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The adoption of Internet of Things (IoT) devices, applications and services gradually

transform our everyday lives. In parallel, the transition from linear to circular economic

(CE) models provide an even more fertile ground for novel types of services, and the

update and enrichment of legacy ones. To fully realize the potential of the interplay

between IoT and CE, the design-time definition of IoT orchestrations with proven

circularity properties, and the run-time management of these orchestrations based on

said properties, is of paramount importance. Nevertheless, the circularity requirements

and associated properties are not only difficult to achieve at the IoT orchestration

design and deployment initialization phases, but also hard to prove and maintain at

run-time. Motivated by this, this paper presents the CIRCE framework for circular and

trustworthy by-design IoT orchestrations. The CIRCE approach leverages concepts from

pattern-driven engineering, whereby patterns are used to encode proven dependencies

between the Location, Condition, and Availability (LCA) properties of individual smart

objects and corresponding properties of orchestrations (compositions) involving them.

These are augmented by patterns encoding trustworthiness-related properties, namely

Connectivity, Security, Privacy, Dependability, and Interoperability (CSPDI). Thereby,

these patterns are used to generate IoT orchestrations with proven LCA and CSPDI

properties, as needed, at design time. At runtime, these properties are monitored

in real-time, leveraging reasoning engines deployed across system layers, triggering

adaptations to return the deployed orchestration to the desired LCA and CSPDI states,

when required. Details are provided on the above novel combination of IoT, CE and

pattern-based engineering, along with a proposed architecture and implementation

approach. Furthermore, an assessment of a proof-of-concept implementation is

provided, validating the feasibility of the proposed approach.

Keywords: circular economy, circularity properties, Internet of Things (IoT), sustainable IoT services, IoT

compositions, green computing, pattern engineering, security
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INTRODUCTION

Climate change, i.e., the evident shift in climate patterns mainly
attributed to greenhouse gas emissions from natural systems
and human activities, has local and global effects, forcing
all living organisms, including humans and our societies, to
adapt, in order to deal with its impact (Fawzy et al., 2020).

When considered in conjunction with the depletion of our
planet’s finite resources, exacerbated by the ever-increasing
consumption and global waste generation [according to the
World Bank Group, solid waste per day will reach 6.5 million
tons by 2025 The World Bank, 2019], it becomes evident
that the shift to newer, more sustainable models is a pressing,
existential requirement for humanity. In this landscape, Circular
Economy (CE) has emerged in recent years, motivating the
transition of our societies from the old, linear “take-make-

dispose”model to an economy that is restorative and regenerative
by design, featuring a continuous “Reduce-Reuse-Recycle” (3R)
cycle that aims to keep products, components and materials

at their highest utility and value at all times (Ellen MacArthur
Foundation the McKinsey Center for Business Environment,
2015).

IoT and CE can create a promising synergy, where the
former offers knowledge about available resources (assets)
regarding their availability, condition, and location; and the
latter allows for more efficient use of said resources by the
extension of their lifetime and the maximization of their
utilization. This interplay, where IoT objects with proven
key circularity properties maximize IoT resource and data
harvesting, is highlighted in Askoxylakis (2018). This synergy
can be applied in many concepts such as smart agriculture,
smart cities, etc. For example, agribusiness moves toward
precision agriculture, trying to make their complex-by-nature
operationsmore sustainable and efficient. IoT application and CE
concepts can be key enablers toward this direction. Furthermore,
authors in Del Borghi et al. (2014) perform an analysis of
best practices on smart waste management in the context of
the circular economy initiative “LiguriaCircular.” According
to this analysis, ICT applications can smartly enhance the
visualization of intelligent waste management systems. A number
of opportunities for CE (3R principles) in energizing smart
cities are presented in Musti (2020), including a Demand
Side Management, waste from solar PV industry, repurposing
electrical vehicles, recycling the batteries, and heavy oil recycling
and heat recovery. The Smart CE framework is introduced
in Kristoffersen et al. (2020) that allows for translating the
circular strategies into the business analytics requirements of
digital technologies.

Overall, CE is being actively investigated both from a
theoretical (Lahti et al., 2018) and implementation (Kalmykova
et al., 2018) perspective. Nevertheless, the potential stemming
from the interplay of CE with the paramount developments
taking place in parallel on the Information and Communication
Technologies (ICT) front, namely the adoption of Internet of
Things (IoT) products and services and 5G communication
networks, each enabling new capabilities, business models and
services, needs to be studied more extensively (Miaoudakis

et al., 2020). In this context, an important enabler to
fully exploiting the potential of this interplay would be the
capability for design-time definition of IoT orchestrations with
proven circularity properties (along with other properties—
e.g., related to trustworthiness and reliability—if possible) and
the run-time management of these orchestrations based on
said properties.

Furthermore, there are some important business and technical
challenges that need to be addressed to allow these technologies
to reach their full potential (Lee and Lee, 2015; Botta et al., 2016;
Razzaque et al., 2016), such as:

• Dynamicity—The dynamic nature of IoT dictates dynamically
adaptive behavior at runtime at all layers (IoT infrastructure,
IoT applications, IoT smart objects).

• Scalability—The growing number of connected users,
objects and applications requires high scalability of the IoT
infrastructure and network. Scalability at the infrastructure
level demand discovery and orchestration of smart objects,
event processing and analytics, even integration of IoT
platforms. At the network level, the increased demand claim
for programmable connectivity and service provisioning in a
way that guarantee end-to-end optimizations, based on the
desirable application requirements.

• Heterogeneity—Semantic interoperability is translated into
three tasks: (i) definition of capabilities and constraints
of heterogeneous smart objects, (ii) interpretation of the
generated data, and (iii) establishment of meaningful
connections between heterogeneous IoT platforms. Despite
the existing standardization efforts, Semantic interoperability
is still a challenge for IoT applications.

• End-to-end Security and Privacy—Preservation of security
and privacy properties is a challenge since the large number
of distinct smart objects in a complex IoT composition makes
it difficult to (i) analyse all the potential vulnerabilities, (ii)
select appropriate control mechanisms, and (iii) preserve
desired properties due to dynamic changes in applications and
security incidents.

The above highlight the importance of being able to verify
(at design-time, and at runtime, if possible) properties such
as the connectivity, security (i.e., confidentiality, integrity, and
availability), privacy, dependability, and the interoperability of
IoT orchestrations and their underlying components.

While some of these challenges have been studied from
an IoT perspective, only a small cluster of research efforts
(where the authors of this manuscript have been involved), has
focused on exploring the above holistically, also considering
the CE-IoT interplay and the associated applications and
services that could be enabled. Two research projects were the
first to highlight the potential of the CE and IoT interplay,
albeit without considering 5G networks, and have also partly
motivated CIRCE; these are CE-IoT1 and Ideal-Cities2 The
former explicitly aims to investigate novel ways in which the CE
and IoT interaction can drastically change the nature of products,

1Available online at: https://www.ce-iot.eu/.
2Available online at: https://www.ideal-cities.eu/.
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services, business models and ecosystems, while the latter focuses
mostly on the provision of trustworthy IoT Participatory sensing
applications, but also considering circularity-aware smart city
asset management. Furthermore, both projects take a pattern-
driven approach to the definition of circularity and other relevant
properties: CE-IoT focuses on LCA and CSPDI properties (CE-
IoT, 2020), as the work presented herein, while Ideal-Cities
defines CRSP Patterns (Circularity, Resilience, Security, Privacy)
(Ideal-Cities, 2020). While these research efforts, and especially
CE-IoT, motivated and lay the foundations for CIRCE, they only
considered smart object compositions that satisfy said properties,
but not the design and runtime specification of higher-level
orchestrations to support specific IoT applications. Further,
they did not inherently consider the co-existence and potential
of 5G networks, nor did they feature cross-layer reasoning
capabilities, separating edge, network and backend assets and
properties. Furthermore, they have not, at the time of writing,
defined patterns for all properties and sub-properties, while early
implementations were limited in scope, not spanning cross-layer
interactions, and relying on a different approach for property
reasoning, based on Event Calculus (Hatzivasilis et al., 2019).

Motivated by the above, this manuscript presents “CIRCE,”
a framework leveraging arChItectural patteRns for Circular &
Trustworthy by-design IoT orchEstrations. CIRCE leverages
concepts from pattern-driven engineering, whereby patterns
are used to encode proven dependencies between specific
circularity properties (namely: Location, Condition, and

Availability, referred to as LCA) along with trustworthiness-
related properties (namely: Connectivity, Security, Privacy,

Dependability, and Interoperability, referred to as CSPDI)
of individual smart objects and corresponding properties of
orchestrations (compositions) involving them. These patterns
are then used:

• at design-time, to generate IoT orchestrations that provably
satisfy the required LCA and CSPDI properties

• at run-time, monitoring these properties in real-time,
through reasoning engines deployed across IoT layers (edge,
network, and backend), triggering adaptations to return the
deployed orchestration to the desired LCA and CSPDI states,
when required.

Along with a proposed architecture and implementation
approach. Furthermore, an assessment of a proof-of-concept
implementation is provided, validating the feasibility of the
proposed approach.

To present and validate the CIRCE approach, this paper is
organized as follows: section Materials and Methods presents
the materials (such as the background on circularity properties
and pattern-driven IoT orchestrations) and methods (including
the pattern language defined for supporting CIRCE, and the
automated pattern reasoning approach adopted); Section Results
presents the results, including the high level CIRCE architecture,
the exemplary set of defined CSPDI & LCA patterns covering
all properties, and the evaluation results of the Proof-of-
Concept (PoC); finally, Section 4 includes the discussion and
concluding remarks.

MATERIALS AND METHODS

Materials
Architectural Patterns
Patterns are re-usable solutions to common problems and
building blocks to architectures (Schumacher, 2003), the
foundations of which were laid by the architect Christopher
Alexander in his seminal work “The Timeless Way of Building”
(Alexander, 1979). Patterns have gained significant attention by
the research community for quite a few years now and the result
of this attention is a plethora of patterns delivered in different
forms such as books, catalogs, and the academic literature.

A recent survey by the authors (Papoutsakis et al., 2021a)
aggregates a number of such patterns focusing on security and
privacy properties. Some notable works on trust-related aspects
defined through patterns are also provided herein. Authors in
Steel et al. (2005) introduce a catalog of 23 security patterns,
focusing only on Java 2 Platform Enterprise Edition (J2EE)
applications, Web services, and identity management. They
adopt a developer-centric approach to patterns’ specification.
Forty-six additional security patterns (Schumacher et al., 2006)
in the form of a book cover areas such as enterprise security
and risk management, identification and authentication, access
control, accounting, firewall architecture, and secure internet
applications. One of the most recent literature studies regarding
privacy patterns research (Lenhard et al., 2017) presented
148 privacy patterns. Additional work, mentioned below,
adds to that set of available privacy patterns. Authors in
Chung et al. (2004) created a pattern language and expressed
45 pre-patterns describing application genres, physical-virtual
spaces, interaction, and system techniques for managing privacy
and techniques for fluid interactions. The design of Privacy
Enhancing Technologies (PETs) utilizing corresponding patterns
was the aim of Hafiz (2013), contributing 12 patterns. The privacy
pattern catalog presented in Drozd (2015) uses a classification
based on the description of the privacy principles within the
international standard ISO/IEC 29100:2011 (2011).

Composition of IoT Devices and Services
There is a large body of works regarding the composition of
IoT devices and services. The majority of these works neither
consider properties, such as security and privacy, in their
composition methodology nor present a way to verify said
properties. A classification of such works is presented in Asghari
et al. (2018), where the approaches are divided based on the
criterion of the composition method. Said criterion can be the
energy consumption, exchanged data, or the IP of the services.
However, no security or privacy constraints are considered in the
service composition process.

Still, there are some noteworthy approaches that do
support description of non-functional IoT service composition
properties. Seeger et al. (2018) proposes the offering selection
rules (OSRs) that make the reconfiguration of the system possible
during runtime. Said rules express non-functional properties
that a device/service needs to provide to be part of a specific
composition. A possible extension of these rules could include
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circularity and trustworthiness-related properties. The work in
Lecue and Mehandjiev (2010) introduces an approach for web
service composition that uses both semantic and non-functional
criteria (QoS) to evaluate the corresponding composition quality.
Since non-functional criteria are part of the evaluation of
the service composition quality, an extension could focus
on circularity and trustworthiness-related criteria. Moreover,
Alrifai et al. (2012) present A solution to the QoS-based
service composition problem. The existence of quantitative non-
functional properties of web services in the way they compose
services could be considered as the first step to the circularity and
trustworthiness-related properties adoption.

Nevertheless, even IoT service compositions that take
under consideration pertinent non-functional requirements (e.g.,
security or privacy properties) have some other limitations such
as Papoutsakis et al. (2021b): (a) lack of automated service
selection mechanisms based on those properties; (b) distinction
between properties of the individual services and those of
the whole service composition and the relationships between
the two; and (c) no runtime adaptation of the orchestrations,
such as replacement of a component. These deficiencies, albeit
focusing only on SPDI properties, have been addressed in
the H2020 project SEMIoTICS3, which provided the baseline
implementation for CIRCE’s PoC in terms of SPDI properties’
verification and reasoning mechanisms.

Methods
Pattern Language Definition
The overall objective of the proposed framework is to be
capable to manage IoT systems/ orchestrations based on specified
properties as reasoned through patterns. For that reason, it is
necessary to develop a language for specifying the components
that constitute such IoT orchestrations, their interfaces and
interactions, along with the circularity and trustworthiness-
related properties that may be required of such components and
their orchestrations. More specifically, the language should:

• provide constructs for expressing dependencies between
properties at the component and at the orchestration level;

• be structural; It does not prescribe exactly how the
functions should be executed nor, e.g., how the ports
ensure communication;

• allow for the static and dynamic verification of circularity and
trustworthiness-related properties;

A corresponding IoT orchestration model must be defined to
provide the foundations for said language specification. A model
with the needed characteristics will effectively serve as a general
“architecture and workflow model” of the IoT application. Once
defined, this model will be used in conjunction with patterns to
enable the reasoning required for determining the applicability of
particular patterns in specific IoT applications and subsequently
reason based on them to enable the different types of adaptation
Thus, saidmodel enables us to verify an IoT system/orchestration
that satisfies certain properties, or to generate orchestrations that
given properties are guaranteed.

3Available online at: https://www.semiotics-project.eu/.

The process for defining the system model and specifying the
derived language is presented in the subsections that follow.

System Modeling
The original version of the IoT orchestration model (Fysarakis
et al., 2019) was developed within SEMIoTICS, where the overall
objective was the development of a pattern-driven approach for
composing IoT systems/orchestrations with SPDI properties that
are guaranteed (Papoutsakis et al., 2020). A brief overview of the
model is presented herein, including original model classes, along
with additional classes and attributes dedicated to expressing the
LCA properties needed to support CIRCE.

In more detail, according to the developed model, the
IoT systems/orchestrations are decomposed into individual
“placeholders,” which implement one or more “activities.” The
main classes of the model, which are used in the pattern
specification, include Placeholder, Orchestration, Orchestration
Activity, and Property. Placeholders act as predefined positions
for different IoT application components. OrchestrationActivity
class and its subclasses (IoTSensor, IoTActuator, IoTGateway,
SoftwareComponent, NetworkComponent, LinkedActivity, and
UnAssignedActivity) are used for the description of said
components. Each one of those is able to describe the unique
characteristics of the corresponding components in the form
of attributes. The UnAssignedActivity class makes the model
parametric since there is no need for explicitly specifying a
specific placeholder. Regarding the orchestration of a set of given
Placeholders, it depends on the order in which the corresponding
IoT orchestration components’ activities must be executed. As
a result, an Orchestration can be defined as Sequence, Merge,
Choice, Parallel, or Split (subclasses of the Orchestration class).

Moreover, Properties characterize placeholders, expressing
circularity and trustworthiness-related requirements. The state
of a Property can be required or confirmed. A required property
of a placeholder is a property that must be guaranteed for said
placeholder to be considered part of a given orchestration with
a corresponding property requirement. On the other hand, a
confirmed property is a property that is verified at runtime.
Verification is a class that describes the way a property of a
placeholder is verified. The verification process can be conducted
through monitoring, testing, a certificate, or via a pattern. For
example, a monitoring service could justify that a service or a
device is available at specific time windows, in case the desirable
property is availability. Moreover, a repository with certificates
could give a justification for a property of a placeholder. In case
of a pattern, the Mean of verification is the pattern itself; in all the
other cases, an interface is needed to a corresponding monitoring
tool, testing service, or certificate repository through which the
verification can take place.

To express Circularity properties, additional attributes were
added to the Placeholder class. These attributes refer to the three
primary (Location, Condition, Availability) and two operational
(Description, Capability) intelligent assets properties. Figure 1
depicts the updated version of the Placeholder class with the
whole set of its attributes. As it can be seen, Placeholder is a
subclass of the more general class PropertySubject. In that way
properties can be assigned to a placeholder. Location attribute
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refers to the physical, geographical location of an IoT device
that is bind with a placeholder. Condition declares the state of
a placeholder regarding its lifecycle. Availability can be limited to
one of the three values: available, in-use, out-of-order. Moreover,
the description attribute includes characteristics necessary for
the circular use of the device. More specifically, the description
of an IoT device should capture its hardware profile. Finally,
the capability attribute lists the different functions or services
of a device. One of them is the primary one, while the rest
refer to secondary uses of the device. To capture the necessary
information of a capability a Capability class was created,
depicted also in Figure 1.

Language Constructs
The described model of the previous section allows for definition
of activities along with corresponding control flow operations.
In that way, we are able to describe complex IoT orchestrations
associating properties of the whole orchestrations with properties
of individual components. A language has been created as a
product of said model that, except from the description of the
IoT orchestrations and the corresponding properties, fulfills the
need for static and dynamic property verification and runtime
adaptation due to automate process ability.

The language’s constructs have been described using Extended
Backus–Naur Form (EBNF4) grammar. EBNF is a metalanguage
used to specify the grammar for a language with precise structure.
The original version of the language has been updated due to the
newly added LCA properties. An excerpt of the EBNF grammar
of the pattern language is presented in Listing 1.

grammar EBNF;

placeholder

: placeholdertitle OPEN_PAREN placeholderid COMMA location

COMMA condition

COMMA availability COMMA description COMMA capability CLOSE

_PAREN

| orchestration

| orchestrationactivity

;

orchestration

: sequence

| parallel

| choice

| merge

| iterate

| split

;

orchestrationactivity

: linkedactivity

| unassignedactivity

| softwareservice

| softwarecomponent

| networkcomponent

| iotsensor

| iotactuator

| iotgateway

| host

;

4Available online at: https://tomassetti.me/ebnf/.

property

: propertytittle OPEN_PAREN propertyname COMMA propertytype

COMMA category COMMA value COMMA datastate COMMA

verification COMMA subject COMMA satisfied CLOSE_PAREN

;

verification

: verificationtitle OPEN\_PAREN verificationtype COMMAmeans

CLOSE\_PAREN

;

Listing 1 | An excerpt of the IoT orchestration language EBNF grammar.

What this excerpt depicts is the definition of some of the
most important classes of the IoT orchestration model. The first
class that is mentioned is that of a Placeholder. The description
of a placeholder includes its title (placeholdertitle) and then
all the attributes necessary for the verification of the circular
property (location, condition, availability, description, capability).
The pipe sign (“|”) is used to describe different alternatives of
a construct. As shown in the class diagram above, Placeholder
class has two subclasses, orchestration and orchestrationactivity.
As a result, a placeholder can be defined as orchestration or
orchestrationactivity alternatives.

An orchestration can be described as one of the different types
of orchestrations that the IoT orchestration model allows for,
defining the order in which the activities of the corresponding
IoT orchestration components must be executed. Moreover, an
orchestrationactivity is described as one of the allowed categories
of IoT orchestration components. The ones mentioned herein
are IoTSensor, IoTActuator, IoTGateway, SoftwareComponent,
NetworkComponent, LinkedActivity, and UnAssignedActivity.

Moreover, a lexer and a parser have been created utilizing
ANother Tool for Language Recognition (ANTLR5), which is
a parser generator that allows for reading, processing, and
executing structured text and binary files. The ANTLR4 lexer
recognizes keywords in any input created with the pattern
language transforming them into tokens. ANTLR4 parser uses
the created tokens to construct the parse tree, a logical structure.
In this way, any input can be checked for compliance with the
defined grammar.

Pattern Specification
In this section a formal way for the patterns to be defined is
presented. This is another step toward the automated pattern-
driven composition of IoT systems/orchestrations where desired
properties are guaranteed.

A pattern consists of four parts: (a) the Activity Properties
(AP) part that represents the properties of the individual
placeholders of a system/orchestration; (b) the Orchestration
(ORCH) part that represents the abstract form of the
orchestration that the pattern applies to; (c) the Conditions part
that describes requirements, constraints, and reactions of the
system/orchestration to specific inputs; and (d) the Orchestration
Properties (OP) part that represents the orchestration-level
properties that the pattern can guarantee for the orchestration
specified in the ORCH part.

5Available online at: https://www.antlr.org/.
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FIGURE 1 | Descriptive overview of the Placeholder, Capability, and PropertySubject classes.

The described structure of a pattern in the form of a formula
is expressed as:

AP ∧ORCH ∧CONDITIONS | = OP

If the AP properties of an orchestration placeholders and the
conditions of the pattern hold, then the OP property specified
in the pattern also holds for the whole ORCH.

APs can be described using the Property class described above.
Property name uniquely identifies the property and the Property
Subject depicts the placeholder that implements the activity
for which the property is required or verifiable (propertytype).
ORCH is an object of Orchestration class including placeholder
instances. Conditions are materialized using the Operation
and Parameters classes. Inputs and outputs of the activity
placeholders of the pattern are defined in the objects of those
two classes. Finally, OP is a Property object referring to the
whole orchestration.

Automated Pattern Reasoning
Due to the need for automated processing and management
of the defined patterns, Drools6 is selected as a mean for
expressing those patterns in the form of machine processable
business production rules. Drools is a business rules management
system (BRMS) solution and allows for the construction,
maintenance, and enforcement of business policies in an
organization, an application, or a service. The Drools rules have
the following structure:

rule name <attributes>∗

when <conditional element>∗

then <action>
∗ end

The match between the Facts in the Drools Knowledge Base (KB)
and the conditions expressed in the when part of the rule, is
the way a Drools rule is applied. The execution of the actions
in the then part is what follows. These actions insert, retract
or update facts in the KB using the corresponding standard

6Available online at: https://www.drools.org/.
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Drools actions. The conditional elements are used to define
constraints for the data in the KB. Said constraints can be simple
or complex utilizing logical operators such as and, or, not, exists,
forall, contains.

The aforementioned ANTLR4 lexer and parser create a Drools
fact for every orchestration activity, control flow operation and
property. The Drools facts are then inserted in the Drools KB,
where all the knowledge definitions live. Knowledge sessions,
created from the KB, allow interaction between Drools and the
core component to fire Drools rules and perform reasoning.
Rules themselves are also hold in a knowledge session.

Patterns corresponding to each of the circularity and
trustworthiness-related properties are presented here as
showcases of how patterns are translated to Drools rules.

RESULTS

The CIRCE Architecture
To implement the CIRCE approach, a number of building blocks
need to be designed, developed and deployed across the various
layers of an IoT system (namely, Backend, 5G network and
Edge). Figure 2 depicts the resulting high-level architecture of the
CIRCE approach. Key components include:

• Pattern Orchestrator: This module features a semantic
reasoner able to understand instantiated IoT orchestrations
[e.g., the “Recipes” approach, based onNODE-RED7 (Thuluva
et al., 2017; Papoutsakis et al., 2020)] and transform them into
composition structures to be used by architectural patterns to
guarantee the required properties. The Pattern Orchestrator
is then responsible to pass said patterns to the corresponding
Pattern Engines (as defined in the Backend, Network and Edge
layers), selecting for each of them the subset of these that
refer to components under their control (e.g., passing Network
-specific patterns to the Pattern Module present in the 5G
SDN controller).

• Backend Pattern Engine: This module enables the capability
to insert, modify, execute and retract patterns at design
or at runtime in the backend; these interactions happen
through interfacing with the Pattern Orchestrator (see above).
Moreover, it is able to reason on the specified properties at
a local (backend) and global level. To enable the latter, the
Backend Pattern Engine is able to receive fact updates from
the individual Pattern Engines present at the lower layers
(Network & Field), allowing it to have an up-to-date view of
the state of said layers and their corresponding components.

• Network Pattern Engine: Integrated in the SDN controller
to enable the capability to insert, modify, execute and retract
network-level patterns at design or at runtime. It provides the
capability to reason on the specified properties at the network
layer. From an implementation perspective, it is supported
by the integration of all required dependencies within the
network controller (e.g., with the path manager and resource
manager of the controller), as well as the interfaces allowing
entities that interact with the controller to be managed based

7Available online at: https://nodered.org/.

on desired patterns at design and at runtime. It features
different subcomponents as required by the rule engine, such
as the knowledge base, the core engine and the compiler.

• Edge Pattern Engine: Typically deployed on the IoT/IIoT
gateway, able to host patterns as provided by the Pattern
Orchestrator. Since the compute capabilities of the gateway
can be limited, the module is able to host patterns in an
executable form compared to the pattern rules as provided in
the other layers. The executable patterns are able to guarantee
desired properties locally (i.e., gateway and IoT edge devices
monitored by that gateway).

As is evident from the architecture, a key design decision was
to have separate reasoning engines for each of the three layers
considered (Backend, Network and Edge). This way, reasoning
engines that may have strict limitations in resources and/or
response time (e.g., within the network or at the edge), only
receive and have to reason on properties affecting the specific
layer, thus having more efficient operation (less memory to
store rules, less reasoning time, quicker response time to needed
adaptations). Furthermore, this allows the individual layers to
operate and reason autonomously, post-deployment, without
requiring interactions with the backend for that task. Then, only
the backend layer (where resource limitations are typically not
an issue) keeps the global view and reasons for the global (and
end-to-end) properties of a specific orchestration.

CSPDI and LCA Patterns
An essential element in the operation of CIRCE are the CSPDI
and LCA patterns themselves. Therefore, this section presents a
first set circularity and trustworthiness-related patterns, covering
all key properties, in the form of Drools rules. As already
mentioned, the Drools rules need Facts in the KB to be matched
with the conditions in the when part of the rules. Said Facts
are no other than description of IoT orchestrations along with
their properties. Such an orchestration is received as input,
expressed with the IoT orchestration language described in
section Language Constructs above.

Connectivity
The Connectivity property specified herein allows for the
establishment of a QoS-enabled connection between declared
end-points. As CIRCE is designed to operate in the context
of a 5G-enabled IoT infrastructure, the existence of a Software
Defined Network (SDN) Controller is assumed. This allows
CIRCE to exploit the enhanced flexibility and design- and run-
time adaptations offered by SDN networks [e.g., via Service
Function Chaining to ensure desired properties are maintained
at runtime (Petroulakis, 2018)].

Upon a connectivity request, the corresponding path between
the two end-points is computed and the QoS constraints are
defined in the form of flow rules and queue mapping (via Path
Manager of SDN controller). As soon as the defined flow rules
are installed (via Resource Manager of SDN controller), the
end-point connectivity is enabled (SEMIoTICS, 2020).

The input orchestration is a sequence of two placeholders
connected with a link. This link is not the physical link
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FIGURE 2 | CIRCE high-level architecture.

that eventually will connect the two placeholders; it just
represents the data flow between two components of the
IoT orchestration. Additionally, the desired QoS properties
of the connectivity are described, namely PathBandwidth,
PathDelay, PathBurst, and PathResilience. In this example
IoT orchestration description, said properties are described
with given corresponding values (reqBwKbps, reqDelayMs,
reqBurstKbps, resilience), and as already satisfied (satisfied=true).
On the other hand, the satisfied attribute of the property to
be validated (Connectivity) is set to false. The orchestration
description is as follows:

1. ORCH “Connectivity”

2. Placeholder (P1)
3. Placeholder (P2)

4. Link (L1, P1, P2)
5. Sequence (S1, P1, P2, L1)
6. Property (Pr1, category=PathBandwidth, subject=S1,

value=reqBwKbps, satisfied=true)
7. Property (Pr2, category=PathDelay, subject=S1,

value=reqDelayMs, satisfied=true)
8. Property (Pr3, category=PathBurst, subject=S1,

value=reqBurstKbps, satisfied=true)
9. Property (Pr4, category=PathResilience, subject=S1,

value=resilience, satisfied=true)
10. Property (Pr5, category=Connectivity,

subject=S1, satisfied=false)

To establish the QoS-enabled connectivity between declared
orchestration placeholders, we rely on instantiation of the
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relevant Connectivity pattern, expressed as Drools rule in
Listing 2 below.

rule ``Connectivity Pattern''
when

Placeholder($sensor1:=placeholderid1, $srcMac:=MAC1, $srcIp:=

ipAddress1)

Placeholder($sensor2:=placeholderid2, $dstMac:=MAC2, $dstIp:=

ipAddress2)

Link($link1:=linked, $sensor1:=placeholdera, $sensor2:=placeholderb)

Sequence($seq1:=placeholderid, $sensor1:=placeholdera, $sensor2:=

placeholderb)

$PR1: Property ($seq1:=subject, category==``PathBandwidth,''
$reqBwKbps:=value, satisfied==true)

$PR2: Property ($seq1:=subject, category==``PathDelay,'' $reqDelayMs:=

value, satisfied==true)

$PR3: Property ($seq1:=subject, category==``PathBurst,'' $reqBurstKbps

:=value, satisfied==true)

$PR4: Property ($seq1:=subject, category==``PathResilience,'' $resilience

:=value, satisfied==true)

$PR5: Property ($seq1:=subject, category==``Connectivity,'' satisfied==

false)

then

modify($PR5){satisfied=true}

try {

RefMonProxy.applicationAddRequest( $srcMac,

$dstMac,

$srcIp,

$dstIp,

$reqBwKbps.longValue(),

$reqDelayMs.longValue(),

$reqBurstKbps.longValue(),

$resilience.longValue());

} catch(Exception ex) {

System.out.printIn(ex.getStackTrace());

}

end

Listing 2 | Connectivity pattern in the form of Drools rule.

The when part of the rule specifies: (a) two placeholders that
are parts of a given orchestration, (b) a link between them,
(c) the type of the orchestration that is a Sequence in this
case, (d) four QoS properties, and (e) the overall orchestration
property that can be guaranteed through the application of
the pattern.

The then part triggers the enforcement of the QoS properties
which uses an SDN controller to generate in the switches
per flow mapping configurations. This is done by calling
the RefMonProxy.applicationAddRequest method, in this case.
The request properties considered in the instantiation of
the network service are: (a) the required bandwidth share
in Kilobits per Second (Kbps); (b) the requested end-to-
end delay requirement in milliseconds; (c) the input traffic
burst in max. Kbps; (d) the source MAC address; (e) the
destination MAC Address; (f) the requirement for resilient
path establishment.

After establishment of the above flow, the referenced
endpoints (with given MAC addresses as identifiers in the
flow rules) are guaranteed the requested QoS requirements
(bandwidth and delay). This is assuming that that the input traffic
arrivals are shaped as per promised maximal traffic burst and
sending rate and do not exceed the requested rate.

Security
Security patterns are presented in detail in Papoutsakis et al.
(2021a), in the form of a hierarchical taxonomy of properties.
All properties are mapped to corresponding so called “high
level” and “low level” patterns. The former are solutions for
high level problems and create the context for the latter, which
are considered more specific and include practical guidelines
solving well-defined problems. Security is typically decomposed
to Confidentiality, Integrity, and Availability (Stallings et al.,
2012). The IoT orchestration that is used as input consists of
a sequence of two placeholders, connected by a link and is
presented using the IoT orchestration language below:

11. ORCH “Security”

12. Placeholder (P1)
13. Placeholder (P2)
14. Link (L1, P1, P2)
15. Sequence (S1, P1, P2, L1)
15. Property (Pr1, category=Security,

subject=S1, satisfied=false)

The last line of the description describes the property to
be verified (=Security property). Based on the above, the
corresponding Drools rule is depicted in Listing 3.

rule ``Security Pattern''
when

Placeholder($sensor1:=placeholderid1)

Placeholder($sensor2:=placeholderid2)

Link($link1:=linked, $sensor1:=placeholdera, $sensor2:=placeholderb)

Sequence($seq1:=placeholderid, $sensor1:=placeholdera, $sensor2:=

placeholderb)

$PR: Property ($seq1:=subject, category==``Security,'' satisfied==false)

then

Property s1Property = new Property();

s1Property.setCategory(``Confidentiality'' );

s1Property.setSubject($seq1);

s1Property.setSatisfied(false);

insert(s1Property);

Property s2Property = new Property();

s2Property.setCategory(``Interoperability'' );

s2Property.setSubject($seq1);

s2Property.setSatisfied(false);

insert(s2Property);

Property s3Property = new Property();

s3Property.setCategory(``Availability'' );

s3Property.setSubject($seq1);

s3Property.setSatisfied(false);

insert(s3Property);

end

Listing 3 | Security pattern in the form of Drools rule.

The orchestration (ORCH) that is chosen here is a sequence
of two placeholders, as can be seen in the when part of the rule.
The last line of this part of the rule declares the OP property of
the pattern in question. In the then part, three new properties
are created (Confidentiality, Integrity, and Availability), which
correspond to the AP properties of the pattern, which in this case
are referred to the whole orchestration. According to the pattern
specification presented earlier, if the Confidentiality, Integrity,
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and Availability properties of the orchestration hold, then the
Security property specified in the pattern also holds for the
whole orchestration.

The tree of the hierarchical taxonomy of properties continues
with more layers decomposing Confidentiality, Integrity, and
Availability to more properties corresponding to lower level
patterns. Confidentiality is broken down to Encrypted Channel,
Encrypted Storage and Encrypted Processing; Integrity to Safe
Channel, Safe Storage and Safe Processing; and Availability to
Uptime, Redundancy, and Fault Management.

Confidentiality
Every one of the decompositions, described in the previous
subsection, represents relationships among properties,
corresponds to a pattern and can be described by a Drools
rule. For example, the Drools rule for Confidentiality is depicted
in Listing 4. But before presenting the actual rule, the IoT
orchestration used as input is once again a sequence of two
placeholders, connected by a link:

1. ORCH “Confidentiality”

2. Placeholder (P1)
3. Placeholder (P2)
4. Link (L1, P1, P2)
5. Sequence (S1, P1, P2, L1)
6. Property (Pr1, category=Confidentiality,

subject=S1, satisfied=false)

The difference with the ORCH Security is in the last line
where a Confidentiality property is described as the property to
be verified.

rule ``Confidentiality Pattern''
when

Placeholder($sensor1:=placeholderid1)

Placeholder($sensor2:=placeholderid2)

Link($link1:=linked, $sensor1:=placeholdera, $sensor2:=placeholderb)

Sequence($seq1:=placeholderid,$sensor1:=placeholdera,$sensor2:=

placeholderb)

$PR: Property ($seq1:=subject, category==``Confidentiality,'' satisfied==

false)

then

Property s1Property = new Property();

s1Property.setCategory(``Encrypted Storage'' );

s1Property.setSubject($sensor1);

s1Property.setSatisfied(false);

insert(s1Property);

Property s2Property = new Property();

s2Property.setCategory(``Encrypted Processing'' );

s2Property.setSubject($sensor1);

s2Property.setSatisfied(false);

insert(s2Property);

Property s3Property = new Property();

s3Property.setCategory(``Encrypted Storage'' );

s3Property.setSubject($sensor2);

s3Property.setSatisfied(false);

insert(s3Property);

Property s4Property = new Property();

s4Property.setCategory(``Encrypted Processing'' );

s4Property.setSubject($sensor2);

s4Property.setSatisfied(false);

insert(s4Property);

Property s5Property = new Property();

s5Property.setCategory(``Encrypted Channel'' );

s5Property.setSubject($link1);

s5Property.setSatisfied(false);

insert(s5Property);

end

Listing 4 | Confidentiality pattern in the form of Drools rule.

The orchestration (ORCH) is again a sequence of two
placeholders. The last line of the when part of the rule
declares the OP property of the pattern in question. In
the then part, three new properties are created (Encrypted
Channel, Encrypted Storage, and Encrypted Processing), which
correspond to the AP properties of the pattern. Encrypted
Processing and Encrypted Storage are assigned to the two
placeholders of the orchestration, while the Encrypted Channel
is assigned to the link between them. If the Encrypted Channel,
Encrypted Storage, and Encrypted Processing properties hold for
the corresponding components of the orchestration, then the
Confidentiality property specified in the pattern also holds for the
whole orchestration.

Integrity
A very similar IoT orchestration is also used as input for the
demonstration of the verification of the Integrity property, and a
very similar rule to express its decomposition to the Safe Channel,
Safe Storage and Safe Processing properties.

1. ORCH “Integrity”

2. Placeholder (P1)
3. Placeholder (P2)
4. Link (L1, P1, P2)
5. Sequence (S1, P1, P2, L1)
6. Property (Pr1, category=Integrity,

subject=S1, satisfied=false)

The rule is shown in Listing 5.

rule ``Integrity Pattern''
when

Placeholder($sensor1:=placeholderid1)

Placeholder($sensor2:=placeholderid2)

Link($link1:=linked, $sensor1:=placeholdera, $sensor2:=placeholderb)

Sequence($seq1:=placeholderid,$sensor1:=placeholdera,$sensor2:=

placeholderb)

$PR: Property ($seq1:=subject, category==``Integrity,'' satisfied==false)

then

Property s1Property = new Property();

s1Property.setCategory(``Safe Storage'' );

s1Property.setSubject($sensor1);

s1Property.setSatisfied(false);

insert(s1Property);

Property s2Property = new Property();

s2Property.setCategory(``Safe Processing'' );

s2Property.setSubject($sensor1);

s2Property.setSatisfied(false);

insert(s2Property);

Property s3Property = new Property();

s3Property.setCategory(``Safe Storage'' );

s3Property.setSubject($sensor2);

s3Property.setSatisfied(false);

insert(s3Property);

Property s4Property = new Property();
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s4Property.setCategory(``Safe Processing'' );

s4Property.setSubject($sensor2);

s4Property.setSatisfied(false);

insert(s4Property);

Property s5Property = new Property();

s5Property.setCategory(``Safe Channel'' );

s5Property.setSubject($link1);

s5Property.setSatisfied(false);

insert(s5Property);

end

Listing 5 | Integrity pattern in the form of Drools rule.

The orchestration is a sequence of two placeholders, the
OP property is Integrity, and the AP properties are the Safe
Channel, Safe Storage and Safe Processing properties. Similarly
to the previous rule, If the Safe Channel, Safe Storage, and Safe
Processing properties hold for the corresponding components of
the orchestration, then the Integrity property also holds for the
whole orchestration.

Availability
Following the same norm with the previous examples,
the input IoT orchestration is a sequence of two
placeholders and the Drools rule of Availability defines
that if the Uptime, Redundant Storage, and Fault
Management properties hold for an orchestration,
then the Integrity property also holds for the
same orchestration.

1. ORCH “Availability”

2. Placeholder (P1)
3. Placeholder (P2)
4. Link (L1, P1, P2)
5. Sequence (S1, P1, P2, L1)
6. Property (Pr1, category=Availability,

subject=S1, satisfied=false)

The corresponding Drools rule is shown in Listing 6.

rule ``Availability''
when

Placeholder($sensor1:=placeholderid1)

Placeholder($sensor2:=placeholderid2)

Link($link1:=linked, $sensor1:=placeholdera, $sensor2:=placeholderb)

Sequence($seq1:=placeholderid, $sensor1:=placeholdera, $sensor2:=

placeholderb)

$PR: Property ($seq1:=subject, category==``Availability,'' satisfied==false)

then

Property s1Property = new Property();

s1Property.setCategory(``Uptime'' );

s1Property.setSubject($seq1);

s1Property.setSatisfied(false);

insert(s1Property);

Property s2Property = new Property();

s2Property.setCategory(``Redundant Storage'' );

s2Property.setSubject($seq1);

s2Property.setSatisfied(false);

insert(s2Property);

Property s3Property = new Property();

s3Property.setCategory(``Fault Management'' );

s3Property.setSubject($seq1);

s3Property.setSatisfied(false);

insert(s3Property);

end

Listing 6 | Availability pattern in the form of Drools rule.

Privacy
Although, there is a lack of taxonomy (Caiza et al., 2017) based on
the consensus of works in the area (Ahituv et al., 1987; Pfitzmann
and Hansen, 2010; Kuhn et al., 2019), Privacy is decomposed
to eight key privacy concepts namely (i) data protection;
(ii) authentication; (iii) authorization; (iv) anonymity; (v)
pseudonymity; (vi) unlinkability; (vii) undetectability, and
(viii) unobservability.

The input IoT orchestration is:

1. ORCH “Privacy”

2. Placeholder (P1)
3. Placeholder (P2)
4. Link (L1, P1, P2)
5. Sequence (S1, P1, P2, L1)
6. Property (Pr1, category=Privacy, subject=S1, satisfied=false)

The corresponding Drools rule for Privacy is depicted in
Listing 7. According to the when part of the rule, the
orchestration (ORCH) is once again a sequence of two
placeholders and the declared OP property is Privacy. In the then
part, eight new properties are created, one for each of the privacy
concepts the Privacy property is decomposed to (data protection,
authentication, authorization, anonymity, pseudonymity,
unlinkability, undetectability, and unobservability). These
properties correspond to the AP properties of the pattern. If the
eight properties hold for the corresponding components of the
orchestration, then the Privacy property specified in the pattern
also holds for the whole orchestration.

rule ``Privacy Pattern''
when

Placeholder($sensor1:=placeholderid1)

Placeholder($sensor2:=placeholderid2)

Link($link1:=linked, $sensor1:=placeholdera, $sensor2:=placeholderb)

Sequence($seq1:=placeholderid,$sensor1:=placeholdera,$sensor2:=

placeholderb)

$PR: Property ($seq1:=subject, category==``Privacy,'' satisfied==false)

then

Property s1Property = new Property();

s1Property.setCategory(``Data Protection'' );

s1Property.setSubject($seq1);

s1Property.setSatisfied(false);

insert(s1Property);

Property s2Property = new Property();

s2Property.setCategory(``Authentication'' );

s2Property.setSubject($seq1);

s2Property.setSatisfied(false);

insert(s2Property);

Property s3Property = new Property();

s3Property.setCategory(``Authorization'' );

s3Property.setSubject($seq1);

s3Property.setSatisfied(false);

insert(s3Property);

Property s4Property = new Property();

s4Property.setCategory(``Anonymity'' );

s4Property.setSubject($seq1);
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s4Property.setSatisfied(false);

insert(s4Property);

Property s5Property = new Property();

s5Property.setCategory(``Pseudonymity'' );

s5Property.setSubject($seq1);

s5Property.setSatisfied(false);

insert(s5Property);

Property s5Property = new Property();

s5Property.setCategory(``Unlinkability'' );

s5Property.setSubject($seq1);

s5Property.setSatisfied(false);

insert(s5Property);

Property s5Property = new Property();

s5Property.setCategory(``Undetectability'' );

s5Property.setSubject($seq1);

s5Property.setSatisfied(false);

insert(s5Property);

Property s5Property = new Property();

s5Property.setCategory(``Unobservability'' );

s5Property.setSubject($seq1);

s5Property.setSatisfied(false);

insert(s5Property);

end

Listing 7 | Privacy pattern in the form of Drools rule.

Dependability
According to Papoutsakis et al. (2021a), Dependability focuses
on reliability, fault tolerance and safety. An IoT orchestration
consisting of a merge of two IoT-sensors is the most appropriate
orchestration to showcase the Dependability pattern.

1. ORCH “Dependability”

2. IoTSensor (S1)
3. IoTSensor (S2)
4. Gateway (G1)
5. Link (L1, P1, G1)
6. Link (L2, P2, G1)
7. Merge (M1, S1, S2, G1, L1, L2)
7. Property (Pr1, category=Dependability,

subject=M1, satisfied=false)

The Drools rule for dependability would look like the one in
Listing 8.

rule ``Dependability''
when

IoTSensor($sensor1:=placeholderid)

IoTSensor($sensor2:=placeholderid)

Merge($merge1:=placeholderid, $sensor1:=placeholdera, $sensor2:=

placeholderb)

$PR: Property ($merge1:=subject, category== ``Dependability,'' satisfied

==false)

then

Property s1Property = new Property();

s1Property.setCategory(``Reliability'' );

s1Property.setSubject($merge1);

s1Property.setSatisfied(false);

insert(s1Property);

Property s2Property = new Property();

s2Property.setCategory(``Fault Tolerance'' );

s2Property.setSubject($merge1);

s2Property.setSatisfied(false);

insert(s2Property);

Property s3Property = new Property();

s3Property.setCategory(``Safety'' );

s3Property.setSubject($merge1);

s3Property.setSatisfied(false);

insert(s3Property);

end

Listing 8 | Dependability pattern in the form of Drools rule.

As can be seen in the when part of the rule, the orchestration
(ORCH) is a merge of two IoT sensors and the declared OP
property is Dependability. In the then part, three new properties
are created and assigned to the orchestration (Reliability, Fault
Tolerance and Safety), describing the AP properties of the
pattern. If the newly created properties hold for the orchestration,
then the Dependability property specified in the pattern also
holds for the whole orchestration.

Interoperability
According to Hatzivasilis et al. (2018), there are different
types of interoperability named technical, syntactic, semantic,
and organizational interoperability. The former makes the
cooperation of heterogeneous devices, which use different
communication protocols, possible. The syntactic type of
interoperability determines well-defined data formats, interfaces,
and encoding. Semantic interoperability defines data models and
ontologies that are commonly accepted among the heterogeneous
devices. Finally, the organizational type allows for integration
and orchestration of services that reside in different domains
and platforms.

It should also be mentioned that latter levels of
interoperability assume the existence of former ones to be
achieved. For example, technical interoperability is prerequisite
for achieving syntactic interoperability. A sequence of two
placeholders is once again the input IoT orchestration:

1. ORCH “OrganizationalInteroperability”

2. Placeholder (P1)
3. Placeholder (P2)
4. Link (L1, P1, P2)
5. Sequence (S1, P1, P2, L1)
6. Property (Pr1, category= OrganizationalInteroperability,

subject=S1, satisfied=false)

Based on the described classification of Interoperability, the
corresponding Drools rules is depicted in Listing 9.

rule ``Organizational interoperability''
when

Placeholder($sensor1:$placeholderid1)

Placeholder($sensor2:$placeholderid2)

Link($link1:$linked, $sensor1:$placeholdera, $sensor2:$placeholderb)

Sequence($seq1:$placeholderid,$sensor1:$placeholdera,$sensor2:

$placeholderb)

$PR: Property ($seq1:$subject, category==``Organizational interoperability,

'' satisfied==false)

then

Property s1Property $ new Property();

s1Property.setCategory(``Semantic interoperability'' );

s1Property.setSubject($seq1);

s1Property.setSatisfied(false);

insert(s1Property);

end
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rule ``Semantic interoperability''
when

Placeholder($sensor1:$placeholderid1)

Placeholder($sensor2:$placeholderid2)

Link($link1:$linked, $sensor1:$placeholdera, $sensor2:$placeholderb)

Sequence($seq1:$placeholderid,$sensor1:$placeholdera,$sensor2:

$placeholderb)

$PR: Property ($seq1:$subject, category==``Semantic interoperability,''
satisfied==false)

then

Property s1Property $ new Property();

s1Property.setCategory(``Syntactic interoperability'' );

s1Property.setSubject($seq1);

s1Property.setSatisfied(false);

insert(s1Property);

end

rule ``Syntactic interoperability''
when

Placeholder($sensor1:$placeholderid1)

Placeholder($sensor2:$placeholderid2)

Link($link1:$linked, $sensor1:$placeholdera, $sensor2:$placeholderb)

Sequence($seq1:$placeholderid,$sensor1:$placeholdera,$sensor2:

$placeholderb)

$PR: Property ($seq1:$subject, category== ``Syntactic interoperability,''
satisfied==false)

then

Property s1Property $ new Property();

s1Property.setCategory(``Technical interoperability'' );

s1Property.setSubject($seq1);

s1Property.setSatisfied(false);

insert(s1Property);

end

Listing 9 | Interoperability pattern in the form of Drools rule.

As it is mentioned above, the latter levels of interoperability
assume the existence of former ones. This is what the three
rules in Listing 9 expresses. According to the first one, if the
Organizational Interoperability property is to be verified for a
given sequence of placeholders, the Semantic Interoperability
property needs to be verified first. This is why such a property
is created in the then part of the rule and is assigned to the
given sequence.

The same holds, depicted by the second rule, for the
Semantic Interoperability property and its prerequisite
the Syntactic Interoperability. If the property to be verified
is a Semantic Interoperability property (when part of the rule), a
new Syntactic Interoperability property is created and assigned
to the given orchestration (then part of the rule). Finally, the
exact same relationship between the Syntactic Interoperability
property and the Technical Interoperability is depicted in the
last rule.

Circularity Properties (LCA)
There are two domains or planes in which circularity is defined: a)
the cyber plane that refers to the ICT infrastructure that provides
resources regarding computing, networking and connectivity,
and b) the intelligent assets plane involving the interconnection
and interaction of the actors who are placed on a physical space.
Properties that can be used regarding the intelligent assets plane,
which is ourmain focus, are Location, Condition andAvailability.

The input IoT orchestration is a merge of two sensors as
shown below:

1. ORCH “Circularity”

2. IoTSensor (S1)
3. IoTSensor (S2)
4. Gateway (G1)
5. Link (L1, P1, G1)
6. Link (L2, P2, G1)
7. Merge (M1, S1, S2, G1, L1, L2)
8. Property (Pr1, category=Circularity,

subject=M1, satisfied=false)

All the necessary parts of the merge are expressed such as the
two sensors, the Gateway where theymerge their outputs, and the
links among them. Line 8 corresponds to the Circularity property
that we want to validate for the given orchestration.

To express the decomposition of the Circularity property,
regarding the intelligent assets plane, the Drools rule shown in
Listing 10 is used.

rule ``Circularity"
when

IoTSensor($sensor1:=placeholderid)
IoTSensor($sensor2:=placeholderid)
Merge($merge1:=placeholderid, $sensor1:=

placeholdera, $sensor2:=placeholderb)
$PR: Property ($merge1:=subject, category==``

Circularity,'' satisfied==false)
then

Property s1Property = new Property();
s1Property.setCategory(``Location'');
s1Property.setSubject($merge1);
s1Property.setSatisfied(false);
insert(s1Property);

Property s2Property = new Property();
s2Property.setCategory(``Condition'');
s2Property.setSubject($merge1);
s2Property.setSatisfied(false);
insert(s2Property);

Property s3Property = new Property();
s3Property.setCategory(``Availability'');
s3Property.setSubject($merge1);
s3Property.setSatisfied(false);
insert(s3Property);

end

Listing 10 | Circularity pattern in the form of Drools rule.

What the Circularity rule actually says is that if the Location,
Condition and Availability properties hold for an orchestration,
then the Circularity property specified in the pattern also holds
for the whole orchestration. Circularity allows for the inclusion of
unused or under-used assets during the initialization of a service.
Additional Drools rules are presented below including Location,
Condition, and Availability properties.

Location
Location refers to the physical location of the component (e.g.,
the location where an IoT sensor is installed), and it can be
expressed as a description of a pair of coordinates. The knowledge
of the location of an asset can extend its use cycle length. For
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example, it can guide the replacement of a broken component
or optimize the route of a vehicle to avoid its wear. Moreover, the
utilization of an asset can be increased since the driving time of
a vehicle can be reduced, or shared assets can be relocated faster.
The knowledge of the location can also automate the localization
of goods on secondary markets or allow for reverse logistics
planning. Finally, it can help the regeneration of natural capital
through the automated tracking of their location.

The Drools rule, in Listing 11 below, verifies that the Location
property holds for an IoTSensor if the value of the location
attribute is not null. The verification of the fact that the property
holds is done by modifying the satisfied attribute to true.

The needed IoT orchestration consists of just a sensor and the
property in question, as shown below:

1. ORCH “Location”

2. IoTSensor (S1)
3. Property (Pr1, category=Location,

subject=M1, satisfied=false)

The satisfied attribute of the property is given as false, in order to
be changed to true if the property actually holds.

rule ``Location''
when

IoTSensor($sensor1:=placeholderid)

$PR: Property ($sensor1:=subject, category==``Location,'' $location:=

location, $location!=null, satisfied==false)

then

modify($PR)\{satisfied=true\};

end

Listing 11 | Location pattern in the form of Drools rule.

Condition
As shown in the Circularity rule above, when a Circularity
property of an orchestration is to be verified, a Condition
property, among others, is created and assigned to the same
orchestration. This new property is to be verified, too. Condition
can take values such as good or requiring maintenance, repair,
refurbishment, and recycling. The knowledge of the condition
of an asset can extend its use cycle length since it allows the
prediction of its maintenance or replacement. The utilization
is also increased. For example, precise use of the input factors
(fertilizer) in agriculture can be achieved. Looping assets can be
enhanced through accurate asset assessment.

The rule depicted in Listing 12 does exactly that; modifying
the “satisfied” attribute of the Property class to true (then part
of the rule). The verification takes place when the value of the
condition attribute of the Condition property of an IoTSensor,
in this case, is good or n/a (when part of the rule). In practice
this means that the condition of an IoTSensor allows for its
reuse in an application. If the value of the condition attribute
was requiring maintenance or service, refurbished, or recycled, the
verification could not happen.

The needed IoT orchestration once again consists of just a
sensor and the property in question, as shown below:

1. ORCH “Condition”

2. IoTSensor (S1)

3. Property (Pr1, category=Condition,
subject=M1, satisfied=false)

rule ``Condition''
when

IoTSensor($sensor1:=placeholderid)

$PR: Property ($sensor1:=subject, category==``Condition,'' condition

==``good'' || condition=='' n/a,'' satisfied==false)

then

modify($PR)\{satisfied=true\};

end

Listing 12 | Condition pattern in the form of Drools rule.

Availability
Availability is the third property that need to be verified for
the Circularity property to be verified. A possible Drools rule
expressing the Availability property was presented in Availability,
but that referred to availability from a security perspective.
Another possible way to express Availability, from a circularity
perspective, is presented here. In this context, the acceptable
values (sub-properties) identified are: working, ready for reuse,
or broken. The knowledge of the availability of an asset can
extend its use cycle length. For example, energy systems can
optimize sizing, supply andmaintenance based on usage patterns.
Regarding utilization of assets, the automated connection of
available, shared assets can be achieved.

The corresponding rule is depicted in Listing 13. The
“satisfied” attribute of the Availability Property class is modified
to true (then part of the rule), if the value of the availability
attribute of the Availability property of an IoTSensor, is
ready for reuse (when part of the rule). If the value of the
condition attribute was working or broken, the verification could
not happen.

The needed IoT orchestration once again consists of just a
sensor and the property in question, as shown below:

1. ORCH “Availability”

2. IoTSensor (S1)
3. Property (Pr1, category=Availability,

subject=M1, satisfied=false)

rule ``Availability''
when

IoTSensor($sensor1:=placeholderid)

$PR: Property ($sensor1:=subject, category==``Availability,'' condition

==``ready for reuse,'' satisfied==false)

then

modify($PR)\{satisfied=true\};

end

Listing 13 | Availability pattern in the form of Drools rule.

Evaluation Results
An evaluation based on a PoC implementation of CIRCE
was carried out, focusing on assessing the performance and
scalability of the automated verification of given circularity and
trustworthiness-related properties of an IoT orchestration.

The testbed includes two physical machines. The first one is a
backend server (6-core CPU, 32GB RAM) that hosts the Pattern

Frontiers in Sustainability | www.frontiersin.org 14 February 2022 | Volume 3 | Article 792103

https://www.frontiersin.org/journals/sustainability
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainability#articles


Papoutsakis et al. CIRCE: Circular and Trustworthy IoT Orchestrations

Orchestrator (PO) and the Message Broker (the latter based on
Eclipse Mosquitto8, leveraging the MQTT9 lightweight, publish-
subscribe network protocol). The PO is the component that is
responsible for the process of translating the given orchestration
descriptions into Drools facts. The Message Broker provides the
means for the IoT sensors to be able to communicate their
output to the Drools business rule management system. The
second machine is a 64-bit ARMv8 Single Board Computer
(more specifically, an Odroid C2, with Quad Core CPU, and
2GB RAM) that hosts the field Pattern Engine (PE) and acts as
a gateway hypervisor. The large number of used sensors in the
testing scenarios motivated the use of scripts to bootstrap the
process; a python script was created for every orchestration with
different number of sensors and was run on the backend server
described above.

The orchestrations that are used for the evaluation are
consisted by different number of temperature sensors, forming
a series of nested merges. An orchestration of two sensors creates
one merge. If three sensors are available, two of them are placed
under a merge and the created merge along with the third sensor
form a secondmerge. Themaximumnumber of sensors that were
used is 20.

The description of the IoT orchestrations is done through
an editor in the IoT orchestration language, including all
the involved components along with their desired properties
and the orchestration-wide properties to be verified. Such an
orchestration can be seen below:

1. ORCH “5 temperature sensors”

2. Iotsensor(“IoTsensor1,” “139.91.182.100,” “9999,” “00-80-e1-
00-00-11”),

3. Iotsensor(“IoTsensor2,” “139.91.182.100,” “9999,” “00-80-e1-
00-00-12”),

4. Iotsensor(“IoTsensor3,” “139.91.182.100,” “9999,” “00-80-e1-
00-00-13”),

5. Iotsensor(“IoTsensor4,” “139.91.182.100,” “9999,” “00-80-e1-
00-00-14”),

6. Iotsensor(“IoTsensor5,” “139.91.182.100,” “9999,” “00-80-e1-
00-00-15”),

7. Iotgateway(“Gateway,” “6443,” “139.91.58.100,” “00-80-e1-00-
00-32”),

8. Link(“LS1M1,” “IoTsensor1,” “Merge1”),
9. Link(“LS2M2,” “IoTsensor2,” “Merge2”),
10. Link(“LS3M3,” “IoTsensor3,” “Merge3”),
11. Link(“LS4M4,” “IoTsensor4,” “Merge4”),
12. Link(“LS5M4,” “IoTsensor5,” “Merge4”),
13. Link(“LM1G1,” “Merge1,” “Gateway”),
14. Link(“LM2M1,” “Merge2,” “Merge1”),
15. Link(“LM3M2”, “Merge3”, “Merge2”),
16. Link(“LM4M3,” “Merge4,” “Merge3”),
17. Merge(“Merge4,” “IoTsensor4,” “IoTsensor5,” “Merge3,”

“LS4M4,” “LS5M4”),
18. Merge(“Merge3,” “IoTsensor3,” “Merge4,” “Merge2,”

“LS3M3,” “LM4M3”),

8Available online at: https://mosquitto.org/.
9Available online at: https://mqtt.org/.

19. Merge(“Merge2,” “IoTsensor2,” “Merge3,” “Merge1,”
“LS2M2,” “LM3M2”),

20. Merge(“Merge1,” “IoTsensor1,” “Merge2,” “Gateway,”
“LS1M1,” “LM2M1”),

21. Property(“Prop1,” required, “Dependability,” “0.0,” datastate,
Verification(monitoring, interface), “Merge1,” false)

The testing scenario needs the involved sensors to communicate
heartbeats and data (temperature) to the Drools business
rule management system. This is done through publishing in
appropriate topics of the Eclipse Mosquitto message broker.

The components of an orchestration (sensors, links,
properties, etc.) are translated into facts and placed in the KB of
Drools engine. The process of translated the given orchestration
descriptions into Drools facts (performed by PO) is distinguished
from the processed of inserting facts into the KB and performing
the reasoning through rule triggering (performed by PE). The
described orchestration is communicated to the PO, where a
parser distinguishes the orchestration components and creates
corresponding Java class objects. Said objects are sent to the PE
to be included into the Drools memory as facts. Additionally, the
produced from the sensors heartbeats and data (temperatures)
are also sent to the PE since they are also considered Drools facts
and are necessary for rule triggering.

Figure 3 depicts the reasoning time of both PO and PE
and how it is affected by the number of sensors in the used
orchestrations. In the case of PO, the reasoning time starts at
27 s when the incoming orchestration consists of 2 sensors and
reaches 3min and 7 s when the sensors participating in the
orchestration are 20. Clearly, the more complex orchestrations
are the more time consuming the reasoning of the Pattern
Orchestrator is. The same pattern is observed for the PE. The
numbers are similar, starting from 24 s when an orchestration of
2 sensors is coming as input, and reaching 4min and 16 s when
the sensors are 20.

The facts that represent orchestration elements trigger Drools
rules that may create even more facts, which in their turn will
make more rules to be triggered. As a result, more complex
orchestrations lead to more facts, which in their turn lead to even
more triggered rules, increasing the overall reasoning time.

Figure 4 shows that the memory footprint of the PE is also
affected by the complexity of the given orchestrations as far
as number of sensors is concerned. The numbers used for this
graph were captured using top command of Unix, and more
precisely, the %MEM column heading that stands for the share
of physical memory used by a process. This does not include
data that has been swapped to disk. The average of the values
under the %MEM column heading of the PE, the rule engine
that runs the Drools rules, is depicted in this figure, showing that
the memory footprint increases, starting from 17.06% when the
incoming orchestration consists of 2 sensors and reaching 18.23%
when the most complicated orchestration of the evaluation is
sent (20 sensors). Since the available RAM of the host is 2GB,
17.06% is translated into 349.38MB and 18.23% corresponds
to 373.35MB, respectively. A different host with more than
2 GB RAM, which is not uncommon, will result in smaller
percentage increase.
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FIGURE 3 | Pattern orchestrator (A) and pattern engine (B) reasoning time.

DISCUSSION

The previous subsections presented the CIRCE approach for
circular and trustworthy by-design IoT orchestrations. The
presented pattern-driven framework facilitates the design-
time specification of circularity and trustworthiness properties,

through the same interface that the designer will use to
specify the orchestration itself, while also supporting the
runtime reasoning that these properties hold at runtime (within
and across IoT deployment layers), and allowing to trigger
any needed adaptations, to maintain and/or revert to these
desired properties.
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FIGURE 4 | Pattern engine average %MEM.

The evaluation results of the PoC implementation validate
the scalability and general feasibility of the proposed approach.
Nevertheless, as CIRCE is a complex framework, there are
a number of challenges and risks that provide factors of
uncertainty regarding the viability of a providing a practical
solution that can be applied in real, complex real-world
vertical applications.

In this context, a number of positive (i.e., risk mitigating)
points can be highlighted as CIRCE framework is built on
extensive expertise and mature core building blocks, including:
(i) the Drools business rules and associated reasoning engines
that have already been tested various applications domains
and use cases; (ii) hands-on experience with integrating
Drools with various user-friendly and open source tools
that can be used for IoT Orchestration specification (e.g.,
Thuluva et al., 2017; Papoutsakis et al., 2020); (iii) ever-
increasing visibility and interest on the benefits of the
interplay between IoT and CE, with resources being committed
to investigated this further (e.g., through involvement in
several research projects that consider these aspects). The
above provide a solid foundation for the further refinement
and enhancement of CIRCE, with minimal risks from an
implementation perspective.

Nevertheless, a number of open issues (and associated
uncertainty factors) still remain that need to be addressed, before
the full potential of CIRCE can be reached; these include: (a)
application on heterogeneous vertical domains to further extend
the System Model and the associated language to cover the
intricacies of these domains, such as domain-specific devices
(e.g., from self-driving tractors to manufacturing robotic arms

andwearablemedical devices); (b) definition of additional CSPDI
& LCA patterns, both generic to cover additional sub properties
(e.g., privacy patterns to allow verification of properties such
as pseudonymity, undetectability, etc.) as well domain-specific,
tailored to the requirements of different domains and end-
users; (c) design and development of a pattern selection
mechanism which, along with an associated pattern storage and
indexing mechanism, will assist IoT orchestration designers in
the selection of appropriate patterns (e.g., allowing the designer
to select a higher level property, such as “Privacy,” and then
recommending or pre-selecting relevant lower-level properties,
such as “Anonymity,” that are appropriate for each activity
comprising the specific orchestration); (d) validation of the
proposed approach in an operational environment (especially
considering the more novel Circularity properties, which have
not been as extensively studied and tested as the CSPDI
properties). The authors already investigate and intend to pursue
all of the above points, which will be presented in future updates
of CIRCE.

Concluding, in addition to the specifics of CIRCE, this
work also intended to highlight the importance of the interplay
between CE and technological developments in the IoT and
5G fronts. To reap the full benefits of this interplay, the co-
design and co-development for Circularity and Trustworthiness
properties within IoT building blocks is needed, facilitating the
definition of Circular and Trustworthy by-design applications
and services. CIRCE is a small step toward this direction,
and the authors hope this approach and its prototypical
implementation will inspire additional research in this relatively
unexplored field.
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