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Abstract

Relational learning can be described as the task of learning first-order logic rules from
examples. It has enabled a number of new machine learning applications, e.g. graph min-
ing and link analysis. Inductive Logic Programming (ILP) performs relational learning
either directly by manipulating first-order rules or through propositionalization, which
translates the relational task into an attribute-value learning task by representing subsets
of relations as features. In this paper, we introduce a fast method and system for relational
learning based on a novel propositionalization called Bottom Clause Propositionalization
(BCP). Bottom clauses are boundaries in the hypothesis search space used by ILP systems
Progol and Aleph. Bottom clauses carry semantic meaning and can be mapped directly
onto numerical vectors, simplifying the feature extraction process. We have integrated
BCP with a well-known neural-symbolic system, C-IL2P, to perform learning from nu-
merical vectors. C-IL2P uses background knowledge in the form of propositional logic
programs to build a neural network. The integrated system, which we call CILP++, han-
dles first-order logic knowledge and is available for download from Sourceforge. We have
evaluated CILP++ on seven ILP datasets, comparing results with Aleph and a well-known
propositionalization method, RSD. The results show that CILP++ can achieve accuracy
comparable to Aleph, while being generally faster, BCP achieved statistically significant
improvement in accuracy in comparison with RSD when running with a neural network,
but BCP and RSD perform similarly when running with C4.5. We have also extended
CILP++ to include a statistical feature selection method, mRMR, with preliminary re-
sults indicating that a reduction of more than 90% of features can be achieved with a
small loss of accuracy.

Keywords: Relational Learning, Inductive Logic Programming, Propositionalization,
Neural-Symbolic Integration, Artificial Neural Networks

1 Introduction

Relational learning can be described as the task of learning a first-order logic theory from
examples (Džeroski and Lavrač, 2001; De Raedt, 2008). Differently from propositional learn-
ing, relational learning does not use a set of attributes and values. Instead, it is based on objects
and relations among objects, which are represented by constants and predicates, respectively.
This enables a range of applications of machine learning, for example in Bioinformatics, graph
mining and link analysis, serious games, etc. (Bain and Muggleton, 1994; Srinivasan and
Muggleton, 1994; Džeroski and Lavrač, 2001; King and Srinivasan, 1995; King et al., 2004;
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Muggleton et al., 2010). Inductive Logic Programming (ILP) (Muggleton and Raedt, 1994;
Nienhuys-Cheng and de Wolf, 1997) performs relational learning either directly by manipulat-
ing first-order clauses or through a method called propositionalization (Lavrač and Džeroski,
1994; Železný and Lavrač, 2006), which brings the relational task down to the propositional
level by representing subsets of relations as features that can then be used as attributes. In com-
parison with full ILP, propositionalization normally exchanges accuracy for efficiency (Krogel
et al., 2003), as it enables the use of fast attribute-value learners such as decision trees or even
neural networks (Quinlan, 1993; Rumelhart et al., 1994), but could lose information in the
translation of first-order clauses into features.

In this paper, we introduce a fast system for relational learning based on a new form
of propositionalization, which we call Bottom Clause Propositionalization (BCP). Bottom
clauses are boundaries on the hypothesis search space, first introduced by Muggleton (1995)
as part of the Progol system, and are built from one random positive example, background
knowledge (a set of clauses that describe what is known) and language bias (a set of clauses
that define how clauses can be built). A bottom clause is the most specific clause (with most
literals) that can be considered as a candidate hypothesis. BCP uses bottom clauses for propo-
sitionalization because they carry semantic meaning, and because bottom clause literals can be
used directly as features in a truth-table, simplifying the feature extraction process (Muggleton
and Tamaddoni-Nezhad, 2008; DiMaio and Shavlik, 2004; Pitangui and Zaverucha, 2012).

The idea of using BCP for learning came from our attempts to represent and learn first-
order logic in neural networks (Garcez and Zaverucha, 2012). Neural networks (Rumelhart
et al., 1994) are attribute-value learners based on gradient-descent. Learning in neural net-
works is achieved by performing small changes to a set of weights, in contrast with ILP, which
performs learning at the concept level. Neural networks’ distributed architecture is generally
accredited as a reason for robustness; neural networks seem to perform well in continuous
domains and when learning from noisy data (Rumelhart et al., 1994). Systems that com-
bine symbolic computation with neural networks are called neural-symbolic systems (Garcez
et al., 2002). In neural-symbolic integration, the representation of first-order logic by neural
networks is of interest in its own right, since first-order logic learning and reasoning using
connectionist systems remains an open research question (Garcez et al., 2008). As a result,
we investigate whether neural-symbolic learning is a good match for BCP. The experiments
reported below indicate that this is indeed the case, in comparison with standard ILP and a
well-known propositionalization method.

The neural-symbolic system C-IL2P has been shown effective at learning and reasoning
from propositional data in a number of domains (Garcez and Zaverucha, 1999). C-IL2P uses
background knowledge in the form of propositional logic programs to build a neural network,
which is in turn trained by examples using backpropagation (Rumelhart et al., 1994). We in-
tend to achieve the same in relational domains. Hence, we have extended C-IL2P to handle
first-order logic by using BCP to train a first-order neural network. The extended system,
which we call CILP++, has been implemented in C++ and is available to download from
Sourceforge at https://sourceforge.net/projects/cilppp/ (the experiments
reported in this paper can be reproduced by downloading the datasets and list of parame-
ters from http://soi.city.ac.uk/~abdz937/bcexperiments.zip). CILP++
incorporates BCP as a novel propositionalization method and differently from C-IL2P, CILP++
networks are first-order in that each neuron denotes a first-order atom. Yet, CILP++ learning
uses the same neural model as C-IL2P, by transforming each first order example into a bot-
tom clause. Experimental evaluations reported in this paper show that such a combination
can lead to efficient learning of relational concepts. Given our experimental results, which are
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summarised in the next paragraph, our long-term goal is to apply and evaluate BCP on other
general settings, including discrete and continuous data, noisy environments with missing val-
ues, and problems containing errors in the background knowledge.

We have compared CILP++ with Aleph (Srinivasan, 2007) – a state-of-the-art ILP system
based on Progol – and compared BCP with a well-known propositionalization method, RSD
(Železný and Lavrač, 2006), using neural networks and the C4.5 decision tree learner (Quin-
lan, 1993), on a number of benchmarks: four Alzheimer’s datasets (King and Srinivasan, 1995)
and the Mutagenesis (Srinivasan and Muggleton, 1994), KRK (Bain and Muggleton, 1994) and
UW-CSE (Richardson and Domingos, 2006) datasets. Several aspects were empirically evalu-
ated: standard classification accuracy using cross-validation and runtime measurements, how
BCP performs in comparison with RSD, and how CILP++ performs in different settings us-
ing feature selection (Guyon and Elisseeff, 2003). The CILP++ implementation has not been
optimised for performance. We evaluated six different configurations of CILP++ in order
to explore some of the capabilities of the approach: three versions of CILP++ trained with
standard backpropagation, each one using three sizes of background knowledge, and three
versions of CILP++ trained with early stopping (Prechelt, 1997), with the same three back-
ground knowledge sizes used for standard backpropagation. In the first set of experiments –
accuracy vs. runtime – CILP++ achieved results comparable to Aleph and performed faster on
most datasets.

Regarding the performance of BCP against RSD, BCP achieved a statistically significant
improvement in accuracy in comparison with RSD when running with a neural network, but
BCP and RSD have shown similar performance when running with C4.5. Nevertheless, BCP
was faster than RSD in all cases. Since bottom clauses may have a large number of literals
(Muggleton, 1995), BCP might generate a large number of features. Hence, we evaluated ac-
curacy also using feature selection, as follows. CILP++ was extended to include a statistical
feature selection method called mRMR which is widely used for visual recognition and audio
analysis (Ding and Peng, 2005). We applied three-fold cross validation on training data to
choose two models and used those on two Alzheimer datasets. The results indicate the exis-
tence of an optimal variable-depth parameter for generating bottom clauses and that “more is
not merrier”. In one CILP++ model, mRMR managed to reduce over 90% of features while
having a loss of less than 2% on accuracy on two Alzheimer testbeds, although an increase in
runtime was observed. Further experiments in different application domains and comparison
with other propositionalization methods, e.g. Kuželka and Železný (2011), are under way.

Related Work: Approaches related to CILP++ can be grouped into three categories: ap-
proaches that also use bottom clauses, other propositionalization methods, and other relational
learning methods. In the first category, DiMaio and Shavlik (2004) use bottom clauses with
neural networks to build an efficient hypothesis evaluator for ILP. Instead, CILP++ uses bot-
tom clauses to classify first-order examples. The QG/GA system (Muggleton and Tamaddoni-
Nezhad, 2008) introduces a new hypothesis search algorithm for ILP, called Quick Generaliza-
tion (QG), which performs random single reductions in bottom clauses to generate candidate
clauses for hypothesis. Additionally, QG/GA proposes the use of Genetic Algorithms (GA)
on those candidate clauses to further explore the search space, converting the clauses into nu-
merical patterns. CILP++ does the same, but for use with neural networks instead of discrete
GAs.

In the second category – other propositionalizations – LINUS (Lavrač and Džeroski, 1994)
was the first system to introduce propositionalization. It worked with acyclic and function-free
Horn Clauses, like Progol and BCP, but differently from BCP, it constrained the first-order
language further to only accept clauses where all body variables also appear in the head. Its

3



successor, DINUS (Kramer et al., 2001), allows a larger subset of clauses to be accepted
(determinate clauses), allowing clauses with body variables that do not appear in the head
literal, but still allowing only one possible instantiation of those variables. Finally, SINUS
(Kramer et al., 2001) improved on DINUS by allowing unconstrained clauses, making use of
language bias in the feature selection and verifying if it is possible to unify newly found literals
with existing ones, while keeping consistency between pre-existing variable namings, thus
reducing the final number of features. LINUS and DINUS treat body literals as features, which
is similar to BCP. However, BCP can deal with the same language as Progol, thus having none
of the language restrictions of LINUS/DINUS. SINUS, on the other hand, propositionalizes
similarly to another method, RSD, which is compared to this work and is explained separately
in Section 2.3. RSD also has a recent successor, called RelF (Kuželka and Železný, 2011),
which takes a more classification-driven approach than RSD by only considering features that
are interesting for distinguishing between classes (it also discards features that θ -subsume any
previously-generated feature). Comparisons with RelF are under way.

Finally, in the third category, we place the body of work on statistical relational learning
(Getoor and Taskar, 2007; De Raedt et al., 2008), that albeit relevant for comparison, is less
directly related to this work, e.g. Markov Logic Networks (MLN) (Richardson and Domingos,
2006) and other systems combining relational and probabilistic graphical models (Koller and
Friedman, 2009; Paes et al., 2005), neural-symbolic systems for learning from first-order data
in neural networks such as Basilio et al. (2001), Kijsirikul and Lerdlamnaochai (2005) and
Guillame-Bert et al. (2010), and systems that propose to integrate neural networks and first-
order logic through relational databases, e.g. Uwents et al. (2011). Those systems differ
from CILP++ mainly in that they seek to embed relational data directly into the networks’
structures, which is a difficult task. In contrast, CILP++ seeks to benefit from using a simple
network structure as an attribute-value learner, following a propositionalization approach, as
discussed earlier.

Summarizing, the contribution of this paper is two-fold. The paper introduces: (i) a novel
propositionalization method, BCP, which converts first-order examples into propositional pat-
terns by generating their bottom clauses, treating each body literal as a propositional feature,
and (ii) the successor of C-IL2P, the CILP++ system, which reduces C-IL2P’s learning times
and system complexity, uses a new weight normalization, maintaining the integrity of first-
order background knowledge, and is easily configurable to be used with any ILP dataset.
CILP++ takes advantage of mode declarations and determinations to generate consistent bot-
tom clauses which share variable namings, thus being applicable to any dataset that first-order
systems Aleph or Progol are applicable. CILP++ may use C-IL2P’s knowledge extraction al-
gorithm (Garcez et al., 2001) so that interpretable first-order rules can be obtained from the
trained network. Currently, first-order rules can be obtained when BCP is used together with
C4.5 (since each node represents a first-order literal). This is further discussed in the body of
the paper.

The remainder of the paper is organized as follows. In Section 2, we introduce the ILP con-
cepts used throughout the paper: propositionalization, neural networks and neural-symbolic
systems. In Section 3, we show how CILP++ builds a neural network from bottom clauses and
how the network can be trained using bottom clauses as examples with backpropagation. We
also analyze two stopping criteria: standard training error minimization and early stopping,
and discuss how knowledge extraction can be carried out. In Section 4, we report and discuss
all experimental results, and in Section 5, we conclude and discuss directions for future work.
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2 Background

In this section, both machine learning subfields that are directly related to this work (In-
ductive Logic Programming and Artificial Neural Networks) are reviewed. This section also
introduces notation used throughout the paper. An introduction to C-IL2P is also presented,
followed by a review of propositionalization and feature selection.

2.1 ILP and Bottom Clause

Inductive Logic Programming (Muggleton and Raedt, 1994) is an area of machine learning
that makes use of logical languages to induce theory-structured hypotheses. Given a set of
labeled examples E and background knowledge B, an ILP system seeks to find a hypothesis H
that minimizes a specified loss function. More precisely, an ILP task is defined as <E, B, L>,
where E = E+ ∪ E− is a set of positive (E+) and negative (E−) clauses, called examples, B is
a logic program called background knowledge, which is composed by facts and rules, and L is
a set of logic theories called language bias.

The set of all possible hypotheses for a given task, which we call SH , can be infinite
(Muggleton, 1995). One of the features that constrains SH in ILP is the language bias, L. It is
usually composed by specification predicates, which define how the search is done and how far
it can go. The most common specification language is called mode declarations, composed
of: modeh predicates, that define what can appear as head of a clause; modeb predicates,
that define what predicates can appear in the body of a clause; and determination predicates,
which relate body and head literals. The modeb and modeh declarations also specify what
is considered to be an input variable, an output variable, a constant, and an upper bound
on how many times the predicate it specifies can appear in the same clause, called recall.
The language bias L, through mode declarations and determination predicates, can restrict
SH during hypothesis search to only allow a smaller set of candidate hypotheses Hc to be
searched. Formally, Hc is a candidate hypothesis for a given ILP task <E, B, L> iff Hc ∈ L,
B∪Hc � E+ ∪N and B∪Hc 2 E−−N, where N ⊆ E− is an allowed noise in Hc in order to
ameliorate overfitting issues.

Something else that is used to restrict hypothesis search space in algorithms based on in-
verse entailment, such as Progol, is the most specific (saturated) clause,⊥e. Given an example
e, Progol firstly generates a clause that represents e in the most specific way as possible, by
searching in L for modeh declarations that can unify with e and if it finds one, an initial ⊥e

is created. Then it passes through the determination predicates to verify which of the bodies
specified among the modeb clauses can be added to ⊥e, repeatedly, until a number of cycles
(known as variable depth) through the modeb declarations has been reached.

2.2 Artificial Neural Networks and C-IL2P

An artificial neural network (ANN) is a directed graph with the following structure: a
unit (or neuron) in the graph is characterized, at time t, by its input vector Ii(t), its input
potential Ui(t), its activation state Ai(t), and its output Oi(t). The units of the network are
interconnected via a set of directed and weighted connections such that if there is a connection
from unit i to unit j then Wji ∈ R denotes the weight of this connection. The input potential
of neuron i at time t (Ui(t)) is obtained by computing a weighted sum for neuron i such that
Ui(t) = ∑ j Wi jIi(t). The activation state Ai(t) of neuron i at time t is then given by the neuron’s
activation function hi such that Ai(t) = hi(Ui(t)). In addition, bi (an extra weight with input
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always fixed at 1) is known as the bias of neuron i. We say that neuron i is active at time t if
Ai(t)>−bi. Finally, the neuron’s output value is given by its activation state Ai(t).

For learning, backpropagation (Rumelhart et al., 1994) is the most widely used algorithm,
based on gradient descent. It aims to minimize an error function E regarding the difference
between the network’s answer and the example’s actual classification. Standard training and
early stopping (Haykin, 2009) are two commonly used stopping criteria for backpropagation
training. In standard training, the full training dataset is used to minimize E, while early
stopping uses a validation set to measure data overfitting: training stops when the validation
set error starts to increase. When this happens, the best validation configuration obtained thus
far is used as the learned model.

The Connectionist Inductive Learning and Logic Programming system, C-IL2P (Garcez
and Zaverucha, 1999), is a neural-symbolic system that builds a recursive ANN using back-
ground knowledge composed of propositional clauses (building phase). C-IL2P also learns
from examples using backpropagation (training phase), performs inference on unknown data
by querying the post-training ANN, and extracts a revised knowledge from the trained network
(Garcez et al., 2001) to obtain a new propositional theory (extraction phase). Fig. 1 illustrates
the building phase and shows how to build a recursive ANN N from background knowledge
BK1.

BK = {A ← B, C; B ← C, not D, E; D ← E}

Input 

Layer

Hidden 

Layer

Output

Layer

B C

(1)

A

  (1)                (2)                (3)

WW

W

N:

Input 

Layer

Hidden 

Layer

Output

Layer

B C D E

A B D

(1) (2) (3)

W W W -W W W

W W W

1 1

Figure 1: C-IL2P building phase example. Starting from background knowledge BK, C-IL2P
creates an ANN by creating a hidden layer neuron for each clause in BK. Thus, the C-IL2P
network for BK has three hidden neurons. Then, each body literal in BK is associated with an
input neuron, and each head literal in BK is associated with an output neuron. For example,
for the first clause (A← B, C), since it has two body literals B and C, two input neurons are
created and are connected to a hidden neuron (1), corresponding to the clause, with positive
weight W . If a literal is negated (for example, literal not D in the second clause of BK), its
corresponding neuron is connected to the hidden neuron using weight −W . Hidden neuron
(1) is then connected to the output neuron corresponding to A using connection weight W .
Finally, input and output neurons that share the same label are recursively connected from
the output to the input of the network with weight 1, so that output values can be propagated
back to the input in the next calculation of rule chaining. For example, the head of the second
clause in BK (B) is also one of the body literals of the first clause. Therefore, a recursive
connection between the output neuron representing B and the input neuron representing B
is created. The resulting network N encodes and can compute BK in parallel, as well as be
trained from examples having BK as background knowledge.
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C-IL2P calculates weight and bias values for all neurons. The value of W is constrained
by Eq. 2, the values of the biases of the input layer neurons are set as 0, and the biases of
the hidden layer neurons nh (bnh) and of the output layer neurons no (bno) are given by Eqs.
3 and 4 below, respectively. Both W and the biases are functions of Amin: this parameter
controls the activation of each neuron n in C-IL2P by only allowing activation if the condition
shown in Eq. 1 is satisfied, where wi is a network weight that ends in n, xi is an input and
hn is the activation function of neuron n, which is linear if it is an input neuron and semi-
linear bipolar2 if it is not. W and the biases values are set so that the network implements
an AND-OR structure with hidden neurons implementing a logical-AND of input neurons,
and output neurons implementing a logical-OR of hidden neurons, so that the network can be
used to run the logic program. To exemplify the network computation, given BK, if E and C
are set to true, and D is set to false in the network (i.e. neurons E and C are activated while
neuron D is not), a feedforward propagation activates output neuron B (because of the second
clause in BK). Then, a recursive connection carries this activation to input neuron B, and a
second feedforward propagation would activate A. This process continues until a stable state
is reached, when no change in activation is seen after a feedforward propagation.

hn(∑
∀i

wi · xi +b)≥ Amin (1)

W ≥ 2
β
· ln(1+Amin)− ln(1−Amin)

max(kn,µn) · (Amin−1)+Amin +1
(2)

bnh =
(1+Amin)(knh−1)

2
·W (3)

bno =
(1+Amin)(1−µno)

2
·W (4)

In Eqs. 2, 3 and 4: knh is the number of body literals in the clause corresponding to the
hidden neuron nh (i.e., the number of connections coming from the input layer to nh); µno

is the number of clauses in the background knowledge with the same head as the head literal
mapped by the output neuron no (i.e., the number of connections coming from the hidden layer
to no); max(kn,µn) is the maximum value among all k and all µ , for all neurons n; and β is the
semi-linear bipolar activation function slope.

After the building phase, training can take place. Optionally, more hidden neurons can be
added (if this is needed in order to better approximate the training data), and the network is
fully connected with near-zero weighted connections. The training algorithm used by C-IL2P
is standard backpropagation (Rumelhart et al., 1994). C-IL2P also does not train recursive
connections: they are fixed and only used for inference.

Then, inference and knowledge extraction can be done. Garcez et al. (2001) proposes a
knowledge extraction algorithm for C-IL2P by splitting of the trained network into “regular”
ones, which do not have connections coming from the same neuron with different signs (pos-
itive and negative). It is shown that the extraction for those networks is sound and complete,
and in the general case, soundness can be achieved, but not completeness.

1We follow logic programming notation where a clause of the form (A← B, not C, D) denotes that A is true if
B is true, C is false and D is true; clauses are separated by “;” (semi-colon) in a logic program.

2Semi-linear bipolar function: f (x) = 2
1+e−β .x −1, where β is a slope parameter with default value 1.
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2.3 Propositionalization

Propositionalization is the conversion of a relational database into an attribute-value table,
amenable to conventional propositional learners (Krogel et al., 2003). Propositionalization
algorithms use background knowledge and examples to find distinctive features, which can
differentiate subsets of examples. There are two kinds of propositionalization: logic-oriented
and database-oriented. The former aims to build a set of relevant first-order features by distin-
guishing between first-order objects. The latter aims to exploit database relations and functions
to generate features for propositionalization. The main representatives of logic-oriented ap-
proaches include: LINUS (and its successors), RSD and RelF; and the main representative of
database-oriented approaches is RELAGGS (Krogel and Wrobel, 2003). BCP is a new logic-
oriented propositionalization technique, which consists of generating bottom-clauses for each
first-order example and using the set of all body literals that occur in them as possible features
(in other words, as columns for an attribute-value table).

In order to evaluate how BCP performs, it will be compared with RSD (Železný and
Lavrač, 2006), a well-known propositionalization algorithm for which an implementation is
available at (http://labe.felk.cvut.cz/~zelezny/rsd). RSD is a system which
tackles the Relational Subgroup Discovery problem: given a population of individuals and a
property of interest, RSD seeks to find population subgroups that are as large as possible and
have the most unusual distribution characteristics. RSD’s input is an Aleph-formatted dataset,
with background knowledge, example set and language bias and its output is a list of clauses
that describe interesting subgroups of the examples dataset. RSD is composed of two steps:
first-order feature construction and rule induction. The first is a propositionalization method
that creates higher-level features that are used to replace groups of first-order literals, and the
second is an extension of the propositional CN2 rule learner (Clark and Niblett, 1989), for use
as a solver of the relational subgroup discovery problem. We are interested in the proposition-
alization component of RSD, which can be further divided into three steps: all expressions
that by definition form a first-order feature and comply with the mode declarations are iden-
tified; the user can instantiate variables (through instantiate/1 predicates) in the background
knowledge and afterwards, irrelevant features are filtered out; and a propositionalization of
each example using the generated features is created. From now on, when we refer to RSD,
we are referring to the RSD propositionalization method, not the relational subgroup discovery
system.

2.4 Feature Selection

As stated in Section 2.1, bottom clauses are extensive representations of an example, pos-
sibly having an infinite size. In order to tackle this problem, at least two approaches have been
proposed: reducing the size of the clauses during generation or using a statistical approach af-
terwards. The first can be done as part of the bottom clause generation algorithm (Muggleton,
1995), by reducing the variable depth value. Variable depth specifies an upper bound on the
number of times that the algorithm can pass through mode declarations and by reducing its
value, it is possible to cut a considerable chunk of literals, although causing some information
loss. Alternatively, statistical methods such as Pearson’s correlation and Principal Component
Analysis can be used (a survey of those methods can be found in May et al. (2011)), taking
advantage of the use of numerical feature vectors as training patterns. A recent method, which
has low computational cost, while surpassing most common methods in terms of information
loss, is the mRMR algorithm (Ding and Peng, 2005), which focuses on balancing minimum
redundancy and maximum relevance of features, selecting them by using mutual information
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I between variables x and y, defined as:

I(x,y) = ∑
i, j

p(xi,y j) log
p(xi,y j)

p(xi)p(y j)
, (5)

where p(x,y) is the joint probability distribution, and p(x) and p(y) are the respective marginal
probabilities. Given a subset S of the feature set Ω to be ranked by mRMR, the minimum
redundancy condition and the maximum relevance condition, respectively, are:

min {WI}, WI =
1
|S|2 ∑

i, j∈S
I(i, j) and (6)

max {VI}, VI =
1
|S|∑i∈S

I(h, i), (7)

where h= {h1,h2, . . . ,hK} is the classification variable of a dataset with K possible classes. Let
ΩS =Ω−S be the set of unselected features from Ω. There are two ways of combining the two
conditions above to select features from ΩS: Mutual Information Difference (MID), defined
as max(VI −WI), and Mutual Information Quotient (MIQ), defined as max(VI/WI). Results
reported in Ding and Peng (2005) indicate that MIQ usually chooses better features. Thus,
MIQ is the function we choose to select features in this work and for the sake of simplicity,
whenever this work refers to mRMR, it is referring to mRMR with MIQ.

3 Learning with BCP using CILP++

Let us start with a motivating example: consider the well-known family relationship ex-
ample (Muggleton and Raedt, 1994), with background knowledge B = {mother(mom1, daugh-
ter1), wife(daughter1, husband1), wife(daughter2, husband2)}, with positive example moth-
erInLaw(mom1, husband1), and negative example motherInLaw(daughter1, husband2). It can
be noticed that the relation between mom1 and husband1, which the positive example estab-
lishes, can be alternatively described by the sequence of facts mother(mom1, daughter1) and
wife(daughter1, husband1) in the background knowledge. This states semantically that mom1
is a mother-in-law because mom1 has a married daughter, namely, daughter1. Applied to
this example, the bottom clause generation algorithm of Progol would create a clause ⊥ =
motherInLaw(A,B) ← mother(A, C), wife(C, B). Comparing ⊥ with the sequence of facts
above, we notice that ⊥ describes one possible meaning of mother-in-law: “A is a mother-
in-law of B if A is a mother of C and C is wife of B”, i.e. the mother of a married daughter
is a mother-in-law. This is why, in this paper, we investigate learning from bottom clauses.
However, for each learned clause, Progol uses a single random positive example to generate
a bottom clause, for limiting the search space. To learn from bottom clauses, BCP generates
one bottom clause for each (positive or negative) example e, which we denote as ⊥e.

In this section, we introduce the CILP++ system, which extends the C-IL2P system to
learn from first-order logic using BCP. Each step of this relational learning task is explained
in detail in what follows.

3.1 Bottom Clause Propositionalization

The first step of relational learning with CILP++ is to apply BCP. Each target literal is
converted into a numerical vector that an ANN can use as input. In order to achieve this, each
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example is transformed into a bottom clause and mapped onto features on an attribute-value
table, and numerical vectors are generated for each example. Thus, BCP has two steps: bottom
clause generation and attribute-value mapping.

In the first step, each example is given to Progol’s bottom clause generation algorithm
(Tamaddoni-Nezhad and Muggleton, 2009) to create a corresponding bottom clause represen-
tation. To do so, a slight modification is needed to allow the same hash function to be shared
among all examples, in order to keep consistency between variable associations, and to allow
negative examples to have bottom clauses as well; the original algorithm deals with positive
examples only. This modified version is shown in Algorithm 1, which has a single parameter,
depth, which is the variable depth of the bottom clause generation algorithm.

Algorithm 1 Adapted Bottom Clause Generation
1: E⊥ = /0
2: for each example e of E do
3: Add e to background knowledge and remove any previously inserted examples
4: inTerms = /0, ⊥e = /0, currentDepth = 0
5: Find the first mode declaration with head h which θ -subsumes e
6: for all v/t ∈ θ do
7: If v is of type #, replace v in h to t
8: If v is of one of {+, −}, replace v in h to vk, where k = hash(t)
9: If v is of type +, add t to inTerms

10: end for
11: Add h to ⊥e

12: for each body mode declaration b with recall value recall do
13: for all substitutions θ of arguments + of b to elements of inTerms do
14: repeat
15: if querying bθ against the background knowledge succeeds then
16: for each v/t in θ do
17: If v is of type #, replace v in b to t
18: Else, replace v in b to vk, where k = hash(t)
19: If v is of type −, add t to inTerms
20: end for
21: Add bθ to ⊥e, if it has not been added already
22: end if
23: until recall number of iterations has been reached
24: end for
25: end for
26: Increment currentDepth; if it is less than depth, go back to line 12
27: If e is a negative example, add an explicit negation symbol “∼” to the head of ⊥e

28: Add ⊥e to E⊥
29: end for
30: return E⊥

For example, if Algorithm 1 is executed with depth= 1 on the positive and negative exam-
ples of our motivating (family relationship) example above, motherInLaw(mom1, husband1)
and motherInLaw(daughter1, husband2), respectively, it generates the following training set:

E⊥ = {motherInLaw(A,B) :−mother(A,C),wi f e(C,B);
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∼ motherInLaw(A,B) :−wi f e(A,C)}.

After the creation of the E⊥ set, the second step of BCP is as follows: each element of E⊥
(each bottom clause) is converted into an input vector vi, 0≤ i≤ n, that a propositional learner
can process. The algorithm for that, implemented by CILP++, is as follows:

1. Let |L| be the number of distinct body literals in E⊥;
2. Let Ev be the set of input vectors, converted from E⊥, initially empty;
3. For each bottom clause ⊥e of E⊥ do

(a) Create a numerical vector vi of size |L| and with 0 in all positions;
(b) For each position corresponding to a body literal of ⊥e, change its value to 1;
(c) Add vi to Ev;
(d) Associate a label 1 to vi if e is a positive example, and −1 otherwise;

4. Return Ev.

As an example, for the same (family relationship) bottom clause set E⊥ above, |L| is equal
to 3, since the literals are mother(A,C), wi f e(C,B) and wi f e(A,C). For the positive bottom
clause, a vector v1 of size 3 is created with its first position corresponding to mother(A,C),
and second position corresponding to wi f e(C,B) receiving value 1, resulting in a vector v1 =
(1,1,0). For the negative example, only wi f e(A,C) is in E⊥ and its vector is v2 = (0,0,1).

3.2 CILP++ Building Phase

Having created numerical vectors from bottom clauses, CILP++ then creates an initial net-
work for training. Background knowledge (BK) only passes through BCP’s first step (resulting
in a bottom clause set E⊥), i.e. their bottom clauses are generated, but they are not converted
into input vectors. CILP++ then maps each body literal onto an input neuron and each head
literal onto an output neuron. Following the C-IL2P building step, only bottom clauses gener-
ated from positive examples can be used as background knowledge. Let E+

⊥ denote the subset
of E⊥ containing bottom clauses generated from positive examples only. Thus, any subset
EBK
⊥ ⊆ E+

⊥ can be used as background knowledge (or none at all) for the purpose of evaluating
CILP++3.

The CILP++ algorithm for the building phase is presented below. Following C-IL2P, it
uses positive weights W to encode positive literals, and negative weights −W to encode neg-
ative literals. The value of W for CILP++ is also constrained by Eq. 2,which guarantees the
correctness of the translation, i.e. it can be shown that the network computes an intended
meaning of the background knowledge (Garcez and Zaverucha, 1999). As in C-IL2P, CILP++
builds so-called AND-OR networks, setting network biases w.r.t. W so that the hidden neurons
implement a logical-AND, and the output neurons implement a logical-OR, as discussed in the
Background section, as follows:

For each bottom clause ⊥e of EBK
⊥ , do:

3In the next section, we evaluate CILP++ using no BK and different percentages of EBK
⊥ as BK. The BK

is responsible for setting up initial weight configurations in the network. With no BK, the weights are chosen
randomly. BK can also be reinforced during training when it is assumed to be correct. In our experiments in the
next section, BK is reinforced by being also presented as examples for training with backpropagation (since BK
and examples have the same format in CILP++). Initial weight configurations tend to fade away over time during
learning, and BK reinforcement can help improve learning performance.
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1. Add a neuron h to the hidden layer of a network N and label it ⊥e;
2. Add input neurons to N with labels corresponding to each literal in the body of
⊥e;

3. Connect the input neurons to h with weight W if the corresponding literals are
positive, and −W otherwise;

4. Add an output neuron o to N and label it with the head literal of ⊥e;
5. Connect h to o with weight W ;
6. Set the biases in the following way: input neurons with bias 0, bias of h with Eq.

3, and bias of o with Eq. 4.

Continuing our example, suppose that the positive example of E⊥:

motherInLaw(A,B) :− mother(A,C),wi f e(C,B) (8)

is to be used as background knowledge to build an initial ANN. In step 1 of the CILP++
building algorithm, a hidden neuron is created having Eq. (8) as associated label. In step 2,
two input neurons are created, representing the body literals mother(A,C) and wi f e(C,B). In
step 3, two connections are created from each input neuron to the hidden neuron, both having
weight W . In step 4, an output neuron representing the head literal motherInLaw(A,B) is
created. In step 5, the hidden layer neuron is connected to the output neuron with weight W ,
and the network biases are set in step 64.

In order to evaluate network building, in the next section, we run experiments using differ-
ent sizes of EBK

⊥ , including a network configuration with no BK, i.e. where only the input and
output layers are built and associated with bottom clause literals, but no specific initial number
of hidden neurons is prescribed, as detailed in what follows.

3.3 CILP++ Training Phase

After BCP is applied and a network is built, CILP++ training is next. As an extension of
C-IL2P, CILP++ uses backpropagation. Differently from C-IL2P, CILP++ also has a built-in
cross-validation method and an early stopping option (Prechelt, 1997). Validation is used to
measure generalization error during each training epoch. With early stopping, when an error
measure starts to increase, training is stopped. A more permissive version of early stopping,
which we use, does not halt training immediately after the validation error increases, but when
the criterion in Eq. 9 is satisfied, where α is the stopping criterion parameter, t is the current
epoch number, Errva(t) is the average validation error on epoch t and Erropt(t) is the least
validation error obtained from epochs 1 up to t. The reason we apply Eq. 9 is that, without
feature selection, BCP can generate large networks; early stopping has been shown effective
at avoiding overfitting in large networks (Caruana et al., 2000).

GL(t)> α, GL(t) = 0.1 ·
(

Errva(t)
Erropt(t)

−1
)

(9)

Given a bottom clause set Etrain
⊥ , the steps below are followed for training network N:

4Notice that CILP++ is able to build a recursive network in the same way as C-IL2P, but no recursive con-
nections are created by the building algorithm in this paper because a recursive network is not required when
target concepts (head literals) cannot appear as body literals in a background knowledge rule or inside modeb
declarations. This is the case of the experiments/datasets used in this paper.
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1. For each bottom clause ⊥e ∈ Etrain
⊥ , ⊥e = h :- l1, l2, ..., ln, do:

(a) Add all li,1 ≤ i ≤ n, that are not represented yet in the input layer of N, as new
neurons;

(b) If h does not exist yet in the network, create an output neuron corresponding to it;

2. Add new hidden neurons, if required for convergence;
3. Make the network fully-connected, by adding weights with zero values;
4. Normalize all weights and biases (as explained below);
5. Alter weights and biases slightly, to avoid the symmetry problem5;
6. Apply backpropagation using each ⊥e ∈ Etrain

⊥ as training example.

The normalization process of step 4 above is done to solve a problem found while exper-
imenting with C-IL2P: the initial weight values for the connections, depending on the back-
ground knowledge that is being mapped, could be excessively large, which makes the deriva-
tive of the semi-linear activation function tend to zero, thus not allowing proper training. We
used a standard normalization procedure for ANNs, described in Haykin (2009): let wl be a
weight in layer l and similarly, let bl be a bias. For each l, the normalized weights and biases
(respectively, wnorm

l and bnorm
l ) are defined as:

wnorm
l = wl ·

1

(|l−1| 12 ) ·maxw
and

bnorm
l = bl ·

1

(|l−1| 12 ) ·maxw
,

where |l| is the number of neurons in layer l and maxw is the maximum absolute connection
weight value among all weight connections in the network.

To illustrate the training phase, assume that the bottom clause set E⊥ is our training data
and no background knowledge has been used. In step 1(a), all body literals from both ex-
amples (mother(A,C), wi f e(C,B) and wi f e(A,C)) cause the generation of three new input
neurons in the network, with labels identical to the corresponding literals. In step 1(b), an
output neuron labeled motherInLaw(A,B) is added. In step 2, let us assume that two hidden
neurons are added. In step 3, zero-weighted connections are added from all three input neu-
rons to both hidden neurons, and from those to the output neuron. Step 4 is only needed when
background knowledge is used. In step 5, we add a random non-zero value in [−0.01,0.01]
to each weight. Finally, in step 6, backpropagation is applied (see Fig. 2), firing the input
neurons mother(A,C) and wi f e(C,B) when the positive example is being learned (example 1
in the figure), with target output 1, and firing the input neuron wi f e(A,C) when the negative
example is being learned (example 2 in the figure), with target output −1.

Additionally, notice that BCP does not combine first-order literals to generate features like
RSD or SINUS: it treats each literal of a bottom clause as a feature. The hidden layer of the
ANN can be seen as a (weighted) combination of the features provided by the input layer.
Thus, ANNs can combine features when processing the data, which allows CILP++ to group
features similarly to RSD or SINUS, but doing so dynamically (during learning), due to the
small changes of real-valued weights in the network.

After training, CILP++ can be evaluated. Firstly, each test example etest from a test set Etest

is propositionalized with BCP, resulting in a propositional data set Etest
⊥ , where each etest ∈Etest

5The symmetry problem states that if all weights start out with equal values and if the solution requires that
unequal weights be developed, the system can never learn (Rumelhart et al., 1986).
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1) motherInLaw(A,B) :- mother(A,C), wife(C,B) 

1 1
Input 

Layer

Hidden 

Layer

Output

Layer

0

1

L1 L2 L3

L1: mother(A,C)

L2: wife(C,B)

L3: wife(A,C)

2) ~motherInLaw(A,B) :- wife(A,C)

Input 

Layer

Hidden 

Layer

Output

Layer

0 1

-1

0

L1 L2 L3

Figure 2: Illustration of CILP++’s training step. L1, L2 and L3 are labels corresponding to
each distinct body literal found in E⊥. The shown output values are the labels which are used
for backpropagation training. In the figure, network N appears repeated for each example, for
clarity.

has a corresponding ⊥test
e ∈ Etest

⊥ . Then, each ⊥test
e is tested in CILP++’s ANN: each input

neuron corresponding to a body literal of ⊥test
e receives input 1 and all other input neurons

(input neurons which labels are not present in ⊥test
e ) receive input 0. Lastly, a feedforward

pass through the network is performed, and the output will be CILP++’s answer to ⊥test
e and

consequently, to etest .

4 Experimental Results

In this section, we present the experimental methodology and results for CILP++ as a first-
order neural-symbolic system and for BCP as a standalone propositionalization method. We
also compare results with ILP system Aleph and propositionalization method RSD. Before we
experiment on ILP problems, though, we have tested CILP++ against its predecessor, C-IL2P,
to evaluate whether CILP++ is as good as C-IL2P on propositional problems. We used the
Gene Sequences/Promoter Recognition dataset used in Garcez and Zaverucha (1999) with
leave-one-out cross validation. CILP++ obtained 92.41% accuracy, against 92.48% obtained
by C-IL2P; CILP++ took 5:21 minutes to run the entire experiment, while C-IL2P took 5:23
minutes. This suggests that CILP++ and C-IL2P perform similarly on propositional problems.

As mentioned, we have compared results with Aleph and RSD. Aleph is an ILP system,
which has several other algorithms built-in, such as Progol (by default). RSD is a well-known
propositionalization method capable of obtaining results comparable to full ILP systems. We
have used four benchmarks: the Mutagenesis dataset (Srinivasan and Muggleton, 1994), the
KRK dataset (Bain and Muggleton, 1994), the UW-CSE dataset (Richardson and Domingos,
2006), and the Alzheimers benchmark (King and Srinivasan, 1995), which consists of four
datasets: Amine, Acetyl, Memory and Toxic. Table 1 reports some general characteristics and
the number of BCP features obtained for each dataset.

We have run CILP++ on the above datasets (all folds are available from http://soi.
city.ac.uk/~abdz937/bcexperiments.zip, including our version of the UW-CSE
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Table 1: Datasets statistics
Dataset # Positive Examples # Negative Examples # Predicates # BCP Features

Mutagenesis 125 63 34 1115
KRK 341 655 9 60
UW-CSE 113 226 37 430
Alz-amine 343 343 30 1090
Alz-acetyl 618 618 30 1363
Alz-memory 321 321 30 1052
Alz-toxic 443 443 30 1319

dataset, as explained below), reporting results on six CILP++ configurations. We report: accu-
racy vs. runtime on all datasets in comparison with Aleph, and a comparison between BCP and
RSD on the Mutagenesis and KRK datasets6. We also evaluate feature selection in CILP++ by
constraining the clause length when building bottom clauses with BCP and applying mRMR.

Since a varied number of accuracy results have been reported in the literature on the use of
Aleph with the Alzheimers and Mutagenesis datasets (King and Srinivasan, 1995; Landwehr
et al., 2007; Paes et al., 2007), we have decided to run both Aleph and CILP++ for our com-
parisons. We built 10 folds from each dataset (in the case of UW-CSE, we followed Davis
et al. (2005) and used 5 folds) and both systems used the exact same training folds. BCP
and RSD could not, however, share the exact same training folds, as a result of the way in
which the RSD tool was implemented (the RSD tool generates features before the folds are
created, while CILP++ creates the folds in the first place). As mentioned earlier, the CILP++
system, the different configurations/parametrizations, and all the data folds are available for
download so that the results reported in this paper should be reproducible. The six CILP++
configurations include:

• st: uses standard backpropagation stopping criteria;
• es: uses early stopping;
• n%bk: the network is created using n% of the examples in Etrain

⊥ as BK7;
• 2h: uses no building step and starts with 2 hidden neurons only.

The choice of the 2h configuration is explained in detail in Haykin (2009); ANNs having
two neurons in the hidden layer can generalize binary problems approximately as well as any
network. Furthermore, if a network has many features to evaluate, as in the case of BCP, i.e.
the input layer has many neurons, it should have sufficient degrees of freedom; further in-
creasing it by adding hidden neurons might increase the chances of overfitting. Since bottom
clauses are “rough” representations of examples and we would like to model the general char-
acteristics of the examples, a simpler model such as 2h should be preferred (Caruana et al.,
2000).

For all experiments with Aleph, the same configurations as in Landwehr et al. (2007)
were used for the Alzheimers datasets (any parameter not specified below used Aleph’s default
values): variable depth = 3, least positive coverage of a valid clause = 2, least accuracy of an
acceptable clause = 0.7, minimum score of a valid clause = 0.6, maximum number of literals in
a valid clause = 5 and maximum number of negative examples covered by a valid clause (noise)

6Since the available implementation of RSD handles target concepts with arity 1, we were unable to apply the
Alzheimers datasets to RSD (whose targets have arity 2). An alternative would be to modify the domain knowledge
in the datasets, but this is not a straightforward task.

7n = 2.5 and 5 were used.
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= 300. Regarding Mutagenesis, the parameters were based on Paes et al. (2007) (again, if a
parameter is not listed below, the Aleph default value has been used): least positive coverage
of a valid clause = 4. For KRK, the configuration provided by Aleph in its documentation was
used. For UW-CSE, the same configuration as in Davis et al. (2005) was used: variable depth =
3, least positive coverage of a valid clause = 10, least accuracy of an acceptable clause = 0.1,
maximum number of literals in a valid clause = 10, maximum number of negative examples
covered by a valid clause (noise) = 1000 and evaluation function = m-estimate.

With regards to the UW-CSE dataset, we have used an ILP version of the dataset follow-
ing Davis et al. (2005). The original UW-CSE dataset contains positive examples only for
use with Markov Logic Networks (Richardson and Domingos, 2006). Davis et. al. gener-
ated negative examples for this dataset using Closed World Assumption (Davis et al., 2005).
This has produced an unbalanced dataset containing 113 positive examples and 1772 negative
examples. Thus, we have re-balanced the dataset by performing random undersampling, un-
til we had obtained twice as many negative examples as positive examples. Our goal was to
cover the distribution of negative examples as best as possible, while not allowing too much
unbalancing, and to provide a fair comparison with Aleph. Alternative undersamplings and
oversamplings have been investigated also with results reported below.

As for the CILP++ parameters, we used the same variable depth values as Aleph for BCP
(except for UW-CSE, where we used variable depth = 1, as discussed below) and the following
parameters for backpropagation8: on st configurations, learning rate = 0.1, decay factor =
0.995 and momentum = 0.1; and on es configurations: learning rate = 0.05, decay factor =
0.999, momentum = 0 and alpha (early stopping criterion) = 0.01.

Finally, extra hidden neurons were not added to the network configurations above, i.e. step
2 of CILP++’s training algorithm, Section 3.3, was not applied. The networks labeled as 2h
have only 2 hidden neurons, and those labeled n%bk have as many hidden neurons as the size
of the BK, i.e. n% the size of the set Etrain

⊥ .

4.1 Accuracy Results

In this experiment, CILP++ is evaluated on accuracy vs. runtime against Aleph. Two
tables are presented with accuracy averages, standard deviations and complete runtimes over
10-fold cross-validation for Mutagenesis, four Alzheimers datasets and KRK, and 5-fold cross-
validation for UW-CSE, on the st (Table 2) and es (Table 3) CILP++ configurations. By “com-
plete runtime” we mean the total building, training and testing times for each system. In
both tables, accuracy results in bold are the highest ones and the difference between them and
the ones marked with asterisk (*) are statistically significant by two-tailed, paired t-test. All
experiments were run on a 3.2 Ghz Intel Core i3-2100 with 4 GB RAM.

Notice how CILP++ can achieve runtimes that are considerably faster than Aleph. We
believe the speed-ups are caused by the following main factors: ILP covering-based search al-
gorithms have well-known efficiency bottlenecks (Paes et al., 2007, 2008; DiMaio and Shav-
lik, 2004), while bottom clause generation is fast, and standard backpropagation learning is
efficient (Rumelhart et al., 1986). Further, propositionalized examples are generally easier to
handle computationally than first-order examples (Krogel et al., 2003). Tables 2 and 3 for the
st and es configurations, respectively, seem to confirm an expected trade-off between speed

8CILP++ networks have four parameters: learning rate, which is the proportion of the gradient that is applied
to each weight; decay factor, which indicates the proportion of the learning rate that is used in the next backprop-
agation iteration; momentum, indicates the proportion of the last weight update that is used in the current update;
and alpha, which is exclusive for early stopping, is a threshold on the generalization loss. For more details, please
refer to Haykin (2009); Caruana et al. (2000).
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Table 2: Test set accuracy (standard deviation) results and runtimes (in % for accuracy
and in hh:mm:ss format for runtimes) for st configurations. It can be seen that Aleph and
CILP++ present comparable accuracy results for the standard CILP++ configurations, with the
st,2.5%bk model winning on three datasets. CILP++ performs faster in most cases, confirming
our expectation that relational learning through propositionalization should trade accuracy for
efficiency, in comparison with full first-order ILP learners.

Dataset Aleph CILP++st,2.5%bk CILP++st,5%bk CILP++st,2h

mutagenesis 80.85∗ (±10.5) 91.70(±5.84) 90.65(±8.97) 89.20(±8.92)
0:08:15 0:10:34 0:11:15 0:10:16

krk 99.6(±0.51) 98.31∗ (±1.23) 98.32∗ (±1.25) 98.42(±1.26)
0:11:03 0:04:38 0:04:34 0:04:40

uw-cse 84.91(±7.32) 66.24∗ (±7.01) 66.08∗ (±2.48) 70.01∗ (±2.2)
0:45:47 0:08:47 0:10:19 0:08:54

alz-amine 78.71(±5.25) 78.99(±4.46) 76.02∗ (±3.79) 77.08(±5.17)
1:31:05 1:23:42 2:07:04 1:14:21

alz-acetyl 69.46(±3.6) 63.64∗ (±4.01) 63.49∗ (±4.16) 63.30∗ (±5.09)
8:06:06 4:20:28 5:49:51 2:47:52

alz-memory 68.57(±5.7) 60.44∗ (±4.11) 59.19∗ (±5.91) 59.82∗ (±6.76)
3:47:55 1:41:36 2:12:14 1:19:27

alz-toxic 80.5(±3.98) 79.92(±3.09) 80.49(±3.65) 81.73(±4.68)
6:02:05 3:04:53 3:33:17 2:12:17

and accuracy between propositionalization and methods dealing directly with first-order logic.
We can also see that st configurations seem to emphasize accuracy, while es emphasizes speed.

Regarding the CILP++ results on UW-CSE, as mentioned earlier, we have used variable
depth = 1 for BCP. The reason is that UW-CSE examples when propositionalized by BCP for
variable depths higher than 1 become considerably large. At the same time, variable depth
1 causes serious information loss in the propositionalization procedure. To ameliorate this,
we have tried an oversampling method called SMOTE, based on kNN (Chawla et al., 2002).
SMOTE suggests a combination with random undersampling for better results, whereby we
increased the positive examples five times (from 113 to 565 examples) using SMOTE, and
undersampled the class of negative examples until we had the same number (565) of negative
examples. The problem with this approach, in what concerns a comparison with Aleph, is that,
to the best of our knowledge, no oversampling method exists for Aleph; SMOTE is applicable
to numerical or propositional data only, thus we could not compare those results with Aleph.
Hence, we do not report those results in the accuracy tables above. Nevertheless, with SMOTE,
CILP++ obtained 93.34%, 90.11% and 93.58% accuracy for the es,2h, es,2.5%bk and es,5%bk
configurations, respectively. None of the networks took longer than 6 minutes to run (train and
test) on all 5 UW-CSE folds, including the SMOTE and undersampling pre-processing. In st
configurations, CILP++ obtained 73.44% for st,2.5%bk, 77.35% for st,5%bk and 74.2% for
st,2h, with no configuration taking longer than 9 minutes to run completely. Those results
indicate that an adequate ANN data pre-processing, enabled by the BCP method, can improve
results considerably.
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Table 3: Test set accuracy (standard deviation) results and runtimes for the CILP++ configu-
rations with early stopping (in % for accuracy and in hh:mm:ss format for runtimes). Using
es models, CILP++ was much faster than Aleph but with a considerable decrease in accuracy.
Aleph won in accuracy in all but the Mutagenesis dataset. This indicates that early stopping is
not recommended in general for use with BCP, unless speed is paramount.

Dataset Aleph CILP++es,2.5%bk CILP++es,5%bk CILP++es,2h

mutagenesis 80.85(±10.51) 83.48(±7.68) 83.01(±10.71) 84.76(±8.34)
0:08:15 0:01:25 0:01:43 0:01:50

krk 99.6(±0.51) 98.16∗ (±0.83) 96.33∗ (±4.95) 98.31(±1.23)
0:11:03 0:04:08 0:04:28 0:04:18

uw-cse 84.91(±7.32) 68.16∗ (±4.77) 65.69∗ (±1.81) 67.86∗ (±1.79)
0:45:47 0:04:08 0:04:16 0:04:08

alz-amine 78.71(±3.51) 65.33∗ (±9.32) 65.44∗ (±5.58) 70.26∗ (±7.1)
1:31:05 0:35:27 0:08:30 0:10:14

alz-acetyl 69.46(±3.6) 64.97∗ (±5.81) 64.88∗ (±4.64) 65.47∗ (±2.43)
8:06:06 3:04:47 2:42:31 0:25:43

alz-memory 68.57(±5.7) 53.43∗ (±5.64) 54.84∗ (±6.01) 51.57∗ (±5.36)
3:47:55 1:40:51 3:57:39 1:33:35

alz-toxic 80.5(±4.83) 67.55∗ (±6.36) 67.26∗ (±7.5) 74.48∗ (±5.62)
6:02:05 0:12:33 0:14:04 0:28:39

So far, we have explored a number of CILP++ configurations. The use of other config-
urations and their combination through tuning sets is possible. However, the ILP literature
on Aleph generally reports a single optimal configuration per dataset (and not per fold) (Paes
et al., 2007; Landwehr et al., 2007). We believe, therefore, that applying tuning sets to CILP++
would lead to an unfair advantage to the network model, for the sake of comparison with
Aleph. Nevertheless, an optimal CILP++ configuration would use tuning sets, and we report
those results below on Table 4. A three-fold internal cross validation was applied on the train-
ing set of each one of the 10 folds used in Tables 2 and 3. The fold accuracy of the best model,
chosen with tuning sets, was then chosen for that fold. Thus, the dataset accuracy of CILP++
using tuning sets is the average of the test set accuracy obtained for each fold with the model
that obtained the best tuning set accuracy. We also report the runtimes obtained with this ap-
proach and the “best” model for each dataset, which is the one that is chosen the most times,
for all the folds. The best model results shown in the table were used to guide our choice of
model in the experiments on feature selection and BCP to follow.

In comparison with the results reported in Tables 2 and 3, the results using tuning sets
were slightly lower than the results of the best individual models, but better than most of them.
Additionally, we applied tuning sets to the version of UW-CSE to which we applied SMOTE
and undersampling, and we obtained 81.12% test set accuracy, with CILP++ taking less than 8
minutes to finish, which is considerably better than the results obtained with UW-CSE without
SMOTE. In the following experiments (feature selection analysis and BCP results), we choose
the best models obtained from tuning sets for further analysis.
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Table 4: Results using tuning sets for CILP++. We report three results in this table, from left to
right: CILP++ test set accuracy using tuning sets averaged over the six CILP++ configurations,
CILP++ runtime using tuning sets, and best model, i.e. the configuration with most wins on
the 10 train/test folds (5 train/test folds, in the case of UW-CSE). Overall, the best st model is
the st,2.5%bk configuration, the best es model is the es,2h model, and the best model overall
is the st,2.5%bk model.

Dataset Test Set Accuracy Runtime Best model

mutagenesis 88.84(±10.48) 0:07:54 st,5%bk (3/10)
krk 96.75(±4.9) 0:04:19 st,2h (8/10)
uw-cse 66.84(±7.32) 0:06:11 st,2.5%bk (2/5)
alz-amine 76.45(±3.45) 1:31:11 st,2.5%bk (6/10)
alz-acetyl 64.07(±6.2) 0:30:35 es,2h (7/10)
alz-memory 59.67(±5.7) 1:51:02 st,2.5%bk (4/10)
alz-toxic 81.73(±4.68) 2:12:17 st,2h (10/10)

4.2 Comparative Results with Propositionalization

In this section, comparative results against RSD are carried out, using the datasets Muta-
genesis (named muta in the table below) and KRK (the reason for this choice of datasets is
explained in the previous section). In Table 5, accuracy and runtimes are shown. We com-
pare both BCP and RSD propositionalization when generating training patterns for CILP++
(labeled ANN in the table) and for the C4.5 decision tree learner. Aleph results are shown as
well as a baseline. We use the CILP++ configuration that obtained the best results in the tun-
ing sets for each dataset. Values in bold are the highest obtained, and the difference between
those and the ones marked with (*) are statistically significant by two-tailed, unpaired t-test
(we use unpaired t-test because of the RSD tool implementation issue, mentioned earlier). All
experiments were also run on a 3.2 Ghz Intel Core i3-2100 with 4 GB RAM.

Table 5: Accuracy and runtime results for Mutagenesis and KRK datasets (in % for accuracy
and in hh:mm:ss format for runtimes). The results show that BCP is faster than RSD, while
showing highly competitive results w.r.t. Aleph, but RSD performed as well as BCP when
using C4.5 as learner. BCP outperformed RSD in all models: BCP was faster in all cases,
but in the KRK dataset, RSD with C4.5 showed higher accuracy, although the difference was
not statistically significant. The results also show that BCP performs well with both learners
(ANN and C4.5), but excels with ANNs. On the other hand, RSD did not perform well with
ANNs.

Dataset Aleph BCP+ANN RSD+ANN BCP+C4.5 RSD+C4.5

muta 80.85∗ (±10.51) 89.20(±8.92) 67.63∗ (±16.44) 85.43∗ (±11.85) 87.77(±1.02)
0:08:15 0:10:16 0:11:11 0:02:01 0:02:29

krk 99.6(±0.51) 98.42∗ (±1.26) 72.38∗ (±12.94) 98.84∗ (±0.77) 96.1∗ (±0.11)
0:11:03 0:04:40 0:06:21 0:01:59 0:05:54

In summary, our hypothesis was that BCP, as a standalone propositionalization method,
can be fast and is capable of generating accurate features for learning. The results indicate that
BCP is a good match for ANN, indicating the promise of the CILP++ system. BCP performs
on a par with RSD when integrated with C4.5. BCP is also faster than RSD in all cases,
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empirically confirming our hypothesis.

4.3 Results with Feature Selection

In Section 2.4, it was discussed that, due to the extensive size of bottom clauses, feature
selection techniques may obtain improved results when applied after BCP. Two ways of per-
forming feature selection were discussed: changing the variable depth (see Algorithm 1) and
using a statistical method, mRMR. We have chosen two datasets on which to run these exper-
iments with feature selection: Alz-amine and Alz-toxic. We opted for those because CILP++
performed well on them, not outstandingly well (as in Mutagenesis), neither poorly (as in Alz-
acetyl). Additionally, we have chosen the best st configuration (st,2.5bk, chosen by tuning
sets) and the best es configuration (es,2h). Even though the results using tuning set showed
st,2h as the best model for the Alz-toxic dataset, we wanted to analyze feature selection on es
configurations as well, and so we have chosen the best es configuration.

First, we changed the variable depth in Alz-amine and Alz-toxic, which was 3, to 2 and 5,
to analyze how changes in this parameter would affect performance. The results are shown in
Fig. 3. Alternatively, we applied mRMR with three levels of selection: 50%, 25% and 10% of
the best-ranked features. These results are shown in Fig.4.

In summary, statistical feature selection seems to be useful with BCP. Changes in variable
depth did not seem to offer gains, but mRMR offered more than 90% feature reduction with a
loss of less than 2% in accuracy. The goal of selecting features with mRMR should not be to
improve efficiency, although in one case (Alz-amine es-2h), CILP++ with mRMR was faster
at 90% feature reduction than CILP++, despite a loss of more than 10% of accuracy.

5 Conclusion and Future Work

This paper has introduced a fast method and algorithm for ILP learning with ANNs, by
extending a neural-symbolic system called C-IL2P. The paper’s two contributions are: a novel
propositionalization method, BCP, and the CILP++ system, an open-source, freely distributed
neural-symbolic system for relational learning. CILP++ obtained accuracy comparable to
Aleph on most standard configurations and stood behind Aleph, but was faster, on early stop-
ping configurations. In comparison with RSD, CILP++ has been shown superior, but BCP and
RSD present similar results when using C4.5 as learner. Nevertheless, BCP obtained better
runtime results overall. Lastly, when using feature selection, results have shown that mRMR
is applicable with CILP++ and it can reduce drastically the number of features with a small loss
of accuracy, despite an increase in runtime in some cases. Feature selection with mRMR can
be useful to reduce the size of the network and improve readability, especially if knowledge
extraction is needed. Propositionalization methods usually show a trade-off between accuracy
and efficiency. Our results show that CILP++ can improve on this trade-off by offering con-
siderable speed-up in exchange for small accuracy loss in some datasets, even achieving better
accuracy in some cases.

ILP covering-based hypothesis induction is an efficiency bottleneck in traditional ILP
learners such as Aleph (Paes et al., 2007, 2008; DiMaio and Shavlik, 2004). On the other
hand, bottom clause generation by itself is fast. Thus, we claim that propositionalizing first-
order example with BCP and using an efficient learning algorithm such as backpropagation
should offer a faster and reasonably accurate way of dealing with first-order data. Our empiri-
cal results seem to confirm this claim.
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Figure 3: Accuracy (above) with varying variable depth on Alz-amine (left) and Alz-toxic
(right), with runtimes (below) in hh:mm:ss format. The results indicate that the default vari-
able depth is satisfactory: neither increasing it nor decreasing it has helped increase perfor-
mance. As stated in Section 2.1, variable depth controls how far the bottom clause generation
algorithm goes when generating concept chaining and it is a way of controlling how much in-
formation loss the propositionalization method will have. From this and the obtained results, it
should be intuitive that higher variable depths should mean a better performance, but together
with useful features, it seems to bring redundancy as well.

As future work, there are a number of avenues for research. First, background knowledge
translation into ANNs can be explored further in CILP++. A first attempt could be to use the
language bias and the definite clauses from background knowledge to build the network. The
study of how the last step of C-IL2P’s learning cycle, knowledge extraction, can be done in
CILP++, is another area for future work. One option (Craven and Shavlik, 1995) would be to
create one clause for each class c and add antecedents to it which correspond to body literals
of each bottom clause that belongs to c. Alternatively, the same knowledge extraction pro-
cedure which C-IL2P uses can be applied to CILP++, although it is considerably costly and
further analysis on the fidelity of the extracted theory is required. This work has shown that
learning first-order data with CILP++ is fast, but without considering knowledge extraction. If
extraction is to be taken into consideration, faster learning algorithms for ANNs (Jacobs, 1988;
Møller, 1993) can be used to try and keep up with Aleph in terms of runtime. Lastly, regarding
other analyses that can be done with CILP++, the work of DiMaio and Shavlik (2004), which
uses bottom clauses as training patterns to build a hypothesis scoring function, used several
meta-parameters such as size of the bottom clause and number of distinct predicates. The same
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Figure 4: Accuracy (above) when using mRMR on Alz-amine (left) and Alz-toxic (right),
with runtimes (below) in hh:mm:ss format. The results show that in both Alz-amine and Alz-
toxic datasets, a reduction of 90% in the number of features caused a loss of less than 2%
in accuracy, albeit with an increase in runtime. The reduction in features caused CILP++
to take more training epochs to converge and mRMR itself also contributed to the increase
in runtime. However, at 90% filtered features, the runtimes approached in general the ones
obtained without mRMR filtering. Even with an increase in runtime, feature selection with
mRMR seems useful to reduce the size of the network and improve readability, especially if
knowledge extraction is to be carried out.

meta-parameters can be useful to CILP++. Furthermore, experiments on datasets with con-
tinuous data could be done: it should be interesting to see how CILP++ behaves on this kind
of data and to analyze if this approach inherits the additive noise robustness from traditional
backpropagation ANNs (Copelli et al., 1997). Also, due to the results for feature selection
with mRMR, it is worth evaluating how our approach deals with very large relational datasets,
e.g. CORA or Proteins, which are considered to be challenging for ILP learners (Perlich and
Merugu, 2005).
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