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Abstract

For decades there has been considerable interest in flows which can become 
convectively unstable due to differential diffusion in thermohaline convection. 
We consider the stability of the steady motion of a stably stratified fluid in an 
infinite vertical slot generated by a temperature difference across the bound-
aries. In particular, we are interested in the case where the instabilities are 
affected by a vertical salt gradient, where salt diffuses more slowly than heat.

The disturbances at marginal instability when a salinity gradient in a slot 
was subject to differential heating were previously examined by Thangam, 
Zebib & Chen (1981). We attempt to re-produce their results for the stabil-
ity boundary using two independent numerical approaches, the Runge-Kutta 
scheme and the Galerkin method. Our results indicate there are various in-
stability regimes in the linear analyses and most are stationary except for one 
small curved section on the stability boundary that gives oscillatory solutions. 
Our results also show that the oscillatory solutions reported by Thangam et 
al. are erroneous. This is confirmed by Young & Rosner (1998) in their recent 
paper.

We have identified four different asymptotic regimes on the stability bound-
ary. One of these, the limit of a strong salinity gradient, has previously been 
analysed by Thorpe, Hutt & Soulsby (1969). Other asymptotic regimes in-
cluding the limits of small wave number, large thermal Rayleigh number and 
weak salinity gradient are also analysed. These four cases represent almost 
the entire boundary that separates the stable and unstable modes for double- 
diffusive instabilities in a vertical slot.
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Chapter 1

Introduction

For almost forty years, there has been considerable interest in the field of 

double-diffusive convection. This is the study of convection in fluids driven 

by gradients of two components with different molecular diffusivities. The 

archetypal example is salt and heat which both affect the density. When 

gradients of two such components are present even in a stably stratified fluid 

convection can occur. Since the most widely considered combination is that 

of heat with high diffusivity and salt with low diffusivity, this process is also 

known as ‘thermohaline’ or ‘thermosolutal’ convection.

In double-diffusive systems, the form of motions in the fluid depends on 

whether the driving source is initiated by the faster or slower diffusive com-

ponent. The two simple situations in figure 1.1 illustrate the characteristics 

in two possible types of motion. The first case was considered by Stommel, 

Arons & Blanchard (1956). They considered a long narrow pipe inserted ver-

tically through a region of the ocean where warm salty water overlies colder 

fresher denser water. The upward-pumping water quickly becomes the same 

temperature as its surroundings at the same level, while it remains fresher 

and so is less dense. The relative buoyancy of the water in the pipe drives the 

water up, and a salt fountain would continue to flow for as long as a vertical
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(a) T h e perpetu al salt fountain (b)

Cold fresher water

Warm salty water

loss of h e a t

Long narro w  
c o n d u c tin g  p ip e

o
A n u n b o u n d e d  
flu id  p a r tic le  

m ov ing  u p w ard s

D iffusion  o f h e a t re s to r in g  force

Warm salty water

Cold fresher water

Figure 1.1: Outlining the two cases of fluid motion where the opposing vertical gradients 
of heat and salt are considered, (a) shows the salt fountain and (b) gives the oscillatory 
motion.

salinity gradient is there to supply the potential energy. The converse situ-

ation looks at a fluid particle which is displaced upwards in an environment 

where warm salty water is underneath cold fresher water. Such a particle 

tends to lose heat faster than salt so it is heavier than its surroundings. 

Therefore it tends to fall back to its original position due to buoyancy effects 

and then overshoots. It is possible that the overshoot will be greater than the 

initial displacement, and so the disturbance can grow. The motion produced 

is oscillatory where heat is the driving component.

A major discovery was made by Stern (1960) who realised the lower dif- 

fusivity of salt removed the need for a pipe, as salt remains in the upward 

moving fluid. He realised that in the first situation down-flowing warm salty 

water loses heat but not salt to the surrounding cold fresher water, thereby 

becoming denser and accelerating downwards. Cold fresher up-flowing water 

gains thermal buoyancy and so accelerates upwards. Long narrow convection 

cells called ‘salt fingers’ are formed due to the rapid diffusion of heat relative 

to salt. In the second situation, with warm salty water under cool fresh water,
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it was Stern who first noted the possibility of oscillatory instability due to 

the loss of heat giving rise to an enhanced restoring force and hence growing 

oscillations. This is known as the ‘diffusive instability’ .

Although the theoretical discovery of double-diffusive phenomena was 

credited to Stern for salt fingers, the first salt finger experiment was in fact 

performed by Jevons (1857) in his study motivated by cloud observations. 

He appreciated the importance of thermal conduction to the instability when 

he introduced warm sugar water over cold fresh water. P„ayleigh (1883) was 

inspired by Jevons’ work to examine stratified fluids in which the effects of 

heat and solute diffusion were neglected. In this work he was first to derive 

the expression for the buoyancy frequency for internal waves. Almost a cen-

tury after Jevons’ insight, the paper by Stommel et al. on the perpetual salt 

fountain was published. These authors were close to understanding the finger 

instability, but it was Stern, their co-worker, who independently derived the 

theory behind double-diffusive convection.

The importance of double-diffusive convection in applications to oceanog-

raphy was initially recognised in the 1960s. This period marked the begin-

ning of major ocean experiments to confirm the existence of double-diffusive 

convection in the Mediterranean outflow and in the Caribbean Sea. Thermo-

haline stratification in the Atlantic underneath the warm and salty Mediter-

ranean outflow was reported by Tait & Howe (1968,1971). Fingers have been 

observed in the deep ocean by Williams (1974) and double-diffusive processes 

in the Gulf stream (Williams, 1981). Evidence indicated much of the ocean 

is unstable to double-diffusive processes and seems to be affected by their 

presence. Both salt fingers and diffusive convection are active ocean mixing 

processes. Much of the main thermocline of the mid- and low-lattitude ocean
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is unstable to salt fingers, and double-diffusive intrusions are likely an im-

portant lateral mixing agent in some areas (Schmitt, 1994). The presence of 

double-diffusive mixing has significant implications for the thermohaline cir-

culation and thus the ocean climate as well. The complicated nature of the 

convection in the largely unexplored ocean which covers most of the Earth 

is one of the concerns of the study of oceanography. This area of research 

has been growing almost exponentially since its recognition. Many new ap-

plications of the basic phenomenology continue to rise in fields as diverse as 

geophysics, astrophysics, metallurgy and chemistry. Examples include the 

effects of magma chambers to the layering of igneous rock, convection due 

to solar radiation, convection in mushy layers during solidification (Huppert, 

1990), convection of the Earth’s mantle and at the core-mantle boundary.

A broad view of double-diffusive convection is given by Huppert & Turner 

(1981), Schmitt (1994) and Brandt & Fernando (1996).

It is well known that horizontal temperature and salinity gradients can 

drive double-diffusive instabilities in fluids. These instabilities have been in-

vestigated by various people looking at many different configurations. The 

linear stability of a stratified horizontal fluid layer has been reported by Stern 

(1960), Wallin (1964), Veronis (1965), Nield (1967), Baines & Gill (1969) and 

Turner (1974). Experiments involving opposing vertical gradients of two so-

lutes in a container with a sloping boundary are due to Turner & Chen (1974), 

Chen & Wong (1974), Chen (1975) and Linden & Webber (1977). Another 

type of experiment containing a stable solute gradient being heated along a 

vertical or sloping boundary has been looked at by Thorpe, Hutt & Soulsby 

(1969), Hart (1971,1973), Chen & Sandford (1977), Paliwal (1979) and Pali- 

wal & Chen (1980). The instability of a finite front confined between two
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different types of fluid was examined by Ruddick k  Turner (1979), Holyer, 

Jones, Priestly k  Williams (1987) and Ruddick (1992). Other experiments 

which have instabilities that occur at a single vertical wall of some semi-

infinite body of fluid were done by Chen, Briggs k  Wirtz (1971), Chen & 

Skok (1974), Huppert k  Turner (1980), Huppert k  Josberger (1980), Naru- 

sawa k  Suzukawa (1981), Huppert, Kerr & Hallworth (1984), Chereskin k  

Linden (1986), Tanny k  Tsinober (1988,1989) and Schladow, Thomas k  

Koseff (1992). These investigations have looked at the effects of horizontal 

gradients in fluids with the presence of either vertical salinity gradients or 

the combination of salinity and temperature gradients in the vertical direc-

tion. Some examined the additional effect of rotation on the instabilities at 

a heated boundary.

The theoretical work on double diffusive instabilities driven by horizontal 

gradients can be categorised into four areas: (1) Instabilities as a result of infi-

nite uniform horizontal and vertical gradients were examined by Stern (1967), 

Toole k  Georgi (1981), McDougall (1985), Holyer (1983) and Walsh k  Rud-

dick (1994). (2) Instabilities of horizontal gradients in a finite front located 

in an infinite body of fluid by Niino (1986) and Yoshida, Nagashima k  Ni- 

ino (1989). (3) Instabilities from a single sidewall by Kerr (1989,1990,1996). 

And, (4) Instabilities for a slot by Thorpe, Hutt k  Soulsby (1969), Hart 

(1971), Chen k  Sandford (1977), Thangam, Zebib k  Chen (1981), Kerr (1995) 

and Young k  Rosner (1998).

The last category is the interest of our research. We will examine the 

linear stability of a salinity gradient in an infinite vertical slot based on the 

first theoretical paper by Thangam, Zebib k  Chen (1981). Our work is in-

spired by Tanny k  Tsinober (1988) who used the slot stability boundary of
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Thangam et al. to compare their single sidewall heating problem. In Tanny 

& Tsinober’s analysis of their experimental results they found the stability 

diagram of their single boundary problem is similar to that of a linear salinity 

gradient heated differentially in a vertical narrow slot when the salinity gra-

dient was relatively strong. The stability criterion for heating strong salinity 

gradients was found by Thorpe, Hutt & Soulsby (1969) for heating a slot and 

by Kerr (1989) for heating at a single boundary, but not for other situations 

when the salt Rayleigh number, a measure of the salinity stratification, de-

creases. With zero salinity stratification in a heated slot, this is the case of 

a thermally driven problem which has been examined by many authors since 

Batchelor (1954), including Mizushima & Gotoh (1976), Bergholz (1978) and 

Daniels (1987). Tanny & Tsinober showed that there was some correlation 

between their experiments with a single boundary and the stability bound-

ary found by Thangam et al. We hope to identify all the modes of linear 

instability for a slot and to see if they will give insight into modes for a single 

boundary when Ras , the salt Rayleigh number, is not large.

In chapter 2 we discuss the four fundamental equations and how to formu-

late the governing equations for the linear stability of the fluid in a vertical 

slot when there is a constant temperature difference imposed across the walls. 

In chapter 3 we present the results of numerical calculations for the stability 

boundary. These calculations were performed using a Runge-Kutta scheme. 

In chapter 4 a second Galerkin approach was employed to find the solutions 

for weak salinity gradient and the oscillatory branch of solutions. In chapter 

5 four different sections of the stability boundary will be identified and the 

asymptotic analysis corresponding to each of these regimes will be examined. 

One section involving the limit of a strong salinity gradient has already been 

analysed by Thorpe, Hutt & Soulsby (1969). The analyses including the lim-
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its of small wave number, large thermal Rayleigh number and weak salinity 

gradient are separately given. Finally, conclusions of the theoretical study in 

this slot problem are given in chapter 6. Details of some of the techniques 

used in the numerical schemes and some lengthy mathematical expressions 

derived in the asymptotic are included in the appendices.
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Chapter 2

Description of the Problem

We begin by outlining the fundamental equations to be used in this double- 

diffusive problem. This gives physical understanding of the fluid motion which 

is driven by the presence of two diffusive components. We follow the usual 

convention for thermohaline convection so that the faster diffusive compo-

nent is known as “heat” while the slower diffusive one is referred to as “salt” . 

In the linear analysis of vertical slot convection, we formulate the stability 

equations and then discuss the results obtained for the various instabilities in 

subsequent chapters.

A brief introduction is given to the four fundamental equations that govern 

the motion of the fluid, the dispersion of salinity, the temperature diffusion 

and the continuity of the fluid. In the following sections dimensional quanti-

ties are indicated by an asterisk.

2.1 The Continuity Equation

With the principle that mass is conserved, we consider an arbitrary volume 

V of fluid of any shape and of finite size. This volume is fixed in space and is 

bounded by a surface S. Fluid moves into or out of the volume at points over
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its surface. Any one point on the surface is described by the fluid velocity u* 

and the elemental surface area dS (note, dS =  n dS, where n is a unit vector

both u* and dS point in the direction out of the volume, giving a positive 

product then this indicates an outflow. In turn, an inflow is denoted by u* 

pointing into the volume and so the above product is negative. In the case 

when the mass flow is leaving the volume, this outward mass flow from V  is 

given by

Since the volume considered is fixed in space and the limits of integration for 

the above integrals are constant, the time derivative can be placed inside the 

integral. Hence, the conservation of mass gives

Applying the divergence theorem from vector calculus, the surface integral in 

(2.1.3) can be expressed as a volume integral. This gives

If we assume that the integrand is continuous then the only way such an 

integral can be zero for all arbitrary volumes V is if the integrand is zero 

at all points. Hence, this gives the general expression representing the mass 

conservation for a fluid in which both u* and p* are functions of position,

perpendicular to the surface at dS). The mass flow of a moving fluid across 

a fixed surface is the product p*u* ■ dS where p* is the fluid density. When

(2 .1.1)

and this is equal to the rate of decrease of mass inside the volume

( 2 . 1.2)

(2.1.3)

(2.1.4)

or

(2.1.5)

(2.1.6)

9



This is known as the continuity equation. A different form of equation (2.1.6)

is a time derivative following the motion of the fluid, or a material derivative). 

The two terms together make up the material derivative of the density:

In this form the equation may be interpreted in terms of the changes in the 

volume of a given mass of fluid. A fluid is said to be incompressible when the 

density of an element of fluid is not affected by changes in the pressure. The 

density of the fluid in a mass element may change as a result of molecular 

conduction of heat or of a solute into the element. However, in most cases 

the effect of heat or solute conduction in the fluid is negligible compared to 

the original density and so the fluid is usually treated as incompressible. This 

implies the density of each mass element of the fluid remains approximately 

constant. Thus, for an incompressible fluid, the rate of change of p* following 

the motion is close to zero, that is

The continuity equation then takes the simple form

2.2 Equation of Motion

This equation representing Newton’s second law of motion, is based on the 

principle that the rate of change of momentum of a fluid particle is equal 

to the sum of forces acting on it. With the velocity of the fluid given by 

u* =  (u*,v*,w*), we can write down the conservation form of p* Du*/Dt*, 

the rate of change of momentum per unit volume following the fluid to be

is obtained by expanding the divergence term and the operator D / Dt* (which

(2.1.7)

V • u* =  0. (2.1.9)

(2.2.1)
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We consider forces related to the velocity field that are cue to pressure and 

to viscous action. For fluids which are assumed to be Newtonian (where the 

shear stress is proportional to the velocity gradients), the momentum equation 

with the pressure p*, and the acceleration due to gravity g* — (0, 0, —g*), can 

be written as

J~) 1 1  * *
=  p* —  + p‘ u* • Vu- =  -V p *  + p 'g *  +  / i W .  (2.2.2)

This is known as the Navier-Stokes equation. The axes for x* and y* are 

in the horizontal plane and z* is vertically upwards. The last term is the 

result of molecular viscosity y  in which y  is assumed to be independent of 

the temperature and salinity concentration. For small density variations, we 

can linearize the dependence of p* on the temperature T* and salinity S* so

P- = p -{  1 -  c t (T- -  +  -  SO], (2.2.3)

where aT — —p*-1 ( f f v ) 5. , the coefficient of thermal expansion and 

(5 — p*-1 , is the relative density change due to change in the salin-

ity. In the Boussinesq approximation where density variations are assumed 

to be important only in the buoyancy term, we can apply the density relation 

of (2.2.3) into the Navier-Stokes equation to give

n ii*
Pl-ptr  =  - V p ’ +  pl\ 1 -  aT(T- -  T*) +  P(S" -  S ;)]g- +  p W ,  (2.2.4)

where the inertia term, p* Du*/ Dt* is replaced by p*a Du*/Dt*. If we intro-

duce the modified pressure

P’ = P i -  P ls’ z",(2.2.5)

then the Boussinesq momentum equation reduces to

=  _J_Vp; -  [Qt (T- -  Tl) -  0 (S- -  s„-)]g- +  p W ,  (2.2.6) 
Dt* p*

where v =  y/p*Q is the kinematic viscosity.
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2.3 Temperature Equation

The equation for energy is

T) fP*
p* =  V ( iT  VT*) -p *  V u* +  ÌT, (2.3.1)

where E* is the internal energy per unit mass of the fluid, Ì2* the rate of 

viscous dissipation per unit volume of fluid and K* the thermal conductivity. 

In most circumstances the rate of heat generation by viscous dissipation is 

small when compared with the heat being transferred in the fluid by molecular 

conduction so €t* can be neglected. We also assume K* to be constant. This 

is an appropriate approximation when temperature differences are small. If 

the assumption that V  • u* =  0 is used, then (2.3.1) reduces to

D F*
p*-------=  K* V 2T*. (2.3.2)
p Dt* v '

In heated salty water, mass diffusion resulting from a temperature gradient 

is termed the Soret effect so that the internal energy increases as the temper-

ature rises, producing a salinity gradient. However, this is not important in 

most problems involving heat and salt in water. If we assume the change in 

E* depends linearly on temperature only and not on the salinity then

AE* = c(T* —T*), (2.3.3)

where E* is the enthalpy (at constant pressure) and c is the specific heat 

capacity of the fluid. This linear dependence can be written as

DE* _  DT* 
Dt* ~ ° Dt* '

(2.3.4)

Substituting this result into (2.3.2) gives

DT*
p *c ------ =  K * V 2T*. (2.3.5)
H Dt* v

Hence,
DT*
——  =  k t V 2T*, (2.3.6)
Dt*

where =  K*/p* c is the thermal diffusivity.
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Consider the salt carried in any volume of fluid, V. Tim rate of increase of 

the salt inside V is equal to the inward flux of salt entering V. This gives

2.4 Salinity Equation

l l v S' d V = - f s S> ” d§’ (2-4 1 >

where S is the closed surface bounding a region of volume of salt, n the 

outward normal to the surface and SJ the flux of salt moving across the 

surface. Assuming that temperature gradients do not drive salinity gradients 

as in the Soret effect, the distribution of salt is determined by its advection 

by moving fluid and by its diffusion between fluid particles. Hence, 

r fiz* r
/  ^ - d V  =  -  (S*u* -  KSVS*)-ndS, (2.4.2)
Jv at* Js

where S* u* is the advection of salt by fluid velocity, k s VS* is the diffusion 

due to molecular diffusivity. We assume «5 can be taken to be constant. 

Applying the divergence theorem to the surface integral in (2.4.2) then

r p)Q* r
/  l ^ dV = -  V - (S * u * - k s  VS*) dV, (2.4.3)
Jv at* Jv

giving

Iv i w  + V 5* ' U* +  S* V ‘ U* “  Ks V25*j dV =  ° ’ (2-4-4)

which is true for any volume of fluid. Since this volume integral is zero 

for arbitrary volume V then if the integrand is continuous it must be zero. 

Therefore,
oc*

+ VS* ■ u* +  S* V ■ u* -  ACS V 2s* =  0. (2.4.5)
at*

Again assuming that V  • u* =  0, the salinity equation becomes

as*
a t*

+  u* ■ VS*
DS*
15F

Ks V 2S*. (2.4.6)
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HOT COLD

T*=T0*+1/2AT
s*x= o

8
T*=T0’-1/2AT
s ’x= o

x=-D/2 x -D /2

Figure 2.1: Schematic diagram of the configuration under consideration.

2.5 Formulation of Governing Equations

The problem that we are concerned with consists of an incompressible fluid 

confined between two differentially heated rigid walls that stand vertically 

and are parallel to each other. The two walls are impermeable to salt and are 

perfect heat conductors, while the applied temperature difference across them 

is AT. The distance which separates the two walls is D. The configuration 

set up is shown in figure 2.1 which also indicates the axial directions of the 

co-ordinate system.

In the undisturbed state, there is an imposed constant salinity gradient 

in the vertical direction, <f>0 =  dS*/dz*, and a constant temperature gradi-

ent in the lateral direction. We denote the pressure, density, salinity and 

temperature by p*, p*, S* and T* respectively. All variables with an asterisk 

indicate that the measurements are in dimensional form. The four governing

14



equations with dimensional quantities are

V • u* =  0, (2.5.1)

-  M r *  -  t ; )  -  0 ( s ‘  -  s ; ) ]g * +  * v V ,  (2.5.2)
Dt* p*0

JIT*
~—  = kt V 2T\ (2.5.3)
Dt*
nQ*
— - = k s \72S*. (2.5.4)
Dt*

The hot wall is located at x* =  —D/2 and the cold wall at x* =  D/2. Thus 

the boundary conditions are

T* = T* ±  A T /2 , S* =  0, u* =v* = w* =  0 on x* =  t D/2.

(2.5.5)

2.6 Non-dimensionalisation

We shall non-dimensionalise equations (2.5.1) to (2.5.5) subject to the follow-

ing scalings:

T

x* D „
x =  — ; u = —  u ;

Kf

s *-s *
D

r n *  __ r j i*
______ 1 o .

A T ’
5 =

Kt  , t =  —— t ■
D2 1 ’

D2
P =~7Z 2P  i - ( 2 .6 .1)

D\*0\ ’ ' PI k t

First of all, the continuity equation (2.5.1) is simply rehned as V • u =  0. 

The momentum equation (2.5.2) becomes

k\ D u

D3 Dt

This can be re-arranged to give 

Du

^  Vp -  [aTTA T -  (3SD |4>0|]g* +  * V 2u. ( 2 .6 .2)

Dt
=  — Vp -I- Pr{RarT  — RasS)z +  P rV 2u,

where

Rar
gar A T  D 3

(2.6.3)

(2.6.4)
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is the thermal Rayleigh number,

Ras =
g(3D4\$0\

k-t v

the salinity Rayleigh number and,

(2.6.5)

Pr =  — , (2.6.6)
Kj*

the Prandtl number. Similarly, the diffusive equation of temperature (2.5.3) 

when non-dimensionalised becomes

DT
~Dt

V 1 2T, (2.6.7)

and the salinity equation (2.5.4) becomes

^  =  ^ V 2S =  r V 25, (2.6.8)
Dt k t

where r  =  k s /^t  is the Lewis number (salt/heat diffusivity ratio). With this 

scaling, the imposed non-dimensionalised vertical salinity gradient is —1.

The non-dimensionalised set of governing equations with Boussinesq ap-

proximations are

^  =  -V p  +  Pr{RaTT -  Ras S)z +  P rV 2u,

DT
~Dt
DS

= V 2T, 

=  r V 2S,
Dt 

V • u =  0,

(2.6.9)

(2.6.10)

(2.6.11)

(2 .6 .12)

with boundary conditions

1 1
T =  ± - ,  Sx =  u =  v =  w =  0 on x — T - -27  ̂ 2 (2.6.13)
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2.7 Dimensionless Stream Function

We shall derive the momentum, temperature and salinity equations in terms 

of the stream function ip for the fluid velocity. Since the slot is assumed to be 

infinitely long in the y-direction, the effect of the lateral boundaries between 

the hot and cold walls can be ignored. We consider fluid motion in the x -z  

plane only and the velocity component in the y direction is zero, i.e. u =  

(it, 0, w). For the case of two-dimensional motion, the concept of streamlines 

(curves everywhere parallel to the direction of the flow) can be related to the 

continuity equation. This continuity equation for incompressible flow may be

written as
du dw 
dx + dz

0. (2.7.1)

For u and w to satisfy the continuity relationship, we can introduce a stream

function defined by the equations

dip dip
u =  —  and w = -  — , 

dz dx
(2.7.2)

where ip is a function of x and z.

The momentum equation (2.6.9) can be written as three equations for the 

components in x-, y- and ¿-directions. These equations of motion are

(2.7.3)
du du du dp „  ~
—  +  u—  +  w—  =  -  —  +  P rV 2u, 
dt dx dz dx

o — 5edy
P =  p (x,z,t), (2.7.4)

dw dw dw dp ^ _ 2 n _ _n
—  +  u - — f w—  =  +  P rV 2w +  Pr(RaTT -  RasS). (2.7.5)
dt dx dz dz

The pressure term is removed by cross-differentiation in the x- and ¿-momentum 

equations

r) r) _1 ( f)i\ r)in\ (  cTT dR ̂  ^

(2.7.6)

d d d 27— +  u ----- 1- w ------P rV
dt dx dz

'du dw\ / _  dT _ dS '
â-----+  Pr\ RaT -z---------------Rasd z d x  \ dx dx
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The above equation is substituted with the stream function relation from 

(2.7.2) to obtain this equation for ip

l i d  dip d dip d 
Pr i dt +  dz dx dx dz \72iP =  Ras ^  (2-7-7)

Now examining the temperature equation (2.6.10) and this can be expanded

to

giving,

dT
—  +  u • V T  =  V 2T, 
dt

(2.7.8)

dT d ± d T _ d ± d T = W 2T
dt dz dx dx dz

(2.7.9)

An analogous approach is adopted in the salinity equation (2.6.11) to yield

f  +  (2.7.10)
dt dz dx dx dz

The resulting three equations for the two-dimensional flow are 

1_ l  i a + — \ v 2 -  v 4
Pr l dt dz dx dx dz

dS_
dxip =  Ras —----- R a r -5—, (2.7.11)

dT_
dx

d dip d 
dt +  dz dx

d dip d 
dt +  dz dx

dip d 
dx dz

T =  0,

dip d 
dx dz

5  =  0.

(2.7.12)

(2.7.13)

2.8 The Background State

In many double-diffusive problems with boundaries, steady background states 

do not exist. An example is the investigation by Linden & Webber (1977) of 

the unsteady flow along a sloping single boundary in a stratified fluid where 

the stratification was due to both salt and heat gradients. The unsteadiness 

is due to the difference in the diffusivities of salinity and temperature, and 

could only be avoided if the diffusion rates were the same, i.e. the salt/heat
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diffusivity ratio was one.

For the infinite vertical slot with lateral heating a steady state solution 

does exist. This steady state solution was obtained by Thangam, Zebib & 

Chen (1981). The background state is found by looking for time-independent 

solutions for (2.7.11) to (2.7.13). In addition, there is no variation in the 

z—direction, i.e. =  0, and no horizontal velocity u — 0. Since there

is no dependency on either t or z, all the equations concerned will be reduced 

to ordinary differential equations (ODEs).

With these assumptions in place, the equation for stream function (2.7.11) 

simplifies to
d4i> dS dT— —— =  i?as  ----- RaT — - (2.8.1)
a:r4 dx ax

Expressing this in terms of the vertical velocity, w =  -drbfdx gives

d?w dT d S _
——- +  Rüt  -j ----- Ras —  — 0.dxà dx dx

( 2 .8 .2 )

The equations of temperature and salinity, (2.7.12) and (2.7.13), become

d2T
dx2 = 0, (2.8.3)

d2S
T d ^ +W = 0'

(2.8.4)

We overline and attach the subscript o to indicate the solutions to the steady- 

state background problem:

d3w0 dT0 dS0
+  RaT --------Ras —  = 0,dxJ dx dx

(2.8.5)

d2T 
0 =  0

dx2
(2.8.6)

¿"SI i _  n
J  o  +  W 0 — 0,cfirz t

(2.8.7)
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with boundary conditions

T,
1 dS0

o - - . ,  , = 0; w0 =  0 on x — ± - .  (2.8.8)
2 ax

1
2

The solution to (2.8.6) is

7 ; =  - x .  (2.8.9)

Combining (2.8.5) with both (2.8.7) and (2.8.9), we can write the equation 

for S„ as

(2.8.10)d5S0 dS0
t  _ +  Has —-----(- Har =  0.

axb dx

This has the general solution

-,—, \ -Ror50(x) =  T -  -¿— x 
Ras

+ B1 cosh M x cos M x  +  C  cosh M x sin Mx

+  D' sinh M x cos M x +  E' sinh Mx sin Mx, (2.8.11)

where

M =
Ras \ 4
4 r

(2.8 .12)

and A B '  ,C ' , D' and E' are constants. The symmetry of the problem indi-

cates the function S^(x) is odd, and so A' =  B' — E' =  0. Thus the general 

solution reduces to

S0(x) = C  cosh Mx sin M x +  D' sinh M x cos M x —
Raj
Ras

x. (2.8.13)

The no-flux boundary conditions require S '(±1 /2 ) =  0. These two conditions 

are analogous, giving

M M  , M  M  , M  M
C sinh —- sin —  +  C cosh —  cos —  +  D cosh —  cos —

Z Z z z z z

, M M Rax . \
— D sinh —  sin —  =  —— — . (2.8.14)

2 2 MRas

When the condition that TZT =  0 on x =  ± 1 /2  is substituted into (2.8.7) it 

produces the further constraint



When (2.8.13) is differentiated twice and then substituted into (2.8.15) it

gives
jji =  c , sinh f c o s f

cosh f  sin f '

We can now solve for C' and D' using (2.8.14) and (2.8.16) so

Rar sin y  cosh y
C  — ------------------------ ---------- ----------------

and

D'

M Ras (sinh y  cosh y  +  cos y  sin y ) ’ 

Rdr sinh y  cos y
M  i?a5(sinh y  cosh y  +  cos y  sin y )

The horizontal background salinity gradient is

dS0 Rdr 
dx Rdg

-1 + Q
sinh y  cosh y  +  COS y  sin y  J

(2.8.16)

(2.8.17)

(2.8.18)

(2.8.19)

where

^  . M  M  .=  sm —  cosh —  sinh MX sin M x 
2 2

M  L M  L ^
+  sm —  cosh —  cosh M x  cos M x 

2 2

. L M M
+  sinh —  cos —  cosh M x cos M x 

2 2

. . M M . , . . .
— sinh —  cos —  sinh M x sin Mx. 

2 2
(2.8.20)

This equation for Q can be re-arranged to give the form used by Thangam et 

al.:

Q =  -^ [cosh  Mi sin M2 -  cosh M2 sin Mi +  sinh M2 cos Mi -  sinh Ml cos M2],

( 2.8 .21)

where M-L =  M x +  y  and M2 =  M x — y .  Thus we can rewrite (2.8.19) as2 

dx
Rdx

At M 4 1 +
Qi (2.8.22)

sinh M  +  sin M.

where Q i =  —2Q and =  4rM 4. The background velocity is found by 

differentiating (2.8.22) once and using (2.8.7) to give

,h
(2.8.23)

Rdr{sinh Mi sin M2 — sin Mi sinh M2)
Wn =  -----

2M 3(sinh M  +  sin M)
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Figure 2.2: The background velocity profile across the slot is shown as a function of 

M = (Has/^T)1̂  where Wg is antisymmetric about x — 0. The velocity for M =  11.8 has 

been multiplied by a factor of 10.

These are the background states given by Thangam et al. and they depend 

on the single parameter

M = Ras \1/4 
4 T  )

(2 .8 .24)

Figures 2.2 and 2.3 show how the profiles of and Sox change for any 

given value of M  (which depends on Ras)- As Ras increases the background 

vertical velocity decreases in magnitude and the motion becomes confined 

in the boundary layer near the walls. The background horizontal salinity 

gradient approaches to a constant at the core of the slot as Ras becomes 

large, with an adjustment to the zero-flux boundary conditions at the thin 

boundary layer near the walls. The background temperature profile is linear 

and so it is not shown here. These background profiles are shown in the 

earlier work by Hart (1971) with good agreement made in comparison to our 

results but have opposite signs. This outcome is expected since we have used
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Figure 2.3: A similar background profile for the horizontal salinity gradient is also shown 

to depend on the parameter M  as defined in figure 2.2 but Sox is symmetric about x =  0.

the convention that the hotter wall is at x =  —1 /2  while Hart had the cooler 

wall there.

2.9 Stability Analysis

We now turn our interest to the investigation of the behaviour of pertur-

bations to the steady state. These perturbed quantities are denoted by 

ip'(x, z, t), T '(x ,z,t) and S'(x,z,t) and evolve with time as well as depend 

on x and z. We take

1p{ x , Z , t ) =  —  J  w 0 dx  +  4>\x, z , t), (2 .9 .1)

T ( x ,  z,  t) =  T0(x)  +  T' ( x ,  z,  t), (2 .9 .2)

S( x ,  z , t) =  —z +  S0(x)  +  S ' ( x , z , t ) . (2 .9 .3)
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The — z term in the salinity comes from the constant vertical salinity gradient. 

The above results are substituted into the set of governing equations (2.7.11) 

to (2.7.13). We can then linearize these equations by neglecting terms which 

are products of two perturbation terms. This gives the perturbation equations

1 __9 dip' wp, _ 2 dip' 1 ( dip' d2wp\ 4 , dT  dS’
p ; v T W p W i a t  =  °-

(2.9.4)

(2.9.5)
d r  dip1 d v  2 .v +ur0 —  - v 2r' = o,
dt dz dz

as' as0 dv' as' <h >' 2
s T + a 7  a 7  +  l"” a T + f c “ T V  s  = a

(2.9.6)

2.10 Eigenvalue Problem

Insight into the development of small disturbances can be gained by resolv-

ing ip', V  and S' from (2.9.4) to (2.9.6) into Fourier modes in the vertical 

direction. Since all coefficients are time independent each mode will depend 

exponentially on time with an exponent which may be complex. We will use 

complex notation. It will be assumed that the real part of solutions will be 

taken to find the final physical solutions. We will drop the explicit mention 

of taking the real part in the future.

Since the perturbation equations are linear, we can follow the evolution 

of each Fourier mode independently. The Fourier modes of ip', T' and S' can 

be expressed as

ip'{x,z,t) =  ip(x)eio‘z+at,

T'(x, z, t) -  T (x)elOLZ+at,

S '{x ,z ,t) =  S(x)eiaz+at, (2.10.1)
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where ip(x), T{x) and 5(x) are the corresponding eigenfunctions for the stream-

lines, temperature and salinity. The real parameter a is the vertical wave 

number in the z—direction and a the growth rate, which may be complex, 

i.e. a — ar +  When (2.10.1) is substituted into equations (2.9.4) to

(2.9.6) we can derive the equation for each mode:

jr ;{D 2 -  a2)ip +  [vT0{D2 -  a2)ip -  D2vT0

- { D 2 -  a2)2ip +  RaTDT -  Ras DS =  0, (2.10.2)

(D2 -  a2) f  + i a $  -  uF0f )  -  a t  =  0, (2.10.3)

r (D 2 — ct2)S — iaipDS0 — iaw^S — Dip — aS =  0, (2.10.4)

with boundary conditions

ÿ  =  Dip =  T = DS =  0 on x =  ± ~ . (2.10.5)
£

Here D =  d/dx. Henceforth ip, T and S will be replaced by ip, T and S 

for notational convenience. The condition ip =  0 at the walls comes from 

the requirement that there is no flux through the walls (u =  0). The solu-

tions to these equations for the eigenvalue problem will be investigated in the 

subsequent chapters.
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Chapter 3

Full Numerical Method and 

Results

In this chapter we hope to find the marginal stability curve for the linear 

eigenvalue problem of double diffusive convection in a vertical slot. This 

problem was previously examined by Thangam, Zebib & Chen (1981). The 

numerical approach adopted by these authors was different from the way we 

first solve this system of equations. They used a Galerkin method which we 

will examine in chapter 4. Here we use a Runge-Kutta scheme in an attempt 

to reproduce their numerical results for the stability boundary. The use of a 

Runge-Kutta scheme will allow us to examine the relative magnitudes of the 

different terms in the differential equations with greater ease. It also enables 

us to investigate possible asymptotic regimes by removing selected terms from 

the governing equations in a simple way.

3.1 Runge-Kutta Scheme

The Runge-Kutta scheme is often chosen for solving ordinary differential 

equations and the most common one in use is of order four. This means
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the local truncation error of this method is of 0 (dx5) where dx is the step 

length. The derivatives in the system of differential equations are expressed in 

terms of first-order equations such that y ' =  f(x, y) where y is a vector with 

any number of elements in the system. These are then numerically calculated 

based on the classical four-stage formula:

where

Vk+l

h  =  

k2 =  

h  = 

Aq =

Aq k 2 Aq Aq
Vk +  J  +  J  +  J  +  J '

(3.1.1)

d x f  (x ,  y k), (3.1.2)

d x f ( x  +  d x / 2, y k +  Aq/2), (3.1.3)

d x f ( x  +  d x / 2 ,  y k +  k2/ 2), (3.1.4)

d x f ( x  +  d x , y k + Aq). (3.1.5)

A shooting method is used to ensure that we satisfy the boundary conditions 

at both walls. This shooting method involves a matrix manipulation of some 

of the initial conditions to get some boundary conditions correct at the far 

wall before using Newton’s method (or Broyden’s algorithm) to ensure that 

we satisfy the remaining conditions by varying the chosen eigenvalue(s). For 

example, vary RaT for obtaining steady instability and vary both cq and RaT 

for oscillatory instability. The numerical scheme is able to vary the vertical 

wave number in order to find the minimum point of any given eigenvalue. 

For example, in the case of steady instability, this scheme may calculate 

the minimum value of RaT and the corresponding a for a given value of 

Ras. In addition, the corresponding growth rate, cq, is given when Broyden’s 

algorithm is used to look for non-steady solutions. Further details of the 

numerical scheme for solving the full problem are documented in Appendix 

A.
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3.2 Full Numerical Results

The full problem of (2.10.2) to (2.10.5) gives rise to steady instabilities if 

(Tj — 0. Otherwise, if a* ±  0 it gives rise to oscillatory solutions. The problem 

is dependent upon several parameters: the salt Rayleigh number (Ras), the 

thermal Rayleigh number (Rax), the vertical wave number (cr), the Prandtl 

number (P r ) and finally the Lewis number (r). These parameters are all 

closely associated with the eigenvalue er, the growth rate. In this numerical 

investigation, the Prandtl and Lewis numbers are taken to be 6.7 and 0.01 

respectively. These values are appropriate for the classical heat and salt com-

bination in water of double-diffusive convection. We have taken Pr =  6.7 

because this value was used in the double-diffusive problem for a vertical slot 

by Thangam, Zebib & Chen (1981). This value corresponds to T* of around 

22°C in pure water (Batchelor, 1967 pp. 597).

Initially we look for the value of Rax that gives a neutral state for a given 

value of a and Ras. We then vary a in order to find the minimum value of 

RaT and the corresponding a for each value of Ras . From this, some neutral 

curves describing the characteristics of the wave number, Ras and Rax can 

be found.

Figures 3.1 and 3.2 illustrate the relationship between RaT and a as Ras 

is varied between 25 and 104. It shows how the location of the minimum 

moves. The first shows the minimum for small magnitude of Ras and the 

other highlights the changing phase of the minimum as Ras increases. All 

the curves in the range 10 < Ras < 64.3 show a steady decline towards 

the RaT axis. The gradient of these curves increases rapidly when the wave 

number is greater than 4. The critical value of RaT found in this zone lies in 

the vicinity of zero a. We know that solutions to the full stability equations

28



Figure 3.1: Graph of the critical thermal Rayleigh number, R a r , against the vertical 
wave number, a, for moderately small salt Rayleigh numbers.

cannot be found if a is exactly zero. In this case the equations for the flow 

are equivalent to those of the background flow (2.8.5), (2.8.6) and (2.8.7), 

but with no temperature difference between the walls. The only solution in 

this case is the trivial solution with ip, T and S all zero. Thus the values 

of RaT on the axis at a =  0 which the stability boundary approaches is not 

the minimum RaT for steady convection, but it is the greatest lower bound 

for values of Rax where steady convection can take place. In these cases 

we estimate the value of RaT for the lower boundary of marginal stability 

by fitting a quadratic of the form RaT =  A + Ba2 through the two nearest 

points to a =  0. This gives the formula:

Rax — RciTi ~ — (Rax2 ~ RaTi)> o

where Raxl and RaT2 are the values for marginal stability evaluated at a = 5a 

and a  =  2<5ct: respectively where 5a is small (we take 6a =  0.001).

As Ras passes through 63.4, an interesting transition occurs which is more
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Figure 3.2: Graph of the critical value of Rar against a for some large salt Rayleigh 
numbers.

clearly seen in figure 3.2. The minimum shifts towards the right away from 

the origin. This time, the minima become more distinct with wave number 

increasing above 16. These neutral curves are again following a similar pat-

tern as the smaller salt Rayleigh number where they are disappearing off to 

infinity with increasing wave number.

Graphs indicating the critical values of RaT and a against Ras are dis-

played in figures 3.3 and 3.4. Each minimum corresponds to the marginal 

stability of the system as Ras is varied. For values of RaT less than the min-

imum the fluid is stable to all infinitesimal disturbances For values greater 

than this initial value there is always an unstable mode, i.e. the fluid is un-

stable to infinitesimal disturbances. It also shows how the critical value of 

the wave number increases with the increasing value of Ras . The increase 

in the critical wave number and Rax is caused by the damping effect of the 

vertical stratification as Ras increases.
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RaT
10“ 10 '  10!  10“ 10"  105

Ras

Figure 3.3: Pr  = 6.7 and r  = 0.01 are used to establish the neutral stability curve of 
Rar and R as . These steady solutions are found using the Runge-Kutta scheme . This 
shows the unstable and stable regions over the stationary branches of solutions.

In figure 3.3 it can be seen that near Ras =  4.7703, the boundary is almost 

vertical. This vertical branch of solutions separates stable regimes on the left 

from unstable regimes on the right. It is found by fixing RaT and varying 

both Ras and a in the Runge-Kutta scheme thus finding the minimum value 

of Ras for instabilities from a given value of RaT. This boundary extends 

downwards until reaching a minimum near Ras =  10. The destabilization for 

this vertical region is attributed by Thangam et al. to the large difference 

between the diffusivity ratio of heat and salt and so the fluid motion within 

the slot is creating the local buoyancy to give instability. However, it will 

be shown to be caused by a different mechanism in the large RaT section of 

chapter 5. The critical wave number becomes zero as Ras falls under 63.4 

as shown in figure 3.4 and then remains at zero until Ras reaches about 5. 

It then curves and forms a sharp peak which corresponds to values taken on
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Figure 3.4: Another neutral curve showing the relation between a  and Ras, found by 
using the Runge-Kutta scheme.

the near vertical part of the curve in figure 3.3. An alternative depiction of 

the relation between a and Rar is shown in figure 3.5. There seems to be a 

maximum point at a =  0.541 and Rar =  506. The part of the curve on the 

right decreases linearly in this logarithmic plot, indicating a decays as Ra^1 ■

The stability curve in figure 3.3 is essentially the same as that of Thangam 

et al. for values of Ras greater than 10, but differences in results obtained for 

4.7703 < Ras < 10 are found. For comparison with the results of Thangam 

et al., their stability curve is reproduced in figure 3.6. We have found a 

steady vertical boundary at Ras =  4.7703 and this is a continuous extension 

from the part of the stability curve with Ras greater than 10. This vertical 

boundary lies in the region that Thangam et al. found was stable to infinites-

imal perturbations. We failed to find the oscillatory solutions as shown in 

Thangam et al.'s stability curve. In addition, the Runge-Kutta scheme also 

failed to calculate small Ras results. This failure of the numerical scheme is
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Figure 3.5: This neutral curve showing the behaviour of a and Rar in the vertical 
boundary, is found by fixing Rar in the Runge-Kutta scheme.

examined in the next section.

Instabilities in the absence of a salinity gradient occur for Rar > 52 715 

(Vest & Arpaci, 1969). It can be seen that the presence of a salinity gradient 

greatly enhances instability. We shall see later in chapter 5 that these insta-

bilities are driven by the horizontal salinity gradient set up by the background 

flow which is driven by the imposed temperature difference.

The streamlines, salinity and temperature perturbations across a vertical 

slot were also examined. Typical examples of such contour-plots showing 

these periodic instabilities for the case Ras =  103 are shown in figures 3.7, 

3.8 and 3.9. Other examples including cases on parts of the stability boundary 

not found by the R,unge-Kutta scheme are shown in the next chapter. The 

counter-rotating convective cells are symmetrical about the origin as expected 

in a system with linear gradients. This background motion has warm salty
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Figure 3.6: Neutral stability curve from Thangam, Zebib & Chen (1981). Pr =  6.7 and 
r  =  1/101 are taken in their solutions for the stationary (solid line) and oscillatory (dashed 
line) branches.

fluid ascending in — \ < x < 0 and cold fresh fluid descending in 0 < x < 

4. As the fluid diverts away from the hot wall and moves into the cooler 

environment, its heat dissipation is significantly faster than the loss of its 

salt. This in effect creates a greater weight in the fluid which becomes heavier 

than its surrounding and so the fluid sinks. In contrast, the fluid coming from 

the cold region which is gradually heated up becomes fresher, and tends to 

rise upwards. When the streamlines and isotherms are superimposed, it is 

clear that the convective motion is transporting heat to the cold wall and cold 

water to the hot wall. Similarly the salinity perturbations appear much larger 

than the temperature perturbations because the heat contrasts diffuse faster 

than salinity by a hundredfold. The presence of a vertical salinity gradient 

causes an increase in salt concentration in areas of upward velocity and a 

reduction in areas of downward velocity.
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Ras =  1000

Figure 3.7: Graph of the streamlines of the perturbations for marginal stability at the 
critical value of a. Here x is in the range from —0.5 to 0.5 with the same ratio as the 
vertical walls. The contours of the stream function are ranging from -0.01 to 0.01 in steps 
of 0.002.

3.3 Oscillatory Branch and Ras <C 1 Solution

As previously mentioned, the Runge-Kutta scheme failed to find the oscilla-

tory solutions as described by Thangam, Zebib & Chen (1981) and the small 

Ras solutions. Here we will briefly mention the methods used in looking for 

them.

We tackled the oscillatory region by substituting Broyden’s algorithm to 

find the common zero of a pair of functions of two variables in place of New-

ton’s method. This latter method only sets one of the last two boundary 

conditions to zero while the second is simultaneously satisfied due to sym-

metry in the slot problem in steady convection. This Broyden’s algorithm is 

used for approximating solutions of the non-linear system F(x) = 0  when the 

initial approximation x is given. Here, F(x) has components which are the 

last two boundary conditions of Tr(l/2 )  =  T j(l/2 ) =  0 and the components
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Ras =  1000

H O T C O L D

Figure 3.8: Graph of the salinity perturbations for marginal stability at the critical value 
of a. The lines of constant salinity perturbation are at levels from —0.1 to 0.1 in steps of
0.02.

of x are Rar and eq. It can be seen in Appendix A that six of the eight 

boundary conditions are satisfied based on the shooting method and we sub-

sequently use this Broyden’s algorithm to satisfy these last two temperature 

boundary conditions on the right wall by varying both Ra? and at. A (2 x 2) 

Jacobian matrix representing the initial approximation to the temperature 

boundary conditions was set up before leading to the computation of its in-

verse and other necessary matrix multiplication. Full details can be found in 

Burden, Faires and Reynolds (1981, pp. 458-460). These calculations should 

be iterated for a number of times until both Rar and ot converge at some 

point. This should ultimately find the critical values of RaT, a, and the cor-

responding growth rate cq for any fixed value of Ras.

The above algorithm needs a reasonable initial guess for Rar and a to 

converge. In the absence of knowledge about the magnitude of the frequency 

of the growth rate when using the above numerical scheme, a large range of

36



Figure 3.9: Graph of the temperature perturbations for marginal stability at the critical 
value of a. The lines of constant temperature perturbation are plotted at levels from —0.01 
to 0.01 with stepsize of 0.002.

possible frequencies were tried. It was not possible to locate any solutions 

corresponding to oscillatory instability or any of those overstable solutions 

suggested by Thangam et al. However, the Runge-Kutta scheme with Broy- 

den’s algorithm will only converge to produce oscillatory solutions when the 

initial guesses for the growth rate, Rar and a have assigned values very close 

to the actual solutions. This means the numerical scheme is weak for find-

ing independent oscillatory solutions but is able to produce steady solutions 

when Oi is zero. Therefore, it could only be used for confirmation of some 

known oscillatory results. An independent Galerkin approach of chapter 4 

(which was used by Thangam et al.) is able to find oscillatory solutions in 

the range 2.0256 < Ras < 4.7703. This new finding indicates mistakes exist 

in the results of Thangam et al. for oscillatory solutions.

Furthermore, the next part of the stability curve with weaker salinity gra-
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dients where Thangam et al. found steady convection, cannot be found by 

using the Runge-Kutta scheme. This numerical scheme failed to find solutions 

for any given choice of boundary conditions at the left wall as the solutions 

always grew to large values by the time they reached the right wall. The 

reason for this problem will be discussed further in the thermal convection 

and small Ras section of chapter 5.

The vertical part of the oscillatory solutions reported by Thangam et al. 

with Ras about 10 cannot be found by this Runge-Kutta scheme. Instead, 

a similar branch of steady solutions is found for Ras about 4.7703. It is 

because of the failure in the Runge-Kutta scheme to find solutions in the 

case of small salinity gradient and, for verification of the results obtained for 

4.7703 < Ras < 10 which differed from Thangam et al., that we employed 

their Galerkin method. This is discussed in the subsequent chapter. Most 

importantly, this second method is able to complete the fuil stability curve for 

the part that the Runge-Kutta scheme was unable to calculate. This includes 

the Ras 1 region and the overstable branch of solutions.
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Chapter 4

Comparison of Galerkin 

Method

The fourth order Runge-Kutta scheme combined with a standard shooting 

method was first used to investigate the marginal stability curve of the full 

problem as described in chapter 3. However, solutions for Ras below 4.7703 

could not be found by this numerical scheme. Also, results found between 

Ras =  4.7703 and Ras =  10 were different from those of Thangam, Ze- 

bib & Chen (1981). It was decided that verification of the results of the 

previous chapter was needed by using a method independent of the Runge- 

Kutta scheme, so a Galerkin method was employed following the approach 

of Thangam et al. in their paper. This is a technique that has been used in 

other double-diffusive problems. For example, the linear stability investiga-

tion by Paliwal & Chen (1980) for a stratified fluid contained in an inclined 

slot subject to a temperature difference. This independent numerical study 

is the subject of this chapter.

The Galerkin method is not only useful for the confirmation of our pre-

vious results, it is also proved successful in generating ¿riutions for the dif-

ficult region where the salinity gradient is weak. In this sensitive region,
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the Runge-Kutta scheme failed to find solutions for parameters under con-

sideration (Pr =  6.7 and r =  0.01). As we shall see later, the problems 

experienced include boundary layers that developed at the walls and at the 

centre of the slot, and stiff behaviour found elsewhere due to a large magni-

tude term in the salinity equation. In fact, the uniform resolution introduced 

across the slot width by the expansion functions used by Thangam et al. in 

their Galerkin approach has an advantage for this problem as it maintains 

resolution in the middle of the slot. A similar numerical scheme used by 

Young & R,osner (1998) involving the use of Chebyshev polynomials concen-

trates the resolution adjacent to the boundaries and therefore it is possible 

that their numerical scheme is slightly less appropriate to the problem in this 

case. The reason for the failure in the shooting method will become clearer 

in chapter 5 when we discuss the asymptotic for the small salt gradient regime.

4.1 Galerkin Method

In principle, the Galerkin method is a special case of the more general method 

called the Method of Weighted Residuals. This technique expands the un-

known solution ip, T or S in a complete set of orthogonal trial functions with 

adjustable coefficients. These coefficients are then determined so as to give 

the best solution of the system of stability equations. To accomplish this, the 

assumed (or unknov/n) solutions are substituted into the stability equations 

and the residuals are set approximately to zero to give the best values of the 

unknown coefficients. In the Galerkin method, the chosen trial functions are 

expanded in a complete set, indicating the trial functions are used as weight-

ing functions and so the residuals are made orthogonal to the respective trial 

functions. It is best to choose trial functions that will automatically satisfy 

the boundary conditions of the problem.
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This Galerkin approach was used by Paliwal & Chen (1980) in their the-

oretical study of double-diffusive instabilities in an inclined slot as well as by 

Thangam et al for a vertical slot. Below are the expansi ;ns substituted into 

the stability problem of (2.10.2) to (2.10.4) where the sec of orthogonal func-

tions chosen satisfies the appropriate boundary conditions in (2.10.5). The 

variables 0 , T and S are expressed in terms of their trial functions:

c o s h  H 2 n - ix  c o s p 2 n - i a :  1 +  ^  i  s i n h / / 2 n £  s in  f l 2nX

C O S h l f l 2„ - l  COS 2 ^ 2 n —1 /  I s i l l l l  s in  -J i2n

' (4.1.1)
oo

T — ^2 l>2n-i cos(2n — 1 ) t t x  +  &2„ sin(2n)7rx, (4-1.2)
n— 1 

oo
S =  ^2 c2n-i cos 2(n — 1 ) t t x  +  C2n sin(2n — 1)7rx, (4.1.3)

71=1

where /i2n-i and /r2„ are respectively zeros of

0  =  a2n~
n= 1

tanh I ~H2n-i +  tan ( 2^2n-1 0, (4.1.4)

and

coth Q /Z2„ )  -  cot =  0. (4.1.5)

These expansions, (4.1.1) to (4.1.3), are also used to derive the derivatives 

required in the stability equations. The stability problem with the substituted 

expansions is then made into a system of residual equations by multiplying 

the appropriate trial function and integrating across the slot. This gives the 

integrals

J\  {LHS of (2.10.2)} cosh H2m-lX _  COS / i 2m - 1̂  
cosh \ n 2 m -l  COS \ n 2 m - 1 .

dx =  0,

/ ;  (LHS of (2.10.2)} ^
sinh ii2mx sin 1 dx =  0,

2^2m Sia 2̂ 2171 )

f  ̂  {LHS of (2.10.3)} cos(2m — l ) i r x d x  =  0, 

j\  {LHS of (2.10.3)} sin(2m )7rxdx =  0,

(4.1.6)

(4.1.7)

(4.1.8)

(4.1.9)
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[\  {LHS of (2.10.4)} cos 2(m -  l)irxdx =  0, (4.1.10)

1
l\  {LHS of (2.10.4)} sin(2m -  1)ttxdx =  0. (4.1.11)

In each case, the trial functions are either odd or even in x. The terms that 

arise from substituting the expansions into (2.10.2) to (2.10.4) can also be 

readily split into odd and even functions of x and so many terms can be seen 

to integrate to zero. This leads to some reduction in work. The resulting 

integrals are products of perturbation quantities with some containing the 

implicit form of the background state which are evaluated explicitly and are 

shown in Appendix B. This subsequently produces an infinite system of linear 

homogeneous algebraic equations.

In the case of the stream function equation, the integrals involving multi-

plication by the even trial functions in the ip expansion give

A42 m - l  T  a  2 d  /¿2m —1-^1 I °2m

+
ia 2 TT ia° TT la TT 

. - y 2mH2 +  ~ H 3 +  - H t ¿¿2m

-  RaT(2mn)H5b2m +  Ras (2m -  1 ) 7 r i / 6c 2m

+  - 2a2p2n-l#7a2n-l
njtm

\ ia n TT ia3 TT ia 1
+  } +  p^H ioj a2n

-R a T{2mr)Hnb2Ti +  Ras (2n — l)7riLi2c2„

- a 0,2 ' EPr Pr n̂ m Pr
, (4.1.12)

and the corresponding equation from the integrals involving the odd trial
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^  _  f 1/2 (  COSh f l 2n - l X  COS (  COSh ß 2m- \X _  COS / i 2m - l ^ "

7 7 - 1 / 2  l  COSh i / i 2n - l  COS ¿ / i 2n - l  /  l  COSh | /Í 2 m -1  COS | / i 2m - l
( ¿ X ,

(4.1.20)

if*

ifc

- 1/2 _  / sinh/i2n^ sin//2n^\ / cosh H 2m - \ X  _  COS H 2m - i x '

-1/2 °\ s in h |/ i2n sin ì/i2ny VCOsh 2^2m-l COs|/J2m-l,

r 1/ 2 __ / sinh/i2n  ̂ s i n / ^ 2n ^ \  / c o s h ß 2m - 1 %  _  C O S ¿ ¿ 2m - 1 ^ 'yj ___ .
1 /2  °\ s in h i/22„ sin 5 / i 2n /  VCOsl1 5 ^ 2 m - l  COS bß2m—\

(4.1.21)

dx,

H r4 - 1 /

1/2 Jj2w f  sinhn2nx sin /J2n^\ / cosh ß2m-lX _  COS Hlm-\X
1 /2 0 Vsinh|/i2n s in i/i2„y  VC0Sh|/¿2m-l COs|/i2m-l

(4.1.22)

dx,

Hu r1/2/ cos(2n)
4 - 1 / 2

/ cosh H2m-lx COS ß2rn-ix\  ,
7TX ---- 7-7--------------------I--------- dx,

\ C O S h  2 / ¿ 2 m —1 COS 2^2m— 1 y

(4.1.23)

(4.1.24)

rr y1/2 ,0 ^  7cosh //2rn_iX COS/^m-l^ J ( a -\ oc\i f  12 =  / cos(2n — 1)7t x — —¡------------------- i----------  dx, (4.1.25)
4 - 1 / 2  \ C O S h  i/X2m-l COS ^2m-\ J

! /2 __/cosh /i2m_ix cos/j,2m-ix\ /s inh /i2mj; sin/x2mx 'rr __ / cosn //2m_ix
//i3 =  / w0 — rn---------+4-1/2 V cosh ÿP2m-l cos\ii2m-\) Vsinh|/i2m s in ^ m ,

dx,

H
V2 ^sinh/i2ma; sin/i2mx^ ^sinh/i2mx s in /^ ^ ' 

14 =  1 i sinh 1 ■■ + ~= / _ 1/2 2 d 2 m  S in  2 / i 2 m /  Vsinh èß2rn  S in  2 /^2n

(4.1.26) 

dx, (4.1.27)

i f 15
c 1/ 2 _ _  / c o s h  ¡I2 m -\ X  _  COS / / 2m - i x \ / s i n h  /¿ 2m x  _  s in  /22m x \ ^  

J —1 /2  y  COSh 2 / ¿ 2 m — 1 COS 2 /2-2m—1 /  y S in h  2 /¿2rn S in  2 /2 2 m  /

(4.1.28)

H16 /_
V2 __ / cosh ß2m -\x cos /i2m_ix\ / s i n h ii2m% sin fj,2mx\
1/2 ^  W° \cosh i / i2m_i cos |//2m-i /  \sinh I/¿2m sin |/i2my

dx,

7-1/2
Hn =  / sin(2m — l )7rx

4 - 1 / 2

/  sinh / i 2m X  sin /22m x ' 

\sinh|/i2m sin |//2m,
dx,

(4.1.29)

(4.1.30)

7-1/2
i f 18 =  / sin 2(m -  1)

4 -1 /2

_ 7 sinh /l2mï sin^mX^
7TX I . 1 . 1  I CLX,

\Sinh 2 l̂ 2m Sin ¿/^m /
(4.1.31)
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"l/2 __ /cosh ^2n-\X COS /sinh /J>2mX sin H2mx 'H f  , +  — 7" - -  ] 1 1
2 - 1 / 2  \ C O sh  ± / i 2„ _ i  COS ^ 2 n - l  /  V S ln h  2 ^ 2™ S ln  2 ^ 2m -

(4.1.32)

H,20
Z 1/ 2 / s i n h /j,2nx , sm/i2n̂ \ / s m h / i 2 m x  sm/.i2mx\
/  -r-r-i-----+  — ^ ------  -T -ri------------ — ------)dx, (4.1.33)
2- 1/2 \smh ±fJL2n sm^fl2nj \smh^l^2m Sin 2^2m

H-21
V2 __/cosh /i2ri_ix cos z^n-i^A /sinh p2m:c sin/u2m:r\/ 7 _

=  / Wo 
2- 1/2/2  ° \cosh |/r2n-i COS |/X2n- 1/  vsinh 2 ^  sin |//2m /

g/ c ,

t f .22

(4.1.34)
r1/2 D2—  ( cosh H2n-\X _  COS ^2n-l^\ / sinh /X2mX _  sin /i2m:r\ ^

j - 1 / 2  0 \COSh |/X2n- 1  COS |/i2n - l /  Vsinh 2 ^2m sin ^ 2m /

/ 1/2H23 =  / sin(2n — l)7rx 
2 - 1/2

/ sinh fJ>2mX _  sinj^mx\ 
\sinh|/r2m sin |/r2m /

(¿X,

(4.1.35)

(4.1.36)

rr / 1/2 • 0 /  1 \ /" Sin hH24 =  / sin2(n -  l ) 7rx ----
2 - 1/2  \ S i n h  ^ 2r)

sinh //2m  ̂ sin ¿u2m:r\ 
sin |/i2m /

(¿X.

These 24 integrations are evaluated explicitly in Appendix B.

(4.1.37)

Following a similar procedure, the algebraic equations obtained by multi-

plying the terms in the temperature expansion by the even and odd functions 

in T and integrating are

-  [(2m -  1)27t2 + a2 b2m- 1 +  iaFia2m-i  -  iaF2b2m

+  Y  [*«^30271-1 -  iaF4b2n] =  a
n̂ m

-jb2m-\ (4.1.38)

-  [(2m)27r2 +  a2] b2m +  iaF5a2m ~ iaF6b2m-i

+  Y  [ioiF7a2n ~ *aT862„_i] =  a
n̂ m L2 '2m (4.1.39)

Similarly, the algebraic equations found for the salinity expansion are

2 •
¡4(m -  1)27r2 4- a2} c2m_ 1 -  iaGia2m-\ -  iaG2*2771 M2m^3^2m

+ Y  [—iotGAa2n-i  — iaG^c2n — ^nGe^n] — &
n^m

2 C277l— 1 (4.1.40)

45



r
(2m — 1)27r2 +  a 2 C2m — ia.Gja2m ~ icxG$c2m- 1 — ^2m-\G^a2m-\

+  [— *«(7100271 — iO i G \ \ C 2 n —\ ~  /^2n—1^12^271—l]  — <0
n^m

1
2C2m

. ( 4 .1 .4 1 )

T h e  e ig h t  in te g r a ls , F\ to  F g , fo r  th e  t e m p e r a t u r e  a n d  th e  tw e lv e  in te g r a ls  fo r  

t h e  s a lin it y , G\ t o  Gl2, a re  g iv e n  b y

r l / 2  / c o s h  /J,2m—l%  C O S //2m _ i x '
Fi L c o s ( 2  m — l)TTxdx, ( 4 .1 .4 2 )

1/2 ycosh 2^2171—1 COS 2 /̂ 2 m—1 

/~ 1/2 __
F2 =  / in0 sin(2m )7rxcos(2m  — l)7rxdx,

J- 1 /2

c o s ( 2 m  — l)7rx dx,r  1

/ COSh ¡J,2n-\X COS

0 — 1/2 \C O Sh § / i 27 i - l COS I //2 7 7 -1  /

F* =  /

r i/t
F , =  w0 s in (2 n )-7 rx  c o s ( 2 m  — 1 ) 710: c/n:, 

0 —1 /2

V 2 ( s in h  H2mX s i n ^ T T i ^ i
s in (2 m )7 r x  d x ,

r

1 /2  V s in h  i / / 277i s in  ^ /x 2m /

/■1 / 2 ___
F 6 =  /  w0cos(2m — l ) 7 r x s i n ( 2 m ) 7 r x d x ,  

0 —  1/2

V 2 / s i n h / r 2nx  s i n / / 2nx \
s in (2 m )7 r x  d x ,

1 /2  \ s in h  i / r 277 s in  | /r 2 n /

7-1/2 ___
F 8 =  /  ic 0 c o s ( 2 n  — l ) 7 r x s i n ( 2 m ) 7 r x d x ,  

0 —  1/2

a n d ,

< w .

G

/■1/2 _  
/

0 — 1/2

/ COSh H 2 m -lX

\ c o s h  I//2777-1

G2 = [
1/2

wa s i n ( 2 m
J -- 1 /2

,  F /2 /  c o s h  /¿ 2m x
r3 — /

0 — 1/2 \ s in h

( 4 .1 .4 3 )

( 4 .1 .4 4 )

( 4 .1 .4 5 )

( 4 .1 .4 6 )

( 4 .1 .4 7 )

( 4 .1 .4 8 )

( 4 .1 .4 9 )

c o s  2 ( m  — l)7 r x  d x , ( 4 .1 .5 0 )

c o s  2 ( m  — l)7 r x  d x ,

( 4 .1 .5 1 )

( 4 .1 .5 2 )
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G,
- L

l / 2 D g ~  ( COSh f l 2n - l X  _  COS /JL2n - 1%

- 1 / 2  ° \ C O sh  |/i2n- l  COs\n2n-l
cos 2(m — 1 ) - r x  dx, (4.1.53)

nr* __
G5 =  / w0 sin(2n — l ) 7 r x  c o s  2(m — \)-k x  dx, (4.1.54)

V —1/2

1/ 2 / COSh / / 2nX  COS / / 2nx \

1 1/2 \sinh±/z2n sin i / i2n yG “  =  /_

G7 =  J  DS
1/2 /  sinh ,u2m x  _  sin ¿¿2m x

i/2 ” \sinh |/U2m sin |//2m

cos 2(m — 1)7t x dx, (4.1.55)

-  ) sin(2m — lW x dx, (4.1.56)

r 1/2 __
Gs =  w0cos2(m — l)irxsm(2m — l)nx dx, (4.1.57)

J — 1/2

G <
/■V2 /sinh/r2m_iX sin/r^.jxN 

= / ------- ;----------- 1--------.---------  sin(2m — l)7 rxax,
7 - 1 / 2  \ C 0 S h  5 /02m - l  C O S ^ m - i y

^  71/2 /sinh/o2„x sin/i2nx\ . ,0 lX jG 10 =  / D Sa — —:-----------;— ;------  sin (2 m — l)irxdx,
J- 1/2 \sinn \ii2n sin Gx2n J

Gh
rl/2 __

— / w0cos2(n — l )T T X s in (2 m  — 1 ) t t x  dx,
J-1/2

G 12

1/2 

- 1/2

!/2 /  sinh /l2n-\X sin/02„_iX
rr  ̂ i sin(2m — 1)ttx dx.

(4.1.58)

(4.1.59)

(4.1.60)

(4.1.61)
-1 /2  \ C O sh  \ n 2 n - l  COS ¿ / / 2„ _ i  /

The general form of the 6 algebraic equations in (4.1.12), (4.1.13) and 

(4.1.38) to (4.1.41) can be written in a more compact format as a matrix 

equation:

Ax = aEhi, (4.1.62)

where A and B are infinite matrices. In order to solve the problem a trunca-

tion level, N, is introduced, making the system numerically tractable. Both 

A and B are defined as ( 3 iV  x  3 N)  matrices with complex elements and the 

vector x  is a column of unknown coefficients made up of the coefficients a * ,  

5, and ct. The matrix B is not diagonal and certainly not the identity matrix 

(cf. Thangam et al. equation (3.4)). The elements of matrices A and B are 

functions of the parameters Pr, r, Ras , RaT and a.
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For a given set of values of the parameters of this problem, the solution 

to the matrix eigenvalue problem given by the truncation of (4.1.62) may be 

determined using a NAG Routine (F02GJF). This library routine calculates 

all the eigenvalues cr, and if requested, all the corresponding eigenvectors of 

the complex eigenproblem. For marginal instability, we look for where the 

largest real part of all the eigenvalues changes sign from negative (decaying 

disturbance) to positive (growing disturbance). In addition, the accompa-

nying imaginary part, cq, indicates stationary instability when cq =  0 or 

oscillatory instability when cq ^  0. Sometimes a has a very small imaginary 

part due to numerical rounding errors. True complex eigenvalues occur in 

conjugate pairs in this problem, so any eigenvalue with a small imaginary 

part but nc conjugate pair would mean that it must be an approximation to 

a real eigenvalue. An iteration scheme similar to the Newton’s method origi-

nally used by the Runge-Kutta scheme (see details in Appendix A), is set up 

in order to determine, say, the minimum for RaT and the corresponding a for 

any given Ras.

The complete picture of the marginal stability curve is given in figure 

4.1, showing the boundary between stable and unstable modes. These nu-

merical solutions of both stationary and oscillatory branches are respectively 

indicated by solid and dashed lines in this Ras-Rar plane. This version of 

marginal stability curve is clearly different to that of Thangam et al. in fig-

ure 3.6 when Ras lies between 0.45 and 10. Other parts of the curve are 

essentially the same. At Ras — 0.45, Thangam et al. found a transition to 

oscillatory solutions. However, the primary mode of instability continues to 

be steady beyond this point and slowly rises upwards to meet the next region 

at Ras =  2.0256. In this next region the instability is no longer stationary 

but overstable. This oscillatory branch then continues .o curve downwards
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Figure 4.1: The complete version of the marginal stability curve for Pr  = 6.7 and 
r  =  0.01 are considered. Only a small section indicated by dashed line is the oscillatory 
branch and others are all stationary branches.

until it reaches Ras =  4.7703. Here there is an almost vertical boundary 

which takes over and the value of RaT decreases rapidly until reaching a min-

imum near Ras =  10. The solutions found for this vertical boundary revert 

to being stationary. This contradicts the existence of the overstable solutions 

claimed by Thangam et al. and confirms the previous results found in the 

previous chapter by the Runge-Kutta scheme for Ras between 4.7703 and 10. 

The recent paper by Young & Rosner (1998) verified our findings although a 

slightly different value of the Prandtl number was used. It has been found for 

lower values of N, for example 48, that some parts of the stability boundary 

seem to be oscillatory although the true solution should be non-oscillatory 

(see below). This misleading result was recorded in the drafts of Young and 

Rosner’s paper where they reported the small rising section of the neutral 

curve (on the left hand side) just before the point Ras =  2.0256 was oscilla-

tory. Fortunately, we were able to point out this error to Young and Rosner,
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and their results were corrected before publication.

Contour plots of the perturbations streamlines, temperature and salinity 

are shown in figures 4.2-4.5. These show the instabilities along different parts 

of the stability boundary to the left of the minimum (see figure 4.1). In each 

case the hot wall is on the left and the cold wall is on the right. Contour 

plots for an example to the right of the minimum have been shown in the 

previous chapter. Each of these shows a complete period of the instability 

in the vertical direction. In figure 4.2 is shown the instability on the vertical 

portion of the boundary. These instabilities have a very long vertical scale 

and have been compressed by a factor of 100. The heat diffuses very rapidly 

in the horizontal direction and so the temperature perturbation is very small 

and has little effect on the density. In figures 4.3 and 4.4 are shown insta-

bilities on the oscillatory part of the boundary. The first has cr* > 0 and so 

represents a downward travelling instability, while the second has at < 0 and 

is upward travelling. These instabilities are centred on the upward and down-

ward flowing parts of the background flow respectively. The contour spacings 

on these two figures are the same, but using a normalisation of ip"(—1/2) =  1 

means that these modes which are not symmetrical about the centre of the 

slot have different maximum values and hence number of contours. Lastly, 

figure 4.5 shows the instability on top left portion of the stability boundary. 

The most notable feature of instabilities on this portion of the boundary is 

the large narrow peak in the salinity at the centre of the slot. The physical 

mechanism behind these instabilities is discussed further in chapter 5.

Most of the oscillatory solutions given by Thangam et al. for Ras between 

0.45 and 10 were not found here. The only part showing initial oscillatory 

instability is indicated by a dashed line which occupies a small portion of the
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Figure 4.2: Contour plots for Ras =  4.77065 and Ra-r =  10 000 showing perturbations 
of the (a) streamlines, (b) temperature and (c) salinity are for the steady case at marginal 
instability. These contours are taken in steps of 0.01, 0.00004 and 0.7 respectively and have 
been compressed by a factor of 100 in the vertical. The hot wall is cn the left and the cold 
wall is on the right.

stability boundary. These oscillatory solutions continue to penetrate into the 

unstable region, giving a local minimum point on the curve of critical Rar 

as a function of wave number. The stability boundary of Rar as a function 

of a is shown in figure 4.6. The fluid in the slot is unstable in the region 

enclosed by the solid line and above the dashed line. There are no unsta-

ble modes in the region inbetween. The transition to instability along the 

dashed line is oscillatory and there is a local minimum at RaT =  14 057 and 

a =  2.2416. However, the global minimum is clearly on the steady branch 

for a much lower Rar =  31.571. Thus steady instabilities would always be 

observed and this is shown in figure 4.1. The minimum on the oscillatory 

branch is clearly different to the oscillatory result reported by Thangam et 

al. for Ray =  10. However, these oscillatory solutions can no longer be found 

beyond Ras =  15.5 or for RaT much below 12 000. In other words, no oscilla-

tory solutions have been found between this value of RaT and the minimum 

for any instability at RaT =  31.571. Thus, the extensive search made for 

oscillatory solutions as reported by Thangam et al. in this region using the
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Figure 4.3: Contour plots for Ras =  3 and Rar =  30230 showing perturbations of the 
(a) streamlines, (b) temperature and (c) salinity are for the oscillatory case at marginal 
instability. These contours representing the positive eigenvalue are taken in steps of 0.01, 
0.02 and 4 respectively. This mode has cti > 0 and so represents a downward moving 
instability.

Runge-Kutta scheme was doomed to failure.

It is in no doubt that the second numerical approach involving the ex-

pansion method confirms the results obtained earlier by the Runge-Kutta 

scheme. The comparison procedure is carried out by considering some known 

solutions for the critical RaT and a for any given values of Ras . We then 

check to see if the largest real part of the eigenvalue changes sign or not. If 

so, we have shown the two approaches agree and produce the same results.

The accuracy of solutions depends on the truncation level, N, chosen in 

the matrix system for the expansions of ip, T and S. The choice of the trun-
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Figure 4.4: These contour plots are for the same situation as in figure 4.3 except that 
(Tj < 0 is shown here and the instabilities move upwards. The same contour spacings are 
used.

N Ras =  1.0 Ras =  0.1 Ras =  0.01 Ras — 0.001

24 57979.172 53288.817 52773.197 52721.124

30 Not found 53511.629 52795.320 52723.364

48 66665.399 54052.185 52848.487 52728.680

72 67255.831 54093.822 52852.502 52729.080

96 67255.932 54093.828 52852.503 52729.080

Table 4.1: A table of the critical value of Rar calculated for different truncation levels, 
N . for small values of Ras-

cation level N  is determined by the part of the marginal stability curve being 

considered. The most difficult part of the curve on which to perform calcu-

lations was the steady small Ras part of the curve. The critical values of 

Rar found for various values of N  with different values of Ras is shown in
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Figure 4.5: Contour plots for Ras =  0.1 and Rxir =  54093 showing perturbations of 
the (a) streamlines, (b) temperature and (c) salinity are for the steady case at marginal 
instability. These contours are taken in steps of 0.0025, 0.0004 and 1 respectively.

table 4.1. For all cases shown here, the solution converges when N  =  96. In 

the case with N  =  48, the solution to the small salinity gradient problem 

is noticeably different to the N =  96 solution for Ras =  1. This difference 

becomes small as Ras tends to zero when the critical value for the thermally 

driven slot problem emerges. On all other parts of the neutral curve using 

48 terms in the expansions gives good convergence in the results. This choice 

of N  =  48 is an improved truncation level on that used by Thangam et 

al. in their expansions; their maximum level was N =  30 and was used in 

their oscillatory results while in other regions they often used N  =  16. With 

N =  72 the solutions obtained for Ras up to 1.0 give very good agreement 

with the N =  96 results. As Ras increases further, the results seem to di-

verge more, indicating a higher N  is necessary to obtain satisfactory solutions 

of the salinity equation along the steady branch. This condition is expected 

since the salinity expansions would need sufficient resolution to adequately 

resolve the boundary layer that exists at the centre of the slot with its sharp
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Figure 4.6: When Rag = 10, the minimum point for the (dashed) oscillatory solutions 
are indicated on the right while the other minimum point where instability is steady for 
zero a solutions is shown on the left as a solid line.

peak in the salinity. This is discussed in chapter 5 for the boundary layer 

problem in the limit of small Ras■ Care must be taken when choosing N 

for 0.45 < Ras < 2.0256 because if N  is not sufficiently large the marginal 

solutions often seem to be oscillatory. It is found that on parts of the stability 

boundary where solutions are obtainable using both approaches, the solutions 

nearly always agree to five significant figures or more.

It seems that our results are partially different to those of Thangam et 

al. due to their truncation level being insufficient to obtain numerical con-

vergence to the correct solution. The choice of truncation level is particularly 

important in the case of small Ras where solutions are changing between 

overstable and stationary branches. This may explain why the stationary 

vertical boundary was not found in Thangam et al.'s results and the shape 

of the oscillatory branch was different. The choice for N  =  24 or 30 pro-

duces solutions far from the solutions found with N =  96. The reason why
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Thangam et al. did not find the steady solutions for 4.7703 < Ras < 10, is 

not clear.

The marginal instability curve is finally complete and the next chapter 

examines the asymptotic of the four regimes found on tne different parts of 

this graph.
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Chapter 5

Asymptotics

In this chapter we look at the full linear problem for a slot using asymptotic 

analysis. There are several regimes which describe the onset of instability in 

the heat and salt system as the salt Rayleigh number is varied. We will use 

this analysis to examine the physical processes involved that represent the sig-

nificant features found in thermohaline convection in a vertical slot. In each 

case we attempt to derive a reduced model representing only the essential 

characteristics of that regime. Each reduced model is produced by investigat-

ing the different leading order balances in the full problem. This establishes 

various sections of the theoretical asymptotic behaviour for marginal stabil-

ity, giving the vertical wave number and the corresponding salt and thermal 

Rayleigh numbers.

The neutral stability curve in figure 5.1 is divided into five different re-

gions. The corresponding graph of a as a function of Ras is shown in figure 

5.2. The majority of the curve is stationary except for region 4, marking the 

transition to an overstable instability. Only four asymptotic regimes are iden-

tified as shown by the different limits on the stability curve. We first examine 

the previously studied problem of strong salinity stratification (region 1) and 

then extend our findings by examining the weaker salinity gradient problems
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Figure 5.1: The neutral stability curve with Pr = 6.7 and r  = 0.01. Each region which 
lends itself to an asymptotic analysis, is described by the appropriate limit. Stationary 
solutions are marked with solid lines and overstable with a dashed line.

which we will discuss in subsequent sections.

5.1 Large Ras with a ^  0

This regime involving strong salinity gradient in a differentially heated ver-

tical slot has been examined by Thorpe, Hutt & Soulsby (1969) and then 

extended by Hart (1971). In this regime the salt Rayleigh number is con-

sidered large and the wave number is non-zero. This regime corresponds to 

the part of the neutral curve marked with region 1 in figure 5.1. This region 

alone is considered in figure 5.3 and is compared with the results obtained 

from the large Ras reduced model.

There are two reasons why we include this section on an asymptotic regime 

which was thoroughly investigated during the last three decades. For one, this 

problem for large Ras is a learning channel to the initial understanding of
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Figure 5.2: A graph of a as a function of Ras where the stationär;' solutions are marked 
with solid lines and the overstable with a dashed line for the different regions.

double-diffusive problem for a slot. This knowledge becomes useful when 

making analysis in other complex problems involving weaker salinity concen-

tration. Secondly, it is useful to present asymptotic results for the linear 

theory for the slot problem that covers as much of the range of Ras as pos-

sible for later discussions.

We propose to determine all the dominant terms found in the linearised 

equations of ip, T and S for the case of Ras 1 by looking at each equation 

separately as outlined in (2 .10.2) to (2 .10.5) for the full problem where a 

is set to zero. We consider all the terms in turn to obtain approximations 

corresponding to the modulus of their real and imaginary parts across the 

interval of x =  —1 /2  to x =  1 /2 . There are in total 17 such terms to 

be computed containing the real and imaginary parts of each term in the 

governing equations. We shall denote the 8 terms from the equation of ip as
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RaT

Ras

Figure 5.3: Graph showing the full (dashed) and reduced (solid) models that give good 
agreement in region 1.

term 1 =  D 4V>; 

term 3 =

term 5 =  a3ŵ xf>/Pr-, 

term 7 =  Rcl tD T ;

term 2 =  2a2D2ip, 

term 4 =  aw^D2^/Pr, 

term 6 =  aD 2vr0̂  I Pr, 

term 8 =  RasDS.

Similarly, the four terms from the temperature equation are

term 9 =  D2T ; term 10 =  a2T, 

term 11 =  aip; term 12 =  auĴ T,

and the remaining five terms for the salinity equation are

term 13 - D2S; term 14 =  a2S,

term 15 =  aDS0ip/T; term 16 =  aw^S/r, 

term 17 -  D î /t .

The investigation of the 17 terms sheds some light on their significance in the 

regime. The corresponding curves are drawn across the slot so every term
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Ras = 30,000

RaTT’

Figure 5.4: The modulus of terms describing the stream function are plotted in the range 
from x =  —1/2 to x =  1/2. Four terms are highlighted for their significance across the slot 
as Ras gets large.

can be compared in the equations of ip, T and S in figures 5.4 to 5.6 for 

Ras =  30 000. In figure 5.4, the four important terms in the stream function 

are highlighted but the term 2a2D2xp becomes less significant as Ras increases 

and can be neglected. Figures 5.5 and 5.6 reveal the magnitudes of the terms 

for the temperature and salinity equations respectively. It appears that the 

temperature terms are reduced to two and then three dominant terms are 

captured in the salinity equation. In fact, all the curves shown suggest the 

boundary layers become less significant when Ras is large. It is noted that 

horizontal diffusion is not important in the bulk of fluid but will become sig-

nificant in thin boundary layers near the walls. These boundary layers do not 

play an important role in the leading order asymptotic (Hart, 1971).

Now we can eliminate terms which are insignificant from the full problem 

and only retain those ones dominating the flow between the two walls. The

61



Ras = 30,000

Figure 5.5: The modulus of terms describing the temperature are plotted in the range 
from x  =  - 1 /2  to x =  1/2. The two terms which are important within the two walls as 
Ras becomes large are indicated.

reduced model representing the Ras >■ 1 regime where a ±  0 is found to be

a4ip -  RaTDT + RasDS =  0, (5.1.1)

—a2T + iaxp =  0, (5.1.2)

- r a 2S -  ia^DSo -  Dip =  0. (5.1.3)

The leading order terms for large Ras can also be derived under the assump-

tion that the vertical scale is much smaller than the horizontal scale. This is 

observed to be the case in experiments conducted by Thorpe et al. and Chen, 

Briggs & Wirtz (1971). We shall see later this corresponds to the condition 

that the vertical Chen scale (a:TAT//3|$0|) is much less than the slot width, 

D and |<h0l is the vertical salinity gradient. Here we have to emphasize that 

aT is the coefficient of thermal expansion in order to avoid confusion with 

the vertical wave number.
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Ras = 30,000

Figure 5.6: The modulus of terms describing the salinity are plotted in the range from 
x — —1/2 to x  =  1/2. Three dominant terms are found between the walls as Ra$ becomes 
large. These are indicated.

The salinity equation (5.1.3) for the background salinity gradient is of 

leading order DS0 ~  — Rcl t/ t̂ M  ̂ in the core of the slot. This is obtained 

from the expansion for large M  in

DS0
—Ra  ̂
At M a .

1 +  e sin (Mx

M.
cos [Mx — — ) — e

• —  ) -  e~M(x+2) Sin (M x + 
2

- M { x + \ )  c o g  ^ M x  +  ~ )  . (5.1.4)

The similar expansion for background

RaT 
W° ~  U P

gM(x 2) sin (Mx — ~ )  +  e M<'x+1̂  sin (Mx + — )
Zi Zj

(5.1.5)

showing W0 —> 0 in the slot core. At the leading order, the core has a constant 

salinity gradient (=  —/?a r /4 rM 4) and the boundary layers are thickness 

M -1 , decaying exponentially far away from the walls. From (5.1.2) and (5.1.3) 

we write respectively

DT =
iDip

a
(5.1.6)
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1
DS

r a r
iaRaTD'ip 2

4 rM 4
D ziP

and these results are substituted into (5.1.1) giving

iaRarDxp4 ¿.Ray , Ras a; ip---------- Dip
4t M 4a rcr

Dividing throughout by Ras/ra2 gives,

iraRar iaRarD2ip +  Dip

-  D ip

ra6ip

=  0.

(5.1.7)

(5.1.8)

0. (5.1.9)
Ras 4t M 4 \ Ras 

We then replace Ras with 4rM 4 and factor out iaRaT in the second term to 

give,
d2^ _  iaRdri1 -  T)

4t M 4
a6ip

Dip------- ~t =  0.
4M4

The solution ip is of the form

ip = Beßx +  Ceix,

(5.1.10)

(5.1.11)

where ß, 7 are given by

1
2

iaRar(l — r) 1 —a2Ra^( 1 — t ) 2 a:6
4t M 4 V 16t 2M 8 +  M 4

(5.1.12)

The boundary condition of -0 =  0 o n i  =  ± 1 /2  is used to provide the two 

expressions:

Be-* 0 +  Ce-* ”1 =  0, B e*0 +  C e*'1 =  0. (5.1.13)

These can be combined to give the condition for the existence of solutions 

that

B e~^(e0 — e7) =  0. (5.1.14)

If (3, 7  are real then ¡3 =  7  is trivial in the solutions but if (3,7  are considered 

complex then we have

(3 — 7  =  2mri, (5.1.15)

or alternatively the roots are replaced by (5.1.12),

„2 r>„2 ( 1  r \ 2  ,̂6-a2Ra^( 1 — r )2 cd
16 r 2M 8 +  W 4

=  2mri. (5.1.16)
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Squaring both sides,

—a2Ra^(l — r )“ 
16 r2M 8

to give the expression of Rar,

a
+ 7 7 7  =  -4 n 2 7r2, 

M 4
(5.1.17)

Rat
T ‘■M4

1̂6cv6 + 64n27r2M ‘ (5.1.18)
a2( 1 — r)2

For the case of marginal stability we take dRar/da =  0. When (5.1.18) is 

differentiated with respect to a we obtain the expression for a

t 2 M 4 

( 1 - F ) 2
64cr -

128n27r2M 4

giving

O r

cR =  2n2 7r2 M 4

=  0, (5.1.19)

(5.1.20)

The expression for a in (5.1.20) is then put into the expression of RaT in 

(5.1.18) to give

=
t 2 M 4

[ l6(2n27i2M 4) +  6An2/K2M 4 (5.1.21)
(2n2 7r2 M 4) s (1 — t ) 2 

and this is minimized when n — 1 so that the smallest value of RaT is given 

by

Ra^ -
AZ2ir4Ra\-

d - 7  • (5-122>

Consequently, the critical values for both the thermal Rayleigh number and 

the wave number describing the marginal stability in the regime of Ras 3> 1

are 1
RaT =  (432tt4)6 flaf ^  (5.1.23)

and,
i / Ras a =  7f 3 ——

V 2 r

Thorpe et al. were first to examine the leading order asymptotic be-

haviour of this regime with both vertical and horizontal temperature-salinity 

gradients across the slot. Their asymptotic relation for marginal instability in

(5.1.24)
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this regime is Rar =  2.76Ra6s which is equivalent to equation (5.1.23). This 

analysis was extended by Hart who concentrated on the higher order effects 

of the boundary layers at the walls.

5

We can use the result for the critical a to find the physical height of the 

instability. We can express this wave number as

2irD
a = (5.1.25)

where h is the physical height of instability and D the slot width. With the 

physical quantities substituted for Ras in (5.1.24), we write

27tD
h

7T 3

to determine the physical height,

h =  27T3

' ±  g W o i n y
2T Kt V )

2k s u 2

(5.1.26)

.90 l^ o
D (5.1.27)

We shall eliminate the horizontal scale D , in favour of the positive quantities 

involving the temperature and salinity gradients. From equation (5.1.22) we 

derive the expression

|2 = ff(arAT)6(l -  r)6 
4327r4r(/3|$0|)5Kr^

When this is substituted into (5.1.27) it gives

h = 2713
2k Sv  ffKAT)6(l--r)6W 

g0\$o\ 4327r4r(/5|4>0|)5KTi/_

(5.1.28)

(5.1.29)

which simplifies to
OìJ'l\T
P\*o\

(5.1.30)

The quantify in the brackets, aTAT//3\$0\, is the Chen scale. The convection 

cells in this regime take the form of thin almost horizontal layers whose ver-

tical scale is approximately the Chen scale (see Chen, Briggs & Wirtz, 1971).
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As the convective instabilities in this regime are constrained by this Chen 

scale in the vertical direction and the slot width in the horizontal direction, 

the theoretical result given here is also of some relevance to the mechanistic 

argument of Kerr (1989). This argument is based on a linear stability analysis 

of a semi-infinite body of fluid with a vertical salinity gradient heated from 

a single sidewall and it can similarly be applied here to a vertical slot. The 

non-dimensional parameter Q that was introduced in his analysis is related 

to the thermal Rayleigh number as observed in the case of Rayleigh-Bénard 

convection. However, the parameter

Q =
(1 -  T)6g(aTATY

(5.1.31)
v k s D ^ \ ^ 0\Y  ’

that governs the instabilities in this regime is determined by two length scales: 

the width of the slot and the vertical Chen scale. The horizontal scale in the 

context of a vertical slot is the slot width, D , and in Kerr’s problem, the 

thermal diffusion distance from the single wall is (nrt)^, where t is the di-

mensional time since the onset of heating. For strong salinity stratification in 

a vertical slot, instability starts to occur when Q =  4327T4 which is equivalent 

to the result of Thorpe et al. and Hart. Kerr also determined the next order 

perturbation of Q for the sidewall heating problem, which is the square of the 

ratio of the Chen scale to the horizontal length scale with an extra factor of 

(1 — t ). In the context of the variables used here, this expansion parameter is 

equivalently ((1 — r)RaT/Ras)2. In this regime where both temperature and 

salinity perturbations play an important role in the leading order asymptotic, 

the length scale for the diffusion of T and S is the same.

Our numerical results show good agreement with the above theoretical 

asymptotic for large Ras as shown in figure 5.3. For values around Ras =  103, 

a slight divergence is observed between the full and asymptotic estimates but
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this difference diminishes as Ras increases. The asymptotic curve contin-

ues to agree with the full results as far down the solution branch as about 

Ras =  30 and this is the point where the next asymptotic regime for region 2 

is appropriate. This exceptionally good agreement down to this value is prob-

ably entirely fortuitous. As we know a is assumed large under the Ras »  1 

regime, therefore large a solutions are not appropriate in the small a regime. 

We shall see in the next section that at Ras =  30 the small a approximation 

is the appropriate approximation.

5.2 Small a

This section focuses on the bottom curved part of the marginal stability 

boundary that corresponds to small a. This is region 2 indicated in figure 

5.1. For values of Ras > 10, our neutral curve has essentially the same shape 

as that of Tnangam, Zebib & Chen (1981) but we found different results to 

their stability curve between the region of 0.45 < Ras £  10. They only pro-

duced overstable solutions between the two limits.

The solution found on this boundary as highlighted in figure 5.7, is char-

acterized by the vertical wave number becoming small. This is evidently 

supported by the results in the a-RaT plane in figure 3.1 where we observed 

a transition showing the decrease in the values of Ras. This gives the corre-

sponding minimum close to the origin where a tends to zero. Figure 3.4 also 

gives the plot of a and Ras, showing the trace of a which is disappearing into 

the horizontal axis just after the left narrow peak. In fact, there are no zero 

growth rate solutions on this stability boundary of region 2 as solutions do 

not exist for a =  0. Above the boundary there are always growing solutions 

and zero growth rate solutions. Therefore we propose to determine solutions 

in the limit of a —> 0 for the asymptotic in region 2.
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Figure 5.7: In the a «  1 limit of region 2, a good comparison is shown between the full 
and reduced numerical results. Dashed line for the full model and solid for the asymptotic 
result.

The way of finding a reduced model for small a is to retain those dominant 

terms across the slot for these values of Ras when a becomes smaller. The 

technique in finding these significant terms is the same as that explained in the 

previous section of large Ras asymptotic. The labelled curves for Ras =  10 

in figures 5.8 and 5.9 are the important terms for the equations of and T. 

Both the stream function and temperature similarly indicate that there are 

two dominant terms found in the core of the slot. These terms balance each 

other so closely that the curves are indistinguishable. A different profile is 

revealed in figure 5.10. Although symmetry is visible about the line x =  0 for 

all significant salinity terms, they grow relatively large away from the core 

and decay quickly into the cold and hot walls. These curves are simply two 

smooth symmetrical peaks found in the confined slot. We will later see that 

the reason for this distribution is the terms in the salinity equation are odd 

functions about x =  0.
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Ras = 10

Figure 5.8: The modulus of the stream function illustrates two important terms across 
the slot in the region of small a.

When the reduced model is established from the above graphical exami-

nation, the reduced system of equations can be solved numerically using the 

Runge-Kutta method. This helps confirm the results in the next approach 

where we use an analytical method to obtain the asymptotic for this small a 

regime.

In order to determine a suitable reduced model for the small a case, we 

can also examine the scaling for the important parameters and variables that 

produce suitable balances. For example, we can take

Rar = 0(1), Ras =  0(1), $  =  0 (  1),

T — 0 (a a) and S =  0 (a b)

as a —> 0, where the unknowns a and b are to be determined so as to give 

a satisfactory balance in the slot. We hope to find zero growth rate (time- 

independent) solutions in the limit a —> 0 using the full problem in (2.10.2)
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Ras = 10

HOT

Figure 5.9: The modulus of the important temperature terms are shown across the two 
walls in the small a  regime.

to (2.10.4). We first look at the magnitude of each term in the governing 

equations using the scaling as defined above. Each term in the equations of

d S is then expressed in powers of a as shown:

DV — 2 a2D2ij> + - f^WoD2̂

O(a0) 0 (a2) 0 (a4) 0 (al) 0 (a3)

+  f-rD2vr0̂ — R c l t D T + RasDS =  o,

0 (al) 0 {aa) 0 {ab)

D2T a2T + ia'ip — iauJ^T = 0 ,

(5.2.2)



Ras = 10

HOT

Figure 5.10: The modulus of the dominant salinity terms across the slot are shown in 
the graph for the case of small a.

and

t D2S — ra2S — iaDS0ip — iawQS -  Dip

0 (ab) 0 (a2+b) 0 (a1) 0 (a1+b) O{a0)
(5 .2 .4 )

If terms clearly not of leading order are eliminated, we obtain the remaining 

terms for ip, T and S with orders

DAip — Rclj'DT + RasDS — 0,

0 (a°) 0 (aa) 0 (ab)

D2T + iaip =  o,

0 (aa) 0 (a1)
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and
t D 2S 0.Dip

(5.2.7)

0 (a b) O(a0)

From (5.2.6) we see a — 1 and (5.2.7) implies 6 =  0. So the temperature term 

in the stream function equation is removed because the leading order of T is 

a and both S and ip have the same balance which is of order one. This in 

turns establishes a model that seems to contain the term::

D*ip +  RasDS =  o ,

D2T +  iaip =  o , (5.2.8)

t D 2S Dip =  0 .

It is clear from the above model that the temperature equation is not impor-

tant since T no longer appears in the momentum equation. The resultant 

equations are

DAip +  RasDS =  0, 

t D2S -  Dip =  0,
(5.2.9)

giving

D5ip + — Dip =  0. (5.2.10)
T

There are six boundary conditions ^>(±1/2), Z>0(± l/2 ), D4ip(±l/2) which 

are zero in this fifth-order equation and ip =  0 is the only solution to be 

found. However, examination of figure 5.10 shows that there is another term, 

— iaHJpS, in the salinity equation that is important. This is possible for S 

as it appears only in the leading order equations in terms of its first and 

second derivatives and the corresponding no-flux boundary conditions allow 

an arbitrary constant to be added to S. When this term is included in the 

reduced model it enables a solution to be found from

D îp +  RasDS =  0,

t D2S — iaWpS — Dip =  0.
(5.2.11)
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Here we shall pose an expansion for

ip =  ipo +  a  ip i +

S  =  cy 1 ST i + Sq et Si ±
(5.2.12)

with S-i a constant. We use the boundary condition ip"(—1/2) =  1 to dehne 

the scale of the perturbations therefore the leading order term, ip0, is of order 

one. The leading order problem satisfies the following equations:

D4ipo + RagDSo — 0,
(5.2.13)

t D2Sq — iw^S-i — Dipo — 0.

The first equation is differentiated once and is used to eliminate So from the 

second. The subsequent ordinary differential equation (ODE) for ip0 is

D5ip0 +  — — Dtpo +  i— -w^S-\ — 0. (5.2.14)
r t

This inhomogeneous ODE is solved by obtaining its complementary and par-

ticular solutions. We know ip0 is an even function and therefore any odd 

terms in the solution are eliminated such that ipo is the combination of

ipOcp =  A' +  B' coshAix cos Mx +  C' sinh M x sin Mx,

and ipQPI =  D' x sinhMx cos M x +  E' x cosh M x sin Mx.
(5.2 15)

The corresponding boundary conditions ipo = Dip0 =  DAip0 =  0 on x =  ± 1 /2  

are used to determine A B ' ,  C1, U  and E ' in the solution, ip0. The technique 

in solving ip0 is given in Appendix C. For the benefit of simplification in the 

work to follow we write the solution of ip0 in the following way:

ipo =  i S-1 Rar <
A + B cosh Mx cos Mx + C sinh M x sin Mx

+ D x  sinhMx cos Mx + E x cosh M x sin M x
(5.2.16)

where

-1
4M1 ’

A
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B

C =

4(sinh M  +  sin M )2 — sinh y  sin 4f Ci 
16M4(sinh M  +  sin M )2 cosh 4f cos 4f

__________ Ci__________
16M4(sinh M  +  sin M )2 ’

Ci =  8 cos —  cosh—  - 4 c o s ^ c o s h ^
2 2 2 2

M  , 3M 3M , M
+  4 sin —  sinh —----- 4 sin------ sinh —

2 2 2 2

M  , 3M
4 cos —  cosh-----

2 2
M  . , 3M

M  cos —  sum -----
2 2

M , M „  3 M  M
— M  cos —  sinh------h M  sm -----cosh —

2 2 2 2

. AT u M + M sin —  cosh — ,
2 2

sin y  cosh 4f
D =

E

4M 3(sinh M  +  sin M) ’

M ___ Msinh y  cos 2
(5.2.17)

4M 3(sinh M +  sin M)

This solution for ip0 becomes useful when we integrate the full salinity equa-

tion across the slot. We shall recall the full salinity equation which is

t D 2S -  ra 2S -  ia DS0 ip -  i a w ~0 S -  Dip =  0. (5.2.18)

The integration across the slot for each term gives

i ri
/  2 t D2S dx = \ t (D2S0 +  aD2S1 +  • • •) dx

=  t [DS0 +  aDSi +  • • -]^i =  0 at all orders,(5.2.19)

r -  rk
/ 2 ra 2S dx =  /  2 ro?{aTlS-i + S0 +  aSi +

J  ~  2 ~ 2

=  raS^i + 0 (a2),

i __ , i  __
l ¿ i cy DS0 4> dx = \ i a DS0 tp0 dx +  0 (a 2),

■ •) dx

(5.2.20)

(5.2.21)
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]

I: i a w0 S dx =  2 i w0 5_i dx + I ’ ? a wQ So dx +  0 ( a 2)

,.i __ i
=  I i S - i (—t  D2S0) dx +  / i i aw ,̂ So dx +  0 (a 2)

f i
=  ¿a /  ̂ wl Sq dx +  0 (a 2), (5.2.22)

£ ‘

at all orders. (5.2.23)
r\ i
/  Dtp dx =  [-00 +  «  V’i 3----- ] l i  =  0
•M 5

From the above terms we get contributions in
i __ „i

—r a 5_i — ia DS0 tpo dx — ia I So dx -r 0 (a 2) =  0.

(5.2.24)

The leading order terms give

!a/lr  a 5_i +  ¿a / , ^  ipo dx +  ia;• i 1 -la  ̂ w0 So dx

=  raS -1 +
a 5-1 Raj f(Ras, r)

+

4 r  M 4 

a STi Raj, g(Ras , r)
0, (5.2.25)

Ras M 3 (sinh M +  sin M) 

where f(R a s,r)  and g(Ras,r) are the expressions found from the two inte-

grals respectively. With further reduction, an expression for Rar describing 

marginal stability is obtained:

Raj =  — y
— T

(5.2.26)
+

4M 4 4M 7(sinh M  +  sin M)

where both functions of /  and g are governed by the salt Rayleigh number and 

the Lewis number, but they only appear in the combination Ras/r = 4M 4. 

The derivation of /  and g is included in Appendix C. With A, B , C, D and 

E from (5.2.17), the full version found for function /  is

f(R a s ,r )  =  A + B
f  cosh y  sin y  +  sinh y  cos y  '
V  M  ,

+  C
M  „ „ „  M_ ' 

2/  cosh y  sin y  — sinh y  cos 
\ M
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D
'cosh — cos y sinh y  sin y  cosh y  sin y

2 M M 2

cosh y  cos 2ME
sinh y  sin y  sinh y  cos y

2 M M 2

2 sin y  cosh y  
sinh M +  sin M

2 sin 4f cosh y
---------------- —— B
sinh M +  sin M

(  cosh ^  sin ^  — sinh ~  cos y '
M

'cosh M  sin M  — sinh M  cos M 
8M

2 sin y  cosh y  
sinh M  +  sin M

cosh M  sin M  sinh M  cos M  sinh M
8M 8 M 4M

2 sin y  cosh y
-------------------------- —D I
sinh M +  sin M  \

2 sin y  cosh y
------------------- — E
sinh M  +  sin M

(  sinh M  sin M — cosh M  cos M
16 M

1
4

sin M
4M 

sinh M  cos M

sin2 M

16 M 2
1 s in M '

4M 8M  8M 2

cosh M  cos M  — 2 cosh M  +  sinh M  sin M  
16M

cosh M  sin M — 2 sinh M ' 
16M2

2 sin f  cosh f  
sinh M  +  sin M  l

/  cosh y  sin y  +  sinh y  cos y
M

2 sin y  cosh y
------------------- — Z)
sinh M  +  sin M

'cosh M  sin M  +  sinh M  cos M  4-2 sinh M  
8M

sin M  1 
+  4M +  4

2 sin y  cosh y   ̂cosh M  sin M — sinh M  cos M '
sinh M  +  sin M  \ 8M

2 sin y  cosh y  ^  
sinh M  +  sin M  y

/  cosh M  cos M  +  2 cosh M  +  sinh M  sin M
16M

cosh M  sin M  4- 2 sinh M ' 
16M2 ’
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2 sin 4f cosh 4f /  sinh M  sin M-------- 2--------- l ---------------------------
sinh M +  sin M  \ 16 M

cosh M  cos M  sinh M  cos M  
------------ +

16M2
sm2 M

4M
1 sinM '

+8 M  8 M 2

2 sinh y  cos ( cosh sin 4f +  sinh y  c o s  y

sinh M  +  sin M  y M

2 sinh y  cos ^  ß  (  cosh M  sin M  +  sinh M  cos M  +  2 sinh M
sinh M  +  sin M  \ 8M

sin M  1
' 4M +  4

M M2 sinh y  cos 2 
sinh M +  sin A/:C

2 sinh My cosf D

f  cosh M  sin M  — sinh M  cos M  N 
V 8M  )

(  cosh M  cos M  +  2 cosh M  +  sinh M  sin M
sinh M  +  sin M  \ 16M

cosh M  sin M  +  2 sinh M ' 
16M2

2 sinh 4f cos y  ^ ( sinh M  sin M  — cosh M  cos M  sinh M  cos M  
---------- 2------- I ------------------------- t t t t t -------------------- 1----------------------sinh M  +  sin M  \ 16M 16M2

sin2 M

4M
1 sin M '

+8M  8M 2

Af AT2 sinh y  cos y  ^  | cosh If sm •> sinh y  cos ^
sinh M  +  sin M M

2 sinh y  cos y  ß  (  cosh M  sin M  -  sinh M  cos M '
sinh A/ +  sin M 8M

2 sinh y  cos y  ^+  --------------------—C
sinh M  +  sin M

cosh M  sin M  sinh M  cos M  sinh M
8M 8M 4M

1 sin M  
4 +  4M

+
2 sinh y  cos y  (  sinh M  sin M — cosh M  cos M2 2 /I 1 -------------------

sinh M  cos M
sinh M  +  sin M  \ 16M

sin2 M

16M2 
1

4M
+

sin M '
8M 8M 2

+
2 sinh y  cos Y  ß  (  cosh ^  cos ^  ~ 2 cosh M  +  sinh M  sin M

sinh M  +  sin M 16M
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sin Msin2 f  1
+

, M  M or, , ro
— sinh —  cos— 2EM6 

2 2

4M 8M  8M 2 /

cosh M  cos M  — 2 cosh M  +  sinh M  sin M  
16M

cosh M  sin M — 2 sinh M '
16M2

+  sm —  cosh — 2 BM S 
2 2

'cosh M  sin M  — sinh M  cos M '
8M

M M  , 
sin —  cosh — 2 BM A 

2 2
'sinh M  cos M +  cosh M  sin M  +  2 sinh M

8M
1 sin M
4 ~ 4M

sin —  cosh — 2 CM 6 
2 2

'sinh M  cos M  +  cosh M  sin M  +  2 sinh M
8M

1 sin M  
4 ~ 4M

+  sin —  cosh — 2CM i 
2 2

' cosh M  sin M  — sinh M  cos M ' 
8M  .

M  M  ^ , o
+  sin —  cosh— 6 D M 2 

2 2
' cosh M  sin M  — sinh M  cos M ' 

8M

M  , -M̂ 3
sin —  cosh — 2DMS 

2 2
' sinh M  sin M  — cosh M  cos M  sinh M  cos M

16M
+ 16M2

sin2 y  1 sin M '

M  , M or^ ,,3 
sin —  cosh — 2DM  

2 2

M  , M  2 
sin —  cosh — QEMZ 

2 2

4M 8M  8M 2 /

'cosh M  cos M  +  2 cosh M  +  sinh M  sin M  
v 16M

cosh M  sin M + 2 sinh M ' 
16M2 /

sinh M  cos M  +  cosh M  sin M  +  2 sinh M
8M

1 sin M  
4 ~ 4M

M  , M or^, r3 
sin —  cosh — 2EM A 

2 2
'cosh M  cos M  +  2 cosh M  +  sinh M  sin M 

16M
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cosh M  sin M  +  2 sinh M  
16 M 2

M  , M „ „  ,,  / sinh M  sin M  — cosh M  cos M  sinh M  cos M
+  sin y  cosh — 2EMZ ( ------------------ ^ ------------------ +  m p

sinz — 1 sinM\
AM + 8M ~  8M 2 )  ' 

(5.2.28)

From the expression (5.2.26), the minimum value of Rar/r and the corre-

sponding value of Ras can be found. This gives the location of the minimum 

in the small a  limit to be

R c l t / t  = 3137.9,

Ras =  1001.6r (5.2.29)

This minimum point also corresponds to M =  3.9779.

We can compare these theoretical results of (5.2.29) with minima calcu-

lated from the full problem using the Runge-Kutta scheme of chapter 3 for a 

range of r. These results for the full problem are shown in table 5.1. Both 

results in the limit of small a from the two independent methods indicate an 

exceptionally good agreement which are accurate to five significant places.

T RaSrn R a Tm

0.1 100.16 313.79

0.01 10.016 31.379

0.001 1.0016 3.1379

0.0001 0.10016 0.31379

0.00001 0.010016 0.031379

0.000001 0.0010016 0.0031379

Table 5.1: The minimum values of Rar and Ras obtained for the full problem for different 

values of r, using the Runge-Kutta scheme.
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However, to the left of the stability boundary of the reduced model in 

figure 5.7, a vertical asymptote can be found in the limit of RaT —>■ oc. This 

is determined by the theoretical expression of (5.2.26) written in terms of r 

and the function H, i.e.

RaT = t H(M), (5.2.30)

where H depends just on M — ^Rag/ir. The function H(M ) is given by

1
(5.2.31)H(M) =

—4M 7(sin M  +  sinh M) 
/ M 3(sin M +  sinh M ) +  g

We then set the denominator of (5.2.31) to zero and find numerically that the 

asymptote with RaT —> oo in this small a limit occurs at

M  =  3.3460, (5.2.32)

which translates to

Ras =  501.36r. (5.2.33)

This value of Ras gives an upper bound to the vertical part of the stability 

curve on the left hand side for the full problem. The reason is that the ver-

tical asymptote found here must lie to the right of the true full instability 

boundary. The solutions found here are marginally stable, and so cannot lie 

in the region of stability. This also contradicts the result of Thangam et al. 

who found a vertical instability boundary near Rag — 10. We will return to 

this value of Ras when discussing the vertical portion of the stability curve 

for the full problem in the following section.

The stability curves from the full model and the small a asymptotic of 

the reduced model show good agreement around the bottom of the curve in 

figure 5.7. It is clear from the analysis that only the interaction between 

the salinity concentration and the stream function play a role in the leading
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order dynamics in this limit of small a and the temperature perturbation 

plays an insignificant role in this regime. The temperature is important only 

to establish the background salinity and velocity fields. This minor role in 

temperature is not due to a large difference in the diffusivities of salt and 

heat as this has not been mentioned in the analysis. The salinity no-flux 

boundary conditions allow large concentrations of salt to build up which are 

uniform across the slot. Therefore these concentration perturbations can only 

decay by diffusion in the vertical direction with a long time scale. Since the 

temperature perturbation is zero at the walls the time scale for its dissipation 

is essentially the diffusion time across the slot width. This is a much faster 

scale than the diffusion time for salinity. Alternatively, if different boundary 

conditions were imposed on the salinity, its concentration would vary across 

the slot at the leading order and so it would diffuse on a time scale based on 

the slot width. This gives a much shorter time scale and would significantly 

alter the above analysis.

5.3 Large Rar

The asymptotic in the limit of large thermal Rayleigh number corresponding 

to regime 3 in figure 5.1 will be examined in this section. A comparison be-

tween the asymptotic results and the full numerical solutions for this vertical 

boundary is shown in figure 5.11. These results are clearly to the left of the 

vertical boundary of the stability regime of Thangam, Zebib & Chen (1981) 

in figure 3.6. The full results indicate that this stability boundary continues a 

long distance upwards into the unstable regime as a local minimum in a-Ras 

plots.

In this regime with RaT increasing, the salt Rayleigh number is approxi-

mately constant and of order one while the vertical wave number is non-zero
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Figure 5.11: In the Rar >  1 limit of region 3, good agreement is found between the full 
and reduced results. Dashed line for the full model and solid for the asymptotic result.

and decays as Ra^1. The leading order behaviour of this regime can be found 

by examining the balances in the full problem. With the choice of scaling 

for a =  0{R aTa), ^ =  0 (1 ), T =  0{R aTb), S = 0{R aTc), M =  0 (1 ), 

wo =  0(R aT), T0 =  0 (1 ) and DS0 =  0(R aT), the full problem of (2.10.2) to

(2.10.4) has terms of the following order in Rar-

-  2 a2D2xp +  a4̂  — %w~oD2̂ +

0{R aT°) 0(R aT2a) 0{RaT4a) 0(R aTa+1) 0(R aT3a+1)

+ ĵ rD2ur0i) - RarDT  + RasDS — o,

(5-3.1y

0(R aTa+1) 0(R aT1+b) 0(R aTc)

d 2t a2T +  iaip — iaW0T =  0,

0(R aTb) 0{R aT2a+b) 0{RaTa) Q(Ra7a+ 1+6)

(5.3.2)
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and

t D 2S — ra2S — iaDS0ip — iaw0S — Dip — 0,

0(R aTc) 0(R aT2a+c) 0(R aTa+1) 0(R aT1+a+c) 0{R a°T)
(5.3.3)

where a, b and c are to be determined. We need to look at all possible bal-

ances in the above equations and see if the paired terms (or powers) are the 

leading order terms. By examining a from (5.3.1) to (5.3.3) we hope to find 

a suitable scaling to represent the reduced model for this large Rar regime.

First consider the case a > 0. The possible dominant terms are

a4ip + j£:W0ip — RarDT + RasDS

0(R aTia) 0(R aT1+3a) 0(R aTl+b) 0(RaTc) 

—a2T +  iaip — iauipT =  0,

0(R aTb+2a) 0(R aTa) 0(RaTl+a+b)

and

0,

(5.3.4)

(5.3.5)

—ra2S — iaDS0ip iaw0S — 0.

(5.3.6)

0(R aTc+2a) 0{R aTl+a) 0(RaT1+a+c)

We will look at 3 combinations of the possible leading order balances in the 

salinity equation of (5.3.6). We first assume 1 +  a =  l +  a +  c is  the leading 

order balance; then this gives c =  0. The next paired terms in the salinity 

give c +  2 a <  1 +  a +  c and so a < 1. If this condition with c =  0 and a < 1 

is assumed in the stream function of (5.3.4) then this means 4a < 1 +  3a and 

so the leading order balance in ip is 1 +  3a =  1 -I- b > 0. Now the temperature
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equation in (5.3.5) is divided by a which must be non-zero (otherwise solutions 

to the full perturbation equations do not exist). This gives

—aT  +  iip iw0T =  0,

(5.3.7)

0(R aTt+a) 0(RaT°)0(R aTI+b) 

and the leading order balance in T is then b +  a =  1 +  b. Therefore this con-

dition gives a =  1 and thereafter b =  3a =  3 while c =  0 as a potential scaling.

The second combination of the salinity terms to be balanced from (5.3.6) 

is c +  2a =  1 +  a, indicating c +  a — 1. Given that we have assumed 

l + a >  1 +  a +  cw e see c <  0. Similarly a >  1 is given by c +  2a > 1 +  a +  c. 

With c < 0 and a > 1 in the stream function of (5.3.4), this means 4a >  l +  3a 

and so the leading order balance in ip gives 4a =  1 +  b (>  0). If 4a =  1 +  b 

is used in conjunction with the leading order balance in T from (5.3.7) to be 

b +  a =  b +  1, then the result is again a =  1, b — 3 and c =  0.

Finally, the last combination in (5.3.6) to be balanced is c +  2a =  1 +  a +  c. 

So a =  1 and then c < 0. This will mean the stream function has the leading 

order balance 4 =  1 +  b > 0 and this agrees with the balance for T in (5.3.7) 

to be 1 +  b > 0.

If the above scaling with powers a =  1, b =  3 and c =  0 is used for the 

asymptotic behaviour in this regime where RaT -> oo then a =  0(R aT) and 

T =  0(Raj?) so the temperature equation (5.3.7) reduces to

—aT — iwpT =  —T'(a + iwp) =  0. (5.3.8)

This will have a solution if T =  0 since we know we only have solutions for 

a 0. Therefore this scaling fails and so a is not greater than 0.
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With a — 0, the possible important terms are

D -  2 o?D 2i\) +  a Aip -  ^vT0D 2̂  +

0(R aT°) O(RaT0) 0{R aTG) 0 (Rclt 1) 0{R aTl)

+  ^ D 2JÛxp — RarDT +  RasDS —  0,

: j : (5.3.9)

0 ( / i V )  0 (i?ar1+6) 0(R aTc)

D2T — oi2T +  iaip — iaw^T =  0,

: : ; ; (5.3.10)

0(R aTb) 0(R aTb) 0(R aT°) 0{R aTl+b)

and

t D2S — ra 2S — iaDS0ip — iavJ^S — D'lp =  0.

; : ; ; ; (5.3.11)

0(R aTc) 0{R aTc) 0{R aTl) 0 (i?a T1+c) 0 (ifc£ )

It is easy to see from equation (5.3.11) that since c < 1 +  c then the leading 

order balance 1 =  1 +  c in the S equation gives c =  0. If c =  0 is used in 

(5.3.9) for the stream function then 1 =  1 +  6 gives 6 =  0. With 6 =  0, 

there is no possible balance for which the temperature equation in (5.3.10) is 

satisfied. Therefore the result a =  6 =  c =  0 is  clearly invalid in the present 

slot problem.

Now a < 0 is the last possible form for the reduced model giving 

£>4i/> — ^w~0D2̂  +  f-rD2W0il> — RaTDT  +  RasDS =  0,

O(RaT0) 0{R aT1+a) 0{R aT1+a) 0(R aT1+b) 0{R aTc)
(5.3.12)
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D2T +  ia0  — iaw0T =  0,

0{R aTb) 0(RaTa) 0(R aTl+a+b)

and

t D 2S — iaDSg'ip — zauJpS — Dip

(5.3.13)

=  0.

0(R aTc) 0(R aTl+a) 0(R aT1+a+c) 0(R aT°)
(5.3.14)

If the temperature equation in (5.3.13) is used assuming the balance a =  b 

then a > l + a  +  6 =  l +  2a gives a +  1 <  0. Since a +  1 < 0 and 1 +  a + c < c 

in (5.3.14), this gives the leading order balance in the S equation to be c = 0. 

As a = 1 +  a +  b from the leading balance in (5.3.13) for the temperature 

terms, this yields b =  —1. If the leading order balance in (5.3.12) for ip is 

0 =  1 +  6 then either 1 +  a < 0 giving c =  0, or c < 0 giving 1 +  a =  0 

and so a — — 1. This will give a =  — 1 and c =  0. Thus we have found the 

coefficients t o b e a  =  — 1, b = — 1 and c =  0 in order to give a suitable scaling 

for the reduced model in this regime:

a =  0(R aT 1), T =  0(R aT 1), S = 0(1) and ■0 =  0 (1 ). (5.3.15)

Profiles of the various terms in these governing equations in figures 5.12, 5.13 

and 5.14 confirm the respective significant terms found in the equations for 

the stream function, temperature and salinity in (5.3.21) to (5.3.23) below. 

These curves can also be used as a means to determine the possible dominant 

terms found in this regime. The technique in plotting these curves across the 

slot has already been described in the previous section of large Ras asymp-

totic.

With the above scalings we can pose the large Rar expansion as:

0 =  0o + Ra^ipi d----- , (5.3.16)
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Ras = 4.88

Figure 5.12: In region 3, these are the important terms found for the modulus of the 
stream function between the two walls in the limit of Rar is large.

T — RaTlT0 +  Raj?T\ +  • ■ • ,

S — Sq +  Rclj}  S\ +  • • • ,

(5.3.17)

(5.3.18)

and

Rds — RaSo +  Rdj^ Rasi +  ■ ■ ■ • (5.3.19)

Noting that the background velocity and salinity gradient are proportional to 

RaT we express them as

w0 =  RaTW0, DS0 =  RarDS0 / t . (5.3.20)

Both w0 and DS0 are dependent on x and M  =  (i?as /4 r )1/4 only. The 

vertical ware number is rescaled to give a = Ra^la. This yields the system

of leading mder equations:

D4ip0 -  ~  {w oD2ip0 -  D2woip0} -  DT0 +  RaSoDS0 =  0, (5.3.21)

D2T0 +  ià'ipo ~ iàwoT0 =  0, (5.3.22)

t D2S0 — iàDSoip0/r — iàwoS0 — Dipo =  0, (5.3.23)
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Figure 5.13: These are the modulus of the important temperature terms found in large 
Rar regime for the slot problem.

subject to boundary conditions

■09 =  Dip0 =  T0 — DS0 =  0 on x — ± 1/ 2. (5.3.24)

This reduced model is similar to the full model except that Rar does not 

appear explicitly in these equations. These are solved using the Runge-Kutta 

scheme as previously used in the full problem. This gives the minimum value 

of RaSo and the corresponding a. The minimum point was found to occur at

RaSo =  4.7701, d =  442.67. (5.3.25)

The graph in figure 5.11 shows the solutions obtained for the full and reduced 

problems and the agreement is indeed good. The asymptotic results and the 

full numerical results agree as far down the vertical boundary as RaT reaching 

3 000 which can be seen in figure 5.15. The above scaling does not develop 

any singularity problems in these equations near this point as Rar —> oo and 

so the full problem was not too difficult to solve for large values of RaT■
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Ras = 4.88

COLD

Figure 5.14: The modulus of the salinity terms found significant in the large Rar regime 
are shown from these curves plotted across the slot.

Unlike the previous two asymptotic regimes the dependency of RaSo on 

Pr and r  is not clear. We can use the above reduced equations (5.3.21) to 

(5.3.23) to examine the asymptotic behaviour of this branch when a different 

diffusivity ratio is used. We would use hydrochloric acid (HC1) or copper 

sulphate (CuS04) instead of salt in this differentially-heated slot problem. 

The minimum values of Ras0 for the three solutes and the corresponding a 

are shown in table 5.2. The results indicate that as r  decreases so does RaSo 

and the corresponding wave number for the different solute.

solute T  X 10-2 RO'So a

HC1 2.2 10.90226 512.22265

NaCL 1.0 4.77011 442.67079

CuS04 0.35 1.61574 253.34107

Table 5.2: These are the minimum values found for Ras0 and d in the limit of large Ra-r 
when an approximate value of r  is used for each solute.
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Figure 5.15: A graph of the vertical wave number, a, as a function of Rar is shown to 
give the comparison of the asymptotic behaviour (solid line) and the full numerical results 
(dashed line) for the large Rar limit.

Now both Pr and r appear in (5.3.21) to (5.3.23) and it may seem neces-

sary in practical terms to re-calculate the asymptotic behaviour of this regime 

every time a different fluid and/or a different solute is used. However, we can 

simplify these equations further if r  is assumed small. As r  —> 0, we find the 

suitable scalings are ip0 =  0(1), T0 =  O(r), S0 =  0 ( r _1), RaSo =  O(r) and 

a  =  O (t ). If we define new rescaled variables to be

V’o =  V’*, T0 =  rT*, So =  r _1 5*, Ras0 =  r Ras, , a = r a t, (5.3.26)

then the leading set of equations is

DAif>* + Ras.DS. =  0, (5.3.27)

D 2T, +  ia.ip, =  0, (5.3.28)

D2S* -  ia^DS0il!>* — ia*wQS* — — 0, (5.3.29)

with boundary conditions

=  D ^  =  T* =  D 5, =  0 on x =  ±1 /2 . (5.3.30)
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Figure 5.16: A graph of Ras, as a function of a* for the limit r -»  0, with the large a , 
asymptote estimated at Ras, =  444.8 as indicated by a dashed line.

It can be seen in the above leading order equations that the parameters Pr 

and r  are no longer visible. We only have to solve (5.3.27) and (5.3.29) to 

obtain the relationship between Ras, and cr*. The results shown in figure 

5.16 reveal that Ras, has a maximum of 501.36 at the origin which slopes 

down towards an asymptote estimated to be at Ras, =  444.8. Although a 

minimum can be found for Ra$, there is no corresponding finite a*. The 

maximum with Ras, =  501.36 in the a*-Ras, plane has the same value as 

(5.2.33) found in the previous section for the vertical asymptote where the 

assumption for r —> 0 was not needed in the small a analysis. Since this 

value of Ras was previously found to give an upper bound for the stability 

boundary in this region, the vertical part of the full stability curve obtained 

here with Pr =  6.7 and r =  0.01 is lower than this value as anticipated.

The abo re results for the limit r  —>■ 0 need to be carefully interpreted 

particularly when examining the large a:* behaviour in figure 5.16. When de-
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riving the original large Rax equations (5.3.21) to (5.3.23), we have used one 

limiting process which made some assumptions about the relative magnitudes 

of the terms in the full problem. When the second limiting process is taken 

the additional assumptions have to be compatible with the first limiting pro-

cess, in that the small terms neglected in the large Rax assumption would not 

become large with the additional small r  assumption. However, if we take a 

further limit at —>• oo this would then become incompatible with the earlier 

assumptions that a —»■ 0 as Rax oo and a* —* 0 as r —» 0. This suggests 

the original assumptions will always provide a constraint on the maximum 

allowable size of Therefore, the limit Ras, —>• 444.8 may only be found 

when values of RaT and r  are extreme. This limit can provide a lower bound 

for the possible minimum values of Ras, in this asymptotic regime. This is 

not too different in magnitude from an upper bound for the vertical boundary 

in this stability regime.

The most distinctive feature found in this large RaT regime is the ver-

tical nature of the stability boundary in the Ras-Rax plane. This means 

as the temperature difference is increased or decreased for any given salinity 

gradient across the slot it will have no effect on the stability of the fluid, at 

least to leading order. This may seem surprising when both wa and DS0 are 

proportional to Rax and hence the temperature difference. Both the shear 

of the background flow and the horizontal salinity gradient are the potential 

driving forces for destabilisation in this regime. We can investigate their re-

spective roles by multiplying wa and DSa by some arbitrary factor in (5.3.21) 

and (5.3.23) and investigating the effect on the stability boundary. We found 

increasing the background velocity stabilises the flow while increasing the 

salinity gradient destabilises the flow. If the two parameters are increased 

by the same factor then there is little change in the location of the stability
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boundary. We conclude that the instability in this large RaT regime is driven 

by the horizontal salinity gradient whereas the effect of the vertical shear is to 

stabilise the flow. This effect of shear suppressing double-diffusive convection 

has been shown by Linden (1974) in his study of the effect of shear on salt 

fingers.

5.4 Thermal Convection and Small Ras

The final part of the stability curve that we consider in this section is regime 

5 of figure 5.1. These steady solutions correspond to the limit of Ras 1 

as well as the solution for Ras =  0 which is the thermal problem of a later-

ally heated slot. We have learnt from chapters 3 and 4 that non-oscillatory 

solutions for Ras below 2.0256 were found from the Galerkin approach but 

not from the original Runge-Kutta scheme. The reason for the failure in the 

Runge-Kutta scheme will be explained during the discussion of the asymptotic 

behaviour for this small Ras regime. However, when salinity dependence is 

removed from the linear system, the thermally driven problem across a verti-

cal slot can be solved using the Runge-Kutta scheme. This thermal situation 

will be examined first.

From the steady-state background problem in (2.8.5) to (2.8.7), we can 

find the leading order behaviour for the background velocity so that the equa-

tions below are independent of S:

d3w0 
dx3

RaT^  =  0, 
dx

d2Ta
dx2

=  0.

(5.4.1)

(5.4.2)

It is clear from (5.4.2) that a solution T0 =  Ax + B with boundary conditions 

T  =  ± 1 /2  on x =  T l/2 , will give A =  — 1 and B =  0. Therefore the simple
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(5.4.3)

solution Ta = —x can be substituted into (5.4.1) to give

d3ŵ
d x 3

— R d rp  —  0 ,

and the leading order w0 is an odd function given by

x3 Rar
w0 = R c l t - -x. (5.4.4)

6 24

The leading order thermal problem consists of the stream function and the 

temperature equations only:

(D 2 — a2)2ip — \wp,(D2 — a2)ip — D2w îp  ̂ — RaT DT  =  0, (5.4.5)
Pr

(D2 — a2)T + iapip — WZ T) =  0, 

with boundary conditions

(5.4.6)

ip =  Dip = T =  0 at x =  ±1 /2 . (5.4.7)

The neutral stability curve can be calculated using the Runge-Kutta scheme 

as before. This curve is shown in figure 5.17. The minimum value found for 

Rclt  and the corresponding wave number are

Rar =  52 715 and «  =  2.7671. (5.4.8)

The study of stationary instabilities in a vertical slot by Vest & Arpaci (1969) 

showed that the critical Rayleigh number was approximately 7 880 x Pr for 

a wide range of Pr and would correspond to RaT =  52 796 for Pr =  6.7 

used here. Their result is valid to within a few percent for all Prandtl num-

bers. Clearly, this result is in good agreement with the result found in (5.4.8).

Next we consider what happens when there is a weak salinity gradient 

present in a slot. This is the case where the salt Rayleigh number is assumed 

to be small and we will examine the asymptotic behaviour in this limit of 

Ra,s <  1. We first pose the asymptotic expansions:

ip =  0o ±  Ras ip\ + ■ ■ (5.4.9)
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Figure 5.17: In the thermally driven case for a laterally heated slot, the minimum value 
of Rar is found with the corresponding a.

T =  T0 +  Ras Ti H----- , (5.4.10)

S = So + R a s S ^ - - - ,  (5.4.11)

RaT =  R&Tq T Rets R&Ti +  ■ ■ ■ ■ (5.4.12)

The leading order terms for the background state are

DS0 =  -------—-  [Rclt0 +  Rets Rctr1 +  • • •]r

H------ S 2  ̂  ̂ [RaT0 +  Ras Retri +  • • ■] +  • ■ • 5 (5.4.13)Ti

uRj =  h${x) [R&To "F Rets RctTi +  ■ ■ ■]

-  Ras hi^ - [RaTo +  Ras RaTl +  • • •] +  • ■ • , (5.4.14)
T

D2w~0 — h^[x) [Rctxb +  Rets R&Ti T • • •]

_  Ras he(x) +  ^  Ra^  +  .. .j +  . . .  ; (5.4.15)
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where

hi(x)
16x4 - 8 ^  +  1 

384
(5.4.16)

h2(x)
768x8 -  1792x6 +  3360x4 -  1392x2 +  163 

30965760
(5.4.17)

h3(x)
x(4x2 — 1) 

24
(5.4.18)

hi(x)
x(4x2 — l)(16x4 — 24x2 +  29) 

322560
(5.4.19)

h5{x) =  x, (5.4.20)

h6(x)
x(48x4 — 40x2 +  15) 

5760
(5.4.21)

Substituting these expansions into the full stability equations of (2.10.2) to

(2.10.4) will give the 0 (1 ) and O(Ras) problems where, as before, a =  0 is 

assumed. The 0 (1 ) problem will consider terms in the absence of Ras or a 

vertical salinity gradient and these leading order perturbation equations are:

(D2 -  a 2)V o  -  — h3(x)RaTo(D2 -  a2) ^  +  — h5(x)RaTlb̂ 0 -  RaToDT0 =  0,

(5.4.22)

(.D2 — a2)T0 +  iaipo — iah3(x)RaToT0 =  0, (5.4.23)

t (D2 — a2)S0 +  ia ^l- X--Rar0ipo -  iah3(x)RaToS0 — D ÿ0 =  0, (5.4.24)
T

with boundary conditions

=  Dipo = T0 =  DS0 =  0 on x =  ±1 /2 . (5.4.25)

Equations (5.4.22) and (5.4.23) are identical to the thermal problem in (5.4.5) 

and (5.4.6) that we solved earlier using the Runge-Kutta scheme, although 

different notations are used here. However, the above leading order salin-

ity problem can only be solved in the same way as long as r  is larger than 

approximately 0.25 because for r  smaller than this value, boundary layers
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D2S terms

Figure 5.18: Plot of D2S across the slot for the leading order problem in the Ras -C 1 
limit. As the diffusivity ratio, r, becomes small, the Runge-Kutta scheme failed to produce 
solutions which satisfy all boundary conditions. In the case r  =  0.2 the solution does not 
become zero at the right wall. This can be seen by the second peak in the solution.

develop both at the centre and at the walls of the slot. This boundary layer 

behaviour is discussed below. Figures 5.18, 5.19 and 5.20 illustrate the curves 

of the various salinity terms across the slot for different values of r. When 

r =  0.2 there is a small peak in the curve near the right wall. In this case 

the Runge-Kutta scheme failed to produce solutions that satisfied the right 

boundary conditions. The solution always grew to large values at the right 

wall for whatever choice of boundary conditions at the left wall. These solu-

tions are found using double precision arithmetic on the computer. By using 

quadruple precision, further progress could be made but still solutions could 

only be found down to r =  0.1.

Further examination in equation (5.4.24) shows that the factor iah3(x)RaTo 

multiplying S0 has magnitude that changes from 0 at the walls and the centre 

to peaks of 117 000 in the regions adjacent to them. The behaviour of this
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DS terms

Figure 5.19: This is the same situation as figure 5.18, but this time plotting DS. The 
solutions grew to large values at the right wall when r  is approximately smaller than 0.25.

term across the slot can comparably be seen in figure 5.14 of the previous 

section with the curve labelled aSw0/r. This structure causes the salinity 

equation to become very stiff with a boundary layer behaviour developing 

at x =  0 and at the walls. This stiff behaviour of the salinity equation is 

the cause of the failure in the Runge-Kutta scheme. As the Runge-Kutta 

scheme failed to give solutions, the Galerkin approach of chapter 4 was used 

to find solutions for r  =  0.01 in the presence of weak salinity gradient. This 

Galerkin approach is robust as long as the truncation level used is sufficiently 

large for the boundary layers to be resolved. It was only when the truncation 

level was set to N =  72 and N =  96 that solutions along this branch were 

satisfactorily resolved. Indeed, the functions used in the expansions of the 

Galerkin approach by Thangam, Zebib & Chen (1981) and used here have the 

advantage of approximately uniform resolution across the slot, enabling us to 

resolve the boundary layer found in the middle of the slot as well as those 

at the walls. Other schemes which use, for example, Chebyshev polynomi-
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S terms
T = 0.2

Figure 5.20: The same behaviour from D 2S and DS is observed in S. However, a sharp 
peak in the middle of the slot is a distinct feature found in all the curves of the salinity 
terms.

als concentrate the resolution near the walls and so may not be as appropriate.

In order to determine the next order perturbation for Rar, a solvability 

condition is applied to the O(Ras) problem. The equations for ipx and T\ are

z ex z cx
(D2 -  a2)2̂ i -  — h3(x)RaTo(D2 -  a2)Vd +  — h5(x)RaToipx -  RaToDTx

=  h3(x)RaTl (D2 -  a2)'ipo ~ iah^~^RaTo(D2 -  a2)ip0
Rr r r r

-  ^ -h 5(x)RaTlxP0 +  +  RaTlDT0 -  DS0, (5.4.26)Rr rRr

(.D2 — q:2)T i +  iaipi — iah3{x)RaT0T\ =  iah3(x)Rar1To — RaTnT0,

(5.4.27)

with boundary conditions

fa =  Dip i =  Ti =  0 on x =  ±1 /2 . (5.4.28)

Equations (5.4.26) and (5.4.27) do not, in general, have a solution. To find out
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when a solution does exist we apply a solvability condition. This condition 

is obtained by finding the adjoints 0 and T to 0o and To- These satisfy the 

adjoint problem

/v 7 r v  7 r v ^  2 /  (y
(D2 -  a2)20 -  —  i?aTo/i3(x)D20 +  —  i?aTofi3(x)0 -  — RaToDh3(x)Dip

7 CV A 7 | V  A A

-  -— RaToD2h3(x)ifi +  — -RaTo/i5(x)0  +  i a f  — 0, (5.4.29)
Pr Pr

D2T — a2f  — iaRaToh-z(x)T +  RaToDTp =  0, (5.4.30)

with boundary conditions

0  =  £>0 =  T =  0 on x =  ±1 /2 . (5.4.31)

Both equations (5.4.26) and (5.4.27) are multiplied by the corresponding com-

plex conjugates of 0  and T and the sum of these equations are then integrated 

from x — —1/2 to x =  1/2. The resulting solvability condition obtained for 

Rar\, indicating the existence of a steady solution in the case of Ras —> 0 is

where

Rclti —

rh { ° i i Pr, t )

RaTor]i{a , Pr, r ) -  / / 0 2 SpDijj dx 
r]2{a,Pr, r)

ia T . . 2ia T . . ia . .
~-^-Im(x) +  —p^Im{x ) +

(5.4.32)

la T . x la 
rPr t

(5.4.33)

and

. , ia T . . 2ia . . ia . .
rj2(a,Pr,T) = (x ) +  +  -j^Jm\x)

ta
Pr

T/4(x ) (x) T iaJT]6(x). (5.4.34)

These 5(x) and 6{x) are integrals involving the adjoints as well as

0o and T0. These integrals are
,0/2 „

Irn (x) =  J  ̂ 0̂0h±(x)(D2 -  a2)0 dx, (5.4.35)

102



Irn (x ) ~
/•1/2
/ ip0DhAx)Dip dx, 
J-1/2

(5.4.36)

/-1/2
/  ,ip0D 2h,i(x)^ dx, 
J-1/2

(5.4.37)

IV4(X) =
rl/2
/  'ip0h6(x)'ip dx, 
J-1/2

(5.4.38)

rl/2
/  TohAx)T dx, 
J-1/2

(5.4.39)

and,

Jj]i (x) =
rl/2
/  xp0h3(x)(D 2 -  Q2)-0 dx, 
J-1/2

(5.4.40)

Jt)2 (X) =
fl/2 - 
/ 'ip0Dh3(x)D'tp dx, 
J-1/2

(5.4.41)

Jm (%) ~
rl/2
/  ip0D 2h3(x)il) dx, 
J-1/2

(5.4.42)

Ji) 4 ( X  ) =

ri/2
/ ip0h5(x)ip dx, 
J-1/2

(5.4.43)

=
ri/2
/  T0Dil> dx, 
J-1/2

(5.4.44)

Jr)6 (X) =
fl/2
/  T0h3(x)T dx. 
J-1/2

(5.4.45)

These can all be found numerically provided RaTo, the adjoints and T, 

ip0, T0, S0 and their respective derivatives are known. The difficulty lies in 

finding the solution to So, the 0 (1 ) problem for the salinity equation. We 

have seen earlier that the Runge-Kutta scheme failed to find a solution which 

satisfied all the boundary conditions and so an approximate solution to the 

salinity equation was found by a matched asymptotic expansion. This ensures 

that the asymptotic behaviour calculated is independent of the Galerkin ap-

proach. The asymptotic approximation for So is discussed below. We have 

found an asymptotic estimate of So that matches almost perfectly with the 

real and imaginary numerics for S0 as shown in figure 5.21. There are very
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Figure 5.21: A comparison of the asymptotic estimate of the salinity equation in the 
limit of Ras <SC 1 (dashed line) with the solution found by the Galerkin approach with 
truncation N  =  96 for Ras =  0.001 (solid line). The left highest peak is the imaginary 
part of S and the adjacent peak is the corresponding real part. The Galerkin results are 
barely distinguishable from the dashed line of the asymptotic.

small differences visible near x =  0 but the fit is good.

Here we derive the asymptotic approximation for S0. The leading order 

salinity equation is

(D2 -  a2)S0 +  ia —-^ R a To-ip0 -  — h3(x)RaToS0 -  =  0. (5.4.46)
T z T  T

The factor h3(x) of the third term is the background velocity which leads 

to numerical problems as its magnitude is approximately of order 105 for 

r  =  0.01. In order to cope with the problem arising from the large magnitude 

of this term, an approximate solution to this salinity equation is found by a 

matched asymptotic expansion in x. The structure of the solution consists of 

outer solutions away from the walls and the centre, and the inner boundary 

layer solutions at the walls and in the centre. This salinity equation can be
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written in more general terms as

D 2So -  (a2 + i h o x (Ax 2 -  1))S0 =  -  ^ - D S nip0,
T T

(5.4.47)

with the no-flux boundary conditions

DS0 =  0 on x =  ±l/2, (5.4.48)

where /u0 3> 1 (here /r0 =  aRaTo/24r), a is 0 (1 ) and, both ip0 and Dip0 are 

some known functions of x. If x is not small or near ± 1/ 2, then we obtain 

the leading order outer solution which takes the form

iaDSo'ipo -  Dipo 
irn0x( Ax2 — 1)

(5.4.49)

When x is small and near ± 1 /2  this approximation breaks down because the 

denominator of equation (5.4.49) tends to zero as x —»• ± 1 /2  or x —>• 0. The 

numerator also tends to zero as x —A ± 1 /2  and so there So is relatively well 

behaved. However, as x —» 0 the numerator is non-zero and so this outer 

behaviour becomes singular near the centre of the slot. Thus we must find 

an inner solution for the region near x =  0. We look for a stretching of the 

form X  =  nl x with 7 > 0 for the inner layer near x =  0. If we substitute 

this inner variable X  into (5.4.47) then it gives

do27
d2S/ 
dX2

{a 2 ±  z 4 ^ - 37X 3 -  i ^ x )  Sr

D ÿ o(0) iaDSo(0)ip0{0) , h U{fJ,0 )
r r

(5.4.50)

Balancing powers of /r0 gives either 2y =  1 — 7  or 2y =  1 — 37, and so 

7 =  1/3 or 1/5 respectively. However, the choice 7 = 1/5 does not work as 

the term —i^ ^ X S i  would dominate by itself. The appropriate horizontal 

length scale for the region near x =  0 is thus O(n0 1//3), and using the scaling 

X  =  ¡Xq x̂  gives the leading order inner problem

gjMO) tog5I(0)V>o(0) |  + Vz
T T J

d2Si _  - 2 /3
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where /j,0 =  aRar0/2AT. We look for a solution that decays as Â  ±oo. This 

leading order problem for the inner region does not have an exact solution 

when the right-hand side of (5.4.51) is non-zero. Therefore we find a numerical 

solution to the modified Airy’s equation

Y "(X ) +  iX Y (X )  =  1. (5.4.52)

This solution is obtained using the Runge-Kutta technique. The solution re-

quired is one that decays as —i/X as X  —» ±oo. This requires the real part 

of Y (X )  to be an even function of Â  and the imaginary part an odd function. 

By adjusting F(0) and T'(0), a solution to (5.4.52) was found which satisfied 

these criteria. The inner behaviour is made up of this solution multiplied by 

the right-hand side of (5.4.51) involving the leading order term of wp hidden 

in no and the values of ipo(0) and Dip0(0).

When both the outer solution from (5.4.49) and the inner solution from 

(5.4.51) are known, we can find a solution valid for all x. We find the inner 

approximation to the outer solution using

=  raD SlM «)  -  B M P )  t (5.4.53)
— IT ¡ I q X

and so this gives a composite solution of the form

S0(x) »  S0 (x) + Sj(fio 1/3 x) -  Sj o (x ), (5.4.54)

where So(x) is the outer solution from (5.4.49), 5/(/r0 7 x) the inner solution 

from (5.4.51) and S j o ( x ) the singular behaviour from (5.4.53). This compos-

ite solution will be valid in most regions at leading order except for regions 

with the boundary layers near x =  ± 1 /2  and the point at x =  0 where the 

value of S/(0) is used. Since the boundary conditions for •0 and Dip require 

them to decay to 0 at the walls, the boundary layers near x — ± 1 /2  are 

not important in the integration of the solvability condition for finding the
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Figure 5.22: Plot of the estimate of the real part of So (solid line) when compared with 
the Galerkin approach where the truncation levels are set to N  =  24, 48, and 96 (dashed 
lines).

approximation to RaTl. Therefore these calculations are not discussed here. 

When the estimate to Sq (x ) of equation (5.4.54) is compared with the results 

found by the Galerkin approach of chapter 4 for the full problem, we found 

the results for N =  24 fail to resolve the peak at the centre of the slot while 

N =  96 gives good agreement. These results for different values of N  can 

be observed in figure 5.22 for the real part of So and in figure 5.23 for the 

corresponding imaginary part. Thangam et al. used N  =  30, and so would 

not have resolved the region accurately. It is important to ensure the trun-

cation level used is large enough to resolve the singular behaviour at x =  0. 

This will safeguard the risk of obtaining plausible incorrect results. The real 

and imaginary parts of S0 in figures 5.21, 5.22 and 5.23 are not odd or even 

because the boundary condition used to define the scale of the perturbations, 

ip"( — 1/2) =  1, does not lead to such solutions. Multiplication by a suitable 

complex constant would make these real and imaginary parts have a definite
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Figure 5.23: Plot of the corresponding imaginary part of So as indicated in figure 5.22.

parity. This can be seen by the symmetry of the contour plots of ip, T and S 

in figure 4.5 for the case Ras =  0.1.

The solvability condition derived in (5.4.32) for the next order of the 

thermal Rayleigh number can finally be calculated. The integrations to find 

rjx, 772 and in particular the one associated with So, can now be determined. 

Taking the real and imaginary parts of equation (5.4.32), the value of Rar, 

is evaluated numerically. With Pr =  6.7, r  =  0.01 and a =  2.7671 the 

marginally stable state has

RaTl =  13886. (5.4.55)

This gives the critical value of Rclt as

RaT =  52715 +  13886 Ras + 0(R a2s). (5.4.56)

These estimates are based on calculations using the Runge-Kutta scheme.
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Similar results for the leading order perturbation to the thermal Rayleigh 

number can be obtained by looking at solutions to the full problem using the 

Galerkin approach. These are shown below in table 5.3. It can be seen that 

the estimate of Rar0 is accurate for all levels of truncation. This behaviour is 

expected since the leading order behaviour is merely the effect of a laterally 

heated slot with zero salinity concentration. There is no boundary layer 

structure involved in this case, and the solution is adequately resolved for all 

truncations. The next order perturbation, RaTl, only stares to converge when 

the truncation level is set to N  — 72 and N =  96. This estimate is slightly 

different from the result in (5.4.55). The difference is of the order that may be 

expected from the accuracy of the asymptotic expansions for S'o(x). However, 

the estimate in (5.4.55) uses an approximate solution so perfect agreement 

cannot be expected.

N R.Oq(j Ra-ft

24 52715.338 5785.872

48 52715.368 13311.849

72 52715.367 13713.527

96 52715.366 13713.722

Table 5.3: These estimates of Rar0 and Rax, based on the results for Ras = 0.01 and 
0.001 are found by the Galerkin approach for different truncation levels.

The result of RaTl in (5.4.55) is for a fixed value of the vertical wave 

number that corresponds to the minimum of Rar0■ It is possible that the 

leading order perturbation for the wave number can be determined. We can 

expand Rar0 and RaTl in Taylor series around cto, the critical value of a for 

the slot problem. This gives the critical value of a to be

(  dRaTl (a0)/da
a — «o — Ras ( d2RaTo(a 0)/da2 /

+ (5.4.57)
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These derivatives are numerically calculated by the Runge-Kutta scheme, 

giving

a =  2.7671 -  0.0525 Ras +  0(Ra?s ). (5.4.58)

These estimates for a0 and are compared to the Galerkin approach for the 

full problem and are shown in table 5.4. The agreement for a 0 is good at 

all levels but the estimate of au only gives a reasonable agreement with the 

asymptotic prediction.

N <*0 ai

24 2.7670180 0.1092931

48 2.7670166 -0.0283445

72 2.7670166 -0.0543947

96 2.7670160 -0.0550332

Table 5.4: These estimates of a0 and a\ for different values of N  are calculated by the 
Galerkin approach based on the results for Ras =  0.01 and 0.001.

Finally, the comparison of the asymptotic results and the full results found 

by the Galerkin approach is shown in figure 5.24. This shows good agreement 

between the asymptotic and full results for small Ras . We would expect to 

see oscillatory solutions for Ras greater than 2 which has already been dis-

cussed in chapter 4.

We have now identified and analysed the four different asymptotic regimes 

on the stability boundary.
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Figure 5.24: A comparison of the asymptotic behaviour (solid line) and the full results 
(dashed line) for the small Ras limit, indicating good agreement.
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Chapter 6

Conclusion

We have investigated the linear stability of a stable, salt-stratified fluid con-

fined in an infinite vertical slot subject to a lateral temperature difference 

between the two boundaries. This problem has previously been examined ex-

perimentally and theoretically for the case of a strong salinity gradient. The 

present work focuses on the marginal stability curve reported by Thangam, 

Zebib & Chen (1981) where several different stability boundaries, representing 

the numerical solutions of both stationary and oscillatory branches are given 

in the Ras~RaT plane. We did not reproduce their results but found their 

oscillatory solutions are erroneous in the region where Ras lies between 0.45 

and 10. Our results have shown that in the region of 0.45 < Ras < 2.0256 the 

initial instability is steady. This region is then joined by the curved section 

with oscillatory instability between Ras =  2.0256 and Ras =  4.7703. The 

next part cf the boundary is almost vertical, sweeping down to a minimum 

near Ras =  10. Along this point of the boundary the initial instabilities are 

steady.

Two independent numerical schemes are used in our investigation to pro-

vide confirmation of the difference between our results and those of Thangam 

et al. The error in the earlier results was later verified by Young & Rosner
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Figure 6.1: A schematic diagram showing the four different leading order asymptotic 
regimes considered here for Pr =  6.7 and r  =  0.01. The position of the horizontal boundary 
at the left is a function of Pr. The other three boundaries move together in unison in the 
diagonal direction as r  varies. The oscillatory branch of instabilities is not shown.

(1998) in their recent publication with slightly different parameters. There 

is good indication that Thangam et al. did not use sufficient resolution in 

their Galerkin method and hence the solutions were underresolved for both 

the oscillatory and small Ras regions. One of the strengths of the Galerkin 

method is that it can produce solutions to difficult problems where, say, the 

Runge-Kutta method fails but its drawback is that it can produce plausible 

incorrect solutions.

We have identified four different asymptotic regimes for the stability bound-

aries. The leading order positions of these are shown in figure 6.1. These 

asymptotic results are also compared with those obtained numerically from 

the full problem with good agreement. Three of the asymptotic analyses are 

not previo'. dy found, the exception being the asymptotic limit of large Ras 

(Thorpe, L itt & Soulsby, 1969). Some possible physical explanations are
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given for the observed stability characteristics of the four regimes. In the 

large Ras regime, the instabilities take the form of thin almost horizontal 

layers whose vertical scale is given by the Chen scale (Chen, Briggs & Wirtz, 

1971). The mechanistic argument by Kerr (1989) for sidewall heating can 

also be applied to the instabilities in this regime, and the non-dimensional 

parameter Q which depends on the Chen scale and the width of the slot is the 

appropriate parameter for determining stability. Both length scales for the 

diffusion of temperature and salinity perturbations are the same and so both 

the temperature and salinity are important in the leading order behaviour 

for general Lewis number, r. In the small wave number regime and the large 

Rar regime, the two length scales for diffusion of heat and salt are different. 

Heat diffuses on the scale of the slot width, while salt diffuses on the vertical 

scale of the instabilities. This scale is much larger than the slot width in these 

two regions. Since the time scale for the diffusion of salt is much greater than 

that of the heat the temperature perturbations diffuse away and are not im-

portant in the asymptotic analysis. The leading order dynamics only involve 

the interaction between the stream function and the salinity concentration.

One interesting part of the marginal stability boundary is covered in the 

large RaT regime. The instability in this regime is driven by the horizontal 

salinity gradient and stabilised by the vertical shear. Since this boundary is 

vertical in the Ras-Rar plane it may seem that it would play no significant 

role in real experiments where Ras is determined by the initial setup of an 

experiment. However, heat would in fact take some time to diffuse across 

the slot before establishing a linear horizontal temperature gradient. If the 

wall temperature is raised quickly then the effective instantaneous Rayleigh 

numbers will be governed by the distance that the heat has diffused into the 

fluid and not the slot width. Therefore, RaT will initially grow like t3/2 and
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Ras like t2 where t is the time since the onset of heating Thus the instanta-

neous values of Rar and Ras may evolve in such a way that they may cross 

the vertical boundary. In such cases the initial instability observed in experi-

ments may be related to the instabilities on this portion of the boundary and 

not to those that may be anticipated from the final values of the Rayleigh 

numbers. Of course, the details of the instabilities and the stability bound-

ary will be different in the evolving case than those found here for the steady 

background gradients and vertical velocity. However, one implication of this 

for experimenters is that in order to understand the instabilities observed it 

may be important to record not only the final Rar and Ras, but how the 

instantaneous values of the Rayleigh numbers evolved to this final state and 

their values when instabilities first appeared.

The need to monitor the evolution of Rar and Ras is also required in 

experiments where a salinity gradient is heated from a single vertical bound-

ary. In these situations there are no steady background states (Kerr, 1991). 

In Tanny & Tsinober (1988) the evolving salt and thermal Rayleigh numbers 

were traced in their single boundary experiments as outlined above. The val-

ues of these Rayleigh numbers at the onset of instability are consistent with 

a stability boundary whose shape is similar to that of a vertical slot, with 

the vertical portion of the boundary playing an important role. Although the 

number of their experiments in this regime are not great and concentrated 

around the lower end of where the vertical boundary would be found. The 

testing of whether this boundary is vertical experimentally may be difficult as 

it would require rates of wall temperature increase much greater than Tanny 

& Tsinober were abie to achieve. The destabilising salinity gradient and sta-

bilising shear may provide insight into the first appearance of instabilities. 

The presence of transient vertical motions near the heated wall when there
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was rapid heating was reported by Schladow, Thomas & Koseff (1992). The 

onset of instabilities could be associated with times when these initial veloci-

ties reduce in magnitude, thus reducing the stabilising effect of the shear. An 

investigation of this would be an interesting area for fur her research.

Our results have shown that the three stability boundaries in a slot rep-

resented by the asymptotic limits of large Ras, small wavs number and large 

RaT are determined by the salt/heat diffusivity ratio, r, for their positions 

in the (log — Ras, log — Rar) plane. In the limit r  —> 0 the curves in each 

case can be written in the form

F(RaT/r, Ras/r) =  0. (6.1)

As r  varies, the positions of these three boundaries would move together in 

unison. This is illustrated schematically in figure 6.1 where the solid lines 

show the regions of the appropriate asymptotic regimes and the dashed lines 

showing their continuations. The arrow indicates the direction these three 

boundaries move in as r  varies. In the small Ras regime, the salinity gra-

dient is weak and so this regime is essentially the thermally driven problem 

of a laterally heated slot. For Prandtl number, Pr, less than 12.7, Korpela, 

Goziim & Baxi (1973) showed that the initial instability is steady and the 

leading order result takes the form of Rar =  7880 Pr (Vest & Arpaci, 1969). 

Hence, the position of this stability boundary for small Ras depends on the 

Prandtl number. For larger values of the Prandtl number, the initial insta-

bility is oscillatory and so the analysis included here is not appropriate.

The asymptotics given here cover most of the cases for marginal insta-

bilities in a vertical slot. The small curved section that describes oscillatory 

instability ;s indicated by a dashed line on the marginal stability boundary 

of figure 5.1 for the case of water and common salt considered here. Young &
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Rosner (1998) used three different values of r, 0.1, 0.01 and 0.001. The size 

of the oscillatory region on the stability boundary did not change much with 

these changes in the parameter. Unfortunately, this oscillatory region does 

not seem to have an identifiable asymptotic behaviour and so its position on 

the stability boundary cannot be given in the same manner as other regimes 

for general values of r  and Pr. One possible interpretation of the origin of 

these oscillatory instabilities is that for Pr < 12.7 the instabilities are steady 

in a laterally heated slot with no salinity gradient, but for large Pr the onset 

of instabilities is oscillatory. Our analysis suggests that steady instability is 

stabilised by the salinity gradient but we could speculate that the oscillatory 

instability is destabilised. With Pr just below 12.7, it is possible that salinity 

gradient could make the oscillatory mode of instability more unstable than 

the mode of steady stability. This scenario seems to be appropriate based on 

some recent calculations by Kerr (private communication), and could be the 

subject of further examination.

The shape of the marginal stability curve reveals two important condi-

tions for instability to occur in any given stratified solute. These conditions 

are based on how large are the salinity stratification and the temperature 

difference across the vertical slot. But as r  gets smaller, the two conditions 

become less stringent. For instance, if salt was replaced by protein as the 

solute in the slot problem then r could be reduced by a hundredfold and so 

the temperature difference across the boundaries that could start convection 

would be a hundred times less than that necessary for stratification due to 

common salt. In the absence of any solute stratification, the heating required 

for the onset of cellular convection would be 100 000 more than that required 

for a protein gradient. The minimum temperature difference needed to cause 

convection with a vertical protein gradient could be as little as 10-4 °C in a
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slot of width 1 cm, and so it is likely one would observe convection in the 

presence of any stratification, unless great care is taken to ensure a uniform 

temperature.

This analysis with the assumption of a steady state in an infinite chan-

nel cannot be applied extensively in all practical situations because channels 

have upper and lower ends. These impermeable ends will result in a back-

ground state that evolves with time even when no temperature difference 

is considered, although the slow diffusivity of salt does mean that the time 

for disturbances to diffuse from the end walls is long. However, it will al-

ways be difficult to solve the slot problem around these end regions both 

experimentally and analytically. The present analysis would be useful to the 

understanding of the core of a vertical cavity where the end effects are less 

important. Another possible problem with finite cavities is the limitation on 

the vertical wave number of instabilities. The limit of a —>■ 0 implies distur-

bances of unbounded height. The heating required to develop convection cells 

of small but finite wave number is close to that found in the small a limit. 

The stability curves are shown to be very flat in figure 3.1 of chapter 3 for 

the a —> 0 limit so convection would occur on a wide range of scales and so 

the small a limit is not too restrictive.

The work of this thesis has corrected some earlier erroneous results on 

the double-diffusive instabilities in a vertical slot. In addition, we hope it 

has shed some new light on the different modes of instability that make up 

the stability boundary which may open up new avenues for research into the 

problem of double-diffusive instabilities at a single boundary.

I am grateful to my supervisor, Dr. Oliver S. Kerr, who has unstintingly
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helped to produce a joint paper based on this work entitled “ Double-diffusive 

instabilities in a vertical slot” which has recently been accepted for publication 

in the Journal of Fluid Mechanics.
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Appendix A

Full Numerical Method

This appendix is related to chapter 3. The details in finding solutions to the 

full problem by the shooting method are given here. We propose to solve 

the full stability equations in (2.10.2) to (2.10.5) numerically using a fourth 

order Runge-Kutta scheme. The stream function, temperature and salinity 

are written in terms of their real and imaginary parts:

i/)(x) =  ipT + iipi, T(x) = Tr + iTi, S(x) = Sr +  iSi. (A .l)

These x-dependent variables are substituted into the full problem where al =  

0 for steady instabilities. The real part of the system is

(D 2 — a2)2̂ r +  fw^(D2 — oi2)^  — D2ŵ xpi] — RaTDTr +  RasDSr =  0,
Pr 1 ‘

(A.2)

(D 2 -  a 2)Tr -  a(ipi -  vT0Ti) =  0, (A .3)

r ( D 2 — a 2)S r +  aipiDS0 + aw^Si — Di\)r =  0, (A.4)

and the imaginary part gives

(.D 2 -  a 2)2^i -  {vT0(D 2 -  a2)ipr -  D2ŵ ipr} -  RaTDTi + R a s D Si =  0,

(A.5)

{D 2 -  a 2)T) + a(ipr -  w^Tr) = 0, (A .6)
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( A .7 )r ( £ > 2 — a2)Si — aiprDSo — aw0Sr — D^t =  0 ,  

w it h  th e  c o r r e s p o n d in g  b o u n d a r y  c o n d it io n s

i/v  =  ipi =  D'lpr — Dipi =  DST — DSi = Tr =  Tr — 0  o n  x  =  ± 1 / 2 .  ( A . 8 )

T o  a p p ly  th e  R u n g e - K u t t a  s c h e m e  t h e  h ig h e r  o r d e r  d iffe r e n tia l e q u a t io n s  o f  

t h e  s y s t e m  a re  e x p r e s s e d  in  t e r m s  o f  f ir s t -o r d e r  e q u a t io n s  s o  t h a t  t h e  n u -

m e r ic a l  s c h e m e  s o lv e s  Dy  =  f (x,  y )  w h e r e  y  is  a  v e c to r  r e p r e s e n t in g  t h e  1 6  

e le m e n t s  in  th e  fu ll  p r o b le m . T o  i l lu s t r a t e  th e  id e a , w e  s h a ll  w r ite  o u t  th e  

1 6  e le m e n t s  in  t e r m s  o f  y 1 ? . . . ,  2/ie fo r  ( A . 2 )  t o  ( A . 8 ) .  T h e  s t r e a m  fu n c t io n  

e le m e n t s  a re

yi =  ipr

2/3 =  £>Vv =  Dyi,

r/5  -  D 2ipr = Dyz,

2/7 =  D3ipr = Dy5,

th e  s a l in it y  e le m e n t s  a re :

2/9 S r

2 /n  =  DSr =  £>2/9,

a n d  t h e  t e m p e r a t u r e  e le m e n ts  a re :

2/13 =  Tr

?/i5 =  DTr =  £>2/i 3 ,

w it h  t h e  b o u n d a r y  c o n d it io n s

2/i =  2/2 =  2/3 =  2/4 =  ? /ii =  2/12 =  2/13 =  2/i4 =  0 ,  ( A . 1 2 )

o n  x =  ± 1 / 2 .  T h e  a b o v e  e le m e n t s , 2/ 1 , - - - ,  2/i6, a re  u s e d  t o  d e fin e  t h e  fo l lo w in g  

1 6  fu n c t io n s :

2/2 =  2l>i,

2/4 =  Dtpi CN

2/s =  D2i>i =  DyA,

2/8 -  D 3ipi =  A>2/6,

( A .9 )

2/10 —  Si,
2/12 =  £ > £ ) =  Dyw,

( A .1 0 )

2/14 — Tu

2/16 =  DTt =  £> 2/ 1 4 ,

(A .11)

/ 1  =  2/3 ,

/ 2  =  2/ 4 ,
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fa — y 5 , ( A . 1 5 )

fa = Ve, ( A . 1 6 )

fa = 2/7, ( A . 1 7 )

fa = y», ( A .  I S )

f~l — 0  2 4 a __ , a3W0
2 a y5 a yi w0ye +  y2 

Pr Pr

+ -ppy2D wo +  Rciryis -  Rasyn,Pr
( A .1 9 )

fa = o 2 4 , a  —  a3wo2a ye a y2 +  „  wayb yx Pr Pr
a  2

- — yiD w0 +  RaTyie -  Rasyn , ( A . 2 0 )

fa = 2/ii) ( A . 2 1 )

fio = 2/12, ( A . 2 2 )

In = a2y9 -  -  \aDS0y2 + avT0yw -  y3
■

( A . 2 3 )

fl2 = a2yw + ~ [aDS0yi +  aW0y9 +  y4 ? ( A . 2 4 )

/ l 3 = 2/15, ( A .2 5 )

fu = 2/16, ( A . 2 6 )

f  15 = a27/13 +  ay2 -  aw^yu, ( A . 2 7 )

fie = a2yu ~ ayi +  a ü T 2 /i3 - ( A . 2 8 )

These 16 functions are used in the four-stage formula of (3.1.1) with step size 

taken to be dx =  5 x 10-4 across the interval x =  —1/2 to x =  1/2. We need 

to specify the choice of boundary conditions on the left wall so that solutions 

obtained will satisfy the boundary conditions on the right wall. This can be 

achieved by using the iterative process of the shooting method. This uses 

matrix manipulation to get the first six boundary conditions to zero before 

satisfying the last two boundary conditions by varying the physical parame-

ters of the problem using the secant method.

We shall first specify the choice of the boundary conditions on the left
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wall. Since the problem is linear and ip =  T =  5  =  0 is always a solution, 

we can force a non-zero solution if we set D2ip =  1. Therefore the 8 fixed 

boundary conditions on x =  —1/2 are

2/ i  =  0 , 2/2 =  0 ,

2/3 =  0, 2/4 =  0,

2/ii =  0, 2/i2 =  0,

2/13 =  0, 2/14 =  0,

leaving the choices for others to be

2/5 =  1, 2/6 =  0,

2/7 =  «1, 2/8 =  u2,

2/9 =  Us, 2/10 — u4, 

2/15 =  Û , 2/16 =  «6)

(A.29)

(A.30)

where u\,...,ue  are the 6 free boundary conditions on the left wall to be 

determined. If we integrate across the slot for some choice of our free u, we 

determine the values of y% at the right boundary, say V\,... ,V\§. For fixed 

Ras , RaT, ct, t , Pr and cq these depend on the free it* according to

P ' =  A'u +  z\ (A.31)

where

'(u) =  ( V ! , V 2 , ■ ■ ■ , v i 6 y , (A.32)

u =  ( u u u 2 , ■ ■■ , u 6 y , (A .33)

z' =  {zi,z2,.. ■ i ¿16 y , (A .34).

Here A' and z' are a matrix and vector whose entries are not yet determined. 

We will restrict ourselves, say, to the first 6 of the right boundary conditions 

that we require to be zero, defining

P (u) =  Au +  z, (A.35)
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where

P  =  ( v i , V 2 , V 3 , V 4 , V 11, V i 2 ) t , (A.36)

Z  =  (zi,Z2,Z3,Z4,Zn ,Z12)t, (A .37)

and A is a (6 x 6) matrix representing the coefficient of the vector u. We can 

vary the values of u to find both the vector z and matrix A. From (A.35) 

we see z = P(0). Then by further setting ul =  1 with the other Uj =  0 for 

i =  1 , . . . ,  6 in turn, we can determine all the matrix elements in A.

In principle we can now find u that sets P (u) to zero by solving

u =  —A -1z. (A.38)

However, calculations showed that on calculating P(0)  very large terms were 

found which resulted in significant rounding errors and loss of accuracy. In-

stead this method was adapted to use an initial guess for u, say uQ, which 

may be provided by the above method. If we let

z =  P (u 0), (A.39)

then we use calculations of P (u Q +  du) to estimate the matrix A in a similar 

manner as before such that

P (u 0 +  du) =  Adu +  z. (A.40)

Then

<5u =  —A 1z. (A .41)

This then gave a better estimate for u =  uQ +  ̂ u that sets the right boundary 

conditions to zero.

When looking at the steady case the symmetry of the problem ensures 

that if we can set one of the remaining right boundary conditions to zero the
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other condition becomes zero at the same time. Thus for the steady case we 

set one of the conditions to zero using the secant method. This method is 

based on drawing a straight line between two good guesses of RaTl namely 

RaTl and RaT2, and getting a better guess given by

Rax —
v{Rax2)Raxl — v(Rax1)Rax2 (A.42)

v(Rax2) — v(Rax1)

where the boundary condition v is a function of the Rayleigh number Rax- 

When converged this value of Rax will produce steady solutions that set the 

two remaining right boundary conditions to zero (strictly speaking, they can-

not be identically zero therefore the iterative process depends on the choice 

of tolerance level, a choice of say, tolerance =  1 x 10~8 seems sufficient for 

obtaining accurate solutions in most cases).

When the problem with /  0 is considered then Broyden’s algorithm of 

chapter 3 is substituted in place of the secant method.

The marginal state can be determined by fitting a parabola to three so-

lutions and using this to give an estimate of the minimum. This parabola 

technique depends on three paired guesses of RaT and a which give the ap-

proximate equation

Rax ~  A. * Rax1 -t- B * R c l x 2 +  C * Rax3, (A.43)

where A, B, C are functions of a defined by

( a  -  a 2 ) ( a  -  a 3 ) 

( « 1  -  a 2 ) ( a l -  a 3 ) ’
(A .44)

( a  -  a q ) ( a :  -  a 3 ) 

( a 2 ~  OL\)(ot2 -  Oi3 ) ’
(A.45)

( a  — cr i ) ( o ;  — a 2 ) 

( « 3  — O i ) ( a 3 — Oi2 )
(A.46)

125



Differentiating (A.43) with respect to a and solving to find where the gradient 

is zero gives an estimate of the critical value of Rar at this lowest point and 

the corresponding am which is

RaTl (ctj — ®l) +  RaT2(a\ — a\) + RaT3(oi{ — a%)
2 [RaTl {(*2 ~ cd ) +  Rclt2(«3 — ou) +  RdT̂ iŝ i — ^2)]

(A.47)

This estimate can be used to give an iterative scheme which converges to the 

true minimum.

For any given value of Ras, this scheme gives the minimum value of RaT 

with the corresponding a. When the stability boundary becomes parallel to 

the vertical axis, this scheme breaks down. In this case we fix RaT instead of 

Ras and look for a minimum value of Ras with the corresponding a.

It is unfortunate that oscillatory modes could not be found using this 

numerical scheme with Broyden’s algorithm (see the accompanied section of 

chapter 3). But on the other hand, it was able to provide confirmation of 

some non-steady solutions that were found by the Galerkin method.
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Appendix B

Galerkin Approach

This appendix will be divided into 5 sections for the purpose of evaluating 

those integrals from the linear system of algebraic equations (4.1.12), (4.1.13) 

and (4.1.38) to (4.1.41) in chapter 4. The relevant background states are 

those obtained in chapter 2.

The first section gives details about the orthogonal properties of the func-

tions used in the expansions of the stream function, temperature and salinity 

in (4.1.1) to (4.1.3). The next three sections respectively give the 24 in-

tegrals for ip, the 8 integrals for T and the 12 integrals for S. The final 

section contains the general expressions of those ‘abbreviated integrals’ , e.g. 

P la(a , b), S2i{a, b), T3b(a, b, c, d) and so on. These integrals are found in the 

last three sections. For example, integral Hi in the second section involves 

P la(/r2m-i) /¿2m-i)) the definition of P ia contains two arbitrary parameters 

a and b and these are replaced by the appropriate values of ¡i as required in 

the integration.
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B .l Orthogonal Properties

For the stream function:

rl/2
/  0 L - i  dx =V—1/2

r 1/2
/  0 2 m —102n—1 d X  =  0 ( n  ^  J7l),
J-1/2

rl/2
/  ; 02m  d% =  1,

V - 1 /2

rl/2
/  02m02n dx — 0 {n ^ m),

7 —  1/2

and
r 1/2
/  02m—i02n dx — 0 (V n,m ).

7  —  1/2

For the temperature:
r  1/2

L l2T L - ' i X = 2'
rl/2
/  2̂m— 1 -̂ 2n—1 dx =  0 (n 7̂  m)>
7—1/2

pJ- 1
r l /2
/  T2mT2ndx = 0 {n ^ m ),
7—1/2

rl/2 I
T L d x = ~ ,

- 1/2  2

and

For the salinity:

r  1/2
/  T2m-iT2ndx =  0 (V n, m). 
J-1/2

rl/2 1
/ Ç2 Wt; =  -  / , °2m—1 o >7—1/2 2

rl/2
/ ^ m -l^ n - l  dx =  0 (n 7̂  m)i 
7—1/2

/•1/2 , 1 
/  ‘-him dx — - ,J - 1 /2  2

rl/2
/  S2mS2n dx — 0 (n ^ m ) ,
7-1/2

and
ri/2
/  52m_i5 2„(ix  =  0 (V n, m).
7 — 1/2

(B.1.1)

(B.1.2) 

(B .l.3) 

(B .l.4)

(B.1.5)

(B .l.6) 

(B.1.7) 

(B .l.8) 

(B .l.9)

(B .l.10)

(B .l.11) 

(B .l.12) 

(B .l.13) 

(B .l.14)

( B . l . 15)
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B.2 Integrals for \p

The parameters /¿2n- 1 and /i2ii are the positive roots of the integrals of ip, T 

and S:

tanh ^ 2n-i +  

coth ^/i2„ -  ■

and the parameter M  is given by

M  = 4 r

“ /¿2n—1 — 0, (B.2.1)

Xd2n =  0, (B.2.2)

r (B.2.3)

For the integrals involving the even function in ip\

~1/ 2 /cosh//2m_ iX  cos/x2m_ i x \  Z'cosh//2m_jX  c o sp 2m- i x '

^  I - 1/2 l^cosh |/X2m_i +  COS |/i2m-l  ̂ VCOsh 2A*2m-l COS |/T2m-1 ,
dx

T >l a ( / i 2m_ l ,  /T2m—l)  S 2 i ( ß 2 m - 1 ,  ß 2m—1)

cosh2 |/r2m_i COS2 \ p 2 m - l
(B.2.4)

#2 / V2 __  / sinh/r2mx sin/r2mx \ / cosh/x2m-ix  _  cos/i2m_ ix '
- 1/2 °\sinh|/i2m sin i/r2my \cosh |/r2m_i cosi/r2m_ ly

dx

i?aT sinh cos P3ef(M, M, //2m, /r2m_i) 
M 3 (sin M  +  sinh M ) sinh |p2m cosh |/r2m_i

ifa-r cosh sin P4ef(M, M, /i2m, /r2m_ 1)
M 3(sin M  4- sinh M) sinh |/r2m cosh |/r2m_i

iiar sinh cos 52cd(/r2m, M , M, /i2m_i)
M 3(sin M  +  sinh M) sinh |/x2m cos |/r2m_i

+
ß ar  cosh sin P5de(M, M, /r2m, p2m_ 

M 3(sin M  +  sinh M ) sinh |//2m cos |//2m_i

+
iiaT sinh cos P6de(M, M, /r2m, /¿2771—1 J

M 3(sin M  +  sinh M) sin |/r2m cosh |/r2m_i

i?ar cosh |Msin S2cd(M, /r2m, /r2m_ 1 , M)
M 3(sin M  +  sinh M)  sin ¿/r2m cosh
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RaT sinh \ M  cos \ M  T3b(M , M, ß2m, ß 2m-i)
M 3(sin M  +  sinh M) sin |/i2m cos ^ß2m-\

RaT cosh sin T3c(M, M, ß2m , ß2m - i )

M 3(sin M  +  sinh M) sin \ß2m cos \ß2m-i
(B.2.5)

i/a
/  sinh /i2m£ 
\sinh |/ / 2m

sin/i2ma:\ / cosh ß2m- \x 
sin 2̂ 2m )  yCOSh 2^2m—\

COS ß 2m —\ x \
----- ;---------  ax
COS 2 ß 2 m - \ )

RaT sinh |M cos \M P3ef(M, M, ß2mi ß2m-i)  
M 3(sin M  +  sinh M) sinh |//2m cosh \ß2m- 1

RaT cosh \M sin \M P4ef(M, M, ß2m, ß2m-1) 
M 3(sin M  4- sinh M) sinh |/i2m cosh \ß2m- 1

fior  sinh cos S2cd(ß2m, M, M, ß2m-\)
M 3(sin M  +  sinh M) sinh |//2m cos ¿//2m_i

RaT cosh sin P5de(M, M, ß2m, ß2m- 1)
^  M 3(sin M  +  sinh M) sinh |/x2m cos ¿¿¿2m_i

i?aT sinh |Mcos P6de(M, M, /i2m, /¿2m_i) 
M 3(sin M  +  sinh M) sin |/x2m cosh |/u2m_i

i?aT ccsh sin S2cd(M, ß2m, ß2m- 1, M)
M 3(sin M  +  sinh M) sin ¿/z2m cosh \ß2m-i

RaT sinh cos T3b(M, M, )U2m, /i2m-i)
M 3 (sin M +  sinh M) sin |/x2m cos |/i2m_i

cosh |M sin T3c(M , M, /¿2m, /z2m_i)
M 3(sin M  +  sinh M ) sin ¿/¿2m cos |/y2m_i

H a -  / lP __ / sinh/i2mx sinß2mx\ ( cosh/i2m_ix _  cosß2m-\x'
- 1/2 \sinh |/i2m sin \ ß 2m )  \cosh \ ß 2m - \  c o s ^ m - i ,

2Rar sinh cos \M P4ef(M, M, /¿2m, /y2m_ iy
M(sin M  +  sinh M) sinh \ß2m cosh \ß2rn-\

dx

+
2Rar  cosh sin \ M  P3ef(M, M, ß2m, ß 2m - 1 )

M(sin M  +  sinh M)  sinh \ ß 2m cosh \ ß 2m-i
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2 R a r  sinh |M cos P 5 d e ( M , M ,  /i2m, d 2m - i )

M(sin M  +  sinh M) sinh |/j2m cos \ d 2m - 1

2 R ü t  cosh sin S2cd(n2m, M ,  M ,  d 2m - i '

M(sin M  +  sinh M) sinh |/x2m cos |/i2m_i

2/?ar  sinh \M cos \M S2cd(M, /¿2m, dim-1, Ai) 
M(sin M  +  sinh M) sin ~/i2m cosh \dim- 1

2 R c l t  cosh sin P 6 d e ( M ,  M ,  //2m, d i m - i )

M(sin M  +  sinh M )  sin |/j2m cosh |/i2m_i

2i?aT sinh |M cos |M  T 3 c ( M , M ,  ¡j.2m, d i m - 1) 
M (sin M  +  sinh M ) sin /̂u2m cos |/J2m_i

+
2fia'r cosh sin T 3 b ( M ,  M ,  ß 2m, d i m - 1) 

M(sin M  +  sinh M ) sin |/i2m cos |/x2m_i
(B.2.7)

/•1 / 2  /
=  / cos(2m)7ra;

■1-1/2 \
f  C O S h  /12tji—\X COS fJj2m—l'£

C O S h  \ d l m —l COS ¿ / / 2 m _ i
(¿T

S 2 a ( ß 2 m - i ,  2rmr) S 2 i (2 r m r ,  d i m - i )

COSh ^ d l m —l COS 2^2771—1
(B.2.8)

= f 1/2 cos(2rr -  IW* ( cosĥ -jf  _ CQŜ m-ix\ 
J — 1 / 2  VcOSĥ /i2m_! cos zd2m-l J

S2a{<ti2m-i, (2m -  l)7r) 52?((2m -  l)7r, /¿2m_i)
C O S h  2d2m—l COS 2d2m—l

(B.2.9)

7
C O S h  d 2 n - l x

c o s h  | / J 2rl_ i
+

COS d 2 n - l X  

COS | / i 2n_ i

/  COSh d l m - P -  

\CO Sh \d2m-l
COS fJ,2m—l % \  J _I I ax
COS 2 ß2m— 1 /

i ^ l f l ( / i 2n —15 M 2 m -1 )  S e2j&(KH 2n—1 7 f^2m— l )

cosh A/i2n_i cosh |,u2m_i cosh \/i2n-i  cos \/i2m-1 

S2a{jJi2m-ii d2n-l) S2i(fJ,2n—l,d2m—l)
COS \ d 2 n - 1 cosh \ d 2 m - 1 COS | / i 2„ _ l  COS | / / 2m - l

(B.2.10)

#8
/

/
V2 __ /  sinh /¿2ri:z; sin /j,2nx

ix ° I • 1 i P ■ i 
- 1/2 \Sinh|/i2n sm 2d2n

(  cosh d 2m - l x  

ycosh \ d 2m - l

COS fJ,2m—i x \
----- t---------  dx
COS ^d2m-l J
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RaT sinh \ M  cos \ M  P3e f(M,  M, /.i2n, ¿¿2m-1 )
M 3(sin M  +  sinh M) sinh ¿¿t2n cosh |/i2m_!

PaT cosh sin P4e/(A f, M, ¿i2ra, ¿¿2m -1)
M 3(sin M  +  sinh M ) sinh |/x2n cosh |//2m_i

Par sinh \M cos \M S2cd(fj,2n, M, M, ¿¿2m_i) 
M 3(sin M  +  sinh M) sinh 4/22n cos \n2m-1

RaT cosh sin |M Pbde(M, M, ¿¿2„, /¿2m_i) 
"h M 3(sin M +  sinh M) sinh ¿̂¿2„ cos |/x2m_!

Par sinh c o s |M P6de(M, M, ¿¿2n, /J2m_i) 
T M 3(sin M  +  sinh M) sin |/x2n cosh |^2m_i

RaT cosh \M sin S2cd(M, /i2n, ¿¿2m_ i , M) 
M 3(sin M  +  sinh M) sin |/i2n cosh ^¿/2m_i

PaT sinh \M cos\M T3b(M, M, ¿¿2„, ¿¿2m_i) 
M 3(sin M  +  sinh M) sin |/i2n cos |/x2m_ 1

Par cosh sin T3c(M, M, //2n, //2m-i)
M 3(sin M  +  sinh M) sin \fi2n cos |//2m_ 1

p /2  / sinh /i2nx sin ¿i2nx \ /  cosh ¿¿2m_ix _
i - 1/2 °\sinh|/i2„ sin |/i2ny \cosh ^/i2m_i

Par sinh cos \M P 3e /(M , M, ¿t2n, //2m_i) 
M 3(sin M  +  sinh M) sinh |/a2n cosh ¿̂¿2m_ 1

PaT cosh sin P 4e/(M , M, ¿¿2„, ¿¿2m_i)
M 3(sin M +  sinh M) sinh ¿¿i2n cosh |/i2m_i

P ar sinh cos S2c<i(^2n, M, M, ¿¿2m_i)
M 3(sin M  +  sinh M) sinh \n2n cos

RaT cosh \M sin \M Pbde(M , M, /x2n, Ai2m—1) 
M 3(sin M  +  sinh M) sinh \^2n cos \p2m- 1

Par sinh cos P6c?e(M, M, ¿t2n, /x2m-i)
M 3(sin M  +  sinh M)  sin ¿¿¿2„ cosh |//2m_i

(B.2.11)

C O S /i2m _ i x \
----- ;---------  ax
COS 2^2171—1 )
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RaT cosh \M sin \M S2cd(M, ß2n, ß2m-i,M) 
M 3(sin M  +  sinh M) sin |//2n cosh ^/i2m_i

+
RaT sinh |M cos \M T3b(M, M, //2n, /i2m_ 1/ 

M 3(sin M  +  sinh M) sin |//2n cos |/i2m_i

Par cosh \M sin\M T3c(M, M, /z2n, ß2m-\) 
M 3(sin M  +  sinh M) sin \ß2n cos \ß2m-1

(B.2.12)

10 =  / 1/2  £ ,2 —  /  s i n h  S in  / / 2na A  /  COSh ß 2m - 1^

■1/2 0 \sinh \ß2n sin \ß2n)  Vcosh \ß2m-l
COS [¿2m—1% 

COS \ß 2 m - l  .
dx

2RaT sinh \M cos |M P 4e/(M , M, ß2n, ß2m-1) 
M(sin M  +  sinh M) sinh \ß2n cosh ¿/¿2m_1

2PaT cosh |M sin P 3e/(M , M, ß2n, /z2m_ x) 
M (sin M  +  sinh M) sinh |yu2n cosh \ß2m- 1

2PaT sinh cos P5de(M, M, ß2n, ß2m-1) 
M(sin M  +  sinh M) sinh |/x2n cos |/i2m_i

+

, 12PaT cosh sin S2cd(ß2n, M, M, /J2m_i
M(sin M  +  sinh M) sinh cos |/Lt2m_i

2i?ar sinh cos S2cd(M, /¿2n, /x2m_1, M)
M(sin M  +  sinh M ) sin |//2n cosh ¿/¿2m_i

2Par  cosh sin P6de(M. M, ß2n, ß2m-i)
M (sin M  +  sinh M) sin ¿/i2n cosh |/x2m--l

+

2i?aT sinh cos T3c(M, M, ß2n, /¿2m_i) 
M(sin M  +  sinh M) sin \ß2n cos \ß2m-i

2RaT cosh \M sin \M T3b(M, M, /i2n, ß2m- i ) 
M(sin M +  sinh M) sin |//2„ cos |/i2m_i

(B.2.13)

P li -  L
1/ 2 ___ COSh ß 2m- l X  C O S ß2m - l x \  ^

COS.  Z77/ )7TX l i i  i I
1/2 \CO Sn C0S 2^2771-1 /

S2a(ß2rn-i,  2mr) S2i(2mr, ß2m-\)
cosh |/i2m_i COS 2  ß 2 m — 1

(B.2.14)
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dx
r 1/2

H\i =  /  cos(2n -  l)7rx
J — 1/2

COSh /L2m—\X COS

COSh 5 / i 2 m - l  C O S p //2 m —1 ,

52 a (/j2m -i, (2 n -  1 )tt) _  52z((2n -  l)7r,/¿2m -i)

cosh 5 / / 2 m - l  COS ±jU2m - l

For the integrals involving the odd function in -0:

__ / cosh C O S / l 2 m - l x \  f s m h / l 2 m X
W0 I — — -----------1-------- 1--------- 1

- 1/2
H-13 =  /

(B.2.15)

S ill

V c O S h | /X 2m - l  C O S ^ m - l /  V s in h  S m  | / i 2r
dx

f?aT sinh f  M  cos P3ef(M, M, /r2m, M2m-i) 
M 3(sin M  +  sinh M) sinh |/x2m cosh |/r2m-i

PaT cosh sin P4ef(M, M, /i2m, ß2m-1)
M 3(sin M  +  sinh M) sinh \/i2m cosh :

PaT sinh cos S2cd(n2m, M, M, fJL2m-i)
M 3(sin M  +  sinh M) sinh A^2m cos ¿//2m-i

cosh \M sin \M P5de(M, M, ¡x2m, ^ m -i) 
M 3(sin M  +  sinh M) sinh \ß2m cos |/i2m-i

RaT sinh cos \ M P6de(M, M, ß2m, ¿¿2m-1)
M 3(sin M  +  sinh M) sin |/r2m cosh \ß2m-\

RaT cosh \M sin S2cd(M, /i2m, //2m -i, M)
M 3(sin M  +  sinh M) sin |/x2m cosh ¿¿i2m-i

H15 =

PaT sinh |M cos ^MT3b(M, M, ß2rn, ß2m-\) 
M 3(sin M +  sinh M ) sin \ß2m cos \ß2m-i

RaT cosh \M sin | M  T3c(M , M ,  / r 2m) ß 2m - \ )  

M 3(sin M  +  sinh M) sin i/r2m cos \ß2m-i

Hu =

(B.2.16)

p / 2 / sinh/i2mx +  sin//2m^\ ^sinhß2mx _  sin/r2mx \ ^
J—1 /2  \ sinh ö  / " 2m  sin öß2m j \ sinh oß2m sin o d2m ))  —1/2  \ S in h  2  h2m  S in  2 d2m  )  Y S in fl  2 d2m  S in  2 d 2  m )

P 7 ( ß 2 m i ß 2 m )  S 4  f  ( fl2m 1 d'2m)

sinh“ \\l2m sin2 \ß2m
(B.2.17)

V2  ( cosh H 2m - cos/r2m -iz\ ( sinh ß2mx sin /22mx'
U a ° { COSh \ n 2 m -\  COS | ß2m—l \sinh \/i2m sin|//2m,

dx
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-  L
1 / 2   /  s i n h  H2mX
1/2  °  \ s i n h  \n 2m

sin H2m,x\ (  cosh /J2 m - i X  COS H2m—l% '
cosh \n2m-l COS * M 2m - l  ,s i n

dx

H*. (B.2.18)

H16

r 1/2
J - 1/2

z m
/ cosh//2r7l_iX cos ti2m—i*̂ \ / sinh /12biI  _  sin /¿2mx v
\cosh |,u2m- i  cos |//2m-i /  \sinh 2^2m sin|/x2m/

dx

/ 1-/2 „2  /  sinh //2mx sin /¿2mx '
D uj0 I • i i - i- 1 /2  \sinh 4/U2m s in ^ m ,

'cosh / ¿ 2m  i s  C O S / i 2m _ i x '

,cosh |/i2rrj_i COS 2 / ^ 2 m — 1 ,
dx

n A. (B.2.19)

ZZ17 / x/2 . / sinh /i2mi  sin/i2mx\
sm 2m — lj7rx — —;----------- :— ,-------  ax

1/2 VSlnh 2̂ 2™ Sln 2^2m /

54a(/x2m, (2m -  l)7r) S4f((2m -  l)7r, ¿¿2m)
s i n h  \ ^ 2m S i n  2 ^ 2 r-i

(B.2.20)

18
i 1/ 2 . / s i n h / x 2 m x  s i n > Z 2m ® \  ,
/  s i n  k, m  —  I j t t x  t — — ;-------------------- :— ■-------------  a x

J - 1/2  y s i n h  2/^2771 s m ^ m /

5 4 a ( / x 2 m , 2 ( m  -  l ) 7r )  5 4 / (2 ( m  -  1)77, / / 2 m )

sinh |/i2m Sin 5/¿2m
(B.2.21)

H 19
C w ° (

/ c o s h / i 2 n _ i x  c o s / / 2ri_ i x \  / s i n h / i 2 m x  s i n / i 2m x \

cosh |/i2n- i  cos /̂¿2n—1 /  \sinh |/i2m sin |/z2m/
dx

RaT sinh cos |M P3ef(M, M , /j2m, //2n_ 1) 
M 3(sin M  +  sinh M) sinh |//2m cosh |/i2n- i

i?aT cosh \M sin \M P4ef(M, M, //2m, /i2„_i) 
M 3(sin M  +  sinh M) sinh |/j2m cosh |/i2„_i

i?aT sinh\M cos\M S2cd(n2rn, M, M, /¿2„_i) 
M 3(sin M  +  sinh M ) sinh |//2m cos |//2n-i

i?ar  cosh sin |M P5de(M , M, /¿2m, //2n-i)
M 3(sin M  +  sinh M ) sinh i/k2m cos |/i2n- i
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Pa-r cosh ̂  Ai sin | Ai S2cd(M, /x2m, d2n-u Ai) 
Ai3 (sin Ai + sinh Ai) sin |/x2m cosh |//2„_i

PaT sinh ¿Ai cos ¿Ai T3b(M, Ai, /x2m, /x2n_i) 
Ai3 (sin M + sinh Ai) sin ¿/x2m cos ¿/x2n_i

Pâ  cosh ¿Ai sin ¿Ai T3c(M, Ai, /x2m, /u2n-i) 
M3(sin Ai + sinh Ai) sin ¿//2m cos ¿/x2„_i

RaT sinh \ M  cos |Ai P 6ie(A i, Ai, /i2m, /x2„_ 1 )
Ai3(sin Ai +  sinh Ai) sin |/x2m cosh |/x2„_i

# 2 0
/ oiiiii
\sinh ¿/x2n+ sin ¿//2

/ sinh ¿x2mx 
\sinh ¿¿/2m

sin /x2mx \ 
----- ;------  ax
S in  2 M 2 m J

Pi(/X2n> /̂ 2m) 54a (/i2n, /X2 m )

sinh ¿/x2n sinh ¿/x2m sinh ¿/x2n sin ¿/x2m

54a (/x2m, /x2n) 54/(/x2n, /x2m)
sin |/i2n sinh ¿/x2m sin ¿¿x2n sin ¿/x2m (B.2.23)

r1/2 _  / cosh //2n_ix cos /x2ra__ix\ / sinh /x2mx _ sin /x2mx\ ^
J —i/2 \cosh ¿/x2n_i COS ¿/x2n_i / \sinh ¿/x2m sin ¿/x2m /

PaT sinh ¿Ai cos ¿Ai P3ef(M, Ai, /x2m, /x2n_i)
Ai3 (sin Ai + sinh Ai) sinh ¿/z2m cosh |/x2n_i

PaT cosh ¿Ai sin ¿Ai P4e/(Ai, Ai, /x2m, /x2n_i)
Ai3 (sin Ai + sinh Ai) sinh ¿¿/2m cosh \n2n- 1

Rar sinh ¿Ai cos ¿Ai 52ci(̂ x2m, Ai, Ai, //2n_i)
Ai3 (sin Ai 4- sinh Ai) sinh ¿/x2m cos ¿/x2n_i

Par cosh ¿Ai sin ¿Ai P5ie(Ai, Ai, /x2m, /x2n_i)
Ai3(sin Ai + sinh Ai) sinh ¿/x2m cos ¿//2n_i

PaT sinh ¿Ai cos ¿Ai P6ie(Ai, Ai, ¿x2m, /x2ri—i) 
Ai3(sin Ai 4- sinh Ai) sin ¿/x2m cosh ¿/x2n_i

Pa-r cosh ¿Ai sin ¿Ai S2cd(M, /x2m, /x2n_ 1 , M) 
Ai3 (sin Ai + sinh Ai) sin ¿/x2m cosh ¿/x2„_i
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Pa^ cosh sin T3c(M, M, /¿2m, ß2n-i) 
M 3(sin M  +  sinh M) sin |/z2m cos |/x2n_i

RaT sinh \ M  cos \ M  T3b(M, M, /x2m, V2n-\)
M 3(sin M  +  sinh M)  sin |//2m cos ^//2n_ x

rr p / 2 „ 2   / c O S h / / 2n_ ! X  COS /J,2n —1%
H22 — / D w0 [ i i  1

J - 1/2 \CO Sh 5 /X2n_ i  COS |/i2n-l

2PaT sinh cos P 4e/(M , M, //2m, /-t2n-i)
M(sin M  +  sinh M) sinli j / /2m cosh \/i2n-\

2RaT cosh \M sin \M P3ef(M, M, /t2m, /¿2n-i) 
M(sin M  +  sinh M) sinh |//2m cosh \n2n-1

2PaT sinh cos P5de(M, M, /x2m, /i2„_i) 
M(sin M +  sinh M) sinh |//2m cos |/i2n_i

2PaT cosh \M sin \M S 2 c d ( f i 2m, M, M, /z2n- i )  
M(sin M  +  sinh M ) sinh |//2m cos |//2n- i

2RaT sinh cos\M S2cd(M, /¿2m, //2„_i, M) 
M(sin M  +  sinh M) sin |/t2m cosh |/i2n_i

2PaT cosh ^M sin P6de(M , M, /z2m, //2n- i )
M(sin M  +  sinh M ) sin |//2m cosh |//2n_i

2PaT sinh |M cos |M T3c(M, M, /¿2m, //2n- i )  
M(sin M  +  sinh M ) sin |/i2m cos |/i2n_i

2Par cosh sin |M T3b(M, M, /¿2m, /¿2n-i) 
M(sin M  +  sinh M ) sin |//2m cos |/t2n-i

sinh //2mx 
sinh |/i2m

rr p / 2 . / sinh //2mx sm it2mx\
/ f 23 =  / sin;2n — l)7rx ,------------ :—7-------

J-1/2  \sinh ¿//2m sin 7 M2m  /

P4a(//2m, (2n -  l)7r) 5 4 /((2n  -  1)tt, //2m)
sinh \n2r S in  5 / ¿ 2m

H-24
r l / 2

J —1/2
I / 2 /  sinh /x2mx  sin / / 2mx

sin2(n — 1 )7 t x  . , ,
V sinh P>ß2r. s in  f / Z 2„

(B.2.24)

sin//2mx\
-----7------  ax
S in  j / / 2 m  /

(B.2.25)

dx

(B.2.26)

d x
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S 4 a ( ^ 2 m , 2 ( n  -  1)tr) _  S4f(2(n -  l ) 7 T , / / 2m )

sinh \ll2m sin \ß2m

B.3 Integrals for T

For the integrals involving the even function in T :

[ l/2 / C O S h  fl2m— 1 ̂ COS fl2m—1 ^ |
c o s ( 2 m  —  l ) 7r x  d x

U  \,C O S h COS 2 / ^ 2 m — 1 /

— 2 7 r ( 2 m  —  1 ) ( — l ) m s i n [ 7r ( m  -  +  ^ 2m - i ]

7r2 ( 2 m -  I ) 2 +  ß2m—l COS 2 ß2m—! [ 7 r ( 2 m  -  1 )  +  / / 2m -

s i n [ 7 r ( m  —  | )  — 2 l̂ 2m— 1 ]

c o s ! / 4 2 m - i [ 7 r ( 2 m  - 1 ) ß2m—l]

F2 =  /  w0 sin(2m)7rx cos(2m — \)t t x dx
J- 1 / 2

RaT sinh ¡ ¡ M  cos ~M T3b(M, M ,  2rmr, (2m — l ) 7r) 
M 3(sin M  +  sinh M)

Rar cosh sin T3c(M , M, 2mvr, (2m — l ) 7r)
M 3( sin M  +  sinh M)

F3 =  r -  cosf ? .- '* - '| cos(2m -
J —1/2  \C O Sh 2  ß 2 n —\ COS  ̂/ /2 n —1 /

-2Tc(2m -  l ) ( - l ) m sin[7r(m -  |) +  ^//2n-i]
7T2(2m -  l )2 +  ß2n—l C0S |Ai2ri-l[7r(2m -  1) +  /¿2n-l

s in [ 7 r ( m  -  \ )  -  ^At2» - i ]

cos |/x2n-i[?r(2m -  1) -  [i2n- 1]

r 1/2 __
F4 =  / n;0 sin(2n)7rx cos(2m — l ) 7rx dx

2 - 1/2

/üa-rsinh cos T3b(M, M, 2mr, (2m — l ) 7r)
M 3 (sin M  +  sinh M)

cosh |M sin T3c(M , M, 2n7r, (2m — l )7r)
M 3(sin M  +  sinh M)

(B.2.27)

(B.3.1)

. (B.3.2)

(B.3.3)

(B.3.4)
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r1/2 / sinh ¡J,2mX _  sin /¿2mx \ 
1/2 l sinh \/l2m s in i/i2m/

For the integrals involving the odd function in T :

-  L
sin(2m)7rx dx

-47rm(—l ) r s in [7 r m  -  ^/jl2m\

47r2m2 +  n%m sin |/r2m[27rm -  /i2m]

sin[7rm +  |/u2m]
+  —

sin |/r2m[27rm +  /r2m]

/■ 1/2  ______

Fc =  / u;0 cos(2m — l)7rx sin(2m)7ra: dx
J-1/2

Fo.

r  i
(  sinh ¡jL2nx sin /r2nx\

J—1/2 \Sinh \/Ji2n sin \/l2n)
sin(277-:)7r2; dx

-47rm( —l ) r s in [7 r m  -  ± / r 2n]

4 7 r 2 m 2 +  / r 2n s i n  | / r 2 n [ 2 7 r m  - /x 2„ ]

s in [7 r m  +  | /r 2n] 

s in  | / / 2 n [2 7 rm  +  / r 2„ ] '
+

/ w;0 cos(2n — l)7rx sin(2m)7rx dx
X —1/2

F ar sinh |M cos T3b(M, M, 2m7r, (2n — l)7r) 
M 3(sin M +  sinh M)

Far cosh \M sin T3c(M, M, 2m7r, (2n — l)7r) 
M 3(sin M  +  sinh M)

B.4 Integrals for S

The parameters Ai and A2 used in the S integrals are

1 1  1 1\l =  sin - M  cosh - M  — sinh - M  cos -M ,
Lj Li ¿j £

A2 =  sin - M  cosh - M  +  sinh - M  cos -M .  
2 2 2 2

(B.3.5)

(B.3.6)

(B.3.7)

(B.3.8)

(B.4.1)

139



For the integrals involving the even function in S:

G  i S m  d s o  ( c° shf - ' *  _  cosf - ^ i  cos 2 ( m  -  l ) * z  d x
J - 1 /2  \cosh|/r2m- i  COS 2 ^ 2 m - l /

Ray S2a(n2m-u 2(m -  l)7r) 
Ras cosh \n2m-l

RaT2\\ S2cd(M, M, /¿2m_1,2(m — l)7r) 
Ras (sin M  +  sinh M) cosh |/i2m_i

RaT2,X2 S2gh(M, M, /i2m_i, 2(m — l)7r) 
Ra.? (sin M  +  sinh M) cosh |/i2m_i

Ray 52i(/i2TW-i ,  2(m -  l)7r)
R & s  COS 2 /^2m —1

RaT2X\ T3c(M , /t2m_i, M, 2(m — l)7r) 
R a is in  M  +  sinh M) cos |/i2m_i

RaT2X2 S2k(M, M, /i2m_i, 2(m — l)7r) 
Ras (sin M  +  sinh M) cos |/i2m_i

rl/2 ___
G* 2 =  / ic0sin(2m — l)7rrr cos 2(m — l)7nr</y

J — 1/2

RaT sinh cos |M T3b(M, M, (2m -  l)7r, 2(m -  l)7r) 
M 3 (sin M  +  sinh M)

RaT cosh sin T3c(M, M, (2m — l)7r, 2(m — l)7r)
M 3(sin M  +  sinh M)

(B.4.3)

^3 l ' /2 ( c° sh^ J _  cos 2(m -  lW j<te
7- 1/2 \ sinh ±/t2m sin 2/12771 /

S2a(n2m, 2(m -  l)7r) _  52?(/r2m, 2(m -  l)7r) 
sinh |/t2m sin |/i2m

(B.4.4)

G4 r D S 0 i 00811 -  C0Sf - ‘ Xl  cos2(m -  I W *
7 - 1 / 2  \ C O S h ^ /X 2n_ i  COS 2 /1 2 7 1 -1 /
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RaT S2a(fjL2n-i, 2(m — l)7r) 
Ras cosh \n2n-\

RaT2Ai S2cd(M, M, /x2„_ 1> 2(m — l)7r) 
i?as(sin M  +  sinh M) cosh \ß2n-i

Rar2A2 S2gh(M, M, ß2n-\, 2(m — l)7r)
flas(sin M  +  sinh M) cosh |//2n- i

RaT S2i(ii2n-u  2(m — l)vr)
Ras cos \/i2n- 1

Rcl t2\\ T3c(M, ß2n-i, M, 2(m -  l)7r) 
i?as(sin M  +  sinh M ) cos |//2n-i

RaT2X2 S2k(M, M, ß2n-i ,  2(m — l)7r) 
Ras(sin M  +  sinh M) cos \/i2n-i

(B.4.5)

r 1/2 __
G5 = w0sm(2n — l)nxcos2(m — l)nxdx

J-1/2

i?aT sinh cos T3b(M, M, (2n — 1)7T, 2(m -  l)7r)
M 3(sin M  +  sinh M)

cosh sin \M T3c(M, M, (2n — l)7r, 2(m — l)7r)
M 3(sin M  +  sinh M)

(B.4.6)

G6 =  _  c o s ^ x ' j  m _
J —1/2 \  S in h  2  d2n  S in  5  /

S2a(fi2n, 2(m  — l)7r) S2i(fj,2n, 2(m -  l)7r)

sinh |/i2n sin 5 A*2n
(B.4.7)

For the integrals involving the odd function in 5:

„  A1/2 -.-cr- /sinh H2mX sinii2mx\G7 =  /  DS0 — —j----------- — ------- sin(2m -  1)
J—i/2 \smh ^/i2m sin

RaT S4a(fj,2m, (2m -  l)7r) 
i?as sinh £/i2m

7TX dx
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RaT2Ai S4de(M, M, /¿2m, (2m -  1)tt) 
i?as (sin M  +  sinh M) sinh \n2m

RaT2A2 S2cd(ii2m, (2m -  l)7r, M, M) 
/2a5 (sin M  +  sinh M) sinh |//2m

Rar SAf{n2m, (2m -  l)7r)
Äa5 sin |/i2m

RaT2Ai S4h(M, M, /.i2m, (2m -  l)7r) 
i?as (sin M  +  sinh M ) sin ^/i2m

RaT2A2 T3b(M, /¿2m, (2m — l)7r, M) 
Z?as(sin M +  sinh M) sin |/i2m

rl/2 ___
G8 = wacos2(m — l)7rxsin(2m -  l)irx dx

J - 1 / 2

(B.4.8)

ßaT sinh cos |M T3b(M, M, (2m -  l)7r, 2(m -  l)7r) 
M 3(sin M +  sinh M)

Rüt  cosh |M sin \M T3c(M , M, (2m — l)7r, 2(m — l)7r) 
M 3 (sin M  +  sinh M)

(B.4.9)

G q
L

V2 ^sinh/i2m_io: sin//2m_ia;\
' H--------j---------  I sin(2m — l)7nrüa

1/2 \ C O sh  l a m - e o s  2 /^2 m — 1 ,

S4a(n2m-ii (2m 1)tt) ^ S4.f(/i2m—i, (2m l )77) ^g ^
cosh \ß2m- 1 cos \d‘2m—X

G
i /2 _  /sinh //2nx sin/x2rix '

10 =  /  DS0
2 - 1/21—1/2 \sinh |/i2n sin |/x2r]

ß ar 54a(/i2n, (2m -  l)7r) 
i?a5 sinh |//2n

i?ar2Ai ,g4(ie(M, M, ¿¿2n, (2m -  l)7r) 
Ras (sin M +  sinh M) sinh \p2n

RaT2X2 S2cd(ii2n, (2m — l)7r, M, M )

sin(2m — 1)7t x dx

+ Ras (sin M  +  sinh M) sinh |/x2r
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RaT S4f (/x2n; (2m -  1)tt) 
Ras sin \ii2n

Gn =

RaT2Ai 54/i(M, M, [i2ri, (2m — l)7r) 
i?as (sin M  +  sinh*M) sin ^ 2n

RaT2X2 T3b(M, ¡i2n, (2m — l)7r, M)
Ras(sin M  +  sinh M) sin \ß2n

r 1 / 2 ____
/  iü0cos2(n — l)7rxsin(2m — l)7rx<ix 
V-1/2

i?ar sinh cos T3b(M, M, (2m -  l)vr. 2(n -  l)7r) 
M 3( sin M  4- sinh M)

cosh sin T3c(M , M, (2m -  IW, 2(n — l)7r)

(B.4.11)

M 3 (sin M  +  sinh M)
(B.4.12)

G 12 -  L
1/2 Asinh/¿2n-l^ sin /^ n -l^ A
1/2 \C O Sh | / / 2 n - l  COS ¿ /Z 2n - 1  /

sin(2m — 1)7rx dx

S4a(/¿2n-i,(2m -l)7r) | 5 4 /( / j2n-i, (2m -  1)tt) 4 ^
cosh |w2n- COS I / Í 2 - - 1

B.5 Abbreviated Integrals

f 1T3b(a, b, c,d) =  / cosh ax sin ftx sin cx cos dx dx =
J - 1/2

a cos |(ft +  c +  d) sinh |a (ft +  c +  d) sin ¿(6 +  c +  d) cosh \a
2[a2 +  (b +  c +  d)2] 2 [a2 +  (b +  c +  d)2]

+

a cos 4 (ft +  c — d) sinh |a (ft +  c — d) sin \ (b 4- c — d) cosh 
2[a2 +  (ft +  c — i ) 2] 2[a2 +  (ft +  c — d)2]

g cos | (ft -  c +  d) sinh \a (ft — c +  d) sin | (ft — c +  d) cosh |a 
'  2 [ a 2 +  ( f t - c  +  d ) 2] +  2 [ a 2 +  (ft — c  +  c?)2]

a cos |(ft — c — o?) sinh (ft — c -  d) sin |(ft -  c — d) cosh |a
+  2[a2 +  (ft -  c -  d)2] " + 2[a2 +  (ft — c — d)2]

(B.5.1)
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r 1 /2
T3c(a, b, c ,d )=  / sinh ax cos bx sin cx cos dx dx =  

x —1/2

(6 +  c +  d) cos |(6 +  c +  d) sinh |a a sin Ub +  c +  d) cosh |a
2[a2 +  (& +  c +  d)2]

+
2[a2 + (b + c +  d)2]

(6 +  c — d) cos \{b -\- c — d) sinh a sin \(b +  c — d) cosh |a
+

+

+

2[a2 +  (b +  c — d)2] 2[a2 +  (b +  c — d)2]

(6 — c +  d) cos ~(b — c + d) sinh ^a a sin — c +  d) cosh ^a
2[a2 +  (b — c +  d)2] 2[a2 +  (6 — c +  d)2]

[b — c — d) cos \ (b — c — d) sinh a sin \ (b d) cosh
2[a2 +  (b — c — d)2] 2[a2 +  (b — c — d)2]

(B.5.2)

52a(a, fe) cosh ax cos bx dx

2[a cos |6sinh ^a +  6 sin ^bcosh |a] 
a2 +  62

f  1/2
S2cd(a, b, c, d) — / sinh ax sin bx cosh cx cos dx dx 

d —1/2

(B.5.3)

(cosh |a — sinh |a)(cosh |c +  sinh |c)[(i> +  d) cos |(6 +  d) +  (a — c) sin |(i> +  d)]
4(a2 — 2ac +  62 +  2 bd +  c2 +  d2)

(cosh |a — sinh |a)(cosh |c +  sinh |c)[(6 — d) cos |(6 — d) +  (a — c) sin |(6 — d)]
4(c2 — 2 ac +  ft2 — 2 bd +  c2 +  d2)

(cosh |a -  sinh |a)(cosh |c — sinh |c)[(6 +  d) cos ¿(6 +  d) +  (a +  c) sin \(b +  d)]
4(a2 +  2 ac +  62 +  2 bd +  c2 +  d2)

(cosh |a — sinh |a)(cosh — sinh \c)[(b — d) cos (̂b — d) +  (a +  c) sin |(6 — d)]
4(a2 +  2 ac +  62 — 2 bd +  c2 +  d2)

(cosh |a +  sinh |a)(cosh |c +  sinh ^c)[(b +  d) cos |(6 +  d) — (a +  c) sin \ {b 4- d)]
4(a2 -f 2ac +  ö2 +  2bd + c2 +  d2)

(cosh |a — sinh ¿a)(cosh +  sinh |c)[(6 — d) cos |(6 — d) — (a +  c) sin |(ö — d)]
4(a2 4- 2ac +  b2 — 2bd + c2 +  d2,'
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4 (a2 — 2 ac 4- b2 4- 2 bd 4- c2 4- gP)

(cosh \a 4- sinh |a)(cosh \c — sinh hc)[(b — d) cos Ub — d) +  (c — a) sin Ub — d)]

(cosh 4- sinh | a ;(cosh  |c — sinh |c)[(ö +  d) cos \(b -f  d) +  (c — a) sin \{b + d)\

4(a2 — 2 ac +  b2 — 2 bd 4- c2 4- cP)
(B.5.4)

If a ^  6,

S2i(a, b)
r 1/2
/J-l/2

cos ax cos bx dx

sin^(a +  6) ( sin^(a — b) 
a +  b a — b

N sin a 1 
» ( a ,  a) =  ^  + 2 - (B.5.5)

r l / 2
S2gh(a,b,c,d) =  / cosh ax cos bx cosh cx cos dx dx 

J-1/2

(cosh ^a +  sinh |a)(cosh |c 4- sinh |c)[(a 4- c) cos ¿(6 +  d) 4- (b +  d) sin \ {b + d)}
4(a2 +  2ac + b2 -f  2bd +  c2 +  d2)

(cosh ¿a 4- sinh ¿a)(cosh \c +  sinh |c)[(a +  c) cos ¿(6 — d) + (b — d) sin \ (b — d)]
4 (a2 +  2ac 4- b2 — 2 bd 4- c2 4- d2)

(cosh |a 4- sinh |a)(cosh \c — sinh |c)[(a — c) cos \ {b 4- o!) 4- (6 +  d) sin \ {b 4- d)]
4(a2 — 2ac + b2 + 2bd 4- c2 4- d2)

(cosh ^a 4- sinh |a)(cosh \c — sinh \c)[(a — c) cos |(6 — d) + {b — d) sin |(ö — rf)]
4(a2 — 2ac 4- b2 — 2bd + c2 +  d2)

(cosh |a -  sinh |a)(cosh \c 4- sinh |c)[(a — c) cos \{b 4- d) — (b +  d) sin \(b 4- d)]
4(a2 — 2ac 4- b2 4- 2bd 4- c2 4- d2)

(cosh \a — sinh ^a)(cosh \c 4- sinh |c)[(a — c) cos (̂b — d) + (d — b) sin (̂b — rf)]
4(a2 — 2ac 4- b2 — 2bd 4- c2 4- d2)

(cosh \a — sinh ^a)(cosh — sinh |c)[(a 4- c) cos |(ö 4- d) — (b 4- d) sin (̂b 4- d)\
4(a2 4- 2ac + b2 4- 2bd 4- c2 4- d2)
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(cosh |a sinh |a)(cosh — sinh |c)[(a 4- c) cos ~(b — d) 4- {d — b) sin (̂b — d)] 
4 (a2 4- 2ac 4- b2 — 2 bd +  c2 +  d2)

(B.5.6)

/• 1/2
S2k(a, 6, c ,d )=  /  cosh ax cos bx cos cx cos dx dx =

V —1/2

a cos ^(6 4- c 4- d) sinh ¿a (b +  c 4- d) sin |(6 -f c +  d) cosh |a
2[a2 +  (6 +  c -I- d)2]

+
2[a2 +  (b 4- c +  g?)2]

a cos |(& +  c - d )  sinh |a ^  (6 +  c — d) sin |(6 c — rf) cosh ^a
2[a2 +  (b +  c — d)2] 2[a2 4- (b 4- c — g?)2]

a cos ^(6 — c +  d) sinh |a ^  (6 — c 4- ci) sin |(6 - c +  rf) cosh |a
2[a2 4- (ft — c  +  g£)2] 2[a2 +  (b — c + d)2]

a cos 7j(b — c — d) sinh \a ^ (b — c — d) sin |(ft — c — d) cosh |a
2[a2 4- (b — c — of)2] 2[a2 4- (6 — c — d)2]

(B.5.7)

r i/2
54a(a, b ) =  sinh ax sin bx dx

J - 1/2

2a sin |6cosh |a 26 cos |6sinh |a
a2 +  b2 

-1/2 

- 1/2

a2 4- a2
r  1/2

SAdeia, 6, c ,d )=  /  sinh ax sin bx sinh cx sin c/x rfx
7 - 1 /2

(B.S.8)

(cosh ^a +  sinh |a)(cosh — sinh |c)[(a — c) cos |(ö 4- d) +  (6 +  d) sin \ {b + d)\
4 (a2 — 2ac 4- ö2 4- 26<i 4- c2 4- d2)

(cosh |a 4- sinh |a)(cosh |c — sinh |c)[(c — a) cos \ (b — d) + (d — b) sin |(6 — rf)]
4(a2 — 2ac +  b2 — 2 bd +  c2 +  d2)

(cosh ±a 4- sinh |a)(cosh +  sinh |c)[(a +  c) cos |(6 +  a) +  (b +  d) sin 4- d)]
4(a2 +  2ac +  b2 4- 2 bd +  c2 +  d2)

(cosh |a +  sinh |a)(cosh \c 4- sinh |c)[(d -  b) sin \{b — d) — (a +  c) cos |(6 — d)]
4(a2 4- 2ac +  62 — 2bd 4- c2 4- d2)

(cosh |a — sinh |a)(cosh |c — sinh \c)[(a 4- c) cos |(& 4- d) — (b + d) sin ~(b 4- d)]
4(a2 4- 2ac 4- b2 4- 2bd 4- c2 4- d2)
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4 (a2 +  2ac 4- b2 — 2 bd 4- c2 4- d2)

(cosh -  sinh |a)(cosh |c 4- sinh |c)[(a — c) cos |(6 4- d) — (6 4- d) sin 4(6 4- d)]
4(a2 — 2ac +  b2 4- 2bd 4- c2 4- d2)

(cosh — sinh 4a)(cosh |c 4- sinh 4c) [(c — a) cos 4(6 — d) 4- (6 — d) sin 4(6 — d)]

(cosh 4a — sinh |a)(cosh |c — sinh 4c) [(6 — d) sin 4(6 — d) — (a 4- c) cos 4(6 — d)]

If a ^  6,

4(a2 — 2ac + b2 — 2bd 4- c2 4- d2)

- 1/2f L54 /(a , 6) =  / sin ax sin bx dx
J-1/2

sin 7 (a —6) sin I (a 4 -c)

54/ ( 0, a)

a — b

1 sin a

a +  b

2 a

(B.5.9)

(B.5.10)

S4h(a,b,c,d) — / sinh ax sin bx sin ex sin dx dx =
4 - 1 /2

(6 4- c 4- d) cos 4 (6 4- c 4- d) sinh |a a sin 4 (6 4- c 4- d) cosh
2[a2 4- (b 4- c 4- d)2] 2[a2 4- (6 4- c 4- d)2]

+

(6 4- c — d) cos 4(6 4- c — d) sinh ¡¡a a sin 4(6 4- c — d) cosh |a 
2[a2 4-(6 4 -c — d)2] +  2[a2 4-(6 4 -c — d)2]

(6 — c 4- d) cos 4 (6 — c 4- d) sinh |a a sin 4 (6 — c 4- d) cosh |a 
2[a2 4- (6 — c 4- d)2] +  2[a2 4- (6 — c 4- d)2]

(6 — c — d) cos 4(6 — c — d) sinh 4a a sin 4(6 — c — d) cosh 4a
2[a2 4- (6 — c — d)2] 2[a2 4- (6 — c — d)2]

(B.5.11)

If a #  6,

r l / 2
Pla(a,b) — / cosh ax cosh bx dx 

J-1/2
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(cosh |a +  sinh |a)(cosh +  sinh |6) (cosh \a +  sinh |a)(cosh — sinh |6) 
2(a +  6) +  2(a — 6)

(cosh |a — sinh |a)(cosh \b +  sinh ¿b) (cosh |a - nnh |a)(cosh sinh b̂)
2 (a — b) 2 (a +  b)

, , (cosh \a +  sinh ^a)2 1 (cosh \a — sinh £a)2
4n + 2 ~ — -

(B.5.12)

r i/2
P3ef(a,b,c,d) =  / cosh ax sin 6rr sinh c:r cosh dx dx 

J-1/2

+

+

+

+

+

(cosh ¿a +  sinh |a)(cosh \c — sinh ^c)(cosh |d +  sinh \d)b cos \b 
4 (a2 +  2a(d — c) +  b2 +  e2 — 2cd 4- d2)

(cosh |a +  sinh |a)(cosh \c — sinh ^c)(cosh |d +  sinh. \d)(a — c + d) sin \b 
4(a2 +  2a(d — c) +  b2 +  c2 — 2cd 4- d2)

(cosh |a +  sinh |a)(cosh — sinh ^c)(cosh |d — sinh ^d)b cos 
4(a2 — 2o(c 4- d) +  b2 4- c2 +  2 cd + d2)

(cosh +  sinh ¿a) (cosh — sinh ^c)(cosh |d — sinh \d)(a — c — d) sin 
4(a2 — 2a(c +  d) 4- b2 +  c2 +  2 cd +  d2)

(cosh |o 4- sinh |a)(cosh |c +  sinh |c)(cosh |d +  sinh ^d)b cos 6̂ 
4(a2 4- 2a(c +  d) +  b2 4  c2 +  2 cd 4- d2)

(cosh +  sinh ^a)(cosh |c 4- sinh ^c)(cosh |d +  sinh |d)(a 4- c +  d) sin 
4(a2 +  2 a(c +  d) +  62 +  c2 +  2cd 4  d2)

(cosh |a +  sinh |a)(cosh 4- sinh |c)(cosh |d — sinh |d)6 cos 
4(a2 4- 2a(c — d) 4- b2 +  c2 — 2cd +  d2)

(cosh ¿a 4- sinh |a)(cosh |c +  sinh ^c)(cosh ^d — sinh ¿d)(a +  c — d) sin 
4 (a2 +  2a(c — d) +  b2 4- c2 — 2cd 4- d2)

(cosh |a — sinh |a)(cosh \c — sinh |c)(cosh ^d +  sinh ^d)b cos \b 
4(a2 4- 2a(c — d) +  b2 4- c2 — 2cd +  d2)

(cosh |a — sinh |a)(cosh \c — sinh |c)(cosh ¿d +  sinh \d)(a 4- c — d) sin 
4(a2 4- 2a(c — d) +  fr2 +  c2 — 2 cd +  d2)
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(cosh |a — sinh |a)(cosh \c — sinh |c)(cosh — sinh \d)bcos 
4 (a2 +  2a(c 4- d) 4- &2 4- c2 4- 2ch 4- gP)

4-
(cosh 7jd — sinh ^a)(cosh \c — sinh ic)(cosh ^d — sinh |d)(a +  c +  d) sin 

4(a2 4- 2a(c +  d) +  b2 4- c2 4- 2cd +  d2)

(cosh |a — sinh ^a)(cosh \c +  sinh |c)(cosh \d 4- sinh \d)b cos \b 
4(a2 — 2a(c +  d) 4- b2 4- c2 4- 2ch 4- d2)

(cosh |a — sinh |a)(cosh \c 4- sinh |c)(cosh 4- sinh |d)(a — c — d) sin b̂ 
4(a2 — 2a(c 4- a) 4- b2 4- c2 4- 2ch -i- d2)

(cosh \a — sinh ¿a)(cosh \c 4- sinh |c)(cosh \d — sinh |h)(a — c +  d) sin 
4(a2 4- 2a(d — c) 4- b2 +  c2 — 2ch +  d2)

(cosh |a — sinh |a)(cosh |c 4- sinh |c)(cosh ^d — sinh ^d)b cos
4 (o 2 4- 2a(d — c) 4- b2 4- c2 — 2cd 4- gP)

(B.5.13)

/■1/2
P4ef(a, b, c ,d )=  / sinh ax cos bx sinh cx cosh dx dx 

J-1/2

(cosh -2a 4- sinh |a)(cosh |c 4- sinh |c)(cosh 4- sinh |d)(a 4- c 4- d) cos 
4(a2 4- 2a(c 4- d) 4- b2 + c2 4- 2cd 4- cP)

+

+

(cosh \a 4- sinh |a)(cosh \c 4- sinh ic)(cosh ^d 4- sinh |d)ösin \b 
4(a2 4- 2a(c 4- d) 4- b2 4- c2 4- 2cd + d2)

(cosh |a 4- sinh |a)(cosh \c 4- sinh ^c)(cosh |d — sinh \d){a 4- c — d) cos 
4(a2 4- 2a(c — d) 4- b2 4- c2 — 2cd 4- d2)

(cosh |a 4- sinh |a)(cosh 4- sinh |c)(cosh |d — sinh ^d)b sin ¿6 
4(a2 4- 2a(c — d) + b2 + c2 — 2cd 4- cP)

(cosh |a 4- sinh |a)(cosh \c — sinh ^c)(cosh |d 4- sinh |d)(a — c 4- d) cos \b 
4(a2 4- 2a(d — c) + b2 + c2 — 2cd 4- d2)

(cosh |a 4- sinh |a)(cosh \c -  sinh ¿c)(cosh \d 4- sinh \d)b sin \b 
4(a2 4- 2a(d — c) 4- b2 + c2 — 2cd 4- d2)

(cosh \a 4- sinh |a)(cosh \c -  sinh ^c)(cosh \d — sinh \d)(a — c -  d) cos \b 
4(a2 — 2a(c 4- d) +  b2 4- c2 4- 2cd 4- d2)
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4-

+

+

(cosh |a 4- sinh |a)(cosh \c — sinh |c)(cosh \d — sinh \d)b sin \b 
4 (a2 — 2c(c +  d) +  b2 +  c2 +  2 cd +  d2)

(cosh |a — sinh |a)(cosh |c +  sinh |c)(cosh \d 4- sinh |d)(a — c — d) cos 
4(a2 — 2a(c +  d) 4- 62 4- c2 4- 2cd 4 d2)

(cosh |a — sinh |a)(cosh 4- sinh |c)(cosh ^d 4- sinh |d)ft sin 
4(a2 — 2a(c 4- d) 4- b2 4- c2 4- 2cd 4- d2)

(cosh \a — sinh |a)(cosh |c 4- sinh |c)(cosh |d — sinh |d)(a — c 4- d) cos \b 
4(a2 4- 2a(d — c) 4- b2 4- c2 — 2cd 4- d2)

(cosh r2a — sinh |a)(cosh \c 4- sinh |c)(cosh ^d — sinh \d)bsin ¿6 
4(a2 4- 2a(d — c) 4- b2 4- c2 — 2cd 4- d2)

(cosh |a — sinh |a)(cosh \c — sinh |c)(cosh |d 4- sinh |d)(a 4- c — d) cos 5̂ 
4(a2 4- 2a(c — d) 4- b2 4- c2 — 2cd 4- d2)

(cosh |a — sinh ^a)(cosh |c — sinh |c)(cosh \d 4- sinh \d)b sin 16 
4(a2 4- 2a(c — d) 4- 62 4- c2 — 2cd 4- d2)

(cosh — sinh |a)(cosh \c — sinh |c)(cosh 1d — sinh \d){a 4- c 4- d) cos 
4(a2 4- 2a(c 4- d) 4- Ö2 4- c2 4- 2cd 4- d2)

(cosh |a — sinh ^a)(cosh \c — sinh |c)(cosh ^d — sinh ^d)6sin \b 
4(a2 4- 2g (c  4- d) 4- 52 4- c2 4- 2cd 4- d2)

rl/2
P5de(a, b, c,d) =  / sinh ax cos bx sinh cx cos dx dx 

J  - 1/2

(cosh 4- sinh |a)(cosh |c 4- sinh |c)(a 4- c) cos |(ft 4- d)
4(a2 4- 2ac 4- 62 4- 2bd 4- c2 4- d2)

(cosh 4- sinh |a)(cosh 4- sinh |c)(i> 4- d) sin |(& 4- d)
4(a2 4- 2ac 4- 62 4- 2bd 4- c2 4- d2)

(cosh ¿a 4- sinh ^a)(cosh \c 4- sinh |c)(a 4- c) cos |(ö — d)
H' 4(a2 +  2oc + b2 -  2bd + c2 4- d2)

(cosh 4- sinh |a)(cosh \c 4- sinh |c)(6 — d) sin |(ö — d)
4(a2 4- 2ac 4- 52 — 2bd 4- c2 4- d2)
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(cosh +  sinh ¿a)(cosh \c — sinh |c)(a — cl cos |(6 4- d) 
4 (a2 — 2 ac +  b2 +  26c? +  c2 +  d2)

(cosh |a +  sinh |a)(cosh |c — sinh|c)(6 + a) sin |(6 4- c?) 
4 (a2 — 2ac 4- 62 4- 2 bd +  c2 +  d2)

(cosh +  sinh |a)(cosh — sinh \c)(a — c) cos ~(b — d) 
4(a2 — 2 ac +  b2 — 2 bd 4- c2 4- d?)

(cosh |a 4- sinh |a)(cosh |c — sinh |c)(6 — d) sin (̂b — d) 
4(a2 — 2 ac 4- 62 — 2 bd 4- c2 4- d2

(cosh ¿a — sinh |a)(cosh |c +  sinh |c)(a — c; cos \ (b + d) 
4 (a2 -  2ac 4- b2 4- 2bd + c2 +  d2)

(cosh |a — sinh |a)(cosh |c +  sinh |c)(6 +  d) sin \ {b +  d) 
4(a2 — 2ac 4- b2 4- 2 bd 4- c2 4- d2)

+
(cosh |a — sinh ^a)(cosh \c 4- sinh |c)(a — c) cos |(6 — d) 

4 (a2 — 2ac +  b2 — 2 bd +  c2 + d2)

(cosh \a — sinh |a)(cosh \c 4- sinh \c)(d — b) sin |(6 — d) 
4(a2 — 2 ac +  b2 — 2 bd + c2 4- d2)

(cosh |a -  sinh ¿a)(cosh \c — sinh \c)(a 4- c) cos |(6 4- d) 
4(a2 4- 2ac 4- b2 4- 2 bd +  c2 +  d2)

+
(cosh |a — sinh |a)(cosh \c — sinh |c)(6 4- rf) sin |(6 4- d) 

4(a2 4- 2 ac 4- 62 4- 2 bd 4- c2 4- g?2)

(cosh |a — sinh |a)(cosh |c — sinh |c)(a 4- c) cos |(6 — d) 
4(a2 4- 2ac 4- 62 — 26c? 4- c2 +  e?2)

(cosh |o — sinh |a)(cosh |c — sinh \c)(d — b) sin ¿(6 — d) 
4(a2 4- 2ac 4- 62 — 2bd 4- c2 4- d2)

(B.5.15)

P6de(a, 6, c, cosh ax sin bx sin cx cosh dx dx
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(cosh |a -  sinh ^a)(cosh |d 4- sinh |d)(a — d) cos |(6 +  c) 
4 (a2 — 2 ad +  62 +  2 be +  c2 +  d2)

+

+

+

+

(cosh |o — sinh |a)(cosh ^d +  sinh |d)(6 +  c) sin |(6 +  c) 
4 (a2 — 2ad +  62 +  26c +  c2 +  d2)

(cosh |a — sinh |a)(cosh ¿d +  sinh \d){d — a) cos |(6 — c) 
4(a2 — 2ad + b2 — 2be -t- c2 +  d2)

(cosh |a — sinh ^a)(cosh |d +  sinh |d)(6 — c) sin |(6 — c)
i p ^ ^ T + ^ ^ ^ c T c ^ T d 2)

(cosh |a — sinh ¿a) (cosh ^d — sinh ^d)(a +  d) cos |(6 +  c) 
4(a2 +  2 ad +  62 +  2 be +  c2 +  d2)

(cosh ¿a — sinh |a)(cosh |d — sinh |d)(6 +  c) sin \ {b +  c) 
4(a2 +  2ad +  b2 +  2 be +  c2 +  d2)

(cosh — sinh ^a)(cosh ^d — sinh |d)(a +  d; cos |(6 — c) 
4(a2 +  2 ad +  62 — 2 be + c2 +  d2)

(cosh |a — sinh |a)(cosh |d — sinh \d)(b — c) sin ¿(6 — c) 
4(a2 +  2 ad +  62 — 2 be +  c2 +  d2)

(cosh |a +  sinh |a)(cosh |d +  sinh |d)(a +  d) cos ¿(6 +  c) 
4 (a2 +  2 ad +  62 +  2 be +  c2 +  d2)

(cosh +  sinh |a)(cosh |d +  sinh |d)(6 +  c) sin |(6 +  c) 
4(a2 +  2ad +  62 4- 26c +  c2 +  d2)

(cosh +  sinh ¿a)(cosh ^d +  sinh |d)(a +  d) cos |(6 — c) 
4(a2 +  2 ad +  62 — 26c +  c2 +  d2)

(cosh |a +  sinh ^a)(cosh \d +  sinh \d)(c — 6) sin |(6 — c) 
4(a2 +  2 ad +  62 — 26c +  c2 +  d2)

(cosh |a +  sinh |a)(cosh |d -  sinh |d)(a -  d) cos |(6 +  c)
4(a2 — 2 ad +  62 +  26c +  c2 +  d2)

(cosh ~a +  sinh |a)(cosh \d -  sinh ¿d)(6 +  c) sin ¿(6 +  c)
4(a2 — 2ad +  62 +  26c +  c2 +  d2)
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(cosh \a +  sinh |a)(cosh \d — sinh \d){d — a) cos |(6 — c) 
4 (a2 — 2 ad +  62 — 2 be +  c2 +  g?2)

(cosh |a +  sinh |a)(cosh |d — sinh |ci)(c -  £; sin |(6 — 
4(a2 — 2ad +  62 — 26c +  c2 +  tf2)

HB.5.16)

If a 6,

r l / 2
P7(a,b) =  / sinh ax sinh bx dx

J-1/2

+

(cosh |a +  sinh ¿a)(cosh \b +  sinh |6) (cosh \a +  sinh |a) (cosh ^6 — sinh |6) 
2(a +  6) +  2(6 — a)

(cosh ~a — sinh |a)(cosh \b +  sinh \b) (cosh |a -  sinh ^a)(cosh \b — sinh ^6) 
2(a — 6) 2(a +  6)

(cosh |a +  sinh |a)2 1 (cosh — sinh |a)2
P7(a, a) =

4a 4a
(B.5.17)
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Appendix C

Small a

This appendix refers to the small a asymptotics section of chapter 5 which 

is divided into three parts. The first part looks into the solution of ipo. The 

next two parts evaluate the two integrals from equation (5.2.24) in order to 

give the two expressions for f(R as,r)  and g(Ras,r).

C .l Solution

From the leading order problem we derived a fifth-order differential equation 

in order to find a solution to ip0. The method used in solving this inhomoge-

neous ordinary differential equation

D5'ip0 +  ~~~ D'tpo =  - i ^ ^ w Z ( x ) S - 1, (C.1.1)T T

is more tedious than complicated. We first express i/’o, bearing in mind it is 

an even function, into two parts: the complementary function, i/’o and the 

particular integral, ipoP, :

ipoCF =  A1 + B1 cosh(Mx) cos(Mx) + C' sinh(Mx) sin(Mx), (C .l.2) 

ip0pi — D'xsmh(Mx) cos(Mx) 4- E'xcosh(Mx) sin(Mx). (C .l.3)
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Substituting (C.1.3) into the left of (C.1.1) gives,

D54)0p/ H-------D^Opi =  ~ 16D'Ma sinh(Mx)  cos(Mx)
T

— 16E1 M* cosh(Mx) sin(Mx). (C.1.4)

Similarly we express the right of (C.1.1) using the background state of wa 

from (2.8.23) giving,

Ras __ i4MS-iRaT
-i------=

T (sinh M  +  sin M)
M M

— cosh(Mx) sin (Mx)  sinh( — ) cos(—-)
Z  Z

+  cos {Mx)  sinh(Mx) sin(^-) cosh( — ) }> .(C.1.5)
Z  Z

Comparing similar terms from (C.1.4) and (C.1.5) we obtain

, — i S-1 RaT sin y  cosh y
^  4 M 3 (sin M  4- sinh M)

and

E
, i S-i  RaT sinh y  cos y  

4 M 3 (sin M  +  sinh M)

(C.1.6)

(C.1.7)

From the boundary conditions ipo =  0o =  =  0 on x =  ±| , we get

, . . , M M  , M  . M
t/)0 (±1 /2 ) =  >1 +  B cosh —  cos—  + C sinh —  sm —

Z  Z  Z  Z

+  V’Qp/ (=±1/2) =  0, (C. 1.8)

M M  M M
■00 ( ± 1/ 2) =  B' M sinh —- cos —— 5 'M  cosh —- sin —z z z z

. M . M , . M M
+  C M  cosh —  sin —  +  C M  sinh —  cos —  

2 2 2 2

+  « „ ( ± 1 / 2 )  = 0 , (C.1.9)

0ou(± l /2 )  =  -4 B 'M a cosh ^  cos -  4C"M4 smh —  sin —

+ < ,(± 1 /2 )  =0, (C.1.10)
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where

< ,( ±  1/2)

< , ( ± 1 / 2 )

D' M M E' M . M 1 \  1 i \—  s in h y  cos — +  y  c o s h y  s ; n y ,  (C.1.11)

, M M  , M M
D sinh —  cos —  +  —-M  cosh — cos —  

2 2 2 2 2

U . .  . , M . M  , M  . M
-------M  smh —  sin------\- E cosh —  sin —

2 2 2 2 2

E' M M E ' f M M
H----- M  sinh —  sin — +  — M cosh —  cos — ,

2 2 2 2 2 2
(C.1.12)

and,

M M
< , ( ± 1 / 2 )  =  S D 'M 6 sinh —  sin

V  l\/f4

P ' ,

M M
—  cos —
2 2

M  . M
—  sin —
2 2

V A/f 3

P' A/f3

P' ü /f 4

M M
—  cos —  
2 2

M M
l Y cos —  

2

M . ML --- sin — .

Substituting the values of D' and E' into the above gives

tVp, (±1 /2 ) =  0,

i , . z5 -1̂ aT(sinh M  -  sin M) 
/ j ~  16M2(sin M  +  sinh M)

and

Hence

< , ,  (±1 /2 ) -  iS-iRaT-

< , ( ± 1 / 2 )
4M 4

iS-iRar 
4M 4 ’

M M
B' =

A' =

< , ( ± 1 / 2 ) ____________
4M 4 cosh Y  COS Y  cosh y  cos Y

iS-iRar [4(sinh M  +  sin M )2 — sinh y  sin y ^ i 
16M4(sinh M  +  sin M )2 cosh y  c o s y

(C.1.13)

(C.1.14)

(C.1.15)

(C.1.16)

(C.1.17)

C" sinh y  sin 2
~M~

(C.1.18)
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and

c  =
ipovPI{±  1/2) cosh y  sin y  -  ^ " , ( ± 1 /2 )  sinh y  c o s  y  

2M4(sinh M  +  sin M)

ipl0pi (±1 /2 )4M 3 cosh y  cos y  
2M4(sinh M  +  sin M)

i S  —\ R clt C  \

16M4(sinh M  +  sin M )2 ’
(C.1.19)

where

C1
M M 3 M M
2 2 2 2

CO 3 M  , M
+  4 sin —  sinh-----

2 2
— 4 sin-----sinh —

2 2

M  , 3 M M  , 3  M
— 4 cos —  cosh-----

2 2
— M  cos —  sinli-----

2 2

M  , M

cc

— M cos —  sinh —  
2 2

„  . M M + M  sin —  cosh — . 
2 2

+  M  sin-----cosh —
2 2

(C.1.20)

C.2 Function /(Ras, r)

In this section we integrate all the terms in the full salinity equation across 

the slot. One of the contributions is

/ .
1/2

1/2
i a DS0 yjo dx, (0 .2.1)

where the function f (Ras,r)  is obtained. We first concentrate on the terms 

for the background salinity gradient and the leading order ip0. This re-

quires the solution to ipo from (5.2.16) and the background state of DSa 

from (2.8.22). This contains a series of integrals involving the combinations 

of hyperbolic and trigonometric expressions giving,

C D X  * d x =C [4‘ - 2421 ̂  (c-2'2)
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where

$ i =  A +  B cosh(Mx) cos(M x) +  C sinh(M^) sin(Mrr)

+Dxsinh(Mx) cos(Mx) -f Ex cosh(Mx) sin(Mx), (C.2.3)

and

_ $1 f . M , M . . . . . . . . . .  .< sin —  cosh —  sm h(M i) sm (M i) 
l — 2sinh M  +  sin M

M M
+  sin —  cosh —  cosh(M:r) cos(Mx) 

2 2

M M
+  sinh —  cos —  cosh(Mx) cos {Mx) 

2 2

— sinh —  cos —  sinh(Mx) sin(Mx) | .

(C.2.4)

Hence the required integral gives

rl /2

/ i a DS0 ipo dx
- 1/2

i a . iS-iRa  ̂ f 1'2 
A t M 4

a S -1 R.cij

/  ($i -  2d>2)dx
2 - 1/2

4 rM 4
f (Ras ,r),

where

Z-l/2
/ (Ras , t ) =  /  (4>! -  2d>2) dx

2 - 1/2

— H +  B I\ +  C/2 +  -D/3 + E li

(C.2.5)

2 sin 4f cosh
------------------- 77 <

AI[ +  BI'2 +  C7' +  DI\ +  £ / '
>

sinh A2 +  sin M + a i '6 +  b i '7 +  cr2 + D/g +  £ / '

2 sinh y  cos y A/ß +  ß /7 +  C /2 +  22/g +  Elg
sinh M  +  sin M —AI[ -  BI'2 -  CI3 -  DI ' -  EI> (

(C.2.6)

158



The expressions of 1[_ u are given later in this appendix. The cor-

responding determinants are the same as those expressions already seen in 

(5.2.17) for A, B , C, D and E which are applied both in this part and the next.

C.3 Function g(Ras, r)

Here we look at the second contribution resulting from the integration of the 

full salinity equation across the slot and the integral

/ •1/2 ___
/ i a w0 So dx, 
J-1/2

(C.3.1)

from which the function g(Ras,r ) is obtained. We first consider the back-

ground velocity and the leading order So in the integral. This can be re-

arranged using D4ip0 + RasDS0 =  0 and gives

/
1/2

1/2
w0 Sq dx

/_
1/2 _ 1  

1/2 R a s
(woD 3ip0) du (C.3.2)

But

D3̂ 0 =  i S -1 Rüt  |—2 B M 3 cosh (Mx) sin (M i) — 2BM3 sinh(Mx) cos (M i) 

+  2CM3 sinh(Mx) cos (M x) — 2CM3 cosh(M:z) sin(Mx)

- 6 D M 2 cosh (M r) sin (M x) — 2 D M 3x sinh(M:r) sin(Mx)

— 2DM3x cosh(Mx) cos (M i) -I- 6EM2 sinh(Mx) cos(M x)

+  2EM3x  cosh(Mx) cos(M x) — 2EM3x sinh(Mx) sin(M x)} ,

(C.3.3)

and

w0
i?aT(cosh M i  sin M i  sinh ^  cos — cos Mx  sinh Mx  sin y  cosh )

M 3 (sin M  +  sinh M)
(C.3.4)
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We multiply D3ip0 with vE and then integrate across the slot. Again this 

produces a sequence of hyperbolic and trigonometric expressions. These are 

evaluated to give

— 1 r1/2 __ 3 —iS-iRa^
Ras J-1/2 W° X Ras M 3 (sin M  +  sinh M)

r M M . M M 
sinh —  cos —  X 0 +  sin —  cosh — ya

where

x 0= -  2BM\I'W +  / ' )  +  2CM 3( / ' -  / ; 0) 

-  6D M 2(I'l0) -  2D M \ rb +  / ' )

+  6EM2(I2) +  2EM3(Ig — I'5),

and

y0 =  2BM3(I2 +  /n )  — 2CM 3( /[1 — /£)

+  6DM2(I2) +  2DM3(I'4 +  /g)

-  -  2£ M 3( / ' -  / ') .

Hence the required integral gives

/ i a w0 So dx
J—1/2

ia . z5_ii?a^[sinh y  cos f X 0 +  sin y  cosh y y 0] 
f?asM 3(sinh M  +  sin M)

aS-iRa^g(Ras, r)
Ras M 3 (sin M  +  sinh M) ’

where

. M M . M  , M
g(Ras , r) =  smh —  cos — A 0 +  sm "y  cosh ~2 Vo'

(C.3.5)

(C.3.6)

(C.3.7)

(C.3.8)

(C.3.9)
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r l/2
I' =  xsinh2(M x) sin(Mx) cos(Mx) da

4 -1/2

sinh M  sin M — cosh M  cos M  sinh M cos M
16 M 16 M 2

sin2 — 1 sin M
4M +  8M _  8M 2 ’

r  1/2
=  / x sinh(Mx) cosh(Mx) sin2(M x) hx

i - 1/2

+

cosh M  cos M — 2 cosh M  +  sinh M  sin M  
16M

cosh M  sin M — 2 sinh M
16M2

4
/■ 1/2
/ cosh(Mx) cos(Mx)

4 - 1 /2
dx

cosh y  sin y  +  sinh y  cos y
M

h,

f l / 2
/  ccsh2(M x) cos2(Mx) hx 

4 - 1 / 2

cosh M  sin M  +  sinh M  cos M  +  2 sinh M
8M

sin M  1
4M +  4 ’

4
r l / 2

=  /  xsinh(M x) cosh(Mx) cos2(M x) dx
4 - 1 /2

cosh M  cos M + 2 cosh M  +  sinh M  sin M 
16M

cosh M  sin M  +  2 sinh M 
16M2 ’

ri/2
I' =  x coslr(M x) sin(Mx) cos(M x) dx

4 - 1 /2

(C.3.17)

(C.3.18)

(C.3.19)

(C.3.20)

(C.3.21)

(C.3.22)

(C.3.23)
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sinh M  sin M  — cosh M  cos M
16M

sin2 f  
1 Z

1 sin MI
' 4M 8M  8M 2 ’

+
sinh M  cos M  

16 M 2

and,

r 1/2
/ i 0 =  /  cosh2(M x) sin2(M x) dx

J—1/2

sinh M  cos M  cosh M  sin M
8M 8M

sinhM 1 sinM  
+  4M +  4 _  4M ’

r 1/2
/i, =  / sinh2 (M i) c o s 2 (Mrc) dx

V —1/2

sinh M  cos M  +  cosh M  sin M  +  2 sinh M
8M

1 sin M 
4 4M

(C.3.24)

(C.3.25)

(C.3.26)
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