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Spatial summation of perimetric stimuli has been used
to derive conclusions about the spatial extent of
retinal-cortical convergence, mostly from the size of the
critical area of summation (Ricco’s area, RA) and critical
number of retinal ganglion cells (RGCs). However, spatial
summation is known to change dynamically with
stimulus duration. Conversely, temporal summation and
critical duration also vary with stimulus size. Such an
important and often neglected spatiotemporal
interaction has important implications for modeling
perimetric sensitivity in healthy observers and for
formulating hypotheses for changes measured in
disease. In this work, we performed experiments on
visually heathy observers confirming the interaction of
stimulus size and duration in determining summation
responses in photopic conditions. We then propose a

simplified computational model that captures these
aspects of perimetric sensitivity by modelling the total
retinal input, the combined effect of stimulus size,
duration, and retinal cones-to-RGC ratio. We additionally
show that, in the macula, the enlargement of RA with
eccentricity might not correspond to a constant critical
number of RGCs, as often reported, but to a constant
critical total retinal input. We finally compare our results
with previous literature and show possible implications
for modeling disease, especially glaucoma.

Introduction
Measuring how contrast sensitivity varies according

to different stimulus sizes and durations has proven
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invaluable for investigating the psychophysical and
physiological basis of transient stimulus detection
(Choi, Nivison-Smith, Khuu, &Kalloniatis, 2016; Khuu
& Kalloniatis, 2015a, 2015b; Pan & Swanson, 2006;
Phu, Khuu, Zangerl, & Kalloniatis, 2017) and how
the underlying physiology is altered by disease (Kwon
& Liu, 2019; Redmond, Garway-Heath, Zlatkova, &
Anderson, 2010; Rountree et al., 2018; Swanson, Felius,
& Pan, 2004; Yoshioka, Zangerl, & Phu, 2018). In
fact, change in sensitivity with increasing stimulus size
(spatial summation) and duration (temporal summation)
has been shown to be altered following retinal ganglion
cell (RGC) loss from glaucoma (Mulholland et
al., 2015; Redmond, Garway-Heath, Zlatkova, &
Anderson, 2010; Rountree et al., 2018; Swanson, Felius,
& Pan, 2004; Yoshioka, Zangerl, & Phu, 2018). Both
spatial and temporal summation are characterized
by a biphasic response, with a steeper reciprocal
relationship between stimulus area/duration and
contrast at threshold for smaller/shorter stimuli (total
summation) and a shallower change for larger/longer
stimuli (partial summation). The response is often
characterized in terms of the point of transition
between these two phases (critical size/duration)
(Mulholland et al., 2014). The physiological basis of
spatial and temporal summation has been extensively
studied. Although models solely based on RGCs exist
(Glezer, 1965), spatial summation has been linked to
cortical magnification and to the convergence of RGCs
onto cells of the visual cortex (Kwon & Liu, 2019). This
phenomenon is often referred to as cortical pooling, and
it is the favored model for explaining spatial summation
(Kwon & Liu, 2019; Pan & Swanson, 2006). Cortical
pooling can be modeled through a linear combination
of filter elements tuned to different spatial frequencies
(Pan & Swanson, 2006).

One aspect that has been explored to a lesser extent
is the interaction between stimulus size and duration
and its effect on sensitivity (spatiotemporal summation).
Models exist to describe temporal summation in
isolation (Gorea & Tyler, 1986; Swanson, Pan, &
Lee, 2008; Watson, 1979). Many of these authors
acknowledge the effect of stimulus configuration
(Gorea & Tyler, 1986; Watson, 1979) and adaptation
state (Swanson, Ueno, Smith, & Pokorny, 1987) on
critical duration. Direct experimental evidence of
the interaction between size and duration for simple
circular stimuli (Barlow, 1958; Mulholland et al., 2015;
Owen, 1972) suggests a combined integration of the
total input by the visual system. Some attempts have
been made to describe such an interaction, mainly in
the field of motion detection (Anderson & Burr, 1991;
Fredericksen, Verstraten, & van de Grind, 1994), but
this phenomenon has been little explored for perimetry
(Owen, 1972). Another aspect that has been overlooked
is the effect of retinal convergence. One common
assumption is that spatial summation at different

eccentricities can be exclusively explained by the change
in density of RGCs (Kwon & Liu, 2019). However,
similarly to cortical convergence, individual RGCs
might carry a different weight in terms of retinal input
at different eccentricities because they receive input
from a different number of photoreceptors (larger in the
periphery), with significant changes in the composition
and density of their mosaic.

Understanding these aspects is essential for many
clinical applications of psychophysics. White-on-white
perimetry is one of the most performed tests in clinical
practice to diagnose and monitor the progression
of a variety of diseases. In its most common
implementation, the test is a “yes/no” task in which an
observer is asked to press a button every time a stimulus
is perceived. The response needs to be provided within
a set time window following stimulus onset, with no
response indicating that the stimulus was not seen.
The stimulus is projected on a bowl with a uniform
white background and usually consists of a circular
target with sharp edges and 0.43 degrees in diameter
(size III according to Goldmann [1999]) and a duration
between 100 and 200 ms. The intensity of the target
is varied to estimate the 50% seen contrast threshold,
using a variety of strategies. The target is presented at
various locations around the fixation target, according
to a set of predetermined testing grids, so that the 50%
threshold can be estimated at each of these locations.
This produces a sensitivity map that can be used to
identify and monitor visual field defects. The objective
of our work was to collect experimental data to build
and validate a spatiotemporal summation model, able
to capture the combined effect of retinal convergence,
stimulus size, and stimulus duration for perimetric
stimuli.

Methods
Participants

Ten visually healthy participants between 18 and 40
years of age were recruited on a voluntary basis at City,
University of London, London, United Kingdom.
All participants gave their written informed consent.
The study was approved by the local ethics board
(Optometry Proportionate Review Committee, approval
number ETH2021-1728) and adhered to the tenets of
the Declaration of Helsinki. All participants underwent
an ophthalmic assessment by an ophthalmologist
(GM), which included objective refraction and
measurement of the intraocular pressure (IOP) with a
noncontact tonometer and auto-refractor (TRK-1P;
Topcon, Tokyo, Japan), best-corrected visual acuity
(BCVA) with Snellen charts, slit-lamp assessment of
the anterior segment, and indirect fundoscopy. Reasons
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for exclusion were any abnormality of the retina or of
the optic nerve head (ONH), IOP > 21 mmHg, and a
BCVA < 6/6 in the test eye. If both eyes were eligible,
the one with the smallest refractive error was selected.

Psychophysical experimental procedure

Testing apparatus
All experiments were carried out on an Octopus 900

bowl perimeter (Haag Streit AG, Koeniz, Switzerland)
controlled through the Open Perimetry Interface
(OPI) (Turpin, Artes, & McKendrick, 2012). The
bowl is 30 cm in radius. The perimeter is equipped
with a chinrest and an infrared camera to monitor
eye position and pupil size. Chinrest position was
adjusted by the operator as required, to maintain good
centration of the pupil. A central target (four small dots
in a diamond arrangement) encouraged fixation and
avoided interference with centrally presented stimuli.
A near-vision lens addition of approximately +2.50 D
was used to reduce strain from accommodation, refined
with subjective assessment of optimal visibility by the
subject. Lenses were placed on an adjustable lens holder
in-built to the instrument. The background illumination
was 10 cd/m2. Calibration was performed in a dark
room before every experiment through an automated
procedure implemented by the manufacturer. As it is
convention in perimetry, the intensity of the stimulus
in dB is expressed as attenuation of the maximum
possible stimulus intensity (3,185 cd/m2), so that higher
contrast equates to lower dB values. This quantity can
be converted to Weber contrast (Wc) using Equation 1.
However, for simplicity in our calculations, we report
the values as differential light sensitivity (DLS), which
is simply the sensitivity value in dB/10.

Wc = 3185/10DLS

10
(1)

Spatiotemporal summation
In the first experiment, we estimated contrast

sensitivity at 12 locations in the central visual field (VF)
with different stimulus sizes and durations for one test
eye of all 10 participants. The locations’ coordinates
{X; Y} in visual degrees from fixation were {±7; ±7};
{±4, ±4}; {±1, ±1}. Stimuli were round achromatic
targets with five different diameters (Goldmann sizes,
G): 0.10 (G-I), 0.21 (G-II), 0.43 (G-III), 0.86 (G-IV),
and 1.72 (G-V) deg. All locations were tested with
all stimulus sizes. The locations at {±7; ±7} were
additionally tested with five different stimulus durations
(for all stimulus sizes): 15 ms, 30 ms, 55 ms, 105 ms, and
200 ms. Four combinations (G-I/15 ms, G-I/200 ms,
G-V/15 ms, and G-V/200 ms) were tested twice so that
more robust estimates of their threshold were available

for the measurement of the frequency of seeing (FOS)
curves (see next section).

The threshold was determined with a yes/no task.
The observer was asked to press a button every
time a stimulus was perceived. We assumed that no
response within a predetermined time widow (1,500
ms) corresponded to “not seen.” The threshold was
estimated through a Bayesian strategy, the Zippy
Estimation through Sequential Testing (ZEST)
(King-Smith et al., 1994), as implemented on the OPI.
For our test, the strategy was set to have a uniform
prior distribution between 0 and 50 dB (the range
of the instrument). The likelihood function was a
Gaussian cumulative distribution function (CDF) with
a standard deviation (SD) of 1 dB and a guess/lapse
rate of 3%. The prior distribution was updated at
each response to generate a posterior distribution. The
posterior distribution was used as the prior distribution
for next step in the strategy. The stimulus was chosen as
the mean of the prior distribution at each step, rounded
to the closest integer dB value. This has been shown
to provide unbiased estimates of the 50% detection
threshold for a yes/no task (King-Smith et al., 1994).
The determination of each threshold terminated when
the posterior distribution reached a standard deviation
< 1.5 dB (dynamic termination criterion).

Each combination of stimulus size and duration at
each location was treated as a separate independent
“thread” by the strategy (140 in total). The threads
were randomly subdivided into four blocks, to allow for
breaks within the test. Each block of testing lasted for
approximately 15 min (∼350 presentations). Individual
presentations within each block were fully randomized.
A block was completed when all the 35 threads assigned
to it reached the termination criterion. A pause between
individual presentations was also introduced, calculated
as (1,000 ms – response time, minimum 200 ms) plus an
additional pause, randomly sampled from a uniform
distribution between 0 and 100 ms. All responses
occurring within the pause or less than 180 ms after
stimulus onset stimulus (Olsson, Bengtsson, Heijl, &
Rootzen, 1997) were considered false responses and
discarded.

Frequency of seeing curves
For a subset of five participants, FOS curves were

determined for four stimulus combinations (G-I/15 ms,
G-I/200 ms, G-V/15 ms, andG-V/200 ms) at coordinates
{±7; ±7} degrees (four locations) using a method of
constant stimuli (MOCS) procedure. Following others
(Rountree et al., 2018), we used a two-stage approach.
First, we obtained a coarse estimate of the FOS
curve through a multidimensional Bayesian strategy,
QUEST+ (Watson, 2017). Such a strategy is similar in
principle to ZEST but uses entropy to determine the
next presentation and allows for multiple parameters
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to be estimated. In our procedure, the FOS curve was
parameterized as the CDF of a Gaussian distribution,
with a fixed guess/lapse rate of 3%. The mean and SD
(which model the 50% threshold and the slope of the
FOS curve, respectively) were simultaneously fitted
as free parameters. The test was terminated when the
entropy of the combined posterior distribution was
≤ 4.5. For the purpose of this preliminary step, the
four spatial locations were considered interchangeable.
Therefore, only four FOS curves were determined, one
for each stimulus combination. The prior distribution
for the mean was itself a Gaussian distribution with a
SD of 4 dB, centered on the average of the sensitivity
estimates obtained from the ZEST procedure for the
tested locations (eight estimates for each stimulus
combination, i.e., four locations each tested twice)
and limited over a domain of ±5 dB around its
mean. The prior distribution for the SD of the FOS
curve was a uniform between 1 and 10 dB, with steps
of 0.5 dB.

The estimated SD for the Gaussian FOS curves was
used to determine the contrast levels to be tested for
each stimulus combinations in the actual MOCS. We
tested seven steps for each location and each condition.
The steps were placed at the following quantiles of the
Gaussian FOS (neglecting lapse/guess rate): {0.0001,
0.1, 0.3, 0.5, 0.7, 0.9, 0.9999}. We, however, ensured
that all the steps were at least 1 dB apart (the minimum
interval allowed by the device) and that the two most
extreme contrast levels were at least 10 dB above and
below the estimated 50% threshold. The 50% threshold
was calculated as the average of the two test results
obtained from the ZEST strategy for each location.
Each contrast level was presented 25 times, and each
spatial location was tested fully and independently,
for a total of 2,800 presentations. A break of at least
10 min was introduced every 350 presentations, and
the whole test was split into two sessions performed
on two separate days. The individual presentations
were fully randomized across test locations, stimulus
area/duration combinations, and contrast levels.
Pauses between presentations and false responses
were determined as described above for the main
experiment.

MOCS data were fitted using a Bayesian hierarchical
model, similarly to Prins (2019). The results of the test
performed on each subject were fitted independently.
The psychometric function was modeled with the CDF
of a Gaussian function (�), where the mean (μ), SD (σ ),
lapse rate (λ), and guess rate (γ ) were free parameters
(see Equation 2). Mean (μ) and σ were hierarchical
parameters that varied for each of the four tested
locations. Information, however, was propagated across
different locations to improve the robustness of the fit
of the parameters for each testing condition. Lapses
and guesses were instead modeled as global parameters
for the whole test. Details of the implementation of the

Bayesian model are reported in the Appendix.

pseen = 1 − (γ + (1 − γ − λ) ∗ � (μ, σ )) (2)

Imaging

Retinal imaging was performed using a Spectralis
spectral domain optical coherence tomography
(SD-OCT; Heidelberg Engineering, Heidelberg,
Germany) scanner. Dense macular volume scans
spanning the central 25 × 30 visual degrees (121
vertical B-scans, 9 averaged scans) were segmented
and exported as RAW files using the Heidelberg Eye
Explorer (HEYEX; Heidelberg Engineering). Retinal
ganglion cell layer (RGCL) thickness maps were built
from segmentation data and converted to customized
estimates of local RGC counts by combining thickness
data with histology data provided by Curcio and
Allen (1990), using previously published methodology
(Montesano et al., 2020; Raza & Hood, 2015). Local
customized RGC density was calculated for each
location tested in the psychophysical procedure by
accounting for RGC displacement (Drasdo, Millican,
Katholi, & Curcio, 2007; Montesano et al., 2020), using
methodology detailed elsewhere (Montesano et al.,
2020).

Modeling of perimetric sensitivity

One of the objectives of this study was to provide
a model that was simple but sufficient to describe
the change in sensitivity observed with different
combinations of sizes and durations for perimetric
stimuli. Our working hypothesis, derived from previous
work (Barlow, 1958; Baumgardt, 1959; Mulholland et
al., 2015; Owen, 1972), was that the combined effect
of these two parameters, at any given location, could
be described by taking the product of stimulus area
and stimulus duration. We called this product the
spatiotemporal input. We integrated the spatiotemporal
input into a computational model of the response
of RGC mosaics, partially based on the work by
Pan and Swanson (2006) and Bradley et al. (Bradley,
Abrams, & Geisler, 2014). The key novel aspect of
our modeling was that the linear response from the
RGC mosaic was pooled and integrated over time
so that changes in duration and size of the stimulus
would both simultaneously affect the temporal and
spatial response of the system. We further modeled the
retina as a two-stage mosaic, where the response from
individual photoreceptors active in photopic adaptation
conditions (cones) was integrated by the RGC mosaic
to explore the effect of retinal convergence in the
central visual field. The density of the two mosaics
was varied to reproduce the effect of eccentricity. We
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refer to the combined effect of the spatiotemporal
input and changes in retinal structure (i.e., density of
the photoreceptor and RGC mosaics) as total retinal
input. The model was implemented in MATLAB (The
MathWorks, Natick, MA, USA) and is described in
detail below.

Hexagonal mosaics
Following Swanson et al. (Swanson, Felius, &

Pan, 2004), we modeled multiple detectors organized
in a regular hexagonal lattice. This organization is
reflective of many naturally occurring cell mosaics as it
represents the most efficient packing scheme for objects
with circular/spherical geometries (Legras, Gaudric,
& Woog, 2018). For our purposes, we simplified the
retina as being composed of two stacked mosaics, the
photoreceptor mosaic and the RGC mosaic. Being
interested in the results of experiments performed
in photopic conditions (background illumination =
10 cd/m2), we modeled only the cone mosaic. In this
retinal model, individual RGCs pool the response from
the photoreceptors according to their receptive fields
(RFs). To improve the efficiency of computation, each
hexagonal lattice was rearranged in a regular lattice with
anisotropic spacing (see Figure A.1). This simplifies
the pooling operation, which can be computed via
simple convolution of the regularized lattice with the
RGC-RF filter (see next section), also rearranged
accordingly on the same regular lattice. The response

of the photoreceptor mosaic was simply computed by
multiplying the mosaic by the stimulus. In its simplest
form, this is equivalent to assigning a value of 1 to
all the photoreceptors that fall within the stimulus
area, leaving the others to 0. However, in its final
implementation, this was modified to include the effect
of optical blur (see later). Only the Parasol OFF RGC
mosaic was used for the calculations (P-OFF-RGC),
assuming that the ON and OFF mosaics operate on
parallel redundant channels for the detection of simple
round stimuli. Parasol cells were chosen because there
is experimental evidence that these cells preferentially
mediate sensitivity to briefly flashed stimuli, such as
those used in perimetry. The calculations were repeated
with the midget OFF RGC mosaic (mOFF-RGC) and
reported as supplementary material for comparison
with some previous literature (Kwon & Liu, 2019).

RGC receptive field
The spatial filters for the RGC-RF were modeled

with a Difference of Gaussian (DoG; Figure 1A),
using the median parameters estimated by Croner and
Kaplan (1995) from electrophysiology on macaques’
retina. In their work, they showed that, although the
scaling factors for the relative width and height of
the inhibitory and excitatory Gaussian components
of the filter changed with eccentricity, their ratios
remained approximately constant. In this model, the
surround inhibitory component has peak sensitivity

Figure 1. (A) Schematic example of how an RGC samples the input from the photoreceptor mosaic, according to its
difference-of-Gaussian RF. The strength of inhibitory surround has been exaggerated here for clarity. (B) Estimated density for cones
(top left) and RGC-RF (top right) and a map of cone/RGC convergence (bottom left). The bottom-right panel shows a comparison
between the predicted (unscaled) sensitivity for the numerical calculations from the mosaic with discrete changes in convergence
(dots) and continuous factor scaling (line).
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Ks = 0.01 * Kc, where Kc is the peak sensitivity of the
excitatory center. The SD of the surround was 6.7 times
larger than the SD for the center (average reported by
Croner & Kaplan, 1995). The SD for the center was
scaled so that the radius of the center component was
equal to the intercell spacing of the mosaic (defined
by its density). The radius was defined by Croner and
Kaplan as the distance from the center at which the
excitatory Gaussian component has value Kc/e. The
corresponding SD was approximated as SD = Cell
spacing/1.414. Note that, while the center-surround
proportions are based on Croner and Kaplan (1995),
the actual extent of the RGC-RFs in our model depends
only on the intercell spacing of the RGC mosaic.

Cone-RGC convergence
The number of cones that converge onto a RGC is

known to increase with eccentricity (Curcio & Allen,
1990; Drasdo, Millican, Katholi, & Curcio, 2007;
Sjostrand, Olsson, Popovic, & Conradi, 1999). In our
model, this corresponds to an increasing number of
photoreceptors pooled by the RGC-RF per unit area.
This can be achieved by increasing the density of the
cone photoreceptor mosaic, also provided by Curcio et
al. (Curcio, Sloan, Kalina, & Hendrickson, 1990). The
convergence rate can be calculated by taking the ratio of
the density of cones over the density of P-OFF-RGCs
(Figure 1B). Because of how the hexagonal matrix
has been rearranged for calculations (Figure 1), the
intercell spacing for the RGC mosaic needs to be an
exact multiple of that of the cone mosaic. This limits
the possible cone/RGC ratios that can be calculated.
However, changing the convergence ratio is equivalent
to simply multiplying the response of the RGC obtained
with a 1:1 convergence ratio by a scaling factor. This
is easily demonstrated by the graph in Figure 1B. This
method was therefore chosen to account for the change
in convergence across the VF in a smooth fashion.

Modeling of optical factors
The effect of natural optics was modeled using the

formula for the average modulation transfer function
(MTF) of the human eye proposed byWatson (2013). In
this formula, the square root of the diffraction-limited
(DL) MTF, which depends only on the pupil size, is
multiplied by a Lorentzian function whose parameters
are fitted so that the product would approximate the
average humanMTF. Amultiplicative correction factor,
which depends on age and eye pigmentation, is then
additionally applied to the MTF to account for light
scattering. Figure 2 reports examples of the effect of
optical blur on different stimulus sizes for different
pupil apertures using the MTF (without accounting
for scattering) (Watson, 2013). The calculations are
performed by multiplying the two-dimensional Fourier

transform of the stimulus by the MTF and then
back-transforming in the spatial domain. The blurred
stimulus can then be sampled with the photoreceptor
mosaic. For each subject, we used the average pupil size
recorded by the Octopus perimeter during the test to
model the results of our experiments.

Proposed spatiotemporal model
One desired property of our proposed model was

that the size and duration of the stimulus interacted so
that longer stimuli would decrease Ricco’s area (upper
limit of complete spatial summation) and larger stimuli
would shorten the critical duration (upper limit of
complete temporal summation). One solution to achieve
this is to use a pooling operation that integrates the
spatial input over time. The integration, however, must
take into account not only the duration of the stimulus
but also the amount of RGCs stimulated (i.e., the
amount of spatial input). In other words, the temporal
integration is to be performed by a cortical pooler
on the total spatial input rather than by individual
detectors prior to pooling. The simplest model, with
the smallest number of parameters, is a capacitor
(Equation 3), which is convolved with the temporal
profile of the stimulus and then integrated over time
according to Equation 4 to obtain the response (in the
equations, the symbol “*” indicates convolution; “×”
indicates multiplication):

h (t, τ,S) = e
(
− t

τ/S

)
(3)

R =
(
∫∞
0 | f (t) ∗ h (t, τ,S)|kdt × S

)1/k
(4)

where τ is the integration constant, k is the summation
exponent (4 in this study) (Meese &Williams, 2000; Pan
& Swanson, 2006; Quick, 1974; Robson & Graham,
1981; Swanson, Felius, & Pan, 2004; Tyler & Chen,
2000), and S is the total spatial input defined as

S =
∑
i

Ri (5)

where Ri is the response of an individual ganglion
cell to the stimulus. Note that the contribution of
individual RGCs (Ri) can change because of the
location of the RGC with respect to the stimulus
(edge as opposed to center) and the effect of retinal
convergence (RGCs in the periphery will have a bigger
contribution when fully stimulated because of their
larger pooling from the photoreceptors). The temporal
profile of the stimulus is represented by f(t), which is a
step function with value 1 when the stimulus is on and
0 otherwise. As previously mentioned, the combined
effect of stimulus size, stimulus duration, RGC density,
and retinal convergence defines the total retinal input.

Downloaded from jov.arvojournals.org on 05/03/2023



Journal of Vision (2023) 23(4):2, 1–25 Montesano et al. 7

Figure 2. Effect of optical blur for different pupil sizes. The images represent the projection of the blurred stimulus on the
photoreceptor mosaic.

Much like other temporal filters, this operation can also
be implemented through temporal convolution. Note
that such an approach to spatiotemporal summation is
very similar to what was described in Frederiksen et al.
(Fredericksen, Verstraten, & van de Grind, 1994) and
Anderson and Burr (1991) for motion detection. Since
only the P-OFF-RGC mosaic was considered for our
calculations, the RGCs that were assigned a negative
input were considered inhibited by the stimulus. Their
negative contribution to the sum can be interpreted as
an inhibition of their background activity. Obviously,
such a simple approach would not account for other
filter choices with a strong biphasic response, where a
simple summation would always result in a zero net
sum. From the examples in Figure 3, we can see that
this pooler has the desired properties when the response
is computed for different stimulus sizes and durations

(i.e., a shorter duration determines a larger critical area
and vice versa). One additional convenient property of
this pooler is that the critical size and duration depend
on the integration constant τ . The integration constant
τ is therefore the scaling factor of the pooler and can be
used to test the hypothesis of constant input integration
across the VF. If the hypothesis of constant integration
response for the same amount of total retinal input is
correct, we do not expect important changes in the
integration constant across different testing conditions
and eccentricities. An alternative approach would be
to model individual RGCs (or higher-order visual
detectors) as separate spatiotemporal integrators and
to pool their response by vector summation (Pan &
Swanson, 2006; Quick, 1974). Such an approach has
the advantage of allowing the modeling of the response
from specific classes of RGCs and produces sensible
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Figure 3. Example of the interaction of stimulus size and duration in the proposed model. Changing the stimulus duration translates
the spatial summation curve along the horizontal axis (left panel). The same is true for the temporal summation curve when changing
the stimulus area (right panel).

spatial and temporal summation responses. However, it
fails to reproduce the interaction between spatial and
temporal input that would be expected. For example,
Ricco’s areas in spatial summation curves would be
unaffected by changes in stimulus duration. This is
in contrast with evidence from the literature (Barlow,
1958; Baumgardt, 1959; Mulholland et al., 2015; Owen,
1972). It is worth noting that the current model could be
extended to include the temporal response of individual
classes of RGCs prior to pooling. However, this would
increase the number of tunable parameters and would
be beyond the objectives of the current study and what
could be determined with our experiments.

Fitting procedure
The model described by Equation 4 was fitted to

the data using an iterative algorithm (Nelder–Mead
Simplex Method, fminsearch function in MATLAB;
Lagarias, Reeds, Wright, & Wright, 1998) to minimize
the root mean squared error (RMSE). The summation
exponent was set to k = 4 (Meese & Williams, 2000;
Pan & Swanson, 2006; Quick, 1974; Robson &
Graham, 1981; Swanson, Felius, & Pan, 2004; Tyler &
Chen, 2000), and the RGC mosaic density was varied
according to the eccentricity following the model by
Drasdo et al. (Drasdo, Millican, Katholi, & Curcio,
2007; Montesano et al., 2020). These estimates were
corrected with individual imaging data obtained from
the OCT scans, as previously reported (Montesano et
al., 2020; Raza & Hood, 2015). The model was fitted by
tuning the parameter τ , which represents the integration
constant of the spatiotemporal input. An additional
parameter (additive in log-scale) allowed translation
along the vertical axis (log-DLS, Offset term).

Calculation of critical size
The transition from total to partial summation is

smooth for the curves generated by our model. The
response curve is fully characterized by the integration
constant τ and the amount of retinal input. The
calculation of the critical (Ricco’s) area is therefore
dependent on an arbitrary threshold and is only
performed for comparison with previous literature. For
our calculations, the transition point was the retinal
input at which the slope of the summation curve is 0.5
(Piper’s law). Note that the retinal input scales perfectly
with stimulus size for our chosen implementation
of the model, but nonlinearities are introduced
if taking the sum of the module in Equation 5.
For consistency with our supplementary analyses (see
later), the conversion between stimulus area and retinal
input for each mosaic was calculated numerically
and locally approximated with a linear function in
log10 – log10 scale. The parameters for the curves were
fitted accounting for the optical blur (based on each
participant’s average pupil size and iris pigmentation).
Densely sampled curves were numerically calculated
using these parameters to estimate Ricco’s area. These
curves were calculated without the effect of optical
blur. This simulates removing the estimated effect of
optics on the size of Ricco’s area. Note that accounting
for convergence in the fitting process will not change
Ricco’s area, as parameters are optimized to fit the
same data.

Statistical analysis
Statistical comparisons were performed using linear

mixed models to account for correlations between
observations from the same subject. When data from
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multiple locations were used, individual locations were
used as a nested random factor within the subject.
When multiple comparisons were compared, the
p values were corrected using a Bonferroni–Holm
correction. All calculations were performed in R (R
Foundation for Statistical Computing, Vienna, Austria)
using the lme4 package (Bates, Mächler, Bolker, &
Walker, 2015). All comparisons were performed on
log10-transformed values of Ricco’s area, integration
constant, and number of P-OFF-RGCs, unless
otherwise specified. Eccentricity was treated as a
discrete factor.

Results
Average response

In this section, we show plots of the average DLS for
different experimental conditions to give an intuitive
representation of the phenomena under investigation.
Characteristics of each eye in the sample are reported
in Table 1. Figure 4A reports the average DLS for the
spatial summation experiment at different eccentricities.
As expected, the summation curves are separated by a

Subject ID
Age

(years)
Study
eye

Sphere
(D)

Cylinder
(D)

Axis
(deg)

BCVA
(logMAR)

IOP
(mmHg)

Average
macular

thickness (µm)

Average GCL
thickness
(µm)

Average RNFL
thickness
(µm)

Subject 1 33 Left −3.00 −1.00 154 0.02 16 306.4 37.9 110.9
Subject 2 25 Right +0.25 −0.75 31 −0.10 14 308.1 39.7 92.2
Subject 3 33 Left −3.25 −0.25 111 0.01 18 339.5 42.5 106.2
Subject 4 27 Left −0.25 −0.50 171 −0.10 14 330.0 42.2 98.9
Subject 5 25 Left +0.75 −0.75 8 0.00 15 311.3 37.4 111.9
Subject 6 26 Right −0.25 0.01 11 311.3 40.9 104.6
Subject 7 36 Left +0.25 −1.00 173 0.00 19 314.7 42.7 104.6
Subject 8 28 Right −2.25 −0.50 43 0.00 15 298.6 33.7 81.5
Subject 9 26 Right −0.75 −0.25 7 0.02 16 311.1 38.0 105.6
Subject 10 32 Right −2.00 0.00 15 295.4 40.8 90.3

Table 1. Characteristic of each eye in the sample. Note: All subjects had their sensitivity tested with the ZEST strategy for all the
duration and size combinations for all tested locations. Psychometric functions were estimated for subjects from 1 to 5 using the
method of constant stimuli. D = Diopter; logMAR = log-minimum angle of resolution; GCL = macular ganglion cell layer; RNFL =
peripapillary retinal nerve fiber layer. Average macular and GLC thickness were measured for the area corresponding to the central
10 degrees.

Figure 4. Average (dots) and standard deviation (error bars) for DLS for the three tested eccentricities at different stimulus sizes (A),
the corresponding P-OFF-RGC-RF count underlying the stimuli (B), and the corresponding P-OFF-RGC-RF count underlying the stimuli
weighted by convergence (C). RGC, retinal ganglion cell (average across subjects at each stimulus size in these graphs).
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Figure 5. Average (dots) and standard deviation (error bars) for DLS at the largest eccentricity with different combinations of stimulus
sizes and duration. The dashed line indicates total (complete) summation, with intercept equal to the smallest mean value. A small
horizontal shift was added to the spatial summation plots to improve visibility.

horizontal shift, owing to the effect of the changes in
the retinal mosaic. Interestingly, simply transforming
the stimulus area into the corresponding estimated
number of RGC-RFs underlying the stimulus did not
fully account for the effect of eccentricity. Most of the
effect was instead removed by considering the product
of stimulus area, RGC-RF density, and cone/RGC
convergence ratio. We evaluated this by comparing the
results of a simple second-degree polynomial fit of
the DLS using either the log10(stimulus area), the raw
log10(number of RGCs), or the convergence weighted
log10(number of RGCs) as predictors in a mixed-effect
model. The unexplained residual variance (including
random effects) was 1.93 dB2 for the log10(stimulus
area), 1.79 dB2 for the unweighted log10(number
of RGCs) (7.2% reduction), and 1.77 dB2 for the
convergence weighted log10(number of RGCs) (8.1%
reduction).

Figure 5 reports the average DLS for the different
testing conditions at locations {±7; ±7} and shows
how both spatial and temporal summation curves
are affected by changes in stimulus duration and
size, respectively. However, the values seem to
follow a common trend when plotted according

to the spatiotemporal input (i.e., the product of
stimulus area and duration). We evaluated this
by comparing the results of a simple second-
degree polynomial fit of the DLS using either the
log10(stimulus area) or the log10(spatiotemporal
input) as predictors in a mixed-effect model. The
unexplained residual variance (including random
effects) was 11.4 dB2 for the log10(stimulus area) and
3.7 dB2 for the log10(spatiotemporal input), a 67.5%
reduction.

Taken together, these results and plots support the
hypothesis that the main determinant of DLS is the
total retinal input to higher visual centers, influenced by
the number of stimulated RGCs, retinal convergence,
and duration of the stimulus.

Results from the spatiotemporal model

Spatial summation—effect of eccentricity
The parameters of the model were fitted

independently for each location using the data
collected with different stimulus sizes and 200-ms
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Figure 6. Boxplots of the different parameters and estimates derived from the model for spatial summation data. Note that the
convergence weighted values in (D) are obtained by simply multiplying the uncorrected number of P-OFF-RGCs at Ricco’s area by the
convergence rate. The box encloses the interquartile range, the horizontal midline indicates the median, and the error bars extend
from the 5% to the 95% quantiles. The vertical axis is log10-spaced.

stimulus duration (the only duration tested at all
eccentricities). Figure 6 reports the estimated critical
size (Ricco’s area) at different eccentricities. The average
RMSE of the model fits was 0.85 ± 0.39 dB (mean ±
SD). As expected, the estimated Ricco’s area increased
toward the periphery (Figure 7C and Table 2), with
no significant differences between the areas calculated
with and without accounting for convergence. However,
such a change did not correspond to a constant
number of P-OFF-RGCs being stimulated. Instead,
the estimated number of P-OFF-RGCs at Ricco’s
area was consistently larger toward the fovea (Figure
6D). This was mirrored by a change in the integration
constant τ with eccentricity. However, this trend in τ
was completely eliminated by accounting for the change
in cone/RGC convergence (Figure 6A and Table 2).
This effect of convergence was larger when modeling
the mOFF-RGCmosaic (supplementary material). This
result can alternatively be visualized by multiplying
the number of P-OFF-RGCs at Ricco’s area by the
corresponding convergence factor (Figure 6D and

Table 2). Note that this is a post hoc calculation and not
an output from the model (accounting of convergence
is expected to have an effect on the model’s parameters
but not on Ricco’s area and the shape of the fitted
response profile). There was a small significant increase
in the vertical Offset with eccentricity, which was
reduced by accounting for convergence (Figure 6B
and Table 2).

Spatiotemporal summation
The same spatiotemporal model was used to

analyze data from locations {±7; ±7} with all different
combinations of stimulus sizes and durations. The
data were collated to obtain a single estimate of
the integration constant and accounting for retinal
convergence. The global average RMSE for this fit was
1.67 ± 0.52 dB (mean ± SD) and 1.40 ± 0.41 dB for
the 200-ms stimuli. This can be compared to the 0.96
± 0.35 dB average RMSE obtained from fitting the
200-ms data alone at the same eccentricity. For context,
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Figure 7. The two top panels show an example fit from one location in one subject, with the horizontal axis reporting the stimulus
area (A) and the product of area and duration (B). Correlation between the parameter estimates obtained by combining all durations
and by only using data obtained with the 200-ms stimulus for the integration constant (C) and the offset (D). The diagonal line
indicates equivalence.

Eccentricity (degrees) Comparisons

1.414 (A) 5.657 (B) 9.899 (C) A vs. B A vs. C B vs. C

Uncorrected

τ (× 102) 12.11 [6.83, 20.08] 9.36 [6.54, 14.33] 6.32[4.85, 9.45] 0.2208 0.0061 0.1125
Offset (dB/10) 2.52 [2.46, 2.61] 2.64 [2.57, 2.73] 2.63 [2.54, 2.7] <0.0001 0.0001 0.3271
Ricco’s area (deg2) 0.039 [0.023, 0.067] 0.111 [0.067, 0.152] 0.143 [0.104, 0.199] <0.0001 <0.0001 0.0158
# P-OFF-RGCsa 17.54 [9.96, 29.18] 13.48 [9.42, 20.72] 9.11 [6.96, 13.62] 0.2210 0.0059 0.1099

Convergence weighted

τ (× 102) 86.25 [46.48, 137.29] 71.28 [49.2, 105.41] 57.89 [43.7, 88.97] 0.8884 0.4579 0.8884
Offset (dB/10) 2.31 [2.25, 2.41] 2.42 [2.36, 2.51] 2.4 [2.3, 2.46] <0.0001 0.0243 0.0311
Ricco’s area (deg2) 0.039 [0.023, 0.067] 0.11 [0.068, 0.152] 0.142 [0.103, 0.197] <0.0001 <0.0001 0.0175
# P-OFF-RGCsb 125.05 [67.88, 199.52] 102.51 [70.89, 153.1] 83.42 [63.2, 128.13] 0.8765 0.4502 0.8765

Table 2. Median [interquartile range] of the different outputs from the model fits. Note: Comparisons were performed on
log-transformed values but reported in linear scale (except for the Offset, which was tested and reported in log-scale and represents
the shift in the relationship along the vertical axis). P-OFF-RGC = parasol OFF retinal ganglion cells. aObtained by taking the product of
Ricco’s area and local P-OFF-RGC density. bObtained by taking the product of Ricco’s area and local P-OFF-RGC density scaled by
retinal convergence.
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Duration Ricco’s area (deg2) # P-OFF-RGCsa (uncorrected) # P-OFF-RGCsb (convergence weighted)

15 ms 1.088 [0.773, 1.913] 71.63 [55.75, 116.9] 655.48 [510.59, 1082.06]
30 ms 0.545 [0.388, 0.961] 35.91 [27.87, 58.76] 328.64 [255.54, 543.92]
55 ms 0.298 [0.212, 0.525] 19.59 [15.2, 32.12] 179.27 [139.13, 297.32]
105 ms 0.156 [0.111, 0.275] 10.28 [7.96, 16.8] 94.05 [73.01, 155.51]
200 ms 0.082 [0.059, 0.144] 5.42 [4.18, 8.84] 49.56 [38.21, 81.87]

Table 3. Median [interquartile range] of the different outputs from the model fits with the different stimulus durations. Note:
P-OFF-RGC = parasol OFF retinal ganglion cells. aObtained by taking the product of Ricco’s area and local P-OFF-RGC density.
bObtained by taking the product of Ricco’s area and local P-OFF-RGC density scaled by retinal convergence.

Figure 8. Fitted psychometric functions obtained from the MOCS experiment at the four tested locations in five subjects with four
different combinations of stimulus size and duration. Parameters are provided as supplementary material.

the root mean squared difference in sensitivity between
the two repetitions of the retested combinations was
2.44 dB, and the root mean squared deviation from the
average of the two repetitions was 1.22 dB. An example
of the calculation for one location in one subject is also
shown (Figures 7A, B). There was a strong correlation
between the parameter estimates obtained by fitting
data from all stimulus durations and 200 ms alone
(previous section), at the same eccentricity (correlation
coefficient: 0.83 for log10(τ ) and 0.89 for the sensitivity

offset; Figures 7C, D). However, the two estimates
appeared to have a consistent significant difference (p
< 0.0001), approximately constant in log10-scale. The
median [interquartile range] was 34.65 [25.31, 56.04]
× 102 for the τ constant and 2.36 [2.31, 2.42] dB/10
for the offset. These values were both significantly
smaller than those reported in Table 2 for the same
eccentricity (p < 0.0001 and p = 0.00298, respectively).
Significant differences were also present for all the other
parameters, including Ricco’s area and the number of
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Figure 9. Relationship between the slope (σ ) of the
psychometric function and the 50% threshold (µ). The
regression line is also reported. The relationship was
statistically significant (p < 0.0001).

P-OFF-RGCs at Ricco’s area (all p < 0.0001). Numeric
values of Ricco’s area and corresponding P-OFF-RGC
counts are reported in Table 3 for all durations.
Differences in Ricco’s areas between different durations
were not tested as such differences are assumed by the
model.

Frequency of seen curves

We estimated the FOS curves for the four most
extreme combinations of stimulus size and duration
at locations {±7; ±7} using the MOCS data for five
subjects. The results of the Bayesian fitting are shown
in Figure 8. The FOS was modeled using the CDF of
a Gaussian distribution. The averages of the estimates
for μ, σ , λ, and γ are reported as supplementary
material.

In general, there was a tendency for slopes (σ )
to be shallower for conditions where sensitivity
was lower (μ). This agrees with previous literature
(Gardiner, Demirel, & Johnson, 2006; Henson et al.,
2000). Figure 9 shows this relationship. Estimates
from Henson et al. (2000) are also reported for
comparison.

Discussion
Constant integration of visual input has been

regarded as a fundamental principle governing the
perception of visual stimuli (Barlow, 1958; Owen,
1972). However, the interaction of stimulus duration
and size has been rarely and incompletely explored in
perimetry (Mulholland et al., 2015). Our data support
constant input integration as a fundamental principle
in perimetric response in healthy observers. Such a

principle has translational value as it provides a simple
framework for the interpretation and prediction of
perimetric responses in healthy subjects and allows
speculations on the expected changes from disease.

The first important result is the change in Ricco’s
area with different stimulus durations. The size of
Ricco’s area has often been interpreted considering
cortical magnification (Kwon & Liu, 2019), linking the
number of RGCs within Ricco’s area to the number
of RGCs contacting V1 cells in the visual cortex. Such
a line of reasoning seems, however, questionable if
Ricco’s area can vary with stimulus duration, because
duration would have no effect on the spatial extent of
RGC-V1 connections. Rather, temporal and spatial
summation appear to operate in concert to maintain
a consistent behavior in response to the same amount
of visual input, be it from changes in stimulus size or
duration. Fredericksen et al. (Fredericksen, Verstraten,
& van de Grind, 1994) also proposed a similar
integration model in the context of motion detection,
suggesting that spatiotemporal summation likely arises
from diffuse cortical integration rather than specific
temporal or spatial processes. Our model captures such
a spatiotemporal interaction by only requiring the
fitting of one parameter (the integration constant τ )
while providing good predictions of the experimental
results. Other models, while not specifically investigating
the interaction between stimulus size and duration,
also showed that the spatial scale of the visual system
could be modeled independently of the underlying
RGC density and their RFs using cortical filters with
different spatial scales (Pan & Swanson, 2006; Swanson,
Felius, & Pan, 2004). Our model also decouples spatial
summation from the extent of the retinal spatial filters
(in this case, the extent of the DoG filter used to model
RGCs’ responses). This has important implications for
modeling the effect of disease that will be discussed
later. It should be noted that other authors have
proposed that these effects could be explained by a
dynamic change in the “functional” receptive field size
as a function of stimulus duration and background
luminance (Glezer, 1965). More realistically, this
could correspond to a selection of cortical filters of
different sizes for different stimulus characteristics or
to the response envelope of multiple filters combined
by probability summation whose sensitivity can be
selectively changed by different stimulation conditions
(Pan & Swanson, 2006). Further research is needed
to understand how this would apply in the case of
disease, such as RGC loss (see later). Such a mechanism
is further explored in a dedicated paragraph in the
Appendix.

The model described by Equations 3 and 4 can be
modified to incorporate different impulse response
functions. In this study, it was a simple capacitor
equation, as this was deemed sufficient to model our
data by fitting only two parameters. This is likely to be
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simplistic for many other applications. For example,
our model does not include any response delay. Our
results can be largely replicated with the monophasic
response filter used by Gorea and Tyler (1986) and first
described by Watson (1982). Such an impulse response
can also be tuned to produce different critical durations
by changing an integration constant, while keeping
all the other parameters fixed. Using this impulse
response produced only minimal differences (one
example is provided as supplementary material). A drop
in sensitivity has been shown for very long stimulus
durations (Breitmeyer & Ganz, 1977; Kelly & Savoie,
1978; Roufs, 1974) and modeled with a biphasic impulse
response integrated over a limited time window (Gorea
& Tyler, 1986). Our stimuli would not be long enough
for this to be evident. Our temporal integral in Equation
4 extends to infinity, similarly to Watson (1979). Gorea
and Tyler (1986) highlighted the implausibility in this
assumption, because an observer that integrates over
an infinite time window will never make a decision to
respond. A practical choice for our experiments would
be to use the maximum time interval allowed for a
response (1,500 ms) as an integration window. However,
this is so much longer than the longest stimulus (200
ms) that it would be practically equivalent to infinity.

It should be mentioned that both temporal and
spatial summation, and contrast sensitivity in general,
can be largely affected by background adaptation. For
the background illumination used in this study (10
cd/m2), threshold behavior should be close to Weber’s
law at least for a G-III stimulus (Bierings, de Boer,
& Jansonius, 2018; Swanson et al., 2014). Retinal
illuminance can be reduced by media opacity (such
as cataract), but this is likely to be negligible in a
young healthy cohort. Pupil size can also affect retinal
illuminance, especially if below 3 mm (Swanson et al.,
2014), but the average pupil size in our cohort was 5.9
± 0.8 mm.

The model can be used to investigate the effect
of eccentricity on spatial summation. Our results
show that Ricco’s area significantly increased with
eccentricity, as expected (Choi, Nivison-Smith, Khuu,
& Kalloniatis, 2016; Khuu & Kalloniatis, 2015; Khuu &
Kalloniatis, 2015). However, this did not correspond to
a constant number of P-OFF-RGCs being stimulated,
with this number being comparably larger at smaller
eccentricity. This is mirrored by the identical trend
for the integration constant τ , indicating that more
P-OFF-RGCs need to be stimulated to achieve the
same change in sensitivity closer to the fovea. This
trend is even bigger when modeling the response from
the mOFF-RGC mosaic (supplementary material).
Our results agree with Kwon and Liu (2019), who also
observed a notable departure from a constant number
of mOFF-RGCs at Ricco’s area and a trend with
eccentricity. However, they concluded that this was
likely a result of inaccuracies in the estimates of RGC

density. We propose a different explanation: The trend
in the number of RGCs, and in the integration constant,
appeared to be completely eliminated by weighting
the contribution of each RGC by the cone/OFF-RGC
convergence ratio. This observation suggests that,
much like the effect of change in stimulus duration,
convergence can change the “contribution” provided by
each RGC in terms of retinal input. Our model is able
to account for this, because the contribution of each
RGC can be weighted by its convergence rate prior
to summation in Equation 4. Our experiments would
not allow us to uncover a specific mechanism for this
phenomenon. However, a reasonable hypothesis is that
increased convergence could change the contrast gain
determining the spiking rate of the RGC for a given
level of contrast. For our main analysis, we considered
one possible class of RGCs, P-OFF-RGCs. This is
important for our assumption of hexagonal tiling,
because different classes of RGCs form independent
and overlapping mosaics (Dacey, 1993; Dacey &
Petersen, 1992). mOFF-RGCs were also modeled
(supplementary material) for comparison with Kwon
and Liu (2019). Their choice was justified by the fact
that these are the most prevalent type of RGCs in
humans (Dacey, 1993; Drasdo, Millican, Katholi, &
Curcio, 2007). However, previous literature showed
that briefly flashed stimuli, such as those used in
perimetry, might preferentially stimulate parasol RGCs
(Swanson, Sun, Lee, & Cao, 2011), and this was the
reason for our choice to model P-OFF-RGCs instead.
It should be noted that the effect of eccentricity, and the
importance of cone/RGC convergence, was much more
pronounced for mOFF-RGCs. However, accounting
for convergence eliminated significant differences in
the number of stimulated RGCs at Ricco’s area and
in the integration constant between the smallest and
the largest eccentricity for both modeling choices.
Interestingly, when weighted by convergence, the
results were effectively identical to those obtained
with the P-OFF-RGC mosaic, because the higher
convergence ratio for the mOFF mosaic effectively
produced the same scaled input. It should be noted
that there is no clear anatomical evidence of increased
cone/P-OFF-RGC convergence with eccentricity.
However, this seems a reasonable assumption because
the cone/RGC ratio calculated from histology data
(Curcio & Allen, 1990; Curcio, Sloan, Kalina, &
Hendrickson, 1990) increases with eccentricity in a
similar fashion for both the midget and parasol cells.
The similarity between our results and those reported
by Kwon and Liu (2019) should be interpreted with
caution, because it can be explained by the fact that
both our estimates and theirs were derived from those
provided by Drasdo et al. (Drasdo, Millican, Katholi,
& Curcio, 2007; Montesano et al., 2020), which are in
turn based on a small histology data set by Curcio and
Allen (1990). Despite our attempt to improve precision
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by customizing Drasdo’s estimates using individualized
structural OCT data (Montesano et al., 2020), the
results are unlikely to be greatly altered. Therefore,
Kwon and Liu’s (2019) results cannot be considered a
fully independent confirmation of our findings. Finally,
it should be noted that the compensation of the effect
of eccentricity with the convergence ratio might be
coincidental and could be explained by other factors,
such as optical aberrations. The effect of natural ocular
optics on spatial summation in the parafoveal retina is
debated (Dalimier & Dainty, 2010; Davila & Geisler,
1991; Tuten, Cooper, & Tiruveedhula, 2018). In our
model, we included the effect of optical aberrations
and glare using the average MTF for the human eye
proposed by Watson (2013): The data were fitted
accounting for optical factors, but the summation
curves were generated without the effect of optics.
This was an attempt at estimating the pure neural
contribution to spatial summation. However, the effect
on the results largely depends on other assumptions
within the model, particularly the choice of whether
the summation in Equation 5 is taken over the signed
or absolute value or the RGC response. Our choice of
summing the signed contribution was based on some
desirable properties of the model, particularly the
perfect linear scaling of the response with the change
in RGC density and filter size. This produced a very
small effect from ocular optics, because the total power
of the stimulus was simply spread over a larger area.
Taking the summation over the absolute value instead
produced a much greater effect (results reported in
supplementary material) because negative contributions
from “inhibited” RGCs were transformed into positive
contributions, greatly amplifying the effect of optical
blur. Our choice of modeling produced an average
change in Ricco’s area due to optical factors of 0.056
log10 units, which is very similar to the change measured
by Tuten et al. (Tuten, Cooper, & Tiruveedhula, 2018)
with adaptive optics (AO). Taking the summation over
the absolute value instead produced an average change
of 0.37 log10 units, which is closer to what was reported
by Dalimier and Dainty (2010) for similar experiments.
Ultimately, a definitive answer to these questions could
only be obtained by performing these same experiments
with coupled AO-corrected stimuli and imaging, so that
accurate estimates of individual RGCs can be obtained
and the effect of optical aberrations eliminated (Liu et
al., 2017).

Another important result is the effect of different
stimulus durations and sizes on the shape of the
psychometric function. In general, and in agreement
with previous reports (Gardiner, Demirel, & Johnson,
2006; Henson et al., 2000), we have found that the
change in the slope of the psychometric function
was largely explained by a change in sensitivity and
was reasonably described by a log-linear relationship
(Figure 9). This effect is indicative of the presence

of multiplicative noise in the response (Tyler &
Chen, 2000). However, it is difficult to identify the
exact origin of such noise (quantal fluctuations, eye
movements, noise from the instrument). This, however,
has important implications, because it confirms that
the increase in variability of perimetric responses with
sensitivity is not uniquely linked to disease but can be
replicated in healthy observers. The MOCS experiments
were designed to replicate the simple detection task
involved in perimetry, where observers are asked
to continuously monitor the presence of a signal in
sequential intervals. This can be modeled as a task with
a variable observer-defined “criterion” (i.e., rate of
false alarm or response bias) (Klein, 2001). In our FOS
curves, this bias is accounted for by estimating the guess
rate as a lower asymptote (the γ term in Equation 2).
This framework is rooted in high-threshold theory and
widely adopted in the field of perimetry (Rubinstein,
Turpin, Denniss, & McKendrick, 2021). It should be
kept in mind that, under the alternative signal detection
theory, the bias correction would be performed after
z score transformation and would require numerous
catch trials to determine the individual response bias
(Klein, 2001). In our data, the response bias and
lapse rate were estimated from the response to stimuli
that were likely to be much above or below the 50%
threshold (as determined using a pilot using QUEST+
to estimate threshold and psychometric function slope),
and all participants were encouraged to maintain a low
false-alarm rate during the experiments. Both the guess
and lapse rates were very close to 0 and are therefore
unlikely to have greatly affected the estimates of the
psychometric function.

Our choice of placing our testing locations along the
diagonals limits our ability to appreciate the previously
reported dissociation in between ganglion cell number
and perimetric sensitivity in nasal visual field (Keltgen
& Swanson, 2012). We, however, found a significantly
smaller number of P-OFF-RGCs within Ricco’s area
for the nasal locations, indicating a smaller spatial
scale compared to temporal locations (p = 0.005).
This comparison was performed for the log10-RGC
number with a linear mixed model using the hemifield
as a fixed effect and the eccentricity as a random
effect, nested within the subject, to perform a paired
same-eccentricity comparison.

It is interesting to consider the implications of our
results and modeling approach for the interpretation of
changes observed in disease. Redmond et al. (Redmond,
Garway-Heath, Zlatkova, & Anderson, 2010) have
demonstrated an increase in Ricco’s area in patients
with glaucoma, which could be accounted for by a
shift of the summation curves along the horizontal
axis (stimulus size). According to some models (Kwon
& Liu, 2019; Swanson, Felius, & Pan, 2004), such a
change could only occur by scaling the spatial filters to
increase spatial convergence (equivalent to changing the
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Figure 10. (A) Change in Ricco’s area in patients with glaucoma compared to age-matched controls, adapted from Redmond et al.
(Redmond, Garway-Heath, Zlatkova, & Anderson, 2010). (B) Temporal summation curves can be equated when RGC loss is
compensated by an increase in the stimulus size.

cortical magnification factor), which would imply some
sort of “restructuring” of either the pooling mechanism
(e.g., the spatial extent of RGC-V1 connections)
or an enlargement of RGCs’ RFs. The latter seems
implausible, because most histologic studies have shown
dendritic pruning and shrinkage (Liu, Duggan, Salt,
& Cordeiro, 2011), which would imply smaller RGCs’
RFs. The first hypothesis also lacks solid support
from experiments: Wang et al. (Wang, Yan, & Zhou,
2021) observed changes in the cortical magnification
factor in patients with glaucoma tested with functional
magnetic resonance imaging; such changes, however,
are indicative of increased retina–V1 divergence and
therefore do not clearly support the hypothesis of
an increased magnification factor. Our model makes
no such assumptions. Instead, the change in Ricco’s
area is a consequence of the reduction in retinal input
owing to a loss of RGCs in glaucoma. In Figure 10A,
data from healthy participants in Redmond et al.
(Redmond, Garway-Heath, Zlatkova, & Anderson,
2010) were fitted with our model, assuming a mosaic of
P-OFF-RGCs with density estimated fromDrasdo et al.
(Drasdo, Millican, Katholi, & Curcio, 2007; Montesano
et al., 2020). The mosaic was then randomly degraded
to achieve 73% RGC loss, equivalent to the reported
proportional average change in Ricco’s area. The figure
plots the average response of 100 randomly degraded
mosaics. The model correctly predicted a horizontal
shift of the curve, in agreement with the data. A
horizontal shift in the response could also be explained
by RGC loss preferentially affecting higher-frequency
cortical filters, whose loss in sensitivity might determine
a horizontal shift of their probability summation
envelope (Pan & Swanson, 2006). Our model also

predicts that temporal summation curves can be
equated between healthy controls and patients with
glaucoma by appropriately scaling stimulus size. This is
shown in Figure 10B, for the same mosaics simulated
in Figure 10A. Mulholland et al. (2015) provided
experimental evidence that using Ricco-scaled stimuli
could reduce the difference in temporal summation
observed between patients with glaucoma and healthy
controls with G-III stimuli, although some residual
differences were still present. This is further proof of
the interaction between stimulus size and duration.
However, more research is needed to fully characterize
such an interaction in glaucoma. Finally, our model also
predicts changes in spatial and temporal summation
with photoreceptor loss, such as from diseases of the
external retina. However, studies investigating this with
perimetric stimuli are still lacking and will need further
research.

Other questions remain, particularly pertaining
to the systematic difference between the estimates
of the model parameters obtained with 200-ms
stimuli only or with all stimulus durations combined.
Small inaccuracies in the delivery of the stimulus
might produce variations in the intended durations,
skewing the results of the combined analysis. Another
consideration is that our model, despite describing most
of the variability in the data, might not be capturing all
aspects of the effect of stimulus duration on sensitivity.
In fact, the model was not meant to be a complete
description of the psychophysical response to all the
features of the stimulus but rather aimed at providing a
coherent framework to explain important experimental
observations from the data that are often neglected by
other modelling attempts.
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Conclusions
We show that the amount of total retinal input

can account for most of the characteristics of
spatiotemporal summation with perimetric stimuli in
healthy observers, including the effect of eccentricity.
This could have important implications for the
interpretation and design of perimetric examinations
in diseased eyes as well as providing a framework
for analyzing spatiotemporal integration in heathy
observers.

Keywords: spatial summation, temporal summation,
perimetry, spatiotemporal summation
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Appendix

MOCS fitting

MOCS data were fitted using a Bayesian hierarchical
model. Each subject was fitted independently. The
four combinations of stimulus size and duration were
modeled as fixed-effect factors on the parameters
μ and σ of the psychometric function, as defined
in Equation 2. The parameters for each stimulus
combination are denoted as μc and σ c. The four
locations were modeled as hierarchical random effects
on μc and σ c, with no correlations between the two
parameters. The lapse rate (λ) and guess rate (γ )

were modeled as global parameters for the whole
test. The response (yes/no) was modeled as binomial
process with 25 trials. Following Prins (2019), the prior
distribution for the mean of the parameters μc and σ c
for each stimulus combination was a noninformative
normal distribution with a standard deviation of 30
dB. The prior distribution for the variance of the
parameters μc and σ c for each stimulus combination
was a noninformative uniform distribution between
0 and 1,000 dB. The random effects for each location
were modeled as a normal distribution with mean μc
and standard deviation σ c. The prior distribution was
linked to the parameter σ c via a logarithmic function.
The parameters γ and λ were nonhierarchical and had a
Beta prior distribution with shape parameters 2 and 50.

The model was fitted by running two parallel Makov
Chain Monte-Carlo simulations (MCMCs) in Just
Another Gibbs Sampler (JAGS) (Plummer, 2003). We
used 5,000 burn-in iterations. After that, the model
was run for 10,000 iterations. All parameters achieved
a Gelman–Rubin diagnostic < 1.2 (Gelman & Rubin,
1992).

Mosaic arrangement for computation

A multiscale filter hypothesis for spatiotemporal
integration

Many possible mechanisms could replicate the
interaction between spatial and temporal summation
reported in the literature and observed in our
experiments. Our modeling approach is able to capture
this aspect of the response. Nevertheless, it is useful
to hypothesize how such an interaction could be
implemented in the visual system. Glezer (1965)
proposed that this be achieved by a dynamic change in
the “functional” RGC-RFs in the retina in response to

Figure A.1. Example of how a cellular mosaic (RGCs in this case, left panel) is rearranged into a regular matrix with anisotropic spacing
(right panel).
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Figure A.2. Example of how a change in scale results in a horizontal translation of the spatial summation curve. The cortical response
is obtained by convolution of the spatial filter (left column) with the stimulus (top row). The summation curves (right column) are
calculated as in Pan and Swanson (2006) with an exponent of 2. For this specific spatial filter, this corresponds to a partial summation
slope of 0.25 in the log10 – log10 plot, the same as in our model. The spatial summation curve with the smallest filter is shown in gray
for reference.

changes in stimulation conditions, such as background
illumination. However, there is no clear evidence of
such a change occurring in the retina. Furthermore,
Glezer (1965) proposed such changes to occur through
alterations in the weighting of the center and surround
of center-surround receptive fields. Despite this,
Ricco’s area was observed to alter in response to
glaucomatous RGC loss in patients with glaucoma

(Redmond, Garway-Heath, Zlatkova, & Anderson,
2010) and background luminance in healthy subjects
(Redmond et al., 2013) in the s-cone pathway, in which
a center-surround receptive field organization is absent
(Dacey & Lee, 1994). A more reasonable hypothesis,
which fits more closely with experimental observations,
is that a set of spatial cortical filters exist and can be
optimally selected based on the amount of retinal
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Figure A.3. Spatiotemporal response surface, obtained by
shifting the spatial summation curve by an amount equivalent
to changes in duration, in log10 scale. Spatial and temporal
summation curves are shifted versions of the same curve and
can be obtained by cutting through the surface along different
axes. The small insets show the change in the spatial filter for
three different stimulus durations, producing the spatial
summation curves identified by the black profiles.

input. Figure A.2 shows a hypothetical response of
an array of cortical neurons employing a biphasic
first Gaussian derivative filter (D1) with a Gaussian
envelope. This filter was chosen because it produces a
smooth monotonic spatial summation curve, as shown

by Pan and Swanson (2006). Note that the locations
of the cortical neurons in the schematic indicate their
projection into the visual space, rather than their
anatomical arrangement in the visual cortex. In the
schematic, selecting a larger filter corresponds to
selecting a sparser mosaic of cortical neurons, since
the extent of the filter is scaled with the intercellular
spacing. This is equivalent to proportionally scaling
the same mosaic. As expected, the summation curves
with larger filters are shifted along the horizontal axis
toward larger stimulus sizes. These mosaics can be
obtained by selecting subsets of neurons from the
same array (as in this example) or be constituted of
separate sets of neurons. It should be mentioned that
the summation curves produced by a more realistic
implementation of this model (with cortical neurons
sampling the response of RGCs with static RF sizes)
would largely reproduce this behavior but would not be
an exact horizontal translation of the same response
(see later).

The change in spatial scale with different stimulus
durations can therefore be replicated by a horizontal
shift (in log10 – log10 coordinates) of the same template
response by an amount equivalent to the log10 change
in duration. Note that the selection of the filter scale
does not need to depend solely on the stimulus duration
but more generically on the retinal input, to include the
effect of cone/RGC convergence, duration, background
illumination, or, for example, RGC loss in disease. For

Figure A.4. The blue lines in the left panels represent the envelope of the combined responses of the cortical filters whose responses
are shown as black likes (inactive filters are in light gray). The right panel reports the same response envelopes, color-coded according
to the number of hypothetical filters combined to generate the response.

Downloaded from jov.arvojournals.org on 05/03/2023



Journal of Vision (2023) 23(4):2, 1–25 Montesano et al. 24

Figure A.5. Replication of the model in Figure A.2 using a two-stage model. The individual filter responses at different scales are
reported in gray. The blue line represents the response envelope obtained by combining, through probability summation, the
responses of filters with progressively smaller spatial scales. For example, in the top-right panel, the envelope is obtained by
combining the responses of the filters with the three largest scales, while excluding the remaining three with a smaller spatial scale.

the sake of simplicity, everything except duration was
held constant for these calculations. The combined
effect is best represented by a summation surface,
shown in Figure A.3. In the figure, three summation
curves are isolated by cutting through the surface at
different stimulus durations and correspond to using a
different filter scale. Importantly, temporal summation
responses can be obtained by cutting through the
surface along the orthogonal (duration) axis. Because
the surface is obtained by proportionally translating the
same spatial summation curve, temporal summation
responses also follow the same template curve,
proportionally shifted with different stimulus sizes.
This would produce the same results obtained with
our more generic input summation model. With this
interpretation, although a strict retina–V1 convergence
cannot be defined, testing in partial summation
condition (i.e., long stimulus durations and high
background illumination) would allow the calculation

of the smallest possible spatial scale for a given retinal
location.

Another possibility, proposed by Pan and Swanson
(2006), is that different stimulus features, such as
adaptation state and stimulus duration, might alter
the relative sensitivity of individual filters and change
the combined response “envelope” obtained through
probability summation. For simplicity, we demonstrate
this concept in Figure A.4 by selectively combining the
response of filters with progressively smaller spatial
scales. The resulting response envelope is a simple
translation of the same curve.

We finally implemented a more realistic two-stage
version (Swanson, Felius, & Pan, 2004) of the cortical
pooling model presented in Figure A.2, where an array
of cortical cells would sample the response of an array
of RGCs like the one used in our main model. The
cortical cell array was the same as the RGC array but
used a D1 filter as their receptive field. Figure A.5 shows
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the responses produced by both the multiscale filters
and the combination envelope. These largely replicate
our experimental results (horizontal translation of the
same response), with some small changes at different
scales introduced by the fact that the size of the RGCs

did not scale with the chosen cortical filter. Like in
Swanson et al. (Swanson, Felius, & Pan, 2004), this
modeling exercise shows that Ricco’s area can be
entirely determined by cortical filters without changing
the RGC density or the size of the RGC-RF.
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