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ABSTRACT

This work is devoted to the study of covering properties both in L-fuzzy 
topological spaces and in smooth L-fuzzy topological spaces , that is the fuzzy 
spaces in Sostak's sense, where L is a fuzzy lattice . Based on the satisfactory 
theory of L-fuzzy compactness build up by W arner, McLean and Kudri, 
good definitions o f feeble compactness and P-closedness are introduced and 
studied. A unification theory for good L-fuzzy covering axioms is provided.

Following the lines o f L-fuzzy compactness, we suggest two kinds o f L-fuzzy 
relative compactness as in general topology, study some o f their properties 
and prove that these notions are good extensions o f the corresponding 
ordinary versions.

We also present L-fuzzy versions of R-compactness , weak compactness and 
0-rigidity and discuss some of their properties.

By introducing 'a-Scott continuous functions', a 'goodness o f  extension' criterion 
for smooth fuzzy topological properties is established. We propose a good 
definition of compactness, which we call 'smooth compactness' in smooth 
L-fuzzy topological spaces. Smooth compactness turns out to be an extension 
of L-fuzzy compactness to smooth L-fuzzy topological spaces. We study some 
properties of smooth compactness and obtain different characterizations. As an 
extension of the fuzzy Hausdorffness defined by Warner and M cLean, 'smooth 
Hausdorffness' is introduced in smooth L-fuzzy topological spaces. Good definitions 
of smooth countable compactness, smooth Lindelofness and smooth local compactness 
are introduced and some of their properties studied.
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NOMENCLATURE

The following list contains the most frequently used classical symbols in this 

thesis. Afterwards a list of the most frequently used fuzzy notations will be given.

N the set of the natural numbers

0 the empty set

1 the closed unit interval [0 ,1 ]

L a lattice

<,,i partial order relation and its negation

V join

A meet

' order reversing involution

0 ,1  the smallest and the largest element o f a lattice L

Pr (L) the set of all prime elements of a lattice L

M (L) the set o f all union irreducible ( or coprime) elements of a lattice L

a«b a is way below b

P (a) the union of all minimal sets relative to a

P‘(a )  the intersection of P (a) and M(L) where aeL

2<r) the family of all finite subsets of a collection F

xeX x is an element of X
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xiX

X\A

V

P(X)

Xa

( î)ieJ

f :X -Y

f(x)

f'(y )

f(A) 

f ’‘(A)

<1a

(X,T)

d(A)

int(A)

x is not an element of X 

the set {x : xeX , xcA} 

the quantifier " for each " 

the power set of X 

the characteristic function of A

the relation " is properly contained in 11 on a power set and its 

negation

the relation " is contained in " on a power set and its negation

indexed family of sets

the union of the family (Aj)i6j

the intersection of the family (Ai)j(=J

a function from X to Y

the image of x under the function f

the inverse image of y under the function f

the image of A under the function f

the inverse image of A under the function f

the restriction of the function f  to the set A

a topological space

the closure of the set A

the interior o f the set A
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Now we give a list of the most frequently used fuzzy notations.

Lx the set of ail L-fozzy sets on X

0 the empty fuzzy set on X

X the foll fuzzy set on X

r the complément of an L-fuzzy set f

Suppf the support of an L-fuzzy set f

pr(Lx) the set of ail prime éléments o f Lx

M(LX) the set of ail coprime éléments of Lx

Xp an L-fuzzy point

*a a coprime element o f Lx

Xp€f the L-fuzzy point jq, is a member of the L-fuzzy set f

v (€Jf, the join o f the family (QiFj of L-fuzzy sets

Ajejfj the meet of the family (QieJ o f L-fuzzy sets

f(g) the image of an L-fuzzy set g under a fonction f

f ' ( g ) the inverse image of an L-fozzy set g under a fonction f

(̂ m)meD a net in X of term SmeM(Lx)

SuppSm the support of the term Sm of a net (Sm)mFD

h(Sm) the height of the term Sm of a net

( xm )mPDm an a-net of term xma where xm is its support and a m its heightm

(X,T) an L-fozzy topological space

(X ,tY) a subspace of an L-fozzy topological space (X,x)
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cl(f) the closure of the L-fiizzy set f

m t(f) the interior of the L-fiizzy set f

scl(f) the semi-closure of the L-fuzzy set f

sint(f ) the semi-interior of the L-fuzzy set f

P d (f) the pre-closure of the L-fuzzy set f

piiit(f) the pre-interior of the L-fuzzy set f

0-cl(f ) the 0-closure of the L-fuzzy set f

0-int(f ) the 0-interior of the L-fuzzy set f

8 -c l(f) the 8 -closure o f the L-fuzzy set f

8-int(f ) the 6 -interior of the L-fuzzy set f

o>(T) the set of all continuous functions from a topological space 

(X,T) to a fuzzy lattice L with its Scott topology

(X,co(T)) an induced L-fuzzy topological space

<P(T) the set of all 'completely Scott continuous' functions from a 

topological space (X,T) to a fuzzy lattice L with its Scott 

topology

(X,(p(T)) a completely induced L-fuzzy topological space

the ordinary topology { P '({ teL  : tip } ) : f e t  } on X where t  is 

an L-fuzzy topology on X and pepr(L)

Ts the ordinary topology with the base { RcX : R is regular open 

in (X,T) } where (X,T) is an ordinary topological space

10



iP( 0

•l (^)

Gp

P

(X,T)

(X ,rY)

<i>

T(g)

* (g )

G) j

(X ,g)t )

(X,Tp)

the set { xeX : f(x)i p } where f  is an L-fiizzy set on X and 

pepr(L)

the ordinary topology with subbase { ip(f)  : pepr(L) and fex }

where (X,t ) is an L-fiizzy topological space

the set { xeX : g(x)>p' } where g is an L-fuzzy set on X and

pepr(L)

an a-level filter base 

a smooth L-fuzzy topological space

a smooth subspace of a smooth L-fuzzy topological space (X,Y)

the degree of closedness on X

the degree o f openness of an L-fuzzy set g

the degree o f closedness of an L-fuzzy set g

the smooth L-fuzzy topology on X induced by an ordinary

topology T

an induced smooth L-fuzzy topological space 

the ordinary topology on X with the base { { f _1({teL : t i p } ) : 

Y(f)i p } where Y is a smooth L-fuzzy topology on X and 

pepr(L); this topology is called a "prime level space" of (X,Y)



INTRODUCTION

I wish to begin with some examples simply to express the notions of 

'fuzziness ' and a 'fuzzy set '.

Hold an apple in your hand . Is it an apple ? Yes . The object in your hand 

belongs to the set o f apples - all apples anywhere ever . Now take a bite, chew 

it and swallow i t . Is the object in your hand still an apple ? Yes or No? Take 

another bite. Is the new object still an apple? Take another bite , and so on 

down to void .

The apple changes from a thing to nonthing, to nothing . But where does it 

cross the line from apple to nonapple? When you hold a half o f an apple in your 

hand , the thing in your hand is as much of an apple as it is not . The half apple 

foils all-or-none descriptions. The half apple is a fuzzy app le , the grey 

between the black and the white . Fuzziness is greyness.

Consider a group of people for instance . Let's ask some questions to them. 

How many of you are male? Raise your hands . Male hands go up and female 

hands stay down . That gives a set and it is not a fuzzy . How many of you 

are female? Raise your hands. The reverse happens and again the audience splits 

into tw o , black and white sets , males and nonmales or females and nonfemales. 

Then comes a harder question : How many of you are satisfied with your jobs? 

The hands bob up and down . A confident fe w , point their arms straight up or
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do not raise them at a ll. Most persons are in between . That defines one fuzzy 

set , the set of those satisfied with their jobs , the happily employed . Now 

hands down. How many of you are not satisfied with your jobs? Many o f the 

same hands go up again and bob up and down . This defines another fuzzy set, 

the unhappily employed, the opposite or the negation of the first fuzzy set. 

The job sets differ from the male-female sets . The set of males does not 

intersect the set of females . No one is both male and female . Every one is 

either male or female : A or not-A . But most people are both satisfied and not 

satisfied with their jobs : A and not-A . Few are 100% satisfied or 100% 

unsatisfied .

The audience example shows the essence of fuzziness : fuzzy things resemble 

fuzzy nonthings . A resembles not-A . Fuzzy things have vague boundaries with 

their opposites , with nonthings .

Fuzziness has a formal name in science : multivalence. The opposite o f fuzziness 

is bivalence or two-valuedness; two ways to answer each question : true or false, 

1 or 0 . Fuzziness means multivalence. It means three or more options, perhaps 

an infinite spectrum of options instead of just two extremes with no greyness . It 

means analog instead of binary; infinite shades of grey between black and white.

In 1965 Lotfi Zadeh [105] published a paper called "Fuzzy S e ts" . The paper 

applied the multivalued logic to sets or groups o f objects . Zadeh put the label 

"fuzzy” on these vague or multivalued sets - sets whose elements belong to it

13



to different degrees , like the set of people satisfied with their jobs. Consider 

again the apple you hold in your hand and bite . At first what you hold in your 

hand is 100% an apple. Or 100% of the apple is there. Or your apple belongs 

100% to the set of whole apples. As you bite chunks out o f the apple, the 

percentage falls from 100% all the way down to 0% when you have eaten the 

apple About half way through the process you hold the half apple or 50% 

apple . Fit values describe the apple's descent from total presence to total 

absence; from the bit value 1 down to the bit value 0 ,  where ' b i t '  and 'fit'

stand respectively for ' binary unit ' and 'fuzzy unit '. In this sense fit values

fill in between bit values . The opposite of 1 is 0 and of 0 is 1 . The 

opposites, A and not-A , reflect about the midpoint fit value o f 1/2 . The bit 

values 0 and 1 lie the same distance from the midpoint. The same holds true 

for a fit value and its opposite . The opposite of 3/4 is 1/4 , the opposite of

1/3 is 2/3 and so on . This means that the opposite o f 1/2 is 1/2 , i.e. A

equals not-A at the midpoint .

As understood from the above examples , a fuzzy set is a sort of 

generalized ' characteristic function ' , whose ' degrees o f membership ' can be 

more general than 1 or 0 , ' Yes ' or ' No ' ,  that is , a membership function 

which describes the gradual transition from membership to non-membership . As 

a resu lt, fuzzy set theory can be considered as a mathematical model 

for imprecise concepts .
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The notion o f a fuzzy set has caused great interest among both pure and 

applied mathematicians and experts in other areas, who use mathematical ideas 

and methods in their research . After Zadeh introduced the theory o f fuzzy 

sets in 1965 , extensive work has been done on these sets by many 

mathematicians, which caused the formation of a new mathematical field 

called " Fuzzy Mathematics " . Since then fuzzy sets have been applied to 

several fields such as Artificial Intelligence , Control Theory, Expert Systems, 

Pattern Recognition , Economics, Management and so on .

In his classical paper, Zadeh has defined fuzzy sets in terms of function from 

an ordinary set to the closed unit interval and introduced other basic notions 

such as fuzzy union , intersection and complement , all of which have now 

become standard . These notions were explored in 1967 by Goguen [33] who 

extended the concept of fuzzy set by replacing the closed unit interval by an 

arbitrary lattice; thus leading to the definition o f L-fuzzy sets corresponding to 

a given lattice L .

General Topology was one of the first branches o f pure mathematics to 

which fuzzy sets have been applied systematically. It was in 1968, that is, three 

years after Zadeh's paper had appeared, that Chang [16] made the first attempt 

to define the notion of a fuzzy topological space . Chang has also introduced 

fuzzy image and fuzzy inverse image under a function, which are now standard, 

and extended a number of properties of functions, such as continuity, to fuzzy 

topology .
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Since the late seventies, the intensity of research on " Fuzzy Topology " , that 

is a branch o f Fuzzy Mathematics has sharply increased . Different definitions 

of fuzzy topology and several approaches to fuzzy topology have been pointed 

out in the literature . After Chang , in 1976 Lowen [49] introduced another 

definition of fuzzy topology which requires that a fuzzy topology should have one 

more axiom , namely it includes all the constant fuzzy sets . In [49] and [52], 

Lowen and Wuyts have given the reasons and advantages o f this definition. 

However, Rodabaugh [78] has pointed out some reasons to justify Chang's 

definition of fuzzy topology, that is , without demanding that all the constant 

are open . The third definition of fuzzy topology is due to Hutton [37], He has 

defined the so-called ’ pointless fuzzy topological spaces' which depend purely 

upon the lattice structure of the collection of fuzzy sets . In [79], Sarma and 

Ajmal presented another approach for fuzzy topology which is based on 

fuzzy nets . In [ 79, 80, 81 ] they pointed out that their category is a subcategory 

o f the Chang category and has some advantages.

As Sostak [84] remarked in 1985, so far in all the definitions of fuzzy topology, 

fuzzy are only sets but the so-called fuzzy topology is always a crisp subfamily 

of the fuzzy power set of a non-empty classical set which is closed for finite 

intersections and any union operations . M oreover, fuzziness in the concept of 

openness of a fuzzy set has not been considered, which seems to be a drawback 

in the process of fuzzification of the concept of classical topological spaces. 

Therefore, Sostak [84] defined a new kind of fuzzy topology in 1985.
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The first object o f Sostak's approach is to consider a fuzzy topology to be a 

fuzzy subset on the fuzzy power set of an ordinary fuzzy s e t . The second one 

is to allow fuzzy sets to be open to some degree, and this degree may range 

from 1 ( 'completely open fuzzy se ts ') to 0 ( 'completely non-open fuzzy sets' ) . 

In [ 84, 85, 86 ], Sostak has developed the theory o f this new kind of fuzzy 

topological spaces . With the same objective o f Sostak's approach , in 1991 

Mingsheng [62] introduced the concept of a bifuzzy topology which was 

based on fuzzy logic and practically the same as Sostak's definition of fuzzy 

topology. This new definition of fuzzy topological space was later rephrased and 

studied by several authors [ 17, 18, 23, 26, 28, 31, 36, 77, 88 ], In 1992, 

Chattopadhyay , Hazra and Samanta [17] have redefined the same concept 

independently, called such a space " a gradation of openness " , and investigated 

some of its properties. Also in the same year Ramadan [77] presented the same 

definition under the name of 'smooth topological spaces' . We shall call this new 

kind o f fuzzy topological spaces as " smooth fuzzy topological spaces " and 

devote the last chapter of the thesis to the study of such spaces .

Many mathematicians have tried to formulate a reasonable definition o f fuzzy 

point and its membership to a fuzzy s e t . First attempt to define these notions 

was made by Wong [103] in 1974. B ut, as Gottwald [35] has shown, some of 

the results obtained by Wong were not correct and Wong's definition of 

fuzzy point excluded the so called crisp points that are classical points.
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Thus, his definitions of fuzzy point and membership have turned out to be 

not a good choice. In 1980, Pu and Liu [75] introduced a definition o f fuzzy 

point ( that includes crisp points) and the notion of 'quasi-coincident' ( not 

belonging to the complement, where belonging is taken as ^ ) . T h is, together 

with their fuzzy membership relation , has provided a fuzzy extension of the 

classical membership. Pu and Liu have considered these concepts only in the 

I-fuzzy settings, where I stands for the closed unit interval [0 ,1], Taking 

fuzziness with respect to a fuzzy lattice L , a completely distributive lattice with 

an order reversing involution , Wang [93] has introduced special fuzzy points 

called molecules which take only union-irreducible values in L , and replaced 

membership with the concept of remote neighbourhood ( R-neighbourhood ), 

where the relation involved is i . In 1991 , Warner [97] , considering a frame L, 

defined L-fuzzy points locale-wise by frame homomorphisms to the two-point set, 

and so corresponding bijectiveiy to prime elements . Membership is defined in 

terms of i , just as in Wang's molecular theory .

Another big step in the development of fuzzy topology is the invention of the 

so-called "goodness o f  extension criterion " by Low en[51], which was the 

result of his recognition of the special place o f the fuzzy topology defined 

by lower semi-continuous functions . We shall refer to such a fuzzy topology as 

"the induced fuzzy topology ". This goodness criterion has been used as a 

guide for the fuzzification o f classical concepts. In 1990, Warner [96] generalised 

this criterion to L-fuzzy topological spaces , where L is a continuous frame.

18



The notion o f compactness is one of the most important concepts in general 

topology. Therefore, the problem of generalisation of the classical compactness 

to fuzzy topological spaces has been intensively discussed over almost 30 years. 

Many papers on fuzzy compactness have been published and various kinds 

o f fuzzy compactness [ e g. 16, 30, 39, 49, 51, 59, 92, 98, 108 ] have been 

presented and studied. Among these compactnesses , the fuzzy compactness 

introduced by Warner and McLean [98] and extended to arbitrary fuzzy sets by 

Kudri [ 39, 45 ] possesses more satisfactory properties than others . Based on this 

fuzzy compactness, a series of works have been done [ 39-47, 90, 98-100 ] . It 

was proved that a compact Hausdorff fuzzy topological space is an induced 

space[98]. Good extensions of some weaker and stronger forms of compactness 

( e.g. almost, near, semi and strong ) and some other covering properties ( e.g. 

S-closedness , RS-compactness, paracompactness and local compactness ) were 

introduced and studied by Kudri and W arner. As a result, it is sufficient 

for an adequate compactness theory in fuzzy topology, being defined a 

good extension [98] , defined on arbitrary fuzzy sets [39] , proposed other 

fuzzy covering properties, and with a general Tychonoff theorem [45], We 

therefore adopt this fuzzy compactness in fuzzy topological spaces, that is, our 

work is mainly based on this compactness theory .

19



Let us outline briefly the contents of the thesis . For the sake o f clarity, we 

divide the thesis in nine chapters . In the first two chapters we shall try to 

make the reader familiar with the basic notions, constructions and results in this 

area . In Chapter I we present minimal amount o f information on lattice theory 

and fuzzy sets needed for reading the main body o f the work .

Chapter II is devoted to L-fuzzy topological spaces where L i s a  fuzzy lattice . 

We present some known assertions concerning open L-fuzzy sets, bases and 

various forms of fuzzy continuity . We also give the definitions o f some special 

L-fuzzy topological spaces and introduce a good definition o f completely 

Hausdorfihess in L-fuzzy topological spaces . We devote much attention to the 

"induced L-fuzzy topological spaces" as well as the "completely induced L-fuzzy 

topological spaces" . Some useful results in the induced L-fuzzy topological 

spaces are presented and the goodness of completely HausdorfFness are 

obtained. To construct completely induced L-fuzzy topological spaces, we 

introduce " completely Scott continuity " as a generalisation o f the "completely 

lower semi-continuity" proposed by Bhamuk and Mukherjee [4 ] . Thus we obtain 

an L-fuzzy topological space from a given ordinary topological space and study 

some properties of such spaces . Completely Scott continuous functions play an 

important role for studying completely induced L-fuzzy topological spaces .

In Chapter H I, since our work is based on the L- fuzzy compactness introduced 

by Warner and McLean [ 98 ] and extended to arbitrary L-fuzzy sets by

20



Kudri [39] , we present the basic properties of this compactness and related 

concepts which will be used in the forthcoming chapters . We also give 

different formulations of these covering axioms and characterize them in 

terms o f filter bases .

In Chapters IV and V we propose two more covering properties; feeble 

compactness and P-closedness , in L-fuzzy topological spaces . We prove that 

they are good extensions of the corresponding notions in general topology . 

Different characterizations of these covering axioms are obtained and some of 

their properties studied .

Chapter VI focuses on the unification theory of covering properties in L-fuzzy 

topological spaces .

In Chapter VII we study relative compactness in L-fuzzy topological spaces . We 

propose two good definitions o f fuzzy relative compactness as in general 

topology . We obtain different characterizations of them and discuss some of 

their properties .

Chapter VIII is reserved for the study of some weaker forms o f L-fuzzy 

compactness ; namely R-compactness, weak compactness and 0-rigidity in 

L-fuzzy topological spaces .
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The last chapter o f the thesis is dedicated to the study o f compactness in 

smooth L-fuzzy topological spaces . After presenting some basic definitions in 

such spaces we , introducing " a-Scott continuity " , build up " goodness o f  

extension " criterion for smooth L-fuzzy topological spaces . Then we propose 

a good definition of compactness , which we call " smooth compactness ” , in 

smooth L-fuzzy topological spaces . Smooth compactness turns out to be an 

extension o f L-fuzzy compactness defined in [39,98] to smooth L-fuzzy 

topological spaces . We study some properties of smooth compactness and obtain 

different characterizations . As an extension of fuzzy Hausdorffness defined in 

[98], smooth Hausdorffness is introduced in smooth L-fuzzy topological spaces. 

We also propose good definitions o f smooth countable compactness , smooth 

Lindelofness and smooth local compactness and study some of their properties.

Throughout the thesis, definitions, propositions and theorems adopted from other 

authors are attributed. All unattributed definitions and results should be understood 

to be our own contributions.
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CHAPTER 1

SOME LATTICE THEORY AND L-FUZZY SET THEORY

In this chapter, we recall some basic definitions and results on lattice theory 

and L-fuzzy set theory which will be used throughout this work. Our aim is to 

make this work self-contained and readable.

For the sake of clarity, we divide this chapter into three sections :

The first section is devoted to some essential definitions and related properties 

in lattice theory .

The second section contains the standard definitions and some properties related 

to L-fuzzy sets .

The third section is reserved for the notions of L-fuzzy po in t, net and a-net.
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1.1. Some Lattice Theory

Definition 1.1.1 ( Birkhoff [9 ]) :

A directed set D is a set with a partial order '>' such that for each pair

a , b of elements of D , there exists an element c of D with c ^ a  and c ^ b.

Definition 1.1.2 ( Birkhoff [9] ) :

A lattice L = L ( < , A , V )  is a set L equipped with a partial order , 

in which every finite subset has a join and m eet, where meet and join are 

denoted by A and V respectively.

Definition 1.1.3 ( Birkhoff [9] ) :

A complete lattice is a lattice in which every set has a join and a m ee t. We

denote the largest element of L , VL , by 1 and the smallest element o f L , AL ,

by 0 . We consider 0 as the join of the empty set and 1 as the meet of 

the empty s e t .

Definition 1.1.4 ( Johnstone [38] ) :

A locale or a frame L is a complete lattice satisfying the infinite distributive law:

a A ( VS ) = V { aA s : se S } 

for all aeL and every Sc L .
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A lattice L is called completely distributive if and only if it is complete and the 

following condition holds :

A  iel (  VjeJ(i) A  j )  =  V feK (  A  ifI a^ f(j) )  ,

where { a^j: i e l , jeJ(i) } c  L and K is the set of all functions f : I -  u J(i) such 

that for every ieJ , f(i) e J(i) .

Definition 1.1.6 ( Gierz et al. [32] ) :

Let L be a complete lattice . We say that a is way below b , in symbols a«b, 

if and only if for any directed subset D of L the relation b < VD always implies 

the existence of deD with a < d .

Definition 1.1.7 ( Gierz et al. [32] ) :

A lattice L is called a continuous lattice if and only if L is complete and 

satisfies the following :

whenever a i b ,  then there is a yeL such that y « a and y i  b .

Proposition 1.1.8 :

Every completely distributive lattice is a continuous lattice .

Proof: See pp:59 Corollary 2.5 in Gierz et al. [32] .

Definition 1.1.9 ( Birkhoff [9 ]) :

An order reversing involution on a lattice L is a map x -  x ' from L to L

Definition 1.1.5 ( Gierz et al. [32] ) :
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satisfying the following conditions :

(i) If a ^ b then b' < a'

(u) ( a' )' = a

Definition 1.1.10 ( Hutton [37] ) :

A fuzzy lattice is a completely distributive lattice with an order reversing 

involution.

Proposition 1.1.11 :

Let ( L, ' )  be a complete lattice with an order reversing involution . Then for 

any family { a; : ieJ L we have

(0 ( V ieJ Hi y =  A ieJ a/

(») (A ieJa1)' = V i6jai'

Proof: See Theorem 17.1 in [10],

Definition 1.1.12 ( Gierz et al. [32] ) :

An element p o f a lattice L is called prime if and only if p*l and whenever 

a,beL with a A b  s p then a < p or b < p .

The set of all prime elements of a lattice L will be denoted by pr(L) .

Definition 1.1.13 ( Gierz et al. [32] ) :

An element a of a lattice L is called coprime or union irreducible if and only 

if a^O and whenever a,beL with a < a V b then a  < a or a < b.
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The set of all coprime elements of a lattice L will be denoted by M (L) .

It is evident that in a lattice with an order reversing involution, we have 

pe pr(L) if and only if p'e M(L) .

Proposition 1.1.14 :

In a completely distributive lattice, every element is a join o f coprime elements 

and therefore every element is a meet of prime elements .

Proof: See pp : 355 proposition 2.17 in Wang [94] .

Definition 1.1.15 [ 94 , 108 ] :

Let L be a complete lattice, a e L  and <a± B c L .  B is called a minimal set 

relative to a if and only if the following conditions hold :

(i) V B = a

(¡¡) for each subset A of L satisfying V A > a for each be B , there exists ae A 

such that b< a .

Remark 1.1.16 ( Wang [94] ) :

The union of minimal sets relative to a  is a minimal set relative to a . We shall denote 

the union of all minimal sets relative to a by P (a) . We shall denote the set 

P(a)nM (L ) by p*(ct) .

Proposition 1.1.17 :

Let L be a complete lattice . Then L is a completely distributive lattice if and
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only if for every a e L ,  a has a minimal set and hence P (a) exists.

Proof : See pp : 354 Theorem 2.11 in Wang [94] .

Proposition 1.1.18 :

Let L be a completely distributive lattice . If a e  L\{0} , then p*(a) is a 

minimal set relative to a .  Furthermore, if c c e M(L) then P*(a) is a directed set. 

Proof: See pp:68 lemma 4.1 in Zhao [108] .

Example 1.1.19 ( Wang [94] ) :

Let L = [0, 1] . Then, pr(L) = [0, 1), M(L) = (0, 1] , p(0) = { 0 } and for every 

a e  (0, 1] , P(cc) = [0, a ) .

Definition 1.1.20 ( Gierz et al. [32] ) :

Let L be a complete lattice. A subset U of L is called Scott open if and only 

if it is an upper set and is inaccessible by directed joins, i.e. :

(i) if aeU  and a<b then b e U,

(ii) If D is a directed subset of L with V D  e U  then there is a deD with deU. 

The collection of all Scott open subsets o f L is a topology on L and is called 

Scott topology of L .

Proposition 1.1.21 :

If L is a continuous lattice, then the sets of the form { a e L :  e0 « a } form a basis 

for the Scott topology on L .

Proof: See Remark 3.2 pp : 68 and Proposition 1.10 (ii) pp : 104 in [32],
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The Scott topology of a completely distributive lattice L is generated by the sets 

o f the form { te L : H p } , where pe p r(L ).

Proof: See pp : 104, proposition 2.1 in Warner and McLean [98] .

Proposition 1.1.22 :
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1.2. L-fuzzy Sets

In the following, let X be a nonempty set and let L = L( <, V, A ,' ) be a fuzzy 

lattice with a smallest element 0 and a largest element 1 ( 0 * 1 )  and with an 

order reversing involution ' . We consider 0 as the join o f the empty set and 

1 as the meet o f the empty s e t .

Definition 1.2.1 ( Goguen [33] ) :

An L-fuzzy set f  on X is a function f : X -  L . The set of all L-fuzzy sets on X 

will be denoted by Lx , that i s ,

Lx = { f : f : X -> L is a function }

The L-fuzzy sets on X defined by f(x) = 0 for every xe X and g(x) = 1 for 

every xe X will be denoted by 0 and X , respectively . We call them the 

empty L-fuzzy set and the full L-fuzzy set respectively .

Definition 1.2.2 ( Weiss [101] ) :

A crisp set on X is an ordinary subset of X . In particular , its characteristic 

function from X to L is an L-fuzzy set.

We shall denote the characteristic function of a subset A of X by Xa • 

Remark 1.2.3 ( Goguen [33] ) :

Since L is a fuzzy lattice, Lx is also a fuzzy lattice with the partial ordering
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f s g if and only if f(x) < g(x) for all xe X , for f, g e Lx

and the operations of meet and join as :

(i) ( f  A g ) (x) = f(x) A g(x) for every xe X

(ii) ( f  V g ) (x) = f(x) V g(x) for every xe X

(iii) ( VieJ fj ) (x) = V ieJ f- (x) for every xe X and { f[ : ie J }c Lx

(vi) ( Aiej fj) (x) = V ieJ fj (x) for every xe X and { fj : ie J }c Lx.

The order reversing involution on Lx is the map f  — f T from Lx to Lx ,

where f '  is the L-fuzzy set on X defined by f ' (x) = ( f(x) )' for all xeX.

We shall call f '  the complement of the L-fuzzy set f .

f  V g and f A g are called the union of f  and g and the intersection of f  and

g . We shall read f  < g as " f  is contained in g " .

Definition 1.2.4 (W eiss [101]) :

Let f  be an L-fuzzy set on X . The subset { xeX : f(x) > 0 } o f X is called the

Support of f  and denoted by Supp f , that is , Supp f  = { xeX  : f(x) > 0 } .

Definition 1.2.5 ( Chang [16] ) :

Let X and Y be nonempty ordinary sets and let h : X -  Y be a function .

(i) For an L-fuzzy set g on X , the image of g under h is the L-fuzzy set on Y 

defined by h(g) (y) = V { g(x) : xe h '(y) } for every yeY.

(ii) For an L-fuzzy set f  on Y , the inverse image of f  under h is the L-fiizzy set 

on X defined by h"'(f ) (x) = f ( h (x )) for every xeX .
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Let X and Y be nonempty ordinary se ts , let h : X -  Y be a function and let L 

be a fuzzy lattice . If { g  :ie  J } c  Lx, g, gb g2 e Lx and { fj : ie K } c  LY, 

f, f[, f2eLY then we have the following well-known results :

(i) h -1 ( V ieK f; ) = V ieK h'1 (fj ) and h -1 ( A ieK fj ) = A ieK h"1 (fj )

(Ü) h ( V ieJgi) = v  h (gj ) and h ( A i6j & ) < A ieJ h fe  )

(iii) If f, < f2 then h"’( f, ) < h'1 ( f2 )

(iv) If g, < g2 then h ( g, ) < h ( g2 )

(v) h ( h'1 ( f  ) ) < f . If h is surjective then h ( h " ' ( f ) )  = f .

(vi) h '1 ( h ( g ) ) > g . If h is injective then h"‘ ( h ( g ) )  = g .

(vü) h-I ( f ' )  = (h-I (f ) ) t

(viii) If h is surjective then ( h(g) )' < h(g')

(ix) If h is injective then h(g') < ( h(g) )' and hence if h is bijective then 

h(g') = ( h(g) ) '.

Proof : See [ 16, 55, 76, 104 ]

Proposition 1.2.6 :
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1.3. L-fuzzy Points and Nets

Let L be a fuzzy lattice and X be a nonempty s e t . Warner [97] has determined

pr ( Lx ) = { xp : xe X and pe pr(L) }

where for each x e X  and each pe pr(L), Xp : X -  L is the L-fuzzy set defined by

Definition 1.3.1 ( Warner [97] ) :

These Xp are called the L-fuzzy points of X and an L-fuzzy point Xp is said to 

be a member of an L-fuzzy set f  ( written xpe f  ) if and only if f(x) i  p .

Remark 1.3.2 ( Kudri [45] ) :

Since pr ( Lx ) = { x,, : xe X and pe pr(L) } , the coprime elements o f Lx are 

the L-fuzzy sets xa : X -  L defined by

the prime elements of the fuzzy lattice Lx of all L-fuzzy sets on X . We have

' p if y = x

1 otherwise

a if y = x

0 otherwise

where xe X and a e M (L ) . Thus,

M( Lx ) = { xa : xe X and a e  M(L) } .
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As these xa are identified with the L-fuzzy points Xp of X , we shall refer to 

them as the L-fuzzy points .

When xae M ( L x ) ,  we shall call x and a the support of xa ( x  = Suppxa) and 

the height of xa ( a = h( xa ) ) ,  respectively .

By Proposition 1.1.14, we have that every L-fuzzy set on X is a meet of

L-fuzzy points in pr( Lx ) and hence every L-fuzzy set on X is a join of

L-fuzzy points in M( Lx ) .

Definition 1.3.3 ( Zhao [108] ) :

Let L be a fuzzy lattice , D be a directed set and let X be a nonempty

ordinary se t. A net of L-fuzzy points ( for short a net ) in X is a map

S : D -  iM( Lx ) . For me D , we shall denote S(m) by Sm or xam and the net(*>

S by ( S J meD or (x ™ )meD.
m

Since Sm is an L-fuzzy point in M( Lx ), we shall denote by Supp Sm and h(Sm) 

the support and the height of Sm, respectively .

Definition 1.3.4 ( Kudri [45] ) :

Let fe Lx and let S = (Sm)meD be a net in X . The net S is called a net 

contained in f  if and only if Sm< f  for each me D , i.e. h(Sm) < f  ( Supp Sm ) 

for each me D.
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Definition 1.3.5 ( Zhao [108] ) :

Let a e M(L) . A net is called an a-net if and only if for each

yep*(a), the net h(S) = ( h(S,J )mfD is eventually greater than y ,  i.e. for each 

y ep* (a), there is m0e D such that l^S,,,) > y whenever m>m0 , where h(S„,) is 

the height of the L-fuzzy point Sme M( Lx ) .

If KS,,,) = a for all me D, then we shall say that (Sm)meD is a constant a-net.
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CHAPTER II

L-FUZZY TOPOLOGICAL SPACES

Different definitions of fuzzy topology have appeared in the literature since 

Chang [16] introduced the concept in 1968. In 1976, Lowen [49] has redefined 

the concept of fuzzy topology in a somewhat different way. Lowen's definition 

requires that a fuzzy topology should have one more axiom , namely it includes 

the constant fuzzy sets. In 1985, Sostak [84] has defined a new kind o f fuzzy 

topology which we shall call ' smooth fuzzy topology'.  Here we adopt Chang's 

definition of fuzzy topology and consider Lowen's definition as a special case . 

M oreover , we shall devote the last chapter of the thesis to smooth fuzzy 

topological spaces .

This chapter is divided into four sections :

In section 1 , we present the basic notions and results o f L-fuzzy topology that 

will be used throughout the thesis .

Section 2 contains some special L-fuzzy topological spaces .

The third section is devoted to induced L-fuzzy topological spaces and some 

related properties . We prove that complete Hausdorffhess in L-fuzzy topological 

spaces is a good extension .
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In the fourth section, we introduce 1 completely Scott continuous functions' from 

a topological space to a fuzzy lattice with its Scott topology and study some 

of their properties . We prove that the set o f completely Scott continuous 

functions is an L-fiizzy topology that will be called ' completely induced L-fuzzy 

topology We also get a functor between the category o f semi-regular 

topological spaces and the category of L-fuzzy topological spaces .
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2.1. Some Basic Definitions and Results

In the following , let X be a nonempty ordinary set and let L = L ( s ,V , A , 1) 

be a fuzzy lattice with a smallest element 0 and a largest element 1 ( 0 * 1 )  and 

with an order reversing involution ' .

Definition 2.1.1 (Chang [1 6 ]):

An L-fuzzy topology on X is a subset x of Lx satisfying the following 

properties :

(i) the L-fuzzy sets 0 and X belong to x .

(ii) if f , g e x then fAg e x .

(¡ii) if { f[ : i e J } c  x then V ( e x  .

The pair ( X , x ) is called an L-fuzzy topological space ( for short L-fts ) .

An L-fuzzy set f  in an L-fuzzy topological space ( X , x ) is called open or 

x -open if and only if fe x . We say that fe Lx is closed or x-closed in the 

L-fts ( X ,  x ) if and only if f 'e  x . We say that fe Lx is clopen if and only if 

it is both open and closed .

Definition 2.1.2 ( Gantner et al. [30] ) :

Let (X, x) be an L-fts and Ac X . The family xA={ f | A : fex } is an L-fuzzy 

topology on A , where f | A is the restriction o f feLx on A . We say that 

( A , x a ) is an L-fuzzy subspace of (X, x) .
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Let (X, x) be an L-fts. A subfamily 6 of t  is said to be a base for x if and

only if for each fe x , there is a subfamily q  o f 6 such that f = V geeg .

Definition 2.1.4 (W ong [103]) :

Let (X, x) be an L-fts. A subfamily of x is said to be a subbase for x if 

and only if the family of all finite intersection o f members of S£ forms a base for x .

Lemma 2.1.5 :

Let (X, x) be an L-fts and fe Lx . Then fe x if and only if for every Xpepr(Lx) 

with Xpe f  (i.e. fix)* p ) ,  there is ge x such that XpC g < f .

Proof: See Proposition 3.1.4 in Kudri [45] pp : 43 .

Lemma 2.1.6 :

Let (X, x) be an L-fts and k  be a nonempty family o f L-fuzzy sets . Then an

L-fuzzy set f  is a union of elements of k  if and only if for all x^e pr(Lx) with

Xpe f  , there is ge k  such that x,,e g < f  .

Proof : See Lemma 3.2.6 in Kudri [45], pp : 53 .

Definition 2.1.7 ( Pu and Liu [75] ) :

Let (X, x) be an L-fts and fe Lx . The interior of f ,  i n t ( f )  and the closure 

of f ,  c l ( f ) ,  are defined as follows :

int ( f  ) = V { gex : g < f  }

cl ( f ) = A {ge Lx : g > f  and g'ex }

Definition 2.1.3 (Wong [103]) :
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Let (X, x) be an L-fts and f , ge Lx . Then we have the following :

(i) in t( f )  is the largest open L-fuzzy set contained in f  and int ( int ( f ) ) = f

(ii) c l ( f )  is the smallest closed L-fuzzy set containing f  and c l ( c l ( f ) )  = f . 

(in) if f < g  then int ( f ) < int (g) and cl ( f ) < cl (g) .

(iv) (cl (f ))' = int ( f ') and (int(f))' = c l(f ') .

(v) for a family (f- )j(f j of L-fuzzy sets we have :

V icJc l ( i ) <  d ( V ieJ$ )  and V ieJ int(fj) < int (V jeJ f; )

If J is finite then V jeJ ci(fj ) = cl (V i(?J fj ) .

Proof: See [ 3 ,7 5  ].

Definition 2.1.9 :

Let (X, t ) be an L-fts and let fe Lx . The L-fuzzy set f  is called :

(i) pre-open [82] iff f< int(cl(f)) .

(ii) pre-closed [82] iff cl(int(f))  ̂ f .

(iii) feebly open or a-open [8] iff f  < int(cl(int(f))) .

(iv) feebly closed or a-closed [8] iff cl(int(cl(f))) < f .

(v) regularly open [3] iff f  = int(cl(f)) .

(vi) regularly closed [3] iff f  = cl(int(f)) .

(vii) semi open [3] iff there exists gex such that g ^ f   ̂ cl(g) .

(viii) semi closed [3] iff there exists a closed L-fuzzy set g such that int(g)< f< g

Proposition 2.1.8 :
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Remark 2.1.10 ( Azad [3 ]) :

(i) The closure of every open L-fuzzy set is regularly closed .

(ii) The interior of every closed L-fuzzy set is regularly open.

(Hi) For every L-fuzzy set f , int(cl(f)) is regularly open and cl(int(f)) is 

regularly closed .

Definition 2.1.11 [ 8 2 ,2 2  ] :

Let (X, t ) be an L-fts and fe Lx . The pre-interior of f , p i n t ( f ) ,  the pre-

closure of f , pcl ( f ) ,  and the semi-interior of f  , s int( f ) ,  the semi-closure 

of f , scl(f ) , are defined as follows :

p i n t ( f )  = V { geLx : g is pre-open and g < f } 

pci ( f ) = A {he Lx : h > f  and h is pre-closed } 

sint ( f ) = V { geLx : g is semi-open and g < f  } 

s c l ( f )  = A {he Lx : h ^ f  and h is semi-closed }

From the definitions it follows that f  < pcl(f) < c l(f) ,  in t(f) < pint(f) < f  and 

f ^  scl(f) < c l( f ) ,  int(f) < sint(f) < f  for every fe Lx . It is also easy to see 

that f  is pre-closed (p re-open) iff pci(f) = f  (p in t(f)  = f )  and f  is semi- 

closed (semi-open ) iff scl(f) = f  (s in t(f) = f ) .

Definition 2.1.12 :

Let (X, t ) be an L-fts and let fe Lx . The L-fuzzy set f  is called :

(i) 0-open [ 2 ,6 6 ,7 4 ,1 0 7  ] if and only if for all Xpepr(Lx) with x,,ef 

( i.e. f(x)ip  ) ,  there is an open L-fuzzy set g such that cl(g) < f  and Xpeg .
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(ii) 0-cIosed [ 2, 66, 74, 107 ] if and only if for all Xpepr(Lx) with XpSf, 

there is a closed L-fuzzy set g such that f  ^ int(g) and XpEg .

(iii) 6-open [ 1, 66, 83, 74, 107 ] if and only if for all Xp£pr(Lx) with Xp6f,

there is a regularly open L-fuzzy set g such that g < f  and x,,eg .

(iv) 6-closed [ 1, 66, 83, 74, 107 ] if and only if for all Xp£pr(Lx) with Xp£f,

there is a regularly closed L-fuzzy set g such that f  < g and Xp£g .

From Lemma 2 .1 .5 , Remark 2.1.10 (iii) and the definitions, it is evident that 

every 0-open L-fuzzy set is 6 -open and every 6 -open L-fuzzy set is open.

Definition 2.1.13 [ 1, 2, 66, 83, 74, 107 ] :

Let (X, t ) be an L-fts and fe Lx . The 0-interior of f ,  0 - in t f ,  the 0-closure 

of f ,  0-cl ( f ) ,  and the 6 -interior of f , 5 - i n t ( f ) ,  the 6 -closure of f , 6 - c l ( f ) ,

are defined as follows :

0-int ( f ) = V { heLx : hex and cl(h)< f  }

0-cl ( f ) = A {ge Lx : g is closed and f< int(g) }

6-int ( f ) = V { heLx : h is 6 -open and h< f  }

6-cl ( f ) = A {ge Lx : g is 6- closed and f< g }

From the definitions it is easy to see the following : 

f  < cl(f) ^ 5-cl(f) < 0-cl(f) and 0-int(f) ^ 6-int(f) < int(f) < f .

Proposition 2.1.14 :

Let (X  t ) be an L-fts . For any open L-fuzzy set, we have c l(f) = 0-cl(f) = 6-cl(f). 

Proof: See [ 66, 74, 107 ] .
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Let (X, t )  be an L-fts and fe Lx .

(i) f  is 0-closed ( 0-open ) if and only if 0-cl(f) = f  ( 0-int(f) = f  ) .

(ii) f  is 6 -closed ( 6 -open) if and only if 5-cl(f) = f  (6 -int(f) = f ) .

P roof: See [ 1 , 2 ] ,

Definition 2.1.16 :

Let (X  t ) be an L-fts, let xa be an L-fuzzy point in M( Lx ) and let S =(Sm)m(?D

be a n e t . The L-fuzzy point xK is called a :

(i) limit point [45] of S ( or S converges to xa ) iff for each closed L-fuzzy 

set f  with ftx) * a , there exists m0e D such that Smi  f  whenever m>m0, i.e. , 

h( Sm ) i  f  ( Supp Sm ) whenever m > m0 , where Supp Sm and h(Sm) are the 

support and the height of Sm, respectively .

(ii) cluster point [45] of S iff for each closed L-fuzzy set f  with ftx) i  a 

and for all neD there is me D such that m^n and Sm£ f , i.e. , h( Sm ) i  f  (SuppSjJ.

(iii) feebly cluster point iff for each feebly closed L-fuzzy set f  with ftx)a a 

and for all neD there is me D such that m>n and Smi  f .

(iv) y-cluster point iff for each pair f, g of closed L-fuzzy sets with 

int(f)>g, ftx) i  a and for all neD there is me D such that m^n and Smi  g .

(v) p-cluster point iff for each pair f , g of closed L-fuzzy sets with int(f)^g,

ftx) i  a and for all neD there is me D such that m>n and Sm£ int(g) , i.e. ,

h ( S J i  (int(g)) ( SuppSm) .

(vi) pre-0'-cluster point iff for each pre-closed L-fuzzy set f  with ftx) z a 

and for all neD there is me D such that m>n and Smi  pint(f) .

Proposition 2.1.15 :
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Definition 2.1.17 :

Let (X,x) and (Y,t *) be L-fuzzy topological spaces . A function 

f : (X,t ) -  (Y,x*) is called :

(i) continuous [16] iff f  _1(g)e t  for every ge x* .

(ii) pre-continuous [70] iff f ''(g ) is pre-open for every ge x* .

(iii) semi-continuous [3] iff f ''(g )  is semi-open for every ge  t * .

(iv) feebly continuous or a-continuous [91] iff f ''(g )  is feebly open for 

every ge x* .

(v) almost continuous [3] iff f  _1(g)e x for every regularly open L-fuzzy set 

g in (Y,x*) , i.e. f _1(g) is closed for every regularly closed L-fuzzy set g in (Y,t *).

(vi) weakly continuous [3] iff f  _1(g) < int( f''(cl(g)) ) for all ge t * .

(vii) 0-continuous [66] iff 0-cl( f  ‘'(g) ) < f _1( 0-cl(g) ) for all ge LY .

(viii) 8-continuous [1] iff f _1(g) is 8-open in (X,t ) for every regularly 

open L-fuzzy set g in (Y,t *) .

(ix) open [103] iff f(g )ex *  for every ge t  .

(x) almost open [69] iff f(g)ex* for every regularly open L-fuzzy set g in (X,x).

(xi) irresolute [19] iff f"'(g) is semi-open in (X,x) for every semi-open 

L-fuzzy set g in (Y,x*).

(xii) pre-irresolute [72] iff f ''(g ) is pre-open in (X,x) for every pre-open 

open L-fuzzy set g in (Y,x*).

(xiii) weakly pre-irresolute [72] iff f  *l(g) < pint( f ' ‘(pcl(g)) ) for every pre-

open L-fuzzy set g in (Y,x*) .
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(xiv) feebly irresolute or a-irresolute [91] iff f ‘'(g) is feebly open in 

(X,t ) for every feebly open L-fuzzy set g in (Y,t *) .

Definition 2.1.18 ( Thakur and Saraf [9 1 ]):

Let (X,t ) and (Y,x‘) be L-fuzzy topological spaces and let x^ be the 

L-fuzzy topology on X which has the set of all feebly open L-fuzzy sets 

of (X,x) as a subbase . A function f : (X,x) -  (Y,x*) is called ^-continuous 

ifandonlyif f : (X,xT)) -  (Y,x*) is continuous and f  : (X ,x )-* (Y,x*) is sid to be 

•q'-continuous ifan d o n ly if f : (X,x ) -  (Y,x *) is continuous.

Proposition 2.1.19 :

Let (X,x) and (Y,x*) be L-fuzzy topological spaces and let f : (X,x) -  (Y,x‘) 

be a function .

(i) f  is continuous iff cl( f  _1(g) ) < f  _1( cl(g) ) for every ge Lx .

(ii) f  is almost continuous iff cl( f ' ‘(int(g)) ) < f '*( cl(int(g)) ) for every

ge Lx .

(iii) f  is almost continuous iff f '*( int(g)) < int( f ‘'( g ) ) for every closed

L-fuzzy g in (Y,x*) .

(iv) f  is almost open iff f  ( int(g) ) < int( f(g )) for every semi-closed L-fuzzy set 

g in (X,x).

(v) If  f  is almost continuous and almost open then the inverse image of any 

regularly open L-fuzzy set in (Y,x*) is regularly open L-fuzzy set in (X,x) , the 

inverse image o f any regularly closed L-fuzzy set in (Y,x*) is regularly closed 

L-fuzzy set in (X,x) .
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Proof: (i) See theorem 1.1 in [76], (ii) See theorem 3.4 in [65],

(iii) See proposition 2.3 in [20], (iv) see lemma 4.1 in [67],

(v) see theorem 3.5 in [65],

Remark 2.1.20 :

(i) Every almost continuous almost open function is 6 -continuous but the 

converse need not be true in general [ 1 ].

(ii) Every almost continuous function is 0-continuous but the converse need not 

be true in general [ 64 ].
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2.2. Some Special L-fuzzy Topological Spaces

Definition 2.2.1 ( Pu and Liu [76] ) :

An L-fuzzy topological space (X,t ) is fully stratified if and only if each 

constant L-fuzzy set on X is open .

Definition 2.2.2 ( Mashour et al. [57] ) :

An L-fuzzy topological space (X, t )  is said to be extremally disconnected if 

and only if cl(f )e  x for every fe x .

Definition 2.2.3 ( Warner and McLean [98] ) :

An L-fts (X,x) is H ausdorff if and only if for every p,qepr(L) and every 

pair x ,y  of distinct elements o f X , there exist f , gex with f(x)*p , g(y)iq 

and (V zeX ) f(z) = 0 or g(z) = 0 , i.e. there exist f , gex such that x^ef, yqex 

and ( VzeX ) f(z) = 0 or g(z) = 0 .

Recall that a topological space (X,T) is called completely Hausdorff ( or a 

Urysohn space) if and only if for every distinct points x , y o f X , there are 

open sets U and V such that x e U , yeV and cl(U) n cl(V) = 0 ( Steen and 

Seebach [8 9 ]).

We now define this notion in the L-fuzzy setting as follows :
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Definition 2.2.4 :

An L-fts (X,t ) is said to be completely Hausdorff ( or a Urysohn space) if 

and only if for every distinct points x , y of X and every p , qepr(L) , there 

exist open L-fuzzy sets f  and g such that XpGf, yqeg and (V zeX ) cl(f)(z)=0 

or cl(g)(z) = 0 .

It is obvious that every completely Hausdorff L-fts is Hausdorff.

Definition 2.2.5 ( Kudri [39] ) :

An L-fts (X,t ) is said to be regular if and only if for every pepr(L ), for 

each xeX  and each closed L-fuzzy set f  such that there is yeX with ypc f 

and f(x) = 0 , there exist open L-fuzzy sets u , v such that XpGu , for every 

ype f ' ,  ypev and ( VzeX ) u(z) = 0 or v(z) = 0 .
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2.3. Induced L-fuzzy Topological Spaces

It is a well known fact that the family of all lower semi-continuous functions 

from a given topological space (X,T) to the closed unit interval I = [ 0, 1 ] with 

its usual ordinary topology forms an I-fiizzy topology on X . This special type 

o f I-fuzzy topology was first mentioned by Wong [102] who called it 'semi- 

continuous fuzzy topology Since then other names have appeared in the 

literature; Lowen [49] called 'topologically generated' which was adopted by 

Srivastava et al. [87], Warner and McLean [98] and others, Weiss [101] referred 

to it as ' induced fuzzy topology ' which was also used by Pu and Liu [75], 

Martin [56] and others. We shall use the term ' induced fuzzy topology '. The 

induced I-fuzzy topology was used by Lowen [49,51] to establish so called 

'goodness criterion ' for fuzzification of classical concepts in general topology. 

This is considered to be a big step in the development o f fuzzy topology .

For a continuous frame L , Warner [96] has proved that the family o f all Scott 

continuous functions from a topological space (X,T) to L with its Scott topology 

constitute an L-fuzzy topology as a generalisation of the I-fiizzy topology of 

lower semi-continuous functions from (X ,T) to I. Thus, Warner has established 

'goodness criterion' for L-fuzzy topological properties .
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Let (X,T) be a topological space and let L be fuzzy lattice . A function f  from 

(X T) to L with its Scott topology is called Scott continuous ( or continuous) 

if and only if the inverse image of every Scott open set is open in (X,T) .

By Proposition 1.1.22, f : (X ,T)- L is Scott continuous iff f '* ( { teL  : t ip  } )e T 

for every pe pr(L).

In the case L = I, we have f : (X,T) -  L is Scott continuous iff f ‘‘( ( p ,  l ] ) e T  

for every pe pr(I) = [ 0, 1) iff f  is lower semi-continuous ( Bourbaki [11]).

Proposition 2.3.2 :

Let (X,T) be a topological space . The set of all Scott continuous functions 

from (X,T) to L with its Scott topology forms an L-fuzzy topology on X , 

which will be denoted by g>(T) , i.e.

w(T) = { fe Lx ; f : (X,T) -  L is Scott continuous } .

When L = I , then u)(T) is the set of lower semi-continuous functions from (X,T) 

to I ( Lowen [5 1 ]).

Proof: See pp : 88 Corollary 3.2 in Warner [96] .

Definition 2.3.3 :

For a given topological space (X,T) , the L-fuzzy topology g)(T) of Scott 

continuous functions is called the induced L-fuzzy topology , the pair (X(*>(T)) 

is called the induced L-fuzzy topological space . An L-ffs (X,t ) is an induced

Definition 2.3.1 ( Gierz et al. [32] ) :
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L-fuzzy topological space if and only if there exists an ordinary topological 

space (X,T) such that o)(T) = x .

Remark 2.3.4 ( Lowen [5 1 ]) :

Let TOP and FT be respectively the category of topological spaces with 

continuous functions between them and the category o f L-fuzzy topological 

spaces with continuous functions between them . The map co : TOP -  FT defined 

by co( (X ,T)) — (X,o(T)) for every (X,T)eTOP , where o)(T) is the induced L- 

fuzzy topology, is a functor between the categories TOP and FT .

Remark 2.3.5 :

Let (X,T) be a topological space. Lowen [49] has called an I-fuzzy topological 

property Pf a good extension of a topological property P if and only i f : 

(X,T) has P if and only if (X,u)(T)) has Pf , where (o(T) is the I-fuzzy 

topology of lower semi-continuous functions .

Warner [96] has extended this definition of goodness to L-fuzzy topological 

properties, where L is a continuous fram e, as follows :

Definition 2.3.6 :

Let (X,T) be a topological space . An L-fuzzy topological property Pf is a

' good extension ' o f a topological property P if and only if :

the topological space (X,T) has P if and only if the induced L-fuzzy topological

51



space (X,u)(T)) has Pf , where a>(T) is the L-fuzzy topology of Scott continuous 

functions from (X,T) to L with its Scott topology .

For the induced L-fuzzy topological spaces , Warner [97] has provided a base 

which turned out to be a powerful tool to obtain the goodness theorems as well 

as some other results in such spaces .

Proposition 2.3.7 :

Let (X,T) be a topological space and let L be a fuzzy lattice . The family 

6 = { Z (S) : Ze T and 5 e L  } (where Z <6)(x )= 5  if xe Z , Z <8)(x) = 0 otherwise) 

is a base for the induced L-fuzzy topological space (X,co(T)) .

Proof : See the lemma in Warner [97], pp : 342 and proposition 5.4 in Warner 

[96 ] ,  pp : 90 .

Proposition 2.3.8 :

Let (X,T) be a topological space and let fe Lx , AcX .

(i) The L-fuzzy set f  is open in (X,ca(T)) iff f '* ( { teL  : t ip  } )e  T for every 

pe pr(L).

(ii) The L-fuzzy set f  is closed in (X,a)(T)) iff f '' ( { teL  : t>a } )e  T for every 

ae L .

(¡¡0 A is open in (X,T) iff the characteristic function Xa is open in (X,o)(T)).

(iv) A is closed in (X,T) iff the characteristic function Xa  is closed in (X ,o j(T)).
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(V )  A is pre- open in (X,T) iff the characteristic function X a  *s  pre-open 

in (X,co(T)).

Proof : See proposition 3.2.9 and proposition 3.2.10 in Kudri [45] , pp : 49, 50 . 

Proposition 2.3.9 :

Let (X,T) be a topological space, let f  be an L-fuzzy set in the induced L-fts 

(X,g)(T)) and pe p r(L ). Then we have the following:

(i) (cl(f ))"’ ( {teL : tip }  ) c  cl( f - ‘({teL : tip } ) )

(ii) (int(f ))'* ( {teL : tip }  ) c  int( f  "'({teL : tip } ) )

Proof : See lemma 3.2.12 in Kudri [45] , pp : 50 .

Proposition 2.3.10 :

Let (X,T) be a topological space and As X . Considering the induced L-fts (X,o)(T)) 

r eeL if xeA

and ftx) = < , we have the following :

, 0 otherwise

d (f)(x )

re if xe int(A)fe e L  if xecl(A)

and int(f ) (x)=

0 otherwise L0 otherwise

Proof : See proposition 3.2.13 in Kudri [45], pp : 51 .

Theorem 2.3.11 (The  goodness of Hausdorfness ) :

Let (X,T) be a topological space . Then (X,T) is Hausdorff if and only if the
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induced L-fts (X,o>(T)) is HausdorfF.

Proof : See Proposition 3.1 in Warner and McLean [98] .

The next theorem shows that the complete Hausdorfness in L-fiizzy topological 

spaces ( Definition 2.2.4 ) is a good extension o f the complete Hausdorfness in 

general topology .

Theorem 2.3.12 :

Let (X,T) be a topological space . Then (X,T) is completely HausdorfF if and 

only if the induced L-fts (X,a)(T)) is completely HausdorfF.

Necessity : Let x ,y e X  (x * y ) and p ,qep r(L ). From the complete Hausdorffness 

o f (X,T) , there exist U,Vex such that xeU, yeV and cl(U) n  cl(V) = 0 . Then, 

Xi>Xv£to(T) and Xu(x)*P , Xv(y)*q • We also have ( VzeX ) cl(xu)(z) = Xc«u)(z)=0 

or cl(xv)(z) = Xci(V)(z) = 0 because cl(U) n cl(V) = 0 . Hence , (X ,g j(T)) is 

completely HausdorfF.

Sufficiency : Let x , yeX (x * y )  and p , qepr(L) . Since (X ,c j(T)) is complete 

HausdorfF, by Proposition 2.3.7 , there exist basic open L-fuzzy sets

ry e L , if zeU eT

such that Xp6f, ypeg and (V zeX ) cl(f)(z) = 0 or cl(g)(z) = 0 . Then, xeUeT

Proof :

otherwise , 0 otherwise
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and yeV eT . In addition, by Proposition 2.3.10 , we have cl(U) n d(V ) = 0 • 

Hence, (X,T) is completely Hausdorff.

Theorem 2.3.13 (The  goodness of regularity):

Let (X,T) be a topological space . Then (X,T) is regular if and only if the 

induced L-fts (X,co(T)) is regular.

Proof : See Theorem 3.4.9 in Kudri [45] .



2.4. Completely Induced L-fuzzy Topological Spaces

In this section , we first introduce a new class of functions from a topological 

space (X,T) to a fuzzy lattice L with its Scott topology , called completely 

Scott continuous functions as a generalisation o f the completely lower semi- 

continuous functions from (X,T) to the closed unit interval I introduced by 

Bhamuk and Mukherjee [4] . Then we study some of their properties and 

characterizations . We prove that the set of all completely Scott continuous 

functions from (X,T) to L is an L-fuzzy topology on X which is a generalisation 

o f the I-fuzzy topology o f the completely lower semi-continuous functions 

presented in [5] . Thus we obtain an L-fuzzy topological space from a given 

ordinary topological space which will be called completely induced L-fuzzy 

topological space. Completely Scott continuous functions turn out to be the 

natural tool for studying completely induced L-fuzzy topological spaces .

Bhaumik and Mukherjee [4] have stated the concept o f ' complete lower semi-

continuity ' as follows :

Definition 2.4.1 ( Bhaumik and Mukheijee [4] ) :

Let (X,T) be a topological space. A function f:(X,T) -  I is said to be 

completely lower semi-continuous at aeX if and only if for every e > 0 , there 

is a regular open neighbourhood U o f a in (X,T) such that fix) > fia)-e for
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every xe U. f  is called completely lower semi-continuous on X if and only 

if f  is completely lower semi-continuous at every point o f X .

This definition can be characterized as follows :

f : (X,T) -  I is completely lower semi-continuous at a e X  iff for every a e [0 ,l)  

with f(a) > a , there is a regular open neighbourhood U of a in (X,T) such that 

f(x) > a for every xe U .

It is evident that every completely lower semi-continuous function is lower 

semi-continuous.

In [ 5 ] , Bhaumik and Mukherjee have proved that the set o f all completely 

lower semi- continuous functions from a topological space (X,T) to I is an 

I-fuzzy topology, called a completely induced I-fuzzy topology . In [ 5, 6, 7 ], 

they studied various properties of completely induced I-fuzzy topological spaces.

Considering a fuzzy lattice L with its Scott topology instead of I, we now introduce 

complete Scott continuity as a generalisation of complete lower semi-continuity.

Definition 2.4.2 :

Let (X,T) be a topological space and aeX . A function f : (X,T) -  L , where 

L has its Scott topology, is said to be completely Scott continuous at ae X 

if and only if for every pe pr(L) with f(a) i  p , there is a regular open
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neighbourhood U o f a in (X,T) such that fix )i p for every xe U, i.e. 

Uc f ' ‘( {teL:Up} ). f  is called completely Scott continuous on X if and only 

if f  is completely Scott continuous at every point o f X .

It is clear that every completely Scott continuous function is Scott continuous. 

When L = I , the definition becomes :

f  : (X,T) -  I is completely Scott continuous at ae X iff for every p e pr(I)=[0,l) 

with f(a) > P , there is a regular open neighbourhood U of a in (X,T) such 

that f(x) > p for every x e U , i.e. f  is completely lower semi-continuous .

That is , complete Scott continuity coincides with complete lower semi-

continuity in the case o f L = I .

Proposition 2.4.3 :

Let (X,T) be a topological space . f : (X,T) -  L is completely Scott continuous 

if and only if for every pep r(L ), f 1 ({teL :tip}) can be expressed as a union 

of some regular open sets in (X ,T ).

Proof :

Necessity : Let pepr(L) and x e f 1 ({teL :tip}) . Then f(x)ip  . Since f  is 

completely Scott continuous at x , there exists a regular open set Ox in 

(X,T) such that xeOx and Oxc f  ' ‘({ teL :U p}). Hence, f ( { te L :U p } )  = U Ox, 

Ox is regular open .

Sufficiency : Let aeX and pepr(L) with f(a)ip . Then ae f  *l ({ te L :tip } ) . By 

the hypothesis , there is a regular open set O in (X,T) such that aeO and
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O c f ( { t e L : t i p } ) . This means that f  is completely Scott continuous at aeX  .

Recall that in an ordinary topological space (X ,T), the family o f all regular open 

sets forms a base for a smaller topology T, on X , called the semi- 

regularization of T . (X,T) is said to be semi-regular if and only if T = T, [63].

Corollary 2.4.4 :

Let (X,T) be a topological space and Ts be its semi-regularization topology . Then 

f:(X ,T)-L is completely Scott continuous if and only if for every pepr(L) , 

f ''({ teL :tip } )eT s if and only if f:(X,Ts)-L  is Scott continuous.

Proof :

This follows from the previous proposition and the definition o f semi-

regularization topology .

Lemma 2.4.5 :

The characteristic function o f every regular open set is completely Scott 

continuous .

P roof:

Let (X,T) be a topological space , let A be a regular open set in (X,T) and 

aeX  , pepr(L) with Xa(s) * P ■ Then aeA and A is regular open 

neighbourhood of a . We also have Xa(x) * P for every xeA  . Hence , Xa is 

completely Scott continuous at ae X .

59



Lemma 2.4.6 :

Let (X,T) be a topological space . If f , g : (X,T) -  L are completely Scott 

continuous functions then fAg : (X,T) -  L is completely Scott continuous as well.

P roof:

Let aeX  and pepr(L) with (fAg) (a) i  p . Then f(a)ip  and g (a)ip  . Since f  

and g are completely Scott continuous at a , there are regular open 

neighbourhoods U and V of a such that f(x)ip  for all xeU  and g(x)*p for 

all x e V . Let W = U n V . Then W is a regular open neighbourhood o f a . Since 

p is prime , we have (fAg)(x)ip for all xeW . H ence, fAg is completely 

Scott continuous at a e X .

Lemma 2.4.7 :

If (f}ieJ is a family of completely Scott continuous functions from a topological 

space (X,T) to L , then f  = VieJfj is completely Scott continuous as well .

Proof :

Let aeX and pepr(L) with f(a) = VieĴ (a)ip . Then, there is ieJ such that f^(a)ip. 

Since (  is completely Scott continuous at a , there is regular open neighbourhood 

U o f a such that f](x)ip for all xeU . H ence, f(x) = ViFjfj(x)ip for all xeU. 

Thus, f  is completely Scott continuous at aeX .
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Theorem 2.4.8 :

For a topological space (X,T) , the collection

<p(T) = { feLx ; f : (X,T) -  L is completely Scott continuous }

is an L-fuzzy topology on X .

P roof: This follows immediately from Lemma 2 .4 .5 ,2 .4 .6 ,2 .4 .7  .

When L = I , then <p(T) is the set of completely lower semi-continuous functions 

from (X,T) to I ( Bhamuk and Mukherjee [5] ) .

Definition 2.4.9 :

The L-fuzzy topology <p(T) obtained in Theorem 2.4.8 is called completely 

induced I^fuzzy topology and the L-fts (X, <p(T)) is called completely induced 

L-fuzzy topological space.

Remark 2.4.10 :

Since every completely Scott continuous function from a topological space 

(X,T) to a fuzzy lattice L is Scott continuous, we have (p(T) c  o>(T) , where 

co(T) is the induced L-fuzzy topology o f Scott continuous functions from (X,T) 

to L ( Definition 2.3.3 ) .

Now we provide a base for the completely induced L-fuzzy topological spaces . 

Proposition 2.4.11 :

For a topological space (X,T) and a fuzzy lattice L , the collection
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A = { R(8) : R is regular open in (X,T) , ô g L }

( where R<8) : X - L is defined by R<8)(x) = ô if xeR and R(8)(x) = 0 otherwise ) 

forms a base for <p(T).

Proof :

Let fe<p(T) and XpGpr(Lx) with f(x)ip  . Then, f  is completely Scott continuous 

and f(x)ip  . Since L is a continuous lattice ( see Definition 1.1.7 ) ,  there exist 

•peL such that r|«f(x) and r |ip  . Take 6 g L with r) « ô « f(x) . Hence , 

f(x)e{teL:ô«t} . Since { teL  : ô«t } is Scott open ( see Proposition 1.1.21 ) ,  by 

Proposition 1.1.22, there is a qepr(L) such that f(x)e{teL:Uq} c {teL:ô«t} . 

Then f(x)iq  . From the completely Scott continuity o f f ,  there exists a regular 

open set R in (X,T) such that xg R and f(z)iq  for every zeR  . Thus, ô«f(z) 

for every z g R and hence 6^ f(z) for every zeR . M oreover, ô fp  because 

0»t) ip  . So, we have XpeR'8',  R(8)g A and R(5)< f  . Thus, by Lemma 2.1.6, 

f  is a union of elements o f A . Consequently, A is a base for <p(T).

Theorem 2.4.12 :

Let (X,T) and (Y,T*) be two topological spaces and Ts , Ts* be their 

semi-regularization topologies respectively . Let f  : X -  Y be a function . 

f  : (X ,TS) -  (Y,TS*) is continuous iff f  : (X,(p(T)) -  (Y,<p(T*)) is continuous , 

where <p(T) and cp(T*) are the completely induced L-fuzzy topologies .

Proof :

Suppose that f  : (X,TS) -  (Y,T,*) is continuous . Take gG(p(T*) . We are going 

to prove that f  "'(g)Gq)(T), i.e. f''(g ) : (X.T) -  L is completely Scott continuous.
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Let pepr(L) and aeX with f'*(g)(a)ip . Then, g(f(a))*p . Since g : (Y,T*) -  L 

is completely Scott continuous at f(a)eY, there exits a regular open set A in 

(Y,T*) such that f(a)eA and g(y)ip for all yeA . Since A is regular open in 

(Y,T*) , AeTs* and hence f ''(A )e T s because f : (X,TS) -  (Y,TS*) is continuous . 

Now we have a e f '* (A )e T s which implies that there is a regular open set B 

in (X,T) such that aeBcf ' '( A ) . Thus, f''(g )(x ) = g(f(x))ip for every xeB . 

This means that f '(g ) is completely Scott continuous . Consequently , 

f:(X,(p(T))-(Y,<p(T*)) is continuous .

Now suppose that f : (X,tp(T)) -  (Y,<p(T*)) is continuous . Let A be a basic 

open set in (Y,T,*) . Then , A is regular open in (Y,T*) and hence

XAe<p(T*) . By the hypothesis, f ' ‘(Xa) = Xf\A)e<P (T ). We shall show that

f  *(A)eTs . Let pepr(L) and x ef* '(A ). Then X fW x)*P • Since Xf'(A)e<P(T) • 

there exists a regular open set Ox in (X,T) such that xe Ox and

Oxcx'V'(A)({te L:t£p}) = f ' ‘(A) . Thus, we have that for each x e f _1(A) , there 

exists a regular open set Ox in (X,T) such that xeOxc f ' '( A ) .  This means that 

f ''(A )e T s. Consequently, f : (X,TS) -  (Y,TS*) is continuous.

Corollary 2.4.13 :

Let (X,T) and (Y,T*) be semi-regular topological spaces, i.e. T = Ts and T*=TS*. 

Then, f : (X ,T)-> (Y,T*) is continuous iff f : (X,<p(T)) -  (Y,cp(T*)) is continuous. 

Proof : This follows immediately from the previous theorem .
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Remark 2.4.14 :

Let SRT and FT be respectively the category o f semi-regular topological spaces 

with continuous functions between them and the category o f L-fuzzy topological 

spaces with continuous functions between them . Define cp : SRT -  FT by 

<p((X,T)) = (X,tp(T)) for every (X,T)eSRT , where cp(T) is the completely 

induced L-fuzzy topology . Corollary 2.4.13 ensures that if f : (X,T) -  (Y,T*) is 

a morphism in SRT , then <p(f) = f : <p((X,T)) = (X, <p(T)) -  (Y, <p(T*)) = <p((Y,T*)) 

is a morphism in FT . T hus, we get the functor, <p , from SRT into FT .

Proposition 2.4.15 :

For a topological space (X,T) , we have <p(T) = <p(Ts) , where Ts is the semi-

regularization of T .

Proof :

Since Ts l T ,  we have <p(Ts) c  cp(T). Now take fecp(T ) and Xp€pr(Lx) with 

Xp£f. Then , by the previous proposition , there is an R<5)eA such that 

XpGR<8)< f . Since R is regular open set in (X ,T ), ReTs and hence R(S)ecp(Ts). 

T h u s , by Proposition 2.1.6 , f  is a union of some elements o f <p(Ts ) and 

therefore fe(p(Ts) . Hence , <p(T) c  <p(Ts) . Consequently , <p(T) = <p(Ts) .

Corollary 2.4.16 :

For a topological space (X ,T ), we have <p(T) = co(Ts) .

Proof : This follows directly from Corollary 2.4.4 .
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Let (X,T) be a topological space . If (X,T) is semi-regular, then <p(T) =oo(T). 

Proof : This follows from the definition o f semi-regularity and Corollary 2.4.16.

Remark 2.4.18 :

From the previous corollary, we see that the restriction o f the functor o  on 

the category o f semi-regular topological space SRT is equal to the functor <p ,

*-e - ■> 01 I SRT — *P •

Theorem 2.4.19 :

Let (X,T) be a topological space. (X,T) is HausdorfF if and only if the completely 

induced L-fts (X, <p(T)) is HausdorfF.

Proof :

In general topology , we have that (X,T) is HausdorfF ifF (X,TS) is 

HausdorfF [63], Then, by the goodness of HausdorfFness and by Corollary 2.4.16, 

we get (X,T) is HausdorfF ifF (X,TS) is HausdorfF ifF (X,o)(Ts)) is HausdorfF 

ifF (X,<p(T)) is HausdorfF.

Theorem 2.4.20 :

Let (X T) be a topological space. Then (XT) is completely HausdorfF if and only 

if the completely induced L-fts (X,<p(T)) is fuzzy completely HausdorfF.

Corollary 2.4.17 :
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Proof:

Necessity : Let x , yeX ( x*y ) and p , qepr(L) . From the complete 

Hausdorffness of (X,T) , there exist U,Vex such that xeU , yeV and 

cl(U)ncl(V )=0 . Let A = int(cl(U)) and B = int(cl(V)) . Then, XA>XBe<PCO 

because A and B are regular open sets in (X,T) . We also have Xa (x)*P > 

XB(y )iq  and ( VzeX ) c 1(x a )(z ) = XckajOO = 0 or cl(xB)(z) = Xd<B)(z) = 0 because 

cl(U) n  cl(V) = 0 . In fact , cl(A) = cl(U) and cl(B) = cl(V) . Hence , 

cl(A)ncl(B)=0 and therefore ( Vz g X ) x cka)(z) = 0 or x ckb)(z) = 0 . Consequently, 

(X,<p(T)) is completely HausdorfF.

Sufficiency : Let x , yeX ( x*y ) and p , qepr(L) . From the complete 

Hausdorffiiess of (X,(p(T)), there exist basic open L-fuzzy sets f , g  defined by 

respectively f(z)=y if zeU  , f(z)=0 otherwise and g(z)=6 if z e V , g(z)=0 

otherwise, where U and V are regular open sets in (X,T) and y , 5 e L , such 

that xpe f ,  ypeg and ( V zeX ) cl(f)(z)=0 or cl(g)(z)=0. H ence, we have 

xg U g T , yeVeT and cl(U) n cl(V) = 0 . Thus, (X,T) is completely HausdoriF.

Recall that a topological space (X,T) is said to be almost regular if and only 

if for each non-empty regular closed subset C of X and each point x e X \C ,  

there exist disjoint open sets U and V such that xeU and CcV [63] .

Theorem 2.4.21 :

Let (X,T) be a topological space . (X,T) is almost regular if and only if the 

completely induced L-fts (X,tp(T)) is fuzzy regular.
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Proof:

In general topology, we know that (X,T) is almost regular iff its semi-

regularization topological space (X,TS) is regular [63] . T hen, by the goodness of 

regularity and by Corollary 2.4.16 , we have that (X,T) is almost regular iff 

(X,T„) is regular iff (X,o j(Ts)) is regular iff (X,cp(T)) is regular.

Corollary 2.4.22 :

Let (X,T) be a topological space . Then (X,TS) is regular iff the completely 

induced L-ffs (X,q>(T)) is regular.

Proof: This follows from the goodness of regularity and Corollary 2.4.16 . 

Corollary 2.4.23 :

Let (X,T) be a semi-regular topological space . T hen, (X,T) is regular iff the 

completely induced L-fts (X,<p(T)) is regular.

P roof: This follows immediately from the previous corollary.
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CHAPTER III

COMPACTNESS IN L-FUZZY TOPOLOGICAL SPACES

Compactness is one of the most important notions in general topology . Hence, 

the problem of generalization of the classical compactness to fuzzy topological 

spaces has been intensively discussed over the past 28 years .

The concept o f compactness in I-fuzzy topological spaces was first introduced 

by Chang [16] who simply expressed in fuzzy terms the classical open covering 

definition of general topology. This compactness turned out to be unsatisfactory 

as basis for a theory, not least because it is not a good extension of classical 

compactness (Lowen [49]). Also, Goguen [34] showed that Tychonoff theorem 

does not hold for infinite products .

In [51], Lowen addressed these problems , producing seven suggested versions 

o f compactness in I-fuzzy topological spaces five of which he proved to be 

good extensions. Lowen fuzzy compactness ( Definition VII in [51] ) has given 

rise to fruitful work , for instance Lowen [50] has proved that a compact 

H ausdorff fuzzy space is topologically generated ( i.e. an induced space ) . As 

W arner[100] pointed out, fuzzy compactness in I-fuzzy topological spaces seems 

to depend on some arithmetic properties o f real numbers in the unit interval.
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O f more interest are the definitions which depend only on the unit interval's 

lattice theoretic properties . In particular Lowen's strong compactness 

(Definition IV in [51]) was based on that o f Gantner et al. [30] who produced a 

compactness theory with respect to a fuzzy lattice L . Different degrees o f 

compactness , called a-compactness , were introduced in [30] and Tychonoff 

theorem for a-compactness was proved for arbitrary products and some restricted 

values of a  in L .

Originally the fuzzy compactnesses mentioned above were defined only for the 

whole fuzzy topological space rather than arbitrary fuzzy subsets. Chadwick [14] 

has defined Lowen fuzzy compactness [51] for arbitrary I-fuzzy subsets and 

studied some of its properties . Meng [59] has pointed out th a t , in a work in 

Chinese , Wang generalized Lowen fuzzy compactness to L-fuzzy topological 

spaces . In [61] , Meng has obtained some more characterizations for Lowen's 

fuzzy compactness in L-fuzzy topological spaces .

On the other hand, Wang [92] has introduced a new theory based on fuzzy nets 

of Pu and Liu [75] in I-fuzzy topological spaces and called it nice compactness, 

written N-compactness. This compactness is defined for arbitrary I-fuzzy sets and 

has desirable properties ; namely it is a good extension of the classical 

compactness and the general Tychonoff theorem holds . H ow ever, as Chadwick 

remarked in [14], it is possible to have fuzzy sets which are never N-compact, 

even if the fuzzy topology has only finite numbers of open fuzzy sets. In [108],
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Zhao has defined N-compactness in L-fuzzy topological spaces. This has the 

same properties o f Wang's theory , as well as being generalisation o f it and 

giving the geometric formulations of N-compactness in terms o f remote 

neighbourhoods . Kudri [45] has proved that the N-compactness in L-fuzzy 

topological spaces is a good extension . For the relations between the 

compactnesses in L-fuzzy topological spaces which are good extensions, we refer 

to Kudri [45]. Kudri has also remarked that Zhao's definition of N-compactness 

for L-fuzzy topological spaces has the same drawback of Wang's theory.

Meanwhile Warner and McLean [98] have suggested a generalisation o f Lowen's 

strong compactness [51 ] to L-fuzzy topological spaces. In the same w ork, they 

proved that it is a good extension and also that a compact Hausdorff L-fuzzy 

topological space is an induced L-fts. Kudri [45] has shown that this compactness 

is implied by Zhao's N-compactness and in a HausdorfF L-fts , these two 

compactnesses coincide . In [ 3 9 ,4 5  ] ,  Kudri has extended this compactness to 

arbitrary L-fuzzy sets and obtained the satisfactory properties of N-compactness 

rectifying the drawback mentioned above . Good extensions of weaker and 

stronger forms of compactness ( e g. alm ost, nearly , semi-compactness and strong 

compactness) were introduced and studied by Kudri and Warner in [ 39, 4 3 ,4 7 ], 

They also suggested good extensions o f some other covering properties 

(e.g. S-closedness, RS-compactness, S*-closedness, paracompactness, local 

com pactness) in [ 4 0 ,4 1 ,4 4 ,4 7  ] ,  Consequently, this fuzzy compactness is 

sufficient for an adequate compactness theory in L-fuzzy topology, being a good
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extension , defined on arbitrary fuzzy se ts , given other fuzzy covering axioms, 

with a general Tychonoff product theorem and a compact Hausdorff L-fts is an 

induced L-fts. We therefore adopt this fuzzy compactness in L-fuzzy topological 

spaces.

In this chapter, since our work is based on this fuzzy compactness, we 

present the basic properties of fuzzy compactness and related concepts which 

will be used in the forthcoming chapters . We give a different description of 

these concepts and characterize them in terms o f filter bases.

For the sake of clarity, this chapter is divided into three sections :

Section 1 contains the definition o f fuzzy compactness and some important 

properties.

Section 2 consists of the definitions of all the other existing covering axioms 

introduced by Kudri and Warner and some o f their properties which will be 

needed in the sequel.

The third section is reserved for some more characterizations o f fuzzy covering 

axioms , obtained by us.
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3.1. Compactness in L-fuzzy Topological Spaces

In the following L will be a fuzzy lattice unless otherwise stated .

Definition 3.1.1 :

Let (X,t ) be an L-fts and let geLx , reL .

(i) A collection ££ = (fj) i6 j of L-fuzzy sets is called an r-Ievel cover of the 

L-fuzzy set g if and only if (Vis 3 fj ) (x) i  r for all xeX  with g(x) > r ' ,  

i.e. (Vi6jf; )(x)i r for all xeX with xTi g ' .

If for every ieJ, f] is open then S£ is called an r-leve! open cover of g .

If g is the whole space X , then 92 is called an r-Ievel cover of X . T hen, 

92 is an r-level cover of X if and only if (Vi6jf-)(x ) i  r for all xeX  .

(ii) An r-level cover 92 = (f j) jeJ of g is said to have a finite r-level subcover 

if there exists a finite subset F of J such that ( VieF fj ) (x) i  r for all xeX  with 

g(x) * r

(iii) An r-level cover 92 = ( Q ieJ of g is said to have a finite r-Ievel proximate 

subcover if there exists a finite subset F o f J such that ( Vje F cl(fj) ) (x) i  r for 

all xeX  with g(x) > r

Definition 3.1.2 ( Warner and McLean [98] ) :

An L-fts (X,t ) is said to be compact if and only if every p-level open cover 

of X , where pep r(L ), has a finite p-level subcover, i.e .,

for every prime element p of L and every collection (QieJ of open L-fuzzy sets
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with (Vjp jfj)(x)ip for all x e X , there is a finite subset F o f J such that

(VieFfiXx)iP for a11 xeX

When L = I this is simply the strong compactness introduced by Lowen[51] since 

in I all elements apart from 1 are prime .

Kudri has extended this definition to arbitrary L-fiizzy subsets as follows : 

Definition 3.1.3 (Kudri [3 9 ]) :

Let (X,t ) be an L-fts . An L-fuzzy subset geLx is said to be compact if and 

only if every p-level open cover of g , where p ep r(L ), has a finite p-level 

subcover, i.e. ,

for every prime element p of L and every collection (fj)ieJ o f open L-fuzzy sets 

with (VieJfj)(x):£p for all xeX with g(x)>p' ( i.e. Xpfg') , there is a finite subset 

F o fJ  such that (VieFfj)(x)ip for all xeX with g (x)> p '.

It is clear that when g = X Definition 3.1.3 reduces to Definition 3.1.2 .

Theorem 3.1.4 ( The goodness of compactness ) :

Let (X,T) be a topological space . Then (X,T) is compact if and only if the 

induced L-fts (X,g j(T)) is com pact.

Proof: See Proposition 4.4 in [98], pp : 108 .

Proposition 3.1.5 :

(i) If (X,t ) is an L-fts where t  is finite, then (X ,t) is com pact.
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(ii) If (X,t ) is an L-fts where X is finite , then (X,x) is com pact.

Proof: (i) See Proposition 4.1.7 in [45], pp:74 (i) Proposition 4.6 in [98], pp: 108.

Theorem 3.1.6 :

A fully stratified compact Hausdorff L-fts is an induced L -fts , i.e ., If  (X,t ) is 

a fully stratified compact Hausdorff L-fts , then there exists an ordinary 

topological space (X,T) such that t  = co(T) .

Proof: See Theorem 5.1 in [98], pp : 109.

Theorem 3.1.7 :

Let (X,t ) be an L-fts and geLx . The L-fiizzy set g is compact if and only if 

every constant a-net contained in g has a cluster point , with height a , 

contained in g , for each a eM (L ).

Proof: See Theorem 4.4.2 in [45], pp : 92 .

Corollary 3.1.8 :

An L-fuzzy topological space is compact if and only if every constant a-net has 

a cluster point with height a .

Proof: This follows immediately from the previous theorem .

Proposition 3.1.9 :

Let (X,x) be a Hausdorff L-fts and let A c X . If Xa  is compact then Xa 

is closed .

Proof: See Proposition 4.1.16 in [45], pp : 81 .
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Let (X,T) (Y,x*) be L-fuzzy topological spaces and let f  : (X,x) -  (Y,x*) be

a continuous function such that r '(y ) is finite for every yeY  . If g is a compact 

L-fuzzy set in (X,x) , then f(g) is a compact L-fuzzy set in (Y,x*).

Proof : See Proposition 4.1.14 in [45], pp : 79 .

Proposition 3.1.11 :

(i) Finite union of compact L-fuzzy sets is compact as well .

(ii) Every closed L-fuzzy set contained in a compact L-fuzzy set is com pact, 

hence every closed L-fuzzy set in a compact L-fts is com pact.

Proof : See Propositions 4.1.10, 11 , 12 in [45], pp : 76, 77, 78 .

Theorem 3.1.12 (Alexander's Subbase Theorem ):

Let (X,t ) be an L-fts , geLx and let Sf be a subbase for x . The L-fuzzy set 

g is compact if and only if every p-level cover consisting of subbasic open 

L-fuzzy sets has a p-level subcover, where pepr(L) .

Proof : See Theorem 4.2.1 in [45], pp : 85 .

Theorem 3.1.13 ( Tychonoff Product Theorem ) :

The L-fuzzy product space (X,x) of the indexed family { (Xx,xx) }XeJ o f L-fuzzy 

topological spaces is compact if and only if for each ÀeJ (X ^ x J  is compact. 

Proof : See Theorem 4.2.3 in [45], pp : 88 .

Proposition 3.1.10 :
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3.2. Other Existing Covering Properties

Let (X,t ) be an L-fts and let ip(f) = { xe X : fix) ip  } where pepr(L) and 

feLx . Then the collection { ip( f ) : pepr(L) and fe x }u {X} is a subbase for 

some ordinary topology , iL(x) , on X .

Definition 3.2.1 ( Meng [6 0 ]) :

An L-fts (X,x) is said to be ultra compact if and only if the ordinary 

topological space (X,iL(x)) is com pact.

Kudri [45] has proved that ultra compactness is a good extension of the ordinary 

compactness in general topology .

Definition 3.2.2 ( Kudri [42] ) :

Let (X,x) be an L-fts and ge Lx . The L-fuzzy set g is said to be

(i) countably compact if and only if every countable p-level open cover of g, 

where pepr(L) , has a finite p-level subcover.

(ii) Lindelof if and only if every p-level open cover o f g , where pep r(L ) , has 

a countable p-level subcover .

Kudri has proved that these concepts are good extensions o f the corresponding 

properties in general topology and studied their properties .
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Let (X,x) be an L-fts . An L-fiizzy set k is called very compact if and only 

if for some ee L and A c X , it is of the form ( k(x) = e if xeA  and k(x) = 0 

otherwise ) and Xa  *s compact in (X,x ) .

It is evident that every very compact L-fuzzy set is com pact.

Definition 3.2.4 ( Kudri and Warner [4 6 ]):

An L-fts (X,t ) is called locally compact if and only if for every Xpepr(Lx) 

there exist a very compact L-fuzzy set k and fex such that Xp6 fe k .

Kudri and Warner have studied various properties o f the local compactness and 

proved that it is a good extension .

Definition 3.2.5 :

Let (X,x) be an L-fts and geLx . The L-fuzzy set g is called :

(i) almost compact [43] if and only if every p-level open cover o f g , where 

pepr(L), has a finite p-level proximate subcover. If  g is the whole space X , 

then the L-fts (X,x) is called almost com pact.

(ii) nearly compact [43] if and only if for every p-level open cover (fJ)ieJ of 

g , where pepr(L), there is a finite subset F of J such that (VieF int(cl(f|)) ) (x)*p 

for all xeX with g (x )^p ', i.e. every p-level regularly open cover of g has a 

finite p-level cover. If g is the whole space X , then the L-fts (X,x) is called 

nearly compact .

(in) semi-compact [47] if and only if every p-level semi-open cover o f g,

Definition 3.2.3 ( Kudri and Warner [40] ) :
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where pepr(L), has a finite p-level subcover. If g is the whole space X , then 

the L-fts (X,t ) is called semi com pact.

(iv) S-closed [44] if and only if every p-level semi-open cover o f g , where 

pepr(L), has a finite p-level proximate subcover. If g is the whole space X , 

then the L-fts (X,x) is called S-closed.

(v) S‘-closed [47] if and only if for every p-level semi-open cover (f])ieJ of g, 

where pepr(L), there is a finite subset F of J such that (VieF scl(fj)) (x )ip  for 

all xeX with g(x)^p'. If g is the whole space X , then the L-fts (X,t ) is called 

S*-closed .

(vi) RS-com pact [45] if and only if for every p-level semi-open cover (f-)ieJ 

o f g , where pepr(L) , there is a finite subset F o f J such that 

(VieFint(cl(Q))(x)ip for all xeX with g(x)^p ', i.e. for every p-level regularly 

semi-open cover of g, there is a finite subset F of J such that (VieFint(fj))(x)ip 

for all xeX with g(x)>p' If g is the whole space X , then the L-fts (X,t ) 

is called RS-com pact.

(vii) strong compact [44] if and only if every p-level pre-open cover o f g, 

where pepr(L), has a finite p-level subcover . If  g is the whole space X , then 

the L-fts (X,t ) is called pre-compact.

Kudri and Warner have proved that all the above definitions are good extensions 

o f the corresponding notions in general topology . They also obtained several 

characterizations of these covering properties and studied their properties. For 

more details about all the concepts presented in this section we refer to [39-47],
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Let (X,T) be a topological space . Then (X,T) is nearly compact if and only 

if the completely induced L-fts (X,cp(T)) is com pact.

Proof :

From the goodness o f compactness ( Theorem 3.1.4 ) and the fact that (X,T) is 

nearly compact iff its semi-regularization topological space (X,TS) is compact 

[63], we have that (X,T) is nearly compact iff the induced L-fts (X ,ü)(T,)) is 

compact . Then , by Corollary 2.4.16 , (X,T) is nearly compact iff the 

completely induced L-fts (X,<p(T)) is com pact.

Corollary 3.2.7 :

Let (X,T) be a semi-regular topological space . Then (X,T) is compact if and 

only if the completely induced L-fts (X,<p(T)) is com pact.

Proof : This follows immediately from the goodness o f compactness and 

Corollary 2.4.17 .

Proposition 3.2.6 :
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3.3. Some More Results On Existing Covering Properties

In this section we present some more characterizations of the covering properties 

in L-fuzzy topological spaces .

Lemma 3.3.1 :

Let (X,t ) be an L-fts and let pepr(L) . Then the family 

4>p( t ) = { fj'‘({ teL :tip}) : fjex } is an ordinary topology on X .

P roof: This is straightforward and therefore omitted.

The next theorem shows that compactness in an L-fuzzy topological space (X,t ) 

is characterized by compactness in the ordinary topological spaces (X,4>p( t )), 

where pepr(L).

Theorem 3.3.2 :

Let (X,t ) be an L-fts and geLx. The L-fuzzy set g is compact if and only if 

for every pepr(L) , Gp = { xeX : g(x)>p' } is compact in the ordinary

topological space (X, 4>p(tt) ) .

Proof :

Necessity : Let pepr(L) and let (AJ^j be an open covering of Gp , where

A;= f^({ teL :tip}) and fjex for each ieJ . Then, Gp c  U ^jfj^Q teLTip}) , i.e..
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(VjgjQ(x)ip for all xeX  with g(x) > p ' . Due to the compactness o f g ,  there is 

a finite subset F of J such that (VieFQ(x) f p for all xeX  with g (x )^p ', i.e., 

for all xeGp. H ence, Gp c  U^A^ and so Gp is compact in (X, cj>p( x ) ) . 

Sufficiency : Let pepr(L) and let (f5)ieJ be a p-level open cover o f g .  Then, 

(VjeJ{j)(x) i  p for all xeX with g (x )£p '. Then, Gp c  U ieJf^'({teL:tip}) and 

£ '({teL:tip}) £ 4>p(x) for each ieJ . By the compactness o f Gp in (X, 4>p( t ) ), 

there is a finite subset F o f J such that Gp c U ieFfj''({t£L:tsp}) which implies 

that (Vi(=FQ(x) i  p for all xeX with g(x)>p '. H ence, g is compact in (X,t ).

Corollary 3.3.3 :

An L-fuzzy topological space (X,t ) is compact if and only if for every pepr(L) 

the ordinary topological spaces (X,c})p(t )) is com pact.

Proof: This follows directly from the previous theorem .

The next theorem provides a different description for compactness in L-fuzzy 

topological spaces .

Theorem 3.3.4 :

Let (X,x) be an L-fts and g£Lx The L-iiizzy set g is compact if and only if 

for every pepr(L) and every collection (fj)ieJ of open L-fuzzy sets with 

(VieJ£ V g ') ( x ) i p  for all x e X , there is a finite subset F of J such that 

(VieFf: V g ') (x) i  p for all xeX.
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Proof:

Necessity : Let pepr(L) and let (fJ)jeJ be a collection o f open L-fuzzy sets 

with V g ') (x) i  p for all xeX. Then , (VieJfj )(x) i  p for all xeX  with

g(x)^p'. Since g is com pact, there is a finite subset F o f J such that 

(VieFQ(x) £ p for all xeX  with g(x)>p '.

Take an arbitrary xeX . If g'(x)^ p then g'(x) V (VieFQ(x) = (VjeFfjVg')(x) £ p 

because (VisFQ(x) i  p .

If g’(x )ip  then we have g'(x) V (Vi6FQ(x) = ( VieF̂ Vg' )(x) £ p.

Thus , we have (VieFf̂  V g' ) (x) £ p for all xeX.

Sufficiency : Let pepr(L) and let (QjeJ be a p-level open cover o f g . Then, 

(VieJfJ) (x) £ p for all xeX with g(x)> p ' . Hence , ( Vjgj^Vg' )(x) £ p for all xeX. 

From the hypothesis, there is a finite subset F of J such that ( VieFW  )0 0 ip  

forallx^X. Then, (VieFQ(x) £ p for all xeX with g'(x)< p . Hence, g is compact.

Similar descriptions are valid for the other covering properties given in 

Definition3.2.5 . For instance, the L-fuzzy set g is almost compact if and only 

if for every pepr(L) and every collection (f-)ieJ o f open L-fuzzy sets with 

(VieJ£V g ') (x) £ p for all x e X , there is a finite subset F of J such that 

(VifF cl(Q V g1 ) (x) £ p for all xeX. The proof is similar to the proof of 

Theorem 3.3.4 .
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Now we shall characterize the covering properties in terms o f filter bases. Firstly, 

we present the definitions of filter base and cluster p o in t.

Definition 3.3.5 :

Let aeM (L) and geLx . A collection p o f L-fuzzy sets is said to form an 

a -level filter base in the L-iuzzy set g if and only if for any finite 

subcollection { f, , f2 , ... , fn } of p ,  there exists xeX  with g (x)za such 

that (Ani=1fj )(x)>a . When g is the whole space X , then p is an a-level filter 

base if and only if for any finite subcollection { f, , f2 , ... , fj, } o f p , there 

exists xeX such that (A"i=1f- )(x)>a . If every member o f p is open, then 

P is called a-level open filter base .

Definition 3.3.6 :

Let (X,t ) be an L-fts and let p be an a-level filter base, where aeM (L ). 

A fuzzy point xTe M(LX) is called a cluster point of p if and only if 

( A fep cl(f) ) (x) ^ r .

Theorem 3.3.7 :

Let (X,t ) be an L-fts and geLx . The L-fuzzy set g is compact if and only if 

every a-level filter base in g , where aeM (L ), has a cluster point xa , with 

height a , contained in g .

Proof:

Necessity: Suppose that p is an a-level filter base in g with no cluster point, 

with height a , contained in g ,  where aeM (L). Then, for each xeX  with
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g(x)>a , xa is not a cluster point of p , i.e. there is fxep with cl(fx)(x)2ta . 

Hence, ( cl(Q )' (x ) ia ' = pepr(L). This means that the collection ( (cl(fx))' )xeX wth g(x)1(t 

is a p-level open cover o f g . From the compactness o f g , there are

cl(fx ),...,cl(fx) such that ( V"j=1 (cl(fx ))' )(x) i  p for all xeX  with g (x )^ p '= a .
1 ;

Hence , ( Ani=1 cl(fx ) ) (x) i  a for all xeX with g(x)^ a which implies thati

(A"=1 fx )(x ) 2 a for all xeX  with g(x)^ a . This is a contradiction.

Sufficiency : Suppose that g is not compact . Then , there is a p-level open 

cover 6 of g with no finite p-level subcover, where p ep r(L ). H ence, for each 

finite subcollection { hj , ... , h„ } of 6 , there exists xeX with g(x)>p' such that 

(VpjhjXx) < p , i.e. (A"i=1h'i )(x) > p1 = aeM (L) . Thus , P = { h' : he6 } forms an 

a-level filter base in g . By the hypothesis , p has a cluster point zaeM(Lx) , 

with height a ,  contained in g , i.e. g(z)>a and (A he6 cl(h') )(z) = (A he6 h ')(z )2ia. 

Then, (V he6 h' )(z) ^ p which yields a contradiction . This completes the proof.

Corollary 3.3.8 :

An L-fts (X,t ) is compact if and only if every a-level filter base has a cluster 

point with height a , where a eM(L) .

Proof: This follows easily from the previous theorem .

Theorem 3.3.9 :

Let (X,t ) be an L-fts and geLx . The L-fuzzy set g is almost compact if and 

only if every a-level open filter base in g , where aeM (L ), has a cluster point 

xa , with height a , contained in g .

Proof: This is similar to the proof of Theorem 3.3.7.
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An L-fts (X,x) is almost compact if and only if every a-level open filter base 

has a cluster point with height a , where a eM(L) .

Proof : This is an immediate result of the previous theorem .

Definition 3.3.11 :

Let (X,x) be an L-fts and let p be an a-level filter base, where aeM (L ). 

A fuzzy point M(LX) is called a 0-cluster point of P if and only 

if (A  fep 0-cl(f ) ) (x) > r

Corollary 3.3.10 :

Theorem 3.3.12 :

Let (X,t ) be an L-fts and geLx . The L-fuzzy set g is almost compact if and 

only if every a-level filter base in g , where aeM (L ), has a 0-cluster point xa, 

with height a , contained in g.

Proof: Necessity : Using the definition of 0-closure (Definition 2.1.13), this is 

similar to the necessity of Theorem 3.3.7.

Sufficiency : This follows from Theorem 3.3.9 and Proposition 2.1.14. 

Corollary 3.3.13 :

An L-fts (X,t ) is almost compact if and only if every a-level filter base has 

a 0-cluster point with height a , where a eM(L) .

P roof: This is an immediate consequence of the previous theorem.
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Let (X ,t ) be an L-fts and geLx . The L-fuzzy set g is almost compact if and 

only if for every aeM (L) and every collection (fj)ieJ o f L-fiizzy sets with 

( / \eJ0-cl(f- ))(x )ja  for all xeX  with g(x)za , there exists a finite subset F of J 

such that (AjeF fj ) (x ) ia  for all xeX with g(x)^a .

Proof: This follows easily from Definitions 3.3.5, 3.3.11 and Theorem 3.3.12. 

Remark 3.3.15 :

Kudri and Warner [43] have proved that the almost continuous image of every 

almost compact L-fuzzy set is almost compact. With Remark 2.1.20 (ii) and the 

next proposition we improve this resu lt.

Proposition 3.3.16 :

Let (X,t ) and (Y,t *) be L-fuzzy topological spaces and let f : (X,t ) -  (Y,t *) be 

a 0-continuous function ( Definition 2.1.17 (vii) ) such that f _1(y) is finite for 

every yeY. If g is an almost compact L-fuzzy set in (X,t ) , then f(g) is almost 

compact L-fuzzy set in (Y,t ‘) .

P roof:

Let aeM (L) and let p = (gi)ieJ be an a-level filter base in f (g ) . Then, 

P*= ( f'^gj) )ieJ is an a-level filter base in g . In fact, take a finite subcollection 

{ f  ‘‘(gi) , ... , f ‘'(gn) } of p* . Since p is an a-level filter base in f(g ) , there 

exists yeY with fTg)(y)>cc such that (Ani=1g  ) (y) >a . Since fTg)(y)>a and f  "’(y) 

is finite, there exists xeX with f(x) = y and g(x)>a . Then,

Proposition 3.3.14 :
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(Ani=1f 1(g ,) )(x )=  (Ani=1gi ) (f(x))>a

From the almost compactness of g , by Theorem 3.3.12, p* has a 0-cluster point 

za , with height a , contained in g .

Claim : u0 is a 0-cluster point o f p contained in f(g) , where u = f(z) . In fact, 

a <  (A ieJ0-cl( f  '(gi) ) ) (z) (because za is 0-cluster point o f p*)

< (A ifJ f ' 1(0-cl(gi)) ) (z) (due to the 0-continuity o f f  )

S (A ieJ e-cl(gi) ) (f(z)) -  (A isJ Q-cKgj) ) ( u ) .

Moreover, f(g)(u) >a because g(z)>a and u = f (z ) . Hence, by Theorem 3.3.12, 

f(g) is almost compact .

Corollary 3.3.17 :

Let (X,x) and (Y,x*) be L-fuzzy topological spaces and let f : (X,t ) -  (Y,t *) be 

a 0-continuous suijection . If (X,t ) is almost com pact, then so is (Y ,x*). 

Proof: This follows immediately from the previous proposition .

The next proposition shows that near compactness in L-fuzzy topological spaces 

is characterized by 8-open L-fuzzy sets ( Definition 2.1.12 (iii) ).

Proposition 3.3.18 :

Let (X,x) be an L-fts and geLx . The L-fuzzy set g is nearly compact if and 

only if every p-level 8 -open cover of g has a finite a-level subcover, 

where pepr(L) .
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Proof :

Necessity : Let pepr(L) and let (QieJ be a p-level ô-open cover of g .  Then, 

for every xeX with g (x )^p ', there is ieJ such that fj(x)ip . Since is ô-open, 

by Definition 2.1.12 (iii) , there is a regularly open L-fuzzy set \\ such that 

hj£ Ç and hj(x)ip . Hence, (hJ^j is a p-level regularly open cover o f g . Since 

g is nearly compact, there is a finite subset F o f J such that (VieF hj ) (x )ip  for 

all xeX  with g (x )^p '. Thus, (VieF Ç ) (x)*p for all xeX with g(x)^p' because 

for each ieJ , hj< f j .

Sufficiency : Since every regularly open L-fuzzy set is ô-open, this is obvious. 

Proposition 3.3.19 :

Let (X,x) be an L-fts and let g,he Lx . If g is nearly compact and h is ô -closed 

then gAh is nearly compact as well .

Proof :

Let pepr(L) and let (Q ieJ be a p-level ô-open cover o f gAh . Then, 

(QieJu{h'} is p-level ô-open cover of g .  Since g is nearly com pact, by the 

previous proposition, there are f, , ... , f„ such that (V"i=1 f- V h' )(x)*p for all 

xeX with g(x)>p'. Hence, (V"i=I Ç)(x)ip for all xeX with (gAh)(x)ï:p' . Thus, 

by the previous proposition , gAh is nearly com pact.

Corollary 3.3.20 :

Let (X,t ) be a nearly compact L-fts. Then each Ô-closed L-fuzzy set is nearly compact. 

Proof: This follows directly from Proposition 3.3.19 .
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Remark 3.3.21 :

Kudri and Warner [43] have proved that the almost continuous almost open image 

of every nearly compact L-fuzzy set is nearly compact. With Remark2.1.20 (i) 

and the next proposition we improve this resu lt.

Proposition 3.3.22 :

Let (X,"0 and (Y,x*) be L-fuzzy topological spaces and let f : (X,x) -  (Y,t *) be 

a 6-continuous function (Definition 2.1.17 (viii)) such that f ''(y ) is finite for every 

yeY. If g is an nearly compact L-fuzzy set in (X,x) , then f(g) is nearly 

compact L-fuzzy set in (Y,x*).

P roof:

Let pepr(L) and let (QifJ be a p-level regularly open cover o f g . Then, 

(Vjej )(y)ip for all yeY with f[g)(y)>p'. Hence, (VieJ f  ''(h;) )(x)*p for all xeX 

with g(x)^p' because f ‘‘(y) is finite for all yeY . Since f  is 8-continuous, for 

each ieJ f''(hj) is 8-open in (X ,x). Thus, { f '^ h j  }ieJ is a p-level 8-open cover 

of g .  Since g is nearly compact, by Proposition 3.3.18 , there is finite subset 

F o f J such that (V "i=1f ‘'(h^ )(x)ip  for all xeX with g (x)>p '. H ence,

(V Vihj )(y)ip for all yeY with f(g)(y)>p'. Consequently, f(g) is nearly compact.

Definition 3.3.23 :

Let (X,x) be an L-fts and let be an a-level filter base, where aeM (L ). 

A fuzzy point xre M(LX) is called a 8 -duster point of p if and

only if ( A fep S-cl(f) ) (x) > r .
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Theorem 3.3.24 :

Proof: By using Proposition 3.3.18, this is similar to the proof o f Theorem 3.3.7. 

Corollary 3.3.25 :

An L-fts (X,"0 >s nearly compact if and only if every a-level filter base has a 

ô -cluster point with height a ,  where aeM (L) .

Proof : This is an immediate consequence of the previous theorem .

Proposition 3.3.26 :

Let (X,t ) be an L-fts and geLx . The L-fiizzy set g is nearly compact if and 

only if for every aeM (L) and every collection (Qi6j o f L-fuzzy sets with 

(A^jô-c^fj ))(x)ka for all xeX with g(x)^a , there exists a finite subset F o f J 

such that (AieF fj ) (x )ïa  for all xeX with g(x)ka .

Proof: This follows from Theorem 3.3.24 and Definitions 3.3.5, 3.3.23.

Definition 3.3.27 :

Let (X,t ) be an L-fts and let p be an a-level filter base, where aeM (L). 

A fuzzy point x,.e M(LX) is called a :

(i) semi-cluster point of p if and only if (A  f(=p scl(f) ) (x) k r .

(ii) pre-cluster point of p if and only if (A  f(?p pci(f) ) (x) k r .

Let (X , t ) be an L-fts and let geLx . The L-fuzzy set g is nearly compact if

and only if every a-level filter base in g , where cteM (L), has a ô -cluster point

xa, with height a , contained in g .
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Theorem 3.3.28 :

Proof: This is similar to the proof of Theorem 3.3.7 .

Corollary 3.3.29 :

An L-fts (X,t ) is semi-compact if and only if every a-level filter base has a 

semi-cluster point with height a ,  where aeM (L) .

P roof: This is an immediate consequence of the previous theorem .

Theorem 3.3.30 :

Let (X,t ) be an L-fts and let geLx . The L-fiizzy set g is S*-closed if and only 

if every a-level semi-open filter base in g , where aeM (L ), has a semi-cluster 

point xa, with height a , contained in g .

Proof: This is similar to the proof o f Theorem 3.3.7.

Corollary 3.3.31 :

An L-fts (X,x) is S*-closed if and only if every a-level semi-open filter base 

has a semi-cluster point with height a , where a  eM (L ).

P roof: This is an immediate consequence of the previous theorem .

Let (X,"0 be an L-fts and let geLx . The L-fiizzy set g is semi-compact if and

only if every a-level filter base in g , where aeM (L ), has a semi-cluster point

\ a, with height a , contained in g .
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Theorem 3.3.32 :

Proof: This is similar to the proof o f Theorem 3.3.7 .

Corollary 3.3.33 :

An L-fts (X,t ) is strong compact if and only if every a-level filter base has 

a pre-cluster point with height a , where a e M (L ).

Proof: This is an immediate consequence of the previous theorem .

Let (X ,t ) be an L-fts and let geLx . The L-fuzzy set g is strong compact if

and only if every a-level filter base in g , where aeM (L ), has a pre-cluster

point xa, with height a , contained in g .
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CHAPTER IV

FEEBLE COMPACTNESS IN L-FUZZY TOPOLOGICAL SPACES

In ordinary topology, feebly open ( or a-open ) sets were introduced and studied 

by Njastad [71]. A subset A in a topological space (X,T) is called feebly open 

(or a-open) if and only if A c  int(cl(intA)) . By using these se ts , Maheshwari 

and Thakur [54] have presented the notion of feeble compactness (or a-compactness) 

in general topology . A topological space (X,T) is said to be feebly compact 

if and only if every feebly open cover o f X has a finite subcover.

In I-fuzzy topological spaces, feeble compactness has been initiated and studied 

by Thakur and Saraf [91], Their definition is based on Chang's compactness [16] 

which is not a good extension of ordinary compactness .

In this chapter, a good definition of feeble compactness is introduced in 

L-fuzzy topological spaces. We prove the goodness o f the proposed definition, 

obtain different characterizations and study some o f its properties .

This chapter is divided in three sections :

In section 1 we introduce our definition and prove that it is a good extension 

o f the feeble compactness in classical topology .

The second section contains some other characterizations o f feeble compactness. 

In the third section we study some of its properties .
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4.1. Proposed Definition and Its Goodness

Definition 4.1.1 :

Let (X,t ) be an L-fts and geLx. The L-fuzzy set g is said to be feebly 

compact if and only if every p-level feebly open cover o f g has a finite 

p-level subcover, where pep r(L ).

If g is the whole space, then we say that the L-fts is feebly com pact. 

Lemma 4.1.2 :

Let (X,T) be a topological space and Ac X . T hen, A is feebly open in 

(X,T) if and only if Xa *s feebly open in the induced L-fts (X,(i)(T)) .

Proof :

A is feebly open in (X,T) iff A c  int(cl(int(A))) iff xA * X int<ci«A))) = 

int(cl(int(xA ))) ( the equality is due to Proposition 2.3.10 ) iff Xa  *s feebly 

open in (X,co(T)) .

Theorem 4.1.3 (T he goodness of feeble com pactness):

Let (X,T) be a topological space . Then (X,T) is feebly compact if and only 

if the induced L-fts (X,a>(T)) is feebly com pact.

P roof:

Necessity : Let pepr(L) and let (QieJ be a p-level feebly open cover of
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(X,co(T)). Then, )(x)ip  for all xeX . H ence, for each xeX  there is

ieJ such that fj(x)ip , i.e. x e fj'^ teL iU p } ) . S o , X = UieJf5'1({teL:tsp}) .

We also have that fj < int(cl(int Q) for every ieJ because each fj is feebly 

open in (X,u)(T)) . Hence, by Proposition 2.3.9 , we get 

fj'*({teL:tip}) c  ( int(cl(int t;)) )'* ({ teL :tip}) c int{cl[int(^'‘({teL:tip}))]} 

which means that for every i e J , ^ ''({ teL itip}) is feebly open in (X,T). 

Thus, { ^ '({ te L itip } )  }ieJ is a feebly open cover o f (X,T) . Due to the 

feeble compactness of (X ,T ), there is a finite subset F o f J such that 

X = l4eF^'({ t6L :tsp}), i.e. (ViFF£)(x)ip  for all xeX . H ence, (X,co(T)) is feebly 

compact.

Sufficiency : Let (AJlcJ be a feebly open cover of (X,T) . T hen , by the previous 

lemma, (xA.)iej *s a family of feebly open L-fuzzy sets in (X,a>(T)) such 

that 1 = (VieJxA.)(x) i  p for all xeX and for all pep r(L ), i.e. (Xa .L j ¡s al »

p-level feebly open cover o f (X,co(T)) . Since (X,co(T)) is feebly compact, 

there is a finite subset F of J such that (VjeFxA. )(x) * P f°r all xeX .
I

Hence, (VieFxA. )(x) = 1 for all xeX , i.e. X = UjcF A, and therefore (X,T)i

is feebly com pact.
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4.2. Other Characterizations

Theorem 4.2.1 :

Let (X,t ) be an L-fts and geLx . The L-fuzzy set g is feebly compact if and 

only if for every aeM(L) and every collection (hj)ieJ of feebly closed L-fuzzy 

sets with (AieJhj )(x) i  a for all xeX with g(x)^a , there is a finite subset F 

of J such that (AieFhi )(x )sa  for all xeX with g(x)^a .

P roof: This follows immediately from Definition 4.1.1.

Theorem 4.2.2 :

Let (X,t ) be an L-fts and geLx. The L-fuzzy set g is feebly compact if 

and only if every constant a-net contained in g has a feebly cluster point ( see 

Definition 2.1.16 (iii) ) xaeM(Lx) , with height a ,  contained in g ,  for each 

aeM (L) .

Proof: Necessity : Let aeM (L) and let (Sm)meD be a constant a-net contained 

in g without any feebly cluster point with height a contained in g . T hen , for 

each xeX with g(x)>a , xa is not a feebly cluster point o f (Sm)meD, i.e. 

there are nxeD and a feebly closed L-fuzzy set fx with fx(x )sa  and Sm< fx 

for each m>nx.

Let x1, ... , x* be elements of X with g(x*) > a for each ie{ l,...,k}. Then,

there are r^ ,..., r^eD  and feebly closed L-fuzzy sets fx with fx (x ')sa  and 
\ * ; ;
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Sm̂  for each and for each ie{ l,...,k} . Since D is a directed set,
i i

there is n0eD such that nci  n, for every ie{l,...,k} and Sm< fx for
i i

ie{l,...,k} and for each m^n0.

Now consider the family T = ( fx )xeXwithg(x), a .

Then ( A f er fx )(y)^a for all yeX with g(y)^a because f,(y)2 a . We also 

have that for any finite subfamily A = { fx , ... , fx } of T, there is yeX  with
1 k

g(y) > a and (Aki=1fx )(y)>a since Sm< Aki=1 fx for each m^n0 because
» «'

Sm̂  fx for each ie{l,...,k} and for each m^n0.
I

H ence, by the previous theorem , g is not feebly com pact.

Sufficiency: Suppose that g is not feebly com pact. T hen , by the previous 

theorem, there exist a eM(L) and a collection T = ( f- )ieJ o f feebly closed 

L-fiizzy sets with (AieJQ (x )ia  for all xeX with g(x)>a , but for any finite

subfamily p of T there is xeX  with g(x)^a and ( AieFf;) (x) > a .

Consider the family o f all finite subsets o f T , 2 ^ ,  with the order 

P, < P2 if and only if Pj c P2 . Then 2 ^  is a directed set.

S o , writing xa as Sp for every Pe2(r), (Sp)pe2cr) is a constant a-net 

contained in g because the height o f Sp for all pe2(r) is a and Sp ^ g 

for all Pe2(r), i.e. g(x)>a .

(Sp)pe2(r,als° satisfies the condition that for each feebly closed L-fuzzy set 

^ep  we have xa= S p< fj.

Let yeX with g(y)>a . Then, (Aj(;Jfi)(y ) ia  , i.e. there exists je J  with fj(y)sa. 

Let P = { f-}. S o , for any p > p „ , Sp < Afep fj < AffPo f; = f j .

97



Thus, we got a feebly closed L-fuzzy set fj with fj(y)stoc and P0e2(r) such 

that for any P>P0 , Sp ^ , that means yaeM(Lx) is not a feebly cluster

point of (Sp)pe2(T) forallyeX  with g(y)^a . H ence, the constant a-net (Sp)pe2̂  

has no feebly cluster point with height a  , contained in g .

Corollary 4.2.3 :

An L-fts (X,t ) is feebly compact if and only if every constant a-net in 

(X,x) has a feebly cluster with height a .

P roof: This is an immediate consequence of the previous theorem .

Definition 4.2.4 :

Let (X,t ) be an L-fts and let p be an a-level filter base, where aeM (L ).

A fuzzy point \ e  M(LX) is called a feebly duster point of P if 

and only if (A  fep fcl(f) ) (x) > r , where fc l(f) = A { geLx : g£ f  and g is 

feebly closed } [21] .

Theorem 4.2.5 :

Let (X,x) be an L-fts and let geLx . The L-fuzzy set g is feebly compact if 

and only if every a-level filter base in g , where aeM (L ), has a feebly cluster 

point xa, with height a , contained in g .

Proof: This is similar to the proof o f Theorem 3.3.7 .
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An L-fts (X,x) is feebly compact if and only if every a-level filter base, 

where a eM (L ), has a feebly cluster point with height a .

P roof: This follows immediately from Theorem 4.2.5 .

Theorem 4.2.7 :

Let (X,t ) be an L-fts and geLx. The L-iuzzy set g is feebly compact if and 

only if for every pepr(L) and every collection (fj )ieJ o f feebly open L-fuzzy 

sets with (ViEjfjV g ') (x) i  p for all x e X , there is a finite subset F of J 

such that (VieFfj V g ') (x) i  p for all xeX  .

Proof: This is similar to the proof o f Theorem 3.3.4

Corollary 4.2.6 :
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4.3. Some Properties

Proposition 4.3.1 :

Let (X,t ) be an L-fts where X is a finite s e t . Then (X,t ) is feebly compact. 

Proof: This follows easily from the definition .

Proposition 4.3.2 :

Let (X,t ) be an L-fts and g , h e Lx . If g and h are feebly compact then 

gVh is feebly compact as well .

P roof:

Let pepr(L) and let (QieJ be a p-level feebly open cover of gV h. Then, 

(VieJ )(x )ip  for all xeX with (gVh)(x)^p' . Since p is prime , we have

(gVh)(x)^p' if and only if g(x)>p' or h(x)2:p' So , by the feebly

compactness o f g and h , there are finite subsets E , F o f J such that 

(VieEfi)(x)ip for all xeX with g(x)>p' and (VieFfJ)(x)ip for all xeX  with 

h (x )> p '. T hen , (VieEuF fj)(x)*p for all xeX with g(x)^p' or h(x)^p' , i.e. 

(VieEuFfiXx) ip  for all xeX with (gVh)(x)^p'. H ence, gVh is feebly compact.

Proposition 4.3.3 :

Let (X ,t ) be an L-fts and g ,h e L x . If g is feebly compact and h is 

feebly closed, then gAh is feebly com pact.
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Proof:

Let pepr(L) and let (fj)jeJ be a p-level feebly open cover o f gA h. Then, 

(Viejfj)(x) ip  forallxeX  with (gAh)(x)^p'. Thus, T = (^)iE,u {h'} is a p-level 

feebly open cover of g ,  i.e. (Vkerk )(x )ip  fo rallxeX  with g(x)>p '. In fact, 

for each xeX with g(x)>p', if h(x)>p' then (gAh)(x)>p' which implies 

that (VieJfj)(x )ip , thus (Vkerk ) (x ) ip . If h(x)sp' then h '(x)ip  which implies 

that (Vkfrk)(x)ip . From the feebly compactness o f g , there is a finite 

subfamily A o f F , say A =  { f,,f2,...,f^,h'} with (VkeAk)(x)ip  for all xeX  with 

g(x)>p' . Then , (Vi=1n Q(x)sp for all xeX with (gAh)(x)>p' . In fa c t , if 

(gAh)(x)>p' then g(x)>p' and hence (VkeAk)(x)ip . S o , there exists keA 

such that k (x )fp . Moreover, h(x)>p' as w ell, i.e. h'(x)<p . S o , (Vi=1"fj)(x)ip 

for all xeX with (gAh)(x)>p'. H ence, gAh is feebly com pact.

Corollary 4.3.4 :

Let (X ,t ) be an L-fts . If  g is a feebly compact L-fuzzy s e t , then each 

feebly closed L-fuzzy set contained in g is feebly compact as w e ll.

P roof: This is an immediate consequence of the previous proposition .

Proposition 4.3.5 :

Let (X ,t ) be an L-fts and geLx .

(i) If g is strong compact ( Definition 3.2.5 (vii)) then g is feebly compact. 

(¡0 If g is feebly compact then g is com pact.
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Proof:

(i) Since every feebly open L-fiizzy set is pre-open, this directly follows

from the definitions .

(ii) Since every open L-fuzzy set is feebly open , this directly follows from 

the definitions .

Theorem 4.3.6 :

Let (X,t ) be an L-fts, geLx and let xn be the L-fuzzy topology defined

in Definition 2.1.18 . Then g is feebly compact in (X,t ) if and only if g 

is compact in (X.t ^).

P roof:

Necessity : Let pepr(L) and let (fj)ieJ be a collection o f subbasic x^-open 

L-fuzzy sets with (Vi(rJfj)(x)ip for all xeX with g (x )^p '. Then, each fj is 

feebly open in (X,x) and so (fj)igJ is a p-level feebly open cover o f g . By 

the feeble compactness of g in (X,t ) , there exists a finite subset F of J such 

that (VieFfj)(x)ip for all xeX with g(x)>p '. Hence, by Theorem 3.1.12, 

g is compact in (X,xn) .

Sufficiency : Let pepr(L) and let (fj)ieJ be a collection o f feebly open

L-fuzzy sets in (X,x) with (VipJfj)(x)ip for all xeX with g(x)^p' . Since 

every feebly open L-fuzzy set in (X,x) is x^-open, by the compactness of 

g in (X,x ) , there exists a finite subset F of J such that ( v leFf; )(x) t  P

for all xeX with g(x)>p' . H ence, g is feebly compact in (X,x) .
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An L-fts (X,x) is feebly compact if and only if the L-fts (X,*^) is compact. 

Proof: Taking g as the whole space , this easily follows from the previous theorem.

Proposition 4.3.8 :

Let (X,x) be an L-fts. If g is a feebly compact L-fuzzy set in (X ,x ) , then 

for each closed L-fuzzy set h in (X,xT]) , hAg is feebly compact in (X,x) .

Proof:

Let g be a feebly compact L-fiizzy set in (X ,x ).T h en , by Theorem 4.3.6, 

g is compact in (X,xn) . Since h is closed in (X .x^), by Proposition 3.1.11 (ii), 

hAg is compact in (X,xn) . H ence, again by Theorem 4 .3 .6 , hAg is feebly 

compact in (X,x) .

Proposition 4.3.9 :

Let (X,x) and (Y,x*) be L-fuzzy topological spaces and let f : (X,x) -  (Y,x*) 

be a ri-continuous mapping (Definition 2.1.18 ) with f ’(y) is finite for every yeY. 

If geLx is feebly compact in (X,x) then f(g) is compact in (Y,x*).

Proof:

If g is feebly compact in (X ,x ), by Theorem 4.3 .6 , g is compact in 

(X ,xn) . Since f  : (X,x) -  (Y,x*) is ^-continuous , f  : (X,xn) -  (Y,x*) is

continuous. S o , by Proposition 3.1.10 , f(g) is compact in (Y,x*) .

Corollary 4.3.7 :

103



Let (X,x) and (Y,x*) be L-fuzzy topological spaces and let 

f:(X,x)-(Y,x*) be a feebly continuous mapping ( Definition 2.1.17. (iv) ) with 

f'(y ) is finite for every yeY. If geLx is feebly compact in (X ,x ), then 

f(g) is compact in (Y,x*) .

Proof : Since every feebly continuous mapping is p-continuous , this follows 

from Proposition 4.3.9 .

Proposition 4.3.11 :

Let (X,x) and (Y,t *) be L-fuzzy topological spaces and let f:(X,x)^(Y,x*) 

be a p'-continuous mapping ( Definition 2.1.18 ) with f^ y )  is finite for 

every yeY . If geLx is feebly compact in (X ,x ), then f(g) is feebly compact 

in (Y,x*) .

Proof :

If g is feebly compact in (X ,x ), then by Theorem 4.3.6, g is compact in 

(X,xT1) . Since f  : (X,x) -  (Y,x*) is p'-continuous , we have that f  : (X,xn) -  (Y,xn*) 

is continuous. H ence, by Proposition 3.1.10, f(g) is compact in (Y,x^*). 

So, by Theorem 4.3.6 , f(g) is feebly compact in (Y,x*) .

Corollary 4.3.12 :

Let (X,x) and (Y,x*) be L-iuzzy topological spaces and let f  : (X,x) -  (Y,x*)

Proposition 4.3.10 :
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be a r|'-continuous surjection. If (X,x) is feebly compact then (Y,t *) is 

feebly compact as well .

Proof: This follows from Proposition 4.3.11 and Corollary 4.3.7 .

Corollary 4.3.13 :

Let (X,t ) and (Y,t *) be L-fuzzy topological spaces and let f  : (X,x) -  (Y,t *) 

be a feebly irresolute mapping (Definition 2.1.17 (xiv)) with f*(y) is finite for 

every yeY. If geLx is feebly compact in (X,t ), then f(g) is feebly compact 

in (Y,t *).

Proof : Since every feebly irresolute mapping is q'-continuous , this is an 

immediate consequence of Proposition 4.3.11.
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CHAPTER V

P-CLOSEDNESS IN L-FUZZY TOPOLOGICAL SPACES

We say that a topological space (X,T) is P-closed if and only if every pre-open 

cover of X has a finite subfamily whose pre-closures cover X.

Considering strong compactness introduced by Nanda [70], Zahran [106] has 

defined and studied P-closedness in I-fuzzy topological spaces .

In this chapter, along the line of strong compactness (Definition 3.2.5 (vii)), we 

introduce a good definition of P-closedness in L-fiizzy topological spaces . We 

define P-closedness for arbitrary L-fuzzy sets, prove its goodness, obtain different 

characterizations o f this notion and study some of their properties .

This chapter contains three sections :

In the first section we present our definition and prove its goodness .

In the second section we obtain some other characterizations o f our definition . 

The third section focuses on some properties.
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5.1. Proposed Definition and Its Goodness

Definition 5.1.1 :

Let (X,t ) be an L-fts and geLx . The L-fiizzy subset g is said to be 

P-closed if and only if for every p-level open cover (fj )ieJ o f g , where 

p ep r(L ), there is a finite subset F of J such that (VieF pcl(f[)) (x )ip  for 

all x s X  with g(x)>p', where pci stands for pre-closure ( Definition 2.1.11 ) .

If the L-fuzzy set is the whole space X , then we say that the L-fts (X,t ) 

is P-closed .

Lemma 5.1.2 :

Let (X,T) be a topological space. If f  is a pre-open L-fuzzy set in the 

induced L-fts (X,o)(T)) then f  is pre-continuous ( Definition 2.1.17 (ii)) as 

a function from (X,T) to L with its Scott topology.

Proof :

Let f  be a pre-open L-fuzzy set in (X,co(T)) . We shall prove that f : (X ,T )-L  

is pre-continuous, i.e. the inverse image of every Scott open subset o f L is pre-

open in (X,T) . Since any union of pre-open sets is pre-open , by 

Proposition 1.1.22, it is sufficient to prove that for every pe p r(L ), 

f ’({ teL :tip}) is pre-open in (X,T) . Because f  is pre-open in (X,co(T)), we 

have f  ^ int(cl(f)) and hence for all pepr(L ), we get
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f ‘( {teL:tip} ) c  ( int(cl(f)) )'' ( {teL:tip} ) c  int(cl( f _1 ({ teL :tip}) )) , 

where the last inclusion is due to Proposition 2.3.9 . Consequently , for all 

pepr(L ), f '({ te L :U p } ) is pre-open in (X,T) and therefore f : (X,T) -  L is 

pre-continuous .

Lemma 5.1.3 :

Let (X,T) be a topological space . Then every pre-open L-fuzzy set in the 

induced L-fts (X,a>(T))is a union of elements of the collection 9£ = ( f j ) ieJ, where 

r e ^ L  if xe AjCX

Ç00= i , is pre-open in (X,T) .

_0 otherwise

Proof : Let Xp6 pr(Lx) and let g be a pre-open L-fuzzy set in (X,o)(T)) with 

xpeg . By Lemma 2.1 .6 , it is sufficient to prove that there is ÇeSf such that 

Xp6^< g . Since Xp6g, we have g(x)ip  . Hence, there is be L such that b«g(x) 

and b ip  because L is a continuous lattice ( Definition 1.1.7 ) .

Take e0eL with b « e0 « g(x) . Then , g(x)e H= { qeL : e0 « q } and by 

Proposition 1.1.21 , H is Scott open in L . Since g is pre-open in (X ,o)(T)), by 

Lemma 5.1.2, g : (X,T) -  L is pre-continuous. So, there is a pre-open set A„ 

in (X,T) such that xeA„ and g(A0) c  H . Thus, g(x)>e0 for all xeA„ and e0ip . 

Hence , Xp€ f0 and f0 < g , where fc(x) = e0 if xeA,, and f0(x) = 0 otherwise .

Lemma 5.1.4 :

Let (X,T) be a topological space and Ac X . Considering the induced L-fts (X,<o(T))
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'e e L  if xeA r e  if xe pcl(A)

and f(x) = < , we have p d ( f ) =  ^

iO otherwise . 0 otherwise

Proof : r e if xe pcl(A)

Let g(x) = <! . We shall prove that pcl(f ) = g .

1 0 otherwise

By Proposition 2.3.10, we have

r e  if xe cl(int(pcl(A))) 

d(int(g))(x) = J

CO otherwise

Since pcl(A) is pre-closed in (X T ), we have cl(int( pcl(A) )) c pcl(A) and hence 

cl(int(g)) < g , i.e. g is pre-closed in (X ,cj(T)). On the other hand, we have feg 

and hence f  < pcl(f )< pcl(g) = g . Thus , ( pcl(f ) ) (x) = 0 for all x i  pcl(A) and 

(pcl(f )) (x) = e for all xeA .

From pcl(f) < g we get ( pcl(f ) )_1 ( {teL : t*e} ) c  g '1 ( {teL : t#e} ) = (pcl(A))\ 

H en ce , pcl(f)(x) = e for all xe pcl(A) and pcl(f)(x) = 0 for all x f  pcl(A) . 

Consequently, pcl(f) = g . This completes the proof.

Theorem 5.1 5 ( The goodness of P-closedness ) :

Let (X T) be a topological space . Then (X T ) is P-closed if and only if the 

induced L-fts (X,w(T)) is P-closed .

Proof :

Necessity: Let pepr(L) and T = (Qjpj be a family of basic pre-open L-fuzzy sets
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in (X ,g)(T)) with (Vi(rJÇ)(x)ip for all xeX . Thus , by Lemma 5.1.3 , for each ieJ

i fx e ^ c X

i^(x)= where is pre-open in (X,T).

v 0 otherwise

Since (VieJQ (x)ip  fo rallxeX , for each xeX there is ieJ such that fj(x)ip, i.e. ejip. 

Let A =  { Aj : there is ieJ with e^p and ÇeT } . Then , A is a family o f pre-

open sets in (X,T) covering X . From the P-closedness o f (X ,T ), there is a 

finite subfamily A*= { A,, A2, ..., A J  of A such that X = Uj" pcl(Aj). Since , by 

Lemma 5.1.4,

f e;eL if xepcl(Ai) iX  

pcl(Q(x)= <

,  0 otherwise

we have (Vi=1 pc(fj) ) (x )ip  for all xeX  . Hence, (X,a>(T)) is P-closed . 

Sufficiency : Let (Aj)ieJ be a pre-open cover of (X,T) . Then , by 

Proposition 2.3.8 , (xA )ieJ is a family o f pre-open L-fuzzy sets in (X,a>(T)) such
l

that 1 = (VieJXA )(X)*P f°r all x ^X and for all p ep r(L ). Since (X,a>(T)) isf

P-closed, there is a finite subset F of J such that

(VieFPcl(xA.))(x) = (Vi<=FXpci{A ) )(x) i  P for all xeX  . Hence , X = UieF pcl(AJ and
i  i

thus (X,T) is P-closed .
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5.2. Other Characterizations

Theorem 5.2.1 :

Let (X,t ) be an L-fts and geLx. The L-fuzzy set g is P-closed if and 

only if for every aeM (L) and every collection (hJ^j o f pre-closed L-fuzzy 

sets with (AieJhi) (x ) ia  for all xeX with g(x)^a , there is a finite subset F 

of J such that (AieF p in t(l\)) (x ) ta  for all xeX with g(x)>a .

Proof: This follows immediately from Definition 5.1.1 .

Theorem 5.2.2 :

Let (X,t ) be an L-fts and geLx. The L-fuzzy set g is P-closed if and 

only if every constant a-net contained in g has a pre-0*-cluster point 

(Definition 2.1.16 (vi) ) xaeM(Lx), with height a , contained in g, for each aeM (L). 

Proof: This is similar to the proof of Theorem 4.2.2 .

Corollary 5.2.3 :

An L-fts (X,t ) is P-closed if and only if every constant a-net in (X,t ) 

has a pre-0*-duster with height a .

P roof: This follows immediately from the previous theorem .

Theorem 5.2.4 :

Let (X,x) be an L-fts and geLx . The L-fuzzy set g is P-closed if and only



if every a-level pre-open filter base in g has a pre-cluster point (Definition3.3.27) 

xaeM(Lx) , with height a , contained in g .

Proof: This is similar to the proof of Theorem 3.3.7.

Corollary 5.2.5 :

An L-fts (X,t ) is P-closed if and only if every a-level pre-open filter 

base has a pre-cluster point x0eM(Lx) with height a  .

Proof: This is an immediate consequence of Theorem 5.2.4 .

Theorem 5.2.6 :

Let (X,t ) be an L-fts and geLx. The L-fuzzy set g is P-closed if and only if 

for every pepr(L) and every collection (Q jeJ o f pre-open L-fuzzy sets with 

V g1) (x) i  p for all x eX , there is a finite subset F o f J such that 

(VieF pcl(fj) V g1) (x) i  p for all xeX .

P roof: This is similar to the proof o f Theorem 3.3.4 .



5.3. Some Properties

Proposition 5.3.1 :

Let (X,t ) be an L-fts and g , h e  Lx. If g and h are P-closed then 

gVh is P-closed as well .

Proof: This is similar to the proof of Proposition 4.3.2 .

Proposition 5.3.2 :

Let (X,t ) be an L-fts and g , h e Lx . If g is P-closed and h is pre- 

clopen , then gAh is P-closed .

P roof:

Let pepr(L) and let (QieJ be a p-level pre-open cover o f gAh . Then, 

(VjeJQ (x)ip  for all xeX with (gAh)(x)^p'. Thus, T = (fi)ieJu {h*} is a family 

of pre-open L-fiizzy sets with (Vkerk)(x)ip for all xeX with g (x)>p '. In fact, 

for each xeX with g(x)>p', if h(x)>p' then (gAh)(x)>p' which implies that 

(VieJQ (x)ip  , thus (Vkerk)(x)ip . If h(x)2p' then h '(x)ip  which implies 

(Vkerk)(x)ip  . From the P-closedness of g ,  there is a finite subfamily A of T, 

say A = { f j , f2, ... , fn, h' } with (VkeApcl(k))(x)ip for all xeX  with g(x)^p'. 

Then, (Vj=1npcl(ii))(x)ip for all xeX with (gAh)(x)>p'. In fact, if (gAh)(x)^p' 

then g(x)>p' , hence (VkeApcl(k))(x)*p . So , there exists keA such that 

(pcl(k))(x)ip. Moreover, h(x)^p' as well, i.e. h'(x)^p . Since h is pre-open,
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h' is pre-closed , i.e. h' = pcl(h') . So , h'(x)<p implies that pcl(h')(x)^p' . 

Consequently, (Vi=In pcl(Q)(x)ip for all xeX with (gAh)(x)£p'. Hence, gAh is 

P-closed.

Corollary 5.3.3 :

Let (X,t ) be a P-closed L -fts . Then each pre-clopen L-fiizzy set in (X,x) 

is P-closed .

Proof: This is an immediate consequence of the previous proposition .

Proposition 5.3.4 :

Let (X,t ) be an L-fts and geLx.

(i) If  g is strong compact ( Definition 3.2.5 (vii)) then g is P-closed.

(ii) I f  g is P-closed then g is almost compact ( Definition 3.2.5 (i) ) .

Proof:

(i) Since we have f<pcl(f) for every feLx, this directly follows from the definitions.

(ii) Since we have pcl(f)< cl(f) for every feLx and every open L-fuzzy set is 

pre-open, this directly follows from the definitions .

Proposition 5.3.5 :

Let (X,t ) and (Y,t *) be L-fuzzy topological spaces and f : (X,t ) -  (Y,t *) 

be a pre-irresolute mapping ( Definition 2.1.17 (xii) ) with f '(y ) is finite for 

every y e Y . If geLx is P-closed in (X,t ) , then f(g) is P-closed in 

(Y,t *) as well .
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Proof:

Let pepr(L) and let (fj)i(=J be a p-level pre-open cover o f f(g) . Then, 

(VieJQ(y)*p for all yeY with f(g)(y)^p'. Because f  is pre-irresolute, f 1®  

is pre-open in (X,x) for every i e J . We also have (V ^ f1®  )(x)ip  for all

xeX with g(x)>p '. H ence, ( f 1®  )ieJ is a p-level pre-open cover of g .

By the P-closedness of g , there exists a finite subset F of J such that 

[VieFpcl(f1(fi))](x)ip for all xeX with g(x)^p' . We are going to show that 

(VieFpcl(0)(y) i  P for all yeY with f(g)(y) > p ' .

Since f ‘(y) is finite for every y e Y , f(g)(y)>p' implies that there is xeX with 

g(x)>p' and f(x)=y . Thus , we have that

(VieF pel®) (y) = (VjeF pci® ) ® x)) = [ VieF f ‘(pci® ) ] (x) = { VieF pcl[f1(pcl(Q)] } (x) 

> [VieF pcl(f'(Q)] (x) i  p.

The third equality is due to fact that f  is pre-irresolute if and only if f '(h ) 

is pre-closed in (X,x) for every pre-closed h in (Y,t *) . Finally , we have that

(VieFpcl(fD)(y) £ p for all yeY with f(g)(y) ^ p ' . H ence, ffg) is P-closed .

Proposition 5.3.6 :

Let (X,t ) and (Y,t *) be L-fuzzy topological spaces and f : (X,t ) -  (Y,t *) 

be a weakly pre-irresolute mapping ( Definition 2.1.17 (xiii) ) with f '(y ) is finite 

for every yeY . If geL x is strong compact in (X ,x ), then f(g) is P- 

closed in (Y ,x*).

P roof:

Let pepr(L) and let ® j€j be a p-level pre-open cover o f f(g) . Then,
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(VieJQ (y)ip  for all yeY with fig)(y)>p'. Since f  is weakly pre-irresolute, 

we have that for every ieJ, f f i f j i  pint[ ffipcfif-))]. Then , { pint [ ffipcfifi)) ] }ieJ 

is a family of pre-open L-fuzzy se ts in (X ,t)  such that ( v i,j P ^ t [ f'(pcl(Q ) ] )  (x) ip  

for all xeX  with g(x)>p', i.e. ( pint [ ffipcfiQ) ] )ieJ is a p-level pre-open cover 

o f g . By the strong compactness of g , there is a finite subset F o f J such 

that ( VieF pint [ f'(pcl(Q ) ])(x)ip  for all xeX with g(x)^p'.

We are going to show that ( V,eF PcKO ) (y) i  P for all yeY  with fig)(y)*p'. 

Take yeY with fig)(y)>p '. Because f ‘(y) is finite, there exists xeX  with 

g(x)>p' and fix)=y . Then, we have

(Vi€Fpcl(fD) (y) = (VirFpcl(Q) (fix)) = [ VieFf'(pcl(Q) ] (x)> { ViFF pint[f'(pcfiQ)] }(x)ip. 

Hence, fig) is P-closed .
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CHAPTER VI

UNIFICATION THEORY

Mukheijee and Malakar [68] have initiated a unified theory for Chang types of 

fuzzy covering properties; namely Chang compactness [16], near compactness [27], 

almost compactness [24] in I-fuzzy topological spaces .

In a similar m anner, we attempt to unify several good forms o f L-fiizzy 

covering axioms; namely compactness, strong compactness, feeble compactness, 

semi-compactness , alm ost, near compactness and P-closedness etc . studied in 

the previous chapters.

Taking Q as the collection of some L-fuzzy sets on a non-empty set X 

satisfying only the condition 0 ,  leQ  and with the operator T on Lx 

satisfying r(l) = 1 , we obtain the definitions o f the concepts mentioned above 

by different interpretations of the family Q and the operator T in different 

particular L-fuzzy settings . Some of the known results on the good forms of 

fuzzy covering axioms are thus obtained as particular cases o f the results of the 

unified theory presented in this chapter.
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This chapter is divided into two sections :

In the first section we present some basic definitions to establish the unification 

theory . We also introduce Q-compactness o f a fuzzy system and obtain its 

several characterizations .

The second section is reserved for the conclusion .
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6.1 Some Definitions and Q-compactness

Definition 6.1.1 :

Let X be a non-empty set and Q c  Lx with 0, le  Q . Let T : Lx -  Lx be an 

operator satisfying the property T( 1 ) = 1 . Then , the triple (X, Q, T) will be 

called a fuzzy system . The members of Q will be called fl-fuzzy sets.

Definition 6.1.2 :

Let (X, Q, F) be a fuzzy system and geLx . The fuzzy set g is called an 

Q'-fuzzy set if and only if g' is an Q-fuzzy s e t , i.e. g ' e i l .

Example 6.1.3 :

Let (X, t ) be an L-fuzzy topological space .

(i) Let Tj : Lx -  Lx be the identity operator, i.e. r \ ( f )  = f  for every feLx. 

Then , (X, t , T,) is a fuzzy system .

(ii) Let T2 :L X- L X be the closure operator, i.e. r 2( f )  = cl(f) for every feLx.

Then , (X, t , Ify) is a fuzzy system as well .

Definition 6.1.4 :

Let (X  Q, r )  be a fuzzy system. We define an operator F* : Lx -  Lx as follows: 

r  ( f ) = ( T (f') ) ' for every f  e Lx .
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Definition 6.1.5 :

Let (X, Q, T) be a fuzzy system , let S = ( x ■ )meD be a net on X and 

xaeM(Lx) . The fuzzy point xtt is called an Q-cluster point of S if and 

only if for every Q'-fuzzy set f  with f(x )ia  and for every j e D , there is 

meD with m>j such that (P*(f)) (xm) 2 a m .

Definition 6.1.6 :

A fuzzy system (X, Q, T) is said to be Q-compact if and only if for 

every pepr(L) and every collection ( ^ )ifJ of Q-fuzzy sets with ( VieJ fj ) (x) i  p 

for all x e X , there is a finite subset F of J such that ( VieF T (Q ) (x) i  p 

for all xeX .

Theorem 6.1.7 :

A fuzzy system (X, Q, T) is Q-compact if and only if for every aeM (L) 

and every collection ( 1̂  )ifJ of Q'-fuzzy sets with (AieJhi) (x ) ia  for all x e X , 

there is a finite subset F of J such that (A;^1^(1^) ) (x) a a for all xeX  .

P r o o f : This follows easily from the definition of Q-compactness and the 

definitions of the operators T and I1* .

Theorem 6.1.8 :

A fuzzy system (X, Q, r 1) is Q-compact if and only if for every aeM (L) 

and every family ( g  )ieJ o f Q'-fuzzy sets with the property for any finite subset F 

o f J there is xeX with ( AieF r*(gj)) (x) > a ,  we have that there exists zeX 

with ( AieJ & ) (z) > a
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Proof:

Necessity : Let a eM(L) and let ( g¡ )ieJ be a family o f Q'-fuzzy sets 

satisfying the property given in the theorem . Suppose that ( AieJ g¡) (x) a a for 

ail xeX . Then, ( VjeJ g \ ) (x) s. p for all xeX , where p = a 'e p r (L ) .  S o , by the 

Q-compactness o f the system , there is a finite subset F o f J such that 

(yieFr(g 'i)) (x) i  p for all xeX , i.e. [ VífF (r*(g¡))' ] (x) ¿ p for all xeX  . Hence, 

( AjgF r*(g¡)) (x) i  p fo rallxeX  which yields a contradiction with the hypothesis. 

Sufficiency : Suppose that (X, Q, T) is not Q-compact . Then , there is 

pepr(L) and a family ( fj )ieJ o f Q-fuzzy sets with ( Ví, j i ) W i p  for all 

xeX  and for any finite subset F o f J , there is yeX with ( V i X i ) ) ( y ) s p -  

Thus , (£ )ieJ is a family o f Q'-fuzzy sets such that ( AieJ ) (x) t  a for all 

x e X , and for any finite subset F o f J , there is yeX with ( AieF r ( C ) )  (x) -  

( AjeF (T(f¡ ))' ) (y) > a , where a = p'eM(L) . So , by the hypothesis , we have 

that there exists zeX  with ( AieJ f;' ) (z) > a which is a contradiction . 

This completes the proof.

Theorem 6.1.9 :

A fuzzy system (X, Q, T) is Q-compact if and only if every constant a-net 

on X has an Q-cluster point xaeM(Lx) with height a ,  for each aeM (L) .

P roof:

Necessity : Let aeM (L) and let (Sm)meD be a constant a-net on X without 

any Q-cluster point with height a. Then, for each x e X , xa is not an Q-cluster
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point o f (Sn,),,,^, i.e. there are i^eD and an Q'-fuzzy set fx with fx(x)2 a 

and Sm̂ r * ( f x) for each m s iv

Let x1, . . . ^  be elements o f X. Then, there are n , , n, e D and Q'-fuzzy sets fx
1 *  i

with fx (x*) 2 a and Sm ^ r*(fx ) for each 11121^  and for each ie{
i ‘ i

Since D is a directed s e t , there is n0eD such that n02 nx for every ie{l,...,k} and

Sm s r*(fx ) for ie{l,...,k} and for each m>n0.
I

Now consider the family $  ( it ) X€X •

Then ( Af fx) (y) 2 a for all yeX because fy(y) 2 a. We also have that for any 

finite subfamily Y = { fx, ... , fx } of $>, there is yeX with (Aj=1k r*(f ) )(y)2 a
< k i

since Sm < Ai=Ik T*(fx) for each m>n0 because Sms fx for each ie{l,...,k} 
: >

and for each m>n0.

H ence, by Theorem 6.1.7, the fuzzy system (X, Q, T1) is not Q-compact. 

Sufficiency : Suppose that (X, Q, F) is not Q-compact . Then , by 

Theorem 6.1.7, there exist aeM (L) and a collection = (QieJ o f Q'-fuzzy 

sets with (AjfJQ(x)2ct for all x e X , but for any finite subfamily p o f $ , 

there is xeX with ( A f fP fj) (x) > a.

Consider the family of all finite subsets of , 2(<t>), with the order p, 5 P2 

if and only if p, c P2 . Then 2(<b) is a directed set.

So, writing xa as Sp for every p e2(<t,\  ( Sp )pe2ti,is a constant a-net on X because the 

height o f Sp for all p e2(<i,) is a .

( Sp )pe2ii>also satisfies the condition that for each Q'-fuzzy set fjep we have

x .= s„s  r ® .

Let yeX  . Then, ( AiFjfJ ) (y) 2 a, i.e. there exists j eJ with fj(y)2 a.
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Let Po= { fj}. So, forany P ^ P 0, Sp * A f.6P( r * ( Q ) s  Afep (T (Q ) = r ( 9  Thus,
I 0

we got an Q'-fuzzy set Ç with fj(y) 2 a and P0e2(,i,) such that for any 

P>P0 , Sp<r*(fj). Hence, yaeM(Lx) is not an Q-clusterpoint of (Sp)pe2r0for 

all yeX  . Consequently, the constant a-net (Sp)pe2''f) has no Q-cluster point 

with height a .
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6.2. Conclusion

From the definitions and the theorems in the previous section we see that 

different interpretations o f the family Q and the operator T in different 

settings give rise to the definitions and characterizations of different types 

o f L-fuzzy covering axioms presented in the previous chapters . Some such 

cases are illustrated as follows :

1 - Let Q be the L-fuzzy topology o f an L-fts (X, t ).

(0 i f  r  stands for the identity operator, then the Q-compactness becomes the 

compactness in L-fuzzy topological spaces ( Definition 3 .1 .2 ,3 .1 .3  ).

(ii) If  T is the fuzzy closure operator, then the Q-compactness becomes 

the almost compactness in L-fuzzy topological spaces ( Definition 3.2.5 (i) ). 

(in) If T is taken to represent the fuzzy interior-closure operator, then the 

Q-compactness becomes the near compactness in L-fuzzy topological spaces 

( Definition 3.2.5 (ii) ).

2 - Let Q denote the class o f all semi-open L-fuzzy sets of an L-fts (X, t ).

(i) If r  is the fuzzy closure operator, then the Q-compactness becomes the 

S-closedness in L-fuzzy topological spaces ( Definition 3.2.5 (iv) ).

(ii) If T is the fuzzy interior-closure operator, then the Q-compactness becomes 

the RS-compactness in L-fuzzy topological spaces ( Definition 3.2.5 (vi) ).
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(¡¡i) If r  is the identity operator , then the Q-compactness coincides with the 

semi-compactness in L-fuzzy topological spaces ( Definition 3.2.5 (iii) ).

(iv) When T is taken to represent the semi-closure operator , the Q-compactness 

becomes the S‘-cIosedness in L-fuzzy topological spaces ( Definition 3.2.5 (v ) ).

3 - Let Q denote the class all pre-open L-fuzzy sets o f an L-fts (X, x).

(i) If T is the identity operator, then the Q-compactness coincides the 

strong compactness in L-fuzzy topological spaces ( Definition 3.2.5 (vii) ).

(ii) If  T is taken to represent the pre-closure operator, then the Q-compactness 

becomes the P-closedness in L-fuzzy topological spaces ( Definition 5.1.1 ).

4 - Let Q denote the class of all feebly open L-fuzzy sets of an L-fuzzy 

topological space (X, x) and let T be the identity operator . It then follows that 

the Q-compactness turns out to be the feeble compactness in L-fuzzy 

topological spaces ( Definition 4.1.1 ) .
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CHAPTER VII

RELATIVE COMPACTNESS IN L-FUZZY TOPOLOGICAL SPACES

In general topology, the term " relatively com pact" is used in more than one 

sense. Since we deal with two different senses, we shall use the terms "relatively 

compact" and " strong relatively c o m p a c t I f  (X,T) is a topological space and 

A c  X then we say that A is relatively compact if and only if every net in A 

has a cluster point in X [15],  This is also characterized as - A is relatively 

compact if and only if every open covering o f X has a finite subfamily which 

covers A . We say that A is strongly relatively compact if and only if A is 

contained in a compact set [11] .

In this chapter, we present two kinds o f L-fuzzy relative compactness - L-fuzzy 

relative compactness and L-fuzzy strong relative compactness - as in general 

topology . We prove that they are good extension o f the corresponding 

formulations in ordinary topology and study some of their properties in the 

fuzzy setting .

Concerned with one o f the definitions of relative compactness in general 

topology- that one we called here relative compactness- Chadwick [15] proposed a 

different fiizzyfication o f this concept and restricted his work to [0,l]-fuzzy 

topological spaces .

126



The structure o f this chapter is as follows :

In the first section we present our proposed definitions .

In Section 2 we give different characterizations o f the proposed concepts . 

Section 3 contains the goodness theorems .

The last section is reserved for some basic properties .
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7.1. Proposed Definitions

Let (X ,t ) be an L-fts and let geLx. The L-fuzzy set g is said to be 

relatively compact if and only if for every pepr(L) and every collection 

(fi)ieJ o f open L-fuzzy sets with (VieJf;)(x)ip for all x e X , there is a finite 

subset F o f J such that (VieFf-)(x)ip for all xeX w ithg(x)>p'.

It is clear that every compact L-fuzzy set is relatively com pact.

Definition 7.1.2 :

Let (X ,t ) be an L-fts and let geLx. The L-fuzzy set g is said to be 

strongly relatively compact if and only if g is contained in a very compact 

L-fuzzy set ( Definition 3.2.3 ) ,  i.e. there exists a very compact L-fuzzy set 

k with gz  k .

Obviously, every very compact L-fuzzy set is strongly relatively compact and 

every strongly relatively compact L-fuzzy set is relatively com pact.

Definition 7.1.1 :
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7.2. Other Characterizations

Let PC t ) be an L-fts and geLx. The L-fuzzy set g is relatively compact if and 

only if for every a eM(L) and every collection ( h ^ j  of closed L-fuzzy sets with 

(AieJhi)(x ) ia  for all x e X , there is a finite subset F o f J such that (AieFhi)(x)2 a 

for all xeX  with g(x)>a .

P roof: This follows directly from Definition 7.1.1.

Theorem 7.2.2 :

Let (X ,t) be an L-fts , geLx and cJ>p(t ) be the ordinary topology defined in 

Lemma 3.3.1 . The L-fuzzy set g is relatively compact if and only if for 

every pepr(L) , Gp = { xeX : g(x)^p' } is relatively compact in the ordinary 

topological space (X, 4>P(T) ) •

Proof:

Necessity : Let pepr(L) and let (Aj)UJ be an open covering o f (X, ^ ( t ))  , where 

Aj= p ‘({teL:U p}) and fjet for each ieJ . T hen, X = UjeJ ^‘‘({ teL itip}) , i.e. 

(VieJfi)(x)ip for all xeX . Due to the relative compactness o f g , there is a finite 

subset F of J such that (Vi€FQ(x) i  p fo ra llxeX  with g(x)>p', i.e. for all xeGp. 

Hence , Gp c  UieFAj and so Gp is relatively compact in (X, 4>p( t ) ) .

Theorem 7.2.1 :
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Sufficiency : Let pepr(L) and let (Qi(=J be collection o f open L-fiizzy sets with 

(VieJfD(x) i  p fo ra llx eX . Then, X = UieJf-'I({teL:Up}) and f;'1({teL:tip})e(j)p(T) 

for each ieJ . By the relative compactness of Gp in (X, 4>p( t ) ) , there is a finite 

subset F of J such that Gps  ^ ^ ‘({teLiUp}) which implies that (VieFQ(x) i  p for 

all xeX  with g(x)>p '. H ence, g is relatively compact in (X ,x ) .

Theorem 7.2.3 :

Let (X,t ) be an L-fts and let geLx. The L-fuzzy set g is relatively compact 

if and only if for every pepr(L) and every collection (f-)jeJ o f open L-fuzzy 

sets with (VieJfj)(x)ip for all x e X , there is a finite subset F o f J such that 

(VieFWXx) i  P for all xeX .

P roof: This is similar to the proof o f Theorem 3.3.4 .

Theorem 7.2.4 :

Let (X,t ) be an L-fts and let geLx. The L-fuzzy set g is relatively compact 

ifandonlyif every constant a-net contained in g has a cluster point in X with 

height a , for each a eM(L) .

P roof:

Necessity : Let aeM (L) and let S = (xam)meD be a constant a-net contained 

in g , i.e. g(xm)> a for all meD . Let G = { zeX  : g(z)>a } and let p = a '. 

Since g is relatively com pact, by Theorem 7.2.2 , G is relatively compact in the
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ordinary topological space (X, <|>p(t ) ) . Moreover, x ^ G  for all meD. Thus , (xm)meD 

is a net in G. Since G is relatively compact in (X, 4>p( t ) ) , the net (xm)meD has a 

cluster point in X , say y .

We are going to show that ya is cluster point of the net S .

Let f  be a closed L-fuzzy set with fix) 2 a  and let jeD. Put F = { zeX  : fiz)£cc }. 

Then , F is a closed set in (X, <j>p( x ) ) and ycF. Since y is a cluster point o f (x™)m€D , 

there is meD with m^j such that xmiF , i.e. fixm);ta. Hence, ya is a cluster point of 

the net S.

Sufficiency : Suppose that g is not relatively com pact. Then , by Theorem 7.2.2 , 

there is a prime element p such that Gp = { xeX : g(x)>p' } is not relatively compact 

in the ordinary topological space (X  <1>p(t ) ) • Hence , there is a net in Gp with

no cluster point in X . Let a = p '. Then , the constant oc-net S=(xam)meD has no cluster 

point with height a . This completes the p ro o f.

Theorem 7.2.5 :

Let (X ,t ) be an L-fts and let geLx. The L-fuzzy set g is relatively compact 

if and only if every a-level filter base in g has a cluster point in X with height 

a , for each aeM (L) .

Proof: This is similar to the proof o f Theorem 3.3.7 .
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7.3. The Goodness Theorems

Lemma 7.3.1 :

Let (X,T) be a topological space. For every pepr(L ), 4>p(co(T)) = T .

Proof :

Let pepr(L ). Take AeT . Then, by Proposition 2.3.8 (iii) , Xa 6Ci)(T) Hence, 

XA''({teL :U p}) = A e <|)p(a)(T)) and so T c  4>p(co(T)).

Now take f ‘( {teL:tip} ) e <J)p( o)(T) ) ,  where f e w ( T ) .  Since f  e o (T ) , by 

Proposition 2.3.8 (i) , f 1({tGL:tip})eT . Thus , ci?p(co(T)) c  T. Consequently , we 

get the desired equality .

Theorem 7.3.2 ( The goodness of relative compactness ) :

Let (X,T) be a topological space and AcX . A is relatively compact in (X,T) 

if and only if xA *s relatively compact in (X, to(T)) .

Proof: This easily follows from Lemma 7.3.1 and Theorem 7.2.2.

Theorem 7.3.3 ( The goodness of strong relative compactness ) :

Let (X,T) be a topological space and AcX . A is strongly relatively compact 

in (X,T) if and only if Xa ’s strongly relatively compact in (X,w(T)) .

132



Proof :

Suppose that A is strongly relatively compact in (X,T) . Then , there is a 

compact subset K of X with A c K .  H ence, Xa  ^ Xk and Xk *s compact in 

(X,oo(T)) because of the goodness of compactness ( Theorem 3 .1 .4 ) . Thus, 

X K is also very compact in (X,o)(T)) and therefore Xa *s strongly relatively 

compact.

Now suppose that Xa  ’s strongly relatively compact in (X,a>(T)). Then, there 

is a very compact L-fuzzy set k in (X,o j(T)) with Xa  * k , where 

r eeL if xeKcX

k(x) = and Xk is compact in (X ,g>(T)).

k 0 otherwise

Since Xa  ^ k , we have A c  K . Because Xk *s compact in (X,a)(T)), by the 

goodness of compactness ( Theorem 3.1.4 ) , K is compact in (X,T) . This 

completes the proof.
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7.4. Some Properties

Let (X,t ) be an L-fts and f, g, h e Lx.

(i) If g and h are relatively com pact, then gVh is relatively com pact.

(¡¡) If g is relatively compact and f e g , then f  is relatively compact as well.

Proof:

(i) Let pepr(L) and let g , h be relatively com pact. T hen, by Theorem 7.2.2, 

Gp = { xeX  : g(x)>p' } and Hp = { xeX : h(x)>p' } are relatively compact in the 

ordinary topological space (X, 4jp(t )) . Hence , Gp u Hp is relatively compact in 

(X,4>p( t )) . On the other hand , we have

Kp= { xeX : (gVh)(x)>p' } = Gp u Hp because p is prime . Thus , Kp is relatively 

compact in (X, (J>p( t )) and hence , by Theorem 7.2.2 , gVh is relatively 

compact in (X ,x ) .

(ii) This is very similar to the proof of (i) and therefore omitted .

Lemma 7.4.2 :

Let (X,t ) and (Y,t *) be L-fuzzy topological spaces and let f : X -  Y be a 

function If  f:(X,T)-(Y,x*) is continuous then for every pepr(L),

f:(X,4>p(T))-(Y,(J)p(T*)) is continuous .

Proposition 7.4.1 :
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Proof:

Suppose that f : (X,x) -  (Y ,t *) is continuous and p ep r(L ). Take 

f'({teL:Up})e4>p(x*), where f e x * .  Then f ‘(g) e x because f : (X,x) -  (Y,t*) is 

continuous . Moreover , we have that

f 1(g 1({teL:tip})) = {xeX:g(f(x)) i  p} = {xeX : f '(g ) (x) i p } =  ( ^ » ‘‘({ teL itip}) 

Since f ‘(g) 6 t  , f ‘( g ''( {teL:Bp} ) )  = (f'Cg))'^ {teL:tip} ) e c{>p(x) and therefore 

f : (X,<J>p(x)) -  (Y,cj>p(x*)) is continuous .

Proposition 7.4.3 :

Let (X,x) and (Y,x*) be L-fiizzy topological spaces and let f : (X,x) -  (Y,x*) be 

a continuous mapping such that f '(y ) is finite for every yeY . If  geLx is 

relatively compact in (X,x) then f(g) is relatively compact in (Y,x*).

P roof:

Let pepr(L) and g be a relatively compact L-fuzzy set in (X ,x ) . T hen, by 

Theorem 7.2.2 , Gp = { xeX : g(x)>p' } is relatively compact in (X,4)p(x)) . On the 

other hand , we have that f(G)p = { yeY : f(g)(y) > p' } = f(Gp) because p is prime 

and for every yeY f'(y) is finite . Since , by Lemma 7.4.2, f  :(X,<J)p(x))-(Y,chp(x‘)) 

is continuous, f(Gp) is relatively compact in (Y,cJ)p(x*)). So , by Theorem 7.2.2, 

f(g) is relatively compact in (Y,x*).

Proposition 7.4.4 :

Let (X,x) be an L-fts and f , g , h e L x.
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(i) If  g and h are strongly relatively compact then gVh is strongly 

relatively com pact.

(u) If g is strongly relatively compact and f<g then f  is strongly relatively 

compact as w e ll.

Proof :

(i) Suppose that g and h are strongly relatively com pact. Then , there are very 

compact L-fuzzy sets k, and k2 with g < k, and h i  k2 , where

'e ,E L  if xeK ,cX  f  e ^ L  if xeK2cX

k,(x) = •< and k2(x) =

 ̂ 0 otherwise l  0 otherwise

such that X k  a°d X k  are compact.

e,Ve2 if xeK,V K2

Let k(x) = . Then gVh < k.

 ̂ 0 otherwise

Since X k u k  ~  X k  V  X k  is com pact, k is a very compact L-fuzzy set and therefore 

gVh is strongly relatively com pact.

(ii) This follows easily from the definition .

Proposition 7.4.5 :

Let (X,t ) and (Y,t *) be L-fuzzy topological spaces and let f  : (X,x) -  (Y,t *) be 

a continuous mapping and g is strongly relatively compact L-fuzzy set in (X,t ) 

then f(g) is strongly relatively compact in (Y,t *) .
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Proof :

Let f  : (X ,t ) -  (Y,t *) be a continuous mapping and g be a strongly relatively 

compact L-fuzzy set in (X,t ) . Then , there is a very compact L-fuzzy set k 

with g < k , where

Since f  is continuous and Xk ' s compact in (X,t ) , by Proposition 3.1.10 , 

f  (Xk) = Xf(K) 's compact in (Y,t *) and therefore f(k) is very compact in (Y,t *). 

This completes the proof.

Proposition 7.4.6 :

Let (X ,t ) be a Hausdorff L-fls and let geLx. If g is strongly relatively 

compact then c l(x Suppg) is compact.

P roof:

Suppose that g is a strongly relatively compact L-fuzzy s e t . Then , there is a very 

compact L-fuzzy set k with g < k, where

and Xk >s compact in (X,t ).

0 otherwise

Hence , f(g) ^ f(k) and

(  e if yef(K)cY

0 otherwise
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r eeL if xeKcX

k(x) = and Xk is compact in (X,t ).

v.0 otherwise

Thus, we have Supp g c Supp k = K and hence cl( xSupPg ) * cl( Xk ) • Since Xk 

is compact and (X,x) isHausdorflf, by Proposition 3.1.9 , Xk is closed. S o , we 

have cl( XsuPPg) * Xk • Hence, by Proposition 3.1.11 (ii) , cl( xSupPg) is compact.

Remark 7.4.7 :

In an L-fts, we can have a relatively compact L-fuzzy set which is not strongly 

relatively compact .

Consider X = [0, 1 ] = L and x the fuzzy topology with the subbase 

ô = { 0 , 1 } u { fx* : xeX and t < 1/2 } where fx’ : X -  L is defined by

We are going to show that g is relatively compact but not strongly relatively compact. 

Let p be a family of subbasic open fuzzy sets and let pe[0, 1) = pr(L).

(i) If p< 1/2 and ( Vfepf ) (y) > p for all yeX , then there are f, , f2 , ... , fn ep such 

that ( Vi=1n f.) (y) > p for all yeX with g(y) > p' > 1/2.

f 1/2 if z=l/4

Define the fuzzy set g : X -  L by g(z) = <

1/4 if z * 1/4
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(ii) If p £ 1/2 and (V fepf ) ( y ) > p  for all y e X , then l ep.  Let P* = { 1 }. Then,

we have that ( Vfep* f ) (y) > p for all yeX with g(y) ^ p ' .

Consequently, g is relatively compact in (X, t ).

But g is not strongly relatively com pact. Because, there is no very compact fuzzy 

set containing g . In fac t, suppose that k is a very compact fuzzy set

in (X, t ) with g ^ k . Then , for all zeX  k(z) = s S: 1/2 . Since (X, t ) is not

com pact, k(z) = s is not very compact.
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CHAPTER VIII

R-COMPACTNESS, WEAK COMPACTNESS AND 0-RIGIDITY

In ordinary topology, R-compactness and weak compactness were introduced and 

studied by Cammarato and Noiri [12,13] and 0-rigidity was presented by Dickman 

and Porter [25], An open cover ( A; )ieJ of a topological space (X,T) is said 

to be regular if and only if for each ieJ, there is a non-empty regular closed 

set Bj of X such that BjC Aj and X = U-,eJ int(Bj). A topological space (X,T) 

is said to be R-compact ( weak compact) if and only if for every regular cover 

( A; )ifJ of X, there is a finite subset F of J such that X =UieFAj ( X = UieF cl(Aj)). 

A subset G of a topological space (X,T) is said to be 0-rigid if and only if 

for every open cover ( Aj )j(:J of G, there is a finite subset F o f J with 

Gcint(cl( UieFA j)) .

Based on Chang's fuzzy compactess, weak compactness and 0-rigidity were 

introduced and studied in [0, l]-fuzzy topological spaces by £oker and E§ [20] 

and Mukherjee and Ghosh [67], respectively . As far as we know R-compactness 

has not been initiated in the fuzzy setting so far.

In this chapter, we introduce R-compactness, weak compactness and 0-rigidity 

in L-fuzzy topological spaces . We define these weak forms of L-fuzzy 

compactness for arbitrary L-fuzzy sets and study some of their properties.
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This chapter consists o f three sections :

In the first section we present the proposed definitions .

The second section is reserved for the other characterizations o f these weak 

forms o f the compactness .

And lastly, the third section is devoted to some properties .
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8.1. Proposed Definitions

Definition 8.1.1 :

Let (X,t ) be an L -fts , geLx and r e L . An r-level open cover (QjeJ of g 

is called an r-level regular cover of g if and only if for every ieJ

there is a non-empty regular closed L-fiizzy set hj such that h* £ fj and

(VieJint(hi))(x) i  r for all xeX with g(x) £ r' .

Definition 8.1.2 :

Let (X,t ) be an L-fts, geLx and reL . Non-empty open L-fuzzy sets f  and 

h are called ordered pair of open L-fuzzy se ts , denoted by ( f , h ) , if 

cl(f) £ h . A family { (fj, h j : ieJ } of ordered pair o f open L-fuzzy sets is 

called an ordered pair of r-level open cover ( for sh o rt, r-level OPO cover )

of g if and only if ( VieJ ) (x) i  r for all xeX with g(x) £ r ' .

Definition 8.1.3 :

Let (X,t ) be an L-fts and let geLx. The L-fuzzy set g is said to be

R-compact if and only if every p-level regular cover o f g has a finite p-level

subcover, where pepr(L) .

If g is the whole space, then we say that the L-fts (X,t ) is R-com pact.
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Definition 8.1.4 :

Let (X,t ) be an L-fts and let geLx . The L-fuzzy set g is said to be 

weakly compact if and only if every p-level regular cover o f g has a finite 

p-level proximate subcover, where p ep r(L ).

If g is the whole space, then we say that the L-fts (X,t ) is weakly compact. 

Definition 8.1.5 :

Let (X,t ) be an L-fts and geLx . The L-fuzzy set g is said to be 0-rigid 

if and only if for every p-level cover (QieJ of g , there is a finite subset 

F o f J such that ( int ( cl ( VjeF £ ) ) )  (x) i  p for all xeX with g(x)>p', 

where p ep r(L ).

If g is the whole space, then we say that the L-fts (X,x) is 0-rigid .
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8.2. Other Characterizations

Theorem 8.2.1 :

Let (X,t ) be an L-fts and geLx. The L-fuzzy set g is R-compact if and 

only if for every p-level OPO cover { (fj, h j : ieJ } o f g ,  where pepr(L), 

there exists a finite subset F of J such that ( VieF h j) (x) i  p for all xeX 

with g(x) > p ' .

Proof:

Necessity : Let pepr(L) and { (fj, h j : ieJ } be a p-level OPO cover of g. 

Then , for each ieJ cl(Q < and ( VieJ f j) (x) i  p for all xeX  with 

g(x) > p ' . Hence , we have ( ViFj h ,) (x) i  p for all xeX  with g(x) ;> p'. 

T h u s , ( hj )jeJ is a p-level regular cover of g . In fa c t, for each ieJ 

cl(Q < hj and cl(fj) is regular closed. Furthermore, we have [ V„, int ( cl( i  ) ) ] (x) i  p 

for all xeX with g(x) > p' because < int(cl(f|)) for ever ieJ . So , by the 

R-compactness o f g , there is a finite subset F o f J such that ( V|6F h i) (x) i  p 

for all xeX with g(x) > p ' .

Sufficiency : Let pepr(L) and ( h, )jFj be a p-level regular cover o f g . Then, 

for each i e J , there exists a non-empty regular closed L-fuzzy set such that 

fj <1̂  and ( VieJ int(fj)) (x) i  p for all xeX with g(x) ^ p' .

Consider the family { ( in t(Q , h^) : ieJ } . This is a p-level OPO cover o f g. 

In fa c t, for each ieJ , cl(int(Q) = f- <; h, and ( VieJ int(Q ) (x) i  p for all xeX
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with g(x) s: p' . So , by the hypothesis, there is a finite subset F o f J such that 

( VieF ĥ  ) (x) i  p for all xeX with g(x) ^ p' . Hence , g is R-compact.

Theorem 8.2.2 :

Let (X,t ) be an L-fts and geLx . The L-fuzzy set g is weakly compact if 

and only if for every p-level OPO cover { (fj, h j : ieJ } o f g , where pepr(L), 

there exists a finite subset F of J such that ( VieF c l ^ ) ) (x) i  p for all xeX with

gOO * P'-

Proof: This is very similar to the proof of the previous theorem .

Theorem 8.2.3 :

Let (X ,t ) be an L-fts and geLx. The L-fuzzy set g is R-compact if and 

only if for every a eM(L) and every collection ( )ieJ o f closed L-fuzzy sets 

such that for each ie J , there is a regular open L-fuzzy set ĥ  with fj ^ hj and 

(AieJcl(hi))(x )ia  for all xeX with g(x)^a , there exists a finite subset F o f J 

such that ( Ai6Ffj) (x) st a for all xeX with g(x)>a .

P roof:

Necessity : Let (fJ^j be a collection of closed L-fuzzy sets satisfying the 

property in the theorem . Then , ( Vi(rJ (clfX))') (x) i  p for all xeX  with

g(x) ^ p ' , where p = a  '.  We also have (c^hj)' < fj' for each ieJ because 

f- < hj and each ^ is closed . Thus , ( VjeJ ^ ' )  (x) i  p for all xeX with 

g(x) £ p ' . Hence , ( f]' )iFj is a p-level open cover of g . On the other hand ,

145



each hj is regular closed, l^1 < fj' for every ieJ and (VieJ int (IV) )(x) =

(VieJ (clfbj))')(x)ip for all xeX with g(x) ^ p ' , i.e. ( fj' )ieJ is a p-level regular 

cover of g . Since g is R-compact, there exists a finite subset F of J such that 

( VieF ' ) (x) i  p for all xeX  with g(x) £ p' . Hence , ( AieFf- ) (x) i  a for

all xeX  w ithg(x)^a .

Sufficiency : Let ( g; )ieJ be a p-level regular cover o f g . T hen , for each 

ieJ there is a regular closed L-fuzzy set kj such that kj < gi and (VirJ int(ki)) (x)«p 

for all xeX with g(x) > p' . We also have ( VieJ g j) (x) i  p for all xeX  with 

g(x) £ p ' . Then , ( AjeJgj' ) (x) t  a for all xeX with g(x)^a , where a  = p'eM(L). 

Furthermore , gj' < kj' , each kj is regular open and 

( Ai(rJ cl(kj') ) (x) = ( AjeJ ( int(kj) )' ) (x) 2 a for all xeX with g(x)^a .

Hence , ( gj' )ieJ is a collection o f closed L-fiizzy sets satisfying the property in 

the theorem . So , by the hypothesis , there exists a finite subset F o f J such that 

( AjeF gj' ) (x) i  a for all xeX with g(x)^ct, i.e. ( VieF gj ) (x) i  p for all xeX  with 

g(x) > p ' . Hence , g is R-com pact.

Theorem 8.2.4 :

Let (X,t ) be an L-fts and geLx. The L-fiizzy set g is weakly compact if and 

only if for every a eM(L) and every collection ( fj )jeJ o f closed L-fuzzy sets 

such that for each ieJ there is a regular open L-fuzzy set hj with ^ ^ hj and 

(AieJcl(hj))(x)ia for all xeX  with g(x)>a , there exists a finite subset F o f J such 

that ( AjeF int(fj) ) (x) 2 a  for all xeX with g(x)^a .

P roof: This is very similar to the proof of the previous theorem.
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Theorem 8.2.5 :

Let (X,t ) be an L-fts and geLx. The L-fuzzy set g is 0-rigid if and only 

if for every a eM(L) and every collection ( £ )ieJ of closed L-fuzzy sets with 

(A ,^(x ) a forallxeX  with g(x)>a , there exists a finite subset F of J such that 

( cl( int (AjeFQ ) ) (x) i  a for all xeX with g(x)^ct .

Proof: Using Proposition 2.1.8 (iv) this follows easily from Definition 8.1.5 . 

Theorem 8.2.6 :

Let (X,t ) be an L-fts and geLx. The L-fuzzy set g is R-compact if and only 

if for every aeM (L) and every family { (Uj, v j : ieJ } of pair o f closed L-fuzzy sets 

Uj, V; such that int(Uj) ^ V; and ( Ai(=JUj) (x) z a for all xeX with g(x)^a, there 

exists a finite subset F o f J such that ( Ai(=FVj) (x) i  a  fo ra llx eX  with g(x)^a. 

Proof: This follows from Theorem 8.2.1 .

Theorem 8.2.7 :

Let (X,t ) be an L-fts and geLx. The L-fuzzy set g is weakly compact if and 

only if for every aeM (L) and every family { (up V;) : ieJ } o f pair o f closed 

L-fuzzy sets u(, v( such that int(u;) > y  and (A iEjui ) ( x ) H  for all xeX  with 

g(x)>a , there exists a finite subset F of J such that ( AieFint(Vi) ) (x) z a 

for all xeX with g(x)>a .

P roof: This follows from Theorem 8.2.2 .
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Theorem 8.2.8 :

Let (X,"0 be an L-fts and geLx. The L-iuzzy set g is R-compact if and only 

if every constant a-net contained in g has a y-cluster point ( Definition 2.1.16 (iv)) 

xt eM(Lx) , with height a, contained in g , i.e. g(x)^a for each aeM (L).

Proof: By using Theorem 8.2.6 , this is similar to the proof o f Theorem 4.2.2 .

Theorem 8.2.9 :

Let (X,t ) be an L-fts and geLx. The L-fuzzy set g is weakly compact if and only if 

every constant a-net contained in g has a P-cluster point ( Definition 2.1.16 (v) ) 

xaeM(Lx) , with height a , contained in g , i.e. g(x)>a for each aeM (L).

P roof: By using Theorem 8.2.7 , this is similar to the proof o f Theorem 4.2.2 .
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8.3. Some Properties

Proposition 8.3.1 :

Let (X, t )  be an L-fts and let g , h e Lx . If g and h are R-compact 

then gVh is R-compact as well.

Proof: This is similar to the proof o f Proposition 4.3.2 .

Proposition 8.3.2 :

Let (X, t ) be an L-fts and g , h e Lx . If g is R-compact and h is clopen 

then gAh is R-compact.

Proof : This is similar to the proof o f Proposition 5.3.2 .

Corollary 8.3.3 :

Let (X, t ) be an R-compact L-fts . Then every clopen L-iuzzy set in (X, t ) 

is R-com pact.

Proof : This follows immediately from the previous proposition .

Proposition 8.3.4 :

Let (X, x) be an L-fuzzy topological space and let g , h e Lx .

(i) If g and h are weakly compact then gVh is weakly compact as well.

('*) If g is weakly compact and h is clopen then gAh is weakly compact. 

Proof: These are similar to the proofs of Proposition 4.3.2 and Proposition 5.3.2.
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Let (X, t ) be a weakly compact L-fts . Then every clopen L-fuzzy set in 

(X, x) is weakly com pact.

Proof: This follows immediately from Proposition 8.3.4 (ii) .

Proposition 8.3.6 :

Let (X,t ) and (Y,t *) be L-fuzzy topological spaces and let f  : (X,x) -  (Y,t *) 

be a continuous mapping with f ’(y) is finite for every yeY . If geL x is R-compact 

in (X,t ) , then f(g) is R-compact in (Y,t *).

Proof :

Let pepr(L) and { (gj, hj) : ieJ } be a p-level OPO cover o f f(g) . Since f  is 

continuous and cl(gj) < hj for every ie J , by Proposition 2.1.19 (i) , we have 

cl( f ’(gj) ) < f ’( cl(gi) ) ^ f ’( hj ) for every ieJ and f ’( gj ) , f ’( hj ) are open in 

(X,t ) . Furthermore, we have that ( VieJf ’(gj) ) (x) i  p for all xeX with 

g(x) p1 because ( VieJ gj ) (y) s, p for all yeY with f(g)(y) ^ p ' . Thus , 

{ ( f '(g j), f^hj) ) : ieJ } is a p-level OPO cover of g . From the R-compactness of 

g , there is a finite subset F of J such that ( VieF f'(hj) ) (x) i  p for all xeX 

with g(x) s p'. Hence , ( VipF hj ) (y) i  p for all yeY with f(g)(y) £ p' . In fac t, 

if f(g)(y) = V{ g(x) : x ef'(y ) } > p' then there exists xeX with f(x) = y and g(x)^p' 

because f ’(y) is finite and p'eM(L). So , we have 

( Vi€F hj ) (y) = ( VieF hj ) (f(x)) = ( VieF f ‘(hj) ) (x) t  p .

Consequently, f(g) is R-compact in (Y,t *).

Corollary 8.3.5 :
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Let (X,t ) and (Y,t *) be L-fuzzy topological spaces and let f : (X,t ) -  (Y,x*) 

be an almost continuous and almost open function with f  *(y) is finite for every yeY. 

If geLx is R-compact in (X ,x ),then  f(g) is R-compact in (Y,x*).

Proof:

Let pepr(L) and (QjeJ be a p-level regular cover of f(g). Then , for eachieJ, there 

is a non-empty regular closed L-fuzzy set g¡ with g¡ < f¡ and (Vit Jint(g,) ) (y) í  p for 

all yeY  with f(g)(y) > p' . Hence , ( VieJ f^ in tíg j))) (x)¿p for all xeX with 

g(x) ^ p'. Since each g¡ is also closed , by Remark 2.1.10 ( ii) , int(g¡) is regular open 

for each ieJ. Since f  is almost continuous and almost open , by Proposition 2.1.19 (v), 

f ‘(int(g¡)) is regular open in (X, x) for each ie J . By Proposition 2.1.19 (ii) , 

We also have

cl( f'(int(gi)) ) <; f ' (  cl(int(gj) ) = f^gj) < f '( f t) for every ieJ.

Furthermore, for eachieJ cl( f '‘(int(gj))) is regular closed and therefore 

( ViEj int[cl( f ’(int(g¡))) ] )  (x) = ( VieJ f'(int(g¡))) (x) s p for all xeX  with g(x)* p'. 

So , the collection ( f '(Q  )ieJ is a p-level regular cover o f g. From the R- 

compactness of g , there is a finite subset F of J such that 

( Vi6F f ‘(Q ) (x) i  p for all xeX with g(x)> p'. Hence, ( VieF f¡) (y) i  p for all 

yeY with f(g)(y) > p' because f'(y) is finite for every yeY. Consequently, 

f(g) is R-compact in (Y ,x#).

Proposition 8.3.7 :
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Lemma 8.3.8 :

Let (X,t ) and (Y,t *) be L-fiizzy topological spaces, geLx and let f:(X,T)->(Y,x*) 

be an almost continuous function . If ( f- )leJ is a p-level regular cover o f f(g) in 

(Y,t *), then { f'(int(cl(Q)) }ieJ is a p-level regular cover of g in (X,t ), where pepr(L).

P roof:

If ( )ieJ is a p-level regular cover of f(g ), then for each i eJ there exists a 

non-empty regular closed L-fuzzy set g; such that ĝ  < ^ int(cl(Q) and

( VieJ int(gi) ) (y) i  p for all yeY with f(g)(y) > p' . Hence ,

( VifJ f ‘(int(g,)) ) (x) i  p for all xeX with g(x)> p' and f'igJsif'CQsf'OnttcKQ)) for 

every ieJ. Since f  is almost continuous and g; is also closed L-fuzzy set , by 

Proposition 2.1.19 (iii) , f '( int(gi) ) < int(f'(gj) and f'(gi) must be closed . So, we 

have cl(int(f’(gi)) < c^f^gj)) = f ’(gi) < f ’(int(cl(Q)) . By Remark 2.1.10 (iii) , 

cl^ntif'igi)) is regular closed for each ieJ . Hence , we have Viej f ''(int(gi)) * 

Vi,j int(f'(gj)) < VieJ int(cl(int(f‘(gi)))) . So , [ VieJ int(cl(int(f1l(gi)») ] ( x ) ip  for all

xeX with g(x)> p'. We also have ( VieJ f^intic^Q))) (x) i  p for all xeX with 

g(x) > p1. Consequently, {f‘(int(cl(fi))) }ieJ is a p-level regular cover of g.

Proposition 8.3.9 :

Let (X,t ) and (Y,t *) be L-fuzzy topological spaces and let f : (X,t ) -  (Y,t *) 

be an almost continuous function with f'(y) is finite for every yeY . If geLx is weakly 

compact in (X,t ), then f(g) is weakly compact in (Y,t *).
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Proof:

Let pepr(L) and ( fj )ieJ be a p-level regular cover o f f(g) . Since f  is almost 

continuous, by the previous lemma , { f'(int(cl(Q)) }iEj is a p-level regular cover of 

g in (X,x). From the weak compactness of g , there is a finite subset F o f J such that 

( VieF cl [ f'(int(cl(Q)) ] ) (x) i  p for all xeX with g(x) > p ' . Then,

( Vi€Fcl(fi) ) ( y ) i p  for all yeY with f(g)(y) ^ p1 .

In fact, if f(g)(y) = V{ g(x) : x e f ‘(y) } > p' then there exists xeX  with f(x)=y and 

g(x)>p' because f ’(y) is finite and p'eM(L). So,

( V,6Fclffl ) (y) = ( V,6Fc l©  ) (fix)) = ( VM f'(cl(Q ) ) (x) and 

( Vw  cl [ f '(in t(c l© )) ] ) (x) x ( Vw  f'(cl(int(cl(fj))))) (x) = ( V„P f '(c l(Q )) (x), 

where the inequality is due to the almost continuity of f  and the last equality 

is due to the fact that the closure o f each open L-fuzzy set is regular closed. 

This completes the proof.

Proposition 8.3.10 :

Let (X,t ) and (Y,x*) be L-fuzzy topological spaces and let f : (X,x) -  (Y,x*) 

be a weakly continuous function with f '(y ) is finite for every yeY. If  geLx is 

compact in (X,x) , then f(g) is weakly compact in (Y,x*).

P roof:

Let pepr(L) and ( fj )ifJ be a p-level regular cover of f(g). Then , for each ieJ 

there exists a non-empty regular closed L-fuzzy set gj such that gj < fj and 

( VieJint(gi)) (y) i  p for all yeY with f(g)(y) > p'. Hence , we have
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( Viej f  ‘(intigi))) (x) i  p for all xeX with g(x)> p'. Since f  is weakly continuous 

and gj is regular closed , we also have f ' ( int(gj ) ^ int[f'( cl(int(gi)))] = int(f'(gj)) 

for every ieJ . Thus, ( Vi6j int(f‘( g j ) ) (x) £ p for all xeX  with g(x)^ p ' , i.e. 

{ int(f‘(gj)) }ieJ is a p-level open cover of g . From the compactness o f g , there are 

gi, Si,-  , g . such that ( V,.," ln t( f '(g ))) (x) i  p for all xeX  with g(x)> p'. Then, 

P » f ( V,.," in t(f‘( g ) ) ) (y) = [ Vw" f( int(f'(&)) ) ] (y) x [ Vw" f( f ‘(g)) ](y) s

<vw" a ) (y) £ ( V,.," c iff l) (y).

Hence, ( Vrl" cl(f)) (y) i  p for all yeY with f(g)(y) a p‘. Consequently , lig) 

is weakly compact in (Y,t*) .

Proposition 8.3.11 :

Let (X,t ) and (Y,x*) be L-fuzzy topological spaces and let f : (X,x) -  (Y,x*) 

be an almost open and almost continuous function with f '(y ) is finite for every 

yeY. If geLx is 0-rigid in (X,x), then f(g) is 0-rigid in (Y,x*).

Proof:

Let pepr(L) and ( $ Xa be a collection of open L-fuzzy sets in (Y,x*) with 

( VieJfj ) (y) i  p for all yeY with f(g)(y) > p'. Then ,

( VieJ int(cl(fi)) ) (y) i  p for all yeY with f(g)(y) > p' because fj ^ int(cl(f|)) for 

every ieJ. Hence , ( VieJ f'(in t(cl(Q ))) (x) i  p for all xeX with g(x)> p'. From the 

almost continuity o f f , { f 1(int(cl(fi))) }ieJ is a family of open L-fuzzy sets in (X,x). 

So , by the 0-rigidity o f g , there is a finite subset F of J such that 

int( cl( VieF f :‘(int(cl(fi))) ) ) (x) t  p for all xeX with g(x)^ p'. Then ,
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p i f  [ in* cl( V,6F f'(in t(cl(0 )) ) )  ] (y) s im[ f  ( cl( VteF f ‘(int(cl© )) ) ] (y) = 

intf f  ( V„F cl( f '(m t(c l© ))) ] (y) = int[ V,6F f(cl( f'(¡m(cl(Q)))) ] (y) s 

int[ V,tF f( f 1'( cl(int(d(fD)))) ] (y) S mt{ V„„ cl<int(cl<©)) ] (y) s 

int[ VItF cl(Q ] (y) = int(cl( V|!F ^ )) (y)

where the second inequality is due to the almost openness o f f  and the third 

inequality is due to the almost continuity of f . The first and the last equality 

follows from Proposition 2.1.8 (v ) . Hence , 

int(cl( VieF $ )) (y) i  p for all yeY with f(g)(y) ;> p'.

In fac t, if ffg)(y) = V{ g(x) : xef'(y ) } 2: p' then there exists xeX  with ffx)=y and 

g(x)>p' because f '(y ) is finite and p'eM(L) . Then,

int( cl( VieF f ‘(int(cl(Q)) ) ) (x) i  p and therefore int(cl( VieF fj )) (y) i  p. 

Consequently, f(g) is 0-rigid in (Y,t *).

Proposition 8.3.12 :

Let (X, t ) be an L-fts and geLx. Then the following implications hold : 

g is nearly compact ( Definition 3.2.5 (ii) ) (,)=> g is 0-rigid (n)=» g is almost 

compact ( Definition 3.2.5 (i) ) (1U)=> g is R-compact (IV)=* g is weakly compact.

P roof:

(i) Let pepr(L) and ( $ )ieJ be a p-level open cover o f g. Then, by the near 

compactness of g , there is a finite subset F of J such that (VieFint(cl(Q) ) (x) i  p 

for all xeX with g(x) > p1 . We also have
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VjeF int(cl(fj)) < int( V ieF cl(Q ) =  int(cl( V ieF fj ))  ,

where the inequality and equality follow from Proposition 2.1.8 (v) . So , we get 

( int(cl( VieF f* )) ) (x) i  p for all xeX with g(x) ^ p ' . Hence, g is 0-rigid.

(ii) Let pepr(L) and (Ç )ieJ be a p-level open cover of g . Then, by the 6-rigidity 

o f g , there is a finite subset F of J such that

( int(cl( VieF Ç )) ) (x) i  p for all xeX with g(x) £ p ' .

Since int(cl( Vj(,F fj )) <; cl( VieF fj ) = VjeF cl(Q , we have 

( VjeF cl(fj) ) (x) £ p for all xeX with g(x) > p ' . Hence, g is almost compact.

(iii) Let pepr(L) and ( fj )iPj be a p-level regular cover o f g .  Then, for each ieJ, 

there exists a non-empty regular closed L-fuzzy set h; such that hj ^  and 

( VieJint(h;) ) (x) i  p for all xeX with g(x) ^ p' . That is , { int(hj) }i€j is p-level 

open cover of g . Since g is almost compact, there is a finite subset F o f J such 

that ( VieF cl(int(hj)) ) (x) { p for all xeX with g(x) > p ' . Since each h; is regular 

closed , we have

( Vi(?F cl(int(hi)) ) (x) = ( VieF hj ) (x) i  p for all xeX with g(x) £ p' . Thus, 

(V ieFfj)(x) fo ra llx eX  with g(x) > p' because hj < Ç for each ieJ. Hence, 

g is R-compact.

(iv) This follows immediately from the definitions.

Proposition 8.3.13 :

In extremally disconnected L-fuzzy topological spaces , the following are 

equivalent :

(i) near compactness (ii) 0-rigidity (iii) almost compactness

(iv) R-compactness (v) weak compactness
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Proof : From Proposition 8.3.12 , it is sufficient to prove that if g is weakly 

compact in an extremally disconnected L-fts (X, t ) , then g is nearly compact.

Let pepr(L) and ( i  )ieJ be a collection of regular open L-fuzzy sets with 

( Vi6j £ ) (x) i p  for all xeX with g(x) > p1.

Then, the family { cl(Q }jeJ is a p-level regular cover o f g. In fact, for each ieJ, 

cl(Qe-r because (X, t ) is extremally disconnected. Since each  ̂ is open , by 

Remark 2.1.10 ( i ) , cl(fj) is regular closed . Moreover , we have 

( VieJ int(cl(f-) ) )  (x) i p  for all xeX with g(x) > p' because int(cl(f| ))= f- .

So , by the weak compactness of g , there is a finite subset F of J such that 

( Vi(?F cl(cl(fj )) ) (x) = ( VipF cl(f- ) ) (x) i p  for all xeX with g(x) s p' . On the 

other hand, we have cl(£ ) = fj for every ieJ because f* = int(cl(fj)) and cl(fj )ex 

for every ieJ . Therefore , ( VieF £ ) (x) i p  for all xeX with g(x) £ p ' . Hence , 

g is nearly com pact.

Remark 8.3.14 :

We have been unable to prove whether R-compactness, weak compactness and 

0-rigidity are good extensions of the corresponding notions in general topology.
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CHAPTER IX

COMPACTNESS IN SMOOTH L-FUZZY TOPOLOGICAL SPACES

As we mentioned in the introduction as well as in Chapter I I , various kinds of 

fuzzy topological spaces have appeared in the literature [e.g. 16, 37, 49, 79], 

According to Sostak [84] , in all these definitions, a fuzzy topology is a crisp 

subset o f the fuzzy power set of a non-empty classical set satisfying the well 

known three axioms and fuzziness in the concept of openness of a fuzzy set 

has not been considered , which seems to be a drawback in the process of 

fuzzification of the concept of topological spaces . T hus, for every fuzzy subset 

of a fuzzy space it is precisely known , as in general topology, that whether 

it is open or n o t . Therefore, Sostak has introduced a new definition o f fuzzy 

topology in 1985 [84], which we shall call here ' smooth fuzzy topology ' . The 

first aim o f Sostak's approach is to consider a fuzzy topology to be a fuzzy 

subset on the fuzzy power set of an ordinary s e t . The second one is to allow 

fuzzy subsets to be open to some degree and this degree may range from 

1 ('completely open fuzzy sets ' )  to 0 ( '  completely non-open sets ' ) .  Later on 

he has developed the theory o f smooth fuzzy topological spaces in [85, 86], 

Meanwhile , several authors [17, 31, .77] have reintroduced the same definition and 

studied smooth fuzzy topological spaces independently .
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In the present chapter, we shall study compactness, which we call " smooth 

compactness " , in smooth L-fuzzy topological spaces where L is a fuzzy lattice. 

" a-Scott continuous functions " from an ordinary topological space to a fuzzy 

lattice L with its Scott topology are introduced and studied . These functions 

turn out to be the natural tool to set up a ' goodness of extension ' criterion for 

smooth L-fuzzy topological properties . Good definitions of smooth Hausdorffness, 

smooth compactness, ultra-smooth compactness, smooth countable compactness, 

smooth Lindelofness and smooth local compactness in smooth L-fuzzy 

topological spaces are presented and some o f their properties studied.

The structure o f this chapter is as follows :

In the first section we present the basic definitions and results o f smooth L- 

fuzzy topological spaces that here we shall deal with .

In Section 2 , we first introduce a new class o f functions from a topological 

space to a fuzzy lattice L with its Scott topology, called " a-Scott continuous 

functions " (ae L ) . Then , using this notion , we obtain a smooth L-fuzzy 

topology from a given ordinary topology and a functor between the category 

o f ordinary topological spaces and the category of smooth L-fuzzy topological 

spaces and establish a " goodness of extension " criterion for smooth L-fuzzy 

topological properties . We also introduce smooth Hausdorffness and prove that 

it is a good extension of the Hausdorffness in general topology .
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In the third section of this chapter, we focus on smooth compactness in smooth 

L-fuzzy topological spaces . We prove its goodness in the above sense and study 

some of its properties . Moreover , we define " prime level spaces " o f a 

smooth L-fuzzy space and then characterize smooth compactness in terms of the 

ordinary compactness in such spaces. We also introduce ultra-smooth compactness 

and prove that it is a good extension .

The forth section is reserved for the notions of smooth countable compactness 

and smooth Lindelofhess in smooth L-fuzzy topological spaces . It is proved that 

they are good extensions o f the corresponding concepts in general topology and 

some of their properties studied .

In the last section of this chapter, we introduce a good definition o f smooth 

local compactness in smooth L-fuzzy topological spaces and study some of its 

properties .
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9.1. Smooth L-fuzzy Topological Spaces

In the following, X will be a non-empty ordinary set and L = L ( ^ ,V ,A , ')  will 

deno tea  fuzzy lattice with a smallest element 0 and a largest element 1 (0*1) 

and with an order reversing involution a -  a' (a e L ) .

Definition 9.1.1 ( Sostak [84] ) :

A smooth L-fuzzy topology on X is a map T  : L -  L satisfying the

following three axioms :

(1) T  (0) = T  (1) = 1

(2) T  (fAg) ^ T  (f)A T(g) for every f , geLx.

(3) T  ( VieJf;) > Ai(=JT  (f-) for every family (QieJ in Lx .

The pair (X ,Y ) is called a smooth L-fuzzy topological space ( for sh o rt, 

smooth L-fts ) .  For every feL , T  ( f ) is called degree of openness of the 

fuzzy subset f .

Y
While an L-fuzzy topology on X ( Definition 3.1.1 ) is an ordinary subset o f L ,

Xa smooth L-fuzzy topology on X is a fuzzy subset of L .

Remark 9.1.2 ( Sostak [84] ) :

The intuitive motivation for this definition is as follows . Informally speaking , 

the first axiom states that the empty L-fuzzy set and the full L-fuzzy set 

are " absolutely open " . The axiom (2) states that the intersection o f two
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L-fuzzy sets is not " less open " than the minimum of " openness " o f these L- 

fuzzy sets. Lastly, the axiom (3) requires that the degree o f openness o f the 

union o f any family of L-fuzzy sets should be not less than the " smallest " 

degree of openness of these L-fuzzy sets .

Example 9.1.3 :

(i) Let (X T) be an ordinary topological space . Then we can consider (X,T) as

the smooth fuzzy topological space (X ,Y ) where T = xT ■ 2X -  2 , (2 = { 0 , 1 }).

(ii) Let (X t ) be an L-fuzzy topological space . Then we can consider (X,t ) to

be a smooth fuzzy topological space as w ell, where T  = x T : Lx -  2 .

Definition 9.1.4 ( Sostak [85] ) :

Let (X T  ) be a smooth L-fts . The map $  : Lx -  L defined by 0 (g ) = Y (g')

for every feL is called the degree of closedness on X . 0 (g ) is called the 

degree of closedness o f the L-fuzzy set g .

From Definition 9.1.1 and Definition 9.1.4 , it is easy to see that the mapping O 

has the following properties :

( 1) 0 (0) = 0 (1) = 1

(2) O(fVg) > 0(f)A 0 (g ) for every f,geLx

(3) ^(AiejQ ^ Ai(?J0(fj) for every family (QieJ in Lx .
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Let (X ,Y ) be a smooth L-fts and YcX . The mapping Yy : LY -  L defined by

T y(g) = V { T ( f ) : f e L x and f |Y= g )

is a smooth L-fiizzy topology on Y . The pair (Y,Yy) is called a smooth 

subspace of (X,Y ) .

Definition 9.1.6 ( Sostak [8 4 ]):

Let (X,Y ) and (Y,Y *) be smooth L-fuzzy topological spaces and F : X -  Y 

be a function . The function F is called :

(a) smooth continuous if and only if for every feLY, T  ( F_1( f ) ) s: T  *(f) .

(b) smooth open if and only if for every geLx , T  *( F(g) ) £ T  (g) .

For more details on smooth L-fts's we refer to [84, 85, 86],

Definition 9.1.5 ( Sostak [8 5 ]) :
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9.2. a-Scott Continuity and ' Goodness of Extension ' Criterion 

for Smooth Fuzzy Topological Properties

As we mentioned in Chapter II ( Section 3 ) ,  by using lower semi-continuous 

functions, Lowen [49, 51] has established a 'goodness o f extension' criterion for 

I-fuzzy topological properties . After that Warner [96] has extended this criterion 

to the L-fiizzy topological properties by using Scott continuous functions from 

a topological space to a fuzzy lattice with its Scott topology .

In this section, we introduce the concept of a-Scott continuity (aeL ) in 

order to set up a ' goodness of extension ' criterion for smooth L-fuzzy 

topological properties .

Definition 9.2.1 ( gradation of Scott continuity ) :

Let (X,T) be an ordinary topological space and cceL . A function f : (X,T) -  L, 

where L has its Scott topology ( Definition 1.1.20 ) , is said to be 

a-Scott continuous if and only if for every pepr(L) with a ip  , f '({ teL : tip})eT .

In particular when L = I , then f  is called a-Iower semi-continuous . T hus,

f : (X,T) -  L is a-lower semi-continuous if and only if for every pepr(I) = [0,1) 

with a>p , f ‘({teL: tip } ) = f '((p ,l])eT  .
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From the definition of Scott continuity and Definition 9.2.1 , it is clear that if 

f  is Scott continuous then f  is a-Scott continuous for every a e L .  M oreover, 

f  is 1-Scott continuous iff f  is Scott continuous. Naturally, every function from 

(X,T) to L is O-Scott continuous .

a-Scott continuous functions will be used to obtain a smooth L-fuzzy topology 

from a given ordinary topology .

Lemma 9.2.2 :

Let f , g : X -  L be two functions . For every pepr(L ), we have 

(fAg)_1({teL: tip } ) = f'({ teL : tip } ) n g '({ teL : tip}).

P roof:

Let xe (fAg)''({teL: t ip } ) . Then, (fAg)(x) i  p =» f(x)Ag(x)ip — f(x)ip  andg(x)ip  

=*■ x e f ’({teL: tip } ) and xe g '({ teL : tip } ) — xe f ‘({teL: tip } ) n g‘‘({teL: tip}). 

H ence, we have (fAg)'’({teL: tip } ) c f'({ teL : tip } ) n g''({teL: tip}).

Now take xe f ‘({teL: tip } ) n g_1({teL: tip } ) . Then , f(x)ip  and g(x)ip  .

Hence, f(x)Ag(x) i  p because p is prime . Thus , (fAg)(x) i  p and so

x e ^ g X ^ te L d ip } ) . Hence , f ‘({teL :tip}) n ^ ({ te L itip } )  c  (fAg)''({teL:tip}). 

Consequently, we have the desired equality .

Lemma 9.2.3 :

Let (Qi(rj be a family o f functions from X to L . Then , for every peL

(^ie/i) '({te L: tip } ) = UieJf;-1({teL: t i p } ) .

165



Proof:

xe (Vi6jQ ''({t6L: tip } ) -  (VieJQ(x) i p -  VieJf-(x) i  p ~  3 ieJ with ^(x)ip  ~  

3 ieJ with xe f}''({teL: tip } ) — xe UieJfj'1({teL: tip}).

H ence, we have ( ''/¡^ ''({ te L : tip } ) = UieJf;‘1({teL: t i p } ) .

Lemma 9.2.4 :

Let (X,T) be an ordinary topological space .

(i) If f , g : (X,T) -  L are a-Scott continuous and A.-Scott continuous 

respectively , then fAg : (X,T) -  L is aAA,-Scott continuous .

(ii) I f  fj : (X,T) -  L is a r Scott continuous ( i e J ) ,  then V ieJfj : (X,T) -  L is 

Ajf:Ja r Scott continuous .

Proof:

(i) From the a-Scott continuity of f  and the A-Scott continuity o f g , we have 

f '({ te L :t ip } )e  T for all pepr(L) with a ip  and g ''({ teL :tip})e  T for all 

pepr(L) with A,ip .

H ence, f 'd te L :  tip } ) n g"‘({teL: tip } )eT  for every pepr(L) with a A A ip . 

By Lemma 9.2.2 , (fAg)''({teL: tip } )eT  for every pepr(L) with aAA-ip and 

therefore fAg is aAA-Scott continuous .

(ii) Let pepr(L) with Ai(rJa ;ip  . Then, cXjip for every ieJ . Since : (X,T) -  I 

is a r Scott continuous for every ieJ , fj''({teL: tip } )eT  for every ieJ . Hence, 

Llpjf^'dteL: tip})eT  . By Lemma 9.2.3 , (VieJf-)‘'({ teL :tip})eT  for every pepr(L) 

with AipjCCjip and therefore is AieJa r Scott continuous .
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Theorem 9.2.5 :

Let (X,T) be an ordinary topological space . The mapping a>T: Lx -» L defined by

o>T( f ) = V {aeL : f is a-Scott continuous} for every feL , 

is a smooth L-fuzzy topology on X .

P roof:

(1) Since the constant functions 0 and 1 are Scott continuous, i.e. 1-Scott 

continuous , we have o>x(0) = cox(l)  = 1.

(2) Let f , g e L x . By the definition of coT ,

G) T( f )  = V{ cceL . f  is a-Scott continuous }

u T(g) = V{ AeL : g is A-Scott continuous } 

o)x(fAg) = V{ yeL  : fAg is y-Scott continuous }

Since L is completely distributive,

oa-^f) A o-Xg) = V{ aAAe L : f  is a-Scott continuous, g is A-Scott continuous}. 

From Lemma 9.2.4 ( i ) , we have

{aAAeL : f  is a-Scott cont. , g is A-Scott cont .} c {yeL : fAg is y-Scott cont.}. 

Hence , we get a>x(fAg) > o)x(f )A wx(g) .

(3) Let { f] : ieJ } c Lx . By the definition o f a)x ,

0)T(i) = ^{ “ ¡eL : is a r Scott continuous} for every ieJ . 

coT(^ieji) = V{ Y^L : VieJfj is y-Scott continuous } .

Since L is completely distributive , we have
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Ajej c»)T (fi) = AjeJ( V{ cqeL : fj is oq-Scott continuous})

= V{AjfJa i is a r Scott continuous}.

From Lemma 9.2.4 (ii) , we have

{ Aj^otj : fj is a r Scott continuous } c  { yeL  : VjeJf} is y-Scott continuous }. 

Hence , we get G)T(VieJQ > AieJcjT(fi) .

Consequently, the mapping a>T is a smooth L-fuzzy topology on X .

y
In particular, when L = I then the mapping o>T : I -* I is defined by 

a)T(f )  = V { a 6 l : f  is a-lower semi-continuous } for every fe I .

Definition 9.2.6 :

The smooth L-iiizzy topology a)x obtained in Theorem 9.2.5 is called the 

induced smooth L-fuzzy topology and the smooth L-fts (X,toT) is called the 

induced smooth L-fuzzy topological space . T hus, a smooth L-fts (X ,Y ) is an 

induced smooth L-fts if and only if there exists an ordinary topological space 

(X,T) such that coT = T  .

Lemma 9.2.7 :

Let (X,T) be an ordinary topological space and A c X . Then , AeT if and 

only if o)t (Xa) * 0 , where a)T is the induced smooth L-fuzzy topology .
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Proof:

Suppose that AeT . Since the characteristic function o f every open set is 1-Scott 

continuous, by the definition of o T , we have cot (Xa) = 1 * 0 .

Now assume that c jt (Xa) * 0 Then,

<*)t (Xa) =s V{ “ eL : xA *s «-Scott continuous } * 0 implies that there exists an 

aeL  such that a*0 and Xa >s OC-Scott continuous. H ence, for every pepr(L)

with a  i p ,  XA‘'({te L :t iP}) = Ae T .

Theorem 9.2.8 :

Let (X,T) and (Y,T*) be ordinary topological spaces and F : X -  Y be a 

function. If F : (X,T) -  (Y,T*) is continuous , then F : (X,o)T) -  (Y,a)x.) is 

smooth continuous .

P roof:

Suppose that F : (X,T) -  (Y,T*) is continuous . We want to prove that 

o)x(F‘‘(f)) > cox.( f )  for every feLY.

By the definition of o>x and cox* , we have

(ox(F '( f ) )  = V {aeL : F"'(f) is a-Scott continuous from (X,T) to L } 

a)x*(f) = V{ aeL  : f  is a-Scott continuous from (Y,T*) to L } .

To prove that o)x(F ''(f)) ^ cox. ( f ) ,  it is sufficient to show that 

{ a e L  : f  is a-Scott continuous from (Y,T*) to L} c  { a e L  : F_1( f )  is a-Scott

continuous from (X,T) to L } . Let f : (Y,T*) -  L be an a-S co tt continuous
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function. Then, f  1({teL:tip})eT* for every pepr(L) with a*p  .

( F ''( f ) ) '' ({ teL :tip}) = { xeX : F ^ X x ^ p  } = { xeX : f(F(x))*p }

= { xeX: F(x)efl({teL:t*p}) } = { xeX: x e F '^ f '^ te L iU p } ))  } = F '‘( f ‘({t6L:tip})). 

Since F: (X,T) -  (Y,T*) is continuous and f l({teL:tip})eT* for every pepr(L) 

with a i p ,  we have F ''(f '({ teL :tip} ))eT  for every pepr(L) w i th a ip .  Hence,

(F'1(f))’1({teL :tip})eT  for every pepr(L) with a i p  and therefore F '(f):(X,T) -  L 

is a-Scott continuous . T hus, we have

{ aeL  : f  is a-Scott continuous from (Y,T*) to L} £ { a s h  : F ' ( f ) is a-Scott 

continuous from (X,T) to L} . This completes the proof.

Remark 9.2.9 :

SFT will denote the category of smooth L-fuzzy topological spaces and smooth 

continuous functions between them , TOP will denote the category o f ordinary 

topological spaces and continuous functions between them .

Define a) : TOP -  SFT by <j (X,T) = (X,o>T) for every ordinary topological 

space (X,T) , where a>x is the induced smooth L-fuzzy topology . 

Theorem 9.2.8 ensures that if F : (X,T) -  (Y,T*) is a morphism in TOP then 

g>(F) = F : a)(X,T) = (X,o>T) -  (Y,g)t .) = o>(Y,T*) is a morphism in SFT . Thus , 

we get the functor, 00 , from TOP into SFT .

Remark 9.2.10 :

By Theorem 9.2.5 and Theorem 9.2.8 , we obtain a smooth L-fts from a given
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ordinary topological space and the functor o> from the category o f ordinary 

topological spaces TOP into the category o f smooth L-fuzzy topological spaces 

SFT . This provides a ' goodness of extension ' criterion for smooth L-fuzzy 

topological properties which will be used in the next section . A smooth L-fuzzy 

extension of a topological property is said to be good when it is possessed by 

(X ,g)t ) if and only if the original property is possessed by (X ,T ).

Lemma 9.2.11 :

Let (X,Y ) be a smooth L-fts . Then , Y(Y ) = { A c X : Y (Xa) = 1} is an 

ordinary topology on X .

Proof: (1) Since Y (0) = Y (1) = 1 , X eT (Y ) and 0 e Y (Y ).

(2) Let A , BeY (Y  ) . Then , Y (Xa) = 1 and Y (Xb) = 1.

Since Y (XAnB) = T  (Xa^Xb) * T  (Xa)AY (Xb) = 1 , Y (XAre) = 1 and hence AnBeY.

(3) Let { Aj: ieJ } c Y(Y ) . Then , Y (Xa) = 1 for every ieJ .
I

Since Y (X uA) = Y (VjejXA) > AieJY (Xa) = 1 , Y (XuA) = 1 and hence l4eJA j£Y (Y ).
» • i »

Consequently, Y (Y ) is an ordinary topology on X .

Proposition 9.2.12 :

Let (X,Y ) and (Y,Y *) be smooth L-fuz2̂  topological spaces and F : X -  Y 

be a function . If  F : (X,Y ) -  (Y,Y *) is smooth continuous , then 

F:(X, Y(Y)) -  (Y, Y(Y *)) is continuous .
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Proof :

Suppose that F : (X,Y ) -  (Y,Y *) is smooth continuous and B eY (Y *). 

Then, Y *(xB) = 1 • Since F : (X,Y ) -  (Y,Y *) is smooth continuous , we have 

t (X f W  =  T  ( F ’Ï X b ) )  2: T  * (X b )  =  1 a n d  h e n c e  T  ( X f  (b >) =  1 • By the definition of 

Y(Y ) ,  F ‘(B)eY(Y ) . Therefore , F : (X,Y(Y )) -  (Y, Y(Y *)) is continuous .

Remark 9.2.13 :

Define Y : SFT -  TOP by Y(X,Y ) = (X, Y(Y)) for every smooth L-fts (X,t ), 

where Y(Y ) is the ordinary topology obtained in Lemma 9.2.11.

Proposition 9.2.12 ensures that if F : (X,Y ) -  (Y,Y *) is a morphism in SFT 

then Y(F) = F : Y(X,Y ) = (X, Y(Y )) -  (Y, Y(Y *)) = Y(Y,Y *) is a morphism in 

TOP . T hus, we get the functor, Y , from SFT into TOP .

Now we have two functors ; to : TOP -  SFT and Y : SFT -  TOP . 

Consider the composition functor Y ou  : TOP -  TOP . By Lemma 9.2.7 , we have 

(Yoco)(T) = Y ( o)t ) = { AcX : ü)t (x a ) = 1 } = { AcX : AeT } = T for every 

(X,T)eTOP . T hus, the composition functor Y o u  is the identity functor .

Now we introduce Hausdorffhess property in smooth L-fuzzy topological spaces. 

Definition 9.2.14 :

A smooth L-fuzzy topological space (X,Y ) is called smooth HausdorfT if 

and only if for every p,qepr(L) and every pair x , y  of distinct elements of 

X ,  there exist f , geL x with Y (f ) ïp  , Y (g)*q and f  (x )ip  , g(y)iq  and 

(VzeX ) f(z) = 0 or g(z) = 0 .
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This may also be expressed as :

there exist f , geLx with Y(f)ip, Y(g)*q and XpGf yqeg and (VzeX) f(z)=0 or g(z)=0.

XWhen T  is crisp, i.e. Y :L  -  {0,1 }<=L, then this definition becomes:

(X,t ) is (sm ooth) Hausdorflf if and only if for every p,qepr(L) and every pair 

x , y o f distinct elements o f X , there exist f , geLx with Y ( f ) = 1 , Y (g) = 1 

and f (x ) ip , g(y)iq  and (V zeX ) fiz)=0 or g(z)=0 .

Thus , in the crisp case of Y , smooth Hausdorffness coincides with the 

Hausdorffness introduced by Warner and McLean ( Definition 2.2.3 ) . Hence , 

smooth Hausdorffness is a generalisation o f Definition 2.2.3 to smooth L-fts's .

The next theorem shows that smooth Hausdorffness is a good extension o f the 

Hausdorffness property o f general topological spaces .

Theorem 9.2.15 ( The goodness of smooth HausdorfTness) :

Let (X,T) be an ordinary topological space . Then , (X,T) is Hausdorff if and 

only if the induced smooth L-fuzzy topological space (X,wT) is smooth Hausdorff.

P roof:

Suppose that (X,T) is Hausdorff and let x,yeX with \ * y  . Then there exist 

G,HeT with x e G , yeH and G n H  = a .  Let p , qepr(L) . Then p* l and q*l . 

Since the characteristic function of every open set is 1-Scott continuous, we
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have Wt<Xg) = 1 *P and <*>t<Xh) = 1 «1 • We also have Xg (x ) = 1*P , XH(y )= 1 *q 

and ( VzeX ) Xo(z) = 0 or Xh (z) = 0 because G n H  = 0 . T hus, (X,coT) is 

smooth Hausdorff.

Now suppose that (X,o)T) is smooth HausdorfF. Let x,yeX with x*y and 

let p,qepr(L) . Then, there exist f,geL with o)T( f ) i p ,  toT(g )iq  and f ( x ) * P  , 

g (y)iq  and ( VzeX ) f(z) = 0 or g(z) = 0 . Since o)T( f ) ip  and coT(g )iq  , we 

have ^ ({ teL iU p D eT  and g ''({ teL :tiq})eT  . We also have x e f ‘({ te L :tip } ), 

yeg"‘({teL:Bq}) and f'({teL:Up}) n g '({ teL :tiq}) = 0 . Hence, (X,T) is HausdorfF.

Proposition 9.2.16 :

Let (X,Y ) be a smooth L-fts and YcX . If (X,T ) is smooth HausdorfF then 

the smooth subspace (Y,Y Y) is smooth HausdorfF as well .

Proof :

Suppose that (X,Y ) is smooth HausdorfF and let x,yeY with x*y and 

p,qepr(L). From the smooth Hausdorffhess of (X,Y ) ,

there exist f,geLx with T ( f ) ip ,  T  (g)iq  and f(x)*p , g(y)*q and ( VzeX) 

f(z)=0 or g(z)=0 . We know that Yy : LY -  L is defined by 

T Y(h) = V{ T  (f) : feLx and f |Y=h } ( Definition 9 .1 .5 ).

Now let P = f |Y and g* = g |Y. Then P ,g * e L Y and by the definition o f T Y, 

T Y(fk) ip  and T Y(g*)iq . We also have f*(x)ip , g*(y)iq and ( VzeY ) 

f*(z)=0 or g*(z) = 0 . Hence, (Y,Ty) is smooth HausdorfF.
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9.3. Smooth Compactness

In this section , we introduce the notion o f compactness in smooth L-iiizzy 

topological spaces. We study some of its properties and prove that according to 

the goodness of extension criterion established in the previous section this concept 

is a good extension of the ordinary compactness in general topology .

Definition 9.3.1 :

Let (X,Y ) be a smooth L-fts and let geLx. The L-fiizzy subset g is said to 

be smooth compact if and only if for every prime element p o f L and every 

collection (QjeJ of L-fuzzy sets with T  (Q ip  for every ieJ and (VieJQ(x)*p for 

all xeX with g(x)>p', there is a finite subset F of J such that (VieFQ (x)ip  for 

all xeX with g(x)>p '.

Particularly , when the whole space X(=l) is smooth compact then (X ,Y ) is 

called smooth compact smooth L-fuzzy topological space.

When T  is crisp, i.e. Y :L  -*■ {0,1}, then this definition becomes:

g is (smooth) compact if and only if for every pepr(L) and every collection 

(QieJ of L-fuzzy sets with Y (fj) = 1 for every ieJ and (Vi(fJQ (x )ip  for all xeX 

with g(x)>p', there is a finite subset F of J such that (VieFfi)(x )ip  for all xeX 

with g(x)>p'. Thus, in the crisp case of Y , smooth compactness coincides with 

the compactness introduced by Warner and McLean ( Definition 3 .1 .2) and
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extended for arbitrary L-fuzzy sets by Kudri ( Definition 3.1.3 ) . That is ,  

smooth compactness is a generalisation of Definition 3.1.2 and Definition 3.1.3 

to smooth L-fuzzy topological spaces .

When L = I the definition for whole space becomes :

A smooth I-fts (X,Y) is smooth compact if and only if for every a e [0 ,l)  and 

every collection (QieJ o f I-fuzzy sets with T  (fi)>a for every ieJ and 

(VieJQ (x)>a for all x e X , there is a finite subset F o f J such that (Vi(rFfj)(x)>a 

for all xeX  . In this case, if T  is crisp, i.e. T  : Ix -* { 0 ,l} c l , then the

smooth compactness for smooth I-fts's coincides with Lowen's definition of 

strong compactness [51] .

Theorem 9.3.2 :

Let (X,Y) be a smooth L-fts and geLx . The L-fuzzy set g is smooth compact 

if and only if for every cceM(L) and every collection ( h ^ j  o f L-fuzzy sets with 

<J>(h;)ia '  for every ieJ and (AieJhi)(x ) ia  for all xeX with g(x)>a , there is a 

finite subset F o f J such that (AieFhi)(x)2 a for all xeX with g(x)^a , where 

is the degree o f closedness on X ( Definition 9.1.4 ) .

P roof: This follows immediately from the definition .

Lemma 9.3.3 :

Let (X ,Y ) be a smooth L-fts and let pep r(L ). T hen, the family 

{ f ‘({t£L:tip} : feLx with T  (f)*p }
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Proof: This is trivial and therefore omitted .

Notation :

Let (X,Y ) be a smooth L-fts . For a prime element p o f L , the ordinary 

topology obtained in the previous lemma will be denoted by Yp .

Definition 9.3.4 :

Let (X,Y ) be a smooth L-fts . For a prime element p o f L , the ordinary 

topological space (X,Yp ) will be called a prime level space of the smooth 

L-fuzzy topological space (X ,Y ) .

The next theorem shows that smooth compactness is characterized in terms of 

ordinary compactness in prime level spaces .

Theorem 9.3.5 :

Let (X ,Y ) be a smooth L-fts and geLx . The L-fuzzy set g is smooth 

compact if and only if for every pepr(L ), Gp= { x e X :  g (x )> p '} is compact 

in the prime level space (X,Yp) .

P roof:

Necessity : Let pepr(L) and (O ^ j be a basic open covering of Gp in (X,Yp). 

Then, Gpc U,eJOj and for each ie J , there exists fjeLx with T  (Q ip  such that 

Oj = ^ ({ te L itip }  . Hence, (Vjpjf^x)^ p for all xeGp , i.e. for all xeX  with

forms a base for some ordinary topology on X .
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g(x)>p'. By the smooth compactness of g , there is a finite subset F o f J such 

that (VieFQ (x)ip  for all xeX with g (x )^p '. Thus, we have Gp c U ieJOj and 

therefore Gp is compact in (X,Yp) .

Sufficiency ; Let pepr(L) and (QieJ be a collection of L-fuzzy sets with T 

(Q ip  for every ieJ and (VjeJQ (x)ip  for all xeX with g(x)^p' . Then, 

G pd J.^^ iteL itip }  and so the family { £ ''({teL:tip} : ieJ and fjeLx with T 

(Q ip  } is an open covering of Gp in (X,Yp) . From the compactness o f Gp, 

there is a finite subset F o f J such that Gp c  UieF fj"‘({t6L:tip}. Hence, 

(VieFfj)(x)ip  for all xeGp , i.e. for all xeX with g (x )^p '. Consequently, g is 

smooth compact .

Corollary 9.3.6 :

A smooth L-fts (X ,Y ) is smooth compact if and only if every prime level 

space o f (X ,Y ) is com pact, i.e. for every pepr(L) , the ordinary topological 

space (X,Yp) is com pact.

Proof : This follows from the previous theorem considering the whole space 

X (=l) instead o f g .

Lemma 9.3.7 :

Let (X,T) be an ordinary topological space . For every p ep r(L ), (u>T)p = T , 

where o)T is the induced smooth L-fuzzy topology on X .
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Proof:

Let p ep r(L ). Take A e (o>x)p . By the definition o f (a>T)p , there is 

a family { fj_1({ teL :tip } : ieJ and fjeLx with o>T(Q ip  } such that 

A ^ ^ j f ^ i te L i t ip } )  . Since o)T(Q*p for every ie J , by the definition o f o>T, 

we have fj''({teL :tip})eT  for every ieJ . Hence, AeT and so (<oT)pc T . 

Now take AeT . Since the characteristic function o f every open set is 1-Scott 

continuous, we have wt (Za)= 1 *P • Hence, A = Xa  1({te L :tip } )e  (coT)p. Thus, 

we have Tc ( ol>t )p. Consequently, we have the desired equality.

The next theorem shows that smooth compactness is a good extension o f the 

compactness in general topology .

Theorem 9.3.8 ( The goodness of smooth compactness ) :

Let (X,T) be an ordinary topological space . Then (X,T) is compact if and 

only if the induced smooth L-fts (X, wT) is smooth com pact.

P roof:

By Corollary 9.3.6 and Lemma 9 .3 .7 , we have that (X,o>T) is smooth 

compact iff for every pepr(L) , the prime level space (X, (ooT)p) = (X,T) is 

com pact.

Lemma 9.3.9 :

Let (X ,Y ) be a smooth L-fts . Then , the family

{ f'({ teL :U p} : pepr(L) and feLx with T  ( f ) ip  } u {X}
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P roof: This is straightforward .

Definition 9.3.10 :

A smooth L-fts (X ,Y ) is said to be ultra-smooth compact if and only if the 

ordinary topological space ( X,e(Y ) ) is com pact.

It is clear that every ultra-smooth compact smooth L-fts is smooth com pact.

Theorem 9.3.11 ( The goodness of ultra-smooth com pactness):

Let (X,T) be an ordinary topological space . Then (X,T) is compact if and 

only if the induced smooth L-fts (X, o)T) is ultra-smooth com pact.

P roof:

Suppose that (X,T) is compact. We need to prove that the ordinary topological 

space (X,e(o>T)) is compact. Let (Aj)jeJ be a subbasic open cover of (X ,e(w T)). 

Then each Aj is o f the form ^ '({ te L itip J  for some pj6pr(L) and ^eLx with 

co-^f ) ip j . Hence, by the definition of coT, ^ ‘({ te L d ip JeT  and therefore (Aj)ieJ 

is an open cover of (X,T) . Since (X,T) is compact , ( A ^  j has a finite

subcover. Hence, (X,e(<ox)) is compact.

Now suppose that (X,a>T) is ultra-smooth compact . Then (X,o>T) is smooth 

com pact. From the goodness of smooth compactness ( Theorem 9.3.8 ) , (X,T) 

is com pact.

is a subbase for some ordinary topology, e ( T ) ,  on X .
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Any smooth L-fuzzy topology on a finite set is smooth com pact.

Proof: This follows immediately from Corollary 9.3.6 and the fact that every 

ordinary topology on a finite set is com pact.

Proposition 9.3.13 :

In a smooth L -fts , every L-fuzzy set with finite support is smooth compact. 

Proof:

Let (X ,Y ) be a smooth L-fts and let g be an L-fuzzy set with finite support 

and pepr(L ). By Theorem 9.3.5 , it is sufficient to prove that Gp = {xeX: g(x)^p'} 

is compact in the prime level space (X,Yp) . Since the support o f g is finite and 

p'* 0 ,  the subset Gp of X is finite and therefore it is compact in (X,Yp) .

Proposition 9.3.14 :

Let (X ,Y) be a smooth L-fts and let g,heLx . If g and h are smooth compact, 

then gVh is smooth compact as w ell.

P roof:

Let pepr(L) , Gp = { xeX  : g(x) > p' } , Hp = { xeX : h(x) > p' } and 

Kp={xeX  : (gVh)(x)>p' } . Then, we have Kp = Gp u Hp because p is prime. 

Since g and h are smooth com pact, by Theorem 9.3.5 , Gp and Hp are 

compact in the prime level space (X,Yp) . H ence, Kp = Gp u Hp is compact in 

(X,Yp) . Thus, by Theorem 9.3.5 , gVh is smooth compact.

Proposition 9.3.12 :
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Let (X,Y ) be a smooth L-fts and let g,heLx . If g is smooth compact and 

<&(h) = 1 , then gAh is smooth com pact, where 3> is the degree of closedness 

on X ( Definition 9.1.4 ) .

Proof :

Let pepr(L) , Gp={xeX: g(x)>p'}, Hp={xeX: h(x);>p'} and Np ={xeX: (gAh)(x)*p'}. 

From the smooth compactness of g , by Theorem 9.3.5 , Gp is compact in 

(X,Yp) . Now we are going to show that Hp is closed in (X,Yp) . We have 

X \H p = { x e X :  h(x)*p' } = { xeX : h'(x)fp } = (h’)'‘({teL: tip } ) .

Since 3>(h) = Y (h') = 1 , by the definition o f Yp , X\Hp6Yp and hence H is 

closed in (X,Yp) . Since Gp is compact and Hp is closed in the ordinary 

topological space (X,Yp) , Np = Gp n  Hp is compact in (X,Yp) and therefore gAh 

is smooth compact .

Corollary 9.3.16:

Let (X,Y ) be a smooth L-fts. If geLx is smooth com pact, then every L-fuzzy 

set h with <3>(h) = 1 and h<g is smooth compact .

Proof : This is an immediate consequence o f the previous proposition .

Proposition 9.3.17 :

Let (X,Y ) and (Y,Y *) be smooth L-fuzzy topological spaces and F : X -  Y be 

a function . If F : (X,Y ) -  (Y,Y *) is smooth continuous , then for every 

pep r(L ), F : (X ,tp) -  (Y,t p*) is continuous .

Proposition 9.3.15 :
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Proof:

Let pepr(L) and let B be a basic open set in (Y,Yp* ). T hen , there is an feLY 

with Y*(f)ip such that B = f'({teL : tip } ) . Since F is smooth continuous, we 

have Y (F‘‘( f )) ^ Y *(f) and hence Y (F‘‘(f ) ) ip  because Y *(f)*p. M oreover, 

we have the following

F '(B ) = { xeX : f  (F(x))ip } = { xeX : F l(f)(x ))ip  } = ( F ‘( f )  )-'({teL: tip}).

So , F'*(B) is open in the prime level space (X,Yp) . This means that 

F:(X,Yp)-(Y ,Y p*) is continuous .

Proposition 9.3.18 :

Let (X ,Y) and (Y,Y*) be smooth L-fuzzy topological spaces and F:(X,Y)-(Y,Y*) 

be a smooth continuous surjection . If (X ,Y ) is smooth com pact, then (Y,Y *) 

is smooth compact as well .

Proof:

Let (X,Y ) be smooth compact and pepr(L) . Then , by Corollary 9.3.6 , the 

prime level space (X,Yp) of (X ,Y ) is compact . Since F : (X ,Y ) -  (Y,Y *) is 

smooth continuous surjection , by the previous proposition , F : (X,Yp) -  (Y,Yp*) 

is continuous surjection and so the prime level space (Y,Yp*) o f (Y,Y *) is 

compact and therefore, by Corollary 9.3.6, (Y,Y *) is smooth compact.

Definition 9.3.19 :

An element p o f a complete lattice L is called completely prime if and only
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if for every family (aJ^j in L with A ^a^p  , there is some ieJ such that a^p. 

It is evident that every completely prime element is prime .

Example 9.3.20 :

Let X be a set and let L be the power set of X . Then , L is a complete 

lattice and for an x e X , X\{x} is a completely prime element in L .

Lemma 9.3.21 :

Let L be a fuzzy lattice in which 0 is completely prime and let (X ,Y ) be a 

smooth L-fts . For an L-fuzzy set f , Y ( f ) * 0 if and only if for every 

Xp6pr(Lx) with Xp6f, there exists geLx such that Y (g) * 0 and x,,eg^ f .

Proof: Necessity : This is obvious .

Sufficiency: By the hypothesis, we have f  = V{ geLx : Y (g)*0 and Xp6g^ f} . 

Hence, Y ( f ) > A { Y (g) : Y (g) * 0 and Xp£g< f  } . Since 0 is completely prime, 

A {Y (g) : Y (g)*0 and x,,eg< f  }* 0 and therefore Y (f )* 0 .

Theorem 9.3.22 :

Let L be a fuzzy lattice in which 0 is completely prime, let (X,Y ) be a smooth 

L-fts and F c X . If ( X T ) is smooth Hausdorff and Xf  's  smooth com pact, then 

the degree of closedness of x? is greater than 0 , i.e. i>( Xf )*® ■

184



Proof:

To prove that <F(x f) = Y (Xf ) ^  > by the previous lemma, it is sufficient to 

show that for every Xpepr(Lx) with Xp£xF , there exists geLx such that T  (g)#0 

and Xp^g^XF • Let Xpepr(Lx) with Xp6xF . Then, Xf (x)*P and hence x e F '. For 

all yeF , by the smooth Hausdorffiiess of (X,T ) , there are fy,gy£Lx with 

T (Q ip  and Y(gy)ip such that xpegv, ypefy and (V zeX ) fy(z) = 0 or gy.(z) = 0. 

Thus , (VyeFgy)(z )ip  for every zeF and T  (gy)ip for every yeF . From the 

smooth compactness of Xf > there are g y ,g y ,...,g y  such that (Vni=1gy)(z)sp 

for every zeF . Let g = Ani=1gy_. Then , T  (g) > A"i=lT  (gy) and hence T  (g)ip  

because T  (gy)fp for every ie{ l,2 ,.....n} . We also have x,,eg and g ^ Xf  •
i

This completes the proof.
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9.4. Smooth Countable Compactness and Smooth Lindelofness

In this section we introduce and study countable compactness and Lindelof 

property in smooth L-fiizzy topological spaces. We also prove that these notions 

are good extensions o f the corresponding properties in general topology .

Definition 9.4.1 :

Let (X ,Y ) be a smooth L-fts and let geLx. The L-fuzzy subset g is said to 

be smooth countably compact if and only if for every prime element p o f L 

and every countable collection (fj)jeJ o f L-fuzzy sets with Y (Q ip  for every 

ieJ and (VieJf;)(x)ip for all xeX with g(x)>p ', there is a finite subset F of 

J such that (VjeFQ (x)fp for all xeX with g(x)>p '.

If g is the whole space, then we say that the smooth L-fts (X ,Y ) is smooth 

countably compact .

When Y is crisp, this definition reduces to the countable compactness in L-fuzzy 

topological spaces (Definition 3.2.2 ( i) ) .

Definition 9.4.2 :

Let (X ,Y ) be a smooth L-fts and let geLx. The L-fuzzy subset g is said to 

be smooth Lindelof if and only if for every prime element p of L and every 

collection (QifJ of L-fuzzy sets with Y (Q sp for every ieJ and (VjeJQ (x)ip  

for all xeX with g(x)>p ', there is a countable subset N of J such that
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(VjeNQ(x) ip  for all xeX with g (x )^p '.

If g is the whole space, then we say that the smooth L-fts (X ,Y ) is smooth 

Lindelof.

When Y is crisp , this definition reduces to the Lindelofness in L-fuzzy 

topological spaces (Definition 3.2.2 (ii)).

Theorem 9.4.3 ( The goodness of smooth countable compactness ) :

Let (X,T) be an ordinary topological space . Then (X,T) is countably compact 

if and only if the induced smooth L-fts (X, o)T) is smooth countably compact.

Proof:

Suppose that (X,T) is countably compact. Let pepr(L) and (QieJ be a countable 

collection of L-fuzzy sets with o)T(f;)ip for every ieJ and (VieJfi)(x )ip  for 

all xeX  . Then, ^ ''({ teL ftip JeT  for every ieJ and X = Uie, ^'’({teLitipj}. 

Hence, ( ^ ''({ teL itip J  )ieJ is a countable open cover o f (X,T) . From the 

countable compactness o f (X ,T ), there is a finite subset F o f J such that 

X = Uif F fj_1({teL:t^Pi} . So , we have that (VieFfj)(x)£p for all xeX . Hence, 

(X, coT) is smooth countably com pact.

Now suppose that (X, cox) is smooth countably compact . Let pepr(L) and 

(Aj)^ be a countable open cover of (X,T) . Then, (V ieJ Xa .)(x) = 1 *P f°rf

xeX  . In addition, since each Xa >s 1-Scott continuous, o)x (xA) = l*P for
i

every i e J . From the smooth countable compactness of (X, o)x) , there is a finite 

subset F of J such that (ViFFx A) W i  p for all xeX. Thus, X = UieFAj and
i

therefore (X,T) is countably com pact.
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Let (X,T) be an ordinary topological space . Then (X,T) is Lindelof if and 

only if the induced smooth L-fts (X, a)T) is smooth Lindelof.

Proof: This is similar to the proof of Theorem 9.4.3 .

Theorem 9.4.5 :

Let (X ,Y ) be a smooth L-fts and geLx .

(i) The L-fuzzy set g is smooth countably compact if and only if for every 

aeM (L) and every countable collection (hj)jeJ of L-fuzzy sets with ^» (h jia ' for 

every ieJ and (Aj(;Jhi)(x)2;a for all xeX with g(x)>a , there is a finite subset F 

o f J such that (AieFhj)(x)sa for all xeX with g(x)>a .

(ii) The L-fuzzy set g is smooth Lindelof if and only if for every a eM(L) and 

every collection (hj)ieJ o f L-fuzzy sets with <i>(hi) i a '  for every ieJ and

(AieJhi)(x)2;a for all xeX with g(x)>a , there is a countable subset N o f J such 

that (AieNhi)(x)2 a for all xeX with g(x)>a .

Proof: This follows easily from the definitions .

Theorem 9.4.6 :

Let (X ,Y ) be a smooth L-fts and geLx .

(i) The L-fuzzy set g is smooth countably compact if and only if for every 

pepr(L) , Gp = { xeX : g (x )> p '} is countably compact in the prime level 

space (X,Yp) .

Theorem 9.4.4 ( The goodness of smooth Lindelofness ) :
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(ii) The L-fuzzy set g is smooth Lindelôf if and only if for every pep r(L ), 

Gp = { xeX  : g(x)>p' } is Lindelof in the prime level space (X,Yp) .

Proof : These are very similar to the proof of Theorem 9.3.5 .

Corollary 9.4.7 :

(i) A smooth L-fts (X,Y ) is smooth countably compact if and only if every 

prime level space of (X,Y ) is countably com pact.

(ii) A smooth L-fts (X,Y ) is smooth Lindelof if and only if every prime level 

space o f (X ,Y ) is Lindelof.

Proof : These follow from the previous theorem .

Proposition 9.4.8 :

Every smooth compact L-fuzzy set is both smooth countably compact and 

Lindelof.

Proof : This follows directly from the definitions .

Proposition 9.4.9 :

Let (X,Y ) be a smooth L-fts and let geLx be smooth Lindelof. T hen , g is 

smooth countably compact if and only if g is smooth com pact.

Proof : This follows easily from the definitions .

Proposition 9.4.10 :

Let (X,Y ) be a smooth L-fts and let g,heLx . If g and h are smooth countably
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compact (smooth Lindelôf) , then gVh is smooth countably compact (smooth 

Lindelôf) as well .

Proof: This is similar to the proof o f Proposition 9.3.14 .

Proposition 9.4.11 :

Let (X,Y ) be a smooth L-fts and let g,heLx . If g is smooth countably 

compact ( smooth Lindelôf ) and 3>(h) = 1 , then gAh is smooth countably 

compact ( smooth Lindelôf ) .

Proof: This is similar to the proof of Proposition 9.3.15 .

Proposition 9.4.12 :

Let (X,Y ) and (Y,Y *) be smooth L-fuzzy topological spaces and let 

F:(X,Y)-(Y,Y*) be a smooth continuous suijection . If (X,Y ) is smooth countably 

compact ( smooth Lindelôf ) , then (Y,Y *) is smooth countably compact ( smooth 

Lindelôf) as w ell.

Proof: This is similar to the proof of Proposition 9.3.18 .
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9.5. Smooth Local Compactness

In this section, we introduce and study smooth local compactness in smooth L- 

fiizzy topological spaces. We also prove that it is a good extension of the local 

compactness in general topology .

Definition 9.5.1 :

A smooth L-fts (X,Y) is said to be smooth locally compact if and only if for 

every Xpepr(Lx) , there exist an feLx with Y (f ) ip  and an L-fuzzy set k of the form 

re ifzeK cX

k(z)=V for some eeL, such that Xk *s smooth compact and XpEfek.

.0 otherwise

In particular , when Y is crisp , i.e. Y : Lx -  {0, l}c  L then smooth local 

compactness reduces to the local compactness in L-fts's ( see Definition 3.2.4 ) .  

Clearly, every smooth compact smooth L-fts is smooth locally com pact.

The next theorem shows that smooth local compactness is a good extension of 

the local compactness in general topology .

Theorem 9.5.2 ( The goodness of smooth local compactness ) :

Let (X,T) be a topological space . T hen, (X,T) is locally compact if and only 

if the induced smooth L-fts (X,coT) is smooth locally compact.
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Proof :

Necessity : Let xeX and p ep r(L ). By the local compactness o f (X ,T ), there 

are an AeT and a compact subset U in (X,T) such that xeA cU  . T hen , 

“ t^Xa) = 1 *P Xa ^Xu - Let k=Xu and f = x A- Since U is compact in (X,T), 

by the goodness o f smooth compactness, Xu *s smooth compact in (X,u)T) . 

We also have x ^ fe  k and hence (X ,g>t ) is smooth locally com pact. 

Sufficiency: Let xeX and pepr(L). By the smooth local compactness o f (X,o)T), 

there are an feLx with coT( f ) ip  and an L-fuzzy set k o f the form 

'eeL  ifzeK cX

k(z)=< such that Xk >s smooth compact and XpEfe k.

.0 otherwise

Since coT(f ) ip  , we have A = f’(UeL:Up})eT. Let U=k'1({teL:t:£p})={zeX:k(z)ip}. 

Then , U = K if e*p and U = 0 if e<p . Since Xk *s smooth compact in 

(X,a)T) ,  by the goodness of smooth compactness, K is compact in (X,T) . Thus, 

in both case U is compact in (X,T) . We also have x g A c U  and hence (X,T) 

is locally com pact.

Proposition 9.5.3 :

If a smooth L-fts (X,Y ) is smooth locally compact, then each prime level space 

o f (X,Y ) is locally com pact.

Proof :

Let (X,Y ) be smooth locally compact and let pep r(L ). We are going to show 

that the ordinary topological space (X,Yp) is locally compact. Take xeX  . From
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the smooth local compactness o f (X,Y ) , there are an feLx with Y (f  )*p and 

an L-fuzzy set k o f the form

reeL ifzeK cX

k(z)=  -s such that Xk *s smooth compact and Xpgfek.

10 otherwise

Since Y (f)ip  , by the definition o f (X,Yp) , A = f 1({teL:ti:p})eYp. Since Xk *s 

smooth compact in (X ,Y), by Theorem 9.3.5 , { zeX  : Xk (z )^P' } = K is compact 

in the prime level space (X,Yp) . We also have xeA and AcK . H ence, (X,Yp) 

is locally com pact.

Theorem 9.5.4 :

Let (X ,Y) and (Y,Y*) be smooth L-fuzzy topological spaces and F:(X,t ) -  (Y,t *) 

be a both smooth open and smooth continuous surjection . If (X ,Y ) is smooth 

locally com pact, then (Y,Y *) is also smooth locally com pact.

P roof:

Let pepr(L) and yeY with F(x) = y . By the smooth local compactness o f (X,Y), 

there exist an feLx with Y (f)*p  and an L-fuzzy set k o f the form 

r eeL if zeK cX

k(z)=  < such that Xk ' s smooth compact in (X,t ) and Xp6f<k.

v. 0 otherwise

Since F is smooth open and Y ( f ) i p ,  we have Y * (F ( f ) ) ip . We also have
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r e  if ueF(K)cY

F(k)(u) = < and Xf (K)=F(Xk)-

0 otherwise

Since Xk >s smooth compact in (X ,Y ) and F is smooth continuous , Xfoq *s 

smooth compact in (Y,Y*). In addition, we have ypeF (f)< F(k) . Consequently, 

(Y,Y *) is smooth locally com pact.

Theorem 9.5.5 :

Let (X ,Y ) be a smooth L-fts and YcX with $ ( x Y) = 1 • If (X ,Y ) is smooth 

locally com pact, then the smooth subspace (Y,Yy) is smooth locally com pact.

P roof:

Let pepr(L) and yeY . From the smooth local compactness o f (X ,Y ) , there 

exist an feLx with Y ( f ) ip  and an L-fuzzy set k of the form 

' eeL if zeK^X

k(z) = < such that Xk is smooth compact in (X,t ) and ypefek.

V. 0 otherwise

In fact , since Y (f ) ip  , we have YY(fY) = V{Y (g) : geLx with g |Y=fY }ip. 

M oreover , since Xk 's smooth compact in (X,Y) and ^(X y) = 1 , by 

P ro p o sitio n ^ . 15 , Xtcnv= Xk^Xy  >s smooth compact in (X ,Y ) . Then, Xicnv *s 

smooth compact in (Y,Yy) . H ence, (Y,Yy) is smooth locally compact . ■
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