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Abstract

The development of a tomographic reconstruction 
system for use with limited viewing angle data is 
described in this thesis. It covers the development of 
novel tomographic reconstruction software, the 
construction of a practical tomography system, and the 
testing of the system on real data.

The aim of this work was to produce a system which 
would allow the reconstruction in a computer of three 
dimensional density fields that had been recorded 
using holographic interferometry, from two dimensional 
views of the holograms. By their nature holograms have 
a restricted range of directions over which they may 
be viewed, whereas tomography usually relies on taking 
measurements about a wide range of views. Hence it was 
necessary to devise a means to overcome the loss of 
resolution that occurs in reconstructions when the 
angle of view is limited, as was the case with the 
holograms we used. This resulted in the principal 
novel development of this work, namely the use of a 
direct 3-D projection scheme in combination with an 
iterative reconstruction method using the 
Multiplicative Algebraic Reconstruction Technique 
algorithms. The application of this approach to data 
from real situations was also novel. The software for 
the 3-D projection scheme was designed to allow the 
flexible use of views from different directions to 
facilitate it's application to a variety of 
experimental configurations. It's performance when 
tested on model data is described, with the results 
showing the advantage of a direct 3-D reconstruction 
approach over the conventional 2-D slice approach in 
the case of limited viewing angles. The conclusion is 
drawn that a new practical method of extracting full 
field data from holographic interferograms has been 
demonstrated. Further, because of it's generality it 
is applicable to other whole field optical recording 
systems.
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1.0 Introduction

The initial aim of this research was to investigate 

automatic methods for recovering three dimensional 

data from holographic interferograms, in a form 

suitable for computer manipulation. This was to be 

attained by applying tomographic reconstruction 

methods to data from the holograms, necessitating the 

development of techniques to circumvent the problem of 

restricted view. This would allow the extremely large 

amount of three-dimensional data present in the 

holograms to be fully utilised in a quantitative 

manner. While investigating this problem it became 

apparent that the special techniques evolved were of 

value not only in the area of holographic 

interferogram interpretation but also in other 

applications which had limited access to views.

The initial applications for this technology were 

holographic interferograms of the flow around a 

turbine blade showing shockwave formation, as well as 

other flow data. The development of holographic 

interferometry techniques for gas turbine engine 

investigation at Rolls Royce has been described by Dr. 

R. Parker in a series of papers, ref. [34]- [36] . One of 

these was a manual technique for the extraction of the 

shockwave position that had been implemented in 

practice. It was based on a pointer which could be 

moved in the reconstructed hologram's field of view 

and then have its position recorded. This allowed a 

series of points defining the shockwave's position to 

be mapped. The drawback to this technique was the need 

for a skilled operator to spend a relatively long time 

on a monotonous task, thus indicating the necessity to 

automate the process. The method of tomographic 

reconstruction was considered as it is particularly
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suited to the extraction of three dimensional data 

from density fields.

Tomographic reconstruction of the particular 

holographic interferograms Rolls Royce had produced 

presented a major problem to the researcher as they 

had an extremely limited angular range of view, while 

tomographic reconstruction usually relies on a 

complete set of views around the field being studied. 

The problem of the limited angle of view present was 

inherent in the holograms being considered, being 

dictated by the optical arrangement used to form them. 

As the views were limited to + 5 or - 5 degrees this 

was obviously the principle problem to be overcome.

From this starting point a series of technical 

possibilities were investigated as means to improve 

the resolution of limited angle tomographic 

reconstruction. A range of different algorithms were 

considered and also the effect of a three dimension 

projection scheme. A number of tomographic algorithms 

designed specifically for problems involving 

incomplete or limited angle data had been proposed, 

and hence it was decided to evaluate the most 

promising of these experimentally. The possible 

advantages of a direct three-dimensional projection 

scheme in contrast to the conventional procedure of 

reducing a three-dimensional field to a series of two- 

dimensional slices also merited a full investigation 

for our application.

After conducting a series of comparative tests on 

a computer generated test object which confirmed the 

improved accuracy of the three-dimensional approach, 

it was decided to use it in preference to the 

conventional slice technique. While considering the 

complete field as a whole complicated the calculations 

required during the tomographic process this allowed 

the used of rays varying in orthogonal directions 

leading to improved reconstruction quality.
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A complete system to collect the data from the 

holograms and perform the tomography was then 

constructed, using an IBM compatible PC computer with 

frame grabber card to capture the images and a Silicon 

Graphics workstation to process this data.

Once our tomographic system had been successfully 

demonstrated Rolls Royce requested a modified version 

of our tomographic software to work with data from 

neutron studies. After the appropriate modifications 

had been made to the software some reconstruction of 

limited viewing angle data from this source were 

produced. These demonstrated the potential of our 

novel approach in this area.
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2.0 Literature Review

2.1 Introduction

Both holographic interferometry and tomographic 

reconstruction have a well documented history. This 

review describes attempts to use these techniques in 

combination as well as discussing the methods 

themselves.

The application of tomography to data from 

holographic interferograms of air flows was 

successfully demonstrated by Synder and Hesselink in 

1984, ref. [87] . In this case the flow around a 

helicopter blade was studied. The experimental set up 

used allowed a wide range of views about the flow, an 

aspect that is a particularly important as will be 

explained further. Recently interferometric tomography 

has been applied to flow visualisation of density 

fields in supersonic jets and convective fields by 

Soller et al, ref.[88]. Once again these experiments 

were configured to allow a relatively wide range of 

viewing angle, (180 degrees in this case). Thus it can 

be seen from these examples that tomographic 

interferometry is a well founded technique provided 

the interferometric data is gathered over a wide range 

of viewing angles.
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Tomographic reconstruction dates back to the 

publication of the theory of the Radon transform by 

Radon ref.l. It is mathematically defined as the 

inverse of the Radon Transform. The forward Radon 

Transform is itself defined as the sum of all the line 

integrals of all possible projections through a field. 

If we consider the field shown in Figure 1 this can be 

written as

P(t, co (1 )

We can express this as

a  co
f (z ,y)6( t+zsino+ycosoo)dzdy

-0 0

(2)
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/» n/2 /»oo
f(x,y)=(-l/2n2) do dtP(t,o)/(t+zsino-ycoso)

Jn/2 J

(3)

This solution assumes an infinite number of ray 

measurements and of course this is not the case for 

any practical system, thus all practical tomography is 

dealing with an ill-posed problem. If we consider 

cases with limited angles of view the reconstruction 

problem becomes very ill-posed with multiple solutions 

for a given set of measurements. The practical 

solution of the inversion of the Radon transform has 

been proposed by several different methods, some of 

which will be discussed later.

Modern interest in tomography stems from the 

invention of the EMI body scanner, by G.N. Hounsfield, 

ref. [2] , who was awarded the Nobel Prize with A.M. 

Cormack in 1979 for this work. This invention has 

stimulated the interest in three dimensional 

reconstruction which has led to the application of 

tomography to many other problems. The application of 

tomographic reconstruction techniques to optical 

problems has been one area widely investigated and a 

number of comprehensive reviews published.

The tomographic reconstruction techniques can be 

divided into two broad groups, transform methods and 

series expansion methods. These are considered in 

detail in section 2.0. The transform methods have been 

comprehensively reviewed by R. Lewitt ref. [94] and the 

series expansion methods by Y. Censor ref.[2]. 

Overviews of tomographic processes specifically 

tailored to limited data, limited angle of view 

problems have been produced by Hunter ref. [12] and 

Rangayyan et al, ref. [13] . It is noteworthy that 

Hunter concluded that the series expansion methods

The inverse of this is given analytically as:
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were most suited to limited angle problems, while 

noting the sensitivity of the methods of solution to 

the particular problem involved. This case sensitivity 

was also pointed out by Rangayyan.

2.1.1 Transform Methods

The transform methods are based on analytic 

inversion formulae, designed to solve the inverse 

radon transform. The principle advantage of this class 

of solution in comparison to the series expansion 

methods is its speed. The Fourier transform technique 

has been widely applied to tomographic problems for 

example x-ray imaging. These operate by transforming 

projection data into Fourier space thus obtaining some 

of the values of the Fourier transform of the complete 

field. The mathematics of this method for a weakly 

refractive phase object is as follows:

Consider a refractive index field f(x,y,z). The 

phase change, 0, along the path of a ray, i, as it 

passes through the field may be expressed as:

If we use the coordinate transform illustrated in 

figure 2

(4)

X=rsin0+Qcos0, (5)

y=-rcos0+Qsin0 (6 )
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Figure 2 The coordinate transform

K

we can express the equation as :

(p1(Q,erz)=J f(x,y,z)dr (7)
CO

In a 2-D slice reconstruction z will be constant, thus 

the two-dimensional Fourier transform of equation 

(above) can be expressed:

-00-00
f(u,v)=f Jf (x,y)exp[ i2n(ux+vy) ]dxdy (8)

00 00

and the inverse transform

00 00

f(x,y) = f J F (u ,v) exp [ -±2tt (ux+vy) ]dudv
-00-00 (9)
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If we substitute these expressions into the previous 

we have:

<pi(Q,e)=J j I F( u, v)exp{-i2n[r ( usind-vcosd) +p( ucosS+vsin©) ]}dudvdr

(10)

Integrating with respect to r gives a relative 

integral part:

oo

fexp[i2nr(us±n0 vcos9)]dr
-00 ( 1 1 )

When integrating it is apparent, (by the use of De 

Moivers theorem) , that the solution of the integral is 

only non-zero when usind~vcos9=0, and hence v=utan9 .

Substituting into equation 10 we have:

oo

$¿(0,9)=Jsec9F(u,utan0)exp(i2ngu/cos9)du
-00

(12)
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The Fourier inverse of the above equation is:

oo

f (u ,utan6) j' <p1(Q,9)exp(-i2nQu/cos0)dQ
-00

(13)

From this equation the result know as the Fourier 

Slice Theorem can be deduce. This may be stated as the 

sum of the Fourier transforms of the line integrals 

through the 2-D field is equivalent to the Fourier 

transform of the 2-D slice. Thus a reconstruction 

process can be based on taking the Fourier transforms 

of the individual views through a field, summing them 

to obtain all the Fourier transform of the complete 

field and performing the inverse Fourier transform to 

reconstruct the field. This forms the basis of the 

transform methods of tomographic reconstruction as the 

field can be deduced from its Fourier transform by 

taking the inverse transform.
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2.1.1 Fourier Reconstruction

Figure 3 A field and its Fourier space representation

The preceding theorem has to be modified to deal 

with discrete rather than continuous data and this has 

been achieved by the following method. Following the 

derivation used by Sweeney and Vest. We can express 

the discrete two-dimensional Fourier transform of 

f(x,y) as:

E E f(co 2 B. 2 B,
)exp[-i2n( ml nk

2 2 «A )]

(14)

and the discrete two-dimensional transform is :
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n

y
)exp[~i2n( ml nk .

(15)

where Lx and Ly are the spatial limits of the function 

f(x,y), and Bx and By are its bandwidths.

Figure 4 Continuous data (a) and discrete data (b)in 
the Fourier plane

Continuous data would give radial lines in the Fourier 

plane, as in figure 4(a). The discrete Fourier inverse 

can be used to fill out the Fourier plane at sampled 

points, 4(b). Then using the two-dimensional inverse 

transform on this the original function, f(x,y), may 

be extracted. The inverse Fourier transform equation 

requires data from the Fourier plane over a 

rectangular array of points. With a well-behaved 

Fourier transform and sufficient projections it is 

possible to estimate the required values of F(— )
X̂

using Fourier domain interpolation. Now these 

interpolation methods require a well filled frequency 

plane, as we previously derived v=utan0 and thus the
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completeness of the spectrum, v, is determined by the 

angle of view, 6 . This is the key point in rejecting 

these methods for the reconstruction of limited angle 

of view problems. As this is the type of problem we 

wished to study we did not pursue this method of 

reconstruction further.

2.1.2 Series Expansion Methods

Series expansion methods differ fundamentally from 

the Fourier transform methods in that they discretise 

the field to be solve into a series of elements and 

then estimate the values present in each of these 

successively. Y. Censor reviewed the finite series 

expansion in ref.[1], and discussed the rationale for 

using these schemes rather than transform methods. He 

concluded that although generating the iterative 

solutions is a slower process than using transform 

methods they are better able to cope with the 

incomplete data sets produced by limited angles of 

view, (the prime consideration in our project).

One of the simplest of the series expansion 

techniques is the Algebraic Reconstruction Technique, 

(ART), ref.[2]. The first EMI scanner in fact used an 

algebraic reconstruction technique, although modern 

scanners do not use this approach due to its 

relatively slow performance in comparison to back 

projection. The ART algorithm operates iteratively by 

estimating the reconstruction of the field, measuring 

the error present, and then updating the estimate to 

reduce this error. This algorithm is discussed more 

rigorously later in this chapter. The Multiplicative 

Algebraic Reconstruction Technique or MART was first 

proposed by Gordon, Bender and Herman ref. [2], and 

this has been followed by a number of other 

formulations of MART type algorithms, by Gordon and 

Herman ref. [3], and by Lent ref. [5] . These algorithms

17





  



(18)

where a i,j=R±b j(r rO)

The Algebraic Reconstruction Technique, or ART, 

ref. [29] , sets out to solve the problem of the system 

of equations yielded by discretisation by an iterative 

process comparing an estimate of the field to the 

measurements obtained from the field and updating the 

estimate accordingly. It was discovered independently 

and applied to image reconstruction by both Gordon et 

al, ref. [2], and by Hounsfield, ref. [17] . Later it was 

recognised to be identical to Kaczmarz's algorithm for 

solving systems of linear equations, [18] . The 

comparison is between the measured data and the 

corresponding calculated projection data from the 

estimated field so that the error is the difference 

between the two, that is:

" k
e=y i~ 2 aijxj

j=i

(19)

(20)

where k is the number of the current iteration. This 

error value is then distributed among the pixels along 

the ray's path.

This leads to the following iterative formula:

x*+1=x*+V {y1-E(wifjxlfJ)}.wi/j/(i:wii);

( 2 1 )

The formula is applied to each pixel, (or voxel), 

passed through by a given ray and subsequently to all

20
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It was this version of the Gordon and Herman MART 

algorithm which was selected for testing as our 

projection scheme generated variable chord lengths in 

individual voxels and hence required algorithms which 

could cope with this, (the alternative of modifying 

the projection scheme so that only rays which passed 

through the centres of elements were considered would 

have resulted in the rejection of large amounts 

available data which would have been undesirable). In 

fact the algorithm finally applied had a slight 

modification to ensure convergence with our data, the 

addition of a relaxation factor as suggested by 

Verhoeven, ref. [4] . This gave the following algorithm:

* n=*n_1- ( i-x(^/wmax). )
i

(22)

(23)

Where X is the relaxation factor.

As well applying this algorithm we also considered 

the MART algorithm produced by Lent ref. [5] . This 

algorithm has the interesting property of converging 

to the maximum entropy solution, under the appropriate 

conditions. Maximum entropy tomographic reconstruction 

has been proposed for several ill-posed problems and 

is described in detail in section 2.1.4.

2.1.3 Three dimensional projection schemes for use 

with series expansion techniques

There have been several investigations into direct 

three-dimensional tomographic reconstruction, where 

the 3-D field is not decomposed into 2-D elements, 

using both transform and iterative reconstruction 

methods, refs. [14]- [16], [60], [76] and [78].

As described previously all iterative
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reconstructions methods consider the field to be 

reconstructed in a discrete form, e.g. as a series of 

stacked slices composed of 2-D elements. This has a 

direct effect on the directions from which the data 

can be gathered for use in the tomography process 

where a three-dimensional field is decomposed into a 

series of pixel elements contained in stacked two- 

dimensional slices, data can only be collected in the 

plane of these slices. Previous investigations by 

Colsher, ref.[14], and Schlindwein, ref.[15], and 

Altshuler ref. [16], into the effect of the directions 

that the data is allowed to take has indicated that 

this can have a significant effect on reconstruction 

accuracy in limited angle tomography, (also ref. 60).

In Colsher's paper he describes applying iterative 

reconstruction techniques to a projection scheme which 

was not co-axial for the first time, fig. 6.
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Colsher defined an allowed set of projection for a 

given view in order to minimise the complexity of the 

three-dimension calculations required, having 

recognised this as the major drawback of the 

technique. It should be noted however that at the time 

his work was published, 1977, the computational power 

available was far more limited than today.

The iterative algorithms implemented by Colsher 

were the ART, SIRT, and ILST (Iterative Least Squares 

Technique). Their performance was evaluated by using 

them to reconstruct computer generated data, and a 

comparison of 2-D and 3-D reconstruction was made. The 

error measurement used to compare the reconstructions 

was defined as follows:

6 (<?)=[£££ ,k)-T(i,j,k) )2/£]T5j (T(i,j,k) -T)2]
i j k i j k

(24)

This is the discrepancy as defined by a normalised 

Euclidian function, where D q is the reconstruction 

density at iteration q, T is the density of the test 

image, and T is the mean density of the test image. 

Reconstructions were then performed on two sets of 

test data, one of shell surrounded spheres and another 

of multiple spheres. The discrepancy figures produced 

comparing the linear and circular projections are 

given in table 1.
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Table 1. Discrepancy for linear and circular 

geometries.

Geometry Shell-surrounded Multiple

spheres spheres

Linear 0.77 0.75

Circular 0.61 0.65

These values were for 15 iterations of SIRT.

In both cases the circular projection scheme gave 

lower discrepancy figures. From this Colsher concluded 

that direct 3-D reconstruction is superior to serial 

2-D reconstructions from co-axial projections when the 

viewing angle is limited, a highly significant comment 

for our later work on this principle.

Schlindwein followed Colsher's general approach and 

applied a twin-cone beam geometry to x-ray 

reconstruction, using the ART algorithm. However 

unlike Closher's limited angle study the projections 

used formed complete continuous data set. Again he 

concluded that a 3-D approach was superior to a 2-D 

projection method. These results persuaded us that a 

fuller investigation of the 3-D technique was 

essential, despite the increased complexity.

The drawback to direct three-dimensional 

reconstruction is the increased number of the 

calculations required in comparison to the two- 

dimensional slice approach. Indeed as recently as 1991 

Rizo et al, ref.[78], rejects algebraic algorithms for 

use with three-dimensional cone beam reconstruction 

because "they are much too time consuming, even with 

up-to date technology". However as the speed of 

digital computers continues to increase rapidly with 

the passage of time the problem of increased run time
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with this approach would becomes less important over 

the three year life time of this project. In fact in 

1994 Soller et al, ref.[88] stated their intention to 

implement a direct three-dimensional reconstruction 

with an iterative reconstruction algorithm to study 

holographic interferograms, that is, they decided to 

follow the same course as our work.

2.1.4 Maximum Entropy Reconstruction

The application of the theory of Maximum Entropy to 

tomographic reconstruction problems is an area which 

has stimulated much interest, refs. [7], [10]- [11], and 

[26]- [28] . The MART algorithm as described by Lent has 

been shown to converge to the maximum entropy solution 

under certain conditions and the MENT algorithm by 

Gimeno is specifically designed to converge to it, 

ref. [10] . The theory of maximum entropy tomographic 

reconstruction is described by Newton & Gull in 

ref. [7] . The basis of maximum entropy tomography is 

the selection of the solution to a tomographic 

problem which has the greatest configurational 

entropy from the set of possible solutions. The 

configuration entropy is defined as:

S=-T.piloqp1/mi

(25)

where pi is the value present in the i'th element of 

the field, (for our purposes this corresponds to the 

attenuation in a voxel) and rtii is the initial estimate 

of intensity in the i'th element. By maximising this 

function the resultant reconstruction is the solution 

bearing the least information while being consistent 

with the measured data. It is argued that this was the 

most desirable selection as it reduced the likelihood

26



 



principle behind its operation is the reconstruction 

of a complementary field which is the difference 

between the field to be reconstructed and the 

estimation of this field. This is done in order to 

allow the easy incorporation of "a priori" 

information, an aim previously considered by Medoff et 

al, ref. [86], in their iterative convolution 

backprojection algorithm which also introduced an 

intermediate step to the reconstruction process. In a 

CFM reconstruction process this principle is applied 

as follows:

1) Make an initial estimate of the object field.

2) Calculate the projection data from this estimate 

which corresponds to the measured data available.

3) Take the difference between the measured 

projection data and the calculated projection data 

from the estimate, to give the projection data of the 

complementary field.

4) Reconstruct the complementary field. At this stage 

the projection data may be augmented by any prior 

constraints.

5) Update the estimate of the object being 

reconstructed by adding the complementary field to the 

previous estimated field.

This process is continued until the desired 

termination criteria are reached. It should be noted 

that the reconstruction of the complementary field may 

be performed by any number of tomographic processes, 

(Cha and Sun using convolution backprojection in their 

initial tests).

The advantages of this technique are its suitability
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when applied to ill-posed problems and the ease of 

incorporation of "a priori" information. The C.F.M. 

also produces a stable convergent solution, with the 

complementary field tending to zero with increasing 

iterations. Its suitability for incomplete data set 

reconstruction stems from the ease of incorporating 

prior information into the reconstruction process, 

thereby compensating for the missing information. This 

"a priori" information can be introduced at step (1) 

and any known constraints may also be considered at 

step (4).

A subsequent modification to this technique by 

Zhang and Ruff ref.[8] has made it more suited to the 

problem of processing data from holographic 

interferograms. They considered the problem of fringe 

ordering for holograms of practical fields where a 

zero order fringe was not available due to limitations 

in viewing and produced the Modified Complimentary 

Field Method to overcome this. This is described in 

detail in section 2.2.5 on tomographic techniques 

specifically developed for use with holographic 

interferograms.

Our implementation of the CFM combined the process 

with an iterative algorithm to generate the difference 

field, unlike the version demonstrated by Cha et al 

which relied on a convolution back projection. Some 

tests were performed with dummy data but as a priori 

data was not available for practical data sets a full 

evaluation of this technique was not possible.

2.1.6 Maximum A Posteriori

Another approach to tomographic reconstruction 

problems has been considered by Watt, ref.21, Hansen, 

ref. 22, Smith et al, ref. 23, and Geman and Geman, 

ref. 24. Rather than using know facts about the field 

as a priori information this data is used in an a
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posteriori reconstruction technique. In this type of 

solution in addition to physical constraints, for 

example non-negativity of the solution, the statistics 

of the source function and measurement noise may be 

incorporated into the reconstruction. If the 

statistics of these are know the reconstruction 

produced is called the Maximum A Posteriori (MAP) 

solution. The MAP solution can be generated by linear 

methods or by relaxation techniques, (e.g. simulated 

annealing). The advantage of this technique, 

especially from fluid flow studies, is that data from 

point measurements can be used to generate statistical 

information about fields.

2.1.7 Neural network tomography

A recent a novel approach for solving tomographic 

problems in aerodynamic studies with neural networks 

has been demonstrated by Decker, ref.[33], as well as 

being applied to some other tomographic problems 

ref. [57] and ref. [58] . Neural networks "learn" to 

solve tomographic problems by making estimates of 

reconstructed fields from the projection data of know 

fields. These estimates are then corrected in the so 

called training process. The neural networks guess is 

improved until it can obtain a relatively accurate 

reconstruction estimate of the known fields. Hopefully 

when a trained network is used to reconstruct an 

unknown field it will produce an accurate

reconstruction. This technique is in an early stage of 

development, as neural networks are still an emerging 

field of study, and as yet unproven.

2.2 Holographic interferometry

2.2.1 Holography
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Holography was invented by Gabor, ref.[30] in 1948. 

His work on improving the quality of electron 

microscopes led him to propose a technique he called 

wavefront reconstruction, in which the phases as well 

as the intensities of a wavefront are recorded so that 

they may be reproduced later. This basic principle has 

come to be known as holography. In optical holography 

this is achieved by combining the information bearing 

light which we want to store with a reference beam. 

Provided these two are coherent they will interfere 

and this interference pattern can be captured on a 

photographic medium. The coherence condition can be 

achieved by using light from a laser source and this 

was proposed by Leith and Upatnieks, ref. [31]- [32] 

along with practical layouts for optical holography. 

The off-axis holography they developed is the type 

which interests us as it is used to produce the 

holographic interferograms which we wish to study. The 

term off-axis comes from the fact that the image and 

object beams follow separate paths, with the reference 

beam passing off the axis of the object beam and 

propagating in a different angular direction. This 

causes the waves produced by diffraction in the 

reconstruction process to be spatially separate, an 

advantage over the Gabor type holograms where 

overlapping causes a noisy low-contrast image.

The theory of off axis hologram formation can be 

expressed as below, (following the derivation of Vest, 

ref. [40] ) :

At the film plate where the hologram is recorded the 

object wave's complex amplitude is:
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U0(x,y) = a0(x,y)exp[-i<p0(x,y) ]

(27)

and the reference wave is:

UR ( x, y ) = aRexp(i2nfyy)

(28)

where fy = sine^/A is the spatial frequency of the 

reference wave. Thus the irradiance will be

I(x,y) = \U0 + aRexp (i2nfyy ) |2

(29)

I(x,y) = \U0\2 + a2 R+aRU0exp ( i2nfyy ) + aRU*0exp(i2nfyy)

(30)

A film exposed to this irradiance pattern and 

developed would have an amplitude transmittance given 

by :

t(xry) = tb + fB[\U0\2+aRU0exp(-i2nfyy)+aRUoexp(i2nfyy)]

(31)

If we now substitute for U0 and combine the 

exponential terms:
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(32)

t(x,y) = tb + /3a02(x,y) +2f3aRa0cos [2nfyy <p(x,y) ]

From this equation we can deduce that the 

holograms contain carrier fringes of spatial 

frequency f which are modulated in amplitude by 

a0(x,y) and in phase by <p(x,y) .

When the hologram is reconstructed, by illuminating 

it with a plane wave, given by Uc(x,y) = acexp(i2nfyy) , 

in the same direction as the original reference beam, 

the resultant transmission is given by:

(x,y) = (tbif3\U0\2) acexp (i2nfyy)+pacaRU0+f3acaRU^exp (i4nfyy)

(33)

Examining the right hand side of above equation terms 

by term we have; the first term gives a transmission 

wave through the hologram, attenuated and modulated in 

irradiance, the second gives a diffraction wave which 

is identical to the original object wave, the third 

gives a wave which is the conjugate of the original 

object wave. These two terms can each give a 

reconstruction of the object, however as the conjugate 

wave propagates at an angle -sin“1 (20) to the z-axis 

diffraction effects in the hologram recording medium 

usually suppress the conjugate wave. Thus usually only 

the transmitted wave and the object wave are obtained 

on reconstruction. This is the basis of the off-axis 

holographic process that is used, in modified form, to 

produce the holographic interferograms which we wished 

to study.
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2.2.2 Holographie Interferometry

Holographie interferometry is the comparison of 

two or more waves, at least one of which is a 

hologram, by interferometry. It was first suggested in 

1965 by Horman, ref. [41] , in a scheme where a hologram 

would be used in place of a test section in a Mach- 

Zehnder interferometer. Powell and Stetson described 

the application of holographic interferometry to 

vibration studies, ref.[42], also in 1965, and double 

exposure and real time holography were reported later 

that year, refs. [43] -[47] .

In double exposure holographic interferometry a 

holographic plate, (or other recording medium), is 

subjected to more than one exposure and the developed. 

This results in the formation of fringes where there 

has been a change in the wavefront arriving on the 

plate between exposures. For example a holographic 

interferogram of a solid surface experiencing bending 

between the two exposures would show fringes where the 

surface had been displaced. Mathematically the process 

can be described as follows.

If two holographic exposures U1(x,y) and U2(x,y) 

are made, at times t1 and t2 with the same reference 

beam UR(x,y), when the hologram containing this 

information is reconstructed it's complex amplitude 

will be proportional to:

[Ui(x,y) + U2(x,y) ]

(34)

and it's irradiance will be proportional to: 

I(x,y) = |£Mx,y) + U2(x,y) |2

(35)
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Now as both exposures will be of the same object with 

a small change which will mainly effect the phase of 

the second exposure, we can express U1(xry) and 

U2(x,y) a s a(x,y)exp[-icp(x,y) ] a n d

a(x,y)exp{~i[(p(x,y) + Acp(x,y)]\ r e s p e c t i v e l y  . 

Substituting these into the irradiance expression we 

have:

I(x,y) = \a(x,y)exp[-i<p(x,y) ] + a (x, y ) exp{-i [ <p(x,y) + A<p(x,y) ]}|2

(36)

= 2a2(x,y){l + cos [Acp(x,y) ]}

(37)

Examining this equation it is apparent that the 

fringe pattern is produced by the il + cos [ Acp (x,y) ]} 

term modulating the irradiance. Thus bright fringes 

are formed where Acp is 0,2n, 4rc, . .nn, where n is an 

even integer, and dark fringes where 

Acp = n, 3n, 5tt, . . . (n+1 )tt . Hence by examining a fringe 

pattern physical changes in the object producing phase 

changes in the object beam between the exposures can 

be detected.

2.2.2.1 Holographic Interferograms of Transparent 

Objects

Holographic interferograms of transparent, (or 

phase), objects may be formed giving a valuable means 

of viewing refractive index variations in these 

fields.

The refractive index of a medium governs the speed 

of propagation of light through a field, defined by :
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n=c0/c

(38)

where c0 is the speed of light in free space.

The optical pathlength of a ray through a medium is 

dependent on the refractive index as :

If the refraction of the ray on passing through a 

medium is negligible, (it should be noted this is not 

usually the case) , the path can be made parallel to 

the z axis and hence we can rewrite the equation as:

Transparent objects with negligible refraction are 

referred to as phase objects. The formation of a 

holographic interferogram in a phase object can be 

mathematically described as follows:

If we consider two exposures of a holographic 

recording material with differing field refractive 

index distributions, ($lf $2) , for each exposure the two 

holograms formed upon reconstruction can be expressed

(39)

(40)

as :

(41)

and
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{Jo2=a2(x,y)exp[i 2”<!>2(x,y)]

The irradiance sum of these holograms when they are 

reconstructed simultaneously in the image plane gives 

the fringe pattern. Assuming a1 and a2 are uniform unit 

amplitudes the irradiance can expressed as follows:

(42)

I(x,y)-2{l+cos 2n [$2(x,y) -^(xyy) ]}

(43)

In applications where the initial field is where one 

exposure is uniform, (e.g. the first exposure taken 

with a null field), this can be re-expressed as:

I(x,y)= 2[l+cos( ~A^(x,y) )]
A

(44)

where

A 9(x,y) = f [n(x,yfz)-n0]dz

(45)

The equation of a bright fringe can now be expressed 

as:

AQ(x,y) = J[n(x,y,z) n0]dz = NX

(46)
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Where N is an integer.

For the formation of dark fringes the same equation 

with values of N = 0.5, 1.5, 2.5, and so on.

The optical path difference at any point can be 

expressed :

A $=N\
(47)

2.2.3 Fringe Interpretation in Practical Measurements

The preceding derivation illustrates how the fringes 

apparent in phase object holographic interferograms of 

are formed, and this principle has been applied to 

many aerodynamic studies,(for example, Heflinger 

ref. [37] , Chau and Mullaney ref. [38], and Wuerker et 

al ref. [39]). The use of holographic interf erograms 

and the fringe processing techniques required to 

handle their data for use with tomographic 

reconstruction techniques has been reviewed by 

Trolinger and Hsu in ref.[20]. In handling data from 

such experiments the principle problem is how to 

convert the fringe data into density information.

The density of a gas is related to it's refractive 

index by the Glads tone-Dale equation:

n 1 = Kp
(48)

Where K is a property of the gas called the Gladstone- 

Dale constant. Its value is slightly affected by the 

wavelength of the light propagating through the gas 

and almost independent of temperature and pressure.

For a simple case where the refractive index 

variation through the field can be expressed as 

f(r) =n(r)-n0, with nQ being the ambient refractive
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Considering the equations for a rotating flow field 

case, (i.e. the compressor fan of a gas turbine 

engine), the phase change produced is:

AO 2f¡K f ÍP(R,9,z) - p(R,0 + oùAt,z)]dr

(51)

where (R,Q,z) are the circular coordinates with R 

being the axis parallel to the blades directions, z 

parallel to the shaft of the engine and 6 is the 

angular rotation about the shaft, co is the angular 

velocity, X is the wavelength of light.

For a shock causing a step density change Ap at a 

position (R, 6, z) , with no other significant density 

gradient along the viewing direction, the fringe order 

at that point can be expressed as:

^ _ C Ap R co At 
X cos(a)

(52)

where a is the angle between the normal to the shock 

surface and the viewing direction.

This type of investigation was first undertaken by 

Wuerker, ref. [39], with a direct transmission optical 

system which required two large windows having a 

direct line of sight on opposite sides of the fan. The 

results of this approach suffered from poor feature 

localisation in the transmission field. A different 

optical arrangement was adopted by Rolls-Royce using 

a reflecting system. This is shown in the fig.7.
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Figure 7 The Rolls Royce optical configuration

The system used a bright diffuse surface to reflect 

the light, the diffuse nature of the background giving 

multiple optical paths in the reflected beam. These 

multiple paths gave an enhanced three dimensionality 

to the holographic image, making possible the accurate 

measurement of the position of shocks and other flow 

features. The laser source used to produce the 

holograms was a double-pulsed ruby laser. These pulses 

freeze the rotation of the fan in each exposure, as 

well as providing the two exposures to form the 

interierogram. The object beam enters upstream of the 

fan and is reflected by the far wall of the compressor 

casing, this surface having been prepared with a 

highly reflecting diffusing coating. This beam then 

exits through a window, in the casing over the blade 

tips, to the holographic film where it combines with 

the reference beam.

In the resultant holograms the blades appeared as
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3-D silhouettes against a bright background. Short 

pulse separation ensures that the movement of the 

blades between the two exposures is small, 1-3 jus 

giving 0.5-1.5mm movement at the tips. The change in 

density during the two pulses causes the fringe 

pattern seen in the hologram and is effected by the 

rotation of the strong density gradients present in 

the field. The greatest effect is seen for shockwaves 

where a pressure discontinuity is displaced, this 

causing a dark fringe to localise on the shock. As 

explained in the section 2.0 it was the location of 

flow features in this type of hologram which provided 

the initial stimulus for this project.

2.2.5 Tomographic Methods Developed Specifically for 

use with Holographic Interferograms

Tomographic methods designed specifically for use 

with data from holographic interferograms have been 

published, usually to circumvent one of the principle 

problems associated with the technique.

2.2.5.1 Ray Bending

Cha and Vest, [48], have considered the problem of 

ray bending in strongly refracting fields. As the 

light rays recording a holographic interferogram 

passes through a refracting field not only do they 

experience a phase change due to refractive index 

variations but also undergo bending. If the refraction 

is great enough to produce significant ray bending, 

then when the hologram intef erogram's data is 

reconstructed by tomographic methods errors can be 

made. This is because the assumption is usually made 

that straight probing rays propagate through the 

field. Cha and Vests method of overcoming this was to 

include an iterative loop in the reconstruction 

process where the amount of ray-bending produce by the
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(56)

where PT is the pathlength transform.

An updated estimate of the deviation function can 

now be made:

DA P,9) A<E>M(i) A$F(i)

(57)

This process is then repeated using this updated 

deviation function until some predetermined

convergence criterion is met, (e.g. the difference 

between two successive reconstructed fields is 

sufficiently small).

2.2.5.2 Unknown Fringe Order

Zhang and Ruff considered the problem of fringe 

ordering for holograms of practical fields where a 

zero order fringe was not available due to limitations 

in viewing. They produced the Modified Complementary 

Field Method, section 2.1.5, to overcome this. The 

MCFM process is as follows:

Steps (1) and (2) are as for the CFM.

(3) As no zero order reference fringe is available the 

assigned fringe number is shifted by NB, where NB is a 

function of the viewing angle 0. Thus:

g(p,e) = [N(p,e)+NAO) ]A/2
(58)

where A is the wavelength of the reconstructing 

light, and N is an odd integer for dark fringes and an 

even integer for bright fringes. Now as N cannot be 

determined where a zero fringe is not visible the
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expression can be rewritten in terms of relative 

fringe number as:

g(p,e)=N(p,G)\/2 (59)

Using the projection data and the measured fringe 

data, N, Ns may be calculate for the i'th ray using:

WS(i=[2gre(

(60)

The value of Ns must be the same must be identical 

for each set of data from a single view. Now as only 

an estimated field is used to obtain ge(pi,Oi) the 

values of NS/i will vary over a relatively large range, 

hence an average phase shift is calculated for each 

set of data from a single view. At this point Zhang 

and Ruff introduced the expression below to calculate 

the average phase shift:

(61)

Where n is the total number of optical rays evaluated 

and ¿6 is the phase-shift control number defined as :

n n

f3=abs('£NSii)/J2abs(NSti)
1-1 JL = 1

( 62 )

A simple algebraic average of the phase difference 

between measured and estimated field could not be used 

because it does not yield consistent values for Ns, 

especially on the first step of the iteration. In
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(9) The complimentary field is then used to update the 

object field estimate,
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fr{x,y)=fe{x,y)+afc{x,y)

where a is a relaxation factor to prevent the solution 

overshooting.

(10) Any "a priori" constraints are now applied to the 

solution and the process is returned to step 2 using 

the reconstruction as the starting estimate.

The significance of this approach is its ability 

to handle data from situations where the views of a 

field are partially obscured. This leads to only 

relative fringe data being available and is the case 

in many practical situations. For instance in wind 

tunnels the view of an air flow is obscured by the 

tunnel walls.

(66)
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3.0 The implementation of a direct three dimensional 

projection scheme

As we have seen conventional tomographic schemes 

simplify the reconstruction problem by considering the 

three dimensional field as a series of two dimensional 

slices stacked on top of each other. Then solutions 

are made for each slice, fig. 8.

Figure 8 Decomposing a 3-D field into 2-D slices.

While this greatly reduces the amount of 

calculation required it limits the usable data to that 

collected in the plane of the slices. This rejection 

of out of plane data does not present a serious 

problem when the field to be reconstructed can be 

viewed about 360 degrees, (or close to a full field of 

view), However for where views, (and thus available 

data), are severely limited it is desirable to 

maximise the utilisation of data. Thus it was decided 

to investigate the effect of using a direct three 

dimension reconstruction algorithm. Previous work by 

J.G. Colsher, ref. [14], had demonstrated this 

principle using a cone of views in the reconstruction 

of model data. To test the feasibility of this method 

for our case a completely new computer program had to
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be written to perform the direct reconstruction, as no 

three dimension reconstruction software of this type 

was available.

In a direct three dimensional reconstruction 

program the generation of the geometric data required 

by the algorithm is a much more involved problem than 

in the slice methods. The iterative reconstruction 

algorithms require the chord length of each ray in 

every voxel, as it passes through and thus the rays 

must be traced through a three dimension field and 

each individual length calculated. The geometry chosen 

to reconstruct the field with was a cube which was 

decomposed into cubic volume elements, this lending 

itself to the generally rectangular volumes being 

reconstructed, fig.9.

FIELD
/

ELEMENT

Figure 9 Views about the 3-D field.

Views are taken facing into one side of the field
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and the direction of these views are varied in the 

vertical and horizontal axes. The parameters of the 

rays passing through the field are calculated as 

follows :

The initial position and direction of a ray can be 

defined relative to the field by measurement and thus 

its position upon reaching the front face of the 

field. In fig.10 the ray's path is shown as it enters 

the field and reaches a second plane parallel to the 

front face, or x-plane, in the field.

Figure 10 A ray passing between two planes in the 
field

By making the distance between the two x-planes 

equal to the length of the side of a voxel we can 

calculate the distance travelled by the ray between 

these two planes. Resolving in the x and y directions 

as in fig. 10 the ray length in the plan view is:

distance^X/cosa

(67)
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and in the elevation:

distance=X/c os/3

(68)

Where X is the length of side of a voxel.

The ray tracing program works by using this 

geometry to set the voxel x-coordinate and then 

stepping through the field incrementing the x- 

coordinate by one unit at a time. By calculating the 

length changes in the y and z directions at each step 

and incrementing the existing coordinates with these 

the new coordinates for y and z are generated. With 

the y and z coordinates known for a given x coordinate 

the ray's path may be marked in the voxels it passes 

through. It is important to note that a ray may pass 

through more than one voxel between any given single 

pair of x-planes. Hence a series of tests was written 

in the program to check for rays entering through one 

voxel and exiting through another. The problem is 

illustrated in fig.11 below.

52



At this point the limitations of viewing angle must be 

considered as these determine the range of possible 

entry angles and therefore entry and exit conditions 

for a ray passing through a x-plane pair. Now as this 

work is aimed at reconstructing information from 

holographic interferograms with very limited viewing 

angles it can be assumed that the maximum values of 

both angles alpha and beta will be less than 45 

degrees, (in fact for the interferograms under 

consideration they are typically less than 15 

degrees) . Considering the limiting case therefore were 

a ray is inclined at the maximum to both axes, it 

would pass through three voxels at most , see fig. 12.
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Figure 12. The plan and elevation view of a ray 

inclined at 45 degrees to both horizontal and vertical 

axes

Where a ray passes through three voxels between a 

single increment in the x-axis all three must be 

accurately identified as they will all make a 

contribution to the final attenuation experienced by 

the ray. However while it is relatively easy to mark 

the voxels where a ray enters and exits at x-planes 

some intermediate voxels passes through may not be 

located by this method. Hence a method had to be 

devised to detect these cases. This was achieved by 

testing the value of the z-coordinate of the ray when 

its y-coordinate is set at the division between the 

upper and lower voxels. When the coordinates of the 

ray at a given depth in the x direction had been found 

the voxels passed through for this depth increment 

were marked with a value corresponding to specific 

marker for the ray, these marked voxels were stored in 

a array in the tomography program so that a complete 

ray path could be built by stepping through the whole
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field. This process could be repeated for all the rays 

from a single view so that the array would hold the 

paths of all these rays, and could then be 

interrogated to enable the processing of a single 

view.

While finding the ray's path the program also had 

to find the ray's corresponding cord lengths in the 

voxels passed through. Rather than take the coordinate 

values of the rays entry and exit points for each 

voxel and use Pythagoras theorem to calculate these 

values as method using ratios of lengths was devised. 

This was simpler and did not require the calculation 

of square roots as the Pythagoras method would have. 

As shown in fig.12 the length of a ray between two x- 

planes is given by:

raylength X/ (cosa. cos/3)

(69)

this value will be constant for all rays from this 

view point and for each pair of x-planes. Hence this 

length can be calculated once and subdivided into the 

voxels as appropriate to give the required chord 

lengths applying the following rules:

1) If a ray passes through one voxel only between an 

x-plane pair the whole ray length value is assigned to 

this voxel. 2

2) If a ray is present in two voxels, fig.13 the ratio 

of lengths wl:w2 is equal to zl:z2.

55



\

.................................................................'

y~y
I j

<■........> i

C  \

f k

i \  \w
\  , \ i  

\

/........ \
\

r 7 -

Z.j

Figure 13 The plan view of a ray that passes through 
two voxels 3

3) If a ray is present in three voxels, as in figs. 14 

and 15 .

wl = w.zl/(zl+z2); w2= w'.z3/(z2) ; w3 = w'.(z2-

z3)/z2

where the z values are the distances in the z 

direction and w'= w - w l .
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Figure 14 A front elevation view of a passing through 
three voxels.
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3.1 The Tomographic Software

A new program had to be written to implement the 

complete tomographic process, with the three

dimensional projection scheme. This was written in the 

C programming language as it combines efficient 

compilation generating fast running codes, with the 

ease of programming associated with high level

languages. The overall aim of the program 

implementation was to enable easy modification of the 

program and maximise its flexibility. These points 

were considered to be of paramount importance, as it 

was foreseen that the details of the problem to be 

solved and the optimum method of solution would almost 

certainly be modified with greater experience of 

applying the tomographic techniques.

A flow chart of the process is shown in fig. 16.
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Figure 16 The tomographic reconstruction program flow 
chart.

The first step in the program is the allocation of 

the memory required by various data sets. The 

principle areas are the arrays for the storage of the 

reconstructed field, the individual ray lengths in
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each of the voxels, (both 100 x 100 x 100 array of 

floating point numbers in the final form of the 

program) , and the array used to store the ray paths 

through the field from a single view, (a 100 x 100 x 

100 array of integers).

Once the memory has been allocated and the 

variables declared the main operation of the program 

can begin. Each view is read from disk by its own 

module in the program which contains the instructions 

for the handling of that particular view, i.e. the 

angles of inclination of the view and its relative 

position to the field. Having separate modules for 

each view allowed the greatest flexibility when 

inputting data to the program.

The positional and angular data for each view is 

passed to the appropriate geometry generating sub 

program where the ray paths for the view are traced 

and the individual chord lengths are calculated for 

each voxel. This data is then passed to the individual 

view module where the tomographic reconstruction 

algorithm is applied to each voxel in the 

reconstructed field. When the data for a particular 

view has been considered the program moves to the 

module for the next view and repeats the process.

After all the views have been considered in turn 

the program notes that a single iteration of the 

tomographic reconstruction process has been completed 

and the whole process can start again from the first 

view depending on how many iterations have been 

specified.

Finally when all the iterations have been completed 

the reconstructed array is written to the hard disk.

The structure of the program was such that the 

alternative algorithms used required only minor 

changes so that it was possible to implement the ART, 

the Lent MART, and the Gordon and Herman MART 

algorithms with only minor changes. Having calculated
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the appropriate geometry data the algorithms core 

calculations required on a few lines of program at the 

centre of several program loops. This approach proved 

satisfactory through out the testing of the tomography 

system.
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In the theory section it was explained that there 

are several algorithms that can be applied to limited 

angle tomographic reconstruction problems and there is 

considerable doubt as to the best possible approach in 

any given situation. This being the case it was 

decided that to determine the most suitable one for 

our purposes we should experiment with several 

different algorithms.

Of the algorithms previously described, the ART, 

the Gordon and Herman MART and the Lent MART 

algorithms were selected for trial implementation. 

They were applied to both model data and real data in 

a series of comparative tests. The reasoning behind 

this choice was that the ART algorithm would provide 

a well proven standard to test any other algorithms 

against, the Lent MART algorithm could provided 

experience of maximum entropy type algorithms, and the 

Gordon and Herman MART algorithm should give good 

performance, having been cited as the best performing 

MART algorithm in a recent review, ref.[4].

Before comparing the results produced by the 

individual algorithms the basis for selecting a 

particular output from a series of iterative solutions 

produced by a given algorithm must be considered. As 

these are all iterative schemes a decision must be 

made as to the point when they should be terminated. 

This can be on the basis of the reconstruction having 

reached some stopping criterion, or having performed 

a certain number of iterations, or the time a program 

has run for. As the initial tests were carried out on 

an IBM PC compatible computer, where the run time of 

the program could reach several hours when 

reconstructing a 30x30x30 field using the 3-D

4.0 Comparative tests of the iterative algorithms
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projection scheme, a limited number of iterations had 

to be used. However when reconstructing with the 

Silicon Graphics computer the speed of the workstation 

allowed more iterations and thus the stopping 

criterion used was the minimisation of the solutions 

error.

For the reconstruction of a known test field there 

are a number of different performance criterion which 

can be applied to tomographic reconstructions 

produced. The simplest is to take the sum of the 

differences between the value of each voxel in the 

reconstruction and the corresponding voxel in the test 

field and the divide by the number of voxels. This 

gives the average difference in each voxel, or the 

absolute error.

i j k ,
Performance Figure 1=2£Z [ | (xc-xr) |/£ (i ). 2 (j ) . 2 (k) ]

0 0 0

(70)

where xc is the calculated voxel value and xr is the 

voxel value from the reconstruction.

The drawback to using this parameter for the 

evaluation of error is that when reconstructing sparse 

fields small back ground errors may swamp the more 

significant errors in the reconstructions features. 

For example in our 100x100x100 field the cross feature 

is present in 5000 voxels, therefore the background 

has 995,000 voxels and if these have an average error 

value only 0.05% that present in the cross 

reconstruction they will still contribute equally to 

the value of this performance figure. Because of this
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the value of absolute error was also calculated in the 

immediate area surrounding the test object as well as 

across the whole field and the results of these are 

given.

A second performance parameter was devised which 

calculates a R.M.S. value for error across the field.

Performance Figure2̂
i j k
ZZZ[ (xc-xr)i 2/Zi.Zj .Z/c]
0 0 0

(71)

This value gives much higher weighting to errors in 

reconstructing higher density features, i.e. those 

which are important for feature recognition. Hence 

performance figure two is the appropriate guide for 

sparse fields and performance figure is useful for 

dense evenly populated fields. Together they can 

provide a useful indication for the performance of the 

reconstruction in terms of both general field accuracy 

and specific feature reconstruction.

In Verhoeven's review of the various MART 

algorithms he used four error factors; the average 

error, (equation 70), the normalised r.m.s. error, 

(equation 71) , the normalised absolute error, 

(equation 73), and the maximum error.

i j k i j k

PerformanceFigure3= EEE [*r-*c]/EEEw
0 0 0 0 0 0

(73)

Verhoeven defined the maximum error as the largest 

difference between the reconstruction and the test 

model. He also note that the normalised absolute error 

emphasized the effect of many small errors.
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As the calculation of these parameters takes 

relatively little time compared to the actual 

reconstruction process, all four of the performance 

factors were calculated for each reconstruction. In 

practice it was found that the data produced by error 

values given by Performance Figures 1 and 2 were 

sufficient to evaluate the performance of the 

tomographic processes as Performance Figure 3 did not 

produce any useful values.

4.1 The test object

The test object we devised was a pair of thin 

planes set at 90 degrees to each other in a cube of 

lower density. This was in order to evaluate the 

effect of the tomographic process on a three 

dimensional object that had some structural similarity 

to the Rolls Royce holograms. As the holograms 

principle feature is a shockwave that is roughly 

planar this seem a suitable choice. The complete test 

field comprised the two square planes of 50x50 units 

and density value 100 set in a 50x50x50 cube of 

density 10, surrounded by a background null field of 

100x100x100.

A simulated series of views of this object was 

generated by writing the models data in a computer 

program and using a modified version of our projection 

program. This calculated the attenuation that a ray 

from a given direction would experience when passing 

through the field by tracing the ray's path through 

the field, identifying the voxels it passed through, 

calculating the contribution of each voxel by the 

product of the ray length passing through the voxel 

and the attenuation present, and finally summing these 

values along the whole path of the ray. In practice 

the program to produce this data was incorporated in 

the tomography program so that the data for each view
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was generated when the program was run.

4.2 The effect of different relaxation factors on 

convergence

In order to perform comparative tests between the 

different algorithms it was necessary to select the 

relaxation factors to be used with the MART 

algorithms. This was to ensure that the optimum 

results from each reconstruction technique would be 

compared. Because of this we carried out tests on the 

effects of various relaxation factors. Once these had 

been carried out it was possible to select the most 

appropriate value of relaxation factor for use with 

the algorithm in the comparative tests.

The effect of different relaxation factors on the 

convergence of the MART algorithms is illustrated in 

the following graphs, figures 17 and 18.
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proceed to compare the different types.

4.3 Comparative results for different algorithms

The comparative results of the different algorithms 

performance are illustrated in a series of graphs of 

error verses number of iterations. The first graph, 

figure 19, shows the average absolute error present in 

the immediate area of the test object, (a 50x50x50 

cube about the two planes), for the three algorithms. 

The error for the ART reconstruction shows a steady 

reduction converging to fixed value as the tenth 

iteration is approached. In contrast the Lent MART 

curve shows a steep drop for the first few iterations, 

then a flat bottom to the curve as the error reaches 

a minimum, followed by a steep increase in error as 

the reconstruction becomes unstable. The error value 

for Gordon and Herman reconstruction is the highest 

initially then declines steadily to be the lowest of 

the three after ten iterations, 8.48 against 9.45 and 

9.14 for the ART and Lent MART respectively. The 

lowest error value for the Lent reconstruction 

actually occurs at the seventh iteration at 8.98, 

still lower than the Gordon and Herman MART.
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the test object.

The absolute error produced across the whole 

100x100x100 field by the different algorithms is shown 

in fig.20. This graph shows the MART algorithms giving 

a lower error value than ART. We can also see that the 

Lent MART shows a sudden increase in error after four 

iterations .However as this occurs while the error in 

the 50x50x50 area is still falling. From this 

discrepancy between the reduction in error produced 

close to the object and the error in the complete 

field it can be deduced that the Lent MART produces 

"noisy" reconstructions, with spurious features 

introduced in the background field. Again this
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across the range of iterations for the whole field 

case and from the fifth iteration onward for the 

immediate object field. The lowest error for each 

occurs at the tenth iteration, 0.180 verses 0.211 for 

the Gordon and Herman MART and ART solutions 

respectively. The Lent MART reaches it's error value 

at iteration 3 with a value of 0.190, before it 

rapidly increases to an out of range value by the 

tenth iteration.

4.3.1 Visualisation of the reconstructed objects

The resultant reconstructions produced by the Lent 

and Gordon and Herman MART after 10 iterations were 

used for visual presentation, however the ART 

algorithm required 20 iterations to produce clear 

results and thus the ART images shown are after 2 0 

iterations these tests. The views of these three 

reconstructions are shown in fig. 21 to 32. The cross 

reconstructions are shown as an iso-surfaces (with the 

level set to 50% of the value of the test pattern) and 

as a series of orthographic slices, (coloured from red 

to violet with red representing zero and violet 100 

units) . The orthographic slices are taken in three 

orthogonal directions through the field, cut through 

the centre of the field.
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Figure 21
The iso-surface 
of the ART 
reconstruction

Figure 22
The Gordon and 
Herman cross 
recostuction

Figure 23
The Lent Cross 
reconstruction
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Figure 24
The ART
reconstruction 
sectioned 
perpendicular to 
the viewing 
direction

Figure 25
The Gordon & Herman 
MART reconstruction 
section
perpendicular to 
the viewing 
direction

Figure 26
The Lent MART 
sectioned 
perpendicular to 
the viewing 
direction
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Figure 27
The ART cross 
sectioned through 
the vertical plane

Figure 28
The Gordon and 
Herman MART cross 
sectioned through 
the vertical 
plane

Figure 29
The Lent MART 
cross sectioned 
through the 
vertical plane



Figure 30

The ART cross 
section through the 
horizontal plane

Figure 31

The Gordon and 
Herman MART cross 
section through the 
horizontal plane

Figure 32

The Lent MART cross 
section through the 
horizontal plane
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If we compare the iso-surfaces generated from each 

of the reconstructions some general traits can be 

decerned. The figure produced from the ART 

reconstruction clearly shows the shape of the cross 

with the surfaces of the object appearing smoother 

than either of the other iso-surfaced images. There 

are however some noticeable artifacts in the image 

that have been introduced during reconstruction. The 

Lent MART figure contrasts strongly with this by 

giving an extremely speckled appearance to the crosses 

surface, making it appear to be made up of discrete 

points rather than continuous plane and giving a poor 

representation of the objects original shape. The iso-

surface of the Gordon and Herman MART reconstruction 

shows a sharp cross outline with the general object 

shape well preserved. The surface of the figure is not 

as smooth as the ART version but there are not the 

large number of artifacts found with the ART. 

Comparing the sectional views we can see some 

important differences in the behaviour of the 

algorithms. The sections perpendicular to the axis of 

the cone of views all show the two planes with their 

axes at 90 degrees to each other, thus no noticeable 

geometric distortion was produced by during 

reconstruction. However the surrounding cube field in 

the ART reconstruction shows a large distortion in 

it's shape compared to the other algorithms with the 

area near the cross figure failing to reach the level 

of the outer areas of the cube. An explanation for 

this would be the algorithm erroneously attributing 

the data indicating density in this areas to the 

nearby cross object. The variation in the cube field 

is less noticeable in either of the other sections 

although a similar dip in cube density near the cross 

can be decerned. A feature's colour in these views 

indicated it' s density value and it should be noted
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that the MART reconstructions have approached the 

correct density value for the cross and cube after 10 

iterations where as the ART algorithm required 20 

iterations. These density distributions are apparent 

in the sections through the centres of the planes. The 

ART reconstructions density increases noticeable 

toward the middle of the cross in the vertical plane 

whereas the Gordon and Herman MART has a much more 

uniform density across the whole plane. The Lent MART 

is similar but shows more individual density peak 

values in the plane and has a rounding off of the 

trailing edge of this plane. In terms of feature 

confinement the MART algorithms perform better than 

ART which shows the horizontal plane of the cross 

noticeably extending along the direction of the 

viewing cone. From these observations it was deduced 

that the Gordon and Herman MART algorithm had produced 

the reconstruction that was the most faithful to the 

original test field after 10 iterations and was still 

superior overall to the ART algorithm when that was 

used over 20 iterations.

4.3.2 Distinguishing objects from the background field

Placing the cross object in a cube of lower density 

had allowed us to investigate the ability of the 

tomographic process to extract features from 

background field density and the outline of the cross 

test feature was clearly visible when the cross 

feature was surrounded by a cube with a density of 10% 

of the crosses. A further test was carried out with 

the background cube value increased to 50% of the 

cross feature density. The iso-surfaced cross and 

orthographic slices shown in figures 33 to 35 

illustrate the results of this test.

Looking at the iso-surface of the cross we can see 

that the pattern is now more broken up with artifacts 

appearing from the background cube. When the level
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Figure 33 The iso-surface of the cross in a 50% 
background
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Figure 34 The section through the cross perpendicular 
to the viewing direction
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Figure
plane

35 The cross section through the vertical
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for generating the iso-surface was increased so that 

a more continuous surface might be produced for the 

cross the result was this feature became 

indistinguishable from the background. As we would 

expect the separation of the object from the 

background field had become more difficult. This point 

was also illustrated by the sectional views, as 

although the planes that make up the cross are still 

visible they are much closer to the background 

density. This reduction in contrast between the cross 

and the background field is as we would of course 

expect with the increased field density. However it 

was still possible to distinguish the cross from the 

field and hence our tomographic approach was still 

viable under these conditions. When a further test was 

attempted with the cube's density value set to 90% of 

that of the cross object no pattern could be decerned 

in the reconstruction. This gives us a useful 

guideline for the minimum contrast required for 

reconstructing thin objects in density fields when 

relying on limited angle data, that is, an object may 

be resolved when it's density is twice that of a field 

surrounding it.

4.3.3 Spherical shell test pattern

To determine the effect of the tomographic process 

on more complex shapes a hollow sphere was programmed 

as a test object. This would test the reconstruction 

processes ability to cope with both curved surfaces 

and hollow objects. It's symmetry in all axes passing 

through it' s centre made it particularly suitable for 

investigate the effect different angles for the cone 

of view when the cone's apex was coincided with the 

spheres centre. That is as the cones angle changed no 

fundamentally different features appeared in the ray 

data, only their angular displacement was altered and 

this effect only gives rise to changes in the
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reconstruction. The sphere test object is shown in 

figure 36.

Figure 36 The spherical test object

The sphere was 50 units in diameter and it's shell 

thickness was one unit. It was located centrally in 

the field. The first reconstruction was performed over 

a range of angles of +0.3 and -0.3 radians in the 

vertical and horizontal axes using the Gordon and 

Herman MART. The resultant reconstruction is 

illustrated in figures 37 to 40.
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Figure 37. The iso-surface of the shell sphere 
reconstruction.
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Figure 38 A sectional view through the hollow sphere 
cut along the direction of view in the vertical plane
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Figure
sphere

39 A section cut through the mid-point of the 
perpendicular to the viewing direction.
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Figure 40 A horizontal section through the centre of 
the sphere
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The first most noticeable feature of this iso-

surface is that the front and rear of the sphere, 

(relative to the direction of view), have been lost in 

reconstruction. This gives the "ring" like structure 

were the wall of the sphere was at it's steepest 

incidence to the viewing direction. To explain this 

loss of the front and rear of the sphere we should 

consider the difference in the information captured by 

the rays passing through these areas. For the sides of 

the sphere sampling rays pass through these areas as 

shown in figure 41.

hollow sphere.

The rays that pass through these areas can pass 

through the middle of the sphere wall and come into 

contact with many voxels, pass through just a single 

voxel if sufficiently inclined to the sphere face, or 

pass through no sphere voxels. That is three quite 

different cases with consequentially different
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information. However for the front and rear of the 

sphere rays pass through single voxels, as in figure 

42, and thus rays contain a similar type of 

information.

Figure 42 The rays passing through the centre of the 
sphere

It is this reduction in the variation of the 

information presented to the reconstruction algorithms
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that leads to the loss of accuracy. It should be noted 

that the central section has accurately reconstructed 

the circular cross-section of the sphere, showing no 

geometric distortion.

The test figure was then reconstructed using a 

wider viewing angle of 0.45 radians. The results from 

this are shown in figures 43 to 45.
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Figure 43 A vertical section parallel to the viewing 
direction through the sphere reconstructed from the 
0.45 radian views
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Figure 44 A vertical section perpendicular to the 
viewing direction
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Figure 45 A horizontal section through the centre of the sphere
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Figure 46 The iso-surface of the sphere reconstructed 
with a wider range of views.

Clearly the reconstruction is improved, as would be 

expected with a wider spaced data set. The front and 

rear of the sphere, (relative to the viewing 

direction), are still distorted due to the limited 

nature of the data, but the area where the 

reconstructed shell resembles the test object is 

increased. This can be seen in the iso-surfaced image 

where the shape of the reconstruction now resembles a 

sphere with front and end faces removed rather than a 

ring shape as previously. Similarly the orthographic 

slice parallel to the viewing direction shows a 

greater curvature at the top and bottom of the 

reconstruction fitting the test more closely. The 

stretching distortion in the viewing axis is reduced 

with the front and rear faces of the sphere closing 

toward each other at a steeper angle.

95



4.3.4 Sphere test object with variable internal 

density.

In order to test the effectiveness of our 

reconstruction techniques on three dimensional objects 

that have a variable internal density a spherical test 

object was produced that had an increasing density 

toward it's centre. In effect this test object was 

made up of a series of increasing value spherical 

shells, the outer shell having a density of 1 and a 

radius of 25 units, then a shell of density 4 units 

and radius 24 units, until the inner most having a 

density a 100 and radius 1 unit.

This test object was then reconstructed using both 

the ART and Gordon and Herman MART algorithm. As 

previously with the shell sphere test object tests 

were carried out using different sets of views of the 

object, one limited to views of up to 0.3 radians and 

one of up to 0.45 radians. By doing this the effect of 

increasing the angular range of allowed views could be 

studied.

4.3.5 Error comparison for the solid sphere 

reconstructions

As with our previous reconstructions the value of 

Performance Figure 1 at each iteration was recorded. 

Graphs of the variation of error against number of 

iterations were produced for the reconstructions and 

are shown in figures 47 to 50.

Considering the results for error across the whole 

field plotted against number of iterations in figures 

49 and 50, the 0.45 radian data set gave similar 

shaped curves for both algorithms, with a steady 

reduction in error as the number of iterations 

increases. There is a significant difference in the
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error level from the first iteration onward with the 

MART producing a significantly lower value. The final 

errors for the two are 1.39 for MART and 1.917 for 

ART. In contrast the 0.3 radian data sets produced an 

unexpected pattern for the change in the value of 

error as this initially rises with increasing 

iterations. The ART algorithm shows an increase in 

error between the first and second iteration before a 

gradual reduction for the following iterations. The 

MART algorithm shows a more accentuated form of this 

behaviour with the error level increasing until the 

seventh iteration, where it levels off and then starts 

to fall. This increase in error as the number of 

iterations increases would seem to be in contradiction 

to the reconstruction idea of improving each estimate 

of the field to be reconstructed at each iteration. It 

can be explained if we consider distortion present in 

the reconstructed object, which causes the 

reconstructed sphere to appear elliptical in cross 

section and occupy a significant amount of extra space 

in the solution field. Thus as the solution builds up 

over the iterations the density values lying in these 

incorrect locations increase, (at least for an initial 

number of iterations). This is especially pronounced 

for the 0.3 radian data set giving a rising error 

value.

Figures 47 and 48 look at the error levels in a 

50x50x50 cube, which for this test figure is the 

volume that just surrounds the sphere. Figure 48 shows 

the convergence of the two ART reconstruction. The 

error for both of these starts at approximately the 

same level despite the wider viewing range for the 

0.45 radian data set. However as the number of 

iterations increases the 0.45 radian reconstruction 

converges to a lower error value. The convergence of 

both reconstructions is stable and occurs after the
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same number of iterations. Thus while the rate of 

solution is independent of the allowed viewing angle 

for this test the quality of the result is reliant on 

it.

Figure 47 shows the convergence of the Gordon and 

Herman MART solutions. Once again the error levels for 

both data sets start at similar values and as the 

number of iterations increase the error value for the 

0.45 data set drops to a lower value. Comparing the 

results for both algorithms while the MART algorithm 

give a lower final value of 7.49 verses 7.95, for the 

0.45 radian views. However the converse is true for 

the 0.3 radian solutions with final error values of 

9.28 verses 9.03. Studying these graphs we can see 

that there is a reduction in reconstruction error when 

the wider view data is used as opposed to the more 

limited data set, as we would expect. The MART 

algorithm also performs better than the ART for the 

0.4 radian data set, again as we would expect, giving 

lower error values for both error factors. However 

when the 0.3 radian data set is used while the ART 

algorithm performs better than MART.
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4.3.6 Sectional views of the reconstructions

A series of sectional views of the solid sphere 

reconstructions were produced to enable the shape of 

the reconstructed field to be studied. These are shown 

in figures 51 to 62.
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4.3.6.1 Variable density solid sphere reconstructed 

using the ART algorithm

The reconstruction was performed first on the 

variable density sphere used ART with viewing angles 

of + 0.45 and - 0.45 radians. Three cross sectional 

views of this were generated, each passing through the 

centre of the sphere in the x, y, and z axes. It can 

clearly be decerned from these that the reconstruction 

is distorted with an elongation of the sphere's shape 

along the viewing direction giving a oval shape. The 

cross sectional view perpendicular to the viewing axis 

show the sphere's circular cross section has been 

perserved. Another feature of this reconstruction is 

the appearence of spreading from the sphere at the 

extremes of viewing angle giving an "x" shape to the 

sectional views parallel to the viewing angle. The 

density of the reconstruction can be seen to increase 

towards it's centre.

Figure 51 A section in the horizontal plane parallel 
to the viewing direction
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perpendicular to the viewing direction
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Figure 53 A section in the vertical plane parallel to 
the viewing direction
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4.3.6.2 The MART reconstruction of the variable 

density sphere with viewing angle range +0.45 to -0.45 

radians

In these three cross sections the feature spreading 

again gives an oval shape to the sections parallel to 

the viewing direction, but it is less noticeable than 

in the corresponding ART reconstruction. The density 

at the centre of the reconstruction has also reached 

higher values that are closer to thoses of the test 

object.

Figure 54 Vertical section parallel to reconstruction 
viewing direction
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Figure 55 A section perpendicular to the viewing 
direction
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Figure 56 A horizontal section through the 
reconstruction
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4.3.6.3 The ART algorithm reconstruction of the 

variable density sphere with viewing angle range +0.3 

radians to -0.3 radians

Once again the reconstruction follows the same 

pattern as the previous one but as the viewing angle 

is reduced the feature distortion is more prenounced. 

The elongation of the sphere is increased to almost 

the length of the test field. It's circular cross- 

section is preserved in the viewing direction however.

Figure 57 The vertical section through the centre of 
the sphere.
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Figure 58 A section perpendicular to the view axis 
through the centre of the sphere.
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Figure 59 A horizontal section through the centre of 
the reconstruction
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4.3.6.4 MART reconstruction of the variable density 

sphere for viewing angle +0.3 to -0.3 degrees

This reconstruction of the test object is clearly 

inferior to that produced by the MART algorithm using 

the wider viewing angle data set. The erroneous 

elongation of the field is greater as we can see in 

the figures 60 and 62. The circular cross section of 

the sphere for the section perpendicular to the 

viewing direction is however still preserved as in 

figure 61.

Figure 60 Vertical section along the recontruction 
direction.
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Figure 61 A vertical 
viewing direction.

slice perpendicular to the
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Figure 62 A vertical slice parallel to the viewing 
direction.
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In all of these views we see fields density 

increases toward the centre of the object, correctly 

reproducing this feature of the object. The ART 

reconstruction has less convergence to the correct 

central density than the MART version and thus again 

MART has proved more effective. In terms of the 

reproduction of the spheres shape both algorithms 

accurately reproduced the circular cross section of 

the sphere in the perpendicular direction to the 

viewing cone. The noticeable elongation along the 

central axis,

parallel to the viewing direction, is caused by the 

lack of information from the direction perpendicular 

to the axis to confine this spread. This effect is 

reduced in the sections from the wider viewing data 

sets, as of course we would expect.

4.4 Summary of algorithm comparison

The results of the comparative tests can be 

summarised as follows:

The ART algorithm proved robust needing the minimum 

of modification for specific problems, but tended to 

smooth out sharp features in the reconstructions. The 

Lent MART algorithm produced reconstructions that 

reproduced sharply changing features but also 

introduced spurious features. It also required the 

tuning of the relaxation factor for specific problems. 

The Gordon and Herman MART algorithm proved superior 

to both of the algorithms in confining reconstruction 

feature to the correct position and in the accuracy of 

the individual values in the reconstruction, it did 

however require the setting of the relaxation factor 

which is found on trial and error basis.
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5.0 Comparative Tests of the Projection Schemes

To test the potential benefits of our 3-D 

projection scheme a series of comparative tests 

between it and the 2-D slice approach were made.

5.1 The cross planes

The first test object reconstructed using the 2-D 

scheme was the crossed planes model. This was 

reconstructed using the ART and Gordon and Herman MART 

algorithms in conjunction with the two projection 

methods in order to observe any effects caused by the 

interaction of projection scheme and algorithm. The 2- 

D slice reconstructions were produced using our 

tomography system with the computer program altered so 

that one of the two variable angles used for the 3-D 

scheme was made constant. Iso-surface figures of these 

2-D reconstructions are shown in figures 63 and 67. In 

both figures it can clearly be seen that the 

horizontal plane has been severely distorted during 

the reconstruction process, while the vertical plane 

has been reconstructed relatively accurately. As the 

slices used for the reconstruction lay in the 

horizontal plane it can be deduced this caused less 

useful information to be available to the

reconstruction process the parallel plane. This lack 

of information causes the horizontal plane to spread 

along the viewing direction so that the extremities of 

the plane reach the boundaries of the field. It is 

also noticeable that this distorted plane tapers at an 

angle corresponding to the direction where the 

sampling rays intersect the corners of the plane. Thus 

where there is sufficient data to constrain the spread 

of the plane, i.e. from the sampling rays that by pass 

the plane and experience zero attenuation, the 2-D 

projection schemes was operation was sufficient.
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5.1.1 Slice reconstructions of the cross test object 

using the ART algorithm

A slice reconstructions of the cross test object 

was performed and the resultant reconstruction is 

shown iso-surfaced below.

Figure 63 An iso-surface of the slice reconstruction 
of the cross test object, using the ART algorithm

It is immediately noticable that the test objects 

shape has been badly distorted. This reconstruction 

was also visualised by taking orthographic slices 

through it, allowing the distortion of the planes to 

be viewed in the x,y and z directions.

Figure 64 below is cut parallel to the vertical plane 

directly through it's centre. It shows how the slice 

reconstruction has distorted this square shaped 

feature into an almost diamond shaped one. This face 

is the one parallel to the slices used to reconstruct
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the field. Thus the ray paths used to reconstruct this 

feature all lie in the same plane as it with no out of 

plane information being used to reconstruct it. 

Because of this there is insufficient data to confine

Figure 64 The slice through the vertical plane

the feature to it's correct square outline.

The section perpendicular to both planes shows the 

cross out line has been preserved. However the final 

section, figure 66, parallel to the horizontal plane
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Figure 65 The section cut perpendicular to the 
viewing direction

also shows some distortion, the vertical plane 

spreading along the field with a thin central band at 

the centre of the planes location.

Figure 66 The section through the horizontal plane
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The 3-D ART reconstructions for comparison

Figure 67 The iso-surface Figure 68 Vertical 
section

Figure 69 Section 
p e r p e n d i c u l a r  to 
viewing direction

Figure 70 Horizontal 
section
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A numerical measure was made of the relative 

effectiveness of the two projection schemes. The error 

present in the reconstructions at each iteration was 

measured and are shown in figures 71 and 72, 

comparing the ART and MART results separately.

technique for the ART reconstructions

In both graphs the 3-D projection scheme shows 

significantly less error at each iteration. The Gordon 

and Herman results for the slice and the 3-D 

projection schemes respectively were lower than the 

ART values, as we would expect. Importantly the 3-D 

ART reconstruction had a lower error value than the 

Gordon and Herman slice reconstruction at every point 

in the reconstruction process, thus for this test 

figure the projection scheme used was a more 

significant the algorithm used. A point borne out by 

the iso-surfaced figures where the 3-D scheme gave
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clearer definition over the 2-D regardless of 

algorithm.

for the MART algorithm

Having demonstrated the superior performance of the 3- 

D scheme using the cross test object comparative 

reconstructions were then performed on spherical test 

obj ects.

5.2 Spherical test object comparative reconstructions

The spherical test objects used previously, i.e. 

the hollow sphere and the variable density sphere, 

were now tested with the slice reconstruction method.
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The hollow sphere test object was considered first and 

these results are illustrated below in the form of 

iso-surfaces and orthographic slices.

Figure 73 The iso-surface figure of the slice 
reconstruction of the test sphere.

In this iso-surface of the reconstruction, figure 

73, the only remaining recognisable feature of the 

original spherical shell is a circular ring shape that 

corresponds to the outside diameter of the sphere when 

viewed end on. The sampling rays incident on that 

portion of the sphere would have been tangential to 

the surface and it is these rays which contained 

sufficient information to give a detectable ring 

structure. When compared to the results produced by 

the three dimensional projection scheme we have the 

same general loss at the front and rear of the sphere
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but has an extra distortion in the form of two facets 

introduced at the front and rear of the field.

The orthographic slice through the centre of the 

reconstruction, figure 74, shows the ring structure 

which was visible in the iso-surfaced image.

Figure 74 The orthographic slice through the sphere 
perpendicular to the viewing direction

An orthographic slice view of the figure in the 

horizontal plane was also taken and this is shown in 

figure 75.
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Figure 75 A horizontal slice through the centre of 
the sphere

and also in the vertical plane as shown in figure 76.
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Figure 76 The vertical slice through the sphere

The sectional views of the 3-D scheme's 

reconstructions showed the ring feature it produced 

from the shell curving in an equivalent amount in both 

horizontal and vertical axes, corresponding to the 

sphere's curvature. However for the 2-D scheme these 

sections show a asymmetric reconstruction in the 

sectional views. This occurs in the vertical plane 

where the slice scheme causes a loss of information 

necessary to replicate the curvature of the original 

sphere. The wall of the sphere spreads along the axis 

of the reconstructing planes.
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A slice reconstruction of the solid test sphere 

was also carried out for purposes of comparison. The 

slice view orthogonal to the direction of view shows

Figure 77 A vertical slice through the solid sphere 
test object, orthogonal to the viewing axis

the distortion produced by this reconstruction scheme 

as the spheres circular cross section now becomes 

oval. Using the 3-D projection scheme to reconstruct 

this gave a circular cross section, accurate to the 

original model, thus this oval distortion in the slice 

result shows the superiority of the 3-D scheme.
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Figure 78 The section perpendicular to the projection 
scheme slices

Viewing the above section, perpendicular to the 

plane of the reconstructing slices it can be discerned 

that the elongation along the viewing axis is similar 

to that see previously in the 3-D projection scheme 

but to an even greater extent. When the orthographic 

slice parallel to the projection scheme slices is 

viewed the spreading is pronounced giving an "x" shape 

to the view.
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Figure 79 The slice parallel to the project schemes 
slices

Once again it clear that the slice reconstruction 

produced substantially poorer representations of the 

original test objects than the three dimensional 

projection scheme used previously.
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6.0 Construction of a practical tomography system

Having successfully demonstrated the merits of our

direct three dimensional projection scheme on computer 

models we moved to the next phase of our work, namely 

the application of this method to real holographic 

data. The next goal was to develop a practical 

tomographic system from this. The development of this 

practical system required two main areas of work, the 

construction of an image acquisition system to extract 

the data from the holograms and a computing system 

capable of handling real data.

6.1 Upgrading the tomographic systems computational 

power

Initially the tomographic reconstruction program 

had been developed on an IBM compatible PC computer 

and then transferred to a Silicon Graphics 

workstation. This was in order to allow the 

reconstruction of fields with higher resolution as it 

was necessary to increase both the processing speed 

and memory available. The computer in use at the start 

of this project was a PC with 486 processor running at 

33 MHz and 8Mb of RAM; this had allowed 

reconstructions of a 30x30x30 cube of elements. At 

this resolution a test reconstruction took several 

hours. To increase resolution from 30x30x30 to 

100x100x100, (an increase from 27,000 to 1,000,000 

elements) , would have resulted in run times measured 

in days and hence the PC computer had reached its 

practical limit in terms of run time. It was therefore 

decided to upgrade to a high performance workstation.

Several different machines were considered but the 

optimum in terms of price verses performance at the 

time was a Silicon Graphics R4000 Indigo with a MIPS 

4000 RISC processor and 32 Mb of RAM. This had the 

added advantage of compatibility with the Silicon 

Graphics workstations used at the Rolls Royce Applied
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Science Laboratories, easing the installation of the 

tomographic software on their computers. Our 

tomographic software had been developed using 

Microsoft's C version 6 compiler on the PC using the 

DOS operating system and thus had to be recompiled to 

run on the Silicon Graphics Workstation with it's UNIX 

operating system. In the original programming process 

care had been taken to use ANSI standard C functions 

with the ease of running the program on other computer 

platforms in mind and thus the code was able to be 

recompiled without modification using the Silicon 

Graphics C compiler. When a test reconstruction was 

run using a 30x30x30 field the Silicon Graphics 

computer was found to be approximately ten times 

faster than the 486 PC computer. The size of the test 

fields was then increase and the Silicon Graphics 

Workstation proved capable of processing cubic fields 

of 100x100x100 units when using test data and was 

hence suitable for use with data from the holograms.

6.2 Image acquisition

In order to extract data from the holograms an 

image acquisition system had to be constructed. The 

principle components for this were to be a high 

resolution charge coupled device, (CCD), camera and a 

frame grabbing board.

The camera selected was a Cohu monochrome CCD 

camera. As this camera is a relatively low noise 

device as this would contribute to accuracy in the 

final reconstruction. This was mounted on the 4 degree 

of freedom positioning system that enabling the 

holograms to be photographed about a cone of views as 

required by our tomography program. The principle of 

operation of the camera is the storage of electrons on 

a grid of semi-conducting elements, when exposed to 

light the electrons are able to migrate to a region in 

the semi-conductor where they can be detected when the
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grid is read. A monochrome output was selected as the 

holograms contained no chromatic information, (they 

simply assume the colour of the laser light used to 

reconstruct them), and a monochrome camera gave 

greater pixel resolution than a colour camera with the 

same number of CCD elements. The resolution of this 

camera was 512x512 individual CCD elements, which were 

rectangular in shape to give the 4 by 3 aspect ratio 

of a video picture. The camera's output was a CCIR 

standard luminance signal.

To convert the video camera's analogue output into 

a digital form suitable for use in the computer an 

image acquisition card, (or frame grabber), was 

required. The frame grabbing card selected was an 

Overlay Frame Grabber made by Imaging Technology, 

maximizing compatibility with existing Imaging 

Technology equipment in use at Rolls Royce. The 

Overlay Frame Grabber, (O.F.G.), has a frame store 

which can be configured to acquire a 512x512 picture 

in monochrome, matching the output from our camera. 

This card was installed in PC compatible computer 

where the images were stored before being transferred 

to the workstation.

Software to drive the frame grabbing card was 

supplied by the manufactures but specific programs to 

control the operation of the frame acquisition process 

had to be written. The drive software was supplied in 

the form of libraries to be included in a Microsoft C 

compiler, which once installed allowed programs 

written in this C compiler to control the frame 

grabber. In terms of our particular needs the first 

requirement was for a program to display the camera 

output on a monitor with registration marks overlayed 

to enable the alignment of the camera to a point in 

the field. Once aligned the view would then have to be
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digitised and stored on the IBM PC hard disk read for 

transfer to the workstation. A program was written in 

Microsoft C to perform these functions and it1 s 

operation is shown in the flow chart figure 80. The 

first process to take place is the initialisation of 

the card and then the setting of the Global Area of 

Interest for the framegrabber, (that is the area of 

the input image that will be processed, in our case 

all of the 512x512 image) . Once the framestore had 

been cleared and the camera input detected an image 

would be displayed on the monitor. On this displayed 

image our program overlayed a cross hair to aid the 

alignment of images. The program then grabbed the 

image into the framestore and wrote this data to the 

hard disk for storage. This program proved adequate to 

acquire the images from the holograms in operation.

133



END

Figure 80 The image acquisition programs flow chart.

To provided an accurate method of moving the camera 

between views a precision mount was constructed. The 

required range of movement was determined by the views 

to be taken from the hologram, and as discussed 

previously these are in the form of a cone subtending
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an angle of less than 45 degrees and typically no more 

than 15 degrees. Thus a translation system was devised 

to move the camera in the vertical and horizontal axes 

and rotate the camera in the x and y planes, thereby 

allowing a series of views to be taken about a cone. 

This is shown in figure 81. To minimise the cost of 

this system it was constructed from proprietary parts. 

Cost ruled out motor driven movement stages, however 

as the time penalty involve in manual adjustment of 

position did not effect the accuracy of the 

photographic measurements taken this was not an 

important consideration. The vertical and horizontal 

translations stages are simple screw thread movement 

devices from Time and Precision, these have a vernier 

scale which allows measurements to be made to one 

tenth of a millimetre. On top of the horizontal 

translation stage a rotary movement stage was fixed to 

provide the rotational movement in the horizontal 

plane. A right angle bracket was attached to this to 

act as a vertical mounting for the second linear 

translation stage. A final rotary stage was mounted on 

the side of the vertical stage to give the vertical 

plane rotation. Both rotary stages were supplied by 

Ealing Electro Optics and have a vernier scale to 

measure rotation which allows reading of 5 minutes 

accuracy. The complete mount was fixed on an optical 

table carrying the hologram and the laser used to 

illuminate it. By adjusting the cameras position with 

the linear stages and its direction with the two 

rotations it was possible to take the desired range of 

photographs. Appendix 13.3 shows the reconstruction 

optics.
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Figure 81 The image capture apparatus

6.2.1 Image data

The camera output the image in serial form to the 

frame grabber where it was converted to a series of 

digital levels between 0 and 256. A program written in 

Microsoft C and run on the PC was used to control the 

boards operation. Once an image had been converted its 

data could be written to a file from the C program. 

This gave a series of integer values representing the 

intensity at each pixel.

It was possible to perform various filtering 

functions at this stage using routines supplied with 

the OFG software. Some preliminary tests were carried 

out with the image sharpening algorithm, the Roberts 

filter, and the Sorbel filter. All three of these 

increase fringe visibility to some extent however a 

series of comprehensive tests would be required to 

accurately determine the effect of these processes on
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final reconstructions. Hence at this stage it was 

decided to use the sharpening only on the holographic 

images to minimise the possible variables in the 

testing process.

After processing had been completed the image could 

then be transferred to the workstation for 

reconstruction via an etha net connection between the 

two computers.

6.3 Handling real data for tomographic processing

The tomographic processing took place in the 

workstation using a program closely based on that 

previously developed on the IBM PC. The three 

dimensional projection scheme is used with exactly the 

same subroutines to generate the geometric data 

required for the operation of the reconstruction 

algorithms as previously. The reconstruction 

algorithms used in conjunction with this were the ART, 

Lent MART and Gordon and Herman MART.

To give higher resolution in the final 

reconstruction the array representing the field was 

enlarged to 100x100x100 and the ray tracing process 

was also adjusted accordingly. As may more rays were 

processed in a single view it was found to be 

appropriate to reduce the relaxation factors for both 

MART algorithms. This was the case because more 

processing of each individual voxel occurred as more 

rays passed through it for a single iteration. The 

Lent MART algorithm was operated with a relaxation 

factor of 0.03 as was the Gordon and Herman algorithm.

As previously mentioned the images were represented 

by 512x512 data sets. Now a requirement of the program
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for accurate ray tracing is that rays being considered 

from a single view are sufficiently widely space to 

avoid more than one ray passing through a voxel at the 

same time, (see Appendix 2). Imposing this restriction 

had greatly simplified the ray tracing process. 

However this condition could not be met with a 512x512 

element view and a 100x100x100 cubic field as 

approximately 25 rays would pass through each voxel. 

Thus a method was devised to allow the rays in a view 

to be processed in turn so that the ray tracing 

program did not have to consider rays that were 

closely spaced at the same time. Each 512x512 view was 

broken up into a series of more widely spaced 50 x 50 

views that could then be used with the existing 

program. The process can be considered as sampling the 

view with a 50x50 grid whose points are space 10 units 

apart in the vertical and horizontal direction. Once 

a 50x50 set of sampled data has been used the grid is 

then moved one element along in the view and the 

sampling process repeated. This was performed until 

all the individual data points in a view have been 

considered, thus utilising all the data in a view. A 

more detailed discussion of this process is give in 

appendix 2.

6.4 Alignment of views

In order to process the data from each view its 

position relative to all other views used has to be 

calculated and these positions entered into the 

tomography program. Two methods for the alignment of 

the view were considered, selecting a fixed alignment 

geometry with an arbitrary position or aligning the 

views to a point in the field. The method chosen was 

the latter as it allowed the areas of particular 

interest to be most easily selected which was 

important in a practical field, especially important 

as the actual range of views of
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the total field would probably be limited. Its 

disadvantage is that this method required a manual 

alignment of the views to a particular point, the 

process being to align the central point of each 

view to the same point in the reconstructed field 

viewed in the hologram. Thus a set of projections from 

each view's centre should meet at one point. This 

allowed the views to be considered as if they lay 

around a cone projected from the hologram. The view's 

central point was aligned to the desired point in the 

field visually. By displaying the camera output with 

a targeting cross wire overlayed using the frame 

acquisition card's graphic facilities, it was possible 

to adjust the cameras position until the target was 

over the desired point achieving an accurate 

alignment. By measuring the change in each view's 

angular position in both the vertical and horizontal 

axes the relative position of each can be fixed and 

the appropriate values for vertical and horizontal 

displacement calculated. This process and its 

mathematics is detailed in Appendix 1. Three values 

had to be calculated for the tomographic 

reconstruction program; the view's distance for the 

reconstructed field in the x-axis, its height in the 

y-axis and its displacement in the z-axis. These were 

fixed relative to the top right hand corner of each 

view.

To check the accuracy of the positioning of each 

view, a back projection was made from each, then the 

paths produced compared to one another using a data 

visualisation program. The back projections were 

produced using the tomography program modified to 

operate on a single view simply tracing the rays paths 

back through the field. If correctly aligned with the 

appropriate constants entered in the program the back 

projections should overlap at a single position,
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providing a simple and accurate check. This is the 

condition shown in figure 82, with two cross back 

projections meeting at a single position, (one back 

projection is shown wire framed for ease of viewing).

Figure 82 The alignment of two images

6.5 Visualisation of Reconstructions

Visual interpretation is a powerful tool in 

assessing the shape of the reconstruction produced by 

a tomographic system, however our program produced 

numerical data only. Thus once the reconstruction data 

had been produced by the tomographic reconstruction 

program it had be converted into a form that could be 

displayed graphically in order to be interpreted 

visually. The complex task of generating high quality
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representations of the data demanded a specialised 

software package, fortunately just such a package was 

provided with the workstation. This was the Silicon 

Graphics Explorer package which allowed the data to be 

viewed as either 3-D iso-surfaces, 3-D contour maps, 

or 2-D sections orthogonal to the x, y, or z axes. To 

produce these views the data first had to be entered 

into the Explorer package and this required the 

creation of a data entry module for use with our data. 

This data entry module was created in the explorer 

program and arranged the input data into a three 

dimensional array of floating point numbers from which 

the required views could be generated. To produce a 

view of the data the input module was linked to a 

processing module and then a display module using a 

graphical user interface. The functions of the 

processing module were as follows:

An iso-surface generator which would generate a 

view consisting of a three dimensional surface joining 

all the points of an equal value, this value being a 

variable entered in the processing module by the user. 

This function was particularly useful for studying the 

overall shape of a reconstructed object.

The contour generator produced a set of contours 

spaced between an upper and lower boundary value set 

by the user. The number of individual contours was 

also variable and these were automatically coloured 

for identification purposes. When observing the 

variation of values in a reconstruction the use of 

this function was particularly valuable.

A section generator module produced views that were 

two dimensional sections cut parallel to the x, y, or 

z axes. Used in conjunction with a false colour 

generator module, two-dimensional representations of 

the density variations in a reconstruction, could be 

produced with the colour of an area indicating its 

value. This was a very useful technique for
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visualising the density variations through the centre 

of a reconstruction.

All the graphical views of our reconstruction were 

produced using these modules, either individually or 

in combination.

6.6 Assessment of Accuracy of the Real Object 

Reconstructions

The reconstruction of real objects presented new 

problems when considering the accuracy of the 

tomographic process. The sources of potential error 

increased to include the accuracy of the photographic 

images and the errors in the alignment of each view as 

well as the error in the tomographic process. 

Obviously the previously used method of comparing a 

reconstruction directly with the computer model 

sampled to produce the reconstruction data was 

impossible when dealing with real object data, and 

hence a new method of accuracy assessment had to be 

devised.

To determine the accuracy of feature reconstruction 

the reconstructions were compared to geometric 

computer models of the objects under test. The process 

was as follows: the reconstructed object was 

subtracted from a geometric model of the object 

generated in the computer from physical measurements 

of the object, if the reconstructed object was 

correctly present in a voxel the result was a zero, if 

it was missing or in an incorrect voxel the error was 

set to one for that voxel and the final error was 

calculated as the average of these individual errors 

for the whole field. Thus the error figure for a 

completely inverted reconstruction of the objects 

field, i.e. the exact reverse of the desired 

reconstruction, would be 1. The criterion used to
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decide whether the reconstruction was present in a 

voxel was if the voxels value was greater than twice 

the mean value of the total reconstructed field. The 

results produced by this method are discussed in the 

following section.

7.0 Initial Results Produced By the Practical System

7.1 Test Reconstructions to Calibrate the System

A series of tests was carried out to establish that 

the fully integrated system was operating correctly 

and to calibrate it. To test the systems operation a 

dummy three dimensional figure was produced. A solid 

three dimensional cross test object was used as its 

fixed dimensions would allow the reconstructions 

accuracy could be checked. The cross object was black 

on a white background to mimic the effect of the 

holograms having a dark blade and shockwave in a 

bright field. As the holograms of the blade and 

shockwave could only be viewed over a 10 degree range 

the test object was photographed in a series of views 

with a maximum angles of variation of 5 degrees. Nine 

views in all were taken , one head on to the cross, 

two displaced vertically by +5 and -5 degrees 

respectively, two horizontally by +5 and -5 and the 

remaining four displaced in both axes at +5 & +5, -5 

& -5, +5 & -5, -5 & +5. A reconstruction of this data 

was performed using the Gordon and Herman algorithm 

for 5 iterations. The result is shown in figure 83 as 

a three dimensional iso-surface.
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Figure 83 The reconstruction of the physical model

The shape of the reconstructed cross when viewed 

from the front shows an elongation in the vertical 

axis relative to the horizontal. This is due to the 

CCD camera having rectangular pixels rather than 

square. As our tomographic processing program used 

cubic voxel elements to represent the field and 

assumed the pixels in a view were square, when the 

512x512 rectangular view was used we considered the 

pixel as square and in effect compressed the 

horizontal axis. A simple scaling in the horizontal 

axis, i.e. considering the voxel sides as rectangular 

when output for imaging, would overcome any problem 

caused by this.

Generally the effect of the very limited angle was 

to cause the cross to lose some spacial localisation
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and spread along the viewing axis. This was as 

expected and the shape of the cross could still be 

clearly discerned in the figure. An effect of the 

photography is the reconstruction of a dark area in 

the extreme left of the field, clearly visible in the 

iso-surfaced cross. This was caused by the photographs 

including a dark area just off the left-hand side of 

the test object's brightly lit background. This dark 

area was reconstructed as a thin vertical plane on the 

left of the field.

The relative dimensions of the reconstructed cross, 

(formed from four square faces), were measured by 

aligning planes with the reconstructions edges. In the 

visualisation package it is possible to adjust these 

planes' positions and read off the voxels they pass 

through directly. The relative dimensions were 

retained when the effect of pixel scaling was taken 

into account, i.e. the stretching of the vertical axis 

in the ratio 4:3. The reconstructed crosses shape was 

analyzed by comparing it to a computer model 

corresponding to the physical dimensions of the 

crosses. Error figures were produced for the accuracy 

of the reconstructions using this method of 

comparison. To measure accuracy in the area of 

interest, i.e. around the cross figure, a boundary 

field was considered around the reconstruction in 

which the average error was calculated. This avoided 

averaging the errors over the rest of the 100x100x100 

field which is sparsely populated and thereby reducing 

the average error unduly by having it average over 

these voxels. For a ten iteration Gordon & Herman 

reconstruction the error figure for the immediate 

field around the cross, (defined as a 60x60x20 box), 

was 0.0174 . A 10 iteration ART reconstruction was 

performed for comparison; this gave an error of 

0.0322. Clearly the ART algorithm's performance is 

worse than the MART algorithm in this particular test,
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as would be expected from our previous experiments 

with these algorithms.

From these tests it was concluded that the system 

was operating correctly, the cross object being 

reconstructed reasonably accurately, (with due 

consideration of the very limited angle used for 

photography). The accuracy comparisons between the ART 

and MART algorithms' reconstructions when using real 

data were entirely consistent with those obtained when 

using computer models in previous investigations and 

we therefore progressed to real data from holograms.
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7.2 Test reconstruction of data from holograms

The second stage of our initial test program aimed 

to determine the systems ability to handle data from 

holographic interferograms. A holographic

interferogram of a test turbine blade was optically 

reconstructed, (figure 84 shows a photograph of the 

holographic reconstruction), and photographed using 

the image capture system. The views were then entered 

into the tomographic reconstruction program and 

processed.

Figure 84 The turbine blade hologram
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This test aimed to identify the shape of the 

turbine blade in the hologram in the reconstruction. 

The hologram of the blade appeared dark on a bright 

background and this feature was retained in the 

reconstruction, figure 85, so that the form of the 

blade appeared as a dark area surrounded by a high 

brightness region. The blade appears as a narrow 

triangular shaped cut out in the iso-surface from its 

bottom face upward and coming to a point toward the 

top of the reconstruction. This shape corresponds to 

that of the dark blade area when viewed in the 

hologram. The surface which surrounds this corresponds 

to the bright area in the hologram and resembles the 

general shape of this area in the hologram. It should 

be noted that the shape of this iso-surface does 

change with different threshold values and some care 

is required to produce a representative rendering of 

the data.

Figure 85 The reconstructed blade shown iso-surfaced
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This test showed that the tomography system could 

perform reconstructions on views from a hologram 

photographed about a series of angles of +5 & -5 

degrees. The shape of the turbine blade could clearly 

be visualised in these reconstructions.

7.3 An initial attempt to reconstruct shock wave data

Having complete tests on dummy objects and a 

turbine blade hologram the next stage in our test 

series was to attempt to reconstruct some shock wave 

information. The hologram used for the previous test 

had some shock information with faint fringes near the 

root of the turbine and as this was already set up for 

reconstruction it was decided to attempt to use this 

hologram. Although a shock wave formed near the middle 

of a blade would have been easier to photograph in 

terms of restrictions on viewing, being near the edge 

of the hologram and having worse contrast, this more 

difficult case would fully test the capabilities of 

the system.

In order to view the fringes with sufficient 

resolution for tomographic reconstruction a zoom lens 

was used to produce close-up images of this area of 

the hologram. Thus the reconstruction would show only 

a part of the field, that near the root of the blade. 

Nine images were taken in the same way as the cross 

reconstruction test, however the angles at which these 

could be taken we limited to +3.5 and -4.5 degrees in 

the vertical axis. This data was pre-processed with a 

sharpening algorithm and then entered in the 

reconstruction program and processed for ten 

iterations. The output was then examined using the 

orthographic slice module in the explorer software as 

this enables the greatest detail to be observed in a 

reconstruction.

149



Figure 86 The shockwave reconstruction

Figure 87 The shockwave highlighted
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Studying figure 86 the diagonal line upward at 

approximately 60 degrees which is apparent in the 

centre of the view corresponds to the face of the 

turbine blade, the area to the right of this 

represents the brightly lit flow field and is coloured 

green and the area to the left is the solid blade. 

Toward the bottom of this region the shockwave was 

present in the hologram and thus should also be 

apparent if the reconstruction was successful. In this 

region of the reconstruction a faint line may be 

discerned which roughly corresponds to the shock 

shape; this is marked in figure 87. As this matches 

the expected position of the shockwave it appears to 

be a good candidate for interpretation as a 

reconstruction of the shock wave. It therefore 

appeared that the system was capable of resolving 

shock features.

7.4 Photogrammetry

Using the camera rig it was possible to perform some 

simple photogrammetric tests to determine the 

usefulness of this technique. The camera was set up to 

make point measurements of the cross test model, see 

figure 88. These were then used to
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Figure 88 The photogrammetric layout

perform measurements by triangulation. This technique 

proved adequate to determine the position of the 

vertices of the cross relatively accurately, (an error 

of 1% in the crosses dimensions was typical ) . The 

drawback of using photogrammetry was that it required 

points which could be readily identified in each 

photograph in order to perform the calculations. As it 

was impossible to identify a series of registration 

points in the turbine blade holograms available any 

further work with this technique would require 

specially produced holograms incorporating 

registration marks.
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7.5 Production of test holographic data

In order to test the effectiveness of the 

tomographic reconstruction process on the density 

information present in a holographic interferogram it 

was necessary to obtain some holograms of variable 

density fields. The theory of the formation of 

holographic interferograms for this case is discussed 

in section 2.2 and following this theory it was 

decided to produce a double exposure hologram in which 

the fringes would give density information. The first 

case that was attempted to study was the free 

convection flow about a soldering iron's tip.

The method of producing these holograms was by 

double exposing a holographic plate with light from a 

pulsed ruby laser. The optical arrangement is shown in 

figure 89. The pulsed output was required to capture 

an instant in a changing field during both exposures.
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The object used to produce the flow field was a hot 

soldering iron tip mounted horizontally, the air 

heated by it producing a convection plume. As shown in 

this figure the laser output was split into a 

reference and object beam with a two hole aperture, 

having previously been diverged. These beams were 

steered by mirrors so that the object beam passed 

through the convection field before reaching the 

holographic plate.

Initial test holograms produced using this optical 

set up gave a hologram of the object with some fringes 

in the field about it. These fringes had poor 

visibility, but did prove the feasibility of this 

study. Thus it was decided to continue with this set 

up with one important modification, the installation 

of a diffusing screen in the object beam path 

immediately preceding the convection field. This 

modified set up is shown in figure 90. The tests 

carried out with this new set up did show the general
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suitability of it, however a problem was encountered 

with the some of the early holograms produced having 

anomalous field fringes. These appeared as a regular 

set of vertical fringes across the plate. The cause 

was traced to the operation of the laser at high power 

output, (greater than 1.2 joules), causing the output 

frequency to change, (mode hopping), between pulses. 

This effect was ameliorated by reducing the laser 

pulse power output to less than a joule. A series of 

holograms showing the convection flow around the tip 

of a soldering iron was then produced, an image taken 

from one of these holograms is shown in figure 91, 

(note it has been false coloured by the viewing 

package used to visualise the captured video images). 

The optical arrangement of the hologram and fringe 

position relative to the soldering iron are shown in 

appendix 13.4 and appendix 13.5.

Figure 91 The fringe pattern captured on the hologram
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The photographs of the holograms were taken from a 

series of positions each with a different viewing 

angle. The limit of the possible viewing angles was 

found to be +_15 degrees in the horizontal axis and +_10 

degrees in the vertical plane. This effect is due to 

the diffuser and optical arrangement producing an 

object beam which diverges as it passes through the 

field about the test object, its elliptical nature 

being produced by the beam steering mirrors being 

tilted in the horizontal plane giving a greater 

divergence in this axis. These allowed views were 

particularly suitable for the 3-D tomographic 

reconstruct program as they contained information 

which was best extracted by photographing in two 

perpendicular axes.

After the successful production of the holograms 

showing free convection about the soldering irons' 

tip an attempt was made to study the flow about a disk 

rotating at high speed using holographic 

interferometry. A plane metal disk, which could be 

driven to very high speeds, was available and it was 

hoped that the compressibility effects as this was 

rotated at speeds, where its edge was approaching the 

supersonic region, would be sufficient to give 

noticeable refractive index changes. The experimental 

apparatus is illustrated in figure 92. Using this set 

up a series of initial tests was conducted, however 

these proved unsuccessful. The problem which was 

encountered was the vibration of the optical assembly 

caused by the windage from the disk at high speeds. 

Holograms could be formed at lower speeds, (3000 rpm 

corresponding to a tip speed of 90 m/s), but this was 

too slow to produce any compression effects. As the 

facilities were not available to modify the optics to 

isolate them from the vibration this line of 

investigation was abandoned.
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8.0 Interpretation of the holograms

Having produced holographic interferograms with 

fringe data showing density variations the next 

requirement before these could be incorporated into 

the tomographic reconstruction program was that these 

were converted in density maps, that is two- 

dimensional representations of the span wise averaged 

density across the field in their direction of view.

The simplest method of analysing fringe data is 

fringe tracing, which can be performed manually. The 

fringes are simply identified and counted, staring 

with the reference fringe, to obtain the fringe order. 

The errors produced in fringe tracing must be weighed 

against this ease of application as fringe tracing is 

considered to be the least accurate method of fringe 

analysis. A previous paper by Hunter and Collins, ref. 

[5] , discussed this and concluded that the maximum 

accuracy that could be obtained was ‘.10%, compared to 

actual Mach number in a transonic flow. Hence this 

could be a major source of error which is independent 

of the tomography process.

As a starting point for the interpretation of the 

holographic interferograms an automatic fringe tracing 

program was chosen. The advantage of this technique 

was its relative simplicity of implementation and 

greater speed when compared to manual methods. 

Initially a fringe skeletonising routine was 

implemented to generated a map of each fringes path. 

The principle of operation of the skeletonising 

algorithm is to reduce a feature's width evenly until 

only the centre line remains. This approach was found 

to be unsuccessful when applied to our data as it 

introduced false branches on
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the fringes instead of thinning directly to the centre 

of the fringe. A second attempt was made to implement 

fringe tracking using a method suggested by Hunter, 

ref. [14], Rather than determine the centre of each 

fringe the edges of the fringes were detected at the 

50% level of average field brightness. These were then 

used to determine the zt/4 phase change contours. The 

details of this process are as follows.

As the photographic images of the holograms 

contained speckle noise, figure 93, a averaging filter 

was passed over each image. A 3x3 filter kernel which 

produced the central value from the average of all 9 

surrounding pixel was used.

Figure 93 An image from the hologram, shown false 
coloured on the Explorer visualisation tool.
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The filter kernel was 1 1 1

1 S/9 1

1 1 1
where S is the sum of the nine surrounding pixel 

values.

This smoothing reduced the speckle in the image. At 

first the smoothing kernel was passed over the image 

from top to bottom and then left to right. However 

when it came to tracing the fringes

Figure 94 An image after smoothing

it was found that the left to right pass of the 

filter, which was largely perpendicular to the 

direction of the fringes, caused closely spaced 

fringes to smear into one another. As distinguishing 

between each fringe gives the order of each and thus 

the density change this was unacceptable. To achieve 

the required speckle reduction but retain fringe 

resolution, using only the vertical pass of the filter 

kernal was tried. This caused a smearing along the 

length of the fringes but did not significantly reduce
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the resolution between them. The effect of this 

smoothing process on an image is shown in figure 94.

Once the speckle had been removed fringe tracking 

could be applied. The fringes were tracked by 

determining the average brightness level in a region 

of the image and connecting the points which had this 

value. This average value had to be changed from 

region to region over the whole image as the 

background illumination was not constant over the 

image area. To trace the path of a fringe a program 

was written on the workstation. It began by searching 

the image for a start pixel of the correct value in 

the bottom corner of the image. When a start pixel had 

been located it was assigned a marking value and its 

neighbouring pixel were examined to see if any of them 

were also at the appropriate level. If so they were 

assigned the same value as the start pixel and the 

process was repeated, building up a connected line of 

pixel with the marker value. When no neighbours could 

be found of the appropriate level the program would 

restart the search of the image, ignoring those pixel 

already marked. When a new start pixel was found the 

program incremented the marker value so this new 

fringe path would be marked with a different number. 

This process was repeated until all the fringes had be 

traced and marked with an individual value, thus 

enabling the different fringe order of each to be 

determined.
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Figure 95 The traced fringe map, each line colour 
denoting a different marker value

Once the fringes had been marked they had to be 

converted to density maps. The information from the 

holographic interferogram is the spanwise averaged 

phase change across the field. The optical phase 

change for each ray is given by

< P i = f  f(x,y,z)dSi
Js,-

where f(x,y,z)=n(xry,z)-n0, is the changed refractive 

index field relative to the reference field,na. The
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density of the medium,q , is related to refractive 

index by the Gladstone-Dale relationship. That is: 

gG=n-l , where G is the Gladstone-Dale constant. In 

the fringe traced images the phase change between two 

trace lines is n radians. Hence applying this formula 

to each view in turn allowed density maps to be 

produced from them.

In practice a step value change was applied at each 

fringe boundary on the traced fringe maps. The central 

fringe was located, by simply counting the number of 

fringes from the edge, and this was assigned the 

lowest value. This was because the convection column 

has its lowest density above the soldering iron tip, 

where the air is hottest. At each fringe boundary 

outward from the central one the density value 

assigned was increased by 10 units. These could be 

used in the tomography program and a final calculation 

made to convert the resultant field values to absolute 

density. The results of a conversion are shown in 

figure 96 with the density map colourised.
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Figure 96 The resultant density map

This technique worked successfully and was used to 

produce the density maps from images of the holograms 

for use with the tomographic reconstruction system.
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9.0 Results of tomographic reconstruction tests on 

convection holograms

Having produced holographic interferograms 

containing density information and successfully 

converted these into density maps the tomographic 

reconstruction system could now be tested using this 

data. Nine views of the hologram were taken over a 

range of angles, (0,0), ( 0,+5), (+5,+5), (+5,0), (0, 

-5), (-5,-5), (-5,0),(+5,-5) and (-5,+5). These views 

were converted into density maps using the methods 

described in the preceding section. The resulting maps 

were entered in the tomography program and

reconstructed using the Gordon and Herman MART 

algorithm. The resultant reconstruction is illustrated 

in figures 97 to 100.
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Figure 97 A horizontal slice through the field at a 
height of 50 units.
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Figure 98 A vertical slice through the field at a 
depth of 50 units
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Figure 99 The vertical section at a depth of 25 
units

Figure 100 The vertical section at a depth of 75 
units
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This series of images was created from the 

reconstructed field in the Explorer visualisation 

package. The first image is a horizontal slice across 

the middle of the convection plume. In this image 

there was a small degree of aliasing, (false 

patterning due to the discretisation of the field into 

elements), however the main chequered patterning 

visible is due to artifacts introduced when converting 

the images from TIFF to WPG formats. The green band in 

this image extends across the length the field because 

it corresponds to a plan view of the flow from the 

horizontal soldering iron, as would be expected. The 

other three diagrams are sections in the vertical 

plane, orthogonal to the shaft of the soldering iron. 

The show how the plumes width varies as it moves 

upward.

Now the expected flow pattern from a heated rod in 

still air would be a vertical convection column along 

the length of the rod. Clearly these generally conform 

to the expected flow pattern from the tip. The colour 

scale ran from 0.0 to 1.0 with 0 corresponding to red 

and 1.0 to violet, thus the background yellow area had 

a value of 0.2 units and the column a value of 0.4 

units, giving a variation from the centre of the 

column to the sides of 0.2 of a unit. These values do 

not correspond to the absolute densities present but 

instead reflect input values which were not 

calibrated. While it would have been possible to 

calculate absolute values for views using the 

Galdstone-Dale relationship after reconstruction a 

further calibration would be required as we have seen 

in our previous experiments that the numerical values 

produced during reconstruction do not directly 

correspond to densities in the original test field. 

The values assigned in the input density maps were 

steps of 10 units at each fringe boundary, with these
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increasing toward the central fringe. Hence increasing 

number values corresponded to decreasing density. The 

shape of the convection column is illustrated by an 

iso-surface generated from the reconstructed field 

shown in figure 101. This shape tapers towards the 

columns top as it disperses.

Figure 101 The iso-surface generated from the 
convection column reconstruction

A further sectional view was prepared with a 

reduced scale between upper and lower density values 

to show more detail, figure 102. This section was 

taken at the front of the field, corresponding to the 

start of the soldering iron. Once again the shape of
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the convection column was plain

Figure 102 The section at 50 units recoloured with 
the minimum value set to red and maximum to blue
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10.0 Discussion

This work investigated tomographic techniques 

suitable for the reconstruction of three dimensional 

fields that are recorded by data captured over a 

limited range of views. As tomographic reconstruction 

usually relys on collecting data over a wide range of 

view the imposition of the limited view angle 

criterion was the significant factor in our work. 

Holographic interferograms of the type produced by 

Rolls Royce Pic in their compressor studies had a very 

limited range of acceptable viewing angles and these 

were selected as an initial case study to provide a 

stimulus to our research. When these were 

reconstructed using a novel combination of a three 

dimensional projection scheme and MART iterative 

reconstruction algorithm a possible solution was 

identified that gave very promising results, as could 

be seen in the iso-surface image of the turbine blade 

and shockwave.

The use of a three dimensional projection scheme 

for tomographic reconstruction had been proposed 

previously for cases where limited viewing angle was 

a problem. By utilizing data from viewpoints which did 

not lie in a single plane but varied in two 

perpendicular directions extra information could be 

introduced into the reconstruction process. It was 

thought this new information would significantly 

improve the resultant reconstruction quality by virtue 

of its' independent nature and our comparative test 

results would appear to bear this out.

In previous studies the iterative reconstruction 

methods had been identified as particularly suitable 

for limited view reconstruction problems, with several 

different algorithm types suggested. A recent review 

identified the Gordon and Herman MART algorithm as
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possibly the best for this type of problem so we 

conducted a series of tests against the ART and Lent's 

MART algorithms that appeared to confirmed this. 

However it was noted that the ART algorithm did prove 

to have very stable convergence characteristics and 

when used over a larger number of iterations than the 

Gordon and Herman MART the difference in reconstuction 

quality was reduced.

The tests on model data made one point clear; the 

three dimensional projection scheme was superior to 

slice reconstruction for limited angle of view 

problems and this was a more significant factor than 

the type of reconstruction algorithm used.

As the Gordon and Herman MART algorithm did appear 

to give the best overall performance it seemed logical 

to use it and the three dimensional projection scheme 

together to see how they would work when combined. 

When used with our projection scheme the Gordon and 

Herman MART algorithm did indeed give the best 

reconstructions. This was verified by the numerical 

results of error coefficient studies and the visual 

examination reconstructed test objects.

The model objects examined comprised a pair of thin 

planes crossed, a hollow sphere and a solid sphere. 

All three of these were reconstructed using both the 

2-D slice reconstruction method and our 3-D projection 

scheme, with the same iterative algorithms and allowed 

range of views. The crossed planes reconstructions 

showed that while the 3-D scheme produced recognisable 

reconstructions of the original models the 2-D 

reconstructions were noticeably more distorted. It was 

the plane which lay parallel to the reconstruction 

schemes slices which suffered the more extreme 

distortion, giving an overall asymmetry to the 

reconstruction. The hollow sphere also showed this
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asymmetric distortion when reconstructed using the 

slice method, with the top and bottom portions of the 

shell being lost. The 3-D scheme in contrast produced 

a more uniform reconstruction. Both projection methods 

failed to reproduce the front and rear of the sphere, 

these positions corresponding to the areas of the 

shell that are almost perpendicular to the sampling 

raypaths, and thus having small pathlength weighting 

products. The solid sphere had a density which 

increased towards it's centre and this was the object 

that the slice reconstruction technique performed best 

on. The solid sphere seemed to discretise well into a 

series of circular slices stacked one on top of the 

other, to give a reasonable reconstruction. However a 

noticeable asymmetry was produced with the sphere 

spreading horizontally, parallel to the discretisation 

planes. In contrast the 3-D reconstruction scheme gave 

a relatively symmetrical result, once again truer to 

the original. A comparison of numerical error between 

the original fields and the reconstructions confirmed 

the superiority of our scheme against a slice 

approach.

Having demonstrated the superiority of the three 

dimensional reconstruction approach a full system was 

developed around the new software and used to 

reconstruct real data. A CCD camera was successfully 

used with a PC frame grabber card to digitally acquire 

images. Using a set of views taken of a holographic 

interferograms with displacement in both the vertical 

and horizontal axes, reconstructions were made. The 

first holographic interferogram examined was a view 

of the shockwave generated by a turbine blade, 

produced by Rolls Royce. While this was not a 

particularly suitable holograms to use as it contained 

no density variation information, it did test the 

systems overall ability to cope with real data. When
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views from this hologram were reconstructed the 

blades' shape was clearly visible, demonstrating the 

systems ability to handle solid objects in a hologram. 

The shockwave was very faint in the hologram and hence 

difficult to see in the photographs of it. Thus when 

reconstructed its appearance was indistinct. This was 

a limitation of the optical systems' ability to image 

very faint objects rather than a problem of 

reconstruction resolution.

To demonstrate the systems ability to handle 

information from a density field the reconstruction of 

a holographic interferogram of a convection plume was 

undertaken. Views from a hologram of a soldering iron 

showing free convection were taken and processed to 

give spanwise averaged density maps, which were then 

used to reconstruct the field. Using the Gordon and 

Herman MART algorithm and our 3-D projection scheme a 

reconstruction of the field was obtained despite a 

very limited variation of viewing angle being possible 

with this hologram. Thus the system was indeed able to 

handle real data from a variable density field.
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11.0 Conclusions

Tomographic techniques for the reconstruction of 

three dimensional fields from data sets captured over 

a limited range of views have been developed and 

demonstrated. As tomographic reconstruction usually 

requires data from a wide range of view points this 

was a significant result.

The three dimensional projection scheme used in 

this tomographic reconstruction system was produced 

specifically to address the limited viewing angle 

problem. This significantly improved the resulting 

reconstruction quality in comparison to conventional 

techniques.

The three dimensional projection was used in 

combination with an iterative reconstruction 

algorithm, the Gordon and Herman MART algorithm, tests 

having shown this to be the most effective iterative 

algorithm. This combination of projection scheme and 

algorithm was novel and produced superior results to 

the other algorithms tested.

A practical system was developed around this 

approach and used to reconstruct real data. This was 

used to reconstruct a holographic interferogram 

produced by Rolls Royce of the shockwave generated by 

a turbine blade. In the resultant reconstruction the 

blades shape was clearly visible, demonstrating the 

systems ability to handle solid objects in a hologram.

The systems ability to handle information from 

holographic interferograms with a number of fringes 

was demonstrated by applying it to a hologram of a 

convection plume. Views from this hologram were 

successfully processed to give spanwise averaged 

density maps, and these were then used as data to
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reconstruct the field, despite a very limited 

variation of viewing angle being possible with this 

hologram. Thus our system was indeed able to handle 

real data from a variable density field.

To summarise, this work has successfully 

demonstrated the suitability of direct three 

dimensional projection schemes, operating with MART 

type algorithms, for the reconstruction of limited 

angle of view data sets.
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12.0 Further Work

Further improvements in the systems operation might 

be made by trying different algorithms with the 3-D 

projection scheme. The methods of simulated annealing 

and constrained maximum entropy optimisation have been 

suggested as methods suitable for limited data 

problems and our software could be adapted to use 

these approaches.

Applying the system to limited view problems would 

be a logical path of further work to follow. The 

operation of the tomographic reconstruction software 

and image acquisition system is such that irregularly 

spaced images can be processed, allowing a wide range 

of real world situations to be studied. For instance 

in wind tunnel experiments where available views are 

limited by window spacing around the tunnel, applying 

our technique might allow the reconstruction of the 

air density around the test object. Each window could 

be considered as a single viewing direction and the 

data from each entered on this basis.

Colour tomography using data generated by thermally 

sensitive liquid crystals encapsulated and seeded in 

a medium has been considered during the development of 

our system. Reconstructing this data would give a 

three dimensional temperature variation map for the 

field being studied. A colour reconstruction would 

require either the capture of a separate red, green 

and blue image from each view point and the 

reconstruction of each colour field or the 

reconstruction of a hue, saturation and intensity 

field from HSI images. For this to work the spacing 

between the seeded particles would have to be large 

enough to minimise the obscuration of distant 

particles by those closer to the view point, while
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being present in sufficient quantities to accurately 

measure the temperature changes in the medium. 

Provided these conditions could be met the colour 

reconstruction should be possible.
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13.0 Appendices

Appendix 13.1 Photographing the holograms

The holograms were photographed about a cone of 

views as shown in figure A 1 . From this it can be seen 

that a perpendicular

Figure A1 .The Views Positions From Angular Measurements.

plan view
elevation

projection from the centre of each view meets all
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others at a single point on the object. Thus the 

relative direction of a projection with respect to 

any other can be expressed by two angles, alpha and 

beta as shown in figure A 1 . If the length of each 

projection from the common point, (in our case a 

selected point in the holographic image), is known 

then the relative position of each view can also be 

fixed from these two angles. Now as the views are 

taken about a cone we can assume the length of each 

projection is equal and make this length arbitrary in 

our calculations while still maintaining the correct 

alignment.

The constants required for the position of each 

view were estimated by considering the views to be 

converging to a single point and thus making the 

absolute distance of the view plane arbitrary, say 10 

units. Thus the values for the displacements in the x, 

y, and z axes are given by the following equations:

x=10-( 10 10sin/3 (L/2 ) . sin/3) ) (10 10cosa-(L/2 )sina)

y=10sin/3 (L/2 (L/2 )cos/3)

z=lOsina (L/2-(L/2)cosa)

These are the values entered in the computer program 

with the angular measurements and result in the 

tomography program generating the correct geometric 

information.

13.2. The Image Sampling Program Segment

When a ray propagates through the reconstruction 

field its path is marked in a ray tracing array by 

assigning a value to each voxel it passes through in
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this array. These values are then used to select the 

voxels that affect the total attenuation experienced 

by a given ray. This method of marking voxels is 

simple to implement but only functions correctly when 

a single ray passes through a given voxel at a given 

stage in the computer program. If for instance two 

rays were considered which passed through the same 

voxel the marker value of the first would be over 

written with the marker value of the second thus 

losing the data of the first ray, as shown in figure 

A 2 .1 .

<JL>

Figure A 2 .1 The ambiguity produced by insufficient ray spacing.

Now as a typical application involves approximately 

25 rays per voxel from a single view this condition
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must be considered. In order to retain the basic 

simplicity of the tracing scheme, and at the same time 

to overcome this problem a scheme was devised whereby 

rays were selected for processing which had sufficient 

spacing between them so as not to pass through any 

common voxels. Provided the spacing between two rays 

is 1.5 times the length of the side of a voxel there 

is no danger of them passing through the same voxel 

for the cone sampling regime being considered. Thus 

when a view from the 512x512 pixel camera is

Figure A2.2 The Data Sampling Grid.

Voxel Side
^ -------7---- ----------*i ........

r
(

1
X T'- .....* ....4L

Grid
Displacement

\
Selected
Pixel

Sampling
Grid

The Overall Effect

Voxel Face 
Lengths

183



considered a 50x50 grid is used to sample this data to 

give the correct spacing between these ray points, 

this is illustrated in figure A 2 .2. When all the data 

has been processed the grid can re-sample the data 

except that this time it is displaced by one pixel. By 

re-sampling the 512x512 view until all the pixel 

values have been considered all the data in the view 

are extracted.
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13.3. The Hologram Reconstruction Optics

The light from a He-Ne laser was sent round an 

optical path and then through a diverging lens to give 

a cone of light to illuminate the holographic plate.

Figure A3. Hologram Reconstruction Optics

The He-Ne laser was used to give a visible image upon 

reconstruction rather than the Ruby laser to produce 

the holographic exposure originally. The wavelength 

shift caused by using different laser sources causes 

a scaling shift in the reconstruction. The size 

alteration was uniform across the image and thus the 

relative dimensions in the image are retained. As the 

reconstruction was relatively small the depth of focus 

of the telephoto lens used was sufficient to 

photograph the reconstruction.
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13.4 The illumination of the soldering iron

Figure A4. The illumination of the soldering iron

13.5 The fringe information relative to the soldering 
iron

Figure A 5 . The soldering iron and the fringe data 
relative to it.
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