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Abstract

This paper proposes a new GARCH-jump mixed model for individual stock returns

that takes into account four types of risks associated to: the systematic and idiosyncratic

time-varying arrival of jumps and the systematic and idiosyncratic time-varying diffusive

volatility. By considering a general pricing kernel with all underlying risk factors, we

decompose the expected stock return into four risk premiums related to the four types

of risks. Empirically, we estimate the model jointly for daily stock returns and market

returns and investigate the asset pricing consequences. We find that the idiosyncratic

jump intensity accounts for about 82.25% of the total jump intensity on average, and

idiosyncratic variance accounts for about 66.70% of the total diffusive variance. Over
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the past 50 years, the contribution of idiosyncratic risks decreases. By sorting the stocks

into five quintiles by estimated risk premiums, we find that the systemic jump risks,

idiosyncratic diffusive risks and idiosyncratic jump risks are significantly priced in the

cross section of our sample.

Keywords: jump-diffusion model, GARCH filtering, asset pricing

JEL Classification: C13, C61, G11, G12

1 Introduction

Jumps in stock returns of individual firms are triggered by either systematic events or id-

iosyncratic shocks. During crisis events such as oil crisis in 1973, the black Monday in 1987,

the dot-com crash in 2000 and the subprime crisis from 2007 to 2009, the financial market

witnessed large jumps in most traded stocks. In addition, individual stocks may occasionally

experience jumps due to firm specific events, such as earning surprises, merger and acqui-

sition, etc. This chapter provides a new modeling framework for the individual stocks that

allows for the estimation of time-varying systematic and idiosyncratic jump intensities and

volatilities. From an asset pricing point of view, it is of both theoretical and practical impor-

tance to understand, how the systematic and idiosyncratic jump intensities can be estimated,

and how they are related to the equity risk premium. This new model accommodates the

joint dynamic structures of individual stock returns and the market returns, while allowing

for jumps. Under such a framework, we estimate the dynamics of idiosyncratic and system-

atic jump intensities and volatilities for individual stocks and investigate the roles of different

risks in the dynamics of equity premium.
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We model the return innovation by a Generalized Autoregressive Conditional Heteroskedas-

tic (GARCH)-jump mixture model in the spirit of Maheu et al. (2013). Maheu et al. (2013)

only focuses on the market returns. We intend to investigate the dynamics of individual

excess stock returns and allow the stock innovations to be affected by the market innova-

tions. To be more specific, the market innovation has two components, which we call “market

jump” and “market diffusion”. The jump component follows a compound Poisson-normal

distribution with autoregressive jump intensities. The diffusive component is governed by

an asymmetric two-component GARCH process. The stock innovation has four components:

“systematic jump” , “idiosyncratic jump”, “systematic diffusion” and “idiosyncratic diffu-

sion”. The systematic jump in the stock innovation is triggered by the market jump with a

certain probability. The systematic diffusion component loads on the market diffusion com-

ponent governed by “beta”, similar to that in the Capital Asset Pricing Model (CAPM).

The idiosyncratic components are directed by similar dynamic structures as in the market

components, but are independent from their systematic counterparts. To estimate the model,

we provide a filter that can filter daily excess stock returns into large (jump) versus small

(diffusion) components, as well as systematic and idiosyncratic counterparts in each of them.

In addition, our model allows for the decomposition of the dynamic equity premium

by assuming a general pricing kernel with all underlying risk factors in the economy. The

traditional CAPM suggests that the idiosyncratic risk is diversified away and not priced.

However, empirical studies find that idiosyncratic risks matter not only in predicting the

time series of stock market return1, but also in pricing in the cross-section of stock returns2.

1For example, Goyal and Santa-Clara (2003) and Guo and Savickas (2006).
2For example, Ang et al. (2006), Fu (2009), Ang et al. (2009), Huang et al. (2010) and Stambaugh et al.

(2015).
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Theoretically, the pricing of idiosyncratic risks can be explained by the fact that investors

in reality do not hold perfectly diversified portfolios. Levy (1978) and Merton (1987) show

that under-diversified investors demand a return compensation for bearing idiosyncratic risk.

In asset pricing model based on prospect theory, where investors are loss averse over the

fluctuations of their own stocks, Barberis and Huang (2001) also provide an explanation for

the relation between expected returns and idiosyncratic risk. In this paper, we include the

idiosyncratic components of the stock innovations in the pricing kernel and test whether

they are significantly priced in the dynamics of the equity premium. The specification of the

pricing kernel is similar to that in Gourier (2016) and Bégin et al. (2016). The expected stock

return can be consequently decomposed into four risk premiums: premiums on systematic

and idiosyncratic diffusion risks and systematic and idiosyncratic jump risks.

We conduct a joint estimation strategy to identify different components in daily returns

of 15 stocks from 1963 to 2015. For each stock, we estimate the model for the market return

and the stock return simultaneously. We observe that the idiosyncratic jump intensity and

volatility account for a large amount of the total jump intensity and volatility for the stocks:

idiosyncratic jump intensity accounts for 82.25% of the total jump intensity, and idiosyncratic

variance accounts for 66.70% of the total variance on average. Over time, the contribution

of idiosyncratic risks is declining, which implied that the firms are more and more affected

by the systematic risks over the past 50 years. Further, all four types of risks are related to

sizable premium in the expected return of individual stocks over time. The equity premium

associated to idiosyncratic (jump) risks contribute to 57.18% (16.25%) of the total equity

premium on average. Lastly, the cross-sectional difference in the expected stock returns
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in our sample can be explained by the difference in the model-implied systematic jump,

idiosyncratic diffusive and idiosyncratic jump risk premiums.

The closest econometrics approach in the literature is Maheu et al. (2013). They estimate

a GARCH-jump mixed model for the market returns with time-varying jump and diffusive

risk premiums. We extent their framework to accommodate the estimation for individual

stock returns, i.e. the need for estimating systematic and idiosyncratic counterparts in both

jump and diffusive components. Our work is also related to Maheu and McCurdy (2004).

They estimate the dynamics of jump and diffusive components in stock returns with constant

equity premium. The difference between their model and ours is that we introduce the

systematic and idiosyncratic counterparts in each components and consider their roles in the

time-varying equity premium. On the technical side, we provide a procedure to filter out the

four components in stock innovation. This is comparable to the one in Christoffersen et al.

(2012), who estimated different specifications of dynamic jump model for the S&P 500 index.

Our paper complements the recent studies that intend to disentangle the four types of

risks in equity premiums and in higher order risk premiums. Using stock return and option

prices, Gourier (2016) and Bégin et al. (2016) conduct a joint estimation using both stock and

option data to decompose the four risk premiums associated with systematic and idiosyncratic

diffusive and jump risks. They both find that idiosyncratic risks contribute to more than 40%

of the total equity premium on average after 1996 and that idiosyncratic risk mostly comes

from the jump risk component. Though we have different data sets and methodology, we

obtain some similar results. We use 50 years of daily stock returns to identify the dynamics

of jump risks. Using the time series of stock returns, we are able to further investigate the
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evolution of the contribution of different risks over a long period, in contrast to the fact

that their analysis started from 1996 due to the availability of option data. In addition, to

better capture the contribution of systematic risks in equity premium in a long time frame,

we let the exposures of the stock to the market jump and diffusion risks to be time varying,

related to the business cycle variable. An additional difference between our approach and

the methodology in the previous two papers is that we jointly estimate the model using

the market return and the stock return, while they first estimate the market parameters

and then estimate the parameters for individual stocks using the estimates from the market

returns. To the best of our knowledge, this is the first study to model dynamic jump and

diffusion components, while considering decomposition towards systematic and idiosyncratic

risks based only on time series of stock returns.

The remainder of the paper proceeds as follows. Section 2 presents our model setup and

discusses the expected stock return under our model. Section 3 discusses the estimation

methodology. Section 4 provides the data and the estimation results. Section 5 discusses the

implications on asset pricing. Section 6 concludes. The technical derivations are postponed

to the Appendix in Section 7.

2 Model

Our model builds on Maheu and McCurdy (2004) and Maheu et al. (2013). The former

presents mixed GARCH-jump models for individual stocks, while the latter considers time-

varying equity premium in the market returns. We aim at accommodating both systematic

and idiosyncratic risks in individual stock returns. In section 2.1, we first present the model
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on the market return and the dynamics of volatility and jump intensity. Then we discuss

the model on individual stock returns in section 2.2. Lastly, we specify a pricing kernel and

derive the expression of expected returns of individual stocks in section 2.3.

2.1 The dynamic of market returns

We model the continuously compounded market return by the combination of a normally

distributed diffusion component and a jump component.

Assume the following decomposition of the market return:

Market: Rmt+1 = log(
Smt+1

Smt
) = αmt+1 + ymt+1 + zmt+1, (1)

where Smt+1 denotes the market price at the close of day t + 1 and αmt+1 is related to model-

implied market equity premium expected for period t+ 1, given the information set Φt. We

will derive the expression of αmt+1 in Section 2.3. The log return is driven by two stochastic

processes: a jump component, ymt+1 and a diffusive component, zmt+1. They are assumed

to be independent conditional on the information available at time t. Due to the dynamic

interaction between the two terms, they are not unconditionally independent.

The jump innovation is governed by a conditional Poisson jump-arrival process combined

by a normal jump-size distribution. Define the discrete-valued number of jumps in the market

return over the time period t to t+1 as Nm
t+1. The conditional distribution of Nm

t+1 is a Poisson

distribution with jump intensity hy,t+1,

P (Nm
t+1 = j|Φt) =

exp(−hy,t+1)h
j
t,t+1

j!
, j = 0, 1, 2, ...
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The conditional arrival rate of jumps, hy,t+1 is the expected number of jumps for period

t+ 1 given information at time t, that is,

hmy,t+1 = E(Nm
t+1|Φt).

As in Maheu and McCurdy (2004) and Maheu et al. (2013), we parameterize the dynamics

of conditional jump intensity hmy,t+1 as responsive to past intensity and “news”,

hmy,t+1 = wmy + bmy h
m
y,t + amy ζ

m
t , (2)

where bmy measures persistence of jump intensity dynamic and amy is the news-impact co-

efficient, associated with the jump innovation ζmt , defined as follows. The jump intensity

innovation ζmt is the forecast update of the number of jumps Nm
t , when the information set

at t is available:

ζmt = E[Nm
t |Φt]− E[Nm

t |Φt−1] = E[Nm
t |Φt]− hmy,t

=

∞∑
j=0

jP (Nm
t = j|Φt)− hmy,t. (3)

The first part in Equation (3), the ex-post probability of j jumps at time t given information

at t can be calculated as:

P (Nm
t = j|Φt) =

f(Rmt |Nm
t = j,Φt−1)P (Nm

t = j|Φt−1)

f(Rt|Φt−1)
, (4)

where f(.) refers to the conditional density of the market return. Note from this definition

8



that the expectation of ζmt conditional on information set Φt−1 is zero. The jump intensity

process is directed by the jump innovation rather than the squared-return innovations. This

allows the the impact of time-varying jump intensity on expected variance dynamics to be

different from that captured by the GARCH component of variance.

We assume that the jump size follows a normal distribution N(θm, (δm)2), where θm refers

to the mean of jump size and (δm)2 is the variance, and the jumps occur independently. That

is, the jump components in the return process is given by:

ymt+1 =

Nm
t+1∑
j=1

xjt+1,

where xjt+1, j = 1, 2, · · · are independently and identically distributed (i.i.d.) random vari-

ables drawn from N(θm, (δm)2). Therefore, the conditional mean and variance of the jump

component ymt+1 are hmy,t+1θ
m and hmy,t+1((θ

m)2 + (δm)2), respectively. The conditional mean

of market return is thus expressed as E[Rmt+1|Φt] = αmt+1 + θmhyy,t+1.

Further, the diffusion term zmt+1 is assumed to follow a normal distribution N(0, hmz,t+1)

with conditional variance hmz,t+1, i.e.

zmt+1 =
√
hmz,t+1ε

m
t+1, ε

m
t+1 ∼ N(0, 1),

where hmz,t+1 is governed by a two-component GARCH model with feedback from jumps. We
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adopt the specification in Maheu et al. (2013):

hmz,t+1 = hmz1,t+1 + hmz2,t+1, (5)

hmz1,t+1 = wmz + bmz1h
m
z1,t + gm1 (Φt)(R

m
t − E[Rmt |Φt−1])

2 (6)

hmz2,t+1 = bmz2h
m
z2,t + gm2 (Φt)(R

m
t − E[Rmt |Φt−1])

2 (7)

The long-run component is captured by hz1,t+1 and the transitory moves are modeled by

hz2,t+1.

The generalized news impact coefficient gmk (Φt) (k = 1, 2) for the kth GARCH component

is given as,

gmk (Φt) = exp(τmk1 + Imt (τmk2E[Nm
t |Φt] + τmk3)), k = 1, 2.

Imt =


1 if Rmt − E[Rmt |Φt−1] < 0,

0 otherwise.

Both Maheu et al. (2013) and our empirical analysis below confirm that it is essential to

specify a two-component GARCH process to capture the diffusive volatility. It also helps to

estimate jumps precisely. Otherwise, the noise and transitory part of the diffusive volatility

could be potentially sorted as jumps3. This model allows for asymmetric impacts from good

and bad news and feedback from jump innovations. The term Rmt −E[Rmt |Φt−1] is the total

return innovation observable at time t. E[Nm
t |Φt] is the filtered number of jumps at time t

given Φt.

3We plot the long-run and short-run components from April 2011 to November 2012 in Figure 2, which
shows that the long-run diffusive variance move more slowly than the short-run component.
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Similar to Christoffersen et al. (2012), the filtered jump and diffusion terms, ỹmt and z̃mt ,

can be obtained given parameters, which is illustrated in details in Appendix 7.3.

2.2 The dynamic of individual stocks returns

Next, we propose a model on the dynamic of individual stock returns, which involves the

dependence between the return processes of individual stocks and the market. First, the

individual stock return is modeled by a similar structure as that for the market return:

Firm: Rit+1 = log(
Sit+1

Sit
) = αit+1 + yit+1 + zit+1, (8)

For the jump component yit+1, we assume that when there is a jump in the market, the

probability that the market jump will trigger a jump in individual stock i is pi. Further,

there is an idiosyncratic jump process that is independent from the market jumps. In other

words, conditional on having Nm
t+1 jumps in the market, the number of individual jumps

N i
t+1 equals to the sum of a binomial distributed random number Bi(Nm

t+1, p
i) and an inde-

pendently Poisson distributed random number N ε
t+1 with intensity hεy,t+1. Then the number

of individual jumps N i
t+1 follows a Poisson distribution with intensity hiy,t+1 as:

hiy,t+1 = pihmy,t+1 + hεy,t+1. (9)

The jump component in the individual return, yit+1, is therefore given as,

yit+1 =

Nm
t+1∑
j=1

xji,t+11market jump j triggers a jump +

Nm
t+1+N

ε
t+1∑

j=Nm
t+1+1

xji,t+1
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Here, the first part consists of the jumps triggered by the market jumps, while the second

part consists of the idiosyncratic jumps that are independent from the market jumps. We

assume that the jump size of individual stock xji,t+1, j = 0, 1, 2, · · · , are i.i.d. and follow a

normal distribution N(θi, (δi)2). When a jump is triggered by a market jump, the size of

the triggered jump and the corresponding market jump are assumed to be correlated with a

correlation φi.

The dynamics of the intensity hεy,t+1 has the following structure:

hεy,t+1 = wiy + biyh
ε
y,t + aiyζ

ε
t , (10)

where the jump innovation term ζεt for period t is defined as

ζεt = E[N ε
t |Φt]− E[N ε

t |Φt−1] = E[N ε
t |Φt]− hεy,t. (11)

Notice that the ex-post expected number of idiosyncratic jumps is proportional to that of

total jumps in the individual stock returns:

E[N ε
t |Φt] =

E[N i
t |Φt]h

ε
y,t

hiy,t
. (12)

Here, the ex-post expected number of total jumps in individual stock return E[N i
t |Φt] can

be calculated based on the total jump intensity hiy,t and the conditional density of the stock

12



return Rit:

E[N i
t |Φt] =

∞∑
j=0

j Pr(N i
t = j|Φt) =

∞∑
j=0

j
f(Rit|N i

t = j,Φt−1) Pr(N i
t = j|Φt−1)

f(Rit|Φt−1)
(13)

The jump innovation term ζεt is then determined by Equation (11) to (13).

Next, in the spirit of CAPM, we model the total diffusion component of the individual

stock as the sum of systematic and idiosyncratic diffusion component:

zit+1 = βizmt+1 + zεt+1, (14)

where βi is the factor loading of stock i on systematic diffusive risk and the idiosyncratic

diffusive component zεt+1 follows a normal distribution N(0, hεz,t+1). Further, zmt+1 and zεt+1

are independent from each other.

The dynamic of idiosyncratic conditional variance has a parallel structure as that of the

market. In addition, we assume that only the idiosyncratic innovation affects idiosyncratic

conditional variance as follows:

hεz,t+1 = hεz1,t+1 + hεz2,t+1, (15)

hεz1,t+1 = wiz + biz1h
ε
z1,t + g1(Φt)(R

i
t − E[Rit|Φt−1])

2 (16)

hεz2,t+1 = biz2h
ε
z2,t + g2(Φt)(R

i
t − E[Rit|Φt−1])

2. (17)

The generalized new impact coefficient gj(Φt) (j = 1, 2) for the jth GARCH component
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allows asymmetric impact from good and bad idiosyncratic news:

gj(Φt) = exp(τ ij1 + It(τ
i
j2E[N ε

t |Φt] + τ ij3)), j = 1, 2.

It =


1 if Rit − E[Rit|Φt] < 0;

0, otherwise.

The dynamic of the idiosyncratic diffusive component is driven by the innovation of the stock

return:

Rit − E[Rit|Φt] = Rit − αit − θihiy,t.

Under our model setup, the conditional variance of the individual stock return can be

derived as:

V ar(Rjt+1|Φt) = (βi)2hmz,t+1 + hεz,t+1 + (pihmy,t+1 + hεy,t+1)((θ
i)2 + (δi)2). (18)

In this paper, we only use the return data to estimate the jump and volatility dynamics of

both the market and the stocks. Hence, long term time series from 1963 to 2015 that contain

several extreme movements are used to identify the parameters that govern the dynamics of

the infrequent jumps. When estimating for such a long time series, we allow the exposures of

the individual stocks to the market risks, namely βi and pi, to vary with business condition

in the spirit of conditional CAPM. Motivated by Avramov and Chordia (2006), we model
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the conditional βi and pi as:

βit = βi1 + βi2BCt,

pit = pi1 + pi2BCt,

Following Jagannathan and Wang (1996) and Avramov and Chordia (2006), we focus on the

default spread as a proxy of the business condition variable BCt, which has been shown to

have the best predictive power for future business conditions in the literature. The default

spread is defined as the yield differential between the Baa and Aaa corporate bonds.

2.3 The pricing kernel and the expected returns

To facilitate our analysis of how various risk factors are priced, we introduce a parametric

pricing kernel to price all four risk factors, including both volatility risk and the jump risk.

With the assumed pricing kernel, we derive the expected returns of the individual stocks and

the market. In the absence of arbitrage, a pricing kernel Mt is a positive stochastic process

such that MtSt is a martingale for any stock price process St. In a discrete-time setting, this

condition is represented by the following identity:

Et[
Mt+1

Mt

St+1

St
] = 1.

Naik and Lee (1990) demonstrated that the market is incomplete when jumps are present

in stock prices. Such market incompleteness implies the absence of a unique pricing kernel.

Consequently, we adopt one candidate pricing kernel that prices the four sources of risks in
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our model on stock returns: systematic jump shock, systematic diffusion shock, idiosyncratic

jump shock and idiosyncratic diffusion shock. We specify a standard log linear pricing kernel

as:

log(
Mt+1

Mt
) = −r − µt+1 − Λmzmt+1 − Λmymt+1 −

J∑
i=1

Λizεi,t+1 −
J∑
i=1

Λiyεi,t+1, (19)

where r is risk-free rate, Λm, Λi, i = 1, ..., J are related to the prices of different risk factors.

Here, J denotes the total number of stocks in the economy. Recall that the terms zmt+1

and ymt+1 are market diffusive and jump components, and the terms zεi,t+1 and yεi,t+1 are

idiosyncratic risk components in stock i, independent from the market risks. In such a pricing

kernel, we implicitly assume that investors’ portfolio are not well-diversified, and idiosyncratic

diffusive and jump components are potentially priced. Hence, this general structure allows

all possible risks in the market and individual stocks to be priced. In Maheu et al. (2013),

they specify a nonlinear pricing kernel to capture the risks due to dynamics of the higher

order moments. More parameters would add the richness of the model, but also increase the

difficulty of the estimation. To keep the simplicity of the model and to address the main

research question in the paper, we use the linear model to specify the pricing kernel.

The coefficient µt+1 is a normalizing constant to ensure that Et[
Mt+1

Mt
] = e−r. Thus, it is

derived as:

µt+1 = logEt[exp(−Λmzmt+1 − Λmymt+1 −
J∑
i=1

Λizεt+1 −
J∑
i=1

Λiyεt+1)].

We apply the pricing kernel in (19) to price all stocks in the economy. In the absence of
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arbitrage, we have the following equations hold:

Et[
Mt+1

Mt
eR

m
t+1 ] = 1 and Et[

Mt+1

Mt
eR

i
t+1 ] = 1, (20)

for all i’s. This leads to the following proposition on the expected returns of stocks. The

proof is left to Appendix 7.4.

Proposition 1 Under our model on the dynamics of the market and individual returns with

the pricing kernel in Equation (19), the discrete-time conditional expected returns of the

market and individual stock can be written as:

Et[exp(Rmt+1)] = exp(r + λzh
m
z,t+1 + λyh

m
y,t+1)

Et[exp(Rit+1)] = exp(r + βiλzh
m
z,t+1 + pi(ea(1− eb) + eθ

i+ 1
2
(δi)2 − 1)hmy,t+1 + λzih

ε
z,t+1 + λyih

ε
y,t+1.)

where a = −Λmθm + 1
2(δm)2(Λm)2 and b = θi + 1

2(δi)2 − φiδiδmΛm.

In addition, the parameters in the pricing kernel and in the dynamics of the market and

individual stock returns should satisfy the following equations:

λz = Λm, λy = ξm(1) + ξm(−Λm)− ξm(1− Λm),

λzi = Λi, λyi = ξi(1) + ξi(−Λi)− ξi(1− Λi),

where ξm(ψ) = exp(θmψ + (δm)2ψ
2 )− 1 and ξi(φ) = exp(θiφ+ (δi)2φ

2 )− 1.

17



From Proposition 1, we get the expected continuously compounded market return as:

αmt+1 = r + (Λm − 1

2
)hmz,t+1 + (ξm(−Λm)− ξm(1− Λm))hmy,t+1

= r + (λz −
1

2
)hmz,t+1 + (λy − ξm(1))hmy,t+1. (21)

For the individual stock i, the expected continuously compounded return is then:

αit+1 = r + (βiΛm − 1

2
(βi)2)hmz,t+1 + piea(1− eb)hmy,t+1+

(Λi − 1

2
)hεz,t+1 + (ξi(−Λi)− ξi(1− Λyi))h

ε
y,t+1,

Note that λz, λzi, λy and λyi are the market prices for loading on four types of risks,

which are related to the parameters Λm and Λi in the pricing kernel. The derived expected

stock return from our model can be interpreted in the following ways. First, with complete

diversification and in the absence of jumps, only the first term in the expected return of

individual stocks remains. The expected return derived under our model reduces to that

from the CAPM.

Second, when the correlation between jump sizes in the market and individual stock

returns φi is zero, the second term in the expected return of individual stocks is reduced to

p(ea − 1)(1 − eb)hmy,t+1. Because the average jump size for the market return is generally

estimated as negative in the literature with dynamic jump intensity,4 the parameter a is

therefore positive. The sign of the premium thus depends on the sign of the parameter b.

As stated in Jiang and Oomen (2008), individual stock price jumps tend to be idiosyncratic

4Christoffersen et al. (2012) estimate the average jump size of SP 500 index as −0.174 from the DVSDJ
model. In Maheu and McCurdy (2004), the jump size mean θ is significantly negative for the three indices
(DJIA, Nasdaq 100 and TXX)
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and predominantly positive, presenting an interesting contrast to mostly negative jumps in

market portfolios. Maheu and McCurdy (2004) also find that the jump size mean is centered

around zero for most of the individual firms. From the empirical evidence, we conjecture that

θi is centered around zero or slightly higher than zero. Hence, b is positive, which implies

that (ea − 1)(1 − eb) is negative. Therefore, the expected return of the individual stock is

decreasing with respect to the probability that market jump can trigger an individual jump

p.

Third, when the correlation between jump sizes of market and individual stock returns φi

is not zero, stocks whose jump sizes are more correlated with the market earn higher returns.

Finally, idiosyncratic diffusive and jump risk premiums are included in the expected return

because the pricing kernel allows all underlying risk factors n the economy. We will test their

statistical and economic significance in our empirical study.

3 Estimation methodology

In this section, we discuss our methodology to estimate the model described in Section 2.

We apply a joint estimation strategy, i.e. to estimate the parameters for the market and the

stock return dynamics together for each stock. An alternative method is to use a two-step

estimation strategy: first estimate parameters in the market dynamics and then estimate the

parameters in the individual stocks by substituting the estimated parameters and dynamics

of ĥmy and ĥmz into the dynamics of hiy and hiz in the individual stock returns. There are

two reasons why we prefer the joint estimation. First, in Equation (9), both hiy,t+1 and

hεy,t+1 are latent processes. Therefore, it would be difficult to identify the parameters in
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the systematic and idiosyncratic component and make sure they are independent with each

other in the second stage. Second, with the joint estimation methodology, the program can

achieve a higher likelihood. Due to the two reasons, the joint estimation strategy is essential

for identifying the parameters in the idiosyncratic and systematic components.

First, we provide the likelihood function for the market model. Given the parameters

Θm = (Λm, wmz , b
m
z1, τ

m
11, τ

m
12, τ

m
13, b

m
z2, τ

m
21, τ

m
22, τ

m
23, w

m
y , b

m
y , a

m
y , θ

m, δm), we can get the time se-

ries of conditional market variance hmz,t+1 and market jump intensity hmy,t+1 by iterating from

the starting time.

The likelihood function is given as follows. First, conditional on having Nm
t+1 = j jumps

during time t to t + 1, the jump component follows a normal distribution N(jθm, j(δm)2).

The conditional density function for stock return can be written as:

f(Rmt+1|Nm
t+1 = j) =

1√
2π(hmz,t+1 + j(δm)2

exp
(Rmt+1 − αmt+1 − jθm)2

2(hmz,t+1 + j(δm)2)
. (22)

Second, since the number of jumps during time t and t+ 1 follow a Poisson distribution, we

get that

Pr(Nm
t+1 = j) =

(hmy,t+1)
j

j!
exp(−hmy,t+1). (23)

Hence, the unconditional density of the return can be written as:

f(Rmt+1) =

∞∑
j=0

f(Rmt+1|Nm
t+1 = j) Pr(Nm

t+1 = j). (24)

20



Then, the likelihood function can be constructed as:

Lm(Rmt+1,Θ
m) =

T∑
t=1

log f(Rmt+1), (25)

where Θm includes 15 parameters for the market as stated above. We truncate the potential

number of jumps in Equation (24) to a finite number. Maheu and McCurdy (2004) find that

the conditional jump probability is zero for Nt+1 ≥ 10. The maximum number of jumps in

a day is estimated as 5 in Christoffersen et al. (2012). Similarly, we also assume that the

maximum number of jumps from t to t+ 1 is 5.

The likelihood function for the individual stock returns has the similar structure as that

for the market returns. Substituting the subscript of Equation (22) to Equation (25) from

m to i, we have the likelihood function for the individual stocks:

Li(Rit+1,Θ
i) =

T∑
t=1

log f(Rit+1), (26)

in which the parameter set Θi has 19 parameters: Θi = (Λi, wiz, b
i
z1, τ

i
11, τ

i
12, τ

i
13, b

i
z2, τ

i
21, τ

i
22,

τ i23, w
i
y, b

i
y, a

i
y, θ

i, δi, βi1, β
i
1, p

i
1, p

i
2).

We estimate the 34 parameters by maximizing the sum of the likelihood function of the

market returns and that of the stocks returns together for each stock. The joint likelihood

function L(Rt+1,Θ) is:

L(Rt+1,Θ) = Lm(Rmt+1,Θ
m) + Li(Rit+1,Θ

m,Θi).

Based on the estimation result, the systematic jump and diffusion terms and the idiosyncratic
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jump and diffusion terms can be filtered out using the procedure in Appendix 7.3.

We are aware of the potential drawback that the estimation result for the market return

may be different for each stock. As a justification of the methodology, in Section 4 we first

estimate for the market alone by maximizing Lm(Rmt+1,Θ
m) and estimate jointly for the

market and the stock by maximizing L(Rt+1,Θ). We find that the estimated parameters

of the market dynamic for all stocks are close to the estimated parameters from estimating

the market return alone. To the best of our knowledge, joint estimation is the best solution

to identify the parameters in each components of the stock return and to guarantee a small

correlation between the idiosyncratic and systematic components.

4 Estimation results

This section presents first the data used in our empirical study and then the estimation

results. Based on the results, we discuss the risk premiums related to the four potential risk

factors.

4.1 Data

We use a dataset consisting of daily returns of the S&P500 index and 15 individual stock

prices for the period Jan 3rd, 1963 to December 31st, 2015. The returns of the S&P500

index are regarded as the proxy of the market. These returns are adjusted for all applicable

splits and dividend distributions and converted to continuously compounded daily returns.

We have two criteria to select the stocks. First, the stocks are included in the S&P100 index

by the end of 2015, which represent the largest and most established companies in the index.
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Second, the stocks are traded during the sample period from Jan 3rd, 1963 to December

31st, 2015. We select 15 stocks which satisfy the two criteria. The data are obtained from

the Center for Research in Security Prices (CRSP) database.

Table 1 provides summary statistics for the daily continuously compounded returns of the

15 firms. The kurtosis ranges from 8.7 to 70.1, which shows strong evidence of non-normality

in the stock returns. Such a non-normal feature calls for modeling jump risk. When plotting

the time series of returns on S&P500 index in Figure 1, we observe evidence of discontinuous

large changes reflecting jumps as well as the pattern of volatility clustering. These features

call for modeling the dynamics in diffusive and jump risks. In order to get numerically stable

estimates, we scale the daily return by 100, similar to Maheu et al. (2013). The details of

the scaling procedure is presented in Appendix 7.1. The results in Table 1 to Table 7 are for

the scaled return.

4.2 Estimation Results for the market returns

Table 2 presents the estimated parameters for the returns on S&P500 index. In the column

“Single estimation”, we show the estimated parameters for estimating the market alone.

First, we observe that the magnitude of jumps captured by the jump size estimates has an

estimated mean −0.29 and variance 1.156. Both of the estimates are significant different

from zero. In Figure 1(a), we observe that the negative jumps occur more frequently than

the positive ones. This is in line with the positive market price of jump risk, since investors

will be compensated for bearing potential negative price changes. Second, during the sample

period, the jump arrival frequency matches the history of crisis. The pattern of hmy,t+1 in

Figure 1(b) and the filtered jump components in Figure 1(c) are consistent with the timing
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of the crises during the sample period. For example, the Asian crisis in 1997, the burst of

internet bubble in 2000 and the recent subprime crisis in 2008. The unconditional expected

value of the dynamic jump intensity wmy /(1 − bmy ) = 0.15 is comparable to the estimate in

Maheu et al. (2013)5.

From the estimation on the market return, we observe a positive price for the systematic

risk: the estimated market price of systematic risk Λm is 3.513, statistically higher than zero.

Figure 3 illustrates the time varying equity premium for the market returns. The average

equity premium is 0.05, showed by the dotted line.

In the columns called “Joint estimation” in Table 2, we report the estimated market

parameters from the joint estimation. Since we jointly estimate for the stock and market

returns, the estimation results for the market daily returns are not exactly the same for each

stock. From the table, it shows that the results from joint estimation are close to that from

the single estimation. For all market parameters, the average value across individual stocks

is within the 95% confidence interval obtained from maximizing the market returns alone.

The evidence suggest that the joint estimation methodology provides reasonable estimates

for the market parameters. We ex-ante choose the joint estimation because of the advan-

tages discussed earlier in this section, but from the comparison we conclude that the joint

estimation is not such a necessity for this paper.

5The unconditional jump intensity can be estimated differently in different models due to specification of
variance dynamics and intensity dynamics. In the DVSDJ model in Christoffersen et al. (2012), the estimate
is around 0.025 for S&P500 and in Maheu and McCurdy (2004), it is 0.135 for DJIA.

24



4.3 Estimation Results for the individual returns

The model on individual stock return is estimated for the 15 stocks in our sample. We first

show several general features of the model in Figure 4 to Figure 6 by taking the stock ADM

(Archer Daniels Midland Company) as an example. We present the original times series plot

for the daily returns of ADM in Figure 4(a). The decomposition of the total conditional

jump intensity is shown in Figure 4(b) and (c). The systematic jump intensity contributes

to 13.14% of the total conditional jump intensity on average. Hence, it is important to

model idiosyncratic jump risk and study whether it is priced. When comparing diffusive

and jump risks, we decompose the total conditional variance given in Equation (18) into

the conditional variances of the diffusive and jump components. The decomposition of the

total conditional variance is shown in Figure 5(b) and (c), respectively. On average, the

contribution of conditional variance of the jump component to the total conditional variance

is 45.66%.

Using the filtering procedure in Appendix 7.3 and the estimated parameters, we filter

out the systematic and idiosyncratic jump and diffusion components for ADM and show the

plots in Figure 6. The solid lines are jump components and the dotted lines are diffusion

components. The figures show that the model for individual stocks in Section 2.2 can capture

large negative and positive outliers which are important for modeling the heavy-tailedness

of stock returns. In addition, it shows that the model can differentiate the idiosyncratic and

systematic components. For instance, the correlation between systematic and idiosyncratic

diffusive components is 0.17 and the correlation between systematic and idiosyncratic jump

components is 0.33. The patterns demonstrated in these figures agree with the findings in
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Ornthanalai (2014) and Li et al. (2008) that the daily return data favor small-sized jumps

that occur frequently over the current practice that typically model jumps as large and rare

event.

Next, we discuss the estimates of the model parameters. Since we present the summary

statistics for the market parameters in Table 2, we only present the parameters for the

idiosyncratic components and the exposure parameters to the market risks in Table 3 and

Table 4 for each stock. From the cross-sectional comparison, we obtain the following stylized

facts.

First, there is evidence on the persistence of conditional jump intensity for all firms.

The persistent parameters, biy, for the jump intensity are significantly positive from 0.874 to

0.9996.

Second, the importance of revision to the conditional idiosyncratic jump intensity is sim-

ilar as that to the conditional systematic jump intensity. The parameter aiy, which captures

the the effect of the most recent intensity residual (the change in the conditional forecast of

number of jumps due to last day’s information) ranges from 0.036 to 0.362. The estimated

amy for the market is 0.055.

Third, the negative idiosyncratic return innovation has significantly positive effect on the

long-run and short-run conditional diffusive variance: τ i13 and τ i23 are both positive for 14

out of 15 stocks. The filtered number of jumps E[Nt|Φt], on the other hands, has negative

effect on the long-run conditional diffusive variance for all stocks, and positive effect on the

short-run conditional diffusive variance for 11 out of 15 stocks. Therefore, we can conclude

6The estimated persistent parameters are very close to 1, but they are all significantly different from 1 at
the 5% level. The unit-root test rejects the null hypothesis of non-stationary jump intensity series. From the
figure that shows the time series of the jump intensity, we observe that a shock does not have a persistent
effect on future jump intensities.
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that the jump innovations increase the conditional diffusive variance in the short run and

decrease that in the long run.

Fourth, the jump characteristics of the individual stocks are different from that of market

jumps. The estimated jump size mean θi are negative for 2 out of 15 stocks, and positive

for the other firms. This result is consistent with Jiang and Yao (2014), who find that indi-

vidual stock price jumps tend to be idiosyncratic and predominantly positive, presenting an

interesting contrast to mostly negative jumps in market portfolios. The result also supports

Duffee (1995)’s conjecture that there is a negatively skewed market factor and a positively

skewned idiosyncratic firm factor. Further, the volatility of the idiosyncratic jump size δi for

individual firms are all higher than that for the market. We present estimates of θi and δi

for each stock in Table 3 and Table 4.

The dependence structure between individual stocks and the market return is captured

by the loadings on the two types of systematic risks, βit and pit. The summary statistics

of the two variables are shown for each individual stocks in Table 5. From Table 3 and

Table 4, we find that there are 13 out of 15 stocks with βit positively related to the default

spread (βi2 is positive) and 4 out of 15 stocks with pit positively related to the default spread.

In general, for most stocks the time-varying exposure to the market risk is countercyclical:

stock returns of those firms react more to the market returns during economy downturns

than during upturns. Two exceptions in our sample are Exxon Mobil (XOM) and Colgate-

Palmolive Company (CL), whose exposure to the market risk is negatively related to the

default spread (βi2 < 0 and pi2 < 0). These two stocks are generally considered as defensive

stocks. Exxon Mobil, a large oil producer with light leverage is expected to react less to
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the market movement during a recessionary period. In addition, Colgate-Palmolive is less

sensitive to the market movement during bad times than during good times, because it is a

geographically diversified nondurable consumer brand,

Finally, Figure 8 present the time-varying contribution of idiosyncratic jump intensity to

the total jump intensity (Figure 8(a)) and the time-varying contribution of the idiosyncratic

volatility to the total volatility (Figure 8(b)) for the 15 stocks on average. Idiosyncratic

jump intensity (variance) contribution to 82.25% (66.70%) of the total jump intensity (vari-

ance). The declining patterns in the two figures show that the systematic jump intensity and

volatility play increasingly important roles during the past 50 years.

5 Pricing jump risk in the expected stock returns

In this section, we analyze how the four types of risks are priced in the expected stock

returns in our sample. First, we calculate the four premiums on the four types of risks and

investigate their contribution to the total expected stock return during the sample period.

Second, we sort the stocks according to the four risk premiums and construct portfolios

representing stocks with low to high premium. By comparing portfolio performance over the

entire sample period, we check whether the four types of risks are priced in the cross-section

of expected stock returns.

Note that in order to calculate the expected stock return in Proposition 1, we need to

first calculate the parameters in the pricing kernel, Λm and Λi. From Proposition 1, we get
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that:

λz = Λm, λy = ξm(1) + ξm(−Λm)− ξm(1− Λm),

Hence, λy and λz are calculated based on the estimated Λm from the joint model. Similarly,

we can calculate the idiosyncratic risk parameters λyi and λzi for individual stocks using

estimated Λi.

5.1 Decomposing the expected stock return

To understand the economic significance of the four risk premiums related to systematic

and idiosyncratic jump risks and systematic and idiosyncratic jump risks, we decompose

the model-implied expected return into four corresponding risk premiums and evaluate their

contributions. We aggregate idiosyncratic diffusive and jump premiums into the idiosyncratic

risk premium for each stock. The average contribution of the idiosyncratic risk premium

across the 15 stocks is presented in Figure 7(a). We find that on average the idiosyncratic

risk premium contributes to 57.18% of the model-implied expected return. This confirms that

idiosyncratic risks are economically important pricing factors in the expected stock return

over time.

Further, the idiosyncratic risk premiums decrease dramatically during crises, i.e. in the

Asian crisis in 1997 and in the recent subprime crisis in 2008. This can be explained by the

fact that during the crisis, systematic events, such as the bankruptcy of Lehman Brothers,

drive the stock prices more than idiosyncratic events, such as earning surprises. Therefore

systematic risk premium accounts more during the crises.
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We also aggregate the systematic and idiosyncratic jump risk premiums into a jump

premium. We show the average contribution of the jump risk premium across the 15 stocks

to the total expected return in Figure 7(b). The jump risk premium accounts for almost 16%

of the model-implied expected returns. In addition, it remains around a stable level over our

sample period. This shows that prices of jump risks are of great economic importance in

studying the expected stock return.

5.2 Portfolio performance

If the risk premiums that we recover represent the reward for bearing risk, stocks with a higher

risk premium should have higher expected returns than their peers. To check whether this

is the case, we conduct a portfolio performance analysis, by sorting based on the estimated

risk premiums. Denote the systematic diffusive risk, systematic jump risk, idiosyncratic

diffusive risk, and idiosyncratic jump risk as SD, SJ, ID and IJ. When the information on the

conditional premiums is available at t, we use them to sort the stock return one day ahead

at t+ 1. In this sense, the sorting is a “pseudo out-of-sample” approach. It is not completely

out-of-sample because we use all information over the whole sample to estimate the model.

The stocks are sorted into five portfolios with 3 stocks in each of them, according to the risk

premium on each type of risks. In each portfolio, we assign equal weights to the stocks and

calculate the portfolio return over our sample period.

As shown in Proposition 1, the sorting based on the SD and the SJ premiums will be

identical to the sorting based on the level of β and p(1−eb), respectively. Thus, if the market

exposures are assumed to be constant, then the sorting based on the two risk premiums remain

constant throughout the sample period. We relax this restriction by making the exposure
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parameters vary with economic indicator. Hence, the sorting for market risk premium is

time varying. Sorting based on the ID and IJ premiums are also time-varying because

the conditional idiosyncratic volatility, hεz,t, and conditional idiosyncratic jump intensity,

hεy,t, vary over time. The annualized portfolio returns for the constructed portfolios are

calculated in the first five rows in Table 7. The sixth row reports the difference between the

average returns of the fifth and the first portfolios. The last two rows report t-statistics and

corresponding p-values when testing the null hypothesis that the difference is equal to zeros.

The t-statistics are calculated based on the Newey-West standard error.

From Table 7, we find that when we sort the total conditional equity premium of the

stocks, the future return increase from 1.7% from the first quintile to 12.2% in the fifth

quintile. This supports the setup of model that it is able to capture the variation of the

equity premium both over time and across different stocks. When we sort the stocks based

on the ID and IJ premiums, the average returns are increasing from the low to high premium

portfolios. The difference between the average returns of the fifth and the first portfolios are

8.6% and 5.7%, respectively, and both of them are statistically significant at 5% confidence

level. Hence, the idiosyncratic diffusive and jump risks are both priced in the cross-section

of expected stock returns in our sample. However, when the stocks are sorted based on the

SD, the average returns of the three portfolio return are not lining up in a particular order.

Further, the difference between the average returns between the average returns of the third

and the first portfolio is negative and not significantly different from zero. As a robustness

check, we sort the stocks according to beta obtained from OLS regression, the results are

similar as sorting on SD. This suggests that the result is not due to systemic estimation
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error in SD. When we sort the stocks on SJ, the systematic jump risk premium, however,

the difference between the fifth and first portfolio return is statistically significant at 5%.

This observation that systematic diffusive risk is not priced in our sample contradicts the

classic CAPM. Due to the complexity of the model in this paper, we only estimate the model

for 15 stocks over a 50 years time period. The use of small sample of stocks in this paper may

limit the generosity of these results. Alternatively, it is possible that the result is in line with

the low-volatility anomaly, which has been found in the United States over an 85-year period

and in global markets for at least the past 20 years. The low-volatility anomaly says that

portfolios of low-volatility and low-beta stocks have produced higher risk-adjusted returns

than portfolios with high-volatility stocks in most markets studied, for instance, by Blitz and

Van Vliet (2007), Blitz et al. (2013), Baker et al. (2011), and Frazzini and Pedersen (2014).

Our results shed light on the low volatility anomaly by showing that the anomaly comes from

the systematic diffusive risk rather than the systematic jump risk.

To summarize, when we decompose the model-implied expected return to the four risk

premiums, we find that both the systematic and idiosyncratic risk premiums are of economic

significance over time. When sorting the stocks based on the four risk premiums, we find

that systematic jump risk, idiosyncratic diffusive risk and idiosyncratic jump risk are priced

in the cross-section of the expected stock return.

6 Conclusion

In this paper, we propose a novel econometric framework for modeling the jump risk in in-

dividual stock returns. It distinguishes not only jump and diffusion components, but also
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systematic and idiosyncratic components. All four types of risks along with their associated

risk premiums are time-varying. The model also allows for time-varying loadings on sys-

tematic diffusive and jump risks. Consequently, we decompose the stock return and study

different sources of risk, especially jump risks. The study addresses two questions: (1) How

to estimate the four sources of time varying risks in a jump diffusion model for individual

stock returns? (2) How different types of risks are priced in equity premium over time and

in the cross-section?

We estimate the model with dynamic conditional variance and dynamic jump intensity on

15 stocks returns. We find that (1) the model is able to identify different types of risks only

using daily stock returns; (2) Idiosyncratic jump intensity and idiosyncratic diffusive variance

account a large amount in the total jump intensity and diffusive variance, i.e. on average

82.25% and 66.7% respectively. The contribution of systematic risks increases over the past

50 years. For the pricing of risks, we find that systematic jump, idiosyncratic diffusive and

idiosyncratic jump risk are significantly priced in the cross-section of expected stock returns

in our sample.

7 Appendix

7.1 Scaling returns

Empirically, we find that we need to scale the daily return Rm and Ri to get numerically

stable estimates. We only present the scaling procedure for the market returns. Individual

stock returns can be scaled in a similar pattern. Suppress the time index for convenience of
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notation, and recall from Section 2.1 that

Rm = αm + ym + zm,

αm = r + (λmy − ξm(1))hmy + (λz − 0.5)hmz ,

where ξm(φ) = exp(θmφ + (δm)2φ
2 ), and ym follows a compound Poisson distribution with

parameters (hmy , θm and δm). Scaling Rm by 100 and denoting the scaled return by Rm100:

Rm100 = αm100 + ym100 + zm100,

in which parameters with subscript 100 are for the scaled returns Rm100:

αm100 = 100αm = 100(r + (λmy − ξm(1))hmy + (λz − 0.5)hmz ),

ym100 = 100ym and zm100 = 100zm.

One can verify that zm100 ∼ N(0, hm100,z), where hm100,z = 1002hmz , and ym100 follows a compound

Poisson distribution with parameters (hmy , θm100, δ
m
100), where θm100 = 100θm and δm100 = 100δm.

The original return is thus written as:

Rm =
αm100
100

+
ym100
100

+
zm100
100

.
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Similarly, the log linear pricing kernel is:

log(
Mt+1

Mt
) = −r100

100
− µ100

100
− Λz

zm100
100
− Λy

ym100
100
−

J∑
i=1

Λzi
zε100,i
100

−
J∑
i=1

Λyi
yε100,i
100

.

In the absence of arbitrage, we have the following equality:

Et[
Mt+1

Mt
eR

m
] = 1.

Henceforth, the expression for equity premium in terms of scaled terms is:

αm100 = r100 + (Λz − 0.5)
hm100,z
100

+ 100(ξm100(1− Λy)− ξ100(−Λy))h
m
y ,

where ξm100(φ) = exp(
θm100
100 φ+

(δm100)
2φ

20000 )− 1.

7.2 Filter jump and diffusion terms from the market return

Given the 15 parameters for the market return: Θm = (Λm, wmz , b
m
z1, τ

m
11, τ

m
12, τ

m
13, b

m
z2, τ

m
21, τ

m
22,

τm23, w
m
y , b

m
y , a

m
y , θ

m, δm), we get the time series of conditional variance hmy,t and conditional

jump intensity hmz,t
7. Next, we discuss how to filter out the normal component of the return

zt. The filtration of zmt involves solving the expectation ẑmt = E[zmt |Φt]. Note that if market

return and number of jump are known at time t, we can express zmt as:

zmt (Rmt , N
m
t = j) =

√
hmz,t

hmz,t + j(δm)2
(Rmt − αmt − jθm).

7We set starting value of the jump intensity hmy,1 to the unconditional value as E[hmy,t] =
wy

1−by and the

starting value of the conditional variance as var(data)− hmy,1((θm)2 + (δm)2), where var(data) is the variance
of the market return.
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The expectation E[zmt |Φt] can then be solved using the following summation:

ẑmt = E[zmt |Φt] =
∞∑
j=0

zmt (Rmt , N
m
t = j) Pr(zmt , N

m
t = j),

where Pr(zmt , N
m
t ) is the joint probability of zmt and nmt = j given that Rmt is known. Using

Bayes’ rule, we can write the filtering density Pr(zmt , N
m
t ) as:

Pr(zmt , N
m
t ) = Pr(zmt |Rmt , Nm

t = j) Pr(Nm
t = j). (27)

The second term on the right-hand of Equation (27) is given by Equation (4), and the first

term is the probability of of zmt given that Rmt and Nm
t = j are known. Hence, we can write

the expected ex post normal component of the return as

ẑmt =

∞∑
j=0

zmt (Rmt , N
m
t = j) Pr(zmt |Rmt , Nm

t = j) Pr(Nm
t = j)

=

∞∑
j=0

hmz,t
hmz,t + j(δm)2

(Rmt − αmt − jθm) Pr(Nm
t = j).

Once ẑmt is known, we can directly infer the filtered jump term ŷmt by noting that ŷmt =

Rmt − αmt − ẑmt . The time series of filtered ẑmt and N̂m
t from estimated parameters are used

in the procedure of maximizing likelihood function for individual stocks.

7.3 Filter jump and diffusion terms from individual stock returns

Given the parameters for the market return and stock return, Θm and Θi, the time series

of hiy,t, h
i
z,t, h

ε
y,t, and hεz,t can be computed according to the dynamics in Equations (9),
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(??), (10) and (15). In this section, we discuss how to filter out the unobserved diffusion

components and jump components for individual stocks.

Similar as filtering procedure for the market, if the number of jumps in the individual

stock return nit = j and stock return Rit are known at time t, we can express zit as:

zit(R
i
t, n

i
t = j) =

√
hiz,t

hiz,t + j(δi)2
(Rt − αit − jθi),

where the expression for αit is given in Appendix 7.4. Since zit(R
i
t, n

i
t = j) depends on the

discrete number of jumps nit = j, the expectation Et[z
i
t] can be solved by summing up all

possible number of jumps:

ẑit =
∞∑
j=0

Pr(nit = j|Rit) zit(Rit, nit = j).

Once ẑit is known, we can infer ŷit from the relation that ŷit = Rit − µit − ẑit, given the

information at time t. After we obtain ŷit and ẑit, the filtered idiosyncratic jump component

ŷεt and ẑεt can be calculated by,

z̃εt = z̃it − βz̃mt , ỹεt = ỹit − ph̃my,tθi.

7.4 Expected return for the market and individual stocks

In this section, we provide the proof for Proposition 1. In the absence of arbitrage, the

martingale condition in Equation (20) should be satisfied for the market index and individual

stock return. First, substituting the pricing kernel in Equation (19) and market dynamic in
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Equation (1) into the Equation Et[
Mt+1

Mt
eR

m
t+1 ] = 1, we have:

Et[exp(−r − Λmzmt+1 − Λmymt+1 −
∑J

j=1 Λjzεj,t+1 −
∑J

j=1 Λjyεj,t+1 + αm + zmt+1 + ymt+1)]

Et[exp(−Λmzmt+1 − Λmymt+1 −
∑J

j=1 Λjzjt+1 −
∑J

j=1 Λjyjt+1)]
= 1.

Since ymt+1 and zmt+1 are independent, Et[exp(−Λmzmt+1 − Λmymt+1)] can be calculated as:

Et[exp(−Λmzmt+1 − Λmymt+1)] = exp(
1

2
(Λm)2hmz,t+1 + hmy,t+1(exp(−Λmθm +

1

2
(Λm)2(δm)2)− 1)),

where we use the moment generating function of normal distribution and compound Poisson

distribution. Since there is no correlation between zmt+1, y
m
t+1, z

ε
j,t+1 and yεj,t+1, we can get

the expression for αm from Equation (21):

αm = r + (Λm − 1

2
)hmz,t+1 + (ξ(−Λm)− ξ(1− Λm)hmy,t+1,

where ξ(φ) = exp(θφ+ δ2φ
2 )− 1.

Next, if we substitute the pricing kernel in Equation (19) and the dynamics of individual

stock return in (8) into the equation Et[
Mt+1

Mt
eR

i
t+1 ] = 1, we have:

Et[exp(−r − Λmzmt+1 − Λmymt+1 −
∑J

j=1 Λjzεj,t+1 −
∑J

j=1 Λjyεj,t+1 + αi + zit+1 + yit+1)]

Et[exp(−Λmzmt+1 − Λmymt+1 −
∑J

j=1 Λjzjt+1 −
∑J

j=1 Λjyjt+1)]
= 1.

(28)
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The nominator can be written as:

e−r+αiEt[exp((−Λm + β)zmt+1)]Et[exp(−Λmymt+1 + yit+1(ph
m
y,t+1))]×

Et[−
J∑
j 6=i

Λjzεj,t+1 −
J∑
j 6=i

Λjyεi,t+1 − (Λi − 1)zεi,t+1)− (Λi − 1)yεi,t+1)].

What we focus on is the second part: Et[exp(−Λmymt+1 + yit+1(ph
m
y,t+1))]. The jump com-

ponents for the individual and the market are ymt+1 =
∑Nm

t+1

j=0 xmj and yit+1 =
∑N i

t+1

j=0 xij re-

spectively. For each market jump, the probability that it triggers a jump in individual stock

return is p. Conditionally on Nm
t+1 jumps in the market, we assume there are T jumps in

the individual stocks which are triggered by market and Nε idiosyncratic jumps independent

with the market. Conditional on the information of Nm, T and Nε, y
i
t+1 and ymt+1 follow

normal distributions: N((T +Nε)θi, (T +Nε)δ
2
i ) and N(Nmθm, Nmδ

2
m), respectively. Assume

that the correlation between xi which are triggered by the market and xm is φ, and then

the conditional covariance between yit+1 and ymt+1 is Tφδiδm. Using the moment generating

function for binomial distribution, the conditional expectation can be written as:

Et[exp(−Λmymt+1 + yit+1(ph
m
y,t+1))|Nm, T ]

= exp((−Λmθm +
1

2
δ2m(Λm)2)Nm + (θi +

1

2
δ2i − φδiδmΛm)T ).

While T and Nm is still correlated, we use the fact that T follows binomial distribution

B(p,Nm) conditional on Nm. Let a = −Λmθm+ 1
2δ

2
m(Λm)2 and b = θi+

1
2δ

2
i −φδiδmΛm, and

use the law of iterated expectation, the unconditional expectation of exp(aNm + bT ) can be
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expressed as:

Et[Et[exp(aNm + bT )|Nm]] = Et[exp(aNm)Et[exp(bT )|Nm]]

= Et[exp(aNm + log(1− p+ peb)Nm)]

= exp(hym((1− p+ peb)ea − 1).

Substituting everything back to the Equation (28) and taking log of the two sides, we

have

αi = r + (βΛm − 1

2
β2)hmz,t+1 + pea(1− eb)hmy,t+1 + (Λi − 1

2
)hεz,t+1 + (ξ(−Λi)− ξ(1− Λi))hεy,t+1.

If we let λz = Λm, λzi = Λzi and λyi = ξ(1) + ξ(−Λyi) − ξ(1 − Λyi), the expression for

the discrete-time equity premium can be expressed as:

Et[exp(Rit+1)] = exp(r + βλzh
m
z,t+1 + p(ea(1− eb) + eθi+

1
2
δ2i − 1)hmy,t+1 + λzih

ε
z,t+1 + λyih

ε
y,t+1).

(29)

We can see that the expected stock return is increasing in β and φ because λz > 0 and λy > 0

and it is increasing in p when ea(1− eb) + eθi+
1
2
δ2i − 1 > 0.

The price of market diffusive risk λz and market jump risk λy can be obtained from

estimating the model for the market index and the price of equity-specific diffusive risk can

be estimated from the model for each stock. The form of expected stock return in Equation

(29) is comparable with the continuous time expression in Yan (2011).
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Figure 1: Conditional jump intensity and filtered jump component (S&P500)

(a) Daily return
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(b) Conditional jump intensity
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(c) Jump Component
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Note: Figure (a) plots the daily return of the S&P 500 index from Jan 1963 to December 2015. By estimating
the model in Section 2.1, we filter out the conditional jump intensity hmy,t+1 and plot in Figure (b). The
filtered jump component is presented in Figure (c). The returns are scaled by 100.
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Figure 2: Long run and short-run components of the diffusive variance (S&P 500)
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Note: This figure shows the long-run and short-run components of the diffusive variance for market returns
from 1911 to 2012.

Figure 3: Conditional equity premium (S&P 500)
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Note: This figure shows the estimated time series of the daily conditional equity premium from 1962 to 2015.
The dotted line represents the level of the unconditional mean of the equity premium.
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Figure 4: Decomposition of conditional jump intensity (ADM)

(a) Daily return

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

-25

-20

-15

-10

-5

0

5

10

15

20

(b) Conditional idiosyncratic jump intensity
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(c) Conditional systematic jump intensity
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Note: Figure (a) plots the daily return of ABT from Jan 1963 to December 2015. Estimating the joint model
for ADM in Section 2.2, we filter out the conditional jump intensity hiy,t+1 and decompose it into two parts:
idiosyncratic jump intensity hεy,t+1 and systematic jump intensity βith

m
y,t+1. They are plotted in Figure (b)

and (c).
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Figure 5: Decomposition of conditional variance (ADM)

(a) Jump part of the conditional variance
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(b) Diffusive part of the conditional variance
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Note: We decompose the total conditional variance of ADM given in Equation 18 into the diffusive and jump
variance components. The diffusive and jump components of the total variance are given in Figure (a) and
(b).
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Figure 6: Filtered diffusion and jump components (ADM)

(a) Filtered idiosyncratic jump and diffusion components for ADM
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(b) Filtered systematic jump and diffusion components for ADM

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

-15

-10

-5

0

5

10

Note: This figure shows the filtered jump and difussion components of ADM stock returns using the procedure
in Appendix 7.3. Figure (a) shows filtered idiosyncratic jump (zεt ) and difussion components (yεt ) and Figure
(b) shows systematic jump and diffusion components. The solid lines plots the jump components and the the
gray markers represent the diffusion components.
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Figure 7: Decomposition of risk premium over time

(a) Contribution of the total idiosyncratic risk premium
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(b) Contribution of the jump risk premium

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Note: We first calculate the four risk premiums for each stock and take the cross-sectional average on each
day. We aggregate the idiosyncratic diffusive and jump risk premiums and show their contribution in the total
expected return in Figure (a). We aggregate the systematic and idiosyncratic jump risk premiums and show
their contribution in the expected stock return in Figure (b).
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Figure 8: Decomposition of jump intensity and volatility over time

(a) Contribution of idiosyncratic jump intensity contribution
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(b) Contribution of idiosyncratic volatility
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Note: Figure (a) shows the average contribution of idiosyncratic jump intensity in the total jump intensity
(hyit/hyt) for all stocks. Figure (b) shows the average contribution of idiosyncratic diffusive volatility in the
total diffusive volatility (hzit/hzt) for all stocks.
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Table 1: Descriptive statistics for the daily stock return

Mean Std Min Max Skewness Kurtosis

ADM 0.029 2.048 -22.210 15.986 0.056 9.214
BAX 0.030 1.849 -30.504 16.465 -0.708 17.587

CL 0.031 1.621 -21.495 18.482 0.028 11.915
DD 0.013 1.600 -20.209 11.196 -0.151 9.119

DOW 0.022 1.832 -21.495 16.916 -0.222 11.403
EMR 0.027 1.588 -17.376 14.319 -0.144 10.092

GE 0.023 1.620 -19.251 17.984 -0.051 11.500
IBM 0.017 1.583 -26.119 12.351 -0.251 15.425

MMM 0.023 1.445 -30.114 10.899 -0.652 20.962
PEP 0.034 1.541 -15.448 14.951 0.021 8.919

PG 0.026 1.385 -37.687 20.029 -2.180 70.666
T 0.010 1.538 -23.920 20.837 -0.098 20.621

UTX 0.029 1.752 -33.213 12.789 -0.463 16.195
XOM 0.029 1.382 -26.726 16.455 -0.371 21.580
XRX 0.007 2.238 -29.801 32.963 -0.500 22.075

S&P500 0.009 1.017 -21.679 10.894 -0.9131 26.818

Table 1 presents the summary statistics for the daily returns of the 15 individual stocks and the
S&P500 index. The dataset starts from January 3rd, 1963 and ends at December 31st, 2015. The
daily returns are scaled by 100.
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Table 2: Parameter estimates for the market returns

Single estimation Joint estimation
parameters t stats mean std min max

Λm 2.539 2.231 2.663 0.419 1.610 3.160
wmz 0.000 1.652 0.000 0.000 0.000 0.001
bmz1 0.976 61.341 0.976 0.003 0.971 0.978
τm11 -5.013 -23.387 -5.041 0.178 -5.268 -4.716
τm12 -1.611 -4.024 -1.354 0.350 -1.850 -0.780
τm13 0.954 2.963 0.905 0.415 0.059 1.378
bmz2 0.859 13.368 0.857 0.007 0.833 0.859
τm21 -14.008 -13.153 -13.854 0.233 -14.000 -13.041
τm22 -0.295 -3.442 -0.339 0.088 -0.479 -0.214
τm23 11.992 11.646 12.036 0.229 11.236 12.184
wmy 0.000 2.249 0.001 0.001 0.000 0.002

bmy 0.997 321.276 0.996 0.003 0.985 0.999

amy 0.055 2.551 0.053 0.028 0.020 0.120

δm -0.288 -3.421 -0.237 0.051 -0.302 -0.158
θm 1.156 11.420 0.983 0.123 0.805 1.164

Note: Table 2 shows the estimation results on the daily returns of S&P500 index, from
January 1963 to December 2015. The column called “Single estimation” reports the
results for estimating the market return alone with log likelihood 16052.803. The column
called “Joint estimation” shows statistics of the 15 sets of estimated parameters for the
market dynamics from joint estimation using both stock returns and market returns. In
parentheses we report the t statistics. Note that we report estimation results with the
return data multiplied by 100.

52



Table 3: Estimated parameters for the stock returns

ADM BAX CL DD DOW EMR GE IBM

Λiz 2.421 2.717 2.457 0.274 1.672 4.347 1.376 1.003
(1.876) (3.142) (2.113) (0.184) (1.499) (2.315) (0.855) (0.734)

wiz 0.000 0.000 0.003 0.041 0.001 0.002 0.000 0.005
(4.403) (0.321) (1.669) (1.598) (0.615) (2.13) (0.077) (2.906)

biz1 0.985 0.972 0.967 0.783 0.977 0.971 0.945 0.966
(4.426) (831.788) (175.454) (5.67) (454.626) (171.757) (95.781) (242.418)

τ i11 -4.829 -4.418 -4.797 -2.938 -5.085 -9.501 -4.296 -4.430
(-13.5) (-37.569) (-18.955) (-14.09) (-13.435) (-0.965) (-11.252) (-18.567)

τ i12 -4.661 -3.417 -0.610 -0.727 -1.111 -0.786 -0.604 -2.515
(-2.583) (-4.858) (-2.42) (-5.753) (-2.199) (-4.209) (-2.686) (-2.976)

τ i13 0.882 1.315 0.825 0.637 1.462 5.998 1.319 0.853
(2.738) (5.518) (1.772) (2.201) (2.497) (0.63) (2.68) (3.318)

biz2 0.688 0.641 0.306 0.051 0.324 0.000 0.303 0.795
(0) (7.745) (3.463) (0.057) (2.273) (0.007) (1.74) (14.067)

τ i21 -14.147 -14.294 -2.715 -15.862 -15.314 -15.135 -14.674 -14.311
(-0.168) (-1.351) (-13.556) (-0.056) (-0.185) (-0.101) (-0.245) (-1.057)

τ i22 -0.618 -0.009 0.339 0.450 1.494 1.618 0.504 -0.414
(-0.03) (-0.256) (1.457) (0.161) (3.074) (3.108) (0.902) (-2.071)

τ i23 11.817 11.648 0.202 10.135 10.683 10.862 11.324 11.678
(0.01) (1.134) (0.716) (0.036) (0.135) (0.073) (0.199) (0.903)

wiy 0.001 0.002 0.000 0.001 0.005 0.035 0.001 0.000

(2.118) (8.497) (1.006) (0.156) (2.491) (1.933) (2.088) (3.133)
biy 0.999 0.989 0.998 0.998 0.971 0.875 0.998 0.996

(690.339) (686.008) (113.016) (94.485) (94.282) (15.86) (290.105) (115.194)
aiy 0.078 0.066 0.041 0.061 0.208 0.373 0.044 0.025

(5.82) (5.51) (3.574) (0.356) (3.793) (4.215) (7.469) (62.857)
θi 0.255 0.173 0.187 0.193 0.064 0.134 0.112 0.157

(2.878) (1.08) (4.25) (1.545) (1.389) (2.97) (1.804) (1.357)
δi 2.368 2.519 1.781 1.472 2.153 1.352 1.316 2.973

(21.332) (25.105) (25.21) (3.349) (13.702) (14.796) (20.889) (12.633)
βi1 -1.908 -0.472 -0.094 -0.220 -0.149 0.015 -0.153 -0.742

(0.717) (-3.536) (-2.804) (-0.461) (-2.784) (0.841) (0.089) (-4.423)
βi2 0.521 -0.187 -0.381 0.129 -0.042 -0.095 -0.008 0.071

(1.212) (1.739) (-0.741) (1.054) (4.257) (0.175) (0.748) (3.305)
pi1 -1.722 0.010 437.937 -2.717 -4.634 8.907 -2.700 1.715

(-0.102) (1.081) (4.128) (-0.077) (-0.937) (1.473) (-0.19) (1.223)
pi2 2.472 -2.669 -651.153 2.143 2.699 -7.118 -2.956 -5.128

(-0.051) (-1.676) (-4.211) (0.102) (0.863) (-1.472) (-0.285) (-2.273)
lgl 42745.685 41547.098 39435.002 39338.968 40701.499 39324.554 39071.487 38957.459

Note: Table 3 shows the estimation results on the daily returns of the 8 out of 15 stocks,
from January 1963 to December 2015. T statistics are shown in the parentheses. lgl is
the maxmized log likelihood for each stock.
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Table 4: Estimated parameters for the stock returns (continued)

MMM PEP PG T UTX XOM XRX

Λiz 1.259 3.583 2.258 0.272 2.148 2.879 0.992
(0.802) (2.293) (2.076) (0.306) (1.718) (1.562) (1.335)

wiz 0.000 0.049 0.006 0.022 0.004 0.085 0.013
(0.595) (2.55) (2.431) (3.513) (1.123) (3.658) (3.039)

biz1 0.989 0.759 0.932 0.798 0.953 0.726 0.957
(716.75) (12.914) (114.195) (23.665) (94.559) (13.187) (174.391)

τ i11 -5.073 -3.010 -3.925 -2.569 -4.230 -2.918 -4.020
(-45.912) (-10.199) (-19.826) (-16.366) (-14.625) (-14.261) (-20.192)

τ i12 -18.320 -0.243 -1.053 -0.133 -1.423 -0.098 -1.136
(-2.281) (-1.646) (-4.783) (-0.833) (-2.584) (-1.109) (-3.516)

τ i13 0.838 0.718 1.366 -0.045 0.935 0.434 0.683
(2.67) (2.603) (6.233) (-1.795) (2.62) (0.629) (2.634)

biz2 0.000 0.000 0.168 0.000 0.398 0.108 0.276
(0) (-0.373) (1.158) (0.001) (3.223) (0.609) (2.416)

τ i21 -14.636 -16.188 -14.480 -14.942 -14.559 -16.544 -14.277
(-0.173) (-0.091) (-0.265) (-0.198) (-0.281) (-0.145) (-74.179)

τ i22 0.560 1.613 0.436 0.850 0.604 1.908 -0.716
(1.025) (1.674) (2.281) (7.364) (2.152) (1.675) (-2.157)

τ i23 11.350 9.806 11.454 11.056 11.437 9.455 11.708
(0.135) (0.056) (0.212) (0.151) (0.222) (0.083) (63.075)

wiy 0.003 0.000 0.000 0.000 0.000 0.002 0.000

(2.572) (0.722) (1.916) (0.631) (1.926) (1.424) (16.509)
biy 0.980 1.000 0.998 0.999 0.999 0.993 0.997

(267.539) (448.247) (159.528) (236.416) (100.171) (282.223) (196.02)
aiy 0.356 0.066 0.037 0.049 0.036 0.128 0.019

(3.914) (6.855) (9.241) (9.965) (4.665) (2.733) (6.958)
θi 0.017 0.084 0.107 0.180 0.176 -0.028 -0.213

(0.867) (2.559) (1.993) (4.948) (2.805) (-0.816) (-0.976)
δi 1.785 1.378 1.638 1.457 1.918 1.239 4.191

(18.417) (32.815) (21.345) (29.234) (16.81) (13.729) (27.807)
βi1 -0.347 -0.401 -0.824 -0.672 -0.093 -0.230 -0.063

(-3.382) (-4.239) (-5.952) (-7.034) (-0.191) (-1.802) (-0.054)
βi2 -0.030 -0.100 -0.054 0.133 -0.042 -0.018 -0.123

(0.704) (0.252) (2.648) (2.982) (0.845) (-0.425) (0.927)
pi1 0.682 -3.119 33.411 0.317 -0.320 -0.506 -0.313

(0.914) (-1.971) (0.676) (0.122) (-0.196) (-0.264) (-1.71)
pi2 -0.400 2.216 -45.767 -1.776 -0.132 -0.181 -1.174

(-0.849) (1.804) (-0.718) (-0.606) (-0.099) (-0.162) (-1.318)
lgl 38251.068 38828.660 36857.448 37229.895 40849.123 37444.384 42899.222

Note: Table 4 shows the estimation results on the daily returns of the 8 out of 15 stocks,
from January 1963 to December 2015. T statistics are shown in the parentheses. lgl is
the maxmized log likelihood for each stock.
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Table 5: Summary statistics of the time varying βit and pit

βit pit
mean std min max mean std min max

ADM 0.262 0.080 0.174 0.903 0.652 0.172 0.278 0.999
BAX 0.516 0.041 0.326 0.589 0.088 0.063 0.000 0.306
CL 0.623 0.095 0.242 0.809 0.171 0.374 0.000 1.000
DD 0.918 0.057 0.835 1.257 0.380 0.190 0.114 0.991
DOW 0.825 0.015 0.745 0.850 0.178 0.188 0.022 0.991
EMR 0.921 0.038 0.730 0.985 0.729 0.332 0.000 0.999
GE 0.852 0.003 0.836 0.857 0.005 0.005 0.000 0.026
IBM 0.513 0.017 0.487 0.610 0.082 0.100 0.000 0.531
MMM 0.686 0.009 0.638 0.700 0.567 0.045 0.330 0.636
PEP 0.605 0.026 0.473 0.649 0.318 0.191 0.081 0.990
PG 0.415 0.010 0.363 0.431 0.248 0.397 0.000 1.000
T 0.587 0.037 0.532 0.810 0.205 0.094 0.003 0.442
UTX 0.873 0.016 0.788 0.900 0.388 0.014 0.315 0.411
XOM 0.780 0.006 0.746 0.790 0.334 0.018 0.243 0.363
XRX 0.828 0.044 0.612 0.903 0.234 0.020 0.142 0.342

Note: Table 5 shows summary statistics of the time varying βit and pit for each stock.
Note that we report estimation results with the return data multiplied by 100.

55



Table 6: Summary statistics of the dynamic jump intensities and volatilities

hy m hz m hy i hz i Var(Jump)/Var Var(Idio) /Var Var(Idio Jump)/Var

ADM 0.150 0.799 0.271 2.005 0.474 0.816 0.337
BAX 0.168 0.779 0.181 1.802 0.368 0.868 0.344
CL 0.154 0.799 0.291 1.239 0.389 0.804 0.368
DD 0.132 0.814 0.343 0.880 0.380 0.686 0.332
DOW 0.148 0.792 0.164 1.772 0.294 0.776 0.255
EMR 0.138 0.843 0.280 1.048 0.344 0.658 0.263
GE 0.218 0.832 0.369 1.259 0.326 0.761 0.325
IBM 0.138 0.789 0.064 1.567 0.257 0.829 0.231
MMM 0.208 0.839 0.134 0.862 0.365 0.587 0.164
PEP 0.136 0.800 0.543 0.860 0.451 0.756 0.408
PG 0.128 0.806 0.194 1.043 0.326 0.807 0.299
T 0.185 0.835 0.374 1.048 0.384 0.719 0.335
UTX 0.118 0.796 0.243 1.417 0.362 0.733 0.303
XOM 0.206 0.837 0.269 0.803 0.295 0.654 0.229
XRX 0.223 0.834 0.066 2.895 0.267 0.867 0.267
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Table 7: Portfolio performance

Total Premium SD SJ ID IJ

1 0.033 0.058 0.039 0.042 0.043
2 0.038 0.045 0.047 0.027 0.053
3 0.061 0.082 0.069 0.077 0.068
4 0.051 0.055 0.044 0.042 0.061
5 0.141 0.081 0.087 0.137 0.096
5-1 0.108 0.023 0.049 0.095 0.053
t stat 3.462 0.791 1.750 3.119 1.926
p value 0.000 0.215 0.040 0.001 0.027

Note: We denote the systematic diffusive risk, systematic jump risk, idiosyncratic diffusive
risk, and idiosyncratic jump risk as SD, SJ, ID and IJ. The stocks are sorted in ascending
order into five portfolios with 3 in each of them, according to the risk premia on each
type of risks. We also sort the stocks according to the total risk premia. In each portfolio,
we assign equal weights to the stocks and calculate the portfolio return over the sample
period. The annualized portfolio returns for the constructed portfolios are presented in
the first five rows in Table 7. The last two rows report t-statistics and corresponding
p-values when testing the null hypothesis that the difference between the return of the
fifth portfolio and the first portfolio is equal to zero. The t-statistics are calculated based
on the Newey-West standard error.
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