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a b s t r a c t 

Working memory contents are represented in neural activity patterns across multiple regions of the cortical 

hierarchy. A division of labor has been proposed where more anterior regions harbor increasingly abstract and 

categorical representations while the most detailed representations are held in primary sensory cortices. Here, 

using fMRI and multivariate encoding modeling, we demonstrate that for color stimuli categorical codes are 

already present at the level of extrastriate visual cortex (V4 and VO1), even when subjects are neither implicitly 

nor explicitly encouraged to categorize the stimuli. Importantly, this categorical coding was observed during 

working memory, but not during perception. Thus, visual working memory is likely to rely at least in part on 

categorical representations. 

Significance statement: Working memory is the representational basis for human cognition. Recent work has 

demonstrated that numerous regions across the human brain can represent the contents of working memory. We 

use fMRI brain scanning and machine learning methods to demonstrate that different regions can represent the 

same content differently during working memory. Reading out the neural codes used to store working memory 

contents, we show that already in sensory cortex, areas V4 and VO1 represent color in a categorical format rather 

than a purely sensory fashion. Thereby, we provide a better understanding of how different regions of the brain 

might serve working memory and cognition. 
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. Introduction 

The human mind has the ability to temporarily store sensory in-

ormation to guide decision making and behavior ( Baddeley, 1986 ).

nformation about memorized sensory contents has been found in ac-

ivity patterns across numerous cortical regions ( Christophel et al.,

017 ). Importantly, the same memorized content can be represented

n more than one region ( Christophel et al., 2012 ; Christophel et al.,

018a ; Dotson et al., 2018 ; Ester et al., 2015 ; Hernández et al., 2010 ;

umar et al., 2016 ; Sprague et al., 2014 ), even at the same time

 Salazar et al., 2012 ). While these multiple representations might be

imply redundant, it has been suggested that there could be a division

f labor such that early sensory regions encode low-level sensory details

hereas more higher-level regions represent increasingly abstract and

ategorical properties of memorized stimuli ( Christophel et al., 2017 ;
✩ Color should be used for figures in print. 
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uster, 1997 ). While prior work has emphasized the precise nature of

arly sensory representations ( Ester et al., 2013 ), to date, it has remained

nclear at which stage the categorical nature of memory representations

egins to emerge. 

Color stimuli have long been used to study the capacity and preci-

ion of visual working memory ( Awh et al., 2007 ; Bays et al., 2009 ;

uschman et al., 2011 ; Luck and Vogel, 1997 ; Wilken and Ma, 2004 ).

mportantly, color stimuli exhibit both continuous and categorical prop-

rties. For example, colors are perceived as a continuum but they

re also readily grouped into basic color categories ( Lindsey and

rown, 2006 ; Loreto et al., 2012 ), even when patients are incapable

f naming them ( Siuda-Krzywicka et al., 2019 ). Recent behavioral work

as suggested that performance during continuous color recall could be

xplained by a dual content model that combines categorical and contin-

ous (non-categorical) components ( Bae et al., 2015 ; Panichello et al.,
023 
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Fig. 1. Experimental design and stimuli. (a) In the working memory task, subjects were presented with two color samples followed by a retro-cue (‘1 ′ or ‘2 ′ ). The 

retro-cue indicated which of the two items had to be recalled by clicking on the respective color on a color wheel after the delay (memory task). (b) In the perceptual 

task, the sample and the color wheel were shown at the same time minimizing mnemonic demands. (c) Subjects made larger errors in the memory task (absolute 

error in degrees of the color-wheel, collapsed across subjects) and showed more consistent biases in color reports for individual hues (bias defined as absolute error 

for each color, averaged and compared to biases for permuted color labels, see Methods for details). 
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019 ). Such a dual content model reliably predicted color reproduction

hat was consistently biased away from the memorized color. 

Here we used fMRI and multivariate encoding models to assess

hether brain representations of memorized colors in different visual

rain areas are better explained by categorical neural codes than by

ontinuous coding. To this end, we scanned 10 healthy participants in

ultiple MRI sessions (4 each). They performed a conventional color

orking memory task requiring subjects to recall a remembered color as

ccurately as possible and indicate their choice with a continuous color

heel. To clearly separate categorical biases in mnemonic activity from

erceptual categorization effects, we used separate memory and percep-

ual tasks minimizing potential overlap in the hemodynamic responses

o perceptual and mnemonic activity. Thus, subjects either recalled the

olors immediately (undelayed ’perceptual’ task, see Fig. 1 b ) or after a

elay (delayed ’memory’ task, see Fig. 1 a ). To closely capture the neu-

al activity patterns encoding colors of different hues, we sampled colors

venly from a calibrated color space. 

. Materials and methods 

.1. Participants 

Ten right-handed healthy German native speakers (aged 18–35

ears; mean age: 27, SEM ± 1.13; 9 female) with normal or corrected-

o-normal vision and no color blindness participated in the study. The

ample size and the number of repetitions per task was chosen based

n previous studies using similar analyses techniques to study percep-

ual color representations as well as working memory representations

 Brouwer and Heeger, 2009 ; Rademaker et al., 2019 ), and was consid-

rably increased. We decided to recruit a small subject number with

ultiple sessions per subject, instead of a large number of subjects

 Cosgrove et al., 2007 ). This study was granted ethical approval by the

ocal ethics committee and all subjects gave informed consent. 

.2. Experimental design 

Each subject completed five sessions of experiments, including three

-h fMRI sessions with 16 runs (50 trials/run) for a delayed estimation

ask (‘memory task’), one 2-h fMRI session with 14 to 16 runs (50 tri-

ls/run) for an undelayed estimation task (‘perceptual task’) both using

olor as stimulus material (see Fig. 1 ab ). The third and last session was

ne 90-min behavioral session for the color categorization tasks (see

ig. 2 ab ). These five sessions were conducted on different days, but
2 
ithin the same month. After the last fMRI session, participants also

ompleted a 2-page questionnaire regarding their strategies for com-

leting the working memory task. All experimental tasks were coded

sing PsychToolbox-3 ( http://psychtoolbox.org/ ) and MATLAB 2014b

MathWorks, Natick, MA). 

.2.1. Memory task 

In the delayed estimation task (‘memory task’), subjects memorized

 sample hue during a delay period and then reported the memorized

olor on a randomly rotated color wheel. A trial started with the se-

uential presentation of two color samples in the middle of the screen,

ollowed by a retro-cue ( Sperling, 1960 ) (either ’1 ′ or ’2 ′ ) at the center

f a light gray circle (see Fig. 1 a ). The sample stimuli were concentric

inusoidal gratings within a circular aperture changing from the central

ray point to the sample color, which drifted at a constant speed in a ran-

om direction: either inward or outward ( Brouwer and Heeger, 2009 ).

 retro-cue informed subjects which of the two sample stimuli should

e memorized for the rest of the trial (‘1 ′ or ‘2 ′ ). The retro-cue was

ollowed by the presentation of a blank screen (with only the fixation

oint) for 9.5 s, resulting in an overall delay of 10 s for memorization of

he cued stimulus. Then a color wheel included all 50 color samples was

resented in the center of the screen. Subjects were asked to indicate on

he color wheel which sample they had memorized within 4 s. For this,

hey scrolled with an MRI compatible trackball from the screen center

where the cursor was a white dot) onto the color wheel (where the

ursor changed to a white rectangular box), and by clicking a button to

onfirm their choice. Once the selection was confirmed, both the color

heel and the response remained on the screen until the end of 4 s. The

olor wheel was rotated by random degrees in each trial, thus avoiding

onfounding motor preparation with the reported color. Subjects were

equired to fixate throughout the trial. 

The duration of one trial was either 18 s or 20 s, including an inter-

rial interval (ITI) of 2 or 4 s (on average ITI = 3 s). A run was com-

rised of 50 trials in random order, with each of the 50 sample stimuli

resented once as the cued stimulus and the not cued stimulus (fully

andomized from each other). Three fMRI scanning sessions resulted in

ltogether 16 runs and 800 trials for the delayed estimation task per

ubject. Before the first scanning session, subjects were trained for half

n hour with feedback on their responses. 

.2.2. Perceptual task 

In the undelayed estimation task (‘perceptual task’), subjects re-

orted a seen color on a concurrently presented color wheel. A trial

http://psychtoolbox.org/
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Fig. 2. Behavioral categorization tasks and resulting encoding models. We used two category-based tasks performed in a separate session post-MRI where 

subjects (a) identified prototypical colors on a color wheel and (b) named presented colors. (c) We combined naming and identification frequencies for individual 

hues to create a tuning model for voxels selective to six color categories by averaging the two distributions (as in 22 ). (d) This model allows to estimate the boundaries 

between color categories (open circles, dashed lines) and the prototypical exemplars for each color category (closed circles, solid lines). (e) For comparison, we used 

a standard uniform model typically thought to capture the sampling of sensory units by an fMRI voxel. 
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egan with the presentation of a sample stimulus in the middle of the

creen (see Fig. 1 b ). 500 ms after sample onset, the color wheel started

o fade into view within a period of 350 ms. The color wheel was faded-

n to minimize interference with the subjects’ perception of the color

ample. The sample was presented for 4 s, the response remained on

he screen after subjects selected the seen sample on the color wheel.

he next trial started after an inter-trial interval of 2 or 4 s (on aver-

ge ITI = 3 s). A trial was thus either 6 s or 8 s (on average 7 s), and

 run consisted of 50 or 100 trials. Altogether 700 to 800 trials were

onducted for the undelayed estimation task per subject. 

.2.3. Category naming and identification tasks 

A pair of behavioral categorical tasks, color naming and identifica-

ion, were performed in order to delineate the properties of color cat-

gories in our sample. The tasks were conducted in a dark behavioral

ab using a keyboard and a mouse, after the completion of all fMRI ses-

ions. Subjects had no time pressure as the next trial only started after

hey completed the current trial. 

In the color naming task ( Fig. 2 b ), a list of seven common color

ames including ’blue’, ’pink’, ’green’, ’purple’, ’orange’, ’yellow’ and

red’ was shown next to a sample color. These chromatic color terms

ere selected based on Berlin and Kay’s eight basic color categories

 Berlin and Kay, 1969 ) but ‘brown’ was excluded (see prior work,

ae et al., 2015 ). Subjects were asked to select the term that best de-

cribed the color stimulus by pressing the up or down button on the

eyboard, and to confirm their choice by pressing enter. The order of

he terms as well as the initial position of the cursor were random-

zed in each trial to minimize position bias. Six subjects completed 12

rials for each of the 50 color stimuli, while four subjects evaluated

ach stimulus 9 or 6 times (due to time constraints of the behavioral

ession). 

In the color identification task ( Fig. 2 a ), subjects were required to

ark the color wheel to identify the prototypical exemplar for of each

f the seven color terms (see above). By pressing the left button of the

ouse, they could confirm the color selection. The color wheel was ro-

ated by random degrees in each trial to prevent association between

he position and the color. Six subjects completed 90 identification tri-
3 
ls for each category term, while four subjects evaluated each term 60

imes. 

.3. Stimuli 

We used a set of 50 color samples taken from a circular color space

ith constant lightness (CIE LAB; center: a ∗ = 0, b ∗ = 0; radius = 38;

 

∗ = 70; Fig. 1 c ). Using a large number of different colors allowed us

o finely sample variations in neural coding for stimuli in this circu-

ar space. A spectroradiometer (JETI spectraval 1501) was employed to

easure L ∗ a ∗ b ∗ values of each of the 50 generated colors, and to cal-

brate these parameters on different screens (the MRI monitor for the

RI session and the computer screen for the behavioral session). More

pecifically, we first calibrated the background gray color (used as the

eference white point) to approximate a XYZ ratio of 1:1:1. Then, each

olor stimulus was measured and changed in multiple iterations to min-

mize the discrepancy to the chosen L ∗ a ∗ b ∗ values. 

.4. Data acquisition 

MRI data were acquired on a 12-channel Siemens 3 Tesla TIM-Trio

canner at the Berlin Center for Advanced Neuroimaging (BCAN). At

he beginning of each scanning session, a high-resolution T1-weighted

agnetization-prepared rapid gradient echo (MPRAGE) anatomical vol-

me was collected (192 sagittal slices; repetition time TR = 1900 ms;

cho time TE = 2.52 ms; flip angle = 9°; FOV = 256 mm). For acquisition

f functional BOLD imaging, T2 ∗ -weighted echo planar images (EPI; 32

ontiguous slices; TR = 2 s; TE = 30 ms; voxel size = 3 × 3 × 3 mm;

atrix size = 64 × 64 × 32; slice gap = 0.6 mm; descending order; flip

ngle = 90°; FOV = 192 mm) were recorded covering the whole neocor-

ex. Every trial was time-locked to the start of an EPI acquisition. For

he memory task, 478 EPI scans were collected per run, and altogether

648 scans were acquired over 16 runs per subject. For the perceptual

ask, data was acquired either in single (50 trials, 175 scans) or double

100 trials, 350 scans) runs. Overall, 2450 to 2800 functional scans were

ecorded per subject. 
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Fig. 3. Categorical working memory codes in visual cortex. (a) We focused our analyses on anatomically defined regions of interest for V1, V4 and VO1. (b) 

Explained variance in fMRI voxel activity patterns for different encoding models (sensory and categorical) during the memory task. Regions are color coded; asterisks 

indicate significance (bootstrapped confidence intervals with p < 0.05; multi-comparison corrected); error bars indicate SEM. 
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.5. Behavioral analyses 

To quantify the precision of color recall, we calculated the abso-

ute error across trials separately for each condition (memory task and

erceptual task) expressed in degrees of the 360° color-wheel. We also

anted to know whether subjects’ color reproductions were more biased

uring working memory as compared to a perceptual task ( Bae et al.,

015 ). For this, bias in color reports was quantified by averaging recall

rrors for all repetitions of a given color (14–16 repetitions) and then

veraging the absolute value of this individual bias across all colors.

his bias metric, however, will have a non-zero value even if no consis-

ent biases exist in the data depending on the overall error in the task.

o control for this effect of random (color independent) recall errors on

his bias measure, we permuted the color labels for each trial 1000 times

nd compared the resulting bias estimates against the biases computed

rom the real labels. 

Data from the naming and the identification task was used to identify

oundaries and prototypical colors for common color categories (for il-

ustrative purposes, see Fig. 2 d ). Naming data was minimally smoothed

Gaussian smoothing window, size 2, 𝜎 = 0.5) to minimize noise when

etermining boundaries between categories. 

.6. Anatomical regions of interest 

We focused our analyses on BOLD data from three regions of in-

erest (ROIs) in visual cortex: V1, V4, and VO1. These ROIs ( Fig. 3 a )

ere delineated based on high-resolution anatomical probabilistic maps

 Wang et al., 2015 ). These high-resolution probability maps were pro-

essed to obtain binary maps for every individual subject. First, the maps

ere deformed into the brain space of individual subjects using (inverse)

ormalization parameters obtained using unified segmentation. Then,

he maps on the left and right hemispheres were collapsed and dorsal

nd ventral components were combined. We applied a mutual exclusion

ule for all available probabilistic maps ( Wang et al., 2015 ), such that

very voxel could only be part of one ROI by selecting the ROI label with
4 
he highest probability. Finally, we threshold the resulting subject-level

aps to exclude voxels with a probability lower than 10% to obtain a

inary ROI map. For a post-hoc analysis focusing on frontal regions we

reated regions of interest using MNI coordinates from regions found

o carry information about sensory stimuli in prior work ( Ester et al.,

015 ; Yan et al., 2021 ). In particular we used spheres with a radius

f 11 mm around left ventrolateral prefrontal cortex (MNI = [ − 37 30

 2], Ester et al., 2015 ; average coordinate in Table 2), left premotor

ortex (MNI = [ − 46 10 48]; Yan et al., 2021 ), and Broca’s area cortex

MNI = [ − 56 34 − 4]; Yan et al., 2021 ) and transformed the resulting

egions into single-subject space. 

.7. fMRI preprocessing 

All fMRI analysis was conducted using SPM12 ( Friston et al., 1994 ),

vMANOVA ( Allefeld and Haynes, 2014 ), and Matlab 2014b (Math-

orks, Natick, MA). The acquired images were first converted from DI-

OM format to a SPM compatible format of NIfTI. Next, all functional

mages belonging to one subject were realigned and resliced to correct

or head movement within and between runs. Then, the anatomical im-

ge was coregistered to the first functional image and subjected to uni-

ed segmentation (for inverse normalization). 

.8. Sensory and categorical encoding models 

To estimate color-selectivity from spatially scattered and distinct re-

ponse patterns of a population of voxels, we use two distinct encod-

ng models: one sensory continuous and one categorical model (see

ig. 2 c, e). Encoding models capture the pattern of selectivity a voxel

an be characterized as the weighted sum of a set of color-selective

hannels analogous to a neuron’s tuning curve. The sensory encod-

ng model was characterized by six half-wave rectified cosine func-

ions evenly distributed over the circular color space and raised to the

ower of six ( Fig. 2 e). Such encoding models were used in prior work

o model the selective neural response to orientation, spatial location
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s  
nd color ( Brouwer and Heeger, 2009 ; Edward F. Ester et al., 2015 ,

013 ; Sprague and Serences, 2013 ) and are intended to approximate

ingle-unit tuning functions of sensory cortical neurons ( Brouwer and

eeger, 2009 ; Ester et al., 2013 ). 

To model categorical neural representation, we developed a novel

ype of basis function of color ( Fig. 2 c) using empirical color categoriza-

ion data ( Fig. 2 ab). 

Six categorical basis functions captured the boundaries and proto-

ypical colors of ’blue’, ’pink’, ’green’, ’purple’, ’orange’, and ’yellow’.

o demarcate the boundaries of selectivity categories, we used the cate-

ory naming data, and the category identification data was used to iden-

ify the prototypical exemplars of each category. The two corresponding

robability distributions combining data from all subjects ( Fig. 2 c, left)

ere normalized, so that the sum probability of each category equaled

ne. Then, we averaged the two probability distributions to create an

ncoding model capturing both the boundaries and the prototypical ex-

mplars of each category. The resulting basis functions were normalized

y dividing them by the highest value among all six channels. 

Notably, this categorical encoding model does not require category-

elective neuronal populations to exhibit an all-or-none response to any

iven stimulus. This is motivated by the behavioral data indicating that

olor categorization is probabilistic with the same hue being assigned

ifferent color categories in different trials in the naming task. Fur-

her, we anticipated that categorically color-selective voxels respond

trongest to prototypical exemplars of a given color category. It is impor-

ant to note that this graded categorical model predicts that prototypical

embers of a color category evoke overall more univariate activation

han atypical category members. This property is intended to incorpo-

ate the uncertainty of the categorization of particular exemplars. Cat

nd dog selective neurons in ITC and PFC, for example, show a graded

esponse to more or less prototypical exemplars ( Freedman et al., 2003 ).

inally, fitting the six basis functions simultaneously allows any voxel

o have positive weights for multiple color categories as it might contain

eurons selective for multiple categories. 

Thus, we created two distinct encoding models: (1) A sensory model

sed in prior work to resemble the tuning of sensory neurons while car-

ying no information about the delineations of common color categories,

nd (2) a categorical encoding model informed by empirical categoriza-

ion data. 

In a post-hoc analysis, we also created a third model variant to in-

errogate the particular shape of the categorical encoding model used

n the main analyses. For this we used the boundaries between color

ategories derived from the color naming data to build a set of boxcar

haped regressors representing the six color categories. In this model,

eural activity patterns are assumed to be identical for both prototyp-

cal and atypical colors of a category. We also interrogated the spe-

ific shape of the sensory model. For this we used a ‘steerable’ encod-

ng model using one sine and one cosine function in hue space. Sine

nd cosine functions with an arbitrary phase allow for the reconstruc-

ion of sines and cosines of any other phase, allowing them to cap-

ure the entire hue space regardless of the phase and the corresponding

channel centers’ with only two regressors (i.e. making the model ‘steer-

ble’, see Brouwer and Heeger, 2009 ; Freeman and Adelson, 1991 ). No-

ably, this steerable model differs from previous implementations (e.g.

rouwer and Heeger, 2009 ) as it includes both positive and negative

egressor values and is used across the full cycle of sin and cos. As in all

ther model, this steerable model included a constant term regressor. 

It is important to note here, that no a-priori defined encoding model

an be expected to perfectly fit neural data in a particular area. The

ehavioral measures obtained to create the categorical model here are

nfluenced by several processing stages, including sampling from (po-

entially multiple) categorical representations of color, as well as verbal

rocesses involved in the naming and identification tasks and are un-

ikely to perfectly resemble categorical tuning in any particular region.

eversely, the continuous regressors intended to approximate single-

nit tuning functions of sensory cortical neurons are unlikely to resem-
5 
le the exact tuning of any set of sensory neurons (or the resulting voxel-

ise tuning in fMRI). This is why we elected to use models used in prior

ork ( Bae et al., 2015 ; Brouwer and Heeger, 2009 ; Ester et al., 2015 ,

013 ; Sprague and Serences, 2013 ) as a means to limit the search space.

lease note that many previous studies have employed similar idealized

ncoding models because the true model is unknown. While we take

nspiration from this prior work the modeling approach employed here

i.e. predicting the neural data) differs approaches used in this previous

ork (i.e. predicting a stimulus or response), meaning we do not intend

o fully emulate it. 

.9. Multivariate pattern analysis 

To test which of these models best explained mnemonic activity pat-

erns during the working memory delay, we combined these two en-

oding models with a recently-developed form of multivariate pattern

nalysis (MVPA), cross-validated multivariate analysis of variance (cv-

ANOVA; Allefeld and Haynes, 2014 ). We used cvMANOVA to directly

stimate and compare the explained variance of the two encoding mod-

ls. An alternative approach could be comparing the similarity (or dis-

imilarity) between remembered items to similarities predicted by the

wo encoding models ( Kriegeskorte et al., 2008 ). For a given pair of rep-

esentations with a fixed similarity, however, there can exist a manifold

f possible underlying encoding patterns meaning that the same pattern

f similarities can arise due to starkly different encoding schemes. Di-

ectly estimating the fit of the acquired neural data avoids this source

f ambiguity and can be expected to be a powerful tool. 

The analysis was performed on a set of selected voxels within three

egions of interest (ROIs): V1, V4, VO1 (see Fig. 3 a). For this, we first es-

imated parameters (i.e., betas) for multivariate generalized linear mod-

ls (MGLM) separately for each condition (memory and perceptual) and

ncoding model (sensory and categorical) which modelled sample colors

s a set of six parametric modulations representing the six basis func-

ions per model. 

For the memory task, we used five finite impulse response (FIR) re-

ressors to represent the 10 s delay-period (5 fMRI scans at a TR of 2 s).

he design matrix modelled the 478 scans per run using 36 regressors

7 stimulus-based regressors [1 constant and 6 basis functions] x 5 FIR

ins + 1 run-wise constant). Separate design matrices and MGLMs used

asis functions from the sensory and the categorical encoding model. 

For the perceptual task, but the 4 s stimulus presentation was rep-

esented by a canonical hemodynamic response function (HRF, dura-

ion = 4 s), which was time-locked to the stimulus presentation’s onset.

he design matrix captured each run (either 175 or 350 scans) using

 regressors (7 stimulus-based regressors [1 constant and 6 basis func-

ions] x 1 HRF + 1 run-wise constant). Again, separate design matrices

nd MGLMs used basis functions from the sensory and the categorical en-

oding model. Parameter estimates for all models were estimated using

tandard SPM parameters, but parametric modulations were not orthog-

nalized and serial correlations corrections were omitted. 

Next, we estimated the variance explained by these models by con-

rasting each neighboring pair of basis functions (BF 1 vs BF 2; BF 2 vs

F3; BF 3 vs BF 4…) separately for each time point (for the memory

ask). We elected to contrast data for each time-point independently to

llow the contrast to account for variations in neural code over time

ut focused on estimates of explained variance that are averaged across

he delay to increase power. For the memory task, the overall contrast

atrix for a given run was comprised of 35 columns representing 35

egressors (six BF-based and one stimulus-based regressors, each in five

IRs bins) and 25 rows representing 25 contrasts (five contrasts between

ix BF-based regressors, each in five FIR bins). For the perceptual task,

he contrast matrix for a given run had 7 columns representing 7 re-

ressors (six BF-based and one stimulus-based regressors, each in one

RF bin) and 5 rows representing 5 contrasts (five contrasts between

ix BF-based regressors). The null hypothesis, here, is that in a given

et of voxels there are no differences in the parameter estimates for the
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ix basis functions in a given model. Rejecting this null indicates that

his subset of data carries information about sample color in a given

rial. The resulting pattern distinctness D ( Allefeld and Haynes, 2014 ;

hristophel et al., 2018b ; Yan et al., 2021 ) reflects the variance of the

eural data explained by the respective model, cross-validated across

uns. Here, if different colors elicit the same multivariate response, D

ould on average be 0, while different responses to different colors

hat are captured by a given encoding model would lead to an average

 larger than 0. To assess statistical significance against chance-level

 D = 0) and to compare models against each other as well as model-by-

ask interactions, we used a nonparametric bootstrapping testing group

ffects by random resampling 10 5 times ( Bickel and Freedman, 1981 ;

fron, 1979 ; Singh, 1981 ). We corrected the resulting confidence in-

ervals for the multiple comparisons in the three different ROIs using

onferroni correction (resulting in an effective confidence interval of

8.33%). 

To validate our encoding model approach using cvMANOVA, we per-

ormed two separate simulations using the two encoding models to gen-

rate artificial data. We assigned a set of 6 random weights to each simu-

ated voxel (100 voxels overall) corresponding to the six basis functions

n a given encoding model. The prototypical pattern of neural activity

or a given color was computed by weighted averaging of the responses

f the six basis functions for this specific color weighted using voxel-wise

eights for each basis function. For each simulated subject ( N = 10), we

enerated a dataset of 16 runs and 50 trials in each run using the 50 col-

rs as stimuli, using different random weights for each subject and voxel,

nd adding random Gaussian noise in each trial. We then included 300

ata points containing only random Gaussian noise that did not con-

ain any color representation to simulate time between trials. The noise

omponent was weighted using a factor (19 even steps, ranging from 1

o 73 in different iterations) to simulate different signal-to-noise ratios.

he two resulting datasets were analyzed as in the main analysis and

he overall procedure was repeated 10.000 times. We report the propor-

ion of these 10.000 Iterations where a given encoding model (i.e. the

ategorical model) explained significantly more variance than the other

odel (i.e. the sensory model) for data generated the two models. In ad-

ition, we simulated data sets that contained no color representations

ve times. 

. Results 

Subjects made larger errors in the memory task (mean absolute er-

or = 17.47° ± 1.52° SEM in degrees of the color-wheel, see Fig. 1 c) than

n the perceptual task (mean absolute error = 9.8°± 0.39° SEM, Wilcoxon

igned rank test, p = 0.002), and showed larger categorical biases inde-

endently of the overall effect of the errors (see Fig. 1 c, Wilcoxon signed

ank test, p = 0.02). Subject indicated the use of both visual and non-

isual encoding strategies during the post-experimental questionnaire

see Supplementary Fig. 1). 

In a behavioral session after the fMRI experiments, we used two sep-

rate category-based behavioral tasks to obtain a categorical model of

olor representation. Following prior behavioral work ( Bae et al., 2015 ),

ubjects performed two tasks: In the color identification task they were

iven a color name and asked to identify that color on a continuous

olor wheel (see Fig. 2 a). In the color naming task subjects assigned a

olor name to a continuous color (see Fig. 2 b). We used 7 color names

or these tasks but only six were consistently used by the participants in

he naming task. As in prior work ( Bae et al., 2015 ), data for the sev-

nth, unused color name (‘red’) was discarded. The resulting behavioral

ata allow to assess two properties of color representation: the bound-

ries between color names and the prototypical exemplars for the six

ost commonly used color categories (see Fig. 2 d and Methods for de-

ails). We then averaged the underlying naming and identification dis-

ributions to form a simplified categorical encoding model (see Fig. 2 c).

uch a model has been used in the past to predict behavioral bias in color

ecall ( Bae et al., 2015 ), but serves here as an approximation of the tun-
6 
ng of category-selective neurons for these color categories responding

trongest to the prototypical color and showing a sharp decline towards

he boundaries. For comparison we used a standard cosine-shaped con-

inuous sensory (non-categorical) encoding model (see Fig. 2 e), versions

f which have been used in previous investigations of working memory

oding and precision ( Brouwer and Heeger, 2009 ; Edward F. Ester et al.,

015 , 2013 ; Sprague et al., 2014 ). This sensory model did not consider

nformation about the delineations of common color categories. 

We then assessed which of these two models best explained

nemonic representations of color in the brain. Using probabilistic

natomical regions of interest ( Wang et al., 2015 ) (see methods for de-

ails), we focused our analyses on regions of the visual cortex known to

ave representations of color ( Fig. 3 a; V1, V4 and VO1, Brouwer and

eeger, 2009 ). Notably, we used a cross-validated form of multivari-

te analysis of variance (cvMANOVA; Allefeld and Haynes, 2014 , see

ethods for details) to assess which of the two models better explained

he underlying data instead of inverting the model to reconstruct the

emorized or the reported color (see Rademaker et al., 2019 ). This is

mportant as we aimed at identifying intermediary representations that

ot necessarily match either the encoded or the reported color. 

Using the sensory model, we found robust representations of the

emorized color in V1 and VO1 ( Fig. 3 b; 95% bootstrapped confi-

ence interval of the explained variance corrected for multiple compar-

sons; CI 95 = [0.0017, 0.0292] in V1, CI 95 = [ − 0.0038, 0.0181] in V4,

I 95 = [0.0003, 0.0082] in VO1). When using the categorical model, all

hree ROIs showed statistically significant information about the target

olor (CI 95 = [0.0043, 0.0469] in V1, CI 95 = [0.0014, 0.0243] in V4,

I 95 = [0.0041, 0.0124] in VO1). Notably, the two models are inevitably

on-orthogonal with respect to each other, meaning that they can be

xpected to capture shared variance. Hence, we statistically compared

hich of the two models explained more variance in the underlying

ata. We found that the categorical color model explained more vari-

nce in V4 and VO1 than the sensory model that was not informed by

he delineations of common color categories ( Fig. 4 b; 95% bootstrapped

onfidence interval corrected for multiple comparisons of the categor-

cal model preference; CI 95 = [0.0017, 0.0152] in V4, CI 95 = [0.0012,

.0065] in VO1). This suggests that during working memory V4 and

O1 encode memoranda in a categorical rather than a sensory for-

at. In contrast, neither model outperformed the other model in V1

CI 95 = [ − 0.009, 0.0212]). The pattern of results stayed the same when

e contrasted all five timepoints together, but the model comparison

as not significant in V4 (one-sided 95% bootstrapped confidence in-

erval of the categorical model preference; CI 95 = [ − 0.0036] in V1,

I 95 = [ − 0.0002] in V4, CI 95 = [0.0006] in VO1). Testing the same ef-

ects for any differences across the five time-points in the delay using a

onparametric repeated-measures ANOVAs ( Gladwin, 2020 ) separately

or each region we found a main effect of model in both V4 and VO1 (all

 < 0.05) and no main effects of time and no time-by-model interactions

all p > 0.1). 

Then, we asked how color was represented when subjects did not

ave to retain the color samples in memory but could immediately re-

ort the presented color. Importantly, subjects used the same method

o report the perceived color in the perceptual and the memory task

o minimize biases due to different task-goals ( Lee et al., 2013 ). For

ata from this perceptual task, the sensory model explained signifi-

ant levels of variance in all three regions ( Fig. 4 a ; CI 95 = [0.0198,

.0724] in V1, CI 95 = [0.0085, 0.0781] in V4, CI 95 = [0.0013, 0.034]

n VO1). In contrast, using the categorical encoding model only V1

nd V4 but not VO1 explained above-chance variance (CI 95 = [0.0202,

.0783] in V1, CI 95 = [0.0082, 0.0495] in V4, CI 95 = [ − 0.0055, 0.0222]

n VO1). Critically, for the perceptual task we found no significant

ifferences in the variance explained by the two models in any re-

ion (CI 95 = [ − 0.0174, 0.0149] in V1, CI 95 = [ − 0.0384, 0.0049] in

4, CI 95 = [ − 0.0144, 0.0035] in VO1). Comparing these differences

cross the two versions of the task (delayed and undelayed) resulted

n a significant interaction effect in VO1 ( Fig. 4 b; 95% bootstrapped
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Fig. 4. Color representation during the perceptual task (a) Explained variance in fMRI voxel activity patterns for different encoding models (sensory and categorical) 

during the perceptual task. Regions are color coded; asterisks indicate significance (bootstrapped confidence intervals with p < 0.05; multi-comparison corrected); 

error bars indicate SEM. (b) Categorical model preference in the three regions during the two tasks. Please note that categorical model preferences in V4 are 

significantly larger during memory as compared to perception when multiple comparisons corrections are omitted ( p < 0.05, CI95 = [ − 0.0377, − 0.0011]). 
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onfidence interval corrected for multiple comparisons of the differ-

nce in categorical model preference; CI 95 = [ − 0.0238, 0.0118] in V1,

I 95 = [ − 0.0429, 0.0016] in V4, CI 95 = [ − 0.0177, − 0.0023] in VO1) in-

icating that representations in the delayed task were substantially more

ategorical than in the undelayed task in VO1. To investigate whether

he categorical model preference solely relied on the atypical encod-

ng model shape of the categorical model we used a boxcar shaped en-

oding model relying solely on naming probability data. We found that

his boxcar shaped categorical model explained more variance in V4

nd VO1 than the sensory model (one-sided 95% bootstrapped confi-

ence interval of the categorical model preference; CI 95 = [0.0012] in

4, CI 95 = [0.0001] in VO1). We found no significant difference in V1

CI 95 = [ − 0.0095]). The same pattern of results was found when equat-

ng the peaks of the original categorical encoding model to 1 (one-sided

5% bootstrapped confidence interval of the categorical model prefer-

nce; CI 95 = [0.0027] in V4, CI 95 = [0.0024] in VO1, CI 95 = [ − 0.0080]

n V1). Finally, we tested whether a categorical encoding model created

sing the naming and identification data of each individual subject to

odel the fMRI data of that subject was superior to the model com-

ining data from all subjects that was used throughout the manuscript.

esting this subject-specific encoding model we found that the over-

ll pattern of results preserved and no significant differences between

he subject-specific and the subject-general model (95% bootstrapped

onfidence interval corrected for multiple comparisons of the subject-

pecific model preference; Memory task: CI 95 = [ − 0.0119 0.0061] in V1,

I 95 = [ − 0.0060 0.0080] in V4, CI 95 = [ − 0.0023 0.0044] in VO1; Per-

eptual task: CI95 = [ − 0.0069 0.0188] in V1, CI95 = [ − 0.0258 0.0044]

n V4, CI95 = [ − 0.0065 0.0048] in VO1). We also tested whether a

steerable’ encoding model using sine and cosine functions would be

ore suitable to investigate working memory data. This model was out-

erformed by both the sensory model (one-sided 95% bootstrapped con-

dence interval of the sensory model preference; CI 95 = [0.0004] in V1;

I 95 = [0.0010] in V4, CI 95 = [0.0006] in VO1 ) and the categorical

odel (CI 95 = [0.0044] in V1; CI 95 = [0.0063] in V4, CI 95 = [0.0040]

n VO1). 

In a post-hoc analysis, we further explored whether frontal regions

ound to represent working memory content in prior work ( Ester et al.,

015 ; Yan et al., 2021 , see methods for details) represented memorized

olors and demonstrate preferences for the categorical or the sensory
 s

7 
odel. We found that both left ventrolateral prefrontal cortex and left

remotor cortex represented the memorized color when probed with

he sensory model (95% bootstrapped confidence interval corrected

or multiple comparisons of the explained variance; CI 95 = [0.0004

.0185] in l -VLPFC, CI 95 = [0.0017 0.0162] in left l -PMC) but not

hen tested with the categorical model (CI 95 = [ − 0.0118 0.0235] in

 -VLPFC, CI 95 = [ − 0.0019 0.0203] in left l -PMC). There were no sig-

ificant differences between the variance explained by the two mod-

ls in either area (95% bootstrapped confidence interval corrected for

ultiple comparisons of the difference in categorical model preference;

I 95 = [ − 0.0131 0.0023] in l -VLPFC, CI 95 = [ − 0.0061 0.0115] in l -

MC). We found no reliable color representations in the Broca’s area ROI

sing either model (CI 95 = [ − 0.0016 0.0069]; CI 95 = [ − 0.0043 0.0157];

espectively). 

Finally, to validate our encoding model approach, we performed

0.000 iterations of two separate simulations using the two encoding

odels to generate artificial data. For each iteration, we generated a

ata set (10 subjects, 16 runs, 50 trials, 100 voxels, see Methods for

ull details) where either the categorical or the sensory model was the

rue model underlying simulated neural representations and analyzed

he data as in the main analyses reported above. In these analyses, we

ee a preference for the categorical encoding model when the categor-

cal model was used to generate the data and a preference for the sen-

ory encoding model when the data was based on the sensory model

see Fig. 5 ). The proportion of iterations with a significant model pref-

rence declined as noise increased and data without any simulated neu-

al representations only showed preferences for either model at a rate

f 0.05. 

. Discussion 

These results suggest that representations of memorized colors are

etained by categorical representations already within visual cortex.

his suggests that already in visual cortex, different regions retain rep-

esentations in a differential neural code. Prior work provides evidence

han primary sensory cortices are critical for precise representations of

rientation ( Ester et al., 2013 ). In concert, these findings seem to indi-

ate that memory storage of an individual item does rely on its repre-

entation in multiple concurrent coding schemes. 
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Fig. 5. Validation using simulated data. (a) Proportion of simulation iterations showing a significant categorical model preference for data generated using either 

the categorical or the sensory or encoding model. (b) Proportion of iterations showing a significant sensory model preference. 
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Importantly, the encoding models used to distinguish between con-

inuous and categorical working memory codes are somewhat corre-

ated (median absolute r = 0.36) This becomes apparent when realizing

hat both models represent the same property (color) and that they are

oth members of an infinitely large family of models representing this

roperty in different ways. Thus, finding that any given model explains

ariance is not evidence that the underlying neuronal population uses

xactly this neural code. Showing that the categorical model outper-

orms the sensory model allows us to infer that within this large fam-

ly of models, the ‘true’ model is likely to share more properties with

he categorical model than with the sensory model. The simulations re-

orted above demonstrate the general feasibility of this approach and

he imaging results reported show that model distinctions are possible

n real imaging data. 

Notably, this preference for categorical tuning is only present during

orking memory and is absent during an immediate, perceptual task.

his suggests that initially more uniform representations during percep-

ion morph to become more categorical during the working memory

elay. The comparatively short delay and the retro-cuing procedure in

he current study prohibits us from directly interrogating changes in

ategorical preference across time. Thus, two alternative explanations

ight explain this difference. One possibility is that the affordance to

emorize an item for a prolonged period of time results in a more cate-

orical encoding of the stimuli. Alternatively, feedback from more ante-

ior, non-sensory regions might slowly modulate representations during

he course of the delay. Both alternatives provide a direct explanation

or the differential amount of biasing of behavioral responses in imme-

iate and delayed recall in this study and in prior work ( Bae et al., 2015 ;

anichello et al., 2019 ) . 

This demonstrates that the comparison between perceptual and

emory representations of colors employed in the current study might

nclude additional effects that could have contributed to the find-

ngs. Here, we aimed at closely emulating previous behavioral work

emonstrating differential biases between delayed and immediate re-

all ( Bae et al., 2015 ) . This required that subjects were tasked to re-

all the presented color immediately in the perceptual condition (i.e.,

ithout any need for memorization) resulting in an overlap of percep-

ual and task-related signals in the recorded data. Future work might

nstead choose to compare mnemonic signals to task-irrelevant (‘unat-

ended’) perceptual signals (see Harrison and Tong 2009), which how-

ver in turn entails the caveat that differences in cortical representa-

ion might be a result of inattentive processing. A second alternative

ould be to delay task-execution effectively making the perceptual task

 memory task with a shorter delay (or comparing signals early and late

n the delay). This second alternatively, however, compares working
8 
emory representations to a mixture of perceptual and working mem-

ry representations. For this it is worth noting that increased biases in

elayed recall (as compared to undelayed recall) have been found us-

ng working memory delays as short as 900 milliseconds ( Bae et al.,

015 ) . 

As mentioned above, more anterior regions might play a role in

iasing working memory representations in sensory cortex to become

ore categorical over time. Our post-hoc analyses showed some evi-

ence for working memory representations in frontal cortices (in left

entro-lateral prefrontal cortex and left premotor cortex). These regions

ave been shown in prior work to represent orientations (Edward F.

ster et al., 2015 ) and Chinese characters ( Yan et al., 2021 ), respec-

ively. In these regions, however, we found no significant differences

etween the variance explained by the two encoding models leaving it

nclear what role these regions play in the representation of color dur-

ng working memory. 

Prior work has investigated categorical representations when sub-

ects are explicitly instructed to categorize stimuli. When naming colors,

or example, areas V1 and V4 demonstrate categorical clustering while

o such clustering was evident when attention was diverted from the

resented colors (Brouwer and Heeger, 2013). Similarly for orientation,

otion and location stimuli, prior work (Ester et al., 2020; Freedman

t al., 2001; Freedman and Assad, 2006) has shown that when subjects

re trained to categorize stimuli into two arbitrary classes neural repre-

entations across visual, parietal, and prefrontal cortices can exhibit cat-

gorical properties. One fMRI study in particular, showed that orienta-

ion selective responses in early visual cortex are biased towards the cen-

er of the category (Ester et al., 2020). This finding resembles changes in

rientation representations due to mental rotation ( Albers et al., 2013 )

iving rise to the question whether categorical responses are a result

f entrained categorical tuning or a rotation-like mental operation that

aximizes the discriminability of the stimulus with respect to category

see discussion in Ester et al., 2020). Here, however, we demonstrate

hat mnemonic representations are categorical in visual cortex in the

bsence of any explicit or implicit instruction to categorize the colors

nd while subjects perform a task that actively encourages them to an-

wer precisely. The similarity with categorical responses during color

aming (Brouwer and Heeger, 2013), however, suggests that subjects

re silently naming color stimuli during working memory as a rehearsal

r encoding strategy. Prior work has suggested that such elaboration

an improve performance in working memory tasks (Souza et al., 2021;

ouza and Oberauer, 2018). Prior work has only found categorical bi-

ses in a non-categorization working memory task in prefrontal cortex

here spatial responses appear to resemble the quadrant structure of

he visual field ( Leavitt et al., 2018 ). 
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In V1, we found that neither model outperformed the other. Prior

ork ( Brouwer and Heeger, 2009 ) has suggested that V1 seems to har-

or a fundamentally different discontinuous code (with respect to hue)

ased on opponent colors which is not reflected by either model. Further

esearch is needed to investigate the vast space of potential color encod-

ng models to give more insight into the properties and determinants of

eural coding during working memory and perception. 
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