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Switchable Lightweight Anti-symmetric Processing (SLAP) with CNN 

Outspeeds Data Augmentation by Smaller Sample – Application in 

Gomoku Reinforcement Learning  

Chi-Hang Suen and Eduardo Alonso1 
 

Abstract. To replace data augmentation, this paper proposed a 

method called SLAP to intensify experience to speed up machine 

learning and reduce the sample size. SLAP is a model-independent 

protocol/function to produce the same output given different 

transformation variants. SLAP improved the convergence speed of 

convolutional neural network learning by 83% in the experiments 

with Gomoku game states, with only one eighth of the sample size 

compared with data augmentation. In reinforcement learning for 

Gomoku, using AlphaGo Zero/AlphaZero algorithm with data 

augmentation as baseline, SLAP reduced the number of training 

samples by a factor of 8 and achieved similar winning rate against 

the same evaluator, but it was not yet evident that it could speed up 

reinforcement learning. The benefits should at least apply to domains 

that are invariant to symmetry or certain transformations. As future 

work, SLAP may aid more explainable learning and transfer learning 

for domains that are not invariant to symmetry, as a small step 

towards artificial general intelligence. 

 

 

1 Introduction 

1.1 Problem 

Convolutional neural network (CNN) is now the mainstream family 

of models for computer vision, thanks to its weight sharing 

mechanism to efficiently share learning across the same plane by so-

called kernels, achieving local translational invariance.  But CNN is 

not reflection and rotation invariant. Typically it can be addressed by 

data augmentation to inputs by reflection and rotation if necessary, 

but the sample size would increase substantially. [1] criticised CNN 

that it could not learn spatial relationships such as orientation, 

position and hierarchy and advocated their novel capsule to replace 

CNN. [2] improved capsule using routing by agreement mechanism 

and outperformed CNN at recognising overlapping images, but they 

also admitted that it tended to account for everything in the structure. 

This implies capsule is too heavy in computation. Inspired by the 

idea of capturing orientation information in capsule network [2],  this 

paper proposed a novel method called Switchable Lightweight Anti-

symmetric Process (SLAP), a protocol to produce the same output 

given different transformation variants, with the main research 

question: can symmetry variants be exploited directly by SLAP to 

improve and combine with CNN for machine learning?  

Very often, we know in advance if a certain machine learning task is 

invariant to certain types of transformation, such as rotation and 

reflection. E.g. in Gomoku, the state is rotation (perpendicularly) and 

reflection (horizontally and vertically) invariant in terms of winning 

probability, and “partially” translation invariant. Symmetry is often 

exploited by data augmentation for deep learning. But this greatly 

increases the dataset size if all symmetry variants are included – e.g. 

there are 8 such variants for each Gomoku state. SLAP was invented 

in this paper to avoid such expansion (see 1.2).  

   On the other hand, reinforcement learning is notorious for lengthy 

training time and large sample size required. Data augmentation may 

help improve performance in reinforcement learning, but it would 

increase the sample size. This research tried to kill two birds by one 

stone, SLAP, by applying with CNN in reinforcement learning (of 
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Gomoku), challenging the widely used practice of data augmentation, 

aiming at reducing the sample size and improving the learning speed. 

 

1.2 Switchable Lightweight Anti-symmetric Process (SLAP) 

SLAP is a model-independent protocol and function to always 

produce or choose the same variant regardless of which 

transformation variant (by specified symmetry) is given, and if 

required also output the corresponding transformation. It can be used 

upon any function or model to produce outputs that are invariant with 

regard to specified symmetric properties of the inputs. If some (type) 

of the outputs are not invariant but follow the same transformation, 

the corresponding transformation information from SLAP may be 

used to transform these outputs back.  It can be viewed as 

standardization of symmetry, as opposed to standardization of scale. 

After processing, symmetric variants are filtered out – that’s why it 

is named ‘anti-symmetric process’.  Ironically, with this anti-

symmetric process, the function or model (e.g. CNN) to be fed would 

look as if it is symmetric with regard to whichever the symmetry 

variant is the input, and the same output is produced. It is a novel 

method to exploit symmetry variants in machine learning without 

increasing the number of training samples by data augmentation. The 

motivation is to concentrate experience to speed up learning, without 

enlarging the sample size by data augmentation. See details in 3.1. 

1.3 Gomoku 

Gomoku, or Five in a Row, is a 2-player board game, traditionally 

played with Go pieces (black and white stones) on a Go board 

(19x19), nowadays on 15x15 board. For experiments in this 

research, mini board 8x8 was used instead to save computation, 

and the rule of freestyle version was adopted: 

• Black and white place stones of his colour alternatively at an 

unoccupied intersection point of the board. Black first. 

• Winner: the one who first forms an unbroken chain of 5 stones 

of his colour in a straight line (horizonal, vertical or diagonal). 

• Draw happens if there is no winner when the board is full. 

Gomoku was chosen to demonstrate the benefit of SLAP because: 

• Gomoku has huge number of state representations (3225 ~= 

2x10107), which justify the use of neural network for learning.  

• Gomoku is rotation and reflection invariant, but only “partially” 

translation invariant, so ideal to test different transformations.  

• Gomoku is Markov Decision Process, meeting the basic 

mathematical assumption of reinforcement learning.  

• [4] and [5] showed a general effective reinforcement learning 

algorithm for board games and Gomoku is simple to implement. 

 

2 Background 

2.1 CNN  

CNN (convolutional neural network) has been widely used for 

computer vision but it is known that CNN is weak to deal with 



changes by rotation/orientation unless with much larger sample size 

by data augmentation. To address this problem, [1] proposed that 

neural network should make use of their then novel capsule, learning 

to recognize an implicitly defined visual entity and output probability 

of its existence and instantiation parameters such as pose; they 

showed that a transforming auto-encoder could be learnt to force the 

output (which is a vector instead of scalar) of a capsule to represent 

an image property that one might want to manipulate. [2] showed 

that a discriminatively trained, multi-layer capsule system achieves 

state-of-the-art performance on MNIST and was considerably better 

than CNN at recognizing highly overlapping digits, using the so-

called routing by agreement mechanism, and yet [2] admitted that 

one drawback was the tendency of capsule to account for everything 

in an image. It implies that the capsule might be too “heavy” for 

computation and so a lightweight method is required. But the capsule 

network with routing by agreement algorithm has been proved not to 

be a universal approximator [3], i.e. not fit to all kinds of problems. 

As such, this research did not attempt to replace CNN by capsule, 

but simply created SLAP to combine with CNN. Instead of forcing 

the output to represent certain transformation information (e.g. 

orientation angle), SLAP forces the input of different variants (e.g. 

different rotation angle) to give the same output variant (and output 

the transformation information e.g. angle, if needed). Nevertheless, 

the invention of SLAP was inspired by [1] & [2] trying to address 

the weakness of CNN.  

2.2 Groupoid in Gomoku 

There are different Gomoku states of the same groupoid (see Fig. 1), 

which means having local symmetry but not necessarily global 

symmetry of the whole structure [6]. Groupoid is more challenging 

than symmetry or group, as some groupoids may not have the same 

status, e.g. see Fig. 1. But the potential for learning is huge as there 

are much more variants, e.g. 156 variants by translation in Fig. 1.  

 

 
Fig. 1: Gomoku groupoid. Black can stop white win in C, but not in A or B.  

 

2.3 AlphaGo Zero / Alpha Zero 

For reinforcement learning of Gomoku in this research, the baseline 

algorithm was chosen to follow that of AlphaGo Zero [4] and Alpha 

Zero [5] papers because domain knowledge was not required. The 

algorithm was concisely summarized by [7] as follows: 

Neural network 

   The neural network feature extractor is a type of CNN. It takes 

state st as input and yields value of state 𝑣𝜃(𝑠𝑡) ∈ [−1, 1]  and 

policy 𝑝𝜃⃗⃗⃗⃗ (st) as probability vector over all possible actions.  It has 

the following loss function (excl. regularization terms): 

 loss = ∑ (𝑣𝜃(𝑠𝑡) −𝑡 𝑧𝑡)
2 – �⃗� t . log(𝑝𝜃⃗⃗⃗⃗ (st))  

, where 𝑧𝑡 , �⃗� t are final outcome {-1,0,1}  and estimate (to be 

discussed below) of policy from state st respectively, with 1, 0, -1 

representing win, draw, lose respectively for current player.  

Monte Carlo Tree Search (MCTS) as policy improvement operator 

   At each node, action is chosen by maximizing U(s, a), the upper 

confidence bound of Q-value Q(s, a), calculated by:   

U(s, a) = Q(s, a) + C * P(s, a) * 
√∑ 𝑁(𝑠,𝑏)𝑏

1+𝑁(𝑠,𝑎)
  

where N(s, a) = no. of times taking action a from state s in MCTS 

simulation, P(s, .) = 𝑝𝜃⃗⃗⃗⃗ (s), and the policy estimate of probability is 

improved by using �⃗� t = N(s, .) / ∑𝑁(𝑠, 𝑏) 

   When a new node (not visited before from parent node) is 

reached, instead of rollout, the value of new node is obtained from 

neural network and propagated up the search path. Unless the new 

node is terminal, the new node is expanded to have child nodes. 

Self-play training as policy evaluation operator 

   In each turn, a fixed number of MCTS simulations are conducted 

from the state st, and action is selected by sampling from the policy 

estimate of probabilities improved by MCTS, thus generating 

training sample data. At the end of an iteration, the neural network 

is updated by learning from the training sample data. 

   The evaluation metric would be based on winning and drawing 

percentages of the AI against an independent evaluation agent. There 

are differences among AlphaGo Zero and AlphaZero, see Fig. 2: 

 

 AlphaGo Zero [4] AlphaZero [5] 

Pitting 

models 

Yes, model with new weights 

plays against previous one; 

new weights are adopted 

only if it wins 55% or above 

No, always use new 

weights after each 

iteration of neural 

network learning 

Symmetry Data augmentation by 

rotation and reflection to 

increase sample size by 8 

times for training; transform 

to one of 8 variants randomly 

in self-play for inference 

Not exploited, as it 

is intended for 

generalization 

Action in 

self-play 

Sampled proportional to visit 

count in MCTS in first 30 

moves, then selected greedily 

by max visit count 

(asymptotically with highest 

winning chance) in MCTS 

Sampled 

proportional to visit 

count in MCTS 

Outcome 

prediction 

Assume binary win/loss, 

estimate & optimise winning 

probability 

Also consider draw 

or other outcomes, 

estimate & optimise 

expected outcome 
Fig. 2: Differences between AlphaGo Zero and AlphaZero. 

 

2.4 Other Related Works, Symmetry and AGI  

On lightweight capsule, DSC-CapsNet was proposed as lightweight 

capsule network, which focused on computing efficiency and 

reducing number of parameters [8]; [9] proposed dense capsule 

network with fewer parameters – neither had the novel structure 

proposed in this study. On symmetric CNN, [10] proposed to impose 

symmetry in neural network parameters by repeating some 

parameters and achieved 25% reduction in number of parameters 

with only 0.2% loss in accuracy using ResNet-101, a type of CNN; 

but unlike SLAP, symmetry was not imposed in the inputs. [11] 

incorporated symmetry into neural network by creating symmetry 

(of specific type) invariant features, but no implementation or idea 

similar to SLAP was used. Studies have shown rotation based 

augmentation performed better than many other augmentation 

techniques [19]. The type of data augmentation used as baseline in 

this research was rotation and reflection based (also the type used by 

AlphaGo Zero[4]). The novelty lies in the fact that SLAP is opposite 

to the practice of data augmentation – decreasing the variety of 

variants in the data instead for machine learning, though also 

exploiting symmetry.  

   Symmetry is one of the natures of the real world. Animals can 

detect the same object or the same prey being moved (translated), or 

even rotated after being slapped (the novel method was deliberately 

abbreviated as SLAP). Recognising symmetry can also speed up 

learning patterns, a typical trick used for playing some board games. 

To facilitate research exploiting symmetry in machine learning, [12] 

connected symmetry transformations to vector representations by the 

formalism of group and representation theory to arrive at the first 

formal definition of disentangled representations, expected to benefit 



learning from separating out (disentangling) the underlying structure 

of the world into disjoint parts of its representation. Upon this work, 

[13] showed by theory and experiments that Symmetry-Based 

Disentangled Representation Learning (SBDRL) could not only be 

based on static observations: agents should interact with the 

environment to discover its symmetries. They emphasized that the 

representation should use transitions rather than still observations for 

SBDRL. This was taken into account for designing the Gomoku 

representation for reinforcement learning in this research. 

   One may expect that an artificial general intelligence (AGI) system, 

if invented, should be able to learn unknown symmetry. Researchers 

have worked on this, for example [14] proposed learning unknown 

symmetries by different principles of family of methods. But it is 

equally important to learn by exploiting symmetry more effectively. 

For example, if an AGI system can interpret the rules of Gomoku 

and realize from the rules that Gomoku is reflection and rotation 

invariant, it should directly exploit such symmetry instead of 

assuming symmetry is unknown. Ideally, such exploitation should be 

switched on easily if one wishes, and hence the term ‘switchable’ in 

SLAP, which can be used upon any function or model. If transfer 

learning in CNN is analogous to reusing a chair by cutting the legs 

and installing new legs to fit another, such ‘switchable learning’ in 

SLAP is analogous to turning the switch of an adjustable chair to fit 

certain symmetries. Such kind of ‘switch ’ in design can also help AI 

be more explainable and transparent, and more easily reused or 

transferred, while an AGI system should be able to link and switch 

to different sub-systems easily to solve a problem . SLAP can also 

reduce memory required. For example, AlphaGo Zero used a 

transposition table [4], a cache of previously seen positions and 

associated evaluations. Had SLAP been used instead of data 

augmentation, such memory size could be reduced by a factor of 8, 

or alternatively 8 times more positions or states could be stored. 

Indeed memory plays an important role in reinforcement learning as 

well by episodic memory, an explicit record of past events to be 

taken as reference for making decisions, improving both sample 

efficiency and speed in reinforcement learning as experience can be 

used immediately for making decisions [15]. It is likely that an AGI 

system would, just like human, use memory to solve some problems 

rather than always resort to learning from scratch. And in the real 

world, a continuous space, there can be much more than 8 equivalent 

variants. Recently, [16] suggested that symmetry should be an 

important general framework that determines the structure of 

universe, constrains the nature of natural tasks and consequently 

shape both biological and artificial general intelligence; they argued 

that symmetry transformations should be a fundamental principle in 

search for a good representation in learning. Perhaps SLAP may 

contribute a tiny step towards AGI, by shaping input representations 

directly by symmetry transformation. Note that SLAP can be used 

upon any function or model and even if some (types) of the outputs 

are not invariant but follow the same transformation, these may be 

broken down and use the transformation information output from 

SLAP to make appropriate transformation back later for these parts 

only. A little kid often mistakes b for d at the beginning of learning 

alphabets, and it appears that human learning types of objects by 

vision might naturally assume symmetry first and then learn non-

symmetry later. If a machine learning problem is to be split into 

stages or parts by specified symmetry as a guide, SLAP might help 

by wrapping certain parts of a function or neural network model.   

 

 

3 Methods 

3.1 SLAP 

SLAP forces the input of different variants (e.g. different rotation 

angle) to give the same output variant (and output the transformation 

information e.g. angle, though not necessarily used). There can be 

multiple ways to achieve this. For rotation and reflection variants of 

Gomoku states, one way to implement this is simply flattening the 

pixels of 8 variants to 8 lists, compare the lists and always choose 

the largest. Below (Fig. 3) was the algorithm used for SLAP in 

dealing with rotation and reflection variants of Gomoku states, but 

the concept may be applied to other symmetries as well.  

 

Algorithm SLAP 

1: Generate symmetry variants of input, store required transformation 
2: Convert each variant to a list 

3: Compare each list and find the ‘largest’ list 

4: return the ‘largest’ variant & required transformation of the variant 

 Fig. 3: SLAP algorithm. Positive large data cluster towards top left. 

   If the image/state has multiple input channels or planes in one 

sample, the first channel/plane is compared first by list comparison.  

   SLAP was implemented by numpy instead of torch tensor for faster 

speed, because numpy uses view for rotation and reflection. The 

output variant replaced the input state when SLAP was applied in 

training. During inference time, output action probabilities from 

neural network would be transformed back using the transformation 

information (rotation & reflection) from SLAP. 

3.1.1 Invariance 

Denote s, t = slap(xi), where slap is SLAP function in pythonic style, 

s is the symmetry (of certain group G, with n symmetry variants for 

each state) variant and t is corresponding transformation information. 

Given property of slap,  for all i∈N<=n,  

         s, t = slap(x1) = slap(x2) = … = slap(xn) 

   Denote s = slap(xi)[0],  t = slap(xi)[1],  the pythonic expression to 

capture first and second return variables of a function respectively. 

Denote h(slap(xi)[0]) as hslap(xi) for any function h.   

   Given an arbitrary function y = f(x), 

          y = fslap(xi) ⇒  y = f(slap(xi)[0])  ⇒ y = f(s) for all i 

∴ y = fslap(xi) is invariant with respect to i (i.e. symmetry of group G). 

   When f is the neural network, the composite function resulting 

from the neural network, fslap, is invariant to symmetry (of group G). 

3.1.2 Differentiability 

SLAP was not applied to intermediate layers of neural networks for 

Gomoku, so its differentiability was not required in this research. 

Approximation would be required to make it differentiable. 

3.1.3 Groupoid and SLAP-CC 

As Gomoku is only ‘partially’ invariant to translation, it is also 

interesting to experiment with translation variants, which are 

considered to be groupoid instead of group as they are symmetric 

locally but not necessarily symmetric globally. There can be many 

more translation variants than rotation and reflection variants, see 2.2.  

To save computation, different algorithm (crop and centre) was used 

to ‘standardize’ translation variants, denoted as SLAP-CC in the 

below, to emphasize that it shared the same general idea as SLAP, 

but just different way for implementation. Denoted as cc in the code. 

The algorithm of SLAP-CC, shown in Fig. 4, would concentrate 

experience around the centre, as input variant was centred to become 

output variant. If it could not be exactly centred, the algorithm would 

make it slightly lean to top left. 

 

Algorithm SLAP-CC 

1: Find non-empty min & max indices by row & column in input image 

2: r_shift = (no. of rows – 1– min row index – max row index) // 2 

3: c_shift=(no. of columns –1–min column index–max column index) // 2 

4: return numpy.roll(image, (r_shift, c_shift), axis=(-2, -1)) 

 Fig. 4: SLAP-CC algorithm. Data cluster towards centre. 



   Note that since Gomoku is not completely invariant to translation, 

SLAP-CC was used to add information as additional planes instead, 

as opposed to replacing the input state when SLAP was applied. 2 

planes representing stones of different colours (current and opponent 

players respectively) centred together by SLAP-CC, followed by 2 

planes representing original indices for vertical and horizontal 

positions respectively (scaled linearly to [1, -1]) were added along 

with original 4 planes in Gomoku state representation (see 3.2). The 

scaled position indices for whole plane were to give neural network 

a sense of original positioning. 

3.2 Representation of Gomoku 

In this research, the representation of Gomoku followed the style of 

AlphaGo Zero / AlphaZero, with simplification and taking [13] into 

account for representation design.  

For each Gomoku state, there were 4 planes representing current 

player stones, opponent stones, last action and current colour 

respectively by one-hot-encoding. See Fig. 5 for a typical Gomoku 

state in this research, which used simplified board size 8x8 instead. 

 

Fig. 5: Gomoku state representation example at time t = 4. 

   For labels, probabilities of a move over all positions were 

represented by 8x8 flattened vector. Final outcome (value) of current 

player was represented by 1, 0, -1 respectively for win, draw, lose. 

3.3 SLAP in Gomoku Reinforcement Learning 

SLAP was used to pre-process states for network training and 

inference. Transformation information from SLAP was only used in 

network inference to convert probabilities (not estimated outcome) 

back to corresponding game board positions for MCTS to improve 

probabilities of actions, which were used as sampling probabilities 

to make a move in self-play (but greedy in evaluation). See Fig. 6. 

 

 
Fig. 6: SLAP used in Gomoku reinforcement learning. 

   For SLAP-CC, it was applied at the same place as SLAP in the 

above flow chart, but data augmentation was kept instead of being 

replaced and no transformation information was used to transform 

probabilities output of the network. See methods in 3.1.3.  

3.4 Testing Benefits for Neural Network Learning 

To decouple from reinforcement learning dynamics, synthetic 

states of Gomoku were created for testing neural network learning 

with SLAP vs with typical data augmentation (by rotation and 

reflection), the latter of which had 8 times the number of training 

samples. Self-play was not involved in this testing. 

   Synthetic states were generated by first creating states each with 

only 5 stones connected in a straight line (i.e. win status) for all 

combinations for current black player, then removing one stone (to 

be repeated with another stone 5 times to create 5 different states) 

and randomly adding 4 opponent stones to become one about-to-

win state. Together these were one set of 480 about-to-win states. 

Different sets could be created since white stones were merely 

random. Each set was mixed with 1000 purely random states, also 

with 4 stones for each player. 8 mixed sets were created, i.e. 11,840 

states. 15%, i.e. 1,776 were reserved for validation test. 

Labels were assigned as follows: if there were one or more choices 

to win immediately (include some purely random states, though the 

chance would be very remote), the value of state would be labelled 

as 1 and the wining position(s) would be labelled with probability 

of move = 1/no. of winning positions, while others were labelled 0; 

otherwise the value of state would be labelled as 0 and the 

probability of move for each available position would be random 

by uniform distribution, normalizing and summing to 1.  

   Neural networks (see A1) with SLAP vs with data augmentation 

would learn from training samples of states and labels to predict 

labels of validation data given the input states. Validation loss and 

its speed of convergence would be the key metrics.  

   First, at preliminary stage, for each set of hyperparameters the 

neural network ran 1000 iterations each with batch size 512 

sampled from training samples of size 10,064 and 80,512 

respectively for neural networks with SLAP and neural networks 

with data augmentation. Sampled with replacement, same as during 

reinforcement learning. There were 2400 combinations of 

hyperparameters by grid search, shown in Fig. 7:  

 

Hyperparameter Tested values Remarks 

use_slap True, False False: data augmentation 

instead of SLAP 

extra_act_fc True, False True: add extra layer (size 

64) to action policy 

L2 10-3, 10-4, 10-5 weight decay of optimizer 

Num_ResBlock 0, 5, 10, 20 no. of residual blocks 

SGD True, False False: Adam optimizer 

lr 10-1, 10-2, 10-3, 10-4, 10-5 (learning rate) 

dropout 0, 0.1, 0.2, 0.3, 0.4 
Fig. 7: Hyperparameters tested at preliminary stage of CNN learning. 

    If Num_ResBlock > 0, the residual blocks replaced the common 

CNN layers and added a convolutional layer of 256 filters (3x3 

kernel, stride 1,  padding 1, no bias, ReLU activation) as the first 

layer. No autoclip [17] in optimizer, unlike reinforcement learning. 

    At stage 2, selected models from previous stage would run for 

10,000 iterations instead of 1,000 iterations, with losses recorded 

every 10 iterations. 

3.5 Testing Benefits for Reinforcement Learning 

The baseline algorithm of Gomoku reinforcement learning 

followed AlphaGo Zero/AlphaZero (see 2.3). Among their 

differences, the baseline algorithm in this research followed the 

better version, and thus followed AlphaZero except on symmetry 

exploitation. Like AlphaGo Zero, the baseline exploited symmetry 

by data augmentation to increase no. of training samples by 8 times, 

but random transformation was not done in self-play. Autoclip to 

gradients [17] was added in the optimizer for stable learning. 

   Reinforcement learning required much more computation than 

neural network learning, so to save computation, the same neural 

network will be used and the testing of  hyperparameters would be 

based on best models in neural network learning by synthetic 

Gomoku states, with some deviations to be tested by grid search.  

   Stage 1: each of 240 models were trained by self-play of 250 games. 

Data buffer size: 1,250 and 10,000 for SLAP and non-SLAP models 

respectively, both roughly equivalent to storing latest 60 games.  

   Stage 2: selected models were trained by self-play of 5000 games. 

With more games arranged for training, larger data buffer size could 

be used. So data buffer size was increased to 5000 and 4000 

respectively for SLAP and non-SLAP models, roughly equivalent to 



storing latest 250 games. To align with stage 1 testing initially, the 

initial data buffer size was kept same as stage 1 for first 1000 games. 

This also got rid of initial poor-quality game state data quickly. 

Learning rate multiplier was used to adaptively decrease learning 

rate by half if validation loss increased beyond 3-sigma limit, 

measured every 100 games.  

   Evaluation: Independent agent(s), also called evaluation agent or 

evaluator, was built by pure Monte Carlo Tree Search (MCTS) 

with random policy to play against the trained AI. The strength of 

a pure MCTS agent depends on no. of playouts (aka. simulations) 

in each move. To facilitate observation of growing strength, multi-

tier evaluation was built by playing 10 games against each of 3 pure 

MCTS agents (30 games total), each with 1000, 3000, 5000 

playouts respectively. Overall winning rate (tie counted as half win) 

against them would be the key metrics for reinforcement learning. 

It was often either a win or loss, and seldom a tie. Assuming that a 

tie could be neglected, especially after counting tie as half win, it 

simplified as Bernoulli distribution with standard deviation 

approximated by √p(1 − p)/30  to calculate confidence interval, 

where 30 is the number of trials in each evaluation. 

3.6 Code Implementation 

The part regarding AlphaZero was upgraded from [18]. Details of 

implementation and code repository: https://github.com/chihangs 

 

 

4 Results 

4.1 Impact on Neural Network Learning 

4.1.1 SLAP vs Baseline (Data Augmentation) 

The best few SLAP and baseline models converged to loss around 

2.81 (difference < 0.01), all without residual blocks. 3 SLAP models 

(denoted as s0_...) and 3 baseline models (denoted as n0_...) were 

selected and their losses were plotted in Fig. 8, where each model 

had Adam optimizer, same learning rate 0.001, no dropout , no 

residual blocks, but different values of L2 (10-3, 10-4, 10-5). 

 
Fig. 8: Validation losses of SLAP and baseline models. 

   Above 6 models were repeated 3 more times to calculate average 

time (by no. of iterations) for convergence. SLAP speeded up the 

convergence by 95.1% and 71.2% measured by validation loss 

reaching 3.0 and 2.9 respectively, 83.2% in average. 

4.1.2 Testing Sample Size 

Holding validation dataset unchanged, the training data sample size 

was reduced by holding out some samples to match required size, 

using models with L2=10-4 from Fig. 8. SLAP models converged 

when sample size was 5032 or above, but they were more vulnerable 

to decreasing no. of training samples and failed to converge when 

the sample size decreased to 2516 or below, while their baseline 

counterpart models (8 times the sample size) still converged. 

 

4.1.3 SLAP-CC vs Baseline (Data Augmentation) 

SLAP-CC (see 3.1.3) was added to the 3 best baseline models from 

Fig. 8. Validation losses of SLAP-CC converged to around 2.8 for 

all 3 values of L2, similar to its baseline counterparts. Experiments 

were repeated 3 more times to calculate average time (by no. of 

iterations) to  converge.  The time for validation loss to reach 3.0  and 

2.9 both worsened by 30.7% in average for SLAP-CC. 

 

4.2 Impact on Reinforcement Learning 

4.2.1 SLAP vs Baseline (Data Augmentation) 

The best SLAP model had highest winning rate 86.7%, equivalent to 

winning 26 games out of 30. 95% confidence interval was 86.7% +/- 

12.2%, i.e. (74.5%, 98.9%). The best baseline model had highest 

winning rate 93.3%, equivalent to winning 28 games out of 30; 95% 

confidence interval = 93.3% +/- 8.9%, i.e. (84.4%, 100%) 

   Best SLAP and baseline models had similar winning rates, by 

confidence intervals. If winning rate of two thirds (66.6%) is used as 

benchmark for this three-tier evaluation, both took 1000 games to 

achieve or surpass this. However, non-SLAP took 1250 games only 

to first achieve winning rate of 86.6%, while SLAP took 3000 games. 

SLAP spent 0.761 second per move in self-play, 10.8% more time 

than baseline (only 5% more in a separate speed-optimizing version). 

SLAP tended to decrease learning rate multiplier more frequently, 

implying more frequent significant increase of validation loss.  

 

4.2.2 Testing Buffer Size 

Best models of SLAP and non-SLAP were repeated but with smaller 

data buffer size of only 1,250 and 10,000 respectively throughout 

whole reinforcement learning. Similar to stage 2, above models were 

trained by 5000 games. With fewer data in buffer, the highest 

winning rate achieved for SLAP model was only 73.3%, below the 

corresponding confidence interval. The highest winning rate 

achieved for non-SLAP model was only 83.3%, below the 

corresponding confidence interval. So, it harmed reinforcement 

learning when data buffer was too small and it was good decision to 

use larger data buffer at stage 2.  

 

4.2.3 SLAP-CC vs Baseline (Data Augmentation) 

SLAP-CC was tested by same configurations as best baseline model 

from 4.2.1, but adding information from SLAP-CC and scaled 

position indices as extra input feature planes. The new model also 

ran for 5000 games. See methods in 3.1.3 and 3.3. The best winning 

rate achieved for SLAP-CC model was 96.7%, slightly higher than 

the baseline, but within the confidence interval.  

NB: Learning rate multiplier did not change throughout training. 

 

 

5 Discussion 

Despite the widely use of data augmentation to increase the variety 

of transformation variants in samples to improve machine learning, 

this paper proved that using SLAP to decrease the variety could 

achieve the same performance of typical data augmentation with 

sample size reduced by 87.5% and faster by 83.2% in convolutional 

neural network learning, and statistically the same performance for 

reinforcement learning with sample size reduced by 87.5%. The 

success could be explained by concentrating learning experience to 

certain regions when different variants were standardized, implicitly 

sharing weights among variants. The proof of invariance (see 3.1.1) 

after applying SLAP did not require the network to be CNN and it 

could be an arbitrary function, so the applicability of SLAP should 

not be restricted to CNN. While SLAP exploited only reflection and 

rotation symmetries in learning Gomoku, the general concept of 

SLAP and the proof of invariance could apply to other symmetries. 

https://github.com/chihangs


As no domain specific features or knowledges (except symmetry) 

were used in SLAP,  the benefits shown in the experiments should 

apply generally for domains that are symmetry invariant. 

   Shortcomings: in Gomoku reinforcement learning, SLAP tended 

to decrease learning rate multiplier more frequently, implying more 

frequent significant increase of validation loss. This instability could 

be caused by faster neural network learning. Note that AlphaGo Zero 

only dropped learning rate twice over 1,000,000 training steps in 

their planned schedule [4]. It might imply that SLAP would need 

quite different hyperparameters in reinforcement learning (as 

opposed to sharing the same hyperparameters of baseline models in 

the neural network learning experiment), and more or better searches 

of hyperparameters for reinforcement learning would be required, 

though it was constrained by computation resources. Another 

plausible explanation for not speeding up reinforcement learning was 

the insignificant portion of neural network learning in the whole 

reinforcement training, implying that the time saved in neural 

network learning would be insignificant for the whole reinforcement 

learning in our chosen setting. 

   Limitations: the results only applied to symmetry-invariant domain, 

and SLAP could be more vulnerable if the sample was too small (see 

4.1.2). SLAP required 10.8% more time for self-play in 4.2.1, but the 

overhead would be insignificant if the simple CNN were replaced by 

a deep one. It was not yet proved to speed up reinforcement learning. 

Neither was it proved to be able to exploit groupoid patterns.  

 

 

6 Conclusion and Future Work 

SLAP could improve the convergence speed of neural network 

(CNN in the experiment) learning synthetic states in Gomoku by 

83.2%, with only one eighth of training sample size of baseline 

model (data augmentation). Since no domain specific features or 

knowledges were used in SLAP, it should also benefit neural 

network learning generally for domains that are symmetry invariant, 

especially for reflection and rotation symmetry. As SLAP is model-

independent, the benefits should apply to models beyond CNN. But 

it was not yet proved to speed up reinforcement learning, though it 

could achieve similar performance with smaller training sample size. 

Neither was it proved to exploit groupoid variants effectively. 

   As future work, SLAP may be applied in domains that are not fully 

symmetry invariant, by breaking down the neural network layers into 

two parts – first learning as if it were fully symmetry invariant. Or 

even split into stages by type of symmetries. Although SLAP is not 

directly differentiable, one workaround would be similar to that in 

transforming Gomoku action probabilities. That is, given the 

transformation information as another input, transform the learned 

output back to corresponding original position, and then carry out 

necessary subsequent computations forward. This helps create more 

explainable stages and transfer learning. Another future work might 

be differentiable approximation of SLAP.  
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APPENDICES 

A1 Neural Network Architecture and Configurations 

The architecture and configurations used (unless otherwise stated): 

Neural network: consisted of 3 common convolutional layers (32, 

64, 128 filters respectively) each with 3x3 kernel of stride 1 and 

padding 1 with ReLU activation, followed by 2 action policy 

players and in parallel 3 state value layers. The input was 8 x 8 x 4 

image stack comprising of 4 binary feature planes. The action 

policy layers had one convolutional layer with 4 filters each with 

1x1 kernel of stride 1 with ReLU activation, followed by a fully 

connected linear layer to output a vector of size 64 corresponding 

to logit probabilities for all intersection points of the board. The 

state value layers had one convolutional layer with 2 filters each 

with 1x1 kernel of stride 1 with ReLU activation, followed by fully 

connected linear layer to a hidden layer of size 64 with ReLU 

activation, finally fully connected to a scalar with tanh activation. 

Dropout would be applied to all action policy layers and state value 

layers except output layers; not applied to common layers. 

Optimizer: Adam with autoclip [17] 

Batch size per optimisation step: 512 (2048 in AlphaGo Zero) 

Data buffer size: 10,000 for data augmentation, 1,250 for SLAP 

No. of network optimisation steps per policy iteration: 10 

No. of self-play games per policy iteration: 1 

No. of playouts: 400 (1600 in AlphaGo Zero, 800 in AlphaZero) 

Cpuct (constant of upper confidence bound in MCTS) : 5 

Temperature parameter: 1 (same as AlphaZero) 

Dirichlet alpha of noise: 0.3 (same as chess in AlphaZero) 

   Smaller batch size and no. of playouts per move in MCTS were 

used because Gomoku is less complex than Go. Dirichlet alpha was 

initially set at 0.3 because mini Gomoku (8x8 board) has same board 

size as chess and similar no. of available action choices per move. 

http://web.stanford.edu/~surag/posts/alphazero.html
https://github.com/junxiaosong/AlphaZero_Gomoku
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