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Abstract

Measuring the risk aggregation is an important exercise for any risk bearing carrier.

It is not restricted to evaluation of the known portfolio risk position only, and could

include complying with regulatory requirements, diversification, etc. The main dif-

ficulty of risk aggregation is creating an underlying robust probabilistic model. It is

an irrefutable fact that the uncertainty of the individual risks is much lower in its

complexity, as compared to modeling the dependence amongst the risks. As a result,

it is often reasonable to assume that individual risks are modeled in a robust fashion,

while the exact dependence remains unknown, yet some of its traits may be made

available due to empirical evidence or “good practice”. Our main contribution is to

propose a numerical procedure that enables to identify the worst possible dependence

scenario, when the risk preferences are modeled by the Conditional Value-at-Risk in

the presence of dependence uncertainty. For portfolios with two risks, it is known

that CVaR ordering coincides with the lower-orthant stochastic ordering of the un-

derlying bi-variate distributions. As a by-product of our analysis, we show that no

such extensions are possible to higher dimensions.

Subject classifications: Risk management; Conditional Value-at-Risk; Uncertainty

modeling; Bilinear optimization; Linear Programming; Risk aggregation.

1. Introduction

Risk aggregation is a well-known strategy to reduce the overall risk held by a financial institution,

insurance company or any other risk bearing carrier. Risk portfolios are often a summation of

individual risks (or lines of business) and the risk bearing carrier is usually concerned with evaluating
1
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the risk position for this portfolio so that regulatory requirements or business targets (such as

diversification, shareholder value management constraints, etc.) are met. Within the insurance and

banking industries, there are regulatory requirements that financial institutions need to meet by

maintaining an appropriate level of capital at all times. These calculations take into account multiple

sources of risk and all other factors that contribute to changes in the company’s balance sheet within

a specified period of time. Examples of such regulatory requirements include international Basel

II/III banking supervision guidelines (e.g., see BCBS, 2016) and Swiss Solvency Test that applies

to all Swiss based insurance and reinsurance companies (e.g., see Swiss Solvency Test, 2006), where

the risk measurements are performed via the well-known risk measure Conditional Value-at-Risk

(CVaR). This risk measure is introduced in the seminal paper of Rockafellar and Uryasev (2000)

and has shown clear computational advantage in OR applications. A risk aggregation application in

the context of the European Union insurance regulatory known as Solvency II is given in Asimit et

al. (2016).

Many practical situations show that obtaining full knowledge of the dependence amongst a group

of observed random variables is a very difficult task. It is an irrefutable fact that when modeling

multi-variate risks, the estimation error is weighted towards determining the dependence amongst

the risks. Common practice has shown that individual risks are estimated with higher confidence

as compared to the dependence model between the variables. Unlike estimating individual risks,

fitting the dependence model typically presents a great challenge, especially due to data scarcity. As

a result, decision-makers usually commit to a somewhat arbitrarily chosen parametric model, but

these ad-hoc choices lead to inadequate evaluations of the overall risk. Therefore, it may be more

preferable to use qualitative information about the dependence and use a notion of realistic weakest

and strongest dependence models amongst the observed risks instead. For example, knowing that

the risks are positively associated would imply that the independence represents the weakest possible

dependence, etc. Thus, it is more reasonable to assume that we have reliable models for individual

random variables coupled with some partial knowledge of their association.

Many attempts have been made to resolve the problem of risk valuation under uncertainty mod-

eling and more specific under dependence uncertainty. The literature on this topic is vast and we

further give only a brief account of the related work. One direction of research typically pursued

in the OR literature is to adapt recent methodologies from the so-called robust optimization. For

example, in robust portfolio optimization one typically assumes that a decision-maker has some

partial information about the joint distribution function amongst the risks. In order to incorporate

the uncertainty, several notions of the worst-case risk measure have been proposed. For example,

El Ghaoui et al. (2003) and Zymler et al. (2013) discuss this problem in the context of VaR-based
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optimal portfolio selection. The same problem is investigated in Zhu et al. (2009) and Huang et al.

(2010), where decisions are made on the worst-case CVaR; a related insurance setting is discussed

in Asimit et al. (2017, 2019) and Balbás et al. (2011). Some attention has been devoted to com-

puting bounds on CVaR with moment information. For example, in Bertsimas et al. (2004) sharp

explicit bounds are obtained with the first two moments and in the work of Bertsimas and Popescu

(2002), where a more general numerical convex-optimization based approach is obtained. Recall

that robust versions of the above moment-based models may be developed in principle, relying on

the so-called robust optimization techniques (e.g., Ben-Tal et al., 2009). Interesting connections

between chance-constrained and robust optimization with relationship to CVaR are established in

Chen et al. (2009). Other risk measures (beyong CVaR) are available in the literature; e.g., the

higher moment risk measure that is investigated in Gómez et al. (2022).

The main contribution of our paper is to propose a method to evaluate sharp lower and upper

bounds for the CVaR-based aggregate risk level under dependence uncertainty. Specifically, we

assume that the bounds on the cumulative multi-variate distribution are available, as well as that

we have the full knowledge of the individual risk distributions. Here, the partial information about

dependence is given by the lower-orthant stochastic ordering type constraints. Arguably, the most

practically relevant examples of such type of constraints are the so-called positive and negative

quadrant dependence models. The practical advantage of using the above dependence models is that

we can test the statistical significance of such properties (see Gijbels and Sznajder, 2013). In other

words, the validity of restricting the range of possible dependence models may be statistically verified

using the observed data. The latter plausible dependence provides us with the main motivation to

include lower-orthant type restrictions in our model.

From the methodogical perspective, our numerical method is based on (convex) optimization

techniques and specifically, Bilinear and Linear Programming (LP). Interestingly, despite the as-

sociated optimization problem being bilinear –and thus non-convex– in nature, we show that the

problem’s objective function still retains a strong structural property, namely, it is convex in every

argument, and in turn, the convexity provides the basis for efficient computations. Despite a seem-

ing symmetry of the two problems, evaluating the sharp lower bound on CVaR appears to be more

of a challenge, as compared to computing the sharp upper bound. This is as substantiated by both

the complexity analysis of the proposed method, and the numerical results.

It has been known that CVaR respects the so-called lower-orthant stochastic ordering for two-

dimensional portfolios (Chapter 6.2.6 of Denuit et al., 2005). Yet no similar result has been estab-

lished or disproved for higher dimensions. As a bi-product of our analysis, using elementary LP
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techniques, we show that no such extensions are possible, and give insights as to why this is the

case.

The paper is organised as follows. Section 2 presents our model for determining sharp upper and

lower bounds on the CVaR-based aggregate risk level. Sections 3 and 4 describe the approach to

compute the lower and upper bounds, respectively. Section 5 contains the numerical experiments

and analysis, while Section 6 discusses the behavior of CVaR in multi-variate settings under the

lower-orthant and other orderings. Our final comments and conclusions are summarised in Section 7.

2. Model setting

The notation relies on lower case letters t, α, x, . . . for deterministic quantities and capital letters

Z,X, . . . for random variables. Likewise, we use capital letters Fi,Π, . . . to denote functions. Bold

letters such as x, i, . . . and X, . . . are reserved for deterministic and random vectors, respectively;

likewise, we use A, . . . for vector-valued functions. Capital script letters I,M, . . . are used for sets.

Let X = (X1, . . . , Xn) denote an n-variate random vector, and let Z =
∑n

i=1Xi be the sum of

n possibly dependent risks. The VaR of a generic loss variable Z at confidence level α, VaRα(Z),

represents the α-quantile of Z. Mathematically, VaRα(Z) := inf{z ∈ ℜ : Pr(Z ≤ z) ≥ α}, where

inf ∅ = ∞. The CVaR at confidence level α, CVaRα(Z), evaluates the expected loss amount

incurred under the worst 100× (1− α)% loss scenarios of Z. The CVaR has multiple formulations

in the literature (Acerbi and Tasche, 2002), but in the present paper, we only refer to the following

representation (Rockafellar and Uryasev, 2000),

CVaRα(Z) := VaRα(Z) +
1

1− α
E
(
Z −VaRα(Z)

)
+
= min

t∈ℜ
t+

1

1− α
E(Z − t)+,

where E(·) is the expectation and z+ = max{z, 0}.

Let us assume that we have a portfolio consisting of n risks X = (X1, . . . , Xn). The cumulative

distribution functions (c.d.f.) of each individual risk Xi is Fi(·) and is assumed to be known for all

1 ≤ i ≤ n, and we write Xi ∼ Fi. Moreover, we assume that the dependence between the risks,

i.e. the multi-variate distribution F(x) = Pr(X ≤ x) of X, is unknown, but some prior knowledge

about the association amongst risks is available. Namely, the set of feasible distributions is given

by

F =
{
F : F(x) ≤ F(x) ≤ F(x), ∀x ∈ ℜn, Xi ∼ Fi

}
, (2.1)

where F and F are some n-dimensional joint c.d.f.’s that define the set of acceptable dependence

models. Note that the above assumption provides a lower and upper bound for X in the lower-

orthant stochastic ordering sense. Recall that two random vectors X and Y in ℜn are lower-orthant
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ordered, written X ⪯lo Y, if Pr
(
X ≤ x

)
≤ Pr

(
Y ≤ x

)
for all x ∈ ℜn. It is known that the

comonotonic1 dependence Fc(x) := mini=1,...,n Fi(xi) gives the sharp upper bound on c.d.f. with

prescribed marginals Fi. Thus, if there is no upper bound specified, without loss of generality we

may set F(x) = Fc(x). On the other hand, given the marginals, it is impossible to construct the

sharp lower bound on c.d.f. for n ≥ 3. Thus, when the lower bound F is not known a priori, it is

not so clear what should be used in place of F, besides trivial choices.

The main aim of the paper is to compute sharp lower and upper bounds on CVaRα(Z),

inf
F∈F

CVaRα(Z) and sup
F∈F

CVaRα(Z), (2.2)

where X ∼ F. We approximate the solutions to (2.2) by assuming Xi’s to be discrete random

variables, i.e. by considering a sample of size mn from our population X. Namely, it is assumed

that Xi takes the values xi,1 ≤ . . . ≤ xi,m with equal probability 1/m, but we do not know the joint

probability amongst the risks, represented by p.m.f.

pi1,...,in = Pr

Å
X =

(
x1,i1 , . . . , xn,in

)ã
, for all 1 ≤ i1, . . . , in ≤ m.

Note that if X is continuous compactly supported random vector, one can use the above dis-

cretization to approximate its distribution to within the desired accuracy by increasing m. The

Fi-equivalent discrete marginal distributions are standardised and assumed to be uniform. This

choice is motivated by the common sampling procedure using copulas, if parametric models for the

marginal distributions are available. It is also motivated by the practical considerations on avail-

ability of historical data. The methods in the paper can be easily adapted to arbitrary marginals.

However, this comes at the unnecessary expense of further complicating the notation. The c.d.f.

bounds F and F are represented by discrete vectors π and π. Likewise, we denote the aggregate

risk sample by z, zi = zi1,...,in =
∑n

j=1 xj,ij , where the multi-index i = (i1, . . . , in) runs over all m
n

possible values i ∈ I with ij ∈ {1, . . . ,m}. The values of zi are only partially ordered.

1For a multivariate vector (X1, . . . , Xn) comonotonicity formally is defined as follows: there exists a random vector
Z and non-decreasing functions fk for all 1 ≤ k ≤ n such that Pr(Xk = fk(Z)) = 1 for all 1 ≤ k ≤ n.
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Thus, in order to approximate (2.2), we need to compute

CVaRα := inf
p

min
t∈ℜ

t+
1

1− α

∑
I
(zi − t)+ pi

s.t. πi ≤
∑
j≤i

pj ≤ πi, for all i ∈ I,∑
i: ij=k

pi =
1

m
, for all j = 1, . . . , n, k = 1, . . . ,m,∑

I
pi = 1, p ≥ 0,

(2.3)

and

CVaRα := sup
p

min
t∈ℜ

t+
1

1− α

∑
I
(zi − t)+ pi

s.t. πi ≤
∑
j≤i

pj ≤ πi, for all i ∈ I,∑
i: ij=k

pi =
1

m
, for all j = 1, . . . , n, k = 1, . . . ,m,∑

I
pi = 1, p ≥ 0,

(2.4)

where the multi-index inequalities j ≤ i are interpreted component-wise. Note that the marginal

density constraints
∑

i: ij=k pi =
1
m are stated explicitly as part of the formulation, although, we

could absorb these constraints into tighter upper and lower c.d.f. bounds.

3. Computable lower bound

3.1. Reduction to parametric LP. Let us define the value function as

val(t) := inf
p

t+
1

1− α

∑
I
(zi − t)+ pi

s.t. πi ≤
∑
j≤i

pj ≤ πi, for all i ∈ I,∑
i: ij=k

pi =
1

m
, for all j = 1, . . . , n, k = 1, . . . ,m,∑

I
pi = 1, p ≥ 0,

(3.1)

and note that evaluating val(t) for a fixed t corresponds to solving an LP problem. This is critical

to the design of our computational approach to solving (2.3), i.e. determining

CVaRα = inf
t∈ℜ

val(t).

Since the solution to a moderately sized LP problem can be typically computed in reasonable

time, to get an initial sense of what range CVaRα may fall into, one may simply compute a few values
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val(t) for some sample values t1, t2, . . .. We extend on this basic idea by combining it with a few

more observations that follow. Recall that evaluating CVaRα corresponds to solving the so-called

bilinear optimization problem, which are notoriously difficult, due to the inherent non-convexity of

the objective with potentially many local minima.

3.2. Compact support in t. We now claim that in order to compute CVaRα, it is unnecessary

to perform an exhaustive search over all possible values of t ∈ ℜ.

Theorem 3.1. Denote t = min
I

zi and t = max
I

zi. Then, the following holds

inf
t∈ℜ

val(t) = min
t∈[t,t]

val(t).

Proof. Assume first that t > t: since (zi − t)+ = 0 for all i, we have val(t) = t and thus, the value

function val(t) is increasing for any t > t.

Consider now the case of fixed t such that t < t. Let p denote an optimal probability distribution

resolving val(t) at t, and p denote an optimal probability distribution resolving val(t) at t. Denoting

∆t = t− t ≥ 0, we have

val(t)− val(t) =

(
t+

1

1− α

∑
I
(zi − t)+ pi

)
−

(
t+

1

1− α

∑
I
(zi − t)+ p

i

)

= −∆t+
1

1− α

∑
I

Ä
(zi − t) pi − (zi − t−∆t) p

i

ä
= −∆t+

1

1− α

∑
I

Ä
(zi − t) (pi − p

i
) + ∆t p

i

ä
=

α

1− α
∆t+

1

1− α

∑
I
(zi − t) (pi − p

i
)

≥ α

1− α
∆t ≥ 0,

where the last identity follows from feasibility of p, namely,
∑

I pi
= 1, while the next to last

inequality follows from p being optimal solution corresponding to t, which in turn implies∑
I
(zi − t)+ pi ≤

∑
I
(zi − t)+ p

i
.

Therefore, val(t) is decreasing for t < t. Finally, since val(t) is a continuous function minimised over

a compact set, we can replace inf with min. □

3.3. Key properties of the value function. Since evaluation of the value function can be reduced

to an LP with parametric objective, we can establish the next proposition.
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Proposition 3.1. The function val(t) is a piecewise linear, continuous function, concave on every

sub-interval [z(ℓ), z(ℓ+1)] where z(ℓ) corresponds to re-indexing of zi values in non-decreasing order

so that z(ℓ) ≤ z(ℓ+1) for all ℓ = 1, . . . ,mn. Furthermore, val(t) has finitely many linear segments.

Proof. Observe that restricting t ∈ [z(ℓ), z(ℓ+1)], we can write val(t) = t+ 1
1−α v(t) with

v(t) := inf
p,s,s

∑
zi≥z(ℓ+1)

(zi − t) pi

s.t.
∑
j≤i

pj − si = πi, for all i ∈ I,∑
j≤i

pj + si = πi, for all i ∈ I,∑
i: ij=k

pi =
1

m
, for all j = 1, . . . , n, k = 1, . . . ,m,∑

I
pi = 1,

p, s, s ≥ 0

(3.2)

denoting the partial value function. In turn, determining v(t) may easily be recognized as a linear

optimization problem in standard minimisation form

v(t) = min
x

(c+ t∆c)T u

s.t. Au = b,

u ≥ 0.

Note that u = (p; s; s) is a vector of variables of dimension d = 3mn, A : ℜd → ℜr is a linear

function encoded as d × r matrix with r = 2mn + mn + 1 rows and b ∈ ℜr represents the affine

equality constraints stated for v(t). The t-parametric objective c+ t∆c corresponds to

ci =

 zi, i : zi ≥ z(ℓ+1),

0 otherwise,
with ∆ci =

 −1, i : zi ≥ z(ℓ+1),

0 otherwise,
(3.3)

where we allow a slight abuse of notation when indexing c and ∆c by multi-index i.

Clearly, v(t) is a continuous piecewise linear concave function of t. By enumerating the total

number of possible bases, standard LP sensitivity analysis implies that on a given subinterval

t ∈ [z(ℓ), z(ℓ+1)] function v(t), and therefore val(t), consists of at most
(d
r

)
linear segments. Since

we have at most mn − 1 of such subintervals, we conclude that v(t) consists of at most (mn +1)
(d
r

)
linear segments, which also includes two end subintervals (−∞, z(1)] and [z(mn),∞). □

The above bound on the number of linear segments comprising v(t) is very crude. Not only do

we take a very pessimistic bound
(d
r

)
on the number of vertices of a very special polytope that
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describes the feasible probability distributions, we also ignore a special “monotonic” structure in

perturbations to the objective vector. Consequently, it is quite natural to expect the number of

such segments to be much smaller.

The above proposition, based on classical sensitivity analysis for LP, albeit correct, may be mis-

leading while designing a numerical scheme for minimising val(t). Specifically, the asserted piecewise

concavity of val(t) may suggest a potential existence of several local minima, see Figure 3.1(a). We

remedy this in the next theorem, which gives a complete characterization of the partial value func-

tion. Along the way, we drastically reduce an upper bound on the number of linear segments

comprising val(t).

Figure 3.1. Perceived behaviour of val(t): (a) strict piecewise concavity, (b) convexity.

Theorem 3.2. The function v(t) is continuous, non-negative and non-increasing satisfying v(t) = 0

for t ≥ z(mn) and v′(t) = −1 for t ≤ z(1). Moreover, v(t) is convex on ℜ and linear on every sub-

interval [z(ℓ), z(ℓ+1)].

Proof. Continuity and the tail-end behaviour of v(t) are established in the proof of Proposition 3.1

and Theorem 3.1. Examining variational formulation (3.1), we easily note the non-negativity and

monotonicity of the partial value function, with the latter due to the objective coefficients (zi −

t)+ being monotone in t. Linearity on [z(ℓ), z(ℓ+1)] follows as a consequence of convexity –to be

established shortly– and piecewise concavity in Proposition 3.1. It remains to show convexity.
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We show the convexity property by contradiction. First, introduce

vp(t) :=
∑
I
(zi − t)+ pi

to be the partial value function restricted to a given feasible p. Observe that vp is convex, piecewise

linear non-increasing, and its derivative v′p(t), whenever defined, corresponds to the dot product

of p with the corresponding sub-vector of ∆c as in (3.3). Thus, v′p(t) is non-decreasing whenever

defined. We also note that as t passes from the interval [z(ℓ−1), z(ℓ)] to [z(ℓ), z(ℓ+1)], the number of

−1 entries, i.e. the non-zeros in ∆c is reduced by at least one.

If v(t) is strictly concave, there exists a cross-over point t= characterised by t− < t= < t+ and

corresponding optimal distributions p− and p+ resolving (3.2) such that v−(t
=) = v+(t

=) with

derivatives satisfying v′−(t
−) > v′+(t

−) and v′−(t
+) > v′+(t

+), where v−(t) := vp−(t) and v+(t) :=

vp+(t). Note that t− and t+ may be chosen close enough to t= to warrant differentiability of

the corresponding piecewise linear v+, v− on [t−, t=) and (t=, t+]. Furthermore, without loss of

generality, we may assume that both v−(t), v+(t) have either at most one break-point at z(ℓ) = t=

for some ℓ with t− ∈ (z(ℓ−1), z(ℓ)) and t+ ∈ (z(ℓ), z(ℓ+1)), or no break-point at all with t−, t+ ∈

(z(ℓ), z(ℓ+1)), as can be seen in Figure 3.2. By re-scaling and shifting t we can also assume t= ≡ 0

and −t− = t+ = 1
2 . With the above notation, we have v(t) = min{v−(t), v+(t)} for t ∈ [−1/2, 1/2]

and v′−(t) > v′+(t) for t ∈ [−1/2, 0)
⋃
(0, 1/2].

Denote p(τ) = τp− + (1 − τ)p+, τ ∈ [0, 1]. Note that p(τ) is feasible since the feasible region

of (3.2) is convex. Further, let us examine v(τ) := vp(τ)(1/2− τ). By the Fundamental Theorem of

Calculus, we obtain

v(1/2) = v(0) +

∫ 1/2

0
v′τ (τ) dτ = v(t+) +

∫ 1/2

0
v′p(τ)(τ) dτ < v(t=),

where the inequality is due to the fact that |v′p(τ)(τ)| < |v′+(τ)|, for all τ ∈ (0, 1/2), since p−;

consequently, p(τ) carries less probability mass over the support of ∆c at t+ as compared to p+.

Since v(t=) is supposed to be the smallest over all feasible p at t=, the contradiction is conspicuous.

This completes the proof. □

3.4. Two computational approaches. We now present two computational schemes for comput-

ing the sharp lower bound CVaRα on CVaR given the constraints on the risks’ c.d.f.. The schemes

are aimed at illustrating the advantages of exploiting the inherent structure of Problem 2.3 and

range in order of complexity, as well as the perceived numerical efficiency. The latter is further

substantiated in Section 5.
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Figure 3.2. Hypothetical concavity of v(t): (a) z(ℓ) = t=, (b) z(ℓ) ̸= t=.

3.4.1. Naive scheme. Observe that the piecewise concavity of val(t) established in Proposition 3.1

implies that the minimum of the value function may only occur at the end points of each interval

[z(ℓ), z(ℓ+1)]. Therefore, it suffices to compute val(zi) for all i and take the minimum value. This

gives rise to the naive scheme.

Clearly, the naive scheme requires access to an LP solver and runs in finite time. However,

it requires solving a large number –namely mn– of (3.2)-type optimization problems, where the

problem dimensions also grow proportional to mn. As a result, the procedure may become very

computationally expensive for even modest values of m and n. Further effort can be put towards

reducing the computational requirements imposed by the naive scheme. For example, the LP

problems for evaluating val(t) differ only in the objective function, and thus, may be well-suited for

the so-called warm-start techniques as in simplex-type algorithms. In turn, the use of warm-starting

may speed up solution times.

3.4.2. Epigraph scheme. Unlike the naive scheme, here we aim to take full advantage of the uncov-

ered convexity of the value function. This not only allows us to greatly reduce the computational

efforts required to determine the exact value CVaRα, but also permits to introduce an alterna-

tive termination criteria, when only an approximate answer is required within some given absolute

precision ε > 0.
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We recall that an epigraph of a convex function can be obtained as an intersection of half-

spaces. In the case of a smooth function the half-spaces correspond to tangent hyperplanes, and

in the case of non-differentiable functions one may use half-spaces defined by sub-gradients. Thus,

given two consecutive values t− < t+ of t with appropriately defined derivatives val′(t) of val(t),

with values v− := val(t−), v+ := val(t+) and v′− := val′(t−) < 0, v′+ := val′(t+) > 0, we know

that the minimal value val∗ of val(t) corresponds to some t∗ ∈ [t−, t+]. In addition, we have

val∗ ∈ [min(v−, v+), val(t̃)], where

t̃ =
v− − v+ + v′+t

+ − v′−t
−

v′+ − v′−

is the intersection of the supporting hyperplanes v′− (t− t−)+v− and v′+ (t− t+)+v+. This can be

seen in Figure 3.3. To refine the interval [t−, t+] and our estimate on val∗, we can take the mid-point

of the interval and adjust either t−, v−, v
′
− or t+, v+, v

′
+ accordingly.

Figure 3.3. Epigraph scheme.

Assuming that the data are given by α,m, n, π, π, z, the scheme may be defined recursively as a

function whose declaration is given below using MATLAB notation

function [t−, t+, v−, v+, v
′
−, v

′
+] = Epigraph(t−, t+, v−, v+, v

′
−, v

′
+),

and is defined as follows.

Input: t− < t+, v′− ≤ 0, v′+ ≥ 0, v−, v+, problem data.
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(0) Set val∗ := min{v−, v+},

(1) compute t̃ and v := val(t̃) by solving (3.1), recovering the optimal probability

distribution p̃,

(2) if v = val∗ then return,

(3) set v′ := 1 +
1

1− α

∑
I

∆ci p̃i with ∆c corresponding to t̃ as in (3.3),

(4) if v′ ≤ 0 set t− := t̃, v− := v, v′− := v′,

(5) if v′ > 0 set t+ := t̃, v+ := v, v′+ := v′,

(6) invoke Epigraph(t−, t+, v−, v+, v
′
−, v

′
+).

Output: val∗ = min
t∈[t−,t+]

val(t).

Clearly, in order to get CVaRα, we need to invoke Epigraph(t−, t+, v−, v+, v
′
−, v

′
+) with initial

values t− = t (≡ z(1)) and t+ = t (≡ z(mn)). If one desires to terminate the procedure once the

absolute precision ε is reached such that val∗ ≤ CVaRα ≤ val∗+ ε, it suffices to replace the function

termination criteria val− v = 0 with min{−v′−(t̃− t−), v+(t
+ − t̃)} ≤ ε.

The convexity of val(t) and its tail behaviour from Theorem 3.2, we know that the fastest decrease

rate of the value function does not exceed
∣∣∣1− 1

1−α

∣∣∣ = α
1−α and therefore,

|val(t)− val(t+∆t)| ≤ α∆t

1− α
, for all t,∆t.

Thus, in order to achieve an ε precision, it suffices to have t+ − t− ≤ ε (1−α)
α . In turn, recalling

that at every iteration of the scheme the interval [t−, t+] gets halved, we conclude that the absolute

ε precision can be attained in at most log2

(
1
ε ·

α (t−t)
(1−α)

)
recursive calls, where the dominant work

belongs to solving an LP instance of the form (3.2).

In a nutshell, although the epigraph scheme still relies on solving multiple LP instances, in order to

recover CVaRα for fixed n, its worst-case run-time is bounded from above as a polynomial function

of the problem input. Also, when an approximate solution is sufficient, one would expect the

number of calls to the LP solver to be dramatically less than mn, as compared to the naive scheme.

We also note that the epigraph procedure is defined recursively only in an attempt to improve

clarity of exposition. Clearly, the procedure can be unrolled into if ... else ... statements

with no recursion. Just as with the naive scheme, one may try to take advantage of warm-starting

capabilities of an LP solver in an attempt to speed up computational times required.

4. Computable upper bound

It turns out that despite apparent similarities between Problems (2.3) and (2.4), the complexity

of evaluating CVaRα is quite different from that of CVaRα. Namely, the calculation of CVaRα is
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much simpler. We first establish an essential property that is needed for proving the main result of

this section.

Proposition 4.1. The max-value function val(t) = t+ 1
1−α v(t), where

v(t) := max
p

∑
I
(zi − t)+ pi

s.t. πi ≤
∑
j≤i

pj ≤ πi, for all i ∈ I,∑
i: ij=k

pi =
1

m
, for all j = 1, . . . , n, k = 1, . . . ,m,∑

I
pi = 1, p ≥ 0,

is convex in t.

Proof. For fixed nonnegative p, the objective function
∑

I(zi − t)+ pi is convex in t. In turn, v(t)

is obtained by taking a supremum of convex functions vp(t), indexed by p, and therefore val(t) is

convex as well as a positive weighted sum of t and v(t). □

Using convexity, we note that the epigraph-based scheme from Subsection 3.4.2 can readily be

adapted to computing the sharp upper bound of CVaRα. Furthermore, using classical LP duality

theory, finding the optimal t value corresponding to minimising val(t) may equivalently be re-

formulated as solving a linear optimization problem. Let

Mj,k = {i : ij = k, iℓ = m for all ℓ ̸= j} (4.1)

and M =
⋃
j,k

Mj,k denote the set of multi-indices corresponding to sums of marginals, including

the total probability mass. For simplicity, from now on, we assume that the c.d.f. bounds π, π are

consistent with marginals, that is, πi ≤ k
m ≤ πi for all i ∈ Mj,k where the marginal index sets are

defined as in (4.1). If not, clearly, the problem of computing val(t) is infeasible.

For clarity of exposition, we first slightly modify our formulation of v(t) from above. Noting that

the lower and upper bound requirements on c.d.f. are clearly redundant for i ∈ M, they may simply

be replaced with more restrictive modified bounds π′, π′, where

π′
i =

 k
m , i ∈ Mj,k, ∀j, k,

πi, otherwise,
and π′

i =

 k
m , i ∈ Mj,k, ∀j, k,

πi, otherwise.

We are now ready to formulate the main result of this section.
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Theorem 4.1. The upper bound defined in (2.4) can be computed as follows:

CVaRα := min
t,y,y

t+
1

1− α

Ä
−yTπ′ + yTπ′

ä
s.t.

∑
j≥i

y
j
−
∑
j≥i

yj ≤ t− zi, for all i ∈ I,∑
j≥i

y
j
−
∑
j≥i

yj ≤ 0, for all i ∈ I,

y,y ≥ 0, t ∈ ℜ,

Proof. Note that for any fixed t, the problem of computing v(t) is equivalent to solving its dual

v∗(t) := min
y,y

−yTπ′ + yTπ′

s.t.
∑
j≥i

y
j
−
∑
j≥i

yj ≤ −(zi − t)+, for all i ∈ I,

y,y ≥ 0,

where by strong LP duality, we know that v∗(t) = v(t). Furthermore, for any dual-feasible point

(y,y), by the weak duality property we have −yTπ′ + yTπ′ ≥ v(t).

Noting that the dual feasible region may equivalently be rewritten as stated in the theorem, we

finally observe that in order to compute the optimal t∗ that satisfies CVaRα = val(t∗), it suffices to

solve the concurrent linear minimisation problem with respect to t and (y,y). □

Finally, once the optimal value t∗ is known, the corresponding optimal values of p can easily be

computed by solving for v(t∗) as a linear maximisation problem, if further desired.

5. Numerical results

In this section, we provide numerical illustration to our findings from Sections 3 and 4. First, we

gauge how the computational requirements scale up with problem dimensions and identify one crit-

ical bottleneck in Subsection 5.1. To do this, we compare two ways of implementing our approaches

in MATLAB. One primarily relies on CVX with the embedded open-source solver SDPT3, chosen

for the sake of simplicity. The other approach uses Gurobi (2023) and a direct problem formulation,

as a potentially more efficient option. CVX removes the inconvenience of carefully formulating

the LP (3.2) to near-standard form suitable for Gurobi, while potentially sacrificing some of the

efficiencies. On the other hand, the user-provided direct specification of the underlying LP may be

more of a challenge initially, but potentially gives some computational advantage when solving the

problem. Next, we propose an approach that allows to circumvent one of the main computational

obstacles, and illustrate the refined methodology on real-life inspired example in Subsection 5.2.
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5.1. Verbatim implementation. Our first goal is to get a sense of how the performance of our

method scales up with problem dimensions, as well as to gauge if the modeling environment and

the LP solver play a role. For this, we use a very modest Alienware laptop with 2 core Intel i7

U640 CPU running at 1.2GHz, 4GB RAM, running Windows 7 x64, Matlab R2013b, CVX 2.0, and

Gurobi 5.5.

Regardless of the approach, we rely on solving (3.1) or its variant, where the dimensions of the

problem grow proportional to mn – thus, polynomial in m and exponentially in n. Specifically, for

the standard LP form of the partial value evaluation (3.2), the number of variables and constraints

grow as 3mn and 2mn + mn + 1 respectively, while the number of non-zeros in the matrix of

coefficients describing affine constraint is roughly 2m2n ·
(
m+1
2m

)n
. 2 Consequently, despite the

fact that the fraction of non-zero entries in the matrix of affine coefficients corresponding to (3.2)

decreasing exponentially in n, the number of non-zeros still grows very fast with the number of risks.

For instance, in case of m = 100 and n = 3, one should expect to deal with a matrix containing more

than 1011 non-zero entries (of one), making solving such problems on a regular compute workstation

prohibitively expensive. Even with the availability of super-computing resources, one probably has

to resort to very specialized algorithms and linear algebra techniques to exploit matrix sparsity

structure efficiently for large m,n.

In Table 5.1 we report the average run-times for estimating sharp upper and lower bounds for

problems with varying n and m. For this and the other numerical experiments, for each dimension,

we generate 30 random problem instances where Xi sample values are chosen to be uniform between

0 and 1 for simplicity. CVX refers to only using CVX to formulate the LP sub-problem and passes

it to a selected solver while tensor-like notation is used inside the CVX code. CVX+ refers to us

formulating the affine constraints of an LP in vectorized form and letting CVX only pass the data

to the solver. Direct refers to us both formulating the problem and invoking Gurobi solver directly,

bypassing CVX. When not specified, α = .95 and ε = 10−7.

Our first goal is to get a feel of how the proposed methods scale with dimensions. As expected,

the computational cost escalates very rapidly when dimensions m, and especially n, increase. We

observe that the run-time heavily depends on the LP solver. For Gurobi here we used the simplex

option, while experimenting with the barrier gave inferior results on this dataset; we suspect that

2Intuitively, on average, for a uniform random integer number between 1 and m, exactly m+1
2m

· 100% of integers in
1, . . . ,m are less or equal than the chosen number. Observing that the c.d.f. constraints have non-zeros at exactly
such “lesser” sub-indices along each dimension. A proof can be established by induction.
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SDPT3 Gurobi
näıve Epigraph näıve Epigraph

n m CVX CVX+ CVX CVX+ CVX CVX+ Direct CVX CVX+ Direct

2 2 2.59 2.53 6.71 6.77 1.41 1.38 0.10 6.80 6.66 0.27
4 9.26 8.38 17.04 16.16 4.06 3.80 0.19 8.01 7.52 0.33
6 21.85 18.49 18.79 16.85 8.76 8.03 0.36 8.28 7.40 0.38
8 42.94 35.09 20.75 17.76 16.13 13.97 0.84 8.51 7.41 0.50
10 77.72 61.51 22.35 18.25 26.60 22.32 1.76 9.20 7.70 0.73
12 149.49 117.61 29.06 25.27 41.82 33.68 3.57 9.95 8.17 1.11
14 264.68 200.38 35.92 31.02 63.71 49.53 7.29 10.59 8.40 1.66

3 3 16.05 13.67 19.68 17.10 6.51 6.11 0.29 8.04 7.59 0.37
4 42.80 35.11 22.57 18.86 15.36 14.05 0.83 8.46 7.70 0.53
5 109.92 87.24 27.32 22.98 32.05 28.60 2.57 9.18 8.23 0.95
6 299.76 224.36 39.94 33.52 61.86 53.93 8.40 10.06 8.90 1.91

Table 5.1. Average run-time (in seconds) for näıve and epigraph schemes for small
size problems with ε = 10−10.

the latter is attributed to being able to take advantage of a simplex warm-start. Even when no top-

of-the-line commercial solver is available, one can compute some bounds with n < 3 in reasonable

time for small m.

We also note that in general using CVX as opposed to directly formulating the problem and

feeding it into a solver, pose some processing time overhead, especially for smaller problems. While

formulating the matrix of affine constraints, we rely on MATLAB loops which may potentially be

sped up. Solving with n = 2 and m = 50 to within an ε = 10−7 precision by using the epigraph

scheme, MATLAB takes about 100 seconds to form a single LP matrix of the coefficients in the

standard form, while solving all the subsequent LP problems takes another 150 seconds or so.

n \m 3 6 9 12 15 20 30 40 50 60
2 0.24 0.30 0.48 0.91 1.71 4.76 28.08 93.44 240.52 543.52
3 0.29 1.62 16.87 114.93 600.53 - - - - -

Table 5.2. Average run-time (in seconds) for the best lower bound estimation
scheme – epigraph-based with direct Gurobi– for small to medium size problems
with ε = 10−7, with a run-time limit of 15 minutes.

For estimating the lower bound on CVaRα, between the two schemes, epigraph-based method is a

clear winner over the näıve approach. The solution times grow with n,m, see Tables 5.1 and 5.2, as

well as the desired precision ε, see Table 5.3(b). By comparing the results in Tables 5.2 and 5.4, we

conclude that computing sharp upper bound is generally cheaper, as compared to the lower bound.

When computing an exact sharp upper bound, direct LP embedding is preferred.
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(a) (b)
n m \ α 0.1 0.9 0.99 n m \ ϵ 10−3 10−5 10−7

2 20 3.47 3.93 4.21 2 20 3.47 3.96 4.56
30 20.36 23.36 25.61 30 19.24 22.29 27.53
40 68.34 74.08 85.97 40 64.46 79.07 92.04

3 6 1.16 1.37 1.46 3 6 1.16 1.35 1.62
9 11.83 13.90 14.47 9 12.22 14.14 16.84

12 77.88 95.16 100.65 12 81.13 96.21 122.45

Table 5.3. Average run-time (in seconds) for Gurobi-based epigraph scheme with
respect to (a) α, with ε = 10−5, and (b) ε.

Method n \m 3 6 9 12 20 30 40 50 60
Epigraph 2 0.32 0.35 0.60 1.14 5.88 35.60 139.00 354.43 688.63

LP embedding 0.05 0.07 0.13 0.33 2.64 12.05 39.19 98.43 218.13
Epigraph 3 1.94 21.72 172.48 802.23 - - - - -

LP embedding 0.67 7.41 44.57 190.86 - - - - -

Table 5.4. Average run-time (in seconds) for the upper bound using Gurobi-based
epigraph and direct LP embedding methods with ε = 10−10, with a run-time limit
of 15 minutes.

5.2. Stylized practice-inspired example. Computing CVaR sharp bounds under given marginals

and lower-orthant stochastic ordering bounds on joint c.d.f., and in particular, sharp lower bound,

entails solving a non-convex (bi-linear) optimization problem of potentially very high dimensional-

ity. Namely, we seek to determine the extreme values of mn variables representing the c.d.f. When

attempting to scale up the model sizes n,m, we are faced with an obvious memory requirement

issue. For instance, solving for n = 3,m = 100 in (2.3) entails formulating a model with over

1011 non-zeros that requires almost 1,000GB of RAM if we operate in standard double-precision

arithmetic. The RAM requirement grows as m2n and it is reasonable to expect a significant growth

in the computational effort required to solve the model as well.

However, it turns out that one could produce a much sparser equivalent representation of lower

and upper bound optimization models, allowing solving for sharp bounds with n = 3,m = 100 sized

models in a reasonable time, i.e., couple of hours, on a reasonable hardware, i.e., multi-core station

with enough RAM. Next, we present this refined setup along with a more practical illustration of

our approach. The example is partly based on a work carried out outside of this manuscript, and

has been further stylized to avoid breaching any possible Non Disclosure Agreements. We focus on

the lower bound computation as it is more challenging; the upper bound evaluation can be refined

in a similar manner.
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Assume an insurance company with a portfolio of three risks located in 1) New York (NY), 2)

Miami (FL) and 3) Houston (TX) for which the policy covers economic damages to certain buildings

caused by hurricanes in these regions. The underwriter makes decisions based on the hurricane

intensity estimates that in turn are predicted based on an atmospheric internal risk model. If

Xk with k ∈ {1, 2, 3} is the economic damage for the k-th risk in dollars, we know that Xk is

Pareto(αk, λk) so that the c.d.f. along with first 2 moments are

F (x) = 1−
Å

λ

x+ λ

ãα
, x ≥ 0, EX =

λ

α− 1
, VarX =

αλ2

(α− 2)(α− 1)2
,

with

α1 = 5, α2 = 2.1, α3 = 2.7, λ1 = 7.92 · 106, λ2 = 1.11 · 107, λ3 = 7.36 · 106

resulting in the expected losses of USD1.98mn, USD10.07mn and USD4.33mn respectively. Further,

the coefficient of variation (CV), a well-known measure of risk, is 1.29, 4.58 and 1.96, so indeed the

assets are risky, as expected. A large CV is expected for coverage in more risky regions.

The underwriter has empirical evidence (based on atmospheric observational data) to identify the

marginal risk distributions, but does not have the knowledge to create a spatial dependence model

across the risks located in different regions. Geographical dependent ratings would be hardily

available even to world leading rating agencies. Therefore, the underwriter has to rely on the

available domain knowledge to come up with aggregate risk estimates CVaRα(X1+X2+X3) based

on the best possible information about its risk position.

It is clear that Xk’s are not negatively associated, and thus, a lower bound on the joint distri-

bution, in terms of the lower-orthant (LO) stochastic ordering, can be given by the independence

model,

F(x1, x2, x3) = F1(x1)F2(x2)F3(x3),

where Fk is the c.d.f. of Xk, k = 1, 2, 3. The upper bound on the joint distribution, in terms of LO,

assumes that the NY economic damages are independent of the other two, while economic damages

from Miami and Houston could be strongly positive dependent, i.e., comonotonic, and therefore

F(x1, x2, x3) = F1(x1)min(F2(x2), F3(x3)).

In terms of our CVaR lower bound formulation (2.3), the above can be encoded via discretizing

the individual risks with some fixed m so that xi,1 ≤ . . . ≤ xi,m, i = 1, 2, 3, correspond to Pareto

distribution sample values or inverse Pareto-c.d.f. at mid-points j = (j − 1/2)/m, with

πi1,i2,i3 =
i1
m

× i2
m

× i3
m
, πi1,i2,i3 =

i1
m

×max

Å
i2
m
,
i3
m

ã
.



20

Our objective here is to evaluate the lower bound, specifically, CVaR.8 for n = 3,m = 100.

Using a sparse reformulation of (2.3) which we discuss next, this objective indeed can be achieved

in a reasonable compute time, here, in about 2hrs, or 7,554s to be precise, yielding CVaR.8 =

40.6mn corresponding to t∗ = 20, 914, 036, with the bound computed to within the relative precision

of 2.5 × 10−7. For this set of computational experiments we move to a more powerful machine

with AMD EPYC 7313P 16-core processor and 256G RAM, running Ubuntu 22.04. To solve the

subsequent LPs, we use Gurobi 10.0.1, where the model was implemented using Gurobi’s Python

API, and benchmarked using Python 3.7. We want to emphasize that the chief enabling factor is

the sparse reformulation that reduces the number of non-zeros in the model by a square root, e.g.,

going from 1011 to about 106 for n = 3,m = 100, allowing to formulate the model in RAM as

well as permitting vastly faster computations, which is further improved by moving to a powerful

compute server. The code can be found in GitHub as per Zinchenko (2023).

A number of further computational experiments was performed with varying sparsified model

dimensions for both n,m and the run-time were recorded. A model with n = 3,m = 50 could now be

solved in about 550s, while the n = 3,m = 150 is where the current computational limit is at for the

above machine. The solve time scale super-linearly with problem dimensions. For lower dimensional

models with n = 2, as before, run-times look more favorable; for instance n = 2,m = 1, 000 could

be solved in 808s.

The sparse reformulation of (2.3) is built on a pivotal observation that joint c.d.f. can be defined

recursively, using inclusion-exclusion formula. Namely, if we introduce mn auxiliary variables for

the c.d.f. to represent

πi :=
∑
j≤i

pj,

we can express the c.d.f. bounds constraints as upper and lower bounds on π, and more critically,

define the c.d.f. quantities recursively. Namely, for n = 2 we have

πi − pi = πi1−1 + πi2−1 − πi1−1,i2−1,

and for n = 3,

πi − pi = πi1−1 + πi2−1 + πi3−1 − πi1−1,i2−1 − πi1−1,i3−1 − πi2−1,i3−1 + πi1−1,i2−1,i3−1,

where i = (i1, i2, i3) and πi1−1 is a shorthand notation for π(i1−1,i2,i3) and if some sub-index becomes

negative, we replace the corresponding c.d.f. entry with 0. This necessitates only 5 and 9 zeros per

constraint respectively, as opposed to an average of mn/2n in the original model formulation done

verbatim. To further promote sparsity, the marginals can be reformulated in terms of the c.d.f.
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auxiliary variables, for instance for the first risk we can write

π(j,m,m) = j/m, j = 1, . . . ,m.

Thus, even though we gain anothermn variables in our formulation, the revised non-zero count grows

as O(2nmn) as compared to the original O(m2n/2n). The construction can easily be extended and

implemented to any n.

While for n = 3, moving beyond m = 100 becomes prohibitively expensive, an argument can be

made that from a practical point of view perhaps this is also not so critical. It is hard to imagine

a situation where the empirical marginals are known so precise that would necessitate spelling out

marginal c.d.f. constraints in finer than .01(= 1/m) granularity. It could also be more important

to distill the extreme dependence trends for the unknown mutlivariate c.d.f. rather than try to zero

down on the very last digits of CVaR bounds, and as such, our approach could provide a viable

exploratory tool.

6. A special case and its higher-dimensional variants

In this section we investigate the question of whether CVaR ordering may be consistent with the

ordering of the underlying distributions for higher-dimensional portfolios, i.e. n ≥ 3. We say that

two n-dimensional random vectors X(1),X(2) have identical marginals if Pr(X
(1)
i ≤ x) = Pr(X

(2)
i ≤

x) for all i = 1, . . . , n and x ∈ ℜ. We first provide an alternative proof to a well-known result

that CVaR respects the so-called lower-orthant stochastic ordering for n = 2 (Proposition 6.2.9. of

Denuit et al., 2005).

Theorem 6.1. Let n = 2 and X(1) and X(2) be two compactly-supported random vectors with

identical marginals and corresponding aggregate risks Z(1), Z(2). If X(1) ⪯lo X(2) then for any

α ∈ (0, 1) we have that CVaRα

(
Z(1)

)
≤ CVaRα

(
Z(2)

)
.

Although the claim may be extended to a wide class of other risk measures, the previously known

proofs of the above theorem rely on the fairly exotic techniques from convex analysis. The theorem

itself becomes interesting in view of the potential computational savings it may provide, when

comparing the aggregate risks of bi-variate distributions with identical marginals, satisfying the

lower-order stochastic ordering.

A natural question is whether such an ordering is preserved in higher dimensions, n ≥ 3. We

show that no such extension exists. In fact, one may argue that even the above result with n = 2 is

unnatural and goes against the intuition of what should happen. To substantiate the latter point

of view, we
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• give an alternative and self-contained proof of the classical result from Theorem 6.1,

• state several potential extensions of such a result to higher dimensions, and

• provide counter-examples to show that no such extensions are true for n ≥ 3.

6.1. An alternative proof for n = 2. We start by recalling the inclusion-exclusion type criterion

(for example, see Billingsley, 1995), that characterizes a c.d.f.. The criterion ensures that the

probability mass accumulated within any hypercube is non-negative, and is commonly referred to

as the rectangle inequality.

For fixed n, consider a right-continuous non-decreasing F : ℜn → ℜ such that limxi→−∞ F(x) = 0

for all i = 1, . . . , n, and limx1,...,xn→∞ F(x) = 1, F is a c.d.f. if an only if

2∑
j1=1

· · ·
2∑

jn=1

(−1)j1+···+jnF (ζ1,j1 , ζ2,j2 , . . . , ζk,jn) ≥ 0,

for all ζi,1 < ζi,2, i = 1, . . . , n.

In particular, the rectangle inequality guarantees the existence of a probability mass function

(pmf) given a candidate non-decreasing step-like function on ℜn. From now on, we consider an

n-dimensional discrete random vector with values (x1,i1 , . . . , xn,in), 1 ≤ i1, . . . , in ≤ m, placed on

m×m× · · · ×m rectangular grid, and the corresponding pmf pi, i ∈ I. Thus, for n = 2 the above

inequalities become

0 ≤ F (ζ1,2, ζ2,2)︸ ︷︷ ︸
ϕ2,2

−F (ζ1,1, ζ2,2)︸ ︷︷ ︸
ϕ1,2

−F (ζ1,2, ζ2,1)︸ ︷︷ ︸
ϕ2,1

+F (ζ1,1, ζ2,1)︸ ︷︷ ︸
ϕ1,1

,

and for n = 3 we have

0 ≤ F (ζ1,2, ζ2,2, ζ3,2)︸ ︷︷ ︸
ϕ2,2,2

−F (ζ1,1, ζ2,2, ζ3,2)︸ ︷︷ ︸
ϕ1,2,2

−F (ζ1,2, ζ2,1, ζ3,2)︸ ︷︷ ︸
ϕ2,1,2

−F (ζ1,2, ζ2,2, ζ3,1)︸ ︷︷ ︸
ϕ2,2,1

+F (ζ1,1, ζ2,1, ζ3,2)︸ ︷︷ ︸
ϕ1,1,2

+F (ζ1,1, ζ2,2, ζ3,1)︸ ︷︷ ︸
ϕ1,2,1

+F (ζ1,2, ζ2,1, ζ3,1)︸ ︷︷ ︸
ϕ2,1,1

−F (ζ1,1, ζ2,1, ζ3,1)︸ ︷︷ ︸
ϕ1,1,1

,

where ζi,ji values correspond to the atoms on the grid, that is, ζi,1 = xi,ki and ζi,2 = xi,k′i with

ki < k′i, i = 1, 2, 3. The latter expressions can be abridged to

0 ≤ ϕ2,2 − ϕ1,2 − ϕ2,1 + ϕ1,1, (6.1)

and

0 ≤ ϕ2,2,2 − ϕ1,2,2 − ϕ2,1,2 − ϕ2,2,1 + ϕ1,1,2 + ϕ1,2,1 + ϕ2,1,1 − ϕ1,1,1 (6.2)
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introducing ϕj1,j2,... = F(ζ1,j1 , ζ2,j2 , . . .). The summation sign pattern for values of F, or equivalently

ϕi1,i2,..., may be best illustrated graphically, as seen in Figure 6.1.

Figure 6.1. Rectangle inequality summation sign pattern.

The following elementary, yet critical, observation can be made and is given as Proposition 6.1.

Proposition 6.1. Along with pmf p ∈ ℜmn
, consider the c.d.f. π ∈ ℜmn

and the survival function

s ∈ ℜmn
, defined by the corresponding linear transformations

Π : p 7→ π, defined as πi =
∑
j≤i

pj and S : p 7→ s, defined as si =
∑
j≥i

pj.

Then, for any z ∈ ℜmn
we have

pT z =
∑
I
pi zi =

(
Π−1z

)T
(Sp) =

(
S−1z

)T
(Πp) .

The proof of the above proposition, although somewhat tedious, simply relies on accounting for

the indices in the summation
∑
I
pi zi. We also note that for n = 2, the c.d.f. ordering of two

distributions with identical marginals is equivalent to the ordering of the survival functions.

Lemma 6.1. Let the two bi-variate discrete random variables X(1) and X(2) have identical marginals

and the corresponding c.d.f. π(1), π(2). Then, π
(1)
i ≤ π

(2)
i , ∀i, if and only if s

(1)
i ≤ s

(2)
i , ∀i.

The proof is a straightforward implication of the inclusion-exclusion type fact that

Pr
(
X1 > x1, X2 > x2

)
= 1− Pr

(
X1 ≤ x1

)
− Pr

(
X2 ≤ x2

)
+ Pr

(
X1 ≤ x1, X2 ≤ x2

)
.

Finally, we are now able to prove Theorem 6.1.
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Proof of Theorem 6.1. The sub-problem (3.2) can be re-parameterized using the survival function

si,

v(t) = inf
s

(
Π−1(z− t)+

)T
s

Å
≡ inf

p
(z− t)T+ S−1Sp

ã
s.t. Si ≤ si ≤ Si, for all i ∈ I,

si =
m− k + 1

m
, for all i = (1, k) or (k, 1), k = 1, . . . ,m,

s(1,1) = 1,

S−1s ≥ 0,

(6.3)

where the survival function bounds Si,Si may easily be computed applying the inclusion-exclusion

type formula similar to that in Lemma 6.1.

We now make a critical observation that Π−1(z−t)+ ≥ 0 for all t. From the definition of aggregate

risk values z, we observe that Π−1(z− t)+ ≥ 0 if and only if the rectangle inequality (6.1) holds for

all

ϕ1,1 = (x1,i1 + x2,i2 − t)+ ≡
(
z(i1,i2) − t

)
+
, ϕ1,2 =

Ä
x1,i1 + x2,i′2 − t

ä
+
≡
Ä
z(i1,i′2) − t

ä
+
,

ϕ2,1 =
Ä
x1,i′1 + x2,i2 − t

ä
+
≡
Ä
z(i′1,i2) − t

ä
+
, ϕ2,2 =

Ä
x1,i′1 + x2,i′2 − t

ä
+
≡
Ä
z(i′1,i′2) − t

ä
+
,

with 1 ≤ i1 < i′1 ≤ m, 1 ≤ i2 < i′2 ≤ m and any t. Since x1,i1 ≤ x1,i′1 and x2,i2 ≤ x2,i′2 , we also have

partial ordering of ζ values, namely

ϕ1,1 ≤ ϕ1,2 ≤ ϕ2,2 and ϕ1,1 ≤ ϕ2,1 ≤ ϕ2,2.

The range of all t values may clearly be partitioned into T− = (−∞, z(i1,i2)], T = (z(i1,i2), z(i′1,i′2))

and T+ = [z(i′1,i′2),∞). Therefore, there are three possible cases.

(a) t ∈ T−: rectangle inequality (6.1) clearly holds as

0 = (x1,i1 + x2,i2 − t)−
Ä
x1,i1 + x2,i′2 − t

ä
−
Ä
x1,i′1 + x2,i2 − t

ä
+
Ä
x1,i′1 + x2,i′2 − t

ä
.

(b) t ∈ T : the validity of the rectangle inequality may easily be established by assuming, without

loss of generality, that z(i1,i′2) ≤ z(i′1,i2) and considering further sub-cases depending on where

the value of t falls with respect to z sub-intervals. For example, if t ∈ (z(i1,i2), z(i1,i′2)], then

ϕ1,1 > z(i1,i2) − t, and thus, the rectangle inequality results in positive mass. That is,

0 < (x1,i1 + x2,i2 − t)+ −
Ä
x1,i1 + x2,i′2 − t

ä
−
Ä
x1,i′1 + x2,i2 − t

ä
+
Ä
x1,i′1 + x2,i′2 − t

ä
.

(c) t ∈ T+: clearly the inequality holds as all ϕ values are 0.

Therefore, Π−1(z− t)+ ≥ 0 indeed holds.
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To complete the proof, consider problem (6.3) where S,S correspond to X(1),X(2) respectively.

Due to non-negativity of the objective coefficients Π−1(z− t)+ in (6.3), clearly CVaRα corresponds

to X(1). Similarly, considering a variant of (6.3) to evaluate the upper CVaRα bound, we conclude

that CVaRα corresponds to X(2). The fact that CVaRα ≤ CVaRα completes the proof. □

6.2. A few possible generalizations and some counter-examples. We first provide the defi-

nitions of some stochastic ordering and for two multi-variate risks X(1),X(2) ∈ ℜn we define

(1) upper-orthant ordering X(1) ⪯uo X
(2) if Pr(X(1) > x) ≤ Pr(X(2) > x) for all x ∈ ℜn;

(2) lower-orthant ordering X(1) ⪯lo X
(2) if Pr(X(1) ≤ x) ≤ Pr(X(2) ≤ x) for all x ∈ ℜn;

(3) concordance ordering X(1) ⪯co X
(2) if X(1) ⪯uo X

(2) and X(1) ⪯lo X
(2);

(4) persistent ordering X(1) ⪯po X
(2) if X(1) ⪯uo X

(2) and X(1) ⪰lo X
(2).

Note that due to Lemma 6.1, persistent ordering for n = 2 results in identical distributions, and

is therefore not interesting to be investigated for the bi-variate case. Recall from the proof of

Theorem 6.1 that for n = 2, the persistence of CVaR ordering relies on the implied upper-orthant

stochastic ordering of the respective risks. Consequently, in search of an extension of such a result

to n = 3, the following question appears to be a natural place to start: Is it true that for tri-variate

distributions X(1) ⪯uo X
(2), we have CVaRα

(
Z(1)

)
≤ CVaRα

(
Z(2)

)
for all α ∈ (0, 1), with Z(1), Z(2)

being the corresponding aggregate risks?

From now on, we fix n = 3 and the marginals of X(1),X(2) to be uniform. The key to constructing

a counter-example to the above is the failure of the rectangle inequality (6.2) over (z−t)+ values. In

turn, this results in a re-parameterized three-dimensional analogue of (6.3) that has both positive

and negative objective coefficients Π−1(z− t)+ for some suitably chosen t. Specifically, consider the

only relevant CVaR estimation values of t that correspond to zi, i ∈ I in accordance to Theorem 3.2.

We claim that for carefully chosen z, we can pick two values t+ and t± such that Π−1(z− t+)+ ≥ 0,

while Π−1(z− t±)+ contains both positive and negative entries. As a consequence to Π−1(z− t+)+

being sign-indeterminant, when estimating CVaRα,CVaRα with bounds S,S corresponding to the

respective distributions X(1),X(2), it is natural to expect that we may end up having CVaRα <

CVaRα for some values of α as well as CVaRα > CVaRα for other values of α. From here, it may

simply suffice to pick “correct” scaling constants α in extremal characterization of CVaR.

To make this precise, consider the set of risk values for m = 2 and m = 3 in Table 6.1, with

aggregate risk values depicted on the hypercube lattice in Figure 6.2. Take t+ = 0, t± = 1.

Clearly, rectangle inequality (6.2) holds at t+ and results in negative mass at t± due to the fact

that (ϕ1,1,1 − t)+ > ϕ1,1,1 − t.
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Risk xi,1 xi,2 xi,3
i = 1 0 100 200
i = 2 0 10 20
i = 3 0 1 2

Table 6.1. Tri-variate risk sample values.

��

��

��

� �

Figure 6.2. Tri-variate aggregate risk values with m = 2.

Now, we can use z values to produce a desired counterexample for upper-orthant ordering. To

do so, we can form an LP problem to maximize the difference between two partial value-type

estimates
∑

I(z− t)+p(1) and
∑

I(z− t)+p(2). We subject both pmf p(1) and p(2) to have identical

marginals, and the resulting survival functions s(1) = Sp(1) and s(2) = Sp(2) to satisfy the upper-

orthant ordering, i.e. s(1) ≤ s(2). The last problem can be solved for all t = zi, i ∈ I, to extract an

example.

Similar exercise can be carried out for the other stochastic orderings. Thus, for the sake of brevity,

we give only a summary of our findings in Tables 6.2 and 6.3. In order to verify the results, it suffices

to perform a direct calculation. For instance, with respect to the upper-orthant ordering, observe

that Z(1) takes values 0,11,101,110 and Z(2) takes values 1,10,100,111 all with equal probabilities

of 1/4. Consequently, CVaR.1

(
Z(1)

)
= 612

3 and CVaR.1

(
Z(2)

)
= 615

9 . Further, one can verify that

CVaRα

(
Z(1)

)
> (<)CVaRα

(
Z(2)

)
holds for any α < (>).5.

Interestingly, counter-examples to lower/upper-orthant and persistent orderings require a dis-

tribution supported at vertices of a single hypercube, that is, m = 2. On the other hand, the

concordant ordering appears to require more degrees of freedom, e.g. m = 3. Note that in the latter
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Ordering α i p
(i)
(1,1,1) p

(i)
(2,1,1) p

(i)
(1,2,1) p

(i)
(2,2,1) p

(i)
(1,1,2) p

(i)
(2,1,2) p

(i)
(1,2,2) p

(i)
(2,2,2)

⪯uo .1 1 1/4 - - 1/4 - 1/4 1/4 -
2 - 1/4 1/4 - 1/4 - - 1/4

⪯lo .9 1 - 1/4 1/4 - 1/4 - - 1/4
2 1/4 - - 1/4 - 1/4 1/4 -

⪯po .1 1 1/4 - - 1/4 - 1/4 1/4 -
2 - 1/4 1/4 - 1/4 - - 1/4

Table 6.2. Cases in which CVaRα

(
Z(1)

)
> CVaRα

(
Z(2)

)
.

Ordering α i p
(i)
(1,1,1) p

(i)
(2,1,1) p

(i)
(1,2,1) p

(i)
(2,2,1) p

(i)
(1,1,2) p

(i)
(2,1,2) p

(i)
(1,2,2) p

(i)
(2,2,2)

⪯uo .9 1 1/4 - - 1/4 - 1/4 1/4 -
2 - 1/4 1/4 - 1/4 - - 1/4

⪯lo .1 1 - 1/4 1/4 - 1/4 - - 1/4
2 1/4 - - 1/4 - 1/4 1/4 -

⪯po .9 1 1/4 - - 1/4 - 1/4 1/4 -
2 - 1/4 1/4 - 1/4 - - 1/4

Table 6.3. Cases in which CVaRα

(
Z(1)

)
< CVaRα

(
Z(2)

)
.

case, due to the risks being potentially supported on mn = 27 vertices, we present the example in

a “sparse” format, as seen Table 6.4.

i (2,1,1) (3,1,1) (2,3,1) (3,3,1) (1,2,2) (2,1,3) (3,1,3) (2,3,3) (3,3,3)
zi 100 200 120 220 11 102 202 122 222

p
(1)
i 1/6 - - 1/6 1/3 - 1/6 1/6 -

p
(2)
i - 1/6 1/6 - 1/3 1/6 - - 1/6

Table 6.4. Tri-variate concordant risks with CVaR.5(Z
(1)) > CVaR.5(Z

(2)) and

CVaR.9

(
Z(1)

)
< CVaR.9

(
Z(2)

)
.

7. Conclusions

The problem of finding the entire spectrum of values for CVaR of a sum of dependent random

variables under dependence uncertainty could be approached in various ways. Under restrictive

assumptions, analytical approaches are implementable, but the bounds are often loose, and oc-

casionally, not sharp. Even if the sharpness issue is not present, the lower and upper bounds

are typically attained under dependence models that are difficult to justify as feasible in practice,

especially for portfolios consisting of many risks, since such extreme dependence models are not

realistic.
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Our contribution is two-fold. Firstly, we provide a first in its class numerical method for con-

strained CVaR estimation, when the marginal distributions are known while only the bounds are

available for the joint distribution. The latter setting is backed up by many observational data,

where the dependence structure is rarely computable even if multivariate observational data are

available. As a result, the lower and upper sharp bounds of the CVaR-based aggregate risk can

be found. We analyze the complexity of the proposed methods for calculating these bounds as

well as substantiate our findings via numerical illustrations. Our approach trivially generalizes to

non-uniform marginals. Despite the fact that the computational cost increases very rapidly with

the number of risks, we believe that the method may still be used as a viable exploratory tool when

dealing with a relatively large risk portfolio. Finally, we show how the run-times may be significantly

improved, by exploiting the very special structure of the underlying linear optimization problems

at the formulation stage.

Secondly, it has been known that CVaR respects the so-called lower-orthant stochastic ordering

for two-dimensional portfolios. Yet, no similar result has yet been established or disproved for higher

dimensions. As a bi-product of our analysis, using elementary LP techniques, we show that no such

extensions are possible. Specifically, we construct tri-variate counter-examples that demonstrate

lack of aggregate risk monotonicity under upper, lower-orthant, concordant and persistent stochastic

orderings. We also give a self-contained alternative proof for the bi-variate risk case, and point out

the exact reason why higher-dimensional extensions are not possible.
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