or negative depending on the financial status of the scheme.

2.6.1 N orm al cost.

Pension funding (or normal cost) methods determine the set of contributions should 
be periodically paid to provide retirement benefits. In the development of this thesis 

the sequence {NCk, k =  a , . . . , R}, already introduced in section 2.4, will indicate 
this set of normal contributions. Specifically, NCk is the normal cost paid at age k, 
where k can assume the values between the minimum entry age a and the retirement 

age R.
Each method generates a characteristic path of contributions and returns from 

the investments, which together will eventually match the retirement benefit.
Several methods exist, derived from different principles, in order to compute con-

tribution strategies. In fact, the number of possible methods axe infinite, but only 
those satisfying some requirements are considered acceptable, and can thus be im-
plemented in practice. The rationale of these requirements lies in the fairness of
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the actuarial equilibrium, as well as strict bounds and characteristics which may be 
imposed by an appropriate supervisory or regulatory authority3.

According to Sharp (1996) a reasonable funding method should produce no expe-

rience gains or losses, if the actuarial assumptions are exactly matched.
In other words, a reasonable funding method should satisfy the “actuarial principle 

of equivalence”. This principle states that at any time the actuarial present value of 
the benefits should equal the total of the actuarial present value of future contributions 

and the already accrued fund.
It is common practice to distinguish between methods seeking equilibrium between 

inflows and outflows at an individual member or at a whole scheme level.
Individual methods provide the contributions to be paid by the active members at 

each age and are based on the idea that the principle of equivalence must hold for 
each individual plan participant.

Conversely, aggregated methods seek to satisfy the principle of equivalence at a 
scheme level, and thus provide a contribution rate to be applied to each member’s 

annual salary.
In this work, individual methods are implemented, as they provide a convenient 

framework within which to study the evolution of the membership population.
In Winklevoss (1993) the following convenient representation of the normal cost 

at age x is given:

NCX = kxP V F B x (2.13)

Specifically, the normal cost is defined as a proportion of the P V F B X, where the 

fraction kx varies according to the chosen actuarial cost method and to age x.
Table 2.1 concisely displays some of the most common individual normal cost 

methods:

• Accrued benefit method: under this method the proportion is given by the size 
of the annual accrual benefit divided by the accrued benefit at retirement. The 
path of normal costs consequently depends on the choice of the benefit formula.

3See Aitken (1996), Sharp (1996) for a fuller discussion.
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Table 2.1: Table of actuarial cost methods, readapted from Winklevoss (1993).
fox Actuarial cost method
ET~
Br Accrued benefit method

12LSr Unit credit method as a salary percent

1
R-a Unit credit method as a currency-unit

Sx x — aPc*Vx a Entry age method or individual projected benefit as a salary percentSa saa:Sza|

x-aPcVx~a Entry age method or individual projected benefit as a currency-unitau:R-u\

• Unit credit methods: in both cases, the annual normal cost is a proportion of 
future benefit. Such a proportion may be constant and in particular may be the 
inverse of the length of working lifetime (unit currency case). Alternatively, this 

proportion may vary according to the actual employee’s annual salary (salary 

percent case).

• Entry age methods: according to these methods, at each age the normal cost 
is the fair premium to be paid for a benefit of value P V F B r . NC  might be 

either a percentage of salary or a constant monetary unit.

As is noted in Winklevoss (1993), these methods produce normal cost values that 
usually are relatively dispersed near the employee’s entry and retirement ages, while 
they are reasonably close midway through his career. Under certain assumptions it is 

possible that some of the methods (accrued benefit and entry age) would provide un-
desirably high or low values. In particular, the actuarial assumptions on the financial 

and demographic expectations and on the composition of the membership population 
are the most significant variables for explaining the differences between the resulting 
normal costs related to each method.

Furthermore, in a scheme characterised by a large population with relatively stable 
age and past service distributions, each method will produce a reasonably constant 
normal cost percentage for the entire plan.
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Specifically, amongst the considered methods the unit credit ones ’’will produce 
the lowest costs for a relatively under-mature active employee population and vice 
versa for a relatively over-mature”, Winklevoss (1993). However, in this context, the 

cost is intended as the total amount of contribution paid in a specific year from a 
purely static standpoint, i.e. without taking into account the future evolution of the 

membership population.
Moreover, in Khorasanee (2002) the unit credit method is proved to be “an ap-

propriate funding strategy for a plan with stationary population of active members” . 
Conversely, if the entry age is fixed, entry age methods seem to be the most appro-

priate.
In chapter 4, the generalised expression (2.13) is reintroduced following the ap-

proach developed in Bowers et al (1976). Furthermore a comprehensive analysis of 
the risk and cost (in a dynamic sense) of contribution strategies is carried out.

2.6.2 Supplem ental cost.

Fund valuations are periodically run in order to control the financial status of the 
scheme. UK legislation requires that, at least every three years, such a valuation 
is carried out and supplemental costs are evaluated. In this model, we assume that 
adjustments are computed at end of each year and, specifically, at these dates the 

fund value is compared to the actuarial liability.
Mismatches between the fund level and the AL  are likely to happen for many 

reasons, of which we list the most common ones: •

• Experience variations: it is likely that the experience of the fund will differ from 
the underlining actuarial assumption.

• Assumption changes: it is possible that the actuarial valuation assumptions will 

be changed from time to time.

• Benefit changes: different benefit formula might be set up by the plan, with 

change frequently being retroactive.
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• Contribution variances: it may not be the case that the sponsor will pay exactly 
the estimated costs suggested by the actuary.

In order to deal with the unfunded liability and hence with experience deviations 

from the actuarial valuation assumptions, several adjustment (or supplemental cost) 

methods exist.
In this work we use the method of spreading surpluses and deficits over a moving 

term, which is widely used in the British actuarial practice.
According to this method, the adjustments are calculated as a proportion of the 

ul, with the aim of spreading the existing surplus or deficit over a moving term of 
(say) m  years. Specifically, the annual supplemental cost is given by the following 

formula:

adj(t) -  ^  (2.14)
&77l|

This method is extensively studied in Dufresne (1986, 1988, 1989), Haberman 
(1994a), Haberman and Wong (1997), Owadally (1999) and Owadally and Haberman 

(1999), where particular attention is directed to the problem of choosing the spreading 

period.
In fact, the period m  affects the solvency profile of the scheme as well as the 

stability of the contributions. As stated by Dufresne (1986), it is evident that when 
security is the most important issue, a lower m  should be chosen. Nevertheless, a 
low m  would imply a higher adjustment, which in turn might determine a signifi-
cant shift in the level of contributions, and thus ultimately reducing the stability of 

contributions.
Hence, the choice of the spread period m  creates a tradeoff between the stability 

and the security of a pension scheme.
Dufresne (1988, 1989) comprehensively analyses this tradeoff, finding an efficient 

range for the spreading period m. Specifically, under current economic conditions he 
suggests that m  should assume a value in a interval of time between 1 and 10 years.

Dufresne (1989) also describes another method whereby the adjustment is com-
puted in order to amortise the gains and losses emerged during two valuation periods.
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This method consists in amortising directly and over a fixed term the actuarial gains 
and losses, by explicitly computing the annual adjustment as following:

(2.15)

where the annual gain/loss is defined as follows:

l(t) = ul(t) — [ul(t — 1) — adj(t — 1)](1 +  i) (2.16)

i.e., the one-period gain/loss arising from the experience deviations is determined 
as the increment of the unfunded liability in the time-interval (t — l ,i) .  An extra 
factor P(t) can be added to the adjustment in order to amortise the initial unfunded 
liability. The same method is also described in Winklevoss (1993) as a widely used 

alternative, particularly in USA and Canada.
Similarly to the previous method, also in this case the choice of the period of amor-

tisation affects the stability of the contributions, as well as the solvency of the fund. 
However, it is possible to define an efficient frontier for the period of amortisation. 
Specifically, in Owadally and Haberman (1999) it is proved that increasing the amor-

tisation period over a certain threshold has the effect of increasing the contribution 

variability.
Furthermore, in Owadally (1999) numerical investigations based on current eco-

nomic conditions suggest the efficiency of amortising in 5 or less years.
As proved by Owadally and Haberman (1999), amortising gains/losses is more 

efficient than spreading deficits/surpluses in terms of security of the scheme. In fact, 
for the same periods m, amortising leads - in the long run - to a lower variance of the 

fund level, than spreading.
However, the same authors also show that ’’spreading surpluses/deficits may be 

regarded as more efficient than amortising gains/losses”, when the efficiency criterion 
is to minimise the variance of both fund value and contribution level.

Other methods can also be implemented. For instance, deficits could be considered
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more severe deviations than surpluses, thus inspiring methods of asymmetric spread-
ing of these mismatches, as studied in Haberman and Smith (1997) and Owadally 

(1999).
In Kleynen (1997), the possibility to set a buffer capital to be used as an extra 

investment reserve is tested by means of a Monte Carlo simulation of a Dutch pension 
scheme. Specifically, this buffer would increase in response to favourable financial 
realisations, while it would decrease during difficult economic periods.

Furthermore, a “corridor approach” could be implemented, according to which 
deficits and surpluses are being ignored as long as they lie within a given interval 
(or corridor). Such a method, investigated in Dufresne (1993), relies on the fact that 
valuation assumptions should on average be correct. Intuitively, this methodology 
should provide a reasonable degree of stability of the contribution process, within, 
however, an acceptable level of security.

In this work, we choose to use the spreading method mainly for three reasons: 
because of the desirable efficiency in terms of minimum variability of fund level and 
contributions; for its extensive use in the UK; and for its mathematical tractability. 
The spreading period m  is assumed to satisfy the conditions developed in Dufresne 
(1988, 1989) and in Owadally (1999). However, appropriate conditions are developed 
when different assumptions, from those used in the literature, are implemented.

2.7 Risk measures.

Although not strictly related to the pension model, this section is dedicated to intro-
duce briefly some risk measures and their characteristic way of quantifying risk, in 
order to facilitate the choice of which risk measure should be employed for analysing 

the risk.
We have already introduced ul as an indicator of the financial status of the scheme. 

In the development of this thesis, we need to provide a measure of risk of ul, as well as 
of other random variables. Thus, in this section we refer to a general underlying pro-
cess, whose riskiness we wish to measure, rather than referring to a specific variable, 

such as ul.
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Several measures exist, each of them conveying valuable but different information, 
because there are different methods for weighting the same adverse outcomes.

The first measure that we consider is the variance of the underlying process at 
a given point in time. The mathematical tractability of this measure, and the large 
number of results available in the literature, are the main advantages when using this 

measure. However, giving the same weight to positive and negative deviations from 
the mean is not always desirable, because relevant patterns may remain undiscovered.

For this reason we also direct the attention to “downside” risk measures, which 
have the desirable feature of being asymmetric; i.e. to focus on the negative side of 
the distribution. Amongst the many measures, we take into account the Value at 

Risk, as well as coherent risk measures.

2.7.1 Value at Risk.

Value at Risk (VaR) is a percentile of a loss distribution and so measures the maxi-
mum loss within a specified confidence level. This measure has found a vast consensus 
in several applications in finance and it is currently employed in the determination of 
minimum solvency capital in both banks and insurance companies. See for instance 
Basle Committee on Banking Supervision (1998) and the Risk Based Capital system 

implemented in North American Countries4.
Let us indicate with {A(t)} a general loss process, as it could be the ul or any 

other stochastic process informative of the performance of a given strategy. When 

the time is fixed, say t  = r , then the value of the loss X ( t ) is a random variable 
in a space of probability fiT, which (we assume) has cumulative probability function 

Fx {t )(x ). Then the VaR at level a is defined as:

VaRa = min {x 6 : 1 — FX(T){x) =  a} (2-17)

where the equality sign in the set (2.17) holds only for continuous functions F.
The VaR conveys information on the risk of loss, providing also a measure easily 

interpretable in terms of the allocation of security capital. However, the peculiar

4Refer to Webb and Lilly (1995) for a comprehensive analysis of the RBC system.
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dependence on the level of confidence causes the analytical computation of the VaR  
to be very complicated. Therefore, several techniques have been developed to estimate 

the VaR, among which the so called A-norm is one of the most commonly used.
This technique consists in assuming that the variable X  (r) is normally distributed. 

Under this assumption an estimate of the mean and of the volatility is sufficient to 

determine the maximum loss with a specified confidence level.
However, if the baseline process is not normally distributed and tends to be skewed 

and platokurtic, the A-norm technique systematically underestimate the risk.
In order to improve the estimate of the VaR, the inclusion of information conveyed 

in higher order moments may avoid, or at least smooth, the effects of non-normality. 
A potential avenue is illustrated in Li (1999), where applications of this approach 

to foreign exchange spot rates shows remarkable result in catching the extreme tail 

peculiarities.
However, taking into account the complexity of the pension scheme dynamics, an 

analytical approach is likely to lead to complex results, and therefore a simulation 

approach is also considered.
Using a Monte Carlo methodology, the VaR at a confidence level a 6 (0,1) 

is defined as the a-percentile of the distribution of the loss, which is derived by 

simulation.

2.7.2 Coherent risk m easures.

More recently, the literature on risk measures has vastly expanded following a strong 

criticism of the VaR.
The rationale behind this criticism is that the VaR fails to satisfy the property 

of subadditivity. Therefore, an analysis based on VaR may lead to make conclusions 

or to back strategies which actually contradict well established economic laws.
In particular, the lack of subadditivity is not coherent with the principle that a 

diversification of investments lead to a reduction of the overall risk. This has been 

proved in Artzner et al (1999) and Uryasev (2000) among the others.
In the light of this, a new class of risk measures has been recently introduced in the
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literature. In a seminal paper, Artzner et al (1999) propose an axiomatic definition 
of coherent risk measure, providing also several examples. Further applications of 
coherent risk measures in the specific field of insurance axe in Artzner (2000).

According to Artzner et al (1999), a risk measure, which here we indicate with T, 
is said to be coherent if it satisfies the following four axioms:

Axiom  PH. Positive homogeneity: for all A > 0 and all X { t ) G 0 , '&(AX(r)) = 
A ^(A ( t )). It can be seen that the variance fails to satisfy this axiom.

Axiom  T. Translation invariance: for all X ( t ) G f2 and all real numbers C, we have 
^ '(X ( t ) +  C ■ r) =  T (A (r)) — C. If a solvency capital is held and invested at 
a risk free rate r, the risk is reduced by exactly the solvency capital. As it is 
noted in Artzner et al (1999) Axiom T ensures that if the solvency capital is 
equal to the risk measure, then there is no risk involved in the current position. 
As a matter of fact, for each X ( t ), ^(A (t ) +  ^ (X ( r ) )  • r) =  0.

Axiom  M . Monotonicity: for all X (r)andT (r) G f1 with X ( t ) < Y ( t ), we have

* ( * « )  <  * ( x m ).

Axiom  S. Subadditivity: for all Afi(T)andX2(r) G Q, i , (X1(r)+A r2(T)) <  T (ATi(r)) +  
^ '(X i(r)). Artzner asserts that this property is a natural requirement in sev-

eral situations, especially when such a measure is employed in computing extra 

capital requirement.

These four axioms rule out the variance, the VaR and other measures, such as 
the “semi-variance” type of measure, that do not satisfy Axiom M. The following 

measures have thus been proposed by Embrechts et al (2003) (among the others) and 

Artzner et al (1999), respectively:

MS. Mean shortfall:

MS q (X( t ) ) = E max (AT(r) — VaRa [X(r)),  0) (2.18)
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T C E . Tail conditional expectation:

TCEq (A (t )) = E X ( t )\X(t ) > VaRa (X (r)) (2.19)

These measures, as well as several derivatives 5 provide information of the kind 
“how bad is bad”, and thus, they actually recall the work done on the conditional 
distribution within the field of reinsurance; see, for instance, Hogg and Klugman 

(1984).
Furthermore, it is shown in Acerbi and Tasche (2002) that these measures are 

coherent, when the loss distribution is continuous. Moreover, a comprehensive anal-
ysis of the mean excessive functions, core of these measures, is in Embrechts et al 
(2003). Closed formulae for the MS of standard distributions, as well as methods of 
estimation of the whole conditional distribution, are also included there.

In this thesis we will use a general risk measure which is coherent in the sense of 
Artzner. However, when mathematical tractability will be required, simpler measures 
such as the variance will be used to quantify the risk.

5See for instance Artzner et al (1999), Rockafellar and Uryasev(2000) and Uryasev (2000) for the 
definitions of worst conditional expectation, conditional VaR and others.
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Chapter 3

Population plan theory

This chapter deals with the study and the development of population plan theory and 
of potential models which aim to describe the factors that generate the evolution of 
the membership population of a pension scheme.

Population plan theory is related to the wider area of study of mathematical 
demography. As such, most of the research is focused on adapting general models 

to the specific case of the membership population of pension schemes. Thus, it is of 
interest to study the situation whereby the population grows because of new entrants 
in the scheme, rather than birth; and it decreases because of eliminations due to 
mortality, disability, unemployment and other factors which will be subsequently 

considered in further detail.
Recalling the classification of population theory presented in Keyfitz (1985), the 

attention is focused on the rates of growth and of elimination, both of which may be 
fixed, or changing in time; as well as being either deterministic or stochastic.

Furthermore, it is the main scope of this theory to analyse the consequences of 

different demographic structures on the current and future liabilities of the scheme.
In fact, a direct link does exist between the dynamics of the population and 

the dynamics of the liabilities of the plan. Specifically, the membership function 
n(a + x,t), providing the number of members for each age at any time, describes 
the demographic structure (age and past service distribution) and, as such, directly 

affects the amount of the liabilities.
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Moreover, for some particular types of population, several results have been achieved 

in the classical actuarial literature relating to specific equilibria between contributions 
and benefits.

Another characteristic feature of pension plan populations is the existence of dis-
tinctive sub-populations. Active members can be identified and separated from pen-
sioners; likewise, other sub-populations exist, such as those who are temporarily dis-
abled or unemployed, spouses and dependants. Hence, models separately dealing with 

these populations, and thus accounting for the differences among those populations, 
can be developed.

The chapter is structured in the following way: §3.1 and §3.2 introduce the models 
of stable and stationary population, respectively, as well as illustrate standard results 
achieved in the classical actuarial literature. Section 3.3 extends these standard results 
to the more generic case of a population characterised by random new entrants. The 
demographic evolution is analysed in its full complexity in §3.4, which separately 
deals with the active and retired populations. Section 3.5 directs the attention to 
the effects of randomly evolving population on the deficits and surpluses of a pension 
scheme. In particular, the case of a demographic evolution correlated to the current 
economic conditions is compared to the more standard case of independence between 
these two sources of uncertainty.

3.1 Stability.

As introduced in section 2.4, the membership function n(a + x, t ) provides the number 
of members in each cohort at any time. Therefore, it is through this function that 
we analyse different demographic structures. Specifically, at a fixed point in time t, 
n{a + x,t), as a function of x, describes the age distribution of the population.

This distribution can be further broken down by taking into account the past 
service; i.e. the number of years of membership of each member. Thus, in this work, 

past service is accounted for.
If the age distribution remains constant year after year, a stability condition arises 

in the population. This will eventually happen, when the population decrement rates
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remain constant and the increment rate grows at a constant rate. Refer to Keyfitz 
(1985), chapter 4, for a full analysis of the properties of stable populations.

Part of the actuarial literature (see Winklevoss (1993), for instance) refers to this 
population as mature, in contrast to the definitions of under-mature and over-mature 
populations.

A population is under-mature if the age distribution changes in time and it is 
characterised by a high proportion of young cohorts. This is the case when, although 
the increment rate has been constant for some time, a sufficient number of years 

has not yet passed and the age distribution has not yet reached stability. In this 
situation, the resulting population is usually characterised by a large proportion of 
younger cohorts. According to Winklevoss, this is particular to growing industries, 

which are characterised by firms having under-mature populations.
On the contrary, a population is said to be over-mature when the age distribu-

tion tends to an increasing proportion of older generations. This happens when the 
increment rate decelerates or when the decrements reduce. The first case is typical 

of declining industries, in which case the rate of hiring decreases. The second case 
has recently become particularly relevant, as the general population has experienced 
a systematic decrease in mortality, especially at older cohorts.

It is important to note, that the definitions of under-mature and over-mature pop-
ulation are based on the idea that populations are dynamically evolving, respectively 

tending to stability, or deviating from it.
Under the assumption of a deterministic evolution of the membership population 

and using a deterministic and constant discount rate i, the AL  has the following 

resulting dynamics:

AL(t + 1) =  [AL(t) +  NC(t)  -  B (i)](l +  i) (3.1)

This expression, firstly introduced in Bowers et al(1976), is known as the liability 
growth equation (LGE) and describes the dynamical system in which AL  evolves. 
These dynamics are consistent with the general liability growth equation G LG  (2.2), 
since if the population is deterministic, then AL  is deterministic too.
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Let us assume, in accordance with Keyfitz’s model, that a population grows ex-
ponentially at a logarithmic rate 5g, i.e.: n(z, t  +  1,/c) =  eSgn(z, t , «). It is simple 
enough to see that equation (2.6) implies that AL(t  +  1) =  eSgAL(t) and hence the 

following equilibrium holds:

AL(t) [e5g~5 -  1] =  NC(t)  -  B(t) (3.2)

where 5 =  log(l +  i).
This equation recreates a set of well known results, that when the rate of pop-

ulation growth is equal to the rate of economic growth, the annual contributions 
match the annual benefit and therefore any funding method is equivalent in terms of 

contributions to a “pay as you go” scheme.
This result can be found in different forms in Owadally (1999), Bowers et al. 

(1976), and as early as Cantelli (1926).

3.2 Stationarity.

As a special case of stability, consider the case where the rate of population growth 
remains constant, 5g = 0: the resulting population is then said to be stationary.

Moreover, as stated in Winklevoss(1993), if a constant flow of new entrants an-
nually joins the scheme, and decrement rates do not change over time, “a stationary 
condition will exist after n years, where n equals the oldest age in the population less 
the youngest. ”

In terms of the membership function, stationarity is equivalent to assuming that 
n(a +  x, t, k ) =  nQ+XtK. This assumption implies that stationarity holds for the 

aggregated membership function as well:

R—a R—a
n(a + x,t) = n (a  +  x,t,  k ) = nQ+I)K =  na+x (3.3)

K=0 K=0

So, for instance, the Actuarial Liability broken down by generations, as expressed 
in equation (2.6) would become constant:
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(3.4)
uj—at R —oc

AL(t) =  ^  ^  ^  '  ALa+XtK Ra+x,K = AL
X—O K=0

The main source of interest of this simple model is that stationaxity in the pop-
ulation evolution leads to a remarkable equilibrium between the total contributions, 
the returns from investments and the payment of benefits. Specifically, the liability 
growth equation (3.1) can be rewritten in the following way:

AL = {AL + NC  -  B)( l  + i) (3.5)

which states that total annual benefit is constant, and it is equal to the annual 

constant contributions plus the (discounted) returns from investing the AL] i.e.,

B = N C  + dAL

As stated in Trowbridge (1952), we can refer to (3.5) as the equation of maturity, 
since, when the membership population eventually becomes stationary, the pension 
scheme reaches the status of maturity, and an equilibrium will exist between inflows 

and outflows.

3.3 Stochastic new entrants.

A first extension of the existing standard model consists of assuming a randomly 
evolving population. In order to do so, we shall consider the membership function 

n(a  +  x, t, k ) as a stochastic process.
In detail, we assume that the random nature of this process is due to stochastic new 

entrants, while the assumptions regarding the decrements from the scheme population 
are consistently borne out by experience. Thus, we assume that the probabilities in 
equation (2.8) are deterministic.

One of the first extension in this direction has been implemented in Mandl and 
Mazurova (1996), where stochastic new entrants are modelled by means of a process
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which is stationary in the wide sense 1.
Similarly, in Owadally (1999) a sequence of iid random variables describes the 

new entrants process.
Chang et al (2002) consider a random demographic evolution by modelling the nor-

mal costs with a standard Brownian motion. Josa-Fombellida and Rincón-Zapatero 

(2004) further extend this assumption by describing the dynamics also of the benefit 
flows with a standard Brownian motion.

Although using different techniques, the authors focus in the cited works on de-
riving expressions for the variance of the fund value and of the contributions.

Under this assumption, the equilibrium displayed in equation (3.5) clearly does not 
hold any more. However, we are now going to show that under equivalent assumptions 

regarding the stochastic membership process, an equivalent, and more general, form 

of equilibrium does exist.

Liability growth process. Deterministic decrements allow us to write equation 

the G LG  equation (2.2) as the following:

AL(t  +  1) =  [AL(t) +  NC(t)  -  B{t)]( 1 +  i) (3.6)

Equation (3.6) looks identical to the LG E - equation (3.1) - however, random 
new entrants make AL(t) a stochastic process, and therefore, it is more appropriate 

to refer to (3.6) as the liability growth process (LGP).
This happens because, although having a random size, each generation of members 

evolves with certainty. The mathematical counterpart of this assertion is the rationale 

behind the proof provided in appendix A.l.
As we shall see in the next chapter, this random process does not give rise to a 

demographic risk per se, but it has the effect of amplifying existing risks.
The advantage is that this model allows the analysis of the liability of a pension 

scheme, with a randomly evolving population, to be conducted by using equations *

:A stochastic process is said to be stationary in the wide sense (or weakly stationary) if the 
first moment is constant and the autocorrelation for any time lag is time-invariant; see, for instance 
Rosenblatt (1974), or Mills (1999).
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cited in established literature. However, it needs to be borne in mind that, in this 

context, these equations describe stochastic dynamics.

Stochastic stationary population. We direct the attention specifically to the 

case that the number of members is random, but where the evolution is not driven 
by any drift. In another words, n(a +  x, t, k ) is assumed to be a stationary stochastic 
process, and its mean, by the definition of stationarity, is independent of time, i.e. 

E[n(x,t, k )] =  nXjK.
Under this assumption the AL  at time t is a sum of random variables with constant 

expectation, and therefore, its expectation is constant as well:

E[AL(t)\ = E
r uj—a R—a

L L
L X=0 /C=0

uj—a R —a

= y ;  y :  ALq+XiKE [n(a +  X, t, k )]
X=0 K=0  
u)—a R —a

— ^   ̂ ^   ̂ AL) say.
x= 0 K=0

(3.7)

In light of this, the result is that the LGP in equation (3.6) leads to the Trowbridge 

equation of maturity on average:

AL = E[AL(t)] = E[AL(t  -  1) +  NC(t  -  1) -  B(t)] (1 +  i) 

=  [AL + NC -  B]{l + i) (3.8)

Equation (3.8) is the equivalent - in a stochastic framework - of the equation of 
maturity (3.5). In fact, equation (3.5) represents a special case of the more general 

result in (3.8), and hence, we can refer to (3.8) as a weak equation of maturity.
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3.4 Stochastic membership.

In order to extend further the standard model, we shall consider the demographic 
evolution in its full complexity. Specifically, several factors simultaneously interact, 
with the ultimate effect of driving this evolution.

These factors are likely to be randomly perturbated, thus generating potential 
mismatches between the actual observations and the expectations.

The following is an attempt to classify these factors according to the effect that 
they have on the membership population.

We define positive components, those leading to an increment of the number of 
members. Vice versa, components are said to be negative if they lead to a decrement 

of the total population.
We consider the positive components as follows:

N ew  members - first job ; who join the scheme at same stage and who have never 
had a job before. In the most general case, there are no restrictions on the entry 

age.

N ew  members - previous job ; who join the scheme and contextually transfer a 
previously accrued fund. Even in this case there axe restrictions on the entry 

age.

N ew  pensioners ; in a general classification we include the possibility of a transfer 
of a pensioner to a different scheme, which is expected to deal with the pensioner 

decumulation phase.

These positive components are strictly related to the specific rules of each scheme. 
In fact, the transfer of funds might be allowed or not by the regulations of the 
scheme. The transfer of funds might be easily encouraged (or discouraged) by ap-
plying favourable (unfavourable) rules to convert the transferred funds into accrued 
funds in the new scheme. As a consequence of this, for a member who is moving from 
an old scheme to a new one, it might be financially advantageous (or not) to transfer 

the previously accrued fund.
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Another important factor that affects the positive fluctuations is the demographic 
evolution of the general population. Since the membership population is a subset of 
the general population, it seems obvious that “booms and busts” in national fertility 
affect the membership of pensions schemes, as well as they affect other social services 
such as national education, health service and others. Similarly, immigration and 
emigration might influence the membership size and structure, since they affect the 
age distribution of the national population.

Finally, it is important to mention that positive components (and especially the 
new entrants class) may be related to the general economic trend as well. It is not 
unreasonable to believe that during favourable economic periods, business growth 
would bring new employment, and hence, an increase in the number of new members 

of pension scheme. On the contrary, phases of economic contraction may generate 
unemployment, which, in turn, would reduce the number of new members.

Moreover, many economic theories have proposed a direct link between inflation 
and employment. For instance Phillips’ theory states that a natural rate of unem-
ployment exists in the long run; however, in the short term, the relationship between 
inflation and unemployment is such that a reduction in the unemployment leads to 
an increase in the inflation rate 2. Henceforth, the correlation between inflation (and 
perhaps the market returns) and the evolution of a scheme membership will be con-

sidered in a later section.
There are two different approaches to modelling the evolution of a pension plan 

population: either (1) modelling the new entrants; or (2) following a size-constrained 

population approach.
In the first case, the number of annual new entrants might be described as an in-

dependent process or linked to an underlying process; i.e. to inflation, to the general 
economic growth (GDP, market returns), or to the specific economic sector perfor-
mances. In any case, the total size of the membership is the resulting dependent 
variable. However, according to Winklevoss (1993, p. 61) this may not be an appro-
priate assumption, because the number of the employees - and in turns, the scheme 
membership population - depends on business considerations and plans.

2Samuelson (1989) is a standard reference for introduction to economics.
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So the alternative approach (2) would suggest allowing the membership popula-
tion to vary according to one (or more) of the aforementioned economic trends and 
consequently deriving the number of annual new entrants. However, such an approach 

would focus only on the uncertainties deriving from the internal evolution of a pop-
ulation, due to the negative factors described below. For this purpose, an interesting 
model to describe the internal evolution is proposed in Janssen and Manca (1997). 
In this paper and in subsequent works, the authors apply a semi-Markov model to 
describe the movements of the members from one state to another.

As mentioned above, negative components decrease the number of members. Specif-
ically, the following factors have a predominant impact:

M ortality ; this factor affects both active members and pensioners. The case of 
decease of an active member leads to a permanent suspension of contribution 
and perhaps to the payment of a benefit (related to the accrued fund) to his/her 
family, if any. The death of a pensioners leads to the permanent suspension 

of payments, unless a reversionary pension has been initially included in the 

pensioner benefit.

Mortality is usually described by a life table, which indicates the probability of 
death at each age. Specific tables exist for describing the characteristic mortality 
of pensioners. Nevertheless, it is not necessary to assume a stationary life table 
and therefore it would be of interest to analyse the effects of dynamic mortality, 

both in a deterministic and stochastic case.

Elim ination of active members ; employees may move into other companies and 
this could lead to a permanent suspension of the contribution into the scheme. 

Specific service tables deal with the probability of elimination due to transfer. 
Moreover, a multiple state model could be considered, in order to explicitly 
describe different forces of eliminations, as well as distinguish between active 
and retired members.

The aforementioned factors affect the size of the membership and therefore affect
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the annual cash-flow by increasing or decreasing contributions and benefits. How-
ever there is another possible event, which, although does not affect the size of the 
membership, still affects the cash-flow.

M orbidity ; employees might transfer into a state of disability, which implies the 
inability to work and therefore to contribute. It is common practice, but not 
necessary, to provide the disabled member with a benefit in terms of a pension. 
Likewise an increased benefit might be paid to a newly disabled pensioner, if 
such extra benefit has been initially included. In either case, morbidity has 
a negative impact on the scheme, as either it reduces the contribution or it 

increases the total pay-out.

The membership function actually incorporates all of the factors described. In 

fact, it could be disaggregated in a number of more elementary components, as mor-
tality, disability, withdrawals, new entrants and so on.

In fact, these forces may be combined in a multiple state model, describing the 
evolution of the active membership population through a variety of possible states.

However, although all of these factors interact in the development of a specific 

population, it is possible to synthesise this evolution as the result of two forces: a 
positive force, or force of increment, mainly due to the process of new entrants; and 
a negative force, or force of decrement, which is mainly due to the process of with-

drawals (in the active membership) and the process of mortality (in the population 
of pensioners).

Hence the membership process can be described by the following equation:

n(x, t +  1) =  n(x — 1 ,t)p(x — 1, t) +  g(x, t +  1) (3.9)

which states that the number of members aged x at time t +  1 is naturally given by 
the number of survived (not eliminated) members aged x  — 1 in t, plus those aged x 
who joined the scheme at the beginning of the year t +  1 .

As mentioned above, we include the possibility that new pensioners join the 
scheme; however, in order to describe the case in which this is not allowed, it is 

sufficient to set g(x, t) =  0, for x > R  and Vi.
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The gain/loss generated by the demographic uncertainty is thus proportional to 
the difference of the actual number of members, given by (3.9), and its expectation. 
The following equation expresses this difference with respect to the cohort aged x and 

time t + 1 and evaluated at time t :

£n(x , t+  1) n(x, t +  1) — E[n(x, t +  1) |Tt]

n(x -  1 ,t)\p(x -  1 ,t) - p x_i(i)] +  g(x,t + l) -  gx(t +  1) 

n{x — 1 ,t)ep(x — 1, t) + £g(x, t +  1) (3.10)

In order to focus on the mismatch that develops between times t and t +  1, the 
deviation is expressed as a function of the number of members in the cohort aged 
x — 1 at time t. Whether this number is known or not (in this case it would be a 
random variable) depends on the time of valuation: at time t, the quantity n(x — 1 , t) 
is known.

The expected number of member aged x in t +  1 is derivable from equation (3.9). 
If the evaluation happens a time t, this expectation is conditioned on the knowledge 
available at that time, (fft), and therefore, n(x — l , t )  is known.

If the mismatches are due to accidental perturbations, it is straightforward to see 
that the expected deviations are equal to zero. The variance is instead given by the 

following:

Var en(x,t  + l) \Jt =  n(x — l , f )2 Var[p(x -  1, t) +  Var[g(:r, t +  1) 

+2n(x — 1, t) Cov p(x — 1, i); g(x, t +  1) (3.11)

Hence, the variance of the mismatch is given by the rescaled variances of the two 
process of new entrants and eliminations; plus a component which takes into account 
the covariance between the two. This last component reflects whether the number
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of new entrants is correlated to the number of eliminations. Specifically, a hiring 
policy could be adopted in order to replace partially those employees who left. This 
possibility is considered in the following section.

3.4.1 A ctive m em bership.

Let us focus exclusively on the case of active workers, aged between a and R. Devia-
tions from the expected value can be positive or negative, and according to the type, 

consequences and possible reactions may differ.
On one hand, in a particular year an unexpectedly high number of members may 

be eliminated. As a consequence, the employer may adopt an appropriate hiring 
policy in order to reduce the impact of an unexpectedly high number of eliminated 
members. However, replacing the eliminations with new members is not sufficient in 
order to maintain the liabilities unchanged. In fact, new members may differ from 
the eliminated ones because of age and accrued funds.

On the other hand, it is possible that actual eliminations are less than expected. 
In such a case, it is unlikely to imagine that a plan sponsor could implement a policy 

to reduce the number of members.
Let us assume that the hiring policy is such that a proportion (  of the unexpectedly 

eliminated members is replaced. This proportion is assumed to be constant with 
respect to age. This may be not very realistic, as different cohorts may be not 
equally easy to replace. Hence, an extension including different proportions for each 

age may be considered for further research, and especially in the studies in section
3.4.3 regarding the effects of random demographic evolution on the liabilities.

If the deviation ep(t) is negative, then the subsequent yean the initially predicted 
number of new entrants gx{t +  1) is increased according to the deviation ep[t) and 
the proportion (, whom we are willing to replace. Conversely, if ep{t) is nonnegative, 

then no action is taken.
Thus, the deviation in new entrants has the following form:

£g(x, t +  1) =  max 0 ; —( n(x — l , t)ep(x — 1 , t) (3.12)
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In order to express the expected value and the variability of the demographic 
variation, let us split the deviation ep into its positive and negative part:

ep = Ep +  e~ =  max (0; ep) +  min (0; ep)

Equation (3.12) suggests that the deviation sg in the new entrants is positive only 
if Ep is negative. Thus, eg also has the following mathematical representation:

Eg(x, t + 1) =  -C  n(x -  1, t)e~(x -  1, t) (3.13)

From equations (3.10) and (3.13) it can be derived that the demographic risk, 
allocated to age x  at time t, has the following expectation and variance3:

E

Var

En(x,t  +  l) |T t 

En(x,t  +  l) |T t

=  n E[e+] + n (1 -  QE[e ~]

=  n2 Var(£p ) +  n 2 (1 -  C)2 Var(e~) 

-2(1  -  C) n 2 Cov [£+;£"]

(3.14)

(3.15)

The expected value of the deviation in the number of members from the cohort x 
at time t is null, if the proportion C is set equal to 1 +  or, equivalently, to -f-M.

Hence, if the deviations from the process of elimination have expectation equal 
to zero, C is nil. This means that if the noise disturbing the number of annual 
eliminations in each cohort has expectation equal to zero, there is no need of a special 
hiring policy, in order to keep the number of scheme’s members in line with the 

expectations.
In addition to this intuitive result, equation (3.14) also suggests that, if there is 

a systematic (negative) mismatch in ep, then a hiring policy seeking for a balance in 
the number of scheme’s member would call for a fixed proportion of replacements. 
Moreover, such a proportion, which is equal to -fjMr, tends to 1 for a sufficiently large 

negative mismatch.

3Redundant notation has been excluded, in order to ease the reading.
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As fair as the variance of the deviation en is concerned, equation (3.15) shows that 
a minimum exists when 4:

_  Cov« ; £J
C Vai(£- )

Since the Cov(e+;£~) is positive, the variance has its minimum when ( is larger 
than 1. Hence, in order to minimise the variance in the deviation of the membership 
function, the number of replacement should be higher than the number of elimina-

tions.
However, if only a proportion between 0 and 1 can be considered - (  6 (0,1); and 

bearing in mind that in this interval the variance is a monotonic decreasing function, 
we can state that the higher is the proportion of replaced eliminated members, the 

lower is the variance of the deviations en.
Furthermore, if the deviations ep are symmetrically distributed, and hence the 

positive and negative parts have the same distribution, the (* is equal to the following

c* 1 +
[B e- ] 2

V ar(s-)

where the last term is the reciprocal of the square of the coefficient of variation of ep 
(or, equivalently ep ).

3.4.2 R etired mem bership.

In the case of retirement ages (x > 65) the number of new entrants could reasonably 
be assumed to be equal to zero. In such a case, the difference between the expecta-
tions and the actual observed number of eliminations is likely to be due to the effect 
of mortality. Specifically, the mismatch may be of two types: an accidental type of 

mismatch, which is unlikely to be particularly substantial. The second is a system-
atic type of mismatch, which instead arises when the actuarial assumptions fail to 
adequately take into account all of the significant factors.

4Note that Cov(£+;£~) = -E[e+] • E[£~], because E[e+ • e~] =  E[max(0, £p) • min(0, £p)] = 0. 
Moreover, since E[e~] < 0 and E[£+] > 0, the covariance is positive.
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The second type is often referred to as longevity risk, since actuarial assumptions 
have been shown in the past to have underestimated the decrements in mortality 
recorded in the past, particularly for older cohorts5. An extensive literature on the 

topic exists, focusing on modelling issues, as well as on practical fitting problems and 

solutions.
A classical approach to modelling the mortality risk consists in distinguishing the 

two factors above described 6. A random noise with expectation equal to zero and 
finite variance (perhaps decreasing with the number of members) might adequately 
describe the deviations 7. Adding a reduction factor, a function of age and time, to 
the probability of being eliminated could provide a reasonable approach to model the 
longevity risk. Thus, the observed proportion of member aged x  — 1 at time t can be 

modelled as following:

p(x -  l ,f )  =  1 -  qx-i(t)RF(t)(l  + £q(x -  1 ,t))

where qx-i(t) is the probability tha t an individual aged x — 1 at time t is eliminated 

between t — 1 and t.
Hence, the random deviation between observed and expected number of members 

aged x at time t +  1 has the following expression:

en(x, t  +  1) =  n (x  -  1 , t)  (p (x  -  1 , f) -  px_ i)

=  n(x  -  l , i ) ( l  - p x- i (£)) 1 -  R F ( t ) (  1 + £q(x -  1, t)) (3.16)

and, it has expectation and variance given by the following equations:

5 Refer to CMIB for a comprehensive analysis of past and recent trends in UK mortality.
6See for instance Pitacco (2002).
7Recent literature, such as Lee and Carter (1992), Sithole et al (2000), Haberman and Renshaw 

(2003), Milevsky and Promislow (2001) and Ballotta and Haberman (2004), prefers to apply a 
reduction factor to the rate of mortality, rather than to the probability of elimination. However, in 
this context modifying the probabilities simplifies the mathematics. Nonetheless, more sophisticated 
models can be applied in this work as well.
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E

Var

£„(x,i +  l) |T t =  n(x -  1, t) (l - p x.i(t))  1 -  RF(t)

£n(x,t + l) |T t n ( x -  l , t ) ( l - p x_1(t))RF(t)
1 2

(3.17)

These expressions highlight the effect of a systematically decreasing mortality on 
the age distribution of the membership population, and as such, are used in the 
following section where we analyse the effect of mortality risk on the liability of a DB 

pension scheme.

3.4.3 The effect on th e liability.

When the population is assumed to be random, and particularly the decrements are 
random, then the GLG equation (2.2) cannot be expressed as the L G P  in equation 
(3.6). However, it is still possible to derive a number of results for the distribution of 

the liability.
Trivially, we can express the value of the reserve at time t +  1 as the difference 

between its expectation and the deviation from it:

AL(t  +  1 ) = E AL(t  +  1)| +  AAL(t  +  1) (3.18)

The annual deviation from the expectation, AAL(t) , can be expressed as a func-
tion of the mismatches in the number of members in each cohort. In detail, from 
equation (2.6) (assuming the same past service for all of the members) and first part 
of equation (3.10) we can write the following:
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A AL(t  +  1) =  AL(t  +  1 ) - E  AL(t  +  1 )| J t

LJ LJ
=  ^  ALxn(x, t + 1) — ^  ALXE n(x, t +  1) \Jt

x=a X—Ct
LJ CJ

=  ^ 2  ALxn(x, t +  1) -  ^ 2  ALxnx(t +  1)
x=a x=a
LJ

=  y 'ALxen(x,t+  1) (3.19)

According to the GLG equation (2.2) and from (3.19) and (3.18), we can write 

the following:

AL(t  +  1) =  AL(t) +  NC(t ) — B(t) (1 +  i) +  'y  ̂ALxsn{x, t +  1) (3.20)

or equivalently,

AL(t  +  1) =  AAL(t  +  1) +  [AAL{k) +  CF(k)] (1 +  i)
k=0

\t+l — k (3.21)

where CF(t ) is the cash-flow at time t, CF(t) = NC(t) — B(t).
The GLG equation (2.2) lets us write the expected value of the reserve at time 

t +  1 as a function of the previous year values of the reserve and of the cash-flow. 
Applying the same equation recursively, it is possible to describe the dynamics of AL  
as in equation (3.21), where the mismatch and cash-flow from each year are identified.

The number of random variables composing AL(t  +  1) is dependent on the time 
of valuation. When the expectation is conditioned to the filtration at time t, then 
only the deviation happening between t and t + 1  is random. Instead, if the valuation 
happens at a time s < i, then all the deviations between the two years, s and t +  1 ,
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are unknown.
Let us assume that the new entrants replace a proportion £ of the unexpected exits, 

and that there is no correlation among different cohorts of members. As mentioned 
before, the condition that the replacements have the same demographic characteristic 
of the exited members is not sufficient to lead to an equilibrium. In fact, it is also 

required that these new entrants have the same past service. Let us also assume that 
longevity risk exists, and thus, the scheme’s retired members experience a systematic 

decline in their mortality.
Hence, from equations (3.15), (3.17) and (3.19), we derive the following expression 

of the variance of the actuarial liability 8 :

Var AL{t +  1)| =  Vaxt j^AAL(i +  1) =
u> cV

= Vart [ 22 ALx£n(x , t +  l)j = 22 AL?XWart en(x, t +  1)
x = q  x = a

R — l  uj

— 22 ̂ 4^iVar \en(x, t +  l)j +  22 AL%Var en(x, t +  1)
x = a  x = R

R - l

= y  AL2xn(x -  1 , t )2 Vax(£p(x -  l ,t) )  +  (l — ( ) \ax(E~(x  -  l , t) )
x = a

-2 (1  -  C)Cov(e“(x -  l ,t) ,£ p (x  -  l , i) )
Ui r

22 ALl n(x ~ 1,*)(1 -Px-i(t ))RF(t)  a2q (3.22)
x= R

Equation (3.22) displays separately the effects of both the active and retired mem-
bership variability on the variance of AL. Hence, we can compute the proportion of 
eliminated members to be replaced, in order to minimise this variance. This propor-
tion is given by the following equation:

C* =  1 -  ^  (3.23)

8Note that the notation Varj indicates the conditional variance to the filtration 3~t at time t.
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where Vi and V2 are, respectively, the variance and covariance of negative and positive 
deviations of eliminated active members from the expectations and are given by the 

following:

Vi =  ^  ALln2(x — 1, f)Var ep(x — 1, i)"
x= 0
LÜ

V2 = Y ^ A L l n 2(x -  l,f)Cov £p(x — 1 ,t)~, ep{x — l , f ) '
x= 0

3.5 Surpluses and deficits.

The interest in analysing the impact of random population on AL  mainly lies in un-
derstanding what are the effects on the evolution of the liabilities. Therefore, it is also 
of interest to study to what extent a random population can affect the unfunded part 
of this liability. With this scope, we direct our attention to the equations describing 

the unfunded liability.
Specifically, a demographic model with stochastic membership affects the number 

of eliminations from the scheme. Thus, part of ul is generated by this variability, and 
hence, this model incorporates a demographic risk.

On the contrary, a demographic model with stochastic new entrants does not gen-
erate an extra contribution to ul, as long as funding is provided for the random number 
of new members. Nonetheless, the randomness included in this model amplifies the 

already existing risks.
Bearing this in mind we deal with the two models in separate subsections. Specifi-

cally, we first consider the case of a general stochastic membership, where it is assumed 
that no other risk exists. Then, we consider the more specific case of a demographic 
model with stochastic new entrants, but in presence of a financial risk as well; i.e. 
when the rates of return from the investments are allowed to randomly vary.
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3.5.1 Stochastic m em bership.

In a manner similar to the GLG equation, we express the expected dynamics of ul 
as in the following equation:

E[ul(t +  l) |T t] =  ul(t)( 1 +  t)( l -  k) (3.24)

Recalling section 2.6.2, k is the proportion of the annually amortised ul, which is 
added to the normal contributions in order to re-balance the scheme. Specifically, if 

the scheme is under-funded (ul > 0), the supplemental cost is positive and determines 
an extra contribution to be paid by the sponsor. On the contrary, if the scheme is 
over-funded (ul < 0), the adjustment is translated into a reduction in the annual 
contribution. However, the actual behaviour of the mathematical model depends on 
the parameter k ; in detail,

1. If k = 1, all the existing ul is amortised and the resulting expected ul is null at 

any time.

2. If k — 0, none of the current ul is amortised, and hence, the liability is expected 
to grow at the anticipated interest rate.

3. If |(1 +  *)(1 — k)| < 1, then the expectation of ul at time t +  1 is, in absolute 
value, lower than the absolute value of ul at time t.

This methodology for dealing with surpluses and deficits is commonly implemented 
in UK, but it is not the only one. Currently, in USA and Canada the annual gains 

and losses are instead spread over a fixing term, as illustrated in section 2.6.2.
Both methods can make the expected value of ul vanish in the long term (infinite 

time), if a number of assumptions are met, namely: the rates of return from finan-
cial investments have to be independent one year from the next one and must have 
expectation equal to the discount rate i\ moreover, condition 3 from the previous list 
must be met; and the demographic assumptions have to be borne out by experience.

In Owadally (2003) an alternative method is proposed, which assures convergence 
to zero, also in the case of systematic mismatches between the deterministic rates of 

return and the discount rate, i.e. r(t) =  r  ^  i.
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In chapter 6, we analyse the effect of relaxing the assumption of independence. In 
particular, sufficient conditions on k are found in order to assure that the expected 
ul converges to zero, when (r(f)} is a bounded stochastic process.

In this section, it is of interest to focus on the demographic risk only. Hence, 
we require that the rates of return are deterministic and equal to the discount rate;
i.e. r(t) = i Vi. In addition, we assume that the annual random ul increment (or 
decrement) is due to demographic variations only. Therefore, recalling equation (3.20) 

we assume that Aul(t) =  AAL{t).
Hence, in analogy with equation (3.18), it results that

ul(t +  1) =  E[ul(t +  l)|3y] +  A ul(t -t- 1)

=  ul(t)(l +  z)(l — k) +  AAL(t  +  1)
t+i

=  AAL{j)wt+l~̂  where w =  (1 +  z)(l — k) (3.25)
j =o

which holds if the scheme is assumed to be initially funded, i.e. u/(0) =  0.
From equation (3.25), we can see that the expectation of ul depends on the amor-

tisation proportion k and on the expectation of deviations of the number of members

7̂1)

t+ 1

E [ul(t +  1)] =  5 ^ u / +1- j E[AAL(;)] (3.26)
t=o

which is nil if the expected deviations in the membership population are nil 9.

3.5.2 Stochastic new entrants.

In this section we recall the demographic model based on stochastic new entrants, 
introduced in section 3.3. This simplified demographic model allows us to relax the 
assumptions on the financial risk. Specifically, we assume tha t the investment rates

9In order for the expectation of ul to be finite, the deviations en must have a finite expectation 
as well.
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of return randomly evolve in time.
Interesting aspects can be studied by allowing the rates of return to be random. 

However, this step further can be done at the expenses of narrowing the assumption on 
the demographic evolution. Specifically, under the assumptions tha t the eliminations 
from the population of the scheme follow exactly the expectations, the ul is given by 
the following recursive equation, the derivation of which is illustrated in Appendix 

A.2:

ul(t) =  -  AL(h) t) (3.27)
h= 1

where the function <j>(h, t) has the following form:

<KM)
w(l -  kY h(r(h -  1) -  i) n U ( i  +  r(j)) h E (1 , t -  1) 
v(r(t — 1) — i) h = t

(3.28)

As is shown in equation (3.27), ul is a sum of products of random variables. In 
particular, the variables t) describe the actual mismatch between the rates of 
return and the valuation rate, compounding their effect up to the time of valuation 
t. In a certain sense, 4>(h,t) plays a similar role to the parameter w in (3.26) and in 

previous equations, but extending it to the case of random rates of return.
The value of the reserve is random due to the stochastic number of members. 

We have seen in the previous sections that a stochastic demographic evolution is at 
the core of the variability of the reserve. Since the assumptions on eliminations are 
consistently borne out by experience, the demographic random evolution does not 
create a risk “per se”, but amplifies (or reduces) the impact of the financial risk.

From equation (3.27), the derivation of the variance of ul trivially follows:
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Var
t

(ul(tŸj — V ax j^^  AL(h) (¡>(h,t)
/i=i 

t t= EE Cov |AL(/i)<£(/i, t),AL(j)(f>{j, t)
/i=i j=i

(3.29)

Once the reserves in equation (3.29) are broken down by the number of members 

at each age10, the variance has also the alternative form:

Var^td(f)j =  (3.30)
r  r  i t

=  ^ 2  2 2  ALa+xALa+y 'Y2 2 2  ^ ov
x=0 y = 0 h=  1 j = l

which shows the direct link between the demographic evolution (number of members) 

and the financial risk.

The vast majority of scientific works in the literature of actuarial and life insurance 

mathematics is based on the assumption that financial and demographic risks are 
independent. Although this assumption is not necessarily appropriate, it is often 

made for mathematical convenience. However, several authors have investigated a 
number of potential avenues for modeling dependent insurance and financial risks: 

see, for instance, Dhaene et al (2001).

W ith respect to the model here considered, it is not clear whether a dependence 
between the returns from investments and the number of new entrants exists. It 
is a possibility that the underlying economic cycles do affect both the recruitment 
process of a company (and thus the entrants in its pension scheme) and the investment 
returns achieved by the management of the pension fund. However, the actual relation

10A more detailed expression would take into account the past service as well. This can be done 
by involving one more sum in the equation; hence further complications would not arise but the 
resulting notation would be more cumbersome.

n(a +  x, h)4>(h, t) ,n(a  +  y,j)(f>(j, t)
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between the two sources of risk is not yet clear and data and statistical evidence are 

not sufficient to support any conjecture.

Nevertheless, it is of great interest to investigate how those two sources of un-

certainty give rise to the variability of the mismatch between assets and liabilities. 
Furthermore, particular attention is focused on how the two assumptions - indepen-
dence and dependence - differently affect the overall variability of ul.

Recalling the decomposition of the variance of ul in equations (3.29) and (3.30), 
in this thesis we investigate the case of dependence as measured by the covariance. 
Hence, we do not consider the case of lagged dependence between the labour market 
and the capital market. In other words, we implicitly assume that any fluctuation in 
the rate of investment return has an immediate effect on the number of new employees, 
and thus, of new members in the scheme.

3.5.3 Independence.

Independence between investment returns and number of new members means that 

the actual realisations in the financial markets (or the more general economic growth) 
do not affect in any way the number of annual new entrants in the pension scheme, and 

vice versa. Mathematically, it implies that the covariance among those two processes 
is equal to 0, so Cov[<p(t), AL(t)] = 0 Vi. Hence, from equation (3.29) we can derive 
the following result, as it is illustrated in appendix A.3.1 (3.31):

t t ,
Var(ul(t)^j = ^ 2 ^ 2  I C o v ^A L (h ),i4 L (j))C o v ^(/i,i) ,^ (j,t))

h- 1 j=1

+  Cov(t(h,t) ,</>(j ,t j)-E[AL(h)\  E[AL(j )]

+  Cov (AL(h), A L { j j )  E[<j>(h, t)] E[4>(j, t)}} (3.31)

According to equation (3.31), the variance of ul is fully described by three fundamental
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components:

1. Cov(^AL(h), AL(j)^ C o v ^ (/i, t), 0(j, i ) ^ , which is given by the product of the 
covariances of both the random processes;

2. Cov(j>(h,t),<f>(j,t)j ■ E[AL(h)\ E[AL(j)\, which summarise the covariance of 
the financial risk, rescaled taking into account the expected value of the reserve 

at the corresponding points in time;

3. Cov(^AL(h), AL(j)  ̂ jE[(f>(h, £)] E[<j>(j,t)], which summarises the covariance of the 
reserve, rescaled with the expected financial mismatches at the corresponding 

points in time.

The effect on the variance of ul of specific assumptions regarding the demographic 
and financial evolutions are separately considered in the following paragraphs.

D eterm inistic stationary population.

If the pension plan population is assumed to be stationary and deterministic, then the 

financial risk is the only source of uncertainty in the model. Therefore, since at any 
time h the auto-covariance of the process AL(h) is equal to zero and its expectation is 
constant, E[AL(t)\ — AL  Vi, the magnitude of the resulting variance is proportional 

to the square of the value of the reserve.

r t

Var[uZ(i)] =  AL2Var (3.32)
L h= 1 J

This results holds for any process of the investment returns {r(t)}. Furthermore, 

it is consistent with Colombo and Haberman (2004), where the expression of the 
variance of ul has been used to derive an optimal contribution strategy under a de-

terministic model of a stationary population.

Stochastic stationary population.

Adding another source of randomness, by assuming that the membership function is 
a stationary stochastic process as modelled in section 3.3, the resulting variance of
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ul(t) has the following form:

Var
t t

— AL?Var ( (f>(h, t) ĵ +  y  y  Cov^AL(fl), AL{k)^ Cov(^(h , t),<fi(k, t) j
h= 1 h=l j=l

t t

+  y  Y ,  Cov( ^ W >  AL(kj) E[<f>(h, t)} E[<f>(k, t)} (3.33)
h=i j = 1

Comparing equation (3.33) to equation (3.32) shows tha t the demographic risk 
has an additive effect on the variance of ul. Specifically, the second term in the right 

hand side of equation (3.33) summarises the joint variability of the demographic and 
financial risks, by means of multiplying the covariances of the corresponding processes.

This particular structure holds only under the assumptions of independence be-
tween the demographic evolution and the financial risk. This assumption is also 
reflected in the fact that equation (3.33) contains information only about the depen-
dency within, but not between, the two sources of variability.

I ID  rates of return. Let us assume that a sequence of iid random variables, having 
same expectations equal to the valuation discount rate E[r(t)] =  r =  i describes the 

dynamics of the rates of return from the investments.
Such an assumption, on the one hand, is consistent with most of the literature in 

the field of DB pension schemes modelling, as in Dufresne (1989) and in Owadally 
and Haberman (1999). On the other hand, it is likely that it may not be entirely 
realistic, as returns from investments show a certain degree of autocorrelation11 and 
prudent actuarial approaches tend to set conservatively a valuation rate lower than 
the actual expected rate of return. The issue of prudence in the actuarial estimate of 

the discount rate is discussed in §6.3.
Under this assumption on the distribution of the rates of return, the random 

variable 4>{h, t ) has nil expectation V7i. This results for h < t because: *

u Refer to Wilkie (1987, 1995) and Haberman (1994) for models and applications of autoregressive 
processes in actuarial science.
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t- 1
E[cj)(h, i)] =  E v(l -  k f  h(r(h -  1) -  i) J ] j l  +  r ( j) )

j=h
t- 1

= o (l -  (:)*-'■ J ]E [ (1  +  r(j))]E [(r(fc -  1) -  «)] =  0 (3.34)
j=h

because <f>(h, t ) is the product o ft  — h + 1 independent random variables, and E [(r(/i -  

1) — z)] =  0 by assumption.
We separately deal with the two cases of a stochastic stationary population, and 

of any random population.

Stochastic stationary population. If the population is stochastic stationary, 

the following result holds:

t t
Var (u /(t)) =  AL2^ V a r (< K M ))  +  Var (A L(h)) Var

h=l h=l
h, t (3.35)

It is worth noting that the variance of the financial risk, times both the (square of 
the) expected reserve and its variance, fully explain the variability of ul 12. So when 
the population is stationary (on average) and the returns are iid, the financial risk is 
amplified by the amount of the reserve (which is informative of the liability position 
of the fund) and by the reserve variability due to the random population evolution.

Therefore, the actuarial method used for the reserving process affects the ul vari-
ability through the (square) expectation and the variance of the reserve. So a method 

leading to a smaller reserve does not necessarily lead to a higher risk.

■^Alternatively, the equation could be written as the product of the variance of cf>(h, t) and the 
second moment of the reserve at time h. This alternative expression is used in the following case.
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Any random population. The previous result can be slightly generalised, by 
letting the membership process assume any form, not necessarily specified. Specifi-

cally, holding the assumption of iid returns from investments the following relation 

holds for any distribution of the demographic evolution:

t
Var (u /(f)) = ]T £ [A L (h )2]V ar(V (M )) (3.36)

h= 1

Equation (3.36) suggests that the impact of a specific actuarial method on the 
variance of ul should be evaluated on the basis of the second moment of the distribu-

tion of the reserve.

3.5.4 D ependence.

As already mentioned, the assumption of independence between the demographic and 
financial risks is made mainly for mathematical convenience. Although there is no 
evidence to support any conjecture in favor or against dependence, it is a worth-
while exercise to analyse the variability of ul, once the assumption of independence 

is relaxed.
Recalling the variance of ul as expressed in equation (3.29), it can be seen that the 

structure of the variability is ultimately given by the covariances between the number 

of members in the scheme and the measure of the financial mismatch. However, it 
must be noted that this way of including dependence between the demographic and 
financial uncertainties does not allow for lagged dependence.

In the previous section 3.5.3, it is assumed that the processes {4>{t)} and n(z ,t) 
are independent and such an assumption allows to derive the result in equation (3.31). 
That decomposition of the variance no longer holds if the two processes are dependent 
on each other.

However, referring to the covariances in equation (3.30), the following result is 

proved in appendix A.3.2:
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Cov ('n(x,h)<f>(h,t), n(y,j)(f)(j,t))

= Cov±(n(x,h)<f)(h,t), n(y, j)<p(j, i)) ~ Cov(n(z, h), t)̂ j

■ Cov(n(y, j), <j)(j, t) ĵ -  Cov(n(x,h),<p(h,t)^J E[n(y,j)] E[<f>(j,t)]

-  Cov(n(y,j),  <j>{j,t)) £[n(x,/i,)] £[<KM)] (3.37)

where Covj_ is the covariance between the two products computed as if the demo-
graphic and financial risks were independent (see equation (3.31)).

Equation (3.37) provides a way to extend any model based on demographic and 
financial independent risks, without modifying the underlying assumptions concerning 
the dependence within each source of uncertainty.

The dependence adds some extra terms to the covariance as computed for the case 
of independence. Specifically, the added terms are the covariances between the two 
risks 13 and contain no information about the dependence within the two risks. As 
we have seen in the previous section, Cov_L is the measure describing the covariance 

within each source of uncertainty, and ultimately each source’s variability. Therefore, 
by giving an expression to the other covariances in equation (3.37), it is possible to 
describe different type of dependence between the financial risk and the number of 

annual new entrants.
Applying the decomposition in equation (3.37), such covariances lead to the fol-

lowing expression for the variance of ul:

Var =  Var I 1 u. — ( Cov (AL(h), <f>(h,t
^ h=1

t t

- 2 A L j 2 E [ ^ j , t ) ] j 2 C o y ( A L ( h ) ,  4>{h
3=1 h=l

13In fact, those covariances are combined and amplified in different ways.

(3.38)
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I ID  rates o f return. In order to gain some more information about the nature 
of this structure, it is worthwhile to analyse the simplified case described by iid 
investment returns, with expectation equal to the discount rate. Bearing in mind the 

limits of this assumption as described in section 3.5.3, it has to be said that in this 
case the assumption of independence is unrealistic. However, it might be the case 
tha t the rates of returns, although not independent of each other, are uncorrelated, 
which would imply that the expected value of t) is equal to zero at any time h.
Hence, equation (3.37) becomes:

Cov (n(x,h)<f>(h,t), n{y,j)4>{j, t)j  (3.39)

=  Co v _l (n(x, h)<t>(h, t), n(y,j)<p(j,t)^J -  Cov(n(x, h),<f>(h, f))Cov (n(y, j), t f j

which, in the light of equations (3.29), (3.30) and (3.36), leads to the following ex-

pression of the variance of u l 14:

( t

Co\[AL(h), 4>{h,tŸj
h=l

(3.40)

As anticipated by the result in equation (3.39), equation (3.40) shows that the 
variance is higher in the case of independence than when financial returns and demo-
graphic evolution are somehow dependent and henceforth it provides an upper-bound.

14The result in equation (3.40) can be directly derived from equation (3.38) as well, since 
E[<t>(h,t)\= 0.
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3.6 Summary.

This Chapter deals with the evolution of the membership population of a defined 

benefit pension scheme.
By introducing the classical population plan theory and the results in the liability 

dynamics deriving from it, we show the direct link existing between the structure of 
the membership population and the liabilities.

The standard deterministic model of a stable population, core of the classical 

pension plan theory, is then extended to a more general stochastic model. In section 

3.3, we demonstrate that, when the number of annual new entrants is randomly 
perturbated, while the decrements from the scheme are assumed to deterministic, a 
set of generalised results exist.

Specifically, using this demographic model, we identify the liability growth process, 
in analogy to the Bowers’ liability growth equation, which holds for deterministic 
stable population. Similarly, the stochastic counterpart of a stationary population 

leads to the Trowbridge equation of maturity - or maturity equilibrium - on average.

In section 3.4, a more general demographic model with stochastic membership 
is analysed. In detail, the complex phenomenon of the demographic evolution is 
decomposed into two streams of forces: positive factors, which increase the number 
of members; and negative factors, which decrease the number of members.

Specific models for describing how the demographic risk affect the variability of the 
membership population are considered, for both the active and retired populations. 

Furthermore, the effect of the demographic risk on the liability of the scheme is 

analysed as well.

The demographic models are then used to illustrate how the demographic risk 

generates unfunded liability.
Specifically, using the model with stochastic new entrants, the dynamics of the ul 

is studied, particularly focusing on its variance.
The risk is analysed from a general standpoint, as two sources of uncertainty 

affect the dynamics of the pension scheme: in fact, the new entrants process and the 
financial realisations are assumed to be randomly perturbated.
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In classical actuarial science, it is common practice to assume independence be-
tween the two sources of uncertainty. Although this assumption is not necessarily ap-

propriate, it is often made for mathematical convenience. In this section, we analyse 
the risk of mismatches (described by the variance of ut), under both the assumptions 
of independence and dependence between the two risks. However, using covariances 
in order to measure the degree of dependence between the two sources if uncertainty 
does not allow for dependence over time. Thus, this model extends previous research 
by taking into account a simplified case of dependence, which includes independence 
as a special case, but which does not capture the full complexity of the phenomenon.

Thus, it is possible to provide closed expressions of the variance of ul for a number 
of specific cases. In addition, we show how it is possible to identify and separate 
the variables describing the dependence structure within the two risks, from those 
describing the dependence between the two risks.

Under certain conditions, we find tha t the independence assumption leads to an 
upper-bound of the risk for the case of dependence.
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Chapter 4

Contribution strategies

In DB pension schemes, the capital accrued at the time of retirement should be suffi-
cient to finance the payment of an annual pension to each pensioner. As illustrated in 

§2.5, the final cost of such a benefit is known only a posteriori, after the death of the 
pensioner, since several components make this final cost random. Among these, there 
are: the final salary, which determines the amount of the pension; price inflation, 
to which pension benefits are often linked; the number of payments, which is clearly 

dependent on the length of the pensioner’s lifetime, as well as the lifetime of the 
spouse, or dependants, if any. Further, the expected present value of such a benefit 

can be evaluated at different points in time. Let P V F B r  indicate this present value 
at retirement age (say R), as expressed in section 2.5.

In order to accrue this amount, contribution strategies (or normal cost methods) 
rely on the annual contributions and on the returns from investments.

Specifically, each contribution strategy is characterised by a level of advance fund-
ing; i.e. the proportion of benefit funded by the returns from investments. In order to 
define this level we shall make use of the so-called accrual density function introduced 
in the next section.

This chapter focuses on the study of contribution strategies, proposing a classifi-
cation of normal cost methods based on the level of advance funding. The advantage 
of this classification is that it leads to natural measures of risk and cost of each con-
tribution strategy under stochastic rates of return, risk of the sponsor going bankrupt
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and random demographic evolution.
For computational convenience and for consistency with the existing literature, 

this chapter presents the pension model in continuous time. Indeed, it is straightfor-
ward to derive a discrete version of the model, which will be used when consistency 

with previous chapters is required.
Thus, in this continuous time model, the valuation rate it is substituted with an 

instantaneous valuation rate 5t. Likewise, the process of demographic elimination is 
described by using an expected elimination rate fix. Hence, in this model, it is possible 
to compute the P V F B X (as defined in section 2.9) by actuarially discounting P V F B r  
for R  — x years; i.e., in this case, according to the following formula:

First introduced in Cooper and Hickman (1967) and therein described as the pension 
purchase function, the accrual density function is a convenient tool in order to analyse 
the level of advance funding characterising a given contribution strategy.

This function can be thought of as the speed with which the fund is being accrued, 

and we shall see that this is a proxy for the level of advance funding.
Using the same notation and interpretation of Bowers et al (1976) - the accrual 

density function m{x) is defined to correspond to a probability density function, 

hence:

In analogy to a probability density function, it is possible to define the (cumula-
tive) accrual function M(x), which indicates how much of the fund has been accrued 
until an age x , as follows:

P V F B X = P V F B Re~Jr* [s"+^]du (4.1)

4.1 Accrual (of liability) density function.

(4.2)

(4.3)
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Having defined these two functions, it is clear tha t the set of potential accrual 
density functions is extensive. We shall see that to each accrual density function 

corresponds a specific normal cost method (or contribution strategy), and therefore 

the set of normal costs is at least as wide as the set of these functions.
The following equation provide a mathematical definition of the level of advance 

funding (LAF ):

fR R
L a f  — /  Sudum(x)dx  (4.4)

J a
Thus, we can interpret La f  as a weighted mean of compounding factors, where the 

accrual density function identifies the set of weights. Alternatively, equation (4.4) may 
express a measure of pension purchasing, which accounts for the annual purchased 
proportion of pension, proportionally rescaled by compounding factors, which give 
importance according to how long each proportion is invested in the market.

The mathematical representation of La f  in equation (4.4) does not include any 
compounding due to the elimination of members, as we have defined the Laf  as the 
proportion of final benefit funded by the investment returns. However, mortality 

could be included, in order to consider the La f  as a measure of how much the normal 

cost axe compounded up to retirement.
Remark. It is of interest for the development of this study to highlight the 

link between the La f  and the timing of the contributions: an accrual function with 
high weights at early ages determines an early accrual of the reserve. Therefore, the 
corresponding normal cost method is characterised by a high level of advance funding, 

since it substantially relies on investment returns.
Adopting a similar interpretation to the one given in Cooper and Hickman (1967) 

and in Economou (2003), the following classification of accrual functions is possible. 

We can define an actuarial cost method as increasing or decreasing according to the 

following rules:

Decreasing If M"(x) =  m'{x) < 0 , a < x < R, the resulting cost method is said 
to be decreasing, i.e. the accrual density function is decreasing with age and the 
cumulative accrual function decelerates. A method of this type quickly accrues
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the reserve, and so it heavily relies on the returns from investment. Therefore, 
a decreasing method is characterised by a high LAF ■

Increasing If M"(x) = m'(x) > 0, a < x < R, the resulting cost method is said 
to be increasing, i.e. the accrual density function is increasing with age and

density function. In this specific case, it is of interest to take into account the second 
derivative and extend the previous classification.

Indeed, an increasing method can be classified as

Accelerating if m"(x) > 0, i.e. if the corresponding accrual density function is 

increasing and convex.

D ecelerating if m"{x) < 0, i.e. if the corresponding accrual density function is 

increasing and concave.

In the case of a decreasing method (m'(x) < 0), the classification above is in-
verted: a decreasing convex (concave) accrual function determines a decreasing and 

decelerating (accelerating) normal cost method.
This classification extends the one given in Economou (2003), where an actuar-

ial cost method is defined as accelerating if the density function satisfies the first 

derivative condition.

4.1.1 Power accrual function.

As an example, let us assume that the accrual density function m(x) follows a power 
distribution of parameter p. According to the definition given in Johnson et al (1995), 
m(x) and M{x) have the following expressions, respectively:

the cumulative accrual function accelerates. Such a method determines a late 

accruing of the reserve and so it has a low Laf  ■

Further distinctions are clearly possible by recursively differentiating the accrual
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f r» a \̂p if a < x < R  and p > 0 
M{x) = { (K~“)P “  “  y

[ 0 otherwise

By varying the parameter p, the resulting accrual density function belongs to one 

of the different classes introduced before:

• For p < 1, the resulting accrual density function is decelerating-decreasing and 
quickly builds up a reserve.

• For p =  1, the power distribution collapses on to the uniform distribution and 
therefore m(x) is constant throughout the interval.

• For 1 < p < 2, the resulting density function is increasing and decelerating.

• For p — 2, the function m(x) increases linearly, and therefore the speed of 
increase (first derivative) is constant.

• For p > 2, the accrual density function is accelerating and increasing, and 
therefore the reserve is mainly built up with the latest contributions.

These five possibilities are considered and the corresponding accrual density and 

cumulative functions are displayed in the following figures 4.1. Specifically, the green 
line corresponds to p = 0.5, the red line to p =  1, the black line to p = 1.5, the yellow 

line to p =  2 and the blue line to p =  5:
It is of interest to note that the lowest p produces a high density at early stages, 

which quickly reduces. The corresponding cumulative function, instead, rapidly in-
creases and then slows down until reaching the limit equal to 1 .

By contrast, the highest p determines an extremely low density, which rapidly in-
creases by the end of the period, and therefore, the corresponding cumulative function 

has a similar behaviour.

4.1.2 Norm al cost m ethods.

Through the pension purchase density function it is possible to derive a wide class 
of cost methods, as defined in section 2.6.1. Specifically, the normal cost to be paid
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Figure 4.1: Power accrual function.

Density

Age

Cumulative

Age

at age x and the corresponding actuarial liability accrued up to that age, can be 
expressed in the following way:

NCX = m(x) P V F B X ALX = M (x)P V F B x (4.5)

These definitions axe equivalent to those given in Winklevoss (1993), in which the 
normal cost and the actuarial liability at age x are expressed as a proportion kx and 
Kx, respectively, of the corresponding P V F B xl .

Moreover, we have seen that when the parameter p is equal to 1, the power 
distribution describes a uniform distribution and thus the resulting density function is 
constant. In this case, the power distribution leads to the method known in actuarial 
practice as the unit credit method, see Table 2.1.

As already mentioned in section 2.6, contributions and investment returns are the 
sources of income funding the retirement benefit, and tha t the actuarial principle of 
equivalence needs to hold at any time. This means tha t in this specific model the 
following expression - derived from equations (4.1) and (4.2) - must hold: *

^ee  Winklevoss (1993) chapter 5, page 73, for the actuarial liability; and chapter 6, page 89, for 
the normal costs. Similar formulae are given in Bowers et al (1976), p.183-184, as well.
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PVFB_ (4.6)- f P V F B xm(x)e fx [¿u+Mu] du dx

4.2 Risk of strategies.

For each member of the scheme her/his fund accrued after x  years matches the theo-

retical value of ALX, only if (a) the returns from the investments have exactly repli-
cated the expectations; and (b) the demographic assumptions have been borne out 

by experience 2. If at least one of the two assumptions fails, a mismatch between the 
fund held at time x and the P V F B X will arise.

This section focuses on describing the risk of contribution strategies, by means 
of analysing the distribution of this mismatch and the individual effect of different 

sources of uncertainty.

4.2.1 Sources o f uncertainty and the accrued function.

In the previous chapter we have described the sources of uncertainty that affect the 
pension scheme. We have paid particular attention to the nature of the demographic 

variations, whilst the financial risk has been described as the risk of mismatch between 
the valuation rate and the rates of return.

In the continuous time model, a force of elimination ¡j,x describes the expected 
behaviour of the membership population aged x, while ¡i{x) represents the corre-

sponding observed force of elimination.
In other words, fix and ¡j,(x ) describe the theoretical and the observed elimination 

due to demographic causes, such as mortality, disability and unemployment.
A model including the eliminations as a source of uncertainty will then consider 

as a stochastic process. For this purpose, the model in Section 3.4 can easily 
be extended to the case of continuous time.

Similar considerations can be made with regard to the rates of return from in-
vestments. In particular, it is noted that no model has been specified for describing

2In a subsequent section we also introduce the possibility that the sponsor stops contributing in 
to the pension fund, as another source of uncertainty.
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these returns. Chapter 6 focuses on several potential models, in order to describe 
the returns from investing in a portfolio of different types of assets. Moreover, the 
allocation of the capital into different assets adds one more degree of complexity to 
the investigation of the risk profile of contribution strategies. Hence, in this chapter, 
we consider a fixed allocation of the capital, and hence, we do not allow for using 
asset allocation as a tool to control the financial risk.

The sources of uncertainty affect the risk level of the contribution strategies. This 
risk varies according to the way in which the payments have been structured, i.e. in 
terms of both amounts and timing of payments.

It is of interest to illustrate two different viewpoints from which perceiving the 
risk of a contribution strategy: a classical actuarial view and an alternative one.

In the classical actuarial view, a decreasing cost method is believed to be safer 
than an increasing cost method. According to Collinson (2001), this is because a 
decreasing method builds up a substantial amount in a relatively short period of 
time, through payments of large amounts at the early stages of the working career of 
an employee 3. In this way, a substantial reserve is quickly built up.

The risk profile of a contribution strategy is thus linked to its characteristic rate 
of accrual and we can summarise this classical view with the following rule of thumb: 
the earlier the funding of the reserve, the safer the strategy.

Recalling the classification of accrual density functions illustrated in section 4.1 
from the classical point of view, a decreasing method is safer than an increasing 

one, because it determines an early accrual of the reserve. Furthermore, among the 
decreasing methods, the decelerating strategies are even safer than the accelerating 

ones.
This view of riskiness is exclusively concerned with the risk of the plan’s sponsor 

defaulting on her/his payments and stopping contributing in to the pension scheme. 
Therefore, the risk of default is the only source of uncertainty accounted for, whilst 

valuating the risk of contribution strategies.
However, there is a pitfall in this logic. Specifically, a decreasing method (or early 

contribution strategy) particularly relies on the returns from investments in order to

3See, for instance, the definition of security provided in Collinson (2001), App 2-10.
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fund the retirement benefit. Thus, if these returns are not guaranteed, as is likely to 
be the case, then the more a method relies on these returns, the riskier it is.

Henceforth, we propose an alternative view of the risk, which takes into account 

the stochastic nature of the investment returns. The corresponding intuitive rule is: 
the earlier the funding of the reserve, the riskier the strategy.

This alternative view focuses on the effects of the financial risk on the distribu-
tion of the accrued fund at retirement. Clearly, a strategy which relies on investment 
returns exposes the actual value of the accrued contribution to the volatility of the 
markets, and therefore, the resulting final accrued fund is random. Trivially, a strat-
egy which does not involve investing in the market, does not expose any capital to 
the volatility of the returns, and therefore it is completely safe.

Thus, from this standpoint, an increasing method is less risky than a decreasing 
method, since the former builds up the reserve at a later time, relying less on invest-

ment returns. Moreover, among increasing strategies accelerating methods are the 

safest.
The fact that the two views of risk are in complete contrast does not mean that 

one is wrong and the other is correct. These two rules lead to opposite strategies, 
because they pay attention to two different sources of uncertainty.

Actually, the alternative view is not better than the classical one, since while 
attempting to account for a specific source of risk, it actually disregards the other. 
In fact, this view of the risk is correct, if later payments will certainly be made. This 
is maybe true in the case of public-sector pension schemes, where the probability of 

default is almost nil.
Therefore, the alternative view fails to account for the risk that the plan’s sponsor 

may default in her/his payments. Likewise, the classical view fails to account for the 
risk that the actual returns from investments may be lower than expected.

In actual practice, the scheme manager is likely to find herself/himself in a situ-
ation where both risks exist. In such a situation, the risk profile of a strategy varies 
according to the default risk of the sponsor and to the investment strategy imple-

mented by the fund manager.
Therefore, there is the need of a measure of risk which accounts for both the
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sources of uncertainty 4.
In chapter 6, the issues related to the choice of suitable financial models are 

considered in detail; whereas, in this chapter, the returns from investments (r(f)} axe 

regarded as a general stochastic process.
In the following section, two models are considered as potential approaches to the 

modelling of the default risk of the plan sponsor.

4.2.2 T he default probability m odel.

As previously illustrated, the default risk plays a crucial role in the determination of 
the overall risk of a strategy, and for such a reason, this risk is included in the current 

analysis.
Let 7x be a random indicator variable, which is equal to 1 if the sponsor is still 

in business at time x, while it is equal to 0 if the sponsor goes bankrupt before that 

time.
In order to compute the probability of such an event, we assume that the time 

to default is distributed exponentially with a constant parameter 7 . Such a model is 
an extreme simplification of the hazard models introduced in Cox and Oakes (1984), 
which have been subsequently extended for the analysis of credit risk in recent years, 

see for instance Duffie and Singleton (2003). Here, we do not aim to develop an 
alternative model, but consider the simplest case of a constant hazard function.

Moreover, the inverse of a constant intensity is the expected number of years 
before defaulting, thus providing a useful interpretation of a parameter which may 

be hard to estimate.
So, the the probability that the sponsor defaults between time x — 1 and x, given 

that at time x — 1 she/he is still in business, is given by the following:

Pr[7x =  0|7 l_i =  l] =  1 — e-7 (4.7)

Furthermore, the distribution of the default depends uniquely on the intensity of

4The demographic risk could be considered as well, by using in equation 4.4 a general compound-
ing factor which includes both the force of investment and the force of elimination.
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default 7  and so it is independent of any other factor.
Of course, this assumption may not be entirely accurate, because the risk profile 

of a sponsor (in terms of probability of default) is likely to depend on its financial 
status and on the current economic conditions.

A potential model to represent the effect on the time to default of economic 
conditions is proposed in Ngwira and Wright (2004). Specifically they introduce the 
deviations of the annual market return from its expectation as an explanatory variable 

of the probability of default. Quoting the authors, the underlying idea is that "... 
weak financial markets could lead to large pension schemes deficits at a time when 
the sponsor is financially weak and thus unable to meet with large additional scheme 
contributions. ”

The model in Ngwira and Wright (2004) is a log logistic accelerated life model as 
defined in Cox and Oakes (1984), where the probability of default over one year is 
formulated as the following 5:

^  1 +  exp{n +  Aq  (r(f) -  <5t)}

where Aq  is the risk premium in the market; and 7r is such that if the market return 
exactly matches 6t, the probability of default is exactly (1 +  e7r)_1.

In fact, in the Ngwira and Wright (2004) model (4.8) is the probability of sponsor’s 
default, conditional on the event that the pension scheme is currently under-funded. 

Differently from the cited authors, here we consider (4.8) as the probability of spon-
sor’s default independently of the financial status of the pension scheme, since we 
are interested in modelling the possibility that the sponsor stops contributing to the 

pension scheme.
Furthermore, here we require that the probability of default (when not affected 

by the financial market) is equal to the probability (4.7). Hence, the following is 
assumed to hold:

7T =  — log — 1^ (4.9)

5Here the simple case, with no business specific components relating to the sponsor, is considered.
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where jV =  1/7 is the expected number of years before default. In addition, when 
this condition holds, the probability (4.7) becomes the special case of probability (4.8) 

when Xq  is set equal to 0.

4.2.3 M easuring the risk.

The mismatch between the accrued fund value and its expectation can be defined
in several ways. In Chapter 3, we have seen how the unfunded liability provides 

a natural process, from which it is possible to compute a measure of risk for the 
whole scheme. However, in this specific case a mismatch happens at the level of an 
individual member (i.e. related to her/his accrued fund), and so it is convenient to 
identify an individual member-based underlying process, which, in consideration of 
the previous discussion, should also include the probability of sponsor’s default.

In light of this, we consider that, at a general age y, the accrued value of normal 

costs (ACy) is given by the contributions paid up to time y, and then compounded at 
the earned rates of return and at the observed elimination rate. In the most general 
case, this value is random, because the financial and demographic realisations axe 
stochastic processes. In addition, we consider that the contribution to be paid at the 

beginning of the general year x may not be paid, according to whether the sponsor 

defaulted or not.
Specifically, the probability that each payment is made is equal to the probability 

that the sponsor does not default on its payments. Such a probability is expected to 

decrease with time.
Let us describe the accrued value at age y with the following expression:

In order to evaluate the wealth of the fund at any given time, we compare this 
process to a benchmark provided by the level of reserve, which is the theoretical 

value of the member’s fund; i.e. the value of the fund if the actuarial assumptions 

are actually realised.
For mathematical convenience we consider the ratio between the accrued value at

(4.10)
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ACy ef> (u)~flv]du+f- [r(-u)~5u]du m(x) ^ d x
ALy = ~  M M  (4-11)

According to the terminology of life insurance actuarial mathematics, the above 
member-based underlying process is defined as the ratio between the actual and the 
expected retrospective reserves. The two stochastic processes - financial and demo-

graphic - axe represented in terms of instantaneous deviations from the (logarithmic) 

expected values.
Fixing the time of valuation - say at time of retirement R  - process (4.11) becomes 

a random variable. Hence, we can measure the risk of mismatch, by means of studying 
the distribution of this variable as a function of the implemented contribution strategy 
identified by the accrual density function m{x).

Leaving aside the demographic risk (so /¿(f) =  /¿t Vf) 6 7, we can compute a general 

risk measure 4> at retirement:

a  g iven  a g e  y  a n d  th e  c o rre sp o n d in g  A L y 6. U sing  (4 .1) a n d  (4 .5 ), w e c a n  show  th a t :

4>r a c r  -I 
■ P V F B R.

=  $ J x K“) 5“ldu m(x) 7Xdx

A n exam ple of a coherent measure

(4.12)

In order to gain a better insight into the study of the risk of normal cost methods, 
it is a useful exercise to compute this measure for some basic contribution strategies. 
Let us assume that the measure $  is a coherent measure in the sense of Artzner 8, 

without specifying the functional form of 4'.

6The convenience lies in the fact that the model is in continuous time, thus using forces of 
interest, rather than rates. In a discrete time model, the difference between the accrued value and 
its benchmark may be a more convenient quantity to consider.

7The extension to the case of existing demographic risk is relatively straightforward and it could 
be implemented using the model described in Chapter 3.

8As illustrated in section 2.7.2, subadditivity, positive homogeneity, monotonicity and translation 
invariance are the properties characterising a coherent measure. For more details refer to Artzner 
et al (1999).
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Terminal Funding. A terminal funding (TF) strategy requires the funding of the 

final benefit with the payment of a lump sum at retirement; see, for instance, Lee 
(1984). The value of this payment is equal to the value of P V F B r , s o  the following 
is the corresponding accrual density function:

mrF (x) =
0 if x < R
1 if x = R

Since the accrual density function is non zero only at time R, and at that time 

the exponential function in equation (4.12) is equal to 1, the default risk is the only 
source of uncertainty that can affect this strategy.

Hence, the risk measure assumes the following value:

3>
ACR

=  $(7*) (4.13).PVFBr It f

Loosely speaking, the risk of this strategy is equivalent to the risk that on the day 
of the member’s retirement the sponsor will make the payment of the lump sum in 

order to finance the promised benefit.

Initial Funding. The so-called initial funding (IF) strategy requires the funding 
of the retirement benefit with the payment of a lump sum at the beginning of the 
employee’s working lifetime (say age a). The value of this payment is clearly equal to 

the value of P V F B a, so the following is the corresponding accrual density function:

| 1 if x = a 
™i f (x ) =  <  n

[ 0  if x > a

The risk of this strategy is dependent only on the financial risk, as the sponsor is 
assumed to be solvent at the beginning of the employee’s working lifetime; i.e. 7Q =  1. 
Hence, the risk of the IF strategy is given by the following:

$ AC* =  $ D/<flr(“)-<5'*ldu (4.14)
IP V F B r I i f

Trivially, the risk of this extreme strategy is that the returns from the investments
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do not match the expectations, with the result that the fund accrued at retirement 
differs from the required amount.

Remark. It is of interest to investigate how the order of dominance changes 
while varying the initial assumption regarding the sources of uncertainty. Specifically, 

let us assume the two following extreme situations:
(1) Suppose that there is no financial risk, but the default risk exists; then the 

ranking anticipated by the classical view is satisfied.
In fact, if the process (r(t)} is deterministic (and, without loss of generality, 

equal to the instantaneous valuation rate 9), then in equation (4.14) the resulting 

exponential is equal to 1 ; while, the resulting default indicator function is a random 
variable. Therefore, the risk measure $  would be expected to provide the following 
relation of dominance, because of the property of a coherent risk measure:

$IF =  $ ( 1) < $ ( 7fl) — $ tf  

The IF strategy is thus safer than the TF strategy.
(2) On the contrary, if there is no risk of default, but the force of return is random, 

than the ranking anticipated by the alternative view is satisfied.
In fact, if there is no default, is certainly equal to 1, whereas the financial risk 

leads the exponential in equation (4.14) to be a random variable.

Thus, the following order holds:

4>/c’ =  $ > $ ( 1) =  &TF

and according to this the TF strategy dominates the IF strategy. These two results 

are consistent with the intuitive arguments discussed in section 4.2.1.

9This assumption is made for the sake of simplicity. In fact, if {r(t)} is deterministic but different 
from {¿t}, then the exponential in equation (4.14) would result in a constant. Hence, for the property 
of positive homogeneity, the analysis of the risk measure as a function of the contribution strategy 
m(x) would be insensitive to that constant.
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H alf Tim e Funding. Let us consider a “half time” (HT) strategy, which relies on 
the payment of a lump sum at exactly half time between the entry age a  and the 
retirement age R. The amount of such a payment is equal to the present value of the 
benefit at that time and therefore the corresponding accrual density function is given 
by the following:

mHT(x)
0 if a < x < H
1 if x = H
0 if H < x < R

where H  =  is half time. The corresponding risk measure is:

$
ACR

P V F B r HT
=  $ J s H “)-*«]*1H (4.15)

and it reduces to the following values in the two cases of (1 ) no financial risk but 
default risk and (2) financial risk but not default, respectively:

(1): $ h t  — *&(r (h ) &nd (2): & h t  — c j£ [ r { u)-Su]du (4.16)

Split Funding. Finally, let us consider a “split funding” (SF) contribution strategy, 

which requires the payments of half of the benefit at the beginning of the employee’s 
career and the other half at retirement. Basically, this strategy is a combination of 
the (IF) and (TF) strategies, and the corresponding accrual density function has the 

following form:

mSF(x) -

The risk measure is then given by:

ACr

1/2 if x — a 
0 if a < x < R  
1/2 if x = R

<f> — *  [- efa Hu)-««]** l 13.
SF  h  + 2

(4.17)
P V F B Rl

If the property of subadditivity of the risk measure is satisfied, the split strategy
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is less risky than a combination of the (IF) and (TF) strategies.
This risk measure assume the following values in the two cases of (1) no financial 

risk but default, and (2) financial risk but not default:

(1 ):

and (2):

$ sf  =  

$ s f  =

+  ^ ( 1)
1

$ + -2m (4.18)

In both equations (4.18), the sign of equality holds (instead of the < required by 
the property of subadditivity), because only one source of uncertainty exists in each 

case.

R em ark . Assuming that only the financial risk exists, a coherent risk measure 

determines the following ranking:

$ T F  < & S F  < ^  H T < & I F  (4.19)

Not surprisingly, the IF strategy is the riskiest one, since the capital is exposed 
to the financial risk for the longest time.

By contrast, if there is no financial risk, but the sponsor is subject to the risk of 
sponsor default (i.e. bankruptcy), the following ranking holds:

$ I F  < & S F   ̂4?H T  ̂& T F  (4.20)

It is of interest to note that the SF strategy dominates in both cases the HT 
strategy. This relation between magnitudes of risk is expected, because the former 
strategy guarantees the payment of half of the value of the benefit. As a m atter of 
fact, if there is no risk of default the final payment is guaranteed; similarly, if the 
return from investment is certain, the initial payment, compounded up to retirement, 
will constitute half of the benefit. Conversely, the HT strategy will certainly expose 

the fund to at least one of the two sources of uncertainty.
However, if both the risks exist, this ranking does not necessarily hold.
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Sim ulation based analysis.

Assuming the model in §4.2.2, we aim to compare the case in which the two sources 
of risk act independently of each other, against the case in which they are somehow 
related. In order to do so, a simulations based approach is used. Details of the 

assumptions and the numerical figures for the parameters are in Appendix B.
As illustrated in section 4.2.2, in order to describe the dependence between the re-

alisations in the financial market and the probability of default, we employ the model 
proposed in Ngwira and Wright (2004). When, instead, we do not need to include 

such a dependence, we assume that the time before default follows an exponential 
distribution, as described in section 4.2.2.

The forces of returns (r(t)} are modelled as a sequence of iid random variables 
following a normal distribution with expectation equal to the (constant) force of 
discount 6. Potential approaches to more structured models of the rates of return are 

considered in chapter 6.
According to these assumptions, a risk measure of the loss is computed on 10,000 

generated scenarios. Specifically, we use a risk measure, coherent in the sense of 

Artzner, of the following form:

3>(X) =  E 1 - X \ X  < 1 Pr X  < 1 (4.21)

where X  =  This measure is similar to the M S and the T C E  introduced in

section 2.7 (see equations (2.18) and (2.19)), however it differs from them, because 
it maps the ratio only if it takes a value lower than a fixed threshold (equal to 1, 
and which can be interpreted as the “loss”), instead of being defined in terms of a 
quantile. For this reason, the conditional expectation is subsequently multiplied by 

the probability that a “loss” actually occurs.
Moreover, this measure has a direct economic interpretation as the expected cap-

ital required to recover from the loss. Clearly, the higher is the measure the riskier is 

the strategy 10.

10Whether this measure really provides a reliable ordering may be subject to criticism. In fact, 
measure (4.21) can assume the same value in both of the two opposite situations, where the losses are 
(a) large but unlikely; or (b) frequent but small. In such a situation, it is not clear whether a measure
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Sensitivity to  financial volatility and probability of default. The following 
set of four graphs display the surfaces generated by the risk measure computed against 
the probability of no default and the volatility of returns when the two sources are 
independent of each other. Specifically, the cases of four contribution strategies, 
derived by setting p = 0.1, 0.25, 1 and 2 are considered n , when the volatility varies 
from 0 to 10% and the probability of not defaulting varies roughly between 1% and 

90% 11 12.
In all of these figures, the risk has its minimum in correspondence to the low-

est probability of default and the lowest volatility of returns, independently of the 
employed strategy. Clearly the risk increases as the sources of uncertainty strengthen.

The main information conveyed by these figures is that, as the La f  increases (i.e. 

earlier funding), the risk becomes more sensitive to the volatility of the returns, and 
less sensitive to the probability of default of the sponsor. These results are expected 

in the sense that they are consistent with the intuitive arguments considered in section 

4.2.3.
In fact, for p = 0.1 - Figure 4.2(a), the surface increases with the volatility, 

regardless of the value of the probability of not defaulting. In Figure 4.2(b), this 
increasing trend is not as marked as in the previous figure, especially when the default 

is very likely to happen.
Furthermore, as the level of advance funding decreases (jp increases) below a certain 

threshold, the risk measure becomes more sensitive to the risk of default than to the 
risk of negative financial performances. In particular, for p =  1, an increase in the 
volatility of the returns is not necessarily followed by an increase in the risk measure; 
in fact, the risk measure can actually decrease when the probability of default is 

extremely high.

based on expectations - as in this case - really reflects the risk preferences of an economic agent. An 
alternative measure, overcoming this problem, is the semi-variance as defined in Markowitz (1991). 
Such a measure, however, is mathematically intractable and has a difficult interpretation.

11 For p > 2, that is for accelerating increasing methods, the resulting surfaces look very similar 
to the case p = 2, although they are shifted to different values on the y—axis. For this reason, cases 
for p > 2 are not considered.

12In an exponential model, these probabilities correspond to the range from 1 to 500 expected 
years before default.
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F ig u re  4.2: R isk  se n s it iv ity  to  so u rc e s  o f u n c e rta in ty . P ro b a b il i ty  a re  in  p e rc e n ta g e s
a n d  v o la t i l i ty  is ex p re ssed  p e r  th o u sa n d s .

Figure (a); p=0.1 Figure (b); p=0.25
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This apparently counterintuitive result has a logical explanation. In this instance, 
the volatility of the financial market is modelled by means of assigning a specific value 

to the standard deviation of the log-normal distribution used to simulate the rates of 
returns. Thus, the larger is the standard deviation, the higher is the volatility and, 
as a consequence of that, the more likely are both high and low returns.

Therefore, if the value of p is sufficiently large (say p > 1) and the probability 
of default is extremely high (> 95%), then increasing the volatility of returns has 

a two fold effect on the risk measure (4.21): on one hand, it reduces the probability 
of a “loss” (value less than 1), because very high returns are possible although very 
unlikely; on the other hand, high volatility increases the conditional expectation of 
this “loss”, i.e. the capital required to make up for the missing fund.

When we aggregate these two reactions, we realise that a more volatile financial 
market has the overall effect of reducing the risk measure, because the reduction in 

the probability overwhelms the increase in the conditional expectation.
For instance, in graph (d) (p =  2, low Laf  ) corresponding to a high probability 

of default ( 95%), the surface declines from the top right corner ( 0.83) to the left 
top corner ( 0.66) as the volatility increases. This happens because the probability of 
a “loss” decreases from 95% to roughly 76% when the volatility increases from 0 to 

10% .

Bearing these considerations in mind, it is worthwhile asking whether - given the 
probability of default of the sponsor - a level of advance funding exists such that the 
risk measure is insensitive to the financial volatility.

The next figure displays 4.2(d) projected on to a two-dimensional plane.
The LAf  corresponding to p = 2 (red thick line) is such that, when the probability 

of default is equal to 63% (red thick line), the risk measure is (almost) insensitive to 
the volatility of the returns (the red thick line is almost a straight horizontal line). 
A linear regression of the risk measure against the values of the volatility returns a 
gradient not significantly different from 0 (—0.003756), with a p-value roughly equal 

to 94%.
The following table 4.1 displays, for a set of values of the probability of default, 

the levels of advance funding that make the risk measure insensitive to the financial
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F ig u re  4.3: R isk  in se n s itiv ity : v o la t il i ty  vs  r isk  m e a su re . L a f  p =  2.

risk 13

Table 4.1: Risk insensitivity.

Prob d e fau lt LAF ~ p
99% 0.375
95% 0.475
83% 0.725
72% 1
68% 1.4
63% 2

According to table 4.1, if, for instance, the probability of default is estimated 
around 68%, the strategy with p =  1.4 is almost insensitive to the financial volatility.

The set of graphs in Figure 4.4 display the sensitivity of risk when the probability 

of default is fixed. Specifically, we choose 4 possible values for this probability, in 
order to display how the surface changes when the probability of default decreases. 
From this perspective, it is possible to illustrate how to combine a specific L a f  with

13In particular, if the risk measure plotted against the volatility has a gradient non significantly 
different from zero with a p-value greater than 50%, the strategy is considered insensitive to the 
volatility.
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the volatility of the financial uncertainty, in order to achieve an acceptable level of 
risk, given the sponsor’s probability of default.

Figure 4.4: Risk sensitivity to financial volatility and p

Pr No default = 0.01 Pr No default = 0.66

0 0

The risk surface rotates around the diagonal from the origin to the coordinates of 

maximum volatility and maximum p (lowest La f  )•

95



It can be seen also from this perspective that, when the default is almost certain 
(probability of no default =  1%), the risk measure tends to be indifferent to the 
volatility of the investments.

However, in the determination of the risk measure, the lower is the probability of 
default, the more significant is the volatility of returns.

In fact, when the probability of no default is very low ( 9%), the volatility of 
returns plays the major role. As previously illustrated, in this situation it is possible 

that a higher volatility may imply a lower risk measure.

Sensitivity to  the dependence betw een investm ent return and probability  

of default. In order to investigate the difference between the results obtained when 
the probability of sponsor’s default is dependent to the investment returns, and when 
is not, the following analysis is carried out. The two figures 4.5(a) and 4.5(b) display 

the surface of the ratio of the two risk measures generated when the two sources of 
uncertainty are dependent and independent.

The model described in section (4.2.2) is considered for the two cases of Aq  = 4.5% 
(as used in Ngwira and Wright (2004)) and Aq  = 0. By construction, when the model 

of dependence determines more risk than the the model of independence, the resulting 
ratio is higher than 1, and hence, the surface (red area) lies above this level.

The two cases of high and low LAF are considered in Figure 4.5 (a) and (b), 
respectively, when the volatility of the returns varies between 0 and 10% and the 
probability of not defaulting lies in the range 10% and 99%.

Based on these cases we make the following remarks •

• In graph (a) the surface is not very sensitive to the probability of default. This 

happens because p = 0.1 generates an early contribution strategy heavily relying 
on investment returns and fairly insensitive to the probability of default.

Conversely, graph (b) is much more dependent on the default probability than 
on the volatility of the market. Again, this is due to the level of advance funding 

implied by the parameter p.

• In graph (a) the maximum occurs at the origin for volatility. Moreover, when
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F ig u re  4.5: R a t io  o f  r is k  m e a su re s  fro m  th e  d e p e n d e n t  m o d e l to  th e  in d e p e n d e n t
m o d el.

Graph a -  P= 0.1

Graph b -  P= 2
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this volatility is low the surface is constantly over 1 , regardless of the probability 

of default. This suggests that when a safe financial strategy is implemented, 

the dependence between the two sources of uncertainties generates some extra 
risk. Hence, if an early contribution strategy is implemented, and thus, the 
financial risk is the most relevant, then volatility is more dangerous when there 
is independence, and not dependence, between the two sources of uncertainty.

In graph (b) the maximum is at the point of maximum volatility and highest 
probability of default, thus showing that a late contribution strategy is even 

riskier if the sponsor is likely to default in a world where the investment returns 
are going to affect (or are correlated with) the probability of such an event. 

Hence, if a late contribution strategy is implemented, and thus, the default risk 
is the most relevant, then dependence, rather than independence, makes the 
default risk even more dangerous.

• In general, this analysis corroborates the hypothesis tha t when the two sources 

of uncertainty act independently of each other, the overall level of risk that 
results may be extremely different from the risk generated by two correlated 

sources. However, Figure 4.5 suggests that whether this level of risk results 
higher or lower depends on the combination of contribution and investment 

strategies implemented.

4.3 Cost of strategies.

In this section we argue that a comprehensive analysis has to take into account both 
measures of risk as well as the actual cost of a sound risk management strategy.

As we have seen, it is possible to derive a risk-based ordering of contribution 
strategies. However, such a ranking does not necessarily match the preferences of the 

sponsor.
In fact, when choosing the contribution strategy to adopt, the sponsor takes into 

account other aspects in addition to its characteristic risk. One of these aspects is 
the actual cost of implementation - Owadally (1999) refers to this as the long term
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cost of pension provision; see also Daykin (1999).
In the environment described by the current model, inflation is fixed and all of 

the amounts are expressed net of price inflation. Hence, the sum of the normal costs 
may provide a suitable measure of the cost of a contribution strategy. Thus, the cost 
of a strategy is the proportion of the final benefit funded by the contributions.

However, since not all the members are expected to survive up to the retirement 
age, the expected cost is instead taken into account:

NCxe - ^ ^ dudx =

=  P V F B a (4.22)

By substituting the normal costs NCX, as in equation (4.5), we derive the second 
expression for the expected cost of a strategy. Equation (4.22) leads to the natural 
interpretation of the expected cost as the complement of the level of advance funding. 

The equivalent discrete version of the cost is given by the following:

T

E  [Cost] =  NCa+x xpa (4-23)
i = 0

where xpa is the probability that an individual aged a  survives for x  years, xpa =  
anq the annual premium NCy is computed as following:

rv+1
NCy =  / P V F B xm{x)dx (4.24)

Jy
Clearly, by artificially setting the survival probability equal to 1 at all ages, the 

measure given by the expected cost would collapse to the simple total cost.

Financial risk. In the previous section we have seen that, if the financial risk is 

the only source of uncertainty, the higher is the level of advance funding of a strategy, 

the higher is its risk.
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In this specific case, we can state the following intuitive rule: the more expensive 
is the strategy, the lower is the risk.

This is because of the timing of a contribution strategy: the earlier is the funding of 
the pension (which means that the pension is mainly funded with the contributions 

at early ages), the less expensive is the strategy. This happens because an earlier 
contribution strategy relies more on investment returns, than a later one would do. 
On the other hand, an earlier strategy would expose the accrued fund to the volatility 
of all the existing risks for a longer period.

Therefore, the relationship between the level of funding and the cost leads the risk 
and the cost itself to be inversely related. So, even though a strategy may optimally 
reduce the risk, its cost might be excessively high for the plan sponsor. Hence the 
plan sponsor might not want to achieve the safest position. Nevertheless, it might 

prefer to implement a more convenient strategy, for which the resulting level of risk 
is still acceptable. Clearly, in the decision-making process of choosing a suitable 
contribution strategy, a trade off between cost and risk arises.

Default risk. If the risk of default is the only source of uncertainty, then the 
higher the level of funding of a strategy, the lower its risk. In this specific case, a 
trade off between risk and cost does not arise and the safest strategy dominates all 
the others in term of risk/cost efficiency, since it is the cheapest strategy as well.

In the most general case, where both sources of uncertainty exist (and perhaps 
interact), it is likely that a risk/cost trade off arises.

Hence, with the objective of exploring tools to reduce a DB pension scheme risk, 
it appears crucial to include in the model a variable which takes into account the 
cost of contribution strategies. In the following chapter, we devise a methodology to 

derive optimal contribution strategies, in the sense that they minimises a give risk 
measure, taking also into account the cost of pension provision.
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4.4 Summary.

In this chapter the classification of normal cost methods based on the accrual density 
function as introduced in Cooper and Hickman (1967) is adapted to define the level 
of advance funding of a contribution strategy. Using this function, we also interpret 

the normal cost methods in terms of the risk that, for each member of the scheme, 
the fund accrued at retirement differs from the expected value of the benefit.

With the aim of proposing a ranking of the normal cost methods, we separate the 
effects of the financial risk and of the risk of the sponsor defaulting in its payments, 
as well as showing the way to include the demographic risk as a third source of 
uncertainty. We illustrate how the two risks have contrasting effects on the level of 
risk of a given contribution strategy. Moreover, the normal cost methods are ranked 
according to an alternative view of risk, which takes into account the stochastic nature 

of the returns from investments.
The accrual density function is also used to define the cost of implementation of 

any given contribution strategy. Furthermore, the tradeoff between risk and cost is 
identified in the case of existing financial risk. Conversely, we show that, when the 

risk of default is the only source of uncertainty, the cheapest strategy is also the safest 
one and therefore the above mentioned tradeoff does not arise.

The case in which the source of uncertainty are correlated is also explicitly taken 
into account. Specifically, we show that the presence of dependence may determine, 
in some cases, a lower risk if an appropriate contribution strategies is implemented.
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Chapter 5

Optimal contribution strategies

Chapter 4 provides definitions of the risk and the cost of a contribution strategy, 
and illustrates that a tradeoff between the two exists. In this chapter, we investigate 

whether an efficient frontier can be identified.
Since the cost and the level of advance funding are complementary characteristics 

of a contribution strategy (knowing one of these is equivalent to know the other); 
and since risk and level of advance funding do not share the same relation; strategies 
having the same cost may have different risk l .

Starting from this point here, we aim in this chapter to develop a methodology 
to identify, amongst the strategies having the same cost, the contribution strategy 
which minimises this risk.

Ideally, the devised methodology needs to be able to deal with both the risk of 
individual contribution strategies (as defined in chapter 4); and with the more general 
case of a scheme-aggregated risk measure.

Therefore, the intention is also to derive the optimal contribution strategies, which 
minimise the risk of mismatch between the assets and the liabilities of the whole 
scheme, for different level of cost of pension provision.

Among the several potential measures that can be used to quantify the risk, we 
choose to use the variance mainly because of mathematical convenience. In fact, 
it is possible to derive a general closed expression for this measure, thus allowing

1 Refer to appendix A.4 for an example.
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the implementation of optimisation techniques in order to provide analytical and 
numerical solutions. Further, since the variance is a quadratic function in the normal 

costs, the problem of identifying optimal strategies can be solved with constrained 
quadratic programming.

The major drawback of this risk measure is indeed its quadratic form, which makes 

no distinctions between positive and negative deviations from the mean.
From this point of view, downside risk measures could be more appropriate than 

the variance. In fact, these measures give more importance to the losses than to 
the gains, and, especially those satisfying Artzner’s axioms of coherence, have de-
sirable properties as well as a convenient economic interpretation. In chapter 4 we 
have made full use of these measures in order to illustrate the risk of a contribution 

strategy. Instead, since in this chapter we aim to derive analytical results, mathe-
matical tractability is an important criterion to take into account while choosing the 

risk measure to implement. From this perspective, coherent measures often lead to 
problems which are rather complicated to deal with and, in some cases, not mathe-
matically tractable. It is of interest to note tha t Rockafellar and Uryasev (2000) (and 
following papers) have used the CVaR to measure the risks in problems of optimal 
asset allocation, by means of including this measure in numerical routines. 2.

5.1 The optim al problem.

The optimal problem consists in identifying the contribution strategy which minimises 
the variance of a random variable, which will shortly be introduced. Specifically, this 
random variable shall describe either the accruing process of an individual member 
retirement benefit (as described in chapter 4); or the funding process of the pension 
benefit of the whole membership population (as described in section 3.5). Moreover, 
the optimal problem needs to take into account the cost of pension provision.

2Refer to the original paper Uryasev (2000) for the definition of the Conditional Value at Risk 
(CVaR).
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Setting the objective function. This section aims to set this optimal problem in a 
general framework, where the underlying process is not specified. Hence, we let {At} 

indicate a general underlying process, which we aim to control through the choice 
of a suitable set of parameters Y ' =([Y i,..., Y^]). In the development of this work, 
the process {At} will identify the (individual or aggregate) pension funding process 
and the set of parameters Y  will represent the set of normal costs, or contribution 

strategy.
Since {At} is meant to be representative of the funding status of a (individual 

or aggregate) pension scheme, such a process is affected by the inflows of the con-
tributions and outflows of the benefits. In order to define the objective function, we 

focus on the variance of the process {X t} at a specified point in time. In addition, we 
proceed to decomposing this variance into terms representing the variability of the 
two main components of inflow and outflow streams, as follows:

Var [A] =  Var | Inflows - Outflows |  =

- Var jlnflows j  — 2Cov jlnflows, Outflows j► +  Var | Outflows |

Since the process {At} is to be controlled through the contribution strategy, we 
factorise the set of variables Y  from the first two components in equation (5.1). The 
third component, Var j Outflows j, is not affected by the contribution strategy, as it 

exclusively describes the outflow process. For the same reason, the objective function 
shall only contain those components of the variance of X  which are affected by the 
contribution strategy. More formally, let us assume the following:

A ssum ption. The variance of the underlying process X  can be expressed in the 
following quadratic form:

Var [A] =  Y 'E * Y  -  2Y'ip (5.2)

where is the variance/covariance matrix of the process of inflows; ip is a vector
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summarising the covariance in equation (5.1) and, Y  is the vector of the normal costs 

[NCa , ..., NC r - i]' paid at each age.
Equation (5.2) is the objective function to be minimised, with respect to the 

contribution strategy identified by the set of variables ([NCa, . . . ,NCr - i ]). Moreover, 
the optimal solution minimises the variance of Y  as well.

Constraints on the control variables. The minimisation of (5.2) is however 

bounded by a set of constraints that the optimal solution must satisfy. First, it is 
required that, if the financial and demographic expectations are actually realised, the 
contribution strategy must fund the defined retirement benefit. In other words, the 
space of the feasible solutions is restricted to the strategies that satisfy the principle 
of actuarial equivalence. Second, it seems reasonable to assume that the contributions 

are non-negative.
This requirements find their mathematical representation in the form of the fol-

lowing linear constraints:

N C 'E  =  P V F B a (5.3)

NO*, > 0, Vfc =  a , . . . , a  + r = R -  1 (5.4)

where the kth component of the vector E  is the pure endowment term k-aEa = 
e- f^ (su+Mu)dû  wj-jjch actuarially discounts for k — a  years the contribution paid at age 

k.
Since a direct relation between the normal costs and the accrual density function 

exists (refer to equation (4.5)), these two constraints have equivalent counterparts in 

terms of the accrual function. Specifically, here we consider the discrete case, whereby 
the (discrete) accrual factors are obtained by integrating the the accrual function in 

each age interval. Thus, mathematically:
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m k - M(k  +  1) — M(k) 

m 'l =  1

r»fc-f 1
m(z)dz > 0, Vfc =  a , . . . ,  R  — 1 (5.5)

(5.6)

where 1 is a vector of ones and is of the same dimension of the vector m, which is 

defined as m  =  [mQ, . . . ,  m^-i]  •

Including the cost. As illustrated in section 4.3, it is necessary to include the cost 
in this analysis, and this can be done in several ways. One of these would require to 
include the cost as a strict constraint to the minimisation problem.

Alternatively, it is possible to define and subsequently minimise a penalty function, 
which gives increasing importance to the cost measure according to a scaling factor.

Finally, a multiple objective function minimisation could be carried out, with the 

effect of simultaneously minimise risk and cost.
The work developed here is mainly based on the first approach, although the 

second one is also introduced. In fact, we show that the two approaches require the 
same techniques and that, under particular assumptions, they axe equivalent and lead 

to the same results.
The third approach would indeed require different techniques and it could be an 

interesting extension for further research 3.
As illustrated in the previous section 4.3, the expected cost is a suitable measure 

and so we included it in the minimisation problem as the following strict constraint:

K  = E Cost (N C )] = NC'P (5.7)

where vector P indicates the probabilities of surviving up to the retirement age: 

so that P =  [Tpa, T- ip Q+i, . . . ,  i P q + t - i ] / - If all the elements of the vector P are

3A comprehensive review of some of the potential algorithms is illustrated in Rustem (1998). 
Particularly interesting is chapter IV, which deals with optimisation problems in uncertainty. An 
interesting application has been developed in Guo and Huang (1996) in the field of asset allocation 
within a fuzzy set theory framework.
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artificially set equal to 1, then the resulting measure is the simple total cost of the 
contribution strategy.

Henceforth, the optimisation problem consists in finding the minimum of equation 

(5.2), subject to the constraints (5.3), (5.4) (or equivalently (5.5) and (5.6)) and (5.7).

5.1.1 Lagrangian conditions and solution.

Unfortunately, including the non-negativity constraints increases significantly the 
computational complexity of the system to be solved, leading the constrained quadratic 
problem to be, in the first place, a combinatorial problem.

For this reason we approach the problem by temporarily excluding the non-
negativity constraints, on the ground of the following (non-rigorous) remark.

Remark. One consideration concerns the sign of the elements involved in the min-
imisation. We have assumed that the quadratic form in equation (5.2) is the variance 
of a general underlying process X  and hence the value in equation (5.2) is always 
non-negative.

Hence, during the process of minimisation, if all the elements of ip are non-
negative, the quadratic term will push the variables to be zero, while the term of 
order 1 should push them to be positive. Since the minimum value of the variance of 

X  must be positive, it seems reasonable to assume that the optimal solution will lie 
in the non-negative subspace.

In the light of this discussion, this alternative approach could be worthwhile. 
Hence, if the assumption on the elements of i> is satisfied, the non-negativity 

constraints can be ignored.

Thus, associated the Lagrangian function associated to the above constrained 
optimal problem has the following expression:

L(NC, A, v) =  N C 'S x N C  -  2NC'V> -  A (N C ' E -  PVFB^J -  v (N C 'P  -  k ') (5.8) 

Hence, the optimal normal costs sequence can be found as the solution of the
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following system:

dflN C  :>= 2 S * N C  -  2'i -  >.E r P  = 0

® = N C ' E - P V ' F B  =  0
d \

“ S i £ ) = N C ' P - i i  =  0
dv

(5.9)

This problem consists of ( r+3)  equations in (r +  3) variables and has the following 

unique solution:

NC* =  S ^  +  y S i ’E + ^ P

with multipliers

(5.10)

A* =
E 'E ^ P  ( f E ^ P  -  i f )  -  p 'E ^ P  ( V ^ E  -  P V F B ' 

E 'E ^ E  p 'E ^ P  -  (E 'E *3P  ) 2

i r _ r E ^ P _ ^ s - 1p
p 'E - P

(5.11)

(5.12)

Similar problems are tackled and solved in Schmidt (2003).

Remark. An interesting remark arises from the interpretation of the Lagrangian 
multiplier A*. If the right hand side of equation (5.3) is increased by a small amount 
Ab, the minimum value of (5.2) will increase by A*Ab. This means that the effects 
on the variability of X  due to changes in the benefit policy, and/or in the actuarial 

assumptions, can be exactly quantified.
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5.1.2 P enalty function approach.

As an alternative to the illustrated approach, it is possible to identify the optimal 

contribution strategy as the solution which minimises an “ad hoc” objective function.
The rationale behind this alternative approach is that, instead of bounding the 

space of the possible solutions, it is possible to minimise an objective function con-

sisting of the original risk measure, and a number of functions which assign penalties 

for the unfeasibility of the solution.
A new objective function is thus created by adding two penalty functions, A and 

TV, for the two constraints of the actuarial equivalence of the cost of contribution 

strategy 4.
The resulting optimal problem is given by the following:

min N C 'S x N C  -  2NCty +  A(NC, E) +  TV(NC, P ) (5.13)

As it is noted in the literature, such an approach may have considerable compu-

tational drawbacks5. The main pitfall is that the two penalty functions (A and TV) 
need to be adequately calibrated in order to ensure that sufficient penalty is given 

for unfeasibility. In this specific case, the actuarial equivalence constraint is a strict 
requirement and the unfeasibility of the solution is not admissible. Therefore, once 
the function A is chosen, an exact calibration is needed in order to make sure that 

the constraint is satisfied.
On the other hand, this approach has some conceptual advantages. First, using a 

penalty function approach allows for nonlinear non-convex constraints. Thus, a wide 
range of measures of variability of contributions can easily be added to the optimal 

problem.
Second, this approach allows for a convenient interpretation when it comes to 

talking into account the cost of a strategy. In fact, increasing the cost penalty is 
equivalent to giving, in the minimisation process, more importance to the cost and 
less to the risk. This means that, for example, a higher cost penalty leads to a riskier

4 In light of the previous discussion, the non-negativity constraints are here ignored, although 
they could be included in this approach as well.

5Refer to Gill et al (1981) for a fuller discussion on practical optimisation techniques.
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and cheaper optimal contribution strategy. Thus, in order to identify an efficient 
frontier in the tradeoff between cost and risk, there is no need to specify a set of 
acceptable values for the cost, but it is sufficient to let the cost penalty vary between 

two extremes.
Moreover, for particular penalty functions, the first and second approaches axe 

equivalent, in the sense that they lead to the same optimal solution. Let us consider 
the case that the two penalty functions have the following linear form:

A(NC, E) =  A N C 'E  and N(NC,  P) =  v N C 'P  (5.14)

where the parameters A and u, acting as scaling factors, emphasise the importance 
of the present value and of the cost during the minimisation. As mentioned before, 
the function A must be adequately calibrated in order to satisfy the constraint on 
the present value. Specifically, if the parameter A is set equal to the opposite of the 
Lagrangian A* in (5.11) (so A =  —A*, which is uniquely determined once u has been 
chosen), the optimal solution strictly satisfies the principle of actuarial equivalence.

W ith regard to the cost, for v =  0 the problem collapses to minimising the variance 

of X.  On the contrary, for v sufficiently large (u —> oo) the problem will eventually 

minimise the cost, regardless of the risk.
Furthermore, for each value of v there is a value of K  such that the solution of 

problem (5.13), when penalty functions in 5.14 is also solution of the Lagrangian 
problem in equation (5.8). This means that the two approaches are equivalent and 

they lead to the same optimal solution. This K  is uniquely determined from equation 
(5.12) and taking into account the positive sign in equation (5.13), once the value of 

the cost penalty factor v has been fixed. In formula:

=  (5-15)
p L,x  r

This expression illustrates how fixing a high value for u in the problem with the 
penalty function is equivalent to set a small value for the expected cost K  in the 
original problem. In both cases, the minimum variance will be fairly high, since the 

contribution strategy is not expensive.
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Equation (5.15) also suggests that, in order to increase to importance of cost in the 
minimisation there is no need to let v up to infinity. In fact, the expected cost K  must 

be positive and has a minimum equal to the expected cost of the cheapest strategy, 
i.e. the IF strategy. Hence, v must vary between 0 and A* A +  ip'T,ZP — Kip.p î x f

In appendix A.5, the equivalence between the two approaches is demonstrated in 

the simpler case of only one constraint. Although, in this specific case of an optimal 
strategy problem we have two constraints, the peculiarities of the problem are such 

tha t the two approaches are still equivalent and the linear relationship between v 
and K  holds.' In fact, the penalty factor A has to be set equal to the Lagrangian 
A* (equation (5.11)), in order to satisfy strictly the constraint represented by the 
principle of actuarial equivalence. Therefore the case considered in appendix A.5 is 

equivalent to the current problem.
Further, in the more general case, where the parameter A is free to assume any 

value, the two approaches still lead to the same solution, but the equivalent cost K  
is not uniquely determined by the the cost penalty factor u, but varies according to 

the values of both the penalty factors u and A.
In conclusion, under the assumption of linear penalty functions and setting the 

penalty factor A equal to the Lagrangian coefficient A*, the two approaches are equiv-

alent.

5.1.3 N on-negativity and Kuhn-Tucker conditions.

As mentioned above, it is reasonable to assume that optimal contributions are all 
positive. Hence, we can add the non-negativity constraints to the optimal problem 
solved by finding the solution to the Lagrangian conditions. The Lagrangian function 
including the non-negativity constraints has the following expression:

L(NC, A, /i) = N C 'E x N C  -  2N C V  +

- a ( n C' E -  PVFB^j -  i/ ( n C 'P  -  Af) -  NC'/x (5.16)

The Kuhn-Tucker (K |T) theorem provides necessary and sufficient conditions for

111



a point to be optimal while satisfying the imposed constraints 6. In this specific 
case, if an optimal solution NC* exists, then there must exist multipliers A, u and 

/r0, . . . ,  iiT satisfying the following K |T  conditions.

8L( N C )  
<9NC

(5.17)

' E - P V F B  = 0 (5.18)

NC* ' P -  K  = 0 (5.19)

NC*Q+k = 0 k =  0, . . • T (5.20)

A > 0 (5.21)

rtc>0 k =  0, . . ■,r (5.22)

In addition, since the variance is a convex function of the normal costs, and so 
are the constraints (actually linear), the K |T  theorem state tha t any point NC* 
satisfying the above conditions is an optimal solution of the problem.

Remark. The system of equation above shows how the optimal problem including 

non-negativity constraints is a combinatorial problem in the first place. Indeed, we 
must consider all of the possible 2T+1 — 1 cases, in which alternatively some or all the 

multipliers Hk (k =  0, . . . ,  r) might be null.
A possible way to deal with the problem consists in numerically finding the min-

imum by choosing an algorithm which systematically excludes negative points. This 
approach has been implemented for a specific case, and details and results are shown 

in the subsequent sections 5.2.2 and 5.3.3.

6See the original paper by Kuhn and Tucker (1951), or Chiang (1984) for a full introduction to 
the theory and some applications.
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5.2 Optimal individual contributions.

In this section the optimal contribution strategy is derived when X  describes the 
process of funding an individual member’s retirement benefit. In analogy to chapter 4, 

the variance of the ratio Py ^ R is used to measure the risk implied by the implemented 
contributions strategy.

5.2.1 The optim al problem.

In order to apply the procedure developed in section 5.1, first we have to express 

the risk measure in a quadratic form as in equation (5.2); second, we have to derive 
explicitly the cost of a general strategy; and finally, set the optimal problem. In a 

discrete-time version of the problem, the variance of PyPBR can be expressed in the 
following quadratic form:

Vax r a c r  I
-PVFBr .

Var E
• X = Q

R R

¿ ¿ Cov

E?=* (r(*M.)
7x^1

x = a  y—a  

R R

mxeE?=* (rW -i.) E£=y
v J 7x; rnye

S E Cov
/=<*
<t>,y

x = a  y = a
<̂)x7x! f i y l y m xmy

7y

(5.23)

(5.24)

In (5.23), the variance is broken down in order to highlight the covariances between 
each combination of cohorts. Equation (4.12) explains the first equality sign and func-

tion <j>x summarises the financial risk, and it is equal to the exponential  ̂ )  .
In equation (5.24) the variance is instead expressed in a more convenient notation, 

where E i s  the variance/covariance matrix containing the covariances in equation 

(5.23).
The expected cost of a contribution strategy, identified by the path of accrual
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functions m  =  {mx}, is computed as the following:

E Cost(m)
R

x = a

(5.25)

Differently from equation (4.22) in section 4.3, such an expression of the cost does 
not include the term P V F B a, and therefore it does not return the real cost of a 

strategy.
However, when comparing the costs of different strategies, this measure does not 

affect the outcome of the comparison, as long as the valuation rates {<5t} do not 
change. This happens because P V F B a is computed by actuarially discounting the 
future benefits and, hence, changing the sequence {<5t} has the effect of modifying the 
value of the PV F B ,  which, in turns, affects the cost of a strategy. The expected cost 
measure, as is defined in (5.25), would not account for this change.

The optimal problem described in section 5.1 consists in identifying, among the 

contribution strategies which have the same expected cost, the discrete accrual func-
tion which minimises the variance (5.24) under the constraints that the discrete ac-
crual factors m  are non negative and add up to 1. In addition the cost constraint 
requires that the measure of expected cost is equal to a predefined value K.  In 

formula:

min Var
TTlx

r a c r  - =  min m 'E ^ m
TTlx

(5.26)
Ip v f B r I

(5.27)

subject to m 'e  =  K (5.28)

m 'l  =  1 (5.29)

m  >  0 (5.30)

where the j th element of the vector e is e^*=“Sz; 1 is a vector of ones, whose length 

is R — a.
In this particular case, the process of funding the retirement benefit for an in-

dividual member of the pension scheme is not affected by the outflows, as we focus
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only on the accruing process with random rate of returns and the risk of sponsor’s 
default. Hence, comparing equation (5.2) to equation (5.26), it can be noted that, in 

this case, Ex = E )̂7 and ip — 0.

5.2.2 Num erical application

Let us assume that the deviations of the rates of returns (r(u) — 5u) from the valuation 
rates are independent from one year to next one and are normally distributed with 
mean equal to f  and variance of. The financial random variable <f>x+i defined in (5.23) 
is thus the exponential of the sum of R  — x  normal random variables, and so it is 
log-normally distributed with parameters (R — x) f  and (R  — x)cr?. 7

Therefore, the expectation and the variance of <px+\ are given by the following, 
respectively:

E[0I+1] =  e(*-*)(f+H ) (5.31)

Var[<£1+1] =  e2(*-*)(f + H )  i e(R- xWf _  i') (5.32)

Further, let us assume that the probability of default is independent of the financial 
realisations. In appendix A .6 it is shown that, under these assumptions and without 
specifying a model for the probability of default, the general (x th, yth) element of the 

variance/covariance matrix E î7 is given by the following 8:

£*l7[s ,y] = e(2B-»-*+2)(f+ i« ?)p r(7y =  l )  ^ R- y+1̂  -  Pr ( 7* =  l ) )  (5.33)

Therefore, the variance of the ratio pypg-  is the weighted mean of the elements 
(5.33) Vx,y =  a , . . . ,  R, with weights identified by the density accrual function.

In a simpler model, where the risk of default is ignored, the probability of default-
ing would then be set equal to zero. In that case, all the probabilities in equation

7Refer to Aitchison and Brown (1957) for a monograph on the log-normal distribution.
8Since the matrix E^]7 is symmetric, without losing generality we display the case of x < y.
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(5.33) would clearly be equal to 1, and thus, equation (5.33) would still be the ex-

pression for the general (Xth, yth) element of E¿i7.
Section 4.2.2 considers the possibility that the time to default is an exponentially 

distributed random variable. In such a case, the probabilities in equation (5.33) would 
have the form expressed in equation (4.7) and the general (xth, yth) element of S ^7 

would be equal to the following:

E*)7[x , y) = e(2H-y—*+2) ( f + i^ ) - 7(l/-a) (^{R-y+lWf _  (5.34)

Therefore, a lower variance (5.24) corresponds to a lower expected time to default 
(and so a higher 7 ). In particular, for 7  —> 00 the variance tends to zero. According 
to this feature, it would seem that the higher is the probability of default, the lower 

is the risk.
This apparently illogical feature is due to a characteristic feature of this risk 

measure. The variance measures the variability around the mean of the random 
variable being considered. Hence, for 7 —*• 00 the probability of surviving is equal to 
zero, and no more variability exists as the default is certain. Hence this risk measure 
should only be used to evaluate the risk and to compare two or more contribution 
strategies “ceteris paribus”; i.e. fixing the parameters describing the financial and 
economic world in which the pension plan’s sponsor is operating. As it stands, the 
variance should not be used to compare the performance of the same strategy under 

different economic conditions. For that purpose, a risk measure like (4.21) provides a 
consistent way of measuring; because the magnitude of the “loss” would compensate 
the null variability. This happens since measures like (4.21) separately deal with the 
probability and with the expected value of a “loss” .

The following figure 5.1 displays the efficient frontier obtained by running a nu-
merical minimisation routine in order to solve problem (5.26)-(5.30) with (5.34) and 
to identify the optimal contribution strategy for a large set of acceptable costs:

The continuous line identifies the efficient frontier in the cost/risk plan, hence 
each point on this line is efficient in the sense that it minimises the risk and the cost.

Furthermore, each point on the right hand side of the continuous line is inefficient
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Figure 5.1: Efficient frontier: optimal contributions vs power accrual function.

Cost
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in the sense that either a cheaper strategy is possible, leaving the risk at the same 
level; or a safer strategy can be implemented at the same cost.

The dashed line is the frontier generated by the set of the “power accrual function” , 
introduced in section 4.1.1, for a wide range of values for the parameter p. It can be 
seen that a gap exists between the two lines, thus suggesting the inefficiency (in this 
cost/risk plan) of currently employed normal cost methods 9.

5.3 Optimal contributions - scheme level.

Instead of looking at the risk at the individual member level, in this section we focus 
on the aggregated risk relative to the whole pension scheme.

The risk is thus computed on the basis of the process of ul, in contrast to the 
process in equation (4.11) used in the previous section.

By doing so, we seek optimal strategies which minimise (a measure of) the risk of 

mismatch between assets and liabilities of the whole pension scheme (thus no longer 
related to only an individual member’s fund).

Analogously to the previous sections, the variance of ul is used to measure the 
risk implied by the implemented contributions strategy. In this aggregate case, using 
the variance allows us to place the optimal problem into the theoretical framework 
described in chapter 3. In such a way, the demographic variations can be included as 
a source of uncertainty, using the discrete model already introduced.

5.3.1 The variance of ul.

The variance of ul has been extensively studied in section 3.5, and in this instance 
we refer in particular to the specific case of a randomly evolving population due to 
stochastic new entrants described in section 3.5.2.

Prom equation (3.29), it is possible to derive the required quadratic form of the 
variance of ul, highlighting the role of the contribution strategy in the determination

9In section 4.1.2, it has been noted that, for p = 1, the power accrual function generates the unit 
credit method.
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of the overall risk 10.
Recalling the general equation (5.1), we need to find a mathematical expression for 

the inflows and the outflows from the fund. Differently from the previous section, the 
outflows must now be included explicitly. Thus, we introduce the following function 
B(t), which summarises the compounded history of benefits paid to the pensioners.

t h — 1 LO— r  r — ot

B(t) =  y  ¿ fa  *) uh~3 Br+V’K n (r + •?’ *)
h=\ j= 0  y= 0  k =0

Hence, the variance of ul at time t, which formally is derived in Appendix A.7, 
has the following expression:

Var [ul(t)} =  N C 'E G(t)N C  -  2N C 'C (i) +  Var Bit) (5.35)

where the general (i , j ) th element of the square matrix 2 g (î) is the covariance 
Cov{G(z,£), G(j, t)}, and where the function G(x,t ) summarises the weights of 
present and past generations of active members combined to the realisations of the 
process of investment returns; in formula:

t h—l r —a

g (x , t) =  y  H h, t) Y uh~J Y l n (a +
/l=I +  l  j = X  K =0

and 4>(h,t), defined in equation (3.28), contains the returns from the investments.
Similarly, the vector C(t) contains the covariances between the inflow and the 

outflow processes, i.e. Cov{G(i,t), B(t )} is the ith element of the vector.
As illustrated in §5.1, when the underlying process X  is equal to ul, we can ignore 

the variability of the outflows represented by Vax B(t) , since it cannot be controlled 
through NC. Moreover, comparing equation (5.2) to equation (5.35), it can be noted 

that in this specific case Sx  =  S G(t) and ip = C(i) ^  0.

10The current state of research does not take into account the probability of default of the sponsor.
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5.3.2 The optim al problem.

Equation (5.35) allows us to define an optimal problem aiming to reduce the variance 

within the boundaries implied by the maximum acceptable cost.
In this case, we state the minimisation problem, using the penalty function ap-

proach for the cost, while the actuarial equivalence principle is included as a strict 

linear constraint.

.Z(NC*, i/)=m in Var [ul(t)] +  v • F[Cost(i)]

=  min N C 'E G(t)N C  -  2NC'
NCk u

(c (t)  -  U»)

subject to Y  NC*+x xEa = P V F B  ^  N C 'E  =  P V F B
x=0

NCa+k > 0, k = 0, . . . ,  r

(5.36)

(5.37)

(5.38)

For the above problem, the K |T  conditions are given by the following:

9 U  NC*) 
<9NC

(5.39)

E -  P V F B = 0 (5.40)

pfc NC*Q+k = 0 k = 0, . . ■,r (5.41)

A>0 (5.42)

o k = 0, . . ■,r (5.43)

In order to ignore the non-negativity constraints we need to check when the coef-
ficients of order 1 are non-negative. The components of both the matrix E and vector 
C in equation (5.36) are covariances. Since such covariances are ultimately given by 
the recursive structure of the model, it appears reasonable that such elements should 
all be positive. Further, the larger is the value of AL  at time t — 1 the higher it
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is expected to be at time t. On the other hand, the “cost factor” u is assumed to 
be non-negative. Hence, the coefficients of the term of order 1 will be all definitely 

positive, if the “cost penalty factor” is such that: xpa ■ v < Cx(t), Vx e  (0, r). 
Applying the Lagrangian methods, the following unique solution is identified:

N C =  PVFB(e ' E ^ ' e ^ E  -  E ÿ t) ( c ( t )  -  u p )

+ ( c w  -  I'P )'S5;1)E ( e 'E ^ ()e ) ~1 Eq J,,E (5.44)

with multiplier

A= P V F B  ( e ' E ^ e ) " '  +  (C  (t) -  ^ P ) E a ; ()E  ( e ' E ^ e ) " ’

5.3.3 Num erical application.

In order to display the effect of using optimal contribution strategies, numerical cal-

culations have been carried out for a specific set of simplifying assumptions.

The case of stochastic new entrants.

In this section we focus on the specific case that the number of new entrants is random 

and that this process is the only source of uncertainty.
In chapter 3, we have introduced a potential model to describe random perturba-

tions to the new entrants in a DB pension scheme. In addition, it has been mentioned 
that this process for new entrants does not give rise to a risk per se, but it amplifies 

the existing risks.
In fact, as long as the rates of return from investments exactly match the liability 

valuation rate, perturbations in the number of new entrants do not affect the vari-
ability of ul(t). This is easily proved: from equation (2.3), if 1 +  r(t) =  1 +  i then 
the resulting ul(t) is independent of the demographic variations, and its dynamics is 

described by the following recursive relationship11: *

n Refer to Dufresne (1986) or Owadally and Haberman (2003)
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ul(t) = AL(t) — f{ t ) =  ul{t — 1)(1 — k)( 1 +  i)

where the adjustment at time t — 1 is a proportion of the current unfunded liability, 

adj{t — 1) =  k ■ ul{t — 1), as in the case of spreading the surpluses and deficits over a 
moving term. Moreover, if at time 0 the scheme is fully funded, ul(0) =  0, then

ul(t) =  0 V t > 0

However, it is well known that the financial realisations are very likely to differ 
from the expectations and, as a consequence of this, an unfunded liability may arise, 
being either positive or negative. In fact, we analyse the case in which the investment 

rate is deterministic and constant, but different from the valuation rate 12.
Let r  denote the deterministic annual rate of return achieved from the investments. 

Let us also introduce the following parameter p = which summarises the degree 
of mismatching between the return and the valuation rates. Thus the following holds, 

from (2.1), (2.3) and (3.1):

ul(t + 1) =  ul{t) (1 — k) (1 +  r) — p A L ( t  + 1) (5.45)

Furthermore, if the scheme is initially fully funded (i.e.: ul(0) =  0), we obtain:

t
ul{t) — — p ^ 2  AL{h)-wt~h -, w =  [(1 — k)(l  +  r)] (5.46)

h=1

This equation can also be derived from equations (3.27) and (3.28), by substituting 
the process of rates of return, (r(£)}, with the deterministic value r. In fact, if r{t) 
is equal to a constant r, then equation (3.28) suggests that t) — p wl~h.

A suitable expression for the membership stochastic process is now needed. Specif-

ically, the membership process has to lead the population to stationarity on average, 
as required in section 3.3.

12The extension to consider stochastic rates of return is possible. However, several difficulties 
would arise in the computation of the closed solution derived in the following section
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The assumption of annual new entrants joining the scheme at a fixed aged inde-
pendently one year after the other satisfies the required condition. The new entrants 

are thus modeled by means of a stochastic process {gt} of iid random variables with 
the same mean g and variance Hence, the membership function has the following 

form:

n(a +  x, t) = g(t -  x) xpa (5-47)

The variance of ul is given in equation (5.35) and the number of members varies 
according to (5.47). In this particular case, the resulting function G(x,t),  when 

<p(h,t) =  p wl~h, is equal to the following:

t h-1
G(x, *) =  wt~k E  uh~j9(j ~ x)xPa

h=x-t-l j= x

In a similar manner, we can derive an expression for B{t).
Under these assumptions, it is possible to obtain closed form expressions for the 

covariances introduced in the previous section and therefore implement a numerical 

routine in order to identify the efficient strategies 13.

The results.

In this section, we display the results obtained according to the described assumptions 

and using a set of reasonable values for the model parameters, as is summarised in 
Appendix B.

Figure 5.2 displays the exact value of the variance of ul during the years 0 — 80 
for different contribution strategies. In detail, setting the cost factor u equal to zero 

leads us to find the safest strategy. Since there is no risk of default, the resulting 
safest contribution strategy is, as expected, the TF strategy. By implementing this 
strategy, the variance of ul is the lowest possible, thus generating in the graph the 

lowest line.
Conversely, by setting v sufficiently large (u —> z/max, as shown in §5.1.2), the

13Refer to Appendix A.8 for the closed form formulae of the covariances.
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F ig u re  5.2: V a ria n c e  o f ul fo r sev era l c o n tr ib u tio n  s tra te g ie s .

0 20 40 60 80

Years

cost assumes primary importance in the minimisation, thus leading to the cheapest, 

and clearly the riskiest, contribution strategy. As anticipated by the alternative view 
discussed in section 4.2.1, the resulting riskiest strategy is the IF  strategy. If this 
strategy is adopted, the risk measured by variance of ul is the largest possible (the 

top line in the graph).
For intermediate levels of the cost factor u, the minimisation problem leads to 

contribution strategies that are riskier as the cost of pension provision decreases.
It is worthwhile noting that the contribution strategy does reduce (or increase) 

the variance of ul, but does not change its fundamental trend in time. All the lines 
displayed show a sigmoidal shape, which is due to the basic characteristics of the 
demographic risk.

As argued in section 4.3, the risk of a strategy is directly related to its cost. In 

fact, a trade off exists between the risk and the cost of a strategy 14.
Figure 5.3 displays such a trade off, whereby the efficient frontier is identified.

14We have seen in section 4.2.1 that this is true as long as the financial risk exists. However, when 
the risk of the sponsor going bankrupt is the only source of uncertainty this tradeoff does not arise.
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Specifically, the case of time t = 80 and amortisation period m =  4 has been consid-

ered 15.
As predicted by the intuitive rule, as the cost increases the variance decreases and 

vice versa.

Figure 5.3: Efficient cost/risk frontier.

A detailed examination reveals that, T F  is the safest and the most expensive 

strategy. Therefore, the resulting point for this method is displayed on the right 
hand end of the graph. Conversely, the strategy IF  is the cheapest and the riskiest 
possible strategy, and so the corresponding point is displayed on the left hand end of 
the graph. The black line identifies the efficient frontier, which represent the trade 
off between cost and risk of a contribution strategy.

For the sake of comparison, a set of classical normal costs methods has been 
selected. It is interesting to note that all of them turn out to be inefficient. In fact, 
the unit credit (UC), fixed entry age (EA) and constant premiums (C P) methods lie 
above the efficient line. Accepting the level of risk that each of the classical methods

15Time and spread period seem to affect the magnitude of the results, but not its meaning. Since 
the spread period is one of the tools commonly used to calibrate convenient strategies with respect 
to the solvency and stability of the scheme (see Haberman and Sung (1994)), a sensitivity analysis 
on the parameter m  has been carried out. The results are illustrated at the end of this section.
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implies, it is always possible to find a less expensive contribution strategy. Conversely, 
given the cost of each of the classical methods, it is possible to find a strategy which 

implies lower riskiness.
As briefly mentioned in the note 15, it is of interest to investigate the degree 

to which the efficient line is sensitive to the spread period. The longer this period 
is, the more variable is the resulting unfunded liability. Bearing in mind that the 
covariances between AL  at different points in time are positive, it can be shown that 

the variance of ul is an increasing function of w. Since w = (1 — k)(l + r) and 
k = 1/ a—j- =  , the variance of ul increases with the length of the spread

period (m).
In order to illustrate the effect of this parameter on the efficient frontier, we have 

computed the minimum variance of ul for a set of spread periods and for different
acceptable levels of cost. The resulting variances have been displayed in Figure 5.4 
16

The lines displayed are consistent with the expected behaviour that the larger is 

m, the higher is the variance of ul. Specifically, the increments in the spread period 
have a significant effect on the risk. In fact, it can be seen that for high value of m 
(say m = 8 or 9) the most expensive contribution strategy (strategy TF and cost= 1) 
yields a level of risk which is higher than the variance achievable from combining a 
cheaper strategy with a shorter spread period (say m  < 5 and cost= 0.2).

However, the risk can be maintained on the same level by choosing adequate 

combinations of cost and m. Table 5.1 displays the cost necessary to achieve a given 
level of risk, when combined with a set of possible spread periods.

These figures highlight the strong impact that the spread period has on the vari-

ability of ul. In order to have a variance equal to 20,000 (4t/l column), a very cheap 

contribution strategy (12% of TF cost) is needed when the surpluses and deficits are 
spread over 4 years (3rd row). In order to achieve the same position when m  =  5 or 6, 
the cost of the optimal strategy is respectively 34% and 60% the cost of the TF strat-
egy. Increasing the spread by one further year, m =  7, a strategy almost as expensive

16In this graph and in the following tables the actual cost of each contribution strategy has been 
rescaled in the interval (0, 1), by dividing by the cost of the TF strategy, which is the maximum 
cost.
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F ig u re  5.4: E ffic ien t c o s t / r i s k  f ro n tie r  a n d  sp re a d in g  p e rio d .

Cost

Table 5.1: Relative cost (as percentage of TF cost) for different levels of variance of 
ul (in ,000s) and spread periods.

m/var 5 11 16 20 26 31 38

2 11%
3 62% 12% - - - - -
4 44% 22% 12% - - -

5 94% 49% 34% 21% 13% -
6 86% 60% 41% 31% 21%
7 - 98% 64% 50% 37%
8 - - 93% 71% 54%
9 - - - 97% 72%
10 - - - - 93%
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as TF is needed to maintain the variance at the chosen level.
Finally, it is worthwhile to compare again those figures with those determined by 

the classical methods considered.

Table 5.2: Cost and variance for classical methods.

C ost R is k

C P 15.5% 31,700

E A

uc
21.6%  28,800 
31.5%  24,700

In Table 5.2 the relative cost and the variance of ul, corresponding to each classical 

method, when m  =  5 and t =  80 are displayed. The inefficiency of those methods is 
still evident. For instance, the Entry Age method requires a cost slightly higher than 
21% and implies a variance higher than 26, 000, which is achievable by implementing 
the optimal strategy for a comparable cost. Similar conclusions apply for the other 

two methods.

5.4 Summary.

In this chapter, we have shown how constrained nonlinear programming can be applied 
to derive optimal contribution strategies. Under specific conditions it has also been 
possible to derive an analytical solution. When this has not been possible, a numerical 
algorithm have been proved to be a suitable alternative for solving the optimisation 

problem.
Specifically, optimal contribution strategies have been identified in two different 

situations: when the objective function involves the optimisation of (a) a risk mea-

sure which is computed over an individual member-based process; (b) when the risk 
measure is computed over a whole scheme-based risk process.
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In case (a), we have considered the two sources of uncertainty (stochastic rates 
of return and random remaining lifetime of the plan’s sponsor) described in chapter
4. Optimal strategies have been numerically found, and the efficient frontier on 

the cost/risk plane has been identified. Moreover, we have shown that the normal 
cost methods generated by the power accrual density function are inefficient in the 

considered plane.
W ith regard to case (b), we have used the variance of the unfunded liability as 

a measure of risk for the whole scheme. In particular, we have used an expression 
of this variance in order to highlight the role of the contribution strategy in the 
determination of the risk of mismatching between the assets and the liabilities of the 

whole scheme. In this case, financial and demographic risks have been included as 

sources of uncertainty.
A numerical application has focused on the way in which stochastic new entrants 

amplify the effects of a deterministic mismatch between the expected and actual 

returns from investments.
W ith regard to the specific case of iid new entrants at a fixed age, optimal strate-

gies have been found numerically. Furthermore, the cost of a strategy has been taken 

into account, since the resulting optimal strategy might be too expensive the plan’s 
sponsor. Hence, the tradeoff between cost and risk of a contribution strategy has 

been solved, by means of finding an efficient frontier.
In addition, classical normal methods have been compared to the optimal strate-

gies, showing the inefficiency of these methods in terms of cost and risk.
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Chapter 6

Optimal funding strategies

6.1 Introduction.

In this chapter we focus on extending previously derived results to the more generic 
case of managing a DB pension scheme when the rates of investment return are ran-
dom and evolve according to stochastic processes. In such a situation, the allocation 

of the assets is a tool that can be used to exercise control over the process of funding 

the retirement benefit.
Prom this perspective, this chapter deals with the development of optimal funding 

strategies, i.e. optimal combination of investment and contribution incomes, through 

the choice of the asset allocation and the contribution strategy.
In order to do so, numerical methods and computer simulations are the main 

technical tools to be used. Being aware of and concerned with the limitation of such 

an approach, but nonetheless aiming to provide a comprehensive range of results, 
we employ conceptually different financial models. The intention is to illustrate how 
some results are not exclusive to one model.

As a sufficiently general case, we are interested in a portfolio composed of three 
assets, each of a different nature in terms of risk-reward profile and characteristic 

dynamics. Specifically, we include:

a) a risk free rate asset r s;
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b) a bond asset B t , with maturity T;

c) and a stock asset S.

Further assets, such as a variety of bonds and equities, as well as property invest-
ments, could be included in order to generalise the financial model. However, the three 
considered assets provide the main financial blocks for the purpose of investigating 

the investment strategy.
The fund is thus invested in a combination of these assets with proportions (3r, Pb  

and (3$ (=  1 — /3r — Pb ) respectively. Hence, the fund value, f(t), at time t is given 
by the following equation:

m  = Pr(t) r.(t) + Ps(t) BT[t) + Ps(t) S(t) (6.1)

So, in order to finance the provision of a retirement benefit to all the employees, 
the capital accrued is invested in a collection of assets, and thus, its value is a linear 
combination of the values of the elementary assets.

The choice of the technique of valuation of these elementary assets is a controver-
sial issue widely dealt within the pension literature. In fact, the controversy lies in 
the tradeoff between the accuracy of each valuation and the stability of subsequent 

valuations.
This tradeoff arises because the funding of retirement benefits is an issue, which 

may be considered from different perspectives. As illustrated in Ezra (1980), fund 
managers, as well as accountants, are mainly concerned with the valuation of short 
term investment performances and of the current wealth of a pension scheme. On the 
contrary, actuaries are concerned with the level of funding of a pension scheme, i.e. 
whether the assets currently held will be sufficient in the future to meet the plan’s 

liabilities.
A market value approach, as the name suggests, sets the fund value equal to the 

market value of plan assets as at the valuation date.
An alternative method consists of computing an actuarial value of assets. As 

Winklevoss (1993) states “an [actuarial] asset valuation method is designed to smooth 
the year to year fluctuations in market value”.
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Several asset valuation methods exist for accomplishing this smoothing, and a 

comprehensive analysis can be found in Winklevoss (1993) and more recently in 
Owadally and Haberman (20046). In this work, we use these random returns for 

computing the fund value without applying any smoothing, and thus implicitly use a 
market value approach for the valuation of the assets.

The chapter is organised in the following way: the dynamics of stochastic rates of 
return are presented in section 6.2, where additional issues, such as the choice of the 
valuation rate and of the spreading period, are also taken into account. §6.4 deals 
with identifying optimal investment strategies, with two and three assets. Random 

demographic variations, as well as schemes of different sizes, are analysed in §6.5. 
Optimal funding strategies, by means of optimal combinations of investment and 

contribution strategies, are developed in §6.6. Section 6.7 aims to answer questions 
from the previous sections, where a financial economic approach to pension funding 

is implemented.

6.2 Financial models.

This section briefly introduces the models used for describing the dynamics of the 
three assets. Although theoretically the number of financial models is infinite, we 
believe that testing with a limited number of structurally different models allows us 
to gain some additional information, and to avoid being reliant on conclusions made 
on the basis of the results from only one model.

6.2.1 M ultivariate normal m odel.

The first approach we consider consists of modelling the three assets with a multi-
variate normal distribution. This model assumes that the returns are independent 
one year from the other and that the unconditional first and second moments of the 
assets return are stationary. Moreover, these assets are pairwise correlated.

In Blake et al (2001) expectations, standard deviations and correlations for UK T- 
bills, UK equities, UK bonds, UK property, US equities and US bonds are estimated
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from the data relative to the period 1947-1998. In this work we include the first three 
of these assets, where the UK T-bill is considered the short term asset.

The generation of a random normal vector x =  (rs, BT, S ) with given mean 
vector p and variance-covariance matrix V  utilises a theorem, which states that if 
z is a standard normal vector, there exist a unique lower triangular matrix C such 

that:

x =  Cz +  p.

Furthermore, the vector (x — jj) has the variance-covariance matrix

V  =  C • C '

In order to obtain C from V , the so-called “square root method” can be used; 

which provides a set of recursive formulae for the computation of the elements of C.
l

On one hand, such a model has the advantage of simplicity in both analytical and 
numerical computations. On the other hand, it has severe limitations in providing 
a realistic description of investment markets. In fact, the lack of market shocks, 
independence of returns from one year to another and underestimation of tails axe 
among the most significant weaknesses in the assumptions in this model.

6.2.2 R egim e-sw itching m odel.

Among the many limitations of the previous model, the lack of market shocks can be 
overcome by explicitly including structural breaks in the parameters of the model.

Specifically, the recent literature advocates the simulation of investment returns 
from a mixture of distributions with regime-independent transition probabilities. In 
this way, it is possible to represent different environments, in which the behaviour of 
each asset changes. 1

1 Refer to Naylor et al (1966, pp. 90-99) for an introduction to computer simulation of continuous 
probability distributions and to Kenney and Keeping (1951, pp. 298-300) for a review of the “square 
root method”.
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In a general Markov regime-switching model the parameters are stochastic pro-
cesses satisfying the Markov property of no memory. Such an approach allows for de-
scribing parameter structural breaks, whereby the value of these parameters changes 

in time according to the current state.
Regime switching was first introduced by Hamilton (1989), who describes an au-

toregressive regime-switching model. Hardy (2001) proposes the modelling of the 
log-return with mixture of regime-switching normal distributions.

In order to implement such an approach in this work, we model the returns from 

the risk-less asset with a normal distribution, as in the previous model. Specifically, we 
take into account two possible states for the riskier assets BT and S: in the first state 
assets behave as in a standard situation; while in the second state a high uncertainty 
situation is described, whereby the volatility of the assets is largely increased.

Hardy (2001) finds no significant improvement in fitting 3 different states for 
the log-returns. Similarly, Harris (1997) implements a regime-switching vector A R  
for modelling the real economic growth, change in the rate of price inflation, share 
price return and change in the 10 year bond yield, using Monte Carlo Markov Chain 
estimation procedure on Australian data. The estimation procedure identifies two 
clearly distinct regimes, thus providing other evidence that 2 states should adequately 

describe the variability of the market.
Blake et al (2001) introduce this model as a mixed multivariate normal model 

and specific estimates of the rates of return and volatilities are thereby suggested for 
the same financial components (rs,B r,S ) listed in the previous section. From Blake 
et al (2001) it is possible to compute directly the transition matrix by recognising 
that in their model the probability of remaining in the high risk state is equal to the 
simple probability of switching into it. In fact, the probability of a structural break 
is independent of the current state.

It is noted that, under the specifications set in Blake et al (2001), log-returns 
maintain a symmetrical distribution independent of previous realisations, even in the 
high-risk state. However, this model, allowing for stochastic volatility, leads to a 

higher variability than the multivariate normal distribution.
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6.2.3 W ilk ie  m odel.

The Wilkie model is a very common stochastic projection asset model, especially in 

actuarial applications and analyses. It is a stochastic parametric model first proposed 
in Wilkie (1987), and subsequently extended and updated in Wilkie (1995).

The asset rates of return are assumed to be autoregressive processes, and hence, 
dependent on their previous values.

Several variables are modelled, including retail price index, price inflation, wage 

inflation, equity dividend yield, equity dividends and Consols yield; short-term inter-

est rates, property yields based on income and price; as well as yield on index-linked 

bonds.
The characteristic feature of the Wilkie model is that it is composed of connected 

models, one for each of the listed variables. The connections are such that, for 
instance, the price inflation model includes the retail price index; the equity dividend 
yield model is dependent on price inflation, and so on. Moreover, the residuals are 

normal independent and identically distributed and least square estimates (calculated 

over the period 1919-1994) are used for the parameters.
However, the literature recognises that this model contains some notable pitfalls 

from statistical viewpoint and financial economic viewpoint.
It is stated in Huber (1995) that “Wilkie’s stochastic model does not provide a 

particularly good description of the data”, since the residuals seems to be not normally 
distributed. As Huber suggests, this may be due to the fact that the model is over 

parametrised and ill-conditioned.
It is also noted in Ong (1994) that the Wilkie’s model ’’does not provide a term 

structure for interest rates, a crucial concept in most actuarial applications” .
Moreover, the financial economic literature criticises the model as it fails to satisfy 

the hypothesis of no arbitrage.
In this work, the dynamics of the returns from the assets rs, B t  and S  are derived 

from the Wilkie models for the short term interest rate, the Consols yield and the 

equity, respectively, as described in Blake et al (2001).
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In light of the last consideration, we include a model satisfying this requirement of 

no arbitrage drawn from financial economics. Specifically, here we separately model 
the three different assets according to models proposed in the mathematical finance 
literature, in order to build up an efficient and complete market where no arbitrage 
is possible 2.

S h o rt ra te .

In order to model the value of money in time, we include a one-factor model (the short 
rate model) dealing with the short rate as the only driving factor. Although more 
complex models including more factors axe less restrictive, the attraction of simpler 
models is the tractability and (in some cases) the availability of closed formulae for 

the prices (and returns) of bonds.
The purpose of this section is to describe the probabilistic model implemented for 

the simulation of the interest rates and of the yield to maturity. Hence, a formal and 
mathematical introduction of these models is beyond the scope of this work. Standard 

references for interest rate models are James and Webber (2000), Brigo and Mercurio 

(2001), and Zagst (2002).
The short rate is modelled by means of a diffusion process, described by a stochas-

tic differential equation of the family:

drs(£) =  fir(t, r)dt +  oy(f, r)dWr(t) (6.2)

Function /zr (f, r) is the drift of the process, i.e. the infinitesimal mean; while 
cr (i, r) is the diffusion coefficient, i.e. the infinitesimal variance of the process. Fur-
thermore, Wr(t) is a standard Brownian motion, thus continuous and with indepen-

dent and normally distributed increments.
A number of models presented in the literature belongs to this family of processes, 

for instance, the models included in the Heath- Jarrow-Morton framework (see Heath,

2When mentioning the market completeness, we refer only to financial sources of uncertainties, 
thus excluding demographic variations.

6.2.4 F inanc ia l E conom ic m odel.
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Jarrow and Morton (1992)). As fax as one-factor models are considered, some of 
the most used models are Vasicek's model presented in Vasicek (1977), CAR’s model 
in Cox, Ingersoll and Ross (1978), Brennan and Schwartz's model in Brennan and 

Schwartz (1982).
In this work, we use the Vasicek model, where the drift is assumed to be mean 

reverting and the instantaneous volatility ar(t,r) is constant and so independent 
of time and of the current level of rs(t). We choose to employ the Vasicek model 
because it is the simplest among those mentioned, although maintaining desirable 
features thereafter described.

Thus, the short term rate is modelled with an Ornstein-Uhlenbeck process, first 
proposed in Merton (1971), the dynamics of which are described by the following 
stochastic differential equation:

drs(i) =  (7 — a r(t))dt +  aTdWr(t) (6.3)

This process has the desirable feature of possessing a stationary distribution, and 

hence, it does not diverge to infinity. In fact, the drift term (7 — a rs(t)) is a force 
pulling the process towards its long term expectation 7 , with an increasing magnitude 
as the processes moves away from 7 .

In contrast, undesirable features of this model are the possibility of negative inter-
est rates and the assumptions of constant variance. The CIR model overcomes these 
pitfalls, by proposing the following dynamics for the short term rate:

dr(f) =  (7 - a  rs(t))dt + ar^ r s(t)dWr(t) (6.4)

According to the dynamics (6.4), the short term rate is distributed as a non centred 
y-square random variable.

However, for the purposes of this thesis, the more realistic CIR model does not 
provide results significantly different from the Vasicek model, as some preliminary 
results (not presented here) have shown.
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Bond.

According to the theory of interest rates and term structure, in an efficient market 

the prices of bonds with various maturities are uniquely determined by the dynamics 
of the short term rate and by the (unique) market price of risk, see Bjork (1998, pp. 

242-250).
Following Boulier et al (2001) we introduce a rolling zero coupon bond with con-

stant maturity T. The dynamics in continuous time of this bond are given by the 

following equation:

=  (rs(t) +  XraT)dt +  aTdWr(t) (6.5)
r>T{t)

where, according to Vasicek’s short interest rate model (where the market price of 
risk Ar is constant), the volatility is constant and given by3

-aT
CTx — (6.9)

Equation 6.5 (discretised in order to fit the current framework) provides the return 
of bond investments assuming that at the end of each year the bonds (now with 
maturity T  — 1) are replaced by bonds with maturity T. Whether this is a realistic 
strategy is debatable; particularly in light of the fact that the disinvestments occur 
independently of whether a gain or a loss will be realised. However, a zero coupon 
bond with constant maturity would reasonably match the liabilities, if the mean term

3For the case of the CIR model, according to Cox et al (1978) and following Deelstra et al (2003) 
the volatility is given by

where

and

h (T) =

CTT = h(T)<TrVrs(t)

2{ecT -  l)
c — (a — Arcr2) + ecT(c + a — \ ra?)

(6.6)

(6.7)

: =  (a -  \ Tcrl)2 + (6.8)
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were approximately constant.

Equity.

In this work, we also include a high risk and high reward asset, which can be inter-
preted as an equity. In fact, instead of modelling a variety of equities, we model only 

one asset which describes the stock market by means of a stock index.
This equity price is modelled by means of a geometric Brownian motion (GMB). 

This process, known also as economic Brownian motion, is widely used in the financial 

literature for describing the dynamics of the price of an equity, because of the charac-
teristic log-normal distribution, which leads to right skewed non negative prices. For 
further and deeper discussion on the suitability of the GMB refer to Cootner (1964) 
and Samuelson (1965).

Furthermore, we assume that the behaviour of the equity is correlated to the short 

term rate. Henceforth, the dynamics of the log-return of this asset is described by 
the following stochastic differential equation:

= LLs(t,r)dt + as {t,r)dWs (t) =

= fis(t,r)dt +a(t,r)dW r(t) + aS\r{t,r)dWS\r(t), (6.10)

5(0) =  S0 (6.11)

where the two Brownian motions Wr(t) and Ws\r(t) are independent; the instanta-

neous mean /is is a function of the time and of the short term rate r(f) and is given 

by the following

Hs(t, r) = r(t) +  Xra(t, r) +  \s\rvs\r(t, r) (6.12)

where, 0s|r ^  0 is the stock’s own volatility and Asjr is the market price for holding 
this risk; and cr is the volatility linked to the short term rate: <r2 =  ur S ■ of where rys 
is a scaling factor measuring how the interest rate volatility affects the stock volatility. 

Moreover, the correlation coefficient between Ws and Wr is given by
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a
(6.13)Pr,5 =

\/V r ,S  

+ 4 | r

6.2.5 Spreading period.

In this chapter, rates of return axe simulated according to a number of models reflect-
ing different assumptions regarding the financial markets. The reason why a Monte 
Carlo approach is of interest is that it allows working with complicated models, which 

are otherwise intractable from an analytic perspective.
However, extreme care is needed when a work develops from the particular to 

the general. Looking at the bigger picture, in this chapter we want to investigate 
the effect of random rates of returns, which evolve according to specific probabilistic 

models.
In particular, a problem arises when the financial economic and the Wilkie models 

are used. In fact, both models assume that the annual returns show some degree of 
autocorrelation. In other words, the rates of return are no longer independent year 
after year. If this assumption of independence does not hold, then the adjustment 

method is no longer guaranteed to remove surplus/deficits, not even in the long term.
Dufresne (1988) derives conditions which assure that spreading surplus/deficits 

over a moving term efficiently leads the expectation of ul to tend to 0. Haberman 
(1994) finds similar conditions when rates of return show an autoregressive behaviour, 

while in Haberman and Wong (1997) the case of returns following a moving average 

process is also considered.
However, assuming that either the financial economic model, or the Wilkie model 

hold, the distribution of the portfolio of assets is not known, and thus, general condi-

tions are needed in order to assure the convergence of the expected value of ul, when 
the rates of return are described by a non-specified stochastic process.
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6.3 A sset allocation strategy and valuation rate.

An important assumption concerns the rate which the actuary should use for dis-
counting future liabilities. There are two (or maybe more) main schools of thought: 
an actuarial school, which is in favour of discounting the liabilities at a rate which is 
linked to the expected rate of investment return. Then there is an economic school, 
which asserts that the discounting rate should instead be independent of the invest-

ment policy.

6.3.1 A ctuarial approach.

In the previous chapters the valuation rate has been set equal to the expected rate 
of returns from the investment. In the classical actuarial literature, this approach is 
justified by the requirement that the pension funding process should not lead to gains 

or losses if the pension plan experience exactly matches the expectations. Hence, if all 
of the assumptions set by the actuary - regarding the unknown future on demographic, 

financial and economic evolutions - are borne out by experience, then the contribution 
and investment income should match the benefit outgo. This requirement is also 

known as the principle of actuarial equivalence.
For instance, as illustrated in §2.6.1, according to Aitken (1996) and Sharp (1996), 

acceptable normal cost methods must be devised in such a way that no gains/losses 
arise if the experience exactly matches the expectations. Setting the valuation rate 
different from the expected rate of return would inevitably lead to a technical sur- 
plus/deficit.

In Bowers et al (1976, 1979, 1982) the liabilities are discounted at the same force of 
interest which is expected to be earned, where these investment returns are assumed 

to be constant and deterministic. More recent papers have assumed that rates of re-
turn are instead random, and that the dynamics of these are described by stochastic 
processes. In this situation, the condition satisfying the principle of actuarial equiv-
alence and imposed in Bowers et al (1976) is substituted by its intuitive stochastic 
extension of requiring that the valuation rate is equal to the expected rate of return. 
See, among others, Dufresne (1986, 1988, 1989), Haberman (1994), Owadally and
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Haberman (1999, 2004), Cairns (2000), and Khorasanee (2002).
In actual practice, liabilities are often valued using what is prudently expected 

to be the return from future investments. Indeed, from an actuarial perspective 
there is a conceptual difference between the valuation rate and the expected rate 
of investment returns. To some extent, the valuation rate should be thought of 
as the prudent/safe estimate, rather than the best estimate, of the rate of return. 
This conceptual difference between the two rates is thus translated in a numerical 
difference, with the effect of creating a margin against the risk of mismatch, i.e. 
against the risk that the pension fund earns a return different from the expected one. 
See Thornton and Wilson (1992), Wright (1998), Cairns (2000) and Owadally (2003) 
for different aspects and consequences of assuming a prudent margin in the valuation 

rate4.
As Brownlee and Daskais (1991) conclude, the expected rate of investment returns 

should be used for discounting liabilities. However, because of the “conservative!' na-
ture of the actuary, often the discount rate is set equal to a lower value. Nonetheless, 
it is still the authors’ opinion that the higher is the expected return from the in-
vestment policy, the higher should be the discounting rate used by the actuary. This 
assertion suggests that a link between the valuation rate and the expected investment 

return should exist.
Since, in this thesis, the rate of returns from investment is not directly modelled, 

but is derived by modelling three elementary assets aggregated in a portfolio, the 
resulting valuation rate depends on the asset allocation. Therefore, a more aggressive 

strategy expecting to earn a higher return than a more prudent strategy should be 
combined with a higher discount rate. Specifically, the extra premium for bearing 
risk is accounted for whilst evaluating future liabilities.

The dependence of the valuation rate on the asset allocation does not create com-
putational problems as long as static investment strategies axe implemented. More 
sophisticated strategies allowing for dynamics allocation of the fund may complicate

4The current aim is analysing under which circumstances the valuation rate should be consid-
ered dependent on the investment policy, and what consequences should we expect from such an 
assumption. For a comprehensive analysis of the more general issue of actuarial prudence in pension 
funding the reader can refer to Owadally (1999, chapter 5).
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the computation of the expected returns and hence a correct valuation rate. However, 
a more elaborate model could allow for a dynamic valuation rate.

The main criticism of this actuarial approach is that the liabilities hide away the 

risk and volatility by using a fixed discount rate. Economists do not agree with the 
principle that a high discount rate is justified by high equity allocation in the asset 
policy. In fact, these high returns are only anticipated and whether they will be 
realised is a matter of chance; hence, the actuary should not account for them.

6.3.2 Financial econom ic approach.

As an alternative to the actuarial school of thinking, a financial economic approach 
to pension funding requires the liability to be independent from the asset allocation. 

Bader and Gold (2003) point out this difference:

“Financial economics measures a liability by using a discount rate curve 

embedded in a reference portfolio - a portfolio that matches the liability.
[...] The actuarial pension model discounts liabilities at expected return 
on the assets held to fund those liabilities; it ignores risk.”

In particular, Bader and Gold (2003) refer to a market method for discounting 

liabilities governed by the principle that, if no arbitrage is allowed, then the value 
of two identical cash-flows must be equal. Hence, the valuation rate to be used for 
discounting liabilities should be the implied rate of the portfolio of assets that matches 

the liabilities.
This financial economic approach goes further and interprets the pension as the 

asset which will provide retirement income to each individual employee; see Ralfe et al 
(2003), for instance. Therefore, pension is a debt owed by the sponsor to the pension 
fund members, and as such, should be dealt with as a bond-like debt. According 
to this, Bader and Gold (2003) propose valuing the liabilities as the price of the 
portfolio of Treasuries that replicates the benefit pay out assuming that the scheme is 
terminating. This approach finds agreement in the previously established Accounting 

Standard’s FRS17, which requires the use of a AA-rated bond-based valuation rate 

for discounting the pension liabilities.
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The idea of replicating pension debts with a portfolio of bonds arises from the 
self evident similarities between the two streams of payments. However, there are 
a number of features that make the pension debt more complex than conventional 

bonds:

• the number of payments, although certainly not infinite, is not known and 
depends on the mortality rates specific to each pension plan population. Hence, 
two separate schemes are likely to experience different mortality, due to the 
accidental random differences as well as structurally different populations. In 

addition, regulations often allow the retired member to choose the preferred 
form of payments out of a limited selection of possibilities (retirement pension, 

partial lump sum, deferral annuities, etc). Furthermore, benefits might be paid 

in case of premature death and under other unfortunate circumstances.

• defined benefit pension schemes provide the pensioners with benefits which de-
pend on their final salaries. In addition, the amount of the pension is usually 
linked to some indexes (most likely the price inflation), in order to avoid erosion 

of value over time.

• the pension plan sponsor has a walk-away option which allows temporary sus-

pension of the payments and liability, in the case of scheme termination, being 
limited to the Minimum Funding Requirement (MFR).

Hence, substantial differences exist between the two streams of payments and 
these differences are usually acknowledged in the financial economic literature; see 
for instance Ralfe et al (2003).

Therefore, attention should be directed to investigating whether these differences 
are significant or not. In particular, as Carne (2004) points out, there is the need to 

understand whether pension benefits are “sufficiently bond-like” to justify the use of 
conventional bond to derive the market value of the sponsor’s liabilities.

Thus, the financial economic school’s contribution provides insight into the pen-
sion funding matter, coming from a perspective different from the classical actuarial 
one. This approach is particularly valuable because, if the scheme were to wind up, it
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would provide at the time of valuation a (market) consistent measure of the pending 

liability on the sponsor. Unfortunately, as pointed out in Mindlin (2003), McCrory 
and Bartel (2003) and Carne (2004), the assumption of termination is critical. Hence, 
this measure cannot help in setting up the funding and investment strategy for long 
term implementation and it may be of limited use if the sponsor is not contemplating 

termination.
From the financial economic standpoint, only the benefit promised to the current 

members would be accounted for in the valuation process, making no allowances for 

future salary growth, wage inflation and other uncertain events that may modify the 
benefit structure of the pension plan. As Smith (1998) illustrates, the current unit 
method, which consists of buying a series of deferred annuities linked to the current 
salary, is the correct method to estimate economic pension cost, because it does not 
require estimation of salary growth and of decrements of active members. However, no 

Accounting Standards adopt such a method for valuing DB pension scheme liabilities, 

because these depend on future salaries.

6.3.3 The area of intersection.

The two schools of thought seem to be in complete contrast with each other and room 
for reconciliation appears to be very narrow. Bader and Gold (2003) hope for the 

actuarial profession opening towards this financial economic science and “recognize 

where it must be applied” .
With the risk of sounding trivial, Carne (2004) identifies the area of intersection 

between the two schools: If the investment policy requires tha t the fund value is 
invested entirely in Treasury bonds, then the correct discount rate would be the 
implied return of such an investment portfolio. In this situation also the actuarial 
approach would suggest the adoption of the implied interest rate for discounting the 
liabilities, since a prudent margin would not be needed whilst discounting at a risk-free 

rate 5.
5However, under this specific assumption, the two cases - whether the valuation rate is indepen-

dent of the asset allocation or not - are indistinguishable. Moreover, it is not entirely accurate to 
define the Treasury bonds as risk-less assets. In fact, they do reward the investors with a (small)
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In addition, it is worth recalling the stated concept that a bond-based valuation is 
informative of the cost of winding up the scheme, independently of the asset allocation 
employed.

6.4 Optimal investm ent strategies.

6.4.1 Bonds vs equities.

Whether bond based or equity based portfolio provides the best tool for funding 
a defined benefit pension scheme is an open debate in the actuarial and financial- 
economic literature.

Equities.

The main reasons in favour of investing in equities are as follows:

• It is broadly recognised that equities provide a good match for salary-linked 
pension liabilities. This belief arises from the following argument: Since both 
equity dividend growth and salary inflation are linked to the firm’s productivity 
and to price inflation, and since the equity price is the expected present value of 
future dividends, so it may be shown that the returns from equity investments 
are somehow related to salary inflation. This argument is particularly supported 

by the UK actuarial profession, as illustrated in Thornton and Wilson (1992) 

and Wilkie (1995).

Not everybody shares the same view. In particular, Exley et al (1997) criti-
cise this economic link, arguing that the wage inflation is driven by the price 
inflation plus a real salary inflation variable. Furthermore, Smith (1998) uses 
basic statistical analysis to demonstrate that the relationship between equities 
and salary-linked benefits does not hold in the UK. However, Cardinale (2003), 
using more sophisticated techniques, illustrates statistical evidence of cointe-
gration between the labour market and equity returns. Similarly, Khorasanee 

premium for risk. However, their risk of default is generally considered as negligible.
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(2004) finds that future wage inflation should be positively correlated to the 

current equity returns.

• It is also accepted that equities outperform bonds in the long run, and this 
statement tends to hold particularly when referring to highly rated bonds. The 
extra premium is the reward paid by equities to  the investors for accepting 
variable returns, in contrast to fixed-income products, which, as their name 
suggest, guarantee a specified return. Although equity performances in recent 
years have suffered because of long economic stagnation and bear markets, this 

view seems to be still widely accepted.

However, a controversy exists about whether these extra premia should be ac-
counted for, when discounting the liabilities. Supporters of a traditional actu-
arial view suggest that while setting a strategy for funding a retirement benefit, 
these expected extra premia should be included. See for instance, Carne (2004).

Putting this in another way, in the actuarial approach each funding strategy is 
characterised by a unique way of combining contribution and investment income 
in order to finance a retirement benefit in a far future.

Promoters of a financial economic view support the argument that the equity 
risk premium cannot be included in discount rates. Gordon (1999) asserts 
that allowing for equity premium is “double counting”. Chapman et al (2001), 
Shuttleworth (2002), Ralfe et al (2003), among others, endorse this argument.

Bonds and the M odigliani-M iller proposition.

In contrast, the financial economic school supports the view that the pension funds 
should be entirely in fixed income investments. This view originated from the ‘irrele-
vancy proposition’ set in Modigliani and Miller (1958), which states that “the market 
value of any firm is independent of the capital structure” . This proposition has been 
subsequently applied to corporate pension funding in a number of works as Topper 
and Affleck (1974), Black (1980), Smith (1996), Exley et al (1997), Bader and Gold 
(2003) and Ralfe et al (2003), among others.
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Black (1980) asserts that, because of the MM proposition, combining a change in 
the pension fund investments with a change in the firm’s capital structure is hgumless 
for the firm. The argument is that, by issuing more debts and buying back the firm’s 
own stocks, eventually the firm will benefit from its capital structure (because stocks 
outperform bonds in the long term) offsetting the losses emerging from switching the 
pension fund investments from stocks to bonds.

In addition, the changes in the pension fund and in the capital structure do not 
affect the firm’s leverage. In fact, by increasing the proportion of equities in the 
capital structure, the firm’s performances will improve when the economic conditions 
are good, and will worsen when these conditions are bad. In economics terms, this 

means that the firm’s leverage is increased. At the same time, shifting from equities to 
bonds in the pension fund has the contrary effect of reducing this sensitivity. Hence, 
in the Black plan the two capital shifts would compensate for each other, ultimately 

leaving the firm’s leverage unchanged.
Having said that, the advantage of such a strategy lies in the second order effects, 

and in particular, in the special - advantageous - taxation regime in which a pension 

fund operates. Interest expense for the corporation is tax deductible and interest 
income for the fund is tax free. Hence, what effectively happens is: by directly 
borrowing at the tax deductible rate and lending through the pension fund at a tax 

free rate, the firm would benefit from the spread between the pre-tax and after-tax 

rates.
Black (1980) does recognise that an aggressive investment strategy has the effect 

of reducing the cost of pension provision by reducing the expected contributions, all 
of which is in exchange for an increase in the risk of not meeting the liability and in 

the variability of the surplus/deficit 6.
However, it is also Black (1980)’s opinion that:

“Just as an increase in the risk of a firm’s assets that doesn’t change the 
firm’s value will make the bondholders less secure, so an increase in the 
risk of the pension fund assets that doesn’t change the fund’s value will

6 This view is in agreement with the thesis illustrated in chapter 4.
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make the beneficiaries less secure. Since investing pension fund assets 
in bonds makes the beneficiaries more secure than investing in stocks, it 

should make the trustees more secure too.”

The same view is expressed by Bader and Gold (2003), where the authors sim-
plified the concept by playing with the tautology that “$ 1 million of bonds has the 

same value at $ 1 million of equities”. In the authors’ view, this statement holds 
regardless of the expected value of these amounts in a future point in time, because 
once these are discounted, taking into account the different risks, the current value 

does not change.
Henceforth, the financial-economists strategy has the additional value of reducing 

the risk of insolvency by funding the pension liabilities exclusively with fixed income 

products.
However, Regulatory Authorities often require pension funds to insure their li-

abilities against the risk of insolvency. In the US, the Pension Benefit Guaranty 
Corporation charges a fixed premium for insurance coverage to each firm sponsoring 
DB pension scheme. Similar programmes exist in UK and in the EU.

This aspect is not considered in the financial economist framework, and it has 
important consequences on the optimality of asset allocations. In fact, Sharpe (1976) 
shows that, if taxation is not considered, the insurance effect calls for a “mini-max” 
strategy; e.g. reducing the funding to the minimum level, and investing the fund in 
risky asset, in order to maximise the value of the insurance.

This strategy is the exact opposite of Black’s one, which is also called a “maxi- 
min” strategy, because it calls for maximum funding and minimum investing in risky 

assets, in order to maximise the benefits from taxation.
Furthermore, Harrison and Sharpe (1983) take into account both the insurance 

and the taxation effects, demonstrating that, in absence of market imperfections, 
the two opposite strategies mini-max and maxi-min are both optimal. Thus, the 
sponsoring firm should choose to implement one of the two comer solutions.

Bidder and Chen (1985) extend such research by including the cost of plan ter-

mination as a market imperfection. The results are interesting and show that, under
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these more general assumptions, corner solutions axe not necessarily optimal. In fact, 
a mixture of equities and bonds can maximise the total firm value.

Another critical assumption in the financial-economics view is the fact tha t the 

actual pension fund is an integrated part of the firm. Thus, it is assumed that the firm 
has complete control in managing the pension fund and decides the asset allocation 
aiming to maximise the firm value. Hence, pension funding is one of the issues for 
the firm’s management, which operates from the point of view of the shareholders.

Legally, this is not the case as a firm’s pension fund is a body separated from the 
firm. Particularly in the UK, the fund’s Trustees act primarily in the interest of the 

pension plan’s member 7.
This aspect has importance consequences on the validity of the “irrelevancy propo-

sition”. Modigliani and Miller (1958) states that if the proposition is not valid: “an 
investor could buy and sell stocks and bonds in such a way as to exchange one in-

come stream for another stream, identical in all relevant respects but selling at a 
lower price”. Once this arbitrage opportunity is exploited the market would adjust 

the mispricing, thus eliminating the discrepancies between the market values of the 

firm.
However, pension plan members do not have the possibility to trade the promised 

benefit in the market. Hence, from their perspective - or alternatively from the 

Trustees’ perspective - there axe no financial operations which can re-balance a change 
in the pension fund asset allocation. Hence, plan members axe not indifferent to the 

pension fund asset allocation, notwithstanding the capital structure of the sponsoring 

firm.
In this chapter, we contribute to the discussion by identifying optimal asset alloca-

tions through the simulation of a DB pension scheme, according to the mathematical 

models developed in the previous chapters.
In conclusion, it is necessary to acknowledge that the resulting optimal strategy 

depends on which of the two schools of thinking we decide to follow. The crucial 
assumption relies on the discount rate(s), in particular whether it is related to the

7Indeed, it is a classical argument in favor of the independently funded DB pension scheme that 
the pension fund is separated legally from the sponsoring employing: see, for example, Lee (1984).
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investment policy. Bearing this in mind, in the following paragraphs we adopt the 
traditional approach endorsed all along in this thesis and we investigate how the 
investment and contribution strategies should be combined in order to obtain efficient 

funding strategies. For completeness, in §6.7 similar questions are addressed when a 
financial economic approach is implemented.

6.4.2 Two assets optim al allocation.

Our attention is initially directed to the choice of the proportion of the fund should be 
invested in equities, where bonds are the only alternative. Thus, cash is temporarily 
discarded from the range of choices and will be reconsidered in §6.4.3.

In order to identify the optimal investment strategy we set the following decision 
criterion: the optimal allocation is that combination of the two assets (bonds and 
equities) which minimises a pre-specified risk measure.

In a manner similar to the previous chapter, the variance of ul is the risk mea-
sure mainly used as the quantitative basis of the decision criterion. However, other 
measures have also been considered; namely, the T C E  and the M S. This has been 
done with the intention of avoiding results which hold for only one measure and are 

of limited applicability.
Figure 6.1 displays the variance of ul at time t = 90 corresponding to an increasing 

proportion invested in equities. The time t is set equal to 90, because after uj — a =  85 
years the first cohort of random new entrants is certainly eliminated, and thus, the 
number of members is random throughout the spectrum of ages. We perform the 

same calculations with all of the four models previously introduced.
The shape of the figures suggest that the variance has its minimum when the 

proportion invested in equities lies between 20% and 35% of the fund value. This 
result holds independently of the asset model considered.

The reason why this minimum exists comes from the mathematical form of the 
variance of ul, which, for this particular case, is expressed in equation (3.32). Let us 

recall it for convenience:
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V ar [ul(t)] =  A L 2V ar (6 .14)
L h = 1

Function cp(h) summarises the mismatches between the rates of return (r(i)}  

and the valuation rate (i) during the scheme operating life. In detail, 4>(h) has the 

following form:

u(l -  kY h(r(h -  1) -  i) n U a  +  r ( j)) h € (1, t -  1)
u(r(f — 1) — z) h = t

(6.15)

Hence, the variance of ul is a function of the variance of the rates of returns 
(summarised by function <j>), as well as of the value of the current AL  8.

Since equities are the high risk and high reward asset, an increase in the proportion 
of the fund value invested in this asset has the effect of increasing the variance of the 
rates of returns. This effect is in turn passed on to the variance of <f> and finally to 

the variance of ul.
Hence, the higher the proportion of equities, the higher the volatility of ul due 

to the random nature of the investments. This result is absolutely consistent with 

economic theory, according to which a higher premium is paid to those willing to 

accept a higher risk.
In contrast, the value of AL  depends on the valuation rate (i) used for discounting 

the future liabilities to the time of valuation: in particular, the higher this rate, the 
lower is the value of AL. Since the valuation rate is set equal to the expected rate 
of return, a higher proportion in equities determines a higher i, and hence, a lower 

value of the actuarial liability.
Adding up these two effects, we find out that a minimum exists and actually arises 

whatever model we use to simulate the rates of return. In fact, although there are 
some differences in terms of optimal asset allocation, it is of interest to note that this 

minimum lies in a rather narrow interval (20%—40%).

8In this case AL is deterministic and constant because of the assumptions of a deterministic and 
stationary pension plan population. Refer to chapter 3 for a fuller discussion.
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6.4.3 A dding a third asset to  the allocation problem.

As already mentioned, we now include a third option into the choice of how to allocate 
the available fund. Specifically, we consider the third asset - cash - as the lowest risk 
and lowest return asset. We refer to this asset also as a short term rate, providing a 

risk free rate 9.
The calibration of the parameters consistently with the current market conditions 

makes the short term rate an asset with a very low volatility and a low expected 
return 10 *. As a consequence of this initialisation of parameters, we do expect this 

asset to be efficient because it reduces the variability of ul to almost zero.
The optimal allocation is computed and plotted, for the cases of cash and bond 

(Figure 6.2) and cash and equities (Figure 6.3) as the two only available assets, the 
dynamics of which are described by the financial economic model. Three risk measures 

(variance, T C E  and MS) are displayed.
The low level of variability characterising the dynamics of the short term rate leads 

an all — cash portfolio to be the optimal strategy, regardless of which risk measure 
is used (out of the three considered). Less trivial than it sounds, this result suggests 

tha t the safest investment strategy is investing in the safest asset 11.
From a different standpoint, we can say that the premium for accepting a higher 

risk asset is not worthwhile, as the reduction gained in the (expected value of the) 
future liabilities would not compensate for the higher variability of ul due to the 
more volatile portfolio. This means that all — cash is the safest investment strategy 

possible.
However, as we have seen in chapter 4, such a strategy would have severe impli-

cations on the long term cost of the pensions provision, therefore whether all — cash 
would provide a viable strategy has to be analysed in a broader context including the 
cost of pension provision as a decision variable.

It is of interest to remark that if a fixed proportion of the fund value would be

9T o  be precise, the short term rate r(t) is risk-less only in an infinitesimal time interval; refer to 
Bjork (1998) for a deeper discussion.

10Refer to appendix B for a summary of the used parameters.
“ Similar results hold when the other financial models are used. In Appendix C.l graphs displaying 

these results are shown.
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F ig u re  6.2: O p tim a l  a llo c a tio n  in  b o n d s  v e rsu s  cash .
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Figure 6.3: Optimal allocation in equities versus cash.

Variance TCE Mean Shortfall
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invested in cash, the optimal allocation of the remaining part of the assets between 
bonds and equities should be accordingly adjusted. According to Cairns (2000), in 
the UK, pension schemes only use cash for short term liquidity to cover immediate 
benefits, and not as an asset alternative to equities and bonds. Furthermore the cited 
author quotes 5% as a typical figure for the fixed proportion in cash.

The following table displays some of the numerical figures of this analysis. Specif-
ically, fir is the fixed proportion allocated in cash, P*s is the optimal allocation in 
equities, and Pg/{ 1 —  Pr) is the optimal allocation in equities rescaled to that part
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non allocated in cash (i.e. the line in figure 6.4) 12

Table 6.1: Table optimal allocation in equities, with fixed cash.

ß r ß s ß s / (  1  ~  ß r )

0% 33.5% 33.5%
20% 24.8% 31.0%
40% 18.3% 30.5%
60% 12.1% 30.2%
80% 6.6% 32.8%

Figure 6.4 graphically illustrates these particular results, by showing the optimal 
allocation in equities of the fund not invested in cash.

It can be seen that an unpredicted effect arises. Up to a certain proportion 
(< 60%) the higher the fixed allocation in cash, the lower the optimal proportion in 

equities.
This happens, because the reduction in variability - due to a higher proportion in 

cash - compensates for the increase in AL. So the more cash in the portfolio, the less 
the need to reduce AL  by investing in a high risk - high return asset.

However, this rule is overturned when the proportion invested in cash exceeds the 

threshold of 60%. Apparently, an increasing part of the fund should be invested in 
equities if an already large amount has been allocated to the safest asset13.

6.5 Adding a random demographic com ponent.

As illustrated in chapter 3, the evolution of the pension plan population tends not to 
be deterministic. In this section, we are interested in investigating how a randomly 
evolving membership population would affect the asset allocation of the fund.

12For instance, if 20% of the fund is in cash, then 31.0% of the remaining 80% of the fund is 
the optimal allocation in equities. Hence, the final allocation is 30% cash, 55.2% bonds and 24.8% 
equities.

13Although with slightly different numerical figures, the other financial models lead to results 
conceptually consistent; refer to Appendix C.l for additional figures.
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F ig u re  6.4: O p tim a l  a llo c a tio n  in  e q u itie s , w ith  fixed  cash . F in a n c ia l  e co n o m ic  m o d el

Proportion allocated  In c a sh

In particular, here we consider the situation where the number of annual new 
entrants into the scheme varies according to a stochastic process. The implications of 
such an assumption on the overall risk faced by a scheme are analysed in chapter 3.

The analysis is run according to the following methodology:

• Having fixed the year t = 90, we simulate the rates of return on the basis of one 
of the models proposed at the beginning of this chapter. Out of the three assets 

we take into account bonds and equities only, since cash is efficient in terms of 

risk.

• Then we simulate the number of annual new entrants according to a normal 
distribution and we repeat the same operation increasing the variability of new 

entrants (using the same seeds, in order to eliminate the error due to accidental 

deviations) 14.

14Note that negative new entrants are not allowed by artificially setting negative numbers equal to
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• we compute risk measures with respect to ul, corresponding to different asset 

allocations.

Figure 6.5 displays the result of such a procedure, by means of showing the surface 
generated by the risk measures. Thus, the variability of the new entrants process is 
on the z-axis; the asset allocation is on the x-axis; and finally, the value of the risk 
measures (variance in graph (a) and mean shortfall in graph (b)) are on the ¿/-axis 15.

Figure 6.5: Optimal allocation in equities with increasingly variable random new 
entrants. Financial economic model.

It is of interest to note that the optimal allocation in equities lies in a proportion
between 30% and 35%, independently of the variability of the process for new entrants.

zero. This procedure has the effect of creating a distortion in the normal distribution, by means of 
generating a higher concentration of no new entrants for the cases of higher variability. However, this 
distortion significantly affects the symmetry of the distribution only for a sufficiently large standard 
deviation (say at least 45% of the expected value).

15The variability is increased by choosing a standard deviation rising from 0 to one times the 
expected value of the number of new entrants. The asset allocation is expressed as proportion 
invested in equities.

Graph a - Variance Graph b - MS
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Similarly, the figure provides evidence that a heavy investment in equities becomes 

relatively riskier as the demographic variability increases.
It is of comfort to note that effectively there is agreement in the response of the 

two risk measures in providing the optimal asset allocation. In fact, the T C E  has 
also been computed, leading to consistent results. The results are available but are 
not shown.

Remarkably, it seems that the downside risk measures are more sensitive to the 
allocation of capital while identifying the optimal investment range. As a matter of 
fact, the surface in graph (b) is more convex than the one in graph (a).

In addition, these results also hold when the rates of return follow any of the other 

considered models 16.
As an extension of these results, we also analyse the value of those risk measures 

at different points in time, and the results suggest that the optimal asset allocation 

does not significantly change. However, the peak observed in both graph (a) and 
(b) of Figure 6.5 for the high proportion in equities appears only after the random 
perturbations start affecting the retired population. Specifically, in figure 6.6 it can 
be observed that the peak becomes evident after 80 — 85 years of the scheme’s life, 
thus suggesting that an over exposure of equities may cause a severe variability of 

the unfunded liability, when (almost) all of the retired population’s age distribution 

is random.

6.5.1 Small and large schem es.

It is of interest here to address the following question: does the size of the pension 
scheme matter? Or, in other words, do large and small schemes share the same 

optimal allocation?
In order to answer these questions, we first take into account the case in which 

the rates of return are the only source of uncertainty. So by varying the deterministic 
(constant) size of the scheme, we focus on the issue as to whether small schemes 
should operate differently from large schemes.

16Refer to appendix C.2 for the complete collection of graphs for the other 3 asset models.
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F ig u re  6.6: O p tim a l a llo c a tio n  in  e q u itie s  w ith  in c re a s in g ly  v a r ia b le  r a n d o m  new
e n tr a n ts  over tim e .

Year 70 Year 80 Year 85

Figure 6.7 displays the variance of ul for different proportion of equities, in both 
the cases where the expected number of annual new entrants is equal to 1000 and to 

50 17. The rates of return are simulated according to the financial-economic model, 
however, the other models lead to similar conclusions, as the figures in Appendix 

C.2.1 show.
These figures suggest that the population size does not m atter to a material extent, 

and thus, the optimal allocation of the assets should be performed in exactly the same 

way regardless of the size of the scheme.
The current analysis is further extended by assuming that the number of annual 

new entrants randomly changes. In particular, we assume that the distribution of 

the new entrants is the same for both the schemes, whereas the expected number of 
new entrants in the large scheme is higher than in the small one. The coefficient of 
variation is the same for both the schemes 18. Figures 6.8 illustrate the results of this 

investigation.
In such an environment, the optimal allocation does not seem to be affected by

17Since the number of eliminated members is deterministic, the large scheme reaches its maturity 
with a population of roughly 17, 000 members (active and retired), whereas the level of stability of 
the small scheme is at about 900 members.

18In order to remove randomness from the results, we have used the same randomly generated 
rates of return, as well as the same seed in order to simulate the number of annual new entrants.
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Figure 6.7: Optimal allocation in equities in small and large pension schemes.

New entrants = 50

Proportion in Equities  
year= 90

New entrants = 1000

Proportion in Equities  
year= 90

the size of the scheme. Figures in Appendix C.2.1 show that this result also holds 
when different risk measures are considered; namely, the T C E  and the M S measures.

In addition, the graphs display the risk plane at the two particular years 45 and 
90. The figures suggest that this result holds at any point in time.

6.6 Investm ent and contribution strategies.

Here we investigate the relationship between the asset allocation strategy and the 
contribution strategy, aiming to identify efficient strategies which take into account 
the overall risk (measured by the variance of ut), as well as the cost of implementation. 
Using the financial-economic model to generate random rates of return of bonds and 

equities only, a collection of graphs displaying the variance of ul against the proportion 
invested in equities is presented in the following sections.

Specifically, classical normal cost methods are considered before analysing the 
more general family of power function normal cost methods.

161



F ig u re  6.8: O p tim a l  a llo c a tio n  in  eq u itie s  in  sm a ll a n d  la rg e  p e n s io n  sch em es, w ith
ra n d o m  n ew  e n tra n ts .
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6.6.1 Classical normal cost m ethods and asset allocation.

Chapter 4 deals, among many issues, with four normal cost methods that we have 

defined as classical, namely: entry age (EA), unit credit (UC), initial funding (IF) 
and terminal funding (T F ).

Each of these methods has a characteristic path of fund accumulation, determined 
by the payments schedule. Furthermore, this difference in amount and timing of the 
payments leads to a specific level of advance funding. Hence, each normal cost method 
has a distinctive way of substituting the contribution income with income from the 

investments. As illustrated in §5.3.3 (Figure 5.3), IF  and T F  are optimal strategies, 
whereas EA  and UC show some degree of inefficiency, in the cost/risk plane.

Figure 6.9 displays the variance of ul plotted against the proportion of the fund 
invested in equities. Specifically, the four methods IF, EA, UC and T F  are displayed 
in graph (a), (b), (c) and (d), respectively.

A first consideration concerns the range of variation of the minimum. As is evident 

from the figures, the minimum varies in a narrow interval (see table 6.2). Moreover, 
bearing in mind the classification presented in chapter 4, as the level of advance 

funding - La f  - increases, so does the optimal amount to be invested in equities.
In fact, the IF  is the strategy with the highest La f  , followed by EA, UC and 

finally by T F  which has the lowest L a f  ■ So looking at the four graphs, clockwise 
starting from (a), the optimal proportion in equities decreases. Table 6.2 displays 
the numerical figures. Specifically, the optimal proportion in equities is in the first 
column, the La f  computed using a fixed force of interest <5 =  0.03 is in the second 
column, and finally the La f  computed using the optimal allocation in equities is in 
the last column. The figures support the interpretation suggested by the lines in 
Figure 6.9. Moreover, Table 6.2 also shows that when contribution and investment 

strategies are combined, the resulting L a f  is much higher than when fixed 5 is used.
This result suggests that the investment strategy should support the contribution 

strategy; i.e. the more a contribution strategy relies on the rates of return, the higher 
should be the proportion of assets invested in equities. However, this rule is limited 
to the narrow interval previously identified.

A possible explanation is based on the belief that the longer a portfolio holds risky
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F ig u re  6.9: O p tim a l  a llo c a tio n  in  e q u itie s , fo r d iffe re n t c o n tr ib u tio n  s tra te g ie s .
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(d) Terminal Funding

Proportion in Equities

(c) Unit Credit
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Table 6.2: Table of optimal equity allocation and LAf  for classic normal cost methods.

Normal cost method P*s La f  (5=0.03) La f  (optimal 5)

Initial Funding 34% 3.78 37.5

Entry Age 31.5% 3.34 24.2

Unit Credit 29.5% 2.12 9.50

Terminal Funding 22% 1.03 1.1

assets the more it may benefit from the higher expected returns.
As anticipated by the considerations illustrated in chapter 4, it can be seen from 

the scale on the y-axis that low LAf  contribution strategies lead to low values of risk. 
In addition, it is evident that, for the same strategies, the risk is less sensitive when 
it comes to implementing safer strategies, i.e. with proportions allocated to equities 

between 0 and 20%.

6.6.2 Power accrual function and asset allocation.

Let us extend this analysis to the wider class of normal cost methods deduced from 
assuming that the pension accrual density function is a power function as described 
in section 4.1.1. The financial assumptions are left unchanged: thus, we take into 
account bonds and equities as the two possible investments.

Risk of power accrual m ethods.

The following graph displays the variance of id when various funding strategies are 
implemented. In particular, combinations of values for the parameter p and for the 
proportion in equities fis are considered.

It can be seen that for each investment strategy, the variance decreases as the 
parameter p increases. The figure from this perspective replicates the analysis run in 

chapter 4.

165



F ig u re  6.10: V a ria n c e  o f  ul, w ith  p o w er d e n s ity  n o rm a l costs .

o.o 25
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More interesting is the fact that the peculiar concave shape of the surface suggests 

that for each level of the parameter p, there exists only one proportion (to be invested 
in equities) which minimises the variance. This proportion is highlighted by the black 

line and varies between 25% — 35% according to the level of the parameter p.
This is consistent with the previous analysis of well known normal cost methods, 

and the results suggest that the earlier the contributions, the higher the proportion in 
equities. For instance, the numerical analysis reports that for p very close to 0 (so the 
IF contribution strategy), 35% of the fund value should be invested in equities. When 
the parameter p is equal to 1 (unit credit method), the optimal allocation decreases 
to 30%. Finally, for p = 25 (roughly the TF contribution strategy), this analysis 

suggests 25% as the optimal proportion.
From a different perspective, we can observe that the space of strategies having 

the same risk is infinite. In other words, once the level of acceptable risk has been 

decided, there are an infinite number of combinations of contribution and investment 
strategies leading to this value of the variance. All these strategies identify a line of 
isorisk on the surface in figure 6.10.

The results of this kind of analysis are displayed in figure 6.11, where the variance 

of ul has been fixed at a defined level (depicted in yellow in Figure 6.10) and the 
equivalent combinations of p  (on the x-axis) and (3s (on the y-axis) are derived.

The line suggests that there is a particular value of the power parameter (let us 
indicate it with p*) which can be combined only with one (3$ in order to satisfy the 
required condition that the variance of ul is equal to a pre-specified value. For all the 
other p > p*, there are always two possible investment strategies leading to the same 
risk. The reason why this happens comes from the expression of the variance of ul 
and it is similar to the explanation given in §6.4.2 for the existence of a minimum 
variance. A low proportion in equities would have a two fold effect: it decreases the 
financial risk (in term of deviation from the mean) and it increases the total amount 
of the liabilities. Conversely, a higher valuation rate determines a lower value of the 
liabilities at the expenses of more volatile assets. This explain why two possible asset 
allocations lead to the same value of the variance of ul for each p > p*.

Furthermore, the unique value (3s* associated with p * is the optimal proportion of
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Figure 6.11: Pairs of equivalent contribution and investment strategies, with respect 
to risk.

Param eter p

fund to invest in equities. The concave shape of the surface in Figure 6.10 supports 

this assertion. In fact, Figure 6.12, displaying the variance of ul for different asset 
allocations combined with p*, shows that (3s* minimises the risk measure.

Thus, this combination of investment and contribution incomes is efficient, in the 
sense that employing a different (3s - together with the same p* - would increase the 

risk, as measured by the variance of ul.
Figure 6.11 also illustrates that, for p < p*, there is no proportion (3s which leads 

to the same level of risk. Bearing in mind the shape of the surface in Figure 6.10, it 
is evident that contribution strategies with p < p* necessarily lead to a higher risk.

This suggests an interesting result: having set the maximum level of acceptable 

risk, the efficient way of funding a retirement benefit is by contributing as early as 
possible. However, the level of risk excludes the case of “too early” funding, but 
identifies the unique optimal asset allocation.

If there is the need of reducing the maximum level of acceptable risk, the only way 
is by increasing the parameter p\ e.g., by delaying the contributions. This approach 
would increase the cost of pension provision, thus recreating the tradeoff between risk
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F ig u re  6.12: V a ria n c e  of ul for d iffe ren t p r o p o r t io n  in  eq u itie s  co m b in e d  w ith  p*.

Proportion in Equities

and cost. This aspect is investigated in the following section.

Cost o f power accrual m ethods.

In chapter 4 the risk and cost of contribution strategies have been extensively anal-
ysed. However, in this analysis the discount rate was held fixed 19. Thus the charac-

teristic La f  of a contribution strategy (to which risk and cost are linked) is explained 
exclusively in terms of the timing of the payments into the fund.

Specifically, the long term cost of a contribution strategy is low when LAF is high; 
while La f  increases when the contributions are paid at an early stage of the working 

life-time.
A natural extension of that work considers a variable valuation rate. Specifically, 

in this chapter the valuation rate varies according to the asset allocation. In fact, a 
higher proportion of fund invested in equities leads to a higher expected return at the 

expenses of a higher risk.

19In this case we refer to the general valuation rate, without specifying whether is it an annual 
effective valuation rate (i) or it is a continuous force of valuation (<5). In fact, the argument holds 
independently of the assumptions of continuous or discrete time.
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The insight we want to exploit is tha t a higher expected returns should reduce the 

long term cost of a contribution strategy, and thus different combinations of p and

To start with, let us analyse the cost of a contribution strategy as a function of 
both p  and Ps- Recalling the two expressions of the expected cost already given in 
equation (4.22), we can further extend it considering a more general case, as in the 
following equation in continuous time:

where the force of valuation 5ps is function of the asset allocation (i.e. the proportion 

Ps invested in equities).

is higher at older ages. On the contrary, it is not clear whether the cost should 
increase with 6ps , as the value of the annuity decreases and the value of the integral 
increases. However, intuition would suggest that the expected cost should decrease 
with the valuation rate, as a higher proportion of the final benefit would be funded 

by the higher (expected) returns.
Figure 6.13 displays the cost of the funding strategy, for different contribution 

and investment strategies 20 In particular, on the x-axis there is the parameter p  (the 
higher p ,  the lower L a f  ), and on the y-axis there is the continuous force of valuation 

bs-  Isocost lines have the same colour.
Stripes of the same colour can be seen from one end of the surface to the other. 

Hence, at the same cost, the fund manager can implement two different and (to some 
extent) opposite strategies: either requiring late contributions and then investing 
them into higher expected return assets; or, combining early contributions and lower 
expected return investments.

Indifference on the plane of cost simply means that from the point of view of 
implementation cost there is equivalence between the two strategies. However, we 

have seen in previous chapters that cost is not the only feature considered when

20The financial economic model is used to generate the investment returns and the fund can be 
allocated either in bonds or inequities. The number of new entrants is deterministic and constant.

Ps should lead to same La f  and perhaps identify efficient funding strategies.

(6.16)

Equation (6.16) suggests that the expected cost decreases when the density m(x)
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F ig u re  6.13: C o s t o f  fu n d in g  s tr a te g ie s  fo r in c re a s in g  L a f  a n d  fo rce  o f  v a lu a tio n  5.
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F ig u re  6.14: O p tim a l fu n d in g  s tra te g ie s .

w

choosing how to fund a retirement benefit, as the risk of meeting the liabilities plays 
a crucial role as well. In fact, strategies sharing the same cost are not equally risky 
- at least not necessarily - and thus the question to be answered is whether it is 
possible to find efficient combination of contribution and investment strategies which 

simultaneously minimise the cost and the risk.

Optimal funding.

If we fix the cost that the scheme is willing to face in order to fund the retirement 
benefit, it is possible to identify the combinations of p and fis which leads to the same 

cost.
Figure 6.14 displays the efficient frontier of optimal allocation equities for differ-

ent (expected) costs of pension provision. In agreement with the results relative to 
classical normal cost methods, the optimal proportion in equities (which minimises 

the variance) decreases as the expected cost of implementation increases.
Looking at the numerical figures in Table 6.3, we can see that, for instance, having 

set the expected cost equal to 1, a contribution strategy identified by p =  0.86 (so
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with large La f  ) combined with an allocation of roughly 33% of the fund value in 
equities, minimises the variance of ul 21. Any other combination of Ps and p which 
generates a contribution strategy of the same expected cost, will also generates a 

higher risk.

Table 6.3: Table of optimal funding strategies.

Expected Cost P Optimal equity alloc.

0.102 0.001 0.375
0.449 0.287 0.356
0.735 0.572 0.341
0.977 0.858 0.331
1.084 1.000 0.325
1.661 2.000 0.302
3.048 9.000 0.260

So for instance, a proportion of 30% requires a (rough) value of p — 0.2 in order to 
minimise the variance of ul, however, such a combinations produces a set of normal 
contribution having an expected cost equal to 1.67. Hence, if there is the need to 
reduce the expected cost up to 1, while leaving an investment of 30% in equities, 
this can be achieved by increasing the La f  > he. decreasing p. However, the resulting 

combination would be sub-optimal, since the variance of ul will not be at its minimum.
It is of interest to note that the range of variation of the optimal allocation in 

equities is rather narrow, whereas the expected cost varies from being almost null to 

a fairly high cost.

21From the graph, it is not possible to extract the value of p. However, this is uniquely determined 
once the expected cost and the valuation rate (inferred from the asset allocation) are fixed.
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6.7 Optimal strategies under a financial economic 

approach.

As part of the pension funding literature suggests, the characteristic structure of the 
pension debt, together with the theoretical support of the Modigliani-Miller theorem, 
invites us to consider the possibility of funding the retirement benefit by exclusively 
investing in bonds.

Although this approach has been widely criticised by the more classical actuarial 
literature, this method provides a measure of certain interest. In fact, if the scheme 
were to wind up at the time of the valuation, the current fund would be invested in a 
low risk, and low return, asset in order to ensure its value throughout time with the 
highest degree of confidence. Prom this perspective, the valuation of the liability, at a 
valuation rate computed from bonds, measures what would be the necessary capital 
to cover future liabilities in case the scheme were to stop its activity.

In light of this, we have carried out an analysis of optimal allocation in equities, 

where the liabilities are valuated in two different ways.
A first approach consists of valuing the liabilities at a rate equal to the expected 

return from investing in bonds. Thus, the valuation rate is constant and the finan-
cial realisations do not affect the actuarial liability. However, a systematic mismatch 
between the rate of return from investments and the valuation rate arises with con-
sequences which will be analysed in the forthcoming section.

A pure market based approach is then implemented, whereby the actual annual 
rate of return from bonds is used to value the liability. Haberman et al (2003) 
employ a similar approach, whereby the liabilities are valued using the current market 
conditions (the real yield index-linked bond, as generated by the Wilkie model).

Using such an approach, the resulting liabilities are volatile due to the variations 

in the financial markets, which affect the valuation rate.
A (third) hybrid approach, whereby the valuation rate is determined as a smoothed 

value of a number of previously realised returns, could be implemented in order to 
provide more stable estimates of the actuarial liability. However, the aim of this sec-
tion is to show the effects of a financial economic approach on optimal asset allocation,
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thus we leave out the development of extensions for future research 22.

6.7.1 Expected  return bond based valuation.

Before illustrating the results, it is of interest to explain what kind of results are 
expected. Using the expected rate of return from bonds as the valuation rate used 
for discounting future liabilities leads to two main problems.

First, throughout the analysis the spreading surpluses/deficits method is used 
in order to deal with the ul arising from the mismatch between the assumptions 
made and the actual realisations. Such a method of supplementary funding has 
been devised in order to deal with the situation whereby the valuation rate coincides 
with the expected rate of return. However, in this case the valuation rate is no 
longer a function of the asset allocation, as it is fixed and equal to the expected 
rate of return from bonds. Under this circumstances, the framework in §6.2.5 is 
implemented in order to guarantee that ul is finite in the long term. The alternative 
method of amortising gains/losses, as described in Dufresne (1988), is affected by the 
same problem. A more general approach is proposed in Owadally (2003), where the 
method of spreading surplus/deficits is modified in order to overcome this specific 

problem.
Second, the assumption that the valuation rate is a function of the asset allocation 

explains the results obtained in the previous sections. In fact, we have seen that a 
higher valuation rate on one hand reduces the magnitude of AL\ while on the other it 
increases the variability of the financial performances. Conversely, a lower valuation 
rate increases the value of the future liabilities, whereas it reduces the investment 

volatility.
In this specific case, where the valuation rate is independent of the asset allocation, 

a change in the proportion of fund invested in equities is not going to affect the 
valuation of future liabilities. Hence, only the financial part of the variability of ul 
will be sensitive to the investment strategy.

In the light of this, Figure 6.15 illustrates three different risk measures in order

22 A possible avenue is identified in Haberman and Vigna (2002), who investigate such an approach 
in the case of defined contribution pension schemes.
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to capture different aspects of the way in which asset allocation is going to affect the 

overall risk of a DB pension scheme 23.

Figure 6.15: Optimal allocation in equities.

Variance TCE Mean Shortfall

The variance of ul suggests that the strategy which determines the lowest variance 
of the return is optimal. With the current values of the parameters, this means that 
the an all-bonds (or a very low holding of equities) is the optimal strategy. This result 

is not surprising in the light of what has been discussed above.
By taking into account the tail of the loss, the other two risk measures are more 

sensitive to the allocation strategy. In particular, both T C E  and M S show that a 
high allocation into equities could be beneficial in terms of risk. In detail, the M S 
suggests that investing around 50% in equities is optimal, whereas the T C E  requires 
an even higher proportion.

The discrepancy between the two downside risk measures and the variance arises 
because a return higher than expected, reduces the probability of a positive ul (i.e. 

when the liabilities are larger than the assets), with the ultimate effect of reducing 
the risk measures. In contrast, since the variance measures the dispersion around 
the mean, it does not capture the fact that the expected ul decreases because of a 
systematic mismatch between the average (rate of) return from investments and the

23Returns are generated with the financial economic models. By carrying out the same analysis 
with the other financial models, the results seem to be conceptually consistent with those here 
illustrated and they are presented in Appendix C.3, Figure C.8
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valuation rate.

6.7.2 M arket bond based approach.

As already mentioned, a market value approach is also included in this section. In 
particular, the valuation rate is set equal to the last experienced rate of return from 
bonds. So if valuation is at time t, we are interested in the simulated return for the 

year (t — 1, t).
On the one hand, this assumption allows us to investigate the issue of asset allo-

cation when the liabilities are measured at a real cost, in the sense that expected but 

not yet realised returns are not accounted for. Thus, this measure provides a realistic 
valuation of the cost which the pension scheme would incur if it were to wind up at 

the time of valuation.
On the other hand, this assumption increases the variability of the estimates of 

AL, because of the volatility of the valuation rate. This happens because bonds 
are not risk-free products and hence the returns provided are not deterministic but 
random. For this reason, the market rewards the scheme for taking on this risk with 

an extra premium on top of the risk-free rate provided by cash.
Figure 6.16 displays the three considered measures of risk when the proportion of 

equities varies, and remaining portfolio is invested in bonds 24.
These graphs suggest that it is optimal to invest a relatively small proportion of 

the fund value in equities. Such results are also consistent with those obtained in 

Haberman et al (2003).
As we have previously seen, increasing the proportion invested in equities has a 

two fold effect: it increases the variance of ul by increasing the variability of the 
function (f>, which summarises the returns from the market. In addition, it reduces 

the probability of positive ul, which in turn reduces the downside risk measures.
However, when AL  is valued at a constant valuation rate (as in section 6.7.1), the 

reduction in the probability of positive ul compensates for the increase in the expected 
ul (conditional on being positive) and so the resulting downside risk measure is lower

24The returns are simulated according to the financial economic model. Similar figures concerning 
the other financial models are presented in Appendix C.3, Figure C.9
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Figure 6.16: Optimal allocation in equities.

Variance TCE Mean Shortfall
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with a higher proportion in equities. In contrast, this reduction of downside risk 
measures does not happen when the valuation rate is equal to the random rate of 

returns from bonds.

6.8 Summary.

In this chapter, the results relative to optimal contribution strategies axe extended to 
the more general case of optimal funding strategies. Specifically, the level of advance 
funding is analysed in terms of the scheduling of contributions (as in chapter 4 and 

5) and of the investment strategy.
Following a traditional actuarial approach to pension funding, whereby the dis-

count rate is related to the asset allocation, we have shown that a considerable pro-
portion of assets should be invested in equities in order to minimise a set of selected 

risk measures.
The optimal proportion of assets to be invested in equities varies according to 

(a) the financial model implemented to forecast future investment returns; and (b) 
the calibration of the parameters. Nonetheless, a remarkably narrow interval can be 

identified, once the parameters are estimated given the data on the specific financial 
market where the considered DB pension scheme operates.
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Adding a risk-less asset (cash) to the set of possible choices, we find that such an 
asset is efficient in terms of minimising the risk. Taking into account the unfeasibility 

of the all-cash strategy, we find the optimal allocation in equities when a fixed fraction 

of the fund is invested in cash for liquidity purposes.
Optimal equity proportions are relatively insensitive to the random variation of the 

pension plan membership population; although, a high variability in the number of 
new entrants can eventually make risky strategies much riskier. Conversely, under the 
considered specifications, the size of the scheme does not seem to affect the investment 

strategy.
Analysing combinations of contribution and investment strategies, we find evi-

dences that the investment strategy should support the contribution strategy. In 
other words, the more the normal cost method employed relies on investment returns 
in order to fund the retirement benefit, the more it should be invested in risky assets, 

in order to reduce the computed risk measures. Evidence for this is found using clas-
sical normal cost methods, as well as implementing the more general family of the 

power function cost methods.
In a concluding section, the same questions are addressed when a financial eco-

nomic approach to pension funding is implemented. Specifically, liabilities axe evalu-
ated with two different discount rates: (a) the expected return from bond investments; 

(b) the returns from bond investments as read from the market at the valuation date.
In case (a), the variance suggests that an all-bond strategy is optimal, thus sup-

porting the financial-economic view that assets should be invested exclusively in 
bonds. However, the variance - measuring the variability of ul around the mean - 
fails to identify the advantage of a systematic positive mismatch between the ex-
pected rate of return and the discount rate. By contrast, the two downside risk 
measures T C E  and MS, suggest the optimality of investing a proportion of the fund 
in equities, in order to reduce the probability of positive ul.

In case (b), the variability of AL, induced by a randomly variable discount rate, 
overwhelms the reduction in the variability of ul due to an increase in the proportion 

of equities. As a consequence of this, numerical figures suggest the optimality of 
investing a minimal proportion of the fund in equities.
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Chapter 7 

Conclusions

In this Chapter we briefly summarise the main achievements of the thesis, as well as 
proposing possible areas of extension for future research.

Chapter 3 - Population plan theory Chapter 3 deals with the evolution of the 

membership population of a DB pension scheme.
In the classical theory, strong assumptions are usually made with regard to the 

structure and to the evolution of the membership population. These assumptions axe 

relaxed in this chapter, where we allow the population to evolve randomly; i.e. when 

the number of new entrants is random and the eliminations are deterministic.

Since a direct link exists between the population and the structure of the liabilities, 
such an extension to the stochastic case represents a step forward in understanding 
the effect of the demographic risk on the pension fund liabilities.

In detail, we decompose the demographic evolution into two streams of forces: 

positive factors, which increase the number of members; and negative factors, which 
instead decrease it. Using this distinction, we demonstrate that a set of generalised 

results exists when the positive factors evolve randomly.
Specifically, for a stochastic stable population we associate the corresponding lia-

bility growth process, in analogy to the Bowers’ liability growth equation, which holds 
for deterministic stable population. Similarly, the stochastic counterpart of a station-
ary population leads to Trowbridge’s equation of maturity - or maturity equilibrium
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- on average.

Attention is subsequently directed to the effects of a randomly evolving population 
on the unfunded liability of a pension scheme, and in particular on its variance.

In addition to the stochastic demographic evolution, we also allow for random 
realisations in the financial market. Thus, two sources of uncertainty are included 

while analysing the variance of ul.
Different from the classic literature in the field, we also investigate the case in 

which these two sources of uncertainty are not independent.
By doing so, we axe able to provide closed expressions of the variance of ul in 

a number of specific cases. Moreover, we show how it is possible to identify and 
separate the variables describing the dependence structure within the two risks, from 
those describing the dependence between the two of them.

Under certain conditions, we also find that the independence assumption leads to 

an upper-bound of the risk under dependence.

Future research. A more general theory allowing for stochastic negative factors 

in the determination of the membership population is certainly an area of great 

interest.
W ith respect to the implications on the variance of ul, we have not proposed a 

model for linking the number of new entrant to the financial realisations, other than 
presenting the dependence in terms of covariances. Although it may be difficult to 

gather accurate data, it is possible that a significant link between the two phenomena 
exists, perhaps with some time lag. However, it is likely that, whatever the nature 
of an existing relationship, the effect on the liabilities would be negligible. This is 
because, the two events of joining the scheme and receiving the benefit happen at 
very distant points in time, by which time the correlation effect are likely to have 

damped.

Chapter 4 - Contribution strategy. The aim of this chapter is to develop a 
classification of normal cost methods, which takes into account (a) the risk that, for 
each member of the scheme, the fund accrued at retirement differs from the expected
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value of the benefit; and (b) the cost of pension provision.
We use the accrual density function, as introduced in Cooper and Hickman (1967), 

Bowers et al (1976, 1979, 1982) and Economou (2003), in order to define the level 
of advance funding of a contribution strategy; i.e., the proportion of the retirement 
benefit which is funded by the investment income. Risk and cost are linked to this 
quantity.

Financial risk and the risk of the sponsor defaulting in its payments axe separately 

modelled, and in addition we show the way to include the demographic risk as a third 

source of uncertainty.
Using such a decomposition, it is possible to illustrate the contrasting effects of 

the two sources of uncertainty on the level of risk of a given contribution strategy.
The accrual density function is also used in the definition of the cost of imple-

mentation of any given contribution strategy. Introducing the cost has the effect of 
creating a force opposite to the financial risk. In other words, the impact of finan-
cial risk can be reduced only by implementing a more expensive contribution strategy. 
Conversely, in order to reduce the cost of pension provision, a higher risk of mismatch 
between accrued and expected values has to be faced. Hence a tradeoff between the 

two exists.
By contrast, we illustrate that, when the risk of default is the only source of un-

certainty, the cheapest strategy is also the safest one and therefore the above tradeoff 

does not arise.

Future research. Although explicitly expressed in the equations, the demo-

graphic risk is not included in the risk-based classification of contribution strategies. 
Considering the probability of surviving (or the force of mortality) as stochastic pro-

cesses would extend this line of research.

Chapter 5 - Optimal contribution strategies. Starting from the tradeoff be-
tween risk and cost of contribution strategies, the aim of this chapter is to devise a 

methodology in order to identify optimal strategies which minimise a certain measure 

of risk.

182



First, we set the constrained quadratic problem of minimising the variance of a 
general loss function. Then, we find an analytical solution under some fairly general 

conditions.
Furthermore, numerical routines are used to find optimal contribution strategies 

in two specific situations: when the objective is to minimise (a) the variance of a loss 
function relative to a single member of the scheme (disaggregated approach); (b) the 

variance of the unfunded liability (aggregated approach).
For the disaggregated case, we include two sources of uncertainty: namely, the 

rates of investment return and the risk of sponsor’s default. Thus, numerical opti-
misation identifies the efficient frontier in the risk/cost plane. Moreover, we show 

that the normal cost methods generated by the power accrual density function are 

inefficient in this plane.
W ith respect to case (b), financial and demographic risks are included as sources 

of uncertainty in the analytical derivation of the optimal solution.
A numerical application focuses on the effects of stochastic new entrants when a 

deterministic mismatch between the expected and actual returns from investments 
exists. Specifically, we use numerical algorithms in order to find optimal strategies, 
when new entrants at a fixed age are modelled as a sequence of iid random variables. 

Moreover, once the cost is included in the investigation, we identify the efficient 

frontier in the cost/risk plane.
In this framework, optimal strategies are compared to normal cost methods, show-

ing the inefficiency of these in terms both of cost and risk.

Future research. As far as the mathematical development is concerned, ana-
lytical conditions assuring the non negativity of the optimal solution a priori may 

exist.
On the numerical implementation side, multiple objective functions optimisation 

could be used to minimise simultaneously the cost and the risk. This approach is not 
used here, but it could provide us with a valuable tool for comparing the validity of 

the results.
More realistic financial models, as proposed in Chapter 6, could be taken into
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account when looking for optimal contribution strategy from the individual member’s 

point of view. Similarly, including financial risk and the risk of sponsor’s default in 

the aggregated problem may be interesting and worth pursuing.
Moreover, part of the results may be explained in terms of the chosen risk measure. 

From this perspective, allowing for different measures, such as those satisfying the 

requirements of coherence, would be a natural extension to this research.

Chapter 6 - Optimal funding strategies. In this chapter, we investigate the 

asset allocation as a tool for controlling the investment income. This issue is part of 
a broader discussion involving different approaches to the funding of pension scheme. 
These approaches arise from different schools of thinking, which here we label as 

classic actuarial and financial-economic.
Following a traditional actuarial approach to pension funding, whereby the dis-

count rate is related to the asset allocation, we find that a considerable proportion of 
assets should be invested in equities in order to minimise a selection of risk measures.

This result is tested with different financial models, as well as with different pa-
rameters, and it seems that the optimal allocation in equities lies in a remarkably 

narrow interval.
Furthermore, we extend the results from previous chapters by looking for optimal 

funding strategies, i.e optimal ways of combining contribution and investment strate-
gies. We find evidence that the investment strategy should support the contribution 

strategy. In other words, the more the normal cost method relies on investment re-
turns in order to fund the retirement benefit, the more should be invested in risky 

assets. In this way we reduce the computed risk measures. Evidence for this is found 
using classical normal cost methods, as well as implementing the more general family 

of the power function cost methods.
In order to compare the two approaches, the actuarial and the financial-economic 

ones, and in order to understand to which extent they lead to different optimal so-
lutions, we perform the same analysis following an approach consistent with the 

financial-economic school.
Specifically, liabilities are evaluated with two different discount rates: (a) the
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expected return from bond investments; and (b) the returns from bond investments 
as read from the market at the valuation date.

In the case (a), we find that a two-sided risk measure suggests the optimality of 
an all-bond strategy, thus corroborating the view that assets should not be invested 

in equities. In contrast, downside risk measures account for the systematic positive 
mismatch between the expected rate of return and the discount rate, and because 
of this the optimal strategy calls for investments in equities. Thus, different risk 

measures suggest the optimality of considerably different strategies.
In the case (b), the variability of the liabilities, due to the randomness of the 

discount rate, overwhelms the advantages of investing in equities, and hence, numer-
ical figures suggest the optimality of investing a minimal proportion of the fund in 

equities.

Future research The literature illustrates the importance of taxation and sol-
vency protection policies in determining the efficiency of asset allocation.

Specifically, these two factors have a contrasting effect on the proportion to be 
invested in equities: taxation calls for a reduction of equities, whereas solvency insur-

ance for an increase.
In this thesis, these factors are excluded, and it would be of interest to investi-

gate their effects in this framework, where investment and contribution incomes are 

efficiently combined.
Furthermore, this analysis is limited to the case of a static optimal problem, where 

we minimise a risk measure at a specific point in time. Indeed, further research may 

be developed in order to extend this analysis to a dynamic case through the use of 

dynamic programming.
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Appendix A  

Analytical proofs

A .l Proof of Liability Growth process

Under the assumption of deterministic decrements and independently of the fact that 
the number of members aged x at time t is deterministic or not, the following relation 

holds: n(x, t) ■ y_xpx = n(y , t + y - x )
Hence, the G LG  equation (2.2) has the following expression:

oo oo oo

AL(t) =  53 ALxn(x,t)  =  5 3 n(x, t) 53 [ b v -  N c 2 j v v~x y- xpx
x= 0  x= 0  y= x
oo oo

=  53 13 { B y ~  N ° y )  v V ~ x t  +  y ~ x )
x=0 y = x  
oo oo= EE [Bx+k -  NCx+k jvk n(x + k ,k  + t)

x=0 k=0
oo oo

=  53 53 (B*+k -  NCx+k) vk n(x + k ,k  + t)
k=0 x=0
oo oo

=  53 E  ( B y - N C y j v *  n{y,t + k)
k=0 y= k

Thus, we can split the two cases of k =  0 and k > 1, hence obtaining the following:
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o o  OO CO

AL(t) = Y ,  ( By ~  NCyj n(y,t) +  E E  ( B y - N C y ) v k n(y, t + k)
y = 0 k=  1 y= k

o o  o o

=  B(t) -  NC(t) + J 2  Y  ( B y -  NCyy h+1 n{y,t + h+  1)
•0 y = h + l
- OO 0 0

Y Y  {Bv ~ NCv)vh n(y,t + h +  1)
■ h=0 y=h

- Y { Bh~ NCh) yh t + 1 + h)
h= 0

=  B(t) -  NC(t) +  vAL{t +  1) -  V n(0, t + 1) Y  ( b h -  NCh^vh

h=0 y = h + l  
- oo oo

=  B ( t ) - N C ( t )  + v
• h=0 y=h

kPo

h=0
=  B{t) — NC(t ) +  vAL(t  +  1) — v n{0, t +  1 )AL0 

= B ( t ) - N C ( t )  + vAL(t + 1)

A .2 Derivation of the recursive formula of ul.

In section 3.5.2 a recursive formulation of the variance of ul is illustrated, for the case 
of deterministic eliminations from the populations and of random rates of investment 

returns. Under the assumption of deterministic elimination the L G P  equation (3.6) 
holds, and hence, equation (3.27) is derived in the following way:
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ul(t +  1) =  AL(t  +  1) — f ( t  +  1) —

=  [AL[t] +  NC(t) -  B( t )] (1 +  0  -  [/( i) +  c(t) -  B( t )] (1 +  r(t)) 

= [.AL(t) +  NC(t) -  B(t) -  f ( t ) -  c(t) +  B(t)] (1 +  r(t))

+ [AL(t) + N C ( t ) - B ( t ) ] ( i - r ( t ))

=  [AL(t) — f(t)  — kul(t)] ( l +  r(t)) +  AL(t + 1) —4 -1 i 2-

=  ul(t)(l +  r ( i) ) ( l  — k) +  AL(t + 1)
i — r(t) 

1 + i
t+i

=  ~ Y ^ A L ( h )  4>(h,t+l)
h=l

where (f>(h, t +  1) is as defined in equation (3.28).

A .3 Proof of covariance decom position.

The covariance between two random variable is defined as the first mixed moment 

less the product of the two first moments:

Cov(X, Y) = E[XY] -  E[X]E[Y] (A.l)

The covariance is equal to 0 when X  and Y  are independent, because in such a case 

E[XY] = E[X]E[Y).
By the definition of covariance, the following relations hold.

A .3.1 Covariance between products of two independent vari-

ables.

Let X, Y, £ and v be 4 random variables, such that X  and £ are independent, and so 

are Y  and v  then:
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Covx ( x f , Y v j  = E[X£Yv] -  E[Xt)E[Yv\

= E[XY)E\Zv) -  E[X}E[Y]E[i]E[v)

=  Cov(X, Y)E[tv] + E[X\E[Y)E\iv) -  E[X]E[Y]E[()E[v\

= Cov(X, Y)Cov({, v) +  Cov(X, Y)E[Z}E[v} +  Cov(£, v)E[X]E[Y)

A .3.2 Covariance betw een products of two variables.

Let X, Y, £ and v  be 4 random variables, then:

Cov ( X f .y v )  =  E[X£Yv] -  E[Xi]E[Yv)

=  E[X^Yv] -  £[X£]Cov(y, v) -  E[X£\E[Y]E[v\

= E[X£Yv] -  Cov (X, £)Cov(Y, v) -  Cov(F, v)E[X}E[^} 

-C o v{X,Z)E[Y]E{v} -  E[X}E[i\E[Y)E[v]

=  Co v _l  (x £ , Y v j  -  Cov(X, <£)Cov(Y, v)

-C o v(Y,v)E[X}E[Z] -  C ov(X ,£)£[Y ]£M
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A .4 Example of same cost and different risk.

Let us consider two contribution strategies, whereby the first one requires the payment 
of a lump sum at a general age y 6 (a , R). Hence, the corresponding accrual function 
mi(x) is equal to 1 for x = y and null elsewhere. In contrast, the second strategy 

requires the payment of two contributions at two different ages jq and y^, such that 
y 1 < y  < y2. Then the resulting accrual function is as the following:

{V if x  =  i/i
1 — p if x =  y2 
0 otherwise

Without loss of generality we can make a valuation assumption and consider the 

case of a constant force of interest 6U = S. So, recalling the equation of cost (4.22), 
the two strategies have the following expected costs, respectively:

ElCostjmJ/PVFBa = eâ(y~a)

E  [Cost | m2] ! PV  F B a =  p es(-yi~a) +  (1 -  p) e0(y2~a)

Hence, we can see that the two strategies have the same cost if the first contribu-

tion in the second strategy is equal to the following:

e5y2 -  e5y 
P gii/2 _  g'tyi

According to equation (4.12), these two strategies have a risk which is given by

^[m i] ~  $

[m2] =  4>

du
7y e

f R (r (u )— du 
7yi e Jyi v K ' '

=  *[«!/)]

+  7« (rW -‘)d“j $ [ £ ( y i )  +  £ ( 1 / 2 ) ]

where, 4> is a general risk measure, and £(y) =  yy e x p { f r { u ) d u }  is a random variable 
summarising the combination of the two random variables financial realisation and
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sponsor’s default.
In a similar way, it can be shown that the two strategies have the same risk if the 

first contribution in the second strategy is equal to the following proportion:

/ =  £ ( 2 / 2  ) - £ ( y )

€(2/2) -£ (v i)

Trivially, p' = p if either of the two following cases are considered: (1) if £(y) =  
eSy, \fy, i.e. if the random variable £ is to a constant, so losing its randomness. 

Therefore, this means that there is no risk involved, and thus, this case degenerates 

to a case of no interest.
Alternatively, (2) p' = p if y\ =  y = y2- In such a situation, the two strategies 

have the same cost and same risk, only if the payments are scheduled in the same 
way, i.e. if these two strategies coincide. Hence, two different strategies cannot have 

same cost and same risk (unless the risk is null).
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A .5 Equivalent quadratic problems.

Let E be a square matrix of dimensions n x n and let x  and e be two vectors of 
dimension n. Consider now, the following problem of quadratic programming:

min x 'Ex (A. 2)
X

s.t. x 'e  =  K

If (A.2) has a solution x*, then 3 v > 0 such that x* is also solution of the following 

problem

min x 'E x  +  z/x'e (A.3)
X

and

u = Ar(e'E- 1e) _1

Proof: According to the Lagrangian method, problem (A.2) is equivalent to

min x 'E x  — A (x 'e  — K^j

which has solution and Lagrangian multiplier

j  e 'E  ~lK  - 2 K
X “  e,E - 1e ’ “  e 'E -ie

In a similar fashion, problem (A.3) has solution

x' =  e 'E - 1i/

Trivially, solution (A.4) is equal to solution (A.4) if v 
pothesis.

(A.4)

=  À as stated in the hy-
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A .6 Derivation of Yl(j)̂ [x,y\ .

In section 5.2.2, the general (xth,yth) element of the vaxiance/covaxiance matrix S î7 

is defined in equation (5.33); where 4>x is the product of R  -  x + 1 log-normally 

distributed random variables.

Derivation W ithout losing generality, let us consider the case x < y.

E*l7[x,î/] =  C o v ^ I7x; ^,7y)

=  Cov E 7*7y + Cov^7x, 7y^E  (j)x E <j)y

as it is proved in Appendix A.3.1. Looking separately at each component, we can 

show that

The deviations from the expected returns are assumed to be independent, and 
hence, we can rearrange the moments, such that the last member is also equal to the 

following:

Cov

(A.5)

Finally, using equations (5.31) and (5.32), the covariance sought is given by
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C o v ( ^ „ )  =  e (2R- ' - +2) M )  -  l )  (A.6)

W ith regard to the covariance of the default indicator variable, we have that

since E 7:

Cov(7*; 7y) =  E [7*75,] -  E [7*] E [7,,]

=  P r | 7v =  1 } - P r { 7î /=  l } p r  { 7X =  l j

=  P r { 7 y =  l } ( ^ - P r { 7 x  =  l } ^

=  Pr | 7y =  l }  Pr {7x =  0} (A.7)

: =  Pr | 7x =  1} and Pr { 7,  =  1, 7y =  l}  =  Pr { t  ̂ =  1 } for x ^  V-
Combining the two results equation (5.33) can easily be derived.
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A .7 Derivation of V a r (u l ( t ) ) .

t t h - l

Var[uf(f)] =  Var{ AL{h)<i>(h,t)} = Var{ ^  <f>(h,t) ^  [NC{k) -  B(k)]uh~k}
h= 1 h = l  k= 0

t ft-1  r  r — a

=  V ar| i) ^  u '1-7 TVCa+x J 3  n (a  +  x, j, k ) -  B(t) J
h = l j —0 x=0 k =0

T

=  Var j  NC«+X G(x > 0  ~  % ) }
x=0

T T

=  J ] ^ V C û+xiVCQ+yCov{G(x,i), G (y ,t)}+ V ar{B (t)}
x=0 y=0

T

- 2  ^  7VGû+i Co v { g (x , t), B (i)}
x=0

A .8 Closed covariances for i i d  new entrants.

Under the assumption that a sequence of iid random variable describes the number 
of new entrants joining the scheme at a fixed age a, it is possible to provide closed 

expressions for the elements in the matrix £c(t) and in the vector (7(f):

2 3  M  — x̂ >a yPc
G(t)

(ul x — wt x)(ut y — wt y) v}x (uwY max(x<v) — l
uw — 1(u — w)2 u — w

uw i — im n(x,y) u t - ma x ( x , y )  __ 7/)t— m ax(x,y)W
U W  —  1 U  —  W

+  W
t— min(x,j/) 1 U

+uw — 1 u — w.

w 2 ( t -max( x ,y ) )  _  ^ 

W 2 —  1
(A.8)
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c x(t) =
M 2(í— i)

x p a W l ~ X B

y= o

r  u 4- ^ 1 • u 4 x —  w l x UW '

— t o . ( u  — w ) w t~ T~ v u w  — 1 .

r + y - x + l  [ ( u t „ ) * - i - - V + l  _  l ]

( u  — w ) ( u w  —  1 )wt — x — 1I

Wt — T — y + 1 W t — T — y + 1

U — W

+  

+ y P a

1
+

U

u w  — 1 u  — w

w 2(t—r-y+ 1 ) _  1

( W 2 — 1 ) w t ~ T~ y

(A.9)
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Appendix B

Assumptions and parameters

Unless differently stated, the following assumptions have been used when carrying 
out computer simulations of the DB pension scheme.

M odel assum ptions.

• Actuarial cost method: Entry age.

• Supplemental cost method: surplus/deficit spreading over a fixed term.

• Asset valuation: market value.

M odel parameters.

• Valuation rate: i = 3%; force of discount: 5 =  log(l +  i).

• Investment rate of return: r  =  3%; fore of return: f  =  log(l +  r).

• Amortisation period m  has been initially set equal to 4.

• Fixed entry age a  =  20, retirement age R  =  65, extreme age ui =  105.

• Data from Watson&Wyatt, have been used to derive the service table (proba-

bilities of remaining in the scheme) and salary scale.
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Sim ulation assum ptions and parameters.

• New entrants process-^}: indipendent and normally distributed with mean 
g =  1000 and standard deviation ag — 250; negative values are artificially set 

equal to zero.

• Number of simulations: 10,000.

• Multinormal financial model (from Blake et al (2000)):

— Vector of expected returns: ¡1 — (3%, 6%, 13%)'.

— Correlation matrix:

/ 2.045% — _  \

V  = 0.256% 7.953% —

V -0.016% 0.544% 19.113% j

• Regime switching multinormal model (from Blake et al (2000)):

— Vector of expected returns: p, =  c(1.28%, 5.14%, 9.21%)'.

— Correlation matrix:

( 4.045% — _  \

V  = 0.256% 14.57% —

\ -0.061% 0.544% 18.24% )

-  Parameters in the high volatility state

Bond expected return: grB ' =  —6.92 

Bond variance: V a r ^  =  6.21 

Equity expected return: ¡rs — 21.92 

Equity variance: V a r ^  =  66.62
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-  T ra n s it io n  p ro b a b ilitie s :

PrjB ond  in s ta te #  j  =  29.82%

Pr jEquity in s ta te#  j  =  9 .13%

• Wilkie model: the parameters are taken from Wilkie (1995)

• Financial-economic model (parameters are taken from Boullier et al (2001) and 

partly modified, in order to obtain expectations and volatilities comparable to 

those from the other models):

— Short term rate 

a =  0.2 

7  =  0.03 
aT — 0.015 

r 0 =  7

-  Bond 
#  =  10

Ar =  7 /W

— Equity 
As|r =  0.46 
a  =  0.02 
U5|r =  0.199

These parameters lead to following values for the equity: 

expected mean fis = 13% 

volatility as =  20%
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c o rre la tio n  pr,s  =  10%

• Sponsor default model:

-  7 varies such that that the expected number of years before the default 

lies in the range from 1 to 500 years.

-  p is equal to 0, when independence between financial markets and sponsor’s 
default is assumed. Otherwise, following Ngwira and Wright (2004), we 

set ¡3 — 4.5%.
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Appendix C 

Additional graphs

C .l Adding a third option to the allocation prob-

lem - §6.4.3

The following figures C.l, C.2 and C.3 display the optimal allocation of cash ver-

sus bonds and equities (separately), when multinormal, regime-switching and Wilkie 
models are implemented, respectively. The results axe in line with those illustrated 

in section 6.4.3.
Figure C.4 suggests that the results achieved in section 6.4.3 also hold when the 

rates of return are generated by the other models. In particular graph (a) refers to 
the multinormal model, graph (b) refers to the regime-switching model, and graph 

(c) to the Wilkie model.
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F ig u re  C . l :  O p tim a l  a llo c a tio n  in  b o n d s  a n d  eq u itie s  v e rsu s  cash . M u lt in o rm a l m o d e l

Variance TCE Mean Shortfall

Figure C.2: 
model

Optimal allocation in bonds and equities versus cash. Regime-switching

Variance

Proportion in Bonds 
markov-switching

TCE Mean Shortfall

Proportion in Equities markov-switcning
Proportion in Equities markov-switcning

Mean Shortfall
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F ig u re  C .3: O p tim a l a llo c a tio n  in  b o n d s  a n d  e q u itie s  v e rsu s  c a sh . W ilk ie  m o d e l

Variance

Proportion in Equities 
K Wilkie's

Proportion in Equities 
^  Wilkie’s

Proportion in Equities 
Wilkie's

Figure C.4: Optimal allocation with fixed cash.

Proportion allocated in cash Proportion allocated in cash Proportion allocated in cash
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C.2 Adding a random demographic com ponent -

§6.5.

We have seen in section 6.5 that the optimal allocation does not particularly vary, 
when a random demographic component is added. Specifically, here we model the 

number of new entrants with a sequence of independent and normally distributed 
random variables. The following Figures C.5 display the optimal allocation equities 
(the remaining is invested in bonds), when the rates of return are simulated with the 
multinormal, regime-switching and Wilkie models, respectively. Graph (a) illustrates 
the surface of the variance (y-axis) when the asset allocation (x-axis) and the vari-
ability of new entrants (z-axis) change, whereas graph (b) display the surface of the 

MS.
The results from this other investment models are consistent with those illustrated 

in section 6.5, obtained using the financial-economic model. The optimal allocation 
is not particularly affected by the variability of the new entrants.

C.2.1 Small and large schem e

The following Figures C .6 and C.7 show the differences in asset allocation for small 
and large schemes, when models of the rates of return different from the financial- 
economic one are used. Specifically, Figures C.6 display the case of deterministic 
new entrants; whereas Figures C.7 illustrate the case of random new entrants at two 

points in time: year 45 and year 90.
It is of interest to highlight that the Wilkie model does not always suggest the 

optimality of investing at least a minimal amount in equities.
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Multinormal model

F ig u re  C .5: O p tim a l a llo c a tio n  in  e q u itie s  w ith  in c re a s in g ly  v a ria b le  r a n d o m
e n tra n ts .

Regime-switching model

Wilkie model

new
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F ig u re  C .6: O p tim a l a llo c a tio n  in  e q u itie s  in  sm a ll a n d  la rg e  sch em es, w ith  d e te rm in -
is tic  n e w  e n tra n ts .

Multinormal model
New entrants = 50 New entrants = 1000

Proportion in Equities 
year=90

Proportion in Equities 
year=90

Regime-switching model
New entrants = 50 New entrants = 1000

Proportion in Equities 
year=90

Proportion in Equities 
year=90

Wilkie model
New entrants = 50 New entrants = 1000

Proportion in Equities 
year=90
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F ig u re  C .7: O p tim a l a llo c a tio n  in  e q u itie s  in  sm all a n d  la rg e  sch em es, w ith  ran dom
n ew  e n tra n ts .

C.7.a : Multinormal model

New entrants = 1000 New entrants = 1000

Proportion in Equities 
year=45

Proportion in Equities 
year=90

New entrants = 50

Proportion in Equities 
year=45

Proportion in Equities 
year=90
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C .7.b  : R egim e-sw itching m odel

New entrants = 1000

to>

0.0 0.2 0.4 0.6 0.8 1.0

Proportion in Equities 
year=45

New entrants = 50

Proportion in Equities 
year=90

New entrants = 50

Proportion in Equities 
year=45

Proportion in Equities 
year=90
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C.7.c : W ilkie m odel

New entrants = 1000 New entrants = 1000

Proportion in Equities 
year=45

Proportion in Equities 
year=90

New entrants = 50 New entrants = 50

Proportion in Equities 
year=45

Proportion in Equities 
year=90
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C.3 Financial econom ic approach - §6.7

Figure C.8: Optimal allocation with constant valuation rate.

Multinormal model.

Variance TCE Mean Shortfall

Markov regime-switching model

Variance TCE Mean Shortfall

Proportion in Equities 
model = markov-switching

Variance
Wilkie model 

TCE Mean Shortfall

In figure C.8, the valuation rate is set equal to the expected rate of returns from

210



4e
+1

2 
8e

+1
2 

5.
0e

+
11

 
1.

5e
+1

2 
1e

+1
2 

3e
+1

2
bonds. The results axe conceptually similar to those presented in section 6.7.1, al-
though the TCE in the regime-switching model would suggest that all-equities would 

be the optimal strategy.

Figure C.9: Optimal allocation with market based valuation rate.

Multinormal model.
Variance TCE Mean Shortfall

Regime-switching model

Variance TCE Mean Shortfall

O O O O O 
O W V-CC
o o  o  o  o"d’

Proportion in Equities Proportion in Equities Proportion in Equities
model = markov-switching model = markov-switching model = markov-switching

Wilkie model

Variance TCE Mean Shortfall
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In the calculation producing figure C.9, the bond rate of return experienced during 
the year before the valuation rate is used for evaluating the liability. These other 
models seem to produce results very similar to those presented in section 6.7.2.

The results the Wilkie model seems to agree with those presented in Haberman 
et al (2003). Figure C.10 displays the optimal allocation in equities after a period of 

3 years (compare), using the M S as a risk measure:

Figure C.10: Optimal allocation with market based valuation rate. Wilkie model, 
year 3 and M S
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Appendix D

Sensitivity analysis

D .l  Spreading period.

Figure 6.1 suggests the optimality of investing roughly 32% of the fund in equities. It 

is of interest to show how this optimal value changes, when the amortisation period 
changes. Figure D .l displays the results of this investigation.

Focusing on the financial-economic model, we can see that, as the spreading period 

increases from 1 up to 9 years, the line identifying the optimal proportion in equities 
rises up to hitting a maximum. From that point on, optimality requires to reduce the 

allocation in the risky asset.
The other models for the rates of return generate results, which are partly con-

sistent with the financial-economic model. Specifically, as the other charts in Figure 
D .l suggest, all the models call for a reduction of the proportion in equities, as the 
spreading period increases. However, only in the regime-switching model the propor-
tion increases reaching a maximum, before eventually dropping.

It is also of interest to remark, that the Wilkie model produces a completely 
different shape. In fact, the optimal allocation in equities decreases quickly as a longer 
spreading period is used. However, this phenomenon is particularly pronounced when 

m  is short. Moreover, the scale on the y-axis suggests that for short periods of m  the 
optimal allocation can be considerably different.
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Figure D.l: Optimal allocation in equities with increasing spreading period.

Multinormal Regime switching

Spreading period Spreading period

Wilkie Financial econom ic

Spreading period Spreading period
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D.2 Service table.

In this section, it is of interest to test the robustness of the optimal allocation, when 
different assumptions regarding the eliminations from the scheme are used.

Specifically, we compare the optimal proportion to be invested in equities using 
the following probabilities of elimination. The first table, to which we refer as the 
standard service table, is the basic assumption used throughout the thesis. As an 
alternative, we take into account a mortality table (called RG48) derived from data 
of the general population of Italy, in order to describe the mortality of Italian life 
annuitants. This table is subsequently adjusted to reflect both the higher mortality 
of a population of pensioners, compared to a population of life annuitants; and the 
improvements in mortality during the past 10 years. 1 This table is chosen because 
it is characterised by low mortality. We also include an artificial table, built by 

averaging out the two previous tables.
Figures D.2 displays the probability functions derived from the 3 tables: specif-

ically, the thick line is the table RG48, the dotted line is the “standard” table and 
the dashed lines is the “average” table. On the x-axis there is the age, whereas on 

the y-axis there is the probability of surviving one year.

Figure D.2: Comparison among the three mortality tables.

Figures D.3 display the optimal allocation in equities, under standard assumptions

1 Details on the projection techniques are in Sithole et al (2000) and Colombo and Esposito (2003).
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(i.e. financial-economic model for rates of return, spreading period equal to 4 years 
and entry age cost method), but varying the demographic assumptions as described 

above.

Figure D.3: Optimal allocation in equities, under different demographic assumptions.

Standard service table Average table RG48 table

It is of interest to highlight that the optimal allocation does not change, or at 
least not significantly. It can be seen that the scale of variability of ul under different 
demographic assumptions is massively different (the higher th  probability of surviving 

the higher the values on the y-axis). Notwithstanding this, the optimal allocation is 

the same.
Running the same investigation under different assumptions, such as different 

models for the rates of return, spreading period and contribution strategy, leads to 
the same result: the optimal allocation is robust with respect to the model for the 

survival probability that is used.
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