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A generalised deep 
learning‑based surrogate model 
for homogenisation utilising 
material property encoding 
and physics‑based bounds
Rajesh Nakka 1, Dineshkumar Harursampath 1 & Sathiskumar A Ponnusami 2*

The use of surrogate models based on Convolutional Neural Networks (CNN) is increasing significantly 
in microstructure analysis and property predictions. One of the shortcomings of the existing models 
is their limitation in feeding the material information. In this context, a simple method is developed 
for encoding material properties into the microstructure image so that the model learns material 
information in addition to the structure‑property relationship. These ideas are demonstrated by 
developing a CNN model that can be used for fibre‑reinforced composite materials with a ratio of 
elastic moduli of the fibre to the matrix between 5 and 250 and fibre volume fractions between 25 and 
75%, which span end‑to‑end practical range. The learning convergence curves, with mean absolute 
percentage error as the metric of interest, are used to find the optimal number of training samples and 
demonstrate the model performance. The generality of the trained model is showcased through its 
predictions on completely unseen microstructures whose samples are drawn from the extrapolated 
domain of the fibre volume fractions and elastic moduli contrasts. Also, in order to make the 
predictions physically admissible, models are trained by enforcing Hashin–Shtrikman bounds which 
led to enhanced model performance in the extrapolated domain.

Machine learning (ML) models, especially its subdomain artificial neural networks (ANN), were proved to be 
valuable tools in the design and analysis of composite  materials1–3. First, these models are developed by learn-
ing from the data points generated by simulations or collected from experiments. Later, during deployment, 
this model is used to make inferences about any data point with the same characteristics as those used during 
learning. Generally, the initial model development process involves computational costs (memory and time) for 
generating data and training the model. The expected advantage is that, with the developed model, predictions 
can be made in significantly shorter times. Here, the number of points needed for training a model depends on 
multiple factors such as the amount of prior knowledge of the system used in the training  process4, the complexity 
of input-output relation and the expected accuracy of the model. Active research is focused on utilising known 
physics, like governing or constitutive equations, during model training. In this direction, physics-informed neu-
ral networks (PINNs)5–7 have gained much attention for accurately solving the PDEs of the underlying physics. A 
knowledge-based sampling of inputs is another way of utilising the physics of the problem in model  training8,9. 
In addition to prior knowledge infusion, the type of ANN architecture plays an essential role in effective and 
effortless learning. Some of the successful ANN architectures include; convolutional neural networks (CNN) for 
image kind of data, recurrent neural networks (RNN) for sequential or time-series data and generative adversarial 
networks (GAN) for learning the distribution of the given data.

Evaluation of composite material properties is a non-trivial task due to heterogeneities at various length 
scales and the statistical nature of the constituent’s distribution and morphology. As the experimental methods 
are time-consuming and economically costlier, analytical solutions are developed to find the properties of an 
equivalent hypothetical homogeneous material that responds similarly to the composite material. These solu-
tions are obtained by certain assumptions, thus only applicable to simpler cases with restrictions on constituent 
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geometry and distribution. These shortcomings can be addressed with finite element analysis (FEA) based 
 homogenisation10,11, where multiple boundary value problems are solved on a representative volume element 
(RVE) using different load cases. Some variations of this conventional FEA  approach12,13 are developed to reduce 
the computational costs. Variational Asymptotic Method (VAM)-based homogenisation, for example, gives an 
effective material matrix using single finite element analysis without any post-processing in contrast to solv-
ing multiple cases along with equally demanding post-processing steps in the conventional approach. Still, the 
computational time and resources required are significant enough to slow down the search for better composite 
materials. Hence, active research is being pursued to combine computational micro-mechanics and data-driven 
artificial intelligence (AI) methods to build surrogate  models6,7,14–17.

CNN models have been used widely in the micro-mechanics15,16,18–21 as micro-structure information is avail-
able, generally, either in image form (for 2D) or voxelated form (for 3D). The success of CNN architecture over 
simple artificial neural networks can be attributed to its self-feature learning capability and utilising local con-
nectivity characteristics using the following two basic  assumptions22. One, low-level features are assumed to 
be local and do not depend on the spatially far-off features, which is implemented by connecting downstream 
neurons with only spatially neighbouring neurons in the upstream through a kernel (or filter) of the convolution 
operation. The second assumption is that a feature learnt at one spatial location is useful at the other location. 
Hence the kernel with the same weights is used at all locations of the image. Generally, CNN models are con-
structed in two stages. First, data features are learnt through a series of convolution and pooling operations on 
the input samples. The second stage contains a conventional multi-layer perceptron which takes the output of the 
first stage as a flattened array. Dense connections of the last stage increase the number of learnable parameters 
drastically, thus leading to heavier computation costs and longer training times. Hence, Mann and  Kaidindi20 
have developed a CNN model wherein the output of the first stage is directly mapped to outputs. Also, at the end 
of the first stage, using globally averaged pooling instead of simple flattening was proved to reduce the number 
of parameters and over-fitting in the  model18,23. Innovative architectures of the first stage have led to efficient 
CNN models like AlexNet, VGG, and ResNet. Among these, the VGG model has been adopted widely in many 
micro-mechanical  models18,19,24, either directly by transfer learning or using its principle of stacking convolutional 
layers with delayed pooling operations. For example, Li et al.19 used pruned VGG-16 model for learning and 
reconstructing micro-structure features wherein high-level layers or those away from the input layer are removed 
to reduce the computational cost. We have used the working principle of this simple and standard architecture 
because the primary focus of the present work is to develop data sets that are aware of the material information 
and to evaluate its influence on the model performance. Though CNN models are free of feature engineering, 
some models have demonstrated that by supplying modified input instead of simple raw images, model learning 
capability can be  enhanced17,20,25. For example, Mann and  Kalidindi20 used two-point spatial correlations of the 
micro-structure; Cheng and  Wagner17 have developed RVE-net which uses loading conditions and parameterised 
geometry (by level set fields) as the input. As the preparation of labels is computationally intensive, some CNN 
models have developed using physics information to learn labels  implicitly17,26. Li and  Chen26 have modelled the 
constitutive behaviour of the hyper-elastic materials by embedding equilibrium conditions in the CNN model.

In the case of composite materials, it is desirable to have a surrogate model that can be used across more 
comprehensive ranges of fibre volume fractions ( Vf  ) and constituent properties. The existing models are built 
for either a particular fibre volume fraction or a small range of fibre volume fractions (less than 50%) and a par-
ticular fibre-matrix materials combination. In this work, we develop a model that can be used for broader ranges 
of fibre volume fractions Vf ∈ [25%, 75%] and fibre-matrix elastic modulus contrast (ratio) Ecr ∈ [5, 250] and 
also the predictive capabilities of the trained models is assessed in the extrapolated domain of Vf ∈ [10%, 75%] 
and Ecr ∈ [5, 500] . Grayscale images of the microstructure provide the geometrical features like Vf  but not the 
material information. So, if the model has to work with different material systems, it should learn to detect 
constituent material properties. For this purpose, a simple and novel method is developed wherein material 
information is supplied as higher-order tensors which are prepared by encoding material properties of each phase 
into a grayscale image of the microstructure. Another alternative way of ingesting the constituent properties is 
through multi-modal or mixed inputs. In this approach, numerical values of the constituent properties can be 
concatenated to the flattened array after the convolution operation, avoiding the encoding  operation27. However, 
this approach might require more samples to learn the spatial location of the material properties, whereas the 
samples prepared from direct encoding are informed about the constituent’s spatial location. Also, the physical 
admissibility of the model predictions is assessed using physics-based bounds. Despite the acceptable levels of 
performance metrics, a significant number of outliers to bounds are observed in certain regions of the domain. 
These outliers are completely eliminated by training the models with hard enforcement of bounds. For this 
purpose, we have used the Hashin–Shtrikman  bounds28,29 in model training.

The paper is structured as follows: initially, datasets generation is explained with the details of microstructure 
generation, material property encoding and label preparation. Then, CNN models are built, and their perfor-
mance is studied on the unseen samples of the training data sets domain and their extrapolated domain using 
absolute percentage error plots. In the end, the physics-based bounds are used to quantify and eliminate the 
physically inadmissible model predictions.

Data sets generation
The dataset is constituted of a stack of RVE samples wherein each sample contains the binary image of the 
RVE as input and its normalised transverse elastic properties as target labels. Here, RVE is a representative 
volume element of the unidirectional composite with randomly distributed fibres of circular cross-sections. 
Let Xbw ∈ R

ns×nw×nh×1 be the input part of the dataset containing ns number of RVE images with nw and nh 
pixels along width and height, respectively. Along with Xbw , one needs to supply material properties of the 
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constituents, which will be encoded into the RVE image at their respective spatial locations, as explained in the 
material information array preparation section. At the end of this pre-processing step, we get a higher-order 
tensor X∈R

ns×nw×nh×nm containing nm layers for each image representing different properties of interest. The 
input ( Xbw ), material information arrays ( X ) and labels ( Y ) of the dataset are shown schematically in Fig. 1.

In order to develop a generic surrogate model that is applicable to broader practical applications, data sets are 
created with a wide range of fibre volume fractions (Vf ∈ [25%, 75%]) and constituent material property contrasts 
( Ecr = Ef /Em ∈ [5, 250] ). For a given Vf  , from Adam and  Doner30 observations, transverse elastic properties 
of unidirectional composites rapidly increase at lower fibre-matrix elastic modulus contrast Ecr = Ef /Em and 
then stabilises; this phenomenon becomes more pronounced at higher Vf  . Transverse elastic modulus is found 
to stabilise at about Ecr = 250 for Vf = 75%30 so the maximum Ecr selected as 250 in this study. For each RVE, 
the fibre volume fraction ( Vf  ) and material properties ( Ef  and Em ) are drawn randomly with uniform probability 
from their respective range. If the randomly chosen Ef  and Em are such that Ecr is outside the range, a new pair is 
drawn until the Ecr is within its selected range. The scatter plot of Vf  and Ecr for 30,000 RVEs is shown in Fig. 2a. 
One can notice that the samples are spread uniformly with respect to fibre volume fraction but non-uniformly 
with respect to Ecr . This is due to wider range of Ef ∈ [10 GPa, 500 GPa] compared to Em ∈ [1 GPa, 10 GPa] with 
a constraint on the Ecr range. For a given Vf  , from Adam and  Doner30 and Fig. 2b, transverse elastic property 
varies rapidly at lower Ecr and stabilises at higher Ecr . Hence, we assume that having lesser samples in the region 
of negligible property variation has minor effect on the model performance.

The data set, D1 , developed in this work contains 30,000 samples with input Xbw ∈ N
30,000×256×256×1 and 

labels Y ∈ R
30,000×3 , which will be split in a 2:1 ratio for training and testing performance of the models, 

respectively. Here, the size of the RVE binary image (i.e., representing matrix with 0 and fibre with 1) is chosen 
as 256× 256 following a convergence study, as explained in the next section.

Note that the dataset is designed as a union of 120 chunks wherein each chunk containing 250 samples follows 
the identical distribution (of Vf  and Ecr ) as the whole dataset. This is to ensure the identical distribution for the 
smaller data sets which will be used in convergence studies for finding the optimum image size and optimum 
training set size. The following points list the steps involved in data sets preparation while the detailed procedure 
is given in the later part of this section,

For each RVE, 

1. Draw Vf  and Ecr from the selected range;
2. Generate RVE for the respective fibre volume fraction, Vf ;
3. Save RVE as a black and white binary image, representing matrix with 0 and fibre with 1;
4. Material information arrays are prepared using Eq. (4), from binary image during the prediction;
5. The transverse elastic properties are determined using physics-based simulations and normalised with their 

respective matrix modulus.

Microstructural RVE generation. Periodic RVEs of unidirectional composite materials, with the random 
distribution of circular fibres, are generated using an optimisation-based algorithm recently developed by the 
 authors31. Here, the periodicity of RVE implies a fibre leaving an edge(s) must enter from the opposite edge(s) 
such that RVE is continuous when it is repeated in the space as shown in Fig. 3a. Such periodicity is necessary for 
applying periodic boundary conditions during the homogenisation of the RVE to evaluate effective properties. 
RVEs generated using this algorithm have proved randomness in the fibre distribution and transverse isotropy 
as an actual microstructure using statistical and micro-mechanical  analysis31. Initially, fibre cross-section centres 

Figure 1.  Schematic of data set elements showing RVE binary image (input to the model), material information 
arrays (prepared at the beginning of the model inference) and transverse elastic properties normalised with the 
respective matrix modulus (output of the model).
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Figure 2.  Characteristics of data set D1 . (a) The distribution of Vf  and Ecr with 30,000 RVEs, (b–d) Normalised 
transverse elastic property E22 = E22/Em variation with Vf  and Ecr . Note that E22 varies rapidly at lower Ecr and 
higher Vf  as indicated by red colour bubbles in (c) and (d).

Figure 3.  Sample RVE binary images (a–d), with 256× 256 resolution, at four fibre volume fractions ( Vf  ). (a) 
shows the periodicity of the RVEs.



5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:9079  | https://doi.org/10.1038/s41598-023-34823-3

www.nature.com/scientificreports/

x = (x, y) are placed randomly in the RVE domain � while allowing fibre overlaps. Then, a constrained optimi-
sation problem is solved to minimise the magnitude of fibre overlap f as shown in Eq. (1).

The total magnitude of overlap f and its gradient can be explicitly  evaluated31 as shown in Eq. (2)

where Cij is the magnitude of i-th fibre intrusion into the j-th fibre, H is Heavside step function, dij is the actual 
distance of between the centres of fibre i and j, dij is the distance between the centres of fibres when they are 
externally touching with each other, and N is the total number of fibres in the RVE. We have used Julia  language32 
to solve the optimization problem Eq. (1). On a computer with an Intel Xeon CPU 2.40 GHz processor and 64GB 
RAM, generating 30,000 RVEs with uniform distribution of Vf ∈ [25%, 75%] took 106.8 min. The computational 
time might vary slightly due to the stochastic nature of Vf  and the optimisation convergence for each RVE. Four 
sample RVE images, generated using this approach, are shown with 256× 256 resolution in Fig. 3.

Material information array preparation. In this section, the procedure for creating material infor-
mation arrays from an RVE image is developed. Let the array I(g) ∈ R

nw×nh represent a grayscale image of 
RVE with Nph material phases where a unique pixel value, pi ∈ [0, 1] ⊂ R , is used to indicate i-th phase �i for 
i = 1, 2, ...,Nph . In order to avoid confusion with the continuous phase matrix of the micro-structure, the term 
array is used to imply a mathematical matrix or, more specifically, rectangular arrangement of image pixel values.

We proceed to construct I(�) , of same size as I(g) but with different pixel values representing material con-
stant or property � ∈ [�min, �max] . The pixel values of I(�) can be evaluated using the Eq. (3). Here, the criteria 
for choosing the bounds, �min and �max , need not be based on the admissibility of the property � but rather the 
range of values used for building the data sets. For example, from Table 1, elastic moduli limits can be chosen as 
Emin = 1 GPa and Emax = 500 GPa instead of E > 0 for creating all the data sets.

where δ(x) is the Dirac delta function with value 1 for x = 0 and 0 otherwise. Though Eq. (3) looks involved, it 
simply normalises the property �i of i-th phase with respect to its bounds to [0, 1].

In the special case of a two-phase material, the Eq. (3) can be simplified to the Eq. (4). Let the phase �1 and 
the phase �2 of I(g) are represented with pixel values 0 and 1, respectively. Then the whole array, I(�) , representing 
the information �1 for phase �1 and �2 for phase �2 , can be obtained using the following Eq. (4).

where J ∈ R
nw×nh is an array of all ones. A schematic of the elastic modulus information array, evaluated using 

Eq. (4), is shown in Fig. 4. It’s worth emphasising that caution must be exercised while saving the material 
information arrays in image format. Pixel values are generally stored as a byte (8-bit), taking the integer values 
in [0, 255]. This might lead to 256 discrete divisions on the selected range of the material property instead of 
continuous values, as float values are rounded off to integers. To avoid this trouble, we chose to evaluate material 
information arrays during the model prediction in the pre-processing stage of the model, as shown in Fig. 5, at 
the cost of a slight increase in the computational cost.

In the present work, Poisson’s ratio of fibre and matrix is chosen as the same, νf  = νm = 0.25, to reduce the 
complexity of the analysis. However, this assumption is justified due to the weak dependency of Poisson’s ratio 
mismatch on the transverse elastic  properties33,34. Hence, Poisson’s ratio information arrays are not included in 
the input so each sample contains only the elastic modulus information array.

Target properties evaluation. Target values of the data sets contain the transverse elastic properties 
E22,E33 and G23 , normalised with the respective matrix modulus. As the number of RVEs (30,000) is rela-
tively larger, a computationally efficient homogenisation technique based on the variational asymptotic method 
(VAM)13 is used in this work. In this approach, the whole effective elastic matrix D can be evaluated using a 
single simulation using the Eq. (5a)13,35,36 

(1)
Minimize f

subjected to x ∈ �

(2)

f =

N−1
∑

i=1

N
∑

j=i+1

C2
ij =

N−1
∑

i=1

N
∑

j=i+1

[

(dij − dij)H(dij − dij)
]2

∂f

∂xi
= −2

N
∑

j=1(�=i)

Cij(xi − xj)

dij

∂f

∂yi
= −2

N
∑

j=1(�=i)

Cij(yi − yj)

dij

(3)I
(�)
kl =

1

�max − �min

Nph
∑

i=1

[

(�i − �min)δ(I
(g)
kl − pi)

]

(4)I(�) =
�1 − �min

�max − �min
J+

�2 − �1

�max − �min
I(g)
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 where � is the volume of the RVE domain; D is the material stiffness matrix of the respective phase with size 
p× p ; B is a strain-displacement matrix, and na is the number of total active degrees of freedom (i.e., exclud-
ing the dependent degrees of freedom due to periodic boundary conditions). A homogenisation tool, written 
in Julia32 language, is developed to evaluate the effective material matrix D shown in Eq. (5). Note that VAM-
based homogenisation also uses FEA for evaluating the terms in Eq. (5b), thus making it capable of capturing 
the RVE morphology and ensuring the high-fidelity of the solutions. In contrast to the conventional FEA-based 
 implementations10,11, where one needs to solve as many boundary value problems (BVP) and post-processing 
steps as the number of material matrix columns, VAM-based homogenisation gives D with a single BVP solution. 
For example, on a computer with an Intel Xeon CPU 2.40 GHz processor and 64 GB RAM, two-dimensional 
homogenisation of 20 RVEs using plane strain analysis took about 8.3 min with VAM and about 32.5 min with 
the conventional FEA approach with the same mesh and loading. This gain in terms of computational time 
becomes more significant in the case of three-dimensional homogenisation.

Generated RVEs are modelled with a perfect interface between the fibre and the matrix. Then, the periodic 
mesh needed for applying periodic boundary conditions (PBC) is generated, with plane-strain elements, using 
an open source software, gmsh37. Then Eq. (5) is employed to find the transverse effective material matrix D . 
Mesh convergence study, performed at four combinations of the extremes of Vf ∈ [25%, 75%] and Ecr ∈ [5, 250] 
ranges, has shown that the convergence of transverse elastic properties at about 50–60 thousand elements. Mesh 
contains a large proportion of quadrilateral elements and triangular elements in smaller proportion ( < 2% ). Next, 
the optimum RVE size (the ratio of RVE side length to the fibre radius) is determined as 30 following another 
transverse elastic property convergence study by varying the RVE size.

(5a)D =
1

�
[Dpp − DT

nap
D−T
nana

Dnap]

(5b)Dpp =

∫

�

Dd�; Dnap =

∫

�

BTDd�; Dnana =

∫

�

BTDBd�

Figure 4.  Schematic representation of the material array preparation of two-phase material (a) binary image, 
I(g) , showing matrix and fibre material, respectively, by 0 and 1 (b) elastic modulus array, I(E) , prepared with 
Ematrix = 10 GPa, Efibre = 400 GPa, Emin = 1 GPa and Emax = 500 GPa.

Table 1.  Range of fibre volume fraction Vf  , matrix elastic modulus Em , fibre elastic modulus Ef  and elastic 
moduli contrast ratio Ecr of the data sets D1 , D2 , D3 and D4 . ∗ indicates test set MAPE of the respective data set 
when tested on the model trained with 10,000 samples of D1 without bounds enforcement.

D1 D2 D3 D4

Training set size 20,000 – – –

Testing set size 10,000 5000 1500 1500

Vf  (in %) [25, 75] [25, 75] [10, 25] [10, 25]

Ef  (in GPa) [10, 500] [10, 500] [10, 500] [10, 500]

Em (in GPa) [1, 10] [1, 10] [1, 10] [1, 10]

Ecr [5, 250] [250, 500] [250, 500] [5, 250]

MAPE
∗ (in %) 1.626 2.263 2.787 2.347
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Model development
In this section, a CNN model inspired by the VGG  architecture38 is designed and trained using the data set D1 . 
The data set is split in a 2:1 ratio for model training and testing, respectively. Initially, a convergence study is 
performed over pixel sizes 32, 64, 128, 256, 512 to find the optimum RVE image size. Then, CNN models are built 
and trained at the various training set sizes to understand the influence of data set size on the model performance. 
It is observed that model performance converges at a certain training set size, beyond which performance gain 
is insignificant compared to the computational cost. Later, the model’s performance is assessed with respect 
to fibre volume fraction and elastic moduli contrast. The trained model prediction capability is studied in the 
extrapolated (or unseen) domain. Finally, the physics-based Hashin–Shtrikman bounds are used to quantify and 
eliminate the predictions which fall outside these bounds.

Building and training the CNN model. In Ref.38, Simonyan and Zisserman have shown increased effi-
ciency with deeper networks where a small kernel size ( 3× 3 ) coupled with delayed pooling operation is used. 
The CNN architectures with this idea, known as VGG CNN, have been extensively used in different domains, 
including some micro-structural  applications18,19,24. The advantage of using a smaller kernel size with increased 
depth (or more layers) over a big one is to reduce the number of training parameters and probably enhance 
learning capability as the non-linear activation function is applied more times through the depth. Also, delayed 
pooling operation minimises information loss. Hence, in the present work, we have adopted the VGG kind of 
CNN architecture for building the model as shown in Fig. 5. In all the convolution layers, kernel size and stride 
are fixed to (3, 3) and (1, 1), while the number of filters is shown in Fig. 5 for each convolution operation. Aver-
age pooling is chosen with a size of (2, 2) and a stride of (2, 2), following a comparative study with max pooling 
operation. Activation functions are essential elements in the deep learning model to infuse non-linearity. So, 
rectified linear unit (relu) activation is applied after every convolution layer. As the model is built to predict con-
tinuous real values, linear activation (or no activation) is used on the output layer. Note that as the data sets are 
too large to fit into the memory, samples are supplied in batches of size nbs = 64 . Model parameters are updated 
after every passage of a batch, known as an iteration. An epoch constitutes all such iterations, where the complete 
training data is sent through the model; to compare across the models, the number of epochs is fixed at 200 in 
this work. The deviation of the model predictions ( Y (p) ) from the ground truth values ( Y (t) ) of all the samples 
in a batch is quantified using the mean squared error (MSE) loss function as shown in Eq. (6).

Figure 5.  Schematic of the CNN model. Here, nbs is the batch size, and nm is the number of material 
information arrays (each having nw rows and nh columns), Y (t) and Y (p) are true and predicted values.
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where y(t)ij  and y(p)ij  are true and predicted properties of a sample. Then, the Adam optimisation  algorithm39 is 
used, with a learning rate of 0.001, for updating the model weights such that the MSE is minimised. These steps 
are implemented using  PyTorch40, an open-source deep-learning library with the Python programming interface, 
for building and training the CNN model. Training a model with the aforementioned hyper-parameters and 
ten thousand samples took about 80 min on a machine with 32 GB RAM, 3.7 GHz processor and 8 GB NVIDIA 
GPU RTX-3050.

RVE image size selection. The computational cost of the model training and inference is directly related 
to the image size. While a lower image size leads to cheaper computational demand, greedy downsampling of the 
image might severely alter the micro-structure details. Hence, in this section, we determine the appropriate RVE 
image size (hence that of material information arrays) by evaluating its influence on the model performance. 
As the resolution of the image becomes lower, microstructural information may be lost due to pixelation. For 
example, the RVE of a sample with 54.7% fibre volume fraction is shown in Fig. 6a,b, respectively, with 128× 128 
and 512× 512 resolution.

It can be noticed that, with 128× 128 , the matrix between two fibre surfaces is replaced with fibre material, 
and the smooth profile of the fibre cross-section has become coarse. In this study, we consider five different 
resolutions ( 32× 32 , 64× 64 , 128× 128 , 256× 256 and 512× 512 ) to understand the information loss and its 
influence on the model training. First, the absolute percentage deviation (APD) of fibre volume fraction due to 
pixelation of the image is quantified using the Eq. (7) and plotted in Fig. 6c. Here, V (image)

f  is evaluated as a frac-
tion of white pixels (representing fibres) in the RVE image. It shows that, for example, saving an RVE at 64× 64 
resolution would lead to about 2–4% deviation in V (true)

f  if V (true)
f  is close to 75%. This deviation is found to reduce 

by increasing image resolution with less than 1% deviation for resolutions above 256× 256 . But, selecting higher 
resolution causes exponentially increasing computational loads thus higher model training times.

Next, models are trained with all five considered resolutions at three different data set sizes (500, 1500, 2500). 
Further, at each combination of data set size and resolution, ten realisations of models are developed (with the 
same training samples and hyper-parameters) to account for the statistical nature of the training process. Then, 
the performance of these models is evaluated on the test samples and quantified with mean absolute percentage 
error (MAPE); In Fig. 6d, the mean of the MAPE evaluated over ten realisations is plotted against image resolu-
tions with the standard deviation of MAPE as errorbars. It can be noticed that with increasing resolution and 
training set size, the MAPE and uncertainty have reduced.

From the above analysis, we have selected 256× 256 image resolution for model training as the reduction in 
Vf  deviation (see Fig. 6c) and MAPE (see Fig. 6d) is not significant with an increase in image size from 256 to 
512, compared to the increased computational cost.

Performance evaluation. In order to find the optimum number of samples required for effective learning, 
different models are trained with the number of samples ns ∈ {500 , 1000, 1500, 2000, 4000, 6000, 8000, 10,000, 
15,000, 20,000} . As explained in the previous section, these subsets of the data set are ensured to have the same 
kind of distribution as that of the whole data set. Further, to understand the statistical nature of the training 
process, 10 different realisations of the same model are trained at each of the ns using the same set of samples and 
hyper-parameters. So, in total, 100 models are trained with ten subsets of the data set and 10 realisations at each 
of the subsets. Then, these trained models are tested on samples not seen during the training wherein the test set 
size is selected as half the size of the training set. In other words, for example, models trained on 5000 samples 
are tested using 2500 unseen samples. Mean absolute percentage error (MAPE), as defined in Eq. (8), is used to 
measure the predictive capability of the trained model.

where ntest is the number of test samples, and the superscripts t and p indicate true and predicted values of y. 
Though MAPE is simpler to interpret and scale independent, it has certain limitations like tending to infinity 
or undefined when the true value approaches or equals to zero. However, in the present work, normalisation of 
the effective properties with the respective matrix modulus eliminates such trouble as true or target values y(t)i  
are always greater than or equal to one. Also, it is important to note that the absolute percentage error treats 
underestimation and overestimation differently.

The variation of the mean and standard deviation of MAPE, evaluated on the test set over 10 realisations, is 
plotted against the number of training examples in Fig. 7. We refer to these curves as learning convergence curves 
(LCC). In Fig. 7, one can observe that MAPE of all three normalised transverse properties ( E22 , E33 , G23 ) has 
converged at about a training set of 10,000 samples. Also, as indicated by the error bars, the standard deviation 
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has reduced significantly with the training set size. From this convergence analysis, we have selected training set 
size of 10000 as optimum and proceed to rigorously analyse the models trained with this data set size.

The transverse elastic properties (i.e., target properties) depend on the fibre volume fraction Vf  and elastic 
modulus contrast Ecr , as shown in Fig. 2. It is difficult to infer model performance with respect to these param-
eters using MAPE, as it squashes information at all Vf  or all Ecr into a single value, see Eq. (8). So, in order 
to get a clear understanding of the model’s predictive capability, the absolute percentage error (APE) of each 
prediction will be studied. In Fig. 8, scatter plots show the APE of all three property predictions for 5000 test 
samples with respect to Vf  and Ecr . It can be noticed that, except few outliers, the absolute percentage error lies 
below 5%. The cumulative distribution function on the right side of Fig. 8 shows the fraction of samples below 

Figure 6.  Optimum RVE image size selection. (a) and (b) shows a sample RVE image with 128 and 512 pixels 
per side, respectively, wherein the RVE side length is 30 times the fibre radius; (c) Absolute percentage deviation 
of RVE image Vf  with true Vf  at different resolutions; (d) variation of mean absolute percentage error (MAPE) 
with image resolution.
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a particular APE. For example, 86% of samples have absolute prediction error less than 3% and below 5% APE 
for 97% of the test samples.

Extraterritorial performance. In the preceding sections, the surrogate model is built and trained to pre-
dict in a wide range of Vf ∈ [25%, 75%] and Ecr = Ef /Em in[5, 250] . Also, these models are tested on unseen 
samples which belong to the same range, and the performance is found to be within acceptable levels. It would 
be interesting to see how the model performs in the extrapolated domain which was not considered during the 
training. In Fig. 9, extrapolated domains of data sets ( D2 , D3 and D4 ) with respect to the domain of main data set 
D1 are shown schematically. In these extrapolated domains, the variation in the property is not significant from 
its connecting region of the native domain, as shown in the middle and right schematic of Fig. 9. So, the model 
is expected to predict with reasonably good accuracy as in the native domain. Importantly, such an exercise will 
help in evaluating the generality of the CNN model and its ability to predict properties of completely unseen 
microstructures whose characteristics are not present in the training dataset. For testing the model’s perfor-

Figure 7.  Learning convergence curves of the models trained on the data set D1 showing the variation of each 
property’s MAPE with training set size. Errorbars indicate the standard deviation of MAPE over ten realisations 
of the model which are trained with same set of samples and hyper-parameters.

Figure 8.  The scatter plots show the absolute percentage error (APE) of target property predictions, on 5000 
test samples, with Vf  and Ecr . The cumulative distribution function on the right side shows the fraction of 
samples under a particular APE; For example, it shows the APE of the model prediction is less than 5% on 97% 
of the test samples.
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mance in these extraterrestrial domains, the size of data sets is selected in proportion to that of the domain size. 
As the range of Ecr is approximately the same for all the domains, the number of test samples is calculated based 
on the Vf  range. For data sets D1 and D2 , with 50% Vf  range, 5000 test samples are used, and for the remaining 
two data sets which have 15% Vf  range, 1500 test samples are used. The APE of the model predictions on these 
data sets is shown in Fig. 10, with respect to Vf  and Ecr , along with the cumulative distribution function of APE. 
In the case of D3 and D4 , as shown in Fig. 10b,c, APE shows an increasing trend with decreasing Vf  . This could be 
due to deviation in structural information of RVE with decreasing Vf  , though its target property is not changing 
significantly. In all three extrapolated domains, the APE of model predictions for at least 85–90% of the test sam-
ples is less than 5%. This suggests that the trained model can be used in the extraterritorial domain of Vf  and Ecr.

Influence of physics‑based bounds. In the previous sections, we analysed model performance on the 
unseen samples of the trained data set domain and on the data sets of extrapolated domains. It is observed that 
the absolute percentage error of the predictions is within the acceptable limits. However, model predictions may 
or may not be physically admissible. In this section, the admissibility of these predictions is assessed using the 
physics-based bounds available in the  literature29. We use simpler and relatively tighter Hashin–Shtrikman (HS) 
 bounds28, which can be evaluated using the Eq. (10). In general, the lower and upper bounds on the effective 
properties of the composite material are separated by a large magnitude, as shown in Fig. 11a. It can be noticed 
that the bounds get wider with increasing Vf  and contrast ratio Ecr . And, the transverse properties lie closer to 
the lower bound ( as shown in Fig. 11b,c), thus there is a possibility that the model prediction might go out of 
the lower bound.

where suffix f and m refer to fibre and matrix, K is the bulk modulus, G is shear modulus, E is Young’s modulus, 
super-fix (−) and (+) indicate lower and upper bounds.

The number of outliers to HS lower bounds is evaluated on all 10 realisations of the model, which are trained 
on 10,000 samples of the data set D1 . The maximum number of outliers for each property with all four data sets 
is listed in Table 2.

It shows that a large number of model predictions on the data sets D3 and D4 are below the lower bound. Now 
we proceed to enforce these bounds during the model training such that all the model predictions fall within the 
bounds. While training a model, in general, bounds can be enforced in two ways. In the first approach, known 
as soft enforcement, the loss function of the model is regularised by weighed addition of the mean square errors 
of the deviation of the predictions from the bounds. Generally, the weights of these additional loss terms are 
hyper-parameters which need to be tuned manually. In the second approach, known as hard enforcement, the 
model predictions are transformed to lie within the bounds thereby avoiding additional hyper-parameters. In the 
present work, we chose to enforce bounds in a hard manner. In this approach, model architecture and training 
are similar to the one shown in Fig. 5, except few changes at the end of the network. The output of the network’s 
last layer is mapped to [−1, 1] by applying the tanh activation function. Then, these values are further scaled to 
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Figure 9.  Schematic representation of the three extrapolated domains (with data sets D2 , D3 and D4 ) along 
with the domain of main data set D1 . Note that the fluctuations in E22 at the higher Vf  and Ecr are not indicated.
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lie between lower and upper bounds as shown in Eq. (11). It’s worth mentioning that the model outputs are not 
constrained to bounds, but the model is trained to predict values between the bounds.

(11)y(p) = y(−) +
1+ y∗

2

[

y(+) − y(−)
]

Figure 10.  The absolute percentage error (APE) of the model predictions when tested in extrapolated domains 
D2 , D3 and D4 . In each of (a–c) subplots, first two scatter plots show the APE of all three properties with respect 
to fibre volume fraction Vf  and elastic moduli contrast Ecr . The cumulative distribution function of APE is 
shown on the right hand side.
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where y∗ ∈ [−1, 1] is the output of tanh activation function on the last layer, y(−) and y(+) are lower and upper 
bounds. It is observed that, unlike without bounds training, the training with bounds is sensitive to the learn-
ing rate; bounds-enforced models are trained with an optimal learning rate of 0.0005. The overall MAPE of the 
model predictions, after 200 epochs, is about 1.72 in the same range as with models trained without bounds (see 
Table 1). Nevertheless, the absolute percentage error of the predictions in the extrapolated domains D3 and D4 is 
improved, as shown in Fig. 12, in addition to eliminating the number of outliers, for all the domains. It suggests 
that, for predictions in the extrapolated domain, especially towards the lower fibre volume fractions, enforcing 
the bounds is important in predicting physically valid properties.

Conclusions
CNN models are developed for predicting the normalised transverse elastic properties of fibre-reinforced com-
posites. In order to increase the applicability of the model, it is trained on a wide range of fibre volume fractions 
in [25%, 75%] and fibre-matrix elastic modulus contrast ratio in [5, 250]. The model is shown to provide very 
good predictions even on completely unseen microstructures that lie outside of the considered range of volume 
fractions (in [10%, 25%]) and modulus ratios (in [250, 500]). Further, the study demonstrated that careful data 
set preparation and training design is crucial for achieving better model performance. In summary,

• A simple and novel method is developed for encoding material properties of constituents in the greyscale 
image of the micro-structure so that the model learns material information along with the geometric infor-
mation.

• RVE binary image with a resolution of 256× 256 is found to have minimum Vf  deviation ( < 1% ) from true 
Vf  ; Also, MAPE is found to have converged at this RVE image resolution.

• Stochastic nature of the training process is quantified using the mean and standard deviation of MAPE, 
evaluated on 10 realisations of the model training.

• Using the learning convergence curves, the optimum training set size is determined as ten thousand beyond 
which reduction in MAPE of model predictions is found to be negligible.

• In the training set domain, at least 96% of the 5000 test sample predictions have absolute percentage error 
(APE) less than 5%.

• In the case of extrapolated domains, at least about 85–90% of the test samples have APE less than 5%.
• At the end, we have trained the models with hard enforcement of the physics-based HS bounds such that the 

model predictions are always physically admissible. Also, this has improved the model’s performance metric 
APE in the extrapolated domains D3 and D4.

Figure 11.  The variation of Hashin–Shtrikman bounds of the data set D1 with fibre volume fraction Vf  and 
elastic moduli contrast Ecr . (a) shows the extent of separation between the bounds normalised with matrix 
moduli Em ; (b) and (c) shows that the effective property E22 lies very close to the lower bound.

Table 2.  On the model trained without bounds enforcement, number of predictions which lie below the 
lower bound of the respective property, when tested on unseen samples of the four data sets D1 , D2 , D3 , D4 . 
Numbers here indicate the maximum number of outliers over ten realisations of the models. On the model 
trained with bounds enforcement, the number of outliers are reduced to zero.

Property

Number of outliers to the data sets

D1 D2 D3 D4

E22 0 0 533 651

E33 0 0 251 318

G23 5 0 862 796
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The proposed material encoding idea can be employed to build surrogate models for heterogeneous, aniso-
tropic materials of varied constituent combinations by using the stack of relevant material information arrays 

Figure 12.  Absolute percentage error (APE) of the bounds-enforced model predictions when tested on the 
data sets D1 , D2 , D3 and D4 . In (a–d), first two scatter plots indicate the APE of model predictions with respect 
to fibre volume fraction Vf  and elastic moduli contrast Ecr . On the right-hand side, the cumulative distribution 
function of APE shows the fraction of samples below 3% APE and 5% APE.
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as input to the network. Also, as the model spans a wide range of fibre volume fractions and elastic modulus 
contrasts, the trained models can be used in the inverse design of the microstructures which gives the proper-
ties of interest.

Data availibility
The datasets used and/or analysed during the current study are available at the following link https:// github. 
com/ 338ra jesh/ mpi- cnn.
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