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ABSTRACT
Dashboards are an increasingly popular form of data visualization. Large, complex, and dynamic 
mobility data present a number of challenges in dashboard design. The overall aim for dashboard 
design is to improve information communication and decision making, though big mobility data in 
particular require considering privacy alongside size and complexity. Taking these issues into 
account, a gap remains between wrangling mobility data and developing meaningful dashboard 
output. Therefore, there is a need for a framework that bridges this gap to support the mobility 
dashboard development and design process. In this paper we outline a conceptual framework for 
mobility data dashboards that provides guidance for the development process while considering 
mobility data structure, volume, complexity, varied application contexts, and privacy constraints. 
We illustrate the proposed framework’s components and process using example mobility dash-
boards with varied inputs, end-users and objectives. Overall, the framework offers a basis for 
developers to understand how informational displays of big mobility data are determined by end- 
user needs as well as the types of data selection, transformation, and display available to particular 
mobility datasets.

KEY POLICY HIGHLIGHTS
● Defines essential components of big mobility dashboards for stakeholders to understand key 

considerations and data management/pre-processing needs
● Clarifies the differences between dashboards and visual analytics applications
● Provides guidance for gathering information from end-users to ensure displays are fit-for- 

purpose
● Illustrates the application of the conceptual framework for dashboard design by discussing 

several examples of mobility data dashboards
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Introduction

Large volumes of individual mobility data have become 
available with the advent and prevalence of location 
aware technologies in recent years. While providing 
unprecedented detail about the ways that people and 
vehicles move through space, the nature of mobility data 
combined with their volume present a number of visua-
lization challenges. Displaying massive mobility data 
quickly becomes visually overwhelming, thus making 
it difficult to understand patterns and behaviors and 
make informed decisions.

Dashboards have become a popular form of data 
visualization and interaction in a variety of domains 
including healthcare, community organizations, urban 
informatics, business, and education (Kitchin & 
McArdle, 2017; Li et al., 2020; Rivard & Cogswell,  
2004; Sarikaya et al., 2018). The overall aim in deploying 

dashboards is to improve information comprehension 
and decision making, while synthesizing large or dispa-
rate data types and sources (Few, 2013). However, there 
is a gap between large and disparate data inputs and an 
effective dashboard output. Facing complex mobility 
data, developing a dashboard involves more than visua-
lizing data with existing methods. Many additional 
aspects need to be considered, such as data type, 
volume, frequency of updates, the dashboard’s purpose, 
and intended user base (Li et al., 2020; Stehle & Kitchin,  
2020). Thus, bridging the gap between data inputs and 
usable dashboard outputs requires an analytical and 
systematic framework to guide dashboard development 
and design.

Dashboard design is data- and task-dependent; in 
light of the challenges and opportunities associated 
with mobility data, we set out to address issues related 
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to dashboard design in a mobility data context. To this 
end, we outline a conceptual framework for developing 
and designing dashboards for mobility data, and illus-
trate the use of the conceptual framework in six exam-
ples of dashboard applications. More specifically, our 
scientific contributions include: 1) We delineate the 
key differences between visual analytics and dash-
boards; 2) we clearly define developer versus user roles, 
including inputs required from user and domain experts, 
in the dashboard context; and 3) the proposed framework 
provides recommendations for the data selection, trans-
formation, comparison, visualization, and assembling 
process, while considering the specific structure and 
properties of mobility data that require specific kinds of 
processing and specific ways of presentation to users.

Background

A dashboard is a visual display that combines elements 
such as graphs, charts, text, maps, icons, and other 
images to provide visual information that can be inter-
preted and comprehended quickly to facilitate under-
standing (Few, 2013; Stehle & Kitchin, 2020; Wexler 
et al., 2017). When displaying geographic data, dash-
boards are often map-based, making use of the web 
mapping technologies (mainly web map APIs) (P. Fu,  
2022). Overall, dashboard design is a function of the 
data that are displayed as well as its intended use in 
terms of both purpose and user base (Pappas & 
Whitman, 2011; Young & Kitchin, 2020; Young et al.,  
2021). Visual dashboards are comprised of elements 
arranged to provide a simple view of data and informa-
tion, and thus provide the least levels of interaction, 
while functional dashboards incorporate interactive 
and dynamic or real-time data elements (Sarikaya 
et al., 2018). Functional dashboards provide decision- 
support and are classed as strategic, analytical, or 
operational, though these categories are not mutually 
exclusive within a single dashboard (Few, 2013; 
Sarikaya et al., 2018). Dashboard design varies within 
these classes in terms of their associated timeframe, 
graphic elements and presentation, user interactivity, 
and update frequency (Pappas & Whitman, 2011). 
Dashboard users’ experience should be considered in 
terms of both their domain knowledge (i.e. novice or 
general knowledge through expert) and literacy for 
evaluating visual elements; low experience and literacy 
require basic visualizations while increased experience 
and comprehension can take advantage of increasingly 
complex figures and interactions (Sarikaya et al., 2018; 
Young et al., 2021).

Despite widespread use of dashboards in practice, 
dashboard design still remains subject to a variety of 

challenges – many of them common to visualization in 
general. Some recurring problems in dashboard design 
are issues relating to poor use of space, superfluous, or 
conversely, insufficient information, and unaesthetic 
visual elements (Few, 2013). There are also concerns 
that dashboards may actually limit interpretation and 
decision-making because they present fixed informa-
tion that is perceived as being comprehensive and 
trustworthy, thus requiring considerations for end- 
user flexibility (Sarikaya et al., 2018).

Mobility analytics is one area that stands to ben-
efit from dashboard development. The ubiquity of 
positioning technologies, including personal devices 
and smartphones with GPS receivers, has led to an 
abundance of detailed mobility data for both animate 
objects such as humans and animals, as well as 
inanimate moving objects such as vehicles. The 
broader interest or task in analyzing mobility data 
is understanding or predicting movement and mobi-
lity patterns and behaviors (N. Andrienko & 
Andrienko, 2013). With a focus on human move-
ment, examining how people move within built- 
and natural environments is relevant to a variety of 
disciplines concerned with the day-to-day activities 
that people carry out (e.g. work, shopping, recrea-
tion) and many typical use-cases of mobility data 
visual analytics relate to transportation, including 
vehicle movement, bicycles, and pedestrians within 
routes or transport systems and other interactions 
with built- and natural environments. It is possible 
to visualize smaller sets of trajectories as collective 
individual lines or density estimates of trajectory 
bundles, e.g. in space-time cubes (Demšar & 
Virrantaus, 2010), though large and complex move-
ment data become visually overwhelming, and visua-
lization alone is insufficient for making inferences 
about movement behaviors or patterns (N. 
Andrienko & Andrienko, 2013). While the problem 
of large data volumes and overwhelming visual dis-
plays has been addressed by work in visual analytics, 
dashboards require additional consideration in devel-
oping at-a-glance views that highlight relevant mobi-
lity results. For instance, Haranwala et al. (2022) 
present a dashboard-like tool that supports the selec-
tion and parameterization of appropriate pre- 
processing techniques for mobility trajectory data. 
Further to data volume issues, displays of individual 
movement are often impacted by privacy concerns 
wherein individuals or sensitive locations might be 
identified (N. Andrienko et al., 2016; Chou et al.,  
2019), which indicates that mobility data inputs 
must be processed before being made available to 
dashboard users.
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Differentiating dashboards and visual analytics 
systems

Both visual analytics (VA) and dashboards facilitate ana-
lytical reasoning and decision-making by simplifying 
problems and communicating results visually. However, 
a dashboard display differs from a VA platform along 
three key aspects (Figure 1). The first key difference is the 
input data that underlie the visualization and information 
display outputs. VA platforms are information proces-
sing systems that can handle raw, unprocessed, and 
unstructured data from heterogeneous sources, whereas 
dashboards provide a user interface that is based on data 
that are often already standardized (i.e. cleaned and inte-
grated) and transformed (e.g. aggregated, or re-aligned 
into a data cube) for display. Data handling and wran-
gling are therefore part of the VA pipeline, whereas those 
tasks precede dashboard interaction and are not directly 
performed by the end-user.

The second key difference between VA and dash-
boards relates to their analytical complexity. The tools 
and analytical processes that produce insights from 
large, complex datasets lie specifically within the VA 
domain and outside the scope of typical dashboard 
applications, which focus on informational displays 
rather than analyzing and manipulating input data. At 
the broadest level, VA provides analytical tools to 
uncover deep and complex insights that reveal new 
knowledge and facilitating analytical reasoning is one 
of the key features of VA (Keim et al., 2008). These tools 
and analytical procedures involve complex activities, 
including in-depth analysis and data mining, that reveal 
the unknowns and new knowledge as an iterative or 
looping process. Dashboards, on the other hand, often 

do not employ analytical tools beyond selection, filter-
ing, and comparison as part of a visual display (Few,  
2013; Kitchin & McArdle, 2017; Stehle & Kitchin, 2020). 
It is essential to make the related distinction that VA 
platforms allow users to set their own workflow and 
logic to answer questions and generate specific knowl-
edge outputs at the data and analytical level, whereas 
dashboards are typically restricted to established objec-
tives (e.g. monitoring a process) and displaying prede-
fined knowledge outputs (i.e. results). As mentioned, 
data wrangling tasks such as cleaning and transforma-
tion underlie dashboard displays but are not part of 
their purpose and user interface; the distinguishing 
task for VA is therefore data analytics as a primary 
and iterative process that exploits the system to examine 
the data more deeply for knowledge discovery and 
hypothesis testing. Within the movement data context, 
VA could handle exploratory and computational move-
ment analysis alongside visualization, while dashboards 
are often only capable of displaying the attribute infor-
mation derived from those analyses (e.g. average speed, 
trajectory density, delays in transit networks).

This leads to the third key difference between VA and 
dashboards: user interaction and output display. 
Dashboards emphasize at-a-glance views and monitor-
ing for only relevant data points, whereas VA is meant 
to provide deep understanding and knowledge discov-
ery. The dashboard’s end user, therefore, does not need 
to have the technical and analytical knowledge to pro-
duce results or conduct analyses, though they may have 
an understanding of the objective or domain knowledge 
in the application area (Young et al., 2021). Dashboards 
typically focus on a fixed aim (e.g. monitoring key 
performance indicators, KPIs), with standard tasks 
that are performed repeatedly. Even if the task complex-
ity is high, the tasks are known in advance with an 
output display that is predicated on analytical results 
and limited to predefined graphical elements (Stehle & 
Kitchin, 2020). On the other hand, the user interface for 
a VA platform involves interaction between an analyst 
and the results and visualizations that are produced 
through the analytical process (Keim et al., 2008). VA 
platforms, therefore, must enable high flexibility as an 
analyst determines which processes and functions are 
appropriate, subsequent to previous outputs and cur-
rent understanding.

Dashboard design requires a simplified information 
display with controllable complexity for both the devel-
oper and end-user. Some elements of dashboard design 
are similar to visualization pipelines (e.g. filtering, trans-
formation), which characterize the process of generating 
visual representations from raw data (Moreland, 2012), 
but visualization pipelines are utilized to guide a higher 

Figure 1. Comparison of visual analytics platforms and dash-
boards in the three key dimensions: input data, analytical com-
plexity, and user interaction for output display.
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level of processing than dashboards and are focused on 
creating graphical elements without differentiating 
between an analyst, developer, and end-user. Related 
visualization pipelines typically focus on singular repre-
sentations rather than including elements explicitly 
related to distributing or arranging visual information 
among multiple complementary views. While existing 
frameworks and design guides for dashboards highlight 
key aspects that have universal applicability (Few, 2013), 
they should be extended to capture the complexity asso-
ciated with particular types of data or domains and 
provide more granular display recommendations within 
the general framework.

Mobility data have specific structure and properties 
that differentiate them from other types of spatial and 
spatiotemporal data. Dashboards for analyzing mobility 
data are not yet as common as for the other data types. 
Guidelines for the process of preparing mobility data, 
assembling, organizing, and constructing meaningful 
visualizations and interactions that enable users’ under-
standing within particular application domains are still 
lacking. Mobility data are demanding in terms of visua-
lization because of their size, complexity, and privacy 
concerns (N. Andrienko et al., 2016; Li et al., 2020) and 
therefore a framework for mobility data dashboard 
design is needed to lend efficiency to design decisions, 
while ensuring that information is communicated 
clearly for at-a-glance evaluations.

Conceptual framework

The preceding background information on mobility 
data and dashboard design highlights requirements 
and challenges that are relevant to both. Even moderate 
amounts of movement and mobility data may be 
visually overwhelming and difficult to interpret with 
any immediate recognition of patterns or behavioral 
trends. To allow for quick comprehension of the rele-
vant information and patterns of raw data, mobility 
dashboards need to employ design elements that alle-
viate information overload and provide clear and 
understandable visualizations, in which abstraction 
and aggregation play an important role. In the following 
section, we outline a conceptual framework that extends 
general dashboard design principles to guide the mobi-
lity data application scenario.

Overview of the conceptual framework

Figure 2 shows the proposed conceptual framework for 
big mobility data dashboard design and development. 
Regardless of the end-user’s level of interaction with 
a dashboard display, the proposed framework places 
raw data solely within the developer’s domain. This sug-
gests that the only dashboard inputs are generalized 
trajectory data (Figure 2b), while data processing tasks 
should be implemented in a backend information system 

Figure 2. Conceptual framework for big mobility data dashboard design and development.
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(Figure 2a). A generalized trajectory is a chronological 
sequence of geographic features, such as a raw GPS 
trajectory, an aggregated trajectory from a raw GPS tra-
jectory (e.g. merged or grouped trajectories as in (N. 
Andrienko & Andrienko, 2011), flows representing col-
lective movement, a trajectory of places (e.g. POIs, AOIs, 
land parcels, etc.), or even simply a pair of origin and 
destination locations, which can represent an object’s 
movement in space and time. Note that generalized tra-
jectory in this context refers to a data output rather than 
operations related to simplifying and abstracting trajec-
tories such as compressing or approximating trajectory 
data.

The backend information system outputs one or 
more generalized trajectory datasets for the dashboard 
input. Therefore, data manipulation, processing, and 
modeling procedures, such as semantic enrichment, 
data mining, and pattern recognition (Parent et al.,  
2013), should be conceptualized and implemented in 
the backend information system (Figure 2a), as they 
are typically computationally intensive and thus outside 
the functional scope of a mobility dashboard. Separating 
the backend information system and the dashboard is 
based on a computational load and control perspective. 
Heavy load and complex modeling tasks should be 
handled by a specialized system (the backend informa-
tion system, such as a GISystem) rather than the dash-
board, along the same lines as data inputs and analytical 
tasks that differentiate VA from a dashboard. Limiting 
dashboard inputs to generalized trajectory data also 
provides a bounded focus on the perspective of big 
mobility data dashboards, rather than an overly broad 
information dashboard.

As stated, displaying big mobility data can be 
visually overwhelming, and privacy concerns may 
require individual movement to be anonymized. 
Utilizing a backend information system to aggregate 
the raw mobility data should be necessary for most 
use-cases. The data providers in the backend informa-
tion system are platform-free and are therefore not 
limited to conventional database management systems 
and file systems; they can also be used with distribu-
ted computing systems such as Spark (https://spark. 
apache.org/) and real-time processing systems such as 
Kafka (https://kafka.apache.org/). Operations modify-
ing the input trajectory sets, such as adding a new set 
of features, adding a new set of trajectories, deleting 
data entries, etc. should also be carried out through an 
administrative workflow using the backend informa-
tion system (marked as blue dashed line in Figure 2), 
interfacing with the dashboard developers, rather than 
end-users modifying inside the scope of the dash-
board system. This design aligns with the key 

differences between VA and dashboards that we 
have identified, reinforces the single-direction data 
transition from the backend information system to 
the dashboard, and differentiates the dashboard from 
an all-encompassing information processing system. 
From a high level of abstraction, a mobility dashboard 
thus accepts the generalized trajectory sets as input, 
and outputs a series of visual displays of relevant 
information, consolidated and arranged on a single 
screen, or multiple screens with different functional 
themes, to provide an overview of the most essential 
information. Importantly, this overview display 
enables near-immediate recognition and interpreta-
tion of that essential information.

We suggest five essential components commonly 
existing (see for example, knowledge discovery in data-
bases (Fayyad et al., 1996) for mobility dashboard devel-
opment) (Figure 2c):

● Data Selection extracts a relevant subset of move-
ment and contextual data from the pre-processed 
and standardized data in the backend information 
system, based on the end-user’s desired output. 
This is often done using multiple query conditions 
that refer to moving objects, spatial, temporal, the-
matic, and contextual aspects, or any combination 
thereof. The selection criteria can be predefined by 
the developers at the development phase or pro-
vided by the end-user via user interfaces (e.g. time 
sliders, checkboxes, buttons, drop-down menus).

● Data Transformation (Abstraction and Aggregation) 
converts the selected mobility and contextual data to 
a form matching the output goals of the dashboard or 
specific requirements of the visualization widgets that 
will be employed. Abstraction and aggregation are 
similar but do have a nuanced difference: 
Abstraction refers to the process of hiding the details 
of the raw data while retaining the essential character-
istics, while aggregation refers to summarizing several 
items as a single unit (N. Andrienko & Andrienko,  
2011). The role of data transformation is to simplify 
the selected data into a reasonable size that fits into 
display elements that can be visually evaluated at 
a proper analysis scale.

● Comparison enables users to compare two or more 
subsets of the movement and contextual data to 
discover additional insights. It might involve view-
ing graphical elements side-by-side, overlaying, or 
combining graphical elements, or computing dif-
ferences among selected situations over all aspects 
resulting from Data Transformation.

● Visualization encodes the Data Selection, Data 
Transformation, and Comparison results into visual 
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displays. Depending on data types, visualization 
widgets such as cartographic maps (e.g. heat maps, 
flow maps, choropleth maps, dot density maps, pro-
portional symbol maps or even cartograms), bar 
charts, histograms, and other forms can be applied. 
Animation can also be introduced to visualize 
changes over the temporal dimension, which is 
a key feature for viewing big mobility data. The 
visualization widgets that are applied are often pre-
determined by the developer during the develop-
ment phase. However, the end-users might also be 
given the flexibility to select their preferred widget 
from a predefined list. Additional customization 
and interaction can be enabled within widgets. For 
example, informational depth may be added using 
pop-up attribute information via mouse-over, com-
parison by selecting/activating a map element or 
data item, or by modifying visual representation 
(e.g. changing colors or symbolization).

● Assembly consolidates all of the graphical elements 
and controls (supporting user interactions) on 
a single screen to form a dashboard. The default 
arrangement of elements at the assembly stage may 
be predetermined in the development phase, based 
on principles underlying ease of interpretation or 
where the most important information should be 
located, though flexibility for end-users to alter the 
dashboard display’s arrangement might also be 
enabled.

Depending on the purpose of the dashboard, different 
paths over these components might be employed 
(Figure 2c). For example, when a visual display in the 
dashboard only depicts trajectories on a map, the Data 
Transformation and Comparison process can be 
skipped while implementing the visual display. If 
another graphical element visualizes the general origin- 
destination flows in a city, then the Comparison com-
ponent can be ignored unless it is required, for example, 
to compare the flow volumes in different time periods. 
We describe each component of the conceptual frame-
work in more detail in “Components of the conceptual 
framework.”

Developer vs. end-user roles
The dashboard workflow involves two roles: that of the 
developer and that of the end-user. Depending on the 
goals of the dashboard, different levels of end-user 
interaction can be provided. At the lower end of inter-
action, the display content and appearance might be 
fully predefined by the developers, resulting in 
a dashboard with rudimentary interaction techniques 
(e.g. zoom, tooltips on mouse-over) and no end-user 

control. At the higher end, the dashboard can provide 
greater flexibility allowing the end-user to select which 
data and graphical elements to display and perhaps how 
they are arranged in the display.

The dashboard developer first needs to identify the 
intended purposes and end-users of the dashboard. 
After identifying purpose and end-users, aspects related 
to data selection, data transformation (abstraction and 
aggregation), data comparison, visual representation, 
and display assembly, as well as their interactivity level 
for the end-users, can be further specified and 
implemented.

Components of the conceptual framework

Data input: a generalized trajectory model
A generalized trajectory (Figure 2b) is conceptualized as 
the combination of five feature groups that are derived 
from the backend information system (Figure 2a):

● moving object features (O)
● georeferenced position features (P)
● temporal features (T)
● movement parameter features (MP)
● other enriched semantic attributes (A)

Of these, the first three (O, P, T) are mandatory, while 
the latter two feature groups (MP, A) are optional 
(Figure 2b).

The moving object features (O) identify whom the 
trajectory represents, which can be an ID for a single 
moving object or a set of IDs for representing a group 
of moving objects as an integrated entity such as a fleet of 
trucks or flock of birds. The moving object features may 
also be identified by attributes of the moving objects, for 
example, types of vehicle or vehicle owners. The geore-
ferenced position features (P) are entities with location 
information, such as GPS waypoints, spatial events, road 
segments, POIs, cellular tower sites, etc. Time features 
(T) are time stamps, time periods, or time characteristics 
(e.g. weekday or weekend days, holidays, peak traffic 
hours, etc.). The movement parameter features (MP) 
are those that can be directly derived from the spatio- 
temporal features of the trajectory per se, such as speed, 
acceleration, turning angle, etc. (Dodge et al., 2008). The 
other enriched semantic attributes (A) are those contex-
tual information items that are attached to the data 
entries based on spatio-temporal relationships, such as 
weather conditions, nearby POIs, trip purposes, etc. It 
should be noted that some semantic attributes may share 
the same source with the georeferenced position features 
but contribute differently to the desired generalized tra-
jectory dataset. For example, if a raw GPS waypoint 
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dataset is enriched by each waypoint’s nearest POI, the 
POIs are conceptualized as a semantic attribute (A). 
However, if the same GPS waypoint dataset is then 
transformed such that waypoints sharing the same POI 
are aggregated as one entity and therefore use the POI as 
the representative location of the aggregated waypoints, 
the transformed sequence of POIs should be categorized 
as a georeferenced position feature (P). The transformed 
sequence of POIs should also be differentiated as an 
independent trajectory set from the original GPS way-
point set.

Data selection
The initial consideration around which a mobility dash-
board is designed is the focus and data selection, which 
can cover different aspects of movement. Specifically, 
movement data can be analyzed from perspectives 
centering on moving objects and their trajectories, move-
ment events, space, and time (G. Andrienko et al., 2011,  
2013). Based on this framework and further develop-
ments in mobility analytics (in particular, research on 
semantic interpretation of movement (N. Andrienko & 
Andrienko, 2018; Parent et al., 2013), we suggest the five 
feature groups of the generalized trajectory set to be 
addressed in dashboard design (Figure 2b,c). Apart 
from movement data, a dashboard can also process and 
present other conventional types of geographical infor-
mation, in particular information showing the context in 
which movement takes place, though the details about 
processing and demonstrating those data types are out of 
the scope of the current paper.

Data selection queries can be restricted to functions 
that generate subsets of any of the previously mentioned 
feature groups within an input trajectory dataset. The 
selection criteria can be one of the feature groups, or any 
of their combinations. For example, given some raw 
GPS trajectories that are denoted as T1 <o,p,t> where 
o is an object ID, p is a tuple of GPS coordinates, and t is 
a timestamp. Here we use a notation X � Y→ Z to 
represent selection queries, where on the left of the 
arrow are input feature groups with selection conditions 
and the right are output feature groups. For example, 
p� t → p can represent queries such as “Select the 
waypoints p between the start timestamp ts and end 
timestamp te” and “Select the waypoints at timestamp 
tq.” Similarly, the function p → p can represent the 
query “Select the waypoints within the bounding box b.”

Data transformation (abstraction and aggregation)
When the selected dataset (either pre-selected by the 
developers or selected by the end-users on the fly) is 
too big in terms of volume or complexity to be visua-
lized by the desired display elements, data 

transformation should be involved. Unlike the fully 
functional data transformations in visual analytics as 
in (G. Andrienko et al., 2011, 2013), the functional 
focus of data transformation in the dashboard context 
is preparing data for visual display. For example, sim-
plifying trajectories by abstracting the waypoints and 
aggregating trajectories into clusters or restructuring 
data so that it is fit for purpose. Nevertheless, 
the modeling process is the same as the full VA trans-
formation such as deriving new thematic attributes 
(e.g. average travel speed), simplifying trajectories, 
and aggregation over the five groups of feature 
dimensions.

Two forms of aggregation can be considered in 
designing mobility-centered dashboards: grouping- 
based and binning-based. The former means organizing 
data items, such as trajectories, into groups (clusters) 
according to some similarity criteria, and representing 
each group by summary statistics and/or a single spatial 
or spatio-temporal object reflecting the common attri-
butes of the group members (e.g. as the average trajectory 
of a group of trajectories) or including the group as 
a whole (e.g. as a buffer or convex hull around a group 
of trajectories or events) (G. Andrienko & Andrienko,  
2010; Buchin et al., 2013; Lee et al., 2007; Pelekis et al.,  
2011). Binning-based aggregation can be based on spatial, 
temporal, and thematic dimensions/attributes, as well as 
any of their combinations. The value domains of dimen-
sions or attributes used for the aggregation are parti-
tioned into suitable bins – e.g. a grid of regularly- or 
irregularly-sized cells (C. Fu et al., 2021) or irregularly 
shaped cells such as Voronoi cells (N. Andrienko & 
Andrienko, 2011) and administrative regions (Gao 
et al., 2020; Hu et al., 2021) — and the data are summar-
ized by these bins or combinations of bins when two or 
more dimensions or attributes are used. The result con-
sists of summary attributes associated with the bins or 
combinations. The dimensions or attributes used for the 
aggregation may be discrete or continuous. In the dis-
crete case, each value can be taken as a bin. A continuous 
domain requires discretization, i.e. partitioning into 
intervals or compartments. By applying different sizes 
of spatial or temporal bins, data can be aggregated by 
different scales and unique characteristics at certain scales 
and transition patterns between scales can be investigated 
via visualization. Binning can also be used for a particular 
form of data abstraction, namely, replacing point loca-
tions by areas and time moments by intervals. In addition 
to these, the approach to aggregation can vary by the 
operation applied. These aggregation operations may 
include counts, functions over attribute values (e.g. 
max, mean, median), and functions over time-series 
(e.g. alignment and reduction, change between periods, 
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sums) and/or space (e.g. summary statistics by spatial 
trend).

The outputs of the selection-transformation pipeline 
in the dashboard framework are temporary results that 
are dependent on specific queries by different end-users. 
However, certain instances of the selection- 
transformation pipeline can be recast as fixed inputs if 
the corresponding queries are commonly requested for 
efficiency. In such cases, the queries need to be imple-
mented in the backend information system and their 
results become the input of the dashboard system.

Comparison
In advance of representing and assembling the dash-
board’s graphical elements, the selected or transformed 
mobility data can be compared to discover additional 
insights or choose between decision options (Figure 2c). 
The comparison operation involves two aspects: What 
and How. “What” is compared refers to multiple selec-
tions, transformed data, or collective mobility patterns or 
behaviors, as compared to one another or some baseline 
or other referents (e.g. average, typical, predicted move-
ment). What to compare is limited by the attributes of the 
trajectory datasets produced via the Selection and 
Transformation pipeline, which includes one or multi- 
dimension of the <o, p, t, a > .“How” the selection is 
compared refers to juxtaposing (i.e. data are placed side 
by side for comparison), superimposing (e.g. data are 
placed together in a single graphical display element), or 
computing differences between collective movement 
behaviors or patterns (Gleicher et al., 2011). Beyond 
comparing simple data selections (i.e. comparing the 
shape of multiple trajectories), an abstraction comparison 
produces differences in extracted features, while an aggre-
gation comparison results in differences between multiple 
collections of trajectories (i.e. patterns or behaviors).

Visualizations
Visualizing the outputs resulting from the Selection- 
Transformation-Comparison pipeline is the final ele-
ment moving toward dashboard assembly (Figure 2c). 

Spatial and temporal dimensions are inherent to move-
ment and mobility data. A major advantage of mobility 
data dashboard design emerges when multiple data 
dimensions are displayed together to tell the full 
“where, what, and when” story associated with spatio- 
temporal data (G. Andrienko et al., 2013; Lundblad & 
Jern, 2013; Peuquet, 1994). Typical graphical display 
elements for mobility data vary according to whether 
they highlight space, time, or movement attributes 
(N. Andrienko & Andrienko, 2013; G. Andrienko 
et al., 2011; W. Chen et al., 2015), which is sum-
marized in Table 1.

Within the dashboard framework, these elements are 
combined either within a single visualization element, 
or with multiple display elements that convey separate 
dimensions. For example, using a static spatial selection 
of OD flows, one could transform the data such that the 
subsequent dashboard display would be a flow map if 
the spatial element is retained, small multiples if the 
temporal element is retained, or an OD heatmap if 
space is abstracted in favor of retaining relational ele-
ments (N. Andrienko & Andrienko, 2013; W. Chen 
et al., 2015; Zhou et al., 2019). Since movement data 
can be visually overwhelming if too many additional 
attributes are portrayed in a single graphic, separate 
graphical elements could instead be linked within the 
dashboard framework. A flow map could represent 
movement from one location to another using edge 
thickness to represent flow volume. Then a linked gra-
phic could be used to display characteristic elements of 
the same data that allow a user to drill down into further 
information, such as a bar chart comparing trip pur-
poses for the same links or a histogram showing trip 
durations between links/nodes.

Assembly of individual graphical elements and 
end-user interaction
Finally, dashboard implementation involves assembling 
individual graphical elements or visualization widgets, 
as well as creating the interface for end-user interaction. 
Assembly is about grouping, ordering, and arranging of 

Table 1. Mobility data types and suggested visualization elements in a mobility dashboard.
Data types Visualization element

Categorical data: movement attributes Pie chart, line graphs, symbols, and bar or radar charts that show statistical 
summaries and comparisons (W. Chen et al., 2015)

Time series data Line graphs, heatmaps (e.g. calendar views), radial diagrams, or histograms that 
represent periods or cycles, while sequential aspects can be conveyed 
through calendars or timetables (S. Chen et al., 2019; Kveladze & Agerholm,  
2020; Wang et al., 2020)

Network: transfer links (S. Chen et al., 2018; Kveladze et al., 2019), origin- 
destination (OD) flows (Koylu & Guo, 2017)

Graph charts, flow maps

Moving object Map with moving points, map with geometric trajectories
Spatial-binned data: big trajectory data; density maps (Kveladze et al.,  

2019)
Map with quadtree-based module
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individual graphical elements on a screen to serve the 
end-users’ information needs. It should consider both 
aesthetics and functionality. It is the art of guiding the 
end-users’ visual attention to effectively and efficiently 
obtain the information they need. Several guidelines on 
interface design can be followed (Tidwell et al., 2020): 
consideration of visual hierarchy (i.e. “the most impor-
tant content should stand out the most, and the least 
important should stand out the least”), designing the 
visual flow to lead the end-users’ eyes, and grouping and 
alignment.

Another important aspect to consider in finalizing 
the dashboard implementation is end-users’ interaction 
with the dashboard. Such interaction might include 
changing the appearance of the dashboard layout (e.g. 
end-users might resize, rearrange, and re-group graphi-
cal elements to customize the dashboard layout to better 
suit their usage habits); updating the appearance of 
individual graphical elements (e.g. map zooming and 
panning, changing colors); re-selecting data for visuali-
zation, transformation, and/or comparison. Additional 
interfacing elements (e.g. buttons, drop-down lists, 
input boxes), placed either on top of the graphical ele-
ments or together with the graphical elements, are 
sometimes needed to facilitate end-user interaction 
(Sarikaya et al., 2018). Responses to end-user interac-
tions may occur as interface- or workflow-oriented 
actions. For interface-wise interactions, the layout of 
the graphical elements may be reorganized and reas-
sembled based on the preference of end-users. For 
example, a user may enlarge a map element to show 
a larger extent while exploring the spatial layout of 
a trajectory cluster. This operation does not cause com-
munication between the browser and the server but still 
requires predefined rules for the reorganization, e.g. 
placing the other graphical elements to the side or 
bottom of the display, with or without resizing the 
other graphical elements. Workflow-wise interaction 
means that the interaction also involves queries to the 
backend information systems for new data feeding into 
the interface. What end-user interaction is allowed, 
beyond purely looking, depends on the intended use 
and type of the dashboard.

Depending on the levels of end-user interaction that 
a dashboard allows, a continuum between communica-
tion dashboards and analytical dashboards exists. 
A communication dashboard offers a predefined view 
of information and therefore operates with the maximum 
level of developer control, with no or very limited ele-
ments left to user control and interaction. The end-user 
of a communication dashboard can be limited to access 
the Dashboard Display module (Figure 2c) only as 
a receiver of the information predefined by the developer, 

according to the existing business cases. In contrast, 
analytical dashboards would maximize user interaction 
and therefore have a greater degree of parity between user 
and developer control of what information is displayed. 
They might therefore approach the capabilities typical of 
a visual analytics platform, though they fall short of 
allowing complete control over input data and analytical 
capabilities. In terms of Data Selection, end-users might 
be allowed to define selection criteria via user controls, 
such as sliders that define temporal ranges or check boxes 
that filter a subset of data (e.g. select trajectory data based 
on trip purpose). Similarly, dashboards with higher levels 
of end-user interaction might allow control for generat-
ing comparisons by selecting whether elements should be 
compared against a baseline, average, or as juxtaposing 
views. Development complexity of dashboards increases 
as more end-user interaction is allowed. Therefore, it is 
important to carefully study the end-users’ needs during 
the dashboard design process.

Data protection and privacy
One critical feature of mobility dashboards that differ-
entiates them from many other dashboards is the issue of 
data privacy and protection, as trajectories can be used to 
identify individuals (N. Andrienko et al., 2016; Chou 
et al., 2019) or may be commercially sensitive. Four 
possible options can be taken to protect privacy in 
a mobility dashboard along a workflow following our 
proposed conceptual framework. The first option is 
applied in the backend information system (Figure 2a) 
where critical places such as home locations, either 
reported or modeled, can be masked by removing trajec-
tory waypoints near those critical places. The second 
option is applied to the Data Selection module combining 
administrative rules that certain dashboard end-users can 
only select trajectories that they are authorized to access. 
For example, an analyst supporting the Italian market can 
only access trajectories within the boundary of Italy but 
no other countries. The third option happens in the Data 
Transformation module. Using Abstraction, trajectories 
can be summarized into schematized trajectories, which 
makes identifying individuals more difficult. Waypoint 
groups can also be abstracted as representative points or 
polygons, which can help to reduce the spatial details of 
the original trajectory. Privacy protection techniques 
such as differential privacy (Monreale et al., 2013) can 
be further applied to the the abstracted trajectories. 
Aggregation can merge trajectories from different mov-
ing objects and make it more difficult to identify indivi-
duals as well, for example, k-anonymity (Ghasemzadeh 
et al., 2014; Monreale et al., 2010; Rao et al., 2021) that 
mixes k similar trajectories so no individual trajectories 
can be identified. The fourth and last option can be 
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applied in the Visualization module, where visualization 
widgets can be set to control the minimal granularity for 
displaying data. One example is to set up a minimum 
zoom level for the web mapping widgets on a mobility 
dashboard. All the options can be applied individually or 
as an integrated solution based on specific requirements 
for the mobility dashboard.sgfgsgs

Sample implementations

To illustrate the effectiveness of the proposed concep-
tual framework, we demonstrate several sample dash-
boards (Figures 3–7), drawn from different sources. The 
first three sample dashboards are drawn from the 
European Horizon 2020 project Track & Know 
(https://trackandknowproject.eu), which aimed at 
developing toolboxes and software stacks for big mobi-
lity data analytics, with applications in car insurance, 
vehicle fleet management, and healthcare management. 
We briefly introduce how they were designed to meet 
the business requirements and implemented by employ-
ing the proposed conceptual framework. The fourth 
dashboard provides real-time public transportation 
information to the public, which has a broader user 
group than the others. The fifth dashboard provides 
the trajectories of ocean floats over the world. The last 
dashboard demonstrates a visualization solution of 
O-D flows. With these three examples, we show the 
potential of our proposed conceptual framework to 

reconstruct the design process that results in the com-
plex visual and functional design of the dashboard 
interface.

Dashboard 1: vehicle insurance and driver 
behaviors

In Dashboard 1 (Figure 3), the map on the up-left dis-
plays aggregated trajectories of a selected vehicle. The 
graph chart on the up-right shows the transitions 
between major locations as an individual mobility net-
work. The lower-left bar chart shows the number of 
crashes per month for the whole region. And the lower- 
right text box shows the predicted crash risk of the 
selected vehicle by a risk model output from the back-
end information system.

End-user
Data analysts of a vehicle insurance company

Main tasks
Dashboard 1 was developed for a vehicle insurance com-
pany to monitor driver behaviors for pay-how-you-drive 
(PHYD) insurance policies. The company is interested in 
helping analysts monitor a selected driver’s risk score 
reported from machine learning models learned from 
historical data. The analysts will also combine other 
performance features such as driving events in the past 
days and the driver’s individual mobility network (IMN) 

Figure 3. A dashboard for a vehicle insurance company to monitor driver behaviors.
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(Rinzivillo et al., 2014) to have a comprehensive under-
standing of the driver’s performance and make the final 
decision regarding pricing.

Input data
There are several trajectory related data for each insur-
ance policy: GPS records of vehicle trajectories with 
driving events attached and GPS records of crash events, 
and IMN derived from a monthly aggregation model 
using the vehicle trajectories. All three data sets can be 
conceptualized as a generalized trajectory <O, P, T, A> 
(Table 2). There are additional non-trajectory-related 
data, such as monthly risk scores forecasting the possi-
bility of being involved in a car accident, but we focus on 
the design details for the mobility data.

Design process
Four out of the five proposed essential components in 
the conceptual framework, i.e. selection, transforma-
tion, visualization, and assembly, are employed to 
build the dashboard.

● First, selection functions are applied to the elements 
of the generalized trajectory model using lists of 
options, including the type of attribute such as 
insurance policy ID (O), month (T), and region 
to examine the risk score (O, P), IMN (O, T), 
driving events (O, P, T), the location of trips (O, 
P, T), total crash events in a past period (P, T), etc. 
This selection function controls the content dis-
played and allows the end-user to tailor their data 
display to the particular aspects of driver behavior 
they want to explore.
The map function annotations discussed in our 
“Data selection” section can help to guide the 
data selection processes and match them to proper 
visualization elements. The information in the four 

visualization elements in the screenshot is selected 
by three types of selection map functions (Table 3).

● Once selected, non-spatial data are primarily pre- 
processed in the backend information system thus 
are visualized to display non-spatial movement 
parameters such as the volume of daily trips as 
bar charts or heatmap and IMNs as graph charts.

● Spatial data will need further transformation on the 
client side for some applications. For example, if 
the end-user would like to check all locations of 
one driver’s braking events in a month, the dash-
board will send the query parameters including the 
insurance policy ID, the month, and the target data 
name, i.e. location of trips, to the backend informa-
tion system. The returned trips are organized as 
a quadtree where GPS waypoints of the trips have 
been pre-aggregated into hierarchical spatial bins. 
Therefore, the end-user must be able to select 
among any given set of query parameters.

● The received quadtree will be further selected, given 
the geographical extent of the map. Then the 
selected spatial bins will be further transformed 
based on the zoom level of the map using binning- 
based aggregation and visualized as grids on map, 
such as the case on the upper-left map in Fig. 3.

With the dashboard, the data analysts of the vehicle 
insurance company can monitor the performances of 
each driver by checking the driving event change, place 
visitation pattern, and forecasted risk score month by 
month to have a good understanding.

Dashboard 2: fleet management

End-user
The fleet management company identified two user 
groups: non-managers such as fleet operators and 

Table 2. Main input data sources and their generalized trajectory models for Dashboard 1.
Vehicle trajectory Crash event IMN

O Drivers as insurance policy
P GPS waypoint Location Place locations and ordered location pairs
T Timestamp Timestamp Month
A Driving events Crash or not Visitation frequency and origin-destination flows

Table 3. Data selection processes for Dashboard 1.

Selection function
Visualization element 

on the dashboard Input and selected output

O� P� T ! P Map Given driver ID (O), binned GPS waypoints (P), timestamp (T), the binned GPS waypoints of a driver within 
a user-chosen time period. December is selected in this example.

O� T � A! A Graph chart Given driver ID (O), timestamp (T), and individual mobility network (IMN) as O-D flows (A), a driver’s IMN in 
a specified month is selected.

T � A! T � A Bar chart Given timestamp (T) and crash event (A), the monthly numbers of crashes are selected.
O� T � A! A Text Given driver ID (O), timestamp (T), and crash risk probability (A), a driver’s crash risk probability in 

a specified month is selected.
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technicians who need a detailed view, and managers 
who need a high-level overview of the business.

Main tasks
Dashboard 2 (Figure 4) was developed for a fleet 
management company. The non-manager group 
needs more detailed spatial and temporal information 
that may even be associated with single trips. They 
needed cross-scale aggregate information, such as per 
quarter, per day, per week, and per month statistics 
about the trajectories and indicators modeled from 
the trajectories such as downtime and proportions of 
trip in different weather conditions, from the tem-
poral perspective, and per road comparison for iden-
tifying unusual driving routes as detailed as a 100- 
meter spatial resolution. To protect privacy, the tra-
jectories of a fleet are summarized into schematized 
trajectories represented as spatial bins so that no indi-
vidual vehicle can be identified. The manager group 
needs simple information mainly related to cost and 
fleet downtime. Such information is more based on 
monthly reports. The managers at this level also pay 
more attention to performance comparisons.

Input data
The input for Dashboard 2 is rather simple: GPS records 
of vehicle trajectories with driving events, engine sta-
tuses attached, and modeled indicators from other fleet 
management models, as a generalized trajectory <O, P, 
T, A> (Table 4).

Design process
The dashboard consists of two views for the two tar-
geted user groups (Figure 4a for fleet operators and 
Figure 4b for high-level managers, respectively). This 
dashboard uses many of the same selection functions 
and transformations/visualizations for non-spatial 
information as Dashboard 1 (Table 5), however it 
applies a different transformation for big mobility data.

● In this dashboard, the web map displays waypoints 
of a set of trajectories that are aggregated and 
visualized using a quadtree (C. Fu et al., 2021) to 
show hot spots of the vehicles in space. A quadtree 
generated from waypoints is represented in the 
maps in which regions with denser waypoints are 
represented by smaller spatial bins with darker 
brown while regions with sparser waypoints are 
represented by larger spatial bins with lighter 
brown. Regions with no waypoint are not visua-
lized although they are modeled in the quadtree. 
The minimal size of the spatial bin is associated 
with the zoom level even though smaller spatial 

bins toward the leaf nodes in the quadtree exist 
for regions with dense waypoints. Zooming in the 
maps will result in visualizing the smaller spatial 
bins. This visualization protects privacy while satis-
fying the business’s requirement of understanding 
where and how many waypoints are located across 
the area with the finest spatial resolution at 100 m 
(Fig. 4a), while the manager’s view provides 
a coarser spatial resolution (Fig. 4b).

● As managers prefer simple aspatial indicators for 
evaluating business performance, this dashboard 
further employs comparison functions by way of 
a text display, for example, by comparing current 
trip volumes to the previous quarter’s outcomes in 
the upper left corner of Fig. 4b.

● Assembly happens at the design stage of the dash-
board where widgets with different sizes are placed 
in different locations of the dashboard view.

● However, end-users with particular priorities for 
information display will require customized assem-
bly. The developer therefore enables more 
advanced functionalities, such as reorganizing wid-
gets on-the-fly so the end-user can move the most 
important widget for their needs to the upper-left 
corner (Buscher et al., 2009).

● As an example, in the assembly of this dashboard, 
Fig. 4a shows the default view, while Fig. 4b shows 
a reorganized layout by an end-user using the drag- 
and-drop function.

Dashboard 3: resource-allocation model evaluation 
in healthcare

End-user
Decision-makers in a respiratory specialized hospital

Main tasks
Dashboard 3 (Figure 5) was aimed at assisting hospital 
decision-makers in evaluating resource-allocation 
model results, where the medical devices might move 
around between different places. The specific need was 
understanding the distribution of medical devices rela-
tive to the needs of the community, as measured by risk- 
or population-based demand.

Input data
The inputs for Dashboard 3 are population/patient 
density, the current spatial distribution of mobile facil-
ities, and the proposed facility distribution in various 
scenarios, as a generalized trajectory <O, P, T, A> 
(Table 6). In this case, the patients’ privacy is protected 
by aggregation before transferring to the backend 
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Figure 4. A dashboard for a fleet management company to monitor the activity of trucks. a) the view for fleet operators; b) the view for 
high-level managers.
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information system so that no personal information is 
stored in the dashboard system itself.

Design process
This dashboard visualizes origin-destination pairs out-
put from location-allocation optimization models, given 
varied demand models and the resulting scenarios of 
proposed facility locations compared to current facility 
locations. Decision-makers need to try different num-
bers of facilities as the input on the dashboard and 
visually compare the location-allocation results.

● Selection functions in this display are controlled by 
buttons on either side of the map-based visualiza-
tions. Using the buttons, the end-user can control 
the information that populates the map, including 

the type of demand (A), current facilities’ locations 
(<O, P>) and/or the optimized location-allocation 
results for facility locations (<O, P>), and addi-
tional contextual information such as population 
or patient density in the area of interest (<P, A>). 
Additionally, the number of facilities included can 
be controlled via a slider below a map widget. 
Different combinations of values from the button 
items and slider will be sent to the backend infor-
mation system to query pre-computed location- 
allocation results.

● The facilities, either the current scenario or the 
proposed scenarios, are visualized as point ele-
ments with different icons for visualization. 
Population maps and demand maps are visualized 
as hexagon-based choropleth raster layers whose 
hues suggest different themes. Note that in this 
instance a hexagonal grid was used to protect 
patient privacy by obscuring home locations 
when generating OD trajectories in an initial data- 
manipulation stage and has therefore been carried 
through to the final dashboard design; in the 
current framework, this is a backend output.

Table 4. Main input data sources and their generalized trajectory 
models for Dashboard 2.

Vehicle trajectory

O Vehicle IDs of a fleet
P GPS waypoint
T Timestamp
A Driving events, engine statuses, and modeled indices

Table 5. Data selection processes for Dashboard 2.
Selection 
function

Visualization element on the 
dashboard Input and selected output

O� P� T→P Map of Fig. 4a Given binned GPS waypoints (P), timestamp (T), the binned GPS waypoints of all vehicles (O) on 
a specified date is selected.

T � A→T � A Line chart of Fig. 4a Given a range of timestamp (T) and number of daily trips (A), the number of daily trips during a year 
(for example) is selected.

A→A Text box of Fig. 4b Select the statistics (number of trips) of the current periods (i.e. day, week, month) and the 
corresponding previous periods.

Figure 5. A dashboard for a hospital to evaluate resource-allocation model results.
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● The display has implemented further comparison 
functionality as the left and right components are 
duplicates to each other’s functionality. Hospital 
administrators, managers, and other stakeholders 
can use this dashboard to examine the resource- 
allocation results of different access and mobility 
scenarios side-by-side for comparisons. The number 
of facilities included and the resulting optimized 
facility distributions are displayed on the map, 
while the resulting change to average travel distance 
is updated. In the example shown in Fig. 5, the end- 
users are comparing the impact of locating 15 opti-
mal facilities versus the status quo of current testing 
facility locations, based on potential patient demand 
derived from known risk factors for respiratory ill-
ness. This makes the decision-making process easier 
and more efficient by providing displays that allow 
for at-a-glance scenario examination based on vary-
ing conditions in either map widget.

The three previous examples demonstrate that the 
proposed framework can be applied to develop dash-
boards with different levels of complexity or user 

interactivity. They also illustrate how mobility dash-
boards can be used within a variety of application 
domains, with varied needs for the type of information 
shown for multiple types of end-users, and multiple 
types of generalized trajectory inputs and supported 
tasks.

Dashboard 4: Toronto Transit dashboard

We include the following two examples to demonstrate 
aspects of the conceptual framework that did not play 
a role in Dashboards 1–3. The examples are presented 
briefly without including all design decisions but rather 
focus on differences from the previous examples and 
further illustration that different paths over the framework 
components, and excluding some, is still possible. The 
Toronto Transit dashboard (Figure 6) provides real-time 
positions of streetcars and buses in Toronto to the public.

The dashboard elements consist of selection, visuali-
zation, and assembly only. No explicit transformation or 
comparison is observed. This may be due to the fact the 
transit dashboard as a public service has no backend or 
frontend transformation on the location needed for 
privacy concerns, which is different from the context 
of Dashboards 1 and 2. The data input of the dashboard 
can be summarized by our generalized trajectory model 
as Table 7.

It can be inferred that the selection for this dashboard 
happens mainly on the O� P → O� P function that 
given a queried Vehicle ID (O) and the current location 
of the vehicle (P), the location of the vehicle is selected. 
The past trajectory of each vehicle is not displayed as 

Figure 6. Interface of Toronto Transit dashboard (https://totransit.ca/).

Table 6. Main input data sources and their generalized trajectory 
models for Dashboard 3.

Population/patient 
density Current facility Proposed facility

O Region ID Facility ID Facility ID
P Region location Facility location Facility location
T - - -
A Density Distances to 

assigned region
Distances to 

assigned region
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lines; instead, vehicles are visualized as points with 
icons, whose positions on the map are updated every 
a few seconds.

Dashboard 5: dashboard for Monitoring the Oceans 
and Climate Change with Argo (MOCCA)

The MOCCA project places floats into the ocean to 
collect physical characteristics of the seawater. Each 
float can drift with every 9-day cycle in the ocean before 
communicating with the satellite to report the tempera-
ture and salinity as well as the depth and direction of the 
float. The project published the trajectories of the floats 
to the public on a dashboard (Figure 7).

Within the proposed framework, this dashboard con-
sists of selection, visualization, comparison, and assembly 
elements. No obvious transformation can be observed. 
The data input of the dashboard can be summarized by 
our generalized trajectory model as outlined in Table 8.

It can be inferred that the selection for this 
dashboard happens mainly by the annotation of 
O� P � T � AO� P. For example, trajectories 
of floats (P) can be addressed by the combination of 
their ID (O), country (A), active status (A), and 
the year of deployment (T) can be queried. There are 

no queries on spatial or temporal information. Float 
trajectories are visualized as simple lines. Comparison 
of trajectories is achieved by displaying trajectories 
with different colors with the currently focused trajec-
tory as red and other trajectories as gray.

Dashboard 6: jobs in the Netherlands

The Jobs in the Netherlands dashboard demonstrates 
job statistics in the Netherlands’ municipalities per se as 
well as the commuting flows among the municipalities 
(Figure 8). The dashboard is a good example of visualiz-
ing place-to-place interactions.

This dashboard consists of selection, visualization, 
and assembly elements. We also do not observe obvious 
transformation given the interface of the dashboard. The 
data input of this dashboard can be summarized by our 
generalized trajectory model as outlined in Table 9.

It can be inferred that the selection for this dashboard 
happens mainly by the annotation of P � AO� P. For 
example, the O-D flows (P) and flow properties such as 
jobs (A) are mainly queried by region (A). Flows are 
visualized as simple lines, which use different colors for 
identifying inbound and outbound flows and different 
line widths for qualifying volumes of jobs.

Table 7. Inferred input data and their generalized trajectory 
models for Dashboard 4.

Vehicle trajectory

O Vehicle ID
P GPS waypoint
T Timestamp
A Heading, direction, route, and seconds since the last update

Figure 7. Interface of Euro-Argo project dashboard (https://fleetmonitoring.euro-argo.eu/dashboard).

Table 8. Inferred input data and their generalized trajectory 
models for Dashboard 5.

Float trajectory

O Float ID
P GPS waypoint, depth
T Timestamp
A Direction, salinity, temperature, country, year of deployment, etc.
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Conclusions

Dashboards are one visual approach that may help 
generate effective displays of mobility data. However, 
for this capacity to accrue, development and design 
principles specific to mobility data need to be identi-
fied to facilitate the process of clearly communicating 
and interpreting mobility information. Our concep-
tual framework systematizes the approach to present-
ing movement and mobility data in a dashboard 
development context. This approach defines and 
takes into account the differences between dashboards 
and visual analytics platforms. The key points of dif-
ference involve input data, analytical complexity, level 
of user interaction and resulting information display 
and, as a consequence, the roles, responsibilities, and 
capacities of the developer and the user. Further deli-
neating the bounds of dashboards as tools (i.e. dash-
boards vs. VA), developer and end-user roles, as well 
as detailing essential components, should facilitate 
developing mobility dashboards that improve inter-
pretability and fit-for-purpose design.

The examples we highlighted demonstrate the pro-
cess and effectiveness of applying the conceptual frame-
work when designing and implementing dashboards for 

big mobility data, including various application 
domains, levels of complexity, or user interactivity. We 
have defined key decision points in development, which 
revolve around the essential components of data selec-
tion, transformation, comparison, visualization, and 
assembly. We have also defined the tasks necessary to 
construct these components. Many of the processes that 
underlie the components are well-established and com-
monly used. Thus, we have instead focused on the 
component details and explained how they function 
within dashboard development, rather than explicating 
the processes themselves.

Within the proposed framework, analysis and 
manipulation of raw data are a developer rather than 
an end-user task. For this reason, we also limit mobility 
dashboard input data to the generalized trajectory 
model. This standardized input requires that raw data 
are already pre-processed while also ensuring that 
meaningful movement information is not lost to overly 
restrictive efforts to anonymize or otherwise simplify 
overwhelming amounts of data. The framework remains 
adaptable by emphasizing feature groups that might 
comprise varied sources and types of mobility data. In 
applying the framework, the developer can determine 
what information needs to be restricted or emphasized 
according to requirements and constraints in a given 
application context. These decisions may relate to data 
privacy and protection, end-users’ knowledge and abil-
ities, quantity, and variety of information needed for at- 
a-glance interpretation and time pressures.

As shown in the examples, the proposed conceptual 
framework can help dashboard developers understand 

Figure 8. Interface of jobs in the Netherlands dashboard (https://dashboards.cbs.nl/v1/commutingNL/).

Table 9. Inferred input data and their generalized trajectory 
models for Dashboard 6.

Commuter flow

O Flow ID
P Origin location, destination location
T -
A Jobs (as the number of commuters), origin municipality name, 

destination municipality name, region names, etc.
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design and implementation as a comprehensive process, 
and determine the technical details of the different 
components. When applying the conceptual framework 
in actual development, the dashboard developers must 
always try to better understand the needs and prefer-
ences of the intended end-users at a very early stage. 
Meanwhile, a user-centered and interactive approach 
might also be employed, e.g. by involving end-users at 
different stages of the development. All of these will help 
to ensure higher usability of the resulting dashboards.
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