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A comprehensive deep learning 
method for empirical spectral 
prediction and its quantitative 
validation of nano‑structured 
dimers
Sneha Verma 1*, Sunny Chugh 2, Souvik Ghosh 3 & B. M. Azizur Rahman 1

Nanophotonics exploits the best of photonics and nanotechnology which has transformed optics 
in recent years by allowing subwavelength structures to enhance light‑matter interactions. Despite 
these breakthroughs, design, fabrication, and characterization of such exotic devices have remained 
through iterative processes which are often computationally costly, memory‑intensive, and time‑
consuming. In contrast, deep learning approaches have recently shown excellent performance as 
practical computational tools, providing an alternate avenue for speeding up such nanophotonics 
simulations. This study presents a DNN framework for transmission, reflection, and absorption spectra 
predictions by grasping the hidden correlation between the independent nanostructure properties and 
their corresponding optical responses. The proposed DNN framework is shown to require a sufficient 
amount of training data to achieve an accurate approximation of the optical performance derived from 
computational models. The fully trained framework can outperform a traditional EM solution using 
on the COMSOL Multiphysics approach in terms of computational cost by three orders of magnitude. 
Furthermore, employing deep learning methodologies, the proposed DNN framework makes an 
effort to optimise design elements that influence the geometrical dimensions of the nanostructure, 
offering insight into the universal transmission, reflection, and absorption spectra predictions at the 
nanoscale. This paradigm improves the viability of complicated nanostructure design and analysis, and 
it has a lot of potential applications involving exotic light‑matter interactions between nanostructures 
and electromagnetic fields. In terms of computational times, the designed algorithm is more than 700 
times faster as compared to conventional FEM method (when manual meshing is used). Hence, this 
approach paves the way for fast yet universal methods for the characterization and analysis of the 
optical response of nanophotonic systems.

In recent years, many advances in optics have resulted in remarkable capabilities beyond the diffraction 
limit with various applications in the field of biomedicine, point-of-care applications, and nanotechnology. 
Nanophotonics has transformed traditional optics by allowing subwavelength structures to influence intense 
light-matter  interactions1–3. Nanophotonics strives to use optical resonances and strong surface plasmon localized 
fields produced by either optimizing their shape or selection of materials.4–7 Complex nanostructures, on the 
other hand, whose shapes may be characterized by several geometrical factors, usually necessitate the use of 
advanced numerical techniques to deal with multidimensional matrix organizations derived from integral or 
differential versions of the Maxwell’s equations. There are different numerical techniques available to solve 
such complex structures based on the finite element  methods8, such as COMSOL Multiphysics numerical 
 packages9, the generalized method of moments (GMM)10, and finite difference time domain  method11,12, 
as well as the discontinuous Garlekin  method13–15. Regrettably, simulations employing these tools are often 
quite time-consuming and computationally costly, nonetheless, in scenarios requiring a real-time application, 
such as  biosensors16,17, particle  physics18, condensed  matter19, chemical  physics20, ultra cold  science21, 
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conventional  microscopy22,23 iterative inverse designs of complex optical  devices24,25 and investigation of optical 
 functionalization26, efficient modelling of optical performance at the nano/micro region is greatly sought. To 
overcome this shortcoming, deep learning (DL)  techniques27 such as multilayer percepteron neural networks 
(MLPs)28, convolutional neural networks (CNNs)29, recurrent neural networks (RNNs)30, and generative 
adversarial networks (GANs)31, the predictive modelling can play a vital role based on physics has advanced 
dramatically in the realm of cognitive  science32. As a result, several researchers have increasingly turned 
their attentions to DNN and have applied in synchronous transceivers that are one example of these kind of 
 applications33,  plasmonics34,35, multimode  fibers36,  sensing37–40,  nanotechnology41–45 and photonic crystal  fibers46. 
Peurifoy et al.47 showed the nano shell and they are only predicting scattering cross-section. Baxter et al.48showed 
the plasmonic colours predictions for the sphere and Sajed et al.49 is showing the spectra prediction using the 
convolutional neural networks and recurrent neural networks also the image processing. In this manuscript we 
focused an array of 3-D structures with evident plasmonic properties. The algorithm predicted the transmission, 
reflection and absorption spectra that can help to understand the nature of much smaller dimension as their 
plasmonic properties are quite evident also predicting three spectra which can be the full package to understand 
the nature of the plasmonic device in terms of resonating wavelength. Hence, in this work tiny coupled nano 
structures has shown excellent surface plasmon resonance and highly confined electromagnetic fields that may be 
tuned for diverse purposes by modifying the nano-structures shape and material choices. The overall summary 
of these findings so far is that a neural network must be developed for a fast computational process and less 
computing load that involves hyper-parameter tuning, training data production, training of designed neural 
network, and rigorous testing for each unique problem adopting a specific geometric model.

Method
Deep learning neural network (DNN) paradigm and its synchronizations with 
nanotechnology. This work has been organised in two phases where in the first, we have developed a 
FEM-based frequency domain  approach50–55 which has been utilized to obtain the surface plasmon resonance 
confinement around the gold nanostructures. Figure 1 shows an overview of the model description, where gold 
elliptical and circular dimers have been designed. The dielectric constant of the gold have been adopted from 
Johnson and  Christy56. Due to the sheer existence of free electron in the metal, the dielectric constant of the 
metallic surface was estimated using the Drude free electron model. The dielectric constant of gold is computed 
with the help of relaxation time τ = 9.3 ± 0.9 ×10−15 s and for metallic structures which are around near infrared 
frequencies when ω >> 1/τ,56:

Figure 1.  Schematic of the extended unit cell elliptical nano antennas and its optical response in terms of 
transmitted and reflection spectra.
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Here the plasma angular frequency is defined by ωp which is equal to 
√

4πNe2

m0
 = 9 eV, where m0 = 0.99± 0.04 

defined as effective optical mass and N is the conduction electron  density56.
The classical Maxwell equations were solved by employing the FEM, taking into account the harmonic 

dependency of the electric field E(r, t) = E(r)e−jwt in order to examine the physical plasmonic characteristics of 
nanostructures. Throughout the simulations, the Helmholtz equation has been employed, which can be obtained 
from the usual Maxwell equations, as shown below.

Here k0 is the wave vector. Temporal periodic distributed field was used as E(x, y, z) = E(x, y, z)ejβz , and β is 
defined as a propagation constant. In complex form, γ = α + jβ , and if α = 0 , then γ = jβ , which represents 
the loss-less propagation dependency in the z-direction. To excite the nanostructures, the x-polarised wave is 
launched from the top layer in the z-direction which generated the LSPR upon interaction with the designed 
nanostructures. The strongly localized LSPRs and its optical responses for elliptical has also been shown in 
the inset of Fig. 1. For more details please see Sect. I of the Supporting Information. From supplementary 
information, it is clearly proved that the frequency response is sensitive to geometrical parameters of any 
nanostructure, materials characteristics, and changes in the local environment, LSPRs have a huge potential for 
molecular sensing, which could help in clinical diagnosis, environmental monitoring, and detection of biological 
 agents57–59.

Results
The analyte molecules are typically attached to the exterior face of the nanostructures, either along with or 
without tethering particles. It generates a small perturbation of the dielectric surrounding refractive index (RI), 
resulting in a measurable shift in the resonance frequencies or amplitude, which may be evaluated instantaneously 
using the transmission, reflectance and absorption spectra which can be predicted with the help of designed 
DNN configuration as shown in Fig. 2.

Here Fig. 2a shows the given geometrical inputs (paired elliptical) to the DNN. Surface lattice resonances 
(SLRs) are made up of gold nanostructures organised in a regular pattern. It can sustain resonances that are 
formed via LSPRs coupling and have much finer spectral  characteristics60. A gold nanostructure on a Si substrate 
supports plasmonic resonances in each unit cell of the structure. The geometric properties of the  nanoparticles61, 
which may be mapped to the major (a) and minor (b) axes for elliptical dimer, sepration distance (g) and height 
(h) of the nanostructures, influence the wavelengths at which SLRs are triggered. Variation in these parameters 
can change the optical spectral characterstics. Thus, the major (a) and minor (b) axes, separation gap (g) are 

(1)ε(ω) = 1−
ωp

2

ω2
+ j

ωp
2

ω3τ
= ε

f
real + jε

f
imag

(2)∇
2E + k20εE = 0

Figure 2.  (a) Schematic of the structure of two elliptical nanostructures on SiO2 substrate (The top and front 
views of a single unit cell with the geometrical parameters are represented in the insets). (b) A DNN model that 
predicts the optical response over a wavelength range for the given geometrical parameters and (c) Shows the 
predicted optical Reflection, Transmission and Absorption responses for a given geometrical structure.
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adopted as a input parameters, and the corresponding outputs are discrete spectral datapoints in the Visible-
Infrared region . Figure 2b shows the architecture of the developed neural network when the input parameters 
are used for predicting the spectral response of the corresponding nano structures. At the start of training of 
the developed DNN, the learning algorithm develops an estimated function that predicts output values. After 
adequate training, this built model is expected to produce output spectral responses for any new input geometrical 
dimensional value. This process of learning will determine the mean squared errors (MSE) to demonstrate the 
efficacy of the proposed DNN by comparing its anticipated spectral output with the actual spectral values. Several 
widely used machine learning packages were evaluated to develop and train this DNN, including pandas62 for 
data preprocessing and Scikit-learn63 for intensive training. NumPy64 for matrices and multidimensional arrays, 
and pickel65 for compiling and deserializing a Python object hierarchy are all elevated libraries used for developing 
regression model. Subsequently, Pytorch66, a DNN framework centred on Torch tensors, was employed. It’s a 
free licence package created in AI Research lab organized by Facebook (FAIR)67 in 2016 and entrenched on 
the scripting language Lua68, that is identical to NumPy with GPU integration. This is a crucial method since it 
assists in the acceleration of numerical computations, which may strengthen the performance of the DNN upto 
60 times. It has a more concise and easier to read Application Programming Interface (API), making it simpler to 
integrate with Python. The usage of this excellent platform is attributable to the fact that it facilitates the creation 
of rapid computational features that can be updated in real-time, which is necessary throughout DNN training 
process. Designers used FEM solvers in the back-end for dataset collection, which is useful to train the DNN, and 
Pytorch and Scikit-learn in the front-end due to their remarkable compelling architectural style, which facilitates 
rapid and lanky approaches, even though PyTorch employs several backend instead of a single backend for GPUs 
and CPUs as well as other operational aspects. While designing this algorithm, Adam Optimizer has been used 
in this work because it is widely assumed that Adam converges faster than vanilla Stochastic Gradient Descent 
(SGD) and Stochastic Gradient Descent (SGD) with momentum.69. Due to this reason, we have selected Adam 
Optimizer as it works best for the nonlinear datasets and it also has the capability to update the learning rate for 
each parametric values because it adapts first-order gradients with a minimum memory  requirements70. The 
weights and bias values of the designed DNN are optimized and updated iteratively by minimizing MSE using 
with the help of Adam71. Hence, the designed algorithm is suitable to analyse/predict/discern the optical response 
of the paired nanostructures.

Architectural framework of DNN with empirical attestation. DNN have indeed been established 
as a powerful tool for deciphering the correlation between the architecture and re-configurable nanophotonic 
structure composition and its functionality. It involves the construction of computer algorithms that aid in the 
extraction of motifs and the optimization of complicated information with a large number of variables. Forward 
ANNs are remarkable in that they may leverage numerous layers and neurons to operate efficiently. This neural 
network is formed using a cognitive computer with 8 GB RAM, 500 GB Hardrive, with the windows operating 
system (version 20H2 Semi-Annual Channel) installed. Throughout the calculation, the virtual environment 
Spyder python (version 5.1.5) is installed in anaconda (version 1.7.2). This DNN was arranged in three levels, as 
shown in Fig. 2b, including an input, output and hidden layers. The input parameters that must be interpreted 
are delivered to the fully linked input layers. Prediction and categorization are among the tasks that the output 
layer performs. A layer-by-layer assembling of neurons makes up a neural network. Every neuron in single layer 
is interconnected to the neurons in the following layers via a weighted connection. The frequency of the relation 
between the jth neuron in one layer and ith neuron in other is represented by the weight wij . Each neuron is given 
a function weight, which is then linearly aggregated (or summed) and transmitted with the help of an activation 
function to produce the output from neurons. Finally, the anticipated output data may be compared to the 
random test data points. The designed DNN can be visualised as a closed box that accepts x inputs and generates 
y  outputs72 (see Fig. 2b). As shown in Fig. 2, an optimal DNN with optimized hidden layers = 5, neurons = 50 in 
each layer was implemented throughout this investigation. Every neuron inside each layer was interconnected 
to the neurons in the subsequent layer, implying that these concealed levels were totally integrated. 20% of 
datapoints were randomly adopted from the training datapoints and supplied as the evaluation datapoints to 
provide impartial evaluation while tweaking the DNN hyperparameters (weights and biases).

Discussion
In this work, the geometrical parameters (a, b, d and g) of the nanostructure were varied from 10 nm to 130 
nm; however, in this work for simplicity h was fixed at 40 nm. The granularity of gathered dataset is chosen to 
minimise computing costs while yet allowing the DNN to be trained properly. The complete datasets throughout 
this investigation comprise 10,500 parameter combinations and their accompanying spectra. We exclusively 
selected structural factors that have a considerable influence on the spectral properties and cover all conceivable 
spectrum variants. Indeed, with this selected quantity of training data, DNN can be trained to accurately model 
and forecast millions of spectral properties of the plasmonic structures in the parametric range. Datasets are 
divided into three groups throughout the training process, training dataset, validation dataset, and test dataset. 
More details about the dataset preparation are presented in the Sect. II of supporting information. Training 
dataset are provided to the DNN to optimise the algorithm by revising weights whereas validation dataset are 
used to evaluate the DNN, acting as a verification of the training response and supporting to determine if the 
network is overfitting; and test dataset are used to assess the predictive performance. Each time, the ideal DNN 
is determined by selecting suitable hyperparameters depending on the training performance. The performance 
improvement of the DNN are thoroughly investigated in terms of MSEs that have been calculated for each hidden 
layers when the epoch = 5000 and neurons = 50. For MSEs calculation following Eq.(3) has been used.
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where n is the total number of datasets utilised throughout the training process. Za
i  is the original data points 

calculated using COMSOL multiphysics, and Zp
i  is the predictions over the actual dataset. The calculated MSEs 

of the predicted datapoints from the developed network compared to the targeted datapoints are quantified by 
MSEs, which itself is regarded the most essential effectiveness assessment criterion. It is also used as the validation 
criteria of the DNN. Hence, the comparison of the MSEs calculation at each hidden layers are shown in Fig. 3 
when neurons = 50 and epoch = 5000.

Figure 3 shows that the variation of MSE values with epoch for hidden layers = 1, 3 and 5 when neurons = 
50 and epoch = 5000. Here, the red curve shows the MSEs values of 0.4 at epoch = 1 for hidden layers = 1, which 
rapidly decreases until epoch = 2000, and then almost constant for epoch ≥ 2000. The orange curve depicts the 
MSEs values of 0.35 at epoch = 1 but for hidden layers = 2, and it rapidly stabilized after epoch ≥ 500. Sect. II of 
Supplementary Information contains additional information on the remaining estimated MSEs. On the other 
hand, at epoch = 1, MSEs values of 0.2 is shown by a blue curve when the hidden layers = 5, neurons = 50, 
respectively. The MSEs values fall significantly faster for hidden layers = 5, and in this context, it can be stated 
that the constructed neural network produces a better approximation when the hyper-parameters are adequately 
configured.

For selecting the best hyper-parameters in terms of performance of the DNN, the hidden layers are optimized 
in first stage when the number of epoch and neurons were fixed at 5000 and 50. The initial prediction have been 
made for the given input geometrical dimensions as a = 70 nm, b = 10 nm, and g = 10 nm and the corresponding 
predicted transmission, reflection and absorption spectra shown in Fig. 4 when hidden layers = 1.

In Fig. 4a the black curve shows the original transmission spectra (calculated by COMSOL Multiphysics) 
along with the predicted transmission spectra shown by the red curve, when the a = 70 nm, b = 10 nm, g = 10 nm 
and h = 40 nm. Similarly, the predicted reflection and absorption spectra are also shown in Fig. 4b,c, respectively, 
where the original spectral values are shown by the black curves, while the predicted values are represented by 
the red curves. Here, it can be observed (shown in the supplementary materials) that when hidden layers = 1 and 
neurons = 50, the MSEs was calculated as 0.4 for epoch = 1 and rapidly reduces till epoch = 900; however, it got 
stabilised after epoch = 1000. Hence, so far epoch = 5000 is used to make initial predictions. Indeed, it is true that 
at a lower MSEs, the number of predicted spectral values are closer to their actual values. Due to this reason, the 
remaining hyper-parameters have been tweaked for producing more accurate predictions over the actual spectral 
responses. More information on hyper-parameter tweaking can be found in Sect. II of the supporting material.

In Fig. 3 it was shown, as the number of hidden layers is increased, the predicted results became better. 
Finally, the appropriate DNN framework is designed using suitable hyper-parameter selection based on the MSEs 
calculated at every dataset training. In the Final algorithm the hidden layers = 5, epoch = 5000 and neurons = 50 
were adopted. The MSE had its minimum values 0.20 at epoch = 1 and reduces upto 0.05 at epoch = 200; however, 
it stabilises and reaches nearly to 0 at epoch = 5000.

Figure 5 illustrates that as the hidden layer is increased to 5, the outcomes form the improved DNN can be 
clearly seen that as the MSEs is reduced the predicted transmission, reflection and absorption responses reaches 
closer to the original spectral values shown by red and black curves, respectively for the specified geometrical 
dimensions taken as a = 70 nm, b = 10 nm, g = 10 nm and h = 40 nm. Altogether, the findings suggest that DNN 
can accurately predict spectra for billions of distinct nanostructures in the a, b, g and h ranges using adequate 
amount of simulation dataset. They all predict the same accurate resonance properties as by FEM simulations 
(using COMSOL Multiphysics), demonstrating that the DNN can be well trained for electromagnetic modelling. 
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Figure 3.  Shows the MSEs values (Validation Set) for 1, 3 and 5 hidden layers when neurons = 50 and epoch = 
5000.
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As a result, it is reasonable to conclude that expanding the training dataset will improve the performance and 
accuracy of the DNN.

The performance of the designed neural network has also been evaluated in terms of the computational cost. 
Generating large training data sets for DNN demands a significant investment of computational effort. This 
emphasises the critical difficulty of automatically generating extra data points, particularly for regions that are 
not included in the present data collection. Aside from reducing numerical efforts, this would also aid to cut 
physical labour by reducing the involvement of the researchers in the data curation chain. However, the high 
computational cost of producing such data sets typically hinders database expansion; as a result, the resulting 
DNN can be unreliable owing to over-fitting and other difficulties. Hence, Fig. 6a depicts the comparison of 
training execution time times for different epoch when neurons = 50 and hidden layers = 5. Here, computational 
cost for 10,500 training data points have been calculated while DNN trains. It is evident that the developed DNN 
have shown approximately 1 sec at epoch = 1. However, it takes up to 50 s for epoch = 500 and for epoch = 5000 
takes 236 s. In Sect. II of the supplementary material it is shown that at lower epoch the MSEs values were high 
and the predictions were not closer of the actual results.

Hence, computational cost has been compared at different epoch. It can be stated that at every epoch weights 
and parameters were stored in the computing machine after the DNN training was finished and the predictions 
were made for unseen inputs with the aid of previously saved weights at epoch = 5000 is also represented in Fig. 6. 
With the increment of number of epoch the computational cost increases whereas the cost per epoch reduces. 
As a consequence, it can be inferred that at epoch = 5000, although the computational cost is 236 seconds, which 
is rather expensive when compared to the smaller epochs, but the performance of the DNN is improved. This 
performance is also far superior to typical FEM solvers, which may take up to 8100 s, 10,200 s, 14,100 s, 38,160 s, 
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Figure 4.  Hidden layer = 1, Neurons = 50 and Epoch = 5000 (a) Shows the comparison between the predicted 
transmission spectra with respect to the original transmission spectra. (b) Shows the anticipated reflection 
spectra are compared to the original reflection spectra. (c) Shows the predicted absorption spectra against the 
original absorption spectra.
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86,400 s and 17,2800 s to compute the optical spectrum responses of a single dimer using coarse, normal, fine, 
finer, and extremely fine and manual meshes. We cannot avoid the effort and computational cost that has been 
utilised to collect the vast amount of the dataset by using EM solvers. However, it is an one time process. Once 
the model is fully trained, it can quickly predict the solutions for any unseen values compared to traditional EM 
solvers. Next, Fig. 6b also shows the computational cost of the DNN when the hidden layers was increased from 1 
to 5. Here, it can be seen that at hidden layer = 1 the computational load was comparatively small, approximately 
75 s but in Fig. 4 It was shown that the spectral performances was not acceptable hence the DNN training has 
been continued for a larger number of hidden layers. It can be seen that at hidden layers = 2, 3, 4 and 5 the 
computational cost increases to 100 s, 170 s, 220 s and 236 s, respectively when a fixed 5000 epoch was used. 
However, it should be noted as shown in Fig. 3, for a higher hidden layer, a smaller epoch can be satisfactory. 
Additionally, the corresponding improvement in MSEs values were also presented in Fig. 3 from where it is clear 
that as the hidden layers is increased the MSEs values are decreased which suggests the prediction are getting more 
closer to the actual spectral values. Hence, the epochs = 5000 is selected by the user once MSEs has converged to 
a suitable threshold. After modifying the model to obtain a stable MSE value, the necessary outputs datapoints 
were provided as additional input datapoints that was not supplied during the training operation.

Next, the effect of the number of neurons for a fixed hidden layers = 5 and fixed epoch = 5000 is studied and 
shown in Fig. 7. The neuron assesses a set of weighted inputs, implements an activation function, and obtains 
the outputs. An input from neuron might be either features from a training set or outputs from neurons in a 
previous layer. Weights are assigned to inputs as they travel through synapses on their route to the neuron. The 
neuron then applies an activation function (ReLU in this case) to the ”aggregate of synaptic weights” from each 
arriving synapse and sends the result to neurons of following layer. Hence, ReLU implementation is the most 
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Figure 5.  Hidden layer = 5, Neurons = 50 and Epoch = 5000 (a) Shows the comparison between the predicted 
transmission spectra with respect to the original transmission spectra. (b) Shows the anticipated reflection 
spectra are compared to the original reflection spectra. (c) Shows the predicted absorption spectra against the 
original absorption spectra.
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significant breakthrough milestones in this network. This can be better followed from Fig. 7a which shows the 
performance of the predicted spectra when the hidden layer = 5, epoch = 5000 and neurons = 1. From this it can 
be seen that although the number of hidden layer and epoch were sufficient still the numbers of neurons also 
plays an important role for stabilizing the DNN. Hence, the predicted spectral values at neuron = 1 also plotted 
where red curve shows the predicted spectral values is very different than the actual results shown by a black 
curve for a = 70 nm, b = 10 nm, g = 10 nm and h = 40 nm. However, as the number of neurons is increased to 
30, Fig. 7b shows the response with hidden layers = 5 and epoch = 5000. From this it can be inferred that as the 
neurons increases the performance of the predicted spectral values significantly improves where the red curve 
shows the predicted spectral response with respect to original spectral values shown by a black curve. Hence, 
it can be stated that as the number of neurons increases the algorithm converges and reaches at it saturation 
point so the outcomes of the final optimized hyper-parameters when hidden layers = 5 and epoch = 5000. To 
show convergence in the predicted spectral values more clearly, the MSEs has been plotted at different number 
of neurons when the epoch varies from 0 to 5000 and hidden layer = 5. As, it has been already discussed that at 
the lower MSEs the prediction will be more accurate towards the original spectral values.

Figure 8a shown the improvement in MSEs when neurons number increased from 1 to 50. Here, the red curve 
shows the highest MSEs values = 0.75 at epoch = 1 and gradually reduces till 0.1 at epoch = 5000 which suggest 
that the prediction with neuron = 1 is not acceptable to make an efficient DNN as seen in Fig. 7a. Hence, to 
improve the performance 5 neurons has been used and the corresponding MSEs are shown by a orange curve. 
In this case, the MSEs values = 0.68 at epoch = 1 and sharply reduces till epoch = 1000. Finally, it stabilised till 
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epoch = 5000 when neuron = 10 are used, as shown in Fig. 8a. For neuron = 10, shown by a black curve shows 
the expeditious reduction in MSEs values = 0.38 at epoch = 1 and decreases till epoch = 700 until stabilised. For 
neuron = 30, pink curve shows the further decrements in MSEs values = 0.22 at neurons = 30 and steadies after 
epoch = 200. The corresponding spectral response is also shown in the Fig. 7b. Finally, for neurons = 50 shown 
by a blue curve have been adopted to see further improvement in the MSEs values, when the MSEs values = 0.18 
at epoch = 1 and quickly stabilised after epoch = 50. Hence, neurons = 50 was considered for further observations 
as it is showing lower MSEs values and faster convergence. The corresponding predicted spectral values are also 
shown in Fig. 5. Figure 8b shows the effect of computational cost at different neurons when hidden layer = 5 and 
all of them with epoch = 5000. Here, it is clear that when number of neurons = 1 the computational time was 
50 sec; however, it increased more and reaches upto 250 sec for neurons = 10 but the DNN stabilised. However, 
it should be noted that when the larger number of neurons is used, the number of epoch can be reduced. This 
computational cost also depends on the specifications on the computing machine.

Substantiation of in‑house developed DNN for concealed nanostructures
Finally, after stabilizing the developed DNN with the help of the all possible hyper-parameters, we have 
demonstrated in this paper how the deep learning and dynamic challenges are interconnected, providing the 
groundwork for future research at the intersection of problems and data science. In particular, we suggest novel 
topologies for DNN that increase forward propagation stability. Using the derivative-based learning regularisation 
the well-posedness of the learning activity was increased. Moreover, presented a multi-level technique for 
establishing hyper-parameters, which makes DNN training easier. Further introduced new regularisation 
techniques that rely on our continuous conceptualization of the challenge to increase generalisation accuracy, 
consistency, and streamline DNN training. After designing a stable DNN, we have used this algorithm for 
predicting the spectral response for the paired circular nano structure where d = 80 nm, g = 20 nm and h = 40 
nm. Figure 9a shows the spectral response of a paired circular nano disk where a red curve shows the predicted 
spectral values and their actual spectral values calculated by FEM are shown by a black curve. Similarly, Fig. 9b,c 
show the predicted reflection and absorption spectra (shown by red curves) and actual reflection and absorption 
values are shown by black curves. These results show, when hidden layers = 5, neurons = 50 and epoch = 5000 
are used to predict the transmission, reflection and absorption spectra then these are close to the actual spectra.

Evaluation of in‑house developed DNN for imperceptible geometric dimensions (beyond 
the training dataset). In this section, we have discussed the performance of the designed DNN when 
it predicts the spectral values outside the range of the training dataset. The geometric parameters are selected 
at random from the test sets, but outside of the training dataset and verified by using the commercial software 
for the plasmonic nanostructures to examine the performance optimization of the transmission and reflection 
values for an arbitrary wavelength and visualize the outcomes. During the entire training period, we have used 
the dataset of major axis (a) from 10 to 130 nm with 10 nm interval. Hence, in this section the spectra has been 
predicted when major axis (a) = 155 nm, minor axis (b) = 55 nm and separation gap (g) = 35 nm, and it should 
be noted that these values were not available in the training set. It is worth to note that Fig. 10 shows spectral 
response of the optimised DNN with prediction accuracy and reliability more than 90% when approximately 
50,000 dataset were used for training to show the impact of the test set, which was outside the range of training 
data set. Here, black curve shows the original spectral values computed by using COMSOL multiphysics and the 
red curves shows the spectral values predicted from the in-house developed neural network.
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A significant facilitator of cutting-edge nanotechnology research would be the capability to swiftly extract 
a required optical response by using artificial neural network from the geometrical parameters of a plasmonic 
nanostructures. One can envision a variety of scenarios in which such data is essential to the design investigations 
of any nano structures. The highlight of this DNN is that it has a capacity to address multiple targeted resonance 
spectra for various paired geometrical dimensions, and it emphasises that this technique may be applied to other 
sensing in biology, chemistry, and material science. Hence, it can be said that the spectrum prediction from the 
nanostrutural recognition have a high degree of employability, indicating that this techniques might indeed 
be useful in a wide range of spectral and non-spectral aspects. This deep learning protocol has the potential to 
revolutionize real-time field applications in a variety of spectroscopic disciplines.

Conclusion
In conclusion, this work demonstrates the use deep learning to correlate spectroscopic knowledge of a paired 
nanostructure in local environments. The presented DNN algorithms can estimate spectral values of designed 
paired nano structures at more than 700 times lower computing cost than the traditional FEM solver (when 
manual meshing is used) while providing the similar degree of precision. This study illustrates DNN has 
been tested rigorously and shown its excellent predictions using one time trained process. Hidden layers = 5, 
neurons = 50 and epoch = 5000 were employed all across the neural network to provide a swift convergence and 
yet good precision in estimating spectral values for randomized input geometrical dimensions of the paired 
nanostructures. These values can depend on the type of the problem. However, as the results may not be known 
beforehand so for a real application a safer number of these DNN parameter can be used. In this work, we have 
also shown the performance of the associated hyper-parameters of the designed DNN and explained in terms 

Figure 9.  Hidden layer = 5, Neurons = 50 and Epoch = 5000 (a) Shows the comparison between the predicted 
transmission spectra with respect to the original transmission spectra of circular dimer with d = 80 nm, g = 20 
nm and h = 40 nm. (b) Shows the anticipated reflection spectra are compared to the original reflection spectra. 
(c) Shows the predicted absorption spectra against the original absorption spectra of the same.



11

Vol.:(0123456789)

Scientific Reports |         (2023) 13:1129  | https://doi.org/10.1038/s41598-023-28076-3

www.nature.com/scientificreports/

of MSEs which is plotted with respect to hidden layers, epoch and neurons. This research also offers a contrast 
between traditional FEM solver and in-house developed DNN in terms of computing time, which is more than 
700 times faster than direct FEM simulations (when manual mesh size is used). Finally, the performance of the 
proposed DNN model was proven for the random input parameter for inside and outside the training dataset 
such as paired circular when d = 70 nm and g = 20 nm and paired elliptical dimers when a = 155 nm, b = 55 
nm and g = 35 nm respectively, and corresponding spectral values were correctly predicted. The detection of 
structural variations/fluctuations in chemical reactions, automatic identification of interstellar molecules, and 
real-time recognition of particles in biomedical diagnosis are just a few application when deep learning can 
be exploited. Thus, we conclude that the consolidation of nanotechnology and artificial intelligence will open 
the direction for many other new technological advancements in the profession of comprehensive scientific 
disciplines.

Data availability
All data generated or analysed during this study are included in the supplementary information in the graphical 
form. The raw datasets and computational models used and/or analysed during the current study available from 
the corresponding author on reasonable request.
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