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Abstract

This thesis presents a framework and set of readily applicable techniques for enhancing comprehen-
sion of complex data visualizations. Central to the work has been the definition and exploration of a 
new concept, signature exploration.

Visualization is being used increasingly to help make sense of large sets of data and information. 
Abstractions of complex data can be performed to reduce the dimensions to 2 or 3 for display. Novel 
or established representations can be used that allow direct mapping of greater numbers of attributes, 
and of a variety of data structures. There is an ever expanding set of visualization tools available. 
Two questions face the user: how to choose appropriate displays and how to understand the resultant 
graphic. This thesis examines how to support the user’s comprehension in this context.

The work makes the following three main contributions to enhancing comprehension of complex 
data visualizations: the definition and application of signature exploration, a concept describing the 
exploration of visualization behaviour using specially constructed data; the proposal of a framework 
for the design of visualization systems for increased comprehension; the introduction of two new 
forms of interaction - which are here described as visual data tracking and feature fingerprinting.

The central theme for the exploration presented in this work is the notion that a user wants to 
take data that is known in some way, put this into the visualization process and assess the resultant 
visual depiction. This intuitive desire has been captured in the definition of the concept, signature 
exploration. Signature exploration describes the exploration of the behaviour of visual represen-
tations using specially constructed datasets that contain features of interest. The datasets are used 
to explore the signatures of different visual representations and mathematical transformations. The 
thesis defines and illustrates signature exploration, with five proposedapproaches: generic dataset 
provision; user-construction of data; querying; insertion of landmarks; elicitation and application of 
feedback data. These applications of signature exploration, together with analysis of the comprehen-
sion challenges presented by different aspects of visualization, and established work to support user 
comprehension, form the basis of the framework for increased user comprehension.

Example software has been developed within the context of a visualization application that em-
ploys a number of visualization algorithms to generate graphics for multivariate or proximity data. 
Principal Components Analysis, Principal Coordinates Analysis and distance metrics of various kinds 
are the algorithms used. An additional interface is given to the user, to perform signature exploration. 
The work has resulted in the specification of a set of techniques that developers can readily apply. 
Two new interaction forms are described: visual data tracking - bi-directional brushing and linking 
between representations also allowing change of position or value; feature fingerprinting - synthetic 
additions to real-world datasets to provide the user with calibration of the visual depiction.
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Chapter 1

Introduction

1.1 Introduction

Vast quantities of data are accumulating; visualization can assist in making sense of this data. Vi-

sualization processes are increasing in their variety and complexity (Card et al. 1999) and are being 

presented to a wider range of users due to increases in the power of desktop computers (Spence 

2001). In the field of visual datamining there is a desire to more closely integrate visualization and 

datamining processes (Shneiderman 2002), as well as develop the exploitation of the human visual 

system’s pattern recognition abilities (Keim 2001). Developers have discovered many techniques 

for increasing the usefulness of visualization systems and allowing the user to manipulate and view 

their data in different ways (Card et al. 1999). Perception and cognition researchers have performed 

many experiments to examine how users perceive and draw conclusions from visual depictions (Ware 

2000a).

According to one definition of visualization:

“Visualization: The use of computer supported, interactive, visual representations of 

data to amplify cognition.” Readings in Information Visualization (Card et al. 1999)

So visualization amplifies cognition, but only if the user can make sense of the results. Hence 

comprehension is key. Also, the current context of increasing variety and complexity of visualiza-

tion systems, the inclusion of datamining techniques and the wider range of users, provide additional 

impetus for increasing the development of techniques to help the user make sense of the visual de-

pictions and underlying computational processes.

This thesis explores a concept to increase comprehension of visualization methods. It specifies a 

framework and set of techniques to provide a guide for the creation of visual depictions and systems 

that enhance comprehension. The concept, signature exploration, is based upon the user’s intuitive
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desire to put familiar data into a visualization process, see what patterns result and to understand 

what effect the process has on the data. The concept is also inspired by work with querying of image 

libraries and by the use of operational fingerprinting in pyrolysis mass spectrometry. These two 

examples use known data in different ways to aid comprehension of the visualization.

The different ways that complex data can be visualized are examined to determine the problems 

that require support for comprehension. Existing visualization techniques, such as those relating 

to interaction, do support the user in various ways. The literature study presented with this work 

identifies these comprehension supporting techniques, thus contextualizing and reframing this work.

Five approaches for applying signature exploration have been explored: generic dataset provision; 

user-construction of data; querying; insertion of landmarks; elicitation and application of feedback 

data. Generic dataset provision provides datasets that are illustrative of particular dataset features for 

the user to see how well a feature is shown by a particular visualization method. User-construction 

of data provides an interface for the user to construct and alter their own data and thus design their 

own features of interest. Querying - visual or non-visual - helps users orientate themselves by seeing 

whether the data appears where they expect it to in the depiction. Landmark insertion is the high-

lighting of parts of the visualization, or of additional synthetic data, to orientate the user within the 

visualization. Elicitation of feedback data enables the comparison of the user’s arrangement of the 

data with that of the system’s. It also allows what is important to the user to be captured by the system 

and this can be applied to the system to modify its behaviour.

Example interfaces for the five approaches have been developed by extending an existing tool for 

visualization, Space Explorer (Schroeder et al. 2001). Space Explorer contains a number of clus-

tering and visualization algorithms. The investigation revealed a number of obstacles which suggest 

further requirements for visualization designers, primarily with regard to accuracy. Experience of the 

examination of the five approaches and the study of existing techniques have been gathered together 

in a framework to guide the design of visualization systems as well as individual graphic depictions. 

Specific readily applicable techniques are proposed, including two new ones: visual data tracking 

and feature fingerprinting.

The background to this work was the consideration of visualizing complex systems, particularly 

multi-agent systems. Data for such systems typically originates as a log of events for a set of entities. 

An example real world dataset is used here of a set of 100 customers making telephone calls. A 

specific application area within the agent field has also been used, concerning the comparison of 

interest profiles.

The remainder of this chapter expands the visualization background motivation, describes the 

objectives and criteria for success of the work and gives an overview of the thesis.
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1.2 Background

Increasingly large amounts and varied types of data are being stored. Web log files, e-commerce 

files, genome data, supermarket loyalty card data are examples. Because it is easier to store large 

quantities of data, much data is stored simply because it can be, rather than being the result of the 

design of an experiment, for example. On the other hand, enormous amounts of data are stored 

for legal reasons, such as the recording of call centre calls. The capability of data storage is also 

inspiring projects such as The Personal Image Memory Bank, containing video and sound data from 

every waking moment of a person’s life (Ware 2000a), which illustrate the change in scope of data 

capture being undertaken. As more datasets become accessible through the World Wide Web (‘the 

Web’), distribution creates composite datasets of much greater size. The Web itself can be viewed 

as one immense data repository, reminiscent of Gibson’s concept of cyberspace, first introduced two 

decades ago (note that this is the only reference to the word in the book):

“Cyberspace. A consensual hallucination experienced daily by billions of legitimate op-

erators, in every nation, by children being taught mathematical concepts . ..  A graphical 

representation of data abstracted from the banks of every computer in the human system. 

Unthinkable complexity. Lines of light ranged in the non-space of the mind, clusters and 

constellations of data. Like city lights, receding . . . ” — Neuromancer (Gibson 1984)

The development of the semantic web based upon a new form of Web content that is meaningful to 

computers will, according to Berners-Lee et al. (2001) .. unleash a revolution of new possibilities’.

One of the new possibilities is that different data sets have the potential to become linked via the 

naming of variables and entities. This now brings us the reality of Gibson’s . .data abstracted from 

the banks of every computer in the human system. Unthinkable complexity.’ In a sense we are 

becoming data bound, rather than processor, bandwidth or memory bound: for how are we to make 

sense of such masses of data? Furthermore, the problem of finding meaning in datasets does not just 

apply to extremely large datasets. Relatively small datasets may also be difficult to conceptualize - 

for instance a problem arises as soon as more than a very few dimensions are involved. Thus the 

problem of complexity covers a very wide range of datasets from the relatively small to the massive. 

Extremely large datasets are outside the scope of this thesis. For practical purposes this work has 

used smaller datasets, though many of the issues relating to comprehension remain the same.

How to make sense of this data? Visualization in such forms as ordinary graphs and bar charts has 

long assisted human endeavour. With the developments in computer processing power and graphics 

of the last ten to twenty years have come new ways - many visualization systems and novel repre-

sentations, some developing the exploration of data in virtual worlds, inspired by Gibson’s concept 

of cyberspace. Dimension reduction involving matrix transformation enables an abstraction of multi-
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dimensional data to be plotted. Other novel ways of displaying many variables have been developed. 

At the same time, visualizations are being used by a more general user and in a greater number of ap-

plications, as well as in demanding specialist areas. A greater emphasis upon the goal of exploration, 

the data mining objective, is also evident. The integration of visualization mechanisms with data 

mining techniques, sometimes referred to as visual data mining, is being undertaken and provides the 

user with additional ways of exploring their data.

How to make sense of these visualizations? The complexity and inherent high dimensionality 

leads to visualizations that are hard to understand, clustering and other procedures may be carried out 

from a number of different points of view and thus produce different results, which lead to different 

conclusions. These conclusions may or may not be valid. Our attempt to portray complexity leads 

to loss of comprehension; there is a trade-off between understanding and number of dimensions rep-

resented. Thomas Green’s work on cognitive dimensions seeks to address this general issue (Green 

2000).

How to visualize complex data and systems? A particular application area for this work has been 

that of visualizing multi-agent systems. The possibility of a single whole system view is tantaliz-

ing, yet impossible, due to the many facets and high degree of interconnection involved. Thinking 

about social systems is illustrative, the general assumption is that no one view is the ‘correct’ one. 

Many views exist, from and of, many aspects. How then to produce computer visualizations of 

such systems and sets of data deriving from them? Increasingly, computer applications for visu-

alization are presented as interactive processes that allow the user to create different visualizations 

and use visual querying. This approach avoids presenting a static view of the system, but makes 

the multi-facetedness implicit rather than explicit. So we can add to the complexity of a particular 

representation from abstraction or novelty, that of the complexity of the system from which the data 

is derived and the viewing of different aspects of the data interactively.

According to Colin Ware ‘The human visual system is a pattern seeker of enormous power and 

subtlety’ (Ware 2000a) and a substantial amount of information about the way we see has been 

collected by vision researchers. However, much of this work has yet to be taken advantage of and 

used in applications (Spence 2001; Ware 2000a). So the further exploitation of the human visual 

system as a pattern seeker may yield additional benefits in dealing with large amounts of information. 

Thus the potential of developing further new forms of representation and interaction for this purpose 

is indicated.

In this thesis the word user generally means the person that is using the visualization application. 

However, there are four sub-classes of users for the purposes of this work. This is determined by the 

person’s level of background knowledge or capability (described here as expert or general) and their

4



CHAPTER 1. INTRODUCTION

familiarity with the particular visualization method being used1.

1. Expert user familiar with the particular visualization method.

2. Expert user unfamiliar with the particular visualization method.

3. General user familiar with the particular visualization method.

4. General user unfamiliar with the particular visualization method.

Examples of expert users are professional scientists and financial analysts i.e. those with a math-

ematical background. General users lack the background to understand the technique fully where 

complex transformations are used. It is often still valid for general users to use such visualizations, 

because it is not always necessary for them to have complete understanding. In these discussions it is 

assumed that a user is an appropriate user for a particular visualization method, i.e. that they have the 

potential capability to use it effectively. This work is aimed primarily at users (2) and (4), who may 

be described as ‘inexperienced’, but it is also assumed that users (1) and (3) can benefit from aspects 

of this work.

Requirements of users of visualization systems are varied: the two main types of task are search-

ing for a specific piece of information and exploratory data analysis (Card et al. 1999). However, 

there are other purposes of visualization. For instance, visualization of a multi-agent system is used 

to conceptualize the operation of the system to viewers, as well as to provide a means of monitoring 

the system. Another, different example of visualization is in network monitoring, where visualization 

is used so that network misuse and intrusion can be detected (Erbacher and Frincke 2000). Despite 

the varied requirements of users, for the purposes of this thesis, it is assumed that the underlying 

requirement of users is to ‘understand the visual depiction, since this is a pre-requisite upon which 

task success relies. In the example used as illustration throughout the work, the user is assumed to be 

exploring a multi-dimensional data table.

Preliminary work in this project examined various visual representations of a variety of datasets: 

a call data log, gene expression data and web site access log files. For validation and familiarization 

purposes, specially constructed data sets were used. These specially constructed datasets were quite 

simple, containing small numbers of entities (< 10) and small numbers of attributes, with features 

such as identical or similar entities and randomly assigned attribute values. Aside from for validation 

of the software, these were useful as concrete introductory examples of the behaviour of the represen-

tation. For instance, identical or very similar entities that are shown in the same place in the display 

are not apparent to the human viewer. These simple examples indicated the potential for using known 

data to illustrate different representations.

1 However, this description of users is distinct from users of the framework described in Chapter 12,which are designers of 
visualization systems, though expert end-users can use the framework to assess the design.
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Further inspiration for the use of constructed data comes from work on dynamic querying of 

image libraries (e.g. Chang and Fu (1980), Pu and Pecenovic (2000)). Starting from a particular 

image, users query the library for similar images. Since the selection and weighting of feature lists 

for images is such a complex and subjective task, the user maybe invited to choose a selection of 

images and give these to the application to arrange in terms of similarity (Pu and Pecenovic 2000). 

This process can provide insight into the behaviour of the algorithm that is choosing similar images 

from the database. Another related concept is that of fingerprinting, a technique where an unknown 

pattern is compared to a set of known ones. In pyrolysis mass spectrometry, the inclusion of a known 

outlier and reference organism in the dataset guides the user in the interpretation of visual depictions 

of multidimensional data in a process known as operational fingerprinting (Meuzelaar et al. 1982).

As a generalization of this problem, a set of call data has been used for illustration. This is a set 

of British Telecom data of 90,000 calls made by 100 customers from one particular area. The data 

set was cleansed, by BT. of all private information. Thus the originating and destination exchange 

references were available, but not the complete originating and destination phone numbers. These 

visualisations use the destination local exchange reference in a data table of the form shown in Table 

1.1, such that entry x tJ is the number of calls made by customer i to location j .

destination 1 destination 2
Customer 1 0 3
Customer 2 1 47

Table 1.1: Call data customer/destination matrix used for visualization

An example of the problem of comprehension is shown in Figure 1.1, a screen shot of a three- 

dimensional VRML world. This is a visualization of the call data whose dimensions have been 

reduced from 276 destinations to 3, for the 100 entities. This dimension reduction can be achieved by 

using one of a number of methods, in this case. Principle Components Analysis has been used (more 

detail about these methods will be found in Chapter 3 on page 36). The problem is that it is hard to 

know what conclusions can be drawn from this shape. In fact, by rotating the virtual world, the shape 

is, to a human, reminiscent of the leg and webbed foot of a duck, perhaps. Is the only conclusion, 

that two customers close in this representation are similar? If so, in what way are they similar? The 

inexperienced user may have no idea as to the answers to these questions, the experienced user will 

have a better idea, but will need to interact with the data in order to test their hypotheses.

Summarizing the problem, the direct result of the complexity or novelty of representations is that 

an inexperienced user’s initial reaction to a graphic may be ‘What does this mean?’ Thus, users 

need methods and tools that help them understand the necessarily abstract representations required 

to depict complex data. This problem is more marked in visualization systems that present views of
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Figure 1.1: 90,000 telephone calls made by 100 customers. Caller profiles by destination of calls. 
Dimensions (which are the destinations) have been reduced from 276 to 3 by applying Principal 
Components Analysis. This is a screenshot of a 3D VRML world. Rotating the world shows the 
shape of the cluster to be similar to a duck’s leg and webbed foot.
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complex systems, for example multi-agent systems. The user needs to know the characteristics of 

particular visual representations. Intuitively the user wants to take known data and put this into the 

visualization process to see what happens. It is this intuition and the experience indicated above, that 

has led to the proposal of a new concept, signature exploration. Signature exploration uses datasets 

that are known in some way, to explore the behaviour, or signatures, of the different visualization 

techniques. It is the exploration of this technique which is the basis of the work presented in this 

thesis.

This thesis uses the terms perception, cognition and comprehension in regard to the human re-

sponse to visual depictions of data. The following paragraphs discuss how these words are used.

The word perceive (and thus perception) is used in everyday speech to indicate also a cognition 

and comprehension. Consider the following dictionary entries2:

• Perceive:

1. a. To attain awareness or understanding of. b. To regard as being such

2. : to become aware of through the senses

• Perception:

1. a. A result of perceiving, b. A mental image.

2. a. Awareness of the elements of environment through physical sensation, b. Physical 

sensation interpreted in the light of experience.

3. a. Quick, acute, and intuitive cognition, b. A capacity for comprehension.

In this discussion, perception is taken to be ‘becoming aware of through the senses’.

The dictionary definition of cognition is as follows:

• Cognition:

1. The mental process of knowing, including aspects such as awareness, perception, reason-

ing, and judgement.

2. That which comes to be known, as through perception, reasoning, or intuition; knowl-

edge.

Thus this shows also an overlap, in usage, with the word perception. This thesis uses the meaning 'the 

act or process of knowing including awareness, perception, reasoning and judgement’. The discipline 

of Cognitive Science has the goal of ‘understanding the mind and its operation’ (Thorgard 1996) - 

the objective of this work is not to understand how the mind works when the human is viewing

2Merriam-Webster’s Collegiate Dictionary: http://www.yourdictionary.com.
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complex data visualizations, but to ensure that the mind has the correct starting information with 

which to reason. In this sense we take ‘awareness’ as the key attribute: making the user aware of 

the appropriate aspects. Thus we do not examine how the person draws conclusions, but whether 

(assuming they do have the skills to use the information) they have access to the information they 

need about the representation. This overlaps with the areas of perception and cognition, but does not 

focus upon them.

The thesis title uses the word ‘comprehension’ in the general dictionary sense:

• Comprehension:

1. a. The act or fact of grasping the meaning, nature, or importance of; understanding, b. 

The knowledge that is acquired in this way.

2. Capacity to include.

‘Comprehension is enhanced’ (in the words of the thesis title) by determining what information the 

user needs and making sure that it is presented to them, or that the discovery of such information is fa-

cilitated. The ‘information’ of interest is how features are represented, how well they are represented, 

what features are not represented and so on. Such information is a prerequisite to comprehension. 

This corresponds to ‘read fact’ and ‘read pattern’ of a knowledge crystallization task as described by 

Card et al. (1999).

1.3 Objectives

The overall objective of this work was to examine the usefulness of signature exploration in increas-

ing the comprehension and choice of visual displays of complex data. The underlying aim is to 

increase comprehension of such displays, so that an analysis of obstacles to comprehension and rel-

evant current techniques was also undertaken. Whilst it is defined more precisely in this thesis, in 

essence, the term signature exploration is used as a convenient phrase to describe the general use 

of specially constructed datasets to reveal the behaviour of the transformations and representations 

involved in visual displays.

1.3.1 Research Approach

The approach taken for this work was as follows:

• Analyze aspects of the visualization process to determine obstacles to comprehension.

• Analyze experience of users and potential users of complex data visualization systems:
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-  Biologists: protein data (structural and functional). Partly documented in the paper 

Approaches to visualisation in bioinformatics: from dendrograms to Space Explorer 

(Schroederet al. 2001).

-  Computer scientists: multi-agent system data. Carried out during an industrial placement 

with BTExact’s Future Technologies Group.

-  Managers: business data. Views from business users in discussions following presenta-

tions on data visualization as part of the Department of Trade and Industry’s Software 

Outreach programme: ‘Visual Data Mining: Theory and Applications’ (25th April 2002) 

and ‘Visual Data Mining and its Application in Biology’ (12th March 2003) presented 

jointly with Michael Schroeder. Also as a result of discussions with the voice and data 

recording company, Eyretel.

• Analyze different purposes of visualization of complex data.

• Implement initial prototypes of biological, multi-agent system and web site usage data in 3D 

using VRML.

• Develop concept of signature exploration and means of its application based on discussions 

with users, experience of initial prototypes and academic peer review (submitting and present-

ing papers at workshops in visual datamining (Noy and Schroeder 2001,2002a)).

• Conduct feasibility study.

• Examine relevant literature for each of the proposed means of application and implement illus-

trations of each approach.

• Review obstacles.

• Summarize findings in a framework identifying obstacles to comprehension and techniques to

assist.

• Evaluate framework by applying to existing visualization applications.

The reader should be aware that this is a large problem area and, since the scope of the work was 

so wide, the question of how to focus the research arose. It was clear that the entire duration of the 

PhD could be spent investigating a specific technique or aspect. However, restricting the study to 

one aspect would have meant that promising results in other areas were not uncovered and that the 

value of the overall concept could not be assessed - the project would become a very different one. 

Thus is was decided to maintain the meta-level, concept-level approach to assess the value over the 

whole area, to identify areas of most promise and to maintain the wide scope of the remit. Therefore
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the study of each of the five signature exploration approaches was limited to the use of illustrative 

applications. It would have been impossible to produce a finished application containing all the 

proposed techniques, so that the work was approached as a series of experiments, some of which 

required new interfaces to be created within the application, some of which required programmes to 

be written and investigations carried out separately from the application.

The work takes place in the context of the ongoing development of an existing tool containing 

clustering and visualization algorithms, Space Explorer. New functionality and interfaces were added 

to enable the proposed techniques to be illustrated - the application providing a test bed for the 

experiments. Thus the focus of the work was the exploration of the overall aim, not the production 

of a prototype application.

1.3.2 Hypotheses

To provide focus for the examination of signature exploration, the following hypotheses were used:

1. The application of the concept, signature exploration, aids the comprehension of visualizations 

of complex data.

2. The application of signature exploration aids the choice of display of complex data.

3. The application of signature exploration can form the basis of a framework for the design of 

visualization systems for increased comprehension.

4. The application of signature exploration will lead to the development or specification, or both, 

of a suite of techniques for aiding comprehension.

1.4 Criteria for Success

The goals of the previous section can be broken down into a number of criteria for success:

1. Defining a concept for applying constructed data, signature exploration.

2. Specifying a set of techniques for the application of constructed data.

3. Identifying problem areas and obstacles.

4. Reframing existing techniques.

5. Implementing examples of the different techniques.

6. Developing a framework for the design of visualization systems for increased comprehension.

7. Specifying a set of techniques for aiding comprehension of visual depictions.
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Chapter 13 evaluates the research presented in this thesis against these criteria.

1.5 Structure of Thesis

This thesis is organized into thirteen chapters and an appendix. This first chapter has given an 

overview of the work of the thesis and provided some background as rationale and motivation. Ob-

jectives have been discussed, hypotheses posed and criteria for success set. This description of the 

thesis structure concludes the chapter.

The remaining chapters divide roughly into three parts: firstly, a discussion of data formats, layout 

and morphologies for visualization, leading to a review of open questions for the field; secondly, the 

definition and investigation of signature exploration; and thirdly, the proposal of a framework and set 

of practical techniques together with evaluation and conclusions.

The content of each chapter is as follows:

Chapter 2 examines the different types and structures of data for visualization. It suggests that 

it is useful to consider the starting point for the data to be a set of entities and a log of events from 

which various types and structures of data may be derived. Obstacles to comprehension arising from 

these elements are identified.

Chapter 3 examines the different ways that data can be transformed into a form that can be 

displayed. It shows that there is an interchangeability between graph layout and proximity data 

on the one hand and multivariate data on the other. General issues, such as time complexity and 

scalability are discussed, as well as the number of dimensions available for direct mapping and the 

way that human perception impacts upon the potential and limits of visual depiction. Obstacles to 

comprehension arising from these elements are identified.

Chapter4 is a survey of visualization morphologies, loosely grouped as direct table mapping (with 

or without dimension reduction) and tree representations. Navigation and interaction are discussed, 

as they become problematic with increased size. A summary lists the ways that the representations 

and abstractions present challenges to understanding for the user.

Chapter 5 revisits the open questions of the field in light of the breadth of developments and 

possibilities indicated in the previous three chapters. It outlines five questions and concludes that the 

support of the user's comprehension of visual depictions is a key issue which relates to. and serves, 

the others. Two of the open questions, regarding composite tools and visualizing complex systems, 

form the basis for a design for a complex system viewer whose ongoing development is the context 

of this work.

Chapter 6 defines the signature exploration concept and describes five proposed techniques. Each 

technique involves the production or provision of specially constructed data containing a feature or 

features of interest.
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Chapters 7 to 10 examine the five techniques for applying signature exploration (two are com-

bined in Chapter 9).

Chapter 11 examines the obstacle presented in the form of accuracy. It returns to the literature for 

relevant work. An empirical study is described which explores accuracy of layout and describes two 

developments that resulted from this study - a new layout algorithm and a form of profile exchange 

for agents that is conveniently lightweight and private.

Chapter 12 draws together the results of the work into a framework for the design of visualization 

systems for increased comprehension and puts forward a list of readily applicable techniques.

The last chapter, Chapter 13, discusses the contributions made by the research, evaluates the work 

against the criteria for success of this introduction, and outlines future work.

The appendix gives an example of the application of the framework to a different visualization 

scenario in which the tool Attribute Explorer (Spence and Tweedie 1998) is used.
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Chapter 2

Data Types and Structures

2.1 Introduction

Since the starting point for visualization is data, the type of data to be visualized and the data struc-

tures involved need to be examined. It will be shown (partly in this chapter and partly in the next) 

that structures and types can be, to some extent, transformed one to another. The fluidity between 

structures leads to the need for a base structure that other structures can be considered to derive from. 

Such a structure is also useful because the data, in its raw form, allows the derivation of different 

structures. The discussion of possible base structures is also relevant to the design of generic vi-

sualization tools, (leaving aside the discussion of the extent to which generic tools are possible or 

desirable), since a generic application needs a base data structure to start from.

Aside from the data selected for visualization, there is associated implicit data, for instance 

through the naming of the objects or variables. Various forms of such associated data are described as 

metadata. Metadata is included in this discussion of the chosen starting data, because it is becoming 

more common, and desirable, to link in data from other sources during the visual interaction. This 

linking of other data is described in the relate type of the task taxonomy of Shneiderman (1996), 

though the emphasis of the author is the linking of general information, rather than other specific 

datasets. The selection of subsets of the data attributes and the generation of new attributes are is-

sues of similar relevance, since the resulting visual depiction is highly dependent upon the choice of 

attributes.

This chapter describes types and structures of data, suggests a base structure for complex data and 

discusses various forms of metadata, together with selection and standardization. Comprehension 

issues arising out of this discussion of data types and structures are noted. The content of this chapter 

forms the basis from which to examine, in the following two chapters, layout and morphologies for 

visualization and to further examine aspects which present comprehension difficulties for the user.
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2.2 Types

In genera] data is considered to relate to a number of objects or entities. These objects are generally 

described by a set of variables, or attributes, and between the objects there may be explicit (rather 

than derived) inter-object relationships. The terms variable and attribute are used interchangeably 

here. For instance, telephone customers may be considered to be the objects, described by properties, 

such as whether they are a business customer or not, what tariff band they have chosen etc. These 

customers may call one another, an example of an explicit relationship. What constitutes an object 

is not examined in detail here, except to mention two points. Firstly, ‘object’ covers a wide range 

of conceptual entities, for example Wagner (2003) allows an entity (object) to be an agent, an event, 

an action, a claim, a commitment, or an ordinary object. Secondly, variables and objects are inter-

changeable, since, where a relation exists between two sets of objects, the inverse exists also. For 

instance, in the call data introduced on page 6, the objects are customers. However, the data can 

also be looked at from the point of view of the destinations as objects, which allows clustering to be 

carried out to examine the similarity of the destinations, rather than the customers.

2.2.1 Variable Types

Variable types divide into two groups: qualitative and quantitative. Qualitative variables are variables 

that can be placed into distinct categories, according to some characteristic or attribute. They can be 

divided as follows:

• Binary: a binary variable can take one of two states, for example, ‘true’ or ‘false’.

• Multistate: these are variables for which there are more than two states or categories. If the 

categories are ordered, the categorical variable is described as ordinal. If not ordered, the 

categorical variable is described as nominal.

Quantitative variables are numerical in nature and can be ordered or ranked. They can be divided 

into two groups, discrete or continuous. Discrete variables can be assigned values such as 0, 1 , 2, 

and are said to be countable. Continuous variables can assume all values between any two specific 

values and are obtained by measuring.

Often datasets contain different types of data. The examples used in this thesis are confined to 

those using a single variable type, quantitative, for convenience. Quantitative data can be transformed 

into qualitative data, with associated loss of information, which makes this transformation one-way 

only.
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2.2.2 Data Types

Card et al. (1999) remind us that the most common way of using space in visual displays is to mirror 

the physical world. Where there are spatial variables that can be mapped directly to the spatial 

substrate of a visual structure, the data are described as physical. Examples given are molecules, 

medical images, brain structure, meteorology, space exploration and astrophysics. The visualization 

of such data is the most direct in mirroring the physical world. Leaving aside physical data, Card et al. 

(1999) consider four ways that space is used to encode abstract data: ID, 2D, 3D; multiple dimensions 

>  3; trees; networks (Figure 2.1). ID, 2D, 3D refers to visualizations that encode information by 

positioning marks on orthogonal axes. Multiple dimensions > 3 concerns the harder problem of data 

that cannot be visualized with three orthogonal axes. Trees and Networks relate to visualizations 

that use connection and enclosure to encode relations between objects. By enclosure is meant the 

techniques of enclosing a level of a hierarchy within a symbol representing a higher level as in 

treemaps (see Section 4.4.5).

many axes or complex use of space

Figure 2.1: The way space is used to encode data in visual structures according to Card et al. (1999). 
Leaving aside physical data, this proposes four different ways to encode abstract data.

Though this provides us with a taxonomy of encodings for abstract data, this also is a taxonomy of 

data types in the general sense of ‘types’, and so provides a way of thinking about the different types 

of data for visualization. Indeed, adding temporal gives Shneiderman’s information visualization 

taxonomy by data type (Shneiderman 1996) as in Figure 2.2, though this taxonomy does not consider 

dimension reduction or discuss the aspect of transformation between types.

Data without physical reference are often described as abstract data. Generally speaking, the 

field of information visualization considers only the visualization of abstract data, as in the definition 

given by Card, Mackinlay and Shneiderman in the introductory chapter in their book ‘Readings in 

Information Visualization’ (Card et al. 1999):

’’Information Visualization: The use of computer-supported, interactive, visual represen-

tations of abstract data to amplify cognition.”
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real-world objects

Figure 2.2: Data types for information visualization, according to Shneiderman (1996)

Elsewhere in the text (Card et al. 1999, p. 7) they describe abstract data as that which does not have 

any ‘obvious spatial mapping ... nonphysically based'. Spence (2001), in his book ‘Information 

Visualization', does not define the term explicitly, but says ‘the need to display the physical thing 

is not important ...and is often entirely irrelevant . . . in information visualization’ (p4). This is a 

narrowing of the meaning of ‘information’ as it is generally used. This narrow interpretation of the 

word ‘information’ as established in the field of information visualization is followed within this 

thesis and the data used for illustration is abstract in the sense of being nonphysically based, though 

the application is more general.

The use of the word ‘types’ here is distinct from how that word is used in programming where a 

datatype is a name or label for a set of values and some operations which can be performed on that set 

of values'. The notions of scope, lifespan, and initiation are also not directly relevant. One can find 

parallels for scope, lifespan and initiation, in that types can be transformed and thus have initiation, 

scope and lifespan in the context of a data exploration. Type safety is also a relevant concept, though 

with a different meaning, since a particular visualization method is suitable only for particular types 

of data. However, these terms are not normally used in the discussion of visualization systems.

2.3 Data Structures

Some surveys take a graph (see Definition 1 below) as the central data structure from which others 

may be derived (e.g. Herman et al. (2000)). This thesis takes the two main ways of expressing the 

overall structure of the data as graph form  and table form. The more general consideration of the 

originating structure of the data, and of time and events, are examined in Section 2.4. To a certain 

extent graph and table forms are interchangeable, i.e. some data can be expressed equivalently in 

both. The following definitions cover:

’Wikipedia http://en.wikipedia.org/wiki/Datatype
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• Graph form: graph (Definition I), connected graph (Definition 2), tree (Definition 3)

• Table form: multivariate data (Definition 4), proximity data, (Definition 5.)

Definition 1 Graph, Digraph

A graph G is a pair (V. E), where V  is a finite non-empty set o f elements called vertices or nodes 

and E  is a finite set of distinct unordered pairs of distinct elements o f V  called edges. The edges 

may have values, called weights, associated with them. I f  directions are imposed on the edges o f a 

graph, interpreting the edges as ordered rather than unordered pairs o f vertices, the corresponding 

structure is called a directed graph or digraph.

Definition 2 Path, connected graph.

A path from a vertex u in G to a vertex v in G is an alternating sequence o f vertices and edges,

v i , e i , v2,e2, . . . ,ek- 1,Vk

where V\ = u, vk = v, all the vertices and edges in the sequence are distinct, and successive vertices 

Vi and Vi+\ are endpoints o f the intermediate edge e*. A graph G (Definition I) is connected if there 

is a path joining each pair o f vertices of G.

Definition 3 Cycle, tree, rooted tree.

I f the definition of path, above, is relaxed to allow the first and last vertices (only) to coincide, the 

resulting closed path is called a cycle. A connected graph (Definition 2) which contains no circuits, 

or cycles, is called a tree. A vertex v o f a digraph G is called a root if there are directed paths from 

v to every other vertex in G. A rooted tree is a tree in which a distinguished vertex v may be thus 

identified

Definition 4 Multivariate data.

Multivariate data for a set o f n objects is an n x p, objects x variables matrix, whose (i , k)th 

element provides a value or category for the kth variable describing the ith object (i =  1, . . .  , n ;k  = 

l , . . . , p ) .

An example of multivariate data for three objects is shown in Table 2.1. The variable attribute 

values may represent a time series. The resulting matrix is referred to as a pattern matrix.
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xl x2 x3 x4
a 3 2 0 5
b 0 7 0 4
c 3 4 1 6

Table 2.1: Multivariate data example: attributes x \  to x4 for entities a, b and c.

Definition 5 Proximity data.

Proximity data for a set o f n objects is a symmetric n x n matrix, also called a dissimilarity or 

distance matrix D, whose (i , j)th element provides a measure o f the dissimilarity, dij, between the 

ith and jth  objects ( i , j  =  1 . . . . ,  n). The following conditions are required:

di3 > 0 

d a  —  0

di3 dji

D is said to be metric if it satisfies the triangle inequality -

dtj f_ djk + dfcj

for all triples o f objects ( i , j ,k) .

D is said to be Euclidean if there exists a configuration of points in Euclidean space Pj(i =  1 , . . . ,  n) 

with the distance between and Pj equal to dij.

If D  is Euclidean it is also metric, but the converse does not hold. Consider four points, three of 

which are located at the vertices of an equilateral triangle and the fourth is the centre of the triangle. 

Now slightly reduce the distance between the fourth point and all other points, D  is still metric, but 

not Euclidean. However, most layout methods (see Section 3.4) will still operate if the proximity data 

is not Euclidean. An example of proximity data is given in Table 2.2. Similar matrices can be used to 

describe relationships between entities that are not symmetric. Consider, for example, a messaging 

system: total messages exchanged may be represented (symmetric), or the messages sent from entity 

a to entity b recorded separately from messages sent b to a (asymmetric) (Schroeder and Noy 2001).

Multivariate data can be transformed into proximity data by the use of metrics which result in a 

set of dissimilarities or distances between objects. Distance measures are discussed in the following 

chapter in Section 3.4.2.

Card et al. (1999) give a reference model for visualization which moves from raw data, to data 

tables, to visual structures, to views. The raw data is described as being in ‘idiosyncratic formats’ 

such as spreadsheets or the text of novels. Notice that the raw data may already be a data table, since
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a b c
a 0 2 3
b 2 0 4
c 3 4 0

Table 2.2: Proximity data example: shows ‘distance’ between entities a , b and c.

it must be in some kind of format. The data tables are relations of cases (the entities or objects of 

our discussion) by variables plus metadata. The metadata in this case is the data that describes the 

relations in the form of labels of the rows and columns of the data table (various types of metadata 

are discussed in Section 2.5). Card et al. consider that a table of proximity data (which they call a 

two-way table) is not a data table according to their definition. They produce a version of the data 

table that satisfies their definition, but this is not as direct an expression of the data. Whilst the notion 

of data table as defined by Card et al. satisfies a useful reference model, for this thesis the emphasis 

is upon how we can conveniently think of the data. In earlier work visualizing data and considering a 

generic approach, tabular forms (of both proximity and pattern matrices) and graph forms suggested 

themselves as the two main ways. There is also a close correspondence between these forms and 

the structural forms that can be expressed as visual structures in visualization applications. The 

graph structure has also been studied in mathematics and continues to be (see for example, Matousek 

(2002)). Thus, for this analysis, both table and graph forms are used.

2.4 Base Structure for Complex Data

What is meant by complex data? This thesis uses the expression in a general sense to mean data that 

is complicated, that is not simple enough to visualize directly. This covers a wide range of datasets 

from the relatively small to the massive as discussed in Section 1.2. Such data includes that from 

complex systems.

The New England Complex Systems Institute (http://necsi.org/guide/whatis.hlml) defines com-

plex systems as follows:

Complex Systems is a new field of science studying how parts of a system give rise to 

the collective behaviors of the system, and how the system interacts with its environment.

Social systems formed (in part) out of people, the brain formed out of neurons, molecules 

formed out of atoms, the weather formed out of air flows are all examples of complex 

systems. The field of complex systems cuts across all traditional disciplines of science, 

as well as engineering, management, and medicine. It focuses on certain questions about 

parts, wholes and relationships. These questions are relevant to all traditional fields.

Briefly:
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A complex system has multiple interacting components whose collective behavior 

cannot be simply inferred from the behavior of components.

This emergence of a collective behaviour from interacting components is often termed e m e rg e n t  

behaviour, or e m e rg e n c e . Whilst the study of complex systems is the study of this emergent be-

haviour, all data is recorded as part of a complex system, since all entities must exist in the world 

as part of complex systems. Also data from complex systems is not confined to the emergent com-

ponent. For these two reasons, (that complex systems are often considered to be special, rather than 

general, and only relate to the emergent component), the term c o m p le x  d a ta  is used here, rather 

than d a ta  fro m  c o m p le x  sy s te m s . However, it is assumed that complex data encompasses data from 

complex systems.

In complex data, data tables and graph structures (hierarchies and a variety of networks) may 

coexist, thus it is desirable to make the starting point more general. This general structure may be 

the conceptual or actual originating data structure and is assumed to comprise entities with properties 

and relationships between the entities as introduced at the beginning of Section 2.2. The properties 

and relationships change over time. The entities exist in an environment, which is also changing. 

Actions and events may be considered separately or as the profile or h is to ry  of the entities, or as 

entities themselves. Systems are considered that exist in time, so there is a sequence of events. This 

view of the system suggests starting with a set of entities, together with a log of events, and deriving 

other data structures as required, as indicated in Figure 2.3. Whilst the actual originating data may 

consist of details of properties of a set of entities and a log of events (Definition 6), the data may 

be stored in various ways. It may be that all the data is put into a database that can be queried, or 

stored in some other form. Thus the conceptual base structure does not imply the form that the data 

is stored in, nor the actual originating data structure. It is a means to generalize the starting point for 

the visualization process.

Definition 6 L og .

A  log is  a  re c o rd  o f  e v e n ts  c o n c e rn in g  a  s e t  o f  e n titie s . E a ch  e n tr y  in th e  lo g  g iv e s  e v e n t in fo rm a -

tio n  in th e  fo r m  T im e. E n tity -n a m e , A c tio n -n a m e , A c tio n -p a ra m e te r s .

The time entry in the log is optional, but the entries in the log are assumed to be a time-ordered 

sequence, whether or not the time is specified. The action may be a change in a property value or it 

may involve an interaction with another entity, for example in sending a message. The creation of the 

entity itself can be considered as an event and therefore that there are no initial properties or entities.
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Figure 2.3: Possible data structures and origin for complex data.

2.5 Metadata

A set of data for analysis or visualization normally has an associated body of other information 

that does not appear explicitly in the data. This information can be described as meta-information 

or metadata. Metadata literally means data about data. It has also been described as ‘descriptive 

information about data’ (Card et al. 1999). Less commonly it is used to refer to transformed data 

(Tweedie 1997). It can also include the ordering of entries in the data table (Card et al. 1999, p. 18). 

The different types of metadata can be divided into those regarding structures that can be derived and 

those regarding linked sets of information. The most elementary forms of metadata are relationships 

between values of certain variables, or boundaries (upper and lower) for these values. Another simple 

form is that associated with variable names. For instance, the variable name Numbers implies that 

interpolation is possible, if the numbers are heights above sea level, for instance, and that interpolation 

is not possible, if the numbers represent, say, car accidents. This example is of implicit metadata in 

the variable name (more information is combined with the variable name), but the variable name 

Numbers o f Car Accidents would indicate this explicitly, since the use of natural numbers is implied. 

The other way that variable names can provide metadata is through providing linked information. For 

instance a destination of a telephone call Birmingham (a proper noun) can link to other data about 

Birmingham, or the variable name town (a common noun) can link to information about what a town 

is, how it may relate to the other variables and so on. The importance of this type of metadata is 

increasing with databases linked via the Web, and the development of the semantic web, as described 

in Chapter I on page 3. This type of metadata may also be seen as data about the current objects 

that is not being used and thus is a form of selection, which is discussed in the next section. As more 

datasets become available via the Web, and with the more widespread development and use of agreed 

ontologies, it will become the case that a dataset that one is viewing is only a portion of the data 

about the objects or attributes that are available in real time. In effect, an application can use the web
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as its database. MacEachren and Kraak (2001), for geovisualization, suggest new kinds of maps ‘no 

longer conceived of as simply graphic representations of geographic space, but as dynamic portals to 

interconnected, distributed, geospatial data resources.’ This dynamic portal to resources applies to 

many other kinds of data, not only that including geospatial referencing.

Metadata is particularly extensive for certain types of data, such as textual data, for instance 

where word counts (instances of words in a particular document) are involved. Metadata for word 

counts from textual data includes all of semantics, syntax and stylometry. Stylometry is the measure 

of style, which is assumed to contain distinctive and quantifiable elements, which are not consciously 

controlled by the author, but which mark the style of an author.

Is it always useful to consider the entire set of available metadata? Lebart et al. (1997) give 

an example in the area of image analysis concerning histograms of wavelengths of the colours of a 

Rembrandt, based on the colours of individual pixels. Only a fraction of the information contained in 

the original image is contained in these histograms, but it is possible that the shape of the histogram 

could distinguish a Rembrandt from a Rubens or Van Dyck. In many information retrieval tasks 

key words only are used, so that the document is reduced to a reduced set of words with no order 

or syntax. These examples, of a small amount of the available data being usefully employed, are 

repeated in many classification applications (see additional discussion in the next section).

2.6 Selection and Standardization

The question of whether to use available metadata, is similar to the question of whether to use all 

immediately available data, for instance, all data in a data table. Sometimes it is clear what variables 

should be used to describe objects. However, often variables have to be selected from many possi-

bilities; it is selection prior to the visualization process that is meant here, as distinct from selection 

during the process, such as by selecting a subset using highlighting. The process of selection is of-

ten not straightforward. The pattern recognition literature describes the appropriate specification of 

variables as feature extraction. It is tempting to include a large number of variables to avoid exclud-

ing anything relevant, but the addition of irrelevant variables can mask underlying structure (see for 

example Gordon 1999, p. 24).

Having determined appropriate variables, (here is then the question of standardizing or differen-

tially weighting them. One aspect to the standardization is that two variables can have very different 

variability across the dataset. It may or may not be desirable to retain this variability. Standardiza-

tion may also be with respect to the dataset under consideration or with respect to a population from 

which the samples are drawn. In the case of quantitative variables, standardization can be made by 

dividing by their standard deviation or by the range of values they take in the data set. The idea of 

standardization lies within the larger problem of the differential weighting of variables.
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Thus the exploration of complex data is tempered by the knowledge that for many purposes a 

small subset only of the data is required. One goal of visualization applications must be to facilitate 

further selection and manipulation of the data by the user - the modification and recreation of the 

feature list. Whilst the importance of this area is acknowledged, the exploration described in this 

work confines itself to the visualization of data largely ‘as given'.

2.7 Comprehension Challenges

This section notes specific points from the descriptions and discussions above that introduce difficulty 

in comprehension or require special facilities. The difficulties can be summarized as arising from the 

interchangeability of objects and attributes, the fluidity between structures, the variety of types and 

structures of data to be visualized, the availability of large amounts of metadata of varying types, and 

the general impact of selection and standardization. These problems are described in more detail in 

Table 2.3, together with suggested visualization facilities to assist. The suggested facilities fall into 

two groups: those needed to make the user aware of significant aspects of the visual representation 

(for instance: the data/representation mapping, the sensitivity of representations to selection and 

normalization, the different ways the data can be viewed); those needed to allow transformations 

(between types and structures) and selections.

An additional challenge to comprehension of multivariate data lies in the difficulty of conceptual-

izing high dimensional spaces. How are we to grasp the concept of, say, a 20-dimensional structure? 

This is a central question of the book ‘Multidimensional Man" (Atkin 1981). Atkin argues that ‘hyper-

volume’ is a ‘lazy’ term, since it does not specify the number of dimensions, and that it is misleading, 

since it implies ‘something like a volume only more so’ (p72). The treatment of dimensions greater 

than three as extensions of the Euclidean system for dimensions 1, 2 and 3 is very convenient (the 

metrics introduced in the next chapter in Section 3.4.2 do this), but in fact a variety of mathematical 

effects can be observed when one increases the dimensionality of the data space, some of which are 

non-intuitive (Bohm et al. 2001). Specifically, important parameters such as volume and area depend 

exponentially on the number of dimensions of the data space and most of the volume of a hypercube 

of (d) dimensions is very close to the (d — 1) surface of the cube. Atkin suggests that another way of 

looking at the dimensionality of the data is to consider the dimensionality of individual objects in the 

set, excluding variables with a value of zero. Thus, for the calldata set, each telephone customer will 

no longer be considered to possess 276-dimensional data, but 10- or 15-dimensional data, say, de-

pending upon how many destinations they call. These dimensions are renamed q-values. Q-analysis 

involves the examination of how these sets of g-values intersect and the implications for the extent 

and nature of connection between the objects (Atkin 1981).
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Section Obstacle Required Facilities

2.2 Types What constitutes an object? Ordi-
nary objects, but also events, ac-
tions etc.

Convey the nature of differ-
ent kinds of objects.

Object/attribute interchangeability. Allow interchange of rows 
and columns.

2.2.1 Variable Types Different variable types, some can 
be transformed into others.

Allow transformation of 
variable types. Make user 
aware of different types.

2.2.2 Data Types Virtual world automatically viewed 
as ‘mirror of the physical world’, 
which may be misleading. How is 
space used to encode data?

Methods to reveal the 
data/representation map-
ping.

Different types of data: ID. 2D. 
3D, temporal, multiple dimensions, 
tree, network.

Make user aware of differ-
ent types.

2.3 Data Structures Different structures sometimes 
equivalent.

Allow expression in graph 
and table forms.

2.4 Base Structure for 
Complex Data

Many structures derivable from 
one dataset, especially for complex 
data, e.g. log. Difficult for user to 
derive and view these structures.

Allow interaction to form 
and view different struc-
tures. Support for multiple 
view applications.

2.5 Metadata Vast amount of metadata available, 
including resources of the Web, 
choice and manipulation difficult.

Allow advanced selection, 
transformation and linking. 
Support for multiple view 
applications.

2.6 Selection and 
Standardization

Visual representation very sensitive 
to selection and normalization.

Provide facilities to carry 
these out easily. Make the 
user aware of the sensitiv-
ity.

This section Intrinsic difficulty of conceptualiz-
ing dimensions >  3. Mathemati-
cally this space has special charac-
teristics and its behaviour is some-
times unintuitive.

Support comprehension of 
encoding and transforma-
tion. Use other concepts 
of dimensionality such as in 
Q-analysis.

Table 2.3: Obstacles to comprehension of data visualization from types, structures, metadata and 
selection, with facilities required to assist.
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2.8 Summary

This chapter began by considering the starting point for visualization, the different types and struc-

tures of data. It has shown that the word ty p e  means two different things in this context, here the 

terms a ttr ib u te  or v a r ia b le  ty p e  and d a ta  ty p e  are used to make the distinction. Variable types are 

divided into q u a li ta t iv e  and q u a n ti ta t iv e , according to whether the data are in categories or are nu-

merical and the result of measurement. Qualitative data are divided into n o m in a l  and o rd in a l. Data 

types for information visualization are abstract in the sense that physically based data are excluded; 

they are divided into temporal, network, tree, ID, 2D, 3D, and multiple dimensions. Structures can 

be divided into those based upon a data table and those based upon a graph structure with nodes and 

edges. Some of these structures are equivalent, for instance, a graph may be expressed as a data table 

of proximity data.

The need for an underlying base data structure, from which graphs and data tables are considered 

to derive, has been outlined. A log of events relating to a set of items or entities is suggested as a 

suitable base structure. Such a structure is useful for the visualization of complex data, particularly 

that relating to complex systems such as multi-agent systems, and to provide a generic starting point 

for visualization systems.

The issue of associated metadata has been discussed, noting that there is an ever increasing avail-

ability of metadata. The importance of selection and standardization have also been stressed, as they 

have a high impact upon the resultant graphic and require the development of facilitating interfaces 

for visualization applications.

Comprehension challenges arising from this discussion of data have been noted and suggested 

facilities fall into two groups, those needed to provide extra functionality (e.g. to allow linking of 

metadata) and those to make users aware of important characteristics of the visual representation 

(such as the data/representation mapping).
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Chapter 3

Viewing the Data - Layout

3.1 Introduction

Having examined selection, types and structures of data in the previous chapter, this chapter considers 

how to create a visual representation of the data on a computer screen. Some of these ideas relate also 

to the production of visual representations for pages in books and other essentially static artefacts, but 

the primary focus here is the use of computers, since this medium has significant extra capabilities in 

the form of interaction and computational power. For instance to change viewpoints in real time in 

complex 3D structures.

Putting the data onto the screen essentially means finding positions (on the screen) and forms (of 

the symbol used on the screen) to represent the data in 2D (or simulated 3D). It emerges that there are 

ways of increasing these 2 (or 3) dimensions available for direct representation, for example by using 

attributes of the symbol used on the screen to represent the object, such as, say, its colour and shape. 

The number of these dimensions available for direct mapping of attributes is discussed in this chapter. 

Also examined are issues concerning practicalities (perception, time complexity, predictability and 

scalability) and aesthetics.

And so to the actual layout of data on the screen. The term layout is used to mean the set of 

positions on the screen of a set of symbols (often points) that represent the objects in the dataset 

under consideration. Though the discussion is extended here to include the mapping of dimensions 

to characteristics such as colour and shape, that do not primarily concern position. This allows the 

consideration of the direct mapping of higher dimensions, which is extended in the following chapter 

on visualization morphologies. The chapter concludes with a summary and the noting of areas of 

comprehension difficulty arising from the layout phase.
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3.2 Number of Dimensions Available for Visualization

How many dimensions in the data can be mapped to the visual representation? Starting from the three 

dimensions provided by linear perspective, ‘space and time’ is a way of providing four dimensions 

(use the fourth variable as time). Jacques Bertin in ‘La Semiologie Graphique’ (1967, translated in 

1983) (Bertin 1983) identified eight primary visual variables: size, value, texture, colour, orientation, 

shape and the two dimensions of the plane. The first six were described as re tin a l v a r ia b le s , the last 

two as p la n a r  d im e n s io n s . Making a similar distinction, Benedikt (1991) describes dimensions that 

map to a point as in tr in s ic  and those that map to attributes such as colour as e x tr in s ic . MacEachren 

divided c o lo u r  into lu te  and sa tu ra tio n  and introduced four dynamic variables (MacEachren 1994): 

order, duration, rate of change, and phase or synchronicity. Ware (2000a) identifies the following 

categories: spatial position, colour, shape, orientation, surface texture, motion coding and blink cod-

ing. These categories give about 17 possible dimensions. Ware does not include all of MacEachren’s 

dynamic variables, so this total could be increased, but, at any one time, not all of these dimensions 

are available, since some are interdependent (texture - colour, blink - motion). Also the relevance of 

some visual variables is limited since the number of resolvable steps available, the g ra n u la r ity  of the 

visual variable, may be small. Ware considers that eight dimensions are the maximum that can be 

mapped clearly.

3.3 Layout Issues

This section concerns the various aspects that arise in discussion of layout techniques (see e.g. Her-

man et al. (2000))1:

• perception for design: how must visual representations take account of how we perceive graph-

ics on the screen?

• planarity and aesthetics: how the layout needs to be arranged for a pleasing and effective result?

• time complexity: how long does the layout take?

• predictability; will the layout always be the same for the same data?

• scalability: can a particular layout technique be used for large datasets?

• usability and evaluation: how usable and effective is the layout? *

' Some of these issues apply equally to the morphology aspect discussed in the next chapter, but they are introduced here 
for convenience.
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3.3.1 Perception for Design

What of the human viewer? The human visual system can be thought of as an extremely wide 

bandwidth input channel (from the computer system to the human). The challenge is to make use of 

this and the potential pattern processing power of the brain that lies behind it. In concrete terms there 

are aims such as simultaneous viewing of large datasets and identification of clusters, relationships 

and patterns, as well as the finding of a narrow set of items in a large collection. These two areas can 

be described as b ro w se  and k n o w n -ite m  sea rch .

Whilst, in reality, the flat screen only provides us with one or two dimensions for display, we can 

simulate a third in the usual way, using the geometry of linear perspective. In fact the real world 

provides many different types of information about 3D space. These are described as depth cues and 

a considerable body of research concerns itself with how the human visual system processes these 

depth cues (Ware 2000a, p.274). A general theory of space perception would indicate which cues 

were most applicable in which situations and how the different depth cues interact. Unfortunately 

this has not yet been developed and the work is difficult because of the task dependency of space 

perception.

3.3.2 Planarity and Aesthetics

Where objects in the dataset are represented by objects on the screen and links between the objects 

shown as connecting lines, that is, a graph structure is being shown, planarity means the absence of 

crossovers of the connecting lines (Definition 7).

Definition 7 P la n a r  g ra p h . A planar graph is a  g ra p h  w h ic h  ca n  b e  e m b e d d e d  in  th e  p la n e  in su ch  

a w a y  th a t n o  tw o  e d g e s  in te r se c t g e o m e tr ic a lly  e x c e p t a t a  v e r te x  to  w h ic h  th e y  a re  b o th  in c id en t.

A system of aesthetics exists which gives a number of requirements that the layout, particularly 

of graphs, should satisfy such as:

• Planarity of the graph.

• Arranging similar groupings in different parts of the graph in the same way.

In the second category specific requirements are included e.g. certain nodes having to appear on 

the left, others on the right and so on.

Aesthetics covers the concept of ‘what is a good graphic?’ Perceptual psychologists, statisticians 

and graphic designers (see e.g. Bertin (1983), Cleveland (1993), Tufte (1983, 1990)) offer guidance 

for static presentation of data, but dynamic displays are considered to take us beyond current wisdom 

(Shneiderman 1996).
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3.3.3 Time Complexity

Time complexity is the way in which the number of steps required by an algorithm varies with the 

size of the problem it is solving. Time complexity is normally expressed as an order of magnitude, 

e.g. 0 ( N 2) means that if the size of the problem, N ,  doubles then the algorithm will take four times 

as many steps to complete.

For systems requiring real-time interaction, visualization updates must be done in very short time 

intervals so that the user is unaware of any delay. Thus the time complexity of algorithms is important 

for interaction. Where the product of the visualization process is a single, static visualization, more 

time will be available to achieve the layout.

3.3.4 Predictability

What is meant by predictability is that two different runs of one algorithm, involving the same or 

similar graphs or data tables, should not lead to substantially different visual representations. Lack 

of predictability may or may not be a problem, depending upon the application.

3.3.5 Scalability

Scalability is a measure of how well a solution to some problem will work when the size of the 

problem increases. For visualization this has a number of aspects:

• How to get so many elements, or their representations, on the screen. This is determined by a 

number of factors, depending upon the visualization representation used. The obvious limit for 

any kind of visualization is the resolution of current displays which is currently around one to 

three million pixels, e.g. for I9inch displays with a resolution of 1024x1280 pixels about 1.3 

million pixels.

• Can the layout be determined in real time? Is interaction, to produce query results or new 

views, feasible? There are also related issues concerning the practicality of searching and 

storing large quantities of data and the highlighting of entities in such datasets. These issues 

are also time complexity issues.

• Can the user orientate themselves so as to have an overview as well as being able to focus on 

detail? Navigation problems are exacerbated as dataset size increases. Techniques to address 

this problem, described as providing/ocws + context are examined in Section 4.5.1.

searching and storing large quantities, quickly highlighting entities
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3.3.6 Usability - Evaluation

The meaning of usability for information visualization depends upon the purpose of the application. 

It includes attractiveness, meaning, flexibility, navigation and interaction, scalability. Evaluation of 

usability is acknowledged to be difficult (Herman et al. 2000) and statistics from IEEE Informa-

tion Visualization conference proceedings papers show that less than 10% evaluated their systems 

(Robertson 2000).

3.4 Layout Types and Algorithms

For convenience, layout types are examined in two groups: layout of graphs and layout of multivariate 

data. Figure 3.1 shows an overview of layout methods by these groups. For both categories a degree 

of transformation may be required and this aspect is included in this description.

3.4.1 Graph Layout and Proximity Data

Graph layout divides into two main areas:

• Where the requirement is for a pleasing and appropriate layout of a structure where the edge 

weight (Definition 1) is not specified.

• Where the edge weight is specified and is the basis for the position of the node, this corresponds 

to proximity data (note also that proximity data can be derived from multivariate data).

These areas reflect the level of constraint on the layout as shown in Figure 3.1. The absence 

of weights for the links in the graph means that there is a free choice of position from the point of 

view of relative strength of connection (although the layout is still constrained by showing links and 

planarity requirements). A fully connected, weighted graph corresponds to proximity data.

Trees, spanning trees, minimal spanning trees, hierarchical clustering, force directed systems, 

hyperbolic layout and Principle Coordinates Analysis (PCoA) (i.e. all the methods shown in the 

graph box in Figure 3.1) are described in the following sections. Briefly they are as follows:

• Trees. Simpler to visualize in one’s mind, hierarchical information in the form of trees are also 

simplest to lay out.

• Spanning trees can be used to reduce the number of links that are shown and make it easier to 

provide a layout for weighted or unweighted connected graphs.

• Minimal spanning trees provide a layout based upon minimizing the sum of the weights of a 

spanning tree.
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Graph

Multivariate data

Figure 3.1: Overview of layout methods by data type. The two main boxes show methods for ‘graph’ 
layout (within the dotted line) and ‘multivariate data' layout. Multivariate data layout methods divide 
into those involving dimensions reduction and those directly mapping the variables to the graphic. 
Graph layout is constrained by the presence or absence of weights for the edges, and by its com-
pleteness. This corresponds to layout for networks. Trees lie at the incomplete end of the graph 
constraints. Proximity data derived from multivariate data correspond to a complete weighted graph.
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• Hierarchical clustering generates tree structures from proximity data.

• Hyperbolic layout is a special layout that allows large hierarchies and networks to be viewed 

with a detailed focal area. This is an example of a special method of distorting the layout which 

allows greater numbers of objects to appear on the screen while maintaining a detailed focal 

area (focus + context methods, see Section 4.5.1).

• Force directed systems and PCoA are methods of finding layouts for proximity data. Force 

directed systems are heuristics based on a physical analogy, PCoA involves matrix transfor-

mation: both approaches give a I, 2 or 3 dimensional layout that satisfies or approximates the 

proximity data. The class of techniques that analyze a matrix of distances or dissimilarities in 

order to produce a representation of the data points in a reduced-dimension space is described 

as m u ltid im e n s io n a l sc a lin g  (Kruskal 1977; Webb 1999). Minimal spanning trees can also be 

used, although it is sometimes suggested that this is then not referred to as multidimensional 

scaling, because links are shown (Chen 1999, p.45). The first stage of the matrix transforma-

tion, PCoA, of a dissimilarity matrix, results in a pattern matrix which can be processed from 

scratch (although this may not always be valid (Kruskal 1977)).

Tree

In one sense this is the easiest to represent, as there is a clear way to proceed - start at the root (for 

rooted trees) and lay each level of the tree out beneath. These layout types usually have the lowest 

time complexity which is O (N ), where N  is the number of nodes. Although, as with any type of 

structure, there are problems in laying out and navigating trees of great size. The classical layout 

algorithms are all predictable. An example is the layout shown in Figure 4.14 using the Reingold and 

Tilford algorithm.

Spanning Trees

Definition 8 S p a n n in g  tree. I f  G is a  c o n n e c te d  g ra p h  th en  a spanning tree in  G is  a  c o n n e c te d  

s p a n n in g  su b g ra p h  (D e fin itio n  9), c o n ta in in g  n o  c ircu its .

Definition 9 S u b g ra p h . A subgraph o f a g ra p h  G = (V  (G ), E(G))  is a  g ra p h  H  =  (V (H).  E( H) )  

su c h  th a t V( H)  C V(G)  a n d  E ( H ) C E(G).  I f V ( H )  =  V(G)  then  H  is  c a lle d  a  spanning 

subgraph.

Since tree layout algorithms have the lowest complexity and are simplest to implement, the tree 

structure can be used to deal with a general connected graph. A spanning tree is extracted and 

additional edges added. One approach for edge extraction visits nodes of the graph in a breadth first
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search and collects edges to form a tree. The choice of the starting node (which becomes the ‘root’ 

of the tree), as one whose distance to all other nodes is minimal, can improve the result. Using a 

spanning tree layout can also gain predictability of the layout (Herman et al. 2000). Spanning trees 

are also used to solve the problem of too many edges in a graph layout. In general the problem of 

overcrowding of links can be avoided by not showing any and relying on spatial configuration to 

show relationships - or redundant links can be removed in advance by algorithms such as Pathfinder 

Network Scaling (Chen 1999, p.45) and minimal spanning trees (see next section).

Minimal Spanning Trees

A graph often contains redundancy in that there can be multiple paths between two vertices. This 

redundancy may be desirable, for example to offer alternative routes in the case of breakdown or 

overloading of an edge (road, connection, phone line) in a network. However, we often require the 

‘cheapest’ sub-network that connects the vertices of a given graph. The total cost or weight of a tree 

is the sum of the weights of the edges in the tree. A minimum spanning tree of a weighted graph G 

is the spanning tree (Definition 8) of G whose edges sum to minimum weight. There can be more 

than one minimum spanning tree in a graph, (consider a graph with identical weight edges). Thus 

spanning trees can be considered as a method for reducing the number of links shown in graph layout, 

or as an alternative method of dealing with proximity data.

Hierarchical Clustering

Hierarchical clustering procedures are often used for summarising data structure. The result is a 

nested set of partitions represented by a special tree diagram or dendrogram. A hierarchical tree 

structure can be formed from a minimum spanning tree (corresponding to single-link hierarchical 

clustering (Webb 1999, p.278)).

Force-directed Systems

Force directed algorithms (di Battista et al. 1999, chapter 10) draw graphs using a physical analogy. 

The graph is viewed as a system of bodies with forces acting upon the bodies. A position is sought 

such that the sum of forces on each body is zero. An example is spring embedding (Quinn and 

Breuer 1979), which considers nodes as mutually repulsive charges and the edges as springs that 

attract connected nodes. When the spring energy in the entire system reaches the global minimum a 

solution has been reached. However, the system can be stopped at any point and the layout may be 

acceptable at the stage reached.
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Hyperbolic Layout

The hyperbolic layout (Lamm et al. 1996) provides graph visualization which allows large hierarchies 

and networks to be viewed while maintaining a detailed focus. Mainly used for trees, hyperbolic lay-

out produces a distorted view of a tree resembling fish-eye distortion (described in the next section). 

Three examples of implementations are shown in Figure 4.21 on page 62. An important feature of 

hyperbolic geometry is that the length of a line segment is defined as a function of the position of 

the points with respect to the perimeter of a containing disc and so segments become exponentially 

smaller when approaching the perimeter.

Principal Coordinates Analysis

Principal Coordinates Analysis (PCoA), starting with a dissimilarity matrix, first finds a pattern ma-

trix which satisfies the distances, then transforms this into its principal components so that the two 

or three most important factors can be displayed in 2D or 3D space (Gordon 1999. p. 149) in a sim-

ilar fashion to Principal Components Analysis (see next section). PCoA is sometimes referred to as 

‘classical scaling’, as it was originally known.

3.4.2 Multivariate Data

There are four main groups of methods for viewing multivariate data, excluding the selection of 

subgroups of data (e.g. taking selections of 2 or 3 dimensions to view directly in a scatterplot). These 

are:

• The matrix can be viewed directly as a colour map. Colour maps and other such methods, 

described as pixel-oriented visualization techniques, are illustrated in the next chapter, in Sec-

tion 4.3.1.

• Selections of attributes can be represented by using the three Euclidean dimensions in addi-

tion to time and mappings to colour, shape etc., as described in Section 3.2 and illustrated in 

Section 4.3.

• Special visualization forms have been developed to handle the direct display of multiple at-

tributes, these include hierarchical axes (Mihalisin et al. 1991) and parallel axes (Inselberg 

1997), illustrated in Section 4.3.3.

• Dimension reduction can be achieved directly (by e.g., Principal Component Analysis or Self 

Organizing Map) or indirectly (by first deriving a proximity matrix based on a defined dis-

tance metric). Principal Components Analysis, Self Organizing Maps and distance metrics are 

described below.
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The first three groups of methods are direct in the sense that the data values in the dataset map 

directly to the visualization, without being transformed in a dimension reduction process. Thus, 

the methods for multivariate data divide into direct and dimension reduction methods as indicated 

in Figure 3.1. Only the dimension reduction methods are described in this chapter, because these 

methods give rise to positions on the screen for the objects. The direct methods are illustrated in 

the next chapter as visualization morphologies. The aspects of layout and form cannot be considered 

entirely separately since a form is required in order to embody a layout. However, they are considered 

separately here for convenience, to simplify the presentation of many methods.

Principal Components Analysis

Principal Components Analysis (PCA) is a means by which a multivariate data table, giving attribute 

values for a set of entities, may be transformed into a table of factor values, the factors being ordered 

by importance. The two or three most important factors, the principal components, can then be 

displayed in 2D or 3D space. A mathematical technique, Singular Value Decomposition (SVD), is 

used for the matrix transformation and PCA is sometimes known by this term (Chen 1999, p. 30). 

The process can be conveniently described as replacing the original matrix with a truncated SVD 

matrix. In the area of information retrieval systems PCA is known as Latent Semantic Indexing (LSI) 

(Chen 1999). In LSI the multivariate data table is a large term-by-document matrix in which each 

element is the number of occurrences of a term in a document.

Self Organizing Map

The self organizing map algorithm (Kohonen 1997) is an unsupervised neural net that can be used 

as a method of dimension reduction for visualization. It automatically organizes entities onto a two- 

dimensional grid so that related entities appear close to each other. Although it is described as an 

unsupervised neural net, there are similarities between the self-organizing map method and other 

data analytic methods such as k-means type clustering (Gordon 1999, p. 170).

Distance Metrics and the Derivation of Proximity Matrices

The multivariate data table can be considered as a vector space and different measures used to define 

a similarity between the vectors. There are a variety of measures (see e.g. Gordon 1999; Webb 1999) 

including those based on the Euclidean distance and the angle between vectors described below. 

Measures are usually presented for comparing objects that are described by a single type of variable, 

though these can be combined so that measures for data containing variables of different types can 

be constructed. This discussion restricts itself to quantitative data type for brevity.

Let Xik denote the value that the fcth quantitative variable takes for the zth object (i = 1 , . . .  ,n; k =
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Figure 3.2: Distance measure examples for two-dimensional data. Three ways of measuring the 
‘difference’ between entities A and B: Euclidean distance, City distance and angular separation.

1 , . . . , p ) .  The Minkowski metric defines a family of dissimilarity measures, indexed by the parame-

ter A.

Minkowski distance
p

dij = ( £ « ¿ 1 * «  -  Xjfc|A)1/A (A >  1) (3.1)
k=  i

where Wi(k =  1 , . . .  ,p) are non-negative weights associated with the variables, allowing standard-

ization and weighting of the original variables. Values of A of 1 and 2 give the two commonly 

used metrics of this family: C ity -b lo c k  and E u c lid e a n . These are illustrated in Figure 3.2 for two- 

dimensional data.

City-block distance, also known as the M a n h a tta n  or b o x -c a r  or a b so lu te  v a lu e  distance, would 

be suitable for finding the distances between points in a city consisting of a grid of intersecting roads, 

hence its name. It is less complicated to compute than the Euclidean distance, but yields similar 

results and therefore may be used instead of Euclidean distance if speed is an issue.

City-block distance
p

dij = Y w k \xtk -  x jk \ (3.2)
k= t

The Euclidean distance has the property of giving greater emphasis to larger differences on a single 

variable.

Euclidean distance
p

d*j =  (5Z  wk(x ik -  X jk)2)1/2 (3.3)
k= 1

The choice of an appropriate value for the parameter A of the Minkowski metric depends on the 

amount of emphasis you would like to give the larger differences. As A tends to infinity, the metric 

tends to the C h e b y sh e v  or m a x im u m  v a lu e  distance. This measure is also used in time critical situa-

tions.

Chebyshev distance

d ij =  m axpk=1w k\xik -  x j k \ (3.4)
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These measures can be standardized, for instance so that dl:) is bounded by 1. If wk =  (pTZk)_1, 

where 1Zk denotes the range of values taken by the fcth variable. One could also consider Wk = 

p(m axk=1(lZk)), which preserves the quantitative comparison between objects. Also consider not 

the range, but (assuming it is relevant to consider the possible minimum value then take Wk =

p(max”=1(xjfc)) or Wk =  p(max£=1 (max”=1 (x^)). Forexample:-

Destinationl Destination2 Destination.! 

customer l 5 I 3

customer2 4 l 5

Without weighting this gives l .29, with weighting using the range: 0.816, using the maximum value: 

0.086.

Sometimes it is the relative magnitudes of the different variables that is of interest - the behaviour 

across the variables rather than the absolute values. Put another way, the variables describing the 

object define a vector with p components and interest is in the comparison of the directions of the 

vectors. In the following metric the cosine of the angle between the vectors is used, as illustrated in 

Figure 3.2. Since values are between - 1 and I. the measure can be transformed to take values between 

0 and l by defining s'tJ =  (1 +  Si j ) /2.

Angular separation
£ fc = l x i k x j k (3.5)

J ( £ L t ^ £ f = t 4 ) 1/2
For the previous example this metric gives a value for s' of 0.0465.

Standardization is used because variables often show different variability across the dataset. Stan-

dardization is generally from the point of view of a particular dataset. For example, for quantitative 

variables, each variable value can be divided by the range of values they take in the dataset, as indi-

cated in the discussion of weights above. One detailed study (Milligan and Cooper 1988) indicated 

that dividing by the range outperformed other methods investigated. However, as with many issues 

relating to suitability of methods for datasets, the fact that something works well for many datasets 

does not indicate that it will for a particular dataset under consideration. Standardization can be con-

sidered to be subsumed by the general issue of weighting. The choice of variables to include can also 

be seen as an extreme case of weighting, where a zero weight is applied.

Whatever choice of metric is applied to calculate pairwise distances for all pairs of objects in the 

set, the result is a proximity matrix which can be treated as in any of the methods described in the 

previous section.

The choice of metric depends on the application, and the literature indicates the difficulty, yet 

desirability, of choosing appropriately. According to Webb (1999):
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“It is not possible to make recommendations, and studies in this area have been largely 

empirical, but the method you choose should be one that you believe will capture the 

essential differences between objects.”

To illustrate the different distance metrics and the variety of visual depictions their use results in. 

Figure 3.3 shows the calldata set (introduced in Section 1.2 on page 6) after different methods of di-

mension reduction. These pictures highlight the difficulty of deciding upon an appropriate dimension 

reduction method (Schroeder and Noy 2001).

3.5 Comprehension Challenges

This section notes specific points from the discussion above that introduce difficulty in comprehen-

sion, as did the corresponding section in the previous chapter. The difficulties can be summarized 

as arising from the different ways that the same set of data can be represented, from special fea-

tures of layout choices, from high levels of abstraction and from the impact of layout choice upon 

interactivity. These aspects are expanded in the next paragraph and shown by section in Table 3 .1.

The different ways that data can be represented arise from the choice afforded for the mapping 

from data to visual variables, any lack of predictability, scalability (different ways of dealing with 

it) and the different layout algorithms available. Special features of the visual representation include 

the impact of the different ways of mapping from data to the different visual variables, oflhe impact 

of depth cues, scaling and dimension reduction. One of these features is of particular importance, 

the introduction of high levels of abstraction. Abstraction may be increased in dealing with time 

complexity, for instance by using a simpler distance measure, or introduced for scaling (reducing 

the number of objects) or dimension reduction (reducing the number of variables). Anything which 

reduces interactivity has the potential to reduce comprehension since it is by the interactive process 

that much understanding is gained. One can consider interaction on two levels here, the interaction 

overall, to examine different views and selections (of variables, of methods) of data, and interaction 

within a specific graphic, which does not produce a different display type or selection of the data. 

Paradoxically, a more pleasing layout can have the impact of reducing interaction on the selection 

level, since the user is not prompted to change the representation to get a better view. At the same 

time a specific graphic can increase interactivity by providing interaction features that are inviting.

3.6 Summary

The dimensions available for direct mapping from the dataset cover the following visual variables: 

spatial position, colour, shape, orientation, surface texture, motion coding and blink coding. This
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Figure 3.3: 90,000 calls made by 100 customers. Pictures are numbered ( 1 ) to (9) from top left to bot-
tom right in horizontal rows. First eight pictures: caller profiles by destination of calls. Last picture: 
destination profiles by callers. (1) Direct visualisation by applying principal component analysis, in 
contrast to (2-8) indirect visualisation by calculation of a distance followed by matrix transformation 
using Singular Value Decomposition; Distances in particular: (2) Euclidean, (3) correlation, (4-8) 
Minkowski distance with (4) A =  100 (5) A =  10 (6) A =  1 (City distance) (7) A =  0.1 (8) A =  0.01. 
The callers represented as squares and labelled with a number can be traced through the different 
visualisation outcomes (1) to (8), to see how their placement differs (Schroeder and Noy 2001).
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Section Obstacle Required Facilities

3.2 Number of Di-
mensions Available 
for Visualization

Different possibilities, how to 
choose. Designer can have exper-
tise, but cannot assume the user 
has.

Suggest appropriate 
choices, provide guidance.

Different views possible. Increase interactivity to 
make user aware.

3.3.1 Perception Depth cues can help/hinder. Suggest suitable forms.
3.3.2 Aesthetics Pleasing results can both increase 

and decrease interactivity.
Retain types that promote 
interaction.

3.3.3 Time Complex-
ity

Time constraints, including for real-
time interaction, means greater use 
of approximation.

Make user aware of higher 
approximation.

3.3.4 Predictability Lack of predictability leads to dif-
ferent layouts for same data.

Make user aware of differ-
ent layout possibilities. Al-
low saving or ‘bookmark-
ing’ of layouts.

3.3.5 Scalability Larger amounts of data can be clus-
tered and clusters shown as points.

Make user aware of cluster-
ing method and its features.

Different methods of clustering. Make user aware of differ-
ent clustering possibilities.

3.4 Layout Types and 
Algorithms

Different possibilities for the same 
dataset.

Make user aware that there 
are different possibilities.

Mathematical transformation in di-
mension reduction is an abstraction.

Abstraction level indicators 
desirable.

How to choose the metric - guide-
lines difficult?

Increase interactivity so 
user can easily experiment.

Table 3 .1: Obstacles to comprehension of data visualization from layout issues and types, with facil-
ities required to assist.

41



CHAPTER 3. VIEWING THE DATA - LAYOUT

provides a total of about seventeen, though far fewer can be of practical use at any one time. There 

are a number of issues to be taken into account when designing visualization applications. These 

include p e rc e p tio n , p la n a r ity , a e s th e tic s , tim e  c o m p le x ity , p r e d ic ta b ili ty , s c a la b il i ty  and u sa b ili ty .

Layout types can be divided into those for the layout of graphs (which includes proximity data) 

and those for multivariate data. Trees are relatively easy to represent, have low time complexity and 

are predictable, though scaling is a problem. S p a n n in g  tree s  can be derived from general connected 

graphs to make layout easier. M in im a l sp a n n in g  trees  may be required for intrinsic reasons, or as 

an alternative method of dealing with proximity data or to form the basis of hierarchical clustering. 

H ie ra rc h ic a l c lu s te r in g  is used for summarizing data structure. F o rc e -d ire c te d  sy s te m s  are used for 

proximity data and are based upon the physical analogy of a system of bodies with forces acting upon 

them. An example is sp r in g  e m b e d d in g . H y p e rb o lic  la y o u t allows large hierarchies to be viewed 

while maintaining a detailed focus. P r in c ip le  C o o rd in a te s  A n a ly s is  transforms proximity data into a 

pattern matrix, which can (hen be truncated to display only the most important factors.

Multivariate data can be viewed directly by special displays that map more than three variables or 

by the use of dimension reduction. Special displays include c o lo u r  m a p s , h ie r a rc h ic a l a xes , p a r a l le l  

a x e s  and the mapping of dimensions to v is u a l v a r ia b le s  o th e r  th a n  p o s i tio n . Dimension reduction 

methods include P r in c ip a l C o m p o n e n ts  A n a ly s is , S e lf-o rg a n iz in g  m a p s  and the derivation of prox-

imity matrices by the use of d is ta n c e  m e a su re s . Principal Components Analysis first transforms the 

matrix via Singular Value Decomposition, which allows the matrix to be truncated and only the most 

important factors displayed. The self-organizing map algorithm is an unsupervised neural net that 

organizes objects into a 2D grid on the basis of their multivariate data attributes. Multivariate data 

can be considered as a vector space and distances between pairs of vectors calculated. This produces 

a proximity matrix which can then be displayed. E u c lid e a n , C ity -b lo c k , C h e b y sh e v  and a n g u la r  

se p a ra tio n  are commonly used distance measures.

The layout of data provides challenges to comprehension from the different ways the same data 

can be represented, the special characteristics of layout methods, the high levels of abstraction some-

times involved and the impact of layout choice upon interactivity.
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Chapter 4

Viewing the Data - Morphologies

4.1 Introduction

This chapter presents visualizations according to their appearance. As indicated in the previous two 

chapters, visualizations can be grouped in various ways according to underlying dimensionality of 

the data, structure of the data (or derived structure), layout algorithm, dimensionality of representa-

tion etc. Chi (2000) provides an overview of information visualization taxonomies. Most of these use 

a data-centric point of view for classifying techniques. Shneiderman (1996) at first proposed seven 

types: 1-, 2-, 3- dimensional data, temporal and multi-dimensional data, and tree and network data 

(as described in Section 2.2.2). This has been extended in the OLIVE (On-line Library of Informa-

tion Visualization Environments http://otal.umd.edu/01ive/) taxonomy into eight types by including 

workspace as a category. However, here these aspects of classification are set to one side, as a more 

general view, based upon multivariate and proximity data forms, continues the discussion of the pre-

vious two chapters. Interaction techniques also result in particular visualization morphologies1. Thus 

a range of visualization forms are described and illustrated, loosely grouped as:

• direct data table mapping (with or without dimension reduction) - here described as matrix 

view

• tree representations

• forms addressing the size issue with regard to navigation and interaction

The normal well-known 2D forms such as bar charts and graphs are not included. These are 

very powerful visualizations in their own right as is demonstrated by their extensive use. Some of the

1 Morphology is a branch of biology that deals with form and structure without consideration of function. The word is used 
here in a similar way to focus upon the structure and form of visual representations, rather than visualization techniques as 
such.
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CHAPTER 4. VIEWING THE DATA - MORPHOLOGIES

visualizations described here are extensions of them. The chapter includes a section on the challenges 

to comprehension raised by navigating and interacting with these morphologies.

4.2 Morphology Issues

In discussing visualization morphologies, the issues described in the previous chapter concerning 

layout (Section 3.3) apply and expand in scope. Thus, the issues p e rc e p tio n  f o r  d e s ig n , p la n a r ity  

a n d  a e s th e tic s , tim e  c o m p le x ity , p re d ic ta b ili ty , s c a la b il i ty  (number of data items - both objects and 

dimensions), and u sa b ili ty  a n d  e v a lu a tio n  now expand to include:

• use of colour

• 2D versus 3D

• ordering of the variables (though this is an issue directly concerning the layout, it becomes 

more relevant in the discussion of particular forms)

• navigation and interaction

Navigation and interaction are discussed in Section 4.5 after the sections describing morpholo-

gies. The use of colour, 2D versus 3D and variable ordering are considered in the next three sections. 

Relevant aspects from the overall list of issues are included when considering the strengths and weak-

nesses of the visualization morphologies in the subsequent sections. In as much as these strengths 

and weaknesses are known. For a number of reasons it is currently rarely possible to say ‘This is 

the best way of visualizing these data’: some visualization forms are relatively new; evaluation is 

difficult and highly task and domain dependent; different methods may present or emphasize differ-

ent (legitimate) aspects of the data. Thus, illustrations of the ‘rich palette of available techniques’ 

(Spence 2001, p. 69) are presented here (Sections 4.3 and 4.4), with indications of the characteristics 

of each individual technique, rather than a strict classification.

4.2.1 Use of Colour

A set of numerical values can be mapped to a colour or grey scale. The advantage of colour scales 

over grey scales is that the number of just noticeable differences (JNDs) is larger (Ware 2000a). Max-

imizing the number of JNDs and finding a resulting scale that is intuitive for the domain are the main 

tasks in choosing a path through the colour space (Herman and Levkowitz (1992) as cited in Keim 

and Kriegel (1994)). In their experiments with different colour mappings, Keim and Kriegel (1994), 

found that the coloration had a high impact on the intuitivity of the system. The user sometimes 

connected good answers with light colours and bad answers with dark colours, or was accustomed to
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green colours for good answers and red colours for bad answers. Thus colour has a different effect 

according to the sequence of colours chosen. More detail on this topic can be found in Ware (2000a).

The way we perceive colours is influenced by many factors. For instance, small patches of light 

give different results from those of large patches. In general, we are much more sensitive to differ-

ences between large patches of colour. People also vary in how they perceive colour, with about 10% 

of the male population and about 1% of the female population suffering from some form of colour 

vision deficiency.

Colour is very good for nominal information coding, which requires a non ordered, easily rec-

ognizable code giving a set of classes. The number of classes cannot be large, since only a small 

number (estimates vary between 5 and 10) of these colours can be rapidly perceived.

Sequences of colours used for representing continuously varying map values are widely used, 

though Bertin (1983) considered that colour was best used to symbolize quantitative differences. 

Geographers use sequences to display height above sea level: lowlands are green, corresponding to 

vegetation, and the scale moves up through brown and then to white for the peaks of mountains. The 

most common coding scheme used by physicists approximates to the physical spectrum. However, 

it is not a perceptual scale. If users were given a set of blocks painted in corresponding colours and 

asked to place them in order, they would be unable to do so. If the blocks were shades of grey, 

they would be able to do this. However, many perceptually orderable colour sequences are possible, 

obtained by using less hues.

4.2.2 2D Versus 3D

Two-dimensional visual structures are the most common, but this is because three dimensional work 

has been limited, until recently, to expensive computers used for specialist areas such as in ex-

ploratory research or movie production. 3D visualization design poses additional problems because 

of the six degrees of freedom of movement afforded the user, and the relevance of factors such as 

shading, lighting and the role of the ground plane (in enhancing the user’s perception of 3D). Oc-

clusion is also a problem, for instance foreground objects can hide distant objects. Difference in 

perception of depth in comparison to height and width is also evident. An ongoing problem is how 

to render text in 3D, since abstract data often involves textual values. Three dimensional fonts often 

have to be larger to be readable. It is an open question under what conditions 3D is belter than 2D 

for information visualization (Card et al. 1999).

4.2.3 Ordering

An important property of some axes, usually nominal, is that they can be permuted, thus producing 

new visual patterns. In the case of a pattern matrix, both the attributes and the objects may be
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Figure 4.1: Gene expression data examples: deRisi et al. (1997) - full yeast genome (left); sample 
data matrix (right) using the GeneMaths application, created by Applied Maths (http://www.applied- 
maths.com/). This is micro-array gene expression data described in Eisen et al. (1998) and available 
at www.pnas.org.

reorderable. Some visual representations are dependent upon the initial (arbitrary) ordering.

4.3 Matrix View

It is not possible to describe all methods for multivariate data here. Notable omissions are hierar-

chical axes, hyperslice and dimensional stacking details of which, with others, may be found in the 

survey paper Wong and Bergeron (1997).

4.3.1 Colour Maps

One step from the showing of a data table as an actual alphanumeric table is to replace the values 

of variables by colours. The result is as if one is looking at the table, but with the values replaced 

by colours. Users instantly form a general impression of the way values are distributed. However, 

the result is highly dependent upon the ordering of both the objects and the variables. Examples are 

shown in Figure 4 .1. More complex colour maps can be formed using spiral and other arrangements 

of attributes or to show the relevance of items to a database query. More generally these are described 

as pixel-oriented visualization techniques (Keim 2000).

4.3.2 Mapping Onto Objects

Another system for mapping the data table directly is shown in Figure 4.2. Each data item, with 

its associated data, is mapped onto the surface of an object. In this example, the Perspective Wall
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inxi

Figure 4.2: A perspective wall using Xerox’s Information Visualizer
(http://www.parc.xerox.com/istl/projects/uir/projects/InformationVisualization.html).

(Mackinlay et al. 1991), data is mapped onto a wall. Sections are viewed one at a time and the neigh-

bouring sections moved to by the wall smoothly rotating. This facilitates the browsing of a larger 

number of data items than can be contained by a 2D representation (at least a three-fold improve-

ment) and provides an area of focus, whilst showing the neighbouring context (see Section 4.5.1 for 

more discussion of focus-and-context methods). The user can adjust the ratio of detail and context.

4.3.3 Parallel Coordinate Plots

If the axes of multidimensional space are arranged parallel to each other, they are described as parallel 

coordinates and a view of data presented on these axes as a parallel coordinate plot (Inselberg 1997). 

The axes are organized as uniformly spaced lines, either horizontally or vertically. In this way a data 

element in an n-dimensional space is mapped to a polyline that traverses across all of the horizontal 

or vertical axes. An example is shown in Figure 4.3. General trends can be seen, even if many graphs 

are plotted at the same time. Flowever, the ordering of the attributes is important, whilst often the 

ordering of attributes is arbitrary. The ordering is important because it affects one’s ability to interpret 

the plots, since different orderings can lead to more or less overwriting of graphs.

4.3.4 Glyphs

A glyph (Ribarsky et al. 1994) is a graphical object designed to convey multiple data values repre-

sented by colour, shape, movement and so on, as described in the section on available visual variables 

in the previous chapter, Section 3.2. Figure 4.4 visualizes a large amount of data collected about web 

sites. The attributes size, shape, etc., reflect such things as number of pages, number of links to 

and from each site. For instance, the height of the glyph reflects how many links go to it, i.e. how 

‘visible’ it is to the outside world. The number of attributes that can be mapped to a glyph is limited 

(though greater than 3, see Section 3.2) and the resulting representation is highly dependent upon the
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Figure 4.3: Parallel coordinate plot of car data. Miles per gallon of 38 1978-79 model cars is given, 
together with data such as weight, number of cylinders etc.
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Figure 4.4: Website data (Bray 1996).

choice of shapes, colours etc., so that one data table can be mapped to many different glyph worlds. 

The positioning of the glyphs in the plane can be arbitrary, a customized ordering based upon domain 

considerations, or can be the result of a distance measurement based on all or a subset of the attributes 

(as described in Section 3.4.2).

4.3.5 Star Plots

A star is a variation on the general glyph, where each data value is represented by a line segment 

radiating out from a central point. An example star plot (Fienberg 1979) is shown in Figure 4.5. These 

produce a texture field when large numbers are displayed. Without the ends of the line segments 

being joined up, the glyph is called a whisker, whence whisker plot. Star and whisker plots succeed 

in displaying high-dimensional data without dimension reduction. However, the order of attributes 

has an impact on the resulting overall shape and thus on how the data are presented. Starplots are 

also difficult to compare to each other as it is difficult to quantify the differences.

4.3.6 Information Landscape

An information landscape uses 2D to define a plane and the third dimension is reserved for specific 

data to be visualized. With the plane as a basis of the visualisation, users can fly over the landscape 

and observe the data in the third dimension. The website data visualization of Figure 4.4 is a general 

information landscape. A tree structure (see also Section 4.4.7) is shown in Figure 4.19. The surface 

plot and cityscape, below, are specific types of information landscape. Such landscapes can present 

large quantities of data, but suffer from the general problems of 3D, particularly relating to navigation 

controls.
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Figure 4.5: A star plot (Fienberg 1979).

Figure 4.6: A surface plot using Matlab (http://usg.cas.utk.edu/public/matlab/mesh.html).

4.3.7 Surface Plot

A direct extension of the familiar 2D graph, surface plots are constructed by plotting data triples onto 

the three co-ordinate axes directly. The points are then netted into a surface or mesh as in Figure 4.6. 

Trends and irregularities can easily be seen, but the number of attributes mappable is limited to 3. 

Colour can be used redundantly to emphasize the shape, or to encode a further attribute.

4.3.8 Cityscape

A vision of a modern city with skyscrapers extends the bar chart into 3D. Cityscapes are similar to 

surface plots, but with 3D bars rather than a surface. In Figure 4.7 a fourth dimension is provided 

by use of colour. As with surface plots, trends and irregularities can be easily seen, though discon-

tinuities can make occlusion more of a problem and the number of attributes mappable is limited to 

4.
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Figure 4.7: A Cityscape from Visualnumerics’ JWave system providing four mapping dimensions 
with the use of colour (http://jwave.vni.com/classes/jwave.demos/bi/Coffee.html).

4.3.9 Scatterplot

The scatterplot is the basis of many current visualizations which then add colour or glyphs. In its 

3D form, this is a visualization form that enters the spatial metaphor in the guise of ‘galaxies’. A 

scatterplot makes use of the extrinsic visualisation approach in that it maps data objects to a point such 

that the distances between objects reflect their relationships. 3D examples are shown in Figure 4.8. 

In extending to three dimensions the scatterplot suffers from the general problems of 3D. Labelling in 

large scatterplots is also difficult. Overplotting, where many objects occupy the same location, is also 

a problem, though colouring the density of co-located points can be used to highlight this issue (see 

e.g. Haslett et al. (1990)). High dimensional data can be visualized with a scatterplot if dimension 

reduction is first undertaken. However, difficulties are then created in interpreting the data which 

has been transformed by the dimension reduction process, involving information loss. A matrix of 

scatterplots, presenting multiple adjacent scatterplots, can be used in order to show plots of all pairs 

of variables. The aim is to visually link features in one part of the matrix with features in others, 

though this may be difficult. Overall, scatterplots are simple and familiar to users, can give a good 

overview and depict basic structure, but may also deceive users who are unaware of characteristics 

such as overplotting and dimension reduction abstraction error (unless there is provision to show this 

information).

4.3.10 Daisy Chart

The Daisy (Data Analysis Interactively) chart shows data as a circular figure with attributes arranged 

around the circle. The data items in an n-dimensional space map to polylines connecting the cor-

responding points around the circumference as in Figure 4.9. A Daisy Chart is designed to show 

the maximum amount of information about a database in a single chart. The chart is designed to be
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Figure 4.8: Scatterplots. Clockwise from top left: the first is created by Silicon Graphics’ Mine- 
set (http://www.sgi.com/chembio/resources/mineset); the second by United Information Systems’ 
Generic Visualisation Architecture (http://www.unitedis.com/gva) and the third by GeneExplore 
(now part of the GeneMaths application http://www.applied-maths.com/).
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Figure 4.9: Daisy chart (http://www.daisy.co.uk/daisy.html).

directly linked to an underlying database, so that further information can be displayed. The chart also 

allows zooming to reveal greater detail. The charts are thus flexible and easy to understand, though 

the number of attributes are limited by division of the circumference of the circle and the resulting 

graphic depends upon the ordering of the attributes.

4.3.11 Geographical Representation

It has been said that geographical layout provides the most natural organizational principle (Chen 

1999, p. 106) and it is important because estimates suggest 80% of all digital data generated today 

includes geospatial referencing (geographic coordinates, addresses, postal codes, etc.) (MacEachren 

and Kraak 2001). The xy  coordinates may represent actual geographical locations or non-geographical 

data can be presented using the map as a metaphor. Figures 4.10 to 4.12 are examples of visualiza-

tions of internet traffic. Figure 4 .13 (left) shows a self-organizing map (see Sections 4.3.12 (below) 

and 3.4.2) of a million documents. In order to present non-geographical data as a map, dimension 

reduction methods need to be used. This dimension reduction leads to different implications of loca-

tion in the map - adjacent points may or may not be as near as they are shown. The issue of location 

implication for different types of maps is returned to in Section I 1.4.

4.3.12 Self-organizing Map

Figure 4.13 shows a self-organising map (described in Section 3.4.2) for a million web pages and a 

self-organizing map of gene expression data. Self-organizing maps of document collections enable 

users to effectively browse large collections, but the great amount of abstraction necessary to reduce 

the dimensions means that the location validity is low.
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Figure 4.10: Mapping on to the globe. A geographical visualization of Web traffic from researchers 
at the National Center for Supercomputing Applications. The height of a bar indicates the number 
of bytes, or number of requests relative to other sites. The colour bands represent the distribution 
of document types, domain classes, or time intervals between successive requests. This view is for 
August 22, 1995 at 6 a.m. (Lamm et al. 1996).

Figure 4.11: Billion-byte inbound traffic to the National Science Foundation Network (NSFNET) 
backbone (a wide-area network that formed the core of the internet in the early I990’s) for Septem-
ber 1991. The traffic volume range is depicted from purple (zero bytes) to white (100 billion bytes). 
This is a single frame from an animation produced by Donna Cox and Robert Patterson (screen shots 
and animation at http://archive.ncsa.uiuc.edu/SCMS/DigLib/text/technology/Visualization-Study- 
NSFNET-Cox.htm).
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Figure 4.12: Traffic flow on the internet. Internet traffic flows between fifty countries, as measured 
by the NSFNET backbone, in the first week in February 1993 (Becker et al. 1995; Eick 1996).
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Figure 4.13: Self-organising maps. A collection of a million web pages from Websom 
(http://websom.hut.fi/websom/) (left), and gene expression data using GeneExplore (now GeneMaths 
http://www.applied-maths.com/) (right).
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Figure 4.14: Tree layout: An unrooted and rooted dendrogram using the Expression browser 
(http://www.sanger.ae.uk/Users/mrp/java/ExpressionBrowser/TheTutorial.html) (left) and a tree con- 
strueted with the Latour tree visualization toolkit (http://www.ewi.nl/InfoVisu/Past.html) (right).

4.4 Trees and Networks

There are many layouts and forms of trees and networks; the following is a selection. Networks 

can also be considered from the matrix point of view (whether or not their links are shown), as 

can proximity data as discussed in the previous chapter (Section 3.4.1). In general there may be 

many different ways of displaying the same tree or network structures. Branches in a tree may 

be swapped, creating equivalent trees, yet it is hard to tell whether such isomorphisms are indeed 

equivalent. Another result of this is that the direct distance between nodes is not directly related to 

their intended distance. The amount of objects that can be displayed in trees and networks is smaller 

than for pattern matrices due to the necessity of showing connections between objects, though this 

is overcome to some extent by treemaps (Section 4.4.5) and information cubes (Section 4.4.6). Thus 

trees and networks do not scale up well for large amounts of data.

4.4.1 Classical Layouts

Many classical layouts have been developed for trees (Herman et al. 2000), where the nodes are 

positioned below their parents, together with a variety of 3D versions. These algorithms are all 

deterministic, but may depend on the order of input data. Usually classical tree layouts position 

children nodes below their parents (see Figure 4.14). Tree layouts can be adapted to produce the tree 

left-to-right and on a grid layout.
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Figure 4.15: Circular tree using the Tom Sawyer graphing toolkit
(http://www.tomsawyer.com/products.html).

4.4.2 Dendrograms

A dendrogram is a hierarchical tree that is a nested set of partitions produced by one of a number 

of hierarchical clustering procedures as indicated on page 34. Dendrograms may be rooted or un-

rooted as depicted in Figure 4.14. In the rooted version, the difference in height between parent and 

children indicates the similarity of the two children and it is this characteristic that distinguishes the 

dendrogram from an ordinary tree.

4.4.3 Circular Trees

Instead of placing a tree’s root at the top and leaves below, branches can radiate from the root into all 

directions as in Figure 4.15.

4.4.4 Cone Trees

Cone trees (Robertson et al. 1991) are three dimensional extensions to 2D tree structures. The root is 

placed at the top (or side) and is made the apex of a cone. The tree or branch may be rotated to bring 

other information into view (see Figure 4.16). Cone trees have been used to visualize entire Unix file 

systems and as browsers for organizational structures. The arrangement allows much larger trees to 

be displayed than would fit on the screen using 2D layout. The cone tree arrangement is particularly 

suitable for many hierarchies encountered in real applications which tend to be broad and shallow. 

However, it can be difficult to navigate and to find desired information. Also the number of levels
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Figure 4.16: A cone tree (Robertson et al. 1991) (left) and a balloon view (Herman et al. 2000) (right).

that can effectively be displayed is limited to about 10. Occlusion is also a problem, though the body 

of each cone is shaded transparently, so that the cone can be easily seen without blocking the view of 

cones behind it. Cone trees can be projected to 2D, which is referred to as a balloon view (see Figure 

4.16).

4.4.5 Treemaps

In treemaps (Johnson and Shneiderman 1991) the hierarchical structure is mapped to rectangle size 

and colour (Figure 4.17). The entire screen is used to represent the tree root and its children. Each 

child of the root is given a horizontal or vertical strip of size proportional to the overall size of its 

descendants. The process repeats, alternating horizontal and vertical divisions as the hierarchy is 

descended, so that the rectangle for a group of objects is filled with the rectangles representing its 

members. Thus treemaps are useful for providing overviews of single attribute hierarchical structures. 

They are also useful for trees larger than a couple of hundred elements when the usual node-and-link 

diagrams are inadequate. This is because node-and-link diagrams use most of the pixels of the display 

space as background. Treemaps use the full display space.

Note that the size of the individual rectangles is significant. For example, when representing 

a file system hierarchy, this size could be proportional to the size of the respective file. This is 

useful, but has a drawback relating to how users perceive the areas. For instance, the doubling of an 

attribute’s value, and hence area, may not be accurately perceived as a doubling by the user. Also the 

standard treemap method often gives thin, elongated rectangles. An extension to the method has been 

developed, squarified treemaps, to address this problem by approximating the rectangles to squares 

(Bruls et al. 2000). Another problem is that the structure of the tree is not always evident, the user 

must pay much attention to distinguishing which box belongs to which level. The worst case is a 

balanced tree, where each parent has the same number of children and each leaf has the same size - 

here the treemap degenerates into a regular grid.
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Figure 4.17: A tree map. This example is a screen shot of the online Marketmap application 
(http://www.smartmoney.com/marketmap/) which visualizes real-time stock market information.

4.4.6 Information Cube

The information cube (Rekimoto and Green 1993) (see Figure 4.18) is a 3D version of a two- 

dimensional design which uses nested boxes to represent hierarchical information. Like the treemap, 

the information cube addresses the problem that the screen space is too limited to display a large tree 

structure in the usual way. The designers also set out to address the problems encountered with the 

cone tree and treemap, when the tree is balanced or when the nesting is deep. The outermost cube 

corresponds to the top level data, while the next level data are represented as cubes in the outermost 

cube and so on. Each cube is rendered in semi-transparent colour, so that inside the cubes can be 

seen. The cubes can also contain arbitrary objects. The system displays using either a conventional 

or head-mounted display. In either case selection and rotation of the cube by hand is achieved using 

a DataGlove. A DataGlove is a glove equipped with sensors that feed spatial and tactile data to a 

computer, allowing the wearer to manipulate and explore environments in virtual reality. The infor-

mation cube allows balanced and large tree structures to be effectively visualized, though one study 

concluded that it suffers from lack of global context, and that users find navigation and compare tasks 

very difficult (Wiss and Carr 1999).

4.4.7 Information Landscape - Tree

General information landscapes have been introduced above (Section 4.3.6). A particular sub-category 

uses the plane to draw a tree structure. Figure 4.19 shows such an information landscape tree, the 

result of a database query. This is a representation of 180 million hits, hierarchically arranged.
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Figure 4.18: An information cube (Rekimoto and Green 1993).

Figure 4.19: An information landscape tree created with MineSet
(http://www.sgi.com/chembio/resources/mineset). The tree uses the plane and information at 
nodes makes use of the third dimension.
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Figure 4.20: Network visualization using Caida’s tool Otter
(http://www.caida.org/tools/visualization/otter/), a general-purpose network visualization tool.

4.4.8 Network Data Visualization

Figure 4.20 shows an example from a tool for visualizing arbitrary network data, i.e. data that can be 

expressed as a set of nodes, links or paths. It was developed to handle visualization tasks for a wide 

variety of internet data, including data sets on topology, workload, performance, and routing.

4.5 The Size Issue - Navigation and Interaction

As soon as the number of entities reaches more than a few dozen, size becomes a problem. Whilst 

there are technical issues concerning rendering and layout efficiency, these are not considered here. 

The issue addressed here is that, from the user’s point of view, there is a need to maintain overall 

orientation, while being able to zoom in to see details. This is described as providing focus and 

context, usually expressed as focus+context. The easiest and commonest way to deal with this is 

with opening of secondary and subsequent windows, but there are also special systems that distort 

the representation in some manner, so as to simultaneously give focus and context. These special 

systems are described in more detail in the next section.

The user’s orientation is enhanced by a number of special interaction techniques; examples are 

brushing and the semantic lens. Brushing is the general term for linking items of data between 

views, usually using colour (Cleveland and McGill 1984; MacDonald 1990). The semantic lens 

is a method of connecting, by brushing, a group of data, delineated by the ‘lens’, to daughter 

windows that show an enlarged view of the lens. The lenses are semantic in the sense that they 

can display different information and properties about the underlying data points (Semantic Lenses 

http://industry.ebi.ac.uk/~alan/SemanticLenses/index.html).
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Figure 4.21: Hyperbolic layout (clockwise from top left) from Inxight’s SiteLens
(http://www.insight.com), Caida’s Skitter (http://www.caida.org), and the Visualisation Support 
Hyperbolic Viewer (http://industry.ebi.ac.uk/~alan/BioWidget/EMBL/).

4.5.1 Focus+Context

Focus+context is the maintenance of overall orientation in a visualization (context), whilst being 

able to zoom in at the same time (focus). The most direct way of providing this is by opening up a 

new window to display the detail, or providing a portion of the display to show where your detailed 

view is in the overall representation. However, the term focus+context is sometimes restricted to 

those involving a single window and providing both focus and context within the same display using 

special methods (Card et al. 1999); these methods include hyperbolic layout, fish-eye lens, mapping 

onto objects and clustering. These are described in the following sections.

Hyperbolic Views

Figure 4.21 gives examples of hyperbolic trees. The trees are mapped onto a circle or sphere using 

hyperbolic, instead of Euclidean, geometry (Lamping and Rao 1996). The effect of this method 

is that distances decrease exponentially as the circumference is approached. The user can drag the 

nodes to change the focus of attention. Such a viewer addresses scalability, as the objects are bigger 

the closer they are to the focus.
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/ V

Figure 4.22: Distortion function for fish-eye effect (top). Fish-eye effect of distortion function on 
grid around origin (bottom). The function takes the distance in the layout, x, usually from the centre 
as in this case, and distorts it with a function such as this one (h(x) described in the text) so that 
smaller values of x  are increased.

Fish-eye Distortion

Produced to mimic the effect of a very wide angle fish-eye lens, the information in a part of the screen 

employing fish-eye distortion is shown in greater detail, whilst still displaying the whole, by the use 

of a distortion function (Furnas 1981). A focal point is chosen, where the information is required to 

be shown in greater detail, and the distance of points to this focus is then distorted by a function.

A simple distortion function (original citation Sarkar and Brown (1992), as cited in Herman et al.

(2000)) is

h(x)
d +  1

X

This is plotted in Figure 4.22 for distortion factor, d = 4.

Mapping onto Objects

Mapping-onto-objects is another way of providing context-and-focus. The globe (Figure 4.10), 

sphere and perspective wall (Figure 4.2) are examples of this.
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Clustering

Clustering may be structure-based, i.e. non-specific, or content-based, i.e. specific and requiring do-

main knowledge. Ideas about clustering relate to interaction in the desire to filter and search. Cluster-

ing reduces the number of elements being viewed and potentially improves clarity and performance. 

Performance improvements are gained for rendering and layout. Clustering may be approached by re-

peatedly deriving subgraphs using content- or structure-based hierarchical clustering. Force-directed 

methods may be used to identify visually apparent clusters. Clusters may be grouped to form ‘super 

nodes’ and new edges induced. These super nodes are sometimes referred to as glyphs (as distinct 

from glyphs previously described in Section 4.3.4) and the new graph as a compound graph.

4.6 Comprehension Challenges

In terms of user comprehension, there are a number of general categories of problem that these 

morphologies present:

• Unfamiliar, possibly complex, visual forms. Examples are colour maps, spiral colour maps, 

parallel coordinate plots and Daisy plots. For example, this may be where a colour scale 

replaces a numerical scale providing a different perception of the value scale or in the use of 

a polyline to represent an object. The user needs to become familiar with the application and 

appreciate relevant differences in perception from the use of colour scales etc.

• Existence of equivalent representations. This may be due to arbitrary ordering of attributes, 

as in colour maps and parallel coordinate plots, or isomorphism, such as in dendrograms fol-

lowing hierarchical clustering. Different representations based on selections of different visual 

variables result in different types of glyphs. The user needs to be made aware of the equivalent 

representations.

• Ambiguity in meaning of spatial component. Is it obvious what the distance between objects 

means? The layout positions may be chosen to create a pleasing effect, or represent measures 

of actual or approximate distances or dissimilarities. The user needs to be aware of the meaning 

of the spatial component.

• Transformations of the data may have been applied. Dimension reduction provides distances 

between objects. Semantic or structural clustering produces new objects. Transformations are 

often abstractions - approximations which need to be revealed to inexperienced users.

• Multiple windows. Focus+context techniques and other interaction techniques often result in a 

large number of windows for the user to control and navigate between. We need to know more
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about the problems associated with multiple windows. This is an active research area, 2003 

seeing the first international conference entitled ‘Coordinated & Multiple Views in Exploratory 

Visualization’ (Roberts 2003).

4.7 Summary

This chapter has described some of the wide range of visualization morphologies available. Colour 

maps, mapping onto objects, parallel coordinate plots, glyphs, star plots, information landscapes, 

surface plots, cityscapes, scatterplots, Daisy charts, geographical representations and self-organizing 

maps are ways of viewing multivariate data that have been described. Some methods are limited 

in the number of attributes or objects that they can present. Classical trees, circular trees, cone 

trees, treemaps, information cubes, tree representation as information landscapes, and network data 

visualizations have been illustrated to show the variety of ways that trees and networks are visualized.

Focus+context methods are used to see areas in detail as well as being able to provide overall 

orientation to the user. An obvious way to do this is by using child windows. Some special methods 

provide visual distortions: examples are hyperbolic views and fish-eye distortion. Other methods 

map data onto 3D objects or present the results of semantic- or structure-based clustering. A key 

technique is the linking of windows via brushing, so that items highlighted in one window are also 

indicated in the others. This forms the basis of overview and detail window pairs, as well as special 

techniques such as the use of semantic lenses.

Key challenges to the user's comprehension arise from: unfamiliarity, especially for new types of 

visual representations and inexperienced users; the existence of equivalent, in some cases isomorphic, 

representations; ambiguity in meaning of the spatial component; whether or not dimension reduction 

transformations have been applied; the use of multiple viewing windows. In general these are all 

issues that one would like users to be somehow made aware of. There are also aspects whose impact 

needs further study, such as the use of multiple windows.
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Chapter 5

Open Questions for Information

Visualization

5.1 Introduction

The last three chapters have presented a detailed survey of the field and obstacles to comprehension 

have been identified (Tables 2.3 and 3.1 and Section 4.6). This chapter returns to the thesis objective 

concerning the usefulness of the proposed technique signature exploration and its value for increasing 

the comprehension and choice of visual displays of complex data (set out in Section 1.3). Now this 

objective can be reconsidered in relation to the wider open questions and areas of active development 

in information visualization. This discussion provides further evidence for the importance of the 

general thrust of the work - enhancing comprehension o f complex data visualizations - and points to 

the specific means of achieving this proposed - the exploration of the signatures of the transformations 

and visualizations.

The question ‘How can the user’s comprehension of the transformations and representations of 

visual depictions be supported?’ is the motivation for the techniques defined and developed in this 

thesis. The need for understanding is key, since, without this, ‘amplification of cognition’ cannot 

result from visualization (as indicated in the introduction (page 1)). However, there are also specific 

motivations for comprehension support arising from particular requirements of current developments 

in information visualization, which are discussed here. The previous chapters on data structure, 

visualization purpose, layout and morphologies have indicated the breadth of developments in infor-

mation visualization. Looking at this detail shows many areas that offer scope for research relating to 

new and improved forms of interaction and visual representation. Whilst these contributions are and 

continue to be valuable, the number of forms already developed point to a number of general issues

66



CHAPTER 5. OPEN QUESTIONS FOR INFORMATION VISUALIZATION

relating to design, combination and use. The last deeade or so has produeed an explosion of forms 

(interaction and representation), some of which have been described in the previous chapter, now it 

becomes more important (or at least equally important) to examine their combination and use, and 

how to design such systems effectively (Spence 2001, Preface). For instance, a goal for exploratory 

data analysis is the presentation to the user of systems that represent a convenient shelf o f visualiza-

tion tools with which they can explore their data. Here four active areas of information visualization 

are described by the following open questions:

1. How can designers and users of visualization systems be made aware of the impact of cognition 

and perception issues?

2. How can techniques and tools be combined effectively?

3. How can the visual exploration of complex data and systems be supported?

4. How can datamining techniques be integrated with visualization?

Together with the comprehension question above, these five questions relate closely to the re-

search agenda for geovisualization developed by the International Cartographic Association which 

organized international teams to address four themes: representation of geospatial information, inte-

gration of visual with computational methods of knowledge construction, interface design for geovi-

sualization environments, and cognitive/usability aspects of geovisualization (MacEachren and Kraak 

2001).

The five questions are examined in the body of this chapter. The discussion of the comprehension 

question reviews the obstacles to comprehension of the previous chapters. The conclusion introduces 

the idea of the exploration of signatures of transformations and representations, in preparation for the 

detailed specification of signature exploration in the following chapter.

5.2 Cognition and Perception Issue Awareness

Ware has set out to bring together important aspects of the large body of work in this area in his 

recent book, in which he says:

“There is a gold mine of information about how we see, to be found in more than a 

century of work by vision researchers.” -  Information Visualization: Perception for  

Design (Ware 2000a)

However, it transpires that this goldmine, like some of its real counterparts, may be very difficult 

to mine, so that incorporating this body of knowledge is not easy. The information often appears 

anecdotally, such as ‘motion assists 3D perception’ (Ware 2000a, p.282). Also the observations are
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highly task dependent and many ideas have been developed in the context of specific experiments 

(Ware 2000b). Nevertheless, authors indicate considerable scope for application of the results so far 

obtained (Herman et al. 2000; Ware 2000a).

Section 3.3.1 on page 29 has briefly discussed work relating to perception and understanding of 

visual representations. Other sections on colour, how we perceive 3D, differences in mapping to 

the different shapes etc. show the kind of characteristics that designers and users need to be aware 

of and the potential for deception in visual depictions. Thus, the task of information visualization 

designers is to apply this knowledge in their applications, both to take advantage of the human visual 

system and to avoid unknowingly misleading the user. It is not only the designer that needs to be 

aware of these issues. At times, the user is choosing, for example, a colour scale or an attribute to 

map to a shape, and may also need more information to understand the implications of their choice. 

Such information could be given in textual form: ’The colourscale you have chosen has the following 

characteristics . ..  or as datasets that illustrate good and bad effects.

5.3 Effective Technique and Tool Combination

There is a general trend towards combining greater numbers of tools within a single application, but 

also the need to integrate statistical tools within the visualization application (Keim 2001; Unwin 

2000). Besides many tools to combine, there are many types of users, specialisms, tasks and data 

types. The many instruments (tools, techniques) that are available for data exploration (which may 

or may not result in a visualization), often require high levels of specialism to operate - the user may 

need to be a domain expert, may need to acquire expertise in the use of the tool, or they may be an 

expert in the use of a particular technique or group of techniques such as dimension reduction algo-

rithms. How can a single user operate a tool that combines difficult techniques? The many techniques 

available are also not all relevant to all tasks, so there is an appropriateness in the consideration of 

what techniques should be combined.

The means of combination relates to the issues of code reuse, the large number of possible com-

ponents and the constant emergence of new hardware and software technologies. A need arising 

from the move to compose visualization applications from a number of visualization techniques is 

the ability to efficiently program such tools and interfaces.

Researchers need to be able to compare their results; greater ease of use of other techniques would 

assist this. Though a similar result may be achievable by other means, such as the establishment 

of benchmark datasets. There are drawbacks to the pursuit of common components and standards, 

particularly the time taken to decide standards and the increased effort required by module developers 

to meet the requirements.

A vision for a future system for the viewing of complex data includes a wide range of layout
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methods and visualization morphologies as described in the previous two chapters. The design in 

Figure 5.1 is an example of such a system using similarity metrics, animation, level-of-detail, a 3D 

editor and a set of visualization morphologies. The user can create different views of the object group 

in an editor. This avoids a search for a ‘correct’ view, encouraging different views to be created. 

Selection and transformations of the data must be deliberately chosen, the base structure being that 

of a log of events as outlined in Section 2.4. Using animation, clustering and drill-down, the data can 

be rearranged and viewed in other ways.
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Figure 5.1: Technique combination for viewing complex data based upon an animated glyph world 
with editor for linking attributes and datamining techniques to derive different data structures.

An information landscape or a scatterplot is the central visual representation in Figure 5.1. The 

user decides what features they are interested in and maps these to dimensions, shapes etc. of the 

glyphs. The layout can be based upon a specification, (eg geographic, domain, arbitrary), or upon 

the derivation of a distance metric using a user-selected feature group or the whole dataset. It can 

be static or dynamic. The glyphs can be animated with the log data. One possibility is to watch an 

animated production of a visualization as data is collected. The speed of animation can be controlled 

to show different levels of detail. Glyphs can be turned on and off (when off, the object is a simple 

sphere or cube). Instead of the information landscape, other visual representations can be selected 

from the range of possibilities indicated in the last chapter.

There are a number of systems that feed data into 3D worlds (e.g. Russo Dos Santos et al. (2000)),
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and many other types of systems have been developed that combine different kinds of methods (for 

example the Xmdv tool (Rundensteiner et al. 2002), XGobi (Swayne et al. 1998) and VisDB (Keim 

and Kriegel 1994), but no one system as yet combines this wide range of techniques. However, the 

trend is for greater tool combination and also to integrate datamining techniques with visualization 

(see Section 5.5 below).

5.4 Systems for Visualization of Complex Data

The starting point for visualization is often considered to be a specific table, tree or graph structure. 

However, much data has a more general origin such as a log of events, as described in Section 2.4, 

from which different structures may be derived. In viewing this data, the user needs to be able to 

create the data structures that are of interest to them (for instance, in creating a relevant structure from 

a log of events, as in the creation of the customer/destination call matrix from the log of individual 

calls) and view them in different ways. Thus the user is given flexibility in creating custom views, 

for instance using different visualization forms and different glyph attributes, clustering algorithms, 

distance metrics etc., as well as animation. The process of the user creating data structures and views 

also preserves in the mind of the user the multi-faceted nature of complex data and systems. Such 

a visualization application thus combines the ability to create data structures from a log of events 

(if this is indeed the starting point) with the combination of information visualization and clustering 

techniques as illustrated in Figure 5.1.

5.5 Integration of Datamining and Information Visualization Tools

The domain of knowledge discovery in databases develops methods that find useful structure in large 

volumes of data and seeks to explain this structure. The variety of techniques used for this purpose, 

association rule derivation, classification, clustering etc., are generally referred to as datamining tech-

niques. Visual datamining integrates visual with computational methods in this context as well as de-

veloping the human visual system’s pattern recognition abilities in general (Keim 2001). According 

to MacEachren and Kraak (2001):

“Fundamental advances in our approach to (and success at) knowledge construction from 

geospatial data are most likely if we can integrate the advantages of computational and 

visual approaches. The goal of this integration is visually enabled knowledge construc-

tion tools that facilitate both the process of uncovering patterns and relationships in com-

plex data and subsequent explanation of those patterns and relationships.”
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Human involvement can be before the datamining step, to display initial data and focus on or 

narrow the search space to make it relevant. It can be during the datamining step, tightly integrated 

visualization, to display intermediate results and direct the search, allowing domain knowledge to be 

applied. It can be after the datamining step, subsequent visualization, to display the result. These 

different points at which human involvement can take place are identified by Keim (2001). Subse-

quent visualization examples include displaying results after association rule derivation, classifica-

tion, clustering and text mining. Quite a few examples of subsequent visualization exist (for a listing 

see Keim and Ankerst (2001)). Tightly integrated visualization is a more recent area of development 

(Andrienko et al. (2001); Keim and Ankerst (2001); MacEachren et al. (1999); Shneiderman (2002)). 

Potentially, the integration of these techniques increases the complexity that the user faces. Where 

techniques are also combined, the user needs to become expert in each technique.

5.6 Support for Comprehension of Visual Depictions

The last three chapters have revealed a number of obstacles to comprehension of visual depictions. 

Section 2.7 and Table 2.3 examine those related to data types and structures. Section 3.5 and Ta-

ble 3.1 consider those arising from layout mechanisms and Section 4.6 looks at those associated with 

particular morphologies. These three sets overlap, since data structure, data layout and visual mor-

phologies are aspects of a whole in the sense that all three together affect any one visual depiction 

that the human views. Key requirements are summarized in Table 5.1 and example graphics given in 

Figure 5.2.

How to address these obstacles? Additional functionality and development of composite systems 

are useful. The added functionality may enable users to interact with the visual depictions and the 

underlying data more easily, thereby understanding more about their nature. Composite systems 

allow the user to view their data in different ways and thus allow and encourage methods to be 

contrasted. However, a large number of the issues require the user to be made aware of various 

characteristics of the visualization process. Dykes (1997) introduces the idea of exploring these 

characteristics. This awareness can be considered to involve revealing the characteristics of data, 

data structure and layout, and visual form to the user. Intuitively, one wants to put a known, familiar 

set of data into a visualization process and see what happens. If the dataset is specially constructed 

to illustrate a certain feature of interest, one may then have a concrete example of the behaviour of a 

particular visual depiction. This idea is the basis of signature exploration described fully in the next 

chapter. The key obstacles to comprehension that may be addressed by this are indicated in Table 5.1.

Difficulties in comprehension are exacerbated by the involvement of a much wider range of users, 

both within and outside the scientific community:
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Comprehension Issues Might constructed 
data be useful?

Difficulty of conceptualization of high dimensional spaces. Yes (indirectly)
Interchangeability of objects and attributes. No
Equivalence of data structures. No
Transformation between types and structures of data. No
Existence and implications of large amounts of metadata. No
Impact of selection and standardization. Partly
Different ways the same data can be represented. Yes
Special features of layout choices, including the retinal vari-
ables.

Yes

High levels of abstraction. Yes
Impact of layout choice upon interactivity. No
Characteristics of unfamiliar forms. Yes
Equivalent representations, e.g. ordering of attributes, mapping 
of glyphs.

Partly

Ambiguity of spatial component. Yes
Transformations. Yes
Multiple windows. Possibly
Context and focus techniques. Possibly

Table 5.1: Key issues that present obstacles to comprehension and how they may be addressed by 
the use of specially constructed datasets. By specially constructed data is meant data that contains 
a particular feature, known to the user. This data is then put into a visualization process, so that the 
user has a concrete example of the behaviour of the process. This notion forms the basis of signature 
exploration described in detail in the next chapter.

Figure 5.2: Examples of graphics involving comprehension difficulty: (top left) parallel coordinate 
plot (from Figure 4.3) - How to assist users with unfamiliar representations? (top right) dimension 
reduction of the calldata set (from Figure 1.1)- How to make sense of the resultant patterns? (bottom 
set) 6 different possibilities for dimension reduction (from Figure 3.3) - How to choose an appropriate 
method?
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“Earlier studies of data visualization mainly had the professional scientist as the tar-

get customer, concentrated on the examination of static presentations of data and were 

closely associated with statistical analysis. By contrast, and as a result of technological 

progress, the benefits of information visualization are now available to a much wider 

range of customers ranging from supermarket managers to fraud investigators.” Infor-

mation Visualization (Spence 2001, Preface)

This means that the user does not always have a statistician at their elbow, neither is one them-

selves. The visualization tool itself must guide their choice of algorithm etc., if any guiding is to be 

done. For the specialist with statistical knowledge, mechanisms to increase comprehension may also 

prove valuable since they may reduce the time taken to find information. Greater insight may also 

result, particularly where complex combined techniques are involved.

5.7 Summary and Conclusion

This chapter proposes five areas of information visualization that constitute open questions, though 

these issues are not restricted to the field of information visualization.

1. How can designers and users of visualization systems be made aware of the impact of cognition 

and perception issues? Users, as well as designers, need to be aware of issues such as how we 

perceive colour and 3D.

2. How can tools be combined effectively? Technique combination is desirable to give users 

access to a variety of techniques for visualization, representation and mathematical transfor-

mations (such as clustering), but produces systems that are harder to build and harder for the 

user to understand.

3. How can the visual exploration of complex data and systems be supported? Complex data and 

system viewing emphasizes the need for composite tools and user comprehension.

4. How can datamining techniques be integrated with visualization? The field of visual datamin- 

ing is exploring and emphasizing ways in which visualization can be integrated with datamin-

ing.

5. How can the user’s comprehension of the transformations and representations of visual depic-

tions be supported? Dimension reduction algorithms and novel visual methods give results 

that are either hard to understand or with which the user is unfamiliar, leading to difficulty in 

making appropriate choices and conclusions for a wider range of users.
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The last of these questions - how to support the user’s comprehension of the transformations and 

representations of visual depictions - is a key issue in relation to the others. How are the other open 

questions addressed by improving comprehension? Concerning the first: increasing comprehension 

includes making people aware of the nature or characteristics, the strengths and weaknesses, of par-

ticular visual representations, such as 3D representation or shading and colouring. Relating to the 

second and third questions: combining techniques and looking at multi-faceted data and complex 

systems, requires increased comprehension support, because of the higher levels of complexity in-

volved. Relating to the fourth question: the integration of datamining and visualization puts greater 

demands upon the user's understanding, whilst seeking to enhance it.

Examining the need to support the user’s comprehension prompts the intuitive desire to put fa-

miliar data into the process to obtain a concrete example of the behaviour for reference. Taking this 

idea further suggests the use of specially constructed datasets that contain particular features in or-

der to reveal the pattern, or signature, that the visualization process gives for that particular feature. 

This idea forms the basis of signature exploration, which is introduced and defined in the following 

chapter. Examination of the key obstacles to comprehension identified in the previous three chapters 

indicates that this approach will assist with many of these obstacles.

In general terms, the issue is that the many techniques and transformations used in information 

visualization have different strengths and weaknesses. The problem is how to get the best out of 

them. To do this the user needs to understand them intuitively, both singly and in combination. 

What is needed is a framework or methodology to guide the design of visualization systems for the 

principled analysis and visualization of complex data.
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Chapter 6

Signature Exploration: Definition 

and Proposed Techniques

The data explosion and the possibilities of the human visual system for viewing data have been illus-

trated in the previous chapters. Visualization has been examined in terms of data types, issues, layout 

and morphologies. Issues that raise obstacles to comprehension have been identified. A particular 

concern has been the thread of complexity, how to deal with multi-facetedness and dimension reduc-

tion. Open questions have been examined which centre around comprehension, or are served by it. It 

has been emphasized that the trends of tool combination, on the one hand, and integration of visual-

ization in datamining processes, on the other, underlie the importance of considering comprehension 

of visualization methods at this time. The intuitive desire to feed known data into the visualization 

process (to see what happens) has been introduced, as suggested by work with image libraries and 

the use of fingerprinting in science. This chapter now defines the concept, signature exploration, 

developed from this idea. Five techniques for applying signature exploration are described.

6.1 Introduction

Following the description and discussion of visualization methods for complex data that has been 

undertaken in the previous chapters, we can summarize the problem and indicate the main aspects 

that need comprehension support. Complex data, with many observations and many attributes for 

each observation, are often impossible to visualize in their entirety - thus displays typically depict 

subsets or abstractions of the data. There are two reasons for this. On the one hand, a single large data 

table poses a problem because of its high dimensionality. On the other hand, some datasets provide 

sets of different types of tables that cannot be simultaneously viewed - it may be that, in its raw form,
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Mathematical Transformation Graphical Representation

Conceptualizing high dimensional spaces.* Different ways the same data can be represented.*
Equivalence of data structures.* Characteristics of unfamiliar forms.
Transformation between types and structures of 
data.*

Equivalent representations, e.g. ordering of at-
tributes, mapping of glyphs.*

Existence and implications of large amounts of 
metadata.*

Multiple windows.!

Impact of selection and standardization.* Focus+context techniques.!
Special features of layout choices.* Special features of layout choices, including the 

retinal variables (excluding transformations).*
Ambiguity of spatial component. Ambiguity of spatial component.
High levels of abstraction.* Impact of layout choice upon interactivity.!
Interchangeability of objects and attributes.*
Transformations.

* Relevant also to the issue of seeing the visual depiction as ‘one view of many’, 
f Secondary representation: interaction with representations or combination of representations.

Table 6.1: Categorization of key comprehension issues relating to mathematical transformation and 
graphical representation. Also indicated are those issues relevant to seeing the visual depiction as 
‘one view of many’. The table categorizes the issues from Table 5.1.

such a dataset is a log of events reflecting both attributes and interactions or that the data are complex 

linked datasets, such as those increasingly provided via the Web. There are many techniques available 

for the visualization of complex data, however there exist many obstacles to comprehension of the 

resultant graphics. Overall, to increase the user’s understanding, there are three main aspects of the 

process that the user needs to appreciate the implications of:

• mathematical transformation

• graphical representation

• each depiction as ‘one view of many’

That is to say, the obstacles to comprehension identified in Sections 2.7. 3.5 and 4.6, and sum-

marized in Table 5.1 fall broadly into the categories mathematical transformation and graphical 

representation as shown in Table 6.1, and the appreciation of the depiction as ‘one view of many' is 

an issue which relates to issues from both.

To the user, mathematical transformations and graphical representation are seen in combination. 

Mathematical transformation of the data is a data-to-data operation and often involves a significant 

abstraction of the original data and therefore a loss. Graphical representation is the production of a 

graphical depiction of the data (a mapping from the data to one or more graphical objects). Whilst 

representation always follows transformation in order to produce a graphic, the representation may
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be simple, as in the case of a dot representing a point, or complex as in the sequence of lines in 

a parallel coordinates plot (Inselberg 1997) (Section 4.3.3) or ziggurats in a glyph world (Ribarsky 

et al. 1994) (Section 4.3.4). Many novel forms of representation have been proposed to enlarge the 

number of attributes, or overall matrix entries, that can be directly visualized (Card et al. 1999; Chen 

1999; Spence 2001) as have been illustrated in the previous chapters. It has been emphasized that 

new representations bring with them the problem that they are unfamiliar to users. Thus for both 

transformations and representations, tools and techniques are required to characterize the behaviour 

of the visualization process to the user, a process which may involve the loss, distortion or hiding of 

information.

The extent to which applications show views of the data as ‘one view of many’ varies. Shneider- 

man (1996) defines the steps of visual information seeking as: start with an overview of the dataset, 

zoom in on items of interest and filter out uninteresting items, then provide details on demand. This 

he describes as the visual information seeking mantra. It indicates an interactive process, but does not 

imply interactivity at a particular level. Consider the case of providing overviews of database contents 

for querying. Here, visualization may not be a particularly interactive process at the overview level 

(though contain many elements of interactivity overall) - the user may have one look at the overview 

then go on to create queries or zoom in to look at detail. The user only wants to get a general idea 

about the overall content. Arguably, this means that the precise representation does not matter, but 

a static presentation of the data overview has the potential to be misleading. If visualization is pre-

sented as an interactive process in which the user looks at many different views (Monmonier 1991a), 

at a particular level, then the user is not misled into thinking there is one correct view, though they 

may still struggle to understand the meaning of the different representations. In geovisualization, the 

inevitability of misleading the viewer in a map, is well known (Monmonier 1991 b) and a number 

of strategies have been proposed to avoid what is described as the one-map solution (Monmonier 

1991a). As maps of non-spatial data are used more frequently (Fabrikant and Skupin 2004), this 

expertise needs to be applied more widely.

The two main goals from the designer’s perspective can be expressed thus:

• Avoid the implication that there is one correct view where this is inappropriate.

• Provide the means for enhancing the user’s understanding of the transformation and represen-

tation, especially where abstraction and complexity or novelty of visual depiction are involved.

The second of these is the focus of this work. To some extent it serves the first in that increasing the 

user’s understanding of visualization methods for high-dimensional data also increases their appreci-

ation that such data are many-faceted. However, examination of the general problem of how to avoid 

a fixed view of complex data is not the main aim here, though it is addressed indirectly.
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The direct result of the complexity or novelty of representations is that a user’s initial reaction to a 

graphic may be ‘What does this mean?’ Thus, users need methods and tools that help them understand 

the necessarily abstract representations required to depict complex data. Intuitively the user wants to 

take known data and put this into the visualization process to see what happens. This idea comes from 

work in image libraries and the application of fingerprinting as described on page 6; it was discussed 

with visualization system designers and researchers at a number of conferences and workshops, and 

with users (biologists associated with our research group, industry participants in various seminars 

and workshops). Thus, in these discussions users say that they want to know how specific data, that 

they arc familiar with, are shown in the graphic and designers/researchers want users to know that a 

certain pattern in the visual depiction indicates a certain feature in the data. It is this intuition that led 

to the proposal of the concept signature exploration - to use datasets that are known in some way. to 

explore the behaviour, or signatures, of the different visualization techniques. This illustration of the 

behaviour of the process can be described as helping to appreciate the computational element. The 

computational element may be taken to cover both visual and non-visual elements of the application 

and becomes of greater importance as composite tools of greater complexity are created. One way 

of appreciating the computational element is to provide an animation of the algorithm itself (see the 

Complete Collection of Algorithm Animations site: http://www.cs.hope.edu/ alganim/ccaa/), but this 

illustrates how the algorithm works, rather than its effect upon data, i.e. how features in the data map 

to patterns in the visual representation.

The next section, Section 6.2, defines the concept signature exploration. The examination of 

signature exploration has inspired a number of techniques relating to the construction of datasets 

containing features of interest and these are described in Section 6.3. In Section 6.4 it is demon-

strated that these approaches build upon existing work which provides interaction mechanisms for 

visualization. The chapter concludes with a summary.

6.2 Definition

I have proposed the use of constructed data in a process called signature exploration (Noy and 

Schroeder 2001; Noy Noy) to assist with the difficulty of understanding abstractions or novel repre-

sentations of high dimensional data, and the corresponding problem to the user of choosing between 

different visual depictions. This problem area covers a wide variety of visualization situations, wher-

ever there is difficulty in interpreting the resultant graphic.

Definition 10 Signature Exploration. Signature exploration is defined as the exploration o f the 

behaviour o f a visualization method by means of the visualization o f specially constructed datasets, 

which contain, or are representative of, particular features of interest. In this way known datasets

78

http://www.cs.hope.edu/


CHAPTER 6. SIGNATURE EXPLORATION

are visualized for the user as concrete examples of the behaviour o f the method. The visualization 

result, the pattern produced, is the signature o f the method for that data. Different methods will 

produce their own corresponding signatures for the dataset, enabling comparison. The dataset may-

be one o f a set o f standard types provided, or any set constructed by the user. Thus the signature of 

the method is explored for sets o f known data. The term signature is used in the sense of a distinctive 

mark, or pattern, indicating identity of a dataset feature for a particular visualization method. By 

known is meant that the user has a sense of knowing the data, that it contains or represents a certain 

feature, in a concrete, but not necessarily precisely defined, way. Visualization method is used here 

to mean any application, tool or algorithm that produces a visual representation of data.

Why use the term signature? As indicated in the definition, it is in the sense of a ‘distinctive 

mark’, ‘characteristic’ or ‘indicator’, that the term signature is used here. Signature derives from the 

Latin, s i g n a t u s ,  past participle of s i g n a r e ,  to mark, from signum , sign (American Heritage 

Dictionary of the English Language 2000). One of its meanings is given as:

A distinctive mark, characteristic or sound indicating identity.

Also, there is an equivalence between the words signature and sign since to sign means to write one's 

signature. Sign has the meaning:

Something that suggests the presence or existence o f a fact, condition or quality. An 

indicator.

Thus signature in signature exploration has the meaning:

A distinctive mark or pattern indicating identity o f a dataset feature for a particular visu-

alization method.

In theory, from the above definition, all instantiations of the visualization of data are signatures. 

If, however, the set of all possible datasets is reduced to a set of representative datasets which are 

representative of features of interest, the scope is reduced. The input data is reduced to a subset 

that represent particular features, but this is not a closed set. The ability to create further datasets 

is important for two reasons: firstly, it engages the user in the interaction process, bringing their 

domain knowledge to the fore; secondly, the likelihood of universally agreeing a set of datasets, that 

appropriately represent all possible features of interest, is low. Thus armed with a set of characteristic 

input datasets and the ability to create more, the user may be able to make a series of formulations of 

the form - ‘for this visualization method, this pattern means the presence of feature x  in the dataset’.

The characterization of knowing as ‘a sense of knowing’ (see Definition 10) can be expressed as 

the user having an understanding of the characteristics and structure of the dataset being used as an 

exemplar, though one would have to then say what is meant by ‘understanding’, what their level of
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statistical expertise is, say. However, it is not that the user is assessed as ‘knowing’ by an external 

authority, but that the user assesses themselves as knowing in some way. This allows the meaning to 

encompass a variety of users, tor instance, novices, classification experts, statisticians.

The goals of signature exploration are:

• To increase the user’s understanding of the behaviour of a particular visualization method for 

complex data.

• To enable the user to compare different visualization methods for the purpose of choice or 

classification with respect to the visual evidence of specific dataset features.

These goals have the underlying objectives:

• To develop a set of techniques for aiding comprehension.

• To develop a framework for the design of visualization systems for increased comprehension.

These two goals and two objectives correspond to the objectives of the work given on page 11 as 

four hypotheses of the benefits of signature exploration.

6.3 Proposed Techniques

Five techniques for signature exploration have been proposed and investigated. Each technique in-

volves the production or provision of constructed data containing a feature or features of interest:

1. Generic dataset provision

2. User-construction of data

3. Querying

4. Insertion of landmarks

5. Elicitation and application of feedback data

These techniques are introduced and defined here; investigations of each technique are presented 

in following chapters.

6.3.1 Generic Dataset Provision

Definition 11 For generic dataset provision, characteristic sets o f data that illustrate the various 

behaviours o f metrics and visualizations are provided within the visualization application.
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apples pears bananas oranges
customer! 1 2 3 4
customer2 2 2 2 2
customer3 3 10 20 30

Tabic 6.2: Example: to show the behaviour of different metrics. Euclidean metric (followed by mul-
tidimensional scaling) groups customers 1 and 2, angular separation (and multidimensional scaling) 
groups customers 1 and 3.

Consider, for example, the data in Table 6.2. This data can be used to illustrate the difference 

between the Euclidean and angular separation metrics (Section 3.4.2 on page 36). Applying the 

Euclidean measure (followed by multidimensional scaling) groups customers 1 and 2, whilst angular 

distance (and multidimensional scaling) groups customers 1 and 3.

The purpose of generic dataset provision is to provide the user with a range of datasets showing 

specific features, so that they can form a more concrete impression of the behaviour of the visualiza-

tion method, and to assist them in the comparison of behaviours of different algorithms. There are 

many issues relating to the choice and specification of these generic datasets, which are the subject of 

ongoing work. However, in order to conduct an initial test, a number of representative datasets have 

been used.

There are numerous on-line repositories of datasets, predominantly containing real-world datasets, 

(detail of some of these can be found in the next chapter, in Sections 7.2.1 and 7.2.2), and a lot is 

known about many of these, from their use, for instance in machine learning and statistics. However, 

these are known in the sense that they have been used in numerous studies, rather than that they 

contain a specific feature with which to illustrate the behaviour of graphical representations to the 

user. Thus, this study considers synthetic datasets for the generic dataset type and. for the time being 

leaves aside real-world datasets.

6.3.2 User-Construction of Data

Definition 12 User-construction o f data is the construction o f data by the user - static or simulated

construction. By static is meant the direct specification of a data table, i.e. the user enters data 

directly into the table. Simulated refers to a data table derived from a simulation whose model is 

provided by the user as specified behaviours.

In the customer/fruit scenario above, a user, perhaps the store manager, creates specific data 

values for their typical customer groups and sees how they are shown by the visual representation. 

For instance customer Jypel buys apples and pears and nothing else, customer_type2 buys oranges 

and bananas and nothing else, customer_type3 only buys apples. On the other hand, the store manager
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may, from their experience, believe that there are certain behaviours such as: the customer who 

regularly buys certain fruits once a week: the customer who lives locally and enters at random and 

buys a small amount chosen randomly: the customer who comes in twice a week and buys what is on 

special offer, and so on. From these behaviours a simulation can be built to generate data which can 

then be represented visually.

Thus, for user-construction of data, the user may create the data from scratch, transform an exist-

ing dataset that they are exploring or start with one of the generic datasets provided. Static construc-

tions are matrices specified by the user, which can then be visualized. The variable values for each 

entry may be entered individually, generated according to a formula, or represent a scaling or phase 

shifting of values of another entity. They are static in the sense that they are an instance of creation 

by the user, as opposed to simulated constructions, which are the result of data produced by a simu-

lation of entity behaviours. In relation to the use of data constructed via simulation, perhaps the user 

looks at their own real-world dataset of interest and hypothesizes about the entity behaviours that 

would produce such data. On a complex level this would result in system simulations and possible 

prediction models. In simpler terms it is an invitation to the user to think about the data in a different 

way and derive questions and hypotheses that can then be examined. It thus extends the question - 

‘if my data looked like this, what would the visualization look like?’ to ’if my data were produced 

by these behaviours what would the visualization look like?’ It can be useful to use software agents 

to model the entities in the data, for instance the customers in the calldata example, then agent sim-

ulation can be used to test hypotheses for patterns seen in the data, based upon a set of behaviours 

given to the entities. An example is the use of an agent-based characterization to explain regularities 

in web surfing (Liu 2002).

6.3.3 Querying

Definition 13 Querying, based on a real dataset that the user wants to analyze, results in a subset 

of the data being directly selected by the user (either from the visualization itself, or by querying the 

original dataset) or automatically derived (e.g. outliers or extremities).

Examples of directly querying the fruit/customer data are: Which customers buy more than 10 

apples? Which customer has bought most items? An example of visual querying is the user high-

lighting a customer on the edge of the display and viewing the customer’s data.

In querying, a cluster in a visualization of a dataset under consideration may be highlighted, or 

an outlier, or the extremities of a pattern to form the constructed data for subsequent manipulation. 

Alternatively the dataset may be queried in an SQL type query to create a subset. Some of these 

techniques are well known and widely used. Here the purpose is to explore the behaviour of the 

graphical display. For instance, highlighting a group will allow the user to answer the question
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'Has the visualization method placed these objects as I expected it to?’ or ‘On what basis is the 

visualization method placing these objects together?’. Similarly the answer to a query of a database 

of houses for sale, such as: 'Which houses have five bedrooms and a garden?’ allows the user to 

question whether the placement of these houses is expected or not.

6.3.4 Insertion of Landmarks

Definition 14 The addition and/or highlighting o f one or more entities, within a dataset under con-

sideration. to provide points o f orientation, is described as the insertion o f landmarks.

In the customer/fruit example, assuming a set of real data collected about the customers, the user 

adds three customers: one who buys 10 apples only, one 10 pears only and one who buys nothing. 

The user can then see which customers are closest to their constructed customers.

Landmark and query overlap as concepts, whilst query relates to an action for which there is an 

answer, the insertion of a landmark adds a point or group for the purpose of orientation. Thus the 

highlighted entities may be left as landmarks in the display, but new entities may also be invented. 

An example, in the case of looking at houses available on the market, could be to highlight the 

most expensive house (highlighting one of the members of the dataset) or include one’s ideal house 

(including a new entity).

6.3.5 Elicitation and Application of Feedback Data

Definition 15 For the elicitation of feedback data, the user arranges a set o f objects that are known to 

them on the screen. Real-world data is also available for these objects. The objects are known to the 

user in the sense that the user has a personal view of some (or all) of their qualities and can arrange 

the objects on the screen according to their own perceived sense o f similarity between objects. The 

system applies this feedback data by using the proximities for the display of subsequent data by, for 

example, weighting the given attributes or selecting the algorithm that provides the closest layout to 

the user defined one.

In the customer/fruit example, if it is enforced that customers 1,2 and 3 are grouped together by 

the store manager deciding the buying behaviour of these three is similar (by arranging them close 

together on the screen or by some other means), the visualization application then derives that 5 and 

6 (say) are also similar, but 7, 8 and 9 are not.

The initial inspiration for signature exploration, and especially for this feedback technique, came 

from work on dynamic querying of image libraries (e.g. Chang and Fu (1980); Pu and Pecenovic 

(2000)), as described in the introduction to this work on page 6. Here the user may choose a selection 

of images and then see how the application arranges them in terms of similarity, so they can better
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understand how the application responds when asked to return, from the database, images similar 

to a particular image. This is an example of signature exploration, since the user is given insight 

into the behaviour of the algorithm by seeing how some known data is arranged. However, further 

development suggests itself: it would be useful to start from the user layout of entities (images in this 

case) and modify the algorithm to reflect the user’s concept of similarity. This can be regarded as 

signature modification using feedback data.

Concepts of similarity may be very subjective, as is particularly clear in the case of comparison 

of image data. To some extent many comparisons have a subjective aspect, either from the point 

of view of the user’s particular inquiry or from their perspective. The user may also be unable to 

articulate, or even be aware of, relevant domain knowledge that they have. In feedback exploration, 

the user is asked to position a number of familiar objects on the screen such that the distances between 

them represent their similarity (or measure of connectedness) according to the user’s perception. It is 

assumed that there is multivariate data also available for these objects, so that the system can derive 

a mapping between the two (which may necessarily be approximate) and thus provide a means of 

displaying unknown data according to the user’s classification. The simplest application would select 

the algorithm which gave the layout closest to that specified by the user.

6.4 Relationship to Existing Work

Apart from the work already referenced in the use of image libraries and spectrometry (page 6), 

contemporary visualization systems contain many elements for assisting the user's exploration of the 

data (as illustrated in Chapters 3 and 4; general references: Card et al. (1999); Chen (1999); Spence 

(2001) ). Such features include: brushing (Cleveland and McGill 1984; MacDonald 1990) and the 

use of multiple linked views (Roberts 2004); for context and focus control (Furnas 1981; Lamm et al. 

1996; Rao and Card 1994); querying of data with conventional database query language and dynamic 

querying within the visualization itself (e.g. Attribute Explorer (Spence 2001)); visual selection and 

reordering of that data, for example in the context of a colour map (e.g. Ankerst (2001)) or directly 

from a data table. These features promote the exploration of both the data and, intrinsically, the 

visualization method. Signature exploration focuses not on the data itself, but on the visualization 

method’s behaviour, not as an end in itself, but as a process within and adjacent to that of exploring the 

dataset. The many techniques available to assist exploration of datasets, indicated above, fall within 

the scope of the signature exploration concept, so that, whilst the examination of signature exploration 

has suggested new techniques and a framework for the increased comprehension of complex data 

visualization, it is also a reframing of much existing work.
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6.5 Implementation

Example interfaces for the five approaches have been developed by extending an existing tool for 

visualization, the Space Explorer visualization environment (Schroeder and Noy 2001: Schroeder 

et al. 2001) and by other testing. Space Explorer contains a number of clustering and visualization 

algorithms implemented in Java and the Virtual Reality Modelling Language (VRML). VRML is a 

mark-up language which allows one to specify 3D worlds, which can then be displayed and explored 

in any web-browser with a VRML plug-in. In the original application, users can load multivariate or 

proximity matrices. PCA, PCoA, spring embedding, distance metrics of various kinds and hierarchi-

cal clustering algorithms with different linkage methods can be selected as appropriate. One, two or 

three dimensional output can be requested, the 3D representations are presented within an interactive 

VRML world. A set of prototype interfaces for this application was developed which provides fa-

cilities for signature exploration as menu items; these are described in the next four chapters (query 

and landmark are combined). The investigations described in these following chapters are partly pre-

sented within these interfaces, dynamically (upon request) and partly as a result of manually changing 

the data (this will be made clear in the relevant chapter descriptions).

The original application was rewritten using the Java Swing1 library, because a spreadsheet win-

dow was required and this would be easier to implement with Swing, as well as having the benefit of 

additional functionality. The architecture of the original application was changed to provide an initial 

componentization including a template for the addition of new display types as they were developed. 

Significant additions or changes to the original application are* 2:

• Updating to Swing of the functions for multivariate data and the interface. Only the functions 

required for this work were included (PCA and distance metrics followed by PCoA).

• Change from a form to a menu-based application.

• Spreadsheet application - to enable the viewing, highlighting, changing and entering of numer-

ical data directly into a table.

• Bar chart implementation.

• Display windows chosen by the user one by one, rather than the selection being hard coded 

and all appearing at the end of the data transformations.

• Extending brushing and linking to allow connection between the display window and the data 

table, in both directions, i.e. so that changes in the table window result in changes in the display

'The Swing components are part of the Java Foundation Classes (JFC) which encompasses a group of features to help the 
building of graphical user interfaces. The JFC was first announced in 1997 - updating the AWT (Abstract Windowing Toolkit).

2Some of these modifications will become clearer after descriptions in subsequent chapters.

85



CHAPTER 6. SIGNATURE EXPLORATION

window and vice versa (where this is appropriate, that is where the mapping is direct and does 

not involve dimension reduction).

• Feedback interface in the scatterplot display for multivariate data, to allow users to move the 

entities to create their own arrangement and capture the distance measurements. (This is a 

generalization of the ‘backward’ brushing and linking between scatterplot and multivariate 

data table).

• Partial componentization to facilitate addition of new displays.

Note that it was beyond the scope of this project to produce a complete, finished application. The 

extensions and modifications above were made in order to carry out the experiments to examine the 

techniques of signature exploration, limited to the examination of illustrative applications for each 

technique, to maximise the benefit as mentioned in the introduction (page 10). Thus the resulting ap-

plication operates a subset of the overall functionality of the original application, whilst also making 

additions.

6.6 Summary

This chapter begins by summarizing the problem of visualizing complex data and indicates the three 

main aspects that need comprehension support: mathematical transformation; graphical represen-

tation; each depiction as ‘one view of many’. These three aspects are a categorization of the key 

issues that present obstacles to comprehension identified in the previous four chapters. Mathematical 

transformation and graphical representation are seen as one by the user. The information seeking 

mantra of ‘overview, zoom, then details-on-demand', encourages an interactive process. However, 

there is still a need to prevent a static one-view solution to visualizing complex data, particularly for 

the overview phase. Thus the two main goals for the designer who wishes to optimize the user’s 

comprehension are: avoid the one-view graphic; enhance the user’s understanding of mathematical 

transformation and graphical representation. The second of these is the focus of this work, though it 

serves the first in part.

The proposal of signature exploration is based upon the intuitive desire to take known data and 

put it into the visualization process to see what happens - to use datasets that are known in some 

way to explore the behaviours, or signatures, of the different visualization techniques. In this way 

the user can gain insight into how features in the data map to patterns in the visual representation. 

Signature exploration is defined as the exploration of the behaviour of a visualization method by 

means of the visualization of specially constructed datasets, which contain, or are representative of, 

particular features of interest. Signature is used to mean a distinctive mark or pattern indicating a 

dataset feature for a particular visualization method.
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Five techniques involving the production or provision of constructed data containing a feature 

or features of interest are presented: generic dataset provision; user-construction of data; querying; 

insertion of landmarks; elicitation and application of feedback data. For generic dataset provision, 

characteristic sets of data that illustrate the various behaviours of metrics and visualizations are pro-

vided within the visualization application. User construction of data involves the user creating their 

own data from scratch or by transforming an existing dataset, or by a simulation based upon a user- 

specified set of behaviours. Querying relates to a real dataset under consideration; it results in a 

subset of the data being selected by visual or SQL-type query, so that the user can examine the way 

this subset is depicted by the visualization process. Landmarks are inserted for orientation within 

the graphic; they may be selected from within the dataset under consideration or be synthetic addi-

tions to the dataset. The elicitation and application of feedback data captures and applies the user’s 

knowledge of a subset of entities from a dataset under consideration.

This work builds upon work of the last ten to twenty years that contains many elements for 

assisting the user’s exploration of data, such as brushing, for focus+context control, dynamic querying 

and visual selection and reordering of data. Signature exploration reframes this work by placing 

it within the context of understanding the visualization process itself, rather than the data, and by 

establishing further techniques to this end, together with a framework for the design of complex data 

visualization applications that optimize user comprehension.

The exploration of the concept of signature exploration has taken place within the ongoing devel-

opment of an existing visualization environment, Space Explorer. The application was updated and 

reorganized to provide a template for new displays and additional functionality including: a spread-

sheet, bar chart display, brushing and linking between windows (including the datatable window) 

and a feedback interface for the dimension reduced scatterplot. Facilities for signature exploration 

are included as menu items.

87



Chapter 7

Generic Dataset Provision

7.1 Introduction

The previous chapter has dclined generic dataset provision as the provision within the visualization 

application of characteristic sets o f data that illustrate the various behaviours of metrics and visu-

alizations (Definition 1 1 on page 80). This is to provide the user with a range of datasets showing 

specific features to demonstrate how these features appear in the pattern in the resultant graphic, how 

the features map to patterns in the graphic, with the aim of saying (if possible), ‘If I see pattern x  

in the graphic, it means that the dataset contains feature y.’ There are two scenarios: to examine a 

single visualization method using several datasets; to compare different visualization methods using 

the same dataset. These are illustrated in Figure 7.1.

Immediately a number of problems present themselves. There are so many datasets, how is one 

to choose representative ones? Will the result (how the feature maps to a particular pattern) hold 

only for that specific dataset or can the result be generalized? How can the feature in the dataset 

be specified or classified, can it be measured? How can the resultant pattern be specified? In order 

to measure how well the feature is shown in the graphic, can the resultant pattern be measured? 

Regarding dimension reduction situations, the information loss, or abstraction, involved indicates 

that more than one dataset will result in the same graphic; what are the implications of this?

Despite the difficulty of answering these questions (which are returned to in subsequent sections 

of this chapter), we can procure or devise datasets that show general features such as:

• ‘Structureless' datasets based on pseudo-random variables with, for instance, uniform and 

Gaussian distributions.

• Clusters of various numbers and types, alone or placed within the datasets of the first item.

• Datasets containing specific entity-entity structures, i.e. structures that concern relationships
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feature

three generic 
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Figure 7.1: Generic dataset provision. Two scenarios: examining a single visualization method using 
several datasets (top); comparing different visualization methods using the same dataset (bottom). 
The visualization method is treated as a black box with the aim of seeing how features in the dataset, 
which can be seen directly in the table form, map to patterns in the graphic. Some other representation 
for the dataset may be used, depending upon the type of data, for instance, for time series data, line 
plots may be more appropriate. Line plots are used in addition to tables in the feasibility test in 
Section 7.3.1.

89



CHAPTER 7. GENERIC DATASET PROVISION

between the entities, such as1 :

-  scaling (amplitude, phase and frequency types)

-  showing patterns of interest (such as overall behaviour across variables)

• Datasets that contain examples of correlation between variables* 2.

Though it may not be possible to quantify these features in all cases, nor to specify them, formally, 

in mathematical terms, it can be said that such features exist. With such data we can then:

• See how different visualization methods display these data.

• Give a subjective assessment of how well a feature is mapped.

On an intuitive level one might consider the following: as a designer creates a new graphical 

depiction, they supply to the user within the application, where feasible, the test datasets with which 

they explored and validated their representation, which also reveal any artefacts. An artefact in this 

situation being an apparent pattern in the data that resulted from the visualization method itself, as 

distinct from an artefact of the data collection method. The sense of pragmatism in which the designer 

chooses representative datasets with which to test their application can also guide our approach to the 

choice of representative generic datasets.

Again, (as mentioned in the previous chapter on page 78), note that one approach to understanding 

the visualization method would be through understanding the process in the black box itself, perhaps 

by algorithm animation, but this does not directly address the question of how features in the dataset 

map to patterns in the graphic. Also, particularly in the case of complex transformations, it may still 

fall short of allowing the user to predict patterns in the representation.

Generic dataset provision entails establishing a set of datasets that contain features of interest 

and can be described as generic in the sense that they are representative of these features. This 

concept is close to the idea of benchmark datasets, but not quite the same. The purpose of benchmark 

datasets is to establish a recognized set of datasets for assessing (or measuring, if appropriate) the 

characteristics of a particular visualization method, primarily for the designer’s benefit. Whereas 

generic datasets are proposed for the benefit of the user. Thus generic datasets, if identified, may be 

useful as benchmark datasets, but the aim in this work is not, specifically, to establish benchmark 

datasets. The significance and potential of the findings of this work vis-à-vis benchmark datasets is 

examined in the concluding chapter of this thesis (Chapter 13).

In examining the possibilities and application of generic datasets, the approach taken here is to 

first look at how various aspects of the issue appear in the literature, and, based upon this, then

'Examples of these are given in subsequent sections of this chapter.
2Correlation becomes an entity-entity relationship if objects and attributes are swapped.
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create representative datasets. A feasibility test was carried out to see whether this approach would 

assist with the understanding of the duck's leg and webbed foot pattern from the calldata (page 7) 

(corresponding to the first scenario in Figure 7.1). Also undertaken was an examination of the choice 

of dimension reduction method for an application in the software agent domain, to identify like- 

minded agents (corresponding to the second scenario in Figure 7.1). This led to the proposal of a new 

technique for use of profile data which is described in Section 1 1.5. Thus the following four sections 

cover: relevant literature; specification of datasets and description of tests; results and conclusions.

7.2 Literature Background

The literature has been examined from the point of view of finding suggestions for datasets to use, 

as well as creating datasets that contain specified features, such as outliers or relationships between 

entities. Books of collections of datasets are available, as well as on-line repositories. The classifi-

cation literature examines types of datasets, including suitability of clustering methods, validation of 

clusters and null models (of data which lack structure in some sense). The information visualization 

literature reports work to identify test datasets for evaluation of information visualization systems. 

These areas are described below.

7.2.1 Collections of Datasets

In the introduction to ‘Small Datasets’3 by Hand et al. (1994), the use of synthetic data is criticised:

‘If data purporting to come from some real domain are invented... there is the risk of 

misleading - it is in fact quite difficult to create realistic artificial data sets unless one is 

very familiar with the application area.’

The authors indicate how hard it can be to find real datasets and this is part of the rationale for

the book. Nevertheless, this book does contain a couple of synthetic datasets, including Anscombe’s

correlation data - four synthetic two-dimensional datasets with correlation coefficients and regression

lines the same, but very different scatter diagrams (Anscombe’s data are discussed in Tut'te (1983, p.

13)). The question of the validity of the use of synthetic data would appear to be an issue relating

to the nature of the feature of interest. An outlier can certainly be successfully synthesized for the

purpose of seeing whether a particular visualization method reveals it. At the other extreme, data

from a complex system exhibiting emergent behaviour cannot, in general, be synthesized4. In a

sense, emergent behaviour is a meta-level feature compared to that of an outlier. Thus it would

3The two collections of datasets examined here are recommended by Webb (1999. p. 3S1) for assessing statistical pattern 
recognition methods.

4For this reason we used the calldata to represent an agent system...see later description. Data showing emergent behaviour 
can be synthesized when the mechanism is known, as in cellular automata, but arguably these may then be considered synthetic.
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appear valid to conclude that, in choosing representative datasets, synthetic and real-world datasets 

are both appropriate, depending upon the feature of interest.

Another book of datasets, ‘Data: a collection of problems from many fields for the student and 

research worker' (Andrews and Herzberg 1985), shows a broad collection of sets of data from a large 

number of situations and points out that in many cases, different forms of statistical analysis lead to 

different conclusions, thus facing the reader with the challenge of finding an appropriate analysis.

In examining both collections of data, no obvious candidates for generic datasets were found, 

apart from those exhibiting a certain number of clusters, such as the well-known Iris dataset. The Iris 

dataset (Fisher (1936) as described and reproduced in Andrews and Herzberg (1985)) is used widely 

to illustrate new representations. The dataset contains 3 classes of 50 instances each, where each 

class refers to a type of iris plant. One class is linearly separable from the other two; the latter are 

not linearly separable from each other. This is valuable in the situation where the user knows this 

dataset and has seen many other representations of it with which to compare. For the inexperienced 

user, however, and from the point of view of a search for datasets containing specific features, it is 

not an obvious starting point. It is possible that the lack of suitable datasets in these collections arises 

because the datasets available reflect the desire for datasets with which to test different statistical 

methods, rather than for illustrating and testing the behaviour of graphical representations to the 

user5.

7.2.2 On-line Data Sources

There are numerous on-line repositories of datasets. Some of the datasets that are available have 

been used for numerous studies and a lot is known about them. Like the books of datasets (some 

of which appear in the electronic sources), they contain almost exclusively real-world datasets, so 

cannot provide examples for the generic type under examination here. Some datasets are also (unlike 

the datasets in the two books above) too large for the display in a table. Indication of content of some 

of these on-line repositories of datasets is shown in table 7.1. These repositories were examined 

(the UCI Machine Learning Repository, by examining the descriptions of all the datasets, the other 

repositories by scanning a selection), for suitable datasets to use here. However, the view formed by 

examining the sources in books, described in the previous section, was confirmed, that there were no 

obvious candidates for generic dataset provision6.

5 In retrospect, this still seems odd. perhaps the concept of a feature was too narrow. At any rate, the datasets did not appear 
to contain the features that were of interest at that time.

6More extensive examination of available datasets may lead to a different conclusion. Also, further experimentation with 
candidate generic datasets may reveal the importance of features that are illustrated by some of these datasets, though such 
features were not considered here.
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Repository Name and Web Address Comment
UCI Machine Learning Repository 
www.ics.uci.edu/ mlearn/MLRepository.html

Over 70 databases that are used by the ma-
chine learning community for the empirical 
analysis of machine learning algorithms. Rec-
ommended by Webb (1999).

UCI Knowledge Discovery in Databases Archive 
kdd.ics.uci.edu/

Large datasets: wide variety of data types, 
analysis tasks, and application areas to en-
able researchers in knowledge discovery and 
data mining to scale existing and future data 
analysis algorithms to very large and complex 
datasets.

Biz/ed: for students and educators in business and 
economics
www.bized.ac.uk/dataserv/datahome.htm

Hosts both original and mirrored datasets for 
economics, business and finance.

Data and Story Library 
lib.stat.cmu.edu/DASL/

Datafiles and ‘stories' that illustrate the use of 
basic statistics methods.

Journal of Statistics Education - Data Resources 
www.amstat.org/publications/jse/jse_data_archive.html

Data for use in teaching statistics.

UCLA Statistics Data Sets 
www.stat.ucla.edu/data/

Includes the sets of datasets from the 
two books described above (Andrews and 
Herzberg (1985); Hand et al. (1994) and others 
for courses and from other books.

Table 7.1: On-line repositories of datasets. A list containing these and other data sources on the web 
is given by CTI Statistics at www.stats.gla.ac.uk/cti/links_stats/data.html.

7.2.3 Admissibility Criteria and Clustering Validity

Fisher and Van Ness (1971) and Van Ness (1973) suggest an admissibility procedure for clustering 

algorithms. Their starting point is that it is usually impossible to determine a ‘best’ clustering pro-

cedure. They suggest the formulation of properties which any reasonable procedure should satisfy 

and call a procedure satisfying them admissible. The aim is to eliminate obviously bad clustering 

algorithms, but is not an attempt to specify the best method. Fisher and Van Ness describe this as 

follows:

'Let A  denote some property which should be satisfied by any reasonable procedure 

either in general or when used in a special application. Any procedure which satisfies A 

is called A-admissible.’

The properties that are used relate to three different aspects: the resultant clusters; the struc-

ture of the data; the consistency of the result when changes are made to the data. For instance, 

if the resulting clusters have convex hulls which do not intersect, (i.e. clusters do not cut through 

one another), the clustering procedure is described as convex-admissible. The properties relating to 

structure cover well-structured (exact tree), i.e. having an exact tree structure, and well-structured 

(k-group) if there exists a clustering C \ , . . . ,  C \  such that all with in-cluster distances are smaller than
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all between-cluster distances. The properties relating to changes to the data (transformations and ad-

ditions) include duplications of single entities in a cluster (point proportion admissible), duplications 

of all entities in one cluster {cluster proportion admissible) and removal of all entities in one cluster 

(cluster omission admissible).

This work is not directly applicable for generic dataset provision as it concerns the behaviour of 

clustering algorithms, but the concept of admissibility and the specification of properties, together 

with formal definitions, constitute an overall approach that is useful here.

There are many references to the difficulty of choosing methods for classification and clustering 

(for example. Gordon (1999): Webb (1999)). The process of clustering has been described as a system 

for generating hypotheses (Williams and Dale (1965) as cited in Sneath (1997)) and this description 

is also apt for visualization, regardless of whether clustering algorithms are employed. Nevertheless, 

in practice the user will not wish to validate all hypotheses about clusters or visualization, so that it 

is useful to have ‘guidelines to what can be accepted with confidence’ (Sneath 1997).

However, an example of the difficulty of using guidelines is in assessing the validity of PCA 

by examining the eigenvalue tail-off (Section 3.4.2). If the eigenvalues tail off fast (within 3 or 4), 

the truncation of the matrix is considered valid. A guideline is to say that, if three quarters of the 

information is present (by truncation at a particular point), this indicates validity. It is often the case 

that the eigenvalues do not tail off and this is taken as an indication of lack of structure in the data. 

However, examples have been observed where a satisfactory structure of the data was obtained even 

if the eigenvalues indicated otherwise (Lebart et al. 1997, p. 57). An intuitive explanation of this is 

that ‘noise’ is present in the data. We can recreate this by first creating an evenly distributed random 

variable space and putting within this Gaussian clouds (Keim et at. 1995).

Procedures for evaluating the results of a clustering algorithm are described as cluster validation 

and tests are defined to measure:

• the complete absence of class structure (the null hypothesis, a statement of random structure 

of a dataset)

• the validity of an individual cluster

• the validity of a partition

• the validity of a hierarchical classification

This absence of class structure is an immediate candidate for generic data, since this will show how 

the representation appears with a dataset lacking structure and will, at the same time, reveal any 

artefacts that are the creation of the representation itself. The validity of clusters7, partitions and

7ln the case of clusters there is a further issue concerning the number of clusters requested, since many clustering algorithms 
require this to be decided by the user. Thus the validity of the number of requested clusters needs to be examined as well.
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hierarchies is measured numerically by various methods; these measures may help the user to assess 

the visual depiction where clustering has been used, but for the purpose of this work, for simplicity, 

it is assumed that this assessment is done visually, at least partially. Thus the integration of cluster 

validation information with the visualization is not examined in this work, though such things as 

isolation and cohesion of clusters would be useful measures to put figures on what we can see.

7.2.4 Null Models

A number of null models for absence of structure have been described for pattern matrices, dissim-

ilarity matrices and tree diagrams (See e.g. Gordon 1999). The Poisson model assumes that objects 

can be represented by points that are uniformly distributed in some region, A, of p-dimensional space, 

either the unit p-dimensional hypercube or hypersphere or the convex hull of these. Two things are 

identified in this description - the region within which the points are located (i.e. the overall ‘shape’ 

of the region A) and their distribution within this space. In the unimodal model the joint distribution 

of the variables describing the objects is unimodal, usually a multivariate normal distribution with 

identity covariance matrix8 has been specified. In the random permutation model, the entries in each 

of the columns of the pattern matrix are permuted, ignoring correlation between variables.

7.2.5 Datasets for Evaluating Visualization Systems

A workshop, entitled Perceptual Issues in Visualization (Grinstein and Levkowitz 1995), was held 

at the IEEE Visualization ’93 conference. The first of its kind, this workshop included a subgroup 

examining the topic Test Data Sets. An approach suggested by this group is to use datasets that are 

created by combining noise with embedded stimuli (Keim et al. 1995). The noise is equivalent to 

a random dataset and the embedded stimuli are clusters within this as introduced in Section 7.2.3. 

Such artificial datasets are used to test whether the embedded stimuli can be observed in visualiza-

tions. Specifying datasets that contain specific (or absence of) correlation between variables is also 

included, though the authors concede that this is a difficult problem and only tackle two variates.

Turton et al. (2000) presents synthetic data generators, including the spatial element and time, 

for testing space-time and more complex hyperspace geographical analysis tools (not visualization 

tools). Keogh and Pazzani (1999) describe different ‘global distortions’ in time series data that are 

relevant to users, these are: offset translation; amplitude scaling; linear drift and discontinuities. 

These are described in detail in Chapter 10 as they relate to the use of feedback data9.

8The covariance matrix shows the covariance between variables, in addition to the variance of individual variables. The 
unity covariance matrix has zero values for covariance between variables, which means that there is no linear correlation 
between them.

9Since completing this work. Keogh has published further work that is relevant on the need for time series data mining 
benchmarks (Keogh and Kasetty 2002).
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7.2.6 Statistical Specification

It would be useful to be able to measure the features that are of interest to us in the dataset and measure 

the amount that the feature is revealed in the representation. Can statistical measures help? One can 

consider statistical measures to be. in themselves, features of interest, but statistical measurements 

can be the same for very different sets of data as illustrated by Anscome’s data (Anscombe 1973), 

discussed in Section 7.2.1, for which reason Tufte says:

“Graphics reveal data.” - The Visual Display of Qualitative Information (Tufte 19S3)

On the other hand, if transformation including abstraction is involved in the visual representation, this 

characteristic of revelation is somewhat lost and must be compensated for by the use of a combina-

tion of measures (statistical and other) and special visualizations (such as of error, see Section 11.3), 

so that the relationship between visual representation and statistics (as well as other measures) is 

somewhat circular. Note also that statistical measures are abstractions in themselves, involving an-

other layer of representation for the user to understand. The issue of how to statistify visualization 

applications is stressed by Unwin (2001), but is not the main concern of this work, which is (at this 

stage) concerned with revealing the behaviour of visualization methods with respect to features that 

are known in a more concrete sense, i.e. by direct examination of the data in the form of a table or 

direct visualization such as a line plot.

7.2.7 Visual Languages

Since it is difficult to mathematically specify, both qualitatively (to some extent) and quantitatively, 

the interesting features in datasets, it is possible to consider the use of a visual language (for three 

relevant papers see Bottoni et al. (1998); Narayanan and Htibscher (1998): Wang and Zeevat (1998) 

in Marriott and Meyer (1998)) for the user to express, for instance, their estimation of similarity be-

tween entities. This may be merely an inadequate placeholder for a superior, more rigorous, formal 

analysis, yet-to-be developed, but it may also have benefits in terms of engaging the user in exam-

ination of the algorithm behaviour and thus increasing their understanding. Intuitively it appears 

that much comprehension of a particular visualization system could be obtained by extensive study 

of the algorithms used and any mathematics involved, as well as studying many problems with the 

tool. However, the first obstacle here is to obtain the willingness or eagerness to carry this out. The 

possibility of aspects of the interface engaging the user in this process (which they may otherwise 

not engage in at all) is important. Thus, such a visual language need not be proved important only 

in its efficacy with respect to representing the desired dataset features, it can have value in engaging 

the user in a process. Arguably it is risky to add another level of abstraction at this point, but the 

fact is that the desired features do need to be measured in some way, if one is to move beyond the
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classification purely as presence/absence.

7.3 Choice and Specification of Datasets

The previous section has shown that collections of published datasets do not contain suitable datasets 

for the mapping of specific features in the data to patterns in the visual depiction, except for examples 

of clusters of various numbers and types, so that it is necessary to construct synthetic datasets. The 

following categories for synthetic generic types were identified:

• Null modes - lacking structure, or minimal structure in some sense (necessary to be able to 

identify what the lack of structure looks like for various methods).

• Clusters within noise (different types of data) (corresponding to the ‘noise with embedded 

stimuli’ of Keim et al. (1995)).

• Containing specific features including:

-  Overplotting due to identical or closely similar entities (i.e. features identified as prob-

lematic for particular visualization methods).

-  Outliers (of interest in most fields).

• Inter-element features (of particular relevance where dimension reduction clusterings are ex-

amined) including:

-  scaling

-  phase shift or modulation

-  amplitude modulation

-  frequency modulation

The type of data has been restricted to multivariate data tables, from which proximity data may 

or may not be derived. These restrictions are from two points of view: for simplicity and to provide 

focus.

In general it is considered that datasets can be known on three levels:

1. Where the actual data values are known precisely (indicating the dataset size is small).

2. Where some statistical features about the dataset are known (which allows the dataset to be 

large), but note Anscombe’s problem (see Section 7.2.6).
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3. Where the knowledge is intuitive, tacit knowledge. Tacit knowledge is loosely defined as 

knowledge that is not written down, but in people’s minds. A tighter definition specifies 

knowledge that is in the mind, but that the person is unaware of10: such knowledge is of two 

types according to how it was acquired - compiled knowledge and implicit learning. Compiled 

knowledge is derived from non-tacit knowledge as in the learnt skills of driving and typing. 

Knowledge derived from implicit learning has been learnt unconsciously and is hard to get 

a t" . Elicitation techniques are used to collect tacit knowledge in requirements elicitation and 

usability assessment (of websites for instance). Tacit knowledge and elicitation techniques are 

returned to in Chapter 10.

This investigation begins with the first in this list, small datasets, to satisfy the requirement of 

concretely knowing the data. Datasets lacking structure and those containing specific features are 

examined. The small size makes the creation of a random dataset problematic, because a small 

portion of a random dataset will always show some apparent structure, for instance areas of less 

density, and thus a degree of clustering is implied. The datasets are examined with the various 

algorithms in Space Explorer - to see if a distinct mapping of features is indicated or refuted for the 

different algorithms i.e. whether an informal feature-admissible classification can be made. This is 

illustrated in the following two sections describing respectively: a feasibility test; the integration of 

generic datasets within the user interface. The feasibility test involves users exploring the behaviour 

of a single algorithm with different datasets, the integration of datasets within the user interface 

allows the comparison of behaviours of different algorithms. The elicitation and use of datasets 

based on intuitive knowledge is left to the investigation of constructed and feedback types of signature 

exploration (chapters 8 and 10), since such data cannot, by definition, be generic.

7.3.1 Feasibility Test

Do our visualizations actually work? This question was asked in a keynote speech at a recent con-

ference (Robertson 2000) and statistics from conference papers given that showed less than 10% had 

carried out evaluation. Informal testing in the early stages was recommended and our feasibility test 

is of this nature. Twelve participants were briefed about the domain of our work and then given a 

series of web pages to examine in combination with a paper questionnaire. The web pages contained 

embedded VRML 3D representations of data that the participants could manipulate. The test first 

illustrated the problem by displaying the visualization of the call data of Figure 1.1 on page 7, which 

also gave the user the opportunity to familiarize themselves with navigating in 3D. They were asked 

to note any conclusions they were able to draw at this stage from the pattern of the data. A series of

lnThe tighter definition is used in the HCI community and the looser one in the field of knowledge management.
"Descriptions taken from the ACRE categorisation of memory and communication types (Maiden and Rugg 1996)
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3D visualizations of simple datasets followed (using the same algorithm - Euclidean distance calcu-

lation followed by layout with PCoA using Space Explorer). The data tables were shown, together 

with the data displayed as time series line plots. Figure 7.2 shows the feasibility test website12. Fig-

ures 7.3 to 7.8 show the six subsequent webpages of the test comprising one page of further details 

and five example generic datasets. The test took each participant about 1 hour to complete, including 

discussion.

The datasets illustrate constant, linear and complex pattern shapes across the variables and include 

scaling and displacement features. These datasets were chosen to cover the inter-element features 

scaling, phase shift and amplitude modulation as these are features of interest in comparing entities 

in a dimension reduction situation such as the one here. These answer the question ‘promimity 

represents similarity, but similarity in what sense?’ Phase shift is relevant in time series data, such as 

in examining biological or financial data, where a pattern of behaviour over a particular time period 

is repeated at a later time point by another entity. Phase shift also has meaning for non-time series 

data where all variables are of the same type (as in the calldata where all variables are destinations); 

here it corresponds to similar behaviour across the variables, but irrespective of particular variables. 

The particular examples of the data for each example were chosen so that the user could get a good 

impression of the data from the line plots.

Most of the questions in the questionnaire were to guide the exploration of the material. The key 

questions at the end were:

1. Do you think these explorations of constructed datasets have increased your understanding of 

the behaviour of the visualization algorithm? Results: Yes (5) No (3) Not sure/not much (4)

2. Do you think that an interface which allowed you to construct your own data, either from 

scratch or to modify given ones, would be useful? Results: Yes (10) No (2)

Although this was an informal test, it indicated that users would like an interface that allowed 

them to enter and explore their own example datasets or use the ones supplied as starting points for 

manipulation. Also that an interactive exploration of the way data values affect the visualization 

could enhance the user’s understanding of the algorithms used.

Observations from the feasibility test are shown in table 7.2. Each visualization showed a rec-

ognizable pattern relating to the feature in the illustrative dataset. The orthogonal, or approximately 

orthogonal, relationship between the loci of scaling and means, is interesting, because it provides 

indicators to the meaning of direction in the space, see Figures 7.9 and 7.10. Also the approximately 

circular nature of the phase shifted pattern. These, however, were not enough in themselves to assist 

the user to interpret the webbed foot problem of the test.

l2The questionnaires fitted in by participants were unfortunately destroyed in the serious fire that occurred at City University 
in the spring of 2001, which destroyed paperwork in our office.
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Figure 7.2: Website for feasibility test: opening page.

7.3.2 Adding Generic Datasets to the User Interface

A dataset for seven entities was created, with each entity having seven attributes, using Java’s uni-

formly distributed pseudo-random number generator (see for example Weiss (2002, Chapter 9.) for a 

discussion of randomization). Generic datasets are, by definition, domain-independent, but the data 

here is taken to be a dataset of seven agents with different levels of interest in seven subjects a , b , . . .g 

as shown in Table 7.3. This data is shown here because it was used in work applying generic dataset 

provision to the selection of metrics for measuring similarity between agent profiles, which is doc-

umented in papers presented to the agent and visual datamining communities, defining like-minded 

agents with the aid of visualization (Noy and Schroeder 2002b,a). Three other entities were added 

with attributes scaled with respect to a reference entity in the set. The scaling was done in different 

ways to give three datasets, see Tables 7.4, 7.5 and 7.6. These were arbitrarily labelled Scalingl, 

Scaling2 and Scaling3 in the Space Explorer interface to emphasize that they are examples chosen 

from many possibilities.

The datasets were integrated within the Swing version of Space Explorer so that selecting them 

would give the user separate windows containing: the data table in a spreadsheet and a stacked bar 

chart of the data (as opposed to a line plot of the data that was used for the time series data in the
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The use of constructed data
T h i s  is  a  p r e l i m in a ry  t e s t  t o  s e e  w h e t h e r  a n y  in c r e a s e  in  c o m p r e h e n s io n  o f  o u tp u t  o f  d im e n s io n  r e d u c t i o n  t e c h n iq u e s  r e s u l t s  f r o m  e x a m in in g  i l lu s tr a t iv e  d a t a  s e ts .

W e  w a n t  t o  c o n s t r u c t  s e t s  o f  d a t a  a n d  s e e  w h a t  o u r  v is u a liz a t io n  a lg o r i th m  d o e s  w i th  t h e s e  d a t a  s e ts .  W e  t a k e  a  d a t a  s e t  f e a t  w e  f e e l  w e  k n o w  a n d  s e e  w h a t  it 

l o o k s  l ik e  in  f e e  v i s u a l iz a t io n  W e  th in k  th is  w il l  h e lp  u s  in  tw o  w a y s ,  f ir s t ly  t o  g e t  a  c o n c r e t e  f e e l  f o r  h o w  f e e  a lg o r i th m  o r  t o o l  b e h a v e s ,  s e c o n d l y  t o  b e t t e r  

u n d e r s t a n d  f e e  r e s u l t  o b t a in e d  w if e  a  l a rg e  u n k n o w n  d a t a  s e t  I t  m a y  b e  p o s s ib l e  t o  s e e  w h a t  a lg o r i th m  b e s t  s u it s  f e e  p a r t i c u l a r  d a t a  a n d  f e e  t y p e  o f  q u e s t i o n s  w e  

s e e k  t o  a n s w e r  a b o u t  i t

A t  th is  s t a g e  w e  c o n s i d e r  o n ly  o n e  a lg o r i th m . W e  d o  n o t  k n o w

•  w h e t h e r  a  u s e fu l  s e t  o f  i l lu s tr a t iv e  d a t a  s e t s  e x is ts

•  w h e t h e r  t h e  u s e fu l n e s s  w il l  o n ly  lie  in  b e in g  a b l e  to  c r e a t e  y o u r  o w n  d a t a  s e t s ,  e i t h e r  f r o m  s c r a t c h  o r  b y  m o v in g  th e  's h a p e s ',  ‘s l o p e s ' e tc  o f  t h e  e x a m p le s  th a t  

f o l lo w .

The format of the data and charts

E a c h  d a t a s e t  is  p r e s e n t e d  a s  a  d a t a t a b l e  a n d  c h a r t  T h e  d a t a  m a y  b e  u n d e r s t o o d  t o  b e  t im e  s e r i e s  d a t a ,  in  w h ic h  c a s e  f e e  a t t r i b u t e s  x O , x l  a r e  m e a s u r e m e n t s  a t  

t im e s  tO , t l .. A l te rn a t iv e ly  t h e  c h a r t  m a y  b e  v i e w e d  a s  a  c o n v e n ie n t  w a y  o f  p r e s e n t in g  th e  s h a p e  o f  f e e  d a t a  f o r  e a c h  e n ti ty

T h e  n e x t  f iv e  p a g e s  s h o w  f iv e  e x a m p le s  o f  d a t s e t s  v is u a liz e d  b y  f i r s t  c a lc u la t in g  E u c l id e a n  d i s t a n c e  a n d  t h e n  c o n s t r u c t in g  a  3 D  v is u a l iz a t io n  b y  e m p lo y in g  S in g u la r  

V a l u e  D e c o m p o s i t i o n .

V R M L  i s  u s e d  f o r  t h e  v is u a liz a t io n  a n d  t o  v i e w  th e s e  file s  y o u  n e e d  a  p h ig - m  f o r  y o u r  b r o w s e r  T h e r e  a r e  a  n u m b e r  o f  p lu g - in s  a v a i la b le  s u c h  a s  C o s m o p l a y e r  f r o m  

c o s m o s o f t w a r e .  c o m  ( i f  t h a t  s i t e  is  u n a v a i la b le  t r y  k a rm a n a u t .  c o m ') .

Figure 7.3: The details webpage of the website feasibility test.
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Figure 7.4: The first dataset webpage of the feasibility test shows constant data.
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Figure 7.5: The second dataset webpage of the feasibility test shows linear data.
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Figure 7.6: The third dataset webpage of the feasibility test shows linear data including reversed 
gradient.
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Figure 7.7: The fourth dataset webpage of the feasibility test shows complex shape with displace-
ment.
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Figure 7.8: The fifth dataset webpage of the feasibility test shows shape displacement and scaling.
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Relevant
Figure

Data Description Visualization Description (after 
Euclidean distance and PCoA)

Feature
Admissible?

Figure 7.4 Constant data with scal-
ing (equally spaced).

Entities in a line, equally spaced. Yes, scaled 
output im-
plies equality.

Figure 7.5 Scaled linear behaviour 
across variables with 
mean.

Scaled in a line, means are orthogo-
nal. See Figure 7.9

Yes.

Figure 7.6 As previous entry with 
negative gradient.

Extends line in other direction. See 
Figure 7.9.

Yes.

Figure 7.7 Gaussian shape across 
variables, with phase 
shift.

Entities move in curve, approxi-
mately in a circle.

Yes, approxi-
mately.

Figure 7.8 Phase shift and scaled 
Gaussian.

Scaled moves out from the approx-
imate plane of the phase shifted, 
but less than orthogonal. See Fig-
ure 7.10.

Yes, maybe.

Table 7.2: Descriptions of 3D representations using Euclidean distance followed by PCoA of the five 
datasets used in the feasibility test.

reduced mean

decreased gradient

scaling

o °  §

o
scaling

o
o

increased mean

o o

increased gradient

Figure 7.9: Orthogonal pattern obtained with change of slope (constant mean) and scaling with re-
spect to the corner reference entity. See Figures 7.5 and 7.6, and Table 7.2.

a b c d e f g
Agenti 9 3 4 6 5 5 5
Agent2 1 10 10 i 7 2 0
Agent3 4 1 6 8 0 5 7
Agent4 2 7 8 4 0 2 0
Agent5 3 6 4 7 1 10 6
Agentó 1 7 6 5 0 2 0
Agent7 8 1 7 1 2 5 9

Table 7.3: Random dataset for seven agents showing interest levels between 0 and 10 in seven subjects 
a , . . .  g.
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Figure 7.10: Pattern obtained for phase shift and scaling with respect to the corner reference entity 
(time series data - Gaussian shape).

a b c d e f g
Agent 1 9 3 4 6 5 5 5
Agenta 8 2 3 5 4 4 4
Agentb 7 1 2 4 3 3 3
Agentc 6 0 1 3 2 2 2
Agent2 1 10 10 1 7 2 0
Agent3 4 1 6 8 0 5 7
Agent4 2 7 8 4 0 2 0
Agent5 3 6 4 7 1 10 6
Agentó 1 7 6 5 0 2 0
Agent7 8 1 7 1 2 5 9

Table 7.4: Scaling 1 dataset. This dataset has three entities (Agenta, Agentb and Agentc) added to the 
random dataset of Table 7.3, with values scaled with respect to Agent 1. The scaling is by subtraction 
of 1,2 or 3 from the values of Agent 1.

a b c d e f g
Agent 1 5 5 5 5 5 5 5
Agenta 4 4 4 4 4 4 4
Agentb 3 3 3 3 3 3 3
Agentc 2 2 2 2 2 2 2
Agent2 1 10 10 1 7 2 0
Agent3 4 1 6 8 0 5 7
Agent4 2 7 8 4 0 2 0
Agent5 3 6 4 7 1 10 6
Agentó 1 7 6 5 0 2 0
Agent7 8 1 7 1 2 5 9

Table 7.5: Scaling2 dataset. This dataset is as Scaling 1, but Agentl’s values are constant across 
variables.
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a b c d e f Ofc
Agent 1 9 3 4 6 5 5 5
Agenta 1 7 6 4 5 5 5
Agentb 7 1 2 4 3 3 3
Agente 9 0 0 9 3 8 10
Agent2 1 10 10 1 7 2 0
Agent3 4 1 6 8 0 5 7
Agent4 2 7 8 4 0 2 0
Agent5 3 6 4 7 1 10 6
Agentó 1 7 6 5 0 2 0
Agent7 8 1 7 1 2 5 9

Table 7.6: Scaling3 dataset. This dataset shows inversion (between I and a, and 2 and c) and scaling 
(b values are two away from I ’s).

Figure 7.11: Opened menus showing the selection of generic datasets available.

feasibility test). From then the user could request different dimension reductions and view the results. 

The opened menu for generic datasets is shown in Figure 7.11 and a set of windows for one selection 

is shown in Figure 7.12. There were two aspects to this part of the experiment

• To illustrate in the interface of Space Explorer how generic datasets are intended to be used.

• To conduct informal testing by observing the results and in using the interface in the context of 

choosing metrics for measuring similarity between agent profiles.

An example of results obtained in comparing metrics is given in Table 7.7. In each case identical 

entities were hidden in the graphic due to overlap. Each method clearly showed the outlier. Entities 

with scaled attributes resulted in patterns obtained by the different algorithms that were similar for the 

Minkowski-based ones (Euclidean and City) and different for the angular separation (Figure 7.13). 

The scaling result can be examined in two ways. If scaled entities are shown in an identical position, 

as they are for angular separation, this has succeeded in the similarity sense, that is to say, angular
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Figure 7.12: Set of windows for the scaling2 generic dataset with PCA applied: spreadsheet, stacked 
bar chart, 2D and 3D scatterplots.

107



CHAPTER 7. GENERIC DATASET PROVISION

Dataset Metric + PCoA
City Euclidean Angular Separation

Identical entities Not shown in any
Outlier Shown in all
Random Always shows apparent clustering
Scaling within ran-
dom. Screenshots in 
Figure 7.13.

Close and in a 
straight line, one 
further away.

Closer and in a 
straight line, equidis-
tant.

All in same place.

Table 7.7: Example user observations for comparison of three algorithms using datasets including 
identical, outlier and scaled (with respect to a reference entity) entities.

separation has resulted in identifying the entities as very similar compared to the others. However, 

from the visual point of view, this is hidden by overplotting, so that City and Euclidean show it better, 

with Euclidean also reflecting the regularity of the differences by the entities being equidistant.

7.4 Conclusion

This section first presents conclusions from the feasibility test and adding generic datasets to the 

user interface, then discusses the problems of accuracy and evaluation, ending with a summary of 

conclusions.

7.4.1 Feasibility Test Conclusions

There are two aspects to the feasibility test: How useful does generic dataset provision appear from 

this test? What are the results of using these specific datasets to understand the visualization method 

used?

The feasibility test indicated that users may find the use of generic data helpful in understanding 

dimension reduction algorithms, and that they are interested in viewing the original data in a table 

and being able to construct and modify data in the table. However, the sample was biased in that 

the participants were all colleagues (2 lecturers and the rest PhD students) who were interested in 

the work. Another criticism voiced has been that users always desire greater interactivity, so that 

the question relating to this in the questionnaire was bound to elicit positive answers. Since this was 

an informal test, more criticisms can be made relating to the construction of the questionnaire and 

the website. Nevertheless, the test confirmed the overall feasibility of the proposal. At the same 

time it underlined the difficulty of the task of understanding visual depictions involving dimension 

reduction, since, though some of the participants felt that they had moved toward an understanding 

of the behaviour of the visualization method, none could explain the shape of the calldata depiction, 

despite the fact that several participants were familiar with the dimension reduction algorithm being
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used.

The results from examining the set of visual depictions suggested that we may he able to assist 

in orientating the user in spaces where direction has no obvious meaning. Specifically, the observed 

orthogonal, or approximately orthogonal patterns obtained (for scaling and means, phase shifting 

and scaling: the general form of the patterns as in Figures 7.9 and 7.10) are interesting, because 

they suggest the possibility of orientating oneself in the space of the scatterplot, with respect to a 

particular entity. Thus the scatterplot xy  (or xyz)  axes, though not possessing intrinsic meaning 

(i.e. not representing a variable or quality in themselves), may have meaning with respect to an 

entity in the scatterplot. However, will these observed orthogonal patterns remain, if the entities lie 

within a larger dataset? Will this depend upon whether they are localized to (in the neighbourhood 

of) the reference entity? To test this, entities with corresponding similarities need to be created and 

visualized with respect to a highlighted entity in a synthetic or real-world dataset. For this process we 

propose the term feature fingerprinting after Meuzelaar’s operational fingerprinting (see page 6), to 

put the feature into a dataset under consideration. For instance, in the case of the webbed foot pattern, 

to see if the column represents means or scaling or neither. Thus we need to check whether the shape 

is preserved, which it might be concluded would not be due to dimension reduction approximation. 

Having some indication of the meaning of direction may then help us understand the cluster shapes. 

Another issue is to what extent this is dependent upon the metric used?

Describing the visual depictions in this test also showed the value of the feature admissibility 

approach, if combined with a descriptive comment about the pattern that resulted from the feature. 

So that one can say ‘this visualization method does or does not reveal feature x ’ and, if it does, what 

pattern arises from the feature.

7.4.2 User Interface Generic Datasets Conclusions

The comparison of algorithms and the implementation of the generic dataset option in Space Ex-

plorer enabled the user to gain a concrete view of the difference in behaviour of several visualization 

algorithms. In particular, this led to observations about City and Euclidean: City is not an intuitive 

measure compared to Euclidean (consider the measure in 2D, it makes much more sense to go di-

rectly from one point to the other, rather than going along and down or up), but the visualization 

indicated that the results of City were similar to Euclidean, which is important where ease of use 

is concerned (City is simpler to compute and entities can be added without recomputing). Angular 

separation is also shown to be appropriate where absolute values are not relevant. These results can 

be inferred from the definitions, but they are made concrete by these visualizations. There is also the 

issue about the extent to which we consider here the visualization algorithm as a black box. In one 

sense it is desirable to consider it as a black box, since in use (by at least a proportion of users) it will
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be.

7.4.3 Problem: Accuracy

As has been raised earlier, distance measures can usually only be satisfied approximately when find-

ing a visual depiction and generally this applies to any process involving dimension reduction, since 

no layout in a lower dimensional space can satisfy completely the original data. This lack of accuracy 

in depiction raises two questions relating to the investigations of this chapter:

• Will the patterns be retained when placed in large datasets and in datasets of different types?

• How can we view the validity (and accuracy in terms of how the original distance measures are 

retained) when the eigenvalues do not tail off fast (as is common for many real-world datasets)?

One might think that accuracy is an important issue where dimension reduction is involved and that 

it needs at all stages to be illustrated, but dimension reduction methods, such as PCA, are also valid 

in that they show underlying structure, so that the low representation of data may not be so serious 

(as previously mentioned on page 94). Nevertheless, it would appear to be important to consider the 

option of showing accuracy when visualizing, so that the user is invited to consider (and, if appropri-

ate, negate) its significance. This can be done by quoting eigenvalue contributions and average and 

variance of error in distances, but of interest is also to explore visual means that may give different in-

formation (such as highlighting entities that have errors in their distances above a certain threshold). 

There appears to be a significant lack of such considerations in the field of information visualization. 

Comments such as that data ‘may not always fit into low-dimension spaces comfortably’ (Chen 1999, 

p. 31) appear, but otherwise visualizations of high dimensional data, specifically after self-organizing 

map, correspondence analysis, minimum spanning tree, PCA, spring-embedding and so on, are rou-

tinely presented without any comment as to accuracy. It may be argued that they are providing a 

rough overview, so the accuracy does not matter, but these pictures may be also considered to mis-

lead the viewer, in that they appear to be precise. Chapter 11 examines the question of accuracy in 

more detail.

7.4.4 Problem: Evaluation

Measuring whether an increase in comprehension has resulted is difficult. In our case we have ei-

ther asked the participant of the feasibility test for their subjective assessment or examined the visual 

depictions to see whether the feature in the dataset is immediately apparent in the visual depiction. 

The latter approach means that a feature-admissible classification after Fisher (Section 7.2.3) can be 

followed. However, there is still the difficulty of generalizing; it can only be stated that the fea-

ture is shown for that particular dataset. Also, for another dataset, the feature may be obscured by
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overplotting, as is the case for the ‘scaling!’ dataset (Table 7.4) displayed after PCA. In some visu-

alization evaluations users are given entities to find in a particular representation (such as a directory 

containing particular information) which tests how easy a particular representation is to navigate and 

orientate oneself within, but such tests are not directly applicable to this situation.

7.4.5 Conclusion Summary

Overall, it can be said that some users increased their understanding (according to their subjective 

assessment) and that we were able to classify the visualization methods as revealing, or not, certain 

features in the datasets; with the proviso that we cannot guarantee the result for different datasets 

containing the features due to characteristics such as overplotting and the constraints of dimension 

reduction. This method may prove more useful for comparison of direct methods (colourmap. parallel 

coordinates etc.) not involving dimension reduction, since the representation is not so complex. The 

work should be continued to examine the behaviour of different visualization methods, different 

datasets and an expansion of the concept of feature-admissibility.

The question of type of dataset, i.e. what feature is represented, has been discussed in this chapter, 

but the precise values used to create the feature, the number of dimensions and so on, have not been 

the focus of the work. It is very difficult to propose the use of one set of values rather than another, so 

that the datasets used in this chapter are examples taken from many possibilities. In these examples 

data that was convenient for other reasons was chosen, and so they are not presented as definitive 

representatives.

There are two indications of usefulness in a wider context:

• For evaluation, towards the establishment of a set, or sets of datasets for comparison, evaluation 

and general appraisal of different visualization algorithms (which contributes to the establish-

ment of benchmark datasets for visualization).

• For placing feature fingerprints in a complex dataset, to help make sense of the shape of clus-

ters, and to orientate the user. A feature fingerprint results from the placement of a small 

localized group of entities, created with specific similarities to a particular entity, or group of 

entities, selected within a visual depiction, so that the fingerprint of the feature can be seen in 

the visual depiction.

It was decided to examine the latter of these, feature fingerprinting, in the use of user constructed 

data, which is described in the next chapter.
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7.5 Summary

In choosing datasets to illustrate the behaviours of metrics and visualizations, referred to here as 

generic, many questions arise due, in the main, to the difficulty of quantifying features in the dataset 

and patterns in the graphic, as well as generalizing results from one dataset to many. However, 

features of interest can be suggested and ways of producing datasets to contain them, broadly grouped 

as those that are structureless and those containing various types of embedded structures.

The clustering and visualization literature was first examined for relevant work. The datasets in 

two books of datasets and a number of online datasets were examined, but no obvious candidates 

for generic dataset provision were found, other than examples of different numbers and orientations 

of clusters. The literature contains a description of a method for classifying clustering algorithms 

which proposes an admissibility procedure. This procedure is suitable for adapting to visualization 

methods. Many references refer to the difficulty of choosing methods for classification and clustering 

and the same can be said for visualization, nevertheless guidelines are desirable. A number of null 

models for absence of structure have been described in the literature. For pattern matrices there are 

two aspects: the ‘shape’ of the region of data and the distribution of entities within it. Work in 

information visualization has proposed embedded clusters within noise to test whether the embedded 

stimuli can be observed in visualizations. Statistical measures are useful to give information about 

the data. Further integration of statistical measures with information visualization is desirable (they 

are absent from many applications), but not the main focus here. Visual languages show potential for 

assisting the user in devising measures for the feature in question, where mathematical measures are 

not available, and increase the engagement of the user in the process.

The genera] categories identified for generic dataset provision are: null modes; clusters within 

noise; specific features (overplotting, outliers); inter-element features, such as scaling. This work is 

restricted to multivariate data tables. The data is considered to be known on 3 levels: by knowing 

the actual data values (implying small datasets); by knowing some statistical features (including 

large datasets); where tacit knowledge, knowledge that is not written down, is involved. This work 

focusses on small datasets. Some larger datasets are used in testing accuracy of different layouts in 

Section 11.5.2. Tacit knowledge is returned to in Chapter 10.

Two scenarios for the application of generic datasets are considered here: examining a single 

visualization method using several datasets; comparing different visualization methods using a single 

dataset. Correspondingly, two pieces of work are described: a feasibility test and the integration of 

generic datasets within the user interface.

The feasibility test involved 12 participants examining a series of visual representations (using a 

single visualization method) of example datasets, to see whether their understanding of a dimension 

reduction visual depiction (the calldata representation introduced in Chapter 1) was increased. Some
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participants considered that the test increased their understanding, but they were not able to increase 

their explanation of the calldata pattern. Most of the participants wanted to be able to construct and 

manipulate data in the data table themselves, so that they could experiment further. The results from 

examining the set of visual depictions in this test suggested a means to assist in orientating the user 

in spaces where direction has no obvious meaning. This followed from the observed orthogonal or 

nearly orthogonal relationship between scaling and means (or phase shifting and means). From this I 

have proposed a new approach, feature fingerprinting where data representing a feature is added to a 

real-world dataset under consideration (this is examined in the next chapter). Feature fingerprinting 

will also be useful for illustrating the behaviour of visualization methods in general. The visual 

depictions in the test were examined for feature-admissibility (was the feature clearly shown in the 

depiction, or not?). Thus one could say whether the visualization method revealed the feature, and, 

if it did, what pattern resulted in the depiction.

A second examination of generic dataset provision aimed firstly, to illustrate how generic datasets 

could be integrated within a visualization application and, secondly, to use the datasets for assistance 

in choosing between metrics. Space Explorer was modified to contain spreadsheet and stacked bar 

chart provision, together with example generic datasets. This enables the user to choose a dataset, 

display the numerical values in the data and view a simple direct representation (in the stacked bar 

chart), then choose different dimension reduction methods to produce scatterplots in 2D and 3D. The 

interface was then used in the task of choosing metrics for an agent application measuring similarity 

of interests between agents. The features examined in the interface were: identical entities; outlier; 

lack of structure (randomness); scaling.

The creation and addition of a feature to an existing dataset, with values based upon some relation-

ship to the values of a particular entity, feature fingerprinting, raises important questions concerning 

dimension reduction applications. Will the patterns be the same in different datasets? How can the 

validity be viewed if a high level of abstraction is involved?

The work described in this chapter has shown that the exploration of generic datasets increases 

comprehension and assists metric choice to a certain extent. A feature admissible classification has 

been outlined. Further development of the interface, investigation of datasets (many datasets con-

taining many different features) and the feature-admissible procedure are recommended. In a wider 

context, the work has relevance to the establishment of benchmark datasets and for the development 

of a new technique, feature fingerprinting.
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Figure 7.13: City (top), Euclidean (middle) and Angular Separation (bottom) measures followed by 
layout using Principal Coordinates Analysis. Agents a, b and c have scaled interest distribution of 
Agent 1. In the angular separation, Agents a,b,c and 1 are located in the same position.
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Chapter 8

User Construction of Data

8.1 Introduction

In the approach to signature exploration employing user construction of data, (Definition 12 on 

page 81), the user is given the ability to construct datasets in a variety of ways, all of which allow the 

user to know, in some sense, the data they then put into the visualization method. Two approaches 

for user construction are i) to provide a generic set of datasets for the user to start with, and ii) to 

provide tools for the user to create data from scratch. Both of these are desirable, since it is very 

difficult to agree upon a specific example of, for instance, ‘outlier’ or ‘3 clusters’, nor to close the 

set of possible interest features. There is also some indication that users will benefit from the com-

bination of these two approaches, as demonstrated by the feasibility test (see page 112) described in 

the previous chapter. So that generic datasets can be provided to give illustrative examples which the 

user can then explore by adding to and modifying the data. This is aside from the general question of 

the importance of engaging the user in an active, interactive sequence of events, for which interaction 

with the originating data (i.e. by modifying original data values, querying or adding landmark values) 

is beneficial.

In general, for construction of data, the user can create the data from scratch, transform an existing 

dataset that they are exploring, or start with one of the generic datasets provided. User-construction 

means:

• The creation of data showing features of interest to the user (static constructions).

• The creation of data as a result of simulation based upon sets of behaviours specified by the 

user (simulated constructions).

Static constructions are matrices specified by the user, which can then be visualized. They are static 

in the sense that they are an instance of creation by the user, as opposed to simulated construc-
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tions, which are the result of data produced by a simulation of entity behaviours as described in 

Section 6.3.2.

This chapter describes a number of ways that can be used for the static construction of data:1

• direct entry or change within a data table

• interest feature specification

• generating data via a visual representation

• using synthetic data generators

These methods are illustrated in implementations of

• multiple windows linked to the data table by brushing (direct entry of data in a data table; 

generating data via a visual representation)

• synthetic agent profile data creation based on the user’s sense of similarity (interest feature 

specification)

• dataset generation based upon Gaussian ‘clouds’ for examination of accuracy of dimension 

reduction algorithms

The last implementation is not described here, but is used in the following papers,

• “Approximate Profile Utilization for Finding Like Minds and Personalization in Socio-Cognitive 

Grids” (Noy and Schroeder 2003)

• “Advancing Profile Use in Agent Societies” (Noy and Schroeder 2004)

In these papers data is generated in order to test the accuracy of different layouts, including a new 

layout method which performs iteratively and can be used by software agents to measure their simi-

larity to one another, without needing to reveal the details of their original profile or to use a trusted 

third party.

8.2 Methods

8.2.1 Direct Entry

For direct entry or change of data, the user enters data directly into a spreadsheet application and

has the facility to link the data to chosen visual representations. The user enters data manually into

a table so that they know the actual data values. They may start with a dataset and modify the *

'This is not an exhaustive list, for instance, it excludes creation of data by specifying functions, such as, for entity y ’s time 
series data, y  =  f ( t ) .
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values (including the creation of new entries) or begin with a completely blank spreadsheet. The 

spreadsheet application is directly linked to any visual displays chosen by the user, so that the data 

can be viewed as it is entered or changed, as illustrated in the description of a direct entry interface 

below (Section 8.3).

As an aside, it is noted that providing the user with the facility for viewing the actual data values 

is. in itself, important for user comprehension and also for user confidence, apart from its role here 

in applying signature exploration. Statisticians, in particular, express a desire to view the actual data, 

but there are also groups of users who are comfortable with the data in its raw form and much less 

sure of the value of any visualization except that of the most traditional kind. Thus starting with their 

known view of the data, they can move to new views of the data. This known view of the data is the 

data table, or a visual representation that that the user is very familiar with. Now known relates to the 

visualization method, rather than the data (though the table representation can be considered to be a 

view in this context). Thus, understanding of new (to the user) visualization methods is increased by 

comparing an unfamiliar output with other outputs with which the user is more familiar.

There are three aspects of visualization system design that this discussion suggests:

• include spreadsheet application for presentation and modification of the data

• include linking between data in the spreadsheet and any visualization windows

• include familiar representations of the data

8.2.2 Interest Feature Specification

Users have features that are of interest to them concerning their domain and type of data. User 

construction of data provides the means for the user to create datasets containing such features of 

interest - this process is described here as interest feature specification. In specifying such interest 

features, the first task is to identify the features of interest, then to consider how to measure the 

degree to which an object, or group of objects, demonstrate the feature. For instance, in the case of 

time series data, the user may be interested in the absolute average value overall, or in the existence 

of a phase-shifted pattern between objects. In order to explore the different representations of such 

elements, data can be produced which reflects the whole range of possibilities, i.e. showing varying 

amounts of the feature. A visualization method can then be used to see how well clustered the similar 

objects are and how well shown the feature of interest is. This approach helps the user to identify and 

quantify their interest features.

Interest feature specification is an extension of the direct entry described above, in that the user 

identifies feature(s) of interest to them and then creates data covering a range of levels of this feature. 

In clustering applications users are interested in how similar two objects are. Thus data can be created
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showing different amounts of similarity to a reference object based upon the user's ad hoc creation 

of similarity measures, capturing their sense of what makes two objects similar. A useful application 

for this is in the case of choosing a similarity metric and this is illustrated below in the example to 

find suitable metrics for agent profile data (Section 8.4).

8.2.3 Generating New Data Via the Visual Representation

Creating data by altering or generating a visual representation is also a way of exploring the visual 

representation itself, but is not valid where mathematical abstractions of the data have occurred, 

such as those involving dimension reduction. Such transformations are not one-to-one functions, but 

many-to-one, so that a new point in the visualization represents any one of a number of data table 

entries. Consider, however, direct plot methods such as: bar chart, line plot, parallel plot, colourmap 

etc. In each of these the user could change the position or colour (as appropriate) of an element and 

the data value in the data table could be changed automatically. In this way the user can directly, 

without ambiguity, find the answer to the question: ‘If the visual display looked like this, what would 

the data look like?’. This facility means that users can view the changes in individual objects’ entry 

rows in the data table as they alter the visual representation, by clicking and dragging points and lines 

with the mouse. In this way data is created by interaction with the visual representation. Sketching 

could also be used in this way to generate data. In this way, for instance, for time series data the 

shape across time can be scaled, frequency- or phase-shifted, to create new sets of object values (as 

in the last example of the feasibility test Figure 7.8 on page 103). An implementation of the visual 

generation of data using a bar chart is described in Section 8.3.

8.2.4 Synthetic Data Generators

Although the previous three methods generate synthetic data, they do not do so by using statistical 

models and they focus, instead, upon individual values. Though knowledge of individual values leads 

to a certain clarity, especially in relation to small datasets, (remember Tufte’s ‘Graphics reveal data’ 

and Anscombe’s quartet of datasets with the same summary statistics referred to on page 96), it is 

difficult to generalize about abstractions upon this basis. Such abstractions can be highly sensitive 

to the precise circumstances within which a data feature arises. For instance, if a specific pattern is 

obtained with a particular small set of data, there is no guarantee that such a pattern will appear when 

that set of data occurs within a larger one. However, it can be hypothesized that the relative scale of 

the pattern to the rest of the dataset is a determining factor, i.e. when the pattern represents only a 

local ‘disturbance’ it will not be much altered. This hypothesis is tested in Chapter 9 in the context 

of adding a small constructed set of data to an existing dataset.

The discussion between large, statistically specified synthetic datasets and small, manually con-
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Figure 8.1: A sequence of 3 pairs of spreadsheet and bar chart windows showing linkage: top row of 
spreadsheet selected (top); mouse click in bar chart changes height of first bar and change is reflected 
in data table (middle); table value alteration is reflected in bar chart (bottom).

structed ones, has been raised in the previous chapter (Section 7.3). The addition of synthetic data 

generation complements the provision for small scale data construction and allows the user to exper-

iment with cluster generation of different types and to address issues of scale. Some combination 

might also prove useful where a small user-constructed dataset is embedded in a larger statistically 

specified one. Thus expanding the idea of n o is e  with e m b e d d e d  s t im u li (see Section 7.2.5).

8.3 Illustration of Direct Entry Interface

This section illustrates linking the data table by brushing to other visual representations, thus generat-

ing data via the visual representation. Figure 8.1 shows two linked windows for spreadsheet and bar 

chart presentations of the data. These windows are linked so that when the user clicks in the bar chart 

they can change the height of the bar and the data table entry in the spreadsheet is correspondingly 

changed and vice versa. The user can thus enter or change each row as desired and view the resultant 

visualizations of the whole dataset. This implementation illustrates construction of data by direct 

entry and via a visual representation.
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A B C 19 E
agenti 9 3 4 6 5
agent2 1 10 10 7 2
agent3 4 1 6 8 0
agent4 2 7 4 8 0
agent5 3 6 4 7 1

Tabic 8.1: Data showing interest level in 5 subjects lor 5 agents.

8.4 Application to Agent Profiles

This section illustrates interest feature specification to examine the behaviour of different metrics for 

an application involving agent profiles. This material is covered in the following papers: Noy and 

Schroeder (2002b), Noy and Schroeder (2002a) and Noy (Noy).

The agent profiles here can be of a task or of a user and ‘agent’ can be either a software or human 

entity. Consider comparison of agents based upon the similarity of their interests. An example 

dataset, concerning five agents is shown in table 8.1. These agents have five possible interest areas 

(A ,. . . ,  E ) and interest level values in the range 0 to 10.

In order to examine the way different metrics behave in relation to this data, and to enable the 

user to explore their sense of similarity and the type of features they are interested in, three steps 

are suggested: some features of interest are decided; a measure is created with which to generate 

test datasets; visual and/or numerical evaluation is performed. This three-step process is repeated 

iteratively as appropriate. For the agent data the process is illustrated as follows:

Step 1 - decide features of interest Considering agents with different interest levels in a set of 

subject areas, possible features of interest are: overlap of interest; intensity of interest; joint disinter-

est; similar pattern of interest (irrespective of subject). One or more of these elements can form the 

basis of a classification system which gives numerical values to differences between a pair of agents’ 

interests or a binary variable, providing a similar/not similar partition. This ad hoc classification can 

be compared with those provided by other metrics.

In a search for a metric, the user’s measure may be found suitable to use instead of the metrics 

under consideration. Examples can be found of the use of simple metrics in multi-agent systems 

(see e.g. Faratin et al. (2000); Foner (1995), which respectively use: a measure which examines all 

differences and uses the largest one; a similarity classification based upon the existence of a single 

joint interest). However, here the purpose may be to choose a metric, but it may also be to examine 

the behaviour of a particular metric, in which case a comparison to the user-constructed measure is 

valuable. Another aspect to this situation is the existence of large quantities of complex, multivariate 

profiling data and the desire to make use of it in a more sophisticated manner. Thus the search is for
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more subtle measures, something that reflects the multidimensional nature of the available data. This 

corresponds to the scope that lies between the two questions: ‘Are you interested in sport?’ and ‘Are 

you like me?’

Also, if you are interested in sport, it may be valuable to know if you are a specialist or a gen-

eralist and in general terms what level your interest is on. Thus other similarity measures act as 

discriminators in this situation, in which case, final choice of overall similarity measure consists of 

additions of different similarity metrics (including any results of specific queries).

The use of visualizations of data for pairs of agents can assist in the specification of features of 

interest.

Step 2 - create a measure for the features to generate test data sets Suppose that the user chooses 

to examine agent similarity based upon overlaps of three or more interests of high intensity. To 

illustrate, a data set was created to produce examples covering the range of possibilities of overlap 

extent and intensity with respect to a reference agent's interests. The reference agent was randomly 

assigned levels of interest in six subjects and data for a number of other agents created that covered a 

range of possibilities of overlap intensity (one third, two thirds and the same as, the reference agent’s 

level of interest in that subject) and number of joint interests (1 to 6 with the reference agent). This 

allows the metrics to be examined to see how they cluster the group of similarities with number of 

overlap subjects > =  3 and intensity of overlap > =  2/3.

Figure 8.2: A user-specified constructed dataset of agent profiles, displayed with three different dis-
tance metrics - (left to right) City, Euclidean and Angular Separation - followed by PCoA layout. 
The areas indicated contain agents with 3 or more joint interests with intensity of overlap greater 
than 66% with respect to the circled, reference agent. The linear groupings reflect the way that the 
data were constructed (see text).

Step 3 - evaluate visually and numerically The visual evaluation consists of visualizing the con-

structed data set and observing how well clustered the group of interest is. However, since the layout 

of such visualizations is an approximation (in order to satisfy the distances), and the observations

121



CHAPTER 8. USER CONSTRUCTION OF DATA

not themselves measurements, evaluation by visualization is inexact. On the other hand, numerical 

evaluation, based on measuring differences between the estimated differences and the differences ar-

rived at by the metric under consideration, is precise, but relies on the ability of the user to define or 

estimate similarities between the data entities. Since the user is using rough ideas to get a feel for the 

behaviour of the metrics, it is appropriate to look at the results visually as part of an iterative process. 

For this example the numerical calculation can be done by using an intuitive points system according 

to number and intensity of topics of joint interest between pairs of agents. By awarding points for 

the similarity of each pair of agents, a proximity matrix can be derived which can then be compared 

numerically to those obtained by using the different metrics.

Figure 8.2 shows PCoA layout with City, Euclidean and Angular Separation differences, the 

reference agent is circled and the agents that are in the user’s group of interest (according to their 

criteria in step 2 of greater than 66% joint interest in 3 or more subjects) are indicated. The linear 

groupings shown in some of the screenshots of Figure 8.2 correspond to the three levels of interest 

overlap and the number of joint interests. These linear groupings thus reflect the method of creation 

of the dataset. The point of interest to the user is where the entities, which they classify as similar, 

lie in the different displays. These entities are outlined in Figure 8.2. How well are they clustered by 

the different methods? The outlines traced by the points in the City and Euclidean plots correspond 

closely to the classification system and the group of interest is well clustered in that all the agents 

shown in the proximity of the reference agent are considered by the user’s classification to be similar 

to the reference agent. The Angular Separation plot does not cluster so well, placing three agents near 

to the reference agent that are not considered by the user to be similar to the reference agent. The 

layout of the angular separation distances is actually a screenshot of a 3D representation as the layout 

was particularly inaccurate and needed the extra dimension to improve it (the first two eigenvalues 

accounted for only 38% of the variance in the data and the first three for only 48%). The inaccuracy 

of this layout highlights the difficulty of using visualization to assess similarity.

8.5 Summary and Conclusions

A number of ways for the user to construct data have been outlined in this chapter: direct entry or 

change within a data table; interest feature specification; generating data via a visual representation; 

using synthetic data generators. Three implementations illustrate these methods (excluding the syn-

thetic data generator, though an example is used in several associated papers). An interface showing 

direct entry and linkage to visualization via brushing has been demonstrated, which also illustrates 

the generation of data via a visual representation. An example of data construction based upon the 

user’s features of interest and concepts of similarity has been examined and shown to assist with
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metric choice in an application involving agent profiles. 2

Bi-directional brushing of data between the data table and visual representation, (i.e. forwards, 

from the data table to the visual representation, and backwards, from the visual representation to the 

data table) that also allows the values in the data or display (colours, lines, points) to be changed, 

introduces a new level of interaction to visual applications. This can be thought of as visual data 

tracking, an extension to brushing that allows changing as well as highlighting of data and specifi-

cally includes a data table view. This facility will encourage interaction and hypothesis formation as 

well as giving concrete, dynamic illustrations of the behaviour of the visualization method. Existing 

applications go some way to providing this functionality, however, they do not change parameter val-

ues by interacting directly with the graphic. For instance ‘DataDcsk’ (Velleman 1992), has graphical 

sliders which control and automatically update displays so that the user can observe their analyses 

through a continuous range of parameter values. As the slider is moved through new values, all plots 

and tables connected to the slider update instantly, displaying real-time animation.

In assisting metric choice, value is demonstrated of the specification of a dataset containing enti-

ties which demonstrate a feature over the range of possibilities. The data creation in this example was 

done manually after determining the features of interest. Making the data creation possible within 

the interface is desirable, as is the inclusion of data generation facilities in general. Since the visual 

depiction of the result of applying metrics is necessarily an approximation, the conclusions drawn 

need to be verified with numerical calculations before deciding in favour of a particular metric. The 

impact of this inaccuracy of layout needs further investigation in relation to conclusions from this 

type of experiment.

The issue of size of dataset is important, as in the previous chapter on generic dataset provision. 

The question of validity of layout and whether the result can be generalized also apply. Again, 

the work suggests that providing the ability to construct data within a real-world dataset would be 

illuminating; that is, to construct data for synthetic objects and see where they appear in the visual 

depiction.

2The elicitation of feedback data examined in Chapter 10 is another method of utilizing the user’s estimation of similarity 
between entities, though based upon a direct estimation of similarity between entities with existing data, rather than upon the 
user constructing synthetic data.
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Chapter 9

Querying and the Insertion of 

Landmarks

9.1 Introduction

This chapter examines the different means available for querying (Definition 13 on page 82) in the 

visualization process as part of signature exploration. An illustration of visual querying of the calldata 

is given. The closely related concept of insertion o f landmarks (Definition 14 on page 83) is also 

described and illustrated.

The last two chapters have indicated the desirability of placing a group of constructed data entities 

within an existing dataset, to assist orientation within the visual representation. This may be orien-

tation in the sense of direction, as is the case when dimension reduction is involved, or in the more 

general sense of understanding the meaning of other features, as well as direction, such as colour 

and shape. The set of added data may be a generic set, illustrating a particular general feature, or a 

user-constructed set, illustrating a feature of interest to the user. This approach, for which 1 propose 

the name, feature fingerprinting, is a form of landmark insertion and is also illustrated in this chapter.

9.2 Querying

In querying, a cluster in a visual representation of a dataset under consideration can be highlighted, 

or an outlier, or the extremities of a pattern. This is visual querying. Alternatively the dataset can be 

queried using a conventional query language. A subset can also be obtained and visualized by the 

use of dynamic querying, where selections are made using sliders. These subsets of data, obtained 

visually or by directly querying the dataset, can be considered to be the constructed data for signature
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exploration. Some of these techniques are well known1, though not necessarily widely used. There 

is also a difference of focus here, since the aim is to reveal the behaviour of the visual representation. 

The next three sections discuss these three approaches:

• Use of conventional query language.

• Dynamic querying.

• Visual querying.

9.2.1 Use of Conventional Query Language

With a conventional query language, one can formulate queries at the command line to directly query 

the data and obtain subsets satisfying the criteria of the SELECT statement. This treats the data table 

as a database. There are many disadvantages in using this approach. Spence (2001, p. 71) lists 

seven, though he is considering the use of command line query instead of, rather than as well as 

visualization. He includes: having to learn the language; errors not tolerated; too few or two many 

hits; no indication of how the query may be reformulated to make it more successful: significant 

time delay between formulation and result: useful contextual data hidden; difficulty of user building 

mental model. The impact of these disadvantages is lessened if command line querying is used in 

conjunction with visualization, but the user still needs to be familiar with the query language etc.

9.2.2 Dynamic Queries

The general problems associated with command line querying are mostly solved by the use of dy-

namic querying (Williamson and Shneiderman 1992), where the selection of ranges within variables 

is made using sliders. Used alone, this technique loses context, since it returns the requested subset, 

which is then viewed separately. Nevertheless, it is proving popular, see, for example the Spotfire 

display (Ahlberg and Shneiderman 1994). The use of this technique within the overall dataset, is 

demonstrated in Attribute Explorer (Spence and Tweedie 1998) which thus provides contextual in-

formation. This contextual information shows not only the whole of the data as well as the subset 

returned by the query expressed by the slider positions, but also indicates the objects that failed the 

selection by only 1,2 or 3 criteria. This can be described as sensitivity information, i.e. how sensitive 

the visual depiction is to changes in the slider. Insensitivity can be indicated in the sliders to show 

that moving the slider in a portion of its range will have no effect, if that condition has been produced 

by the settings of the other sliders.

'The conclusion one comes to is that applications are needed that incorporate al l  the functionality that researchers are 
developing, though this makes applications more and more complex to build. However, as has been noted in Chapter 5. whilst 
some of this functionality makes applications easier to use, especially in hypothesis exploration, some elements produce 
complications of their own, for instance those using new dimension reduction algorithms or involving multiple windows.
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9.2.3 Visual Queries

Selecting areas of the visual display, or sets of individual objects within it, by moving the mouse 

over or clicking an object of interest, to view more information about the objects, is an example of 

visually querying a graphic. The focus+context techniques, and those described in Section 11.3 on 

visual depictions of accuracy, also provide more information about a selected group. Brushing can be 

seen as a form of querying (the answer is in the form of another visual depiction), as can, in general 

terms, all interaction with the visualization.

9.2.4 Issues

Within signature exploration, the use of querying is to examine the behaviour of the visualization 

method, rather than investigating a dataset. However, no evidence suggests that this makes a dif-

ference to the techniques required, apart from indicating the desirability of expanding a subset of 

techniques to query the behaviour of the visualization method itself, such as in showing accuracy. 

As introduced in Section 6.3.3, which defined querying for signature exploration, the aim here is 

to answer the question ‘Has the visualization method placed these objects as I expected it to?’ or 

‘On what basis is the visualization method placing these objects together?’ In general, querying for 

signature exploration returns a new visualization, or gives information about a subset, or highlights 

the subset within the visualization as usual.

How to measure the success of querying to increase comprehension of the visualization method 

or the dataset? An initial reaction is that the use of querying of the dataset will obviously aid com-

prehension of both a dataset under study and the visualization method itself, since the user obtains 

more information about one or other of them, or both. However, how can the impact of querying 

be measured? One approach suggested is to examine the interaction response time (Spence 2001). 

The interaction response time can be thought of as the delay between formulation of a new query 

(or hypothesis) and delivery of its result. An important aim of developments in the field of infor-

mation visualization is to make querying and hypothesis formulation easier, and one expression is to 

reduce the interaction response time. Responsive interaction has been expressed as when ‘an effect 

occurs within less than about 0.1 s of its cause’ (Spence (2001, p. 71)) and this can be taken as a base 

measurement for more complex ‘causes’, such as in hypothesis formulation of the kind involved in 

user-construction of data, where a new dataset is created to see how the system behaves. A general 

expression of the techniques needed in this area is that tools are required for interrogation of the visu-

alization and the data, and to make this interrogation easier. However, there still remains the question 

of whether users will like these tools and want to use them, aspects that are much more difficult to 

evaluate.
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9.3 Illustration of Query

An illustration of directly querying the graphic is shown in Figure 9.1. The calldata dataset is visu-

alized with Euclidean distance followed by PCoA for 3 dimensions. The extremities are highlighted 

and the data for these individual customers viewed as bar charts (impulse charts in gnuplot2). A chart 

showing all customers’ bar charts superimposed is used for comparison. It is difficult to view the bar 

charts because of the number of destinations, but is just possible in this case, because of the spar-

sity of the dataset. These visualizations give insight into the behaviour of the dimension reduction 

algorithm: the outliers are customers with the high numbers of calls to a particular destination (the 

screenshot in Figure 9.1 does not show this well). Rotating the 3D representation also suggests that 

these main destinations form axes around which the other customers are clustered.

However, are the single destination peaks the highest overall? A different kind of query is required 

now, for example, to select the customers making more than 50 calls to a single destination. Are 

there customers with more than one such destination? Are the selected extremity customers in the 

3D scatterplot the ones with the largest peaks? The results of this query are shown in Figure 9.2, 

which colours the 28 customers in this category, using different colours according to the destination 

of their calls. This figure shows that the selected extremity customers all fall into the category of 

making above 50 calls to a single destination and confirms that these main destinations tend to form 

axes. However, the question of whether the selected extremity customers are the ones with the largest 

peaks (and no others) is only partially answered since the exact values of the peaks are not shown. 

The peak heights are given in Table 9.1 showing that all the destination ‘E’ peaks are contained in 

the column of the scatterplot, so that the row2 customer, which is an extremity, actually has a low 

peak (55 calls to destination ‘G’). The table also shows that only one customer has two destinations 

to which it makes more than 50 calls. In this case it is clear that neighbours to the extremities have a 

large number of calls to the same destination. In other situations a query to examine a certain number 

of neighbours, or area around an entity, is needed - to see whether they share a peak or why else it is 

that they are close to each other.

This example illustrates that a variety of query types are needed and that these types need to be 

integrated within the application and with one another. It will be useful to further develop query 

constructs to support hypothesis testing. Two types of construct are required - one for the display 

and one for the source of the data. These correspond to the use of conventional query language 

and visual queries of the previous sections. (Dynamic queries being a form of querying the data 

source and visualizing the result.) For example, where the 3D calldata dimension reduction display 

is concerned, one needs to ask ‘the closest point to’, ‘the largest x-value’, ‘the densest region’, etc.

2Gnuplot (correctly spelled ‘gnuplot' - i.e. with a lower case ‘g’) is a command-driven function plotting program which 
can also plot data.
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Figure 9.1 : Example of direct visual querying of the calldata set - selection of the extremities. First 
the bar chart showing all customer calls superimposed (top right) is examined. It shows that there 
are a few peaks of high numbers of calls to a destination, but that the majority of values are low. 
The scatterplot produced using the Euclidean distance measure followed by PCoA for 3 dimensions 
(top left) shows the duck’s leg and webbed foot shape. The numbers 2, 32, 38 and 46 correspond to 
the row in the data table in which the customer appears (row 38 customer is the furthest sphere to 
the back of the screenshot). Charts of these selected extremities (middle and bottom) show that the 
highlighted customers correspond to peaks for single destinations.
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Figure 9.2: Example of visualizing the result of a query to obtain more information about the extrem-
ities. The data is queried to obtain the customers that make more than 50 calls to a single destination. 
The result returns 28 customers involving 6 destinations, only one customer makes more than 50 calls 
to more than one destination (see Table 9.1). These customers are highlighted in the 3D scatterplot, 
with different colours for the different destinations (key is in Table 9.1 ).
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Number of Calls Made Customer Row Number Destination Highlighted Extremity?
52 33 G
52 39 E
52 89 G
53 50 E
55 2 G yes
55 3 G
56 74 E
58 28 G
58 31 E
58 62 AZ
58 83 E
59 13 G
59 69 E
61 71 AZ
62 49 E
62 53 E
63 25 E
67 16 E
67 57 E
67 90 E
71 75 E
72 15 E
77 32 R yes
78 14 L (also 60 calls to E)
78 85 E
79 4 E
94 38 EO yes
95 46 E yes

Table 9.1: Customers making more than 50 calls to a single destination: details of call numbers, 
destinations and whether the customer was highlighted in the scatterplot of Figure 9.1. There are 28 
customers, 6 destinations. 17 customers make calls to E, 6 to G, 2 to AZ, 1 each to L. R and EO. 
Colours in Figure 9.2 are E: red; G: blue; L: green; R: pink; EO: turquoise; AZ: yellow.

The source in this case is a time series, relevant questions are the average number of calls per 

destination, the largest number of calls per destination etc. Thus the source or target data can be 

identified: also aggregates, being those involving the whole of the source or target data (e.g. average, 

largest), and those involving a single point (e.g. closest to a point). Typically one would expect to 

start with formulating aggregate queries on the source data and then single queries on the target.

9.4 Insertion of Landmarks

Landmark and query overlap as concepts, since an entity or group of entities in a visual depiction 

can be highlighted and their data examined (visual querying), then left highlighted in the graphic 

to provide orientation (providing a landmark). Whilst query relates to an action for which there is
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an answer, the insertion of a landmark adds a point or group for the purpose of orientation. Thus, 

highlighted entities resulting from a query can be left as landmarks in the display, but new entities 

can also be invented. For example highlighting the most expensive house (query result) or including 

one’s ideal house (synthetic addition) in a dataset of houses for sale.

The incorporation of synthetic data into a visual depiction of data is suggested here as a new gen-

eral element for visualization applications (having noted its desirability in the previous two chapters). 

This mixing of real-world and synthetic data in visualizations is similar to operational fingerprinting 

described in the introduction (page 6), where a known or standard substance is included in the dataset, 

so that its pattern will help guide the user in interpreting the results, specifically in relation to estab-

lishing the closeness of any unknown isolate to a known organism. The addition of data embodying 

a specific feature, within the data for visualization is here described as feature fingerprinting.

9.5 Illustration of Landmark: Feature Fingerprinting

The examples in this section illustrate the augmentation of a real-world dataset by the addition of 

synthetic data to orientate the user in the visual representation. Figure 9.3 shows an example of the 

addition of customers with data similar to a reference entity, in this case the row 46 customer of 

Figure 9.1. Euclidean distance and PCoA for 3D are used as before. The data is formed by adding 

or subtracting one unit from the selected reference entity’s values. This is an example of feature 

fingerprinting with a ‘scaling’ feature with respect to a chosen entity. An example test dataset is 

shown in Table 9.2 and the new file containing 6 extra entities is shown in Table 9.3. Another set of 

entities is formed by shifting the reference entity’s values to the left or right: this is illustrated with a 

similar test dataset in Table 9.4. The data additions for the calldata dataset were produced in a similar 

manner, but with slight variation: only positive values were allowed; zeros (in the reference entity’s 

values) were treated in two ways a) by allowing the additions (Figure 9.3 top right) and b) by leaving 

the zeros unchanged to preserve the characteristic sparsity of the data (Figure 9.3 middle left). This 

‘shifting’ of values provides an important feature in a dataset of this type - one where the overall 

behaviour of the entity across the variables is similar: in this case the calling behaviour is the same, 

but to different destinations. The shifting mechanism here is a quick way of producing such similar 

patterns. In time series data this corresponds to amplitude modulation. The visual representation 

after adding shifted entities to the calldata dataset is shown in Figure 9.4. This provides an example 

of feature fingerprinting with a ‘shifting’ feature with respect to a reference entity.

The results suggest that the reference entity, R, in these examples, contains the largest value or 

values of the column in the 3D representation. As the values of R are increased to create additional 

entities, the column of the representation is extended, though at a slight angle to that of the column. 

When the values of R are reduced to create additions, the new entities are placed towards the rest of
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a 1 2 3
b 4 5 6
c 7 8 9

Table 9.2: Test dataset.

a 1 2 3
b 4 5 6
b+1 5 6 7
b+2 6 7 8
b+3 7 8 9
b-1 3 4 5
b-2 2 3 4
b-3 1 2 3
c 7 8 9

Table 9.3: Test dataset showing six additional entries using b as the reference entity.

a 1 2 3 4 5 6
b 7 8 9 10 11 12
b+1 8 9 10 11 12 13
b+2 9 10 11 12 13 14
b+3 10 11 12 13 14 15
b-1 6 7 8 9 10 11
b-2 5 6 7 8 9 10
b-3 4 5 6 7 8 9
b:shift 1 left 8 9 10 1 1 12 7
b:shift 1 right 12 7 8 9 10 11
b:shift21eft 9 10 11 12 7 8
b:shift2right 11 12 7 8 9 10
b:shift31eft 10 11 12 7 8 9
b:shift3right 10 1 1 12 7 8 9
c 13 14 15 16 17 18

Table 9.4: Test dataset showing twelve additional entries using b as the reference entity. Addition, 
subtraction and shifting of the reference entities values are included. The entity name indicates how 
the data has been constructed, e.g. b:shiftlright means that the new entity has the values of b shifted 
one destination to the right.
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the column and in line with it. This change in direction of the line is because negative numbers are 

disallowed. The entities with shifted values have positions far away from R. This shows that simi-

larity in behaviour of calling, irrespective of destination, is not reflected in this particular similarity 

measure. The idea that extremities of the 3D pattern represent large values for particular destinations 

(from the visual querying example in Figure 9.1) is now qualified, since some of the added entries 

(SRI, SR3 and SL2) are very close together when they were expected to become new extremities. 

This suggests that another factor in the situation is the number of members of the dataset that share 

all or any of the reference entity’s destinations. The desirability of the ability to answer with ease 

such questions as ‘Which caller makes calls to the same destinations as the reference caller?’ is again 

underlined, i.e. the ability to use database query language, or an interface providing the equivalent, 

within the application.

9.6 Conclusion

The illustrations of query and insertion of landmarks show that the two concepts overlap closely. 

Though landmark includes the addition of synthetic data, it is otherwise the highlighting of query 

hits in the visualization.

The mixing of real-world and synthetic data has been demonstrated to help orientate the user in 

a dimension reduction visual depiction. This work indicates the potential for a general visual finger-

printing, feature fingerprinting technique, which provides the interaction mechanisms and interface 

required for the user to place selected data of known qualities or similarity to a reference entity. Fur-

ther work with a variety of datasets and visualization methods, as well as the development of suitable 

interfaces, is required to examine the value of this approach.

The previous two chapters have raised questions about the placement of new data within existing 

datasets for orientation. Section 7.4.1 asks: Will the observed orthogonal patterns remain, if the 

entities lie within a larger dataset? Will this depend upon whether they are localized to (in the 

neighbourhood of ) the reference entity? To what extent is this dependent upon the metric used? 

Section 8.2.4 hypothesizes again, that the relative scale of the pattern to the rest of the dataset is 

a determining factor. In relation to these questions, this illustration, for the visualization method 

used, supports the validity of the pattern being repeated when introduced into a small area around the 

reference entity. More work needs to be done to examine under what conditions this will hold for 

other methods, datasets and sizes and types of introduced pattern.

This work has underlined the importance of providing a range of hypothesis support tools within 

the interface. The interaction response time can be used, as a measure of the time it takes to test a 

hypothesis. Comprehensive command line, dynamic query and visual query facilities are necessary, 

and require further development to facilitate hypothesis generation. For instance, to test the hypoth-
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Figure 9.3: Feature fingerprinting with scaling feature - addition of constructed data scaled with 
respect to a reference entity. Top left: calldata dataset with Euclidean distance followed by PCoA 
for 3 dimensions. Top right: calldata dataset with a customer selected as a reference entity (R) and 
3 new customers added to the dataset by increasing R’s values by I (R+l), 2 (R+2) and 3 (R+3) 
respectively. Middle left: as top right, but R’s zero values are not incremented, to maintain the 
characteristic sparsity of the data. Middle right: as middle left with 3 extra customers whose data is 
obtained by decreasing R’s values by 1 (R-l), 2 (R-2) and 3 (R-3) respectively. Bottom: enlargement 
of middle right additions.
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Figure 9.4: Feature fingerprinting with ‘shifting’ feature - addition of constructed data shifted with 
respect to a reference entity. Calldata dataset with Euclidean distance followed by PCoA for 3 dimen-
sions and additional customers formed by adding (and subtracting) with respect to reference customer 
R as shown in the previous figure (9.3). Additional customers are added by shifting R’s values 1,2  or 
3 columns (destinations) to the right or left. These customers are labelled SL1, SL2, SL3 and SRI, 
SR2, SR3. Both pictures are of the 3D representation, from two different angles, the lower one is a 
shot from underneath with respect to the upper one. From the bottom picture, it can be seen that SL1 
and SR2 are far away from the main group - which is not shown very well in the top 3D shot.
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esis ‘all the customers in the column ot" the visual representation make calls to the same destination 

as my reference customer’, one needs to be able to query the dataset ‘select all customers who have 

values >  0 to the same destinations as my reference customer’. This query needs to be able to be 

formulated and tested easily, otherwise the user will not proceed with testing the hypothesis in this 

way. Though for smaller datasets the problem is simpler because bar charts of individual customers’ 

data can be viewed easily. Each of these various queries and constructions takes the user one step into 

the representation, which can otherwise appear as an incomprehensible mass whose only conveyed 

information is the proximity of objects, a pattern of colours etc.

9.7 Summary

This chapter has described different ways of querying in the context of visualization. Data can be 

queried using a conventional query language, but there are significant difficulties in the use of this, 

notably having to learn the language and obtaining too few or too many hits. Sliders that select 

ranges for the data to be displayed can be used in the interface, providing a facility described as 

dynamic querying. Visual querying is also possible, for instance highlighting an entity and finding 

information about it. Other forms of visual querying are focus+context techniques and brushing one 

or more entities to view them in another display.

Querying for signature exploration requires the same techniques as usual querying, but includes 

a subset that relate to the behaviour of the visualization method itself, such as in showing accuracy. 

To evaluate the usefulness of querying, particularly in relation to the time required for hypothesis 

generation and testing, the interaction response time is a useful measure.

An illustration of visual querying is given using the calldata set. Highlighting the entities at the 

extremities of the pattern and viewing impulse charts of the data shows that these entities are the 

customers with the highest number of calls to a particular destination.

Landmark and query overlap as concepts. Essentially, query finds an answer to a question, land-

mark provides points within a visual depiction for orientation.

The addition of synthetic data to a real-world dataset under consideration is proposed here as a 

general element to include in visualization applications. The facility to place specific features within 

the visualization, proposed here as feature fingerprinting, is also recommended.

Examples of feature fingerprinting using a scaling feature (added entities having values scaled 

with respect to a reference entity) and a shifting feature (added entities having values shifted with 

respect to a reference entity) are given using the calldata. The examples show that the visualization 

method considers scaled entities to be similar, but not shifted entities, thus providing the user with 

insight into the behaviour of the algorithm, as well as the particular dataset. The work underlies the 

importance, yet difficulty, of providing a range of hypothesis support tools within the interface.
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Chapter 10

Elicitation and Application of 

Feedback Data

10.1 Introduction - Compare, Capture, Modify

The elicitation and application of feedback data for signature exploration is defined on page 83 (Def-

inition 15) as follows:

For the elicitation o f feedback data, the user arranges a set o f objects that are known to 

them on the screen. Real-world data is also available for these objects. The objects are 

known to the user in the sense that the user has a personal view of some (or all) of their 

qualities and can arrange the objects on the screen according to their own perceived 

sense o f similarity between objects. The system applies this feedback data by using 

the proximities for the display o f subsequent data by, for example, weighting the given 

attributes or selecting the algorithm that provides the closest layout to the user defined 

one.

This technique differs from the other four (generic dataset provision, user-construction of data, 

querying and insertion of landmarks) in that it uses data known by the user (or entities known by 

the user) to modify the behaviour of the visualization method. The modification of the dataset or 

visualization method is considered to be another form of signature exploration.

Signature exploration is a way for the user to compare their own view of the data with that pre-

sented by the system and thus increase their understanding of the representation; the use of feedback 

provides a means for these two views of the data to interact. The user's sense of similarity is captured 

and used to modify the visual representation. The user’s sense of similarity between objects may be
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captured, or the importance they place upon different aspects. Thus compare, capture, modify com-

pletes an interaction circle between computer and user: the user compares their sense of similarity 

with the computer's; the user's sense of similarity is captured by the computer; the computer modifies 

the visualization method. This process is illustrated in Figure 10.1.

COMPARE CAPTURE MODIFY
similarity placement

ranking

□

□
□
□

f e a t u r e  x

1
2
3

4

classification
□ reference entity
□ yes

Figure 10.1: The compare, capture, modify process illustrates feedback from system to user and 
user to system. Left: The user gives known data to the application to see how the system places 
their data. Middle: The user arranges entities on screen by referring to the actual data or their own 
intuition. Tacit knowledge can be elicited from the user by ranking or classifying with respect to 
a reference entity or a feature. Right: The system modifies the algorithm (using for example, least 
squares multiple regression) and replots or presents different possibilities. New data can then be 
plotted based upon these results.

As an example of how feedback would be used in practise, consider a biologist with high dimen-

sional data relating to a number of proteins. In this set of proteins there is a group that the biologist 

is very familiar with and can arrange or rate in terms of their similarity. The elicitation and feedback 

interface will capture their measures of similarity for these proteins and then provide a layout of the 

whole dataset based upon their assessment of the group they are familiar with, or a predetermined 

layout that corresponds most closely to this.

The following two sections look at the capture of the user’s sense of similarity and the layout mod-

ification possibilities, examining some relevant literature (Sections 10.1.1 and 10.1.2). An example 

illustrates the mechanism of capturing and using the user sense of similarity (Section 10.2). This is 

followed by a description of the interface for elicitation and feedback that has been implemented in 

Space Explorer (Section 10.3).
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10.1.1 Capture

When this technique was introduced on page 83, the work on the dynamic querying of image libraries 

was referenced and indicated as the inspiration for this technique (and for signature exploration in 

general). It was also noted that concepts of similarity are often very subjective. This subjectivity 

results from the specific query and the user’s particular perspective etc. Also, as the user interacts 

with the system, their sense of similarity often changes, so that the measure should, ideally, be con-

tinuously learned (Picard 1995). This change may be brought about by the exploration process and 

the need to ask different questions or the realization by the user that new features, of which they were 

previously unaware, are of interest to them.

Is the Euclidean Measure Intuitive?

Keogh and Pazzani (1999), in relation to time series data, claim that there is little evidence that 

Euclidean distance maps onto human intuition of similarity, though the Euclidean measure, or some 

approximation or extension thereof, is widely used for time series data. In certain situations the 

reverse is true. Examples where this is the case are shown in Figure 10.2; this figure shows four 

datasets each consisting of three time series datasets. In each case the upper two sets appear visually 

similar, whilst the lower two are similar by the Euclidean measure. Four general features or global 

distortions can be identified (Keogh and Pazzani 1999) that correspond to the differences in the 

patterns that retain the visual similarity, yet alter the Euclidean measure.

Figure 10.2 contains examples of the global distortions, which are illustrated in Figure 10.3. They 

are: offset translation; amplitude scaling; linear drift and discontinuities. The authors give examples 

of people for whom different aspects would be important, for instance offset translation would be very 

important for a doctor looking at patient temperatures, but may not be for a stock market analyst. In 

each case the shapes result in an arbitrarily large dissimilarity because of a particular feature, here 

described as a distortion, with respect to a particular shape. Offset translation results where two 

similar, or possibly identical, shapes are separated in the y-axis. Offset translation can be removed 

by normalizing the data so that they have the same mean, but this removes information which may be 

required by some users. Amplitude scaling results where two shapes are similar but one oflhem has 

been ‘stretched’ or ‘compressed’ in the y-axis with respect to the other. (See Agrawal et a!. (1995) for 

a model that deals with noise, scaling and offset translation). An example of linear drift is the sales of 

ice cream in two cities with similar climates and populations. The shapes of the time series could be 

quite similar, but if one city experienced population growth, this would be reflected by an underlying 

upwards trend in the sales shape. Discontinuities are typically sensor calibration artefacts and can be 

treated by detection and smoothing or translation. This list is not exhaustive, for instance, phase and 

frequency scaling could be added. Discontinuities are not meaningful for non time series data and
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the other descriptions do not have the same implications as important relationships to discover. Thus 

a different set of global distortions must be described for different types of data.

Using the concept of global distortions, the following elements are needed in the interface:

• enhancement of user perception of global distortions and how they are treated by the system

• modelling user preference of sensitivity to global distortions

• provision of feedback to the system

Figure 10.2: The Euclidean distance measure can produce unintuitive clustering of time series data. 
Clockwise from the top left, unintuitive clustering caused by offset translation, amplitude scaling, 
discontinuities and linear trends. Although the top two time series appear most similar in all four 
cases. Euclidean distance indicates that the bottom two are most similar. Figure reproduced from 
Keogh and Pazzani (1999), ©1999 ACM. Inc. Included here by permission.

Modelling the User’s Sensitivity to the Global Distortions

Keogh and Pazzani (1999) also introduce a profile that encodes the user’s subjective notion of sim-

ilarity in a domain, based on the user’s sensitivity to the global distortions. Users provide a query 

sequence which may be drawn by the user on the screen, or a sequence from the database. The system 

ranks all sequences in the database with respect to this query sequence. The best n  sequences are 

shown to the user. The user ranks these and the query sequence is modified in a process analogous to 

the use of relevance feedback in text retrieval systems. Further improvement in the relevance of the 

returned sequences can be obtained by embedding the user’s global distortion sensitivity profile.
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Offset Translation

Am plitude S c a lin g

Figure 10.3: The four global distortions described in Section 10.1.1. Figure reproduced from Keogh 
and Pazzani (1999), ©1999 ACM, Inc. Included here by permission.
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Thus the subjective distance is measured between two time series Q and S  by first shifting, 

rescaling, retrending and removing relative discontinuities from S  to produce a new sequence S'. 

The distance between Q and S', D S(Q , S '), is now measured and the subjective distance is defined 

as:

sub-dis(Q, S) = D S (Q .S ')  x T rans form ationP ena lty (S . S ')

Where T rans f  orinationPenalty (S, S ') is the cost of converting S  into S'. This cost depends on 

the user’s profile, their subjective judgement of the desirability of the four distortions in a particular 

domain. The cost is calculated from the user’s ‘preference’ distribution for each distortion. The 

preference distribution is inferred from the user’s estimates of similarity between sequences. Note, 

the Euclidean distance measure remains the measure in use, though modified.

Capturing the User’s Sense of Similarity

A variety of interfaces can be envisaged to enable the capture of the user's sense of similarity as 

indicated in the middle column of Figure 10.1. On the meta-level, where entities are compared 

to one another in overall terms, the user could be asked to arrange the entities on the screen with 

the distances between pairs reflecting how similar they consider the pair to be. Here there are two 

problems: users may lack the knowledge to do this directly and the accuracy of the layout may be 

coarse, since it is likely that only a rough clustering of the entities would be achieved by the user. 

For the user who cannot proceed directly, the entities could be ranked with respect to one another (as 

in the example in the previous paragraph), or simply classified as similar or not similar. It may be 

impossible to consider similarity on this general level, in which case ranking and classification can 

be made with respect to the possession or level of possession of a feature of interest. A list of features 

of interest, with levels for each entity, generates multivariate data that can be compared to the data 

that is provided with the entities. This procedure also provides the user with a means of exploring 

their own view of the entities’ qualities and understand which factors are important to them.

Knowledge that the user is unable to articulate, or even be aware that they have, is described 

as tacit knowledge (as introduced on page 98). A variety of techniques have been devised to elicit 

requirements from tacit knowledge and these provide suggestions for the elicitation of domain knowl-

edge and sense of similarity in visual applications. So that, in the situation where the user is asked 

to arrange or rank entities, but is unable to, similar techniques can assist. One such method is card 

sort (Rugg et al. 1992); in essence, the card sort process, normally undertaken manually, presents a 

series of cards to stakeholders for them to sort into groups. Each card has the name of some domain 

entity written or depicted upon it. The user then says what the criterion was for the sorting, and what 

the groups were. Repetitions can be made with the user choosing another criterion. When the user 

exhausts criteria that they can think of, a diadic sort can assist - here two cards are chosen at random
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and the user is asked the main single difference between them. The process continues until no further 

criteria emerge. This method finds attributes that matter to the respondents and suggests an order of 

importance.

10.1.2 Modify

The user having placed a number of on-screen movable icons or labels representing familiar objects, 

such that the distances between them represent their similarity, or a measure of the user’s sense of 

similarity having been captured by an elicitation method, the task now is to use this information to 

modify the behaviour of the measures employed by the system as indicated in Figure 10.1. It is 

assumed that there is corresponding multivariate or distance data associated with the familiar objects 

(which may or may not have been the basis of the user’s distance arrangement) and that this data 

is taken from a larger dataset which includes objects with which the user is unfamiliar. The system 

modifies its representation of the data to incorporate the user’s sense of similarity and displays the 

full dataset by this new means. An intermediate stage can be included where the user is asked to rate 

various modified representations of the familiar objects.

The scenario of a large dataset containing a small subset of objects with which the user is familiar, 

capturing the user’s distance measure for the known objects and using it to modify the layout of the 

whole dataset, is assumed here for the general case, though the technique can have other contexts, for 

instance:

• Understanding the behaviour of metrics, choosing a metric for a specific application: by com-

paring the system’s sense of similarity with theirs, does it coincide? The system can show them 

what modifications are needed to a selected metric, or indicate which metric is closest to their 

view. In this case the user’s preferences are not applied to the larger dataset.

• Increasing engagement of the user - with the application by exploring meaning, with the data 

by making the user more aware of their own domain knowledge and preferences.

• Querying of time series and image databases - to improve accuracy (from the user’s point of 

view) of response.

What methods can be used to modify the behaviour of the visualization algorithms? To some 

extent this depends on the nature of the data, for instance time series data allows the visual ranking of 

segments according to similarity of shape, whereas the lack of ordering of non time series data makes 

the shape less meaningful. The most direct option is to choose the layout that is closest to the user 

defined one, which also provides the user with information that they may be interested in. The method 

of providing a cost term which qualifies the distance term, based upon the user’s tolerance of global 

distortions, as described in Section 10.1.1, was developed to improve the quality of query returns for
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The user knows about the four entities A — D  and draws a layout of them as shown in Figure 

10.5.1. According to the above algorithm we have X '\Y

A 1 0 0 0 0 3

B 0 1 0 0 0 2

C 2 1 1 0 2 0

D 1 -1 2 1 4 2

Deducing the third and fourth rows from the first and second we gel I \Y '  as

A 1 0 0 0 0 3

B 0 1 0 0 0 2

C 0 0 1 0 2 -8

D 0 0 0 1 0 17

Computing the final co-ordinates X Y ' , which are generalised from the subset A — D  and applied 

to all entities A — H, the layout is as shown in 10.5.2. Compare these user defined and generalised 

distances to the methods mentioned earlier. Considering only the entities A — D, which the user 

knows about, it is striking that they place A  and C  far away from each other (Fig. 10.5.1), whereas 

all others put them closer to each other, in particular correlation (Fig 10.5.6). Now consider the 

entities the user did not know about. The generalisation of the user distances places e.g. F  near to A, 

B, which is done by the Minkowski distance family, but not at all by correlation. On the other hand, 

the user’s initial placement of ABCD is generalized by essentially separating ABCD and EFGH and 

none of the metrics separates these two sets, though City distance and correlation do to some extent, 

correlation is the best (from the visual examination). The mean square distance error is often used 

to compare layouts, this is the mean of the sum of the squares of the differences between distances 

between all pairs of entities in the one layout and the other, i.e. for two layouts, a and b, of n  entities:

E-ab 2 / n ( n  1) ^  ' ( bgi j  &bij)

where 6rnj is the distance between the entities i and j  in layout a. However, the mean square distance 

error here gives, for instance, a better value for PCA (1.6) than correlation (3.2), which conflicts with 

the visually observed separation of the two groups, thus indicating that this way of measuring which 

of the six metrics comes closest to the user’s layout might not be the best.
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Figure 10.5: 1. Four entities placed by a user. 2. Generalisation of these placements and application 
to all entities. 3-8. Scatterplot of the eight entities using PCA and PCoA with Chebychev, City or 
Manhattan (Minkowski with A = 1), angular, Euclidean and Minkowski (A = 10) distance. From 
visual comparison of the layouts, the user’s initial placement of ABCD (1) is generalized by essen-
tially separating ABCD and EFGH (2). None of the metrics (3-8) separate these two groups, though 
City distance (5) and correlation (6) do to some extent, correlation the most. On the other hand, 
the commonly used mean square distance error gives a lower value for PCA (3) than for correlation, 
indicating that PCA is closer to the user’s layout.
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10.3 Interface Illustration Using Multiple Linear Regression

The interface is extended so that the scatterplot entities can be moved around in the display and the 

distances between them captured. An example is given in Figure 10.6. a subset of the Iris dataset 

(introduced on page 92) is displayed and the user then moves the squares on the screen to the ar-

rangement that they think reflects the objects’ similarities. Here it is assumed that the user is familiar 

with these 8 instances. Figure 10.6 shows the view before rearrangement by the user on the left 

and after arrangement on the right. When the user is satisfied with their arrangement, they click the 

‘capture distances’ button and the distances are calculated and stored.

Multiple least squares linear regression is used to derive weights for the attributes as follows. The 

following information is available:

A =  (% )

where 5ij is a measure of dissimilarity between the z-th and j-th objects, captured from the arrange-

ment on screen of the objects;

D(w) = (dij(w))

is the distance matrix based upon the values in the multivariate data table where is the Euclidean 

distance between the i-th and j-th objects, w are weights associated with the variables (see Equa-

tion 3.3 on page 37).

The aim is to find values for the weights, w =  (w i,W 2 , . . . ,  wm ), (for m  attributes), such that 

D(w) is a good approximation to A, i.e.

5ij «  cdij(w), c > 0 

The linear regression model can be used here:

Vt = ft{(3) + uu t = 1 , . . .  ,n

• !jt is the t th observation on the dependent variable, which is a random variable

• /3 is a vector of unknown parameters

• ft{(d) is a regression function which determines the mean value of yt conditional on a specified 

set of independent (explanatory) variables x t and on /3. This function varies from observation to 

observation as x t varies

• ut is an error term.

Thus

y = X/3 + u
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QirisllserKnows.txt: PC A p** K Î \E i

u n d o  jj c a t a s t e  j

reset

Results will appear here 
(^_and

Figure 10.6: Capturing user similarities between entities on screen using a subset of the Iris dataset. 
Top: before user arrangement. The user can click and drag the entities to wherever they want them to 
be. When they are satisfied with their arrangement, they click the ‘capture distances' button for the 
distances to be calculated and stored (bottom).
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Figure 10.7: 2D layout (after PCA) of the Iris dataset (top). 2D layout of the Iris dataset after 
attributes have been weighted with weights in Table 10.1 (bottom).
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at input-output examples of the function. The output can be a continuous value or can predict a class.

10.4.1 Neural Nets

The Stuttgart Neural Net Simulator was used to examine the usefulness of neural nets for learning 

the distances provided by the user moving the subset of entities on the screen (as described in the 

previous section). This can be downloaded from http://www-ra.informatik.uni-tuebingen.de/SNNS/. 

A version with a Java interface is available, and this was used here.

A neural network (strictly an artificial neural network) is an interconnected group of nodes, in-

spired by the neurons in the human brain (Bishop 1995). The nodes, also described as units, have 

directed weighted links between them. There are different types of neural networks, here a typical 

single hidden layer feedforward network with back propagation has been used. When the network is 

in operation, a value is applied to each input node. Each node passes this value to the connections 

leading out of it, the value being multiplied by a weight. The next layer nodes each receive a value 

that is the sum of the values from connections to it. Each node then performs a computation on the 

value, often a sigmoid function is used. The process is continued for the next layer. The sigmoid 

curve introduces non-linearity into the computation. Back propagation is the name given to a type 

of learning technique where the output values are compared with the correct answer and an error 

function computed. The error is then fed back to through the network, adjusting the weights. As the 

process is repeated, the network usually converges to a state where the error is small.

There are three types of unit (node): input unit, hidden unit and output unit. In the example 

described in the previous section, the test data consists of the distances between all pairs in the group 

8 entities taken from the Iris dataset and arranged on the screen by the user. Each Iris example has 

four values for petal width and length, and sepal width and length. This investigation considers two 

ways of applying the neural net model. In the first case 8 inputs (pairs of vectors), a hidden layer 

with various numbers of units and 6 outputs (the range of values for the distances divided into 6 

categories). In the second case, the same number of inputs and hidden units, but only one output 

unit. In the first case the sigmoid function is used for the output units, in the second case, the identity 

function is used. In both cases the sigmoid function is used for the hidden units.

Since there are only 8 entities concerned, there are only n /2 (n  — 1) =  28 (the number of pairwise 

distances) training examples. In general there is a problem of developing a network that performs 

well on examples not used as training examples, particularly, as in this case, for very limited numbers 

of training examples. The network may overfit the training data. A simple heuristic, early stopping, 

is where the training set is split into a new training set and a validation set. After each sweep through 

the new training set, the network is evaluated on the validation set. The network with the best perfor-

mance on the validation set is then used for actual testing. Examination of the error graphs for these
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Figure 10.8: The single hidden layer feedforward net used to learn the distances obtained from the 
user arrangement of 8 iris examples on the screen (shown in Figure 10.6. This is a screenshot of one 
of the windows in the Java interface for the Stuttgart Neural Network Simulator. The inputs are the 
four values (s-1: sepal length, s-w: sepal width, p-1: petal length, p-w: petal width) for patterns a  and 
b .  For example, a _ s - I  is the sepal length for a .  The output, d i s t _ a b ,  is the distance between a  and b  

in the user arrangement.

two datasets usually shows that, beyond a certain point, as the accuracy for the training set improves, 

the accuracy for the validation set worsens. Cross-validation is a more complex form of validation 

where the training set is divided into k  subsets of approximately equal size. The net is trained k 

times, each time leaving out one of the subsets from training, but using the omitted subset to compute 

the error. For the first example early stopping was used, but gave an error rate of only 25% (per cent 

of correct outputs for the validation dataset) for 2 hidden layers. Using 7-fold cross-validation shows 

that the values obtained are consistent, though the error increases to 50% in some cases (this is 2 out 

of 4 correct, since there are only 4 patterns in one 7-fold cross-validation set). The error on the train-

ing set was typically around 80%. Increasing the number of hidden layers to 3 improved the accuracy 

on the training datasets to 100%, but decreased that for the validation ones, i.e. overtraining. Since 

the error was so high for these nets, it was decided to try the single output (with the identity function 

for the output). This gave a better result: 100% for the training data and 82% for the validation data 

(for a typical cross-validation pair), so this was the configuration used for the final net. This net was 

used to generate distances for the whole of the Iris dataset, by presenting all pairs of vectors as inputs.
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Figure 10.9: The layout of the Iris dataset using a neural network trained on the user distance data 
for a subset of 8 examples (shown in Figure 10.6. This shows that the species Iris-versicolor (ve) 
and Iris-virginica (vi) are now in separate clusters. Compare this to the original shown in Figure 10.7 
(top), where these two species overlap.

The final net used is shown in Figure 10.8 and the results of display with PCoA are shown in 

Figure 10.9. This shows that the species Iris-versicolor (ve) and Iris-virginica (vi) are now in separate 

clusters, which follows the user arrangement. This is an improvement over multiple least squares 

linear regression, which is to be expected because of the non-linear nature of the problem. However, 

the use of neural nets for cases with such small training sets can be problematic and this result may 

not hold in general. Also, the training of the net was done off-line, whereas the multiple least squares 

linear regression can be done automatically.

10.4.2 Genetic Algorithms

Genetic algorithms (Rawlins 1991) are inspired by Darwin’s theory of evolution. An evolutionary 

process is used to find a best, or fittest, solution. In each cell of a living organism there is the same 

set of chromosomes. Chromosomes are strings of DNA and serve as a model for the organism. 

A chromosome consists of blocks of DNA culled genes. Each gene encodes a particular protein. 

Basically, it can be said that each gene encodes a trait, for example colour of eyes. A complete set of 

genetic material (i.e. all chromosomes) is called a genome.

During reproduction, recombination (or crossover) first occurs - here genes from parents com-

bine. Mutation, where the elements of DNA are changed by copying error (or other means), can also 

occur. The fitness of an organism is measured by success of the organism.

Evolutionary algorithms operate on a population of potential solutions applying this principle of
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survival of the fittest to produce better and better approximations to a solution. At each generation, a 

new set of approximations is created by the process of selecting individuals (or genomes) according to 

their level of fitness and breeding them together using operators such as recombination and crossover.

Code was written to develop a model and thus discover weights for the variables using genetic al-

gorithms. Various polynomial relationships were examined (for simplicity, using only squared terms, 

then adding cubed terms and so on) and weights determined to minimize the utility (maximizing 

the fitness). The utility being the sum of the squared differences between the distance obtained by 

computing with the model (and selected weights) and the distance given by the user in their screen 

layout. The general form of the polynomials used was

n — 1 UJn — 1
1

„ n —1 n —1+  . . .  +  Xilw i) +  ( i ^  +

+ ( * > ? + a # - 1

+ . . . +  X ì 2 ^ 2 )  T  • - ■

Lt!g 1 +  • • • +  X j  4UJÿ)

Where <5̂  is the distance between entities i and j  as arranged by the user, xn  is the value of the 

variable X\ for the entity i, i t ' i  is the weight for the variable X j that needs to be determined, and n  

is the order of the polynomial that is to be used. There are four variables for each of the entities, i, 

j ,  and thus 8 weights to determine. Results are given here for orders 2, 3 and 5. Various numbers of 

generations were used to see whether overfitting was a problem.

The four main stages of the approach adopted are described below:

• Selection. This is the process by which genomes are selected for reproduction. Tournament 

selection has been used for this evaluation: here a number of individuals are chosen randomly 

from the population and the best individual from this group is selected to be a parent. The 

parameter for tournament selection is the tournament size Tour and takes values from 2 to the 

number of individuals in the population. A value of Tour of 3 has been used here.

• Recombination. There are numerous methods of recombination available, the method used 

here is called discrete recombination. Discrete recombination works by looking at the individ-

ual values within each genome. A random number from the set 1,2 is assigned, the numbers 1 

and 2 being the potential parents. Offspring take the genome from the assigned parent for that 

value.

• Mutation. Offspring values are mutated by the addition of small random values, with low 

probability. The probability of mutating a variable is set to be inversely proportional to the 

number of variables. Different results have been reported for the optimal mutation rate and the 

mutation rate can be varied through the generations. However, a mutation rate of 1 /n  has been 

shown to produce good results for a range of test functions, though varying the mutation rate 

has been shown to produce only an insignificant improvement. In these examples a mutation
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Figure 10.10: The layout of the Iris dataset using weights derived using a genetic algorithm: using 
polynomial relationship of order 2. Genetic algorithm run for 700 generations, utility 15.

probability factor is used and the value of 0.01% found to be effective.

• Reinsertion. Reinsertion is where the newly produced children are reinserted into the popula-

tion. Here a reinsertion process is used called elitist reinsertion. This is where less offspring 

than parents are produced and then used to replace the worst parents. The same number of 

offspring as parents are produced, and then sorted by fitness, subsequently taking a percentage 

of the most fit from both sets. The percentage used in this example is 50.

Results of displaying the whole of the Iris dataset with the weights derived for polynomials of 

order 2, 3, 5 (only using terms of order 5) and 5 (using terms of all orders) are shown in Figures 10.10 

to 10.13. New distances are calculated including the weights, then a display is found using PCoA. 

The utility achieved in each case varied, and the assessment of the result was visual. None of the 

examples separate the three clusters and the separation of the ‘se’ cluster from the other two. that is 

quite clear after PCA, has been lost. This problem with the ‘se’ group is to be expected since the 

training data did not include any examples from this group. The clustering appears slightly better 

in the higher order pictures, despite the fact that the utility is higher. This indicates that it would 

be useful to explore the use of utility measures based upon how well the clustering was achieved, 

rather than a comparison with each individual distance, though such measures are difficult to specify. 

However, in the proposed feedback scenario, a classification would not normally be available, so 

that this kind of utility measure would not be possible. In order to use genetic algorithms within 

the feedback interface, the model used needs to be evolved, as well as the weights, and the utility 

function needs to be explored to see why the better arrangements have a higher utility.
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Figure 10.11: The layout of the Iris dataset using weights derived using a genetic algorithm: using 
polynomial relationship of order 3. Genetic algorithm run for 1.000 generations, utility 21.38 (no 
improvement for 10,000 generations).

Figure 10.12: The layout of the Iris dataset using weights derived using a genetic algorithm: using 
polynomial relationship of order 5, including only the order 5 terms. Genetic algorithm run for 500 
generations, utility 30.5.
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Figure 10.13: The layout of the Iris dataset using weights derived using a genetic algorithm: using 
polynomial relationship of order 5 (all terms). Genetic algorithm run for 500 generations, utility 
22.75.

10.5 Summary and Conclusions

The elicitation and application of feedback data for signature exploration has the three aspects: com-

pare. capture and modify. The user compares their sense of similarity (between entities) with the 

computer’s; the user’s sense of similarity is captured by the computer; the computer modifies the vi-

sualization to take account of the user’s sense of similarity and to display a larger number of entities.

Relevant work in the dynamic querying of image libraries emphasizes the subjective nature of 

concepts of similarity. Researchers involved in the querying of time series data question the intu- 

itivity of the Euclidean measure, though this measure is widely used. Their work shows that, where 

offset translation, amplitude scaling, linear drift and discontinuities (termed the ‘global distortions’) 

are involved, the Euclidean measure gives an unintuitive result. These global distortions also corre-

spond to aspects about the data which the user may wish to disregard. Thus the user’s sensitivity to 

these global distortions can be modelled and used to calculate the subjective distance between two 

sequences.

Capturing the user’s sense of similarity can be approached in a variety of ways: by relevance 

feedback; by giving the user a variety of examples to classify, or rank, with respect to a reference 

entity; by the user arranging the entities on the screen where the distances correspond to dissimilarity; 

by the use of an elicitation technique similar to those often employed in the elicitation of requirements 

(for example ‘card sort’).

There are also a variety of methods for modifying the behaviour of the visualization method: the 

technique that provides results closest to the user’s arrangement can be ascertained; the metric can

157



CHAPTER 10. ELICITATION AND APPLICATION OF FEEDBACK DATA

be modified based upon the user’s sensitivity to global distortions; weights for the attributes can be 

found (e.g. using multiple least squares linear or monotone regression, and learning algorithms).

Two illustrations are given for the application of feedback data based upon the user arranging 

known entities taken from a larger dataset. In the first illustration, the user positions objects on the 

basis of perceived similarity. A mapping from the attribute values to the x,y  co-ordinates is then 

obtained by solving the linear equations. This mapping can then be applied to the larger group 

of objects. In the second illustration, implemented within the SpaceExplorer interface, the system 

captures a set of distances between objects and uses them to calculate weightings for the individual 

attributes using multiple least squares linear regression. The user's sense of similarity is captured 

in an interface which allows the user to move objects around the screen, by clicking and dragging. 

When the user is satisfied with the arrangement, such that the distances between objects reflect their 

(the user’s) view of the objects’ similarity, the distances are captured and used to calculate attribute 

weights. An example using the Iris dataset is described, and weights calculated using multiple least 

squares linear regression, neural nets and genetic algorithms. The best results were obtained with the 

use of neural nets.

There were several problems encountered:

• Difficulty for users to accurately quantify similarity. Thus the distances obtained from the user 

must be regarded as quite approximate. Better results may be obtained by applying elicitation 

techniques, such as card sort, or modelling the user’s sensitivity to global distortions, or using 

ranking and classification methods. These methods would capture the user’s knowledge and 

perspective more accurately and, dependent upon the technique, in more detail.

• The application of multiple least squares linear regression and the learning algorithms is limited 

in scale. This method can only be used where the number of objects (whose similarity is 

estimated by the user) is greater than or equal to the number of attributes. Therefore, this 

method could not be used, for instance, on the calldata set, where the complete data table has 

a higher number of destinations than customers. In any case, a larger number of destinations 

than about 20 would be difficult for the user to arrange (the arrowhead example used 14). Thus 

the other methods involving ranking and comparison of individual attributes, as well as direct 

ones modelling user preferences, should be used as well. Similar restrictions apply to the use 

of learning algorithms, where, though possible, results lose statistical validity.

• Complete mismatch of data and layout. The user could be arranging the data based upon 

information other than that in the dataset being used.

• Impracticality of learning algorithms within the interface. The genetic algorithm and neural net 

applications, as they have been used in these experiments, cannot be used in real time within
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the interface. The extent to which these methods could be used unsupervised has not been 

established - this is a serious restriction upon their use.

Nevertheless, aside from these problems, this kind of feedback interface is useful for several 

other reasons: for engaging the user in the process of developing understanding of their own sense of 

similarity, not just that of the application; to help the user identify which attributes, if any, are not of 

interest to them; to help users determine their own weights directly.

Can expressions of similarity other than proximity, such as colour or glyph height, be captured? 

If colour or glyph height is used to denote similarity, then the user could be given the opportunity 

to change the colour, or height, rather than the position. However, such quantities are rarely used 

after dimension reduction, because they are equivalent to reducing the dimensions to one. In the case 

of colour, there is also the problem that colour scales are perceived in a non-linear way (even when 

carefully constructed). Nevertheless, it would prove easier for the user to express their own sense 

of similarity in this way, though they also need to be able to arrange the elements in groups, where 

some distances (or colour differences) are precise and others not. Thus a more expressive interface is 

needed, which can make these distinctions, whether colour, height or distance is used.

Will the elicitation and application of feedback data work with visualizations that do not use 

dimension reduction, such as parallel coordinate plots? The application relates to similarity, so it 

is only relevant where there is dimension reduction producing a layout where proximity of position 

relates to similarity (or where similarity is mapped to some other quantity such as colour, as discussed 

in the previous paragraph). Forms of elicitation (without subsequent application) could be applied 

to find out what is important to users, where this was relevant. For instance, to help users choose 

attributes to display, or ordering of attributes, or for personalization.

The elicitation and application of feedback has been used in the querying of image and time 

series databases, but not as a means of exploring the behaviour of visualization applications. This 

work has illustrated that the technique could be used more generally for visualization, and that there 

is considerable scope to expand it for both visualization and querying. Expansion in terms of different 

kinds of interfaces for capturing the user’s sense of similarity or preferences and of different ways of 

modifying the behaviour of the application, based upon these captured quantities.
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Chapter 11

Obstacle: Accuracy of Depiction

11.1 Introduction

An area of difficulty that has arisen in drawing conclusions from this work and in determining future 

directions concerns accuracy:

• In reducing dimensions an abstraction error occurs, so that layouts are necessarily approximate. 

What are the implications of this from the point of view of interpreting patterns in the display? 

How can these errors be shown to the user?

This chapter is a discussion of this area, examining relevant literature. From the point of view of 

signature exploration the corresponding question is:

• How can abstraction error be demonstrated to users? (An aspect of revealing the behaviour of 

the visualization method.)

The discussion includes an empirical examination of error for an application involving agent 

interest profiles which leads to the proposal of a new layout algorithm and a mechanism for agents to 

exchange approximate profiles without revealing their detailed profiles or involving a third party.

11.2 Error and its Sources in the Visualization Process

The three words accuracy, error and abstraction relate to the loss of information resulting from the 

process of taking data from the real world and finding a form of visual representation for it. We can 

distinguish these terms in the following way: accuracy measures the discrepancy from a modelled 

or assumed value; error measures discrepancy from the true value (Buttenfield and Beard 1994); 

abstraction is a more general term, which may be used to apply to any loss of information. This loss
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of information is inevitable because of the discretization of measurement, both from the technical 

and human conceptual points of view as expressed by Goodchild et al. (1994):

“By definition, reality is continuous, while the observation of reality is discrete. 

Technology discretises measurement, as for example in satellite image ‘snapshots’ taken 

at regular intervals in comprehensive scanning paths. Perception also occurs in discrete 

‘chunks’, is selective and easily masked or distracted.”

The loss of information is also entailed in the abstraction of the application of the representation to 

the data. In the case of dimension reduction this representational loss (which may be expressed as a 

mathematical error term - a truncation of a matrix) may be very large. However, any representation 

has the potential to provide a loss of data or introduce a distortion (for instance by using a colour 

scale, which is not perceived linearly, to represent a linear scale), notwithstanding that such effects 

may also reveal facts about the data. Effects such as overplotting can be considered to introduce error, 

since a loss of information arises in the representation.

The different contributory factors affecting the accuracy of a visual representation arise at differ-

ent stages of the visualization process as illustrated in Figure I 1.1: the accuracy of the original data 

(1); the accuracy of the transformation from data to visual depiction (2 and 3); the accuracy of the 

interpretation (4). This figure emphasizes the transformational aspect of the visualization process. A 

cartographic exploration of this transformational aspect is given in Tobler (1979) where it is said that 

‘the entire process of making, and using, a map can be viewed as a sequence of transformations’. The 

discussion in this chapter is concerned primarily with the accuracy of the transformation from data 

to visual depiction (2 and 3) and indirectly with the accuracy of interpretation (4) from the point of 

view of providing the user with necessary information about 2 and 3, rather than the mechanisms of 

interpretation (i.e. of cognition) themselves. This focus is because the aim of this work is to increase 

the user’s understanding of the behaviour of the visualization method. However, in considering how 

to convey information about error to the user, it is useful to look at examples of visualization of gen-

eral data uncertainty from the literature to see if they can be used more widely. There is much work 

on this topic in geovisualization which discusses data validity, uncertainty and quality. Validity as 

a term is used to imply testable elements (Goodchild et al. 1994), data quality in geovisualization 

is precisely defined. More references to the geovisualization literature are made in the following 

sections.

Examples of error sources for colourmaps, parallel coordinate plots and scatterplots are shown in 

Figure 11.2.

It should be noted that loss of information is not, of itself, undesirable. The issue is whether the 

resulting abstraction is appreciated by the user, who can than assess its validity. Consider, a synthetic 

dataset containing several clusters; now add randomly distributed noise. A dimension reduction
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4  I Interpretation 
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Figure 11.1: Sources of error in visualization: 1. Observation: from real-world to data. 2. Transfor-
mation: from data to data (in preparation for visualization). 3. Visual representation: from data to 
display. 4. Interpretation: from display to human.

Figure 11.2: Examples of error in visual depictions: colourmap (left)- visual representation error 
in non-linear perception of colour scale (data to display); parallel coordinate plot (middle) - possible 
interpretation error (display to human) and visual representation error due to overplotting (data to dis-
play); scatterplot after dimension reduction (right) - transformation error due to dimension reduction 
(data to data), visual representation error due to overplotting.

162



CHAPTER 11. OBSTACLE: ACCURACY OF DEPICTION

process may result in information loss, but if this is the removal of the noise, the result is meaningful. 

The process of abstraction is a fundamental principle of ‘how an information processing organism or 

machine reduces the otherwise unmanageable glut of information’ (Card et al. 1999, p. 11):

“[T]here appears to be a general Principle of Selective Omission o f Information at 

work in all biological information processing systems. The sensory organs simplify and 

organize their inputs, supplying the higher processing centers with aggregated forms of 

information which, to a considerable extent, predetermine the patterned structures that 

the higher centers can detect. The higher centers in their turn reduce the quantity of 

information which will be processed at later stages by further organization of the partly 

processed information into more abstract and universal forms.” (Resnikoff 1987, p. 19)

(As cited in Card et al. (1999, p. 11))

11.3 Accuracy Estimators and Depiction

In assessing the accuracy of a layout we can give an overall measure which is an average of the 

errors, but we can also ask specific questions, such as: ‘If I draw a radius of 1 unit around this 

point, how many points will be included in this circle that should not be there, and how many are 

outside this area that should be inside it?’ Those points included inside the circle that should not 

be there are described as false alarms or errors o f commission or Type I errors (in statistics) and 

those that are outside, that should be inside, are described as false dismissals or errors of omission 

or Type II errors. This issue is relevant in indexing large databases of time series data (for instance) 

where the user wants to ask the question, ‘How many entities are within a distance of x  units to this 

one?’ This is an example of similarity search, useful for exploring time series databases, but also 

important in clustering and classification (Bohm et al. 2001; Keogh et al. 2000). Queries of this kind 

are difficult on large datasets, so indexing methods are used that reduce the dimensionality of the 

dataset. However, the condition that there are no false dismissals needs to be preserved, though false 

alarms are allowed. False alarms can be removed in a post-processing stage, though it may still be 

desirable for them to be relatively infrequent. Similarly, in a visualization, the user may want to draw 

a circle around a point and know the number of false alarms/false dismissals within that area.

In most visual depictions of high dimensional data, there is no indication within the visualiza-

tion of the level of abstraction that has occurred. This applies to self-organizing maps, as well as 

scatterplots following the application of dimension reduction algorithms, though scatterplots are of-

ten accompanied by eigenvalue spectra, which give some indication of the loss of information in 

the data-data transformation. The following sections discuss relevant work that is in the literature 

of the mathematics, statistics, geovisualization and pattern recognition fields. This work was found
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during the literature study and in discussions with researchers at agent, information visualization and 

datamining conferences.

11.3.1 Geometry of Graphs

The study of the error involved in embedding high dimensional data in lower dimensional spaces 

is to be found in an area of mathematics known as the geometry of graphs (Matousek 2002). This 

field yields a general result for all finite graphs mapping into a host space with a guaranteed small 

distortion. Bourgain (1985) (as cited in Matousek (2002) and Linial ct al. (1995)) has shown that 

every n-point metric can be embedded in an O(logn) dimensions Euclidean space with O(logn) 

distortion. Better embeddings have been demonstrated for particular families of graphs. It may be 

possible to apply these results to the error involved in dimension reduction of certain features in the 

dataset and to provide formal descriptions of the mapping of features into lower dimensional spaces.

11.3.2 Statistical Information

Summary statistics can be provided in textual form to convey basic information about the distribution 

of variables and allow a basic check of data quality. Though our general assumption is that the 

dataset under consideration is of high quality, (i.e. it does not contain observation errors, or missing 

observations), clearly the user should check that this is really the case for their dataset. To encourage 

this, and not assume that users will automatically do this as good practice, the means to make these 

checks should be available within the application. In the case of outliers, they may or may not be 

due to errors as they may be the tail of a distribution. Summary statistics may be calculated for 

each variable individually and for each class, or group (if there are any identified). Elsing the sample 

mean and standard deviation are methods commonly used for giving an indication of the location and 

spread of the data. Table 11.1 is an example of this process for the first two variables of the calldata 

set. The complete table of summary statistics for multivariate data is unwieldy, since there are several 

columns for each variable. However, visually scanning them (or plots of the values if there are too 

many to scan), and creating summary statistics of the summary statistics themselves, can help deal 

with the large number of attributes. For example, in examining the calldata dataset, one can quickly 

establish whether there are any negative values, (in this case ‘no’), then what the minimum values 

look like (all zero’s), then the maxima (mostly very low, a few high), then the sum of attribute values 

(mostly low, only a few high). The plot of the sum is useful and shows that there are very few (out 

of the 255 destinations) that have many calls made to them. Thus the dataset is shown to be very 

sparse, containing mostly zeros. Note, this information is not available from the scatterplot of the 

whole dataset, though it would be indicated by a colourmap.

In addition to these summary data, others can be given, such as maximum, minimum, mean and
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Destination 1 Destination 2
mean stdev range mean stdev range

sample 0.5 2.55 0-23 sample 0.6 1.61 0-10

Table 11.1: Example of summary statistics for two destinations in the calldata dataset.

standard deviation of differences between distances calculated between entities in the original dataset 

and the distances in the transformed dataset. Correlation between variables in the original dataset can 

be examined, though the correlation coefficient is a measure only of linear correlation. Variables may 

be correlated in very different ways, consider the relation y =  x 2 for x  varying from -1 to 1. this has 

zero covariance (and correlation coefficient), but x  and y are not independent. Non-linear correlation 

needs to be examined by visually examining plots of all pairs of attributes. Dot and box plots provide 

summary statistics in a visual form Unwin (2000) gives a description of how they complement textual 

summary statistics, though are not widely used.

Unwin (2001) has criticized some visual displays of data for not including statistical elements 

and calls for the statistification of visualizations, pointing out that results from big datasets are statis-

tics themselves, that should be statistically justified. Without the user going through an exploratory 

process, even a simple one as described in the previous paragraph, it is hard to see how this type of 

information can be conveyed, unless the application is able to carry out such a procedure (or a similar 

procedure) itself. A related issue is the impact of standardization of variables. For instance, if one has 

an understanding of the application of PCA, one may know that, without standardization by the range 

or mean and standard deviation, the entities will line up upon the dimension which has the largest 

values. Thus, in the case of the calldata, the two destinations that have larger values than the rest 

will dominate. This is an example of something that the inexpert user cannot be expected to know. 

One possibility for dealing with this problem is to use generic datasets with different standardization 

methods to illustrate the behaviour of the visualization algorithm with respect to standardization. On 

the other hand, the application may be able to make a check and warn the user of the impact of not 

carrying out standardization. This example indicates the two general ideas for dealing with errors:

• Use generic datasets to illustrate to the user the behaviour of particular methods - what they 

are good for and what they conceal.

• Include a mode of operation where the user is alerted to such things as the impact of standard-

ization and the concealing of important features in the current view.

11.3.3 Correspondence Analysis and Self-Organizing Maps

In relation to accuracy, for correspondence analysis and self-organizing maps the problem is com-

pounded by the fact that these two methods result in combined spaces of the row-entities and column-
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entities. The validity of viewing these spaces concurrently and guidelines as to drawing inferences 

between entities of row and column types, are issues that are left out of this discussion. Here we 

consider this, if one map is an abstraction and the distances between entities approximate, then what 

of two superimposed maps? Such maps are useful for browsing large collections and the attractive-

ness of being provided with named features (the attribute names) in the space is undeniable, but the 

accuracy issue remains. Again, at the least, the user should be made aware of this, be shown just how 

much of an abstraction these indicators are. Perhaps these particular forms (correspondence analysis 

and self-organizing maps) should be presented as an animation sequence of views (to convey the idea 

that there is no one correct view) or the designers should show, in some way, the implication of the 

juxtaposition and its limits. A simple colouring of all entities possessing a particular variable, for 

instance, or an additional map of the quantities of that variable possessed by each entity. This colour-

ing would also highlight the intuition that these methods are more suited to a sparse dataset where 

individual entity dimensionality, in Atkin's sense of the number of attributes that they have non-zero 

values for, is low, though the overall dataset is high-dimensional (Atkin 1981).

11.3.4 Error Animation

An animated map can be described as one in which at least one map element changes in time. Ani-

mations can be changes in the symbolism, as in the flashing of a lightening symbol, or the variable. 

These changes of symbolism are described as endochronic, for animated symbols, and synchronic, 

for temporal variation of a variable (Shepherd 1995). These two animation types provide two ways of 

showing error using animation. Fisher (1994) has produced a number of animations for visualizing 

uncertainty in soil maps and reliability in classified remotely sensed images and computer-generated 

dot maps and elevation models using synchronic animation1. One of Fisher’s animations relates to 

spatial information where location is imprecisely known, but general locations are known. In this sit-

uation points are selected randomly within the general location and an animation produced by fading 

out the points and replacing (hem with new randomly chosen ones. The speed of randomization can 

be altered by the user. In this way the uncertainty is demonstrated by changing location constantly, 

whilst the background remains the same. Another example concerns soil classification, where an area 

is classified as a certain soil type, though other soil types exist within it. In the animation these ‘in-

clusions’, as they are termed, appear as animated squares of the colour representing the type included 

in the area. Another example relates to uncertainty in identifying land cover by remote sensing. The 

likelihood of a cover type at a pixel being the cover type on the ground is animated. Whilst these 

methods are all concerned with error or lack of precision of information in the original data, rather 

than due to the process of visualization, these methods could be applied to the visual depiction of

'Demos can be downloaded from http :\\www.geog.le.ac.uk\pffl\Research\Error_Animation\Error_Animation.html

166

http://www.geog.le.ac.uk/pffl/Research/Error_Animation/Error_Animation.html


CHAPTER 11. OBSTACLE: ACCURACY OF DEPICTION

other types of error.

11.3.5 Superimposition of Minimal Spanning Tree

An example of the superimposition of a minimal spanning tree on a scatterplot of data, where dimen-

sions have been redueed by using PCA, is illustrated in figure I 1.3. This plot uses a tool called Spinne 

(Bienfait and Gasteiger 1997). This allows the user to identify, for instance, points that appear close 

to each other, but are, in the higher dimensional space, not really close. It reveals whether there are 

distortions of this kind everywhere, or only in some regions. For instance, points 26 and 9, connected 

by a red line, are too close to each other; to recognize this, one must compare the length of the red 

line with the coloured scale and see whether it comes to the same colour on this scale. The length of 

the 26-9 line corresponds to the yellow part of the colour scale, indicating that the line is too short.

Figure 11.3: Superimposition of coloured minimum spanning tree on a dataset projected from 4 
dimensions to 2 using PCA. Coloured scale shows actual Euclidean interdistances calculated in the 
original space, ranging from 0.1 to 3.7. Large interdistances are represented by red, short ones by a 
violet-dark blue line.

11.4 Different Types of Maps and Location Implication

The approximation resulting from an abstraction of high dimensional data to something that can 

be displayed on a 2D screen has cartographic equivalents. Just as adjacent points in a scatterplot
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depicting PCA or SOM may or may not be as near as they are shown, traditional maps contain uncer-

tainties, such as the fundamental transformation of locations from a sphere (or geoid2) to the plane 

and the omission of elevation on many planimetric maps (maps without contours). There also may 

be a number of equally valid representations of location depending upon the use of different metrics, 

categorization methods (of land use, for instance, an example of which is given in the section above) 

(Fisher 1994), measures of uncertainty (Ehlschlaeger et al. 1997), contour interpolation methods 

(Wood 1994) etc. Thus, whilst types of maps may be roughly divided into those mapping spatial and 

non-spatial data, the range of location implication is wide in both cases. Uncertainty in traditional 

maps is introduced also because of the quality of the data itself (which has a number of different as-

pects, see Goodchild et ai. (1994)) and necessary procedures to map between levels of detail (such as 

those that involve interpolation). Visual representations have been used to visualize this uncertainty 

(Drecki 2002; Ehlschlaeger et al. 1997; Fisher et al. 2004; Fisher 1994; Lucieer and Kraak 2002; 

MacEachren 2002; Wood 1994) (including the animations described in the previous section).

The issue of accuracy of location highlights an important difference in types of ‘maps’. In viewing 

topographic maps (maps with contours), many users regard location as an absolute quality and not 

especially approximate. They may not be aware that there are scaling and smoothing inaccuracies for 

such things as road and river widths and locations, and so on, and that there are problems created by 

projecting from a non-planar surface onto the plane. Perhaps we are so used to and reliant upon maps 

that many of us take their representations for granted. However, distortions and omissions do occur as 

illustrated. Nevertheless, location has a literal sense in these maps. Thematic maps have approximate 

location as do, for example, other maps such as subway maps. Mathematical transformations, such 

as PCA, create a map that may have a high degree of arbitrariness in the location. A continuum can 

be described, of the level of ‘absoluteness’ of location and relative location meaning. Topographic 

maps, typically, have a high level of location validity, scatterplots of high dimensional data have a low 

level. The user has thus to deal with a wide variation in level of accuracy and sense of absoluteness of 

relative location. Care must be taken that the user assumes the appropriate level of location validity.

11.5 Empirical Examination of Error: New Layout Method and 

Agent Profile Application

If the visual representations of greatly reduced dimensions that are in use are valid, then other do-

mains can use them. As this work was being used to examine how signature exploration could be 

used to choose a metric for measuring the similarity of agent interest profiles (as introduced in Sec-

tion 8.4), the idea arose of giving the information map to an agent to use to guide their interactions

2Geoid: the mathematical figure of the earth. Defined as: The equipotential surface of the Earth’s gravity field which best 
fits, in a least squares sense, global mean sea level (National Geodetic Survey, http://www.ngs.noaa.gov/).
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with other agents. In turn this led to the proposal that the agent carry their profile as the xy  co-

ordinates in this space and then exchange only xy  co-ordinates with agents when they meet, thus 

keeping the details of their profile private. In order to avoid a third party calculating all the points in 

the reduced dimension space, an iterative method was proposed based upon the use of randomly cho-

sen reference vectors3. This provides a useful means of comparing profiles without revealing their 

precise detail and without involvement of a third party. It also provides a form of PCA for layout 

which has the same time complexity as ordinary PCA. yet allows extra entities to be plotted without 

recalculating the whole set.

This technique and an empirical investigation are described in the next two sections. The security 

of the transformation (i.e. whether it is possible to obtain the original details of the profile from 

exchanging xy  co-ordinates) is examined in the paper that describes this work, “Advancing Profile 

Use in Agent Societies” (Noy and Schroeder 2004). More detail will be found of the method and its 

motivation in this paper as well as in “Approximate Profile Utilization for Finding Like Minds and 

Personalization in Socio-Cognitive Grids” (Noy and Schroeder 2003).

11.5.1 Position as Profile

The pictures of information spaces as maps or terrains derived from multivariate data using self-

organizing maps or PCA or metrics followed by multidimensional scaling, provide us with a com-

pelling image of a profile or topic space to explore. Though this may be a misleading image, since 

the data are high dimensional and it is impossible to represent their similarities accurately in 2 or 

3D space, nevertheless, as an approximation, such representations are often used in visualization. 

Suppose we assume the validity of the layout and propose that such a space can be used by soft-

ware agents who want to find similar agents for collaboration and exchange of information. Thus 

it is proposed that the agent carries with them their xy  (or xyz)  co-ordinates in this space and uses 

them as their profile. When meeting a fellow agent they can ask for the agent’s xy  co-ordinates and 

compute the Euclidean distance, say, to calculate their similarity. This would be more efficient than 

carrying a potentially long profile vector and enable them to use their profile without revealing details 

or requiring encryption. To illustrate this approximate profile method, consider a small matrix of 7 

agents with certain levels of interest (of 0 to 10) in 7 topics. Note that this data could also relate to 

the specification of tasks, products or information etc.

3 In higher dimensional spaces there is an interesting observation (Hecht-Nelson 1994) that there exist in a high-dimensional 
space a much larger number of almost orthogonal vectors than orthogonal vectors, so that vectors having random directions 
might turn out to be close to orthogonal.
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Agentl 9 3 4 6 5 5 5

Agent2 1 10 10 1 7 2 0

Agent3 4 1 6 8 0 5 7

Agent4 2 7 8 4 0 2 0

Agent5 3 6 4 7 1 10 6

Agentó 1 7 6 5 0 2 0

Agent7 8 1 7 1 2 5 9

Suppose Agent] and Agent2 want to compare their profiles without exchanging them. Here we 

propose that they are given positions in the plot in 2D produced by reducing the dimensions of this 

matrix. The position can be derived in two ways, here described as by base calculation and by 

calculation on-the-fly.

By base calculation

The agents both have the calculations done at a base point and periodically return for updates. Here 

the error will be that of the layout itself and the agent would be able to have details of the mean error 

and variance supplied with its co-ordinates, so that it can take this into account. Figure 11.4 shows the 

layout after City distance and PCoA of the seven agents of randomly generated data from above. The 

City distance is first calculated between each pair of agents resulting in a 7x7 symmetric proximity 

matrix. A two-dimensional layout that approximately satisfies this proximity matrix is then found 

using PCoA, resulting in the set of xy  co-ordinates plotted in Figure I 1.4. Thus, if Agentl meets 

Agent2 they can compare co-ordinates, ((-12.30, -5.20),(23.27,-8.44)), to calculate the Euclidean 

distance to give them the distance they are apart in this map.

Multivariate data for 7 agents plotted by taking city 
distance and layout with pcoa

5‘W  ..£ ] 6
<*)

in 7n ~ Tn (*^ln 5 1
,in

_(♦ ) iç .....................
—-26—

x axis

Figure 11.4: Illustration of base plot, the three reference agents (5,6 and 7) and the two of interest in 
this measurement (1 and 2) are circled.
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city with agents A1, A5, A6 and A7
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Figure 11.5: Illustration of plots calculated individually by agents l (top) and 2 (bottom) with respect 
to the three reference agents (5,6 and 7) as circled and numbered.

By calculation on the fly

Here the agent calculates its position with respect to a number of reference vectors (either dynami-

cally or at an earlier point in time) and then compares with another agent's position calculated sim-

ilarly. Using the seven agent random data again, the reference vectors are chosen to be agents 5,6 

and 7. Three reference agents are the minimum since only two will create two possible arrangements 

when agents l and 2 overlay their positions. Agents l and 2 separately calculate their City distances 

to the three reference vectors and subsequently lay out these distances with PCoA as shown in Figure 

11.5.

They now have xy  co-ordinates, but in order to compare them they must be scaled (the Euclidean 

distance between 5 and 6 is used here), centered (here Agent 5 is placed at 0,0) and finally rotated to 

bring the agents 5,6 and 7 into position. Now the co-ordinates of the agent’s position are in a form 

that they can use for comparisons. The results of the base calculation and on-the-fly calculation of 

the difference between agents 1 and 2 are given in the table below. (Since these are normalized with
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respect to the distance between agents 5 and 6, a value of 1 would indicate that they were the same 

distance away from each other as agents 5 and 6 are)

original city dist 

1.64

exact

base dist 

1.77 

8% err

on-the-fly dist 

1.57 

-4%err

This iterative version of the transformation has the same time complexity as the direct method, 

since, given n entities with d dimensions, PCA has 0 (n d 2), whereas, in the case of 3 reference vec-

tors, the calculation is done for 4 entities, iteratively n  times, which requires a time n times PCA for 

n  =  4 with dimensions, d, which is also 0 (n d 2). Also the iterative version has transformed the pro-

cess into one which can allow the addition of entities and the change in attributes of an existing entity, 

without re-calculation o f the whole set, which would be necessary with direct PCA. The implication 

of this is also that the iterative version is less affected by missing or erroneous values, though these 

will still potentially affect the standardization procedure.

Mean Error against Number of Entities for Synthetic Random Daiase

PCAdireci dim=4 - 
PCAiterative dim=4 - 

PCAdireci dim=6 
PCAilerative dim=6 

PCAdirect dim=8 - 
PCAiterative dim=8 - 

PCAdireci dim= 10 
PCAiterative dim= 10

600
Number of Entities

Mean Error against Number o f Entities for Synthetic Cluster Datasets

Number o f Entities

Figure 11.6: Mean Error against Number of Entities for Synthetic Random Datasets (top) and Cluster 
Datasets (bottom)
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11.5.2 Empirical Accuracy Examination

The aim of this series of experiments was to examine the accuracy of using a position-as-profile 

version of the profile, both using base calculation and on-the-fly calculation. The Euclidean metric 

was used to give a measure of distance between the original profiles. The corresponding distances 

were calculated for the transformed profiles, for base calculation and on-the-fly. The distance errors 

obtained were then calculated and averaged to give an average difference in distance error, davg,

where: p
dH = ~  x ik )2)1/2

k= 1

and p

davg — 1 /  P  ^   ̂ d i j

i,j=l

Mean Error against Dimension for Synthetic Random Datasets

Number of Dimensions ( I(X) entities)

Mean Error against Dimension for Synthetic Cluster Datasets

Number of Dimensions (.MX) entities)

Figure 11.7: Mean Error against Dimension for Synthetic Random Datasets (top) and Cluster 
Datasets (bottom)

Two different types of synthetic datasets were used - random and clustered. For each of these 

datasets, the number of entities, n, and the number of dimensions, d , were varied and for each d and 

n, 30 runs were executed (i.e. 30 datasets of that type and size created), davg for each taken and the
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30 values averaged. In each case, for convenience, 3 reference vectors were chosen from within the 

datasets and used to align the transformed sub matrices as described in section 11.5.1. n  was varied 

between 100 and 1000, d between 4 and 40. Standardization with individual ranges of variable was 

used (Gordon 1999). PCA was used for the matrix transformations.

The results given in Figures 1 1.6 and 11.7 show that the error is largely independent of the number 

of entities. The error increases with increasing dimensions, but iterative PCA outperforms direct 

PCA. In the clustered datasets, the variance increases significantly for increasing dimension.

11.6 Summary and Conclusions

This chapter has examined a major obstacle encountered from the outset in this work: accuracy. 

Accuracy is an issue in dimension reduction situations where a high level of abstraction is involved, 

but also in other aspects of the visualization process.

Accuracy, error and abstraction are all words that relate to the loss of information resulting from 

the process of taking data from the real world and finding a form of visual representation for it. 

The loss of information is inevitable because of the discretization of measurement and the change 

of form from data to representation. Sources of error are: in observation from real-world to data; in 

transformation from data to data in preparation for visual depiction; in visual representation, from 

data to display; in interpretation, from display to human.

In estimating accuracy in dimension reduction applications, overall measures can be given, but it 

is useful to consider how may points in an area around a point should not be there (false alarms) and 

how many should be there, but are not (false dismissals). Simple methods to highlight these entities 

can be employed, though currently, in most visual depictions of high dimensional data, no indication 

of such error is given.

The analysis of this problem in mathematics is known as the geometry of graphs, but applicable 

results to formalize the mapping of features to visual depiction and thus provide precise expressions 

of the error, or distortion, are not generally available. Summary statistics, such as providing mean, 

standard deviation, maximum value and minimum value for attributes, should be presented to the 

user within the visualization, as this information is not always revealed by a particular visualization 

method. Neither do visual depictions always show such basic information as whether the dataset is 

sparse or that the dimensionality of individual entities is low. Dot and box plots are useful because 

they show additional statistical information visually.

For correspondence analysis and self-organizing maps, the problem is compounded by the com-

bination of spaces of the row entities and the column entities, both spaces often involving high levels 

of abstraction. Some means of indicating this to the user is desirable.

Error animation has been used in geovisualization to show data where location is imprecisely
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known and where ground cover type is uncertain. Error in dimension reduction scatterplots has been 

demonstrated by superimposing a minimal spanning tree upon the scatterplot so that pairs of entities 

that are too far from, or near to, each other can be identified.

A study of how different kinds of maps are perceived is valuable, since users make assumptions 

about the absoluteness of location in examining either a geographic map or information map. An 

information map could be a SOM or a scatterplol of data after reducing dimensions; these are seen 

as maps in that direction has no absolute meaning in terms of level of an attribute possessed, but 

locality has meaning in relation to the location of other entities in the representation. The field of 

geovisualization has considerable experience in dealing with uncertainty of different types and some 

examples of how to convey this to the user in visual form. This experience should be drawn upon, 

but more techniques are also required to ensure that the user makes the correct assumptions about the 

meaning of location for information visualization.

Included in this chapter is an application for facilitating agent profile use, which suggested itself 

from the general accuracy considerations of visual depictions of high dimensional data. The use 

of a lightweight reduced dimension profile which also keeps the details of the profile private has 

been demonstrated. This differs from the standard use of metrics in two ways: by the use of the 

transformed profile in agent/agent (or other) interactions; by using a method of transforming the 

profile without third party involvement. Tests with random and clustered datasets show that the error 

involved in the transformation is not affected by increasing number of entities, but does increase 

sharply for increasing dimensions. The results for calculation on-the-fly (using a form of iterative 

PCA with respect to three random reference vectors) are slightly better than those for base calculation 

(direct PCA) (the mean error is lower, though the variance is increased). In this case, using PCA, 

the time complexity is not altered, which means that the iterative form of PCA could be used to 

avoid recalculating the whole set, and be useful where values are missing or erroneous, the entity that 

possesses this problematic data will be affected, but not the rest. Thus, this iterative form of PCA 

provides a convenient way of an agent finding their approximate position in an interest space, without 

third party involvement, but is also a new form of layout.

How does the accuracy question relate to the signature exploration process? If one cannot be sure 

about the relative location of particular entities in the display, then any conclusions one may make 

from particular patterns, caused by particular features in the dataset, are suspect. We know that, in 

general, any conclusions made from a dimension reduction plot should be treated as hypotheses, but 

does the user know that? Thus, we need some way of communicating this to the user, but also specific 

techniques for the user to be able to explore this aspect of the visual depiction. This is an aspect of 

visualizing data that is of importance where users unfamiliar with particular methods are involved.

In a wider sense, all the techniques of signature exploration can be considered to concern error, 

if error is considered also in its widest form; since examining the behaviour of visualization methods
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will reveal distortions (mappings) and omissions as well as measurable losses of information. Though 

we remind ourselves that the power of abstraction for visualization lies in its ability to provide us with 

a means to reduce large quantities of data to something manageable.
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Chapter 12

Framework for the Design of 

Visualization Systems for Increased 

User Comprehension

12.1 Introduction

The work in this chapter draws together all the work of the previous chapters to provide a guide 

to designers in examining their particular application for sources of difficulty of understanding and 

to suggest appropriate techniques to address those areas identified. The result is a framework for 

identifying problem areas and techniques to apply. The analysis in this thesis of problems present-

ing obstacles to comprehension (from Chapters 2,3,4 and 11) is summarized in the first part of the 

framework, and the identification of both existing and new techniques for addressing these problems 

(resulting from the whole of the thesis to this point) makes up the second part of the framework.

The main motivation of this work is that we have many new techniques proposed for information 

visualization, and more being proposed all the time, but there is less emphasis upon analyzing the 

ones we already have. Whilst new developments are innovative - for instance, allowing us to deal 

with greater amounts of data - there is a corresponding need to provide support for the use of these 

techniques and to improve their presentation and accessibility to the user. (These issues have been 

explored more fully in Chapter 5.) This situation reflects a more general one in computing - the 

pursuit of greater functionality at the expense of quality of the interface and of the user's experience 

in general.

This work assumes that a generic solution does not exist, so that it is inappropriate to specify a set 

of techniques for all visualization systems to address comprehension issues. The main justification
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for this assumption is the circular nature of the problem that the added techniques in themselves 

require understanding on the part of the user. and. even if the added techniques are intuitive in use, 

presenting a large number of them in the interface creates another problem for the user. Clearly there 

would also be some issues not encountered, for instance if colour or 3D are not used. Another reason 

to assume that a generic solution does not exist is that it is likely that different sets of techniques are 

useful for different situations, that there is not an optimal set. There is a general view (Green 2000) 

that there is no perfect user interface, notation or representation and that designers must make trade-

offs. Thus the framework described here provides a means for the designer to analyze their particular 

application by breaking down the visualization process into several stages and asking a number of 

questions about each of these stages, then recommending particular techniques to assist.

Overall, the aim of this framework is to motivate visualization designers to focus more on the 

issue of user comprehension and to contextualize the work of the community of visualization re-

searchers to this end. The problem area is broad and the development of a solid theory, with empirical 

evidence, will take time. Nevertheless, it is intended that this broad sweep of the area demonstrates 

an approach that is immediately applicable. The next two sections describe the two parts of the 

framework: the aspects that need comprehension support and the techniques to aid comprehension. 

The following section applies the framework to the calldata scenario. A further detailed example of 

application of the framework (to the tool Attribute Explorer) is given in Appendix A. The framework 

is then applied to several other visualization systems and the results evaluated. The final section 

summarizes the work.

12.2 Finding Aspects That Need Comprehension Support

To identify which aspects are involved in a particular visual depiction, the visualization process is 

broken down into the stages of the visualization process identified in the previous chapter for sources 

of error in visualization (Figure 11.1). These stages are real world, raw data, data for layout, display 

and human. These are covered by the chapters on data, layout and morphologies (Chapters 2, 3 and 

4) and the sources of error in Chapter 11. This part of the framework summarizes the conclusions 

from each of these chapters and so presents the results of the examination of the obstacles to compre-

hension given in Sections 2.7, 3.5 and 4.6, and summarized in Table 5.1 and Table 6.1 (in categories 

mathematical transformation and graphical representation).

Here a visual depiction could be a whole system, a particular visual representation type (such as 

a colourmap), or an investigation of a particular dataset with a particular visual representation. As 

in the discussion of accuracy in the previous chapter, the issue of the quality of the original data in 

terms of its validity and accuracy from observation, is included in this framework, though it is not the 

focus.
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The stages used for the framework are:

• Real world:

-  Domain relevance: is domain information important to how the information is visualized 

or how clustering is carried out? e.g. offset translation may be of no importance.

-  Data collection impact: how does the data collection affect the visualization? Is the 

sample representative of the population?

-  Measurement error: what is the quality of the data, what errors of measurement exist? 

e.g. measurement tolerances.

• Raw data:

-  Multiple structures: many structures are derivable from the dataset, for instance if it is 

a log which supplies information about entities, their characteristics and interactions. It 

may be difficult for the user to derive and view these structures.

-  Choice of object: what constitutes an object may be variable, for instance an entity or an 

action could be the visualization object. Entities and attributes can be interchanged.

-  Data and attribute type: there are different types of data and some can be transformed 

into others e.g. numerical type can be transformed into categorical. If attributes (or 

entities) have no intrinsic ordering, their order is arbitrary, though metadata may be used 

to introduce an ordering (e.g. ordering the destinations according to size, in the calldata 

set).

-  Size: the number of entities or the number of attributes in a multivariate or distance 

matrix, the number of entries in a log, the number of entities and links in a graph, levels 

in a hierarchy etc. are all indications of the size of a dataset. In each case, where these 

structures are large, the user needs support in understanding the way that the data are 

presented.

-  Associated metadata': data about the data in the dataset, metadata, is available concerning 

the entities, attributes etc., e.g. location of destinations in the calldata. Vast amounts of 

metadata are available, including resources on the Web, though linking of the data into 

visualization applications is currently difficult.

1 Metadata as associated data, rather than an abstraction of data as described in Chapter 2.
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-  Selection and standardization: displays are (obviously) very sensitive to the data that is 

selected to be viewed. Some methods usually assume the data is normalized, or there are 

different standardization methods available which affect the display.

• Data for layout:

-  User choice: some applications allow the user to choose how their data will be mapped, 

for instance, to the shapes in a glyph, or the colour scale for an attribute. Users do not 

have the expertise of designers and may need guidance.

-  Predictability: the lack of predictability of algorithms leads to different layouts for the 

same data.

-  Abstraction: mathematical transformation of high dimensional data results in high levels 

of abstraction. There are different ways of reducing dimensions. Users need to know that 

there are different possibilities and need support in choosing between different methods. 

They also need to appreciate that information loss has occurred.

• Display:

-  Unfamiliarity: the visual representation is novel and it is likely that the user has not used 

it before. The representation may also be complex, for instance, a spiral colour map.

-  Spatial meaning: ambiguity of the meaning of the spatial component, e.g. location accu-

racy is low in a SOM.

-  Hidden features: the representation conceals certain features in the data whilst revealing 

others, e.g. overplotting in scattcrplots.

-  Multiple windows: the creation of new windows to provide focus+context and different 

views introduces the problem of how to deal with multiple windows.

-  Mapping complexity: the mapping of the data to elements in the display may be complex 

or unintuitive.

-  Ordering: equivalent representations may exist due to arbitrary ordering of attributes or 

isomorphism.

• Human:

-  Expertise: users will have varying levels of expertise e.g. with a representation or a 

mathematical technique.

-  Perception: how the user perceives elements in the display may be unexpected, e.g. 

colour scales are not perceived linearly, depth cues can help or hinder.
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-  Cognition: what the user understands from the visualization process. Potentially this 

aspect relies upon all the other in this list, but is used here so that particular difficulties 

may be flagged, e.g. whether the user is/isn't aware that there are multiple valid views of 

their data.

12.3 Techniques For Increasing the User’s Comprehension

Having identified the problem areas in a particular application, the designer needs to identify possible 

techniques to assist the user in meeting the comprehension challenges presented by the application. 

This section provides a list of possible techniques based upon (i) the analysis of the literature pre-

sented in the earlier chapters of this thesis, (ii) the examination of signature exploration of the middle 

chapters and (iii) the conclusions from the chapter examining accuracy. The list also looks forward to 

the remaining chapter of this thesis, the conclusion, which provides further rationale for these tech-

niques and more detail of suggested developments, for instance in providing accuracy visualization 

and proactivity of the interface.

Note that some of these techniques overlap, for instance feature demonstration and illustrative 

datasets, in the sense that they apply to the same problem. Also, some of the techniques are generally 

applicable. For instance, the visual tracking, query and interaction, statistics and variety techniques 

are all appropriate to use generally for increased comprehension in complex data visualization.

• Feature demonstration: provide facilities for direct demonstration of features of a representa-

tion that are characteristic, or that hide or distort. For example, visual or textual indications of 

accuracy and overplotting. (This is direct demonstration, as compared to the indirect demon-

stration of behaviour resulting from the use of illustrative datasets.)

• Feature fingerprinting: support user input of synthetic data within a real-world dataset to pro-

vide feature fingerprinting. This gives the user a means of calibrating the representation.

• Feedback: where there is dimension reduction, include a feedback interface allowing the user 

to compare their sense of similarity to that of the application, to elicit and capture the user’s 

sense of similarity, and to modify the dimension reduction algorithm.

• Illustrative datasets: supply illustrative datasets for the user to see how specific features appear 

in the representation.

• Pedagogic mode: provide a pedagogic mode for inexperienced users to alert them to important 

aspects, for instance, accuracy or information hiding issues. For an example see Plaisant et al. 

(2003).
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• Proactivity: include a level of proactivity on the part of the application, so that it carries out 

its own checks and analyses of the data and makes recommendations. In general this means 

that the application should make the user aware of a particular fact. (Though in this sense 

proactivity applies to a greater or lesser extent to most of the other techniques in this list.)

• Query and interaction: extend query facilities and interaction features in general. Ensure that 

necessary interaction for engagement is increased (or maintained) by added functionality, such 

as by using dynamic querying or direct querying of the data with the result highlighted in the 

depiction. Allow queries to be used as landmarks.

• Selection and standardization: provide the means to apply selection and standardization proce-

dures, including the selection of the ‘object' for the purposes of visualization.

• Statistics: provide statistical information about the data in the form of textual and visual for-

mats.

• Variety: ensure that an application provides a great enough variety of visualization methods to 

show the different aspects of the data, for instance to compensate for an individual method’s 

hiding of information, or to show that there are different, valid, views of the data.

• Visual tracking (bi-directionally linked brushing also allowing change of the data and display): 

support linked brushing between the data table and the representation - in both directions, 

unless abstraction is involved. By implication, this includes a data table view. Also enable data 

values or display values (colours, points, lines) to be changed whilst linked.

12.4 Applying the Framework to the Calldata Visualization

An example of applying the framework is shown in Table 12.1. The problem areas are identified 

by examining the stages of the visualization process (the first part of the framework) to see which 

are relevant for the particular application. Specific comments are noted down as to their relevance. 

The techniques of the second part of the framework are then examined to see which can assist. The 

example used here is the calldata set in the Space Explorer interface.
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Table 12.1: Framework for identifying challenges to user comprehension and identifying solutions, applied 

to the calldala scenario.

Problem Aspect Comment Suggested Approach

Real World

Domain relevance Overall customer behaviour, indepen-

dent of actual destinations, is of inter-

est.

Feedback.

Data collection impact - Collection details unknown.

Measurement error — Assumed 100% accuracy.

Raw Data

Multiple structures V Logs provide calling information about 

times and destinations of calls, cus-

tomer types.

Selection and standardization. 

Variety.

Choice of object y The object could be the customer or the 

destination.

Selection and standardization.

Data type y Destinations are categories (though 

could be ordered by distance), entity 

ordering is arbitrary.

Feature demonstration (order-

ing).

Dimensionality y There are a large number of dimensions 

(100x276).

Feature demonstration (accu-

racy). Feature fingerprinting. 

Feedback. Illustrative datasets. 

Statistics. Variety.

Associated metadata Data on locations, size of destinations 

etc., location, type, etc. of customer. 

This information is not used.

Selection impact y Normalization affects dimension re-

duction algorithms. Different normal-

ization methods are in use.

Illustrative datasets. Selection 

and standardization.

Data for Layout

User making choice y The user chooses between different di-

mension reduction methods.

Illustrative datasets.

Predictability V Spring embedding is one of the algo-

rithms in Space Explorer.

Proactivity.

continued on next page
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Table 12.1: continued

Problem Aspect Comment Suggested Approach

Abstraction V Dimension reduction is used. Feature demonstration (accu-

racy).

Display

Unfamiliarity V The user may not be familiar with nav-

igating in 3D environments.

Illustrative datasets. Pedagogic 

mode.

Spatial Meaning V There is low location accuracy in scat- 

terplots following the dimension reduc-

tion.

Feature demonstration (location 

meaning, accuracy).

Hidden Features V Overplotting in scatterplots. Accuracy 

of layout from dimension reduction.

Feature demonstration (over- 

plotting, accuracy).

Multiple windows V Creates multiple windows. Brushing (unidirectional link-

ing).

Mapping complexity V Mapping may be clear, though inexpe-

rienced users do not understand the di-

mension reduction process which cre-

ates a space in which direction has no 

intrinsic meaning.

Illustrative datasets. Query and 

interaction. Feature demonstra-

tion.

Ordering The dimension reduction algorithms 

operate independently of the order of 

entities and attributes.

Human

Expertise V Users are unfamiliar with PCA. Illustrative datasets. Feature 

demonstration. Selection and 

standardization.

Perception V 3D representations involve depth per-

ception issues.

Feature demonstration. Proac-

tivity.

Cognition V The user needs to understand that there 

is no one correct view of the data etc.

Variety.

After examining the aspects that present comprehension difficulties and identifying relevant cat-

egories of techniques for each of these, as in the table above, the required techniques can be grouped
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according to the headings in the framework. This produces the following result for the application of 

the framework to the calldata visualization:

• Feature demonstration. Accuracy depiction in the dimension-reduced displays. Include visual 

colouring of false alarms and dismissals, as well as textual information (such as, of eigenval-

ues). Overplotting could be shown with colouring.

• Feature fingerprinting. Useful in dimension reduction plots.

• Feedback. Users need to understand the sense of similarity of the algorithms. Also the appli-

cation needs to capture the user’s view of what is important.

• Illustrative datasets. Illustrate different kinds of features for users unfamiliar with the algo-

rithms. Also provide the techniques for signature exploration in pedagogic mode.

• Pedagogic mode. This is important because the abstraction level is high and users are not 

always familiar with navigating in 3D. A signature exploration suite is suggested and a set 

of alerts, textual or visual. The alerts to cover the following: abstraction level, overplotting, 

non-predictable layout, standardization, ‘no one correct view’.

• Proactivity. Alerts as in pedagogic mode.

• Query and interaction. Extend facilities to further engage the user and reduce the interaction 

response time (see Section 9.2.4).

• Selection and standardization. Dimension reduction algorithms are sensitive to standardization, 

so alerts may be appropriate. Selection from the original log would be beneficial, to allow the 

user to select different data tables and view them easily. Also to link to appropriate metadata. 

The interface should also allow customer/destination reversal.

• Visual data tracking. Using a data table and linking is useful, but linking back to the data 

table is not relevant here (except for the bar chart), because of dimension reduction. However, 

normal brushing is required and a data table view (so that actual values can be scanned).

12.5 Applying the Framework More Widely

The framework is a very general tool in the sense that it considers all possible comprehension issues 

and all possible techniques to assist comprehension. This means that it can be used to examine var-

ious types of application, from those consisting of essentially a single technique, to those providing 

various techniques and interfaces. Thus it can be used to consider the problems involved with a spe-

cific type of dataset and a single technique, such as in the example above, or a specific dataset with
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several techniques. The process can be repeated to consider different dataset types, with the same 

single technique or set of techniques.

There are two types of situation in which the framework can be used: in preparation for the de-

sign of a visualization system for a particular purpose - to help the designer identify problems and 

solutions (for increasing user comprehension); to evaluate existing systems. The examples given 

in this thesis, in this section, the previous section and in Appendices A and B, show its use for 

the evaluation of existing systems. Appendix A illustrates the application of the framework to an 

existing visualization system ( ‘Attribute Explorer’) chosen for its particular brushing mechanism. 

Appendix B contains the reports of a business user in applying the framework to three visualization 

systems chosen to represent: a widely used system for general data analysis ( ‘Excel'); a single in-

terface employing a connectionist technique (‘Daisy’); a research tool for exploratory data analysis 

(‘Ggobi’).

12.6 Evaluating the Framework

The framework summarizes the entire work of the thesis in identifying the comprehension difficulties 

faced by the user and suggesting techniques to assist with these problems (including both new and 

existing techniques). The main aim of the thesis was the exploration of the concept of signature 

exploration, so that the framework was the end point rather than the starting point of the work. Thus 

the thorough development and evaluation of the framework lies outside the scope of this work. The 

framework, in its current form, is designed for the experienced visualization researcher to use, in 

conjunction with the material presented in this thesis.

However, the application of the framework to the five example scenarios (three by a business 

user of visualization systems) demonstrates its general applicability (to visualization systems of dif-

ferent types) and indicates ways in which it could be developed to make it more widely available to 

visualization system users.

The main issue arising from the business user’s application is that this user did not understand 

some of the issues, nor appreciate the scope and nature of some of the proposed techniques. Neverthe-

less, the user found the process useful for providing a structured way of looking at the visualization 

system and suggesting improvements to the design. Thus the main improvement will be gained by 

making the descriptions of the problem areas and techniques more detailed. Exploring the possibility 

of suggesting connections between specific problems and techniques is also important, though such 

connections are likely to emerge from the experience of applying the framework over time.
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12.7 Summary

This chapter has presented the conclusions from analyzing the display of complex data for compre-

hension challenges, as well as from the investigations of the techniques for signature exploration. 

These conclusions are presented in the form of a framework for identifying problem areas and tech-

niques to assist. The overall aim of the framework is to motivate visualization designers to focus 

more on the issue of user comprehension, contextualizing, enhancing and extending current work of 

visualization researchers.

The framework has two parts: aspects that need comprehension support; techniques to aid com-

prehension. The aspects are broken down into those that occur at various stages of the visualization 

process as follows: the real-world origin of the data; the raw data; the data in a form suitable for 

layout; the visual display; the human viewer. At each stage there are a number of issues that may 

arise:

• Real-world: relevant domain information; data collection impact; measurement error.

• Raw data: multiple structures; choice of object; data and attribute types; size; associated meta-

data; selection and standardization.

• Data for layout: user choice: predictability; abstraction.

• Display: unfamiliarity; spatial meaning; hidden features; multiple windows; mapping com-

plexity; ordering.

• Human: expertise; perception; cognition.

The categories of techniques for increasing the user’s comprehension are: visual data tracking, 

feature demonstration, feature fingerprinting, feedback, illustrative datasets, pedagogic mode, proac-

tivity. query and interaction, selection and standardization, statistics, variety. Whilst some of these 

techniques are generally applicable, it is to be expected that the evaluation of a particular scenario 

against the aspects requiring comprehension support will lead to a particular subset of techniques 

being considered appropriate. To illustrate the use of the framework, the calldata scenario is ana-

lyzed and techniques recommended. Appendices A and B contain further examples of application 

of the framework. An evaluation of this experience indicates that the framework could be improved 

by making it more understandable to users and by identifying links between problem aspects and 

suggested approaches.
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Conclusion

The overall objective of this work was to enhance the comprehension of complex data visualizations, 

whether this complexity derived from the techniques used to display or preprocess the data, or the 

data itself in terms of numbers of entities, attributes or complexity of structure. A particular means 

to achieve this objective was proposed, namely, the application of a set of techniques based on a new 

concept, signature exploration, designed to concretely demonstrate the behaviour of the visualization 

method to the user. Thus, the focus of this thesis was a broad examination of the issues involved in 

understanding complex data visualizations and the application of signature exploration techniques to 

address these issues.

This chapter summarizes the results and conclusions of the work presented in individual chapters 

of this thesis, evaluates the work against the criteria for success introduced in Section 1.4, appraises 

the hypotheses of Section 1.3, presents general conclusions, identifies contributions and suggests 

future work.

13.1 Summary of Results, Contributions and Conclusions

This section restates results and conclusions from the conclusion and summary sections of individual 

chapters, but also extends the conclusions in light of the overall work. Contributions are identified, 

together with their relationship to previous work.

13.1.1 Analyzing the Background Literature to Identify Comprehension Chal-

lenges

An analysis of the aspects of data types and structures, data for layout, and display morphologies, 

presented in Chapters 2, 3 and 4, was carried out in these background chapters to identify elements
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likely to present comprehension difficulties. The data types and structures discussion identified that 

facilities to support comprehension of these aspects fall into two groups: those needed to provide 

extra functionality for interacting with the data or display, and those to make users aware of important 

characteristics of the display. Examination of different layouts showed that the challenges arise from 

the different ways the same data can be represented, the special characteristics of layout methods, the 

high levels of abstraction sometimes involved, and the impact layout choice has upon interactivity. 

Key challenges identified by the examination of morphologies were: unfamiliarity for new types 

of representation and inexperienced users; the existence of equivalent representations; ambiguity in 

meaning of the spatial component and the use of multiple windows and other methods to provide 

focus and context.

Contribution: The identification of obstacles to comprehension from all aspects of the visu-

alization process and the corresponding identification of elements in the literature to address 

these obstacles. Much is known about the design of static presentations, so that users will not 

be misled by incorrect or misleading representations, and to take account of perceptual issues such 

as how colour scales are perceived (Bertin 1983; Cleveland 1993; Tufte 1983, 1990; Ware 2000a). 

At the same time, to assist the user in exploring their data, many different methods of displaying 

data (such as pixel displays (Keim 2000) and parallel coordinate plots (Inselberg 1997)) and interac-

tion forms (such as brushing (Cleveland and McGill 1984; MacDonald 1990) and dynamic querying 

(Shneiderman 1994)) have been developed. I have surveyed this work from the point of view of the 

user’s understanding and have identified the issues and relevant techniques from the literature. This 

work is beneficial because it provides a new perspective upon the design of information visualization 

systems, a new topic, to enhance the user’s understanding of visualization systems. This perspective 

is much needed in the current context of expanding types of data display, a wider range of users and 

increased combination and complexity of techniques.

13.1.2 The Rationale for the Work

The rationale for the importance and timeliness of investigating the greater provision of comprehen-

sion support for the user, begun in Chapter 1, was extended in Chapter 5, where it was shown that 

this issue underpins other current open questions for information visualization. Chapter 5 showed 

that the proposed signature exploration approach addresses many of the obstacles to comprehension 

identified in the earlier chapters.

Contribution: Identifying the reasons for the importance and timeliness of raising the issue of 

user comprehension of complex data visualization. Previously, researchers have indicated the 

scope for greater application of the results from cognitive science and human factors in general and
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the need for the development of principles and analyses for information visualization, to develop a 

human-centred approach (Herman et al. 2000; MacEachren and Kraak 2001; Ware 2000a). I have 

provided a comprehensive rationale for the importance and timeliness of investigating the issue of 

user comprehension, based upon what information about the visualization method is a prerequisite 

for the user, which will provide designers with increased motivation to address this issue.

13.1.3 Signature Exploration

Chapters 6 to 10 defined and applied signature exploration. Chapter 6 examined the obstacles to 

comprehension further and identified three main categories: mathematical transformation, graphical 

representation and ‘one view of many". Signature exploration is a means of the user gaining insight 

into how features in the data map to patterns in the visual representation. It allows the user to use 

datasets that are known in some way to explore the behaviours, or signatures, of different visualization 

techniques. It is defined as the exploration of the behaviour of a visualization method by means of 

the visualization of specially constructed datasets, which contain, or are representative of, particular 

features of interest. Five techniques involving the production or provision of constructed data were 

presented: generic dataset provision; user-construction of data; querying; insertion of landmarks; 

elicitation and application of feedback data. This approach builds on the work of the last ten to 

twenty years for assisting the user’s exploration of data, reframing this work by placing the focus 

upon the understanding of the visualization process itself. An existing tool. Space Explorer, was 

extended to implement the illustrations of the proposed techniques in the following four chapters.

Contribution: The proposal of a new concept, signature exploration, and a set of techniques 

for its application, to aid the user’s understanding of the behaviour of visualization methods.

(Contributions of the individual approaches are given below.) Many researchers have proposed tech-

niques for assisting users to interact with data depictions, for example, brushing (Cleveland and 

McGill 1984; MacDonald 1990), and for focus and context control (Furnas 1981; Lamm et al. 1996; 

Rao and Card 1994). Shneiderman (1996) has proposed the visualization information seeking mantra 

as a guide to the overall design of a system. I have proposed a new concept that focusses on the il-

lustration of the behaviour of the visualization process to the user. This is useful because attention 

upon the process itself, the transformation from data to display, the representation, makes explicit 

the requirement that the user understand the process and seeks concrete ways of ensuring this. The 

application of signature exploration uses existing interaction techniques, thus extending their use, but 

also results in new ones.

190



CHAPTER 13. CONCLUSION

13.1.4 Generic Dataset Provision

In Chapter 7. the literature was examined for assistance with choice of generic datasets. General 

categories were identified: null modes, clusters within noise, specific features and inter-entity fea-

tures. A method of classifying clustering algorithms according to feature admissibility was adapted 

to visualization methods. Two scenarios were considered: examining a single visualization method 

using several datasets, and comparing different visualization methods using a single dataset. Two 

pieces of work were carried out: a feasibility test, which explored a single visualization method, and 

the integration of generic datasets within the user interface.

The feasibility test was a web-based test which examined a set of generic datasets displayed with 

a particular dimension reduction method, to see whether this would help the user to understand the 

meaning of the pattern obtained for the calldata. Some participants in the feasibility test considered 

their understanding to have been increased, though they could not explain the calldata pattern. Par-

ticipants expressed the desire for more interaction and the ability to alter the data to see what would 

happen in the display. The test suggested a new technique, which I have called feature fingerprinting, 

to place a small reference dataset in a real-world dataset under consideration, to provide orientation 

to the user within the larger set.

The second examination illustrated the generic dataset provision within a newly developed inter-

face. A menu gives the user a choice of datasets, which they can then view directly as data tables and 

stacked bar charts, then, after choosing a dimension reduction algorithm, as 2D or 3D scatterplots. 

This interface was used in the task of choosing a metric for an agent application.

The specification of generic datasets was found to be a difficult task for a number of reasons, 

particularly the large number of possibilities to choose from and the difficulty of specifying and 

quantifying features. Feature admissibility was found to be useful for classifying visualization meth-

ods according to which features in a dataset are shown in the visual depiction. This will be helpful 

in the related task of specifying benchmark datasets for evaluation of visualization methods. An ad-

ditional problem is how to motivate users to use generic datasets, since this is not part of their usual 

approach.

Contribution: Identification of features for generic datasets and the demonstration of use of 

generic datasets. Designers sometimes provide example datasets and tutorials with applications, 

see for example Spence and Tweedie (1998), for Attribute Explorer, Rundensteiner et al. (2002), 

for the Xntdv tool. I have developed generic dataset provision which extends this element of illus-

tration to provide, within the application, datasets containing example features to show how these 

features are presented by the visualization process. This provision will help users better understand 

the strengths and limitations of different representations.
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Contribution: Application of feature admissibility for visualization methods. Researchers have 

classified visualization systems in various ways, according to different data types and processes (see 

e.g. Card et al. 1999; Chi 2000; Shneiderman 1996). Fisher and Van Ness (1971) and Van Ness (1973) 

have proposed feature admissibility for classifying clustering procedures. 1 have applied feature ad-

missibility to classify visualization systems based on their ability to show specific features, which 

adds to the range of classification systems a means to show the strengths and limitations of visual-

ization systems. This will assist in evaluating visualization methods and in establishing benchmark 

datasets for this purpose.

Contribution: Feature fingerprinting. Researchers have added reference data, or fingerprints, to 

high dimensional datasets which are subsequently visualized after dimension reduction (Meuzelaar 

et al. 1982). Also, the technique of brushing has been developed to highlight a group of entities 

in a display to show, by linking the data in displays, how these entities appear in another type of 

display (Cleveland and McGill 1984; MacDonald 1990). I have combined these two elements in a 

new technique, feature fingerprinting, which enables individual, or patterns of entities illustrating 

specific features, to be added interactively into a visual depiction. This enables users to orientate 

themselves in unfamiliar representations, or where the abstraction level is high.

13.1.5 User-construction of Data

A number of ways for the user to construct their own data, to test the behaviour of the visualization 

method, were outlined: direct entry or change within a data table; interest feature specification; 

generating data via a visual representation; using synthetic data generators. Three implementations 

illustrated these methods (excluding the last one which is illustrated in papers (Noy and Schroeder 

2003, 2004)). The generation of data from interest feature specification was shown to assist metric 

choice. Also demonstrated was the linking in both directions between data table and display to 

allow data and point changes. 1 have described this as visual data tracking. This was useful to give 

immediate feedback to the user of the effect of changes either in the display or the data table.

The ability to create datasets containing varying amounts of a specific (user specified) feature 

allows the user to examine and choose between visual representations of features of interest to them. 

However, in this work, the interest feature specification was done manually; it would be preferable for 

the interface to be extended so that this could be accomplished more easily. Again, (as with generic 

data provision), the ability to put such constructed data into a real-world dataset, for orientation, 

appeared to be desirable.

Contribution: Visual data tracking. Brushing and linking between windows has been used exten-

sively in information visualization applications to assist in the exploration of data displays (Cleveland
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and McGill 1984; MacDonald 1990). 1 have extended this concept to include the linking between 

windows showing different representations (including the data table) to allow change of position of 

data point or value. This is a benefit because users can see the effect of changes in one representa-

tion, or changes of data values, and the effect this has. which will improve their understanding of the 

behaviour of the representations.

Contribution: Demonstration of user-construction of data for assisting metric choice. Dis-

tance measures are employed for layout in displays (see e.g. Webb 1999), but also to provide a 

similarity measure in many applications, such as in comparing document or entity specifications. 

A number of authors indicate the difficulty of choosing an appropriate metric (Gordon 1999: Webb 

1999). 1 have illustrated the user construction of data for assisting metric choice, where the user 

creates data containing features of interest and examines the behaviour of different metrics visually. 

This process of examining the behaviour of measures on a general level helps the user determine 

what features are of importance to them and which metric is best for such features.

13.1.6 Querying and the Insertion of Landmarks

Three established means of querying were described: use of conventional query language, dynamic 

querying and visual querying. For signature exploration, these established techniques are used, but 

in order to understand the behaviour of the visualization method. The closely related technique of 

insertion of landmarks includes the highlighting of query results within a display to provide orienta-

tion for the user, but also includes the insertion of synthetic data to fulfil the same function. Where 

the inclusion of a specific pattern of data (with respect to a particular entity) is introduced. I have 

described the process as feature fingerprinting. This was shown to provide orientation within the 

calldata set.

The work highlighted the desirability of general hypothesis support elements in the interface, 

since these significantly reduce interaction response time and therefore encourage exploration, though 

such facilities are difficult to provide.

Contribution: The fixing of landmark entities in a display. Information visualization applica-

tions use the highlighting of entities in a display using brushing (Cleveland and McGill 1984; Mac-

Donald 1990) or to display the result of a query (Shneiderman 1994). I extend this highlighting of 

entities to provide ongoing orientation within the display, by fixing the highlighting and describing 

such highlighted entities as landmarks. This concept of landmark is also expanded to include the 

insertion of synthetic data within a display. Providing the facility to place landmarks in complex data 

display helps orientate the user. Feature fingerprinting - the insertion of a synthetic feature within a 

display, for orientation, described in Section 13.1.4 - is also based upon this concept.
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Contribution: The insertion of synthetic data into a display. I have found that the addition 

of synthetic data to a dataset under consideration is valuable to orientate the user in the graphic. 

This resulted from a combination of the concept of landmarking and provision of generic datasets. 

How it relates to existing work and contributes is described in fixing of landmark entities (previous 

paragraph) and in feature fingerprinting (Section 13.1.4).

13.1.7 Elicitation and Application of Feedback Data

In examining elicitation and application of feedback, the feedback process was considered to have 

three aspects: compare, capture and modify. The user compares their sense of similarity with the 

application’s, the application captures the user’s sense of similarity, the application modifies its be-

haviour to reflect the user’s sense of similarity. Examination of related literature illustrated an issue 

concerning the use of the Euclidean measure for time series data, which sometimes produces un-

intuitive results, despite being widely used. The concept of ‘global distortions’ and modelling the 

user’s sensitivity to these, is one way to apply the user’s sense of similarity. The capture of the user’s 

sense of similarity can be approached by relevance feedback or by asking the user to arrange entities 

on a screen so that their perceived ‘distance’ or dissimilarity between entities can be captured. Two 

illustrations of the latter method were given, one of which was implemented within the Space Ex-

plorer interface. In the interface, the distances of a subset of a dataset are arranged by the user, then 

the distances computed and weights for the variables calculated using multiple least squares linear 

regression.

The effectiveness of the modification needs further investigation, particularly using non-linear 

methods, though it is likely that this capture will remain approximate, since it is unreasonable to 

expect the user to specify precise dissimilarities between entities. Better results may be obtained 

with a ranking system, which provides a more reasonable capture of the user’s view, or by modelling 

the user's sensitivity to distortions.

Contribution: Capture and application of feedback. Feedback from the user has been used in 

relation to queries, for instance finding similar time series patterns in a database (Keogh et al. 2000). 

I have extended this work to apply it generally to visualization systems, not only those involving 

querying. The user’s sense of similarity is captured and the layout algorithm for the interface is 

modified. The advantage is threefold: the user (and the application) is assisted in identifying what 

aspects about the data are important to them in making comparisons; the application can alter its 

layout to reflect the user’s preferences, where possible; the user can compare their sense of similarity 

with the application’s and where these greatly diverge (even with modification), can reassess the 

available methods and the choice of data representing the entities.
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13.1.8 Obstacle: Accuracy of Depiction

Chapter 1 1 discussed a major issue in the work, accuracy of depiction in the visual display. The 

related concepts accuracy, error and abstraction were examined. The different stages of the visu-

alization process at which error could arise were identified, thus indicating the different sources of 

error. Accuracy estimators and depiction methods from the literature were described, though these 

are rarely used in practice. The specific problem of different types of maps and location implica-

tion was highlighted. This examination of accuracy led to a proposal of a new agent application 

for lightweight and private profile use, and a new iterative form of Principal Components Analysis 

(PCA). which allows the position of new entities to be calculated without recalculating the whole 

set. Overall, the investigation of accuracy issues suggested the need for visual (and other) forms of 

illustration of error to be generally employed.

Contribution: Highlighting the issue of different types of maps and location implication. In-

formation visualization maps are becoming popular, for instance to provide overviews of document 

collections (Kohonen et al. 2000). In geovisualization, the inevitability of misleading the viewer in 

a map is well known (Monmonier 1991a). 1 have raised the issue of how users make assumptions 

about different kinds of maps and recommend making the location implication explicit. This will 

allow more accurate use of information maps.

Contribution: New software agent application for profile use. Profiles are used in many appli-

cations, for instance to match documents with queries, requests with specifications. In the software 

agent field there is a need to use profiles for agents to compare themselves (or their tasks) with others, 

while at the same time a desire to keep their profiles private. For instance, a matchmaking framework 

which includes demand and supply profiles (Veit et al. 2001), a system for finding common interests 

between agents (Foner 1997). These systems require a trusted third party to keep the agents’ infor-

mation private. I have devised a new iterative method of applying Principal Components Analysis 

(PCA), which allows agents to compare their positions in an interest space without revealing the de-

tails of their profile and without involving a third party. This will make it easier for the use of profiles 

in agent systems to be expanded.

Contribution: New variation of PCA for layout. PCA is often used to provide layouts for the 

display of high dimensional data (see e.g. Gordon 1999). I have devised an iterative form of PCA (as 

described in the previous paragraph) which allows new entities to be added without recalculating the 

whole set. This method is comparable in terms of accuracy and time complexity to the normal form 

of PCA. This method will be useful in a dynamic situation where entities are being added to a dataset 

to provide an animation.
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13.1.9 Framework

Chapter 12 proposed a framework based upon the work of the earlier chapters, to assess compre-

hension challenges and suggest appropriate techniques for a particular visualization scenario. The 

framework assists by identifying problem areas and suggesting techniques that are applicable. Some 

techniques are simple and straightforward to implement, thus providing readily applicable solutions. 

Providing a checklist of problem areas is a convenient way of guiding designers and will also prompt 

them to consider their own ideas in this area. The framework should be developed to examine a 

number of visualization scenarios. This may enable it to be changed to make more specific recom-

mendations.

Contribution: Specification of a framework for designing visualization systems for greater com-

prehension. A number of frameworks have been presented in the literature which assess the appli-

cability of visualization systems (Chi 2000; Shneiderman 1996). I have designed a framework for 

identifying areas presenting comprehension difficulty and techniques to assist. The use of this frame-

work will increase awareness of comprehension issues amongst designers, providing a structured 

approach that will result in more understandable and accessible systems.

13.2 Scope and Scalability

The work in this thesis has necessarily concerned a subset of possible visualization scenarios, both 

in terms of the type and structure of the data, and in terms of the kinds of visualization methods used 

(layout methods, dimension reduction, morphologies etc.). Two important issues are now examined: 

scope, i.e. how broadly can the work be applied; and scalability of techniques. Scalability concerns 

the size of the dataset in terms of the number of values in the dataset, the number of attributes and 

the number of entities. The complexity of the data also comes under the discussion of scope. Since 

the analysis of comprehension difficulties and possible techniques relates to existing (or proposed) 

visualization systems, there is an underlying measure of scalability of the visualization system under 

consideration. Thus the size of dataset that can be considered is dependent, in general, upon this and 

needs to be examined separately from it. Section 1.2 introduced the discussion of what is meant by 

complexity and pointed out that the problem of complexity relates to a very wide range of datasets 

from the relatively small to the massive. Section 3.3 examined the term scalability in the context 

of visualization systems and noted the limit brought about by the resolution of displays (currently 

around a million items). Also noted were other aspects of scalability relating to interaction time and 

practicality of navigation.

This section examines the results, contributions and conclusions from the previous section to
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consider these issues.

• Background analysis. This analysis covered a wide variety of data types and structures, layout 

methods, dimension reduction methods, and display forms. Thus it was broad in scope, but 

could be made more detailed by considering other visualization forms, and by covering the 

ground in greater detail.

• Signature Exploration.

-  General concept. Techniques have been examined with a specific scenario requiring di-

mension reduction and using particular dimension reduction methods. This can be ap-

plied to other dimension reduction methods, but the question is whether the techniques 

can be applied to other visualization methods and types/structures of data? The concept 

itself - seeking to illustrate the behaviour of the visualization method to the user - is one 

which is generally applicable to different visualization systems with different data and 

structures. This follows since examining what can or cannot be seen in a visual depiction 

is an approach that is valid to apply to all visual depictions, irrespective of type or size of 

dataset.

-  Generic dataset provision. In general this technique is scalable and broad in scope since 

it is always appropriate to use illustrative datasets with any visualization system. Specific 

aspects:

* Datasets that show particular features. There will always be features that can be 

shown in a particular visualization method, otherwise such a visualization method 

would be of no use. Thus, there will be features that can be shown, but not all 

features will be appropriate to show.

* Feature admissibility. For the reason identified in the previous point, the classifica-

tion of visualization systems as feature admissible for a particular feature is valid for 

all systems. However, there will be different sets of features applicable in different 

situations, for instance the features identified in this work for data tables will not all 

be relevant for hierarchical data.

* Feature fingerprinting. Developed in this work for orientating the user in the dimen-

sion reduction scenario, the usefulness of this technique for broader application is 

unknown. However, it is likely that the addition of known items or patterns to a 

dataset would be generally applicable, though the choice of relationship to existing 

items would change. Thus, in the dimension reduction example, similarity of items 

is of interest, so that features based upon different types of similarity were used. For 

hierarchical data it would be more relevant to use similarity of branches. The na-
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ture of the feature would also be determined by the size of the dataset represented: 

for instance, if the dimension reduction example used here had many more entities, 

the features proposed would not be observable and so would themselves need to be 

scaled. Note, however, that the general validity of the results for dimension reduction 

situations has not been established, due to the problem of the disturbance created by 

the additional data.

-  User construction of data. It is valid to provide facilities for the user to construct and 

visualize data for any system, since user construction of data is essentially the creation of 

synthetic data. The particular means of constructing the data will vary according to the 

size and type of data required. For instance, the examples here have used direct entry into 

a data table, as well as statistical specification of clusters. Specific aspects:

* Visual data tracking. There are limits to the applicability of this: backward linkage 

of layouts resulting from dimension reduction algorithms are not possible, since the 

mapping is one-to-many; it requires the moving of data points (or values) so that 

it can only be used where individual points are discernible, unless aggregation is 

employed.

* For assisting metric choice. Here the user does not need to examine behaviour with 

large datasets.

-  Querying. Querying methods are broadly applicable and scalable to the extent that the 

underlying visualization systems are.

-  Landmark insertion. The comments under feature fingerprinting, above, also relate to 

landmark insertion, which is a subset of feature fingerprinting. Also, landmark insertion 

will only be appropriate where individual entities are discernible, otherwise aggregation 

is needed. Otherwise landmark insertion is generally applicable.

-  Feedback data. The examples of elicitation and use of feedback data given in this thesis 

use similarity data elicited from the user to modify a dimension reduction algorithm. 

Thus, this particular application is restricted to that scenario. In addition, the number of 

dimensions that can be handled is restricted, since the number of examples for training 

is restricted. In general, results are considered reliable only when the number of training 

examples is at least 10 times the number of dimensions.

• Accuracy. The thesis contributions are general in nature on this issue, so apply broadly. The 

dimensionality of dataset used in the software agent application for profile use affects the error 

generated by the approximation used. This was established through the experiments given in 

Section 11.5.2. Thus this technique is scalable for the number of entities, but not the number of
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Criterion Chapter
1. Defining a concept for applying constructed data, signature explo-
ration

6

2. Specifying a set of techniques for the application o f constructed data 6 to 10
3. Identifying problem areas and obstacles 2 to 5, 11
4. Reframing existing techniques 6 and throughout.
5. Implementing examples o f the different techniques 7 to 10
6. Developing a framework for the design of visualization systems for 
increased comprehension

12

7. Specifying a set o f techniques for aiding comprehension of visual 
depictions

12

Table 13.1: Meeting the criteria set in Chapter 1. The chapters in which the criteria are satisfied are 
shown. Refer to previous section for details.

dimensions. These comments apply equally to the use of the iterative form of PCA as a layout 

method.

• Framework. Since the framework is for assessing visualization systems (existing or proposed), 

scalability is not relevant. From the point of view of scope, the framework was designed to 

have a broad scope as it is based upon the overall analysis of the visualization process and 

available techniques. The five examples given here of its use demonstrate its general applica-

bility. However, the scope of the framework would be increased through its development by 

further use as described in the future work section.

13.3 Evaluation of Criteria for Success and Hypotheses

The details in the previous section show that all the criteria for success, introduced in the introduction, 

have been met. The relevant chapters are indicated in Table 13.1. There is scope to expand the work 

under all criteria, but especially for criteria 4 to 7. This is discussed further in the future work section 

below.

The criteria for success were derived from four hypotheses, introduced in Section 1.3. The first 

of these hypotheses was:

The application of the concept, signature e xploration, aids the comprehension o f visual-

izations o f complex data.

This hypothesis was tested by applying the concept, signature exploration, to visualization prob-

lems relating to dimension reduction and metric choice. Evidence to suppôt this hypothesis lies in the 

increased comprehension that resulted from the exploration, the understanding of the implications of 

the overall shape of the clustering of high dimensional data, and the choice of metrics to match user’s 

preferences. Comprehension was increased by means of a number of different techniques as follows:
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Technique 

Generic data. 

User construction.

Visual data tracking.

How comprehension increased 

Understanding how features in the data appear.

Enables metric choice and understanding of how features in the data are 

shown.

Bi-directional linked brushing allows concrete examination as values 

are changed.

Query and landmark. Enable the user to orientate themselves in the dataset and test hypothe-

Eeature fingerprinting. Provides orientation in the calldata dataset.

However, it was not possible to show this to be generally true in a rigorous and systematic manner 

without altering the scope of the investigations (as explained in the first chapter). It is usual in some 

areas of research to undertake and present work without the formal expression of hypotheses (see e.g. 

Knight (2000)), because not all research problems can be examined purely in terms of supporting 

or rejecting hypotheses with data. The hypotheses were used here to guide the work, but not to 

impose a purely quantitative examination of the area, which would have restricted the scope. Perhaps 

some readers will be more comfortable with rephrasing these ideas as objectives and dispensing with 

hypotheses.

The second hypothesis was:

The application o f signature exploration aids the choice o f display of complex data.

Support for this hypothesis is in the case of generic data provision and user-construction of data, 

which have aided the choice of dimension reduction method. Also the application of signature ex-

ploration aids the choice of display of complex data indirectly, since it leads to systems which better 

support user comprehension.

Hypotheses 3 and 4 are as follows:

The application o f signature exploration will lead to the development or specification, 

or both, o f a suite o f techniques for aiding comprehension.

The application o f signature exploration conform the basis o f a framework for the design 

of visualization systems for increased comprehension.

Evidence to support these hypotheses is as follows: a framework for the design of visualization 

systems for increased comprehension has been created; a set of techniques have been partly specified 

and partly developed. A number of techniques have been specified, but not developed, in that their 

implementation has not been included in this work, for instance: techniques for user construction of 

data; greater facilities for querying and the visualization of error; alerts and the general proactivity of
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the interface. Techniques that have been implemented, have been developed in one sense, yet afford 

considerable further development. However, the reason that the techniques have only been ‘partly 

developed’ and ‘partly specified’, a conscious decision on the part of the author, is in order to maintain 

the broad scope of the work. Thus, to fully specify and develop a single technique, would have taken 

the whole time available. Likewise, this examination of signature exploration forms the basis of a 

framework, but the framework has potential for expansion in scope and detail. The framework is a 

summing-up of the work of the thesis, to be used in the context (and understanding by the user) of 

the work of the thesis. The framework is the ending point, not the starting point of the work of the 

thesis. It requires considerable further work to develop and evaluate a framework for general use.

13.4 Future Work

This section identifies future work for each area undertaken in this thesis and suggests new directions.

13.4.1 Generic Dataset Provision

This work should be continued to examine the behaviour of different visualization methods, dif-

ferent datasets and an expansion of the concept of feature-admissibility for evaluating visualization 

methods.

Repeat Experiments with Different Visualization Methods

The area of dimension reduction is the most difficult one to support the user’s understanding in. 

This is due to the often high level of abstraction that is carried out on the data. Thus the experiments 

presented in this thesis have tackled the most difficult area in which to support user comprehension. It 

would be useful to carry this series of experiments out for a wide variety of visualization methods, to 

cover, for instance, colourmaps, parallel-coordinate plots and other connectivity-based tools (such as 

Daisy), as well as those for displaying tree structures. The results will be easier to generalize in these 

cases, since the representations are not so affected by mathematical transformations and abstractions 

(approximations and errors in the raw data notwithstanding).

Other Possible Datasets

A number of other types of generic dataset have been suggested by this work, either as a result of the 

experiments, or because they are used to assess clustering or classification algorithms.

• overlap: this can be considered in different ways - as two clusters overlapping as in the Iris 

dataset, or as in the situation where there is actually a partition, but this may only be apparent 

in certain visualizations or because the data has been constructed in this way. An example is
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one where there are two ‘C’-shaped clusters which are hooked together, but do not intersect 

(Corsini et al. 2002). Another example is a coiled band (in 3D). Such examples are used to 

examine the ability for clustering algorithms to recognize such partitions (Is the first example 

considered to be 2 clusters or 1 ?) or structures (Is the second example shown as a round cluster 

after reducing to 2 dimensions, or is the band characteristic recognized?).

• noise + clusters or other features: embedding the generic data within noise - does a visualiza-

tion reveal a ‘hidden’ cluster or feature?

• scaling and phase shifting relations of different types: and for different types of data (such as 

trees).

• behaviour similarity (i.e. irrespective of variables): only applicable to datasets where all vari-

ables are of the same type, such as the destinations in the call data, or values in time series 

data. Different behaviour profiles can be examined. This can be generated by deciding on a set 

of behaviour shapes, then randomly assigning the variables. For instance a behaviour shape for 

the call data where a customer makes calls to half the destinations and to the destinations that 

are called they make the same number of calls.

• entities distributed evenly throughout the space: in a sense this is also a type of null model, 

since the pattern is uniform.

• accuracy: datasets to highlight accuracy problems.

Use of Admissibility

The use of admissibility criteria to systematically examine and record the behaviour of visualization 

methods should be expanded. Thus properties include behaviour under transformation, visual ap-

pearance of features (such as how the feature is observed, whether by pop-out) as well as types of 

data (such as sparse) and feature (such as outlier). Examining a wide range of these properties for 

a wide range of visualization methods will enable the value of the use of feature admissibility for 

classification of visualization methods to be developed.

13.4.2 User-construction of Data

Data Creation within the Interface

It is desirable to make data creation possible within the interface, as well as to include general data 

generation facilities, so that the user can experiment more easily and quickly. In particular, including 

functionality to transpose and repeat patterns, to add new objects and variables, to enter equations to 

generate the data, and to ‘sketch’ patterns (in a line plot) from which data is derived.
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Visual Data Tracking

Visual data tracking is a promising technique since it extends the brushing between windows with 

the ability to move data points (or change table values). Testing within different visualization con-

texts (different data type and visualization method) to measure its effectiveness and task relevance 

is needed. Reverse tracking cannot be used when dimension reduction is involved, since the trans-

formation is one-lo-many (many points in the higher dimensional space map to one in the lower 

dimensional space - this is discussed further in Noy and Schroeder (2004)). It may be possible to 

identify a probable range of originating points, but it is not clear how to do this.

13.4.3 Query and the Insertion of Landmarks

Extend Query Facilities

Query facilities should be extended to allow greater freedom of hypothesis generation and testing. 

However, this is difficult because, on the one hand it requires much programming effort, and on the 

other hand there are fundamental difficulties in the framing of queries as discussed in the thesis.

Feature Fingerprinting

Feature fingerprinting has been demonstrated in this thesis, but requires development of interfaces 

within the visualization application for the user to interactively place patterns of constructed data in 

the display of a larger dataset. It would be useful if a constraint or range could be inserted into the 

dataset under consideration, so that this could then be seen in the visual depiction. Indeed, if axes 

(in the originating data) themselves could be mapped, this would provide useful reference structure. 

However, this is only possible in direct one-to-one mappings that do not involve dimension reduction, 

since otherwise the data would create too great a distortion in the layout. The addition of points 

without great distortion can only be accomplished when localized to small areas. In particular, the 

mapping of the bounds of a (high dimensional) space produces the greatest distortion.

13.4.4 Elicitation and Application of Feedback Data

Capturing the User’s View

More types of interface for capturing the user’s view of the data, using ranking and other elicita-

tion methods, are needed, to see which have the best result. This is especially so that the natural 

approximation in this exercise (by the user) can be reflected.
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Modifying the Visualization Behaviour

The modification methods used here (least squares linear regression, neural nets and genetic algo-

rithms) need to be investigated for a wide range of datasets (varying number of variables, entities 

and data types) and different user similarity capture methods (rank and similarity). Different ways of 

modifying the behaviour of the visualization method need to be explored, particularly to address the 

problem of statistical validity for small training datasets, and the non-linearity of the mappings.

Feedback for Direct Methods

Whilst the complexity of the mapping in dimension reduction examples has been the inspiration for 

this use of feedback from the user, the method can be applied to direct methods. For example, the 

user can rate, classify or arrange the similarity of a number of familiar entities and these values could 

be used to weight the attributes before displaying the data using a direct method such as a bar chart 

or colourmap in the same way as in the dimension reduction context. The process is now a means of 

carrying out a kind of user normalization or selection of the data, by capturing what is of importance 

to the user.

13.4.5 Accuracy of Depiction

Identifying Problems

These accuracy problems need to be further documented so that designers and users are fully aware 

of the issues. Each existing visualization method should be analyzed to identify accuracy problems.

Accuracy Depiction Methods

This work has underlined the importance of promoting the wider use of accuracy depiction methods 

and of developing more methods of depicting accuracy, both visual and textual. This concept can 

be extended to include an examination of information that the user ought to know and whether (and 

how) designers should seek ways to communicate this information to the user, so that the application 

changes from being essentially passive, to having a more proactive role.

13.4.6 Framework

The framework as it is presented in this thesis represents a summary of the findings of the work 

of the thesis. In its two halves it covers the work identifying the problem areas for visualization of 

complex data, and the techniques (existing and ones proposed here) available to address the problems. 

The main aim of the thesis was not to develop a framework, but to explore the concept of signature 

exploration. Thus, the current framework is a starting point for the development of a more practical
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version, appropriate for general application by designers and users. The main issues that need to be 

addressed are:

• applicability to visualization without dimension reduction: the dimension reduction context 

was the main one for this work. The framework needs to be used for different types of visu-

alization methods, to see how the categories of comprehension problem and recommendations 

may be refined.

• understandability: the framework description assumes a research-level understanding of clus-

tering and visualization issues and techniques.

• linking problem to suggested technique: the structure of the framework can be developed so 

that suggested techniques are liked to problem areas. These connections can be identified as 

the framework is applied more widely.

• evaluation: once these three issues above are addressed, the framework should be evaluated 

with designers and users.

13.4.7 Related Developments

Benchmark Datasets

The establishment of benchmark datasets for evaluating visualization systems would help designers 

to compare techniques. The publishing of pictures (2 or 3D) of visualizations of such datasets would 

enable researchers to compare systems without having to possess implementations of all such sys-

tems. Some of the types of datasets presented in the generic dataset section of this work are suitable 

for this purpose. The admissibility system could be used to establish a useful set.

Automation and Proactive Systems

Recent years have seen the growth of datamining and information visualization techniques, and the 

corresponding need to explore ways of guiding the user in the data exploration process. However, 

visualization systems remain essentially passive, waiting for the user to load their dataset, then wait-

ing for the user to choose the layout, alter the settings and so on. This thesis has suggested that 

there may be things the interface ought to tell the user about, such as hidden features or errors in the 

data. However, if the application was truly proactive, it would carry out its own analysis of the data, 

as a parallel process to the user’s selection and manipulation of displays. It would find all things it 

could know about the dataset and possible displays and have this information ready for the user, or 

make suggestions to the user. In addition, as distributed processing become easier to harness in the
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everyday office environment, the application need not be limited by the computing power of a single 

processor to carry out its investigations.

Thus the work of this thesis points to the need and possibility of a new kind of intelligent visual-

ization, proactive visualization, where proactive components communicate knowledge about the data 

or the display characteristics to the user - conveying to the user, graphically or textually, information 

about the data that is not apparent in the current display space. This approach turns passive visualiza-

tion components into proactive ones, which use meta-knowledge about the data, analysis techniques 

and visualization capabilities to guide the user.

Proactivity could be enhanced by the elicitation from the user of a profile indicating preferences. 

The application may act proactively by presenting results of a range of background calculations or 

by indicating limitations of a display. A simple example of the latter is the colouring of an item in a 

scatterplot to indicate that it represents not one, but many coincident items. A more subtle form is the 

use of an alphaslider whose upper range (say) is greyed out indicating that movement in this direction 

will not alter the visual representation (Spence 2001). Background computations, which may or 

may not have been requested by the user, include summary statistics and the automatic selection of 

graphical representations or interesting submatrices of multivariate data (e.g. Shneiderman (2002)). 

It is considered difficult, if not impossible, in general, to algorithmically specify what constitutes 

structure in data (Ward et al. 1994) and choice of graphic is task dependent. Hence datamining and 

visualization processes will never be fully automatic, but some aspects can be automated and accuracy 

of analysis technique and strengths and weaknesses of visualization techniques can be captured. With 

this meta-knowledge, proactive visualization would seek to provide a better informed and guided 

approach to visual data exploration.

13.5 General Discussion of Conclusions and Contributions

The three main contributions of this work are: the definition and application of a new concept, sig-

nature exploration; the proposal of a framework and set of techniques; the specification of two new 

interaction mechanisms for visualization systems - visual data tracking and feature fingerprinting. 

There are also two contributions on a more general level: the motivation and conceptual framework 

for increasing comprehension support in visualization systems; the motivation of the need for visual 

and textual indicators of the characteristics, particularly accuracy of layout, of visualization methods. 

In addition, two contributions in related topics, not directly concerned with the objective of this work, 

have been made: a new software agent application for profile use; a new iterative method for layout 

with PCA.

New Topic of Increasing Comprehension The broad motivation of this work was to find a useful 

approach to enhance the user’s comprehension of complex visualizations. From a concept based
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upon an intuitive assessment of the situation, a number of techniques were proposed and researched, 

first examining any related literature and then developing example software. It appears that the focus 

upon enhancing user comprehension is, in one sense, a new topic, since one does not currently find 

workshops or conference symposia devoted to this, nor many conference or journal papers. However, 

much attention has been given by designers over some decades to techniques that support the user’s 

exploration of the data. The concept presented in this thesis is a reframing or contextualization of 

this work. These techniques, at the same time as revealing more about the data, increase the user’s 

comprehension of the visual depictions. The difference is in the focus of the approach. Here, the 

characteristics of the visual depiction are explicitly investigated, rather than the implicit exploration 

which accompanies the visualization of datasets. Thus, the first potential for original contribution 

of this work is the focus of attention upon the exploration of characteristics of visual depictions in 

themselves.

This work has provided motivation for the greater importance of providing increased support 

for comprehension of visualization methods at this time, by discussing the wider range of users, 

continuing innovation in visualization techniques and the development of complex composite tools. 

In addition, an examination of current open questions for information visualization has shown that 

other areas will benefit from improvements in user comprehension.

Signature Exploration and its Application The examination of signature exploration and the set 

of techniques for applying it, have led to a rich area of possibilities for increasing comprehension 

(rich in ideas and techniques - promising and original). Generic dataset provision, though requiring 

more work to determine a useful basic set, has shown promise for illustrating the behaviour of visu-

alization methods. It also suggests itself for benchmarking and general evaluation, though these are 

slightly different purposes. The work did not set out to evaluate and classify visualization methods. 

Interfaces that allow user-construction and interaction with the data itself suggest another level of 

interaction. The ability to construct data additions within real-world datasets under consideration 

is very promising, since it provides the user with a unique method of orientating themselves in a 

space which otherwise has a characteristic arbitrariness of direction in space in dimension reduction 

situations. This may also provide a quick means of orientating oneself, in more general terms, in 

any unfamiliar or complex visual representation. Data construction interfaces also enable the user 

to explore their sense of ‘what matters’ to them in their data and particularly provides them with 

an environment to explore the application of metric choice. The query and landmark examination 

highlighted that there are still difficulties in the conceptually simple mechanism of query in a visual 

interface, and that any extra provision in this area is useful. The highlighting of the results of a query 

or the addition of synthetic data as landmarks, suggested that calibration was an apt description for 

the role that these play and that this is an important requirement for the user, apart from the recog-
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nition of particular pattern meanings. The elicitation and application of feedback data examination 

showed that much could be gained from a variety of these techniques and that they had importance, 

both in terms of the user's understanding of the behaviour of the visualization method and in terms 

of making the user, and the application, or both, aware of what was of importance to the user. When 

the user is more aware of what factors in the data are important or unimportant, they are better able 

to choose appropriate views of their data.

Two new techniques have been specified:

1. Visual data tracking: two-way brushing between data table and visual depiction, or two or 

more visual depictions, which also allows values and positions to be altered. This enables the 

user to change the graphic and see how values in the data table alter as a result, and vice versa.

2. Feature fingerprinting: synthetic additions to real-world datasets to provide the user with cali-

bration of the visual depiction.

Framework and Techniques This work introduces a framework to guide the assessment of chal-

lenges to comprehension and determine suitable techniques to apply.The challenges to comprehen-

sion have been identified by examining each aspect of the visualization process, including data types, 

transformations and visualization morphologies. This work could be extended to further analyze 

strengths and weaknesses of particular methods and suggestions for addressing weaknesses. The sug-

gested techniques have arisen from analysis of existing systems and interaction mechanisms, from 

the application of signature exploration and from examination of the accuracy issue. Whilst there is 

scope for extending the framework, the work nevertheless contributes a directly applicable approach.

Accuracy Indicators This project has revealed the need for visual or textual indications to alert 

the users to special characteristics of the representation, such as the existence of hidden data due 

to overplotting, or the approximate nature of location. In general terms, we have brought great 

complexity to the screen - the user needs to appreciate the limitations.

Visualization Paradox Visual representations of complex data can be useful and lead to insight, 

but such visualizations themselves are complex due to the transformations necessary to put the data 

on the screen. Thus there is a paradox - on the one hand visualization can reveal things, but on the 

other hand, the visualization process is often complex and hard to understand. There are no short 

cuts in good science: nothing can replace the experience of the informed user; complexity cannot 

be replaced by simplicity, without incurring a loss. However, complex techniques are being used 

by a wider range of users and nothing will halt this. Also, expert users benefit from developments 

which ease their analysis, particularly in relation to hypothesis generation and testing. This work has
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examined what characteristics of the visualization method can, or should, be shown to all users: it has 

identified methods (new and existing) such as exploratory interfaces, alerts, and intrinsic or intuitive 

features, which can be made available as required. We would like all visualization to be natural and 

clear, but, in dealing with complexity of size and structure, this is not possible. We would like all 

users to be experienced and ready to engage in exhaustive search - again this is unrealistic. On the 

other hand we would like to be able to automatically generate appropriate visual representations of 

data - again, this is rarely possible. Thus, we take a pragmatic approach, we seek to know what can be 

known about the data and the visual representation, and convey this information, or make it available, 

to the user.

Another Level of Complexity? All interaction mechanisms designed to increase the power and 

clarity of visualization systems, themselves present a further layer of complexity that the user must 

deal with. Whether or not this complexity presents a significant difficulty for the user. and. if so, 

whether this difficulty is justified by the cost, varies according to the particular mechanism. We 

are presented with another paradox - where interaction mechanisms create more complexity, yet are 

designed to alleviate complexity. This relates to established techniques such as provision for overview 

and zoom, or dynamic querying, as well as the techniques described in this work. For instance, the 

insertion of landmark entities can be easily understood and the benefit easily obtained by the general 

user. On the other hand, the implication of adding a pattern of entities related by general behaviour 

to an existing entity, followed by dimension reduction, requires greater understanding, yet has the 

potential to provide much needed orientation.

Closing Statement The examination of the concept of signature exploration has led to a rich area 

of techniques and ideas. The work presented in this thesis provides impetus for further work to 

increase the comprehension of complex data visualizations and moves us towards a comprehensive 

methodology for the design of systems for enhancing comprehension. Visualization system designers 

are providing us with increasing numbers of methods of dealing with complex data. Support for 

comprehension of complex data visualizations will lead to greater knowledge discovery from data 

and enable us to fully exploit the potential of new and existing displays.
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Applying the Framework to Attribute 

Explorer

An example of applying (he framework is shown in Table B.3. The example used here is the visu-

alization of a dataset of information about cars with the tool Attribute Explorer. Attribute Explorer 

provides the user with a set of interactive linked attribute histograms (Spence and Tweedie 1998). It 

can be downloaded from hltp://www.alphaworks.ibm.com/tech/visualexplorer. The tool is intended 

to complement IBM's DB2 Intelligent Miner for Data or to run as a standalone tool. The latest ver-

sion includes parallel coordinate plotting which is not covered in this analysis. The car dataset is a 

sample dataset supplied with the tool.

Attribute Explorer provides three views of the data: the primary view shows the field names, types 

and statistical information; the charts view shows the histograms for fields selected in the primary 

view; the details view shows a tabular view of the source data (each row representing a data point). 

An example screenshot of the linked histograms is given in Figure A.l. Moving the mouse over the 

segments in the charts highlights the data point under the mouse in all charts and the details view. 

Beneath each chart is a slider with which the user can apply constraints by selecting and deselecting 

segments. Each data point is colour-coded to indicate the number of field criteria it fails. The colour 

of the background and data points can be changed, as well as the segment sizes and the number of 

charts shown on one screen. By interacting with the selection sliders the effect on data points for 

each of the attributes can be rapidly assessed.
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Figure A. 1: A screenshot of the Attribute Explorer linked histograms. Data is the sample dataset of 
car data provided with the application.

Table A. 1: Framework for identifying challenges to user comprehension and identifying solutions, applied 
to the Attribute Explorer.

Problem Aspect Comment Suggested Approach
Real World

Domain relevance The application is to find the most 
acceptable object or, perhaps a small 
number of candidate objects worthy of 
more detailed consideration, given a 
collection of objects, each described by 
values associated with a set of attributes 
(Spence 2001, p. 77). This means that 
general exploratory data analysis is not 
the goal. The application for choosing 
a car implies a wide range of users.

Pedagogic mode (ordinary 
users). Feature fingerprinting 
(adding perfect car). Query and 
interaction (landmarks).

Data collection impact Collection details unknown, the dataset 
is a sample set with the application. In a 
real application, information about the 
dataset should be supplied, e.g. how 
comprehensive it is.

con tinued  on nex t page
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Table A. 1 : continued

Problem Aspect Comment Suggested Approach
Measurement error V Accuracy of measurements unknown. 

Null values are listed in the summary 
data view, but there is no way to show 
this in the display. Here, the existence 
of null values does not invalidate the vi-
sual depiction, but it does invalidate the 
query (if they are involved - and one 
doesn't know whether they are or not, 
until the detailed record is examined).

Feature demonstration (null val-
ues, accuracy of original mea-
surements).

Raw Data
Multiple structures V Different segmentation values result in 

different views. Ordering of categor-
ical data arbitrary. User can select 
different fields, segmentation values, 
colours. Highlighted position of a car 
in a bar on the chart varies according 
to the constraint applied. However, the 
user is aware of some of these from the 
interactivity of the interface.

Pedagogic mode. Proactivity.

Choice of object V Each of the charts is a frequency plot of 
a single attribute, so there is no ambi-
guity of object. Other views of the data 
are desirable, e.g. showing scatterplots 
of pairs of attributes and the application 
of clustering to complement this, also 
to provide overview, but, within the ap-
plication this issue is not relevant.

Data type V Categorical data has arbitrary ordering. 
Data types which have few categories 
dominate the display, contributing less 
information for the space occupied.

Dimensionality V There are 93 records with 26 fields, 
but dimension reduction is not used. 
Depiction involves minimal loss of in-
formation, but the large number of at-
tributes and instances means it is diffi-
cult to get an overview.

Proactivity. Feature fingerprint-
ing (landmark addition). In-
teraction with the data table is 
not possible. Could highlight, 
change and add values. Espe-
cially adding values - to put in 
one’s perfect car, an old car etc. 
- for calibration of the visual 
display. Feedback (elicit prefer-
ences to limit display).

Associated metadata For the purpose of ‘finding the most ac-
ceptable such object’, metadata would 
be useful, for instance, about the com-
pany.

Provide linked metadata.

Selection impact V Size of segments, ordering of categor-
ical data (and of record fields) and se-
lection of colours have an impact.

Illustrative datasets. Selec-
tion and standardization (al-
low changing of arbitrary place-
ments).

con tinued  on nex t p a g e
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Table A. 1 : continued

Problem Aspect Comment Suggested Approach
Data for Layout

User making choice Users can choose colours, segment 
size, colour of mouseover highlight, 
best, worst.

Illustrative datasets. Pedagogic 
mode.

Predictability V Layouts are predictable in the strict 
sense. However, the display is pre-
dictable in the general sense only for 
the same segment sizes, colouring etc. 
How does the application calculate 
the segments to start with? Also, 
the behaviour of bars for fields, other 
than the one where the slider is be-
ing moved, shows position of enti-
ties moves. Thus, highlighting (by 
mouseover) shows where that particu-
lar entity is in all the charts. However, 
when that entity fails the selection it 
moves to become part of the top shaded 
part of the bar. This is necessary to 
provide the characteristic effect of the 
display, but is slightly confusing, since 
sometimes the entity has a precise place 
in the display, sometimes it doesn't.

Proactivity (alerts for better seg-
ment size, colouring). Illus-
trative datasets (showing differ-
ence of display).

Abstraction V Dimension reduction is not employed. 
Frequency plots result in information 
loss for larger segment sizes.

Feature demonstration (anima-
tion of the results of segment 
size alteration etc.).

Display
Unfamiliarity V It is likely that the new user has not 

used this interface before.
Illustrative datasets. Pedagogic 
mode.

Spatial Meaning V Ordering of the charts is fixed, order-
ing of categories, size of bars (segment 
size) is not. Also the size of the bars in 
charts of categorical data with few cat-
egories is greater and tends to dominate 
the view. So reordering is possible and 
some sizing is approximate and dispro-
portionate. In general, though, spatial 
meaning is clear.

Feature demonstration.

Hidden Features V Aside from the discussion about what 
could be discovered about the dataset 
with other display methods, (though 
this is the effective ‘hiding’ of fea-
tures), the segment size hides peaks and 
valleys. Also the user will not find 
things if they do not follow a sustained 
interaction sequence.

Feature demonstration. For 
overview, maybe the starting 
view should show all the fields. 
This forces the user to start with 
an overview, but also prompts 
interaction (in the case of a large 
number of fields). Obviously 
there is a limit to how many 
fields can be shown, though.

con tinued  on nex t p a g e
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Table A.l: continued

Problem Aspect Comment Suggested Approach

Multiple windows V Creation of new windows is an issue - 
the user needs to be able to see both de-
tail and chart displays at once.

Brushing (bidirectional linking - 
allow selection in details view).

Mapping complexity — Mapping is quite clear and reasonably 
intuitive.

Ordering v7 Equivalent representations exist due to 
arbitrary ordering of charts and cat-
egorical variables (chart view) and 
records (details view).

Eeature demonstration. Selec-
tion and standardization (selec-
tion in details view). Pedagogic 
mode.

Human
Expertise V Users will have varying levels of ex-

pertise, re: what cannot be shown; fre-
quency plots; how to use colour; inter-
action ability (and propensity) in gen-
eral; ability to construct their own path 
of experimentation to discover the fea-
tures of the display etc.

Illustrative datasets. Feature 
demonstration. Pedagogic 
mode. Proactivity. Problem for 
many fields: gradation of colour 
is too difficult to distinguish, 
i.e. too many shades. This 
can be helped by using two 
colours (for best and worst) 
rather than a monochrome, but 
I only discovered this later, it 
wasn’t immediately obvious. 
Perhaps it would be better if 
the application suggested it 
immediately, when there were 
quite a few fields. Also, colour 
changing window is difficult 
to understand how to use and 
to know what kind of effect to 
expect.

Perception Colour scales not perceived linearly, 
but this is not of great importance here 
since the required granularity is low.

Cognition V Though the mapping appears simple, 
there are subtleties to discover. As it 
is, this discovery relies upon the inter-
action pathway of the user.

Pedagogic mode. Proactivity.

Main Results by Technique Category

• Feature demonstration. Consider ways of showing the effect of null values, the accuracy of the 

original measurements, the results of segment size alteration (perhaps by animation), ordering, 

colour changes, what is readily perceived (e.g. an outlier, clusters).

• Illustrative datasets. Does the designer know that certain datasets illustrate particular features
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in the display? If so, use them, i.e. seek to embed the designer’s experience of use in the 

application.

• Pedagogic mode. Provide a novice’s mode to ensure that all features are covered and under-

stood. This can include such things as animating the effect of segment change and colour 

change possibilities, or highlighting arbitrary placements.

• Proactivity. Consider alerts, particularly in pedagogic mode, for example, to alert the user to 

the undesirability of monochrome scales for many fields. Provide ‘optimal’ segment sizes, 

colours and layouts, for particular datasets. Begin the sequence with an overview showing all 

charts.

• Query and interaction. Increase interaction (reduce interaction response time) by allowing 

removal of charts by mouse click. Increase visual comparison scope by allowing repositioning 

of charts. Allow landmark insertion.

• Selection and standardization. Allow change of arbitrary placements. Allow selection in the 

details view. Make provision for the linking of metadata.

• Visual data tracking. Add linking from the data table to the charts, so that the user can find a 

specific car model. Add provision for making additions to the data table to allow placement of, 

for instance, one’s perfect car.
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Framework Application by Business 

User

This appendix details the experience of a business user evaluating three visualization applications 

with the framework. This user is a marketing manager with a great deal of experience analyzing 

business data. This analysis frequently involves visualization of different kinds, principally with 

Excel. The user is also familiar with more recent developments such as self-organizing maps and tree 

maps.

The user was given a detailed briefing which covered the description and examples of the appli-

cation of the framework (as described in Chapter 12 and Appendix A). The possible techniques (both 

existing ones and new ones proposed in this thesis) were also explained.

The user evaluated three visualization systems, ‘Excel’. ‘Daisy’ and ‘Ggobi’. These were chosen 

to represent the differing types of application available, both in terms of the type of visualization 

techniques used, as well as the contrast between an application using a single technique and one 

containing a number of techniques. Excel was chosen as a widely available application that is used 

by a very wide range of users. Daisy was chosen as an example of an individual new type of interface. 

Ggobi was chosen as an example, well-known in the research community, of a visualization system 

containing a variety of methods for analyzing high-dimensional data . In each case the evaluation 

was done for a specific dataset; for Excel a dataset of sales prospects was used, for the other two 

applications the example datasets supplied with the applications were used.

The user was asked to complete a questionnaire afterwards, to examine

their experience of applying the framework. The questions related to relevance, ease of use, 

general assessment, and whether or not they were already familiar with the systems evaluated.
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B.l Excel

Excel is an almost ubiquitous tool used by business managers and analysts to visualize complex data 

sets. This strong position in the market has attracted a large number of specialist ‘add in’ functionality 

to compliment an already extensive in-built functionality. Over and above this the application allows 

users to program custom solutions with Visual Basic.

Figure B.l: Excel screenshot: Data and associated pie chart showing the order value breakdown with 
labelling identifying the country, market sector and sales person.

The spreadsheet format facilitates entry of data and commentary in a grid format that allows a 

high degree of dimensionality, but relies on the user’s experience to choose appropriate tools and 

formats to add charts and graphs to the display.

The framework was used to evaluate Excel using a dataset of sales prospects; in different coun-

tries with differing commercial terms; by market sector; by sales person; by month; won. lost or 

percentage likelihood of winning; margin; revenue total and broken down by month over a three year 

period. The primary aim of the model used is to forecast revenue and margin and compare the return 

against investments in each country or region. The results of applying the framework are shown in 

Table B. 1 and the following report.

Examples of the charts used to analyze the data are shown in Figures B.l and B.2. Figure B.l
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shows a portion of the summary / overview sheet. Figure B.2 shows a histogram from the revenue 

summary sheet.

□ Communications «Energy GFinance DGovernment «Healthcare □ Manufacturing aRetail DTra/el & Leisure

Quarterly Projections
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4 .5 0 0

4 .0 0 0
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5 0 0

Figure B.2: Excel screenshot: Revenue shown by quarter by market sector.

Table B. I : Framework applied to Excel by Business User.

Problem Aspect Comment Suggested Approach
Real World

Domain relevance V Users will require a good understand-
ing of the aim of the visualization being 
created. The two or three dimensions 
that are to be compared by graphs and 
charts need to be chosen against spe-
cific criterion or convention.

Illustrative datasets and feature 
demonstration. Standard mod-
els should be available, giving 
examples of layout for maxi-
mum flexibility.

Data collection impact V Data collection is done via multiple 
phone and face to face interviews with 
sales staff. These are done on a non 
regular basis, usually as a result of se-
nior management concern over perfor-
mance.

Regular and routine submission 
of figures and reports by sales 
staff would improve the consis-
tency of the data collected.

Measurement error V Data input is often affected by subjec-
tive issues such as the point in the sales 
cycle or the concern of sales staff over 
perception of individual performance.

Link personal recompense to 
accuracy of forecasting.

Raw Data
con tinued  on n ex t p age
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Table B. 1 : continued

Problem Aspect Comment Suggested Approach
Multiple structures V There are a vast array of potential vi-

sualizations, some of which are linked 
to particular mathematical constructs. 
The user will, in most cases be guided 
by convention or recently seen exam-
ples.

Illustrative datasets and feature 
demonstration. Standard mod-
els should be available, giving 
examples of layout for maxi-
mum flexibility.

Choice of object V There are many choices of object that 
can be made, from mathematical func-
tions to graphical objects.

Illustrative datasets and feature 
demonstration. Standard mod-
els.

Data type Numerical, categories, regions, person-
nel and dates. Data is highly struc-
tured, with data automatically entered 
into one part dependant on input in 
other sections.

Dimensionality V There are 92 records with 65 fields. Di-
mension reduction is not used. Choice 
of dimensions to visualize has to be 
specific and accurately chosen. Fail-
ure to do this properly results in con-
fusing and misleading representations. 
It is very difficult to get an overview of 
the entirety of the data set.

Pedagogic model. Increased 
user guidance and use of exam-
ples to help choices.

Associated metadata Metadata is created within the visual-
ization as a ‘dash board' attempt to give 
an over view of the data. However as-
sumptions are made as to which dimen-
sions should be compared with each 
other, usually from convention. Poten-
tially important links can easily be lost.

Variety. Peer level reviews 
of metadata visualizations 
will maximise the experience 
brought to the visualization.

Selection impact V Choice of data to display or manipu-
late is completely user decided. The 
data models and displays used should 
be guided by an experienced user of the 
application.

Pedagogic mode + training re-
quired.

Data for Layout
User making choice Type of chart; colours; textual notation; 

ordering and scales are all choices for 
the user.

Pedagogic mode + training and 
examples required.

Predictability The layouts achieved using the var-
ious mathematical and graphical for-
mula are predictable in all cases that the 
author is aware of.

Abstraction No reduction of dimensions is avail-
able, the abstractions available are all 
two or three dimensional and do not in-
volve the loss of any data.

Display
co n tin u ed  on next p age

219



APPENDIX B. FRAMEWORK APPLIED BY BUSINESS USER

Table B. 1 : continued

Problem Aspect Comment Suggested Approach
Unfamiliarity The high familiarity of this type of vi-

sualization (spreadsheet) causes prob-
lems of being over confident in the ac-
curacy of the visualization produced. 
Users often will not question highly un-
usual results that have been generated 
by errors

Proactivity, range checks and 
independent (from the designer) 
quality testing of models cre-
ated.

Spatial Meaning — Spatial meaning is generally unam-
biguous.

Hidden Features V Some displays can have over plotted 
areas that hide important data, this is 
particularly relevant when three dimen-
sions are being shown in a graph or 
chart. However it is generally clear to 
the user that some data is being ob-
scured.

Visual tracking would help user 
to explore the impact of differ-
ent values and allow them to 
’uncover’ the part of the visual-
ization that is hidden.

Multiple windows V The large number or dimensions avail-
able and the limited dimension visual-
izations make it inevitable that multiple 
charts will be created to look at vari-
ous interdependencies. The application 
allows for reasonable segmentation by 
the use of tagged worksheets. Visual-
izations can be resized to fit onto screen 
readable or A4 formats.

Pedagogic mode + training and 
guidance on the structure and 
layout of the spreadsheet should 
help with this issue.

Mapping complexity V Mapping of data to visualization ob-
jects is often ambiguous. This is over-
come to some extent by the ability to 
label different portions of the charts. 
However this is done automatically and 
in many cases, where a large number 
of values are displayed, the chart labels 
clash and become unreadable. Consid-
erable time is then required from the 
user to manually re set the positions of 
the labels.

Query and interaction. For 
example, roll-over labelling of 
charts.

Ordering Some visualizations are susceptible to 
the ordering of data within the sheet; 
particularly variables that change over 
time, convention will determine the in-
terpretation of line graphs with time on 
one axis.

Human
continued on next page
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Table B. 1 : continued

Problem Aspect Comment Suggested Approach

Expertise V The level of expertise will have a di-
rect effect on the success of the applica-
tion. Critical aspects in the design pro-
cess are: - initial layout design; knowl-
edge of visualization techniques avail-
able and the ability to program with Vi-
sual Basic.

Training of users; example lay-
outs and encouragement to use 
resources available on the inter-
net will make a significant dif-
ference in the models created by 
any particular user.

Perception V The use of colour is very much at 
user discretion and is a potential stum-
bling block unless conventions are un-
derstood and maintained.

Proactivity within the applica-
tion would assist. Agree use 
of colour with participants and 
document.

Cognition V Many of the visualizations used by 
designers of Excel spreadsheets are 
quickly understood by convention. 
Care must be taken when conventional 
techniques are used to display uncon-
ventional data. Also the generally 
two dimensionality of the displays can 
lead to misrepresentation if inappropri-
ate dimensions are compared.

Pedagogic model.

Report for Excel

• Illustrative datasets and feature demonstration.

The wealth of features and the need to properly structure the data within the spreadsheet can 

lead an inexperienced user to struggle to layout the data so that the tools within the application 

can be properly deployed. There are many resources available including data sets and examples 

of how to use the various features, however specific examples for the type of dataset under 

investigation are not always easily found and additional templates would be useful for guidance 

with notes highlighting the most telling visualizations.

• Pedagogic mode.

Many tutorials are available for Excel and an interactive help function comes with the applica-

tion. Unfortunately many users ignore these and find the automated help functions irritating, 

and hence turn them off. A more user engaging help function might overcome this reluctance.

• Variety

The user should be invited to move beyond the standard visualization such as line graphs and 

pie charts to attempt to give an overview of the dataset. In the example used for this evalu-

ation some attempts should have been made to look for trends in successful transition from
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a sales prospect to successful sale, tracking the rate of success and examining geographical 

differences.

• Proactivity

There are a number of features available in Excel for the designer of the model to check for 

out of range errors and unlikely data input. Unfortunately this is rarely used, this was the case 

in the evaluation example. An automated scan for the use of these techniques could usefully 

remind the user of the potential to use these features.

• Visual tracking

The ability to interact with the visualization, moving line or point with the dataset changing to 

reilect this is potentially a counter intuitive feature. However the insight this would give to the 

impact of certain component data values, would be most useful.

• Query and interaction.

With the often confusing layering of the automated labelling system, an improvement might 

be made in some cases by such techniques as role over labelling.

B.2 Daisy

The visualization application Daisy was introduced in Section 4.3.10. It can be downloaded from 

http://www.daisy.co.uk/daisy.html. The dataset used to evaluate Daisy, provided with the downloaded 

application, consists of 350 records of phone calls with the following lields; date; time; extension; 

number dialled; line used; duration of call.

The visualization consists of nodes arranged in a circle. Each node represents a segment of one of 

the field values, for example, duration 10 to 15 minutes. The nodes are connected together for each 

of the records, with the lines graded in shade according to the relative weighting of the record, as set 

by the user. Figure B.3 shows the effect of weighting by frequency of call, Figure B.4 the effect of 

weighting by duration of call. The results of applying the framework are shown in Table B.2

222

http://www.daisy.co.uk/daisy.html


APPENDIX B. FRAMEWORK APPLIED BY BUSINESS USER

Figure B.3: Frequency of call shown by; telephone number dialled; date; time; extension and duration 
of call.
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Figure B.4: Daisy screenshot: Duration of call shown by; exchange dialled; date; time; extension and 
duration of call.
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Table B.2: Framework applied lo Daisy by Business User.

Problem Aspect Comment Suggested Approach
Real World

Domain relevance Users will not need a great deal of 
domain knowledge to use and explore 
data with this visualization. The data 
does not need any special layout and is 
set out as a straight forward two dimen-
sional file, either in an Excel spread-
sheet or CSV (Comma Separated Val-
ues) file.

Data collection impact The simplicity oflhe file structure leads 
to easy automation of input values. The 
telephony dataset used for evaluation 
could be created automatically from the 
onsite PBX.

Measurement error Given the collection method described 
above there is no problem with errors 
occurring.

Raw Data
Multiple structures y Whilst this is a single structure visual-

ization it does mix the connected node 
approach with histograms at the edge 
of the circle. With large data sets this 
gives a visual reference to see excep-
tional data sets. The zoom facility al-
lows for rapid focus on areas of inter-
est. Navigation by panning across the 
visualization is counter intuitive and 
clumsy.

Use conventional panning 
method.

Choice of object Choice of object is relatively limited 
in the single structure approach and al-
lows the new user to quickly under-
stand the relevant choices.

Data type Data can be text or numerical values. 
There is no conversion of these values 
other than standard mathematical for-
mula such as averages and standard de-
viation. Text can be compared for sim-
ilarity.

Dimensionality 7 Specifically designed to identify signif-
icant records out of large scale datasets 
Daisy is well equipped to deal with 
multidimensional data. The user can 
gain a good over view of the data and 
quickly identify exceptional records, or 
group of records. Dimensions can be 
reduced manually by eliminating those 
that are not needed from the visualiza-
tion.

Feedback. Automation of the 
process of identifying redundant 
dimensions and then modifying 
the visualization should be con-
sidered. In diagram 2 above 
the application could have iden-
tified that the phone number 
fields where not relevant and left 
them out of the diagram.

con tinued  on next p age
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Table B.2: continued

Problem Aspect Comment Suggested Approach
Associated metadata V Metadata is displayed in the histograms 

that sit at the edge of the circle. The 
nature of this metadata is chosen by the 
user to focus on the most relevant is-
sues. Starting with the over view of 
all data the selection of this metadata 
could be difficult.

Proactivity. Selection of meta-
data displayed could be au-
tomated at the first instance 
based on the existence of out-
liers or other standard features 
of datasets, as selected by the 
user.

Selection impact V Selections are relatively limited; it is 
primarily around choice of what should 
or should not be included and the 
choice of weighting records to be dis-
played in the interconnections.

Proactivity. Some suggestions 
based on the structure of the 
dataset would be helpful.

Data for Layout
User making choice V There is virtually no choice available 

for the user in the layout of the visual-
ization. Whilst this simplifies the user 
interface considerably, some advanced 
options might help with specific identi-
fication issues.

Query and interaction. The abil-
ity to choose colours for ranges 
of field values might be help-
ful. The use of colour gradation 
in visualization of the interlinks 
might give additional insight.

Predictability The visualization does not involve any 
ambiguous conversions or dimension 
reductions.

Abstraction The only abstraction used is in the 
weighting of the links between the rep-
resentation of the nodes. The author 
does not have sight of how this weight-
ing has been achieved, but in the exam-
ples used the results were clearly cor-
rect when compared to the actual data 
records.

Display
Unfamiliarity For new users this visualization will be 

unfamiliar. However there are clear de-
scriptions of the meaning of each com-
ponent. After a little experiment the au-
thor was able to focus on specific issues 
within the data set and add / change the 
display to identify areas of interest.

Spatial Meaning — Once understood the spatial layout is 
clear and unchanging.

Hidden Features V With large scale datasets labelling is 
likely to be an issue although this is 
countered by the ease of use of the 
zoom facility and the use of roll over la-
belling. However the interconnections 
are not labelled or enabled for interro-
gation.

Query and interaction. Given 
that the interconnections be-
tween the nodes are one of the 
key characteristics that help to 
understand the diagram it is sur-
prising that there is no ability to 
interrogate individual links and 
understand the weight factors.

co n tin u ed  on nex t p age
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Table B.2: continued

Problem Aspect Comment Suggested Approach
Multiple windows The visualization itself is designed in 

one window. More windows appear if 
the user requests detailed information 
of the records themselves or wishes 
to modify the items displayed. Due 
to the lack of interaction between the 
windows there is little need to see the 
whole of the visualization whilst mak-
ing changes, the user has to manually 
request recalculation and re drawing of 
the visualization.

Mapping complexity As the weighting mechanism is un-
clear to the user the impact of differ-
ent dataset features such as large stan-
dard deviation or a number of signifi-
cant outliers is not understood.

Feature fingerprinting. The use 
of known datasets to explore 
the impact of specific datasets 
to the gradation of the inter-
connections would help to inter-
pret the significance of the high-
lighted connections.

Ordering — There is no significance in the ordering 
of the data within the records.

Human
Expertise Expertise will have some impact on the 

ability of the user to interpret what is 
being looked at. However the relative 
simplicity of the interface minimises 
this impact and the user should quickly 
be able to effectively use the applica-
tion.

Perception Once understood the user is unlikely 
to misunderstand the visualization. 
Colours are used only to differentiate 
differing components and bring little to 
the understanding of the diagram.

Cognition This is a very focused application that 
assists in identification of connections 
between fields. This focus limits the 
need to understand different represen-
tations and simplifies the task of inves-
tigating the data.

Report for Daisy

• Feedback.

Automation of the process of identifying redundant dimensions and then modifying the visu-

alization should be considered. In Figure B.4 above, the application could have identified that
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the phone number fields were not relevant and left them out of the diagram.

• Proactivity.

Selection of metadata displayed could be automated in the first instance based on the existence 

of outliers or other standard features, as selected by the user. Also some suggestions of which 

fields should be used for weighting, based on the structure of the dataset, would be helpful.

• Query and interaction.

The ability to choose colours for ranges of field values might be helpful. The use of colour 

gradation in visualization of the interlinks might give additional insight. Also, given that the 

interconnections between the nodes are one of the key characteristics that help the user to 

understand the diagram, it is surprising that there is no ability to interrogate individual links 

and understand the weight factors.

• Feature fingerprinting.

The use of known datasets to explore the impact of specific datasets to the gradation of the 

interconnections would help to interpret the significance of the highlighted connections.

B.3 Ggobi

Ggobi is a multivariate visualization tool developed by the American telephone company, AT&T. It 

is freely available (http://www.ggobi.org/), open source, and appears to be regularly updated; recent 

additions such as XML and integration to the statistical analysis software R being examples. It is 

primarily used by the research community and is often sited as a ‘best of breed’ visualization tool 

for users with large and complex data sets that are to be analysed for as yet undiscovered trends or 

associations.

The data set used for the evaluation was the percentage composition of eight fatty acids found 

in the lipid fraction of 572 Italian Olive oils collected from 9 different areas. The hypothesis was 

explored that the oils of individual areas had different signatures and could be identified by the per-

centages of the fatty acids.

Figures B.5 and B.6 show screen shots examining the percentage of Oleic acid by region and 

comparison of Oleic acid to Palmitoleic acid, labelled with regions. The evaluation was limited to 

this task and a general exploration of features and functions. The software package is extensive and 

clearly designed for users with a reasonable grasp of visualization techniques. It was not possible for 

the author to explore all of the features or necessarily understand the purpose of all the functions that 

were identified. Hence the evaluation is based on initial impressions and specific functionality used 

in the task.
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Figure B.5: Ggobi screen shot: Oleic acid by region.

Figure B.6: Ggobi screen shot: % Oleic acid plotted by % Palmitoleic acid - labelled by regions of 
origin.
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Table B.3: Framework applied to Excel by Business User.

Problem Aspect Comment Suggested Approach
Real World

Domain relevance V The nature of the dataset was rela-
tively straightforward to understand. 
However the visualization tool required 
significant understanding of visualiza-
tion techniques or significant experi-
ence with the tool itself.

Pedagogic mode: Often the la-
belling of buttons or menu items 
was insufficient to understand 
the function. More explanation 
would help the inexperienced 
user.

Data collection impact No impact in this case. However an 
understanding of the data set and the 
likely outcomes was important.

Measurement error - Not known.
Raw Data

Multiple structures V Ggobi has a great deal of flexibility and 
choice in the way a visualization is cre-
ated. This is ideal for a researcher look-
ing for complex patterns. However for 
this relatively simple task it was frus-
trating to have so much choice with lit-
tle understanding of the relevance of 
what any particular choice would have.

Pedagogic mode: Given that the 
tool is designed for researchers, 
the great choice and flexibility 
is a strength in Ggobi, however 
some additional guidance would 
be helpful. In this particular ex-
ercise the way in which colour 
was assigned to glyphs was not 
at all clear.

Choice of object V Objects and their attributes are often 
unclear in the visualizations created. 
Labelling helped although when multi-
ple objects were on screen this became 
untenable. Sample labelling was then 
very useful.

Illustrative datasets and fea-
ture demonstration. Whilst the 
dataset used was regarded as 
an illustrative one, the large 
size and dimensionality made it 
difficult to gain comprehension 
of the visualization. Smaller 
and simpler datasets would have 
been a better starting point.

Data type — No transformational or reduction func-
tionality was found in this exercise.

Dimensionality The dataset was large and complex. 
Ggobi is specifically designed to anal-
yse this type of dataset.

Associated metadata — In this example it was not possible to 
use or assemble any metadata.

Selection impact 7 Selection of visualization type, the pa-
rameters to be used and the ‘physical’ 
manipulation required are all user se-
lectable. There are both standard and 
novel tools available. No statistical 
functions where found.

Feature demonstration. Some 
indication of the significance 
of certain techniques available 
would help in user choice.

Data for Layout
User making choice V The user choice is impressive, if con-

fusing.
Illustrative datasets and feature 
demonstration. Examples of the 
visualizations that can be pro-
duced might inspire users to try 
unexpected combinations.

con tinued  on next page
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Table B.3: continued

Problem Aspect Comment Suggested Approach
Predictability As there was no transformational or re-

ducing functionality in the software the 
visualization always showed absolute 
values.

Abstraction - None available
Display

Unfamiliarity V The user can choose familiar or unfa-
miliar displays.

Spatial Meaning V The spatial meaning of the data rep-
resented was often unclear. Labelling 
individual points helped to understand 
the positioning to some extent but the 
attribute and values represented by di-
rection and distance did not seemed to 
be labelled.

Feature fingerprinting. With 
large datasets there is a limit 
to the number of labels that 
can be displayed at any one 
lime. The ability to gain an intu-
itive understanding of the repre-
sentation of attribute and value 
through the use of a known 
dataset would help.

Hidden Features V Overplotting in the scatter plots was ev-
ident in the application. However in 
this exercise it was not a problem.

Multiple windows V The screen quickly became crowded 
with two or three windows. The main 
issue was that the visualization had to 
be reduced in size in order to accom-
modate the tool control panels, this re-
duced the ability to understand the vi-
sualization.

Proactivity. The application 
could provide an optimised 
tiling, dependant on the control 
panels currently in use.

Mapping complexity V The mapping of the data to the points 
on visualizations was often completely 
unclear. Sample labelling was the only 
way to gain any clarification.

Feature fingerprinting. Com-
ment as in special meaning 
above.

Ordering - No issues were found.
Human

Expertise x/ Ggobi is clearly meant for users that 
will spend considerable time learning 
the tool and have a level of expertise 
in visualization. The terms used and 
the brief explanations offered require a 
background knowledge.

Proactivity. It might be helpful 
to have a collaborative frame-
work for experienced users to 
contribute to when new or par-
ticularly helpful techniques are 
found. If these could be cate-
gorized and presented to users 
dependant on context they could 
choose to try them / contact the 
contributor.

Perception V The user choice for all aspects of the 
display allow for the creation of poten-
tially confusing displays.

Selection and standardisation. 
The ability to reset colours and 
other attributes to a linear or 
‘normal’ progression might be 
useful after experimentation.

con tinued  on next page
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Table B.3: continued

Problem Aspect Comment Suggested Approach
Cognition V Too many variables for an inexperi-

enced user. Whilst there is a manual 
available the process of learning from 
this is too distant and ultimately the 
user must interact with the software to 
understand it properly and be able to 
choose relevant displays.

Feature Fingerprinting: With 
such a flexible tool the abil-
ity to use standard and known 
datasets, perhaps with particular 
features would give the user in-
sight into the most relevant or 
insightful visualizations.

Report for Ggobi

• Pedagogic mode:

Often the labelling of buttons or menu items was insufficient to understand the function. More 

explanation would help the inexperienced user. Given that the tool is designed for researchers 

the great choice and flexibility is a strength in Ggobi, however some additional guidance would 

be helpful. In this particular exercise the way in which colour was assigned to glyphs was not 

at all clear,

• Illustrative datasets and feature demonstration:

Whilst the dataset used was regarded as an illustrative one, the large size and dimensional-

ity made it difficult to gain comprehension of the visualization. Smaller and simpler datasets 

would have been a better starting point. Some indication of the significance of certain tech-

niques available would help in user choice. Examples of the visualizations that can be produced 

might inspire users to try unexpected combinations.

• Feature fingerprinting.

With large datasets there is a limit to the number of labels that can be displayed at any one 

time. The ability to gain an intuitive understanding of the representation of attribute and value 

through the use of a known dataset would help. With such a flexible tool the ability to use 

standard and known datasets, perhaps with particular features would give the user insight into 

the most relevant or insightful visualizations.

• Proactivity.

The application could provide an optimised tiling, dependant on the control panels currently in 

use.

It might be helpful to have a collaborative framework for experienced users to contribute to 

when new or particularly helpful techniques are found. If these could be categorized and
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presented to users dependant on context they could choose to try them / contact the contributor.

• Selection and standardisation.

The ability to reset colours and other attributes to a linear or ’normal’ progression might be 

useful after experimentation.

B.4 Reviewer’s Comments after Using the Framework

The reviewer was asked to record their comments in the following categories: ease of use; time 

required; insight; clarity.

• Ease of Use. The overall concept of the framework is easily understood. The process of going 

through the questions, referring to the suggested areas of improvement and finally summarising 

the comments under type of improvement encourages a broad view initially, focussing down 

to the specific recommendations as the process finishes. This avoids any tendency to put any 

unrepresentative emphasis on specific features that immediately strike the user as difficult or 

confusing.

The questions do not always apply to the application under review, and in some cases the inter-

pretation would change with different types of visualisation. This made the reviewer somewhat 

uncertain of the precise meaning of the question. However in the spirit of using the framework 

as a tool for evaluation this variation did not seem to be critical in catching the strengths and 

weaknesses of the visualisation.

• Time Required. Using the framework took approximately two and a half hours for each ap-

plication reviewed. Before this time, was taken to become familiar with the features of the 

software. The amount of time spent doing this varied, primarily dependant on the amount of 

prior knowledge and the complexity of the visualisation. In particular the reviewer had detailed 

knowledge of Excel, spent an hour understanding the Daisywheel software and two and a half 

hours with Ggobi.

For a designer these times might well expand considerably as the detailed understanding of 

the application would require much fuller answers and more thought about the implications of 

the potential recommendations. Also for applications such as Ggobi, with substantia] domain 

knowledge being a requirement, the reviewer should be a proficient user with some consider-

able experience.

• Insight. It was particularly illuminating to use the framework to evaluate a well known pack-

age, Excel. Clearly an evaluation of such a mature and widely used product is unlikely to
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identify many deficits in terms of functions and features. However it was interesting to see that 

there are a number of considerations thrown up by such an evaluation format that considers 

the effectiveness of the end result and guides the reviewer to think of specific aspects of the 

application.

The most difficult application for the reviewer to evaluate was the Ggobi software; the insights 

achieved were limited to the first impressions of a new user trying to understand the capability 

and meaning of the many features available. However from the experience of the review of 

Excel, it is reasonable to extrapolate that the framework would be useful for evaluation by an 

experienced user.

• Clarity. For the most part the meaning and context of the questions asked were easily under-

stood, however they were occasionally open to interpretation. This was particularly true for 

the Excel review in which it was occasionally unclear whether the questions applied to the 

underlying tool or the visualisation that was built on top of this.
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