
              

City, University of London Institutional Repository

Citation: Monteiro, P. M. L. (2003). An investigation of tilt, decentration and defocusing 

errors in videokeratoscopy. (Unpublished Doctoral thesis, City, University of London) 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/30720/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


An investigation of tilt, décentration and defocusing errors in

videokeratoscopy

A Thesis 

Submitted by

Pedro Miguel Lourenço Monteiro

For the degree of 

Doctor of Philosophy

C 0 T Y City University
London

Department of Optometry and Visual Science 

City University, London

April 2003



Contents
1 Introduction 24

1.1 Synopsis 25

2 Literature review 29

2.1 Keratoscopy 29

2.2 Faceplate design 30

2.3 Reconstruction algorithms for Plácido disk based systems 32

2.3.1 Telecentric videokeratoscope principle 32

2.3.2 Gullstrand’s algorithm 33

2.3.3 Wittenberg and Ludlam algorithm 34

2.3.4 Townsley and Ridge algorithm 35

2.3.5 El Hage’s algorithm 35

2.3.6 Fry’s algorithm 36

2.3.7 Doss et al algorithm 36

2.3.8 Klyce’s algorithm 38

2.3.9 Spherical Biased 38

2.3.10 Edmund and Sjontoft algorithm 41

2.3.11 Wang et al algorithm 41

2.3.12 Mammone et al algorithm 42

2.3.13 Gersten et al algorithm 43

2.3.14 van Saarloos and Constable algorithm 43

2.3.15 Klein’s algorithm 44

2.3.16 Andersen et al algorithm 45

2.3.17 Laskin and Puryayev algorithm 46

2.3.18 Halstead et al algorithm 46

2.3.19 Brenner’s algorithm 47

2.3.20 Campbell’s algorithm 48

2.4 Keratoscope alignment 49

2.5 Decentring, tilt and focus errors 50

3 Computer modelling of a videokeratoscope system 63

3.1 Faceplate Model 63

2



3.1.1 General properties of conics and conoids 63

3.1.2 Faceplate parameters 72

3.1.3 Object point selection on the faceplate 74

3.2 Reflecting surface 79

3.3 Axis systems 80

3.4 Decentring the reflecting surface 86

3.5 Tilt limits 87

3.6 Ray tracing equations for reflection 94

3.6.1 The parameter A 96

3.6.2 Special case: Initial ray perpendicular to the surface z

axis (N=0) 101

3.6.3 Ray tracing with a tilted reflecting surface 104

3.7 Finding a transmitted ray through the faceplate pupil 105

3.7.1 Special case: Edge ray fails to intersect the pupil

plane. 108

3.8 Pupil exploration in the meridional plane. 109

3.9 Pencil of rays from an object point, ray density 111

3.9.1 Retracing a pencil of rays with higher density 119

3.9.2 Special case: pencil of rays with central ray in the y

axis direction. 120

3.9.3 The central ray 121

3.9.4 Limiting the pencil of rays from an object point 124

3.10 Central reference point of the ring images 125

3.11 Videokeratoscope alignment simulation 127

3.12 Focus 132

3.12.1 Focus parameters 132

3.12.2 Best focus for a centred reflecting surface 134

3.12.3 Best focus for a non-centred reflecting surface 137

3.13 Image relative irradiance 140

3.13.1 Image display on screen 141

3.13.2 Image magnification for a centred reflecting surface 143

3



3.13.3 Transforming screen coordinates to array elements

for a centred reflecting surface. 145

3.13.4 Image magnification for a non-centred reflecting

surface 146

3.13.5 Transforming screen coordinates to array elements

for a non-centred reflecting surface. 154

3.13.6 Automatic ray density calculation 154

3.14 Ring edge detection 158

3.14.1 Centred reflecting surface 158

3.14.2 Non-centred reflecting surface 160

3.15 Reconstruction algorithms adaptation 162

3.15.1 Adaptation of the spherical biased algorithm. 162

3.15.2 Adaptation of the van Saarloos algorithm 163

3.16 Difference maps 174

4 Methods 177

4.1 Determination of best faceplate design 178

4.2 Influence of faceplate design on radius of curvature maps 181

4.3 Effect of reflecting surface decentration on r.c. maps 183

4.4 Effect of reflecting surface tilt on radius of curvature maps 183

5 Results 186

5.1 Determination of best faceplate design 186

5.2 Influence of faceplate design on radius of curvature maps 187

5.3 Effect of reflecting surface decentration on r.c. maps 195

5.4 Effect of reflecting surface tilt on radius of curvature maps 198

6 Discussion 203

6.1 Determination of best faceplate design 203

6.2 Influence of faceplate design on radius of curvature maps 204

6.3 Effect of reflecting surface decentration on r.c. maps 206

6.4 Effect of reflecting surface tilt on radius of curvature maps 207

7 Conclusions 209

8 Bibliography 212

4



List of tables

Table 3.1 - Values of the parameters e and p relating to the curvature change from 

the centre to the periphery of a conic arranged by curve type.

Table 3.2 - Expressions for the number of ray intersections (nk) on a ring area (k) 

limited by radius Rk and Rk̂  where Rk=R0+kaRo.

Table 5.1 - Minimum blur sums for the tested surfaces.

Table 5.2 - Frequency table for differences (A) from the smallest minimum blur 

sum.

5



List of figures

Figure 2.1 - Telecentric videokeratoscope principle. A stop is placed at the second 

principal focus of the objective lens to block all rays non-parallel to the optical axis. 

The height of the reflection point in analysis (h) will then be the same as the height 

of the image point in the image plane.

Figure 2.2 - Calibration graph for a 9 ring keratoscope for use with the spherical 

biased algorithm. If the inner edge of the 5th image ring is in analysis in a 

keratograph then the line corresponding to this edge is selected. Supposing that 

the ring mire image of this ring edge has an hemi-chord height of h5 then the 

corresponding radius of curvature in the reflection area is R5.

Figure 2.3 - Cone shaped faceplate of the Mastervue videokeratoscope. All rings 

are located on the faceplate inner surface except for ring 10. This ring is located in 

an inner cone with the same apical angle as the faceplate and with opposite base.

Figure 3.1 - Family of conics with the same apical radius of curvature. Each curve 

is associated with a p value (number displayed near each curve) that relates to the 

way the curvature changes from the centre to the periphery.

Figure 3.2 - Arc length of a circle between two z coordinates.

Figure 3.3 - Schematic representation of the model for a videokeratoscopy system 

used for this research. The main axis system is also represented along with the 

model parameters.

Figure 3.4 - Three-dimensional representation of the four faceplate geometries 

used. The pupil size limits the area of the surface. For a cone (c) and a conoid (d) 

a part of the surface is removed so that it starts at the specified pupil diameter.
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Figure 3.5 - Intersection possibilities of a line with a conic curve.

Figure 3.6 - Section of a cylinder with light (L) and dark (D) rings defined by the 

intersection of lines at equal angle intervals. If a light ring falls in the corner, the 

cylinder base can be increased or decreased (long dashed sections) to avoid this 

situation keeping the number of rings constant.

Figure 3.7 - Definition of a point P in polar coordinates for the global (p,q>) and the 

image system (p,a) and their relations.

Figure 3.8 -  a) The axis system was rotated in the xy plane to define the tilt plane. 

The reflecting surface vertex was centred at the origin of xyz but wasn't rotated 

along with the axis, b) A new axis rotation was executed in the plane defined by er 

and ee. The unit vector e<p remained on the xy plane. The surface was then rotated 

by 0 and er is the rotated surface z-axis. c) This is the axis system developed for 

this research where e0 is represented just for reference. The unit vectors er and e0 

have the same orientation as the middle figure but were represented oriented like 

xyz to allow a better understanding of their relations. The vectors e* and ey define a 

plane which is perpendicular to the plane defined by e0 and er.

Figure 3.9 - Example of the application of the tilt system of axis to a centred ellipse 

with minor axis along the x-axis. a) The tilted plane is selected by a cp rotation of 

the axis in the xy plane. Once again it must be emphasised that the ellipse is not 

rotated with e0 and e<p . b) The ellipse was tilted in the tilt plane (perpendicular to 

the screen defined by er and e0) therefore is not in the xy plane anymore. However 

e0 and e<p are still separated by angle cp from the ellipse principal axis, c) The final 

system is represented for which the unit vectors coincide with the ellipse principal 

axis. The unit vector e0 is just represented to show the intersection with the tilt 

plane.
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Figure 3.10 - Example of a case in which a tilted reflecting surface doesn't touch 

the faceplate but the circle described by the surface limits around the vertex does. 

The program will only allow the flat target to be placed outside the circle limits.

Figure 3.11 - Possibility for a tilted and decentred surface to intersect a flat 

faceplate. The images represent the circle centred at the vertex passing through 

the surface limits just touching (a), intersecting (b) and failing to intersect (c) the 

faceplate (thick line) respectively. Only the top half of the faceplate section is 

represented and the decentration, bigger than Rc d, was enough to take the circle 

above the z-axis.

Figure 3.12 - Possibility for a tilted and decentred surface to intersect a cylindrical 

faceplate. Only the top part of the cylinder was considered.

Figure 3.13 - Possibility for a tilted and decentred surface to intersect a cone 

shaped faceplate with PD diameter pupil located at a zpd distance from the origin. 

Only the top part of the cone section was considered (thick line) for each situation. 

It can be seen that there is no intersection if the circle centred at the vertex passing 

through the surface limits is bellow (a) or above (c) the faceplate. This last case 

was obviously disregarded since the surface cannot be outside the faceplate limits.

Figure 3.14 - Intersection between a circle and an ellipse (a), a maximum of four 

points can be found. Intersection between two circles (b) a maximum of two points 

can be found. The only exception is if the circles have the same radius and 

overlap.

Figure 3.15 - Possibility for a tilted and decentred surface to intersect a conoid 

shaped faceplate. Only the top half of the faceplate section was represented (thick 

line). If there is an intersection for a given value of z (zt es t ) the corresponding y 

value for the faceplate is smaller or equal to y  on the circle centred at the vertex of 

the reflecting surface.
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Figure 3.16 - Intersections of parallel light rays with a sphere in the yz plane. The 

dashed part of the circle is not part of the reflecting surface, a) Light rays travel 

from left to right, the object point is to the left of the surface, b) The opposite 

situation is pictured, the object is to the right of the surface vertex. This is possible 

when the surface is tilted (see text). In this case only rays that intersect the circle in 

two points on the useful part of the surface (ray 4) will be considered. In this 

context ray 3 is invalid since the only intersection on the useful part of the surface 

is on the back.

Figure 3.17 - Special ray tracing case with incident ray perpendicular to the 

surface z axis (N=0). a) Ray intersection failures due to ray direction in xy plane 

(Pi) and displacement along the z axis (P2 and P3). The values in parenthesis are 

the object point coordinates and the line matrices are ray directions, b) Section of 

the ellipse in the xy plane with an object point sending light rays in several 

directions. The scalar product of the direction of a particular ray with the vector [x^ 

XT,yv-yr\ is an indicator of the possibility of intersection with the surface in the 

incident ray direction.

Figure 3.18 - When the reflecting surface is tilted (a) it's possible for some rays to 

strike it from right to left or perpendicular to the surface z axis. The procedure 

adopted for ray tracing with a tilted surface is such that the surface will be straight 

and the faceplate tilted (b). In this case the ray tracing equations will be the same 

when transferring to the surface.

Figure 3.19 - Situations for which a light ray coming from an object point on the 

90° semi-meridian directed to the upper reflecting surface edge on the meridional 

plane, after reflection strikes the pupil plane below (a), in (b) and above the pupil 

(c). The light ray directed to the surface vertex is always reflected below the pupil 

except if the object point is at the pupil edge (c).
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Figure 3.20 - The ray directed to the reflecting surface edge fails to intersect the 

pupil plane after reflection. This case has to be analysed separately or the 

transmitted ray searching procedure will fail.

Figure 3.21 -  a) Direction of the incident rays coming from an object point striking 

the pupil edges in the meridional plane after reflection, b) An imaginary object point 

located on axis on the faceplate vertex. It doesn’t belong to the faceplate since the 

faceplate is limited by the pupil plane. In this case Mut and Mn are symmetrical.

Figure 3.22 - Axis systems used to define the direction of a ray inside a pencil of 

rays, a) The unit vector e2 is the direction of the central ray in the pencil, the axis 

system xyz is not the global system but a local system with the same directions but 

with origin at an object point, b) This system is to be placed at the end of e2 on a), 

it represents the position of a point P belonging to a ray in the pencil of rays. The 

unit vectors presented are just to define the directions, c) Representation of figures 

a) and b) together.

Figure 3.23 - Generation of an equal ray intersection density circular pattern in a 

plane. The ray intersections are disposed in circles around a central ray. Each 

intersection is located in the centre of an area equal to the area of the circle around 

the central ray (radius R0). For the case displayed each area (/c) external limiting 

circle has radius Rk={2k+^R0. The numbers displayed are labelling the areas 

between two consecutive circles and do not relate to a particular sector.

Figure 3.24 - a) Equal density pattern positioned perpendicular to the z axis 

(central ray for the imaginary object point) and limited by the upper tangential ray. 

Roi depends on the number of divisions to Muti. b) Angle yROi is used to calculate R0, 

for any object point, determining the ray density.

Figure 3.25 - The full lines and dark dots correspond to the pattern presented in 

the previous figure for areas 0, 1 and 2. The dashed lines and light dots
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correspond to a pattern where the central radius is halved from the previous value. 

The new odd numbered area centres will coincide with the inner borders of the old 

areas. The new even area centres will coincide with the old area centres needing 

twice as much rays therefore the old ones can be reused.

Figure 3.26 - Representation of the position of a ray in a pencil of rays with a 

central ray in the y  direction (a) and -y direction (b).

Figure 3.27 - Direction cosines representing the upper rim ray [0,Mut,Nut], lower rim 

ray [0,Mit,Nit] and central ray [0,Mc,Nc], from an object point, for a centred reflecting 

surface. The central ray was considered to be the one bisecting the two rim rays.

Figure 3.28 - Section of a pencil of rays coming from the imaginary object point on 

axis. The circle represents the front view of the reflecting surface area that 

transmits rays, after reflection, from the on-axis point, a) The central ray of the 

pencil is on-axis hence bisecting the upper and lower rim rays, b) The central ray is 

still in the meridional plane but is not bisecting, as a result more rays have to be 

traced to get the same effect.

Figure 3.29 - Decentred image of the first and second ring mire images, the 

videokeratoscope axis is not located at the centre of the first ring. If the IMG 

system of axis used for the ring height is kept at the videokeratoscope axis than a 

ring may have two heights pi and p2 in one semi-meridian cr (a). If the IMG system 

is placed at the inner ring mire image centre the problem will be solved (b).

Figure 3.30 -  a) Axial ray coming from the centre of the fixation light and striking a 

decentred reflecting surface. The image on the image plane won’t coincide with the 

videokeratoscope axis, b) Same ray striking a centred reflecting surface, the image 

of the fixation light will coincide with the videokeratoscope axis therefore the 

alignment process was concluded.
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Figure 3.31 - Tilted and decentred surface in order for an axial ray from the fixation 

light (direction [0,0,1]Gt.s) to strike a surface point with normal parallel to the 

incident ray. In this case the incident ray is reflected in the opposite direction [0,0,- 

1 ]ql b- The normal to the tilted surface in the point where the ray strikes is also 

[0,0,1]g l s- In these conditions the image (black dot) of the centre of the fixation light 

will be in the centre of the image plane. The videokeratoscope will assume that the 

surface is centred due to the correct alignment in the videokeratoscope axis (z 

axis).

Figure 3.32 -  a) A reflecting surface with rotational symmetry is tilted by an angle 9 

in the 90° semi-meridian. In this case an axial ray is reflected downwards, b) The 

system of axis is changed to VTXTLT and therefore the surface is straightened as 

explained in section 3.3. It is always possible to find a point on the surface (black 

dot) for which the normal has the same direction as the incident ray along the 

videokeratoscope axis.

Figure 3.33 - The reflecting surface is decentred along the line defined by the 

intersection of the tilt plane (paper plane for this case) and the xy plane of the 

global system (left figure). The decentration is applied in order to match the 

incident ray from the centre of the fixation light with the point with a normal 

matching that direction.

Figure 3.34 - Parameters defining the position of the image plane (DF) for a 

centred (a) and tilted or decentred reflecting surface (b). For a centred surface DF 

was measured from the paraxial plane while for a decentred or tilted surface it was 

measured from the vertex z coordinate in the global system.

Figure 3.35 - Spot diagrams for a spherical faceplate with a 250mm apical radius 

limited by a maximum diameter of 300mm and a 9mm pupil. Reflecting surface 

p=0.82 apical radius of 7.75 mm limited by a 9mm diameter and wd=80mm. The 

object point has 15° eccentricity in the 90° semi-meridian and the images have a
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720X enlargement with a ray density of 20 rays. Defocus in mm from the paraxial 

plane from top left to centre bottom is 0 (a), 0.03 (b), 0.041 (c), 0.05 (d) and 0.08 

(e). The best tangential focus is image c). Labels u, I and c refer to the intersection 

of the image plane with the reflected upper rim ray, lower rim ray and central ray 

respectively.

Figure 3.36 - Tangential focus for a centred surface corresponds to the 

intersection of the upper and lower reflected rim rays.

Figure 3.37 - a) The image of a single object point reflected in a tilted and 

decentred surface is represented (black dots) with low ray density. There is a lack 

of symmetry and the points closer and further away from 0/ are not in the image 

semi-meridian a (point c corresponds to the central ray), b) The effect of the 

images from adjacent object points is to place the maximum and minimum distance 

points aligned with semi-meridian a. It is obvious that the images are grossly 

exaggerated in order to provide an explanation.

Figure 3.38 - Two successive iterations of the focus procedure, a) The image 

plane is moved in steps of k. The radial blur at each image plane position starts 

decreasing and then a point is reached in which the blur increases. This means 

that the best focus has been passed and the present image plane position will be 

the maximum limit for the next iteration. It can be seen in the figure that the 

minimum limit should be DFn-2k rather than DFn-k that way the best focus will be 

between the new limits, b) The next iteration for which the image plane will be 

moved between the two specified limits in steps of k/2.

Figure 3.39 - Image of an object point using a ray density of 5 (a), 20 (b) and 200 

rays (c).

Figure 3.40 - Relationship between the xy direction of the several system of axis 

used. They are all presented from the examiner’s point of view.
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Figure 3.41 - Procedure to decrease the magnification to fit the image on screen 

and still leave around 10 pixels tolerance from the left screen limit. Note that the 

screen point corresponding to the central ray remains unchanged, it is the screen 

point corresponding to the global system origin opx that changes to make that 

possible. The coordinate XFmax is the maximum positive value of the x coordinate, 

for that particular image, measured in the global system.

Figure 3.42 - Screen area used to represent the image of an object point reflected 

in a non-centred reflecting surface. It is a square area centred at pixel (350,195) 

extending 195 pixels for each side. The useful area will extend 185 pixels for each 

side allowing a 10 pixel tolerance on each side as well. Labels adjacent to points in 

the figure are x or y  screen coordinates (pixels) while labels in the middle of line 

segments represent their length in pixels.

Figure 3.43 - Image fitted to the useful screen area with x pixels ranging from 165 

to 535 and y pixels from 10 to 380. The limiting x and y coordinates of the image in 

the global system are also presented. The magnification parameter MMPX must be 

limited in order for all the limiting x and y  image coordinates in the global system to 

fall inside the useful screen area.

Figure 3.44 - The videokeratoscope axis is perpendicular to the paper plane, 

intersecting it at the white dot. The other white dot is 0/ the centre of the fixation 

light image or the centre of the ring mire image. The small dark dots represent the 

image of the object point presented (large dark dot) with a low ray density formed 

by a non-centred reflecting surface. In this case it is possible that no point in the 

image falls in the object semi-meridian a0. This can happen whether the image 

points meridians are measured in relation to the videokeratoscope axis (a) or in 

relation to o/ (b).
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Figure 3.45 - Image dimensions along the direction marker. This marker is the line 

passing through o/ and the central ray position on the image plane (xfc Yf c)■ The 

total image dimension along the direction marker boMTot is not of any interest. The 

dimension desired is the line segment that intersects the image £>d/w-

Figure 3.46 - The image is a set of points disposed in a particular arrangement. If 

the ray density is not very high there will only be a point in the image that will 

coincide with the direction marker. That is the point corresponding to the central 

ray, which was used to calculate the marker.

Figure 3.47 - The vector from the image origin 0/ to an image point Q can be 

decomposed in one component perpendicular to the direction marker (c/dm±) and 

another component parallel to it (down)- The perpendicular component represents 

the distance from the image point to the direction marker.

Figure 3.48 - First step of the Iterative procedure to bracket Ro between a value 

that provides a negative minimum B and another that results in a positive minimum 

6. The present example is for an array with 4 elements where the bracketing has 

been achieved in the 5th iteration. The initial ray density was too low and had to be 

increased by decreasing Ro.

Figure 3.49 - First step of the Iterative procedure to bracket R0 between a value 

that provides a negative minimum B and another that results in a positive minimum 

B. The present example is for an array with 4 elements where the bracketing has 

been achieved in the 5th iteration. The initial ray density was too high and had to be 

decreased by increasing R0.

Figure 3.50 - Second stage of the iterative procedure to find a value of Ro for 

which Bmin=0. Iteration 5 refers to the last first stage iteration. The values in grey 

background are the ones that were not changed in a particular iteration.
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Figure 3.51 -  a) Irradiance of the vertical radial section of an object ring, b) An 

example of the image irradiance of the radial section sampled by the CCD 

detector. However only the images of the edges of the object ring were considered. 

An example of the irradiance of these points is represented in c). The image ring 

edge detection uses an irradiance value of 0.5lmax as a reference. If an inner ring 

edge of an image ring is being detected the smallest y  for which />0.5/ma* is 

considered to be the edge. If an outer edge is being detected the larger y for which 

/>0.5/max is considered to be the edge. The y values represented are in the global 

system.

Figure 3.52 - Simulation of the summing effect of images of adjacent points on a 

ring edge. The image of a single object point on a ring edge (grey tilted ellipse) is 

rotated on both directions around 0/ in order to completely cover the angular sector 

defined by the image limits at 0/ (a). The resultant sector is represented in b). The 

irradiance of this sector at a distance d0t from o/ was considered to be constant and 

equal to the maximum irradiance displayed by the image points at the same 

distance on the original image. The image size is grossly exaggerated to illustrate 

the point.

Figure 3.53 - Modified geometry for van Saarloos algorithm. A ray with origin at a 

general object point is reflected in the corneal surface and enters the faceplate 

pupil.

Figure 3.54 - Doss geometry for determining the next corneal point. It considers 

two adjacent points joined by arcs.

Figure 3.55 - Videokeratoscope selection of the object point corresponding to a 

given image point. If the image point describes an angle cp with the horizontal the 

instrument will assume the object point describes the same angle. It considers that 

the image rings are centred in the instrument axis.
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Figure 4.1 - Sections of cylindrical and cone shaped faceplates, a) The angle (j> 

from the cylinder base to the opposite corner can be used to control the diameter b 

and the length WD. b) Cones with semi-aperture angles 01 and 02. Both cones start 

at a 9mm pupil aperture.

Figure 4.2 - Hyperboles with the same apical radius of curvature and asymptotic 

lines at 30 and 45 degrees inclination. The curves are similar to a cone in the 

periphery, but different at the centre.

Figure 4.3 - In a cone shaped faceplate it is always possible to define the five 

points (see text) as long as the cone has sufficient length to either side. The same 

applies to cylindrical, hyperbolic and parabolic faceplates. In spherical and 

ellipsoidal faceplates the surface can only increase in diameter until a certain point, 

after which it starts to close. In these cases it is not always possible to find the five 

points. The figure represents a case where it is only possible to define two of the 

five points.

Figure 5.1 - Differences (SRE) between accurate axial radii of curvature and axial 

radii of curvature calculated by the van Saarloos algorithm for surfaces 1 to 5. 

Faceplate pupil with 9 mm diameter and image plane at best focus.

Figure 5.2 - Differences (TRE) between accurate instantaneous radii of curvature 

and instantaneous radii of curvature calculated by the van Saarloos algorithm for 

surfaces 1 to 5. Faceplate pupil with 9 mm diameter and image plane at best focus.

Figure 5.3 - Differences (SRE) between accurate axial radii of curvature and axial 

radii of curvature calculated by the van Saarloos algorithm for surfaces 1 to 5. 

Faceplate pupil with 9 mm diameter and image plane at first ring mire image focus.

Figure 5.4 - Differences (TRE) between accurate instantaneous radii of curvature 

and instantaneous radii of curvature calculated by the van Saarloos algorithm for
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surfaces 1 to 5. Faceplate pupil with 9 mm diameter and image plane at first ring 

mire image focus.

Figure 5.5 - Differences (SRE) between accurate axial radii of curvature and axial 

radii of curvature calculated by the van Saarloos algorithm for surfaces 1 to 5. 

Faceplate pupil with 4 mm diameter and image plane at best focus.

Figure 5.6 - Differences (TRE) between accurate instantaneous radii of curvature 

and instantaneous radii of curvature calculated by the van Saarloos algorithm for 

surfaces 1 to 5. Faceplate pupil with 4 mm diameter and image plane at best focus.

Figure 5.7 -  Sagittal radius error for the decentred surface measured along the 0° 

semi-meridian (SREDEC) and sagittal radius error for a centred surface (SRECTR) 

in the same points.

Figure 5.8 -  Sagittal radius error for the decentred surface measured along the 

45° semi-meridian (SREDEC) and sagittal radius error for a centred surface 

(SRECTR) in the same points.

Figure 5.9 -  Sagittal radius error for the decentred surface measured along the 

90° semi-meridian (SREDEC) and sagittal radius error for a centred surface 

{SRECTR).

Figure 5.10 -  Sagittal radius error for the decentred surface measured along the 

135° semi-meridian {SREDEC) and sagittal radius error for a centred surface 

{SRECTR) in the same points.

Figure 5.11 -  Sagittal radius error for the decentred surface measured along the 

180° semi-meridian {SREDEC) and sagittal radius error for a centred surface 

{SRECTR) in the same points.

18



Figure 5.12 -  Sagittal radius error for the tilted surface measured along the 0° 

semi-meridian (SRETLT) and sagittal radius error for a centred surface (SRECTR) 

in the same points.

Figure 5.13 -  Sagittal radius error for the tilted surface measured along the 45° 

semi-meridian (SRETLT) and sagittal radius error for a centred surface (SRECTR) 

in the same points.

Figure 5.14 -  Sagittal radius error for the tilted surface measured along the 90° 

semi-meridian (SRETLT) and sagittal radius error for a centred surface (SRECTR) 

in the same points.

Figure 5.15 -  Sagittal radius error for the tilted surface measured along the 135° 

semi-meridian (SRETLT) and sagittal radius error for a centred surface (SRECTR) 

in the same points.

Figure 5.16 -  Sagittal radius error for the tilted surface measured along the 180° 

semi-meridian (SRETLT) and sagittal radius error for a centred surface (SRECTR) 

in the same points.

Figure 6.1 - Best focus position from the paraxial plane (0 mm) for 15 image ring 

edges for the best cylinder.
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ABSTRACT:

A computer model using finite ray tracing methods was developed to simulate a 

videokeratoscope analysing an average cornea. Different faceplate designs were 

tested using five points in the faceplate subtending angles between 15° and 75° in 

15° intervals at the corneal vertex. Image quality was assessed by adding the 

geometrical blurs of the 5 image points; the best focal plane was considered the 

one that gave the smallest sum of the blurs. Surfaces were divided into five 

categories according to their blur sums and a representative of each group 

selected. Differences (error) between accurate sagittal radius of curvature and 

radius of curvature calculated by the van Saarloos algorithm were calculated for 

the selected surfaces at the same corneal points. The calculations were repeated 

for the tangential radius of curvature. Differences equal or bigger than 0.02 mm 

were regarded as clinically significant. The surface that provided the sharpest 

image for an average cornea was a cylinder with the base 120 mm away from the 

corneal vertex and a diameter of 26 mm. Changing the faceplate design results in 

clinically significant differences for an average cornea. Focusing errors have more 

influence than aberrations (controlled by instrument pupil aperture).
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Glossary

CCD

CD

CMS

DF

e

GLB

GLBTLT

IMG

MAXD

MMPX

0/

P
PD

PMMA

PUP

R c d

Ro

SpARAX

TMS

VTX

VTXTLT

wd

Z c d

Z mAXD

Zpo

§MAXD

<j>PD

Charged Coupled Device 

Diameter of the reflecting surface 

Corneal Modelling System

Distance from the paraxial plane to the image plane for a centred reflecting surface 

or distance from the surface apex to the image plane measured along the 

instrument axis for a tilted reflecting surface.

Eccentricity

Global Cartesian axis system

Axis system resultant from the global system tilt

Bidimensional axis system (xy) with x in the opposite direction of the global system 

Maximum diameter of the instrument faceplate 

Parameter that controls the image magnification on screen 

Origin of the IMG system of axis

Parameter that controls the rate of peripheral flattening of a conic or a conoid

Pupil diameter of the instrument faceplate

Polymethylmethacrylate

Axis system with origin at the faceplate pupil

Radius of the circle described by the edges of the reflecting surface when the

surface is rotated around its apex

Parameter that controls the ray density in a bundle of rays

Position of the paraxial plane from the reflecting surface apex

Topographic Modelling System

Axis system with origin at the reflecting surface apex

Tilted global system of axis with origin at the reflecting surface apex

Distance from the instrument pupil to the reflecting surface apex

z coordinate of the end of the reflecting surface measured from the surface apex

z Coordinate of the faceplate end

z Coordinate of the faceplate pupil

Angle subtended by the faceplate end and instrument axis at the reflecting surface 

apex

Angle subtended by the instrument pupil and instrument axis at the reflecting 

surface apex
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1 Introduction

The analysis of the anterior surface of the cornea is of major importance. Over the 

last centuries several methods have been developed to do so. Mejia-Barbosa and 

Malacara-Hernandez (2001) have presented a good review on the modern 

methods which include specular reflection techniques, diffuse reflection techniques 

and techniques using scattered light. Specular reflection methods include Placido 

disk systems, interferometric methods and Moiré deflectometry. The diffuse 

reflection group includes Moiré fringes, rasterstereography and Fourier transform 

profilometry. The last group, scattered light techniques, includes the slit-based 

system. Less common methods were reviewed by Clark (1973), which included 

many of the ones described by Mejia-Barbosa and Malacara-Hernandez. It also 

included direct photography of the corneal profile or projecting its shadow on a 

screen, casts, studying the fluorescein pattern beneath a scleral contact lens and 

pressing rods against the cornea. From all these methods the most widely used 

have been Placido disk systems which have been incorporated in 

videokeratoscopes. These instruments allow for planning and monitoring the 

results of refractive surgery, which were reviewed by Rabinowitz (1995). 

Videokeratoscopes generally include contact lens fitting software allowing, 

according to Szczotka (1997), for a 77% successful first fit in patients with normal 

corneas. It also reduces “chair time” by approximately 50% when compared to 

traditional methods of fitting. Rabinowitz et al. (1991) state that videokeratoscopes 

can be of great value in contact lens fitting in keratoconus since keratometry 

measures just four points. These are just a few of the possible applications of 

these instruments.

However, videokeratoscopes are affected by focusing, tilt and decentration of the 

analysed corneas, decreasing the measurement accuracy. The wide acceptance 

and importance of these instruments has led to the selection of this research topic, 

since they will still be present for many years to come in clinical practice. The 

development of a versatile videokeratoscope computer model capable of handling
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reflecting surface decentration and tilt is fundamental for the research on these 

errors. This is mainly due to three factors: simulation of different instruments, 

accurate reflecting surface modelling and positioning. Videokeratoscopes are 

expensive instruments therefore investigators can only have one or two systems in 

their research centres. The developed simulation program allows for a change on 

the videokeratoscope parameters, mimicking several instruments. At present, test 

surfaces are verified by interferometry or profilometry, methods with very good but 

limited accuracy. These methods are sometimes not available in the investigator’s 

own research centre and surface calibration and manufacturing has to be 

requested from an external source. The computer model of a surface has no 

errors, therefore saving money and time. The positioning of the reflecting surface in 

relation to the instrument poses another problem. Decentrations can be executed 

with an acceptable accuracy but tilt is difficult to control. Although a goniometer 

allows for an accurate tilt from an initial surface position, this position is the 

problem. It is almost impossible to attach a surface to a goniometer without 

introducing surface tilt. The simulation program allows for an exact tilt angle solving 

the previous experimental problem.

1.1 Synopsis

In the first chapter, Introduction, several methods for corneal topography analysis 

are briefly described. The importance of this analysis is presented and the reasons 

for undertaking this research project, explained.

The second chapter, Literature review, is divided into five sections covering 

keratoscopy, faceplate design, reconstruction algorithms, alignment and errors due 

to tilt, centration and focus. Each section is a comprehensive summary of the 

research work of several investigators on that particular field. It also includes 

comments where appropriate. The section on keratoscopy is an historical review of 

this method from the first analysis of a reflected corneal image to the development 

of the modern videokeratoscope. The section on faceplate design first describes 

several patterns up to the development of the concentric ring pattern on a flat
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target. From then the evolution of faceplate shapes using that pattern is 

considered. The section on reconstruction algorithms describes their evolution from 

the simpler methods to complex iterative methods. Each algorithm is thoroughly 

analysed and its advantages and disadvantages presented. The section on 

keratoscope alignment describes the method used by videokeratoscopes to centre 

the reflecting surface on the instrument axis. Ending this chapter there is a 

comprehensive review of the research on tilt, centration and focusing errors. It 

includes qualitative methods, based on simple observations, and quantitative 

methods.

The third chapter, Computer modelling of a videokeratoscope system, is the main 

part of this research project -  the development of the research tool. It is composed 

of 16 sections that describe the theory necessary to understand each part of the 

model. The first section, Faceplate model, describes the mathematical equations 

for the faceplate shapes used and their properties. It also describes how the rings 

on the faceplates are defined, since the rings are the object points. The second 

section, Reflecting surface, investigates conoidal surfaces as those chosen to 

represent a model of the cornea. It also presents the parameters for an average 

normal human cornea based on the research of other investigators. The third 

section, Axis systems, is a complex section that presents all the systems used. 

These systems include, observer view, patient view, and the tilted system to apply 

for a tilted surface. It also includes the mathematical relations between all systems. 

The fourth section, Decentring the reflecting surface, presents the mathematical 

limits of the decentration applied to the reflecting surface. This is important to 

prevent the surface touching or passing the limits of the defined faceplate. The fifth 

section, Tilt limits, is the same investigation of limits applied to the tilted reflecting 

surface. Its mathematicel treatment is however more complicated than for 

decentration. The sixth section, Ray tracing equations for reflection, is a 

comprehensive analysis of the usual ray tracing equations for reflection, detecting 

all possible errors. This section also describes a simple method developed to 

handle tilted surfaces. The seventh section, Finding a transmitted ray through the
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faceplate pupil, describes a very powerful procedure for a centred surface. It is 

necessary to find the central ray before defining a pencil of rays. No separate 

procedure is applied for a non-centred surface, in this case a bundle of rays is sent 

to cover the entire surface and any transmitted ray is detected. The eighth section, 

Pupil exploration in the tangential plane, is aimed to determine the direction of the 

incident rays, coming from an object point, for which the reflected rays strike the 

pupil limits in the meridional plane. It is only applied for a centred reflecting surface. 

These directions are then used to determine the best focus position for each object 

point. The ninth section, Pencil of rays from an object point, ray density, describes 

how the ray density on each pencil of rays is defined in order to send a uniform 

bundle of rays from each object point. The tenth section, Central reference point of 

the ring images, describes the definition of this point used as an origin for the 

measurement of image ring edges heights. The eleventh section, 

Videokeratoscope alignment simulation, describes the mathematical operations 

needed for this procedure. The twelfth section, Focus, describes how the best 

focus for single object and multiple object points, on centred and non-centred 

reflecting surfaces was determined. The thirteenth section, Image relative 

irradiance, describes the method used to determine the irradiance distribution on 

an image from an object point which is related to the way images are presented on 

the computer screen. The fourteenth section, Ring edge detection, describes the 

method developed to transform the image of a single object point in a ring edge 

and the simulation of an edge detection algorithm. The fifteenth section, 

Reconstruction algorithms adaptation, describes the modifications of the two 

selected algorithms (described in section 3 of chapter 2) to fit the parameters 

defined for the developed videokeratoscope model. Other modifications were also 

applied in order to increase accuracy. The sixteenth section, Difference maps, 

describes how these maps were defined in order to present the differences from 

two reconstruction maps for the same reflecting surface obtained by different 

conditions. This procedure allows studying the effect of each parameter on the 

reflecting surface reconstruction.
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Chapters 4, 5 and 6 are respectively the methods, results and discussion for 4 

research projects using the developed computer model. Each chapter is divided 

into the same sections, each a research project (the third and fourth projects are 

not complete since more data would be needed to validate the findings). The first 

section, Determination of best faceplate design, is aimed at finding the faceplate 

design that results in the sharpest image of the object rings. The second section, 

Influence of faceplate design on radius of curvature maps, is aimed at proving that 

different designs (classified by the image blur produced) will produce different 

results with clinically significant differences. The third and fourth sections are 

aimed at determining the effects of reflecting surface decentration and tilt on the 

reconstructed surface.

Chapter 7 presents the main findings of the four research projects and indicates 

the novel aspects of the computer model. It also suggests new research based on 

the application of the developed computer model.
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2 Literature review

2.1 Keratoscopy

Levene (1965) has compiled an historical review of keratoscopes. According to this 

author, Father Cristopher Scheiner in 1619 was the first known investigator to 

analyse the reflected image in the cornea. He compared the size of the corneal 

image to the size of the reflected image in a set of marbles with known radius of 

curvature. This permitted an estimation of the corneal curvature. Later in 1808 Sir 

David Brewster observed the changes in size and shape of a candle reflex in a 

conic cornea. These experiments were the precursors of the keratoscope. The first 

keratoscope was a simple instrument conceived by Henry Goode in 1847. It was 

just a small luminous square held a few inches from the eye.

Plácido (1880a) designed a device to analyse corneal surface irregularities. It 

consisted of a rectangular plate of unpolished glass with two black lines made of 

paper, glued to its surface. He called this simple instrument an “external 

keratoscope”. The patient was placed near a window and the plate acted as a 

diffuser for the day light. Irregularities of the lines reflected in the corneal surface 

would indicate corneal irregularities. In the same year Plácido (1880 b) wanted to 

extend his original idea to allow an astigmatic analysis of the cornea. He designed 

two new devices made of white cardboard with a central opening. The first was a 

black square grid drawn on the white cardboard. He abandoned this idea since he 

could only analyse two perpendicular meridians at a time. He then decided to use a 

set of concentric rings which allowed a simultaneous analysis of all corneal 

meridians. In his paper he refers to this instrument by three names, “exploring 

astigmatoscope”, “kerato-astigmatoscope” and “astigmatoscopic disk”. Today the 

concentric rings design is named Plácido disk and is still used in all reflection 

based videokeratoscopes.

Levene (1965) refers to the controversy around the invention of the concentric ring 

keratoscope. Emile Javal claimed that he was the instrument inventor in 1881 and 

not Plácido. This probably occurred because Plácido’s scientific papers on the
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concentric ring keratoscope were published in Portuguese. Javal was however the 

first to use a magnifying lens in the instrument.

Plácido (1881) initially recorded his observations by drawings, however this was a 

very cumbersome process. He then had the idea of photographing the reflected 

images which was much faster and accurate and photokeratoscopy was born. It 

should be noted that Alvar Gullstrand is often erroneously credited with the 

application of photography to keratoscopy in 1896 (Gullstrand 1966). Since 

Placido’s invention many other photokeratoscopes have been developed by 

different investigators.

Gormley et al. (1988) developed a keratoscopy instrument that captured the ring 

mire image reflected in the cornea via a CCD camera. This device was named 

Corneal Modeling System (CMS) and was the first videokeratoscope. The digital 

record allowed for an immediate analysis of the image in a computer. Since then 

many other videokeratoscopes have been developed. Computerised analysis of 

photokeratoscope photographs has also been done in the past. This was however 

much slower than a videokeratoscope since the photograph had to be digitised. 

The digitisation process used by Klyce et al. (1984) consisted of a graphics 

digitising tablet and Busin et al. (1989) used a CCD camera.

The hand keratoscope with a self luminous Plácido disk invented by Klein (1958) is 

worth mentioning since it is still used today. It is a very simple and inexpensive 

hand held instrument that allows a qualitative analysis of the corneal surface. It is 

ideal for clinical use.

2.2 Faceplate design

Ludlam and Wittenberg (1966a) and Mammone et al. (1990) presented a survey on 

faceplate designs. The first target design was flat, the Plácido disk. To provide an 

adequate corneal area coverage a flat target has to be much larger than any 

concave target placed at the same distance. The graphic representation of this
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problem can be found in the papers by Stone (1962) and Fowler and Dave (1994). 

Ludlam and Wittenberg last report a flat target back to Reynolds 1959, since then it 

seems that this design was discontinued for photo and videokeratoscopes. 

However the flat target has been applied to topographic keratometers after 1959, 

since this design simplifies calculations and these instruments are not meant to 

measure the peripheral cornea. One example is the photokeratometer designed by 

Fry (1975). Berg (1927) cited by Ludlam and Wittenberg appears to be the first 

investigator to use a non-flat target. He used two perpendicular arcs, increasing the 

corneal area covered.

Wittenberg and Ludlam (1970) presented results on optimum faceplate designs 

both for a spherical and elliptical reflecting surface (resembling the cornea). They 

concluded that an elliptical target was the best design but the theoretical 

calculations and the experimental work resulted in different ellipsoidal shapes. 

They used a small vertical line as an object. However such a line segment is 

imaged on the sagittal focal plane whereas their theoretical calculations applied a 

formula derived to calculate the tangential focus. This could explain the 

discrepancy in their results. In addition the formula for tangential reflection is 

derived only for a small area of the reflecting surface (Longhurst, 1973). This 

formula is

a t /?cosp

where a is the distance from the object point to the reflection point measured along 

the principal ray, t is the distance from the reflection point to the tangential focus 

measured along the reflected ray, R is the spherical surface radius of curvature 

and p is the angle of incidence of the principal ray.
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Wittenberg and Ludlam’s camera had a large aperture, increasing the corneal area 

covered by a pencil of rays coming from a single object point. Using the tangential 

reflection formula (equation (2.1)) in such conditions may be a poor approximation.

Mandell and St. Helen (1971) determined experimentally the best target design for 

spherical and parabolic reflecting surfaces. They used a target with moving parts 

but didn't attempt to fit any particular surface to the final result.

Rowsey and Isaac (1983) and Binder (1995) claimed that a parabolic design would 

decrease optical aberrations, allowing for a flat image plane. Although it appears 

that no experimental work was done by them to support this claim, it may arise 

from the fact that the loci for sagittal and tangential focal surfaces for a plane object 

are parabolic in shape (Hecht, 1998). Reversing the path of the rays, a parabolic 

target would result in a flat image plane.

It is interesting to note that some investigators designed targets in order to produce 

an even spacing of the mire rings when reflected on a particular spherical surface. 

This was done originally by Gullstrand in 1896 (Gullstrand 1966) to simplify the 

calculations in his reconstruction algorithm. This process was repeated by Knoll 

(1961), Townsley and Ridge (1967), Rowsey et al. (1981) and Mammone et al. 

(1990).

2.3 Reconstruction algorithms for Plácido disk based systems

2.3.1 Telecentric videokeratoscope principle

This is not a reconstruction algorithm but an approach adopted in several 

algorithms in order to simplify the calculations. In a telecentric videokeratoscope a 

stop is placed at the second principal focus of the objective lens (Rand et al. 1997). 

The aim of this setting is to stop all the rays non-parallel to the optical axis. In this 

case the height h of an object point's image (Figure 2.1) is equal to the height of 

the reflecting surface point from which the ray is reflected.

32



However the telecentric condition is only exactly met if the stop used is a pinhole. 

This is impractical in most systems since there will be insufficient light in the image. 

To overcome this problem there are two solutions. The first is to increase the 

object illumination and the second is to increase exposure time. However when 

working with a living subject both solutions are inadequate: A strong illumination 

will be very uncomfortable resulting in inadequate subject fixation. A longer 

exposure time will result in a blurred image due to subject motion. If a pinhole can’t 

be used the algorithms using the telecentric approach will lose accuracy.

Figure 2.1 - Telecentric videokeratoscope principle. A stop is placed at the second principal focus 

of the objective lens to block all rays non-parallel to the optical axis. The height of the reflection 

point in analysis (h) will then be the same as the height of the Image point in the image plane.

2.3.2 Gullstrand’s algorithm

The first algorithm to analyse data from keratoscopes was developed by Gullstrand 

in 1896 (Gullstrand 1966). It had however serious inacuracies pointed out by 

Wittenberg in the appendix to Ludlam’s translation of Gullstrand’s work (Gullstrand 

1966). For example he considered the gradient of the normal at a reflection point to 

be independent from the point position and surface curvature. A further error was 

introduced by considering the reflection point abscissa equal to the working
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distance of the camera. These problems make Gullstrand’s algorithm unsuitable for 

use. There is however a part of his algorithm that has been used by many 

investigators after him. He considered the reconstructed reflecting surface to be 

made of circular arcs joining each pair of calculated adjacent points. Each arc was 

centred on the intersection of the normals to the surface at each pair of points. This 

ensures that when two arcs join they share the same tangent resulting in a smooth 

surface. He also acknowledged that the centre of each arc could be located 

outside the instrument axis. Although he seems to be the first to introduce this 

approach in the analysis of corneal shape this property probably was known by 

mathematicians long before Gullstrand. The algorithm and the instrument 

developed by Gullstrand were tested with a spherical ocular lens (Seyberts Ocular 

IV). The lens radius of curvature was not given by the author. In the appendix to 

Ludlam’s translation of Gullstrand’s work, Wittenberg (Ludlam’s coworker) found a 

difference of 0.05 mm between the lens calculated radius of curvature for the larger 

and smaller mires. Since there is no data for the lens radius of curvature the 

algorithm’s accuracy cannot be assessed.

2.3.3 Wittenberg and Ludlam algorithm

Wittenberg and Ludlam (1966) considered that the height of the ring mire image in 

the image plane could be calculated using a single ray passing through the camera 

objective’s first principal point. They based their analysis on an equation that gives 

the position of the tangential focus since the rings are imaged on the tangential 

plane. A differential equation was derived but a solution wasn’t presented. Their 

conclusion was that any curve that represented the corneal surface had to satisfy 

that equation. Although they came short of achieving surface reconstruction, the 

differential equation can be solved using numerical methods. A problem would be 

the initial conditions necessary to solve the equation. Even if the equation is solved 

this method is not very accurate due to two factors: The first is that the ray passing 

through the principal point may not be the one corresponding to the ring edge. The 

second is that the equation they used to determine the position of the tangential 

focus is only valid for spherical surfaces. Although an aspherical surface can be
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constructed with small arcs, their centres of curvatures will need to be off-axis. 

When deriving the equation for the tangential plane Longhurst (1973) considered 

that the centre of curvature must be on axis therefore it cannot be valid for an 

aspherical surface.

2.3.4 Townsley and Ridge algorithm

Townsley and Ridge (1967) used a pinhole camera approach for a non-telecentric 

keratoscope target. They reconstructed the reflecting surface using a different 

method from Gullstrand’s but they used the circular arc approach to obtain a 

smooth surface. The problem with this algorithm is in the first step, the calculation 

of the slope of the ray coming from a target point and striking the reflecting surface 

(this will be the only ray transmitted to the instrument pupil for that target point in 

the pinhole camera approach). The authors state that the slope of this ray can be 

found solely from the target point location. This implies that the slope of this 

incident ray (transmitted through the instrument pupil after reflection) is 

independent of the reflecting surface which is not correct. The authors didn’t 

mention testing with calibrated surfaces, only referring to measuring precision on 

image ring mire heights. In another paper, Townsley (1970) using the same 

photokeratoscope and algorithm states that photokeratoscope data can reconstruct 

the corneal profile to an accuracy of 9 pm or better. However it is not clear if he is 

referring to his system or how this value was determined.

2.3.5 El Hage’s algorithm

El Hage (1971) presented a reconstruction algorithm similar to Wittenberg and 

Ludlam’s. It was based on the same equation for determining the position of the 

tangential focal plane however El Hage used the telecentric approach. He derived 

a simpler differential equation and proposed a method to solve it. The initial 

conditions problem was solved by comparing the central reconstructed surface with 

a sphere. This approach was due to the fact that an aspherical surface can be 

considered a sphere at its central part. The radius of this sphere was obtained by 

keratometry on the analysed cornea. Even for a perfect telecentric
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videokeratoscope this method will lose accuracy due to the fact that it is based on 

the equation for finding the tangential focal plane (see 2.3.3). The author does not 

mention testing on calibrated surfaces, presenting only a precision of 0.02 mm on 

the extreme periphery of the corneal profile. However El Hage (1989) applied his 

system to a telecentric videokeratoscope, the EH-270 claiming an accuracy of 

±0.12 D. This value was calculated with the data from a single image ring mire on a 

8.33 mm (40.50 D) sphere.

2.3.6 Fry’s algorithm

Fry (1975) designed a telecentric photokeratoscope with a flat target. He 

recognised that the peripheral cornea would not be covered and decided to use the 

instrument as a photokeratometer. The flat target was used to simplify the 

calculations since one coordinate is constant. He started by deriving a differential 

equation by applying the same steps as El Hage (1971) arriving at exactly the 

same result (although El Hage is not acknowledged). To achieve the reconstruction 

Fry considers the differential equation a quotient of finite quantities Ay / Ax. Ay is 

obtained by measuring the height difference between two image rings in the 

keratograph and Ax is then calculated by the differential equation. This approach 

would only be accurate if the image rings were infinitely close, which is not the 

case, therefore it is an approximation. He fails to mention how the distance from 

the target to the corneal apex is obtained, although it is probably considered to be 

a constant value. Fry does not mention testing his algorithm on calibrated surfaces.

2.3.7 Doss et al. algorithm

Doss et al. (1981) developed the first iterative algorithm for surface reconstruction. 

They used a pinhole camera approach and considered that all reflecting surfaces 

would have an apical radius of 7.8 mm. This value was chosen since it resembles 

the average apical radius of the human cornea. All the calculations were based on 

a spherical faceplate. A linear magnification was considered, the ring height (x in 

their axes system) was calculated by dividing the ring height measured in a 

magnified keratograph by the magnification. The keratograph was taken by the
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Corneascope, a photokeratoscope of the time. To obtain a reconstructed point 

(Xi,yi) it was considered that an arc would join it to the previously determined point 

(x/-i,y/.i). The mathematical formula used to achieve this relates the coordinates of 

the two points with the angle of the tangent to the surface at each point. For each 

new point one coordinate (x) was taken from the keratograph but the other 

coordinate (y) and the tangent angle are still variables. An initial value for the angle 

was considered to be half the angle from the object ring to the centre of curvature 

of the spherical faceplate. This angle was used in the formula to obtain an estimate 

of y  for the unknown corneal point. This coordinate was then replaced in another 

formula that related the tangent angle with the incident ray on the corneal surface. 

After calculating the tangent angle with this new formula, this value would then be 

replaced in the initial formula to obtain a better estimate fory. The iterative process 

would continue until the difference of two y values calculated in successive 

iterations reached a predetermined value.

The authors state that in order to use this algorithm the reflection surface would 

have to be spherical with its centre of curvature coincident with the spherical 

faceplate centre of curvature. However after executing a careful analysis of the 

mathematics I concluded that it is valid if the curvature centres are not coincident 

and it also works for aspherical surfaces. The only advantage of a spherical 

reflecting surface with the centre of curvature coincident with the centre of a 

spherical faceplate is that the initial approximation of the tangent angle 

corresponds to the true value of the angle. In this case only one iteration would be 

needed.

The main problem with this algorithm is considering that all surfaces have the 

same apical radius. The authors tested the algorithm on a 9.52 mm radius sphere 

resulting in reconstructed surface with an average radius of 9.663 mm with a 

standard deviation of 0.2385 mm.
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2.3.8 Klyce’s algorithm

Klyce (1984) presented a refinement of Doss et al.’s algorithm. The main difference 

was the calculation of the central radius of curvature instead of the constant value 

used by Doss. This was achieved by considering the average image height for the 

central image ring (xi in his system of axis) and relating it with the object ring 

coordinates and working distance of the photokeratoscope (distance from the pupil 

plane to the image plane). This last parameter was used considering that the 

image plane would coincide with the surface reflecting point y-i coordinate (in his 

system). This is never the case but is better than the Doss constant apical radius 

approach.

Klyce presented an interesting approach for determining the tangential radius of 

curvature (see section 3.1.1 for definition). It combined the coordinates of three 

adjacent surface points determined by the reconstruction algorithm to calculate the 

centre and radius of a circular arc passing through the points. The radius of the arc 

would be considered the tangential radius of curvature for the central point of the 

three considered. This method would then be applied to the next three points and 

the third point of the previous calculation would now become the middle point. This 

method fails in the point determined from the outer ring mire data since there is no 

next point. In this case it could be considered that the last point would have the 

same tangential radius of curvature as the previous point.

Based on the analysis of five spheres ranging from 6.9 to 8.4 mm radius of 

curvature, Klyce claims an accuracy of less than 0.1 mm on measuring radius of 

curvature. The calibration sphere’s radiuses were measured with a convex radius 

gauge to within 0.05 mm.

2.3.9 Spherical Biased

This algorithm developed by Rowsey and Isaac (1983) is based on finding a 

sphere for each ring edge sector that produces a similar ring edge image to the
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unknown reflecting surface in analysis. It uses the known property of spherical 

convex reflecting surfaces for which a larger radius of curvature results in a larger 

image. It was designed for a photokeratoscope available at the time, named the 

Corneascope. This device had 9 rings along a parabolic faceplate according to the 

authors. Six calibrating spheres were used with radius of curvature ranging from 

5.5mm to 9.52mm. Each one of the spheres was used in the Corneascope, which 

photographed the image of the rings on the sphere surface. The distance from the 

centre of the inner ring to the inner ring edge of each image ring (hemi-chord 

length) was measured in the picture along eight semi-meridians. The average of 

the eight semi-meridians hemi-chords was placed as a point in a graph of hemi- 

chord length against radius of curvature. After the analysis of all ring edge images 

for all six spheres, a linear regression line was calculated for each of the 9 ring 

edges.

Figure 2.2 - Calibration graph for a 9 ring keratoscope for use with the spherical biased algorithm. If 

the inner edge of the 5th image ring is in analysis in a keratograph then the line corresponding to 

this edge is selected. Supposing that the ring mire image of this ring edge has an hemi-chord height 

of hs then the corresponding radius of curvature in the reflection area is R5.
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The final calibration graph is similar to the one presented in Figure 2.2. This figure 

represents an example of the use of the graph. If the inner ring edge of the 5th 

image ring is being analysed then the line for the 5th ring edge image is selected on 

the graph. Supposing that the ring mire image corresponding to this edge has an 

hemi-chord of height hs then, from this line, the radius of curvature is R5.

The image ring height measured by Rowsey and Isaac was based on a photograph 

with 4.8X magnification in relation to the real size. They have assumed that the 

magnification was linear therefore if the hemi-chord is divided by 4.8 the original 

size of the hemi-chord was obtained.

It should be noted that they developed this simple method when analysing 

photokeratoscope photographs in an instrument called a comparator. According to 

Goss (1991) this device was used with the corneascope photographs, which were 

optically enlarged so that a particular ring image analysis would match a circular 

mark corresponding to the same ring. The magnification used for the ring was then 

converted to radius of curvature by an unknown algorithm. Probably this instrument 

already used a very similar algorithm to the one Rowsey and Isaac developed.

The idea for the spherical biased algorithm can be traced as far back as Fincham 

(1953). In his paper he states “A close approximation of the radius of curvature of 

the surface may be obtained by the direct comparison method of photographs of 

the images produced by a number of steel balls of known diameter, and the results 

plotted in a graph show the relation between radius of curvature and diameter and 

width of the rings. The record of the corneal image is then measured either on an 

enlarged print of known magnification or simply by projecting an image of the 

negative to a known size, and the values are read off on the graph.”

Roberts (1994a) has shown that although this algorithm is adequate to analyse 

spherical surfaces it doesn’t work well for aspherics. The error increases towards
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the periphery of the surface. Rowsey and Isaac (1983) tested their algorithm on a 

7.96 mm radius steel ball obtaining an average radius of 7.955 mm.

Since the algorithm is based on the size of the image produced by spheres the 

radius of curvature determined is the sagittal radius of curvature (see section 

3.1.1). It would only be suitable for a telecentric keratoscope since each radius of 

curvature is attributed to a point on the surface with the same height as the ring 

mire image. However the coordinates of the surface reflection points along the 

videokeratoscope axis cannot be determined by this algorithm preventing the 

reconstruction of the original surface.

2.3.10 Edmund and Sjontoft algorithm

Edmund and Sjontoft (1985) developed a reconstruction algorithm based on the 

assumption that the cornea would be a conoid (however their calculations do not 

work for a parabola) and that the image plane would be located at a distance of 

half the apical radius from the corneal vertex. This is a paraxial approach for 

spherical mirrors when the object is at an infinite distance, and is therefore only 

approximate for the finite distance of the faceplate. They attributed values to the 

apical radius (Ro) and eccentricity (e) of the aspherical reflecting surface and 

compared the ring image height measured from the keratograph with the ring 

image height calculated by finite ray tracing. A linear magnification was considered 

in order to achieve this. For each keratoscope ring the difference from the 

calculated and measured image height was determined and squared. These 

squared differences were then added and the sum was the parameter used to 

evaluate the values of apical radius and eccentricity used. Then new values were 

attributed to R and e and the process repeated until a minimum sum was found. 

The authors do not mention testing the algorithm with calibrated surfaces.

2.3.11 Wang et at. algorithm

Wang et al. (1989) developed a two-step algorithm. The first step was applied to 

the central cornea using the tangential equation for reflection. The second step
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was for peripheral points and considered that any two points could be joined by a 

segment of arc. It combines procedures used in previous algorithms. The use of 

the tangential reflection formula (equation (2.1) for the central cornea is adequate 

since this part can be considered spherical. Wang and coworkers realised that this 

equation is not suitable for peripheral points. They present their sets of equations 

in vectorial form and do not solve the vectors in their components. However if this 

development is done it can be seen that the distance from the instrument pupil to 

the corneal apex wasn’t calculated. Therefore one equation is missing to allow for 

an accurate solution of their system of equations.

They tested the algorithm on a steel sphere of 8.33 mm radius of curvature and an 

axial symmetric ellipsoid with a 7.73 mm apical radius and eccentricity 0.5. The 

surface parameters were checked on a microscope with stage verniers. They 

found a maximum error of 0.8% (0.06 mm) for the spherical surface and 2% for the 

ellipsoid.

2.3.12 Mammone et al. algorithm

Mammone et al. (1990) presented the algorithm that was used for the first 

videokeratoscope, the CMS. The reconstruction was based on fitting a conoid to all 

points by an iterative least squares estimate. The iteration starts with a p value of 1 

for the conoid, which corresponds to a sphere. The initial apical radius was 

determined based on an equation derived by considering that the image plane was 

positioned at the mirror focus. This assumption is an approximation, it would only 

be accurate if the object (faceplate) was at infinity. Furthermore they apply a 

relation between coordinates and radius of curvature of two circles which is only 

valid if the circles share a common centre of curvature. However in their system 

the two circles (reflecting surfaces) are located at a constant distance from the 

instrument pupil so they share a common vertex and therefore are not concentric. 

The values of p and apical radius were then applied in the iteration and new values 

of these parameters estimated. The iteration stopped when the difference between 

p values calculated in two successive iterations was below a certain value.

42



Hannush et al. (1989) tested the CMS on four calibrated steel balls (38.66, 42.52, 

43 and 50.14 D) and presented an accuracy within ±0.25 D for the first three 

spheres and ±0.37 D for the steepest. The data corresponds to rings 2 to 26 (the 

instrument has 32 rings). Rings 27 to 32 were not processed by the instrument and 

the first ring data was not used due to extreme variability.

2.3.13 Gersten et al. algorithm

Gersten et al. (1989) presented a refinement of the Mammone et al. algorithm 

developed for the CMS videokeratoscope. It was then applied to the instrument 

that replaced the CMS, the TMS. The algorithm is very similar to the original except 

in the estimation of the initial apical radius. This estimation is based on an equation 

that is only valid for a telecentric videokeratoscope, which is not the case for the 

instrument they describe. This equation is then combined with a relation between 

the surface to analyse and a reference sphere that relates coordinates and radius 

of curvature of both spheres. This relation is the same described in section 2.3.12. 

However the authors acknowledge that the relation is not adequate if the spheres 

share a common vertex. Instead of trying a different approach they decided to 

multiply each value of the apical radius, determined by the equation for each data 

point, by a correction factor. This factor was determined by a least squares solution 

from analysis of several reference spheres with radius ranging from 6.75 to 8.8 

mm.

Wilson et al. (1992) tested the TMS on three calibrated spheres previously verified 

with a radiuscope. At 1 mm from the sphere’s apex the instrument presented a 

maximum error of 0.23 D and at 3 mm from the apex the error ranged from 0.18 to 

0.69 D.

2.3.14 van Saarloos and Constable algorithm

van Saarloos and Constable (1992) presented a refinement of Klyce’s algorithm 

(see 2.3.8), which in turn was a refinement of Doss et al.’s algorithm (see 2.3.7).
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One of the most important modifications of the algorithm was to lose the telecentric 

approach employed by the previous authors. A second important modification was 

to turn the calculation of the apical radius of curvature into an iterative approach 

that worked much better than the methods of Doss and Klyce. van Saarloos 

included the paraxial equation for spherical mirrors in the calculation of the apical 

radius, which is adequate for the first keratoscope ring.

The authors tested the algorithm on a sphere (radius not specified) using finite ray 

tracing. The results are presented in graphical form and compared to Klyce’s 

algorithm (2.3.8). A maximum error on the sag of the reconstructed surface of less 

than 4 pm is presented versus a maximum error of around 27 pm in Klyce’s 

algorithm. For all points the error was always larger for Klyce’s algorithm.

2.3.15 Klein’s algorithm

Klein (1992) developed an iterative reconstruction algorithm based on a third 

degree polynomial. This function results from a Taylor series expansion up to the 

third order around a known surface point, the one determined for the previous ring 

(i-1). The first and second derivatives for ring (i-1) were obtained from 

differentiation of the Taylor expansion around ring i-2. The third derivative for ring 

(i-1) was obtained by several approximations. Based on this estimation of the 

reflection point the angle of incidence and reflection are calculated and compared. 

The reflection point position is then changed and a new iteration begins with the 

new value. The procedure ends when the difference between the incidence and 

reflection angle is less than a pre determined value. The Taylor expansion assures 

a continuous surface.

Klein tested the procedure by finite ray tracing with a 10 mm radius sphere 

concentric with a 10 cm radius spherical faceplate. The algorithm simulation with 

these parameters lead to a reconstruction accuracy (corneal point position) better 

than 1pm.
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2.3.16 Andersen et al. algorithm

Andersen et al. (1993b) developed an iterative algorithm to analyse the data from 

their photokeratoscope, described by Anderson et al. (1993a). The algorithm was 

divided into three different parts. The first was called screenmapping and 

calculates the angles subtended between the instrument axis and the rays from 

each ring mire directed to the intersection of the image plane with the axis. The 

image plane position is fixed in relation to the camera. To achieve focus the 

instrument moves in relation to the reflecting surface, therefore the mentioned 

angles are constant for each mire and do not depend on the reflecting surface. A 

direct calculation of the angles from the ring mire positions and camera working 

distance is easily obtained. However they followed a very complicated path. Since 

the working distance is much larger than the radius of the measured surface they 

considered that the ring mires were at infinity and therefore the image plane was 

located at half the radius of curvature of the surface from the surface vertex. They 

also applied a linear magnification for the imaged mires. These two assumptions 

are approximations compromising the algorithm’s accuracy. Using a sphere of 

known radius of curvature the angles are then calculated based on the image ring 

mire heights.

In the second part of the algorithm the position of the reflecting surface vertex was 

calculated using the angles determined in the first part for the first image ring mire 

only. It uses the same assumptions as the first part and a paraxial approximation in 

the calculation. The first mire is very close to the instrument axis hence the 

approximation is adequate. The vertex position is calculated for several semi-

meridians and then averaged. In the third part an iterative procedure is used to find 

the position of the reflection point of the next mire based on the data from the 

previous one. It uses data acquired in the first two parts and is a modified Euler 

method that starts by considering that the next corneal reflection point has a 

tangent equal to the previous point. After that a new tangent is calculated based on
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the reflection angles and the process is repeated until the difference on two 

successive iterations is below a pre-determined value.

The authors tested the procedure on five steel spheres of radii 5.5, 7, 8, 9 and 11 

mm resulting in an average error of 0.2% on radius of curvature. From their data 

the maximum error on radius of curvature was 0.04 mm for the 11 mm sphere.

2.3.17 Laskin and Puryayev algorithm

Laskin and Puryayev (1995) built a telecentric videokeratoscope with collimated 

mires employing an unusual design. The faceplate mires were not observed 

directly but through a collimating lens. The mires were located in a meniscus with a 

curvature equal to the curvature of the lens focal plane. This design makes any 

pencil of rays from any point in any mire to arrive parallel at the corneal surface 

(collimation). The telecentric principle only allows rays parallel to the instrument 

axis to enter the instrument pupil. The combination of these two features makes 

the calculations much easier. They reconstruct each semi-meridian separately 

fitting a conic section by a least squares method.

The algorithm was tested on a 10.02 mm radius sphere and a paraboloid with 

apical radius of 6.08 mm. They present an error of 0.03 mm on the sphere radius 

and an error of 0.11 mm on the apical radius of the paraboloid.

2.3.18 Halstead et al. algorithm

Halstead et al. (1995) resorted to polynomial splines to represent surface 

information as a continuous data set. Algorithms that reconstruct each semi-

meridian at a time are criticised since they are more prone to error if asymmetric 

surfaces are used. The algorithm starts by shifting the position of a 9 mm apical 

radius paraboloid until it reaches a surface point determined by an ordinary 

reconstruction algorithm. At each iteration a backward ray trace is executed using 

the approximated surface. First a ray is traced from the image mires in the CCD 

plane passing through the nodal points of the objective reaching the surface at a
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given point. The surface normal at that point is then used to trace the reflected ray. 

If this ray doesn’t intersect an object ring mire edge, then the approximated surface 

has an error. This error was quantified by the dot product of the tangent vector to 

the surface at that point with the desired normal vector that would make the 

reflected ray intersect the closest point on the object mire. If the surface is 

adequately reconstructed the dot product is zero. The approximated surface is then 

replaced by another surface that minimises the error by a least squares method. 

The iterations are repeated until the squared error values of the dot product 

representing the error falls below 1% of the sum. This algorithm is adequate for 

non-symmetrical surfaces since it considers the hypothesis of the incident and 

reflected rays in different meridians (skew rays).

The algorithm was tested on three spheres of 7, 8 and 9 mm radius and a 

computer simulation of the image reflected from a non-rotational symmetric 

ellipsoid. They report a root mean square error in sag reconstruction of 8.5 nm for 

the ellipsoid and 0.7, 0.8 and 1.4 pm for the 7, 8 and 9 mm spheres respectively.

2.3.19 Brenner’s algorithm

Brenner (1997) disclosed the algorithm used by the TMS2 videokeratoscope. The 

cornea is reconstructed by a sequence of spherical surfaces with centres on the 

instrument axis. Using a calibration sphere of known radius, at each sample point 

in the image (defined by the coordinates ring number, semi-meridian), the radius of 

the sphere is divided by the image ring mire height defining a coefficient c. The 

coefficients for all sample points are then stored. When analysing an unknown 

surface the coefficient c (determined for the calibration sphere) for a given sample 

point is multiplied by the ring image mire height for that point. This will result in an 

estimate of a radius of curvature for that point. Note that this radius would be 

accurate only if the unknown surface was equal to the calibration sphere. 

Therefore a different correction factor must be applied to each radius of curvature. 

The correction factors are based on the application of the same methods to two 

other spheres of known radius of curvature. The radial coordinate of the analysed
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corneal point is obtained by linear magnification from the image on the CCD plane. 

Knowing the radial coordinates and the sagittal radius of curvature (see section 

3.1.1 for definition) for each corneal point, they reconstruct the surface using 

circular arcs. Each arc will be positioned with the corneal point in the middle. Since 

the several arcs will not be joined in their extremities they are translated in order to 

do so. However this will result in a loss of smoothness at the arcs junctions, like a 

sequence of bumps. The author does not mention this problem. No testing of the 

algorithm was reported.

2.3.20 Campbell’s algorithm

Campbell (1997) disclosed the algorithm used in the Mastervue videokeratoscope. 

This instrument uses a unique concept, the cone of focus. Ring number 10 is 

located away from the faceplate in an inner cone with the same apical angle as the 

faceplate and opposite base (Figure 2.3). Therefore when the instrument executes 

an axial displacement there is a differential movement between the image of ring 

10 and the images of rings 9 and 11. When the image of ring 10 is located in the 

middle of the images of rings 9 and 11 the incident ray is directed along the 

direction of the cone of focus.

Figure 2.3 -  Cone shaped faceplate of the Mastervue videokeratoscope. All rings are located on 

the faceplate inner surface except for ring 10. This ring is located in an inner cone with the same 

apical angle as the faceplate and with opposite base.
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Knowing the direction of the incident ray, the image position and considering that 

the reflected ray is directed to the nodal point of the CCD camera objective, the 

position of the corneal reflection point is determined. Using the van Saarloos’ 

algorithm backwards, the position of the corneal vertex is located for the horizontal 

semi-meridians (0 and 180°) and averaged. The surface is then reconstructed 

using the van Saarloos algorithm. The author claims that the system is able to 

measure differences in surface elevation up to 1 pm.

2.4 Keratoscope alignment

Mandell (1992) mentions that although Plácido disk-based videokeratoscopes use 

slightly different alignment procedures, they are all based on the same principle. 

The subject fixates on a point on the instrument optical axis and its reflection on 

the corneal surface is used to place the instrument perpendicular to the cornea at 

the point of intersection with the instrument axis. This is achieved by overlapping 

the image of the fixation light with a mark on the centre of the screen, which marks 

the instrument axis. The corneal point where the fixation light is reflected can be in 

the centre or slightly more to the corneal periphery. Mandell suggests that the 

instrument should be directed to the entrance pupil centre, however he 

acknowledges that in this case the instrument optical axis wouldn’t be 

perpendicular to the cornea. Since the majority of reconstruction algorithms need 

this condition to be met, there would be the need to develop new algorithms.

Mandell’s centring suggestion follows the work of Uozato and Guyton (1987) in 

which they state that all surgical procedures should be centred at the line of sight. 

This should be done since this line corresponds to the centre of the bundle of rays 

entering the eye.

To achieve a compromise between centration on the line of sight and placing the 

instrument axis perpendicular to the cornea Mandell (1992) suggested an eccentric 

fixation point. This would allow for the instrument axis to be directed to the point
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where the line of sight intersects the cornea. In another article Mandell (1994) 

names this point the corneal sighting centre.

2.5 Decentring, tilt and focus errors

Plácido (1880b) was aware that tilting and/or decentring the cornea would 

influence the keratoscopic ring mire image. To prevent tilting of the Plácido disk he 

placed a cylindrical tube on the back of the instrument, concentric with the disk 

aperture. Since the observer would focus on the patient’s cornea the disk aperture 

and the cylinder aperture would be out of focus. However it was still possible to be 

aware of both apertures while focusing on the Plácido disk image. Plácido points 

out that the image of both apertures should be concentric in order to prevent tilting 

of the instrument. He also placed two dots on the horizontal meridian on each side 

of the first ring in order to study the effect of patient fixation on the keratoscopic 

image.

Levene (1962) studied the effect of the self-luminous keratoscope (see 2.1) tilt in 

the recognition of astigmatic surfaces using 30 observers. Anterior surfaces of toric 

contact lenses were used instead of human corneas. He concluded that 

astigmatism detection was difficult if lower than approximately 2.5 diopters. He 

refers to Gestalt concepts to explain the tendency to perceive ellipses of small 

eccentricity as circles. He also points out the potential to tilt the instrument in order 

to obtain a perfect image (circle).

Ludlam and Wittenberg(1966b) also studied the effect of surface tilt in a 

photokeratoscope. They analysed a tilted reflecting aspheric surface with axial 

symmetry and a non-astigmatic cornea fixating eccentrically. They used 4 degrees 

tilt for the former and 8 degrees for the latter. The tilt was done once for the vertical 

plane and once for the horizontal. They concluded that toricity could be induced 

from surface tilt. In a centred toroidal surface the ring separations are constant on
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opposite sides of the measurement axis. This doesn’t happen if the toricity is 

induced from surface tilt.

El Hage (1972) performed a simple mathematical analysis on the effect of 

reflecting surface decentration. He concluded that these errors are negligible since 

the decentration is much smaller than the keratoscope rings (He used a cylindrical 

keratoscope with rings of equal height).

Fry (1975) mentioned that for reflecting surfaces without rotational symmetry the 

reflected ray won’t lie in the meridional plane. The only exception would be for the 

principal meridians of the surface. This is important since it also applies to 

decentred or tilted axially symmetrical surfaces due to loss of symmetry of the 

system surface -  instrument.

Rowsey and Isaac (1983) photographed 6 steel balls with the Corneascope and 

analysed the surfaces with their spherical biased algorithm (see 2.3.9). They 

observed that decentration caused ring crowding in the direction of decentration 

(indicating steepening) and separation on the opposite direction (indicating 

flattening). However in their algorithms the average hemichord length was the 

average of all image ring points and the errors would compensate. Therefore 

decentration did not seem to be a problem.

Penney et al. (1990) used the CMS videokeratoscope to analyse a reflecting 

sphere of 7.94 mm radius equivalent to 42.5 D. They mention that when the sphere 

was displaced in the direction of the instrument, from the best focus position, the 

reflected mires increased in size, corresponding to a larger radius of curvature. The 

opposite happened when the sphere was displaced away from the instrument. 

They calculated an average 0.1 D change for each 50 pm displacement from the 

best focus position.
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Fisher and Applegate (1990) used the TMS on spherical steel balls of 7, 7.5 and 8 

mm radius of curvature. They misaligned the instrument until the limits of the 

alignment box obtaining an error of approximately 0.875 D.

Wang et al. (1991) investigated the effects of astigmatism and misalignment on 

surface reconstruction. Their work can be considered a cornerstone on corneal 

topography. They resorted to ray tracing in three dimensions, using an ellipsoid 

with three different axes as an astigmatic surface. Two of the axes remained 

unchanged and the third changed in order to produce different degrees of 

astigmatism.

Their study shows that the skew ray error (difference of object and image meridian) 

increases with the degree of astigmatism and is maximum near the meridian 

bisecting two of the surface principal axes. They also realised that it is not possible 

to focus an entire image ring from an astigmatic reflecting surface. When focusing 

in the horizontal meridian the vertical will be out of focus. The total error will be the 

sum of the defocusing error across a ring, the skew ray error and the error 

associated with reconstruction algorithms when dealing with aspheric surfaces. In 

some points these errors will aggregate and in others they will compensate. 

Therefore it isn’t possible to analyse the effect of the skew ray error as a single 

source. However when analysing the error for all rings in a semi-meridian the 

reconstruction error was larger when compared with a spherical surface.

Wang and co-workers also analysed the effect of decentration with a 8.33 mm 

sphere. They report that the image rings are compressed in the opposite direction 

of shift and will separate in the direction of shift. They estimated a 0.5 D error for 

each mm of shift. However videokeratoscope alignment systems won’t allow that 

magnitude of shift. The tilt effect was analysed on a rotational symmetric ellipsoid 

(non-astigmatic on xy) for several tilt angles. The simulation results for the first and 

last ring were compared to the centred ellipsoid and to the tilted ellipsoid. When
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compared to the centred ellipsoid the error was larger for the last ring. When 

compared to the tilted ellipsoid the error was larger for the first ring.

They reported a maximum error of less than 1% on paraxial power maps when 

comparing the instrument values with their simulation values using centred 

surfaces. For an average cornea of 43 diopters, 1% of the power is 0.43 diopters 

which is a significant error. This error can be explained by the fact that they used a 

single ray to calculate the image of each object point. That ray passed through the 

principal point of the camera lens. In addition, once again they appeared to forget 

the distance from the instrument pupil to the reflecting surface vertex. This 

happened previously in the article from Wang et al. (1989) (see 2.3.11).

Mandell (1992) tested two well known videokeratoscopes, the TMS and the 

Eyesys, concluding that the instrument with the shorter working distance was more 

sensitive to focusing errors. He also mentions that the same instrument is more 

sensitive to decentration errors but didn’t present any proof. He based his findings 

on the analysis of a single reflecting sphere of 7.94 mm radius.

Mandell et al. (1992) tested 10 subjects with standard videokeratoscope alignment 

and alignment at the line of sight. They found maximum radius of curvature 

differences of 0.09 mm for central rings and 0.16 mm for peripheral rings.

Nieves and Applegate (1992) tested the TMS and the Eyesys with two spheres of 

7.115 and 7.95 mm radius. They tested defocusing and decentration concluding 

that the first parameter leads to larger errors which were more significant for the 

instrument with shorter working distance. The error was 0.9 D for a defocusing of 

0.33 mm in the direction of the instrument.

McCarey et al. (1992) tested the Eyesys software version 1.75 in a 47 D sphere. It 

accepted decentrations up to 0.6 mm, from then the accuracy dropped sharply. 

However their error graphs for decentration and defocus are scaled in 5 D intervals
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and do not allow a proper analysis. From those graphs they concluded that small 

decentration and defocus do not significantly alter data.

Mellinger et al. (1993) tested the TMS1 and the Eyesys on toroidal surfaces until 7 

D of astigmatism. The surfaces were verified by interferometry and profilometry. 

Focusing errors were more significant for the instrument with shorter working 

distance with 2.7 D per mm of defocusing. Decentration errors were not significant 

for misalignments of ±0.4 mm.

Legeais et al. (1993) tested the TMS1 on six PMMA spheres checked with a radius 

gauge to an accuracy of 0.02 mm. They mounted the TMS1 head on a micrometer 

stage (therefore modifying the instrument). Steeper readings were observed in the 

direction of decentration and flatter in the opposite direction. Decentration error 

increased with surface power. Although they claimed to have tested decentrations 

in the range 100 to 300 pm, they just report a maximum error of 0.2 D for 100 pm 

neglecting to mention results for other decentrations. Focusing errors also 

increased with power. Defocusing magnitudes of 250 and 500 pm were studied 

with the amount of error doubling from the former to the latter defocusing 

magnitude. Focusing errors were larger than decentration errors. At 500 pm 

defocus they obtained 0.5 D error for a 43 D sphere and 2.3 D for a 60 D sphere.

Roberts (1994a) analysed the Eyesys, concluding that focusing errors were larger 

than misalignment errors. She also concluded that the latter were small when 

compared with the spherical biased reconstruction algorithm inherent error. An 

ellipsoid with 7.5 mm apical radius, an eccentricity of 0.5 and a diameter of 10 mm 

was used in the study. This surface was verified by Rank Hobson Talysurf 

profilometry.

Hubbe and Foulks (1994) used the Eyesys in normal corneas and three aspheric 

surfaces with 7.4, 7.7 and 7.9 mm apical radius. The normal corneas were tilted 

2.5, 5 and 10 degrees and the surfaces 1, 2, 3, 4, 5, 10 and 15 degrees. They
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observed that the asymmetry of the bow tie pattern, presented in the dioptric colour 

map, increased with the angle of tilt. They also used the l-S value, which is an 

index that compares the steepness of the superior and inferior cornea, that is 

usually applied in the detection of keratoconus (for more details on this index see 

Rabinowitz et al. 1990). Three of the five normal eyes tilted 5 degrees would be 

classified as keratoconic by the l-S index. This index increases with surface tilt. 

They also observed that the tilting effect on the maps increased with the steepness 

of the surface apical radius.

Mandell et al. (1995) compared standard videokeratoscope alignment with 

alignment at the corneal apex and at the corneal sighting centre. The Eyesys 

model 2 was used for this study on the right eyes of 20 subjects. They found 

differences smaller than 0.5 D for central power, toricity and axis when comparing 

standard and corneal sighting centre alignment. Differences were larger with apex 

alignment compared with standard, being larger than 1 D at the periphery.

Suchecki et al. (1995) studied fixation effects on the dioptric maps of 7 eyes 

calculating the l-S index. At 7.5 degrees tilt the maps displayed a 

pseudokeratoconus pattern but the l-S index did not indicate keratoconus. They 

also analysed focusing errors in four spheres. Each image was defocused 250, 

500 and 750 pm in both directions. They reported a power increase of +0.45D 

focusing 750 pm away from the spheres and -0.57 D with the same amount of 

defocusing towards the spheres.

Laskin and Puryayev (1995) claimed to have built a videokeratoscope insensitive 

to alignment errors, however their results show otherwise. They tested a 10.07 mm 

radius sphere and an axial symmetric paraboloid with an apical radius of 6.08 mm. 

They do not mention how the surface parameters were checked. With 1 mm 

decentration the sphere radius error was 0.05 mm and the paraboloid apical radius 

error was 0.12 mm. For a 1 mm defocus the sphere radius error was 0.05 mm and 

the apical radius error for the paraboloid was 0.14 mm.
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Mandell et al. (1996) used the Eyesys model 2 on 16 subjects presenting 

asymmetric corneal toricity, known as an asymmetric bow tie pattern on the colour 

dioptric map. When changing from regular alignment to alignment on the corneal 

apex the majority of maps became more symmetric. Half the subjects presented a 

difference of more than 1 D in the corneal periphery. When suspecting keratoconus 

from inferior steepening in the colour dioptric maps, they noted that in true 

keratoconus there was a large increase in power when apex alignment was 

applied.

Douthwaite et al. (1996) developed a model to estimate surface tilt based on ring 

image displacement for a telecentric videokeratoscope. They used a mathematical 

model of an axial symmetric ellipsoid represented by Baker’s equation. It is well 

known that when the reflecting surface is tilted the centre of the image rings shifts 

in relation to the centre of the inner ring. They considered the fifth ring and 

measured its centre displacement. They claimed that this shift is directly 

proportional to the amount of tilt and a linear relationship exists between both 

parameters until 10 degrees tilt. If a first image is captured with regular alignment 

and then a second image with the subject fixating on an eccentric point the tilt 

angle from the first to the second position can be calculated. The tilt and fifth ring 

displacement difference between both situations are used to determine the 

gradient of the straight line that defines the linear relation. Since for zero tilt there is 

no ring displacement the line must pass through the origin, which is zero intercept. 

The tilt on the first position can then be determined from the line. They applied the 

model to four ellipsoids and ten human corneas using the Eyesys (this instrument 

has 16 rings) applying the principle to all rings. They observed inconsistent results 

for rings 1 to 5 (central rings). For the ellipsoids the calculated tilt angle was close 

to the real value (less than 0.5 degrees error). Their work suggested that typically 

normal corneas will have a tilt angle of approximately 5 degrees, which doesn’t 

result in a significant error on surface reconstruction (determination of apical radius 

and p value). When they applied the model to real corneas the subject’s fixation
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was changed according to the calculated tilt angle and the dioptric maps displayed 

improved symmetry.

Analysing their work it can be seen that the mathematical model was developed for 

a telecentric videokeratoscope which limits its scope. However they showed that it 

works fairly well for the Eyesys since even though it is not a telecentric instrument, 

it has a large working distance that approaches a telecentric system (due to the 

fact that for a larger distance the rays will be approximately parallel). Secondly, if 

the linear relationship between image ring displacement and tilt is accepted, it will 

only be adequate if the initial surface tilt and the fixation induced tilt are in the same 

direction. This was in fact what happened in the controlled conditions of their 

experiment since they knew the initial surface tilt direction. However for a real 

cornea the initial tilt direction is unknown therefore the second tilt direction may be 

different which would decrease the model’s accuracy. Perhaps it would be possible 

to estimate the initial tilt direction based on the direction of ring crowding.

Chan and Mandell (1997) studied alignment effects on keratoconic, non-contact 

lens wearers subjects using the Eyesys software version 2.10. Normal alignment 

was compared with alignment at the apex and 1 and 2 mm below the apex. They 

reported that apex alignment resulted in larger dioptric values than standard 

alignment. Sagittal power errors can be as great as 8.32 D and 7.1 D for toricity. 

Tangential power is better to represent keratoconus since it is less dependent on 

the chosen axis.

Campbell (1997) analysed the skew ray error effect on reconstruction, arriving at a 

similar result to Wang et al. (1991). The difference in the analysis system is that 

Campbell expressed the surface normal in terms of a mean curvature and two 

cross cylinder components. Another interesting approach was to use the projection 

of the normal and the projection of the incident ray in the meridional plane. Since 

Snell’s law still holds for these projections, the skew ray error problem is reduced 

to an incorrect height of the object point in the meridional plane.
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Oltrup et al. (1997) developed a system for compensation of defocusing errors in 

videokeratoscopy. It was applied to the C-Scan instrument. The system requires a 

colour CCD camera, a red diode Laser and a green fixation light on the 

videokeratoscope axis. The red diode laser is placed in the instrument faceplate 

projecting a beam intersecting the videokeratoscope axis at the point where the 

image plane intersects the axis. Based on the lateral displacement of the red and 

green lights on the cornea and using paraxial magnification formulas, a correction 

is calculated for the height of each ring mire image. They tested the system on a 

single sphere of 8 mm radius of curvature obtaining a maximum error of 0.25 D in 

the defocus range of ±1.5mm. This result suggests that the system works well, 

however it should have been validated on other surfaces, including non-spherical 

ones. The system is based on paraxial formulas hence it shouldn’t be adequate for 

peripheral rings. Another problem seems to be the way that the distance between 

the red and green lights on the corneal surface is calculated. They say “The 

relative position of the laser beam (red dot) and of the fixation light (green dot) on 

the corneal surface is then captured.”, which implies a direct measure. Although 

this can be achieved due to the scattering properties of the cornea, it would require 

focusing the instrument on the corneal surface. However this is not the case, the 

instrument focus is on the image plane of the ring mires which would make the 

scattered light on the cornea barely visible. I believe the instrument measures 

instead the reflected image of the red and green lights on the image plane. 

Considering that the red Laser beam is reflected in the direction of the nodal point 

of the CCD camera’s objective, the reflection point on the cornea can be 

determined. Since the green light is directed axially, the distance to the red laser 

reflection point on the cornea can then be determined.

Higaki et al. (1997) analysed the automatic misalignment correction on the TMS2 

videokeratoscope. They used four calibration surfaces, one spherical, two elliptical 

(one prolate and the other oblate) and a toroidal. Each was misaligned 0.1 and 0.2 

mm in the horizontal direction and defocused 0.25 and 0.5 mm. Sagittal, tangential
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and refractive power maps showed no marked differences on the colour coded 

patterns. They do not mention if the absolute or normalised scale was used and 

seem to base their analysis on visual inspection of the maps.

Hilmantel et al. (1997) used the TMS1, software version 1.41, on calibrated 

ellipsoidal surfaces tilted 5, 10 and 15 degrees towards the 90 degrees semi-

meridian. The accuracy of the elevation maps varied according to the analysed 

semi-meridian increasing with tilt yielding a 14.8 pm root mean square error for the 

largest tilt.

Klein (1997) used cylindrical coordinates to represent corneal shape, using a left 

handed axis system. If the corneal normal lies in the meridional plane, as in the 

case of an axial symmetric surface, there is only one definition for axial distance 

which ranges from a corneal point to the instrument axis measured along the 

surface normal. He states that when the corneal normal doesn't lie in the 

meridional plane three definitions of axial distance are possible since the normal 

does not intersect the instrument axis. He named meridional axial distance the one 

ranging from the corneal point to the instrument axis measured along the projection 

of the normal in the meridional plane. The closest approach axial distance is the 

one ranging from a surface point to the point closest to the instrument axis 

measured along the normal direction. Finally the videokeratoscopic axial distance 

(dv) is the one measured by videokeratoscopes for very small corneas according to 

the author. It is also measured along the surface normal and meets the condition 

dv = h I sina where h is the radial coordinate of the corneal point and ct is the angle 

between the normal and the instrument axis. All these definitions consider a 

centred surface.

Klein based his skew ray error analysis on the differences between the different 

definitions of axial curvature calculated by the inverse of axial distance. For a 

centred ellipsoid the difference is negligible. It is only significant for keratoconus, 

which he simulated by a bi-sphere, especially in the transition zone.
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Douthwaite and Pardan (1998) following on from their work started In 1996, tried to 

predict surface tilt based on a single keratograph rather than two as presented in 

their previous work. For each reflected ring on a tilted surface they determined the 

quotient between opposite hemi-chords in the tilt semi-meridian. They found a 

linear relation between this quotient and the tilt angle of the surface, using different 

surfaces tilted at several angles. They do not specify which surfaces were used but 

these were probably axially symmetric ellipsoids. The slopes of the regression line 

changed with the surface p value but were fairly independent of apical radius. 

Another parameter used in the equation was the gradient determined by the p 

value. This was calculated plotting a graph of the slopes of the regression lines of 

the graphs (quotient versus tilt) versus the p value of the surfaces. All these steps 

were applied to each image ring separately. The final tilt was then calculated by 

averaging the tilt calculated from each image ring data. Testing the model on 

calibrated convex conoidal surfaces they found the results would be better if a 

subtraction of 0.4 degrees was applied to the final tilt angle. They report a ±0.6 

degrees difference (95% confidence interval) in relation to their previous method.

Sayegh et al. (1998) tested three approaches on focus correction. The first using 

geometrical optics, the second a nomogram obtained from measurements on 

known surfaces and the third based on neural networks. They report corrections of 

2 to 3 diopters. No further details are given.

Hilmantel et al. (1999) tested the TMS1 software version 1.61 to measure tilted 

ellipsoidal surfaces. The three surfaces had eccentricities of 0.6 and apical radius 

of 7.03, 7.99 and 9.37 mm all calibrated by interferometry. Each was tilted 5, 10 

and 15 degrees using a Meles Griot goniometer. They found that the accuracy was 

independent of the surface apical radius with a trend to a greater error towards the 

surfaces periphery. Results were given regarding surface elevation measurements.
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Munnerlyn et al. (2000) analysed bicurve surfaces tilted 0, 3, 6, 9, 12 and 15 

degrees, using the Humphrey Atlas videokeratoscope and the Orbtek Orbscan. 

Both devices overmeasured the radial position of the central curvature section with 

the location error increasing with the tilt angle. The Humphrey Atlas produced a 

more accurate elevation measurement.

In summary, from the review on keratoscopy (section 2.1) it can be seen that the 

concentric ring pattern was considered as the most adequate target since 1881. 

Keratoscopes, which used visual inspection evolved to photokeratoscopes that 

recorded the reflected ring pattern on a photograph for subsequent analysis. 

Nowadays the videokeratoscopes use CCD cameras connected to computers, the 

image is captured and immediately analysed.

From the review on faceplate design (section 2.2) it was seen that the faceplate 

shape has evolved from the original flat design to allow for a larger coverage of the 

analysed corneal area and to decrease field curvature. Only a few papers can be 

found in this subject and it seems that this research topic has been abandoned 

since 1971. Nevertheless there are several faceplate shapes available on 

commercial instruments, therefore this topic should be subject to further study.

From the reconstruction algorithm review (section 2.3) it was concluded that it isn’t 

possible to reconstruct the corneal shape without resorting to some 

approximations. This is due to the fact that it is not possible to reconstruct a three- 

dimensional surface with two-dimensional information. While some approximations 

are more acceptable than others, each investigator assessed his algorithm’s 

accuracy with different surfaces. The only way to compare all the algorithms would 

be to analyse the same set of surfaces, which has never been done.

From the keratoscope alignment review (section 2.4) it was concluded that 

keratoscopes can detect surface decentration and are equipped with means to
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avoid it. However surface tilt cannot be detected since a correct alignment can be 

achieved in such conditions. This is a topic that needs further research.

From the décentration, tilt and focus errors research (section 2.5) it can be 

concluded that focusing errors are more important than tilt and décentration errors 

and that short working distance instruments are more affected by these errors. The 

majority of the research on this field has been done by analysing one surface or a 

small number of surfaces. Since all researchers used different surfaces the studies 

cannot be compared. Only one group of two investigators developed a method to 

determine the magnitude of tilt from videokeratoscopic images, however it still 

presents limitations. Another group of researchers developed algorithms for focus 

correction but do not present details on the methods. Other focus correction 

algorithm was developed but was based on paraxial formulas. The author tested 

the procedure on a single spherical surface for which it worked well. Further 

research is needed for the correction of these errors.

Since many parameters and sources of error in videokeratoscopy required further 

research, a computer simulation of a videokeratoscope was designed. The next 

chapter presents all the theory applied to the computer model.
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3 Computer modelling of a videokeratoscope system

A videokeratoscope system can be divided into four parts: faceplate, alignment 

system, CCD camera and a computer. The parameters of the reflecting surface to 

be analysed can also be changed in the computer model. The faceplate commonly 

consists of a series of illuminated concentric rings positioned coaxial to the 

instrument.

An alignment system is designed to position the reflecting surface coaxial with the 

videokeratoscope axis. This process is very important since reconstruction 

algorithms assume that alignment has been achieved. Unfortunately an ideal 

alignment system hasn’t been developed therefore small alignment errors will 

always be present. Information on these systems, as part of an overview on 

corneal topography, has been compiled by Gills et al. (1995).

The CCD camera captures the image of the faceplate rings reflected by the 

cornea. Analysis of CCD cameras is beyond the scope of this work. The computer 

then analyses the image detecting the position of the ring edges along a pre-

defined number of semi-meridians. This data is then used to build a dioptric power 

map or a topography map, reconstructing the reflecting surface.

3.1 Faceplate Model

Based on the literature review on faceplate shapes and the measurement of 

several commercial videokeratoscopy systems, cylinders, cones, conoids and flat 

surfaces were used in the model. The reflecting surface was also modelled by 

conoids hence there is a need to review the properties of these solids.

3.1.1 General properties of conics and conoids

Greek mathematicians defined conics as curves obtained by the intersection of a 

plane and a circular cone (Bers, 1969). If the section does not pass through the 

cone vertex and is parallel to the base it results in a circle, while a section parallel 

to the cone generatrix (line that generates the cone if rotated around the central
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axis) results in a parabola. Sections with an inclination ranging from the plane 

parallel to the base and the generatrix inclination result in ellipses and sections 

perpendicular to the base result in hyperbolas.

Geometrically these curves can be defined in relation to two parameters, a straight 

line (directrix) and a point (focus). Conics are the locus of points whose ratio of the 

distance to the focus to its distance from the directrix is constant (Grieve, 1926). 

This ratio is called eccentricity and takes a particular range of values for each 

curve.

The general equation for a conic can take several forms (Townsley, 1970). The 

one chosen for this study is often referred to as Baker’s equation (Baker, 1943)

(3.1) y 2 = 2 R z - p z 2 .

Figure 3.1 - Family of conics with the same apical radius of curvature. Each curve is associated 

with a p value (number displayed near each curve) that relates to the way the curvature changes 
from the centre to the periphery.

Although he did not derive this equation, his paper is one of the earliest references 

found in the ophthalmic literature and hence the equation became associated with
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his name. The equation is advantageous since it is possible to define a conic in 

terms of its apical radius of curvature (R), which is the radius of curvature at the 

surface apex, and just one other parameter, the p value, which is related to the 

way the curvature changes from the apex to the periphery (Figure 3.1). The p value 

can be understood as a measure of deviation from a circle. Baker's equation 

represents the various conic sections with vertex at the axis system origin.

The common equations for an ellipse and a hyperbola (Bers, 1969) can be 

decentred along the z-axis in order to be equivalent to Baker's form. They are 

respectively

For an ellipse, 2a and 2b are the major and minor axis respectively or vice-versa 

depending on which value is bigger. For a hyperbola 2a is the transverse axis and 

2b the conjugate axis (a>0 and £»0). The relation of both parameters with 

eccentricity for an ellipse (only if a>b) and for a hyperbola are respectively

(3.2)

and

(3.3)

(3.4)

and

(3.5)
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(Grieve, 1926). Comparing the decentred common equations with Baker’s form it 

can be demonstrated that for an ellipse a=R/p and b=RNp. For an hyperbola (p<0) 

the relations are a=-R/p and b=R/V-p (Bennett, 1988). The p value is related to the 

eccentricity by

(3.6) p = l- e 2,

which is only valid if p < 1. Further discussion into the different parameters can be 

found in the work by Lindsay et al. (1998). Table 3.1 summarises the values of 

parameters e and p for conics.

Oblate ellipse Circle Prolate ellipse Parabola Hyperbola

e 0 0  < e < 1 1 e > 1

P p >  1 1 0  < p < 1 0 p < 0

Table 3.1 -  Values of the parameters e and p relating to the curvature change from the centre to 

the periphery of a conic arranged by curve type.

If the conic is rotated around its axis, a rotational symmetric surface is generated, a 

conoid (Borowski and Borwein, 1989). A conoid with vertex at the point (xv,yv,0) 

can be represented by

(3.7) (x-xvf+ ( y - y vf  = 2Rz-pz2 ,

where the parameters have the same meaning as previously. This equation will be 

very useful for representing a decentred reflecting surface in the xy plane 

controlled by the vertex position. The normal vector to this surface can easily be 

obtained by application of the gradient operator and dividing it by its magnitude 

(Welford, 1986) resulting in

(3 .8) , [ -c(x-  xv) -c (y -yv) 1 -cpz\
■\j 1 -  2c(p -  l)z + c2 p(p -l)z2
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The parameter c is the curvature, the inverse of the apical radius of curvature R. 

The signs were selected in order for the normal to point inside the conoid. Surface 

normals are needed for ray tracing to determine the direction of a reflected ray.

The gradient of the two asymptotic lines for a hyperbola is the ratio between the 

conjugate axis and the transverse axis ± b / a (Grieve, 1926). This ratio can be 

shown to be equal to ±V-p (Bennett, 1988). If the vertex is at the origin, as in Baker 

equation, the lines are represented by

For a decentred rotational symmetric hyperboloid the asymptotic lines generate an 

asymptotic cone defined by

A cone can be represented by an hyperbola with zero apical radius. Baker 's 

equation will then take the form

This cone has its apex at the origin whereas the cone represented by 

equation(3.10), associated with the hyperbola, has its apex on the hyperbola 

centre to the left of the origin. The p value associated with the cone controls its 

apical angle and is negative.

The reflecting surface and the faceplate are going to be limited by specifying the 

maximum diameter (MAXD) allowed in the xy plane, since only rotational

(3.9)

(3.10)

(3.11) (x-xv)2 +(y-yvf  =-pz2 .
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symmetric surfaces will be used. The section of the surface with diameter MAXD is 

a circle represented by the equation (x-xv)2+(y-yv)2 = (M4)MAXD2 (this circular 

section is the end of the surface while the beginning of the surface is the circular 

section correspondent to the pupil diameter). The z coordinate corresponding to 

the specified limit will be needed for several purposes and will be calculated from 

the decentred form of Baker's equation(3.7). As in all second degree equations 

when determining the value of z fo r a given pair (x,y), a maximum of two solutions 

can be found. The selected solution for the purpose of this simulation was the one 

with the vertex touching the origin given by

(3.12) R --  '¡R2-p  (x -  Xv f  + {y -yvf

To determine the z coordinate for the beginning or the end of the surface, the 

quadratic term in x and y  (corresponding to the equation of a circular section) is 

replaced by (1/4)Pl/PD2 or (M4)MAXD2 respectively. Analysis of the previous 

equation shows that it is not valid for p=0, a paraboloid. This is because such a 

conoid is a first degree equation on zthus having a single solution

(3.13) z = (*-.*v)2+Q,-vv)2
2 R

The sagittal or axial radius of curvature is the distance from a surface point to the 

surface axis measured along the normal direction to the surface at that point. Smith 

(1966) presented the sagittal radius expression for a conic curve, which can easily 

be transformed for a decentred conoid resulting in

(3.14) Rs = -J(x - xv)2 + (y - yv)2 + (R -  pz)2 .

The tangential, instantaneous or local radius of curvature is the distance from a 

surface point to the instantaneous (local) centre of curvature, for that point,
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measured along the surface normal. The formula for the tangential radius for a 

general plane curve (Bers, 1969) is given by

(3.15)

It can only be applied to curves of second degree or higher whose second 

derivative at the desired point is different from zero. Smith (1966) applied this 

equation to a conic curve but the results are also valid for a decentred conoid. He 

obtained the relation

that when applied to the surface vertex (xv,yv,0) results in the apical radius of 

curvature R.

The width of the rings on the faceplate has to be determined to check if they are 

too thin since very thin rings would have a poor illumination. By visual inspection of 

rings on several videokeratoscopes, an inferior limit of 0.5 mm width was 

considered. Since they follow the faceplate curvature it is the arc length that has to 

be determined for this purpose. The process of finding the length of an arc of a 

curve is called rectification (Edwards, 1930). If a curve is expressed in its Cartesian 

form z=f(y), the corresponding arc length is

(3.16)
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The arc length for a circle of radius R is expressed by a well-known formula s=QR 

(Bers, 1969), where 9 is the angular amplitude of the arc described at the circle 

centre (Figure 3.2). This expression is the solution of the integral in equation(3.17) 

for a circle. As stated previously Baker’s equation represents conics with vertex at 

the origin. Due to the symmetry in relation to the z-axis it is sufficient to work with 

the top part of the faceplate as represented in Figure 3.2. Flowever the limits of the 

object rings on the faceplate are going to be expressed in z-coordinates therefore 

the angular amplitude 9 of a ring must be calculated accordingly. In such conditions 

the arc length s between zi and z2 is

(3.18) s =  QR =  ( s 2 — ea)/?
f

arccos
v

-  arccosf —— —
{ R

R .

Angles si and s2 are positive as defined in the figure and were only used as 

auxiliary angles to get to the final expression.

Figure 3.2 -  Arc length of a circle between two z coordinates.

For a decentred ellipse expressed in the common form, the arc length formula 

(equation(3.17)) is
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(3.19) b2 (z-a)2 jl+— --v , ’ . dz ,
a a -{z -a f

Executing the substitution z = a + a cost, this expression takes the form

(3.20) s = -a J -J l-e2 cos2 tdt .

Without the constant -a this is known as Legendre’s elliptic integral of the second 

kind and can only be solved numerically (Edwards, 1930). Therefore can only be 

solved numerically in equation(3.19).

The arc length formula for a decentred hyperbola is

(3.21) S = (z + a)2 dz 
(z + a)2~a2

Edwards(1930) has shown that this integral can be rearranged in another form that 

includes the Legendre elliptical integral of the second kind, which again can only 

be solved by resorting to numerical methods.

The integrals in equations (3.19) and (3.21) can be merged into the form

f

(3.22)
2

- J .y +v
1  7

RA
z ------

Pj
Rz--
P

-dz ,
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considering the relations between the parameters a, b, R and p for each curve. It 

has an obvious problem at the vertex, where z=0 (and also z=R/p), since the 

tangent to the curve is vertical (the first derivative is infinite). Outside these points it 

can be used without problems. It has the advantage of combining the arc length for 

the ellipse and hyperbola in a single formula and can be used for oblate ellipses 

(P> 1).

For a parabola the arc length is given by the integral

(3.23)

It can be solved by conventional methods and according to Edwards(1930) the 

solution is

(3.24)

3.1.2 Faceplate parameters

Target shapes were divided into two groups, cylinders and conoids. The flat 

surface is a special case of the cylinder group and the cone a special case of the 

conoids group. The faceplate parameters to input are dependent on the group 

selection.

A flat faceplate is the base of a cylinder with zero length, and is therefore specified 

by L- 0 (Figure 3.3). All the surfaces used have rotational symmetry around the z- 

axis and were limited by the maximum specified diameter (MAXD). A cylinder has
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two parts the base and the cylinder body. In addition to the parameters for a flat 

faceplate, the body is limited by its length L. The pupil is located in the base 

(zpD=0) and is defined by its diameter (PD).

Figure 3.3 - Schematic representation of the model for a videokeratoscopy system used for this 

research. The main axis system is also represented along with the model parameters.

A cone is a conoid with zero apical radius and a negative p value. As stated 

previously the generatrices have a gradient of ±V(-p) that will control the aperture 

angle. The faceplate will begin at zpd calculated by Baker’s equation(3.1) where 

y=PDI2.

The pupil diameter has an influence on the faceplate shape that will turn into a 

cone without the apex (Figure 3.4). The conoid shaped faceplate is similar to the 

cone, with a non-zero apical radius of curvature and p value controlling the 

peripheral flattening ratio. The surfaces in the conoids group are limited by the 

pupil diameter (PD) and the maximum diameter (MAXD).
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Figure 3.4 - Three-dimensional representation of the four faceplate geometries used. The pupil size 

limits the area of the surface. For a cone (c) and a conoid (d) a part of the surface is removed so 

that it starts at the specified pupil diameter.

3.1.3 Object point selection on the faceplate

As stated previously the faceplate was fitted with a set of concentric rings. These 

were considered to be at equal angles intervals from the reflecting surface vertex 

ranging from the pupil edge (§PD) to the maximum diameter ( $ m a x d ) ,  see Figure 3.3. 

To maximise the number of light rings in the angular space defined the first and 

last rings must be light, hence the number of dark rings is always one less than the 

light ones. Therefore if n light rings are desired, the angular spacing of each from 

the reflecting surface vertex is given by

(3.25) A<|) = ^MAXD ~§pd m
In -1

This maximisation of light rings is needed since they are used as objects.

Theoretically a faceplate should have a large number of rings to generate more 

data points in the image. If the data points are closer accuracy will increase.
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However a large number of rings leads to a decrease in ring width (for conoids this 

is the arc length calculated by equation(3.17)). Very thin rings will pose a 

manufacturing problem and the accuracy that could be gained by increasing the 

rings may be lost in manufacturing errors. Another limitation is that there may not 

be enough light coming from a very thin ring to trigger an edge detection algorithm. 

The way around this problem is to increase the brightness of the rings, but this can 

be very uncomfortable for a patient also leading to a loss of accuracy. Therefore 

the ring width shouldn't be too small. For the purpose of this research a minimum 

width of 0.5mm was allowed, although a warning was generated if rings were 

smaller than 1 mm.

The parameter wd is input by the user and is the distance from the pupil plane to 

the vertex of the reflecting surface. It must be bigger than the target length in order 

to fulfil the condition ^maxd^ O 0. When a corneal surface is being analysed in a real 

videokeratoscope, the light coming from a ring vertically aligned with the corneal 

vertex {§maxd=90°) is blocked by the lashes.

A CCD camera attached to the faceplate pupil is a separate component, it's not 

built in the pupil. There is a thin cylinder limiting the CCD camera where the 

objective is assembled. Therefore the first light ring does not start after the pupil 

but after the outer diameter of the CCD camera limiting cylinder. Although it wasn't 

measured it was assumed that different manufacturers will use cylinders of 

different width to limit the camera and so this situation wasn't applied in the model.

An object point on a vertical section of the faceplate is determined by finding the z 

coordinate based on the intersection of the resulting conic with a line describing a 

given angle with the z-axis. This line intersects the z-axis in the point with a z- 

coordinate equal to the reflecting surface vertex z-coordinate. If the reflecting 

surface is centred, this point is the surface vertex. The intersection with the 

faceplate will be the same for all semi-meridians due to the rotational symmetry. It 

is necessary to check if the intersections are on the part of the conic that touches
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the origin. As an example, for an hyperbola the intersections of the line with the 

right branch (touches the origin) are the relevant ones (Figure 3.5a).

Figure 3.5 - Intersection possibilities of a line with a conic curve.

To determine the intersection z coordinate on the faceplate we proceed as follows: 

A line that passes through a point on axis located at a distance / from the origin, to 

the right, and describing an acute angle <)> with the axis, is defined by

(3 .2 6 )  y  = -ta n (f> (z -/)  .

Angle <() was considered positive if above axis. Solving for the intersection of the 

last equation with the conic defined by Baker's equation(3.1) yields

(3.27) [p + t a n 2 <{) ) z 2 - 2 ( i ?  + / t a n 2 (|>)z + /2 t a n 2 <)> = 0  ,

which has two solutions given by

(3.28) R +1 tan 2 cj)± -\I(r  +1 tan2 (f>) - (p  + tan2 (f))/2 tan2 (j>

p + tan ‘  (j>
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The only exception occurs when the second order coefficient in equation(3.27) is 

zero, in which case there is a single solution

(3.29) Z =
/ 2 tan2 <(>

+ / tan2 (j>|

Line 2 in Figure 3.5 represents this situation, and defines a line parallel to the 

asymptote in a hyperbola. It is also the case of a parabola (p = 0) when the line is 

on axis (<f)=0).

The part of the surface to be used is the branch that touches the origin and by 

observation of Figure 3.5 it can be seen that the correct intersection (if there is one 

in the branch that touches the origin) is the one closest to the curve vertex. The 

selection of the sign before the square root in equation(3.28) has to be done 

carefully. In the case of a closed surface (p>0) the line will fail to intersect it if the 

expression inside the square root is negative (line 7). If it's zero it means that the 

line is tangent to the curve (line 6), but on the wrong branch. If it's positive it can 

easily be seen that the square root is smaller than the other expression in the 

numerator, therefore the negative sign before the square root corresponds to the 

solution closest to the surface apex. However in case both solutions are on the 

non-desired branch (line 5) it must be considered that the line misses the surface. 

The same approach is taken when a solution is found in the desired branch but 

outside the limits specified for it by the program user. For a parabola (p=0) the line 

cannot miss or be tangent to the surface (in the conditions specified for the line), 

there are always two solutions and the approach is the same as for the ellipse. For 

the hyperbola (p<0) the situation is more complex since it will depend on the 

asymptote inclination (V-p). If the line is steeper than the asymptote the 

denominator is positive and the square root is smaller than the outer expression. 

Both solutions are on the right branch and the minus sign before the square root 

corresponds to the desired solution. If the line is less steep than the asymptote the
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denominator is negative and the square root is bigger than the outer expression. In 

this case the desired solution is the one with the minus sign before the square root, 

which makes the intersection positive. In conclusion the solution closest to the 

conic apex is the one with the minus sign before the square root but it must be 

validated against the desired branch limits.

For a vertical flat target, passing through the origin (z= 0), the intersection with a 

line crossing the z-axis at a distance / to the right describing an acute angle <(> with 

the axis is given by

(3.30) 3/ = / tan (}).

For a cylinder with base (b diameter) at the origin the intersection with the line 

(Figure 3.6) depends on whether <j> is larger or smaller than the angle <j)c described 

at the intersection of the base with the cylinder body. This angle is defined by

(3.31) <j>c = arctan(*- 
1 21

If <|) < 4>c the intersection is at the base, which is a flat target, so equation (3.30) is 

used. If ((> > §c the intersection is at the cylinder body (y=bl2) and is given by

(3.32) z = l -----— .
2 tan <)>

A light ring containing the corner may be undesirable in a cylindrical target. The 

base diameter and the cylinder length can be modified in order to avoid this 

situation without changing the number of rings. The new dimensions need to be 

calculated for the cylinder end to be in the same line that marks the edge of the last 

ring (Figure 3.6). If the base diameter is increased to b1 and the length to /cy/1 the
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light ring will lay on the base. Alternatively the base diameter can be decreased to 

¿>2 and the length to Icyi2 , the light ring will then stay on the cylinder body. 

Videokeratoscopes that use a cylindrical target always have more than two rings 

on the base. Increasing the base diameter is therefore the best option. However 

since the base is further away from the reflecting surface vertex than the cylinder 

body, the same angular ring magnitude results in larger rings at the base.

Figure 3.6 -  Section of a cylinder with light (L) and dark (D) rings defined by the intersection of lines 

at equal angle intervals. If a light ring falls in the corner, the cylinder base can be increased or 

decreased (long dashed sections) to avoid this situation keeping the number of rings constant.

The distance l=wd+zpo (see Figure 3.3 for definition of parameters wd and Zpd) 

does not change if the reflecting surface is decentred laterally in the xy plane since 

it represents the z coordinate of the surface vertex.

3.2 Reflecting surface

The reflecting surface is intended to represent a simplified model of the human 

cornea and also a test surface. Research conducted in different ways by several 

authors has shown that the normal human cornea approaches a prolate ellipse in a 

single meridian. The average p value determined in each work is very variable but

79



always in the range 0<p<1. It is also concluded that the cornea is not a rotational 

symmetric surface. Eghbali et al. (1995) presented a review of the p value 

averages found by several authors and in their research found an average of 0.82. 

Another average was taken including their p to the list resulting in 0.81 (0.05 SD). 

Kiely et al. (1982) presented a list of average central radius of curvature for the 

human cornea determined by several authors. Adding to this list the value found by 

Guillon et al. (1986) the average of all values considered was 7.75mm (0.13mm 

SD). For this research the normal human cornea was approached by a prolate 

ellipsoid with 7.75mm apical radius and a p value of 0.82 limited by a maximum 

diameter (CD in Figure 3.3) of 8mm. According to Waring(1989) the cornea flattens 

more in the limbal area and can no longer be represented by the same curve.

Although a prolate ellipsoid may be used as an approximate model for the normal 

cornea, an oblate ellipsoid can represent a cornea after refractive surgery (Eghbali 

et al. 1995) and a hyperbola with small radius of curvature is similar to the cone in 

keratoconus.

3.3 Axis systems

The global Cartesian system (abbreviated as GLB) was placed at the far left 

following the optical sign convention that the light rays should travel from left to 

right. The z-axis is horizontal, the y  vertical and the x is perpendicular to the page 

pointing away from the reader. The corresponding unit vectors are /, /, and k. 

These directions form a right-handed system, which means that the vector product 

of any two of these unit vectors results in the third one. The faceplate vertex is at 

the origin of this system (Figure 3.1).

Several local coordinate systems were also defined to simplify calculations. When 

working with the reflecting surface it is easier to consider that the origin is at the 

same z-coordinate as the surface vertex. Such a system is a translation of the 

global system along the z-axis direction and will be abbreviated as VTX. If the 

reflecting surface is centred the VTX origin will coincide with the surface vertex.
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When determining the position of image points on the image plane, based on the 

intersection of reflected rays with the pupil, it is easier to place the origin at the 

pupil centre. This local coordinate system will be abbreviated as PUP.

When looking at the ring mire image reflected on the analysed surface it is easier 

to define points in the image on the examiner's viewpoint (along the positive z-axis 

direction). For that purpose a new two dimensional axis system is used with the x- 

axis pointing in the opposite direction of the global system one. This system is 

abbreviated as IMG.

A polar coordinate system is useful for defining the radial locus of points in a 

rotational symmetric surface. If it is measured in the global system a point is 

located by the coordinates (p ,cp)g l s, if it’s in the image system the coordinates are 

(p,g )img - The relations between both angles are represented in Figure 3.7.

To represent a tilted surface, Cartesian coordinates were selected due to the 

properties of conics being well documented in this form. Using spherical or 

cylindrical coordinates may be adequate for some purposes but its use in this 

research project would not allow a comprehensive analysis of all possible sources 

of error. To make this analysis possible a tilted coordinate system had to be 

developed in order for the tilted conoids to be represented by Baker’s equation in 

that system. If a tilted conic was represented in the global system its equation 

would take the form

(3.33) Az2 + 2 Bzy + Cy~ + Dz + Ey + F = 0

(Bers, 1969), which is difficult to analyse due to the mixed term zy.

Since Baker’s equation was selected to represent the surface, the tilt was applied 

to the vertex. When using a reflecting surface in a real videokeratoscope there may 

not be a possibility to tilt around the vertex for mechanical reasons. In that case a
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tilt applied to any other point on the surface will be equivalent to a tilt around the 

vertex plus a decentring, therefore any case can be represented in the simulation 

program.

Figure 3.7 - Definition of a point P in polar coordinates for the global (p,<p) and the image system 

(p,a) and their relations.

Tilting a centred surface by the vertex was achieved in two steps. First, when 

observing the reflecting surface from the examiner’s view point, a semi-meridian is 

selected on the xy plane. It is important to notice that this selection is not a rotation 

applied to the surface. Then the z-axis of the surface is pulled towards the selected
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semi-meridian in the plane defined by that semi-meridian and the original z-axis. 

This plane will be referred as the tilt plane. The semi-meridian is chosen by 

specifying angle a, from the observer’s point of view of the surface (Figure 3.7). 

This angle is then transformed to cp applying the relations presented in the previous 

figure. The angular magnitude of the tilt in the tilt plane is specified by angle 9 

subtended by the original z-axis of the centred surface and the rotated z-axis of the 

tilted surface er. This rotation is represented in Figure 3.8 b).

Figure 3.8 -  a) The axis system was rotated in the xy plane to define the tilt plane. The reflecting 

surface vertex was centred at the origin of xyz but wasn't rotated along with the axis, b) A new axis 

rotation was executed in the plane defined by er and e0. The unit vector e0 remained on the xy 

plane. The surface was then rotated by 0 and er is the rotated surface z-axis. c) This is the axis 

system developed for this research where ee is represented just for reference. The unit vectors e, 

and ee have the same orientation as the middle figure but were represented oriented like xyz to 

allow a better understanding of their relations. The vectors ex and ey define a plane which is 

perpendicular to the plane defined by e0 and er.

The first model developed for the tilted system is represented in Figure 3.8 a) and 

b). The first step was to define the tilt plane by the vectors er and e0 by a rotation of 

cp from the x axis (Figure a). Then these two vectors were rotated by an angle 9 

around ep (Figure b). This approach is sufficient for a rotational symmetric surface
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since after a tilt in any semi-meridian the surface equation has the same form in 

the new axis system. However procedures developed in this research are meant to 

be a skeleton for future investigation work using surfaces without rotational 

symmetry. For a better explanation, consider a centred ellipse on the xy plane with 

its minor axis in the x direction (Figure 3.9 a), hence represented by equation(3.2) 

but with x replacing z in the equation. If a tilt is applied in the plane defined by er 

and ee, the ellipse principal axis won’t coincide with these directions (Figure 3.9 a). 

Therefore the curve equation won’t take the usual form and will be of the type 

presented in equation(3.33) but with z and y replaced by other variables. Since the 

aim of developing a tilted axis system was to avoid this equation, a different system 

had to be developed. It should be noted that if instead of an ellipse a circle had 

been used than this axis system wouldn’t be a problem due to symmetry.

Figure 3.9 - Example of the application of the tilt system of axis to a centred ellipse with minor axis 

along the x-axis. a) The tilted plane is selected by a 9  rotation of the axis in the xy plane. Once 

again it must be emphasised that the ellipse is not rotated with e0 and er  b) The ellipse was tilted in 

the tilt plane (perpendicular to the screen defined by er and eG) therefore is not in the xy plane 

anymore. However e0 and e(() are still separated by angle 9  from the ellipse principal axis, c) The 

final system Is represented for which the unit vectors coincide with the ellipse principal axis. The 

unit vector ee is just represented to show the intersection with the tilt plane.

A solution could be to execute two rotations; the first would place the major axis 

coincident with ee and then execute the tilt. This would make the principal axes
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coincident with the system axis but the tilt plane would have to contain the major 

axis limiting the possibilities and the tilt would be the combination of two rotations. 

Therefore a different model was required to solve these problems. If a rotation of 

magnitude 0 is executed in the plane defined by er and e0, the perpendicular plane 

that contains e0 is the xy plane rotated by the same amount. Knowing that an angle 

cp separated e0 from the x-axis, if the same rotation is applied in the new plane a 

new axis (ex) can be defined, which corresponds to the x-axis in this plane. The 

axis ey, corresponding to the y-axis in the new plane, is obtained by a 90°-cp 

rotation in the opposite direction from e0 (Figure 3.8 c) and Figure 3.9 c). This 

procedure allows the equation of a surface without rotational symmetry tilted in any 

semi-meridian cp to take the same form in the global and the tilted system. The 

price to pay is an unnecessary increase in complexity when using a rotational 

symmetric surface.

When the tilted system is applied to the global system it is abbreviated as GLBTLT. 

When applied to the VTX system is abbreviated VTXTLT.

Determining the relations between the unit vectors in the global and tilted systems 

is not straightforward. Only ez and the reference vector e9 are a direct result of a 

rotation from one of the global system axes and the relations are easy to 

determine. They are respectively:

(3.34) e, = sin 9 cos cp i  +  sin 9 sin cp j  +  cos 9 k 

and

(3.35) e6 = cos 0 cos cp i  + cos 0 sin cp j  -  sin 9 k  .

It should be noted that it is essential to work only with acute angles when 

determining relations between unit vectors in two axis systems.
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To determine the relations for ex and ey a system of 3 equations was used to 

determine the direction cosines u, v and w for each unit vector. The desired vectors 

are in a plane perpendicular to ez so the scalar product between this and any of the 

other vectors is zero. The unit vector ex describes an angle 9 with e0 so their scalar 

product is coscp. The unit vector ey describes an angle 90°-cp with e0 so their scalar 

product is cos(90°-(p)=sincp. A unit vector has unit length thus the sum of the 

squares of their components is one. The two systems of three equations can be 

summarised in the form

(3.36)
ex • ez -  0 or C • P cy cz
ex •eQ=  cos cp or e

112 + v 2 + w 2 =1

The quadratic nature of the last equation in the system introduces a double 

solution. The correct solution is selected when tested against the condition 0=0, in 

which case êx= / and êy= /. The relations between vectors in both axis systems are 

represented in matrix form by

Xex

(3.37) Yey

rez

and

x i

(3.38) yj
zk

1 -  cos2 (p(l -COS0) sincpcoscp(cos9-l) -s in  9 coscp x i

sin (pcos<p(cos9 - 1) sin2 <pcos9 + cos2 cp -  sin 9 sin cp yj
sin 9 cos (p sin 9 sin cp cos 9 zk

1 -  cos2 cp(l -  cos 9) sincpcoscp(cos9-l) sin 9 coscp Xex~
sin cpcoscp(cos9 - l ) sin2 cp cos 9 + cos2 cp sin 9 sin cp Yêy

-s in  9 coscp -s in  9 sin cp cos 9 Zêz _

3.4 Decentring the reflecting surface

The decentration is defined in polar coordinates from the examiner’s view in 

relation to the image system IMG. It is specified by the magnitude p in mm from the 

global system z-axis and the semi-meridian a in which the decentration should take
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place (Figure 3.7). It represents the new position of the conoid vertex in the Image 

system xu=pcosa and yv=psina. However these parameters must be transformed 

into global system coordinates using the relations between both systems 

expressed in Figure 3.7. The decentration is then given by x„=pcos(p and yv=psin(p.

Decentring the surface has to be limited in such a way as to avoid the surface 

falling outside the faceplate limits. To prevent this situation it was postulated that 

the faceplate maximum diameter (/WAX'D) must be at least 2mm larger than the 

surface maximum diameter (CD). This condition will allow a margin of 1mm on 

either side of CD. In a real videokeratoscope the reflecting surface could fall 

outside the faceplate limits but that part of the surface won’t reflect rays into the 

instrument pupil.

If the decentration is larger than 1mm then the problem may arise again. Both 

faceplate and reflecting surfaces have rotational symmetry around the z-axis, so an 

analysis can be done for just one semi-meridian. Taking the initial margin of 1mm 

from the faceplate limit the decentration d (positive) must fulfil the condition

(3.39)
2 2

3.5 Tilt limits

The tilted surface cannot touch the faceplate, since that situation is impossible in a 

real videokeratoscope. If this situation is not prevented the simulation would 

provide unreliable results. Although the tilting angles are typically small this would 

still be possible for a small faceplate.

To determine the points of intersection of the faceplate with a tilted surface both 

surfaces must be specified in the same axis system. This approach leads to large 

equations and so an alternative procedure was developed to get around this
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problem. The exact intersection points are not of any interest, it is only necessary 

to know if the tilted reflecting surface can intersect the faceplate and what to do to 

prevent this situation from happening. To reduce the problem to a plane the worst 

case scenario was adopted which is tilt and decentration applied in the same semi- 

meridian. Once again the 90° semi-meridian was selected for the demonstration. If 

the surface is rotated 360 degrees around its vertex in the vertical plane yz, a circle 

is described by the surface limits. If the faceplate doesn't touch this circle there is 

no possibility of the tilted surface intersecting it (Figure 3.10). The great advantage 

of this approach is that the circle has a simple equation and is expressed in the 

global system, so finding its intersection with the faceplate is much easier than the 

initial problem. The disadvantage is that if the tilt is small it is possible that no 

intersection exists even though the circle touches the faceplate.

Figure 3.10 - Example of a case in which a tilted reflecting surface doesn't touch the faceplate but 

the circle described by the surface limits around the vertex does. The program will only allow the flat 
target to be placed outside the circle limits.

The radius Rcd of the circle centred at the vertex is

y

Z
>

(3.40)
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(Figure 3.11 a). The variable zc d is the distance from the vertex to the maximum 

diameter of the reflecting surface if not tilted, given by equation(3.12) with y=0.5CD 

and x=xv=yv= 0. Each faceplate type will be analysed at a time. The tilt must be 

combined with the décentration in order to establish the limits of both parameters.

Figure 3.11 - Possibility for a tilted and decentred surface to intersect a flat faceplate. The images 

represent the circle centred at the vertex passing through the surface limits just touching (a), 
intersecting (b) and failing to intersect (c) the faceplate (thick line). Only the top half of the faceplate 

section is represented and the décentration, bigger than RCD, was enough to take the circle above 
the z-axis.

For the flat faceplate (Figure 3.11) it is very easy to see that the circle centred at 

the vertex passing through the faceplate limits fails to intersect the faceplate if 

w c I>R cd  (Figure c). A cylinder has two components: the base and the cylinder 

body. The base is equivalent to a flat target so it must fulfil the same conditions.

For the cylinder body it can be seen by analysing Figure 3.12 c) that the circle fails 

to intersect the faceplate if d+RCD <0.5MAXD which solved for d yields 

d<0.5MAXD-RcD- In this case the tilting and decentration limits are not
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independent. This last condition can also be applied to the flat faceplate to prevent 

the tilted surface from falling outside MAXD.

Figure 3.12 - Possibility for a tilted and decentred surface to intersect a cylindrical faceplate. Only 

the top part of the cylinder was considered.

Figure 3.13 -  Possibility for a tilted and decentred surface to intersect a cone shaped faceplate with 

PD diameter pupil located at a zPD distance from the origin. Only the top part of the cone section 

was considered (thick line) for each situation. It can be seen that there is no intersection if the circle 

centred at the vertex passing through the surface limits is bellow (a) or above (c) the faceplate. This 

last case was obviously disregarded since the surface cannot be outside the faceplate limits.

For a cone shaped faceplate (Figure 3.13) the Intersection problem gets slightly 

more complex. Once again a section that passes through the middle of the cone is
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the faceplate limits, hence invalid. Concluding this analysis, the tilted and 

decentred surface does not intersect the faceplate if the décentration is limited by 

the condition d<^(-p){wd+zpD)-RcD^{^-p)-

The intersection between the circle centred at the vertex (equation(3.41)) and a 

conic (equation(3.1)) becomes a very complex problem, since there can be four 

intersection points (Figure 3.14). This is expressed by the fourth degree equation

(3.44)

(l -  Pt )2z4 - 4 z 2(l -  p T\w<d + zPD -  RT)+  2z 2 |(l -  2 + (wd + zpd)2 - / î 2d ]+2[(wî/ + zPD -  RT)2 +  d 2p T^j-

— 4z j(w£f + zp£j — Rj )[d ~ + (wd + zpQ ) — ^ c d  ]̂ " Rp |+ + (wd + zPp )~ ~ ^ c d  = 0

representing the problem.

Figure 3.14 - Intersection between a circle and an ellipse (a), a maximum of four points can be 

found. Intersection between two circles (b) a maximum of two points can be found. The only 

exception is if the circles have the same radius and overlap.

The case of intersection with another circle (p= 1) is simpler because there are only 

two intersection points and equation(3.44) becomes of second degree. However 

there are still several possibilities depending on the relations between the faceplate 

radius R t  and Rc d■
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A solution for the equation could not be found due to its extension and relative 

complexity of the z coefficients. Numerical methods were applied to search for the 

equation roots but because the z coefficients were large numbers there was a 

significant loss of accuracy in the process. This was tested with a circle intersecting 

an ellipse close to the end opposite the vertex. There should be two intersection 

points but the numerical routine only returned imaginary roots meaning no 

intersection was found.

A new procedure had to be developed without resorting to the long fourth degree 

equation. If a point in the faceplate falls inside the circle centred at the reflecting 

surface vertex then y for the former, given by

(3.45) y = 2 R t z  -  p Tz 2

is smaller or equal to y  for the latter, given by

(3.46) y = ^ RcD- [z- {wd + zPD)]2 +d,

as represented in Figure 3.15. These equations are obtained by solving 

equations(3.1) and (3.41), respectively, in order to y. If this process is repeated 

from the vertex of the circle centred at the vertex (z=zPD+wd-RcD) to the faceplate 

limits (z=zmaxd) in small steps, it can be determined if the faceplate falls inside the 

circle. For the research 1pm intervals were used for which modern computers can 

complete the analysis in seconds, depending on the z interval length analysed.
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Figure 3.15 -  Possibility for a tilted and decentred surface to Intersect a conoid shaped faceplate. 

Only the top half of the faceplate section was represented (thick line). If there is an intersection for a 

given value of z (zT£sr) the corresponding y value for the faceplate is smaller or equal to y on the 

circle centred at the vertex of the reflecting surface.

3.6 Ray tracing equations for reflection

The general ray tracing equations derived by Welford (1986) were modified in 

order to accommodate the decentred surface case. Usually the ray tracing process 

can be divided in the following phases:

• Selection of the object point and the direction of a ray.

• Transfer to the plane perpendicular to the reflecting surface axis touching 

the surface vertex.

• Transfer to the surface.

• Reflection.

• Transfer to the pupil plane.

The developed model assumes that the camera is able to capture all rays striking 

the camera objective. If this assumption wasn’t made it would imply linking a 

particular camera optics to the simulation. This would make it valid for only a single 

camera design, when is intended to be general.
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The object point has coordinates (xr, yr, zj) in the global system and the direction 

of a ray coming from it is represented by a unit vector with direction cosines 

(L,M,N). The intersection of this ray with the plane perpendicular to the reflecting 

surface axis touching the surface vertex is (xo,yo,0) given by

(3.47) x0 =xT+ -^(l-zT)

and

(3-48) y0 = yT+ ^ ( l - z T).

Using the VTX system simplifies the calculations. The parameter / is the distance 

from the global system origin to the reflecting surface vertex measured along the z 

axis. For a non-tilted surface l=wd+zPD (Figure 3.3).

This ray intersects the surface at the point (x0+LA, y0+MA, NA) in the VTX system. 

The parameter A is the distance from the plane to the reflecting surface measured 

along the incident ray and is given by

(3.49) a  = ------ T - . 77 . .
G  +  ^ G 2 - \ i  +  ( p - \ ) N 2 \ : F

The parameter c is the apical curvature of the reflecting surface and F and G are 

respectively

(3.50) 

and

(3.51) G = N - c[l (x0 -x v)+M(y0 -X,,)].
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The reflection equations presented by Welford were derived for a spherical 

reflecting surface. Using the same procedure the expressions for conoids were 

calculated and are respectively

(3.52) r, T 2c(x-xv)cosI
■Jl- 2c(p -1 )z + c2p(p -1 )z2

(3.53) m ' . - m -  ,___ ______________
yl - 2c(p-\)z + c2 p(p-\)z2

and

(3.54) 2 cos/ -2cpzcos/N =-N + . =
y 1 -  2c(p -1 )z + c2p(p -1 )z2

where

(3.55) r N -  c(hx + My + Npz) cos I  = , y ' .
■Jl-2c(p-\)z + c2p(p-\)z2

The direction of the reflected ray is represented by the direction cosines 

N], I  is the angle of incidence equal to the angle of reflection.

The intersection of the reflected ray with the pupil plane is given by equations 

(3.47) and (3.48) using L',M',N' instead of L,M,N and l=-wd. The direction [L',M',N] 

is opposite to the reflected ray as stated previously. This ray starts at the surface to 

the right of the pupil plane therefore for it to strike the plane it's necessary to be 

directed from right to left which corresponds to /V>0. If l\T<0 the reflected ray will 

not intersect the pupil plane.

3.6.1 The parameter A

A line can intersect a conoid in two points therefore it's necessary to select the 

correct one. This problem was previously addressed in section 3.1.3 but now 

needs to be solved using parameters from the ray tracing equations In order to 

simplify the procedure. The conoid represents a reflecting surface therefore the
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closest intersection to the object point should be selected. The intersection further 

away from the object point would correspond to a transmitted ray. It is important to 

note that this principle is only valid for the part of the surface that contains the 

vertex, corresponding to z= 0 in Baker's equation. If for example a hyperbola is 

used the closest intersection to the object point may be located in the left branch, 

however this branch does not contain the vertex hence the principle is not valid. 

For this case the correct intersection would be the one further away from the object 

point. The equation for A has two solutions, equation(3.49) represents the correct 

one and will be called A+. The second solution for A has a negative sign before the 

square root and will be called A'. The solution A+ is correct if G>0 as pointed out by 

Welford. Freeman (1990) also addresses the problem of the correct intersection for 

conoids but also considers G>0. However analysis of equation (3.51) shows that G 

can be negative. This observation led to a detailed study of G for all conoids with 

light rays coming from left to right and right to left. For simplification centred 

surfaces were used with light rays in the yz plane, in which case G-N-cMy0 and 

F=cy02. Due to the number of cases involved, the G analysis for an ellipse using 

rays with M>0 and N>0 is going to be the only situation presented. For all other 

cases only the pertinent aspects will be discussed.

The first step to determine the sign of G is to find out which range of values of y0 

makes the incident ray intersect the surface. From equation (3.49) a ray will 

intersect the surface if the expression inside the square root is positive or zero. 

Applying the analysis conditions (incident ray in the yz plane with M>0 and N>0 

and surface with p>0) this expression can be transformed to give the condition

(3.56) PNc2y20 + 2cMy0 -  N < 0 .

This condition shows that for an incident ray in the yz plane with direction [0, M, N], 

the intersection with the surface will be determined by yo, which is the intersection 

of the ray with the vertex plane (plane perpendicular to the z axis passing through 

the surface vertex). This is illustrated in Figure 3.16 for a set of parallel rays
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intersecting the vertex plane at different points. Equation (3.56) is quadratic in y0 

and therefore has two roots represented by

(3 *7 ) , , . ^ 5 ^ ! ® ,
pNc

where the positive root (because p>0) was labelled y0i and the negative y02. In the 

present analysis conditions /W=V(1-A/2). This expression was substituted into 

equation(3.57) making it easier to determine the sign of each root. If y0=y0i or 

y0=y02 the solutions A+ and A' are equal leading to a single solution for A=F/G. This 

means that y0i and y02 are the intersections of the surface tangents (with direction 

[0,M,N]) with the vertex plane (rays 2 and 4 in Figure 3.16a).

Figure 3.16 - Intersections of parallel light rays with a sphere in the yz plane. The dashed part of 

the circle is not part of the reflecting surface, a) Light rays travel from left to right, the object point is 

to the left of the surface, b) The opposite situation is pictured, the object is to the right of the surface 

vertex. This is possible when the surface is tilted (see text). In this case only rays that intersect the 

circle in two points on the useful part of the surface (ray 4) will be considered. In this context ray 3 is 

invalid since the only intersection on the useful part of the surface is on the back.
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The coefficient of y02 in equation(3.56) is positive therefore the equation is positive 

outside the interval between the roots y01 and y02 and negative within the interval. 

This means that a ray with direction [0,M,N] intersects the surface if it crosses the 

vertex plane between y01 and y02 (ray 3 in Figure 3.16 a). If y0>y0i (ray 1) or y0<y02 

(ray 5) the ray will not intersect the surface.

Returning to the analysis of the sign of G, its value for y0=y0i is

which is positive for the analysis conditions (incident ray in the yz plane with M>0 

and N>0 and surface with p>0). If G=N-cMy0 is positive for yoi then it is also 

positive for y0<yoi . G can only be negative when y0>y0i although it can still be 

positive for some values in this interval. However the ray won't intersect the surface 

in this case therefore for the analysis conditions G is always positive if the ray 

intersects the surface. If G>0, the value for A in equation (3.49) (A+) is the correct 

one since it will be the intersection closest to the object point and A' will be further 

away. If none of the intersections are on the part of the surface that contains the 

vertex they are both considered invalid. Ray 4 in Figure 3.16 a) is an example of an 

invalid intersection since it hits the surface on the part that doesn't contain the 

vertex.

If the object point is located behind the vertex of the reflecting surface the light may 

travel from right to left to hit the surface. Although this seems odd it can happen if 

the reflecting surface is tilted (see Figure 3.18). The ray tracing procedures first 

transfer the ray to the vertex plane and then to the reflecting surface. However in 

this case the ray strikes the surface first and then passes through the plane (Figure 

3.16 b). As a result A will be negative since the transfer from the plane to the 

surface is made in the opposite direction of the incident ray. Using algebra the z

(3.58) G = N -  cMyoX =
pN
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coordinate of the transference from the plane to the surface is z=/VA. If N<0 and 

the surface is to the right of the plane (z>0) then A has to be negative.

Using the same process that was applied for the case N>0 and M>0 it was 

concluded that when a ray with M>0 and N<0 strikes the reflecting surface, G is 

negative. In this case |A+|>|A'| which means that the A+ intersection is further away 

from the vertex plane than A'. Analysis of Figure 3.16 b) shows that in this case a 

ray can only be reflected if both intersections are on the useful side of the surface 

(ray 4). It is obvious that for this ray the correct intersection will be the one closest 

to the object point, which is also the one further away from the vertex plane. The A+ 

solution is therefore the correct one for this case. It can be seen that ray 3 is not 

considered since the first intersection is on the side of the surface that isn’t used 

and the second intersection hits the surface from the inside and hence can’t be 

reflected.

For a parabola (p=0) the case of a ray parallel to the z-axis needs special 

considerations. It is easy to see that for this case the ray intersects the surface in a 

single point. The A parameter is the solution of equation

(3.59) [l + (/? -  l)/V2 JcA2 -  2GA + F  = 0 .

When AM in a parabola the coefficient 1+(p-1)A/2=0 and the last equation 

becomes of first degree, implying a single solution A=F/(2G).

For a hyperbola there are two special cases: rays parallel to and coincident with 

the asymptote. Analysis of Figure 3.5 shows that for the first case there is a single 

intersection and in the second case no intersection. The analysis for the first case 

is very similar to the parabola special case since the coefficient 1+(p-1)A/2=0 and 

A=F/(2G) however N is not 1. If N<0 the ray strikes the surface from the inside so it 

isn't reflected. For a ray coincident with the asymptote the coefficient 1+(p-1)A/2=0
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and G=0 so A is undetermined from equation (3.59). Alternatively if A=F/(2G) is 

used as a solution then A = o o  which is the point of contact of the asymptote with the 

hyperbola.

In conclusion, the transfer from the vertex plane to the surface has to be 

approached with great care to check if the intersection point is valid. The z value of 

the intersection must be checked to determine if it's in the specified surface limits. 

If the ray strikes the surface from inside the ray tracing procedure must be aborted 

because the ray won't be reflected.

3.6.2 Special case: Initial ray perpendicular to the surface z axis (A/=0)

For this case the general ray tracing equations are not valid so adequate 

modifications had to be made. The transfer to the plane perpendicular to the 

reflecting surface couldn't be achieved since the ray is parallel to the plane. As a 

result Baker's equation, representing the reflective surface, had to be expressed in 

relation to the global system. This resulted in a décentration zv=wd+zPD in z 

resulting in

(3.60) ( x - x vf  + { y - y vf  =2 R(z -  zv)~ p(z -  zvf  .

The initial condition for the ray to strike the surface is z v<zt <z v+zc d■ The 

intersection point z coordinate is the same as the object z j since the ray is 

perpendicular to the surface axis. The intersection of the ray with the reflecting 

surface is calculated by substitution of the ray vector equation

(3.61) (x ,y ,z )= {x T,y T,zT) + \ ( L , M $ )

in equation(3.60). This substitution results in
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(3 .62) cA2 -  2GA + F  = 0

where

(3.63) G = c[l (xv - xT)+M(yv- y T)[ 

and

(3.64) F = c\xT-x vf  + {yr - y vf  + p(zT-z v)2 ]-2(zr -z v). 

The values of cA that satisfy equation(3.62) are

(3.65) cA = G±a/g 2- cF

Once again the solution with a + sign before the square root will be referred to as 

A+ and the other by A'. The ray will intersect the surface if the expression inside the 

square root fulfils the condition G2-cF>0. This expression can be developed into

(3.66) G2 -cF = - c2[-M(xv - xT)+L(yv-y T)f + c(zT - zv\2 - pc(zT - zv)].

The first term of this equation is never positive so it contributes to an intersection 

failure. The expression inside brackets is the vector product of the incident ray 

direction [L,M,0] by the vector joining the object point to the axis [Xv-x^yv-yr.O] 

(Figure 3.17 a), object point 1). The vector product of two vectors is zero when they 

have the same direction. This means that regardless of the distance of the object 

point to the surface if it points towards the surface axis and zy is inside the surface 

limits, the ray will always strike the surface.

The second term of equation(3.66) is dependent on the surface limits along the z 

axis. It can be seen in Figure 3.17 that a ray with N=0 striking the surface outside 

the z  limits will always fail the surface (object points P 2 and P 3 ). If the object point is
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located before the surface vertex (zj<zv) the ray will fail for a circle, ellipse and 

parabola (p>0) because the second term will be negative. For a circle and ellipse 

the ray will also fail if zt >z v+2 I(c p ), which corresponds to a ray beyond the other 

surface limit. For a hyperbola (p<0) the ray will only fail if it falls in the gap between 

the branches, which corresponds to the condition zv+2 l(cp)<zj<zv.

If the incident ray points towards the surface in direction [Li,/W-i] the scalar product 

is positive so G>0. Therefore the solution A' in equation (3.65) is the correct one, 

which corresponds to the intersection closest to the object point.

Figure 3.17 -  Special ray tracing case with incident ray perpendicular to the surface z axis (A/=0). 

a) Ray intersection failures due to ray direction in xy plane (PJ and displacement along the z axis 

(P2 and P3). The values in parenthesis are the object point coordinates and the line matrices are ray 

directions, b) Section of the ellipse in the xy plane with an object point sending light rays in several 

directions. The scalar product of the direction of a particular ray with the vector [xv-xT,yv-yT] is an 

indicator of the possibility of intersection with the surface in the incident ray direction.

The intersection point following correct determination is translated to the VTX 

system using z=z-(wd+zPD). The reflection equations (3.52) to (3.55) can then be 

applied and the ray tracing follows the regular procedure.
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3.6.3 Ray tracing with a tilted reflecting surface

It is very complex to modify the ray tracing equations for a reflective tilted surface 

so an alternative procedure was developed. In the first phase of the ray tracing 

process the object point and the directions were transformed into a tilted axis 

system with its origin at the global system origin using equation (3.37). This system 

is referred to as the GLBTLT axis system. Using the same equation the position of 

the reflecting surface vertex (xv,yv,zv) was also translated to GLBTLT becoming 

(XV,YV,ZV). This axis system was developed in order for Baker’s equation to have 

the same form therefore the transfer equations will be the same. This procedure 

results in a tilt inversion consisting of a straight reflecting surface with a tilted target 

(Figure 3.18 b).

In section 3.1.3 it was stated that the reflecting surface was positioned at a 

distance wd from the faceplate pupil and that zv>wd. If this is the case light rays 

coming from the object won't strike the surface from right to left or perpendicular to 

the surface z axis. However if the surface is tilted these situations are possible 

(Figure 3.18 a).

After determining the intersection point of the incident ray with the surface and the 

opposite direction of the reflected ray [L',M',N], the intersection point z coordinate 

is increased by Zv. This step will return the intersection point to the GLBTLT axis. 

The direction and the point are then translated to the global system using 

equation(3.38). If the operation z=z-(wd+zpo) is performed on the intersection point 

that was in the global system, the point will be translated to the VTX system. 

Equations(3.47) and (3.48) can then be used to determine the intersection with the 

pupil plane since they were derived for an intersection point on the surface 

expressed in the VTX system.
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Figure 3.18 - When the reflecting surface is tilted (a) it's possible for some rays to strike it from right 

to left or perpendicular to the surface z axis. The procedure adopted for ray tracing with a tilted 

surface is such that the surface will be straight and the faceplate tilted (b). In this case the ray 

tracing equations will be the same when transferring to the surface.

3.7 Finding a transmitted ray through the faceplate pupil

A transmitted ray is necessary to determine the rays that strike the pupil edge after 

reflection. This procedure will be explained in the next section. It is not used if the 

reflecting surface is tilted or decentred.

For a centred reflecting surface there are always transmitted rays in the meridional 

plane. Due to the rotational symmetry of the faceplate and the reflecting surfaces 

used for this model it is sufficient to work in a single semi-meridian for many 

situations. Ray tracing can be performed in one semi-meridian and the results 

extrapolated to other semi-meridians. To find a transmitted ray the object point in 

the faceplate will be in the 90° semi-meridian and the problem will be solved for the 

vertical plane.

The process starts by tracing two rays and analysing the intersection of each with 

the pupil plane. One of the rays is directed to the reflecting surface superior edge 

and the other to the surface vertex (Figure 3.19). The former will be referred as the
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by edge ray and the latter as the vertex ray. The vertex ray always strikes below 

the pupil except If the object point is on the pupil edge in which case it will hit the 

opposite side of the pupil after reflection. In the latter case it can be considered that 

the ray is transmitted and the problem is solved. The edge ray may strike the pupil 

plane after reflection below, in or above the pupil. If the edge ray strikes the pupil 

plane below the pupil it means that no transmitted ray can be found for that object 

point (Figure a). All rays touching the surface below the edge will intersect the pupil 

plane at an even lower point. If the edge ray is transmitted through the pupil the 

problem is solved in the first step (Figure b). If the edge ray strikes above the pupil 

the vertex ray intersection must be analysed.

Figure 3.19 - Situations for which a light ray coming from an object point on the 90° semi-meridian 

directed to the upper reflecting surface edge on the meridional plane, after reflection strikes the 

pupil plane below (a), in (b) and above the pupil (c). The light ray directed to the surface vertex is 

always reflected below the pupil except if the object point is at the pupil edge (c).

When the edge ray strikes above and the vertex ray below the pupil, bracketing 

has been achieved since a transmitted ray will be found if it is directed between the
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two. If a new ray is directed exactly In the middle of the initial two there is no 

guarantee that it will be transmitted. One solution is to continue to trace rays in the 

middle of each new pair of limits found. A second is to increment one direction in 

equal steps. Both procedures can be time consuming.

As an alternative, an iterative linear interpolation method was developed based on 

the ray’s M direction cosine and the y intersection of the reflected ray with the pupil 

plane. The limiting ray that strikes the reflective surface higher will have the 

subscript u, and the one that strikes lower the subscript I. When the procedure 

begins the edge ray is u and the vertex ray /. Each iteration applies the equation

(3.67) M  = M U
, m , - m u

1 - * L
y u

to the limiting rays and a new ray is traced with the new direction for which the 

intersection with the pupil plane determined. If it strikes the plane above the pupil 

(but closer to the pupil edge) the new ray becomes the upper limit and if strikes 

below it becomes the lower limit. The iteration is repeated until a transmitted ray is 

found. The process is completed with a small number of iterations.

It is interesting to analyse the effect of equation(3.67): Mu<0 for the object points 

presented in Figure 3.19, but if the ray comes from an object closer to the pupil 

edge and the pupil diameter is smaller than the surface diameter, Mu can be 

positive or zero. Mi is always negative and larger than Mu, in magnitude value, 

therefore the numerator of the second term Mi - Mu is always negative. As for the y 

coordinates, y/<0 and yu>0 thus the denominator is always positive, hence the 

second term of the equation is negative. This forces the new ray to be directed 

lower than the edge ray as desired. If |y/|=y0 the new ray should have a direction 

equal to the average of the two limiting M values. If \yi\>yu the new ray should have 

an M closer to Mu because it strikes the pupil plane closer to the pupil edge. If
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\yi\<yu the new ray should have an M closer to Mi for the same reasons. The 

denominator of the second term is 2 , >2 and <2 respectively for each one of the 

cases stated above giving the desired result.

3.7.1 Special case: Edge ray fails to intersect the pupil plane.

This is a situation that must be analysed or else the transmitted ray procedure will 

fail in these circumstances (Figure 3.20). The vertex ray always strikes the pupil 

plane therefore it is sufficient to analyse the N component of the edge ray after 

reflection to see if it is directed to the pupil plane or not.

Figure 3.20 - The ray directed to the reflecting surface edge fails to intersect the pupil plane after 

reflection. This case has to be analysed separately or the transmitted ray searching procedure will 

fail.

If the edge ray can't be used to do the initial bracketing of the M values then a new 

ray must be traced in order to do so. If the vertex ray strikes below the pupil after 

reflection then there will always be a ray that will strike above the pupil (in the 

present conditions for the edge ray) and will have an M component between M 

vertex and M edge. A new ray was traced with M=(Mu+Mi)I2 and the intersection
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coordinates with the pupil plane analysed. If the new ray strikes above the pupil the 

bracketing is completed and the transmitted ray searching procedure follows as 

normal. If it strikes below the pupil then it’s a better limiting value than M vertex so 

it will become the new M/. However the other bracketing limit remains to be 

determined therefore a new ray will again be traced with the average M 

component. If in the process to find the bracketing rays a transmitted ray is found, 

the procedure is terminated since that was the initial objective.

3.8 Pupil exploration in the meridional plane.

This procedure is used to determine the direction of the incident rays for which the 

reflected rays strike the pupil limits in the meridional plane (Figure 3.21). The 

position of the object point follows the same conditions applied to the transmitted 

ray finding algorithm. The M component of the incident ray that strikes the superior 

pupil edge after reflection will be referred to as Mut and the one for the ray that 

strikes the inferior edge M/t. A transmitted ray is available with an M direction 

cosine Mtr and striking the pupil plane at a coordinate ytr, both determined by the 

transmitted ray finding algorithm.

Figure 3.21 -  a) Direction of the incident rays coming from an object point striking the pupil edges 

in the meridional plane after reflection, b) An imaginary object point is located on axis on the 

faceplate vertex. It doesn’t belong to the faceplate since the faceplate is limited by the pupil plane. 
In this case Mut and M:t are symmetrical.
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The initial step of this procedure will be to bracket the desired pupil edge between 

the transmitted ray and a ray that strikes above the pupil for the upper limit or 

below the pupil for the lower limit. Once again the M component of the edge ray 

and the one for the vertex ray are going to be used as starting points but now the 

problem is more complex.

The vertex ray should be the first to be tested since its path is predictable. Analysis 

of (Figure 3.20) shows that the vertex ray strikes below the pupil therefore it is only 

useful for determining Mn being one of the limiting directions for bracketing. If the 

object point is on the upper pupil edge the vertex ray will be reflected to the 

opposite edge hence the vertex ray M direction cosine can be considered Mn for 

this special case.

The edge ray will only be useful for determining Mut since it will be reflected above 

the pupil. However when the reflected ray fails to intersect the pupil plane (Figure 

3.20) this ray can't be used. This problem was solved in the transmitted ray finding 

procedure (section 3.7) and for the present case the same process is applied with 

the exception that the transmitted ray M direction cosine is used as a limit instead 

of M for the vertex ray.

Another interesting situation is displayed in Figure 3.19 b), where the edge ray is 

transmitted. This implies that no ray strikes the upper pupil edge after reflection 

since it would have to strike the reflecting surface at a higher point than the edge. 

This means that there is vignetting by the surface diameter. In this case the M 

component for the edge ray is considered Mut.

When the desired pupil edge is bracketed by the transmitted ray Mtr and the ray 

that strikes the pupil plane above or below the pupil, with direction cosine Mf , a 

new ray is traced with M given by equation
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(3.68) Âi p1 M
A4 —  M  h ------------------------------------ j

yF-y»

where PD is the pupil diameter. The positive sign is used if the upper pupil edge is 

being analysed and the negative is taken for the lower edge. The coordinates yir 

and yF are respectively the y  coordinates of the intersection of the transmitted ray 

and the ray that strikes outside the pupil with the pupil plane. A new ray is traced 

with the calculated M direction cosine that will strike the pupil plane closer to the 

pupil edge. The new M will replace Mtr or MF in the equation depending on whether 

the ray was transmitted or failed respectively. The iterative process continues until 

the ray strikes close to the pupil edge within a pre-defined tolerance. This equation 

is a linear interpolation that will direct the new ray closer to the limiting ray that 

strikes the pupil plane at a shorter distance to the desired pupil edge.

There are no object points before the pupil since the faceplate is limited by it. If an 

imaginary object point on axis located before the pupil is used then a ray directed 

along the axis would be reflected in the opposite direction (zero incidence angle). 

This ray would intersect the pupil plane at ytl= 0 and Mtr= 0. Equation (3.68) can still 

be applied to this case and Mut=-Mu (Figure 3.21 b). Using this procedure allows an 

estimate of the angular aperture of a pencil of rays for a set of particular vk 

parameters applied in the simulation.

3.9 Pencil of rays from an object point, ray density

The object points are part of the edges of luminous rings located in the instrument 

faceplate. A single object point will send a spherical wavefront and the light rays 

will be perpendicular to it. Only the section of the wavefront that’s directed to the 

reflecting surface is relevant. That section is a solid angle and can be called a 

pencil of rays. This part of the thesis is aimed at determining the direction of each 

ray in order for the ray density to be uniform in the pencil of rays.
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A central ray will determine the pencil direction and the other rays will revolve 

around it. The direction cosines for the central ray are [LC,MC,NC]. A local axis 

system was defined in order for one of its unit vectors (e2) to coincide with the 

central ray direction (Figure 3.22). The transformation applied was similar to a 

spherical coordinates system and represented in matrix form by

(3.69)
¿1 coscp 0 -sincp i

e2 = sinBsincp COS0 sinOcoscp j

¿3 cos 9 sin cp -s in 0 cos0 coscp i

This transformation is much simpler than the one applied for the tilt system 

(equation (3.37)) because the angles cp and 9 are measured between both system 

axes. This wasn't the case for the angle cp in the tilt system.

Figure 3.22 - Axis systems used to define the direction of a ray inside a pencil of rays, a) The unit 

vector e2 is the direction of the central ray in the pencil, the axis system xyz is not the global system 

but a local system with the same directions but with origin at an object point, b) This system is to be 

placed at the end of e2 on a), it represents the position of a point P belonging to a ray in the pencil 

of rays. The unit vectors presented are just to define the directions, c) Representation of figures a) 
and b) together.

112



The trigonometric relations for angles 9 and 0 can be expressed in terms of the 

central ray direction components [LC,MC,NC] by equations

(3.70) N. N, cos cp = . = .
^ l 2c +n 2c - j\-M 2c

(3.71) Lc Lsin cp = . = . ,
VL2c +N2 Jx-M 2

(3.72) sin0 = -J\-M 2 ,

and

(3.73) cos0 = Mc.

It should be noted that in order to cover all space, 9 will take values from 0 to 2tt 

but 0 is only required from 0 to n. Therefore sin0>O, which is in agreement with 

equation (3.72).

To represent the directions of the other rays revolving around the central ray a 

plane can be placed perpendicular to the central ray at a unit distance from the 

object point (Figure 3.22 b) and c), hence at the end of e2. The intersection of a ray 

with the plane is a point (P) with position in the plane represented by the vector

(3.74) p P = p s i n a  e, + p c o s a  e3 .

The position vector of this point

(3.75) Rp = p s in  a  e, + e 2 + p c o s a  e3

from the local system with origin at the object point is the sum of e2 with the 

position vector at the plane pp. The magnitude of Rp is V(1+p2). If RP is transformed 

to the xyz system applying equation(3.69) the vector in the new system is given by
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(3.76)

R, Lc +  ■ ,P_ _ ={NC s i n a  +  M  CLC cos a )

l Mi
i + M c - p c o s a ^ / l  -  M 2c j  +

Nc +  . P . = { -L c s i n a  + M  CNC c o s a )
M i

If now this vector is divided by its magnitude, the resultant vector is the unit vector 

pointing the direction of a ray in the pencil of rays given by

(3.77) Vr  =
Vl

: R P

+ P

A solution could not be found for p in equation(3.74) in order for the vector Rp in 

equation(3.77) to represent the position of a ray in a spherical wavefront. Instead a 

section of the pencil by a plane perpendicular to the central ray was used and the 

intersection of the rays with that plane calculated by equal increments of p. 

However it should be noted that for a pencil of rays with a small aperture the linear 

increments are approximately equal to angular increments which will correspond to 

a spherical wavefront as desired. Tests executed on the simulation program have 

shown that this is the case for a set of typical videokeratoscope parameters.

The developed model uses a circle of radius Ro centred at the central ray (Figure 

3.23) hence with an area Ao=t i:Ro2. If a circle of radius R^Ro  is centred at the same 

point, the area between circles (Ai) is the difference between the areas of the 

circles. If this area is divided in n-\ parts in such a way that each sector has the 

same area as the central circle a relationship between all parameters can be 

found. This procedure applied to the area (Ar ) between circles of radius Rr and Rr . 1 

is represented by

(3.78) nRl-TiR-i-1
niRl
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Figure 3.23 - Generation of an equal ray intersection density circular pattern in a plane. The ray 

intersections are disposed in circles around a central ray. Each intersection is located in the centre 

of an area equal to the area of the circle around the central ray (radius R0). For the case displayed 

each area (k) external limiting circle has radius Rk=(2k+'\)R0. The numbers displayed are labelling 

the areas between two consecutive circles and do not relate to a particular sector.
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Analysis of the previous equation shows that a simplification is achieved if each 

area radius results from equal increments (A) from R0, Rk=R0+kA. If this expression 

is replaced in the last equation it gives

(3.79) nk = A (2̂  ~ ^  + 2R° .
Ro

It can be seen that in order to obtain a greater degree of simplification the best 

value for A is a multiple of Ro, aRo, for which nk is

(3.80) nk = [(2k -  l)o + 2] a .

Table 3.2 summarises the results for the nk expression with a ranging from 1 to 4. 

The expressions for a=1 and a=2 seemed acceptable while the ones for a>2 

appeared to result in an excessive number of rays per area. However this does not 

mean that the expressions for a>2 are wrong; they could still be used to provide an 

equal area effect. The values of nk for a=1 and a=2 were analysed and the latter 

was chosen due to a property that allows to use previously traced rays. This will be 

developed in the next section.

a nk

1 2/C+1

2 8 k

3 18/C-3

4 32k-8

Table 3.2 - Expressions for the number of ray intersections (nk) on a ring area (k) limited by radius 

Rk and RkA where Rk=R0+kaR0.

The initial value for R0, controlling the ray density, cannot be constant for all object 

points. This is due to the fact that the aperture of the pencil of rays will depend on
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pupil size, distance of the reflecting surface to pupil, surface parameters and object 

point taken. Therefore a constant value cannot be used since it could be adequate 

for one set of parameters but too low for another set and too high for another. To 

solve this problem the imaginary on-axis object point before the pupil was used 

(Figure 3 .2 1  b) as described in section 3 .8 .

From Figure 3 .2 3  the radial distance between points in adjacent areas is 2 R0. The 

equal density pattern plane was placed perpendicular to the z axis at a distance 

N^i from the imaginary object point (Figure 3 .2 4  a). The symbol Roi is going to be 

used for the imaginary object point to distinguish between Ro for an ordinary object 

point. The upper tangential ray [0,Muti,Nuti\ marks the position of the outer point on 

the ray density pattern. The number of rays nR will be the number of divisions to 

apply to M uti. If each division is 2Ro/ the relation between this parameter and M uti is 

expressed by

(3 .8 1 )  M uti = 2R0inR .

The angle of R 0i with the axis (representing the central ray in this case) is yRoi and 

is given by:

(3 .8 2 )  Y mi = arctan °'

For an equal energy pattern associated with a central ray coming from any object 

point Rq is related to the number of rays nR by

(3 .8 3 ) *o = tan Y ROi =
1-AY 2uti
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It should be remembered that, for an ordinary object point, the plane used to define 

the ray pattern is placed perpendicular to the central ray at 1 mm from the object 

point measured along that ray (Figure 3.24 b). Now the parameter p representing 

the distance from the central ray to another ray in the plane perpendicular to the 

first is

(3.84) p = 2 R0k,

with k taking integer numbers from 1 until a number that fails the reflecting surface. 

Angle a in equation(3.76), which represents the angular location of a point in the 

equal density pattern for an area k, is given by

(3.85) 2n
ak =J —

nk

The parameter j  is incremented in steps of 1 from 0 to nk-1.

Figure 3.24 - a) Equal density pattern positioned perpendicular to the z axis (central ray for the 

imaginary object point) and limited by the upper tangential ray. R0i depends on the number of 

divisions to Muti. b) Angle yRoi is used to calculate R0, for any object point, determining the ray 

density.
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3.9.1 Retracing a pencil of rays with higher density

For purposes that will be discussed in the following sections it is necessary to 

recalculate the pencil of rays associated with a particular central ray for a higher 

density. When the ray density is too high this process takes a long time. A 

procedure was developed in order to use the rays traced previously under specific 

conditions resulting in faster execution time. Analysis of Figure 3.23 shows that the 

radial distance between rays in two consecutive areas is 2R0. If a new pencil of 

rays associated with the same central ray is traced with a new central radius 

F?onew=F?ooid/2 , the radial separation between consecutive areas will now be equal to 

2F?0new=F?0oid (Figure 3.25).

Figure 3.25 -  The full lines and dark dots correspond to the pattern presented in the previous figure 

for areas 0, 1 and 2. The dashed lines and light dots correspond to a pattern where the central 

radius Is halved from the previous value. The new odd numbered area centres will coincide with the 

inner borders of the old areas. The new even area centres will coincide with the old area centres 

needing twice as much rays therefore the old ones can be reused.
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The centres of sectors in the new odd numbered areas will coincide with the 

internal borders of the old areas. However the centres of sectors in the new even 

numbered areas will be located at the same radial distance from the central ray as 

the old sector's centres. Therefore the sector centres for the new area 2k are at the 

same radial distance from the centre as the sector centres for the old area k. From 

the simplified expression for the number of rays in an area k nk=8 K it is obvious 

that n2k='\6 k=2 nk. Hence the rays in the new even areas will have doubled in 

relation to the old areas and are located at the same radial distance from the 

centre. If the position of the old rays was stored they will coincide with half the rays 

for the new even areas and therefore only the other half of the rays needs to be 

traced for those areas. All the rays for the new odd areas will have to be traced 

since there were none at these positions originally.

3.9.2 Special case: pencil of rays with central ray in the y  axis direction.

For a ray in the y  axis direction Mc2=1 and Lc=Nc=0 hence equation(3.76), 

representing the position of a ray in the pencil of rays expressed in the local xyz 

axis system, cannot be used. In this case it is better to work directly in the xyz local 

system with angle a  being described in a plane parallel to the xz plane located at 

the end of the unit vector representing the central ray direction (Figure 3.26). The 

angle will start from a line parallel to the z axis in the plane. The following equation

(3.86) R = p s i n a  i ± j  + p c o s a  k

represents the position vector Rp although the unit vector pointing in the direction 

of Rp is still given by equation(3.77). The ± sign in equation(3.86) depends on the 

direction of the central ray.
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Figure 3.26 - Representation of the position of a ray in a pencil of rays with a central ray in the y 

direction (a) and -y direction (b).

3.9.3 The central ray

For a centred reflecting surface the central ray of a pencil of rays from an object 

point was considered to be in the meridional plane bisecting the directions of the 

upper and lower rim rays. For an object point in the 90° semi-meridian the bisection 

angle 5 C (Figure 3.27) is given by

arctan

(3 .8 7 ) 8„ = -
7

Mut 
1 - M l

+ arctan
M

l

it
1 -  M,it

It should be noted that this angle will be negative due to the previous equation for 

this particular case. The direction cosines [LC,MC,NC] representing the central ray 

direction are

(3 .8 8 )  [l  C, M C, N C] = [0 ,s in5c,cos5c]
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Object
Point Nc NulNn

Figure 3.27 - Direction cosines representing the upper rim ray [0,Mut,Nut], lower rim ray [0,/W/(,A/„] 

and central ray [0,Mc,Nc], from an object point, for a centred reflecting surface. The central ray was 

considered to be the one bisecting the two rim rays.

For the present case Mc<0 and Nc>0, which is accurately represented by this 

equation.

The advantage of using the central ray of a pencil bisecting the rim rays in the 

meridional plane is illustrated in Figure 3.28. The best example is the imaginary on- 

axis object point for which the ray bisecting the rim rays is coincident with the z- 

axis since the rim rays are symmetrical. A section of the pencil in these conditions 

is perpendicular to the z-axis. The circle displayed in the figure is the front view of 

the corneal area for which rays from the on-axis object point are transmitted after 

reflection. Analysis of Figure 3.21 b), helps to understand this configuration. Due to 

rotational symmetry this area is determined in the pupil exploration algorithm with 

great accuracy and will remain constant independent of the ray density used. Any 

ray from the on-axis object point intersecting the reflecting surface outside this area 

will not be transmitted. In Figure 3.28 a), the central ray of the pencil is bisecting 

the rim rays and only 5 circular areas of the pencil section were needed to cover 

the reflecting surface area that transmits rays. On Figure b) the central ray is

122



directed elsewhere therefore more areas of the pencil section are needed to cover 

the same reflecting surface area. For this particular case section areas 6, 7, 8 and 

9 had to be used as well which totals an extra 240 rays. It should be noted that all 

rays in a section area have to be traced to determine if they are transmitted or not. 

A low ray density was used in this example but for the simulation of an image a 

very high density has to be employed and the number of extra rays needed grows 

exponentially. However due to the equal density pattern applied this problem is 

only relevant in terms of execution speed since for a high ray density the final 

image will be the same regardless of the position of the central ray on the incident 

pencil. For an off axis object point the problem is not so easy to illustrate but the 

principle is the same. In this case the reflecting surface area that transmits rays will 

only be symmetrical in the sagittal plane. The upper and lower rim rays will limit 

this area in the meridional plane.

Figure 3.28 -  Section of a pencil of rays coming from the imaginary object point on axis. The circle 

represents the front view of the reflecting surface area that transmits rays, after reflection, from the 

on-axis point, a) The central ray of the pencil is on-axis hence bisecting the upper and lower rim 

rays, b) The central ray is still in the meridional plane but is not bisecting, as a result more rays 

have to be traced to get the same effect.

For a non-centred reflecting surface (tilted and/or decentred) there is no meridional 

plane as the object point, faceplate and reflecting surface axis are not in the same 

plane. As a result all image symmetry will be lost. However if the tilting and/or
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decentring are executed in the meridional plane then the image will still have 

planar symmetry for that object point. It was decided not to develop a special 

process for this situation and maintain a general procedure. At the start of the 

procedure the central ray of the pencil was directed to the reflecting surface vertex 

and rays were traced covering the surface completely. Then from the transmitted 

rays, the one closest to the pupil centre was selected to be the central ray of the 

effective pencil to be traced. The selection of this particular ray was done as a 

matter of simplicity, since the determination of the ray that strikes the centre of the 

reflecting surface area that transmits rays is a complex procedure.

The procedures developed for the centred surface are very powerful and if there 

was a single transmitted ray in the meridional plane it would be found by the 

routines. Unfortunately that is not the case for the non-centred surface routines. 

Due to the lack of a meridional plane the ray finding procedure has to be applied to 

the entire reflecting surface against a meridional plane analysis for the centred 

surface. As a result the ray density used in the search cannot be very high due to 

the long time it takes to cover the entire surface. This can lead to finding no 

transmitted rays when in fact there may be some.

3.9.4 Limiting the pencil of rays from an object point

As stated previously a pencil of rays is controlled by the number of circular areas in 

its section, hence the problem is the number of areas to use. The limit is reached 

when all the rays traced in a circular area fail to be transmitted. This can be 

pictured in Figure 3.28 a) all rays in area 6 won't be transmitted and on Figure b) 

the same happens to area 10 (not pictured). Although this figure was designed for 

an on-axis object point it can be extrapolated to any object point, tilting or 

decentring of the reflecting surface just to illustrate the principle.

An exception occurs for the central ray finding procedure used for a non-centred 

surface. The first step was to direct an initial central ray to the surface vertex and 

then trace a pencil of rays around it. However that first ray may not be transmitted
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and this could also happen to the first area of the pencil as well, therefore the 

procedure cannot stop at the first area since the entire reflecting surface must be 

covered. The approach followed was to continue tracing rays in new circular areas 

until all the rays in an area failed to intersect the reflecting surface. It should be 

noticed that in order to cover the entire surface the aperture of the pencil is large 

and therefore the calculated section of the pencil won't represent a uniform density 

pencil. However in this case the image is not being calculated it is only a case of 

finding a transmitted ray suitable to be the central ray of the effective pencil. After 

that the normal pencil limits based on the transmitted rays is applied.

3.10 Central reference point of the ring images

Videokeratoscopes use the height of ring mire images along several semi-

meridians for the reconstruction algorithms. This corresponds to a polar coordinate 

system, which is always associated with a local Cartesian system. The latter will be 

the IMG system defined in section 3.3. It should be noted that the origin of this 

system is not necessarily along the videokeratoscope axis (Figure 3.7 a).

If the ring mire images are perfectly centred on the videokeratoscope axis, it is 

obvious that the origin of the IMG system should be placed on the axis. The 

majority of investigators in the corneal topography field assume a perfect centration 

and specify ring image mire heights in terms of distance from instrument axis, for 

example Roberts (1994b).

One of the aims of this research project is to study the effect of decentration on the 

topographic maps. If the origin of the IMG system is kept on the videokeratoscope 

axis for a decentred reflecting surface the situation displayed in Figure 3.29 a) may 

arise. This can happen with a small pupil (hence small first ring) or for a reflecting 

surface with a short apical radius of curvature. It can be seen in Figure 3.29 that for 

the semi-meridian a there would be two heights for ring 1 and the image height for 

semi-meridian 180°+cr would be negative, which doesn't make sense. This can be 

avoided if the origin of the IMG system is placed at the centroid of the inner ring
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image mire. At least one team of researchers (Andersen et al. 1993a) has adopted 

this approach to allow for small decentrations due to alignment error. This was also 

the initial approach taken for this project. However it was also found that if a 

fixation light is used in the simulation, its image centroid was very close to the 

centre of the inner ring. The difference was negligible therefore the fixation light 

approach was followed since it is faster and simpler to implement in the program. 

The fixation light was considered to be located at the faceplate vertex for conoids, 

or in the middle of the pupil for cylindrical and flat faceplates.

Although the fixation light was the preferred method for the determination of the 

origin of the IMG system, the program still allows centring at the inner ring image 

mire centre if desired. For abbreviation the centre of the IMG system of axis will be 

referred by O/. This point will have coordinates (o/x, o/y) in the IMG system (applied 

to the global system) and if expressed in the global system (-o/x, o,y).

Figure 3.29 - Decentred image of the first and second ring mire images, the videokeratoscope axis 

is not located at the centre of the first ring. If the IMG system of axis used for the ring height is kept 

at the videokeratoscope axis than a ring may have two heights pi and p2 in one semi-meridian a (a). 

If the IMG system is placed at the inner ring mire image centre the problem will be solved (b).

It should be noted that if the Image hasn’t got rotational symmetry around the 

videokeratoscope axis, the position of the rings will change slightly with focus.
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Therefore the point O/ has to be recalculated for each position of the image plane. 

This is the case for a non-centred reflecting surface.

3.11 Videokeratoscope alignment simulation

As stated in section 2, videokeratoscopes use a fixation light to align the reflecting 

surface with the instrument axis (z axis of the global system). When the image of 

the fixation light coincides with the centre of the screen (or other point representing 

the position of the instrument axis on screen) and the rings are in focus the image 

is captured.

Figure 3.30 a) shows a decentred reflecting surface and an axial ray coming from 

the centre of the fixation light. The image in the image plane will not coincide with 

the videokeratoscope axis, telling the instrument that the surface is misaligned. 

The operator will then move the instrument in the xy plane until the image of the 

fixation light is on axis (Figure b). This shows that surface decentring may not be 

significant, since is controlled by the instrument, although very small errors may 

still be possible.

i
y Image

Plane

b)1111

[0,0,1]GLS /
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[0,0,-1]GLa\ | Z 1 1 1
1111

Figure 3.30 -  a) The axial ray coming from the centre of the fixation light and striking a decentred 

reflecting surface. The image on the image plane won’t coincide with the videokeratoscope axis. 

b)The same ray striking a centred reflecting surface, the image of the fixation light will coincide with 

the videokeratoscope axis therefore the alignment process was concluded.
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When trying to align a tilted reflecting surface a peculiar situation arises. A perfect 

alignment can be achieved in a tilted surface without the need to realign its axis 

with the videokeratoscope axis. This is observed when an axial ray coming from 

the fixation light hits the reflecting surface in a point with a normal parallel to the 

incident ray. In these conditions the ray is reflected in the direction of incidence 

hence the image of the fixation light will appear to be in the centre of the image 

plane Figure 3.31.

Figure 3.31 -  Tilted and decentred surface in order for an axial ray from the fixation light (direction 

[0,0,1 Jets) to strike a surface point with normal parallel to the incident ray. In this case the incident 

ray is reflected in the opposite direction [0,0,-1]Gl s- The normal to the tilted surface in the point 

where the ray strikes is also [0,0,1]Gl b- In these conditions the image (black dot) of the centre of the 

fixation light will be in the centre of the image plane. The videokeratoscope will assume that the 

surface is centred due to the correct alignment in the videokeratoscope axis (z axis).

To determine the coordinates of the surface point in question, consider a reflecting 

surface with rotational symmetry tilted by an angle 9 around its vertex on the 90° 

semi-meridian. In this case an axial ray coming from the centre of the fixation light 

will be reflected down hence its image will be shifted upwards on the image plane 

(Figure 3.32 a).
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As stated in section 3.6.3 it is better to use the tilted axis system VTXTLTfor which 

the tilted surface will appear straight (Figure 3.32 b). It should be noted that the 

directions of the incident and reflected rays must be changed to this system by 

application of equation(3.37). The new directions for these rays will be respectively 

[L ,M ,N \ t lt  and [L2',M2',N2'] t lt  ■

Figure 3.32 -  a) A reflecting surface with rotational symmetry is tilted by an angle 0 in the 90° semi-

meridian. In this case an axial ray is reflected downwards, b) The system of axis is changed to 

VTXTLT and therefore the surface is straightened as explained in section 3.3. It is always possible 

to find a point on the surface (black dot) for which the normal has the same direction as the incident 

ray along the videokeratoscope axis.

It will always be possible to find a point on the surface with normal pointing in the 

same direction as the incident ray from the fixation light centre. This point will lie on 

the tilt plane and so will its normal. However this can only happen on a surface with 

rotational symmetry or in the principal meridians of non-rotational symmetric 

surfaces. This is due to the fact that for these cases the normal to the surface lies 

in the meridional plane (defined by the object point and the axis of the reflecting 

surface) (Wang et al. 1991 and Klein 1997). The coordinates of this point in the 

VTXTLT system of axis will be determined by equalising the incident ray direction 

with the normal equation(3.8) using xv=yv=0. This will result in coordinates given by
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(3.89)

X\i — c
T/V = -  — V1_2c(/?_1)z+c2it?(p -l)z2C )__ _________

[p-jv2(p -i)]-V ^2[p - ^ 2(p -i)
c/>[/?-yV2( p - l ) ]

yj 1 -  2c(p - 1 )z + c2p(p - 1 )z2

The parameter wd was defined as the distance from the pupil plane to the z 

coordinate of the reflecting surface vertex in the global system and should not be 

changed once defined. Therefore when moving the tilted surface this has to be 

taken into account decentring only on the xy plane of the global system. The 

reflecting surface will then be decentred along the line defined by the intersection 

of the xy plane of the global system and the tilt plane in order to match the incident 

ray with the surface point having a normal in the same direction. Figure 3.33 

represents this decentration viewed in the VTXTLT system and Figure 3.31 the 

final result in the global system. Therefore a perfect alignment can be achieved 

with a tilted surface which will lead to reconstruction errors.

Figure 3.33 - The reflecting surface is decentred along the line defined by the intersection of the tilt 

plane (paper plane for this case) and the xy plane of the global system (left figure). The 

decentration is applied in order to match the incident ray from the centre of the fixation light with the 

point with a normal matching that direction.
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In section 3.3. the tilt plane was defined in the xy plane of the global system by 

angle cp, Figure 3.8 a). Therefore the intersection of both planes is a line with 

direction [cos(p,sincp,0]G/_e- If this direction is passed to the tilt system by application 

of equation(3.37) the resultant vector will be [/_(p,Â cp,A/tp]rz.r- Considering Figure 

3.33 it can be seen that the decentration applied to the surface will place the 

selected surface point (x n ,Yn ,z n ) tl t  at the VTXTLT axis system origin hence its 

coordinates are (0,0,0). If the vector line equation is written using these parameters 

it becomes

(3.90) (o,o,o) = (xN, yN,zN)TLT +\[ l v,m ^,n v \t l t  ,

and solving this equation for X  gives

(3.91) X N  _  y N  _  Z N

^  N„ '

This is very useful since one or two direction cosines of the vector [L(p,M(p,A/(p]ri.r 

may be zero and there will always be at least one component remaining to 

determine X .  The absolute value of the parameter X  is the decentration magnitude 

along the vector. If X  is negative it means that the decentration must be applied in 

the opposite direction of [Z_<p,Â cp,A/cp]t l̂ r- It should be recalled that this vector is 

[coscp,sin(p,0]GLB- Therefore, if X  is negative, the corresponding semi-meridian to 

apply the decentration to is (p±180° depending on whether cp<180° or cp>180° 

respectively. If the semi-meridian needs to be specified from the examiner's point 

of view (angle c) then the relations in Figure 3.7 can be applied.

The general principle specified in this section can be applied outside the principal 

meridians of a tilted reflecting surface without rotational symmetry. As stated 

earlier, in this case the normal to the surface is not in the meridional plane.
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Therefore a décentration in this plane will never align the surface with the 

videokeratoscope axis. However a décentration outside the meridional plane 

makes the alignment possible.

3.12 Focus

3.12.1 Focus parameters

For a centred surface the position of the image plane was expressed in relation to 

the paraxial plane. The position of the latter {sparax) was calculated by the paraxial 

formulas for a mirror (Hecht 1998) expressed by

(3.92) -L +- J -  = - ± ,
S parax

where R is the apical radius of curvature of the reflecting surface, s0 the distance 

from the object to the mirror vertex and spamx the distance from the mirror to the 

paraxial plane (Figure 3.34 a). For a convex mirror R>0 and sparax<0 (virtual 

image). The object point used was the imaginary object point on the faceplate 

vertex. For an object point located to the left of the mirror vertex so>0. Applying 

these conditions to the paraxial formula and simulation parameters the position of 

the paraxial plane was calculated from

(3.93) ç
pa rax

R(wd + z PD) 
l(w d + z PD )+  R

It should be noted that the negative sign was disregarded but sparax is located to the 

right of the mirror vertex as displayed in the figure (virtual image). The position of 

the image plane is expressed by

(3.94) Si S purnx D F
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where the user specifies the distance from the paraxial plane (DF). This parameter 

was considered positive if the shift was to the right of the paraxial plane and 

negative if to the left.

Figure 3.34 - Parameters defining the position of the image plane (DF) for a centred (a) and tilted or 

decentred reflecting surface (b). For a centred surface DF was measured from the paraxial plane 

while for a decentred or tilted surface it was measured from the vertex z coordinate in the global 
system.

After executing the ray tracing procedure for a single ray the point of intersection 

with the pupil plane (xp,yp,0) and the opposite direction of the reflected ray [L 'M ,/V] 

are available (see section 3.6). The point in the pupil is expressed in an axis 

system parallel to the global system but with origin at the pupil centre (abbreviated 

as PUP). The intersection of this ray with the image plane is obtained by following 

the path of the reflected ray beyond the reflecting surface (Figure 3.34). Using the 

pupil as the origin of the axis system, this point has coordinates (xF,yF,wd+Si), 

which are calculated by applying the vector equation of a straight line resulting in

(3.95) (.xF,yF,wd +si)={xp,ypfi)+>\L',M',N'].
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The result is a system of three equations with the solution for X expressed by 

(3.96)

For a tilted or decentred reflecting surface there is no paraxial plane since the axis 

of the surface and faceplate are not coaxial. Therefore the focus cannot be 

expressed in relation to that plane. The position of the image plane was therefore 

measured from the surface vertex z coordinate expressed in the global system 

(Figure 3.34 b). The sign of the parameter DF follows the same convention 

adopted for the centred surface. The image plane also moves along the z axis of 

the global system although the reflecting surface may be tilted. The position of a 

point in the image plane follows exactly the same procedure applied to the centred 

surface, the only difference is that s,=DF. It should be remembered that the ray 

tracing procedures for a tilted surface were executed in the tilted system but the 

final direction and intersection with the pupil plane were translated to the global 

system (with origin at the pupil plane).

3.12.2 Best focus for a centred reflecting surface

When a ring is used as an object the best focus is located at the tangential focal 

plane (Flecht, 1998). The problem is that oblique astigmatism cannot be isolated, 

the other aberrations are present as well. As a result it was found (using the 

simulation program) that a tangential focal line couldn’t be obtained, but there was 

a position for which the spot diagram had a minimum blur in the meridional 

direction. The minimum meridional blur increased with object eccentricity. This 

observation lead to the assumption that the lack of a tangential focal line was due 

to coma. This aberration increases with object eccentricity explaining the increment 

in minimum meridional blur.
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Figure 3.35 shows a sequence of spot diagrams obtained by shifting the image 

plane position. It can be seen that a minimum meridional blur is displayed on the 

top Figure c). This corresponds to the position of the image plane for which the 

upper and lower rim rays intersect. It is also curious to note that at this particular 

position the central ray marks the other end of the spot diagram.

Figure 3.35 - Spot diagrams for a spherical faceplate with a 250mm apical radius limited by a 

maximum diameter of 300mm and a 9mm pupil. Reflecting surface p=0.82 apical radius of 7.75 mm 

limited by a 9mm diameter and wd=80mm. The object point has 15° eccentricity in the 90° semi-

meridian and the images have a 720X enlargement with a ray density of 20 rays. Defocus in mm 

from the paraxial plane is 0 (a), 0.03 (b), 0.041 (c), 0.05 (d) and 0.08 (e). The best tangential focus 

is image c). Labels u, / and c refer to the intersection of the image plane with the reflected upper rim 

ray, lower rim ray and central ray respectively.

To find the intersection point of the reflected upper and lower rim rays (Figure 3.36) 

it is necessary to equalise the vector line equations for the two rays hence

(3.97) (0, ypl, ,o)+ X, [0, M'„, N'„ ] = (0, yput ,0)+ Ku [0, M'ut ,N 'J.
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This is only applied to the meridional plane therefore the x components of points 

and directions are zero since the object point is in the 90° semi-meridian. Once 

again the origin of the axis system was taken to be the centre of the pupil for 

simplification. The intersection of the upper and lower rim rays with the pupil plane 

may not be at a pupil edge in cases of vignetting therefore these intersections were 

referred as yput and ypn instead of +PDI2 and -PDI2. Equation (3.97) represents a 

system of two equations from which the values of parameters h  and Xu can be 

calculated. Either X value can then be replaced in the z value for one of the vector 

line equations, for instance Xi resulting in zF=X\N'n. For the axes system centred at 

the pupil, it is also true that zF=wd+sparax+DF from which the value of DF can be 

shown to be given by

Figure 3.36 - Tangential focus for a centred surface corresponds to the intersection of the upper 

and lower reflected rim rays.

The previous procedure was developed to find the best tangential focus for a single 

ring (in practice just for one semi-meridian due to the rotational symmetry).

(3.98) parax ■

Image
plane

136



However the object is a set of concentric rings and hence each ring will have its 

best tangential focus at different positions. This phenomenon is a well known 

aberration known as field curvature. To determine the best focus for a set of rings 

the best tangential focus position for each ring was determined. It was considered 

that the best position for the image plane would be located somewhere along the 

range determined. The image plane was then moved along that range in 1pm 

intervals and the meridional blurs for each one of the image rings in the 90° semi-

meridian added. The best focus was considered to be at the position for which the 

sum of the meridional blurs had a minimum value. Decreasing the step interval 

from 1pm will increase accuracy but at the cost of an increase in execution time. 

The selected interval seemed to be adequate since real instruments won't be able 

to move in smaller intervals.

3.12.3 Best focus for a non-centred reflecting surface

When the reflected surface is tilted and/or decentred, in general there won’t be a 

meridional plane and hence there won’t be a minimum meridional blur as specified 

for the centred surface. However the image of a circular object ring will still be a 

ring although not circular. For a ring to be considered in focus it should be as thin 

as possible measured radially in relation to the image ring centroid. The analysis 

was therefore applied in relation to the central reference point of the ring images 

(o/), with radial blur denoted as brad- The distance from a point in the image 

(xf .Yf Ig l b to 0/ when both are expressed in the global axis system, is given by

(3.99) do/ =ij(xF +oIxf  + {y F -o Iyf  .

If d0i is calculated for all points of an image of a single object point a minimum and 

maximum value can be determined. The radial blur brad will be the difference 

between these two values. Figure 3.37 justifies the use of all points in the image to 

calculate the blur as opposed to using the points in image semi-meridian cr that 

contains point c corresponding to the central ray. Figure a) illustrates the image of
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a single object point in a tilted and decentred surface. In such a case there is a lack 

of symmetry in the image and it can be seen that the points closer and further 

away from of are not in image semi-meridian a. However the image ring is formed 

by summing the images from an infinite number of object points across the object 

ring. Therefore the image of adjacent object points with central rays striking at 

semi-meridians ai and 02 will have their points of maximum and minimum 

distances respectively on semi-meridian a. These angles are obviously very small 

hence images can be considered equal.

Figure 3.37 -  a) The image of a single object point reflected in a tilted and decentred surface is 

represented (black dots) with low ray density. There is a lack of symmetry and the points closer and 

further away from o, are not in the image semi-meridian a (point c corresponds to the central ray), 

b) The effect of the images from adjacent object points is to place the maximum and minimum 

distance points aligned with semi-meridian c. It is obvious that the images are grossly exaggerated 

in order to provide an explanation.

It should be noted that for a centred reflecting surface this problem is not an issue: 

Figure 3.35 demonstrates that the maximum and minimum distance points for any 

image are only located in the meridional plane that also contains the central ray 

intersection.
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The best focus for a single point will correspond to the image plane position, DF 

(Figure 3.34 b), for which the radial blur brad will have a minimum value. An iterative 

process was developed to find the best focus. Each iteration of the new procedure 

uses an equal step approach between two limits and in the subsequent iteration 

the limits and the step are refined. The limits for the image plane position at each 

iteration will be labelled DFmin and DFmax, and the plane will move in constant steps 

in one iteration. The best image plane position for the typical reflecting surfaces 

used in this research will never reach 10mm from the vertex, since at that point a 

large blur will occur. It is also known that for a convex mirror the image is always 

located to the right of the vertex. Due to these factors the first iteration used 

DFmin=0mm and DFmax=10rnrn with steps /c=1mm. The image plane will start 

moving from the minimum position in 1 mm steps and at each position the radial 

blur is calculated. The blur will start to decrease to a minimum after which it 

increases (Figure 3.38 a) meaning that the best focus position has been passed. 

This position DFn will be taken as the maximum limit for the next iteration. To 

ensure the bracketing of the best focus the minimum position should be taken as 

DFn-2k instead of DFn-k. This is best explained by analysis of Figure 3.39 a) which 

shows that the position of the image plane for the minimum radial blur determined 

in the present iteration may have passed the best focus.

For the next iteration the image plane will be moved, within the limits specified in 

the previous iteration, in steps of k/2 (Figure b). New iterations will be executed 

until step k is smaller than 1pm. This was found to be a good limit since smaller 

steps may have no influence on the radial blur invalidating the procedure.

If the best focus for all the object rings is being determined the procedure is very 

similar. In this case, for each image plane position the radial blur for the image of 

each object point is calculated and an average is calculated. This average is 

calculated by adding all the radial blurs and dividing by the number of images.

139



Figure 3.38 - Two successive iterations of the focus procedure, a) The image plane is moved in 

steps of k. The radial blur at each image plane position starts decreasing and then a point is 

reached in which the blur increases. This means that the best focus has been passed and the 

present image plane position will be the maximum limit for the next iteration. It can be seen in the 

figure that the minimum limit should be DFn-2k rather than DFn-k that way the best focus will be 

between the new limits, b) The next iteration for which the image plane will be moved between the 

two specified limits in steps of k/2.

3.13 Image relative irradiance

A on-screen display of a Spot diagram resulting from ordinary ray tracing, 

represents the geometrical distribution of light in the real image and does not 

correctly indicate irradiance variations. If the ray density is increased enough the 

image will be a black spot in the screen. Figure 3.39 illustrates this point in which 

an image from the same object point is traced with 5 (a), 20 (b) and 200 rays 

density (c). With 20 rays the geometrical distribution of light in the image is already 

apparent and it can be observed that some parts of the image will have higher 

irradiance than others.

Figure 3.39 - Image of an object point using a ray density of 5 (a), 20 (b) and 200 rays (c).
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To take into account the irradiance variations across the image a relation with the 

screen display was established since the image will be represented by pixels on 

screen. An array was used that matched the pixels on screen. A computer can 

usually display 256 levels of grey from 0 (black) to 255 (white). Taking this property 

into account all the elements of the array were initialised with 255 and then, as the 

image was traced, each time a ray struck a particular pixel on the screen the 

corresponding array element data was decremented by one unit. When the ray 

tracing procedure was concluded each array position contained the grey level of 

the corresponding screen pixel, which is a measure of the number of times that 

that point was hit by traced rays. The general principle developed is simple but its 

implementation is complex. It is also much simpler to implement the process for a 

centred reflecting surface, where there is image symmetry about the meridional 

plane, than for a non-centred surface.

If a display on the screen wasn’t desired it would be much simpler to work with the 

real dimensions of the image, defining equal areas in the image plane and 

accounting the number of rays falling in each area.

3.13.1 Image display on screen

This section is necessary since the image on the screen is going to determine the 

number of elements in the array that controls the image irradiance. The screen 

represents a part of the image plane. The screen axis system in almost all 

computers has its origin located at the top left of the screen. The x axis positive 

direction is to the right and the y axis positive direction is down (Figure 3.40). 

Screen coordinates are integer numbers since they represent pixels. All the 

parameters related to screen coordinates are going to have the suffix px for pixel. 

The magnification of the display is controlled by the scaling factor MMPX indicating 

how many pixels will correspond to 1mm.
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Figure 3.40 -  Relationship between the xy direction of the several system of axis used. They are all 

presented from the examiner’s point of view.

Equation (3.95) represents the position of an image point (XF,yF) on the image 

plane in relation to the global system. The position of the corresponding point on 

screen coordinates (xpx,ypx) with magnification MMPX is

(3.100) xpx = opxx -MMPX xF

(3.101) ypx = opxy -  MMPX yF ,

where parameters opxx and opxy represent the position of the global system origin in 

screen coordinates. The previous equations return real numbers for xpx and ypx that 

must be rounded in order to provide the integer values corresponding to screen 

pixels. To keep the image of the selected object point on screen at all times the 

intersection of the central ray with the image plane was always represented by the 

same pixel on screen. In screen coordinates this point will have coordinates 

(xpxc,ypxc)=(350,195) corresponding to (xFc,yFc) in the global system. This position 

on the screen was selected based on a low resolution screen that allowed a good 

image magnification and still left enough room to present more data. If the 

coordinates of the intersection of the central ray with the image plane and the 

desired position on the screen are known, then if replaced in equations(3.100) and

(3.101) opxx and opxy can be calculated by
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(3.102) °pxx =xpxc +MMPX xFc

(3.103) °pxy =ypXc+MMPX yFc

These equations can be replaced in equations (3.100) and (3.101) respectively

yielding

(3.104) Xpx = Xpxc + MMPX ( x Fc -  x F  )

(3.105) yPx = yPxc + A1MPX (yFc - y F)

Since screen coordinates are integer numbers the previous equations have to be 

rounded to obtain the final value. Due to this operation it is not possible to revert to 

the original point on global system coordinates (xF,yF) unless that point directly 

produced integer values in the previous equations without the need for rounding.

Using this process the desired image will always be on the screen although parts 

of it may lie outside if the magnification is too large. This problem will be addressed 

in the next section.

3.13.2 Image magnification fora centred reflecting surface

Due to rotational symmetry, the image section in the meridional plane contains the 

image points nearest and furthest from the videokeratoscope axis. This section is 

going to be used to determine the ring height therefore it should have an adequate 

dimension on screen to allow a proper analysis. It was stipulated that 

approximately 50 pixels would provide an adequate dimension of the image section 

on screen. Since all the calculations so far have been done for an object point in 

the 90 degrees semi-meridian those 50 pixels will correspond to the approximate 

vertical dimension of the image on screen. The image is initially traced with a ray 

density of 20 rays which allows an approximate estimate of its dimensions. The 

radial blur braci in the vertical semi-meridian (vertical dimension of the image) is 

calculated and is used to determine the magnification by equation
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(3.106) MMPX = — —,
brad

This procedure will provide an adequate vertical fit of the image on screen. 

However this magnification may cause the image to extend outside the screen 

horizontally (Figure 3.41 a). To prevent this a limit must be established. Since the 

horizontal dimensions are irrelevant for the irradiance calculation this limits were 

established solely on the basis of an horizontal screen fit.

b)
Screen
system

{XFma/*yf )glB

yP*

10

MMPX2*xFmax

< T O
. (0,yFc)GLB

Global
system

Figure 3.41 -  Procedure to decrease the magnification to fit the image on screen and still leave 

around 10 pixels tolerance from the left screen limit. Note that the screen point corresponding to the 

central ray remains unchanged, it is the screen point corresponding to the global system origin opx 

that changes to make that possible. The coordinate xFmax is the maximum positive value of the x 

coordinate, for that particular image, measured in the global system.

It can be seen In Figure 3.41 b) that In order for the image to fit the screen with 

some tolerance (10 pixels were considered) the condition opxx='\0+MMPX*xFniax 

must be met. Solving this expression for MMPX yields
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(3.107) MMPX =
opxx -10

v F  max

In summary equation (3.106) is applied and then if the image extends outside the 

screen limits, equation(3.107) is used. In these conditions the last equation 

corresponds to a smaller value for MMPX.

3.13.3 Transforming screen coordinates to array elements for a centred reflecting 

surface.

As stated in the beginning of section 3.13 the array elements correspond to pixels 

on the screen. Each array element keeps the grey level of the corresponding 

screen point. However to save memory another unidimensional array was used to 

store the radial irradiance variation in the 90 degrees semi-meridian which is the 

one to be analysed. The position of the point corresponding to the central ray was 

considered to be at the centre of the array. The worst case that can happen is for 

the best tangential focus (Figure 3.35 c) in which the central ray point is one limit of 

the image. This will make the 50 pixels stipulated for the image vertical length to 

extend up from the central point. While the best case is a total blur like Figure a) for 

which the central point is at the middle of the image so its approximately 25 pixels 

to each side. To account for the worst case an array of 121 elements was used. 

The array elements will range from 0 to 120 with the central point located at 

position 60. This will allow for more than 50 pixels to extend either side of the 

central ray point, which includes a tolerance. For the radial section in the 90 

degrees semi-meridian, position 60 of the array has to correspond to the vertical 

position of the central ray point on screen (ypxc), hence the relation between a 

screen point vertical coordinate ypx and array position M is

(3.108) M  = ypx - y pxc +60 .

It should be noted that the array elements increase downwards as the y  coordinate 

on the screen system.
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3.13.4 Image magnification for a non-centred reflecting surface 

For a non-centred reflecting surface there is no symmetry of any kind in the image 

hence each semi-meridian is a separate case. The only exception is for an object 

point in the same meridian where a tilt and/or decentration has been applied. 

Object points in that meridian will have images symmetrical in relation to the 

meridional plane. Outside that meridian a meridional plane cannot be defined thus 

the image will have no symmetry.

Due to the variability of the object point position and great variability of the 

geometrical distribution of light across the image a square bidimensional array 

should be used to keep the image irradiance. This is done to try to avoid favouring 

a particular direction. However this would only be possible if the array was circular. 

A square array ends up favouring the diagonal directions, nevertheless this shape 

was considered superior to a rectangle.

Figure 3.42 - Screen area used to represent the image of an object point reflected in a non-centred 

reflecting surface. It is a square area centred at pixel (350,195) extending 195 pixels for each side. 

The useful area will extend 185 pixels for each side allowing a 10 pixel tolerance on each side as 

well. Labels adjacent to points in the figure are x or y  screen coordinates (pixels) while labels in the 

middle of line segments represent their length in pixels.
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Since the point on screen chosen to represent the intersection of the central ray 

has coordinates ( X p x c , y p x c ) = ( 350,195), it was also selected to be the central point of 

the square image area (Figure 3.42). Therefore the area will extend 195 pixels 

each side of the central point (exclusive). A 10 pixel tolerance from each side of the 

square was allowed as was considered appropriate for the centred reflecting 

surface. This tolerance was sufficient in all examples tested, therefore the useful 

area will extend 185 pixels for each side of the central point.

In order for the image to fit the designated useful screen area the magnification 

parameter MMPX must be limited. If the limiting x and y coordinates of the image in 

the global system are considered, then the MMPX limits can be calculated in order 

for those coordinates to fall inside the useful screen area (Figure 3.43).

Figure 3.43 -  Image fitted to the useful screen area with x pixels ranging from 165 to 535 and y 

pixels from 10 to 380. The limiting x and y coordinates of the image in the global system are also 

presented. The magnification parameter MMPX must be limited in order for all the limiting x and y 

image coordinates in the global system to fall inside the useful screen area.
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Equations (3 .1 0 4 )  and ( 3 .1 0 5 )  represent the x px and ypx screen coordinates 

corresponding to global system coordinates xF and yF respectively. It can be said 

that the former coordinates are a function of the latter, that is, xpx(xF) and ypx{yF) in 

mathematical notation. Using this notation it can be seen by analysis of the last 

figure that for the image to fall inside the useful screen area ( 1 8 5  pixels in each 

direction from the central ray) the conditions x px(xFmax)> 1 6 5 , xpx(xFmin)<5 3 5 , 

ypx(yFmax)  ̂1 0  and ypx{yFmin)<3 8 0  must be met simultaneously. Replacing the values 

in the respective equations ( ( 3 .1 0 4 )  for xpx and ( 3 .1 0 5 )  for ypx) and bearing in mind 

that (x pXc ,ypXc )= (3 5 0 ,1 9 5 )  the conditions become

(3.109) MMPX (xFc - x Fmax ) >  - 1 8 5  ,

(3.110) M MPX(xFc- x Fmin)<  1 8 5 ,

(3.111) MMPX ( yFc- y Fmm)>  - 1 8 5  ,

(3.112) MMPX (yFc — y F mul )  <  185 .

The coordinates of the central ray point on the global system (xFc,yFc) must be 

within the image limiting coordinates xFmin<xFc<xFmax and yFmin<yFC<yFmax therefore 

the conditions in equations (3.109) to (3.112) become

(3.113) 1 R S
MMPX <

x  F  m ax ~ x Fc

(3.114) 1 R S
MMPX < ,

x Fc ~  - ^ F in in

(3.115) 1
MMPX <  ,

y  F  max ~ y Fc

(3.116)
1 oc

MMPX <
y  Fc ~  y  F  m in
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It is obvious that these conditions are not valid if XfC=xFmin or yFc-yFmax which 

means that any MMPX value will fulfil the condition since that particular coordinate 

will always be at the centre of the designated screen area. Since all four conditions 

must be met the conjunction corresponds to the smallest value of MMPX, which 

must be rounded down to be an integer. If this value of MMPX were to be used the 

process would be very simple, the problem is that this magnification may be too big 

for the necessary image section to analyse. A larger image area will cause a 

greater dispersion of the incident energy on it, requiring a bigger ray density. This 

will increase computation time exponentially. To avoid this problem it was 

stipulated that 50 pixels in the analysis direction would be an adequate screen 

dimension for the image in agreement with what was done for the centred 

reflecting surface. However, for the centred surface, the image section analysed 

was in the 90 degrees semi-meridian whereas for a non-centred reflecting surface 

it is only known that the image section to be analysed shouldn't be too far away 

from the object semi-meridian.

It is possible that every line joining the videokeratoscope axis to an image point is 

outside of the object semi-meridian a0 (Figure 3.44 a). This can also happen if the 

image point semi-meridians are measured in relation to Oj (Figure b). This implies 

that the object point semi-meridian (ct0) cannot be used to determine the image 

size in the direction in which the image is going to be analysed since there may be 

no object points in that direction. However the image point corresponding to the 

central ray is always known thus the semi-meridian ac in relation to 0/ was chosen 

to calculate the image size. In section 3.14.2 it will be shown that this semi-

meridian may not be the direction of analysis either. Unfortunately in order to 

determine the direction of analysis an image size must be selected and cannot be 

changed, therefore a starting point must be established.

Calculating the image size in the specified direction is not straightforward since 

only the dimension across the intersection of the line that marks the direction
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(direction marker) with the image is required {bDM) and not the total image 

dimension in that direction (boMTot) (Figure 3.45).

Figure 3.44 - The videokeratoscope axis is perpendicular to the paper plane, intersecting it at the 

white dot. The other white dot is o, the centre of the fixation light image or the centre of the ring mire 

image. The small dark dots represent the image of the object point presented (large dark dot) with a 

low ray density formed by a non-centred reflecting surface. In this case it is possible that no point in 

the image falls in the object semi-meridian a0. This can happen whether the image points semi-

meridians are measured in relation to the videokeratoscope axis (a) or in relation to o, (b).

An approximation to boM was calculated from the positions of the image points 

closer to the direction marker. An image point was considered to be close to the 

direction marker if its distance to the marker was smaller or equal to the average 

distance of all image points to the marker. It is only possible to calculate an 

approximation to boM since the only point in the image that lies exactly on the 

direction marker is the point corresponding to the central ray (Figure 3.46). This 

point was used to calculate the marker.
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Figure 3.45 - Image dimensions along the direction marker. This marker is the line passing through 

0 / and the central ray position on the image plane (xFciyFc). The total image dimension along the 

direction marker bDMTot is not of any interest. The dimension desired is the line segment that 

intersects the image bDM.

Figure 3.46 -  The image is a set of points disposed in a particular arrangement. If the ray density is 

not very high there will only be a point in the image that will coincide with the direction marker. That 

is the point corresponding to the central ray, which was used to calculate the marker.

In order to calculate bDM it is necessary to determine the angle aDM between the 

direction marker and the global system x axis (Figure 3.47). Knowing that the
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marker is a line joining the image origin O/ with the intersection of the central ray 

with the image plane, angle a  dm is calculated by

(3.117) ( y Fc-°Iy  ̂
V xFc + °lx J

The only exception is if x f c+o /x=0 meaning that aoM=90°. The direction 

corresponding to clDm can be expressed by the unit vector

(3.118) ¿DM =  C0S« D W  1 + s ' n a DA/ j  ■

Figure 3.47 -  The vector from the image origin o, to an image point Q can be decomposed in one 

component perpendicular to the direction marker (dDM1) and another component parallel to it (dDM]|). 

The perpendicular component represents the distance from the image point to the direction marker.

The vector joining the image origin O/to a general image point Q is

(3.119) >lQ = {x F +oJx)i  + ( » - o Iy) j ,
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and hence the distance from the image point Q to the direction marker is then 

calculated by

(3.120)

After the average cfD/w± has been calculated using all points in the image, each 

point is analysed again to check if its doM± is less than or equal to the average 

value. In such case the parallel component (Figure 3.47) is calculated by

Note that this value is negative when the projection of the vector O/Q in ¿dm is in 

the opposite direction to ¿dm which will correspond to an angle bigger than 90° 

between the two vectors. After calculating doM\\ for all relevant image points a 

maximum and minimum value can be obtained from the set. Finally the image blur 

is calculated by

The magnification parameter MMPX is then calculated by equation (3.106) but 

using ¿dm instead of brad■ This will make boM correspond to 50 pixels on screen. 

However this value has to be checked against the limiting MMPX value calculated 

from equations (3.113) to (3.116). If the value corresponding to boM is larger than 

the limiting value then the latter must be used, otherwise the former will prevail. It 

should be noted that the calculated boM is not really the one represented in Figure 

3.45 since it can only be calculated accurately using a very high ray density. It is 

just an approximation that will be better than boMTot when used to calculate MMPX.

(3.121) dDM\\ -  °lQ*^DM ■

(3.122)
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3.13.5 Transforming screen coordinates to array elements for a non-centred 

reflecting surface.

Due to the lack of image symmetry the array to be used will have to match the 

entire screen area designated for the image, including the tolerances (Figure 3.42). 

It should be recalled that the tolerances were used since the image magnification 

was calculated with a much lower ray density than that used to calculate the final 

image. The final image will be slightly bigger in the global system, so that the 

magnified image will fall outside the boundaries designated by the useful screen 

area. The total square area on screen, including tolerances, to fit the image was 

391 x 391 pixels side therefore the array to use will be bidimensional with an equal 

number of rows and columns ranging from 0 to 390, totalling 391x391 elements. 

The row and column numbers will increase in the same pattern as screen 

coordinates. Row numbers (corresponding to ypx) increase downwards and column 

numbers (corresponding to xpx) increase to the right. The row number is given by 

yPx (Figure 3.42), while the column number has to be 0 when xpx=155, hence this 

quantity has to be subtracted from xpx in order to get the column number. In 

summary the array position (row,col) is

(3.123) row = ypx

(3.124) col = xpx -155.

Parameters xpx and ypx are the screen coordinates of an image point calculated 

from equations (3.104) and (3.105) respectively.

3 .13.6 Automatic ray density calculation

As stated previously each time a traced ray falls on a particular screen point the 

corresponding array element is decremented starting from 255. If the number 

stored in an array element [row, col] is denoted by B a black pixel will be placed in 

the corresponding screen position whereas if B=0 and a white pixel will be placed
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on the white screen if 6=255. In the latter case it means that there is no light from 

the image at that particular screen position. It is obvious that if 6<0 the 

corresponding screen point cannot be darker than black. The aim of the automatic 

ray density calculation is to find a value for the parameter R0 (radius of the central 

area of the equal density pattern of rays Figure 3.23) for which the minimum 6 

value found is 0.

An iterative procedure was developed to calculate the optimum Ro value which was 

divided into two stages. The first consists in bracketing R0 between a value that 

provides a positive minimum 6 for the array elements and another providing a 

negative minimum 6. The second stage uses the bracketing to get to an R0 value 

that results in a minimum B of zero. The Ro value corresponding to a positive 

minimum 6 labelled B<+ will be referred to as Rqb<+. The second Ro and negative 

minimum 6 will be referred to as R0B>' and 6 >_ respectively.

The first iteration starts with an initial R0 value for a ray density of 20 (equation 

(3.83)). This value was found to be adequate by experimentation. After concluding 

the ray tracing process all the array elements are analysed and the minimum 6 

value determined. If the minimum 6 is positive (which generally happens since 20 

rays is a low ray density) then B<+ is set to that value and R0B<+ set to the initial R0. 

This means that the ray density used is low and hence needs to be increased. The 

program then sets Ro=Ro/2 and starts a new iteration (note that decreasing R0 will 

increase the ray density). The iterations will continue until a value Ro is found for 

which the minimum 6 is negative. This means that the last R0 was too small (ray 

density too high) and 6>_ is set to the negative minimum 6 and RqB>' will be the Ro 

used for this iteration. At this point the bracketing procedure will be completed. This 

process is illustrated for an array with 4 elements in Figure 3.48. Note that when R0 

is halved the procedure illustrated in Figure 3.24 is used for the pencil of rays sent 

from an object point.
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Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Start R01 Ro2=Boi/2 Ro3=Ro2/2 Rq4=Rg3/2 Rq5=RqJ2.

255 255

255 255

255 225

247 250

255 245

250 252

255 32

110 100

255 -90

17 0

255 150

175 190

Bmin 245 Bmi„ 225 8m/„ 150 Bmin 32 8m,-„ -90
8<*=245 8<+=225 8<+=150 B<+=32 8>*=-90
p  fi<+—p  p  B < + _ p  p  S < + _ p  p  S < + _ p  p  B > -_ p
*M) - r 'O I  r'O —' '0 2  rvo ~ K o 3  K o  -r < 0 4  K o  - K 0 5

Figure 3.48 - First step of the Iterative procedure to bracket R0 between a value that provides a 

negative minimum B and another that results in a positive minimum B. The present example is for 

an array with 4 elements where the bracketing has been achieved in the 5th iteration. The initial ray 

density was too low and had to be increased by decreasing Ro-

lf on the other hand when using the initial Ro the minimum B value is negative, it 

means that a ray density of 20 is too high. It is then necessary to decrease it. In 

this case it is S>_ that is set to the minimum B and R0B>~ to the initial Ro. The 

program then sets Ro=2Ro and a new iteration is started. However the array must 

be reinitialised to 255 after each iteration since the ray density is decreasing. The 

iterations will continue until a value Ro is found for which the minimum 6 is positive. 

This means that the last R0 was too big (ray density too low) and B<+ is set to the 

positive minimum B and R0B>' will be the R0 used for this iteration. At this point the 

bracketing procedure will be completed. This process is illustrated in Figure 3.49.

The second step of the automatic ray density procedure is a refinement to get to 

the optimum R0 value. It uses the established bracketing limits in the equation

(3.125)
d  B<+ nB>- 

D  _  d B < +  a 0  k 0
K 0 -  A0 -----

B<+

156



Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Start R0i R02=Roix2 Rq3=Ro2x2 Rc>4=Ro3x2 Ros=Ro4x2

255 255

255 255

255 -99

-45 -30

255 -80

-32 -20

255 -8

30 45

255 -40

-10 0

255 22

50 70

Bmin -99 Bmi„ -80 Bmin "40 Bmin “8 6mm 2 2

S’ ’=-99

oCOi!CO e> =-40 II CO B<+=22

R o B>-= R o , R 0B>'= R o2 R o B>‘ =R 03 R oB > = R o4 RoS<+=Rc

Figure 3.49 - First step of the Iterative procedure to bracket R0 between a value that provides a 

negative minimum 6 and another that results in a positive minimum B. The present example is for 

an array with 4 elements where the bracketing has been achieved in the 5th iteration. The initial ray 

density was too high and had to be decreased by increasing R0.

To analyse the effect of this equation it should be remembered that RoB<+ > RqB>~ 

and that B>'<0 and B<+>0. Therefore the quotient in the equation is positive 

meaning that R0 is going to be smaller than R0S<+- The subtracted value will be a 

fraction of the difference of the R0 bracket limits. If |S>'|=6<+ the denominator is 2, if 

|B f'̂ B ?* it’s bigger than 2 and if |6>_|<S<+ it’s smaller than 2 but bigger than 1. For 

each one of these cases the new value for Ro will be respectively the average of 

the two bracket limits, closer to RoB<+ and closer to RoB>~.

After completing the ray tracing procedure for this value of R0 the array is again 

analysed and the minimum B value taken. If Bmin<0 it will be a better estimate for 

8 >_ and the present R0 will then become RoB>~. If Bmin>0 it will be a better estimate 

for B<+ and the present Ro will become RoB<+. The array is then reinitialised to 255 

and the process repeated until a value of R0 is found for which Bmin=0+1. This 

procedure is illustrated in Figure 3.50 starting from the last iteration in Figure 3.48.

It was found by experimentation that at a given point in the procedure, although Ro 

is changed, the minimum 6 tends to be found in the same array element. This 

means that the image irradiance variation in one semi-meridian will be proportional
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to the image irradiance variation in the same semi-meridian for the ideal ray 

density. For a centred reflecting surface, where the ray tracing is fast, the 

procedure was stopped when Bmin=0+1. This measure was adopted since it was 

found that when 6m/n is one unit away from 0 the procedure needed several 

iterations to take it to 0 although the ring edge would be detected at the same 

image point. For a non-centred reflecting surface, where the ray tracing is very 

slow, the procedure was stopped at the bracketing point by taking the last Rq 

before the bracketing. Flowever if only one object point is of interest the user is 

allowed to select if the procedure should continue beyond the bracketing point.

Iteration 5 Iteration 6 Iteration 7 Iteration 8
Ro5—RoJ2 0̂6 Rq7 Rq8

255 -90

17 0

255 20

85 80

255 0

30 25

255 -10

60 50

Bmi„  -90 Bmin 20 Bm¡„ -10 Bmin 0

e t =-90 ET=-  90 II o Rq=Ro8

CMCOII
+CQ B<+=20 e<+=20

R oS>’ = R o5 R oS>'= R » 5 R os >- = R o7
E N D

R 0B<* =R 04
o  B< + _ p  
r\Q — rv06

D  B<+_  rp 
r\o - ' ' 0 6

Figure 3.50 - Second stage of the iterative procedure to find a value of R0 for which Bmin-0. 

Iteration 5 refers to the last first stage iteration. The values in grey background are the ones that 

were not changed in a particular iteration.

3.14 Ring edge detection

3.14.1 Centred reflecting surface

In this case the image section for analysis will be in the 90° semi-meridian for 

simplicity. However due to rotational symmetry the image irradiance variation will 

be the same for all semi-meridians. At this point the array representing the image 

irradiance has been calculated. This array is unidimensional with 121 elements 

(see section 3.13.3) containing values (referred to as B) ranging from -1 to 255.
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These values are inversely related to the irradiance In an Image point, that is, a 

lower B corresponds to a higher irradiance. The irradiance I  corresponding to an 

array element is therefore 7=255-6. It should also be recalled that the array 

elements increase with the y screen coordinates.

It was assumed that a ring edge detection algorithm uses a value I=0.5Imax as 

reference. (Imax is the maximum irradiance in the radial section, corresponding to 

the minimum 6 of all array elements). However the program user is allowed to 

change the fraction of Imax from 0.5. The irradiance stored in the array elements is 

a discrete set of points, hence it is most likely that no /  will be equal to 0.5Imax. To 

account for this problem a procedure was developed treating inner and outer ring 

edges of an image ring differently. The edges are counted from the 

videokeratoscope axis (Figure 3.51 a and b).

Figure 3.51 -  a) Irradiance of the vertical radial section of an object ring, b) Example of the image 

irradiance of the radial section sampled by the CCD detector. However only the images of the 

edges of the object ring were considered. An example of the irradiance of these points is 

represented in c). The image ring edge detection uses an irradiance value of 0.5Imax as a reference. 

If an inner edge of a ring is being detected the smallest y for which 7>0.5Imax is considered to be the 

edge. If an outer edge is being detected the larger y for which I>0.5Imax is considered to be the 

edge. The y values represented are in the global system.
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Only the object points located at the edges of the vertical radial section of an object 

ring were accounted for. The irradiances of the images of all other object points 

between the edges are summed inside the radial irradiance curve for the ring 

section (central figure), hence are not important for edge detection. If an inner edge 

of an image ring is being detected, the smallest y  value for which I>0.5Imax was 

considered (Figure c). If an outer edge of an image ring is being detected, the 

largest value of y  for which I>0.5Imax was considered.

However since the irradiance variation is stored in an array it is an array position 

that must be identified as the ring edge and then transformed into y coordinates of 

the global system. It should be remembered that the array positions correspond to 

screen coordinates, as these increase global system coordinates decrease. This 

means that for an inner edge, the ring edge is the largest array position for which 

I>0.5Imax. For an outer edge, the ring edge is the smallest array position for which 

I>0.5Imax. Since the array position M, considered to be the ring edge, is known, the 

corresponding pixel position on screen can be calculated by solving 

equation(3.108) for ypx. This screen position is finally translated to the global 

system y coordinate (yF) by solving equation(3.105) for yF.

3.14.2 Non-centred reflecting surface

Due to the lack of image symmetry a single object point cannot account for all 

cases on a ring. The object point may then be located at any semi-meridian and 

the developed model must take this into consideration. Furthermore since there is 

no meridional plane the image of a given object point may not lie in the same 

meridian as the object point. Therefore the irradiance variation on a given semi-

meridian is affected by the image of several adjacent object points.

The overlapping effect of the images of several adjacent object points was 

simulated considering that the image of a single object point was rotated around O/ 

(centre of IMG system, see section 3.10) in both directions between the angular 

limits of the image described at Oj (Figure 3.52 a). As a result of the image rotation
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an angular sector will be described (b). The irradiance of that sector at a distance 

dot from 0/ was considered to be the maximum irradiance displayed by image 

points at the same distance in the original image.

Figure 3.52 - Simulation of the summing effect of images of adjacent points on a ring edge. The 

image of a single object point on a ring edge (grey tilted ellipse) is rotated on both directions around 

0 / in order to completely cover the angular sector defined by the image limits at o, (a). The resultant 

sector is represented in b). The irradiance of this sector at a distance dol from o, was considered to 

be constant and equal to the maximum irradiance displayed by the image points at the same 

distance on the original image. The image size is grossly exaggerated to illustrate the point.

To apply this method the array containing the irradiance of the image, generated 

by ray tracing, was analysed element by element and only the ones for which 

l > 0 .5 I max, were considered (see section 3.14.1). Each of the considered elements 

{row,col) was transformed into the corresponding screen coordinates (xpx,ypx) by 

rearranging equations (3.123) and (3.124). The screen coordinates were then 

transformed to global system coordinates (xp.yp) by rearranging equations (3.104) 

and (3.105). These coordinates allow the distance to o7 (d0/) to be calculated using 

equation(3.99).
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As for the centred reflecting surface, the edge detection depends on whether the 

object point is in an inner or outer ring edge. For an object point on an inner edge 

the inner edge of the image was considered to be the image point with T>0.5Imax 

closest to 0/ (shortest d0i). For an object point in an outer edge the outer edge in 

the image was considered to be the image point with />0.5/max further away from 0/ 

(longest dOI). The selected value of d0i will correspond to the ring mire image height 

on that semi-meridian.

3.15 Reconstruction algorithms adaptation

Several reconstruction algorithms have been described briefly in section 2.2. 

However in order for them to work in the computer model developed for this 

research they have to go through considerable transformations. Two reconstruction 

algorithms have been chosen for this effect, the spherical biased and the van 

Saarloos algorithm. The former was used due to its simplicity and availability of 

several research papers on the subject. The van Saarloos algorithm was selected 

due to several advantages over other algorithms, namely the use of an arc step 

approach and fewer approximations. Arc step methods are the most widely used 

today since they do not force the surface to fit a particular shape.

The most important adaptation to the algorithms was to make them independent of 

the objective lens used in the CCD camera. It was assumed that the camera optics 

would have a good quality, accurately representing the image reflected on the 

cornea. Therefore it was best to work directly with the reflected image considering 

only the rays that would enter the instrument pupil located in the faceplate.

3.15.1 Adaptation of the spherical biased algorithm.

Instead of the six calibrating spheres used by Rowsey and Isaac (1983) it was 

decided to use 10 spheres in the same interval to increase accuracy. The 10 

spheres ranged from 5.5mm to 9.5mm in 0.5mm intervals. A second modification 

consisted in extending the calibration graph to the outer ring edges doubling the 

number of calibration lines and again increasing accuracy.
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The calibration lines in the original algorithm resulted from a linear regression 

applied to the available points for a given ring edge. To increase accuracy instead 

of calculating a line, a linear interpolation was used between the two closest 

bracketing points. This approach could not be used by Rowsey and Isaac since 

their data was based in slightly decentred reflecting surfaces. The decentration 

was possibly due to poor centration control on the corneascope. This was done 

manually by centring the rings on a crosshair in a viewer in the instrument 

according to Goss (1991).

For the spherical biased algorithm the image height h is considered equal to the 

reflection point y coordinate. To calculate the radius of curvature at a surface point 

with height h in between ring mire image heights hi and /?/+1 in the graph, the 

corresponding radius of curvature R is given by

(3-126) * - T
hM ~hi

This method can only be applied to hemi-chord heights between the minimum and 

maximum hemi-chords available in the graph.

The tangential radius of curvature was calculated using equation(3.16), which is 

only adequate for a conic curve.

3.15.2 Adaptation of the van Saarloos algorithm

All equations of the original algorithm had to be transformed in order to be 

expressed in relation to the global coordinate system (GLB) centred at the 

faceplate vertex. Only the corneal coordinates (y,-, z,) are expressed in an axis 

system with origin at the corneal vertex.
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(yoi, z0ì) object
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h.

tangent

d = wd
vswd ► Image plane

Figure 3.53 -  Modified geometry for van Saarloos algorithm. A ray with origin at a general object 

point is reflected in the corneal surface and enters the faceplate pupil.

The angle between the reflected ray and the z-axis can be calculated from the 

image height hit measured in the image plane and the position of this plane by

To understand the previous equation it should be remembered that the simulation 

program considers the image plane to be located at a distance DF from the 

paraxial plane position (sparax). The latter is measured from the surface vertex (see 

section 3.12).

In the original van Saarloos algorithm the real image height (hi) was unknown. 

Since the videokeratoscope will only know the image height on the CCD array 

(which is the reflected image imaged by the CCD camera) and the distance from 

the CCD camera objective to the CCD array. Angle a  was calculated from these 

two parameters. If this approach was followed for the simulation program it would

(3.127) ta n a  =
parox+  DF
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imply using a particular CCD camera. This way the simulation would test the 

algorithm plus camera arrangement instead of the algorithm alone. Since the 

simulation calculates directly this value was used to calculate a .

Considering that the image plane is the paraxial plane, the paraxial formula for a 

convex mirror, equation (3.92), can be used yielding

(3.128) -  = — -------------- ------- ,
R vswd -d  d ~zoi+ zpd

where R is the apical radius of curvature. Notice that the original equation was 

multiplied by -1 in both members and that Spar ax = -(vswd-d) was considered 

negative according to the sign convention, since the image of a convex mirror is 

virtual. If the previous equation is solved for d (distance from the pupil plane to the 

reflecting surface vertex) a quadratic equation is obtained. There are two solutions 

for the equation and the correct one has a plus sign before the square root, thus

(3.129) d = ̂ [vswd + zoi - zpd -  R + J(vswd -  zoi +Zpdf+ R 2 j  .

To understand this choice of sign consider an object point in the pupil edge (z0/ = 

zpd). Knowing that vswd »  R, if the solution with a negative sign before the square 

root was selected d would tend to zero, which would mean that the corneal vertex 

was coincident with the instrument pupil. Therefore the correct solution is the 

positive root.

Since the apical radius of curvature has its centre of curvature at the reflecting 

surface axis the following relations are valid:



(3.131) yi =(d + zi ) tana, 

and

(3.132) zt = ff(l-cos0).

Combining the three previous equations yields

(3.133) sin 0 = — +1 -  cos 9 tan a 
R

which can be solved for cos 9 to give a quadratic equation with solution

(3.134) C O S 0  =
b2 (a +1) + -Jl - b2a(a + 2)

l + b2

where a =— and 6 = tan a. Since a is a small angle the solution with a positive signR

before the square root was selected otherwise cos 9 would be negative, meaning 9 

would be bigger than 90 degrees.

From Figure 3.53 the angle between the incident ray and the surface axis (2<)>-a), 

considered to be positive, can be calculated by

(3.135) tan(2<i>-a) =------------------.
zoi ~ zpd ~ d ~ Zj

From the previous figure it is also straightforward to see that 9 = (j> - a, which can 

be rearranged to give
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(3.136) 0 = ̂ ((2<t> - « ) - a)

Combining equations (3.127), (3.130), (3.135) and (3.136) the apical radius R can 

be calculated from

(3.137) R = -
/

to
 1 

-

a rc ta n

V

____yt_

y.-yoi 
~ z  pel ~  d

\
-  a rc ta n(Ja-

l vswd

The iterative procedure to calculate R follows the sequence:

1. R = 7 .8 m m

2. Equation(3.129) to estimate d.

3. Equation(3.134) to estimate cos 0.

4. Equation(3.132) to estimate Z / .

5. Equation(3.131) to estimate y,-.

6. Equation(3.137) to estimate R.

7. Return to step 2.

The iteration will stop when the difference of the R values between two successive 

iterations is smaller than 1nm. The first value for R that starts the iteration is the 

average corneal radius used by van Saarloos. The problem with this procedure lies 

in equation(3.128), the paraxial equation for spherical mirrors. This is because it 

considers the image plane to be the paraxial image plane when it isn’t. Still a good 

estimate for R can be found.

Doss’s method of considering corneal points joined by arcs was also used by van 

Saarloos. Figure 3.54 illustrates the geometry of this method, for which

(3.138) COS0,' cosO,'_I Rj /?,

sine, -sin0,_] y j - y c y - i  - y c
R, Ri

‘■i-1
y i-y t-1
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tangent
y

(yc.Zc)

Figure 3.54 -  Doss geometry for determining the next corneal point. It considers two adjacent 

points joined by arcs.

The corneal point (y,-i, z,. 1) was determined in the previous iteration. Point (yh z) 

which is to be determined in the present iteration, is obtained by drawing an arc 

with radius R, centred at (yc, zc).

From analysis of Figure 3.53 the following relations can be obtained:

(3.139) P - y i + h - z J .

(3.140) (y0i -  y t f  + [d + z /  -  zd + z Pd f .

(3.141)
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(3.149) 0 , =  — a rc ta n
' 2

3. The reflection point coordinate y, is located at the intersection between 

line /> and the surface normal at that point (Figure 3.53). Angle a ,  which 

determines the inclination of line />, is constant for a particular ring and 

determined using known variables by equation(3.127). Angle 0, which 

determines the surface normal inclination, is calculated by 

equation(3.148). Combining the two previous equations results in

The initial estimate for y, can now be calculated from equation(3.127) or 

equation(3.148) using the previously calculated z,.

4. Equation (3.138) for a better estimate of z,.

5. Equations (3.140), (3.141), (3.145), and (3.146) to calculate a better©/.

6. Equation (3.147) for a new estimate of y,.

7. Return to step 4.

Step 3 of the iteration in van Saarloos’ original work was simply to consider the 

initial estimate for the reflection point height y, = /?,. The new approach provides a 

better first estimate.

The sagittal radius of curvature (Rs) for each calculated corneal point is obtained 

by equation(3.130), as originally suggested by Doss et al. (1981). It’s like finding a 

centred spherical surface containing the calculated corneal point that reflects the 

ray to the instrument pupil.

For the surface tangential radius of curvature (Rt) at (y(,z,), Klein’s procedure 

(1992) was used. This method fits an arc of a circle to three consecutive corneal

(3.150) R ta n  0  -  d ta n  a
tan  0  +  ta n  a
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points. The centre of curvature of the arc will be located at (cy,cz), outside the 

reflecting surface axis. This method is summarised in the following system of 

equations:

R t =  (y -i - c ,,)2 +(z,_i ~ c z f

( 3 .1 5 1 )  ■ R? = (y, -  cy}  + (z, -  cz )2

R? =G;/+ i-cj’)2 +(ZM ~CzT

The solutions for the centre of curvature coordinates and radius are respectively

This procedure can't be applied to the last ring image, for which there is no next 

ring available. Therefore the tangential radius of curvature corresponding to the 

last ring image is considered to be the same as that of the previous ring.

To calculate the sagittal or the tangential radius of curvature at a surface point, with 

y  coordinate in between two y coordinates with known radius, a linear interpolation 

was used. The equation is similar to (3.126) using surface y coordinates instead of 

ring mire image heights h.

For a non-centred surface several modifications are required in order for the 

algorithm to work. For a centred surface the system has axial symmetry around the 

z-axis hence a single semi-meridian was sufficient to analyse the reflecting surface

(3.152)

(3 .1 5 4 )
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(the 90 degrees semi-meridian). The variables used are now extended to represent 

general semi-meridians. Variable /?,- and y, will now represent the image height and 

a reflective surface point height in a general semi-meridian.

The denominator of equation (3.127), representing the distance from the 

instrument pupil to the image plane, is changed from wd+sparax+DF to wd+DF. The 

reasons for this change were explained in section 3.12.1.

Figure 3.55 -  Videokeratoscope selection of the object point corresponding to a given image point. 

If the image point describes an angle cp with the horizontal the instrument will assume the object 

point describes the same angle. It considers that the image rings are centred in the instrument axis.

The choice of the object point corresponding to a given image must be obtained 

using the data available from the videokeratoscope. As an example consider an 

object point located on the 90 degrees semi-meridian. If the reflecting surface is 

not centred it may be possible for the image of that object point to be located in the 

89 degrees semi-meridian when the semi-meridians are measured centred at O/ 

(see section 3.10). A videokeratoscope will only know the data taken from the ring 

mire images and will assume a centred reflecting surface. In this case the
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instrument will consider that the object point was in the 89 degrees semi-meridian. 

The general case for object point selection is represented in Figure 3.55.

The selected object point x, y coordinates in the global system will be expressed by

(3.155) p;=( p 0 s in  (p, pc co s tp )

where

(3.156)

and

(3.157)

s in  (p =

coscp =

» c  ~°Iy

x] { x F c + 0 , x ) 2 + ( ) ’ f c ~ ° i y f

x F c + ° J x

^Fc+Olxf+iyFc-OfyÏ

Variable p0 will replace y0/- in the van Saarloos algorithm equations. The other 

important change will be in the calculation of the apical radius of curvature. 

Originally van Saarloos considered that the ring mire images could present a lack 

of symmetry. To account for this he replaced the image height in the 90 degrees 

semi-meridian in equation(3.127) by the average of the first ring image heights. 

However this is not very effective, it is best to calculate the apical radius for each 

image height for the first ring and then calculate the average. This was the 

approach taken for the simulation program. It should be noted that this increase in 

accuracy comes at the expense of computation time, which would pose a problem 

for computers available in 1991 when van Saarloos developed his algorithm.

The fact that for a non-centred surface the image of object points in the same 

semi-meridian does not fall in the same semi-meridian creates a problem for the 

application of this algorithm. It should be remembered that the image points need 

to be in the same semi-meridian for all rings since the data from the previous ring
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is used to reconstruct the next surface point. This problem doesn’t happen in a 

videokeratoscope since an image ring is made of an infinite number of image 

points corresponding to infinite object points hence there are always image points 

in any semi-meridian. In the simulation program this situation is not possible 

(except for the centred surface where there is rotational symmetry). However, as 

explained in section 3.14.2, the ring edge detection procedure executes a rotation 

of the image resulting in a sector (Figure 3.52). It is reasonable to say that all 

sectors will share common semi-meridians thus van Saarloos’ algorithm is valid in 

these conditions.

3.16 Difference maps

The simulation program calculates a point by point difference of a reference map 

from a sample map (sample - reference). These two maps can be obtained from 

any parameters allowed for the simulation. A difference can be obtained from two 

different algorithms using the same surface and keratoscope geometry or two 

different targets using the same surface, etc. Differences were calculated in terms 

of sagittal and tangential radius of curvature or paraxial dioptric power for each one 

of these radiuses.

Since for centred surfaces there is axial symmetry it is sufficient to calculate the 

differences for a single semi-meridian. The chosen one was 90 degrees since it 

has been used previously. The difference must be calculated for the same 

reflecting surface point radius or power in both maps. A problem arises due to the 

fact that power or radius calculated in both maps correspond to different surface 

points. In order to calculate these parameters at the same corneal points 

equation(3.126) was applied to the spherical biased or van Saarloos algorithm 

depending on the selected one. It starts at the corneal point closest to the axis in 

both maps and ends at the last point further from the axis on the map where the 

last point is smaller. This is due to the fact that an interpolation cannot be achieved 

beyond the last point of a surface even if the other surface map has several points 

beyond that.
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In between the first and last point an interpolation in both surfaces is executed. 

This means that for each point on the reference map, a corresponding point on the 

sample map is calculated by interpolation and vice-versa. These method provides 

a maximisation of data points for the difference.

If a non-centred surface is used, the only difference map that needs calculating is 

the one resulting from the centred and the non-centred surface using exactly the 

same surface and keratoscope parameters. Since there is no axial symmetry for 

the non-centred surface map, the differences must be calculated for each semi-

meridian. The exact semi-meridian of an image point for the non-centred surface 

can be matched from one of the centred surface since there is axial symmetry in 

this case. There is only the need to calculate an interpolation to match the radial 

position. It was decided not to interpolate on the map corresponding to the non- 

centred surface since that would not provide an adequate value.

In summary, the simulation program is initiated by inputting the data for the 

designed faceplate, including shape, number of rings, pupil diameter, maximum 

diameter and working distance. The reflecting surface data is then inputted, 

including shape, diameter and tilt and decentration if required. The number of 

object points to use on each ring is the introduced and the focusing mode selected 

between automatic and manual. After all the parameters have introduced, the 

program calculates the reflected ring edge heights for the selected object points 

and generates a sagittal power map or sagittal radius of curvature map based on 

the spherical biased or the van Saarloos algorithm. The tangential power or radius 

of curvature is also calculated and stored in file. A second map can then be 

calculated using different parameters and a difference map is generated. This 

allows studying the effect of individual parameters.

The developed simulation programs allows to study the impact of several 

parameters on power or radius of curvature maps, such as:
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• Effect of faceplate shape

• Effect of working distance

• Effect of pupil diameter (excluding diffraction)

• Reflecting surface shape

• Reflecting surface décentration

• Reflecting surface tilt

• Focus

• Two reconstruction algorithms (spherical biased and van Saarloos).

Difference maps can also be generated from almost any combination of 

parameters, including reconstruction algorithms.

The following chapter consists on applications of the simulation program on 

faceplate shape studies and tilt, décentration and focus errors.
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4 Methods

The videokeratoscope computer model was used to assess the design of 

faceplates in videokeratoscopes to determine the effect of faceplate geometry on 

image quality and hence accuracy of the radius of curvature maps. This would 

allow us to understand the advantages of the plethora of designs that are currently 

available and to know whether changes produced by different faceplate geometries 

are clinically significant.

Stone (1962) suggested that an accuracy of 0.02 mm is needed for instruments 

designed to measure radius of curvature of ophthalmic surfaces. This is due to the 

fact that contact lenses are manufactured in 0.05 mm steps therefore the accuracy 

should be approximately half that value. Taking this into account a difference 

between two radii of curvature equal or larger than 0.02 mm was considered as 

clinically significant for the scope of this work.

Roberts (1996) pointed out that in keratometry, which measures a central region of 

the cornea, power and radius of curvature are inversely proportional [P=(n-1)/P]. 

However videokeratoscopes can measure a wider area including the peripheral 

cornea where this relation is no longer valid. In fact the refractive power increases 

for the periphery of a positive spherical lens where according to the previous 

equation it should be constant over the entire surface. This power increment is the 

basis of spherical aberration. To avoid this error the research work on faceplate 

design was based on radius of curvature rather than power.

The study was divided into two parts: the determination of the best faceplate 

design and comparison of the resultant radius of curvature errors with errors 

generated from other faceplate designs to search for clinically significant 

differences.
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4.1 Determination of best faceplate design

The average corneal surface used as a model for all faceplate designs had a 7.72- 

mm central radius of curvature, and a p value of 0.81 (see section 3.2), 

corresponding to a prolate ellipsoid. This corneal model was considered 

reasonable over a 9 mm corneal diameter.

All the modelled faceplates had a pupil diameter of 9 mm, which is approximately 

the average aperture seen in several commercial instruments. The models were 

tested at 120, 80 and 50 mm distances from the corneal vertex to the instrument 

pupil plane (Figure 4.1 b). These values cover the range used by several 

commercial instruments.

Figure 4.1 - Sections of cylindrical and cone shaped faceplates, a) The angle <j> from the cylinder 

base to the opposite corner can be used to control the diameter b and the length WD. b) Cones 

with semi-aperture angles 0! and 02. Both cones start at a 9mm pupil aperture.

A flat surface was tested at the three specified distances. For the cylindrical 

surfaces tested, at each distance the diameter of the cylinder was changed from 25
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mm to 240 mm in 1 mm steps. Diameters less than 25 mm were not tested 

because it would be difficult to manufacture such surfaces engraving the rings 

accurately and in a smaller surface less rings can be fitted. The maximum diameter 

240 mm corresponds to a 45 degree angle between the corneal vertex and the 

cylinder corner at a 120 mm distance (Figure 4.1 a). Larger diameters would make 

the cylinder approach a flat surface. Naturally for the shorter distances the angle at 

the cylinder corner will be bigger than 45 degrees for a 240 mm diameter.

Cones were tested at each distance with semi-aperture angles ranging from 1 to 

89 degrees in 1 degree steps (Figure 4.1 b). The other conoidal surfaces were 

modelled by p value and apical radius of curvature. For each p value the radius of 

curvature was changed from 5 to 250 mm in 5 mm steps. A radius of curvature 

larger than 250 mm would represent almost flat surfaces for the diameter analysed. 

Negative p values, corresponding to a hyperbolic surface, were tested and 

incremented in such a way that the asymptotic line (Figure 4.2) would change by 1 

degree in each increment, similar to the procedure for the cone.

Figure 4.2 - Hyperboles with the same apical radius of curvature and asymptotic lines at 30 and 45 

degrees inclination. The curves are similar to a cone in the periphery, but different at the centre.
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When the p  value reached zero, corresponding to a parabolic surface, the value of 

p  was incremented in 0.1 intervals until a surface that wouldn’t intersect a 45  

degree line from the corneal vertex was obtained (Figure 4 .3 ). The constant 

increment to p  wasn’t used for the hyperbola since it would be too small for steep 

asymptotic lines and too large for asymptotic lines closer to horizontal. As an 

example the p  values for asymptotic lines with 88  and 89 degree inclinations are 

respectively -8 2 0 .0 4  and -3 2 8 2 .1 4 . The p  values for asymptotic lines with 29  and 

30 degree inclinations are respectively-0 .3 1  and -0 .3 3 .

Figure 4.3 - In a cone shaped faceplate it is always possible to define the five points (see text) as 

long as the cone has sufficient length to either side. The same applies to cylindrical, hyperbolic and 

parabolic faceplates. In spherical and ellipsoidal faceplates the surface can only increase in 

diameter until a certain point, after which it starts to close. In these cases it Is not always possible to 

find the five points. The figure represents a case where it Is only possible to define two of the five 
points.

One important factor in selecting an appropriate faceplate design refers to the most 

peripheral corneal point that reflects rays through the instrument pupil. If such point 

is near the central area, accuracy in the corneal reconstruction would be 

compromised since conoidal surfaces can be very similar in the centre and

180



different in the periphery (Figure 3.1). In order to maximise accuracy peripheral 

corneal points must transmit rays through the instrument pupil. The program only 

processes faceplate shapes such that the ray that strikes the cornea furthest away 

from the axis and is transmitted through the instrument pupil, strikes the cornea at 

a distance no smaller than 4 mm from the axis. This condition allows the analysis 

of at least an 8 mm corneal diameter, the total coverage claimed by several 

instruments manufacturers.

Five points in the faceplate subtending 15, 30, 45, 60 and 75 degrees at the 

corneal apex were selected. Cones, cylinders, hyperboloids and paraboloids will 

always have points that subtend these five angles. Spheres and ellipsoids can only 

increase in diameter until a certain point, and then start decreasing, hence it was 

not always possible to find the five points. The choice of these five equispaced 

points was based on an empirical relation between faceplate sampling points and 

computation time. Although increasing the number of points results in better 

accuracy, the great number of surfaces tested would result in a excessively large 

computation time.

For each faceplate design the minimum blur sum was calculated adding the 

tangential blurs of each point at the best focus position (see section 3.12.2). The 

surface that provided the sharpest image was the one with the lowest minimum 

blur sum. All faceplate designs that passed the 8 mm corneal coverage criterion 

were divided in four classes. The first class included the ones that produced 

minimum blur sum differences < 0.001 mm from the best, the second < 0.01 mm, 

the third < 0.1 mm and the fourth > 0.1 mm.

4.2 Influence of faceplate design on radius of curvature maps

The best faceplate design and a surface representing each of the minimum blur 

sum based classes, mentioned above, were compared. Since each surface is 

tested separately and there are only five surface geometries to compare, 

computation time is no longer a problem, hence the number of points tested in
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each faceplate can increase. Sixteen points were selected, which is equivalent to 

eight rings on the faceplate. This number is similar to the one used in 

videokeratoscopes that analyse ring edges. Videokeratoscopes that have a large 

number of rings do not analyse ring edges but the average position of the complete 

image ring, since the image is very thin.

Sagittal and tangential radius of curvature for the simulated cornea were calculated 

by the van Saarloos algorithm (see section 3.15.2) for the best and for a 

representative of each of the other four minimum blur sum based classes. These 

designs were also selected with the criterion of not being too different from 

faceplates used in commercial instruments. For example a cylinder with the base 

larger than its length is not found in videokeratoscopes.

As mentioned in section 3.16, the problem with difference maps is that for different 

faceplate shapes (with the same number of rings) the reflection points on the 

simulated cornea will not be the same. To overcome this problem the corneal 

reflection points radial coordinates for the best faceplate surface were used as a 

reference and the radius of curvature for the same points based on the data from 

other faceplates were calculated. This was done by linear interpolation of radius of 

curvature between two calculated corneal points using equation(3.126) applied to 

the van Saarloos algorithm. After this step the radius of curvature values for 

corneal points with the same radial coordinates, calculated from different 

faceplates, will be available. For the selected reference points the accurate sagittal 

and tangential radius of curvature were calculated from the simulated cornea 

parameters (apical radius and p value) using equations(3.14) and (3.16) 

respectively. For each faceplate design, the radius of curvature error was 

calculated for each corneal reference point. This error was determined for each 

point, subtracting the calculated radius of curvature (in the van Saarloos algorithm) 

from the accurate radius of curvature. This process was applied both to the sagittal 

and tangential radius of curvature resulting in the sagittal radius error and 

tangential radius error. These errors were plotted on graphs and compared
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between surfaces for several videokeratoscopes parameters. These parameters

were:

• Faceplates with 9 mm pupils and image plane at best focus.

• Faceplates with 9 mm pupils and image plane at first ring focus.

• Faceplates with 4 mm pupils and image plane at best focus.

4.3 Effect of reflecting surface décentration on radius of curvature maps

Using the best faceplate design, the average simulated cornea was decentred 0.5 

mm (p) along the 0° semi-meridian (a) (see section 3.4). The image plane position 

was set to focus on the inner ring mire image, as indicated by the conclusions of 

the faceplate design research (see section 6.2). Since the décentration led to an 

axial symmetry loss, the inner ring mire image couldn’t be focused on all meridians 

at once. The best focus for the inner ring mire image was calculated from 8 

equispaced points. This position was used as the image plane position for all 

image rings.

Although there is a loss of axial symmetry, the décentration along the horizontal 

direction still leaves planar symmetry about the horizontal meridian. This means 

that the image above the horizontal direction is a mirror image of the image below 

that direction. Therefore only the data for the horizontal and 1st and 2nd quadrant 

semi-meridians are presented.

4.4 Effect of reflecting surface tilt on radius of curvature maps

Using the best faceplate design, the average simulated cornea was tilted 1° (0) 

along the 0° semi-meridian (a = 0° ->• <p = 180°) (see section 3.3). A décentration 

was also applied in order to simulate the videokeratoscope alignment procedure 

(see section 3.11). The focusing procedure and image semi-meridian selection 

followed the same criteria applied to the décentration effect research.
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In summary, the simulation program was used in four experiments. This chapter 

describes the methods used for each experiment. For the determination of the best 

faceplate design (section 4.1), flat, cylindrical, conical and conoidal faceplates were 

used and the minimum tangential blur sums for five object points were calculated. 

Each faceplate was tested at 50, 80 and 120 mm working distances. In the 

cylindrical faceplate group several base diameters were tested, in the cones group 

several cone apertures were tested and in the conoidal group several conoids with 

different apical radius and p values were tested. For all faceplate designs the same 

reflecting surface was used with parameters of an average corneal surface. The 

best faceplate design was the one that provided the minimum blur sum (sharpest 

image) and the other designs were divided in four classes accordingly to their 

minimum blur sums. For the influence of faceplate design on radius of curvature 

maps experiment, the best faceplate design with eight rings (sixteen ring edges) 

was used on the average cornea to determine the sagittal and tangential radius of 

curvature errors, using the van Saarloos algorithm on sixteen points of a corneal 

semi-meridian. This was done for 4 and 9 mm pupil diameter with best focus and 

focus at the central ring image mire. Four other faceplate designs from each of the 

minimum blur sums classes defined in the best faceplate design experiment were 

used. For each design the sagittal and tangential radius of curvature errors were 

compared to the errors of the best faceplate design at the same corneal points. 

This procedure was repeated for the 4 and 9 mm pupils and focus at the best and 

inner ring image mire focus. The error differences between faceplate results were 

then analysed to search for clinically significant differences, defined as a difference 

equal or larger than 0.02 mm.

For the effect of reflecting surface decentration on radius of curvature maps 

(section 4.3) a 0.5 mm decentration was applied to the average corneal surface 

using the best faceplate design with a 9 mm pupil and 8 rings, focusing at the inner 

image ring mire. The sagittal radius error was calculated for 16 points of a semi-

meridian and compared to the sagittal radius error for a centred corneal surface at
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the same corneal points; differences were then analysed. The process was 

repeated for four other semi-meridians.

For the effect of reflecting surface tilt on radius of curvature map experiment 

(section 4.4) a 1° tilt was applied to the average corneal surface and the rest of the 

experiment followed the same steps as the decentration experiment.

The following chapter shows the results of each one of the four experiments. The 

displayed graphs were obtained from the error values given by the computer 

simulation.
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5 Results

5.1 Determination of best faceplate design

Table 5.1 summarises the lowest minimum blur sums for each type of surface 

tested.

Surface Minimum Sum (mm)

Flat 0.102678

Cone 0.029046

Cylinder 0.028208

Other conic surfaces 0.055651

Table 5.1- Minimum blur sums for the tested surfaces

The minimum sum displayed for the flat surface corresponded to a distance of 80 

mm from the corneal vertex. The best cylinder had a diameter of 26 mm and base 

located at 120 mm from the cornea. The best cone had the pupil aperture located 

at 120 mm from the cornea with a total aperture angle of 8 degrees (4 degrees 

semi-aperture). The best conoidal surface was a hyperboloid with the pupil 

aperture at 120 mm from the cornea, 20 mm radius of curvature and a p value of -  

0.163237.

The total of surfaces initially tested ascended to 112781. From those only 13058 

fulfilled the 8 mm corneal coverage condition and were subject to the minimum blur 

sums calculation routine. The lowest minimum blur sum, (0.028208 mm), 

corresponded to the cylindrical surface previously specified. Statistics on the 

number of surfaces that matched the best sum within 0.001 mm, from 0.001 to 

0.01 mm, from 0.01 to 0.1 mm and more then 0.1 mm were also registered. Table

5.2 summarises the frequency of each group for the different types of surfaces. It 

should be noted that the frequencies are not cumulative.
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Tested Pass 8 mm A<=0.001mm 0.001<A<= 0.01 0.01<A<=0.1 A>0.1mm

Flat 3 2 0 0 1 1

Cone 267 192 1 1 120 70

Cylinder 648 550 2 7 350 191

Other 111863 12314 0 0 5785 6529

Total 112781 13058 3 8 6256 6791

Table 5.2 -  Frequency table for differences (A) from the smallest minimum blur sum.

Two surfaces closely matched the best, the first (second best) was another 

cylinder with the base located at 120mm from the cornea and a diameter of 27-mm 

(1mm larger than the best). The other surface (third best) was a cone (best cone in 

Table 5.1).

5.2 Influence of faceplate design on radius of curvature maps

The surfaces selected to represent each class in Table 5.2 were:

• Best surface (min blur 0.028208 mm)

• Cone 8 degrees total aperture, 25.5 mm maximum diameter, 119 mm length 

(min blur 0.029046 mm).

• Cylinder 34 mm diameter, 119 mm length (min blur 0.037396 mm)

• Cylinder 49 mm diameter, 49 mm length (min blur 0.126955 mm)

• Cone 160 degrees total aperture, 240 mm maximum diameter, 49 mm 

length (min blur 0.182992 mm).

For simplicity the selected surfaces will be labelled surfaces 1 to 5 respectively. 

The sagittal radius of curvature errors (SRE) and tangential radius of curvature 

errors (TRE) calculated for each one of the five faceplate designs are represented 

in Figure 5.1 and Figure 5.2 respectively. These errors were calculated using a 9 

mm pupil in the faceplate and image plane at best focus. In the abscissas d is the
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distance from the corneal point to the axis of the simulated cornea measured 

perpendicular to the axis. From the dots on the error curve for surface 5, radial 

coordinates d, for which radii of curvature were calculated for all surfaces, can be 

identified.

The sagittal and tangential radius of curvature errors for a 9 mm pupil diameter in 

the faceplate and image plane at the focus of the first ring mire image are 

represented in Figure 5.3 and Figure 5.4 respectively.

The sagittal and tangential radii of curvature errors for a 4 mm pupil and image 

plane at best focus are represented in Figure 5.5 and Figure 5.6 respectively.
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0.6

0.5 -

- 0.2 J ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

0 1 2 3 4 5

d (mm)

- 0.2 J ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

0 1 2 3 4 5

d (mm)

—  SRE1 ..........  SRE2 SRE3 SRE4
•— SRE5 ----------0.02 mm ---------- -0.02 mm

Figure 5.1- Differences (SRE) between accurate sagittal radii of curvature and sagittal radii of

curvature calculated by the van Saarloos algorithm for surfaces 1 to 5. Faceplate pupil with 9 mm

diameter and image plane at best focus.
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0.6

0.5 -

-0.2 J--------------------------------------------------------------------------------------
0 1 2 3 4 5

d (mm)

—  TRE1 ......... TRE2 TRE3 TRE4
1— TRE5 ---- — 0.02 mm —-------0.02 mm

Figure 5.2 - D if fe re n c e s  ( TRE) b e tw e e n  a c c u ra te  ta n g e n tia l ra d ii o f  c u rv a tu re  a n d  ta n g e n tia l ra d ii o f

c u rv a tu re  c a lc u la te d  b y  th e  v a n  S a a r lo o s  a lg o r ith m  fo r  s u r fa c e s  1 to  5. F a c e p la te  p u p il w ith  9 m m

d ia m e te r  a n d  im a g e  p la n e  a t b e s t  fo c u s .
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0.15

-0.15 J----------------------------------------------------------------------------
0 1 2 3 4 5

d (mm)

—  SRE1 ......... SRE2 SRE3 SRE4
1— SRE5 --------0.02 mm -------- -0.02 mm

Figure 5.3 - D if fe re n c e s  ( SRE) b e tw e e n  a c c u ra te  s a g it ta l ra d ii o f  c u rv a tu re  a n d  s a g it ta l ra d ii o f

c u rv a tu re  c a lc u la te d  b y  th e  v a n  S a a r lo o s  a lg o r ith m  fo r  s u r fa c e s  1 to  5. F a c e p la te  p u p il w ith  9  m m

d ia m e te r  a n d  im a g e  p la n e  a t  f ir s t  r in g  m ire  im a g e  fo c u s .
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0.7

0.6

-0.3 --------------------------------------------------------------------------
0 1 2 3 4 5

d (mm)

—  TRE1 ......... TRE2 TRE3 TRE4
<— TRE5 --------0.02 mm -------- -0.02 mm

Figure 5.4 - D if fe re n c e s  ( TRE) b e tw e e n  a c c u ra te  ta n g e n tia l ra d ii o f  c u rv a tu re  a n d  ta n g e n tia l ra d ii o f

c u rv a tu re  c a lc u la te d  b y  th e  v a n  S a a r lo o s  a lg o r ith m  fo r  s u r fa c e s  1 to  5. F a c e p la te  p u p il w ith  9  m m

d ia m e te r  a n d  im a g e  p la n e  a t  f ir s t  r in g  m ire  im a g e  fo c u s .
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—  SRE1 ......... SRE2 SRE3 SRE4
1— SRE5 --------0.02mm —-— -0.02 mm

Figure 5.5 - D if fe re n c e s  (SRE) b e tw e e n  a c c u ra te  s a g it ta l ra d ii o f  c u rv a tu re  a n d  s a g it ta l ra d ii o f

c u rv a tu re  c a lc u la te d  b y  th e  v a n  S a a r lo o s  a lg o r ith m  fo r  s u r fa c e s  1 to  5. F a c e p la te  p u p il w ith  4  m m

d ia m e te r  a n d  im a g e  p la n e  a t b e s t  fo c u s .
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d (mm)

—  TRE1 ......... TRE2 TRE3 TRE4
1—  TRE5 — -----0.02 mm — -—  -0.02 mm

Figure 5.6 -  D if fe re n c e s  ( TRE) b e tw e e n  a c c u ra te  ta n g e n tia l ra d ii o f  c u rv a tu re  a n d  ta n g e n tia l ra d ii o f

c u rv a tu re  c a lc u la te d  b y  th e  v a n  S a a r lo o s  a lg o r ith m  fo r  s u r fa c e s  1 to  5. F a c e p la te  p u p il w ith  4  m m

d ia m e te r  a n d  im a g e  p la n e  a t b e s t  fo c u s .
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5.3 Effect of reflecting surface decentration on radius of curvature maps

The average focal plane position for the eight semi-meridians was 3.74 mm from 

the surface vertex. The sagittal radius error, SREDEC (exact-calculated sagittal 

radius of curvature), is represented for each semi-meridian (a) in Figure 5.7 to 

Figure 5.11. Each figure also displays the sagittal radius error for the centred 

reflecting surface, SRECTR, at the same points for comparison.

-SREDEC 
SRECTR

- 0.02 mm
- -0.02 mm

Figure 5.7 - Sagittal radius error for the decentred surface measured along the 0° semi-meridian 

(SREDEC) and sagittal radius error for a centred surface (SRECTR) in the same points.
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0.25

d (mm)

Figure 5.8 -  Sagittal radius error for the decentred surface measured along the 45° semi-meridian 

(SREDEC) and sagittal radius error for a centred surface (SRECTR) in the same points.

—  SREDEC
■■SRECTR

— —  0.02 mm
-----0.02 mm

Figure 5.9 -  S a g it ta l ra d iu s  e r ro r  fo r  th e  d e c e n tre d  s u r fa c e  m e a s u re d  a lo n g  th e  9 0 °  s e m i-m e r id ia n

( SREDEC) a n d  s a g it ta l ra d iu s  e r ro r  fo r  a c e n tre d  s u r fa c e  (SRECTR) in th e  s a m e  p o in ts .
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0.05

d (mm)

Figure 5.10 -  Sagittal radius error for the decentred surface measured along the 135° semi-

meridian (SREDEC) and sagittal radius error for a centred surface (SRECTR) in the same points.

—  SREDEC
■ - SRECTR

— —  0.02 mm
-----0.02 mm

Figure 5.11 -  S a g it ta l ra d iu s  e r ro r  fo r  th e  d e c e n tre d  s u r fa c e  m e a s u re d  a lo n g  th e  1 8 0 °  s e m i-

m e r id ia n  ( SREDEC) a n d  s a g it ta l ra d iu s  e r ro r  fo r  a  c e n tre d  s u r fa c e  (SRECTR) in  th e  s a m e  p o in ts .
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5.4 Effect of reflecting surface tilt on radius of curvature maps

After applying the 1° tilt in the 0° semi-meridian, a decentration has to be done to 

align the surface. Since the videokeratoscope axis is on the positive z-axis 

direction it’s represented by the vector [0,0,1]gl b (global system). This direction is 

changed to the tilted system applying equations (3.37) with (p=180° and 0=1° 

resulting in a vector with components L=sin 1°, M=0 and N= cos 1°. Now equations 

(3.89) can be applied to determine the coordinates of the tilted surface point with 

normal in the same direction resulting in (x/v,yA/,Z/v)=(-0.135, 0, 0.001). If these 

coordinates are applied to equations (3.38) the respective coordinates on the 

global system (but centred at the reflecting surface vertex) can be obtained. From 

these only x is important since it’s the direction of decentration. The value for x will 

be -0.135 (to three decimal places). This means that the tilted surface point with 

normal in the same direction of the videokeratoscope axis is located at x=-0.135 

mm (global system coordinates) from the videokeratoscope axis. In order to align 

this point with the axis the surface must be shifted 0.135 mm towards the positive 

x-axis direction, corresponding to semi-meridian o=180° (IMG system used to 

define tilt and decentration directions).

The average focal plane position for the eight semi-meridians was 3.739 mm from 

the surface vertex. The sagittal radius error, SREDEC (exact-calculated sagittal 

radius of curvature), is represented for each semi-meridian (a) in Figure 5.12 to 

Figure 5.16. Each figure also displays the sagittal radius error for the centred 

reflecting surface, SRECTR, at the same points for comparison.
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SRETLT
SRECTR
0.02 mm 
-0.02 mm

d (mm)

Figure 5.12- Sagittal radius error for the tilted surface measured along the 0° semi-meridian 

(SRETLT) and sagittal radius error for a centred surface (SRECTR) in the same points.

-SRETLT
SRECTR

- 0.02 mm
- -0.02 mm

Figure 5.13 -  S a g it ta l ra d iu s  e r ro r  fo r  th e  t ilte d  s u r fa c e  m e a s u re d  a lo n g  th e  4 5 °  s e m i-m e r id ia n

( SRETLT) a n d  s a g it ta l ra d iu s  e r ro r  fo r  a  c e n tre d  s u r fa c e  (SRECTR) in  th e  s a m e  p o in ts .
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— SRETLT 
■ SRECTR
— 0.02 mm 
— 0.02 mm

Figure 5.14 -  Sagittal radius error for the tilted surface measured along the 90° semi-meridian 

(SRETLT) and sagittal radius error for a centred surface (SRECTR) in the same points.

SRETLT
SRECTR
0.02 mm 
-0.02 mm

Figure 5.15- S a g it ta l ra d iu s  e r ro r  fo r  th e  t ilte d  s u r fa c e  m e a s u re d  a lo n g  th e  1 3 5 °  s e m i-m e r id ia n

( SRETLT) a n d  s a g it ta l ra d iu s  e r ro r  fo r  a  c e n tre d  s u r fa c e  (SRECTR) in  th e  s a m e  p o in ts .
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0.06

-  SRETLT
- SRECTR
-  0.02 mm
-  -0.02 mm

Figure 5.16 -  Sagittal radius error for the tilted surface measured along the 180° semi-meridian 

(SRETLT) and sagittal radius error for a centred surface (SRECTR) in the same points.

In summary, the best faceplate design was a cylinder with a 26 mm base located at 

120 mm from the corneal vertex. Two other faceplate designs had minimum blur 

sums 1 pm larger than the best. Most faceplate designs had minimum blur sums 

larger than 10 pm in relation to the best design. There was a large error in the 

calculated apical radius of curvature when the best focus was used. If focus at the 

inner edge of the image ring mire is used, the apical radius of curvature error 

becomes negligible. This focal plane position also decreases overall error. Focus 

has more influence on the results than geometrical aberrations controlled by pupil 

size. Reducing pupil size or changing focus has a small effect on tangential radius 

of curvature errors.

Reflecting surface decentration has a large effect on the radius of curvature errors 

when compared to the errors for a centred surface. The error differences are 

clinically significant in the semi-meridian of decentration and become negligible in 

the perpendicular semi-meridian. Ring crowding occurs for the semi-meridian of 

decentration and ring spacing for the opposite semi-meridian.
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The findings for the reflecting surface tilt are similar to the décentration, since to 

simulate the videokeratoscope alignment procedure a vertex décentration has to 

be executed. The only difference was that the error difference in relation to the 

centred surface error increased towards the periphery.

On the following chapter this results are analysed and their importance discussed.
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6 Discussion

6.1 Determination of best faceplate design

In the best conoidal and best flat surface the blur patterns are partially vignetted at 

the 75 degrees points. This vignetting is an artefact of the program due to the 

corneal diameter being limited to 9 mm. In the periphery the real cornea adopts a 

flatter shape and the rays would strike that part without being vignetted. As a result 

the blur would be bigger than actually is measured in the simulation. Within the 

minimum blur sums (minimum value of the sum of the radial geometrical blurs for 

five predefined object points) for each type of surface, the flat and conoidal surface 

present the highest values. For these two cases the vignetting is of no concern 

because it would make the minimum blur sums even larger. The best cone and the 

best cylinder do not induce vignetting at the 75 degrees points. The minimum blur 

sums for these two particular surfaces are therefore correct.

Figure 6.1 displays the distance of the best focus position from the paraxial plane 

for 15 image ring edges for the best cylinder. From this figure it can be seen why 

that cylinder produces the minimum blur sum. The first and last set of edges are 

focused near the paraxial plane (0 mm on the graph) and only the intermediate 

edges are focused away from the paraxial plane. Flence if the image plane is set 

for the first ring edge (paraxial plane) the blur sum will be small since only the 

intermediate rings will be out of focus.

In order to fill the pupil, a bundle of rays reflected on the cornea must spread less if 

the cornea is further away. This explains why surfaces placed at larger working 

distances present smaller blur sums. On the other hand the distance has to be 

limited for an adequate corneal area to be analysed since it was found by 

experimentation that as the working distance increases the analysed corneal area 

is reduced.
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Ring Edge

Figure 6.1 - Best focus position from the paraxial plane (0 mm) for 15 image ring edges for the best 

cylinder.

6.2 Influence of faceplate design on radius of curvature maps

Analysis of Figure 5.1 shows large sagittal radii errors for all surfaces until ring 

edge 4. From ring edge 5 only surfaces 4 and 5 present errors outside the ±0.02 

mm tolerances. The large central error is due to the defocusing of the central rings, 

resulting in incorrect ring mire image edge position. Since these curves were 

calculated for the best focus based on the minimum blur sum, this shifts the focus 

to the intermediate rings. The central and peripheral rings will be out of focus. 

However focusing errors in the smaller mires (central) and hence errors in edge 

position will have a bigger effect than in larger mires (peripheral). The same 

amount of error will represent a substantial percentage of a smaller ring mire image 

height and a smaller percentage of a large mire.

Analysis of Figure 5.2 shows large tangential radii errors for all surfaces for central 

and peripheral rings, while intermediate rings display less error. Central ring errors 

result from the same causes specified for sagittal error. Peripheral ring errors are 

due to the method used by the van Saarloos algorithm to calculate tangential 

radius of curvature. It considers that three consecutive corneal points share the 

same centre of curvature (see section 3.15.2) to obtain surface smoothness. 

However in an aspheric surface (with p<1) the centre of curvature for peripheral 

points is different for each points and gets progressively further away from the 

surface axis. This fact explains the larger error for outer rings.
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On Figure 5.3 the image plane was changed from best focus to focus on the inner 

edge of the first ring mire image. This leads to an accurate edge position resulting 

in an accurate apical radius calculation for all surfaces. This shift in focus increases 

the blur for peripheral points. However it doesn’t result in a clinically significant 

error increment when compared to Figure 5.1. This finding suggests that focusing 

at the first ring mire image inner edge is better than focusing at the best focus 

position. An interesting effect, magnified by the scale change, is the oscillation of 

the graphs. It can be explained by the effect of focus on consecutive ring edges. 

The image of the inner ring edge of an image ring will look smaller when out of 

focus, while the image of the outer edge will look larger. This results in a decrease 

and an increase in the calculated radius of curvature respectively.

Figure 5.4 shows that once again the tangential radius of curvature error is larger 

than the sagittal radius of curvature error. The error also increases to the 

peripheral points for the reasons explained earlier. It can also be concluded that 

the large tangential radius error is not caused by focus but by the algorithm itself. It 

is also interesting to note that surface 1 does not seem to be affected by this 

algorithm error that leads to an tangential radius of curvature error increment for 

the peripheral rings.

Figure 5.5 displays the sagittal radius of curvature error for a smaller pupil with 

image plane at best focus. With the exception of a few points the error curves are 

very similar to the ones in Figure 5.1, for a 9 mm pupil with best focus. This 

suggests that aberrations (controlled by the instrument pupil size) play a minor role 

on radius of curvature error when compared to focusing errors.

Figure 5.6 (4 mm pupil) also shows that with the exception of a few points, the 

tangential radius of curvature error is similar to the tangential radius error for a 9 

mm pupil displayed on Figure 5.2.
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As to the influence of faceplate design on radius of curvature maps, analysis of all 

data shows that different faceplate designs will lead to clinically significant 

differences. Although the curves displayed do not show differences directly they 

represent them, since the radius error for the same point in each curve results from 

the subtraction of the calculated radius of curvature from the accurate radius of 

curvature. The accurate radius of curvature for each curve point is the same for all 

curves at that point.

6.3 Effect of reflecting surface decentration on radius of curvature maps

Analysis of Figure 5.7 to Figure 5.11 shows that the errors are larger in the 

direction of decentration (horizontal) and smaller towards the direction 

perpendicular to the decentration (vertical). In the 90° semi-meridian the sagittal 

radius error is very similar to the sagittal radius error of a centred surface. 

Comparison of sagittal radius errors for the opposite semi-meridians in the 

decentration direction, 0° and 180°, shows a sign change. The error is positive for 

the 0° semi-meridian and negative for the 180° semi-meridian. Since the error is 

given by exact-calculated sagittal radius of curvature the sagittal radius of 

curvature values are smaller for the 0° semi-meridian and larger for the 180° semi-

meridian. This implies that ring crowding occurs for the semi-meridian of 

decentration (0°) and ring spacing for the opposite semi-meridian. These findings 

confirm the observations of Rowsey and Isaac (1983) and Legeais et al. (1993) but 

are in opposition to the observations of Wang et al. (1991) (see section 2.5).

Comparison of the error graph peaks for the 0 and 180° semi-meridians (Figure 5.7 

and Figure 5.11 respectively) also shows that from ring edges 3 to 13 (marked by 

the open dots, starting at 0 for the first dot) the two graphs are in phase. This 

means that peaks and valleys are observed at the same ring edges on opposite 

semi-meridians. This is due to the effect of focus on the image ring edges, already 

mentioned on section 6.2. Inner (odd) ring edges get smaller and outer (even) 

edges get larger when out of focus. Ring edges 1, 2, 14 and 15 are not affected 

since they are near best focus (see Figure 6.1).
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Figure 5.7 and Figure 5.11 show that a decentration as small as 0.5 mm greatly 

increases the sagittal radius error and that this error is magnified for the image ring 

edges out of focus.

6.4 Effect of reflecting surface tilt on radius of curvature maps

Analysis of Figure 5.12 to Figure 5.16 shows that the errors are larger in the 

direction of tilt (horizontal) and smaller towards the direction perpendicular to the tilt 

(vertical). In the 90° semi-meridian the sagittal radius error is very similar to the 

sagittal radius error of a centred surface. Comparison of sagittal radius errors for 

the opposite semi-meridians in the tilt direction, 0° and 180°, shows a shift on 

opposite directions from the centred surface error. The error is more negative than 

the centred surface error for the 0° semi-meridian and more positive than the 

centred surface error for the 180° semi-meridian. Since the error is given by exact- 

calculated sagittal radius of curvature the sagittal radius of curvature values are 

larger for the 0° semi-meridian and smaller for the 180° semi-meridian. This implies 

that ring spacing occurs for the semi-meridian of tilt (0°) and ring crowding for the 

opposite semi-meridian. Although it seems that tilting had the opposite effect of 

decentration it really has the same effect. After the surface was tilted it had to be 

realigned by a decentration in the 180° semi-meridian. Such decentration will have 

the described effect; ring crowding in the 180° semi-meridian and ring spacing in 

the 0° semi-meridian.

Comparison of the error graphs for the 0 and 180° semi-meridians (Figure 5.12 and 

Figure 5.16) also shows that although the sagital radius error is similar for the tilted 

and centred surfaces, the difference between both errors progressively increases 

towards the peripheral ring edges. This effect wasn’t observed for the decentration 

and might be a characteristic of the image formed by a tilted surface.
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In summary, the best faceplate design produced the smallest minimum blur sum of 

all surfaces due to its unique distribution of best focus for each individual object 

point. The best focus for the points near the surface centre and on the surface 

periphery have best focus positions on the paraxial plane with the intermediate 

points best focus shifted from that position.

Focus has more influence on sagittal radius error since it produces a change on 

the edges of the image ring mires. This change has a larger effect for the smaller 

mires that’s why the apical radius of curvature calculation is very influenced by 

focus. Since the determination of the sagittal radius of curvature for one point is 

dependent on the radius for the previous point (arc step method), if the inner points 

have less error the outer points will follow the same trend decreasing overall error. 

The tangential radius of curvature error is less dependent on focus and aberrations 

since there is a problem in Klyce’s procedure to calculate it. It considers that 3 

surface points in a semi-meridian can be joined by a single circular arc, thus 

sharing a common centre of curvature. That is not true for a conoid that’s why the 

error is large.

The ring asymmetry presented in decentration with ring crowding in the semi-

meridian of decentration, ring spacing in the opposite semi-meridian and little 

change in the perpendicular semi-meridian can be used to detect decentration in a 

videokeratoscopic image.

The ring asymmetry for surface tilt is similar to the decentration pattern since a 

decentration has to be applied in order to achieve alignment. The only difference 

was that the error increased towards peripheral rings. In the future this findings 

may be used to predict surface tilt from videokeratoscopic images.

The next chapter summarises the main conclusions of the research project and 

comments on future work.
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7 Conclusions

The surface that provides the sharpest image for an average cornea is a cylinder 

with base 120-mm away from the corneal vertex and a diameter of 26-mm. 

Increasing the working distance improves image quality but decreases the 

analysed corneal area. A balance must be found to provide optimum results.

These results don’t show that any cylindrical faceplate provides better results than 

any other geometry. We can only conclude that this particular cylinder at the 

specified working distance is the best design. In this section of the work better 

results mean that the sums from the blurs of all image points are smaller, which 

means a sharper image.

Focusing errors have a major effect on radius of curvature errors. Focusing on the 

image of the first ring edge results in an accurate calculated reflecting surface 

apical radius and a smaller overall error when compared with best focus.

The instrument pupil aperture, which controls aberrations, has a negligible effect 

on overall radius of curvature error when compared to focusing errors. Although 

not tested, it is reasonable to assume that focusing at the inner rings associated 

with a smaller pupil will result in a smaller error. This is due to the fact that the van 

Saarloos algorithm uses a pinhole camera approach. However the pupil cannot be 

too small, the finite wavelength of light and the small numerical aperture will result 

in significant diffraction (Charman 1972). Therefore reducing the instrument pupil 

size below a certain level may decrease accuracy.

The method used by the van Saarloos algorithm to calculate the tangential radius 

of curvature is not adequate for peripheral points.

Sagittal radius of curvature errors are larger in the direction of decentration and 

smaller towards the direction perpendicular to the decentration. In the latter 

direction the sagittal radius error is very similar to the sagittal radius error of a 

centred surface. Ring crowding occurs for the semi-meridian of decentration and
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ring spacing for the opposite semi-meridian. Oscillation of the sagittal radius error 

curves is apparent for image ring edges out of focus. The sagittal radius error due 

to decentration is also larger for image ring edges out of focus.

When the reflecting surface is tilted it has to be translated in order to fulfil the 

alignment conditions (see section 3.11). This shift can be considered a 

decentration since the reflecting surface apex has to be moved away from the 

instrument axis. In this sense the ring crowding effect is the same observed in a 

decentred surface. The effect of tilt is also smaller in the direction perpendicular to 

the tilt. The difference between sagittal radius errors for the tilted and the centred 

surface increases towards the peripheral rings.

The observations for tilt and decentred surfaces were based on a single faceplate 

design and reflecting surface. They were meant to display the capabilities of the 

videokeratoscope simulation program and not as a complete research on the 

subject. To validate the findings other faceplate designs and reflecting surfaces 

would have to be tested.

The main part of this research was the development of a videokeratoscope 

computer model. It allows handling tilted and decentred reflecting surfaces and 

also considers the irradiance distribution across ring mire images. Novel aspects 

include a new ray tracing method for tilted surfaces, retracing a bundle of rays of 

higher density using the previous results and determining irradiance distribution 

taking into account the influence of adjacent object points.

According to Klyce (2001), the future of corneal analysis seems to point in the 

direction of aberrometry. At some point in time videokeratoscopes will no longer be 

used. However it will take many years for that to happen therefore this research 

work is still very up to date. Videokeratoscopes present many advantages over 

keratometers but these are still the most widely used instrument for corneal
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analysis by clinicians. This is probably due to the low cost when compared to a 

videokeratoscope.

Surprisingly in 2002 there has been virtually no new research papers in tilt, 

decentration and defocus on videokeratoscopes. No new algorithms for Plácido 

disk systems have been published either. There is still a lot to be done in this area 

since the only theoretical tilt correction algorithms have been developed for 

telecentric systems and the videokeratoscopes don’t belong to that class. The 

simulation program developed in this research project will aid in the development 

and testing of correction algorithms, which can be applied to non-telecentrical 

systems.
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