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Abstract

Using a modern Bayesian implementation technique, this thesis 

shows two applications of individual modelling in real data sets. The 

simulation approach is adopted, with a Markov chain Monte Carlo 

(MCMC) method -  Reversible Jump MCMC -  as the core of the thesis. 

This technique allows the definition of a model with few underlying 

assumptions and based on a changing-dimension parameter set.

Its first application is in automobile insurance, where the model 

estimates at the same time the number of groups and their respective 

risk parameters in order to have a better description of the analysed 

data. Since all this process is based on a continuous piecewise 

distribution, no obvious analytical solution for this type of problem is 

available. RJMCMC is the only stochastic simulation that allows this 

change of dimensionality.

The flexibility of this model is explored in the second application 

presented in this thesis. In this new case, the aim is not to define the 

number of groups, but to use a limited number assumptions to model 

the claim reserves in a dental insurance coverage.

Both applications model frequency and severity separately and 

apply the grouping technique to both discrete and continuous variables.
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Chapter 1

Introduction

There are many models in actuarial science for estimating reserves, 

premium rating and many other risk assessment problems. In general 

insurance most of these models are based on data aggregated in some way, as 

is also the case in reinsurance, life assurance and pensions. Beside 

aggregating, most of these models also use quite limiting assumptions. There 

are few models that use a process based approach, looking at individual 

information underlying behaviour.

As statistical techniques develop, they facilitate the application of 

refined models and this thesis explores these new possibilities. In the area of 

Bayesian statistics, a new stochastic simulation technique has been recently 

developed -  Reversible jump Markov chain Monte Carlo (RJMCMC). This 

technique has the ability of implementing models where the length of the 

parameter vector is not fixed and it will be fully defined in section 2.2.3.

This implementation technique does not have yet any published 

application in general insurance that the author is aware of. Thus, the core of 

this thesis is the application of Bayesian statistics modelling and RJMCMC to 

two risk assessment problems, where the data are not aggregated, but kept at 

an individual level. Also, besides the individual data structure, the models do 

not have a fixed number of parameters.

The first application on this thesis, in Chapter 5, is on age grouping, 

when age is measured in days and considered continuous. The data are on 

automobile insurance and were also analysed in Verrall and Yakoubov (1999), 

where the continuity assumption was dropped and only full years were 

considered. The second application is to dental claims data, in Chapter 6 ,
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where the main objective is the definition of IBNR (Incurred But Not Reported) 

and RBNS (Reported But Not Settled) reserves. The data are on dental 

insurance and were also analysed in Arjas and Haastrup (1996), but 

implemented via Arjas and Gasbarra (1994) instead of RJMCMC.

1.1 Bibliographical review

Bayes theorem was first introduced in 1763, but it was in the last 20 

years that a wider range of its applications has occurred. The growth in 

applications in this area is due to the development of stochastic simulation 

techniques of the Markov chain Monte Carlo (MCMC) class, which allow the 

applications of most of the Bayesian statistical models.

Metropolis-Hastings (Metropolis et all (1953); Hastings (1970)) were the 

pioneers on MCMC, and the methodology was further developed to Gibbs 

sampling (Geman and Geman (1984); Gelfand and Smith (1990)), which is now 

the widely used technique of this class of simulation. A good textbook on these 

implementation techniques is Gamerman (1997). Reversible jump Markov 

chain Monte Carlo (RJMCMC) (Green (1995)) is a newly developed technique 

and it is applied to some real data in Green and Richardson (1997), 

Dellaportas, Karlis and Xekalaki(1997) and Denison, Mallick and Smith 

(1998).

Actuaries were among the first prs.ctitioners to use the Bayesian 

philosophy, which is the basis of credibility theory published by Mowbray 

(1914). Although this theory is fully based on Bayes theorem, it was not until 

1950 that a more theoretical approach exploring its origin was used (Bailey 

(1950)). Credibility theory is the main actuarial technique based on Bayesian 

statistics and many papers were published throughout the years (Buhlmann 

(1967), Buhlmann and Straub (1970), Buhimann and Jewell (1987), Jewell 

(1974, 1975, 1976), Kremer(1982), Sundt (1982, 1983, 1987), Pereira(1998) 

are some examples).

Including not only credibility theory but also some other applications, 

Klugman (1992) and Liu, Makov and Smith (1996) give a review of Bayesian 

models in actuarial science. With the development of Bayesian statistics some 

new applications have appeared in actuarial science in claims reserving 

(Verrall (1990), Charissi (1997), Dellaportas and Ntzoufras (1997)) and 

graduation (Carlin (1992), Kouyoumoutzis (1998)). These models included 

more information about the value and structure of the parameters via the
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prior distribution, and many of them use stochastic simulation methods. 

Boskov and Verrall (1994) use a two dimensional smoothing model to estimate 

a premium by postcode area, bringing a more elaborate model to the 

ratemaking process.

In parallel to these cited applications, some new ideas about the 

processes involved in claim development have appeared. The works of Jewell 

(1989, 1990) review the claim process, with the earlier paper considering 

continuous time, but not including the values of payment. This idea is 

reformulated in Norberg (1992, 1993, 1999), where the full process of 

occurrence, delay of reporting and partial payment of a claim are considered in 

the model. The process proposed is these papers is applied in Arjas and 

Haastrup (1996).

1.2 Thesis outline

The first chapter is the introduction. Chapter 2 includes a brief review 

of Bayesian statistics and the implementation techniques used in this work. 

Also in Chapter 2, Markov chain Monte Carlo (MCMC) simulation techniques 

are explained, including Metropolis-Hastings, Gibbs Sampling and RJMCMC.

In the third chapter a review of Bayesian modelling in actuarial science 

is presented. This chapter is a revised version of Pereira (1999) which was 

awarded the Highly Commended award on the Brian Hey Prize competition 

1999, held by the English Institute of Actuaries. Sections on credibility, claims 

reserving and graduation are presented, showing the development of models in 

this area with the advent of stochastic simulation (mainly applications using 

Gibbs sampling). Finally in Chapter 3 a section about modem Bayesian theory 

is given.

Chapter 4 contains the theoretical framework for the thesis, with the 

models used in this work. This chapter also includes the explanation of the 

basic model, which is the basis of the applications presented in this thesis. 

This model is built straight from the Bayesian philosophy. Since the model 

looks at the development of the claim it can be used to monitor different 

aspects in this process. In this wrork the same model will be applied in two 

different types of risk assessment and its applications will be seen in Chapters 

5 and 6 .

The implementation technique presented in Chapter 2 and the basic 

model considered in Chapter 4 are put together and applied to two real data

13



sets in different types of risk assessment. The first application is in 

aggregation (or transformation into factors) of a continuous variable and is 

fully explained in Chapter 5. Chapter 6 is the application to claims reserving, 

an extension of the work from Arjas and Haastrup (1996) (also explored in 

Haastrup (1997)), where the claims reserves are obtained via data using 

individual information. Chapter 7 is the thesis conclusion, presenting some 

ideas of future research as well.
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Chapter 2

Bayesian framework

Bayesian theory has been one of the most discussed and developed 

branches of statistics over recent years. There have been an enormous 

number of papers published by a large number of statistical researchers and 

practitioners (see Gilks et al (1996) for some references and applications of 

Metropolis-Hastings and Gibbs sampling). These recent developments are 

mainly due to, firstly, the failure of classical statistical methods to give 

solutions to many problems and, secondly, to the computer developments that 

have made it easier to perform calculations by simulation.

The models used in this thesis are fully based on Bayesian theory, and 

for this reason this second chapter presents an overview from basic concepts 

to new techniques. Most of the following sections can be found in 

DeGroot(1986) and Gamerman(1997). In this chapter no application to 

actuarial science is presented, but only the theoretical statistical background.

The first section of this chapter reviews some of the foundations and 

basic results of Bayesian statistics. Section 2.2 explain the Markov chain 

Monte Carlo class of simulation, including more specific sections for 

Metropolis-Hastings (2.2.1), Gibbs Sampling (2.2.2) and Reversible jump 

MCMC (2.2.3). In each of these sections an algorithm is presented and in the 

section referred to RJMCMC a bibliographical review is also included. In the 

last section a chapter conclusion is presented.
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2.1 Basic concepts in Bayesian theory

As is well known, probability theory is the foundation for statistics, with 

the differences in the interpretation of the term probability also defining the 

respective differences in statistical theories. The subjective interpretation of 

probability, the basis of Bayesian theory, states that the probability that an 

analyst assigns to a possible outcome of a certain experiment represents his 

own judgement of the likelihood that a specific outcome will be obtained. This 

judgement is based on the analyst’s beliefs and information about the 

experiment. As a contrast, frequency statistics, for example, do not include 

formally this judgement but only the information received from the 

observation set itself.

Bringing these interpretations to the inference problem of estimating a 

specific parameter, Bayesian statistics differs clearly from the others. In 

classical and frequency statistics the analyst is searching for a best estimator 

of a parameter that has a true fixed value, which is unknown at the moment 

of modelling. In Bayesian statistics the analyst does not believe in this true 

fixed value, but in a range represented by the previous information that he 

has and includes via the prior distribution.

The recognition of the subjective interpretation of probability has the 

effect of emphasising some of the subjective aspects of science. It also defines 

a formal way of including judgement in the model. This subjective information 

is included in the model by defining a prior distribution for the unknown 

parameters.

Bayes theorem is the formal mechanism of incorporating prior 

information into the modelling. The theorem mixes the prior subjective 

information with that observed in the experiment, producing a posterior 

distribution. This last distribution is considered as an update of the previous 

judgement (prior) through the data observed (likelihood).

More formally, Bayes theorem is defined as follows. Consider a process 

in which observations (7 is the vector of observations) are to be taken from a 

distribution for which the probability density function is p(Y |G), where 0 is a 

set of unknown parameters. Before any observation is made, the analyst 

would include all his previous information and judgements of 0 in a prior 

distribution p(0), that would be combined with the observations to give a 

posterior distribution p (0 | Y) in the following way:

p (0 |Y) cc p(Y|0 )p(0 ) (2 .1 )
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The complete definition of Bayes theorem is given by the normalisation 

constant, which is equal to the predictive distribution defined by the following 

formula (integrals are of the Riemann type throughout the thesis):

p (Y t)= j p(Yp)p(&)cB  (2 .2 )

This distribution is used to perform predictions (explaining its 

nomenclature) about future samples of Y (denoted by Fj, while the posterior 

distribution is used to make inference about the parameter 9.

It can be difficult to define a prior distribution and even harder to 

justify the choice. In fact, it is one of the most controversial elements in 

Bayesian statistics. Many ways of defining this distribution have been 

proposed, but ideally the prior distribution and the values of its hyper-

parameters should be chosen independently of the data and, together with the 

observational distribution, complete the model. Then, in a perfect world the 

posterior and predictive distributions are fully defined as well. This would be a 

Pure Bayes approach, and any estimation of 0 is defined only after having all 

information to hand. If a point estimate is the analyst’s objective, for instance, 

then a loss function is chosen and the respective value (mode, mean, as 

examples) is calculated from the posterior distribution. A fully defined 

posterior distribution contains all the information about the parameter, and 

given this completeness of information, it is argued that Bayesian theory gives 

a better description of the parameter.

Unfortunately it is usual that in Bayesian statistics much more 

calculation is needed to achieve an estimator of 0, and in many cases it is not 

even possible to derive the analytical form of the posterior distribution. In 

order to avoid such difficulties many analysts would use the concept of the 

conjugate prior distribution. This type of prior distribution relates to the 

structure of the observational distribution and reapplies this to the prior 

distribution. In this way it facilitates the calculations.

If the analyst does not want to include prior information, but does want 

to use a Bayesian approach, it is possible to use a non-informative prior. 

There are many ways of defining a non-informative prior where the main 

objective is to give as little prior information about the parameters as possible 

(Gamerman and Migon (1993), DeGroot (1986)). Some ways to use non- 

informative prior are the following:

• Jeffrey’s information technique;

• a uniform prior distribution;

• a prior distribution with a large value for the coefficient of variation;

17



• parameters of the prior distribution based on a set of data.

The use of observed data in the prior is called empirical Bayes 

estimation. This gives greater weight to the data than the pure Bayesian 

approach, and the prior distribution has a frequency interpretation instead. 

The term empirical Bayes is sometimes also used for some of the non- 

informative prior procedures, a term defined by Klugman (1992) as “any 

method that attempts to shortcut one of the Bayesian steps.”

Theoretically, a prior distribution could be included for all the 

parameters that are unknown in a model, so that any model could be 

represented in a Bayesian way. However, this often leads to intractable 

problems (mainly integrals without solutions). So the main limitation of 

Bayesian theory is the difficulty, and in many cases the impossibility, of 

analytically solving the required equations.

In such cases an approximation for the posterior of 9 is necessary. To 

overcome those problems many approximations techniques can be used, such 

as Gauss Hermite, or Gaussian quadrature. But of greater importance and 

application are Markov chain Monte Carlo (MCMC) methods. In the last few 

decades this stochastic simulation technique has been developed in order to 

solve this problem and to obtain estimates of the posterior distribution. These 

techniques were turning points for Bayesian theory, making it possible to 

apply many models that otherwise could not have been applied. The essence of 

MCMC methods is that by sampling from specific simple distributions (derived 

from the combination of the likelihood and prior distributions), a sample from 

the posterior distribution is obtained in an asymptotic way. The next section 

explains MCMC methods in more details.

2.2 Markov chain Monte Carlo methods

Markov chain Monte Carlo (MCMC) is a class of stochastic simulation 

techniques for the derivation of the posterior distribution of a specific vector of 

parameters 0. Stochastic simulation means that instead of deriving the 

posterior distribution analytically a large sample of the set of parameters is 

obtained, where the sample is random and based on the characteristics of the 

model. With this large sample of 0 many summary statistics can be calculated 

in order to draw conclusions about the posterior distribution, which it may not 

be possible to obtain in analytical form. The MCMC technique is particularly
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useful when the parameter vector has a high dimension or when the analytical 

solution for the posterior distribution is not available.

The essence of this method is that, in an asymptotic way, it is possible 

to sample from the posterior distribution, and if a large sample is taken, a 

good approximation to the required posterior distribution is achieved. Thus, 

the analytical form is replaced by a large sample from the posterior 

distribution. Many summarising values can be calculated from this sampled 

posterior distribution. For instance, the mean could be approximated by the 

arithmetic average of the sample, and variance by the square of the sample 

standard deviation. Credibility intervals, the mode or a histogram are also 

easily evaluated.

This class of simulation has been used in a large number and wide 

range of applications, and has been found to be very powerful. In order to 

understand the method, suppose it is desired to know the posterior 

distribution p(Q (k> | Y) related to the set of parameters 9 w=(0 0 nfc) with a fixed

dimension rik dependent on a constant k. In order to simplify notation, the 

superscript is dropped (0=0 <k)  and the posterior distributions, which are 

conditional on Y, are indicated by n. So n(BJ = p(9 (k> \ Y) from now on.

MCMC is a recursive method, and in this case an initial point has to be 

defined; say that 00 = (Q°,...,6 °k). It is possible to define a recursive 

simulation for the set of parameters, where the new value 0 1 only depends on 

the previous value 0 °. The next value 0 1 is obtained randomly from the 

conditional distribution n*(d 110 °). Given 0 \ once more the same distribution 

is used and 0 2 is sampled from n *(Q 2 10 1).

The distribution 7r*(0 '|0 ' Jj is the same for all i=l,2,...,N, which 

guarantees a homogeneous chain in the procedure. The maintained structure 

of this transition distribution is the characteristic that guarantees that the 

distribution of 0 N given 0 0 converges as TV -> co to a limiting distribution n*(Q), 

independent of 00 and only dependent on the transition density n *. In 

addition, the Markovian property is observed because whenever it is necessary 

to define the distribution of 0 N given all the previous values 0 °,0 it is

dependent only on 0 N~! and defined as 7t*(0 n \Qn i). Hence, this sequence forms 

a homogeneous Markov chain.

This is a powerful result and there are many rules in order to define a 

suitable transition density jt*. Independently of the chosen format, this
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distribution should be easy to sample from. In this work, such a distribution 

is defined by generating each component of the set of parameters 0 w 

separately. This means that an updating of single components is used, which 

facilitates calculation since only one-dimensional sampling distributions are 

used.

When performing the MCMC simulation, there are some points that 

should be carefully taken into consideration, because despite the theoretical 

results ensuring the convergence, there is no absolute rule that assures when 

convergence is achieved. Usually it is easier to state that a convergence has 

not been achieved than the opposite. For instance, it must be checked 

whether the simulation is mixing well or, in other words, if the simulation 

procedure is visiting points over the whole range of possible values for 9. It 

should also be considered how large the sample should be, and whether the 

initial point, from which the simulation starts has a large influence. Among 

many other issues, the moment when convergence to the true distribution of 0 

is achieved should also be monitored. These rules are given in practice when 

analysing the results of the applications in Chapters 5 and 6 .

All these features can make the technique difficult to apply, and, even 

worse, perhaps dangerous to use. This happens because once all the 

necessary procedures to start the simulation are ready, a sample of 0 can 

always be obtained. This, however, does not mean that it is representative of 

the posterior distribution. In order to be sure that the sample does not have 

any deviation from the posterior distribution, the tests listed above have to be 

performed.

Meanwhile the analyst has to define two quantities. The first one is the 

starting value 0 °. This value should not influence the results, but could 

influence the number of samples taken before achieving convergence. In each 

chain the updating order of the parameters 0 w=(0 j ,...,0 nfc) should also be 

defined.

The next quantity to determine is the value M, called the number of 

burn-in steps, such that subsequent samples can be assumed to be taken 

from the limiting distribution n(Q). There is no exact answer for this question, 

and the solution adopted here was to observe the trace of the sample (the plot 

of the sample value over time) until stability was observed. It was also chosen 

to use only one large sample starting from a specific value, similar to the one 

proposed by Geyer (1992), and to get as many samples as desired from the 

results 0 m for m > M .
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Simulation deals with missing values in a very straightforward way. 

These values are treated as variables, in the same way as the parameters. So, 

in each iteration, a value for the missing value is also calculated and inference 

is carried out as usual. This is data augmentation, originally proposed by 

Tanner and Wong (1987). Suppose the data is Y =(Ym,Y°), where m stands for 

missing data and o for the observed part. The method is simply to notice that 

it may be possible to sample by MCMC methods much more simply and 

efficiently from a distribution p(Q(ki, Ym \ Y°) than from p(Q!k> \ Y°). Data 

augmentation is further explored later in the Gibbs sampling subsection 2.2.1.

When rik is fixed there are many types of MCMC techniques but the 

main ones are Metropolis-Hastings (subsection 2.2.2) and its special case, 

Gibbs sampling (subsection 2.2.1). They differ in the way the transition 

density n* is defined, with Metropolis-Hastings being the more general one. In 

this thesis the applications generate each component of the set of parameters 

9 w separately. In this way all the definitions are based on a single component.

When rik is not fixed another technique called Reversible Jump Markov 

chain Monte Carlo (RJMCMC) is used. This is an extension of Metropolis- 

Hastings, defining a general framework for the change of parameter 

dimensionality problems, also interpreted as moving among models with 

different numbers of parameters.

Reversible jump is one among a few algorithms using MCMC that allow 

such changes. Two other works in the same direction could be cited. The first 

one is the work by Arjas and Gasbarra (1994) where an algorithm was built for 

the problem of specifying the hazard rate in a survival data problem. Their 

work is the basis for a part of the algorithm in this thesis, explained later in 

Chapter 5. The second work is the one developed by Grenander and Miller 

(1991, 1994), using jump-diffusions. Such a technique is not used in this 

thesis but further details can be found in Phillips and Smith (1995) which 

contains some examples, including image restoration.

Gibbs sampling, Metropolis-Hastings and RJMCMC will be fully 

explained in the following subsections. The simple scheme on figure 2.1 shows 

their connection.
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2 .2.1 Gibbs Sampling

Gibbs sampling is a MCMC method for when 7t* is defined based on any 

combination of the components of 0 w=(0 0 nfc), using their complete

conditional distribution (when the parameters that are not being sampled are 

held fixed). The Markov chain has a dependency on the previous state 

governed by the complete conditional distribution. As an extreme case, if all 

the components of 0 w are updated at once, it means that no complete 

conditional distribution is used (there is no parameter left to be fixed) and in 

this case the whole posterior can be calculated, with no need for the 

approximation. The approach used here is to consider a single component, 

which means that each component 0 , for i=l,...,rik is updated separately.

This method of stochastic simulation is one of the most powerful among 

MCMC methods. This is because the definition of 7i* is governed only by the 

model, which is in contrast to the techniques reviewed next where an external 

distribution has to be defined to perform the implementation. It means that a 

sample from the exact distribution is taken with no need of performing any 

acceptance test, keeping all samples.

WinEUGS (Best, Spiegelhalter and Thomas (1998)) is a software 

package that implements Gibbs sampling. It is the newest version of BUGS 

(Bayesian inference Using Gibbs Sampling) which was first made available in 

1992. This software works under Microsoft Windows®, which makes it easier 

to manipulate. Many useful tools for analysis are already included, and this 

helps to check if the simulation follows the rules cited here in section 2 .2 . 

There is also a set of software called CODA that produces some tests to check 

whether the simulation can be regarded as representative of the posterior 

distribution.

Directed acyclic graph (DAG) models are the basis of WinBUGS. Such 

schemes are often used in Bayesian analysis to give a better understanding of 

the models, particularly when the dependencies between the data and the 

parameters are complex. In order to illustrate this technique, figure 2.2 shows 

as example of a DAG.
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Figure 2.2 -  Example of a DAG

Circles stand for random variables (xy,8,,a 2,p,t2), rectangles for 

constants (w,j) and the big rectangles for the indexes (i and j). This graphical 

model shows that once the parameters 0 ,are given, the data Xijdo not depend 

on g or x 2 any more. It also shows that once 0, are given, they contain all the 

model information needed to update p for instance. Graphical models are 

widely used in the following chapters, together with WinBUGS that appears in 

many examples in Chapter 3. In the applications of Chapters 5 and 6 specific 

programs had to be written instead.

Now, the algorithm of Gibbs sampling is as follows. Define:

71/0 i I 0 -i) = 71/8 , | 0 1,0 2,...,Q ï-1,0 1+1,...,0 n*), for r=l,...,Mfc.

Dropping superscript, so that 0 = 8 w and defining the starting point by 

0 ° = (Q° ), it is possible to define a recursive simulation for the set of

parameters, where the/h sample vector 0 j = /'0/,...,0^ j is sampled as follows:

0/  ~ 7i/0i | Of1,...,&£)

02J~7i/02 |

K  ~*Qnk |

(2.3)

0 0 —> 0 J -> 0 2 —>... ->0J —> ........—  D -> n(Q)

% ________________________
converging in distribution
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Data augmentation comes naturally into this algorithm. So again the 

data are split into Y =(Ym,Y°) and with Ym fixed n(d , |0 -,) is easy to sample from, 

for all i= 1,.. . , n/c. Then p(Ym|0, Y°) is the sampling distribution for the missing 

data and it is also typically very easy to sample from. At each iteration the 

sample for the parameters is taken with the missing data fixed as a pre-

sampled value. Then, with all parameters updated, each missing component is 

sampled.

Returning to the complete data case, the complete algorithm is given by 

the following scheme. With 0T 1 = /'0i',...,0,i1,0/+"11,...,0 “̂1) , a number, N*, of 

updates are described in figure 2.3.

Figure 2.3 -  Gibbs sampling algorithm

2.2.2 Metropolis-Hastings algorithm

Unfortunately it is not always true that all conditional distributions 

7t/0 , |0 -i), i=l,..., rik , are known or easy to sample from. In this case, Gibbs 

sampling has to be dropped and Metropolis-Hastings should be used instead. 

Metropolis-Hastings is not used in the applications in this thesis, but since it 

is the basis to RJMCMC it is explained in this subsection.

Metropolis-Hastings is more general than Gibbs sampling, and so it is 

applicable to a wider number of problems. However, it is more dependent on 

the choices of the analyst, which interferes with the model by choosing the 

distribution to sample from. Suppose that no complete posterior conditional 

distribution n ß , |0 .¿j, is known for all i=l,...,m, and that Metropolis-Hastings is 

used to perform inference. In this case, a sampling distribution q/0,|0 i) is 

defined for all z=l,...,m, and since the sample does not come from the real
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complete conditional posterior distributions 7i(0,|0-,j for i=l,...,n.jt an 

acceptance test has to be used.

The new distributions q(Q, 10 .,) (i=l,...,rik) have to be chosen and there 

are many ways of deciding which distributions to use. Chib and 

Greenberg(1994) gives a good discussion on this topic. After defining , 10 .,) 

for i=l,...,rLk each sample from this approximation distribution has to be 

submitted to an acceptance test.

Now, suppose that samples of 0,, i=l,...,nk are needed. To start the 7th 

sample, define Q^1 = /'0/,...,0/_1,0/+“11,...,0 “̂1) . The new value 0,' (i=l,...,rik) is 

sampled from q(Qi\Q^1) to substitute the old value. For each component the 

new value is accepted with the following probability:
min{l, a(0' ,0/_1 /} = (2.4)

min{l, (posterior ratio) x (proposal ratio) } 

where:

a(e; ,0/-1) =
^ e ; i

KP/'1 IK ' jq ß ' iW -1# ? )
(2.5)

If q(Qi\6-i) = 71(0 1 10 i), then a(0' ,0/ 1 )=1 and Metropolis Hastings turns

out to be Gibbs sampling. The algorithm for N* updates is as shown in figure 

2.4:

Figure 2.4 -  Metropolis-Hastings algorithm

Initialise the vector set 0 0 = (Q ° ,.. .,0 ̂  ),

for j= l to N* 

for i=l to rik

Sample 0- from g(0. 10̂ “J j 

Sample u from uniform(0,l)

If u < min{l, a(0,' ,0/ ’ )} then 0/ =0'

else 0 / =0 f 1

Next i 

Next 7

2.2.3 Reversible jump MCMC

As will be seen in the next chapter, most MCMC methods have already 

been implemented in actuarial science, in contrast to reversible jump MCMC
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that has no published application up to now. RJMCMC was first proposed by 

Green(1995) in order to implement MCMC in cases where it is necessary to 

choose a model from a finite and countable set of models, when each model 

has a parameter set with different dimensionality. This method is particularly 

suitable for problems where "the number of things that you don't know is one 

of the things that you don't know" (Green (1995)).

Ordinary MCMC techniques, such as Gibbs sampling and Metropolis- 

Hastings, are not suitable for this problem because they do not make sense 

when the dimensionality of the parameter vector is not fixed. The reversible 

jump technique is a generalisation of the Metropolis-Hastings algorithm, and 

the name "reversible jump" comes from the fact that there is a bijection 

between the parameters values, whenever there is a jump between the spaces.

Suppose there is a set of models k, k=0,l,...,kmax, and that for each 

model there is a vector 9 (K> of unknown parameters. If the data Y are observed, 

there is a natural structure to the joint distribution of model k, the parameters 

and the data given by:

p(k,Q,k) ,Y ) -  p (k )p (e ,k> | k)p (Y  | fc,0,k)) (2.6)

The posterior distribution is given by the relation:

Tt(7c,ewj=  p(k,Qlk> \ Y) = p(k\Y)p(Q,k) \k,Y) (2.7)

In addition, one measure to help in the choice of the model to be used is 

the Bayes factor of one model related to the other:

BF(k',k) p(k'\ Y) p (k ') 
P(k | Y) p(k)

(2 .8)

The Bayes factor is used in Chapters 5 and 6 to help analyse the 

results. Since RJMCMC is a generalisation of the Metropolis-Hastings 

technique, an acceptance test has to be performed. This test has a similar 

form to the one defined in the simpler case, but since now there is a 

dimensionality change, a Jacobian part is also included.

Suppose that a move of type m is proposed, that changes the parameter 

set from 0^ to 9 th1 in a higher dimensional space. The new value is derived 

from 9 ̂  (0 (k>,u), where set u is defined as a random variable independent of 9 w 

and with dimensionality dependent on the difference in dimension between k! 

and k. The reverse of the move (from 0 ̂  to 0 ̂ ) can be accomplished by using 

the inverse transformation, so that the proposal is deterministic as required by 

RJMCMC (see Green(1995)). Now, this move has to be tested for acceptance.
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Define qm(0 ^) as the probability of choosing move type m when in 9 and p(u) 

as the density function of u. Then the acceptance rate is given by:

min{l, a(0^v, 0^)} = (2.9)

min{l, (posterior ratio) x (proposal ratio) x (Jacobian) } 

where:

a(0 (k\ 0 (k)
P (e (k'>,k'\Y)qm(e lk'>)

p(Q<k>,k\Y)qm(Q(k))p (u )
m (k'}

d(Q(k>,u)
(2 . 10)

The other way round, moving from 0^ (0w,u) to Q^’1, has an acceptance 

rate given by the inverse of formula 2.10. Observe that this acceptance test is 

almost the same as the one in the Metropolis-Hastings algorithm, only 

including an extra component related to the Jacobian.

The algorithm for applying RJMCMC has varied in each application, 

given the numerous ways in which the move m can be defined. In the original 

work from Green (1995) an application is proposed in a one-dimensional 

multiple change point example. There k stood for the number of change 

points, or jumps, in [0, L), Q(k)= (fo, h, h,..., h.,si, S2,..., Sk) where h is the 

intensity in the interval [si, Si+i) for i=l,...,k+l and So = 0, Sk+i = L (a full 

definition of this model will be given in Chapter 4).

The algorithm in Green (1995) is written for N* steps in figure 2.5:

Figure 2.5 -  Green (1995) RJMCMC algorithm

Choose ko

Initialise the vector set 0 ^  

for _/=l to N*

Choose one type of move m (defining k'j and 0 

Sample «'from  uniform(0,l)

If u' < min{l,a(0 9 ̂ J1)} then kj = k'j; 0 (kj ,= 0 

else kj = kj-uQ(kj >=Q(k’j-i)

Next j

Green (1995) m defined four types of move, with their probabilities 

defined via a function dependent on the prior distribution and actual value of 

k. These moves are defined as:

(a) Update one of the intensity components;
*
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(b) Update one of the interval position;

(c) Birth of one jump;

(d) Death of one jump.

Choices (a) and (b) sample a random value for k and s, respectively for 

the sampled order ¿'and i [i-0,...,kj-i and The use of the acceptance

test in these moves indicates that a Metropolis-Hastings algorithm has been 

used.

Choices (c) and (d) change the dimensionality of the parameter set, 

where the parameter related to the position of the jump is sampled randomly 

(either the new one in move (c), or the removed one in move (d)). The 

parameter related to the intensity is defined by a relationship to the values 

previous to the move, which is random in (c), but deterministic in (d). The use 

of a deterministic function in the move related to decreasing the number of 

jumps is given by the “dimension-matching requirement” described in 

Green(1995), which is observed, as expected, in all applications published so 

far.

The algorithm just presented has only one component of 9 ^  updated in 

each move. Differently, Green and Richardson (1997) update the full set of 

parameters in each move for a mixture of normal distributions problem. The 

means and variances of the normal distributions are all considered unknown 

and allocation parameters are also included in the model. The k ordered 

groups (order defined by the means) are predefined and each observation is 

then allocated to a group. By this definition some groups could have no 

observations, the so called empty components.

The algorithm used in Green and Richardson (1997) is as follows. 

Firstly the set of parameters 0w is fully updated using Gibbs sampling. 

Secondly, moves m are carried out separately to the empty or not components, 

but only to change dimensionality since they had already been updated before. 

The move m has only two movements: creating, (c), or deleting, (d), a group. 

Their probabilities are fixed at 0.50, except when k= 0 or k=kmax when the 

probabilities are (respectively) equal to 1 .

The final algorithm for N* updates is given by:
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Figure 2.6 -  Final RJMCMC algorithm

Denison, Mallick and Smith(1998) also present an application using 

RJMCMC. This is a curve fitting problem and the model uses the methodology 

of piecewise polynomials. For each step, the choice of move m is defined as:

(a) Update a jump position;

(b) Birth of one jump;

(c) Death of one jump.

Choice (a) requires a sample of a new value for the jump position, (b) 

and (c) change the dimensionality of the parameter set, where the parameter 

related to the position of the jump is again sampled randomly (either the new 

one or the choice of the one to be removed). The parameter related to the 

intensity was not sampled in any of the moves, but calculated as the 

minimum square estimator in that specific interval. This was used instead of 

the usual sampling procedure because “A complete Bayesian approach (...) 

leads to a serious computational burden, especially when many knots are 

required to fit the curve adequately, and comparative studies have shown that 

the least square estimation approach leads to no significant deterioration in 

performance for overall curve estimation.” (Denison, Mallick and Smith(1998)).

2.3 Chapter conclusion

The basic Bayesian statistics results and the MCMC class of simulation 

have been explained in this chapter. Further, an algorithm has been presented 

for each of the revised methodologies in the MCMC class. With all these 

procedures at hand, the choice of the algorithm to be used in Chapter 4 can 

be justified.
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In the next chapter an explanation of how Bayesian theory has 

developed in actuarial science will be given. Most of the stochastic simulation 

applications use Gibbs sampling.
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Chapter 3

Bayesian models in actuarial science

In this chapter the development of Bayesian modelling in actuarial 

science is given. It is shown how Bayesian statistics was first introduced in 

actuarial science via credibility theory, and how it has developed into highly 

elaborate models in recent years. The main objective of this chapter is to build 

the basis for the basic model, which is the core of this thesis and which is 

fully explained in the following chapter.

This review is even more necessary in the actuarial application of 

Bayesian theory since there is no broad bibliographical review in any book or 

paper. Among some of the works that present partial reviews, Klugman (1992) 

and Smith et al. (1996) could be cited.

This chapter is constructed in the following way. In the first section 

some considerations are given about the practical side of Bayesian 

applications. In section 3.2 some traditional areas are reviewed, showing their 

development in the Bayesian approach. In section 3.3 some more elaborate 

models are reviewed, which are part of the basis of the model in this thesis. In 

the last section a conclusion for this chapter is presented.

3.1 Practical conside rations on Bayesian models

Although many developments have occurred in Bayesian statistics, very 

few practitioner actuaries are aware of them and even fewer make use of them. 

In fact, since the advent of credibility theory, which has at its core Bayesian 

statistics, this statistical philosophy has not been broadly used in practice. It 

was in 1914 that the first paper on credibility theory was published, with
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actuaries being one of the first practitioners to use the Bayesian philosophy. 

Since then many developments in credibility theory have occurred, but it is 

probably the only tool based on Bayesian theory used in an office 

environment, and even this is rare. However, judgement is used on an 

everyday basis and it is often argued that in this way an informal Bayesian 

approach is used.

Three main reasons could be listed to justify why actuaries do not use 

Bayesian theory more often: model comprehension, implementation and 

portability. In the first reason the application of this theory needs a full 

understanding of the model, including, among many other features, the choice 

of prior distributions and the interpretation of parameters. In this way an 

actuary has to become a skilled statistician, which can be off-putting for many 

practitioners.

After understanding the model, it is not guaranteed that its 

implementation is easy: most of the time, the calculations are complicated and 

extensive. And in many cases an analytical solution can not even be found, 

but must be substituted by a simulation based implementation. It is well 

known that practical actuaries prefer not to rely on an approximation when 

performing calculations.

Unfortunately, even after applying the model to a specific problem the 

implementation of the same structure to a different data set could also be 

highly complicated. Such lack of portability happens mostly with models that 

do not use much aggregation (called individual models), which are the models 

with innovative approaches such as the ones used in Boskov and Verrall 

(1994), Haastrup (1997) and in the present work. Again, a practical actuary 

relies on portability in order not to spend too much time applying the model to 

new problems or to new data.

Although the practical side of actuarial science has not been influenced 

by Bayesian science, the academic side has developed many models. The most 

interesting applications are the models based on individual policies rather 

than aggregated data and this thesis focuses on these. A new stochastic 

simulation technique is used in order to create more applications of models 

that focus on the raw data of individual policies. These models could be 

difficult to apply to a different problem, but it is hoped that their ideas and 

results are attractive enough to stimulate some future investigation.

Now some examples are explored. In the next section traditional models 

in credibility, reserving and graduation are reviewed, showing the development
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of ideas from purely analytical solutions to the use of simulation. This is the 

basis for the complete departure from traditional models presented in section 

3.3.

3.2 Traditional models

This section looks at some traditional models of actuarial theory in 

some traditional areas: credibility theory, claims reserving and graduation 

(subsections 3.2.1, 3.2.2 and 3.2.3 respectively). These areas have been 

chosen mostly by the amount of papers published in each of them, but 

credibility theory is also chosen given its historical importance. In each of 

these risk assessment procedures the original and usual model is transformed 

in order to explore the Bayesian structure. Usually it happens via a prior 

distribution, by including structure and values.

3.2.1 Credibility theory

Credibility theory was first introduced by Mowbray (1914), almost at the 

same time as the Casualty Actuarial Society was created. At that time the 

actuaries had to define a premium for a new insurance product -  “workmen’s” 

compensation -  so they based the tariff on a previous kind of insurance which 

was replaced by this new one.

As new experience arrived, a way of including this information was 

formalised, mixing the new and the old experiences. This mixture is the basis 

of credibility theory, which searches for a credibility estimator that balances 

the new but volatile data, and the old data that have historical support. Most 

of the research until the mid XX century went in this direction, creating the 

branch of credibility theory called limited fluctuation.

The turning point in this theory, and the reason why it is used 

nowadays, happened when actuaries realised that they could bring this 

mixture idea inside a portfolio. This new branch of credibility theory is called 

greatest accuracy, and it searches for an individual estimator (or a class 

estimator), but still using the experience for the whole portfolio. Such an 

estimator would consider the “own” experience on one side, but giving more 

confidence to it by also including a more “general” one on the other side. In a 

way, it formalises the mutuality behind insurance, without the loss of the 

individual experience.
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There are many papers discussing this theory, but the one by 

Buhlmann (1967) is generally seen as a landmark. In this paper credibility 

theory was completely formalised, giving its basic formula and philosophy. 

Since then, many models have been developed and a review can be found in 

Venter (1986). Now, as an example of how credibility works, the Buhlmann 

and Straub (1970) model will be written and applied.

The data set is taken from Klugman (1992). The observations are the 

number of claims (i/y) for 133 occupations (r= 1 ,  133) in workers’ 

compensation insurance with 7 years experience (j= 1,...,7). The respective 

amount of the payroll (wtJ) is also known and is used as a weight for each 

occupational class.

Modelling the frequency ratio Xy(ylJ/wlj) via the Buhlmann and Straub 

model gives the following distributions:

Xij | 0, ~ normal (9, , a2/wij)

0, ~ normal (p,x2) (3.2)

for all i and j, and a 2, p and x 2 known. The appropriate graphical model 

is shown in figure 2.2 of Chapter 2. In this model p(xy 10,) stands for each class 

experience, p(0,) for the overall portfolio information, implying that each class 

mean comes from the same distribution. Now, with x, as the observed mean

and z,as the credibility factor for class i, the credibility estimator for the class 

ratio 0, is:

x,-x z, + y .x (l -  z j  (3.3)

The solution proposed by Buhlmann and Straub (1970) is to estimate 

the values of a 2 , p and x 2 from the observations, substituting these values 

and coming out with the solution for the formula above. With z, as the

estimated value of z,, after including the values for the variances and x as the 

overall observed mean, formula (3.3) changes to:

x, x z, + X x (1 -  z,) (3.4)

It may not be clear where the prior information has been inserted into 

this model. The reason for this is that the formula (3.4) was developed in order 

to balance the information of the class’s own observed experience, x ,, with the 

observed overall one, x . In this model the distribution p(0) does not play a role 

of a real Bayesian prior, but its parameters are substituted by the values 

calculated from the data set.

As seen in Chapter 2 this is one form of empirical Bayes estimation. In 

order to have a fully subjective Bayesian solution another level of distribution
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would have to be included. This would contain information about the 

parameters a 2, p and x 2, which are considered unknown, with the third level 

on formula (3.2) expressed as p(a,p,x). This new distribution is the prior 

distribution for the unknown parameters in the previous distributions. 

Unfortunately, unless very strong assumptions for p(cr,p,x) are included, it is 

not possible to derive the posterior distribution for 9.

In order to get closer to a pure Bayesian approach, Klugman (1992) 

included priors for a 2, p and x 2, but in a “non-informative” way. No analytical 

solution is available and an approximation technique (Gaussian quadrature) 

was used. In this solution a program had to be specifically written in order to 

carry out the model implementation and, depending on the approximation 

technique chosen, the calculations could take 2 hours. Both solutions1 are 

shown for some classes in the following table:

Table 3. 1 -  Results for analytical solutions of credibility theory
Solution Forecasting

Class
>1

X ,

Bühlmann
and

Straub
klugman

W i 7 y i7
Bühlmann

and
Straub

Klugman

4 0.037 0.0 0.03949 0.04045 - 0 - -
11 1,053.126 0.04446 0.04345 0.04422 229.83 8 9.99 10.16

112 93,383.54 0.00188 0.00201 0.00193 18,809.7 45 37.81 36.30

70 287.911 0.0 0.02059 0.01142 54.81 0 1.13 0.63

20 11,075.31 0.03142 0.03164 0.03151 1,315.37 22 41.62 41.45

89 620.968 0.42997 0.29896 0.36969 79.63 40 23.81 29.44
Forecast error2 15.55 13.20

When including information in p(a,p,x), the solution is more difficult to 

calculate. In order to do so, stochastic simulation is applied via BUGS by 

Pereira (1998). Scollnik (1996) and Smith (1996) also used similar procedures. 

The Buhlmann and Straub model is written in a WinBUGS (or BUGS) program 

in figure 3.1 with the following set of prior distributions, which had a non- 

informative objective:

p ~ normal (0 , 105)

1 /x 2 ~ gamma (0.001, 0.001) (3.5)

1 /a2 ~ gamma (0 .0 0 1 , 0 .0 0 1 )

The implementation of this model took 5 minutes on a fairly old 

computer, with a total of 2500 simulations, where the first 500 were discarded 

to eliminate the effects of the initial values.

i Although data were observed for 7 years the two solutions only use 6 years to do the calculations.
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____________ Figure 3.1 -  WinBUGS program
model BùhlmannStraub; * 3 
const

N = 130, # number of classes 
U = 6; # number of observed years

var 
mu,

theta[N],Y[N,U],tau, sigma,w[N,U],sigc[N,U]; 
data in "datafile"; 
inits in "initialfile";

{
mu ~ dnorm (0, 1.0E-5); 
tau ~ dgamma (3.0E-3,1.0E-3); 
sigma ~ dgamma (3.0E-3,1.0E-3); 
for (i in 1:N) { 

theta[i] ~ dnorm (mu,tau); 
for (j in 1:U) {

sigc[i,j] <-sigma*w[i,j];
Y[i,j] ~ dnorm (theta[i],sigc[i,j]);

Now an extension is proposed. Since the observations are numbers of 

claims it is more suitable to model the data using a Poisson distribution rather 

than normal distributions. This is a direct generalisation of the previous 

model, where the new model uses non-informative prior distributions and is 

written as (also represented as graphical model in figure 3.2): 

y | 0 . ~ Poisson (0i x w .j

0,| a, p ~ gamma (a, P) (3.6)

a ~ uniform (0.01, 50) and p ~ uniform (0.01, 50)

Figure 3.2 -  DAG Poisson distribution model

Forecast error = £  (Forecast -  Yi7f / w i7 
1 = 1

3 In WinBUGS instead o f the variance, the precision (1/variance) is used for the normal distribution

133
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In this way the Biihlmann and Straub model has been dropped and a 

more suitable model has been constructed. The new model did not take much 

longer than the previous one to be implemented with the same amount of 

data. Since one of the main quantities of interest is the forecast of the number 

of claims for the 7th year, this is done in WinBUGS by sampling directly the 

values of y i7, for i=l,..., 133, which are included in the model as missing data.

The table below gives the results, where the value of the deviance is related 

directly to the forecast value of y .

Table 3. 2 -  Results for Normal and Poisson models
Observed data Normal Poisson

Class uo 17 y ,7 Forecast Deviance Forecast Deviance

4 - 0 - - - -

11 229.83 8 10.15 7.28 10.21 3.57

112 18,809.67 45 38.24 66.06 35.64 6.63

70 54.81 0 0.60 3.47 0.254 0.57

20 1,315.37 22 41.24 16.84 41.48 6.55

89 79.63
_____________

40 29.56 4.11 32.82 6.17

Forecast error 13.22 12.44

Comparing these values with the ones found without stochastic 

simulation, it is observed that the Normal solution (Buhlmann and Straub 

model with non-informative prior) is almost the same as the previous ones and 

very close to the Klugman(1992) solution as expected. The benefit of using the 

Poisson distribution can be seen in the smaller forecast error found in this 

case. And it is also observed that in many classes the deviance was smaller 

when the Poisson distribution was assumed.

It was seen that an improvement can be obtained by using stochastic 

simulation. Not only was the forecast error smaller, but also it was possible to 

define a more realistic model than the previous one. Prior information was also 

used without much complication. Continuing the proposed chapter structure, 

in the next subsection the development of the claims reserving problem will be 

presented.

3.2.2 Claims reserving

Claims reserving is one of the most important branches in the general 

insurance area of actuarial science. Usually a macro model, where data are
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accumulated by underwriting and development year, is used, and the data are 

given in a triangular format. One of the features of those models is the small 

amount of data available for the later development years, which gives a large 

degree of instability to any estimate. Actuaries overcome this problem through 

professional judgement when they chose factors or consider benchmarks.

In this subsection another way of including this subjective information 

is given, which is more formal, statistically speaking, since it uses a prior 

distribution. The approach used here is the chain ladder technique, which is 

one of the most popular macro methods to predict claims reserves. But in the 

following examples no inclusion of the tail factor is considered.

The data come from Taylor and Ashe (1983), and the exposure factor for 

each underwriting years and the claims data are given below, where the 

influence of the exposure has to be taken out from the claim amount before 

any analysis.

Table 3. 3 -  Claims reserving data
Development year
357848 766940 610542 482940 527326 574398 146342 139950 227229 67948
352118 884021 933894 1183289 445745 320996 527804 266172 425046
290507 1001799 926219 1016654 750816 146923 495992 280405
310608 1108250 776189 1562400 272482 322053 206286
443160 693190 991983 769488 504851 470639
396132 937085 847498 805037 705960
440832 847651 1131398 1063269
359480 1061648 1443370

376686 986608
344014

Exposure: 610 721 697 621 600 552 543 503 525 420

In Kremer (1982), which i:5 a paper on credibility theory, the chain

lcxlder is proved to be similar to the two way analysis of variance linear model 

expressed by:

(3‘7)
with a: îndependent normal^, a2),

where 0 . = u + a .+ Rv n
and y is the incremental value of the claims for row (underwriting year) 

i and column (development year) j.

The solution of Kremer (1982) is to calculate the MLE of the unknown 

parameters together with the estimate of a 2. In Verrall (1990), which is the 

paper reviewed here, the same model is used but in a claims reserving context
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and with a Bayesian solution being applied. In fact three Bayesian solutions 

are presented: “pure Bayes without prior information”, “pure Bayes with prior 

information” and “empirical Bayes”. In order to have an analytical solution, 

none of these models includes a prior distribution for the variance parameters.

A prior distribution is attached to the model in (3.7) and this is 

rewritten here in matrix notation:

X  | 0 ~ normal (KB, a 2 1)

9 | 9; ~ normal (Qp I ) (3.8)

where

^  \X ll> -- ->X ln’X21’ " 3

C
D II

( 1 9  ® n’ P 2’ P r J ’

I  =  d i a g ( a 2 ,  a 2 , . ,
2  2 2 ■ 
a > a  p  ■> G  (5 .) ,  9 7 =  ( g * ,  a * ,  . . . ,  a * ,  p , ‘

K is the design matrix to produce the model in (3.7),

I  is the identity matrix, a 2, o 2 , a 2, a p are known variances, 

a = P;=0 for uniqueness (see Verrall (1990) for details).

The “pure Bayes without prior information” uses a non-informative 

prior approach. In ihis way, a “2, a ~2 and Op2 go to zero and the model

solution gives exactly the same results as the classical and usual MLE used in 

Kremer (1982).

But more information could be inserted straight into this second level 

distribution, instead of using the non-informative one for all parameters. This 

is the “pure Bayes with prior information” approach and it is applied by 

changing 9; and E in order to keep the non-informative approach for 

parameters (p,P9, ..., pn), but not for the row parameters. Proper prior 

distributions for (a2,...,an) are defined, but they are hard to choose, since there 

is no intuitive explanation related to them. In this example the following set of 

prior distributions (based on the result obtained at the MLE model) was 

chosen4:
oc ~ normal (0.3, 0.05); (3.9)

for all i= 2,..., n.

The third approach, “empirical Bayes” is based on the credibility theory7 

assumption, that there is some dependency among the parameters related to 

the row and they are not really independent as before. So, in formula (3.6) the 

non-informative approach is kept for (p,P2, ..., pn), (cr~2 =ap2 = 0), but a

4 which is the same as a, = 0.3 for i=2,..,n and cra2=0.05.
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different one is imposed for the row parameters. Now, instead of defining a 

distribution like (3.7), the general distribution (3.6) is kept and another level of 

prior distribution is added to (a2*,...,a*), with a non-informative approach. In 

this way no prior value is given, but only a dependency among the row 

parameters is imposed.
All three models were applied to this data set. “Pure Bayes without prior 

information”, which is the equivalent to the MLE solution by Kremer (1982), 

had the worst performance when compared to the other two in all analyses 

done by Verrall (1990). “Pure Bayes with prior information” and “empirical 

Bayes” also had a better smoothness to the row parameters as can be seen in 

figure 3.3:

Figure 3.3 -  Graph of claims reserving results
0 8 , ------- ---------------------------------------------------------------- ------ _ --------------------- ---------- -------.------- ----------

B a y e s  n o  p r i o r  _____ ^ ______3 a y e s  p r i o r  ____  <>_ __E m p i r i c a l  B a y e s

Not much research has been done in order to implement chain ladder 

based models using WinBUGS. This is mainly due to the amount of missing 

values presented in the triangular format (in the usual format the outstanding 

claims are treated as missing values in WinBUGS). So in order to use 

triangular data, the model was implemented either using specifically written 

programs, or by imposing very strong assumptions. Other researchers have 

used new models, which would not use the data in the triangular format, but 

the individual claim experience. An overview of what has already been done in 

this direction will be given in section 3.3.

Two works using triangular data and stochastic simulation are cited 

now. The first one is Chari ssi (1997) where the “pure Bayes without prior 

information” model in Verrall (1990) is reanalysed using BUGS, with a proper 

prior distribution for each of the parameters. These are included in the second 

level, and independently of the chosen distribution, each one had to be 

centred on the values observed in the data, with quite a low variance.

The DAG model would be as in figure 3.4:
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The data from Taylor and Ashe (1983) were reanalysed and the results 

for the posterior mean for the row parameter are plotted in the figure 3.5 

together with the values found before in Verrall (1990). On one hand, it is easy 

to see that the set of chosen prior was not able to influence greatly the mean 

of the row parameters (or even the other ones), keeping the same result as the 

one found in “pure Bayes with no prior”. But, on the other hand, in this new 

analysis the influence of the prior was enough to decrease the standard error 

of the parameters by an average of 30% compared to the previous approach.

Figure 3.5 -  Graph of claims reserving results using simulation
0.8
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Em pirical Bayes -----» -----Charissi

The second paper is Ntzoufras and Dellaportas (1997). Gibbs sampling 

is again used as the simulation technique, but although this paper was 

prepared after the development of BUGS, a specific implementation program
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was used instead. Five models were presented in the paper and all of them 

were applied to the same data set. This set includes the inflation rate for the 

observed calendar years and two incremental development triangles: amount 

and number of claims. With all of this information to hand they proposed new 

models that would take into consideration the number of claims in order to 

predict the claim amounts, which would be deflated before any analysis. Only 

one model among all five is fully explained here.

“Log-normal & Poisson model” is a direct generalisation of Kremer 

(1982). Now, instead of using only the information from the amount of claims, 

the history of the number of claims (n) reported in row i and column j  is also 

taken into consideration. The model in (3.7) is changed to:

M y,)

x  19^02 - normal(0  ̂a2)

0y = M- + a, + Pj+ ln(n,j) (3-10)
m. 1 ~  Poisson(A )̂

In(a i;/) P* + a* + [3/
with constraints and prior distributions for p, a., [3, p", a.*, p * a2 fully 

described in the origins! paper.

An analysis was performed with all models, and it was shown that for 

the specific data used the models that included also the number of claims, like 

the one explained above, had a better prediction than the ones that did not 

use such information. This was mainly due to the long tail characteristic of 

the data set, where claims were still being reported after 7 years of occurrence.

This subsection has shown that the flexibility of the simulation 

approach was able to allow also the inclusion of the development of number of 

claims in the chain ladder model. Now the last subsection on the development 

of traditional models via Bayesian theory will discuss graduation. Although it 

is a pension and life insurance area and this thesis is on general insurance, it 

is important to include it to show the smoothing models that have appeared.

3.2.3 Graduation

Graduation is an important part of the job of a life actuary and many 

methods have been developed in order to carry it out. Using the definition 

from Haberman (1996) “graduation may be regarded as the principles and 

methods by which a set of observed probabilities are adjusted in order to
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provide a suitable basis for inference to be drawn and further practical 

computations to be made”.

The usual data set to which graduation is applied includes an estimate 

of the number of policyholders exposed to risk in the observation period 

(usually one year) and the number of deaths which occurred. In order to 

illustrate this, the following sample was taken from London (1985):

Table 3.4 -  Graduation data
Age
(i)

Frequency 
rate (x,)

Number of:
Policyholders (w ì ) Deaths (yi)

63 0.00928 9,487 88
64 0.01226 10,770 132
65 0.01100 24,267 267
66 0.01120 26,791 300
67 0.01481 29,174 432

The mortality rate, x ,, is defined as x,= y,/w, .

Whittaker graduation, Whittaker (1923), is one of the most well known 

methods among actuaries. This can be considered as the first Bayesian 

approach to graduation, since it can be derived using Bayes theorem. But no 

real prior subjective information was formally used in the first development of 

this model.

A model that could be seen as a step before Whittaker graduation is the 

Kimeldorf and Jones (1967) model explained in London (1985). This model is 

not fully written here, but states that the observed frequency of death is 

modelled as:

XjO ~ normal (0,B)

0 ~ normal (g,A) (3.11)

where

x = (Xj,..., xn), 0 = (Qp..., 0J, g = (g,,..., gn),

n is the number of ages and A and B are known covariance matrices.

g is taken from another life table and B is fixed. The covariance matrix 

A is defined by the analyst and it controls the amount of smoothness. Some 

other possible formats are discussed in London (1985). The graduated values 

are obtained as the posterior mean of 0 and the graph of the estimates in the 

example analysed in London (1985) is shown on a log scale in figure 3.6.
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Figure 3.6 -  Graduation example comparison graph

The two Bayes results show how to control the model, with higher and 

lower level of smoothness, depending on the chosen value of A. Bayes-low is so 

close to the observed data that it is even hard to distinguish them.

Klugman (1992) brings a different approach to the Whittaker model. 

Instead of using prior information from another table, as in London (1985), a 

relationship is imposed among the parameters in 0. In order to do this, a 

design matrix is included transforming the model into:

X |0 ~ normal (0,5)

KB ~ normal (0,A) (3.12)

Where K is the matrix that produces the zth differences of a sequence of 

numbers. Choosing properly the values for A and B and letting z = 3 gives the 

posterior mean as the same solution as the one proposed by the Whittaker 

model. But in the new Whittaker approach not only the estimator of 0 was 

found, but also its covariance matrix. In this way a confidence region could be 

easily found.

In fact, one of the first applications of the model expressed in formula 

(3.9) was the calculation of a reserve, where a confidence interval was also 

presented. The case when a prior distribution is given for A and B is also 

analysed in Klugman (1992).

The paper by Carlin (1992) uses Gibbs sampling technique to graduate 

not only mortality table but also the ageing factor cost related to health 

insurance. In both of these applications some restrictions were imposed on the 

model structure, such as the growth on mortality expected in adulthood. Here 

only the mortality example is explained.
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The paper was developed before BUGS was implemented, so a specially 

written program carried out all the calculations. In the graduation problem the 

data set has ages from 35 to 64, so 30 ages were observed. The model states 

that the number of deaths y. in age ¿+34 for i=l,...,30 has a Poisson 

distribution with intensity given by 9,xta, where Wi is the number of 

policyholder in i. The model is written as: 

i/JGi ~ Poisson (9 xwj

9f |P ~ gamma (a, P) (3.13)

Where 9i > 0, d30 < B , 0 <92~ 9;< ... < 930-  92g, B and a fixed, using a 

suitable prior distribution for p. A graphical model for this model is shown in 

figure 3.7, where the imposed order among the parameters 9 is also 

represented.
Some constraints were also imposed on the model and the more 

interested reader should refer to the original paper in order to see these in full. 

The results are also compared with the ones obtained by the Whittaker model 

and the author comments that “Whittaker results are fairly similar to the 

Bayes results, though the Whittaker rates tend to be influenced more by the 

unusually low rate at age 63”. The model was able to keep the parameters 9 

increasing with age, although this was not observed for all ages in the crude 

rates.

An application of BUGS to graduation can be found in Kouyoumoutzis 

(1998). In this work a number of models were investigated and the one 

explained here is based on a third degree polynomial regression analysis 

expressed by:

y{ |9; ~ PoissonimxG;) (3.14)

with ln(9t) expressed as:

P0+p1i+p2(3i2-l)/2+p3(5i3-3i)/2+p4(35i4-30i2+3)/8+p5(315z'5-350i3+75i2)/40,
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and p.~ normal (0,1000) for j=0,...,5.

The time needed to run the simulation was again very small and the 

smoothed values fitted the data well. The graphical model is show below in 

figure 3.8.

In this section 3.2 a review of traditional models revised to use a Gibbs 

sampling approach has been given. Different, new models were incorporated 

by the inclusion of simulation into the modelling process. It is expected that 

the more actuaries are able to use WinBUGS, and more generally Gibbs 

sampling, the more revisions of traditional models will emerge.

In the next section completely new ideas are presented. The 

assumptions used in macro models are completely dropped and models with 

approaches closer to the process itself is used.

3.3 Modern Bayesian models

In the previous section well known models were discussed and 

rewritten in order to give a Bayesian approach. But one of most appealing 

features of a Bayesian analysis is the broader set of models that can be built, 

models which do not have a classical equivalent approach. This is the basis of 

this thesis and also of a few other theses and papers (Norberg (1993), Boskov 

and Verrall (1994), Arjas and Haastrup (1996), Haastrup (1997) for instance).

It may turn out (and this is something that remains to be seen) that the 

most important of these new ideas is the ability to model at the individual 

policy level. This approach, an “engineering approach”, when assumptions are 

made directly in the process itself rather than on the aggregated data, fits 

fairly easily within a Bayesian model.
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In this section two examples are presented. The first one is the use of 

spatial models in the rating by area problem, not using individual data but 

only the loss ratio and exposure by area. The individual data are considered in 

the second model, which is an application to claims reserving, but now 

considering the individual data, instead of the usual triangular format. Both 

models use the simulation approach, but neither could use WinBUGS and a 

specific implementation program had to be written.

3.3.1 Rating by postcode area

There are many factors that could influence the frequency or cost of a 

claim and that should be taken into consideration when defining the value of 

the premium. One of these is the area where, for example, a car is used or 

parked most often and this characteristic is usually taken into account 

through the neighbourhood where the policyholder lives.

Neighbourhood could have many interpretations, but here postcode is 

used. In an office environment it is common to aggregate postcodes with 

similar experiences in the same class. At the end of this procedure a small 

number of classes is derived, but the vicinity information is not formally taken 

into account by the model.

Taylor (1989) published the first paper with some statistical basis, 

which addressed how to carry out this aggregation using the vicinity 

information. He adapted a two-dimension splines model to the postcode 

problem, with a totally non-Bayesian approach.

In this chapter a review of Boskov and Verrall (1994) is presented. That 

paper used a Bayesian approach, applying spatial models which are mainly 

used in epidemiology and satellite image restoration, among other fields. The 

basis for such models is that areas that are close together are more likely to be 

similar in risk than areas that are far apart.

The aim of the model is to find a value for risk parameter (9 ), that is 

smoothed oven the whole area (that contains n postcodes) but considering 

only information from its neighbours. The data contain the observed loss ratio 

(x) for each postcode area i, and they are assumed to have a normal 

distribution as follows:
x. |0.~ normal (0., a/wx) i = 1 ,...,n (3.15)

Where uh is the exposure for postcode area i. Instead of using the 

variance as a variable as in some models seen before in this chapter, a is a
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constant chosen by the analyst fixing the required level of smoothness. The 

bigger a, the smoother the result for the posterior mean of Qr

The most important idea of the model comes in the definition of the 

second level of distributions, when a relationship among the risk parameters 0 . 

is defined. For each postcode risk 0. an adjacency set is defined as in figure 

3.9, where the darker areas are included in the neighbourhood of the risk.

Figure 3.9 -  Adjacency set to postcode risk 9.

So the risk parameter of each postcode is defined to be normally 

distributed, centred on the average of all risk parameters in the adjacency set. 

All risk parameters are defined at the same time, influencing their neighbours 

as well.

This model does not have a possible analytical solution, and a 

simulation approach was used in order to find the posterior of 0.. A MCMC

method was used and the full model explanation can be found in the original 

paper. It is really interesting to observe that the risk parameters really took 

some information from the neighbours, and a smoothed map of the London 

postcode area was obtained.

In the following subsection, models considering individual data are 

presented. The solution found in Arjas and Haastrup (1996), which is the only 

applications reviewed here, is derived through simulation. It took a long time 

to perform the implementation, what is considered a barrier to future practical 

use.

3.3.2 Claims reserving

The majority of methods for estimating claims reserves are based on 

macro models, where the data are aggregated in a discrete time and triangular 

format like the chain ladder model. Micro models, where the continuous time 

and individual policyholder characteristics are statistically taken into
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consideration are not usual. The only office-based procedure that takes into 

consideration some individual information is the case reserve definition, when 

the claim characteristic is used by an expert to predict its final value without 

any statistical modelling.

Individual models and continuous time are highly connected since the 

aggregation of data usually requires a more concise information on time as 

well. One of reasons why this individual characteristic is not used in statistical 

models could be the difficulties that surround any calculation on an individual 

claim basis. The fluctuation related to any individual estimate, could also be a 

good justification for the lack of use of such models. The key question would 

be to use such information, but in a more robust way.

Before analysing the example in Arjas and Haastrup (1996), it would be 

helpful to think of the claim process. Jewell (1989) analyses the occurrence of 

claims together with the delay of reporting. In this way the number of claims 

which have a reporting delay -  IBNR -  is estimated via a Bayesian model. Time 

is considered as continuous.

Norberg (1993) proposes a more comprehensive model, further 

developed in a later paper Norberg (1999). In his model not only the 

occurrence of a claim is modelled, but also its development. The occurrences 

are modelled as a non-homogeneous Poisson process with the corresponding 

development as position-dependent marks. Formally, a claim is a pair (T, Z] in 

(0,oo) x Q, where T is the time of occurrence of the claim and Z  is the mark 

describing its development and defined as:

where:

U is the waiting time from occurrence until notification;

V is the waiting time from notification until final settlement;

X  is the final claim amount (X=X( V));

X(v j, the indemnity paid in respect of the claim at time v ' after its 

notification.

Fixing the time of reserve evaluation at x (called the present time in 

many of these papers), suppose that there are N claims that have occurred in 

(0, x]. If W is defined as the total exposure related to the business written in 

that period of time (expressed by the area in figure 3.10), the distribution of 

the total number of claims is given by:

N ~ Poisson( W); (3.17)

Z= (U , V, X, {X(u'); 0 < V’ < V\) (3.16)

where W =
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and w(t) is the exposure function.

Figure 3.10 -  Weight function scheme

"<tyt

So 0 < Tj < T2< ...< Tn are the moments of occurrence of the claims that 

will follow a non-homogeneous Poisson process given by:

(Tih<i<N~ Poisson(mfi); i > 0)

Where the total claim process has the following structure:

{T, , Z,} j< ,• < jv ~ Poisson(m(i), PZ|t ; t > 0 )

The dependence of the frequency of claims only on w(t) can be 

generalised by including a random fluctuation, which is chosen to be of the 

multiplicative form in the application on Chapter 6 and in Arjas and 

Haastrup(1996). In these models the intensity changes to w(t)<p(t) and W is 

rewritten as:

W = £w (t)q (t)d t. (3.18)

In order to define Pz|t Norberg (1993) decomposes Z, categorising the 

claim at a specific time x into disjoint sets: settled, reported-not-settled, 

incurred-not-reported or covered-not-incurred. The first one does not need any 

reserve, but the following ones give rise to the RBNS (reported but not settled), 

IBNR (incurred but not reported) and UPR (unearned premium reserve). Those 

four components can be viewed as arising from independent marked Poisson 

processes (which facilitates the calculation) whose intensities and mark 

distributions are expressed as (from theorem 2 in Norberg (1993)):

{T'i , Z j i } i < i S N ~  Poisson(uy(i), P'zit; i > 0) (3.19)

u/(i) = w{t) PZ|t(Qj 

Pzlt(dz)
P I (dz)= --------- — , z e P
z|* v nJf

with Y Jpz\t(QJ) = 1> andp|QJ = 0
j ^ i  j > i  j > i
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Decomposition is the focus of Norberg (1999), where this idea is 

extended to “quite general countable decompositions”. As an example this last 

paper includes the decomposition by year of notification and occurrence is 

proposed in order to find a connection with discrete models. Such work also 

highlights a hierarchy in the mark Z. Its first three components (U, V, X ) are 

primary to the claim. By knowing its full development the partial payment 

process could be viewed as a secondary interest. In this way the probability 

distribution of Z will, usually, be constructed in two steps. The first related to 

U, V, X  and the second to X(v).

Now a claim scheme is represented in figure 3.11, showing how each 

claim could be different from another and also highlights the partial payment 

process, which for most types of insurance is more usual than a single 

payment.

Figure 3.11 -  Claim process scheme

The mark Z  could also include more information and Arjas and 

Haastrup(1996) proposed an application of this model, where the marks Z also 

include some covariates and were given by:

Z = (S, A, U, V, X, {.X(v); 0 < v '< V) ) (3.20)

where:

U, V, X and X(v) are as in (3.16);

S is the sex of the policyholder;

A is the age of the policyholder.

Claim frequency and severity are modelled separately. For claim 

frequency, age, sex, report delay and calendar time of occurrence are included, 

and for claim severity the analysis uses partial payments, which are only 

dependent on the number of partial payments and the time since latest partial 

payment if any, or else the time since notification. MCMC simulation is used 

in order to obtain the estimated posterior distributions. By some conditional
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independency results, IBNR and RBNS claims reserves are calculated 

separately.

The way of handling missing values in a Bayesian framework is also 

explored and the IBNR claims are considered as missing. Since simulation is 

used, it is possible to sample at each step the number of claims that have 

already occurred and that are missing (IBNR) and their corresponding 

amounts. At the end of the simulation a sample of IBNR numbers and values 

is available and its posterior distribution can be approximated. The amount of 

RBNS claims is calculated in the same way.

The results of this model will be further explored in Chapter 6 . This 

model suggests many ideas for further development. If individual information 

could be taken into account in a statistical model, it means that 

characteristics of the claim itself could also be formally considered.

3.4 Chapter conclusion

As was shown throughout this chapter, many models have been 

developed in a Bayesian framework. Some of them were only an extension of 

well known models, but others included new ideas to the actuarial analysis. 

More than 20 papers were reviewed, being only a sample of a large variety of 

works, but which illustrate the range of applications

In the following chapter a basic model is built, using the ideas 

expressed in section 3.3 and the simulation technique RJMCMC. In chapter 5 

the first application is presented, but it is in chapter 6 that the papers by 

Norberg (1993, 1999) will be used to build the model for that specific 

application.
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Chapter 4

Theoretical framework

In the previous chapter a review of some Bayesian models in actuarial 

science was given. Now a model based on individual data is built, continuing 

the idea described in section 3.3. In this fourth chapter, a full explanation of 

the ideas and theory behind the basic model used in the applications in 

Chapters 5 and 6 is presented, including the implementation techniques and 

algorithm.

It is noted that the structure of the model is quite simple, based on a 

piecewise constant parameter. However, the fact that the dimensionality of the 

parameter set is not fixed in advance makes its implementation quite 

complicated. The way chosen to implement this model is via reversible jump 

Markov chain Monte Carlo (RJMCMC), a generalisation of the Metropolis- 

Hastings stochastic simulation technique explained previously in section 

2.2.3.

As a brief idea of the application of this model, suppose that it is 

desired to transform a continuous variable limited to the interval [0,L) into a 

few groups. The basic model defines, at the same time, how many jumps there 

should be, where they should be located and the risk parameter related to 

each group. This is a change to the usual approach of fixing first the number 

of jumps and then defining their locations and risk parameters. In this usual 

approach the parameters (number of jumps, their location and risk 

parameters) are defined separately, which causes interpretation problems 

depending on the dependency among the parameters.

The outline of the chapter is the following. Section 4.1 explains the 

basic model. In section 4.2 the basic model is presented in two special cases: a
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change-point and a mixture of normal distributions models. After 

understanding the model and having the implementation techniques, the 

algorithm is presented in section 4.3. Section 4.4 presents the chapter 

conclusion.

4.1 Basic model

Since the applications in Chapters 5 and 6 are based on models that 

use a common idea, in this section the basic idea is explained. The model 

presented in this section will be called from now on as the “basic model”. In 

each one of the applications in the following chapters some changes are made, 

but the ideas are kept as in this basic one.

The basic model considers that a piecewise constant distribution is 

applied to a parameter, say q>(t), which depends on the covariate t located in a 

bounded set Q derived from real numbers set 9?, in the continuous case, or 

integer numbers set Z, in the discrete case. The parameter cp(t), generally called 

the level, takes a piecewise constant value over a set of intervals, defined by 

the number of jumps in Q. This is a simple model, but its structure is 

complicated because it is not known in advance how many intervals (k+1), or 

jumps (k), there should be in Q. In addition, it is not known where the 

intervals, or jumps, should be located, or the level cp(t) related to them.

Generally speaking, the model can be written in the following way:

Y\ cp(t) ~ distribution((p(fj), t e Q. (4.1)

where:

Yis the data set (Y=(yI,y2,...,yn))-,

<p(t) = Zj if t e [s j, Sj+i) for j=0,...,k with cp(inf(Q)) = fo, <p(sup(Cl)) = Zk;

(with fixed so = inf(Q), Sk+i=sup(Q))

In order to help with the comprehension of the model, its DAG is 

displayed in figure 4.1.

Once k is fixed the parameters of the model are given by cp (t), t e Q, and 

defined by a piecewise function, which is constant and not stochastic. In this 

way the unknown parameters of the model could be expressed by the following

set:

k is the unknown number of jumps (k+l groups);

lo, l\, h,..., Ik are the levels related to each group;

Si, S2 ,..., Sk are the times of change of level.
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Since k is not a constant, the dimensionality of the set of parameter is 

not fixed. Given k, there is a set of unknown parameters 9W = (lo, l\, h,---, lk,si, 

S2,..., Sk) with dimensionality rik = 2k + 1.

Figure 4 .1 - Basic model DAG

Among many applications, two main ones could be noted in such a 

model. The first one is the already cited search of the number of groups, their 

locations and levels. Use of the model above can provide the analyst with these 

three answers at once. Such an application is the basis for the definition of 

age groups in the automobile insurance premium in Chapter 5.

In the second application the analyst is more interested in the 

smoothing property of the model. In a structure like the one above, the change 

in the number of jumps influences the location of the group intervals, allowing 

the level of one specific group to be influenced by the level of the other group. 

This smoothing is the main characteristic for the applications in Chapter 6 .

Supposing t to be continuous and Q =[0,L), the figure 4.2 shows how 

the model works for k jumps.

Figure 4.2 -  Model scheme

Ik
lo +----------------------------------- ►

◄---------------- ►
l,

SO-0 Sl S2 Sk Sk+1=L

In all applications, frequency and severity of claims are considered. 

They are considered independent and the above model is applied to each one 

of them separately. The model is adapted to the case of analysing severity and 

frequency of claims for the case where t is either continuous or discrete. For
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the frequency case the assumption of claims arriving from a Poisson process is 

used, and in the severity case a normal distribution is assumed. The 

specification of the full application is in the following chapters, but in the next 

subsections their basis is built. In order to guide the reader through the work, 

the application, together with its location and type of covariate t is specified in 

the table below:

Figure 4.3 -  Distribution of models over the thesis

Problem t

Chapter 5 Grouping ages Age as continuous

Chapter 6 Claims reserving Age, sex as discrete 

Reporting delay and calendar 

time as continuous

Now the full formulae are derived for frequency and severity separately. 

The covariate t is considered continuous throughout the whole explanation, 

and at the end of the chapter the changes are shown for the discrete case. For 

simplification on the calculations, in the continuous case the moments of 

jumps Sj, j=l,...,k, are not allowed to occur at the same moment as the 

observations.

The type of data also changes depending on the application, but in all 

cases a structure like figure 4.4 is observed. For each policyholder 

(represented by an arrow) the exposure is given, and in the case of claims their 

value and the time of occurrence in [0 ,L) are also included (represented as a 

star).

Figure 4.4 -  Claim structure

___________ *  *;> < -----------------------

* ------------------------------->

--------------------------------------------------------------------------------------------------------------------►
0 L

4.1.1 The model for the claim frequency

The occurrence of a claim is presumed to follow an inhomogeneous 

Poisson process with intensities (p(f), t e[0,L). Supposing there are n claims 

observed in this interval the essential part of the likelihood is given by:
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(4.2)f l  *p (i/.-) exp{- ̂ Mty?(t)dt}
1=1

where

i/i is the time of observation of each claim i, i=l,2,3,...,n;

z/i e [0 ,Lj, and

w(t) is the exposure function.

The formula presented in (4.2) can be rewritten in order to explore some 

of the characteristics of the model. Since cp(t) = \ if t e [sJ( Sj+i) for j=0,...,k, the 

likelihood can be rewritten as:

Y l lj nj exP{~lj wj+1} (4-3)
7 = 0

where

wJj +1 is the total exposure in [sj, Sj+i) (mj' 1 = w(t)dt), and

is the total number of claims in [s j,  sJ+i).

This approach is in between parametric and non-parametric models, 

since it allows the estimated q(t) to reflect the behaviour of the data in a way 

that is not possible under strong parametric assumptions.

In the prior it is necessary to specify a distribution for k, s}, fo, and l} for 

j=l,...,k. The prior for k is defined to be a Poisson distribution with rate A.

p(k) = — — /c</cmax (4.4)
k\

The hyper-parameter kmax is included in order to guarantee that only a 

finite number of models are considered.

Given k, it is possible to define a prior distribution for the values of fo, lj 

and Sj for j=l,..,/c. sj is distributed, for 7= 1 ,...,k, as the even-numbered order 

statistics from 2fc+l points uniformly distributed in (0,L). It was decided to 

only pick the even ordered ones in order to avoid that two successive jumps 

are very close together. I, follows a Gamma distribution with parameters (a,(3 ) 

and this distribution was chosen as the conjugate prior distribution for the 

likelihood. This set of priors is the same as used in Green(1995).

Before explaining the procedure in the severity case, a discussion of the 

time of occurrence of claims is necessary. One of the assumptions of a Poisson 

process, widely use to model occurrence of claims, is the zero probability of 

more than one claim occurring at the same instant in time. Although the 

Poisson process has been shown to fit the claim occurrence very well, this
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assumption is not realistic for real data. It happens again here in the data sets 

used in the following chapters.

4.1.2 The model for the claim severity

The second model for t continuous is defined for the case where the 

value of the claim depends on the covariate t. A Normal distribution is 

assumed and the variance is assumed to be a known value. The level 

parameter y(t), which stands for the distribution mean in the severity case, 

follows the basic model. In this way, the model states that the data follow a 

mixture of normal distributions, without fixing the number, k, of distributions 

involved in the mixture.

It is assumed that claim values follow a normal distribution 

Normal((pffj, a2) with variance a2 fixed and equal in all groups. The reasons for 

using a constant and equal variance are discussed later in this subsection, 

and the problems of this limited approach are discussed throughout the 

applications in Chapters 5 and 6 .

The likelihood is written as:

with h(y,) as the claim value.

Again this expression could be simplified by using the structure of the 

model. Since cp(t) = l, if t e [sj, Sj+i) for j=0,...,k, the likelihood could be written 

as:

The prior distribution set is the same as defined in subsection 4.1.1 for 

all the parameters except y(t). The relationship with Sj, j= l,...,k  is the same as 

described in the frequency problem and the prior distribution for fj follows a 

normal distribution, Normal^,x2), for j=0,...,k.

The value of a 2 was chosen to be fixed and equal in all groups to 

simplify the calculations. Because of the structure of the model the algorithm

(4.5)

where

n'j is the number of claims in [sj, Sj+i), with n=n'o+...+n'k;

hJA is the sum of all values of claims that occurred in [sj, Sj+i), and

hsJj+1 is the sum of square of all claims that occurred in [sj, Sj+i).
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is quite slow, as will be seen in the applications in Chapters 5 and 6 . The use 

of a stochastic a 2 would increase this calculation time, which caused 

implementation problems.

4.2 Complete algorithm

In Chapter 2 all the implementation techniques were discussed, with an 

algorithm following each stochastic simulation technique. Now, with the full 

model described for the case where t is continuous, in the frequency and 

severity case (subsections 4.1.1 and 4.1.2 respectively) a complete algorithm is 

given for this specific model. This algorithm involves MCMC in all parameter 

updates.

Recall that the aim is to simulate a sample from the posterior 

distribution p(7c,0w|Yj. Hence, it is necessary to define a way of moving the 

sampler between the different dimensionality spaces, and updating the values 

of all parameters at the same time. At the end of a large number of 

simulations, the posterior frequency distribution of the number of jumps k is 

obtained and also a large sample from the posterior distribution for the other 

parameters 0W= (lo, h, h,..., k,s\, S2,..., sk).

In order to achieve this, at each step the Gibbs sampling is used to 

update all components of 0 w with the number of jumps, k, fixed from the 

previous step as in the approach of Green and Richardson (1997). Then a 

move m for k is chosen from:

(a) Keep the number of jumps, k, the same;

(b) Birth of a jump;

(c) Death of a jump.

If the move changes the dimensionality of 0w ((b) and (c)) then the 

acceptance test from RJMCMC technique is used, and if the move is accepted 

the value of 0 (k> changes. If the move m keeps the value of k the same, then the 

updated value via Gibbs sampling for 0w is kept and another step starts 

again.

For N* updates, the algorithm is given as in figure 4.5.
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Figure 4.5 -  Gibbs sampling algorithm

Initialise the vector 0 (fco), with ko jumps, 

for j= l to N*

Update 0 1 using Gibbs sampling 

Define k) (or choose the type of move m) 

If k) = kj-i then kj = k) 

else do acceptance test 

Next 7

This is a different procedure from Green (1995) and Denison, Mallick, 

and Smith(1998), when the move m is chosen first and only the components of 

0 ,k> directly involved on the update of k are sampled. It means that in each 

step only part of 0 w is updated, and since an acceptance test is performed, an 

update is not even guaranteed. The acceptation rate for RJMCMC in the 

applications seen so far (subsection 2.2.3) is around 8-17%. The benefit of 

using the approach adopted in this thesis is that the whole parameter vector 

0 w is updated in every step.

The algorithm is divided into two sampling sets: the updating of 

Qlk)=(si,..., Sk , lo,..., Ik) and then k. When updating k, a change in the 

dimensionality rik could occur and in this case RJMCMC is used. The case of 

updating 0 (k> is done in two steps: the position of a jump (Sj, 7=1 ,..., k) and the 

respective level ((,, 7=0 ,..., k). Gibbs sampling is used to update 0W when k is 

fixed.

4.2.1 Updating 0W

In order to update 0 k is supposed fixed. For the parameters related 

to the position of jump (Sj, k) the use of a step function is needed,

which makes this update the most time demanding in ail applications. For the 

level parameters ((/, j=0,..., k) the update is more straightforward. Both the 

procedures in the position and level parameters are explained, differing in 

formulae for the frequency and severity cases (subsections 4.2.1.1 and 

4.2.1.2).
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All parameters are sampled via Gibbs sampling. So it is necessary to 

define complete conditional distributions for Sj, lo, lj for y=l,...,/c. Starting with 

the levels, consider updating Zj. The complete conditional distribution is given 

by:

n(lj\lo,...,lj-i, lj+i,...,lk,Si,..., Sk+i,k, hyper-parameters, constants) = 

n(lj\ Sj, Sj+i, k, hyper-parameters related to lj) = n(lj\.)

This simplification is possible given the Markovian structure of the 

process. Once the distribution n(lj |.) is fully specified the value of lj related to 

the interval [Sj, sJ+i) can be updated.

In the same way it is possible to show that the moment of a jump s, has 

complete conditional distribution given by the following relationship:

n(sj\si, ..., Sj-i, Sj+i, ..., Sk+i, lo, ..., Ik, k, hyper-parameters, constants) = 

k (Sj  ISj.h SJ+1, lj-1, Ij, k)=n(sj\.)

Before splitting the calculations according to types of data, a general 

procedure for this case is defined. Following Arjas and Gasbarra (1994) a 

partition is defined on (sj-i, S j+ i),  where the new value for sj is located. Hence, 

the position of Sj is determined by considering the partition of (sj-i, sJ+i) 

induced by the ordered observations y(t) in that interval. Suppose there are 

nj** observations in (sj-i, sj+i), split it into n^} +1 disjoint intervals and denote

the partition by
i-i+1' Then in each interval I i , i=l,...,njf1 + l, thej-1

conditional probability density of Sj has a form proportional to exp[ai/(sj)]ci and 

this can be normalised by dividing by the constant constj, where:

nj*!+1
" j - i  'rl

constj = Y  c, [exp [a j(t)]d t
i=i

(4.7)

where the function f(t) has the following format:

f(t) =< t for frequency data (4 .8)

1 for severity data

In this way, constj has an analytical solution for any t e (sj-i, sJ+i) and Sj 

has its complete conditional posterior distribution for all j=l,...,k.

Now the approaches in this thesis and in Arjas and Gasbarra (1994) will 

differ. For comparison the scheme proposed by Arjas and Gasbarra (1994) is 

explained and shown in figure 4.6. Suppose an initial set of values 

(Z°,Sj0,Z]0,S2 ,...,s°,Z°)is given and that a posterior sample is needed for 0 W. 

Then in Arjas and Gasbarra (1994) the initial level lo is updated, followed by 

the next moment of a jump si, then h, then s2, ... until Zk is updated. In this 

way, it is possible to observe that the levels Zj, j= 0,..., Zc-1, are not sampled
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Figure 4.7 -  Gibbs sampling algorithm for 9 ,k>

After defining the Gibbs sampler for both level and position parameters, 

the specifications of n(Sj |.) and n(lj |.) are given for the severity and frequency 

cases.

4.2.1.1 Frequency

In the frequency case the complete conditional distribution for the level 

parameter is given by:

n(lj\l0,...,lj-i, lj+i,...,lk,si,..., Sk+i,k,X,a, Pj =n(lj \ Sj, sj+i, k, a, fi)=n(lj\.) 

with:

71 (lj | .) ~ Gamma[a + x j+1, p + iuj+1] (4.9)

where

x j+1 is the total number of claims observed in [Sj, sJ+i), and 

mj+1is the total exposure in [Sj, Sj+i)

The complete conditional distribution for the moment of jumps is given 

by:

71 fS j | SJ , . . . ,  S j- lf  S j+ l,  . . . ,  S k + lf  lo , • • • ,  Ik j k ,  k ,  Cl j  PJ 71 (S j j . )

with:

n(Sj | .)= r J'V b-i 9
r7+1

e x p -  wJj +1lj }.p(Sj ) (4.10)

where:

xj_jis the total number of claims observed in [sj-i, Sj) 

wj_j is the total exposure in [sj-i, Sj) 

p(Sj) is the prior distribution for Sj, and 

wJj+1 and x j+1 as defined above.
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4.2.1.2 Severity

In the severity case the complete conditional distributions for the level 

parameter is given by:

n(lj\l0,...,lj-i, lj+i>■ • •>l k , sSk+i , k ,X,  p, a, x) = n(lj \ sj, sJ+J, k, p, a, x)=n(lj\.) 

with:

tc (Ij | .) ~ Normal( p*, i 2*) (4.11)

where

n7+1
- + —  and p* = ■ + 4 xx

\ /

And the complete conditional distribution for the moment of jumps is 

given by:

n(sj |Si, •••) Sj-j, sJ+h ...j Sk+ij lo) k) X, p̂  o, x) n(Sj |.J

with 71 (sj | ,)oc:

exp{ - ¿ r [- 2lj-ihU + nU U  -  2hhj +l + | (4-12)

where:

hJj_x is the total value of claims observed in [sj-i, Sj) 

hj+1 is the total value of claims observed in [Sj, sJ+i), and 

nj+1 and nj_x are as defined above.

4.2.2 Updating k

After updating 0 the number of jumps, k, is sampled. Since this 

affects the dimensionality of the parameter 0 (k), reversible jump MCMC is 

used. So it is necessary to define which of the moves (a), (b) or (c) in section

4.2 should be chosen, together with the probabilities of each of these 

possibilities. Following Green(1995) it is defined that:

(a) rpt is the probability of keeping the same number of jumps,

(b) bk is the probability of changing from k to k+1 jumps, and

(c) dk is the probability of changing from k to k-1 jumps.

These probabilities must satisfy: bk + dk + p/t =1 for each k, and moves 

(b) and (c) are also called birth and death of a jump.

Define:

bk =c.min{l,p(fc + l)/p(fc)} (4.13)

and
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dk = c.min{l,p(/c-l)/p(/c)} (4.14)

for k= 1 , 2,..., Aim ax 1 where r| ̂  = 1 -  bk - dk-

When k= 0, b0 = c.min{l,^} r)0 - \ - b 0, leaving the probability of death

equal to zero. When k = /Wx the opposite is done, leaving the probability of

birth equal to zero and dk = c. mim 1, -1
and ri. = 1 -  d. . c is

1 ''-mav 'Vmnv

dependent on the values chosen for kmax and X. In Green (1995) c = 0.40 and 

for simplicity this value is used in all the applications in this thesis.

Once these probabilities are defined the acceptance test has to be 

constructed. In move (a) nothing is done, since 9 ,k> have already been updated 

before. In the birth move (b), the position of a new jump is selected from a 

uniform distribution on Q. Define this value as s*, and suppose that it is in 

the interval (s j ,  Sj+ i).  If it is accepted S j+ i  is set to s * ,  and S j+ i ,S j+2 ,. . . ,Sk  are 

relabelled as s j  *2, s )  +3,.. . ,  s 'k+ i ,  with corresponding changes to the labelling of 

the levels. The new levels 1], +i are defined on the intervals [Sj, s*j and [ s * ,S j+ i )  

through a relation that is governed by a sample from an uniform distribution 

and a weight depending on the new intervals. Different relations are used in 

this thesis, but all of them follow a structure like the following:

g(Sj, s*)f(l]) + g(s*,Sj+:)f  (1] +1)= g(sj, sj+i)f(lj), (4.15)

and

* hi 
V :

1 - U

U

(4.16)

where u is drawn from the uniform distribution (0,1).

The acceptance probability for this move is given by: 

min{l, (likelihood ratio) x (prior ratio) x (proposal ratio) x (Jacobian)} 

Where the Jacobian is defined by the change from ((•, u) to (l), l\ +i). The 

likelihood ratio, which is given by dividing the likelihood for the new set of 

parameters over the old one, is straightforward and not defined here. The prior 

ratio becomes:

p(k + 1) 2(k + 1)(2k + 3) (s* -Sj)(sj+l - s*) p(Vj )p(lj+l)

P(fc) L2 sJ+i ~ sj P ilj)

where only the prior for (Zj, l], l) +i) changes depending on whether the 

model is working on severity or frequency. The proposal ratio becomes:

d - k + . 
bk(k + 1)’

(4-18)
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In order to define the Jacobian, formula (4.15) has to be fully specified. 

The function f(l) is given by:

f (h )  in the severity case (4.19)

ln(Z j) in the frequency case (4.20)

And since the definition of this formula influences the acceptance 

probability of the new level liy the function g{.) has two formats, both used on 

the frequency case.

g(Sj, Sj+i) = {  sj+I-Sj (4.21)

wi+i

In all cases the Jacobian is given by:

v'j+l'j+1 f
L

(4.22)

(4.23)

In the death move (c), the jump to be deleted is sampled with equal 

probability from the existing jumps. The acceptance probability for the 

corresponding death move has the same form with the appropriate change of 

labelling of the parameters, and the ratio terms inverted.

The final algorithm for updating the set of parameters in the claim 

frequency problem is given by figure 4.8:

Figure 4.8 -  Complete RJMCMC algorithm

Initialise the vector set {k°, 1 ° ,s° ,...,s°0 ,i°0) • 

for j= 1 to N*

Update lo, si, U, S2,..., Sk, Ik in this order 

Update l0, h, ..., Ik in this order 

Choose move type m

If move type is (b) or (c) sample values for the components 

of 0 w affected by this change:

If the move is accepted, change the dimensionality of 0 ^  

Else keep old values of 0 (k>

Else do nothing

Save values for all parameters

Next j
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4.3 Model for the discrete case

The model for the discrete case does not change considerably from the 

continuous case. In the birth move (b), the value of jump is selected from a 

uniform distribution on Q, which is equal to (0,1,2,...,L) in the discrete case. 

The same adaptation occurs for the priors of Sj, for j=l,...,k, which is 

distributed as the even-numbered order statistics from 2k+l points uniformly 

distributed in (0,1,...,L).

Besides these changes, most of the calculations are easier to perform. 

As an example, to update the positions Sj, for j=l,...,k, the split into disjoint 

ordered groups is done automatically by using a discrete variable instead.

4.4 Chapter conclusion

In this chapter the whole basis for the applications in Chapters 5 and 5 

was built. The model, implementation and algorithm were presented and their 

theory explained.

It is important to highlight the use, in the algorithm proposed here, of 

the combination of RJMCMC and Gibbs sampling. In this way it is more likely 

that a good sample is taken than when only the acceptance test proposed in 

RJMCMC is used.

67



Chapter 5

Investigation of the grouping of ages

It is sometimes the case in actuarial work that a large quantity of data 

arises relating to a specific problem. The transformation of such data into 

information for rating or reserving, as some examples, is one of the main 

issues in actuarial science.

In order to summarise and investigate this information the actuary, or 

statistician, often has to decide on some kind of aggregation. Sometimes this 

procedure only takes into account the rating structure used in the insurance 

market. If a review of such a structure is needed, some well-known stochastic 

techniques are used and the type of covariate analysed usually governs which 

statistical technique is appropriate.

In the case of a discrete variable or factor, many techniques are 

available. These include linear regression and cluster analysis among many 

others, but they will not be revised here since they are not the subjects of this 

thesis. However, in the case of a continuous variable the available techniques 

are limited, and in many cases a transformation to discrete values has to be 

carried out before performing the transformation into factors. For example, 

Lemaire (1977) used stepwise linear regression for aggregation in actuarial 

context.

Clustering analysis is also a technique applicable to this problem. In 

most cases, this approach involves the use of a dummy variable applied 

whenever it is necessary to group a continuous variable. The problem with 

such an approach is that the analyst has to have a good a priori opinion of 

how to define the groups that will be tested. Artificial intelligence has also 

been applied to this subject in the research literature, where the discretization
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technique attempts to find the right places to set up interval borders in a 

continuous variable.

In this chapter the model described in chapter 4 is used to group a 

continuous variable that is limited to some interval [0, L], where the initial 

point is defined to be zero without lost of generality. Now, it is considered how 

many intervals there should be in [0, L], and where these would be best 

located. The level risk for each group is also evaluated at the same time. The 

method uses a Bayesian approach, and hence the point estimate is replaced 

by the posterior distribution for the relevant quantities. In other words, the 

level risk is assumed to be a piecewise constant function over [0,L] and the 

task is the complete specification of this function.

A continuous variable in insurance appears in many types of cover, but 

age is the most common one and influences the occurrence and value of 

claims in many type of insurance. This is the covariate, which is considered in 

the application in this chapter, where the model described is applied to the 

problem of how to group ages in motor insurance. These claims are split into 

bodily injury (BI) and motor damage (MD) coverage, analysing the frequency 

and severity of claims separately. They are all considered independent and for 

each of them the algorithm set out in figure 4.8 is used.

After updating them all and deciding for each one the groups to be 

used, the overall risk premium is calculated by:

Risk premium(f) = M D f req ( f ) x M D Sev(f) +  B I f req ( i )x B Is e v ( i )  (5.1)

Where M D freq( i ) ,  M D sev ( i ) ,  B I f req( i ) ,  B I sev(i )  assume values depending on 

the age i, or in other words, on the group in which the age t is located.

The results from this model are compared with the results from Verrall 

and Yakoubov (1998) where fuzzy set theory was used for the same data set to 

also perform the aggregation into groups. This other approach considered age 

to be discrete instead of continuous, and the groups were defined only over 

the frequency of claims, with severity playing no role.

The outline of the chapter is the following. In section 5.1, the data used 

in the application is presented. Section 5.2 refers to chapters 2 and 4 in order 

to explain the type of acceptance test that is used in the different cases 

implemented in section 5.3. In section 5.4 the final premium and groups are 

defined, with a comparison in section 5.5 with the results from Verrall and 

Yakoubov (1998). In the last section a chapter conclusion is presented.
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5.1 Data

The data come from a portfolio of motor insurance business with 66596 

policies classified by age as well as a number of other factors. For each policy 

there is information related to the bodily injury frequency and severity of 

claims, the motor damage frequency and severity of claims and also the 

exposure. The effects of all the factors, except obviously age, should be 

removed before any analysis, but they were not sufficiently significant to 

justify any procedure. Hence, it is supposed that age is the only factor that 

influences the claims occurrence and severity.

Each policy could have more then one claim. So in formulae 4.2 and 

4.5, n is related to the number of claims. For bodily injury n=624 while for 

motor damage n=9674.

Age is recorded to two decimal places, and exposure is measured as a 

fraction of a year. The actual age of the policyholder when the claim occurred 

(or the actual moment in time that the claim occurred) was not available, and 

so it was necessary to use an approximation. It was supposed that claims 

occurrences were uniformly distributed over the exposure of each particular 

policy, with the respective value also equally split. The nature of the data is 

illustrated in figure 5.1, where circles represent the moment of occurrence of 

the claim and the lines the exposure, or duration, of each policy.

Figure 5.1 -  Claim occurrence and exposure scheme

>
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O age of occurrence of claim
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< ------------ >
>
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The maximum exposure was one year and the age was some number in 

the interval [19.39, 92.98]. Before starting the analysis, ages were transposed 

by subtracting 19.39 from all ages, changing the interval to [0, 73.59]. Three 

data sets were available for the analysis. The first related to the exposure, and 

for both bodily injury and motor damage a data set containing four pieces of 

information was used. The information in each of these data sets was the age 

of the policyholder at the moment of occurrence of a claim, the total number of 

claims at this age, the sum of the total claim value and the sum of the 

logarithm of the claim value.
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Figure 5.2 -  Summary plots of automobile insurance data
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In order to illustrate the nature of the data, figure 5.2 shows the relative 

frequency (number of claims divided by exposure) and the average claim value 

(also in logarithm basis) in the case when age is considered as a discrete 

variable.

Table 5.1 also shows some statistics from the database.

Table 5.1 -  Statistics of the automobile insurance data
BI-

frequency
MD-

frequency
BI-

severity
BI- log 

severity
MD-

severity
MD- log 
severity

Mean - - 871,805 12.74 67,734 16.93

SD - - 1,080,408 1.53 82,474 10.16

Occurrence
Rate 0.0124 0.1921 - - - -

Before applying the model the values of the claims were also 

transformed, with bodily injury severity divided by 10,000 and the motor 

damage severity by 1,000. In this way the order of magnitude of the values 

were simply decreased.

5.2 Description of the models

Eight models were implemented to find a premium for motor insurance 

depending on ages. They follow completely the model described in chapter 4. 

Half were related to motor damage, with the same models also adapted to 

bodily injury. For each type of coverage, frequency and severity of claims were 

modelled separately, with two models for each of them.

Recalling from (4.15) in the previous chapter, the models change in the 

way the following relationship is defined:

g(sj, s*)/(Zj) + g(s*,s7+;)/(Zj,i)= g(s7, sj+i)f(lj) (5.2)

The models related to frequency differ in the way the function g(Sj,Sj+i) is 

defined. For claim severity, there are also two for each type of claim, differing 

in the way j\lj) is defined. Such a change is related to the values that could be 

assumed by lj (j=0,...,k) that in the lognormal case can be negative, 

invalidating the proposed function in (4.19).

In the end the following models were used, with the formulae and 

abbreviation also indicated in table 5.2.
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Table 5.2 -  Models covered in this chapter
Model Abbreviation M 9isj,Sj*i)

Bodily injury frequency BIf 4.20 4.21

Bodily injury frequency weight Blfw 4.20 4.22

Bodily injury severity Bis 4.19 4.21

Bodily injury severity log BIslog 4.20 4.21

Motor damage frequency MDf 4.20 4.21

Motor damage frequency weight MDfw 4.20 4.22

Motor damage severity MDs 4.19 4.21

Motor damage severity log MDslog 4.20 4.21

In each model the number (k), position (sy, j= 1,..., k) and level ( l j ,  j= 0,..., 

k) of the jumps are updated via MCMC techniques, with a large sample as a 

final result. Then an analysis is performed and the groups are chosen for each 

parameter that is included in the risk premium.

5.3 Implementation o f the models

After the eight models have been defined, their implementations can be 

carried out. The constant parameters should be defined, giving values to L and 

a and to the set of hyper-parameters: kmax, 7, u, x, a and (3. Given the range of 

the data, L was defined as 73.59. The Poisson rate was chosen as 7=3, and, 

controlling the number of jumps, kmax was chosen to be 30, a value which was 

not reached during the simulations. The values for 7 and kmax have been 

shown not to highly influence the model, (see comments in Green (1995), 

Green and Richardson (1997) and Denison, Mallick and Smith (1998)) but it is 

also true that a large value for the number of groups would not summarise the 

data enough.

For simplicity, the values for 7 and kmax were chosen to be the same for 

all eight models in table 5.2. For the values of the prior distribution 

parameters the values in table 5.3 were chosen in order to be as non- 

informative as possible. The values for the standard deviation a were chosen 

based on the data.
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Table 5.3 -  Hyper-parameters and constants values
BIf BIfw MDf MDfw Bis BIslog MDs MDslog

a 12 12 10 10 - - - -

ß 1,000 1,000 200 200 - - - -

H - - - - 50 50 50 50

T - - - - 100 100 100 100

C - - - - 150 20 150 20

It is necessary to define all the values before starting the simulation. 

So, initial points must be defined, where the number of jumps were chosen to 

be equal to 5 for all parameters. In the same way the position of jumps were 

defined as 5 equally spaced jumps in (0,73.59), taking care not to have jumps 

at the moment of occurrence of any claim. The values for the levels of jumps 

were sampled at random from the prior distributions. The algorithm 

summarised in figure 4.8 was applied to each of the 8 models.

The simulation was updated for 10,000 steps on a Sparc ultra 1 

140MHz with 64Mb memory. For each model, one step j  in the algorithm in 

figure 4.8 took around one minute, which is rather large when compared to 

usual MCMC calculations. The longer time can be justified by two main 

reasons. Firstly, the size of the data set is quite large, since the nature of the 

information is at an individual level. Secondly, at the moment of updating the 

position of jumps, the Gibbs sampler methods requires the subdivision of [0,L) 

into intervals with fixed exposure and number of claims, which are quite 

numerous.

The acceptance rate for the birth and death moves ((b) and (c) in 

subsection 4.2.2 respectively) are shown in table 5.4.

Table 5.4 -  Type of moves and acceptance levels

Model Kept 
Move (a)

Birth
move(b) Accepted Rate Death

move(c) Accepted Rate

BIf 3,525 3,024 542 17.92% 3,451 542 15.71%

BIfw 3,426 3,066 447 14.58% 3,508 450 12.83%

Bis 4,689 3,851 679 17.63% 1,460 682 46.71%

BIslog 5,027 3,976 685 17.23% 997 687 68.91%

MDf 3,349 2,848 107 3.76% 3,803 109 2.87%

MDfw 3,319 2,919 137 4.69% 3,762 139 3.69%

MDs 4,210 3,880 328 8.45% 1,910 333 17.43%

MDslog 3,806 3,537 270 7.63% 2,657 274 10.31%
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The rate of acceptance is around the level observed in some other 

papers using RJMCMC (see references in subsection 4.2 and 2.2.3) for all 

models, except MDf and MDfw. This poor level influenced the application of 

these two models as seen in their analysis in the following sections.

After obtaining the sample, we may perform the analysis. The first 

characteristic to consider is if and when convergence has been achieved. From 

the 10,000 samples, the initial 1,000 were considered as burn-in iterations 

(M= 1,000) and discarded. The analysis of the trace for each parameter of each 

model for the initial 1,000 and the remaining of the sample has shown that 

convergence was achieved by this point. This can been seen from the visual 

evidence in the trace plots.

If the MCMC tests of convergence are used straightforwardly in the 

reversible jump case, it can result in distortions since the meaning of each 

parameter, apart from k, changes at each iteration. As an example, the 

interpretation of the position of a jump depends on the existing number of 

jumps. Since there is no specific test of convergence that has been especially 

developed to RJMCMC, it was chosen to perform the analysis by following 

some of the rules for the analysis of a MCMC simulation, bearing in mind that 

in the reversible jump case the parameters change meaning at each iteration. 

Generally speaking, it is expected that the whole model converges to a specific 

number of jumps and that through the analysis of the total sample a 

convergence of all remaining parameters should also be observed.

After ensuring that convergence had been achieved, the analysis of the 

empirical posterior distribution for each parameter was carried out. In order to 

minimise the errors of interpretation, an analysis of the parameter values 

conditional and unconditional on the number of jumps was also performed. To 

summarise, the procedure for this analysis is as follows:

To check convergence:

■ Plot a trace of the values and see if there is a good mixing and no

undesirable trend;

■ Compare the two models applied to the same data set and the results given

by table 5.2. Then observe the posterior distributions proposed for the 

same problem with these two different ways of updating.

To decide the shape and parameters values of the posterior:

■ Examine the histogram and Bayes factor of the number of jumps;
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■ For the chosen number of jumps, analyse the behaviour of the parameters

(whether they are individually consistent with the graph for the whole 

analysis);

■ Compare the plot for each single component unconditional and conditional

on the chosen number of jumps. Then compare with the two overall plots, 

which are given by the empirical posterior distributions of all samples for 

the position and level parameters.

The analyses of the results for each type of model described on table 5.1 

are given in the following sections. The results are divided according to each 

type of coverage, bodily injury (section 5.3.1) and motor damage (section 

5.3.2). After performing the analysis of the results, the pure risk premium is 

calculated, where the choices of BIfreq(i), Blsev(t), MDfre,(i) and MDsev(t) for t e 

[0,73.59] are given in section 5.3.3.

An individual analysis is done for each model. Estimators for the 

number of jumps, together with the level and moment of occurrence of each 

jump have to be decided. Natural estimators of the positions and levels of 

jumps are the mode(s) and mean of the posterior distribution for each 

individual component.

In the case of the number of jumps a different approach was used. In 

theory, the best estimator should be the one with the highest Bayes factor. 

However, an analysis of the moment of occurrence of each jump and the level 

parameters also influence the decision. The number of jumps, k, should be 

chosen first, since it influences the analysis of the position and level 

parameters. For each lo, h, h,..., Ik, Si, S2,..., Sk both the conditional and non-

conditional empirical posterior distribution with the chosen k is plotted. It is 

noted that in most cases, these two distributions are not significantly 

different. This shows a convergence to the posterior distribution without 

depending on the value of k, which is a reassuring result.

5.3.1 Analysis of bodily injury claims

The analysis for all four models for bodily injury are performed 

separately in the following subsections, but their summaries and parameter 

estimates are given in advance in table 5.5. This table includes the chosen 

number of jumps, together with the number of jumps with the highest Bayes 

factor (BF). Means and modes are shown for the level and position of each
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jump, with the values calculated over the total sample for each parameter (or 

without conditioning on the chosen number of jumps).

It can be observed that for Blfw and Bis the chosen values for the 

number of jumps were different from the ones with the highest Bayes factor. 

This choice was based on the facts that the analyses of the level and position 

of jumps were pointing to the chosen values, and that their Bayes factors were 

not significantly smaller than the highest one. (Blfw: BF\ 3,2)=1.15, 

BF[2,3)=0.87 and Bis: BF(0,1)=1.66, BF{ 1,0)=0.60).

Table 5.5 -  Estimated values of the parameters in bodily injury
BIf Blfw Bis BIslog

C ¡5
w S' Chosen 2 2 1 0•o g 
g a

Value
Highest 2 3 0 0

B F

1 8,
12.467, 11.618,

Mean 33.082 -

B 6 a
33.283 27.856

<o -Si
«° S  o' Mode

12.585, 12.585,
38.259

32.721 32.721

i? 0.01871868, 0.01964847,
Q) 80.57695,
Q) Mean 0.01239891, 0.01343926, 21.50548
g 127.6362
2 0.01028067 0.0114657
3cx, 0.01855026, 0.01994755,

80.18249,Q>» Mode 0.01198616, 0.01279561, 13.63785
3 140.8127

0.009062508 0.009650974

The result in table 5.5 is further used to define the risk premium in 

section 5.4. Now, the analysis of the results for bodily injury is presented for 

the frequency and severity models.

5.3.1.1 Bodily injury frequency models

There are two procedures that analyse the bodily injury frequency data: 

BIf and Blfw. Both point to a result with 2 or 3 jumps when observing the 

number of jumps directly, but to 2 jumps when analysing the position and 

level parameters. In this way 2 jumps is the one chosen.

BIf

Convergence (traces in figure 5.3):

Convergence was quite fast. All traces are satisfactory, with good 

convergence and good mixing.

Number of jumps (plot (r)) -  There is no obvious convergence, but a 

tendency of staying around the values 2-3. The degree of mixing is good.
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Figure 5.3 -  BIf trace plots
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Position of jumps (plots (j) to (q)) -  From S4 to Ss there is no clear 

convergence, since these parameters do not occur that often, but no problem 

was observed either. A tendency could be observed for S 3 , S 4 , ss and S6 to be 

bigger than 30, 40, 45 and 50 respectively. s2 is in [30, 40] and sj is in [10,15], 

Level parameters (plots (a) to (i)) -  From U to l8 there is no clear 

convergence, since these parameters do not occur that often, but no problem 

was observed either. l3  has values around 0.010, l2  around 0.010, h around 

0.012 and lo  around 0.020. All /, (i=0,...,3) achieved convergence and I3 and l 2 

assume roughly the same values, confirming that there is no need for the third 

jump.

Figure 5.4 -  BIf empirical posterior distributions 
(a) Number of jumps

0 2 4 6 8

(h) Position of jumps

sj, S 2 conditional jump=2; ••• s i ,  S 2 individually, — overall for all s, i=l,...,8.
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(c) Level parameters

Analysis of empirical posterior distributions (Figure 5.4):

Number of jumps -  2 is definitely the highest mode and the chosen 

value, although the value 3 is also highly probable.

Position of jumps -  The empirical a posteriori distributions for all 

observed positions of jumps has two modes, with the first one (sj) very well 

defined, differently from the not so clear second one (s2). When plotting the 

individual plot for each position parameter, the a posteriori distribution for s2 

has a more highly concentrated mode around 32. s; has the same posterior for 

all graphs with mode around 12.

Level parameters -  The total sample has three modes, where the second 

one (h) is the most highly concentrated with values around 0.013. The first 

one (lo) has a more defined mode (0.02) when plotting the individual graph. 

The last one (f2) is highly influenced by the values of U, assuming values 

around 0.008.

BIfw

Convergence (traces in figure 5.5):

Convergence was quite fast. All traces are satisfactory, but sometimes 

there is no really good mixing. The convergence and mixing seems poorer than 

BIf.

Number of jumps (plot (r)) -  Some convergence to values 2 and 3.

Position of jumps (plots (j) to (q)) -  From S4 to Ss there is no clear 

convergence, since these parameters do not occur that often, but no problem 

was observed either. S3 tends to be larger than 30, s2 in [15, 40] and sj in 

[10,15],

Level parameters (plots (a) to (i)) -  From U to l8 there is no clear 

convergence, since these parameters do not occur that often, but no problem
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was observed. I3 has values around [0.010,0.015], but not with very obvious 

convergence. I2  has a similar behaviour, showing that the third jump is not 

really necessary. U converges to 0125, but also with a high probability on 

values around 0.020. l o  achieves convergence to values around 0.020.

Analysis of empirical posterior distributions (Figure 5.6):

Number of jumps -  The value 3 has the highest probability, but the 

value 2 is also high. 2 is the number of jumps chosen, based on the values for 

the position and level of jump that pointed to the existence of only 3 groups (or 

2 jumps).

Position of jumps -  The overall graph shows two modes. S2  is located at 

values around 32 and it is much more concentrated when in the conditional 

distribution to k =  2. sj has a very high probability of being around 13 in all 

graphs.

Level parameters -  The overall graph points to three modes. I2  is related 

to the first one, around 0.009, that is clearer when plotting the conditional 

distribution. U is even higher concentrated around 0.012 when the conditional 

distribution is plotted, compared to the overall one. l o  has also a clearer mode 

(0.02) in the conditional distribution.

Figure 5.6 -  BIfw empirical posterior distributions 
(a) Number of jumps

0 2 4 6 8

(b) Position of jumps

age

-- sj, S2 conditional jump=2; s i ,  S 2 individually, — overall for all s, i= l....8.
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(c) Level parameters

0.0 0.01 0.02 0.03 0.04

lo, h , h  conditional jump=2; ••• lo, l i ,  h  individually, — overall for all h i= 0 , . . . , 8 .

5.3.1.2 Bodily injury severity models

There are two procedures for analysing the bodily injury severity data: 

Bis and BIslog. In the results for Bis a jump was chosen, but in BIslog no 

jump is indicated. The results had mostly a good mixing and reasonable 

convergence.

Bis

Convergence (traces in figure 5.7):

Convergence was quite fast. All traces are satisfactory, with good 

convergence and good mixing.

Number of jumps (plot (1)) -  The values are very spread without any 

obvious convergence. The number of jumps has a high concentration on the 

values 0 , 1 and 2 .

Position of jumps (plots (g) to (k)) -  S3 , S4 and S5 are not frequent enough 

to draw any conclusion. S2  has a clearly tends to be larger than 30, without 

any clear convergence, sj is definitely in [30,40], with good mixing.

Level parameters (plots (a) to (f)) -  I3, U and Is are not frequent enough to 

draw any conclusion, h has a good mixing, but without any clear convergence. 

h has values in [100 ,200], with convergence to this interval, lo converges to 

[60,100],

Analysis of empirical posterior distributions (Figure 5.8):

Number of jumps -  The number of jumps with highest probability is 1, 

followed by 0 .

Position of jumps -  The overall graph has two clear modes (37 and 39), 

with very heavy tails. The individual plots seem more concentrated that the 

overall plot.

83



(a)
Figure 5.7 -  Bis trace plots

(b)
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Level parameters -  There are two modes in the overall plot, with the 

second mode more “spread” than the first. The individual graphs for lo have a 

nice shape, being highly concentrated around 70. In the case of U the shape of 

the distribution is not so concentrated, with values around 140.

Figure 5.8 -  Bis empirical posterior distributions 
(a) Number of jumps

0 2 4 6 8

(b) Position of jumps

s; conditional jump=l; s; individually, — overall for all s, i=l,...,5. 

(c) Level parameters

lo ,  l i  conditional jump= 1; ■■■ lo ,  l i  individually, —• overall for all i i= 0,...,5.

BIslog

Convergence (traces in figure 5.9):

All the traces show a reasonable mixing, but convergence was not 

achieved for the position of jumps.
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Number of jumps (plot (1)) -  The number of jumps goes from values 0 to 

5, with a higher concentration around 0-1.

Position of jumps (plots (g) to (k)) -  No clear convergence was observed, 

where jumps from S2  onwards were not that frequent. Sj seems to have two 

areas of higher sampling: close to 0 and then to 60.

Level parameters (plots (a) to (f)) — All the ranges are very spread for all 

level parameters. It seems that convergence is achieved around 0 for all the 

levels.

Analysis of empirical posterior distributions (Figure 5.10):

Number of jumps -  The value for the number of jumps with highest 

posterior probability is 0 .

Position of jumps -  The posterior distribution for the position of jumps 

has a strange shape, here the modes for the position of jumps are close to the 

borders.

Level parameters -  The posterior distribution for the level parameters is 

similar to a normal distribution with mean (mode) around 18.

Figure 5.10 -  BIslog empirical posterior distributions 
(a) Number of jumps

0 2 4 6 8

(b) Position of jumps

— overall for all s, i= 1,...,5.
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(c) Level parameters

— overall for all l  i= 0,...,5.

5.3.2 Analysis of motor damage claims

Again, the analysis for all four models for motor damage are performed 

separately in the following subsections, but their summaries and parameter 

estimates are given in advance in table 5.6. This table is similar to the one in 

section 5.3.1 for bodily injury. In contrast to the previous analysis, here all the 

chosen values for k are the ones with the highest Bayes factors.

Table 5.6 -  Estimated values of the parameters in motor damage
MDf MDfw MDs MDslog

N
u

m
b

e
r 

o
f j

u
m

p
s Chosen

Value
3 3 1 1

Highest
B F

3 3 1 1

P
o

s
it

io
n

 
o

f j
u

m
p

s Mean

12.899,

33.945,

56.36827

14.76384,

39.49449,

61.62486

13.20706 12.71871

Mode

13.592,

40.272,

62.422

12.58503,

35.7415,

62.42177

13.59184 13.59184

L
e

v
e

l p
a

ra
m

e
te

rs Mean

0.2666808,

0.19588,

0.1369522,

0.06396099

0.260086,

0.1876084,

0.119178,

0.0468519

28.2927,

60.66479

5.022029,

15.64755

Mode

0.2656115,

0.1917391,

0.1292134,

0.04307191

0.2662027,

0.1921859,

0.1285799,

0.03958556

23.94861,

66.32374

5.492665,

18.80877
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These statistics are further used to define the risk premium in section 

5.4. Before that, the analysis of the empirical posterior distributions for all 

four models using motor damage data is presented in the following 

subsections 5.3.2.1 and 5.3.2.2, for frequency and severity data respectively.

5.3.2.1 Motor damage frequency models

There are two procedures for analysing the motor damage frequency 

data: MDf and MDfw. Both point toward the same result: 3 jumps, but their 

mixing is really poor.

MDf

Convergence (traces in figure 5.11):

All the traces really have a bad mixing, and they are composed of big 

blocks of values. One of the blocks is more frequent than the others, and it 

could be argued that in this case a local convergence is observed.

Number of jumps (plot (n)) -  The mixing was not as good as seen in the 

other models. The number of jumps seems fixed on the value 3.

Position of jumps (plots (h) to (m)) -  s4, Ss and S6 are not frequent 

enough to draw any conclusion. S3 has two groups around 62 and around 40. 

S2  has blocks around 20, 35 and 40. S; seems to converge to values smaller 

than 15.

Level parameters (plots (a) to (g)) -  U, Is and 16 are not frequent enough 

to draw any conclusion. I3  has two main blocks; 0.12 when S3 is close to 40 

and 0.04 when S3 is around 60. h has two blocks depending on S2 : when S2  is 

around 20, I2  is close to 0.18, when S2 is around 35/40, h is close to 0.13. h is 

around 0.20 when sj is closer to 1 2 , and then a bit bigger when sj is smaller. 

lo is the one that achieves the best convergence, around 0.27.

Analysis of empirical posterior distributions (Figure 5.12):

Number of jumps -  The value 3 has the highest probability, as expected 

from the trace plot.

Position of jumps -  The overall graph points to five modes well defined 

(approximate values 12, 20, 37, 40, 62). S3 has 2 modes (40 and 62) when 

plotting the individual plot without conditioning on the number of jumps being 

equal 3. When conditioning on the number of jumps, there is an absolute 

maximum at 62. S2 always has two strong modes 37 and 40, with some high 

probability on 20 as well, s; has 2 modes (12.75 and 13.7), while the 

conditional distribution has one stronger mode at 12.75. S2  brings the greatest 

problem for recognition.
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Figure 5.11 -  MDf trace plots
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Level parameters -  The overall graph points to four main areas of higher 

probability. The first one, related to I3 , has two modes in the individual graph, 

around 0.045 and 0.120, with the conditional density pointing only to the first 

one. I2  has three modes when individually plotted (0.11, 0.13 and 0.18), 

differently from the conditional graph where the two first are stronger, h has 

two modes (0.195 and 0.210) and lo has mode 0.27, both with the same 

behaviour in any graph.

Figure 5.12 -  MDf empirical posterior distributions

0 2 4 6 8

(b) Position of jumps

age

- -  si, S2, sj conditional jump=3; si, S2, S3 individually, — overall for all s,i=l,...,6.

(c) Level parameters

lo, h, b, b conditional jump=2; lo, li, b, b individually, — overall for all i  i= 0,...,6.
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Figure 5.13 -  MDfw trace plots
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MDfw

Convergence (traces in figure 5.13):

Again all the traces have a really bad mixing, being a collection of long 

blocks of values. The overall result is quite similar to the previous one, 

confirming the conclusions.

Number of jumps (plot (n)) -  As before, the mixing is poor, and the 

values are closer to 3.

Position of jumps (plots (h) to (m)) -  S4 , S5  and S6 are not frequent 

enough to draw any conclusion. S3 seems the one with the best mixture, being 

definitely around 62. S2  has three clear blocks: an initial one around 60, then 

varying in between 37 and 40. Sj has blocks starting in 37 and then moving to 

values around 13.

Level parameters (plots (a) to (g)) -  U, Is and l6 are not frequent enough 

to draw any conclusion. I3 has quite good mixing around 0.04. h starts on 

values around 0.05 and then goes to 0.12 and stays there, h again starts at 

values around 0.12, but goes to 0.19 with lo starting around 0.21 and then 

moving to 0.27.

Analysis of empirical posterior distributions (Figure 5.14):

Number of jumps -  As in the previous model, 3 is the number of jumps 

with highest probability.

Position of jumps -  Now there are four modes in the overall graph, and 

the previous mode with value around 20 disappears. The conditional 

distributions are highly concentrated, showing modes around the following 

values for the respective positions of jump: S3 (62), S2 (37 and 40) and sj (13).

Level parameters -  The overall and conditional distributions have five 

modes. The first (around 0.045) has the lowest probability, being related to I3 . 

h has two (0.12 and 0.13), h has one (0.19) and lo has one mode (0.27).

Figure 5.14 -  MDfw empirical posterior distributions 
(a) Number of jumps
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(b) Position of jumps

si, S2, S3 conditional jump=3; • s;, S2, S3 individually, —  overall for all s, i= l .... 6.

(c) Level parameters

- - lo, h, h, b conditional jump=2; lo, h, h, h individually, — overall for all 1 i= 0 .....6.

5.3.2.2 Motor damage severity models

There are two procedures analysing the motor damage severity data: 

MDs and MDslog. They both indicate only one jump.

MDs

Convergence (traces in figure 5.15):

Number of jumps (plot (1)) -  The degree of mixing is good, with values 

being concentrated around 1 -2 .

Position of jumps (plots (g) to (k)) -  S3 , S4 and S5 are not frequent enough 

to draw any conclusion. S2  has a clear tendency of being in [20,40] and s; 

around 18.

Level parameters (plots (a) to (f)) -  I3 , U and I5  are not frequent enough to 

draw any conclusion. I2  has a convergence to values around 100 , h to values 

around 60 and lo to values around 25.
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Figure 5.16 -  MDs empirical posterior distributions 
(a) Number of jumps

0.6

0 2 4 6 8

(b) Position of jumps

sj conditional jump=l; • ■ sj individually, — overall for all s, i= l....5.

(c) Level parameters

0 20 40 60 80 100

-- io, l i  conditional jump=l; ••• l c ,  l i  individually, — overall for all i i= 0,...,5.

Analysis of empirical posterior distributions (Figure 5.16):

Number of jumps -  The number of jumps with the highest probability is 

the value 1.

Position of jumps -  In all graphs it is possible to observe one absolute 

mode, with value around 13. The conditional distribution is highly 

concentrated around the mode.
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Figure 5.17 -  MDslog trace plots
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Level parameters -  The overall graph shows two modes, with the 

conditional distributions highly concentrated on them, lo is highly 

concentrated on values around 25 and U is highly concentrated around 80.

MDslog

It is difficult to make a decision since the number of jumps indicated is 

1 or 2 , but there are three modes in the overall graph for the position of 

jumps. In the end one jump was chosen, by analysing the overall graph for the 

level parameters.

Convergence (traces in figure 5.17):

Number of jumps (plot (n)) -  The degree of mixing is good, with values 

around 1 and 2 .

Position of iumps(plots (h) to (m)) -  s3, S4 , Ss and s6 are not frequent 

enough to draw any conclusion, but these parameters do have some groups 

pointing to a bad mixing. S2  has a clear tendency of having values 15, 20 and 

50, but without any clear convergence. For sj, the clear tendency is of being 

15 or smaller.

Level parameters (plots (a) to (g)) -  13, U, h and l6 are not frequent 

enough to draw any conclusion. All graphs have a large range, making it 

difficult to reaffirm convergence, h would tend to values around 20 , h around 

20 and 0 , and lo, 0 .

Analysis of empirical posterior distributions (Figure 5.18):

Number of jumps -  1 and 2 are the most probable number of jumps. 

The chosen is 1, given the observed values of position and level parameters.

Position of lumps -  The overall graph indicates 3 modes with sj around 

the value 15, S2  around the value 20 and S3 around the value 47.

Level parameters -  The overall graph shows two modes very close 

together. When plotting the conditional values, their existence is clearer, lo is 

highly concentrated on values around 5 and U is highly concentrated around 

19.

Figure 5.18 -  MDslog empirical posterior distributions
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(a) Number of jumps
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(b) Position of jumps

0 20 40 60
age

- -  si conditional jum p=l; ••• si individually, —  overall for all s, i= 1....,6. 

(c) Level parameters

lo, h conditional jum p=l; ••• lo, h individually, —  overall for all t i= 0.....6.

5.4 Risk premium

After performing the analysis for all eight models, and summarising 

their empirical posterior distributions (tables 5.5 and 5.6) the risk premium is 

calculated. By the analysis, considering the mixing and convergence 

properties, the models BIf, Bis, MDf and MDs were chosen. In this way all the 

values were calculated using these models, with the other four only serving to 

help confirm the results.

The first step is to define the groups for the risk premiums. The way 

chosen to perform this calculation is by ordering the modes of the position of 

the jumps for the chosen four models. In this way the following groups (table 

5.7) are defined, with the groups also shown in the original scale:

Table 5.7 -  Age groups for the risk premium
groups 1 2 3 4 5 6 7
Transf. (0, 12.59) (12.59,13.59) (13.59,32.72) (32.72,38.26) (38.26,40.27) (40.27,62.42) (62.42,73.59)

Real (19.39,31.98) (31.98,32.98) (32.98,52.11) (52.11,57.65) (57.65,59.66) (59.66,81.81) (81.81,92.98)
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Thus, 7 groups were defined for the risk premium. Only one of the 

groups is fully dependent on a group derived from severity, while all the others 

are derived from frequency. These groups t  (f=l,...,7) define the risk premium 

following the formula 5.1 that is rewritten as:

Risk premium( f )  = M D fre q ( i')x M D sev(f') + B I fre q (i')xB Isev(i') (5 .3)

So, the risk premium is calculated by the formula 5.3 observing the 

change in values in each component depending on the group. The final risk 

premium is given in table 5.8 (observe that B I sev had to be multiplied by 10 in 

order to be in 1,000's):

Table 5.8 -  Risk premium per group in the automobile insurance problem

Group
Premium Bodily injury Motor damage

in 1,000s Frequency Severity Frequency Severity
1 22.6281 0.01872 80.577 0.26668 28.293

2 17.5358 0.01240 80.577 0.26668 28.293

3 21.8737 0.01240 80.577 0.19588 60.665

4 20.1669 0.01028 80.577 0.19588 60.665

5 25.0049 0.01028 127.636 0.19588 60.665

6 21.4300 0.01028 127.636 0.13695 60.665

7 17.0020 0.01028 127.636 0.06396 60.665

In order to compare the chosen risk premium with the data a graph is 

plotted, with the observed risk premium versus the observed one when 

considering ages in full years as a discrete variable. The graph is in figure 

5 . 19.

Figure 5.19 -  Risk premium and observed experience per age

After deciding the risk premium values, the next question is the 

variability related to such an estimator. In this case it is difficult to define 

such a value, since again there is no obvious choice or defined rule. So in
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order to perform this calculation the approach is to explore the risk premium 

formula and independence, calculating Var(Risk premium(i')) as:

Var(MDfreq(i'))xVar(MDSev(i')) +Var(BIfreq(i'))xVar(BIsev(i')) (5.4)

For t= 1,...,7. Var(MDfreq(f)), V a r^ D ,^ )), Var(BIfreq(f)) and V ar^ I^O ) 

are calculated by the square of the sample standard deviation of each level lj, 

y=0,..., k, for each one of the following models: BIf, Bis, MDf and MDs. The 

results are shown in table 5.9 (where BIsev had again to be multiplied by 10 ).

Table 5.9 -  Standard deviation for the risk premium

Group Risk
premium

Bodily injury Motor camage
Frequency Severity Frequency Severity

1 0.6042 0.00257 21.528 0.01284 18.777

2 0.4772 0.00191 21.528 0.01284 18.777

3 0.4431 0.00191 21.528 0.01228 13.309

4 0.4731 0.00206 21.528 0.01228 13.309

5 0.8181 0.00206 38.870 0.01228 13.309

6 0.8690 0.00206 38.870 0.02521 13.309

7 0.9107 0.00206 38.870 0.03248 13.309

With all these values to hand, the result for the risk premium is 

complete. It is important to observe that in the calculation of the standard 

deviation only the variability related to the level parameters has been taken 

into consideration. In this way it could be argued that this value is 

underestimated.

But, for comparison, a second approach for calculating the risk 

premium is used. Now, instead of calculating M D f req( f ) ,  M D sev (Z '), BIfreq(i') and 

B ls e v (t ') separately, the same sample is used to calculate the risk premium 

directly. So, in each simulation step the value of the risk premium is 

calculated directly from the sampled values for each type of data separately. At 

the end the risk premium has a chain of 10,000 values, that is used as the 

basis for the analysis.

In such an approach the choice of group positions and numbers of 

jumps is more difficult to decide since frequency and severity data have 

different trends over age (the first decreases, while the second increases with 

age). So, the choice of groups is dropped and the calculation of the premium is 

different. Now, some ages are chosen and the risk premium, together with the
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standard deviations, are calculated for each of these ages. The results are 

given in table 5.10:

A ge M e a n S D

0 22.63 6.62

2.45 22.49 5.18

4.91 22.56 4.58

7.36 22.30 3.66

9.81 22.16 3.39

12.27 20.62 3.83

14.72 22.20 1.91

17.17 22.20 1.86

Table 5.10 -  Risk premium based directly on the sample
A ge M e a n S D
19.62 22.32 1.81

22.08 22.15 1.70

24.53 22.22 1.69

26.98 22.24 1.74

29.44 22.36 1.81

31.89 22.66 2.21

34.34 23.55 3.15

36.80 22.07 3.87

A ge M e a n S D

39.25 23'. 55 4.41

41.70 20.54 3.83

44.15 20.17 3.71

46.61 20.12 3.69

49.06 19.98 3.69

51.51 19.99 3.78

53.97 20.08 3.93

56.42 20.40 4.24

A ge M e a n S D
58.87 20.63 4.50

61.33 19.98 5.24

63.78 16.51 5.59

66.23 16.01 5.80

68.68 15.83 6.25

71.14 15.74 6.65

73.59 15.61 7.04

These results do not differ significantly from the previous ones in the 

mean values, but the standard deviation do differ. Such a difference is 

justified by the lack of use of groups, which leaves the values related to the 

levels more spread than when a group is defined. It is also true that the 

second approach takes into consideration also the deviation included in the 

position and number of jumps.

In order to compare the results a graph with a 90% confidence interval 

from the normal distribution is plotted in the figure 5.20 for both approaches, 

where the thicker line is the risk premium based on directly on the sample 

and the thinner one is the one supposing independence.

Figure 5.20 -  Comparison of both risk premiums

5.5 Comparison with Verrall and Yakoubov(1998)

In the paper by Verrall and Yakoubov(1998), a fuzzy set approach was 

used to calculate the risk premium for the same data set used in this chapter. 

In their approach the data were discretized, and age was considered in years. 

Then the clusters were chosen based only on the frequency data for both
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motor damage and bodily injury at the same time, where the severity 

parameters were derived from the sample mean on each specific cluster.

In order to use fuzzy set methodology, the number of clusters must be 

decided in advance and afterwards the probability of each age being in each 

group is derived. With this information available, it is then decided in which 

cluster the age should be included.

The results from Verrall and Yakoubov(1998) are given below in table 

5.11. To help the comparison, in figure 5.21 the plot of the observed and 

estimated frequency is also shown. (Observe that the plots were truncated on 

younger ages to help presentation).

Table 5.11 -  Risk premium for Verrall and Yakoubov(1998)

Group Age Cluster BI
frequency

MD
frequency

Risk
Premium

1 (<25,25) 1 0.051603 0.292859 406.55

2 (26,27) 2 0.013503 0.189539 139.18

3 (28,31) 3 0.009412 0.134440 116.77

4 (32,47) 4 0.007597 0.114335 91.97

5 (48,51) 3 0.009412 0.134440 116.77

6 (52,68) 5 0.005616 0.079628 66.65

7 (69,>69) 6 0.002293 0.045360 26.41

Figure 5.21 -  Comparison of frequency results with data 
(a) Bodily injury claims

0.06

▲ Observed —*— V&Y[1998] — i— Calculated
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(b) Motor damage claims

0.4
0.35

19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 92 

A  Observed —*— V&Y[1998] —l— Calculated

Comparing their results with those obtained in the previous section, it 

is possible to observe some differences. In table 5.11, for instance, there is a 

lower risk class (32,47), which is not a feasible result in the frequency analysis 

of motor insurance. It is also observed that the number of groups is higher 

than in the analysis in section 5.4, with only a few ages in one of them.

Apart from this, the range of frequency rate in motor damage is much 

higher than in bodily injury, but both have the same number of groups in 

table 5.11. The smoothness of the estimated parameters is also better in the 

model adopted in this thesis, where the high decrease from groups 1 to 2 in 

Verrall and Yakoubov(1998) in both motor damage and bodily injury data is 

not observed. By predefining a group for ages smaller than 26 to apply the 

model, they had created a higher risk group.

5.6 Chapter conclusion

In this chapter we have shown a Bayesian approach for deciding the 

number of groups, their positions and rates in each interval, as a unified 

model. The procedure was applied to severity and frequency of claims 

separately.

This kind of approach helps the decision making process, since it gives 

the posterior distribution, instead of a point estimate, and does not define the 

number of jumps in advance. The same ideas are the basis for the following 

chapter.
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Chapter 6

Investigation of claims reserving

With the model in chapter 5 it was possible to use data at an individual 

level in order to define groups and summarise information. One of the features 

in that model was the ability to smooth the parameters over their whole range 

of values. Utilising both the smoothing property and the data structure, this 

model is now used in a different type of problem in this chapter: the prediction 

of claim reserves at an individual policy level.

A micro approach, using individual policy/claim information and 

continuous time, is used here to model the claim development. The idea is 

derived from Norberg (1993,1999), the model is similar to Aijas and Haastrup 

(1996) and the implementation is based on Green(1995). In some ways, the 

model applied in the following sections is an adaptation of the model of Arjas 

and Haastrup (1996) using the reversible jump Markov chain Monte Carlo 

technique.

Besides the change in the implementation technique, the model itself is 

modified. As before, severity and frequency of claims are modelled separately. 

The process related to the claims occurrence is assumed to be the same as in 

Aijas and Haastrup (1996): a Poisson process. But in the severity case the 

model changed, with the value of claims now being modelled parametrically.

The chapter is divided up in the following way. Section 6.1 gives the 

theoretical basis of the model. The next section explains the data structure, 

which is used further in section 6.3 where the distributional assumptions of 

the model are explained, based on chapters 3 and 4. The description of the full 

model is given in section 6.4, where the implementation technique is also 

reviewed. Section 6.5 gives the analysis of the results obtained after running
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the implementation. Section 6.6 compares the results proposed in this chapter 

with those in Arjas and Haastrup(1996) and also to reserve techniques widely 

used by practical general insurance actuaries. Section 6.7 is the chapter 

conclusion.

6.1 Claim process description

Reviewing the results from chapter 3, the model is defined as a marked 

Poisson process. The occurrence of a claim is modelled as a non-homogeneous 

Poisson process with the corresponding development as position-dependent 

marks. A claim is a pair (T, Z] where T is the time of occurrence of the claim 

and Z  is the mark describing its development. The model implemented in this 

chapter has a mark definition based on Arjas and Haastrup (1996) which was 

expressed in formula 3.20 and is rewritten here:

Z= (S, A, U, V, X, {X(v); 0 < v' < V) ) (6.1)

where:

.S is the sex of the policyholder;

A is the age of the policyholder;

U is the waiting time from occurrence until notification;

V is the waiting time from notification until final settlement;

X  is the final claim amount (X=X( V));

X(v) is the indemnity paid in respect of the claim up to v' after its 

notification.

The target of the model is to predict the amount and number of claims 

which are due to be paid or reported after the present time x. In the method 

used to model these quantities, not all the information in (6.1) is used. For 

instance, only the total of payments for each claim, settled or not, is used. In 

the same way, the waiting time from notification until settlement V is not used 

directly in the model, but it is utilised as an indicator of whether the claim was 

fully paid.

At a specific time t, the mark Z  could be classified into settled, reported- 

not-settled, incurred-not-reported or covered-not-incurred. In Norberg (1993) the 

intensity of occurrence in each these classes is dependent on the exposure for 

each class. Since the analysis is done at the present time, x, it is assumed that 

no information is available for t > x, meaning that at any time after x the 

exposure is equal to zero. In this way the covered-not-incurred possibility does 

not generate any payments or claims occurrence, and only the first three
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classifications are used. Each class of claim has the following type of 

observation (superscript m stands for missing and o for observed):

Settled -  (7°, S°, A°, If, V°, X°)

RBNS -  (1°, S°, A°, U°, V™, X") (6.2)

IBNR -  (7™, S'", Am, I f 1, \T, X 71)

Data augmentation is used in the model. The model is constructed as if 

all covariates and occurrence times had been observed for IBNR claims as 

well. In other words, as T, S and A have been observed for the IBNR claims. 

Then, when implementing the model using stochastic simulation, the missing 

data are sampled and used to update the parameters at each iteration.

In order to complete the description of the model, it is necessary to 

define some quantities. The total number of claims is a random variable that 

has a Poisson distribution with intensity as given in formula 3.18. This total 

number of claims n can be split into the three categories as expressed in the 

following formula:
„  settled , rbns . ibnrn = n + n + n , or (6.3)

n = no + nm

Where n° = nsettled + n bns and nm = nbnr. In the same way the total value of 

the claim reserve is an important quantity and can be expressed as follows:

R = R rbns + R i b n r

with R'bnr , and (6.4)
i= l

n rbns

R rbns =  £ x , m-  X{v')°mT = X ^ T -  X iv '^ r  V < V
i= l

X^qT ,X(v')^qT are related only to the RBNS claims, where the first is the 

sum of the total value of the RBNS claims and the second is the sum of the 

observed part of these claims. The way chosen to calculate the X bns is by 

calculating X ^ T and then subtracting the observed part.

In the end, these are three main quantities that are predicted by the

model: nlbnr, X bnr and X bns. Since we will also obtain a large sample, the 

predictive empirical distribution for each one of these can be found. The 

graphs and analysis are presented in subsection 6.5.1.

Again, claim frequency and severity are modelled separately. As in Aijas 

and Haastrup (1996) the model for the occurrence of claims takes into account 

the age, sex, reporting delay and calendar time of occurrence. However, the
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part of the model related to severity changes completely. Here it is not 

considered the partial payments are not considered, but rather the total value. 

As an improvement from the previous approach, sex and age are now included 

in the model and a parametric distribution is used.

Before describing the full model, with the distributional assumptions 

and implementation technique, the data is described in the next section.

6.2 Data

The data are for dental insurance, covering only the leisure accident 

claims. Claims which occurred between 1st January 1982 and 31st December 

1990 and which were reported before 3rd March 1992 are in the data set. For 

comparison, the analysis in Arjas and Haastrup (1996) was followed and the 

present time is considered to be 31st of December 1987. So, only information 

reported in years 1982 to 1987, inclusive, was considered, with the rest used 

to check the model results.

The data set has two covariates: sex and age of the policyholder. In 

contrast to the application in chapter 5, age now is a discrete variable, since it 

is only recorded in full years. Ages were transposed by subtracting 16, and the 

final age range is (0,1,...,66). For simplicity, ages bigger than 66 were not 

considered since there was no information on exposure in these ages for some 

years. A factor is defined, taking the value one for females and zero for males.

The original data set has three basic files. The first file contains the 

exposure of the portfolio, which is given by the total number of policies in force 

at the end of the year split by sex and age. In order to use the continuous 

approach an interpolation for the years 1983 to 1987 is used, as is further 

explained in section 6.3.

The second file contains all the observed partial payments, including 

the date of payment and the original claim code. The way chosen to model the 

severity in this chapter (see subsection 5.8) does not require the partial 

payments, and they are aggregated for each claim. By checking with the third 

file, each claim is categorised as settled or not settled. The settled claims with 

total payment less than or equal to zero are discarded from the file.

The third file is related to the individual claim occurrence information, 

and shows the dates of occurrence, reporting and settlement (if settled), 

together with the covariates sex and age. In some cases the day of the 

occurrence of a claim is not know and in these cases a value was sampled
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from a uniform distribution on the number of the days of the month, bounded 

above by the minimum of the final of the month and the reporting date. Again, 

the settled claims with no payment or negative total payment are not 

considered (there were 9 claims with this characteristic).

These three files were transformed into six files to be used by the 

program that implements the model. One gives the information on exposure by 

sex and age for the years 1982 to 1987. Two files give the extra information 

required by the severity model: the number of RBNS claims and the logarithm 

of the total payment for the settled claims, both by sex and age. The rest of the 

files are related to the frequency model and give the total number of claims by 

sex and age, by day of occurrence and observed delay.

Time was also rewritten as explained in table 6.1, where in the calendar 

time intensity the upper bound is given by L =x =2,190.

Table 6.1 -  Calendar time conversion

Calendar
—

t

1st January 1982 0

31st December 1982 364

31st December 1983 729

31st December 1984 1095

31st December 1985 1460

31st December 1986 1825

31st December 1987 2,190

In order to illustrate the nature of the data, the summary plots are 

shown in figure 6.1. Some summaries are also given in table 6.2, where the 

total value of claims is 10,042,628, from 2,797 claims. In this amount there 

are 617 unsettled claims with partial payments amounting to 824,146 and 9 

claims that were settled without any payment were not included at all. The 

average value of the logarithm of a settled claim is 7.98 and its standard 

deviation is 1 .02 .

Table 6.2 -  Statistics of the dental insurance data
Calendar

daily
f-ecucncy

Female
daily

/rsquency

Male
daily

frequency

Reporting 
delay in 

days

Female
severity

Male
severity

Mean 1.78E-05 1.19E-05 1.53E-05 31.45 4,186 4,243
St deviation 1.42E-06 8.170E-06 9.76E-06 62.05 1,226 1,544

These statistics, calculated over the data set used but over the settled 

claims in the severity case, help the choice of the hyper-parameters for the 

prior distributions. In the next section the full model is explained.
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Figure 6.1 -  Summary plots of dental insurance accident data
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6.1 Distributional assumptions

In this section the distributions involved in the model are fully 

explained and defined. The basis of the model is explained in Norberg (1993), 

with the implementation following chapter 4 of this thesis. The construction of 

the likelihood is as in Arjas and Haastrup (1996), where a piecewise function 

is applied to all parameters in the model. Differently from their work, 

RJMCMC is used to find the estimates of the parameters.

The occurrence of a claim is a function of the calendar time (i), sex (s) 

and age (a) of the policyholder, and it follows a Poisson process with intensity 

given by cp(i,s,a). By considering the calendar time to be independent of the 

covariates sex and age, the intensity is rewritten as follows:

cp(t,s,a) = (pj(t) <p2 (s,a); (6.5)

t e [0 , L], s e (0 , 1 ) and a e (0 ,1 ,...,66)

The weight is given by w(t,s,a), which is defined as the number of 

policies in force in each combination of t, s, a. Since the database only 

supplies the total policyholders at the end of the year for each combination of 

s, a an approximation had to be used. For t in the first year, 1982, the weight 

w(t,s,a) is considered fixed for each combination of s, a. In the following years 

the number of policies is force was exponential interpolation over the year 

before and the actual year. In summary, the total number of claims from the 

portfolio is governed by the following intensity:

w(t,s,a) <pj(i) q>2(s,a). (6 .6)

Males and females are considered independent and the intensities cpj(t), 

92(0,a) and 92(1 ,0) are considered piecewise constant random variables. Now, 

it is necessary to define the model for the marks Z. The delay (u) is modelled 

via a piecewise intensity y(u), with the accumulated probability density given 

by:

Finally the severity model uses a parametric approach, depending only 

on the sex and age of the policyholder. The logarithm of the total payment of a 

claim follows a normal distribution expressed by:

where, again, the sexes are considered independent. Following the approach in 

chapter 4, the variance is considered known and equal for all combinations of 

sex and age. To sum up there are six unknown parameters expressed by:

(6.7)

Normal(p (s, a), a 2) (6.8)
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(Pi(i), 92(0 ,a), 92( 1 ,a), y (u), p (0, a) and p (1, a). (6.9)

All these parameters are modelled as explained in chapter 4, where 

92(0 ,a), 92( 1 ,0), (i (0, a) and p ( 1 , a) are dependent on the covariate age which is 

considered discrete in this case. With values for these parameters, the missing 

data in the IBNR and RBNS claims can be simulated.

Using (3.19) the missing number of claims is distributed as a Poisson 

distribution expressed by:

nbnr ~ Poisson(Wbnr) (6.10)

where Wbnr = £ w(t, s, a)cp, (t jcp2 (s, a )(l -  Pu (\ -t))d t .

The times of occurrence of these claims T", together with the covariates 

S'71 and Am are iid with density

w(t,s,ato1(tto2(s ,a )( l -P u(T - t ) )  / Wbnr (6.11)

Now the results from Arjas and Haastrup (1996) are rewritten in order 

to show the likelihood. Apart from the severity, all the components are similar. 

The observed data are the reported claims, that can either be settled or RBNS. 

So the class of mark Z that is observed are those with reporting date earlier 

than the present time x. In this way the process in (3.19) is fully defined by the 

following formulae for the reported claims case:

w°(t,s,a) <y°(t)y°2(s,a) = w(t,s,a) 9 ;(i) 92(s,a)Pu(x-i)

P °u(i+U<T) = PufT0 +U° <x)
P u ( t - t )

(6. 12)

In the same way the missing part, which are the IBNR claims, will have 

an occurrence intensity expressed by tŷ t,s,a/9J(^92(s,a)(l - P^x-i)). Gathering

together the missing and observed information, the total likelihood expression 

(following formula (4.15) page 153 in Arjas and Haastrup (1996)) is given as:

Y\yi(Tl fo2(Si,A i)exp{-'YJ £w(t,s,a)<p1(t)y2(s,a)dt}x
i= l s,a

t i n o n nr

f\ y (U ° )exP{~ z t  ' y (u)du -  u
1=1 1=1 ]=1

J y(u)du}x

exp{- (X ° -y (S ° ,A ° ) ) :
2c 2

(6.13)

The full definition of the model is completed by the prior distributions, 

and then the calculations of the complete conditional distributions can be 

performed. Each of the six parameters is modelled as piecewise constant
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intensities. In this way, for each of them there is a set ( k , l o ,  h ,  h , - - - ,  k , s \ ,  S 2 , . . . ,  

Sk) defining the position, level and number of jumps.

In order to use the approach of chapter 4, the ranges t, a and u have to 

be restricted. Naturally t e [0, 2,190) and a e (0,1,...,66). In the delay case 

there is no obvious choice and since the highest observed delay was 1,175, an 

upper bound of 2,190 was chosen. From the results this limit appeared to be 

reasonable.

The piecewise intensities related to 97(f), 92 (0 , a), 92( 1 ,«) and 7 (u) have as 

prior the Gamma distribution, with hyper-parameter values fully defined in 

the next section. The prior distribution of p (0, a) and p (1, a) are normally 

distributed. All jump positions have as prior distributions the same 

distribution as in chapter 4, which is the even ordered uniform statistics on 

[0,L), where L is 2,190 for (pj(t) and y (u) and 67 for 9 2 (0 ,a), 9 2 (1 ,0 ), p (0, a) and 

p (1, a).

Again, the prior distribution for k  is defined to be a Poisson distribution 

with rate X expressed by the following formula:

P(/C) = £ 2 L A 1  kskmx (6.14)
k \

where the hyper-parameter fcmax is included in order to guarantee that only a 

finite numbers of models are considered. Having fully defined the model, its 

implementation can be explained and the description of the complete 

conditional distributions and implementation technique is given in the next 

section.

6.4 Description of the model

Since all parameters 9 7 (f), 92(0 ,a), 92( 1 ,a), y (u), p (0, a) and p (1, a) are 

modelled as piecewise constant functions, the implementation is similar to 

that used in chapter 4. It is necessary to define the complete conditional 

distributions for each set { k, 0w =(/o, h, h,..., lk,s\, S2,..., Sk)} related to each 

one of the six parameters 0 , 0 ™ ,  0 ,^°;,? and Q(k,,'a,)nfO.a) '»dal

with the usual notation for k. In order to simplify notation, the subscript is not 

included when writing the distributions. All distributions are based in 

subsection 4.2.

The number of jumps, k, follows exactly the same approach as in 

subsection 4.2.2. The function f  (Ij) is as described in (4.19) for p (0,a) and
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\x(l,a), and as in (4.20) for the other parameters and the function g(.) always 

assumes the format in (4.21), which is g(sj, Sj+i)= Sj+i- Sj.

Subsection 4.2.1 explains the distributions related to the level and 

position of jumps. The parameters related to the severity problem, p (0,a) and 

p (l,a), follow exactly the procedures described in section 4.2.1 for the severity 

case, with the necessary adaptations for the discrete case (since age is discrete 

here). L is equal to 67.

The calendar occurrence time cp;(t) has the following complete 

conditional distributions for 0 :

nflj\ -)=lj J e x p t - l ^  j j "  tu(t,s,a)q2(s,a)dt}p(l)
s,a J

n(Sj\.)=ljlilj Jj x (6.15)

exP{~lj-iYs } ™(t,s,ato2(s ,a )d t - l jY  f J'' w(t,s,a)y2(s,a)dt}p(s )
s,a Sj~‘ s,a Sj

where x j+1 is the total number of observed or sampled claims in [sj,Sj*i).

As explained in subsection 6.2, the weight w(t,s,a) was assumed to be 

constant for t in the year 1982, but had to be exponentially interpolated for t 

in years 1983 to 1987. Since weight is an exponential function of t the 

expression n(sj \.) did not have an analytical solution in the calendar time 

intensity case. So, an approximation was used, based on the idea in Arjas and 

Gasbarra (1994) which was explained in subsection 4.2.1. The approach is 

that of dividing the interval (Sj, S j + i )  into intervals with the same weight:

w(t',s,a) = constant for t' e [integer(t'), integer(t')+l)

Because of this split, the update for the position of a jump in calendar 

occurrence time, q>; (f), is the most time demanding among all parameters. Now 

the (sex, age) intensity of occurrence of claims cp2(0 ,a) and (p2( l ,a) have similar 

complete conditional distributions (expressed here for male 0/o > but being of

the same form for female 0 p JaJ):

x j +1 -*— 1 r2190
n(lj\.)=ljJ exp{-l j  Y j J[ wft^tftoj ft jdt} p(L)

sjiSCSj+,

xp(Sj) (6.16)

exp{~lj-i Y  J0 w(t>s>0)<?j(t)dt - 1j  Y  Jo wlt.sfltojftidt}
Sj _,<S<SJ Sj<S<SJt,
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Finally, the delay intensity y(u) has the following complete conditional

distributions for 0 j * j :

nflj I ■)= lj J exP{-ljW u (Sj, sj+I)} p ( l )

nfa | -M j-i ’l j ' exp{-l j _jWu (Sj.jySj ) -  ljWu (Sj , sj+1 )}p(Sj)

(6.17)

Y j ( d (u ' ) - s j - i )  > ^
i=;

s ., , u . <  s . ,
j-i ’

s . , u  >  s
1 J

u i ’ s  < u  < sJ-l I J

d(uY

With all complete conditional distributions, the final algorithm is given 

by the scheme in figure 6.2. The prior parameter values and model constants 

necessary to implement the model are given in the next section.

Figure 6.2 -  Algorithm for the dental insurance data

Initialise the vector of parameters for all six cases, 

for j= 1 to N*

Sample W lbnr 

Sample nbnr

Sample Ttm,S,m, A™ for i=l,..., nbnr 

Calculate # bnr and Rrbns

Update 0 and k[t] using the scheme in figure 4.2 

Update 0 jo!a) and k{0 using the scheme in figure 4.2 

Update©¡b)aJ and k{l using the scheme in figure 4.2 

Update 0 f*j and k(u] using the scheme in figure 4.2 

Update Qfio.aj and K(Oa) us n̂§ the scheme in figure 4.2 

Update Ofilaj and k {] a} using the scheme in figure 4.2 

Next j

6.5 Implementation o f the model

In this section, the full definition of the prior distributions is given. The 

prior Poisson rate for the number of jumps k was chosen as X=3, and,
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controlling the number of jumps, kmax was chosen to be 30. This upper bound 

was not reached during the simulations of any of the parameters. The prior 

distribution for the position and level parameters for each of the parameters 

was chosen as expressed in the table 6.3:

Table 6.3 -  Values of the hyper-parameters on the prior distributions

Position Level

<p2(t) U2(0,2,190) Gamma (2,0.2527)

(p2(0,a) U2{0,1,...,66} Gamma (2,126600)

V2( l ,a ) U2{0,1,...,66} Gamma (2,126600)

y (w) U2(0,2,190) Gamma (2,421)

F (0, a) U2{0,1,...,66} Normal (8,1.02)

f U, « ) U2{0,1,...,66) Normal (8,1.02)

Where again U2 is the even ordered uniform distribution over the 

respective interval. For the severity case, the standard deviation was fixed as 

a=1.25 for both cases. This value was fixed after examining the data. The 

initial points were also defined, following the same approach as in chapter 5.

When implementing the model it was observed that the multiplicative 

structure of the intensity of occurrence cpj(f) cp2(s,a) was a problem when using 

a piecewise constant structure without the number of groups being pre-

defined. Allowing the groups to change created a problem of convergence, 

since the product converges, but not each intensity separately.

In order to solve this problem the following option was proposed. First 

the intensity cpj(i) would be updated, with (p2(s,a) fixed. Then, after 5,000 

updates cpj(i) would be fixed at its posterior mean and cp2(s,a) updated. After 

5,000 updates the same procedure would be used and cpj(i) would be updated 

while 92(5,0) was kept fixed. The choice for the number of updates as 5,000 

was completely arbitrary, but aimed to be large enough to achieve 

convergence, but not that large given the time constraint.

It was a quite demanding process since each run j  in figure 6.2 would 

take 3 minutes to be completed. After some replication of this procedure it was 

observed that cpj(f) was not indicating any group, meaning that this intensity 

was constant over the calendar time. The histogram of the sample of number 

of jumps is shown in figure 6.3:
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Figure 6.3 -  cp̂ t) histogram for the number of jumps

Reaffirming the result obtained, the analysis in Arjas and Haastrup 

(1996) did not shown any clear influence of the calendar time intensity. So it 

was chosen to keep this intensity fixed at the value one and perform the model 

with the intensity of occurrence dependent only on sex and age. Thus: 

cpj(i) = 1 , t e [0 ,L), zero otherwise.

The final values for 92(0 ,a), cp2(l,a), y (u), p (0, a) and p (1, a) in the 

update with calendar time intensity varying were used as initial values for the 

new modelling with cpj(f) constant. The simulation was updated for 15,000 

steps on a Sparc ultra 1 140MHz wdth 64Mb memory. For each model, one 

step, j. in the algorithm in figure 4.8 took around three minutes, which is 

somewhat larger when compared to the previous application in chapter 5.

The acceptance rate for the birth and death moves ((b) and (c) in 

subsection 4.2.2) are shown in table 6.4.

Table 6.4 -  Type of moves and acceptance levels

Kept
Move(a)

Birth
Move(b) Accepted Rate Death

move(c) Accepted Rate

9 2(0,a) 3,855 6,633 53 0.80% 4,512 53 1.17%

V2il,a ) 3,538 5,896 196 3.32% 5,566 195 3.50%

Y (w) 6,220 2,084 355 17.03% 6,696 354 5.29%

p (0, a) 10,779 5,930 253 4.27% 1,709 256 14.98%

M l .  «) 10,538 5,974 312 5.22% 1,512 317 20.97%

The rate of acceptance was not as high as would be expected and, in 

fact, it was very low in some cases. This is not a good result, but can be 

explained by one interesting feature in this sample. In most cases, including 

the ones with worst acceptance performance, the absolute number of accepted 

runs for both (b) and (c) moves are very close together. This could signify that 

convergence had already been achieved in the initial values derived from the
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previous model with cpj(i) varying, and in this way that no change in the 

number of jumps in each parameter was actually necessary.

After obtaining the sample, we may perform the analysis. From the 

15,000 samples, the initial 5,000 were considered as burn-in iterations 

(M=5,000) and discarded. Convergence was assessed by the visual evidence in 

the trace plots.

In the next section, the analysis of the sample is performed. It should 

be remembered that the main interest is the smoothness property of the model 

rather than the definition of the groups for each parameter. This is the reason 

why the analysis performed in the next subsections is different from that in 

chapter 5.

6.5.1 IBNR and RBNS analysis

As stated previously before, the main interest of this analysis is the 

outstanding quantities for claims which occurred in f e (0,2,190). They are

denoted by n bnr, R‘bnr and R'bns, which are, respectively, the number of IBNR 

claims, the reserve for IBNR claims and reserve for RBNS claims. Their 

empirical predictive distributions are in figure 6.4 and they are estimated from 

the obtained sample, excluding the burn-in runs. For comparison the 

observed values derived from the complete data base are also included in each 

graph as a line.

Figure 6.4 -  Outstanding quantities empirical predictive distributions

(a) Number of IBNR (b) IBNR reserve

0.00 J
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0.04

50 150 £00 1000 irco 2000 3000
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(c) RBNS reserve

From this sample, some summaries are also presented in table 6.5, 

together with the observed values. All the currency values are shown in 

thousand.

Table 6.5 -  Summaries of the sample for IBNR and RBNS claims

nibnr Ribnr R rbns

Mean 68.83 499.09 1,066.78

St. deviation 9.42 180.62 1,099.22

90% confidence interval (54,84) (284.95,816.11) (-247.83,3,064.40)

Actual observed values 

in t e (2,190,3,714)
68 246.40 1,910.64

These values are the amounts at the present time, defining the total 

liability with reference to the period t e (0,2,190). The comparison with the 

values in the data set is only an indicator of the development, since all the 

claims that were not notified or fully paid before 3/3/ 1992, or i=3,714, are not 

considered. nu(u > 3,714 -  2,190) is very low and there should be very few 

IBNR claims in i > 3,714 related to the analysed period. In this way it is 

supposed that by i=3,714 all IBNR claims for the period analysed would have 

been reported.

The empirical posterior distribution seems to model particularly well the 

number of IBNR claims, seeming a Poisson shaped distribution. This result is 

based on the frequency part of the model. The posterior results for the reserve 

amounts of IBNR and RBNS do not seem to predict the data so well. The 

observed amount of IBNR is a low quantile of the posterior distribution and 

the RBNS are in a high quantile.

This behaviour for the predicted reserve amount can be explained by 

the unusual claim value average observed for IBNR and RBNS: 3,623 and 

7,519, compared to the 4,229 observed for settled claims in t <2,190. The
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longest settlement delay observed in the data set is 3,494 days. In this way, 

while there are still some payments expected to occur for IBNR claims, that 

will increase the average (10 claims have not been settled by i=3,714), the 

RBNS value is quite high (with still 182 claims to be settled by i=3,714). The 

fact that the delay of payment is not taken into consideration on our analysis 

did not improve our model, since the data shows a positive correlation 

between total value and settlement delay.

Our model also proved to be quite sensitive to the choice of the variance 

a 2. The chosen value was a =1.25 and to show its sensitivity some scenarios 

were run for lower (1.02) and higher (2) values. The results are as follow in 

table 6 .6 :

Table 6.6 -  Different scenarios for IBNR and RBNS claims

a Ribnr ĵ rbns

Mean 1.02 384 149

2 1,720 10,729

St. deviation 1.02 104 601

2 1,974 15,626

90% confidence interval 1.02 (246, 570) (-634, 1,236)

2 (544, 4,135) (2,364, 27,422)

These results show that not much improvement can be obtained by 

changing the value of o, but that the posterior distribution is quite sensitive to 

its choice.

In the next three subsections the simulation output for each of the 

parameters is analysed. Traces and empirical posterior plots are shown.

6.5.2 Age, sex intensity of occurrence

The age effect is analysed for both the male and female cases. Good 

convergence is observed for both parameters, apart from the low acceptance 

level for the birth and death moves.

Female intensity;

Convergence (traces in figure 6.5):

Number of jumps (plot (1)) -  Not a good mixing, varying between 2 and 3

jumps.

Position of jumps (plots (g) to (k)) -  s4 and Ss are not frequent enough to 

draw any conclusion. S3, S2 , and Sj converge to values around 40, 30 and 14.
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Figure 6.5 -  Female occurrence trace plots
(a) (b)
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Level parameters (plots (a) to (f)) -  U and I5  are not frequent enough to 

draw any conclusion. I3 ,  h ,  h  and l o  converge to values around 1 * 10 '4, 1.5*10"5, 

2.4*10"5 and 1.5*10'5.

Analysis of empirical posterior distributions (Figure 6.6):

Number of jumps -  The values 2 and 3 have the highest probability, 

with a very small difference between them.

Position of jumps -  The graph indicates three well-defined modes (with 

approximate values 14, 30, 45). The highest value of 45 has the lowest 

probability.

Level parameters -  The overall graph indicates three main areas of 

higher density. The first one, related to I3 , has a value smaller than 0.00001, 

then band l o  are in the same region around 0.000015. h  is around 0.000025.

Figure 6.6 -  Female intensity empirical posterior distributions

(a) Number of jumps

0 1 2 3 4 5

jump

(b) Position of jumps (c) level parameters
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Male intensity:

Convergence (traces in figure 6.7):

Number of jumps (plot (h)) -  Not a good mixing, varying in between 2 

and 3 jumps.

Position of jumps (plots (e) to (g)) -  S3 > 35 and 40 > S2  > 35. sj only 

assumes values 6 and 7 with the first as the most frequent one.

Level parameters (plots (a) to (d)) -  I3 , h, h and lo converges to values

around 1.0*10 5, 1.0*10 5, 2.2* 10’5 and 3.5*10 5. Both I3 and L go to the same 

region.



Analysis of empirical posterior distributions (Figure 6.8):

Number of jumps -  The value 2 has the highest probability.

Position of jumps -  The graph indicates two well-defined modes 

(approximated values of 6 , 38).

Level parameters -  The overall graph indicates three main areas of 

higher density. The first one, related to h, has a range around 0.00001, then h 

is around 0.00002 and h is around 0.000035.

Figure 6.8 -  Male intensity empirical posterior distributions 

(a) Number of jumps

jump

(b) Position of jumps (c) level parameters

6.5.3 Intensity of delay

The updates of the intensity of delay had the best acceptance level 

among the parameters in this model, although the structure of its observed 

distribution (see figure 6 .1 ) is closer to a polynomial than a piecewise constant 

function. This result is reaffirmed by the results for the number, position and
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level parameters. The number of jumps k has mode around 7, while in the 

position and level parameters there is only one very high posterior mode.

The number of jumps goes up to a value of 16, but only the traces of 

the first to the eighth jump is plotted. The ones which are not included in here 

are either without an obvious convergence, either with very few observations.

Convergence (traces in figure 6.9):

Number of jumps (plot (r)) -  A good mixing, but no obvious convergence. 

This is the highest range of values, which is from 6 to 16.

Position of jumps (plots (j) to (q)) -  ss and S7 do not have any 

convergence. The position of jumps S6, ss, S4 and S3 have some blocks, with the 

region with highest probability localised in (200,300), (70,80), (35,40) and 17 

respectively. S2  and sj have the highest convergence (values (7,8) and (4,5) 

respectively).

Level parameters (plots (a) to (i)) -  Is, I7 and U do no have an obvious 

convergence. Besides lo that converges to values in (0.01, 0.02) all other 

intensities Is, U, h, I2  and U present some blocks. The most probable values for 

these intensities are respectively (<0.01), 0.01, 0.03, 0.05 and 0.1 showing a 

tendency of decreasing the value with the order of the level. In a way it proves 

that the level parameters decreases with u.

Analysis of empirical posterior distributions (Figure 6.10):

Number of jumps -  The values around 9 are the most probable, but 

there is no obvious choice for the posterior number of jumps.

Position of jumps -  The graph only shows two obvious choices for the 

position of jumps: values around 7 and then around 300.

Level parameters -  The empirical posterior density shows a decreasing 

behaviour over u with only one clear mode in values smaller than 0 .1 .
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Figure 6.10 -  Delay intensity empirical posterior distributions

(a) Number of jumps

jump

(b) Position of jumps (c) level parameters

time

6.5.4 Age, sex parameter of severity

The severity of claim in the model presented here only depends on the 

sex and age of the policyholder and those are the parameters analysed in this 

subsection. The convergence is fairly good for both male and female mean 

parameters, showing for each two modes very close together. In contrast, the 

position parameter does not converge to any obvious value and some reasons 

for this behaviour will be discussed later in chapter 7. Generally speaking, the 

age effect does not seem to vary by sex covariate, as is observed from the 

similar results for both sets of parameter.

More specifically, male and female mean parameters show a very 

similar behaviour. Their posterior distribution is shown in figure 6.11 over the 

interval (6 , 9). It is observed that female (dotted line) has a higher density on 

the higher mode around 8 , while male (full line) has a more obvious second
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peak. These results justify the higher density observed for one jump in the 

male case than in the female case.

Figure 6.11 -  Female and male mean empirical posterior distributions

Female mean:

Convergence (traces in figure 6.12):

Number of jumps (plot (j)) -  Good mixing, with higher probability values 

at 0 and 1 .

Position of jumps (plots (f) to (i)) -  s* and S3 are not frequent enough to 

draw any conclusion. S2  does not show any obvious convergence, except the 

fact of being bigger than 16. sj has no convergence either, mixing over the 

whole range of the jump position. There is a higher concentration on values 

below 16.

Level parameters (plots (a) to (e)) -  U, I3 and I2  are not frequent enough 

to draw any conclusion, h converges to values around 8 and lo is more sparse 

but still with some convergence to values 8 and below.

Analysis of empirical posterior distributions (Figure 6.13):

Number of jumps -  Values 0 and 1 have the highest probability.

Position of jumps -  The graph points to two regions of higher density. 

The first one is around 15 and the second one bigger than 60.

Level parameters -  There is only one region with higher density (values 

around 8), where two very close modes are observed.
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Figure 6.12 -  Female severity trace plots
(a) (b)
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Figure 6.13 -  Female mean empirical posterior distributions 

(a) Number of jumps

(b) Position of jumps (c) level parameters

Male mean:

Convergence (tracer, in figure 6.14):

Number of jumps (plot (j)) -  Good mixing, with higher probability values 

at 0 and 1 .

Position of jumps (plots (f) to (i)) -  and S3 are not frequent enough to 

draw any conclusion. S2  does not show any obvious convergence, except the 

fact of being bigger than 16. sj seems to converge to values below 16, but still 

has a high density over the whole range of the jump position.

Level parameters (plots (a) to (e)) -  U and I3 are not frequent enough to 

draw any conclusion. I2  has few values converging to values around 10 and h 

to values around 8 . lo is highly concentrated on values between 7 and 8 .
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Figure 6.15 -  Male mean empirical posterior distributions 

(a) Number of jumps

I----------- 1----------- r
0 1 2 3 4 5

(b) Position of jumps (c) level parameters

Analysis of empirical posterior distributions (Figure 6.15):

Number of jumps -  Value 1 has the highest probability.

Position of jumps -  The graph points to two regions of higher density. 

The first one is around 15 and the second one bigger than 40.

Level parameters -  There are two modes very close together: one around 

7.5 and the other one around 8.

6.6 Results comparison

Here the results presented in the previous section are compared to two 

methodologies of claims reserving. Firstly the results from Arjas and Haastrup 

(1996) are presented, which have a similar approach to the previous sections. 

Secondly some more commonly used techniques are shown.

Generally speaking the results are more similar on the number of IBNR 

claims analysis than on the amount of the reserve. This behaviour can be
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explained by the inherent higher uncertainty involved in the projection of 

claim amounts than on their reporting. After reporting a claim its settlement 

process is just starting.

6.6.1 Comparison with Arjas and Haastrup (1996)

The frequency of claims component of the model used in this thesis is 

very similar to the one in Arjas and Haastrup (1996), and so are the results. 

The observed value of IBNS claims is in the 39% quantile of the posterior 

distribution for Arjas and Haastrup (1996), and in 47% on the model 

presented here.

Returning to the individual parameter analysis it is possible to observe 

that again the intensity of reporting delay has the same behaviour: a high 

concentration of small values, being skewed to the left. In the age, sex 

occurrence parameters it is observed that by calculating the intensity level 

parameter for each age the posterior average per age is very similar for both 

models. Now, the model adopted here has the advantage of defining groups of 

ages. The posterior average is shown in table 16 below.

Figure 6.16 -  Posterior mean of intensity of claim occurrence by sex and age
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■  male female

In the severity part of the model, the approach in here is completely 

different from the one in Arjas and Haastrup (1996). Here, age, sex and 

parametrical approach are used, while in Arjas and Haastrup (1996) a non- 

parametrical approach used the information about whther the payment was 

zero or not and if it was related to a settlement or not. The choice of modelling 

the payment based on age and sex does not seem to have enhanced the 

analysis, which could be improved by using both the settlement delay and the
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claim type information. A further discussion on this point is presented in the 

conclusion of this chapter.

The projection from Arjas and Haastrup (1996) is shown in table 6.7 for 

both the reserves and number of IBNR claims. Values are in thousands and 

the main comparison factor is the quantile of the predictive distribution from 

Arjas and Haastrup (1996) and the model in this thesis.

Table 6.7 -  Summaries of the projection in Arjas and Haastrup (1996)

nibnr ĵ ibnr ĵ rbns

Mean - 337 2090

90% confidence interval - (229,468) (1780,2410)

Observed quantile by Arjas 

and Haastrup (1996)
39% 9% 18%

Observed quantile by 

proposed model
47% 2% 83%

Also, the model in this thesis had the observations in a higher quantile 

than in Arjas and Haastrup (1996). It also has a wider confidence interval, 

showing a greater variability of the posterior distribution.

The benefit of using the approach proposed in this thesis is the 

clarification of the level of mixture in the parameter level. Now it is possible to 

analyse for each parameter separately how many piecewise constant values 

are necessary for each of them, which seems an important feature on the age, 

sex intensity of occurrence. Again, the use of a higher number of samples 

(15000 compared with 1500 in Arjas and Haastrup (1996)) is also more 

reassuring, since it is known how important it is to have a large sample in 

order to analyse the results in a MCMC implementation.

6.6.2 Comparison with traditional methods

In order to have a wider idea of how the model presented in this work 

enhances the usual prediction of claims reserve, a comparison to two 

traditional reserving methods is shown in this section. The chain ladder and 

the Bomhuetter-Ferguson (Bomhuetter and Ferguson (1972)) methods are 

used to predict the total claim reserve and also the unreported number of 

claims (both methods can be found in Hart, Buchanan and Howe (1996)). The 

chosen method of performing the methods was to calculate the factors based 

on the theory and then apply these to calculate the reserves. In this process a
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practical actuary usually selects the factor values instead of using the 

theoretical value, but here judgement is only used for the tail factor, if 

necessary.

The Bornhuetter-Ferguson method needs an exposure per accident year 

and in this example the measure available is the number of policies in force at 

the end of the year. These values are shown in figure 6.17, together with the 

development of the number of reported claims.

Figure 6.17 -  Triangle of number of claims

Accident year 1982 1983 1984 1985 1986 1987

Exposure 15,511 17,906 22,006 28,586 34,866 39,596

Acc. Year 1 2 3 4 5 6

1982 254 277 278 279 279 279

1983 264 288 289 290 290

1984 413 449 451 451

1985 447 498 502

1986 542 600

1987 675

Factors 1.100 1.005 1.002 1.000 1.000

Factors are calculated as in the chain ladder model, which does not 

allow for the tail factor. In the frequency data no tail factor is needed, since 

the historical development shows that all claims had been reported by the 

third year. This is not true for the development of the claims payment which is 

shown below in figure 6.18. Values are in thousands.

Figure 6.18 -  Triangle of paid claims

Acc. Year 1 2 3 4 5 6

1982 555 828 857 888 912 917

1983 722 1,117 1,140 1,139 1,139

1984 1,199 1,701 1,767 1,802

1985 1,253 1,869 1,947

1986 1,561 2,191

1987 2,047

Tail

Factors 1.456 1.036 1.017 1.012 1.005 ?

It is possible to observe that the history of claims points to a longer 

development than only five years, but since no data is available for older years
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neither the claim ladder nor the Bornhuetter-Ferguson methods give us a way 

to calculate its value via the data. So the choice will be fully based on the 

judgement of the analyst. In order to show how the result changes with the 

tail selected, the table 6.8 below shows the Claims reserve for various choices.

Table 6.8 -  Summaries of the projection in traditional methods

n° IBNR Value of Total Reserve (IBNR + RBNS)

claims (a) 1.020 (b) 1.014 (c) 1.216 (d) 1.089 (e) 1.122

Chain ladder 78 1,637 1,565 3,880 2,430 2,800

Bornhuetter-

Ferguson
71 1,160 1,105 2,591 1,725 1,964

The number of IBNR claims seems to be projected correctly, but the 

chain ladder method seems to slightly overestimate its value. In the reserve 

part the tail in (a) was chosen by exponentially smoothing the historical 

factors and applying some rounding, (b) and (c) are based on calculating back 

the tail that gives us the mean and 95% quantile as estimated by the model 

presented in this work, (d) and (e) are the respective for the Arjas and 

Haastrup (1996) analysis.

Recall that the observed payments for this reserve in the database is 

2,157, and since this amount is still expected to increase, the choice in (a), 

which is the one that is the considered as the most probable analyst’s choice, 

underestimates the final value. This also happens for (b) and for (d) and (e) on 

the Bornhuetter-Ferguson method, (c) is the only one that does not 

underestimate the value of the reserve, but its tail factor seems quite high and 

probably would not be selected by an analyst who only has the historical data 

from which to make a decision.

Apart from the probable low value of the reserve in this example, when 

using a traditional method there is no split into IBNR and RBNS reserves, 

which is a disadvantage for the analysis.

6.7 Chapter conclusion

In this chapter the smoothing property of the model presented in 

chapter 4 was explored. The micro approach uses individual information and 

continuous time, modelling the claim development. It is shown how the idea 

from Norberg (1993,1999) and used in Arjas and Haastrup (1996) can be
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applied using RJMCMC. This technique gave a better understanding of the 

mixing process in the parameter level.

In the severity part of the model a modification from Arjas and 

Haastrup (1996) was also proposed, using a parametrical distribution 

dependent on age and sex. This is a nice modification since it imposes a 

structure that facilitates the prediction and a likely distributional behaviour. 

In order to predict the reserves better it would be interesting to use not only 

the parametrical approach, but also the dependency on the size of payment, 

which was shown to be quite influential in this data set, and also the 

settlement delay. The analysis for the settlement delay is shown is shown in 

figure 6.19 below.

Figure 6.19 -  Claim average by settlement delay

8000

Figure 6.20 -  Value of settled claim per sex

On the total value of settled claim the graph above in figure 6.20 shows 

the data histogram by sex. It is observed that no differentiation is observed by 

sex, confirming what has already been observed on the age, sex factor.
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It is expected that the observed difference in settlement value is due to 

the type of claim: low values (for consultations) and high values (accidents). 

The problem with an approach bringing any of those characteristics into the 

model is the big computational burden that would be required.

The next chapter is the conclusion of the thesis. A summary of the work 

together with some proposals for new research is presented.
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Chapter 7

Conclusion

In this final chapter an overview of the work in this thesis is presented. 

Some comments on the model limitations and future research issues are 

included in the following section.

7.1 Final remarks

In this thesis, two new applications of micro models were presented. In 

both risk assessment problems a process based approach, looking at 

individual information underlying behaviour, is used. It was observed that one 

of the nicest features of this type of model is that now there is no need to look 

for a model that simplifies the data before any analysis, as is the usual 

approach.

The implementation of such a model was possible by using the 

Bayesian philosophy and a MCMC class of simulation technique. RJMCMC 

methodology was the core of the applications in this work. To allow changes of 

the dimensionality of the parameter set is not a simple issue and RJMCMC 

extends the MCMC in a very straightforward way. MCMC simulation class has 

been proven to be quite powerful and via the results presented in here, so has 

RJMCMC.

Most of the RJMCMC problems observed in the applications presented 

here are related to practical issues. The fact that RJMCMC is a new technique 

means that there have not been enough studies of the convergence, which is a 

big concern for simulation techniques. Future research in this area is even 

more necessary since the usual MCMC convergence tests are not directly
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applicable given that the interpretation of the parameter can change in every 

simulation. It is expected that the analysis of the level and position of jump 

parameters conditional on the number of jumps is the reasonable one.

As far as the results are concerned, most of the severity analysis had a 

worse result if compared to the frequency cases. It is understood that this is 

due to the fixing of the variance of the data distribution. This is a very limiting 

assumption, chosen due to the large extra computational burden when 

attaching a distribution to this parameter. In order to enhance the severity 

model, it is really desirable to use a stochastic variance instead of a fixed 

amount. It is not an easy question since on one hand it would probably bring 

some more uncertainty to the mean parameter if only one stochastic variance 

was defined. On another hand, choosing a stochastic variance that would also 

vary per group would increase enormously the computational burden.

It would also be interesting to check how much extra computational 

time is needed by including the Gibbs Sampling chain in the implementation. 

It is understood that this extra step is more reassuring for the results, than an 

ordinary RJMCMC chain, and was used, for instance, in Green (1995). But 

from another point of view it may considerably increase the computational 

burden.

An area where further research is necessary is how to choose more 

formally the groups. The definition of the best number of groups, together with 

the respective premium and variability is still an open question. How to decide 

on the optimal grouping for the premium, which is a function of separate 

analyses for the frequency and severity is not clear.

In chapter 6, the application of claims reserving could be enhanced for 

the severity analysis by using a bimodal distribution (or a mixture over claim 

values). It was also observed that the claim size is dependent on the 

settlement delay.

Also in the claims reserving model, it was observed that the 

multiplicative structure for the frequency of claim (calendar versus age, sex 

effect) could cause convergence problems. The choice of fixing one set of 

parameters and updating the other drastically increased the computational 

burden involved.

Although the models proposed in this work have been shown to be more 

adequate than some traditional analyses (the aggregation using age as discrete 

in chapter 5 and traditional reserving methods in chapter 6) it is not expected 

that the models presented here will be widely used on an everyday basis.
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Among the limitations of applying Bayesian theory in practice already cited in 

chapter 3, the implementation time and the lack of portability are most likely 

to affect this model.

After applying these models based on individual data, when 

assumptions are made directly in the process itself rather than on the 

aggregated data, it is obvious that a great amount of time is needed for their 

implementation. But it was also clear that this approach does enhance the 

risk assessment process. It is expected that as the implementation time 

decreases, thesis class of models may became more widely used.
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Appendix A

A.l Main Program

// This program i s  to  implement the ca lcu la t ion  o f  the number o f  jumps
// and r e la ted  hazard ra te  f o r  the frequency and s e v e r i t y  o f  claims
// using the r e v e r s ib le  jump technique
//program beginning
(♦include " l ib rary/com ple to .h "
main () {
//name o f  f i l e s
char ‘ Nome[] = { "/usr/home/fc/ages_new/results/completo/bif_L",

"/usr/home/fc/ages_new/results/completo/bif_S",
"/usr/home/fc/ages_new/results/completo/bifpes_L",
" /usr/home/fc/ages_new/results/completo/bifpes_S",
" /usr/home/fc/ages_new/results/completo/bis_L",
"/usr/home/fc/ages_new/results/completo/bis_S",
"/usr/home/fc/ages_new/results/completo/bislog_L",
11 /usr/home/ fc/age s_new/result s/comple to/ b is lo g _S " }  ;

in t  i , j , z ;
// d e f in in g  parameter arrays 
long double Lb if [kmax+1]; 
long double Sbif[kmax+2];
S b i f [0]=0;
L b i f  [0] =rgarr,ma (Ab if  , B b i f , 2) ; 
in t  kb if=0 ;

long double Lbis [kmax+1] ; 
long double Sbis[kmax+2);
S b is [0]=0;
L b i s [0 ]=rnorm(Abis,B b is ,1 );  
in t  kbis=0;

// h is to r y  o f  l e v e l s  
// h is to r y  o f  jumps

// h is to r y  o f  l e v e l s  
// h is to r y  o f  jumps

long double Lb is log[kmax+1]; // h is to r y  o f  l e v e l s
long double Sbislog[kmax+2]; // h is to r y  o f  jumps
Sb is log  [0]=0;
L b i s l o g [0 ]=rnorm(Abis, B b is ,1 );  
in t  kbislog--0;

long double Lbifpes[kmax+1]; // h is to r y  o f  l e v e l s
long double Sbifpes[kmax+2]; // h is to r y  o f  jumps
Sbifpes [0]=0;
L b i fp e s [0 ]=rgamma(Abif, B b i f ,2 ) ;  
in t  kbifpes=0;
//defin ing accumulation
in t  T b i f  [3 ]= { 0 , 0 ,0 } ;
in t  T b i fA [2 ]= {0 ,0 } ;
in t  Tkb if  [kmax+1] ;
f o r ( i = 0 ; i<=kmax;i++) Tkb if  [ i ] =0 ;

in t  T b i fp e s [3 ]= {0 ,0 ,0 } ;
in t  Tb ifpesA [2 ] = {0 ,0} ;
in t  Tkbifpes[kmax+1];
f o r ( i = 0 ; i<=kmax;i++) T k b i f p e s [ i ] =0 ;

in t  Tbis [3 ] =■ { 0 ,0 ,0 } ;
in t  T b isA [2 ]= {0 ,0 } ;
in t  Tkbis[kmax+1];
f o r ( i = 0 ; i<=kmax;i++) Tkbis [ i ] =0 ;

in t  T b i s l o g [3 ]= {0 ,0 ,0 } ;
in t  T b is lo g A [2 ]= {0 ,0 } ;
in t  Tkbislog[kmax+1];
f o r ( i = 0 ; i<=kmax;i++) T k b i s l o g [ i ] =0 ;
//defin ing data arrays
double X b i [s b ip e s ] ; // observation  - age
double Wbi[sbipes] ; // observation  - weight
double W Tb i[sb ipes ] ; // observation  - accumulate weight
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number o f  
number o f 
o f  claims 
number o f  
number o f  
number o f  
accumulate

double X b iv a r [ s b iv a r ] ; // observa t ion  -
double H b i [ s b iv a r ] ; // observa tion  -
double H T b i [s b iv a r ] ; // observation  - number
double H b i lo g [ s b iv a r ] ,- // observa tion  -
double H T b i lo g [s b iv a r ] ; // observa tion  -
in t  N b i [ s b i v a r ] ; // observa tion  -
in t  N T b i [ s b iv a r ] ; // observa tion  -
Xbivar [0] = 0 ,•
H b i [0]=0;
HTbi[0]=0 ;
Hbilog [0] =0 ;
H T b i lo g [0]=0;
N b i [0]=0;
N Tb i [0]=0;
/ / f i l e  data
ifs tream  f b i v a r ( "/usr/home/fc/ages_new/banco_de_dados/bivar. t x t " ) ;  
i f ( ! f b i v a r )  {cout << "Cannot open f i l e  f o r  input\n"; e x i t ( l ) ; }  
f b i v a r . s eek g (0 );

claims
claims

claims
claims
claims
weight

i fs tream  fb ip e s ( " /usr/home/fc/ages_new/banco_de_dados/pesobi. t x t " ) ;  
i f ( l f b i p e s )  {cout << "Cannot open f i l e  f o r  input\n"; e x i t ( l ) ; }  
fb ip e s . seekg (0 ) ;

f o r ( i = l ; i < s b iv a r ; i++) {
fb iv a r  >> Xbivar [ i ]  >>Hbi [ i ]  >>Hbilog [ i ]  >>Nbi [ i ]  ; 
NTbi [ i ]  =NTbi [ i -1 ]  +Nbi [ i ]  ;
HTbi [ i ]  =HTbi [ i -1 ]  +Hbi [ i ]  ;
H T b i l o g [ i ] = H T b i lo g [ i - 1 ]+ H b i lo g [ i ] ;
}
f o r ( i  = 0 ; i< s b ip e s ; i  + + ) {
fb ip es  >> Xbi [ i ]  >> WTbi [ i ]  ; 
i f  (i==0) Wbi[0]=0; 
e ls e  Wbi [ i ]  =WTbi [ i ]  -WTbi [ i -1 ]  ;
}
f b i v a r . c l o s e ( ) ;  
fb ipes  . c lo s e  0 
/ / in i t i a t in g  output f i l e s
ofstream s a i l ( "/usr/home/fc/ages_new/results/completo/bif_L") ;
ofstream s a i s ( " /usr/home/fc/ages_new/results/completo/bif_S") ;
s a i l . c lo s e  () ,-
s a i s .c l o s e ( ) ;
f o r ( i = 2 ; i< 6 ; i  + + ) {
ofstream s a i l  (Nome [ i ]  ) ;
ofstream sa is (N om e [i+1 ] ) ;
i++ ;
s a i l . c lo se  () 
s a i s . c l o s e ( ) ;
}
// ca lcu la t in g  number o f  jumps 
numero(kbif) ; 
num ero(kb is ); 
num ero (kb ifpes ); 
num ero (kb is log );
// ca lcu la t in g  the f i r s t  set  o f  jumps and hazards 
i f (k b is > 0 )  {
long double u n i [2 * k b is + l ] ;
f o r  ( i = 0 ; i<  (2 *kb is+ l)  ; i++) uni [ i ]  =un (4+15) ; 
s o r t (u n i ,2 * k b i s + l ) ; 
f o r ( i = l ; i < = k b i s ; i + + ) {
L b is [ i ]= rn o rm (A b is ,B b is ,2 ) ;
Sbis [ i ]  =uni [ 2 * i - l ]  *Smax;} }
Sb is [kb is+1 ] = Smax;

i f (k b is lo g > 0 )  {
long double u n i [2 * k b is l c g + l ] ;
f o r ( i = 0 ; i < ( 2 * k b i s l o g + l ) ; i++) u n i [ i ] = u n (4+15); 
s o r t (u n i ,2 * k b i s l o g + l ) ; 
f o r ( i= l ; i < = k b is lo g ; i+ + . )  {
L b is lo g [ i ]= rn o rm (A b is ,B b is ,2 ) ;
Sb is log  [ i ]  =uni [ 2 * i - l ]  *Smax;} }
S b is log [kb is log+1 ] = Smax;

i f (k b is > 0 )  {
long double un i[2+kbis+ l]  ;
f o r  ( i =0 ; i<  (2 *kb is+ l)  ; i++) uni [ i ]  =un (4+15) ,- 
s o r t (u n i , 2 * k b is + l ) ; 
f o r ( i = l ; i< = k b is ; i + + ) {
Lbis [ i ]  =rnorm(Abis,Bbis, 2) ,-
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Sbis [ i ]  =uni [ 2 * i - l ]  *Smax;} }
Sbis [kbis+1] = Smax;

i f ( k b i f >0) {
long double u n i [ 2 * k b i f + l ] ■
f o r ( i  = 0 ; i<  (2 *k b i f+1) ; i  + + ) uni [ i ]  =un (4 + 15) ; 
s o r t (u n i , 2 * k b i f + l ) ; 
f o r ( i  = 1 ; i < = k b i f ; i + + ) {
Lb i f  [ i ] = rgamma(Abif,B b i f ,2 ) ;
Sb if  [ i ]  =uni [ 2 * i - l ]  *Smax; } }
S b i f [k b i f+ 1 ]  = Smax;

i f  (kbifpes>0) {
long double u n i [2 * k b i fp e s + l ] ;
f o r  ( i  = 0; i<  (2 *kb ifp es+ l )  ; i++) uni [ i ]  =un (4 + 15) ; 
s o r t (u n i , 2 * k b i fp e s + l ) ; 
f o r ( i = l ; i< = k b i fp e s ; i + + ) {
L b i f p e s [ i ] =  rgamma(Abif,B b i f ,2 ) ;
S b i fp e s [ i ]= u n i [2 * i - l ] * S m a x ; } }
Sb ifpes [kb ifpes+1 ] = Smax;
// c a lcu la t in g  jumps and hazards fo r  i n i + i t e  times 
fo r  ( z = l ; z < = in i+ i t e ; z + + ) {
f r e q u e n c ia (S b i f , kmax+2, Lb if ,km ax+1 ,kb if ,X b i ,Wbi,WTbi, sb ip es ,X b ivar ,N b i,NTbi, s b iv a r ,A b i f , 
B b i f , T b i fA ,2 ,T b i f ,3 ,4 ) ;  
s a i l .open(Nome[ 0 ] , i o s : : app ),- 
s a i s .open(Nome[ 1 ] , i o s : : app );

fo r  ( i  = 0 ; i < = k b i f ; i++) { s a i l< < L b i f  [ i ]  << " " s a i s « S b i f  [ i ]  «  "
sa is<<" \n ";
s a i l< < "\ n " ;
sa is  . c lo se  ()
s a i l . c lose  () ;

frequencia(Sbifpes,kmax+2, L b i fp e s , kmax+1, k b i fp e s ,X b i ,Wbi, WTbi, sb ip es ,X b ivar ,N b i,NTbi, sbi 
v a r ,A b i f ,B b i f ,T b i fp e s A ,2 ,Tb ifpes , 3,2) ; 
sa i l .open (Nom e[ 2 ] , i o s : ; app ); 
s a i s .open(Nome[ 3 ] , i o s : : app ) ;

f o r ( i = 0 ; i< = k b i fp e s ; i++) { s a i l c c L b i f p e s [ i ] <<" " ; sa is<<Sbifpes  [ i ] <<" " ; }
sa is<< "\n ";
s a i l< < " \n ";
s a i s .c lo se  ( ) ;
s a i l . c l o s e ( ) ;

s eve r ia ad e (S b is , kmax+2, L b is , kmax+1,k b is , Hbi,HTbi,X b iva r ,N b i,NTbi, s b iv a r ,A b is ,Bb is , s i g b i ,
Tb isA ,2 ,T b is ,3 ) ;
s a i l  .open (Nome [4] , io s  : : app) ,-
s a i s .open(Nome[ 5 ] , i o s : : app) ;

f o r  ( i= 0 ; , i<=kbis;i++) {sa i l<<Lb is  [ i ]  <<" " ,-sais<<Sbis [ i ] <<" " ; }
sais<<"\n" ,-
sa i l<< "\n " ,*
s a i s . c l o s e ( ) ;
s a i l . c lo se  ( ) ;

severidade(Sbis log,kmax+2,Lb is log ,km ax+1 ,kb is log ,H b i log ,H Tb ilog ,Xb iva r ,N b i ,N T b i ,sb iva r ,A 
b i s ,B b is , s i g b i l o g ,T b is lo g A ,2 ,T b is lo g ,3) ; 
s a i l .open(Nome[ 6 ] , i o s : : app ); 
s a i s .open(Nome[ 7 ] , i o s : : app );

fo r  (i=0 ,• i<=kb is lo g ;  i++) {s a i l< < L b is lo g  [ i ]  <<" " ,-sa is<<Sb is log  [ i ]  <<" " ; }
sa is<< "\n ";
s a i l< < "\ n " ;
s a i s .c lose  () ;
s a i l .c lose  () ;

T k b i f ( k b i f ] ++;
T k b is [k b is ]++;
T k b is lo g [k b is lo g ]++;
Tkbifpes Ikb ifpes ] ++,- 
}//End f o r  in  z

cout<<"Sample f o r  * *b i  frequency** had the fo l lo w in g  r e s u l t s : \n” ;
f o r ( j = 0 ; j  < 2 ; j ++) cou t<< "T b i f ( "<< j  + l< < " ]=  "<<Tb if  [ j ]<<" "<<"T b i fA ["<<j+  1<<"] =
"<<Tb ifA [ j ] ;
c o u t< < "T b i f [3 ]= "<<Tbif  [2 ]<<"\n";
f o r ( j  =0 ; j  <=k b i f ; j+ + )  cout<<" L b i f ["<< j <<"]=  " < < L b i f [ j ] < < " ; S b i f ["<< j <<"] =
" « s b i f  [ j ]  <<" ; " ; 
cout<<" \n";
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cout<<"Sample f o r  **b ipes  frequency** had the fo l low in g  re su lts :\ n " ;
f o r ( j = 0 ; j  < 2 ; j++ )  cou t<< "Tb ifp es ["<< j  + l < < " ] = " <<Tbifpes [ j ]<<" "<<"Tb i fp esA ["<<j+1<<"] = 
” <<Tb i fp esA [ j ] ;
cou t<< "Tb ifp es [3]= "< < T b i fp es [2 ]<<"\n";
f o r ( j  = 0 ; j  <=kb ifpes ; j++ )  cout<<" Lb ifpes  ["<< j<< " ]  = "<<Lbifpes [ j ] < < " ; S b i fp e s ["<< j <<"] = 
"<<Sbifpes [ j ]  <<" ; " ; 
cout<<" \n ";

cout<<"Sample f o r  * *b i  s e v e r i t y * *  had the fo l lo w in g  re su l ts :\ n " ;
f o r ( j = 0 ; j  < 2 ; j++ )  cou t<< "Tb is ["<<j + l < < " ] = " < < T b i s [ j ] <<" "<<"Tb isA ["<<j+1<<" ]=
"<<TbisA [ j ] ;  
cout<<" \n" ;
cout<<"Tbis[3J = "<<Tb is [2 ]<<"\n";
f o r ( j = 0 ; j  <=kb is ; j++ ) cout<<" Lbis [ " < < j< < " ]= "<<Lb is [ j ]<<" S b is [ " < < j< < " ]= "< < S b is [ j ] ;  
cout<<"\n";

cout<<"Sample f o r  * * b i l o g  s e v e r i t y * *  had the fo l lo w in g  r e su lts :\ n " ;
f o r ( j = 0 ; j  < 2 ; j++ )  c o u t< < "T b is lo g ( "< < j+ l< < " ]= " < < T b is lo g [ j ]<<" "<<"T b is lo gA ["<<j+ l< < " ]=  
"<<TbislogA t j ] ; 
cout<<" \n" ;
cou t<< "T b is lo g [3]= "< < T b is lo g [2 ]<<"\n";
f o r ( j =0 ; j <=kb is log ; j++ )  c o u t « "  L b i s l o g ["<<j <<"]=  "< < L b is lo g [ j ]<<" S b is lo g ["<< j <<"] = 
" < < S b i s l o g [ j ] ; 
cout<<" \n";

} //endmain

A.2 Library

#include <fstream.h> 
#include <math.h> 
#include <s td l ib .h>  
#include <iostream.h>
// genera l constants 
const long double Smax = 
const in t  in i  = 0; 
const in t  i t e  = 10000; 
const in t  kmax = 30; 
const f l o a t  c = 0.4; 
//size o f  arrays 
const in t  sb iva r  = 566; 
const in t  sbipes = 5257;

const in t lambda = 3 -, //a p r i o r i  ]parameter o f  :k
const in t A b i f  = 12; // a p r i o r i parameter o f frequency
const in t Bbif  = 1000; // a p r i o r i parameter o f frequency
const in t Abis = 50; // a p r i o r i parameter o f s e v e r i t y
const in t Bbis = 100; // a p r i o r i parameter o f s e v e r i t y
const in t s igb i=  150; // a p r i o r i parameter o f s e v e r i t y
const in t s ig b i lo g =  20; // a p r i o r i parameter o f s e v e r i t y
/ / * * * * * * * * * * * * * * * * * * *  ca lcu la t ion  o f  U n ifo rm (0 , l )  * * * * * * * * * * * * * * * * * * * * * * * * * *  
long double un(const in t  l o c ) { 
long double a ,e ,x ,m ; 
s t a t i c  long double
I [21]={1561,1448,9879,67961,791,989,989,34274,3568,4679,7869,57807,57901,589,22457,26783 
7,37909,37679,37577,3757,3579}; 
s w i t c h ( l o c ) { 
case 1: a=65539; 

e=31; 
break;

case 2: a=pow(13,3); 
e=31; 

break;
case 3: a=pow(5 ,13); 

e=3 9; 
break;

case 4: a=pow(5 ,17 ) ;  
e=4 2 ; 

break;
case 5: a=pow(11,13); 

e=31; 
break;

case 6: a = p o w ( l l ,13); 
e=4 7; 

break;
case 7: a=pow(13,3);

73.59; //age upper value
/ / In i t ia l  i t e r a t io n s  
//Total i t e r a t io n s  
//Maximum number o f  jumps 
//Acceptance constant

//b iva r . tx t  
//pesobi. tx t
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e = 31 ; 
break;

case 8: a=pow(5,13 ) ;  
e =3 9 ; 

break;
case 9: a=pow(5 ,17 );  

e=42 ; 
break;

case 10: a=pow(11,13) ; 
e = 5 9 ; 

break;
case 11: a=S5539; 

e=31 ; 
break;

case 12: a=pow(13,3); 
e=31 ; 

break;
case 13: a=pow(5,13); 

e=3 9 ; 
break;

case 14: a=pow(5,17); 
e=42 ; 

break;
case 15: a=pow( 1 1 ,13 ) ;  

e = 5 9 ; 
break;

case 1G: a=65539; 
e=31; 

break;
case 17: a=pow(13,3); 

e=31; 
break;

case 18: a=pow(5,13); 
e=3 9 ; 

break;
case 19: a=pow(5,17); 

e=42 ; 
break;

case 20: a=65539; 
e=31 ; 

break;

in = pow (2, e ) ; 
x = fm o d (a * I [ l o c ] ,m ) ;
I [ l o c ]= X ;  
return x/m- 
}
j I  * * * * * * * * * * * * * * * * * *  * * * * *  ca lcu la t ion  o f  exp * * * * * * * * * * * * * * * * * * * * * * * * * *
long double check_exp(const long double x ) {
double upper=700;
double lower=-740;
long double value,temp;
i f  (x>=lower & St x <=upper) value=exp (x) ; 
e l s e {
i f (x>upper )  { 
temp=x; 
v a lu e = l ;
while (temp>upper){ 
temp=t  emp-upper; 
va lue=va lue*exp (upper ); }  
va lue=exp (temp)»va lue;
}
e ls e  i f ( x c lo w e r )  {
temp=x;
v a lu e = l ;
w h ile (tem p< low er ) { 
temp=temp-lower; 
va lue=va lue*exp (lower) ; }  
va lue=exp (tem p)»va lue;
}
}

*****************************

return va lue;
}
/ / * * * * * * * * * * * * * * * * * * * * * * *  c a lcu la t ion  o f  lo g  
long double check_log(const long double x ) { 
double upper=700; 
double lower= le-300 ; 
long double value, temp
i f ( x < 0 )  {cout<<"\n * * * * * *  PROBLEMA * * * * * *  Log (je v a lo r  n ega t ivo "<<x ;va lue  = l o g ( l )  
e ls e  i f  (x> = lower &St x <=upper) va lue= log  (x) ;
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e ls e  {
i f (x>upper )  { 
temp=x; 
va lue=0 ;
while (temp>upper){ 
temp=temp/upper; 
value += log (u pper ) ; }  
value += log (tem p );
}
i f ( x c lo w e r )  { 
temp=x; 
va lue=0 ;
while (tempclower) { 
temp=temp/lower; 
v a lu e + = lo g ( lo w e r ) ; }  
va lu e+= log (tem p );
}
}
return va lue;

/ / * * * * * * * * * * * * * * * * * * * * * * *  ca lcu la t ion  o f  gamma * * * * * * * * * * * * * * * * * * * * * * * *  
long double rgamma(const in t  a l fa ,c o n s t  long double beta ,const  in t  t p ) { 
long double g=0;
f o r ( i n t  i  = 0; i < a l f a ; i  + + ) g+ = lo g (u n (15+( t p - 1 ) *5 ) )  ; 
return - (g / b e ta ) ;
}
/ / * * * * * * * * * * *■ * * * * * * * * * * * *  c a lcu la t ion  o f  normal * * * * * * * * * * * * * * * * * * * * * * * *  
long double rnormlconst double A l ,c on s t  double A2,const in t  t p ) { 
double N;
f l o a t  PI = 3.14159265358979323846; 
s t a t i c  long double u l =0.959678; 
s t a t i c  long double u2 =0.87675545; 
u l =un(1+ ( t p - 1 ) *5) ; 
u2 =un(2+ ( t p - 1 ) *5 ! ;
N = pow( ( - 2 * l o g ( u l ) ) , 0 . 5 ) *cos (2 *P I*u2 ) ;  
return N*A2+A1;
}
/ / * * * * * * * * * * * * * * * * * * * * * * *  c a lcu la t ion  o f  f a c t o r i a l  * * * * * * * * * * * * * * * * * * * * * * * *  
in t  f a c t o r ia l ( c o n s t  in t  n ) { 
in t  nl=n;
i f ( n l < 0 )  return 0; 
in t  f =1; 
w h i le (n l> l )  
f * = n l - -;
return f ;
}
/ / * * * * * * * * * * * * * * * * * * * * * * *  ca lcu la t ion  o f  numero de puios * * * * * *
vo id  numero(ir,t& k l )  {
kl=kmax+l;
wh ile (k l>km ax){
long double u=un(5);
long double ul= exp (-1ambda) ;
f o r ( i n t  i= 0 ; i<=km ax;i++ ){
i f (u < u l )  { k l= i ; b r e a k ; }
e ls e  u l+=pow ( lam bda , i+1 )*exp (- lam bda )/ fa c to r ia l ( i+1 ) ;
}
}
}
/ / * * * * * * * * * * * * * * * * * * * * * * *  c a lcu la t ion  do so r t  * * * * * * * * * * * * * * * * *  
vo id  s o r t  ( long double a [) , const in t  n) { 
long double temp; 
in t  j ;
f o r t i n t  i = l ; i < n ; i + + ) { 
temp=a [ i ]  ;
f o r ( j = i ; j > 0  &S: a [ j -1] >temp; j - - ) a [ j ] = a [ j - l ] ;  
a [ j  ] =temp;
}
}
/ / * * * * * * * * * * * * * * * * * * * * * * *  c a lcu la t ion  do movimento * * * * * * * * * * * *
in t  movimento(const in t  k2) { 
double d ,n ,b ; 
long double u l;  
s t a t i c  in t  j = l ;
j++;
i f ( j==5) j =1; 
i f ( k 2 = = 0 ) { 
d=0 ;
i f  (lambda<=l) b=c*lambda; 
e ls e  b=c; 
n=1-b ; }

* * * * * * * * * * *

TT *  *
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e l s e  {
i f  ( k 2 = = k m a x) b = 0; 
e l s e  {
i f( l a m b d a < = k 2 + l )  b = c * l a m b d a / ( k 2 + l ) ; 
e l s e  b = c;

}
i f  (l a m b d a < k 2) d = c; 
e l s e  d = c * k 2 /l a m b d a; 
n = l - b - d ;

}
u l = u n ( 1 + ( j - 1 ) * 5 ) ;  
i f ( u l < b )  r e t u r n  1; 
e l s e {
i f ( u l < ( d + b ) )  r e t u r n  2; 

e l s e  r e t u r n  3;

}
}
1j  * *  *•*★ * ■*•* * * * *  + **★ ■* ■* + ★  ★  * c a l c u l a t i o n  o f  s a m pl s * * * ■ * ■ * * * * * * * * * * ■ * ■ * * * * ■ * • * * *★

i n t  s a m p l e ( i n t  k 1 ) {
l o n g  d o u bl e  u = u n ( 5 ) ;

f o r i i n t  i  = l ,-i < = k l ; i +  + ) {
i f  ( u * k l < = i )  { r e t u r n  i ; b r e a k ; }

}
}
j  I  * * * * * * * * * * * * * * * * * * * * * *  c a l c u l a t i o n  o f  i n i c i o  * * * * * * * * * * * * * * * * * * * * * * * * * *  

i n t  i n i c i o ( c o n s t  d o u b l e  T [ ] ,  c o n s t  i n t  n . c o n s t  l o n g  d o u bl e v a l o r ) { 
i n t  i . i n i ;  
i ni = n, -
f o r ( i = 0 ; i < n ; i + + ) { i f ( T ( i )  > v a l o r )  { i n i = i ,- b r e a k ; } }  
r e t u r n  i n i ;

}
j 1 * * * * *★ * * * * * * *★ ★ ★ ★ * * * ■ * • * c a l c u l a t i o n  o f  fi m  * * * * * * * ■ * • ■ * • * * * ■ * ■ ★ * * * * * ★ ■ * ■ * * ★  

i n t  f i m ( c o n s t  d o u b l e  T [ ) , c o n s t  i n t  n , c o n s t  l o n g  d o u bl e  v a l o r ) { 
i n t  i . i n i ;  
i n i = n - 1;

f o r ( i = l ; i < n ; i + + ) { i f ( T [ i ]  > = v a l o r )  { i n i = i - 1,- b r e a k ; } }  
r e t u r n  i n i ;

/ 1  * * * * * * * * * *  * * * * * * * * * * * *  c a l c u l a t i o n  o f  p e s o  * * * * * * * * * * * * * * * * * * * * * * * *

l o n g  d o u bl e p e s o f c o n s t  d o u b l e  T [ ] , c o n s t  d o u bl e  T 1 [ ) , c o n s t  l o n g  d o u bl e s i , c o n s t  l o n g
d o u bl e  s 2 , c o n s t  i n t  n , c o n s t  i n t  n l , c o n s t  i n t  n 2 ){
l o n g  d o u bl e v a l o r ;

i f  ( n l < = n 2) v a l o r = ( T [ n 2] - T [ n l ]  + ( T [ n l ]  - T [ n l - 1 ]  ) * ( T 1 [ n l ]  - s i )  / ( T 1 [ n l ]  - T 1 [ n l - 1 ]  ) + ( T [ n 2 + l ]  - 
T [ n 2] ) * ( S 2 - T 1 [ n 2] ) / ( T 1 [ n 2 + l ]  - T 1 [ n 2] ) ) ; 
e l s e  v a l o r = 0 ;  
r e t u r n  v a l o r ;

/ / * * * * * * * * * * * * * * * * * * * * * *  c a l c u l a t i o n  o f  i n c r e a s e  * * ’ 

v o i d  i n c r e a s e ( l o n g  d o u bl e  T [ ] , l o n g  d o u b l e  v a l u e , i n t  w , i n t  n ) {

* * * * * * * * * * * * * * * * * *

i n t  i ;
f o r  ( i =  ( n - 1) ; i > w ; i  — ) T [ i ]  = T [ i - 1 ]  ; 
T [ w] = v a l u e ;

/ / * * * * * * * * * * * * * * * * * * * * * *  c a l c u l a t i o n  o f  d e c r e a s e  

v o i d  d e c r e a s e  ( l o n g  d o u b l e  T [ ] , i n t  w , i n t  n) { 
i n t  i ;
i f  ( ( n - 1) > w) f o r  ( i = w ; i <  ( n - 1 ) ; i + + )  T [ i ] = T [ i + 1 ] ;

}

* * • *; * * + ★ ★ * ■** ■*•** ■*• ■*• + ■*•

/ / * * * * * * * * * * * * * * * * * * * * * * *  c a l c u l a t i o n  o f  S (j u m p s) * * * * * * * * * * * * * * * * * * * *

l o n g  d o u bl e  g S ( c o n s t  l o n g  d o u b l e  s i , c o n s t  l o n g  d o u bl e  1 1 , c o n s t  l o n g  d o u b l e  1 2 , c o n s t  l o n g
d o u bl e s 2 , c o n s t  d o u b l e  X [ ] ,  c o n s t d o u bl e  W [ ] ,  c o n s t  i n t  n , c o n s t  i n t  b e g , c o n s t  i n t
f i n ,  c o n s t d o u bl e  w e i ,  c o n s t  d o u bl e  X I [ ] ,  c o n s t  i n t  N [ ] ,  c o n s t  i n t  n l ,  c o n s t  i n t  b e g l ,  c o n s t
i n t  f i n i , c o n s t  i n t  t p ) {
i n t  n u m = fi n - b e g + 2 ;
i n t  h p, i , j ;

l o n g  d o u bl e  j u m p, u, s u m, u l , x ,  1 3, 1 4 , w l , w 2, w t o t , c o n s , c o n s l , w t e m p,- 
d o u b l e  x l , c l  ,-
l o n g  d o u bl e * C = n e w l o n g  d o u bl e [ n u m] ,- 
1 3 = 1 2 - 1 1;

1 4 = c h e c k _l o g  ( 1 1) - c h e c k _ l o g  ( 1 2) ,- 
wl = W [ b e g] * ( X [ b e g] - s i )  / ( X [ b e g] - X [ b e g - 1 ]  ) ,- 
w 2 = W [ f  i n + 1] * ( s 2 - X [ f i n ]  ) / ( X [ f i n + 1 ]  - X [ f i n ]  ) ,- 
w t o t = w ei + w l + w 2 ;

i f ( s 2 < = X [ f i n ]   | | s l > = X [ b e g ] )  { c o u t < < " p r o b l e m a l " , n u m = n u m - l ;} 
i f ( s 2 < = X [ f i n ]  & & s l > = X [ b e g ] )  { c o u t < < " p r o b l e m a 2 " , n u m = n u m -l ;} 
c o n s = 0;
c o n s l = - 1 2 * ( w t o t - w l ) ;
c l = c h e c k _ e x p ( - l l * w l ) - c h e c k _ e x p ( - 1 2 * w l ) ; 
i f ( c l < 0 )  c l = - c l ;

i f  ( w l > 0  & & 1 1! = 1 2)  C [ 0] = c o n s l - c h e c k _ l o g  ( w l / ( X  [ b e g ] - s i )  ) + c h e c k _ l o g  ( c l )  ,-
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e ls e  {C [0] =X [beg] - s i ; cout<<"b lab la " } 
i f ( f i n  > beg) f o r ( i = b e g ; i c f i n ; i + + )  {
i f  ( f in l> = b eg l )  f o r  ( j = b e g l ; j < = f i n i ; j ++) { i f  (X [ i ]  ==X1 [ j ] ) cons+=N [ j ] *14 ,-} 
i f ( i ! = b e g )  wtemp=W[i]; 
e ls e  wtemp=wl;
consl = consl+12*W[i+1] - ll*wtemp; 
c l=check_exp ( -11*W [i+1 ]) -check_exp( -12*W [i+1 ]) ;  
i f  ( c l< 0 ) c l = - c l ;
i f ( W [ i  + l ]>0  && 11! =12) C [i-beg+1] =cons+consl-check_log (W [ i  + 1] / (X [ i  + 1] - 
X [ i ] ) ) + check_ log (c l )  ;
e ls e  { c  [ i-beg+1] =X [i+1] -X [ i ]  cou t<<"b lab lab la " ; }
}
i f ( f i n l > = b e g l ) f o r ( j= b e g l ; j < = f i n i ; j + + ) { i f ( X [ f i n ] = = X 1 [ j ] )  cons+= N [ j ] * 1 4 ; }  
i f ( f i n ! = b e g )  wtemp=W[fin]; 
e ls e  wtemp=wl;
consl = consl+12*w2 - ll*wtemp; 
cl=check_exp (- l l *w 2 ) -check_exp ( -12 *w2) ; 
i f  (c l<0 ) c l  = - c l ;
if (w2>0 && 11!=12) C[num-1 ]=cons+cons l-check_ log (w 2/ (s2 -X [f in ] ) ) + c h e c k _ lo g (c l ) ; 
e ls e  {C [num -1 ]=s2 -X [f in ] ; cou t<< "b lab lab lab la " ; }  
i f (11 !=12){ 
sum=0;
f o r ( i = 0 ; icnum;i++) { sum+=C[i]; }
sum=sum/nura;
cons=C[0 ] -sum;
f o r ( i = 0 ; i<num;i++){
C [ i ]  =C [ i ]  -sum; 
i f  (cons<C [ i ]  ) c o n s -C [ i ] ;
}
i f (cons>700) { f o r ( i = 0 ; icnum ;i++ ) { C [ i ] =C[ i ] - (cons- 7 0 0 ) ; } }
f o r ( i = 0 ; icn u m ;i+ + ) {C [ i ]= ch eck _ ex p (C [ i ] ) ; }
}
sum=0;
f o r ( i = 0 ; icnum;i++) sum+=C[i];
C [0] =C [0] /sum;
f  or ( i =1; icnum; i++) C [ i ]  =C [ i - 1] +C [ i ]  /sum; 
hp = 50000;
while(hp==50000) {
u=un(15+( t p -1)*5) ; 
i f  (uc C [0] ) hp = 0;
e ls e  { i f  (C[num-2]< u && ucl)  {hp=num-l;}

e l s e  { i f ( f i n > b e g )  { f o r ( i = l ; i c  num-l;i++) i f ( C [ i - l ] c u  && u c C [ i ] ) {h p = i ;b rea k ; } } } }
}
i f (11 !=12){ 
i f (hp==0) {
wtemp=wl*(12-11); 
x l = s l ;
x=X [beg] - s i  ;
}
e ls e  i f ( s 2 > X [ f in ]  && hp==num-l) { 
wtemp=w2*(12-11); 
x l = X [ f i n ] ; 
x = s 2 -X [ f in ] ;
}
e ls e  {
wtemp=W[beg+hp]* (12 -11 );
xl=X [beg+hp-1] ;
x=X [beg+hp] -X [beg+hp-1] ;
}
u=un(14+( t p - 1 ) *5 ) ;
jump=xl+x*check_log(u*check_exp(wtemp)-u+1)/wtemp;
}
e ls e  jump=xl+u*x; 
d e le te  [] C; 
return jump;
}
/ / * * * * * * * * * * * * * * * * * * * * * * *  ca lcu la t io n  o f  S2 (jumps) para s e v e r id a d e * * * * * * * * * * * * * * * * * * * *  
long double gS2(const long double s i , c o n s t  long double 11 ,const long double 12,const 
long double s2,const double X [ ] , c o n s t  double H [ ] ,c o n s t  in t  N [ ] , c o n s t  in t  s iz e ,c on s t  in t  
beg,const in t  f in ,c o n s t  in t  s ig ,c o n s t  in t  t p ) { 
in t  num=fin-beg+2; 
in t  hp, i , j ;
long double jump,u,sum,ul, x , 13,14,w l , w2,w to t , cons, c o n s l ,wtemp; 
double x l , c l ;
long double* C = new long double[num];
13=2*(12-11);
14=pow(1 1 ,2 ) -pow(12 ,2 ) ;
C[0] =0; 
c l=X[beg] - s i ;
i f ( f i n  > beg) f o r ( i = b e g ; i c f i n ; i + + )  {
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vo id  frequencia  ( long double S [ ] , c o n s t  in t  ns , long  double L [ ] , c o n s t  in t  n l , in t&  k,const
double X [ ] , c o n s t  double W [],const  double W T[] ,const in t  s iz e ,c o n s t  double XI [] , const in t
N ( ] , c o n s t  in t  N T [ ] ,con s t  in t  s i z e l , c o n s t  in t  A ,const in t  B , in t  TOTA[],const in t  na , in t
TOT [ ] ,  const in t  n, in t  t ip o _ f r e q )  {
in t  i , j , b e g l , beg, f  i n i , f  in , num, u2 , pos , mov, numl,-
long double u ,u l , a ,s i , a c , c o n s ,h i ,h 2 , h3;
double w e i ,w e i l ;
s t a t i c  in t  t ip o = l ;
t ip o + + ;
i f ( t ip o = = 3 )  t  ipo=1; 
b e g l= in i c i o (X I , s i z e l , S [ 0 ] ) ;  
f i n l = f i m ( X I , s i z e l , S [ 1 ] ) ;
i f  ( f in l> = b eg l )  num =NT[f in i ]-NT (beg l-1 ];  
e ls e  nura=0;
b e g = in ic io (X ,s i z e ,S  [0 ] )  ; 
f in = f i r a (X ,s i z e , S [ 1 ] ) ;
wei=peso (WT,X,S[0) ,S[1] , s i z e , beg, f in )  ;
L [0 ]=rgamma(num+A,wei+B,tipo); 
i f (k > 0 )  f o r ( j = l ; j  <= k ; j + + ) {  
f in = f im (X ,s i z e ,S  ( j  + 1 ] ) ; 
f i n l  = fim (X I , s i z e l , S [ j + 1 ]  ) ; 
i f  ( L i j - 1 )  ! = L [ j ]  ) { 
i f ( b e g < = f in )  {
S [ j ] =gS (S [ j -1 ] , L [ j  -1] , L [ j  ] , S [ j+1] , X, W, s i z e ,  beg, f in ,  (WT [ f in ]  -WT [beg- 
1 ] ) , X 1 , N , s i z e l , b e g l , f i n l , t i p o ) ;
}
e ls e  {
u=un(15+( t i p o - 1 ) *5 ) ;  
a= (L [ j ) -L [ j  -1] ) *W [ f  in+1] ;
S [j ] =S [j - 1 ]+ check_ log (u *check_exp (a )+ l-u )* ( S [ j + 1 ] - S [j - 1 ] ) / a ; } }
i f  (S [ j ]  >S [j+1 ] ) c o u t< < "e r ro l "<<"S ["<< j<< " ]  ="<<S [ j ]  <<" S [ "<< j+ l<< " ]  ="<<S [ j  + 1] <<” \n" ; 
i f  (S [ j ]  <S [ j - 1 ]  ) c o u t «  "erro2 " ; 
b e g l= in i c i o (X I , s i z e l , S [ j ] ) ;  
b eg= in ic io  (X ,s iz e ,S  [ j ] ) ;
i f  ( f in l> = b eg l )  num=NT [ f in l ] -N T  [beg l-1 ] ; 
e ls e  num=0;
wei^peso(WT,X,S [ j ] , S [j  +1] , s i z e , b e g , f in )  ;
L [ j ] =rgamma(num+A,wei+B,tipo);
}
mov=movimento (k) ; 
u2 = 0;
i f (m o v = = l ) {

s i  =un(14+( t i p o - 1 ) * 5 ) *Smax; 
pos=0;
while (u2 < k) { 

u2 = 0;
s l=un (14+( t i p o - 1 ) * 5 ) *Smax; 
pos = 0;
f o r ( i = l ; i<=k ; i++ ) { 

i f  (S [ i ]  != s i )  U2 + + ;
i f ( S [ i ]  < s i )  pos = i ;

}
}
b e g = in ic io (X ,s i z e ,S [p o s ] ) ;  
f  in= f  im (X, s i z e , S [pos+1] ) ;
wei=peso (WT, X, S [pos] ,S [pos+ l]  , s i z e , beg, f in )  ; 
f  in= f  im (X, s i z e , s i )  ,-
w e i l=peso (W T,X ,S [pos ], s i , s i z e , b e g , f i n ) ; 
b e g l= in i c i o (X I , s i z e l , S [p o s ] ) ;  
f  i n l = f  im (XI, s i z e l ,  S [pos+1] ) ; 
i f  ( f in l> = b e g l )  n u m =N T [f in l ] -N T [beg l-1 ] ; 
e ls e  num=0;
f i n l = f im (X I , s i z e l , s i ) ;
i f  ( f in l> = b e g l )  n u m l= N T [ f in l ] -N T [b eg l-1 ] ; 
e ls e  numl=0;
i f ( w e i l ! = 0  && w e i l !=w e i )
{
h2 = L [pos] ;
cons = ( l / u n ( l l + ( t i p o - 1 ) *5) - 1 ) ;
i f ( t i p o _ f r e q = = l  |j t ip o _ freq==2 ) h i = h2 * pow(ccns, ( (wei - w e i l ) / w e i ) ) ;  
e ls e  h i  = h2 * pow(cons, ( ( s l -S  [pos+1] )/ (S [pos+1]-S [pos] ) ) )  ;

h3 = cons * h i ;
i f ( t ip o _ f r e q = = 2  | |tipo_freq==4) ac=ace itacao (S  [pos+1 ]-S [pos ] , s l -  

S [pos] ,num l,num,weil,wei,k ,h l,h2,h3,A ,B ) ;
e ls e  a c= a c e ip e s o (S [p o s + 1 ]-S [p o s ] , s l -S [p o s ] , numl,num,weil,wei,k ,h i,h2 , h3,A ,B ) ;
i f (a c> = 0 )  ac= l;
e ls e  ac=check_exp (ac) ,-
ul=un(14+( t i p o - 1 ) *5 ) ;
i f ( u l  <= ac) {
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i f  ( f in>=beg) {num=NT [ f in ]  -NT [beg-1] ;wei=HT [ f in ]  -HT [beg-1] ; }  
e ls e  {num=0;wei=0; } 
a=num/pow(sig,2 )+l/pow(B,2) ; 
cons=wei/pow(sig,2 ) +A/pow (B ,2) ;
L [ j ] =rnorm(cons/a,pow(a,- 0 . 5 ) , t ip o )  ;
}
mov=movimento(k) ,- 
u2 = 0 ;
i f (m o v = = l ) {

s i  =un(4+ ( t i p o - 1 ) * 5 ) *Smax; 
pos=0;
while(u2 < k) { 

u2 = 0;
s l=un (4+ ( t i p o - 1 ) * 5 ) *Smax; 
pos = 0;
f o r ( i = l ; i< =k ; i++ ) { 

i f  (S [ i ]  != s i )  u2 + +;
i f  (S [ i ]  < s i )  pos = i  ;

b e g = in ic io (X , s i z e ,S [p o s ] ) ;  
f i n = f im (X ,s i z e , S [pos+1]) ;
i f  ( f in>=beg) {num=NT[fin]-NT[beg-1] ;wei=HT[fin ]-HT [beg-1] ; }  
e ls e  {num=0;wei=0; }  
f in= f im (X , s i z e ,  s i )  ,-
i f  (f in>=beg) {numl=NT [ f in ] -N T  [beg-1] ,-weil=HT [ f in ] -H T  [beg-1] ; }  
e ls e  {numl=0,-weil = 0; } 
h2 = L [pos] ; 
i f ( h 2 ! = 0 ) {
cons = ( l/u n (1+ ( t i p o - 1 ) *5) - 1 );
h i = (S [pos+1] -S [pos] ) *h2/( (S [pos+1 ]-s i )/cons+s l-S  [pos] ) ; 
h3 = hl/cons,-
ac=aceitacao2 (S [pos+1] -S [pos] , s l -S  [pos] , numl, num, v ; e i l , w e i , k, h i , h2 , h3 , s ig ,  A, B)
i f (a c>=0 )  ac= l ;
e ls e  ac=check_exp (ac );
u l=un(4+ ( t i p o - 1 ) *5 ) ;
i f  (ul <= ac) {

in c rea s e (S ,s i ,p o s  + l,kraax +2 );
L[pos] = h i ;
in c rease (L ,h 3 ,pos + l ,km ax+ l) ;  
k = k + 1;
TOTA[mov-1]++ ;

}
}
i f (mov==2) {

pos = sam p le (k ); 
s i  =S [pos] ;
b e g = in ic io (X , s i z e ,S [p o s ] ) ;  
f  in= f  im (X, s i z e , S [pos + 1] ) ;
i f  ( f in>=beg) {num=NT [ f in ] -N T  [beg-1] ;wei=HT [ f in ] -H T  [beg-1] } 
e ls e  {num=0;wei=0; }  
f i n = f i m ( X , s i z e , s i ) ;
i f  (f in>=beg) {n u m l=N T [ f in ]-N T [b eg -1 ] ;w e i l=H T [ f in ]-H T [b eg -1 ] ; }  
e ls e  {numl=0;weil=0 ;} 
h i = L [pos-1] ; 
h3 = L [pos] ;
h2 = ( (S [pos]-S [pos-1] ) * h i  + (S [pos+1]-S [pos] ) * h3)/ (S [pos+1] -S [pos- l j  ) ,- 
i f ( h 2 ! = 0 ) {
ac=aceitacao2 (S [pos+1] -S [pos-1] , S [pos] -S [pos-1] , numl, num, w e i l ,  w e i , k, h i , h2, 

h3, s i g ,A ,B ) ;
i f (a c< = 0 )  a c = l ; 
e l s e  ac = ch eck _exp (-a c ) ; 
u l = un(5+ ( t i p o - 1 ) *5 ) ;  
i f ( u l  <= ac) { 

k = k - 1,-
decrease (S, pos , kmax +2)
L [pos-1] = h2 ;
decrease (L ,pos + l ,km ax+ l) ;
TOTA[mov-1] ++;

}
}
}
TOT[mov-1]++;

}
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Appendix B

B.l Main Program

// This program is  to  implement the c a lcu la t ion  o f  the number o f  jumps
// and r e la ted  hazard ra te  f o r  the frequency and s e v e r i t y  o f  claims
// using the r e v e r s ib le  jump technique fo r  3 d i f f e r e n t  set  o f  in te n s i ty
// r e la ted  to  age&sex,calendar time and report  delay . We are a lso
// ca lcu la t in g  the IBNR c la im s , d e f in in g  t h e i r  moment o f  occurrence and a l l
// other in formation.

#include " l ib ra ry/den .h"
/ / * * * * * * * * * * * * * * * * * * * * * * * * »program beginning 

main( ) {
long double g l , f 1 ,11 ,a , b ,u , t o t ; 
double w , s i , s 2 ,Res_RBNS,Res_IBNR;
in t  i , j , z , z l , z2 , tem p , IB N R ,tem p i, tem p 2 , temp3, temp4, contador, g l_ index,g l_ item p,tarn ; 
in t  k f  [6] = { 0 , 0 ,0 ,0 ,0 ,0 } ;
//declaracao dos dynamic arrays 
in t *  N l;  
double* ST;
long double* uniforme; 
double *data_IBNR_time; 
in t *  N;
long double *Prob[2*Amax];
//working arrays 
in t  data_tot_number[ 2 ] [Amaxl; 
double d a ta _ to t _ v [ 2 ] [Amax]; 
long double acumu[2] [Amax] ; 
in t  IND [2] [2*kmax+7] ; 
double T_S[2*kmax+7];

f o r  ( j  =0; j<Amax; j++) f  or  ( z=0; z<2; z++) acumu[z] [ j ]= 0 ;  
f o r  ( i  = 0 ; i< (2*kmax+7) ; i++) T_S [ i ]  =0;
fo r  ( j  =0 ; j <2 ; j++) f o r  ( i  = 0 ; i<  (2*krnax+7) ; i++) I N D [ j ] [ i ] = 0 ;  
double W[6] [Amax] [2] ;
f o r  (i=0 ; i<S ; i++) f o r  ( j =0; j<Amax; j++ ) f o r  (z=0; z^2; z++)-Vi [ i ]  [ j ]  [z ]=0 ;

double d a ta _ t_ t im e [tam _t ] ; 
in t  data_t_nuntber [tam_t] ,- 
double data_u_time[tam_u]; 
in t  data_u_number[tam_u]; 
in t  data_a_number [2] [Amax] ,- 
double da ta_va lue [ 2 ] [Amax]; 
in t  number_RBNS[ 2 ] [Amax];

i fs t ream  f _ t ( M/usr/home/fc/den/severity/dados/rep_t") ;
i f ( ! f _t ) {cout << "Cannot open f i l e  f o r  input\n"; e x i t ( l ) ; }

f _ t . seekg (0) ;

i fs t ream  f _ u ( " /usr/home/fc/den/severity/dados/rep_u") ;
i f ( ! f _ u )  {cout << "Cannot open f i l e  f o r  input\n"; e x i t ( l ) ; }  

f _ u . seekg (0 ) ;

i fs tream  f _ a ( " /usr/home/fc/den/severity/dados/rep_a") ;
i f ( ! f _ a )  {cout << "Cannot open f i l e  f o r  input\n"; e x i t ( l ) ; }  

f _ a . seekg (0 ) ;

i fs tream  f e x p ( "/usr/home/fc/den/severity/dados/exp. t x t " ) ;
i f ( ! f e x p )  {cout << "Cannot open f i l e  f o r  input\n"; e x i t ( l ) ; }  

f e x p . seekg (0 ) ;

i fs t ream  f v a lu e ( "/usr/home/fc/den/severity/dados/paid_log.txt" ) ;
//i fs tream  f v a lu e ( "/usr/home/fc/den/severity/dados/paid_nonlog. t x t " ) ;
i f ( ! f v a l u e )  {cout << "Cannot open f i l e  f o r  input\n";  e x i t ( l ) ; }  

f v a lu e . seekg (0 ) ;
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i fs tream  f rb n s ( " /usr/home/fc/den/severity/dados/rbns_num.txt") ;
i f ( ! f r b n s )  {cout << "Cannot open f i l e  f o r  input\n"; e x i t ( l ) ; }  

f rb n s . seekg (0 ) ;

i fs tream  f r s e v ( " /usr/home/fc/den/severity/dados/rep_a_sev.txt") ;
i f ( ! f r s e v )  {cout << "Cannot open f i l e  f o r  input\n"; e x i t ( l ) ; }  

f r s e v . seekg (0 ) ;

ofstream s a i l ;  
ofstream f ib n r ;

f o r ( i = 0 ; i<tam t ; i+ + ) { f _ t  >> data t time [ i ] >>data_t_number[i ] ; }

f o r ( i = 0 ; i<tam u; i ++) { f  u >> data u time [ i ] >>data u num ber[i ] ; }

f o r ( i = 0 ; i< (2*Amax); i + + ) { 
f_a  >> tempi >>temp2>>temp3; 
data_a_number[tempi][temp2]=temp3 ;

}
f o r ( i  = 0; i  < Exp/ i++) { 
fexp >> tempi >>temp2>>temp3>> w; 
W[templ-1] [temp3] [temp2]=w/365;
}
f o r ( i = 0 ; i< (2*Amax); i + + ) { 
fva lu e  >> tempi >>temp2>>s2; 
da ta_va lue [tem p i] [ tem p2 ]=dcub le (s2 ) ;

}
f o r ( i  = 0 ; i<(2*Amax-2) ; i++) { 

frbns >> tempi >>temp2>>temp3; 
number_RBNS[tempi][temp2]=temp3;

}
f o r ( i = 0 ; i< (2*Am ax-2 ); i + + ) { 

f r s e v  >> tempi >>temp2>>temp3; 
data_a_numberl[tempi][temn2]=temp3;

}
number_RBNS [0] [0]=0; 
number_RBNS[1] [0]= 0;

f e x p . c lose  () ; 
f _ t .c lo se  ( ) ;  
f  u .c l o s e ( ) ;  
f _ a .c l o s e ( ) ;  
f rb n s . c l o s e ( ) ;  
f v a lu e .c lose  () ;

//defin ing accumulation o f  acceptat ion  ra te
in t  T [G] [4 ] = { 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,  0 ,0 ,0 ,0 ,0 ) ;  
//parameter arrays
long double L [4 ] [km ax+1 ]; // h is to r y  o f  l e v e l s
double S_t[kmax+2] 
double S_u[kmax+2] 
in t  S a [ 2 ] [kmax+2]

// history ' o f  jumps 
// h is to ry  o f  jumps 

// h is to r y  o f jumps

long double Mi [2] [kmax+1] ; 
in t  S_va l [2 ]  [kmax+2] ;

// h is to r y  o f  l e v e l s
// h is to r y  o f  jumps

kf [4] =5; 
kf[5]=5;
S_t [0] =0;
S_U [0] =0;
S_a [0] [0] =0;
S_a [1] [0]=0;
S_val [0] [0] =0;
S_val [1] [0] =0;

f o r ( i = 0 ; i< 2 ; i + + ) {
Mi [ i ]  [0] =rnorm (A [i+4] , B [ i+4 ] , i+3 ) ;
}
f o r ( i = 0 ; i< 2 ; i + + ) { 
f o r ( j = l ; j < = k f [ i  + 4] ; j + + ) {
Mi [ i ]  [j ] =rnorm<A[i+4] ,B [i+4 ] , i+3 )  ; 
S _ v a l [ i ]  [ j ] =j *72/(k f [ i + 4 ]+1) ;
}}
kf [0] =0;
S _ t [1 ]=Smax;
L[0] [0] =1;

k f [1]=2;
S_a [0] [0] = 0;
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L [2] [0] = 3 .58985e-05;
S_a [0] [1] = 6;
L [2] [1] = 1.9966e-05;
S_a [0] [2] = 36;
L [2] [2] = 9 .60227e-06;
S_a [0] [3] = 67;

kf [3] =2;
S_a [1] [0] = 0;
L [3] [0] = 1.47824e-05;
S_a [ 1 ] [ID = 15;
L [3] [1] = 2 .464e-0S;
S_a [1] [2] = 32;
L [3] [2] = 1.3668e-05;
S_a [1] [3] = 67;

k f [1]=5;
S_U[0]= 0;
L [1] [01 = 0.00131357;
S_u[1]= 4.95386;
L [1] [1] = 0.0148287;
S_u[2]= 7.99944;
L [1] [2] = 0.0745206;
S_u[3] = 18.5306;
L [1] [3] = 0.0489292;
S_u[4] = 36.2348;
L [1] [4] = 0.0242072;
S_u[5]= 78.7191;
L [1] [5] = 0.00745073;
S_u [6]= 2190;

f o r  (contador=0; c o n ta d o r< in i+ i t e ; contador++ ){
T_S [0] =0 ; IND [0] [0] =0 ; IND [1] [0] =kf [1] ; 
tam=l; i= 0 ; j= 0 ; z = k f [1 ] ;  
f o r ( z l = l ; ; Z l+ + ) { 
tam=zl; 
s l=S_t  [ j  + 1] ;
i f  ( s i  > (Smax-S_u [z] ) ) s i  -■ Smax-S_u[z]; 
i f  ( s i  > W l [ i + l l )  s i  = W1 [i+1] ;
i f ( s i  == (Smax-S_u[z]) )  i f ( z ! = 0 )  z - - ;  e ls e  break; 
i f ( s i  == W 1 [i+1 ] ) i f ( i !=6) i++; e ls e  break; 
i f  ( s i  == S _ t [ j+ 1 ]  ) i f  ( j  ! =kf [0] ) j++ ;  e ls e  break;
T _ S [ z l ]= s 1;
IND [0] [ z l ]  =j ;
IND [1] [ z l ]  =z;

}
T_S[tam]=Smax;
f o r ( i = 0 ; i<(2*Amax) ; i+ + ) {P r o b [ i ]= n e w  long double[tam] ; f o r ( j =0 ; j< ta m ; j+ + ) { P rob [ i ]  [ j ] = 0 ; } }  
to t= 0 ; 
a=0;
fo r  ( i  = 0 ; i<=k f [1] ; i++ ) { a- =L [1] [ i ]  * (S_u [ i  + 1] -S_u [ i ]  ) ; } 
f o r ( j =0;j< ta m ; j++ ) {  
temp = t r a n s f (T _ S [ j ] ) ;

Zl=IND [1] [ j ]  ; 
g l  = L [1] [ z l ]  ;
i f  ( j>0) { z2=IND [1] [j  -1] ; i f  ( z l != z 2 )  a+= (L [1] [z2] -L [1] [ z l ]  ) * (Smax-S_u [z2] ) ; }
z l  = IND [0] [ j ]  ; 
f l  =L [0] [ z l ]  ; 

f o r ( i = 0 ; i< (Am ax*2 ); i + + ) { 
z=0 ;
i f  (i>=Amax) z = l ;
l l = q u a l_ a (L [ z + 2 ] , S _ a [ z ] , k f [ z + 2 ] , i -z *Am ax );
if(temp>0 && W[temp-1] [i-z*Amax] [z]!=W[temp] [i-z*Amax] [z] ) { 
b=check_log (W [temp] [i-z*Amax] [z]/W [temp-1] [i-z*Amax] [z ] )/365 ;
P rob [ i ]  [ j  ] = f  l * l l * W  [temp-1] [i-z*Amax] [z] *check_exp (a- 

b*Wl[temp]+ (b + g l ) * T _ S [ j ] ) * (check_exp( (b + g l ) * (T _S [ j+ 1 ] -T _S [ j ] ) ) - 1 ) / ( b + g l ) ;
}
e l s e {P r o b [ i ]  [ j ] = f 1*11*W [temp] [i-z*Amax] [z] *check_exp (a+gl*T_S [ j+1] ) * (1- 

ch eck_exp (g l* (T _S [ j ] -T _S [ j + 1 ] ) ) ) / g l ; }
i f ( P r o b [ i ]  [ j  ] <0) c o u t « " P r o b a b i l i t y  smaller than z e r o ! ! ! " ;  
to t+=P rob [ i ]  [ j ]  ;
Prob [ i ]  [ j  ] = t o t ;

}
}
a = to t ;
b=pow (to t ,0.5) ; 
i f ( t o t > 5 0 )  u=rnorm(a,b,1) ; 
e ls e  u = d p o i (a ) ;
IBNR = in t (u ) ;
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de le te  U n -
de le te  [ ] N1 ; 
d e le te  []ST;
d e le te  [ ] data_IBNR_time;
j cincl ssjc
f o r ( j= 0 ; j<Amax;j++) f o r  ( z = 0 ; z<2 ; z + + ) d a t a _ t o t _ v [ z ] [ j ]=0; 
f  or ( i  = 0 ; i<=k f [0] ; i+  + ) { 
s l=S_t [ i ]  ; 

s2=S_t [ i  + 1] ;
i f ( s 2 < = W l [1 ] )  { f o r ( j =0 ;j<Amax;j++) { f o r ( z = 0 ; z<2; Z++) {
da ta _ to t_v  [z] [ j ] =L [0] [ i ]  *W [0] ( j ] [z] * (s 2 -s l )  ; } } } 
e ls e  
{
i f  (sl<Wl [1] ) {s l=Wl [1] ; temp = l ; f o r  ( j = 0 ; j <Amax; j ++) { f o r  (z=0;z<2,-z++)

{ da ta _ to t_v  [z] [ j ] =L [0] [ i ]*W [0 ] [ j ]  [z ] * ( s l - S _ t  [ i ]  ) ; } } }  
tem pl= in t(s2/365 ); 
i f ( tem p l=6 )  tempi-- ; 
tem p= in t (s l/365 ); 
f o r ( zl=temp; z l<=tem pl; z l++) { 

s2=S_t [ i  + 1] ;
i f  (S2>W1 [ z l  + 1] ) s2=Wl [ z l  + 1] ;
f o r  ( j =0 j <Amax; j + + ) f o r  ( z = 0 ; z<2 ; z++) {

b=check_log (W [ z l ]  [ j ]  [ z ]/ W [z l - l ]  [ j ]  [z ] )/365 ;
i f  (b ! =0) da ta _ to t_v  [z] [ j ]+ = L [0 ]  [ i ] * W [ z l - l ]  [ j ]  [ z ] * ch eck _exp (b * (s l -  

W1[zl] ) ) * (ch eck _ex p (b * (s2 -s l ) ) - 1 ) /b;
e ls e  d a ta _ to t_ v [z ]  [ j ]  +=L [0] [ i ]  *W [ z l ]  [ j ]  [z] * (s2 -s l )  ;

}
S1=S2;

}
f  r_sa (S_a [0] , L [2] , k f  [2] , data_tot_number [0] , da ta _ to t_v  [0] ,A (2 ] ,B[2] ,T [2 ] ) ; 
f  r_sa (S_a [1] , L [3] ,k f [3 ]  , data_tot_number [1] , da ta _ to t_v  [1 ] ,A[3] ,B[3] ,T [3 ] ) ;
Res_IBNR=0;
f o r ( j  =0 ; j <Amax;j++) f o r ( z = 0 ; z<2; z++)
{d a ta _ to t_ v  [z] [ j  ] =aata_value [z] [ j ]  ,-Res_IBNR+=data_value [z] [ j ]  ; }
Res_IBNR=0 ;
Res_RBNS=0; 
templ=0; 
temp2=0; 
temp3=0;
f o r ( j =0 ; jcAm ax;j++ ) { 

f o r ( z = 0 ; z<2; z + + ) {
l l=qu a l_a  (Mi [z] , S_val [z] , k f [z+4] , j ) ; 
a=rnorm(11,v a l _ s i g , 1 );
temp=aata_tot_number [z] [ j  ] -data_a_numberl [z] [ j ] ;  
i f  (number_RBNS [z] [ j ]  >0) {

d a t a _ t o t _ v [ z ] [ j ] +=a*number_RBNS[z][j ];
Res_RBNS+=number_RBNS [z] [ i ]  *exp (a ) ;

\

i f  (temp>0) {
d a ta _ to t_v  [z] [ j  ] +=a*temp 
Res_IBNR+=temp*exp(a) ;

}
}
}
f ib n r .o p e n ( "/usr/home/fc/den/severity/results/new/high/IBNR_logl", i o s : : app ) ; 
f ibn r<< to t<< "  "<<IBNR<<” "<<Res_RBNS<<” "<<Res_IBNR<<"\n" 
f  ib n r . c lose  ()
severidade_sa (S_val [0] , Mi [0] , k f [4] , data_tot_number [0] , da ta _ to t_v  [0] , A [4] , B [4] , v a l _ s ig ,  T [4
] ) ;
severidade_sa (S_val [1] , Mi [1] , k f [5] , data_tot_number [1] , d a ta _ to t_v  [1] , A [5] , B [5] , v a l _ s ig ,T  [5 
] ) ;
s a i l  .open ( "/us.r/home/fc/den/severity/results/new/high/male_logl" , io s  : ;app) ;
sa il<<"m ale"<<" 1 "<<k f[4 ]<< "
fo r  ( i = 0 ; i < = k f [ 4 ] ; i++) sa i l<<S_va l [0] [ i ] <<"
s a i l< < " \n"<<"male"<<" 2
fo r  ( i = 0 ; i < = k f [ 4 ] ; i++ )  s a i l< < M i [0] [ i ] <<" " ; 
s a i l « " \ n "  ;
sa i l<< " fem a le "<< "  1 "<<k f [5 ]<< "  " ;
f o r  ( i =0 i<=k f [5] ; i++) sa i l<<S_va l  [1] [ i ] <<"
sa il<< "\n "<<"fem ale"<<" 2
f o r  ( i = 0 ; i<=k f  [5] ; i++) sail<<Mi [1] [ i ] < < "  " ; 
s a i l< < " \n "; 
s a i l .c lose  () ;

}//end f o r
s a i l .open( "/usr/hom e/fc/den/severity/results/new/high/result_ logl", i o s : : a p p ) ; 
sa i l<< "ca len dar  mov 1 "<<T[0] [0 ]<<" "<<T[0] [2 ]<<"\n"; 
sa i l<< "ca lendar  mov 2 ” <<T[0] [ ! ] < < "  "<<T[0] [3 ]<<"\n";
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sa i l< < "d e la y  raov 1 "<<T[1] [0]<<" "<<T[1] [2 ]<<"\n"; 
s a i l< < "d e la y  mov 2 ”<<T[1] [ l ]< < "  "<<T[1] [3 ]<<"\n";
sa i l<< "Age mas mov 1 "<<T [2] [ 0 ] « " " <<T [2] [2] <<"\n"
sa il<< "Age mas mov 2 "<<T [2] [1] <<" "<<T [2] [3 ]<<"\n"
sa il<< "Age fern mov 1 " <<T [3] [0] « " "<<T [3] [2] <<"\n"
sa il<< "Age fern mov 2 "<<T [3] [1] <<" " <<T [3] [3] <<"\n"
sa il<< "Val] mas mov 1 "<<T [4] [ 0 ] « " " <<T [4] [2] << "\n"
sa il<< "Val mas mov 2 ” « T  [4] [1] « " " <<T [4] [3] « " \n"
sa il<< 'Val] fern mov 1 " <<T [5] [0] <<" " « T  [5] [2] <<"\n"
sa il<< 'Val_ fern mov 2 " <<T [5] [1] « " "<<T [5] [ 3 ]<<"\n"
s a i l .c lo se  ( ) ; 

}//end program

B.2 Library

#include <fstream.h>
#include <math.h>
#include < s td l ib .h>
#include <iostream.h>
// genera l constants 
const double Smax = 2190; 
const in t  Amax = 67; 
const in t  i n i  = 1 ; 
const in t  i t e  =5000;
//size o f  arrays 
const in t  tam_u = 197; 
const in t  tam_t = 1488; 
const in t  Exp = 804 ;
const in t  W1 [7 ]= {0 ,365,730,1095,1460,1825,2190};
in t  divisor_age=1000000;
in t  d iv iso r_g=100 ;
const double v a l_ s ig = 2 ;
const double Val_RENS = 824146;
//************pj-ó.Qj- v a lu es * * * * * * * * * * * * * * * * * * * * * * * * * *
const in t  lambda = 3;
const in t  A [6 ]= {2 ,2 ,2 ,2 ,8 ,8 } ;
const double 3 [6 ]= {0 .2527,0.0421,0.1266,0.1266,1.02,1.02 } ; 
const in t  kmax = 30; 
const f l o a t  c = 0.4;
/ / * * * * * * * * * * *  * * * * * * * *  ca lcu la t ion  o f  U n ifo rm (0 , l )  * * * * * * * * * * * * * * * * * * * * * * * * * *  
long double un(const in t  lo c )  { 
long double a ,e ,x ,m ; 
s t a t i c  long double
I [21]={1561,1448,9879,67961,791,989,989,34274,3568,4679,7869,57807,57901,589,22457,267837 
,37909,37679,37577,3757,3579}; 
s w i t c h ( l o c ) { 
case 1: a=65539; 

e =31; 
break;

case 2: a=pow(13,3); 
e=31 ; 

break;
case 3: a=pow(5 ,13 ) ;  

e=3 9; 
break;

case 4: a=pow(5,17); 
e = 4 2 ; 

break;
case 5: a=pow(11,13); 

e=31; 
break;

case 6: a = p o w ( l l ,13); 
e=47; 

break;
case 7: a=pow(13,3); 

e=31 ; 
break;

case 8: a=pow(5,13); 
e=3 9; 

break;
case 9: a=pow(5,17); 

e=42 ; 
break;

case 10; a = p o w ( l l ,13); 
e=5 9 ;
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temp=a [ i ]  ;
f o r ( j = i ; j > 0  5c& a [ j - l ]  >temp,- j - - )  a [ j ] = a [ j - l ] ;  
a [ j ]  =temp;

}
/ / * * * * * * * * * * * * . * * * * * * * * * *  c a lcu la t ion  do s o r t  p/ double * * * * * * *  
vo id  sort_d  (double a [ ] , c o n s t  in t  n) { 
long double temp; 
in t  j ;
f o r ( i n t  i = l ; i < n ; i + + ) { 

temp=a [ i )  ;
f o r ( j = i ; j > 0  && a [ j -1] >temp; j  - - ) a [ j ] = a [ j - l ] , -  
a [ j ] =temp;

}
}
/j * * * * * * * * *  * * * * * * * * * * * * *  * c a lcu la t ion  do qual * * * * * * * * * * * * * * * * *  
long double qua ldong  double a [ ] ,  double a l  [] , in t  s ize ,doub le  value) { 
in t  i,temp; 
temp=size;
f o r ( i = l ; i < = s i z e ; i + + ) i f ( v a lu e < a l [ i ]  ) { t em p= (i-1 ) ; b reak ; } 
return a [ tem p );
}̂
^* * * * * * * * * * * * * * * * * * * * * * *  ca lcu la t ion  do qual * * * * * * * * * * * * * * * * *  

long double qua lgdong  double a [ ] ,d o u b le  a l [ ] , i n t  s ize ,doub le  va lue ) { 
in t  i , temp;
f o r ( i = ( s i z e + 1 ) ; i>=0 ; i - - ) i f ( v a l u e > a l [ i ] ) { temp=i; break; }  
return a [temp] ;
}
/ / * * * * * * * * * * * * * * * * * * * * * * *  c a lcu la t ion  do qual * * * * * * * * * * * * * * * * *  
in t  qu a l_ ig ( lo n g  double a [) , double a l  [] , in t  s ize ,doub le  va lue) { 
in t  i , temp;
f o r ( i = ( s i z e + 1 ) ; i > = 0 ; i - - ) i f ( v a l u e > a l [ i ] ) { tem p= i;b reak ; } 
return temp;
}
/ / * * * * * * * * * * * * * * * * * * * * * * *  c a lcu la t ion  do qual * * * * * * * * * * * * * * * * *  
in t  qual_index ( long double a [ ] ,  double a l  [] , in t  s ize ,doub le  va lue) { 
in t  i,temp; 
temp=size;
f o r ( i = l ; i < = s i z e ; i + + ) i f ( v a l u e < a l [ i ] ) { t e m p = ( i - 1 ) ; b r e a k ; } 
return (temp+1);
}
/ / * * * * * * * * * * * * * * * * * * * * * * *  ca lcu la t ion  do qual in t  * * * * * * * * * * * * * * * * *  
long double qua l_a (long  double a [] , in t  a l  [] , in t  s iz e ,  in t  value) { 
in t  i,temp; 
temp=size;
f o r ( i = l ; i < = s i z e ; i + + ) i f ( v a l u e < a l [ i ] ) { t e m p = ( i - 1 ) ; b reak ; } 
return a [temp];
}
/ / * * * * * * * * * * * * * * * * * * * * * * *  c a lcu la t ion  do movimento * * * * * * * * * * * * * * * * *
in t  movimento(const in t  k 2 ) {
double d ,n ,b ;
long double u l ;
s t a t i c  in t  j  =1;
j++;
i f ( j = = 5) j =1; 
i f (k 2 = = 0 ) { 

d=0;
i f  (lambda<=l) b=c*lambda; 
e ls e  b=c;
n=l-b ;

}
e ls e  {

i f  (k2==kmax) b=0; 
e ls e  {

i f ( lambda<=k2+l) b=c*lambda/(k2+l); 
e ls e  b=c;

i f  (lambda<k2) d=c; 
e ls e  d=c*k2/lambda; 
n= l-b -d ;

}
ul=un(1+ ( j - 1 ) * 5 ) ;  
i f (u l< b )  return 1; 
e l s e {

i f (u l < ( d + b ) )  return 2; 
e ls e  return 3;

}
/ / * * * * * * * * * * * * * * * * * * * * * *  c a lcu la t ion  o f  sample * * * * * * * * * * * * * * * * * * * * * * * *  
in t  sam ple(in t k l )  {
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consl=0 ;
t em p = tra n s f (s i ) ; 
n_wei=0; 
i f (temp>0) {

for(u2=0;u2<Amax;u2++) f o r ( z=0; z<2; z++) {
112=qual_a (L [z+2] ,S _a [z ]  ,k [z+2] ,u2) ;
b=check_log (W [temp] [u21 [z]/W [temp-1] [u2] [z ] )/365 ;
n_wei+=112*W[temp-1][u2][z] * ch eck _exp (b * ( in t (s i ) -W 1 [tem p ] ) ) ;

}
}
e ls e  {

for(u2=0;u2<Amax;u2++) f o r ( z=0; z<2; z++) {
112=qual_a (L [z+2 ], S_a [z] , k [z+2] , u2 ) ; 
n_wei+=112*W [0] [u2] [z] ;

}
}
con s2=13* (X [beg ]-s i )*n _w e i; 
if(cons2>700| | cons2<-740) { c l=  cons2 ; } 
e ls e  {

cl=check_exp(cons2)-1 ;  
i f  (c l<0) c l = - c l ; 
c l= c h e c k _ lo g ( c l ) ;

}
i  f ( 1 1 ! =12) C[0]=cons + cons l-check_ log (n_w e i ) + c l ; 
e ls e  { C [0 ]= x l - s l ; cou t<< "b lab la " ; }  
i f ( f in > = b e g )  fo r ( i= b e g ;  i< = f in ; i+ + )  { 

tem p = tra n s f (X [ i ] ) ;  
cons=cons+cons2; 
i f ( t e m p !=0 ) {  

n_we i  = 0 ;
for(u2=0;u2<Amax;u2++) f o r ( z = 0 ; z<2; z++) {

112=qual_a(L [ z + 2 ] , S_a [z] , k [z+2] , u2) ;
b=check_log (W [temp] [u2] [z] /W [temp-1] [u2] [z ] )/365 ;
n_wei+=112*W [temp-1] [u2] [ z ] ‘ check exp (b* ( in t  (X [ i ]  ) -W1 [temo] ) )

}
}
i f ( i ! = f i n )  x l= X [ i + 1 ] ; e ls e  x l=s2; 
c o n s2 = 1 3 * (x l -X [ i ] ) *n_wei; 
consl+=14*N [ i ]  ;
if(cons2>700 || cons2<-740) c l=  cons2; 
e l s e {

c l=check_exp(cons2) -1 ; 
i f  (c l<0) c1 = - c1; 
c l= c h e c k _ lo g ( c l ) ;

}
i f ( l l ! = 1 2 )  C [i-beg+1]=cons + cons l-check_ log (n_w e i ) + c l ; 
e l s e  C [ i -b e g+ 1 ]-x l -X  [ i ]  ;

}
i f ( I l  !=12) { 

sum=0;
f o r ( i = 0 ; icnum;i++) sum+=C[i];
sum=sum/num;
cons=C [0] -sum;
f o r ( i = 0 ; i<num;i++) {

C [ i ]  =C [ i ]  -sum; 
i f  (cons<C [ i ]  ) cons=C [i ] ;

}
i f (cons>700) f o r ( i = 0 ; icnum;i++) C [ i ] = C [ i ] - (cons-700); 
f o r ( i = 0 ; i<num;i++) C [ i ] = ch eck_exp (C [ i ] ) ;

}
sum=0;
f  or ( i=0 ; i<num; i++) sum+=C[i];
C [0] =C [0] /sum;
f o r ( i = l ;  i<num;i++) C [ i ]  =C [ i -1 ]  +C [ i ]  /sum; 
hp=0 ;
u=un(15+( t p - 1 ) *5 ) ;
i f  (num>l) f o r ( i = l ;  i<  num;i++) i f ( C [ i - l ] < u  && u<=C [ i ]  ) {h p = ib r e a k  ; } 
i f (hp==0 ) { 

x l= s l ;
x=X [beg] - s i  ;

}
e ls e  if(hp==num-l) { 

x l = X [ f i n ] ; 
x = s 2 -X [ f in ] ;

}
e ls e  {

x l=X[beg+hp-1] ;
x=X[beg+hp]-X[beg+hp-1 ] ;

}
U=un(14+(tp -1 )*5 );
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u=un(14+( t p -1 ) *5 ) ;  
jump=double(xl+u*x); 
d e le te  [] C; 
return jump;
}
j ca lcu la t ion  o f  S (jumps)
long double gS (const long double s i ,c o n s t  long double 11,const long double 12,const long 
double s2,const double X [ ] , const double W [ ] , const in t  n ,const in t  beg,const in t  f in ,c o n s t  
double wei,const double X I [ ] , const in t  N [ ] , const in t  n l ,c on s t  in t  b eg l ,cons t  in t  
f in i , c o n s t  in t  tp) { 
in t  num=fin-beg+2; 
in t  hp, i , j ;
long double jump,u,sum,ul,x , 13,14,w l ,w2,w to t , cons, consl,wtemp; 
double x l , c l ;  
long double* C;
C = new long double[num];
13=12-11;
l4=check_log (11) -check_log (12) ,- 
wl=W [beg] * (X [beg] - s i )  / (X [beg] -X [beg-1] ) ; 
w2=W [fin+1] * ( s 2 -X [ f in ]  ) / (X [ f in + l ]  -X [ f in ]  ) ; 
wtot=wei+wl+w2;
i f ( s 2 < = X [ f in ]  || s l>=X [beg ])  {cou t<<"prob lem al" , num=num-l; }  
i f (s2<=X  [ f in ]  && s l>=X [beg ])  {cout<<"problema2" , num=num-1 ; }  
cons=0;

}

co n s l= -1 2 * (w to t -w l ) ;
c l=check_exp( - l l *w l ) - c h e c k _ e x p ( - 1 2 *w l ) ; 
i f  ( c l< 0 ) c l = - c l ;
i f (w l> 0  && 11!=12) C [0 ]= c o n s l - c h e c k _ lo g (w l/ (X [b e g ] - s i ) ) + c h e c k _ lo g (c l ) ; 
e ls e  { C [0 ]= X [b e g ] - s i ; cou t<< "b lab la " ; }  
i f  ( f i n  > beg) f o r ( i= b e g ;  ie f in ,- i++ )  {

i f ( f i n l > = b e g l )  f o r ( j= b e g l ; j< = f i n i ; j ++) i f (X [ i ] = = X 1  [ j ] )  cons+=N[ j ]*14 ; 
i f ( i ! = b e g )  wtemp=W[i]; 
e ls e  wtemp=wl;
consl = consl+12*W[i+1] -ll*wtemp; 
cl=check_exp( - l l * W [ i + 1 ] ) -check_exp (-12 *W [i+ l ) ) ;  
i f ( c l < 0 )  c1=-c1;
i f (W [ i+ l ] > 0  && 11! =12) C [i-beg+1] =cons+consl-check_log (W [ i  + 1] / (X [i+1] - 

X [ i ] ) ) + c h e c k _ lo g (c l ) ;
e ls e  C [i-beg+1] =X [ i+1 ]-X  [ i ]  ;

}
i f  ( f in l> = b eg l )  f o r  ( j =begl ; j < = f  in i  ; j++) i f  (X [ f  in ] ==X1 [ j ] ) cons+= N [ j ] * 1 4 ;  
i f ( f i n ! = b e g )  wtemp=W[ f i n ] ; 
e ls e  wtemp=wl;
consl = consl+12*w2 - ll*wtemp; 
cl=check_exp( - l l *w 2 ) -check_exp( -12*w2); 
i f ( c l < 0 ) c l = - c l ;
if (w2>0 ScSc 11! =12) C [num-1] =conn+consl-check_log (w2/(s2-X [ f in ]  ) ) +check_log ( c l )  ; 
e ls e  C [num -1 ]=s2-X [f in ]; 
i f <11 !=12){ 

sum= 0 ;
f o r  (i=0 ; i<num; i++) sum+=C[i],- 
sum=sum/num; 
cons=C[0 ] -sum; 
f o r ( i= 0 ; i<num;i++) {

C [ i ]  =C [ i ]  - sum; 
i f  (cons<C [ i ]  ) cons=C [i ] ;

}
i f (cons>700) f o r ( i  = 0; ienum;i++) C [ i ] = C [ i ] - (cons-700); 
f o r ( i = 0 ; ienum;i++) C [ i ] =check_exp (C [ i ] ) ;

}
sum= 0 ;
f o r ( i = 0 ; ienum;i++) sum+=C[i];
C [0] =C [0] /sum;
f o r ( i  = l ;  ienum,-i+ + ) C [ i ]  =C [ i - 1 ]+C [i]/sum; 
hp = 0 ;
u=un(15+( t p - 1 ) *5) ;
i f  (num>l) f o r ( i = l ;  i e  num;i++) i f ( C [ i - l ] e u  && ue=C [ i ]  ) {hp=i ¡break; } 
i f (11 !=12) { 

i f (hp==0) {
wtemp=wl*(1 2 - 1 1 ) ;  
x l = s l ;
x=X [beg] - s i  ;

}
e ls e  i f ( s 2 > X [ f in ]  && hp==num-l) { 

wtemp=w2*(12-11); 
x l = X [ f i n ] ; 
x = s 2 -X [ f in ] ;

}
e ls e  {

172





e ls e  temp=hl+h3; 
i f (h2<0 ) templ=-h2; 
e ls e  templ=h2; 
j ac=-100;
i f ( tem p !=0  8e.Sc tempi !=0) jac= 2 *check_ log (tem p )-check_ log (tem p i) ; 
return l r + p r+ ja c ;
}
/ / * * * * * * * * * * * * * * * * * * * * * *  ca lcu la t ion  o f  a c e i  f o t  severidade * * * * * * * * * * *
long double ace i2 (const  double in t i , c o n s t  double in t2 ,const  in t  N l,const in t  N j , const
long double L I ,con s t  long double Lj , const in t  k l ,c on s t  long double h i ,c on s t  long double
h2, const long double h3,const in t  s ig ,c o n s t  in t  a lpha,const double b e t a ) {
long double l r , p r , j a c ;
long double temp,tempi;
f l o a t  PI = 3.14159265358979323846;
l r  = (2 *h l*L l -N l*p o w (h l ,2 )+ 2 * h 3 * (L j - L l ) - (N j -N l )*p ow (h 3 ,2 )- 
2*h2*Lj+Nj *pow(h2, 2 ) ) / (2 *s ig * s ig )  ; 
ja c= 2 *P I ; 
j ac=pow( j a c ,0 .5 ) ;
pr = 2 * (2 * k l + 3) * int2 * ( i n t i - i n t 2 ) / (Smax * i n t l * s i g * j a c ) ;
pr = check lo g (p r )  - (pow(alpha,2 ) -2*a lpha*(h l+h2-h3) +pow (h i,2 )+pow(h3,2 ) -
pow(h2, 2 ) ) / (2*pow(beta, 2 ) )  ;
i f ( (hl+h3) <0) temp=-(hl+h3) ;
e ls e  temp=hl+h3;
i f (h2<0 ) templ=-h2;
e ls e  templ=h2;
ja c = -100;
i f ( tem p !=0  && templ!=0) jac= 2*check_ log (tem p)-check_ log (tem pi)  ; 
return l r + p r+ ja c ,- 
}
11  ************************ * calculation, o f  ace itacao  * * * * * * * * * * * * * * * * * * * * * * * *  
long double a ce i ta cao _ i (c on s t  in t  in t i , c o n s t  in t  in t2 ,con s t  in t  N l ,cons t  in t  N j , const 
double L I ,con s t  double L j , const in t  k l ,c on s t  long double h i ,cons t  long double h2,const 
long double h3,const in t  A,const double B) { 
long double l r , p r , j a c ;
l r  = Nl * check_ log (h i)  + (Nj - N l)  * check_ log (h3 ) - Nj * check_lcg(h2) + h2 * Lj - hi 
L I - h3 * (Lj - L I )  ;
pr = 2 * (2 * k l  + 3) * int2 * ( i n t i - i n t 2 ) / (Smax * i n t i  * f a c t o r i a l ( A - l ) ) ;
pr = check_ log (pr )  + A *check_ log (B )- B * (h i + h3 - h2) + (A - l ) * ch eck _ lo g (h l*h 3 /h 2 ) ;
ja c  = 2 *check_ log (h i + h3) -ch eck _ log (h 2 ) ;
return lr+p r+ ja c ;

/ / * * * * * * * » * * * * *  *■ * * * * * * * *  ca lcu la t ion  o f  a ce itacao  * * * * * * * * * * * * * * * * * * * * * * * *
long double ace itacao_d (const double i n t i ,  const double irit2, const in t  Nl, const in t
N j , const long double L I ,con s t  long double L j , const in t  k l ,c on s t  long double h i ,c on s t  long
double h2,const long double h3, const in t  A ,const double B) {
long double l r , p r , j a c ;
l r  = Nl * check_ log (h i )  + (Nj - N l) * check_ log (h3 ) - Nj * check_log (h2 ) + h2 * Lj - h i * 
L I  - h3 * (L j - L I )  ;
pr = 2 * (2 * k l  + 3) * int2 * ( i n t l - i n t 2 ) / (Smax * i n t i  * f a c t o r i a l ( A - 1 ) ) ;
pr = check_ log (pr )  + A *check_ log (B )- B * (h i + h3 - h2) + (A - l ) * ch eck _ lo g (h l*h 3 / h 2 ) ;
ja c  = 2*check_ log (h i + h3) -check_ log (h2 ) ;
return lr+p r+ ja c ;
}
/ / * * * * * * * * * * * * * * * * * * * * * *  updation o f  gu * * * * * * * * * * * * * * * * * * * * * * * *
vo id  fr_gu  (double S [] , long double L [ ] , i n t &  k, const double X [ ] ,  const in t  N [ ] ,  const in t
Nl [] , const in t  s iz e ,  const in t  A, const double B , in t  T 0 T [ ] ) {
in t  i , j , b e g l ,b e g , f in i , f in ,n u m ,u 2 ,pos,mov,numl;
long double u, u l,  a, s i ,  ac, cons, h i,  h2, h3 ,-
double w e i ,w e i l ;
s t a t i c  in t  t ip o = l ;
tipo++ ,*
i f ( t ip o = = 3 )  t i p o = l ; 
b e g= in ic io _d (X ,s iz e ,  S [0] ) ; 
f in = f im _d (X ,s iz e ,S  (1 ] )  ; 
num-0; 
wei=0;
i f  ( f in>=beg) {

wei= (X [beg] -S [0] ) »double (Nl [beg-1] ) + (S [1] -X [ f in ]  ) *double (Nl [ f in ]  ) ; 
num=N[beg-l] -N[finJ ;
f o r  ( i=beg; i < f in ;  i++) wei+= (X [i+1] -X [ i ]  ) *N1 [ i ]  ;

}
e ls e  wei=Nl [beg-1] * (S [1] -S [0] ) ; 
we i=wei/d iv isor_g ;
L [0 ]=rgamma(num+A,wei+B,tipo);
L [0] =L [0] /d iv iso r_g ;  
i f (k > 0 )  f o r ( j = l ;  j <= k; j++) { 

f in = f im _ d (X ,s i z e ,S [ j + 1 ] ) ;
i f  (L [ j -1] ! = L [ j ]  && beg< = f  in && Nl [beg-1] ! =0) S [ j  ] =guS (S [ j  -1) , L [ j - 

1] , L [ j ]  , S [j+1] , x ,N ,N l,  s iz e ,  beg, f in ,  t ip o )  ,- 
e ls e  {
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u=un(15+( t i p o - 1 ) *5 ) ;
S [ j ] =S [ j  -1] +u* (S [ j  +1) - S  [ j -1] ) ;

i f ( S [ j ] > S [ j + l ] )  cout<< "e r ro l "< <  "S ["<< j<< " ]  ="<<S [ j ]  <<" S [ "<< j+ l<< " ]  ="<<S [j+1] <<
i f  (S [ j ]  <S [ j -1 ]  ) coûte<"e r ro2 " ;
b e g = in ic io _d (X ,s iz e ,  S [ j ] )  ;
num= 0 ;
wei=0;
i f  ( f in>=beg) {

wei= (X [beg] -S [ j ]  ) »double (N [beg-1] ) + (S [j+1] -X [ f in ]  ) »double (NI [ f in ]  ) ; 
num=N [beg-1 ]-N  [ f in ]  ;
f o r  ( i=beg; i < f i n ; i + + )  wei + = (X [ i  + l ]  -X [ i ]  ) »double (N1 [ i ]  ) ;

)
e lse  wei= NI [beg-1] * (S [ j+1 ]-S  [ j ]  ) ;
wei=wei/divisor_g,-
L [j ] =rgamma(num+A,wei+B,t ip o )  ;
L [ j ] =L [ j ] /d iv iso r_g ;

}
b eg = in ic io _d (X ,s iz e ,S  [0 ] )  ; 
f  in=fim_d (X , s i z e ,S [ l ]  ) ; 
num=0; 
wei=0;
i f  (f in>=beg) {

wei= (X [beg] -S [0] ) »double (N1 [beg-1] ) + (S [1] -X [ f in ]  ) »double (NI [ f in ]  ) ; 
num=N [beg-1] -N [ f in ]  ;
f o r  (i=beg,- i < f  in ;  i++) wei+= (X [i+1] -X [ i ]  ) *N1 [ i ]  ;

}
e ls e  wei=Nl [beg-1] * (S [ 1 ] -S [0] ) ; 
we i=we i/d iv isor_g ;
L [0 ]=rgamma(num+A,wei+B,t i p o ) ;
L [0] =L [0] /d iv is o r_g ;  
i f (k > 0 )  f o r ( j = l ;  j  <= k; j+ + ) {  

beg= in ic io _d  (X, s iz e ,  S [ j ) ) -, 
f  in=fim_d (X, s i z e ,  S [j+1] ) ; 
num=0; 
wei=0;
i f  ( f in>=beg) {

wei= (X [beg] -S [ j ]  ) »double (N [beg-1] ) + (S [j+1] -X [ f in ]  ) »double (NI [ f in ]  ) ; 
num=N [beg-1 ]-N  [ f in ]  ;
f o r  ( i=beg ; i c f  in,- i++) wei+= (X [ i  + 1] -X [ i ]  ) »double (N1 [ i ]  ) ;

}
e lse  wei= NI [beg-1] * (S [j+1] -S [ j ]  ) ; 
w e i=w e i/d iv isor_g ;
L [j ] =rgamma(num+A,wei+B,t i p o ) ;
L [ j ] =L [ j ] /divisor__g;

}
mov=movimento(k);
u2=0;
num=0;
we i -0 ;
numl=0;
w e i l=0 ;
i f (m ov !=3 ) TOT[1+mov]++; 
i f (m o v = = l ) {

s i  =double(un(14+( t i p o - 1 ) * 5 ) *Smax); 
pos=0;
while(u2 < k) { 

u2 = 0;
s i  =double (un(14+( t i p o - 1 ) * 5 ) *Smax); 
pos = 0 ;
f o r ( i = l ; i < = k ; i + + )  { 

i f  ( S  [ i ]  !=  s i )  u2++ ;
i f  ( S  [ i ]  < s i )  pos = i ;

}
}
b e g = in ic io _ d (X ,s i z e ,S [p o s ] ) ;  
f in = f im _d (X ,s iz e ,S [p o s+ 1 ] ) ;  
i f  ( f in > = b e g ) {

num=N [beg-1] -N [ f in ]  ;
wei=double (NI [beg-1] ) * (X [beg] -S [pos] ) +double (NI [ f in ]  ) * (S [pos + 1] -X [ f in ]  ) ; 
f o r  ( i= b eg ; i < f i n ;  i++) wei +=double (NI [ i ]  ) * (X [i+1] -X [ i ]  ) ;

}
e ls e  wei= N l [ b e g - l ] * ( 3 [ p o s + l ] - S [p o s ] ) ;  
f in= fim _d  (X, s i z e ,  s i )  ,• 
i f  ( f in > = b e g ) {

n u m l=N [beg -1 ]-N [f in ] ;
weil=double (NI [beg-1] ) * (X [beg] -S [pos] ) +double (Nl [ f in ]  ) * (s l-X  [ f in ]  ) ; 
f o r  ( i=beg; ie f in ,-  i++) weil+=double (NI [ i ]  ) * (X [ i  + 1] -X [ i ]  ) ;

}
e ls e  w e il=N l [beg-1] * (s l -S  [pos] ) ;

}
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i f (w e i l ! = 0  && w e i l != w e i ) {  
h2 = L [pos] ;
cons = (1/un(11+( t i p o - 1 ) *5) - 1 ) ;
h i = h2 * pow(cons, ( (s l -S  [pos+1] ) / (S [pos+1]-S [pos] ) ) ) ; 
h3 = cons * h i ;
a c=ace ita cao_d (S [pos+1 )-S [pos ] , s i - S [p o s ] , numl,num,weil, w e i , k , h i , h2,h3,A ,B *d iv iso r_g )
i f  (ac> = 0) ac= l;
e ls e  ac=check_exp (ac );
ul=un(14+( t i p o - 1 ) *5) ;
i f ( u l  <= ac) {

in crease_d (S , s i ,pos + l,kmax +2);
L [pos] = h i ;
in c rease (L ,h 3 ,pos + l ,km ax+ l) ;  
k = k + 1;
TOT [mov-1] ++;

}
}

}
i f (m ov==2 ) {

pos = sample(k); 
s i  =S [pos] ;
beg= in ic io  (X, s iz e ,  S [pos - 1] ) 
f in = f im (X ,s iz e ,S [p o s + 1 ] ) ;  
i f  ( f in>=beg) f

num=N [beg-1 ] -N [ f  in ] ;
wei=Nl [beg-1] * (X [beg] -S [pos-1] ) +N1 [ f in ]  * (S [pos+1] -X [ f in ]  ) ; 
f o r ( i = b e g ; i < f i n ; i + + )  w e i+ = N l [ i ] * ( X [ i + 1 ] - X [ i ] ) ;

}
e ls e  wei=Nl [beg-1] * (S [pos+1] -S [pos-1] ) ; 
f in = f im (X ,s i z e , S [p o s ] ) ;  
i f  ( f in > = b eg ) {

numl=N [beg-1] -N [ f in ]  ;
we il=N l [beg-1] * (X [beg] -S [pos-1] ) +N1 [ f in ]  * (S [pos] -X [ f in ]  ) ; 
f o r  ( i=beg; i<fin,- i++) weil+=Nl [ i l  * (X [ i+1] -X [ i ]  ) ;

}
e ls e  weil=N l [beg-1] * (S [pos] -S [pos-1] ) ; 
i f (w e i l ! = 0  && w e i l != w e i ) {  

h i = L [pos-1] ; 
h3 = h [pos] ;
h2 = check exp ( (  (S [pos]-S [pos-1] ) * check_log (h i )  + (S [pos+1]-S [pos] ) * 

check_log (h3) ) / (S [pcs+1] -S [pos-1] ) ) ;
ac=aceitacao_d (S [pos+1] -S [pos-1] , S [pos] -S [pos- 

1 ] , numl,num,weil,wei, k , h i , h2, h3,A ,B * d iv i s o r _ g ) ; 
i f (a c< = 0 )  a c = l ; 
e ls e  ac = check_exp (-a c ) ; 
ul = un (15-r ( t i p o - 1) *5) ; 
i f ( u l  <= ac) { 

k = k - 1;
decrease_d(S,pos,kmax +2 );
L [pos-1] = h2 ;
decrease(L ,pos + l ,km ax+ l) ;
TOT[mov-1]++;

}
b e g = in ic io _ d (X ,s i z e , S [ 0 ] ) ;  
f in = f im _d (X ,s iz e ,S  [1 ] )  ; 
p.um-0; 
wei=0;
i f  ( f in>=beg) {

wei= (X [beg] -S [0] ) *double (N1 [beg-1] ) + (S [1] -X [ f in ]  ) »double (N1 [ f in ]  ) ; 
num=N [beg-1] -N [ f in ]  ;
f o r  ( i=beg; i< f in ,- i+  + ) wei + = (X [ i  + l ] - X [ i ] )  *N1 [ i ]  ;

}
e lse  wei=Nl [beg-1] * (S [1] -S [0] ) ; 
we i=we i/d iv isor_g ;
L [0 ]=rgamma(num+A,wei+B,tipo);
L [0] =L [0] /d iv iso r_g ;  
i f (k > 0 )  f o r ( j = l ;  j <= k; j++) { 

f in = f im _ d (X ,s i z e ,S [ j + 1 ] ) ;  
b e g = in ic io _ d (X ,s i z e ,S [ j ] ) ;  
num= 0; 
wei=0
i f ( f in > = b e g )  {

wei= (X [beg] -S [ j ]  ) »double (N [beg-1] ) + (S [j+1] -X [ f in ]  ) »double (N1 [ f in ]  ) ; 
num=N [beg-1 ]-N [ f in ]  ;
f o r ( i = b e g ; i < f i n ; i + + )  w e i+ = (X [ i + 1 ] - X [ i ] ) »d o u b le (N 1 [ i ] ) ;

}
e ls e  wei= N1 [beg-1] * (S [ j  + 1] - S [j ] ) ; 
we i=we i/d iv isor_g ;
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e ls e  b=W[i] [u2] [z] * (u-ul) ; 
w e i+ = l l * b ;
)

}
num=0;
i f  ( f in>=beg) f o r ( i = b e g ; i < = f in ; i + + )  num+=N[i];
L [0] [0] =rgamraa(num+A,wei+B,t i p o ) ; 
i f ( k [0 ]> 0 )  f o r ( j = l ;  j  <= k [0] ; j+  + ) { 

f in= fim _d (X , s i z e ,S [ j + l ]  ) ; 
beg= in ic io _d  ( X , s i z e , S [ j ] ) ;  
num=0; 
wei = 0;
temp=transf(S [ j ] ) ;  
templ=transf (S [j+1] ) ; 
fo r ( i= tem p ; i<=templ; i+ + ) {

i f ( i= = tem p ) u l = S [ j ! ;  e ls e  ul=Wl [ i ]  ; 
i f  ( i==templ) u=S [ j +1 ] ; e ls e  u= W1 [ i  + 1] ; 
for(u2=0;u2<Amax;u2++) f o r ( z=0; z<2; z++) { 

l l= qu a l_a (L  [z+2] , S_a [z] , k[z+2] , u2) ; 
i f  (i>0 && W[i] [u2] [z] ! =W ( i - 1] [u2] [z] ) {

b=check_log (W [ i ]  [u2] [ z ] /W [ i  -1 ] [u2] [z ] )/36S ;
b=W[i -1] [u2] [z] * (ch eck _exp (b * (u -W l[ i ] ) ) - c h e c k _ e x p (b * (u l -W l [ i ] ) ) ) /b;
}

e ls e  b=W[i] [u2] [z] * (u-ul) ; 
w e i+ = l l * b ;
}

}
i f  ( f in>=beg) f o r ( i= b e g ; i < = f in ; i + + )  num+=N[i);
L [0] [ j ] =rgamma(num+A,wei+B, t ip o )  ;

}
mov=movimento(k [ 0 ] ) ;  
u2 = 0 ;
i f (m ov !=3 ) TOT[1+mov]++; 
i f (m o v = = l ) {

s i  =un(14+( t i p o - 1 ) * 5 ) *Smax; 
pos=0;
i f  (k [0] >0) wh ile  (u2 < k [0] ) {

u2 = 0;
s l=un (14+( t i p o - 1 ) * 5 ) *Smax; 
pos = 0 ;
f o r ( i = l ; i< = k ( 0 ) ; i++) { 

i f  (S [ i ]  := s i )  u2++ ;
i f  (S [ i ]  < s i )  pos = i ;

}
}
beg=inicio_d(X ,size,S [pos]) ; 
fin=fim_d(X ,size,S [pos+1]) ; 
num=0; 
we i = 0 ;
tem p=transf(S [p o s ] ) ;  
templ=transf (S [pos+1] ) ; 
fo r ( i= tem p ; i< = te m p l ; i+ + ) {

i f ( i  = = temp) ul=S [pos] ; e ls e  ul=Wl [ i ]  ; 
i f  ( i==templ) u=S [pos+1] ; e ls e  u= W l [ i+ 1 ] ;  
f o r  (u2=0,-u2<Amax;u2++) f o r  ( z = 0 ; z<2 ; z++) { 

l l= q u a l_ a ( L [z + 2 ] , S_a [z] , k [ z + 2 ] , u 2 ) ; 
i f ( i > 0  && W[i] [u2] [z] ! =W [ i -1 ]  [u2] [z] ) {

b=check_log (W [ i ]  [u2] [ z ]/ W [ i - l ]  [u2] [z ] )/365 ;
b=W [i- l ]  [u2] [z] * (check_exp (b* (u-Wl [ i ]  ) ) -check exp (b* (ul-Wl [ i ]  ) ) )  /b;
}

e ls e  b=W[i] [u2] [ z ] * ( u - u l ) ;  
w e i+= l l*b ;
}

}
i f  ( f in>=beg) f o r ( i = b e g ; i < = f in ; i + + )  num+=N[i]; 
f in = f im _ d (X , s i z e , s i ) ; 
numl=0; 
w e i l= 0 ;
temp=transf (S [pos] ) ; 
t e m p l= t r a n s f ( s i ) ; 
fo r ( i= tem p; i<=templ; i + + ) {

i f ( i= = tem p ) ul=S [pos] ; e ls e  ul=Wl [ i ]  ; 
i f ( i= = t e m p l )  u=sl; e l s e  u= W l [ i+ 1 ] ;  
for(u2=0;u2<Amax;u2++) f o r ( z=0; z<2; z++) {

l l= q u a l_ a ( L [z+2] , S _a [ z ] , k[z+2] , u2) ; 
i f  ( i>0 && W [ i ]  [u2] [z] ! =W [ i -1 ]  [u2] [z] ) {

b=check_log (W [ i ]  [u2] [ z ]/ W [ i - l ]  [u2] [ z ] ) / 3 6 5 ;
b=W[i-1] [u2] [z] * (check_exp (b* (u-Wl [ i ]  ) ) -check exp (b* (ul-Wl [ i ]  ) ) ) /b;
}

e ls e  b=W[i] [u2] [z] * (u-ul) ;
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w e i l+ = l l * b ;

i f  ( f in>=beg) f o r ( i = b e g ; i < = f in ; i + + )  numl+=N[i); 
i f (w e i l ! = 0  && w e i l != w e i ) {  

h2 = L [0] [pos] ;
cons = (1/un(11+( t i p o - 1 ) *5) - 1 );
h i = h2 * pow (cons, ( (s l -S  [pos+1] ) / (S [pos+1]-S [pos] ) ) )  ; 
h3 = cons * h i ;
a c=ace itacao_d (S [pos+1 ]-S [p o s ] , s l - S [p o s ] , numl,num,weil,wei, k [ 0 ] , h i ,h 2 ,h3,A,B)
i f (a c> = 0 )  ac= l ;
e ls e  ac=check_exp (ac );
ul=un(14+( t i p o - 1 ) *5) ;
i f  (ul <= ac) {

in crease_d (S , s i , pos + l,kmax +2);
L [0] [pos] = h i ;
in c r e a s e (L [ 0 ] , h3, pos + l ,km ax+ l) ;  
k [0] = k [0] + 1;
TOT [mov-1] ++ ;

}
}

}
i f (mov==2) {

pos = sample(k [0 ] )  ; 
s i  =S [pos] ;
b e g = in ic io (X ,s i z e ,S [p o s -1 ] ) ;  
f in = f im (X ,s i z e ,S [p o s + 1 ] ) ;  
num=0; 
we i  = 0 ;
temp=transf (S [pos-1] ) ; 
templ = t ran s f  (S [pos+1] ) ; 
fo r ( i= tem p; i<= tem pl; i + + ) {

i f ( i= = tem p ) ul=S [pos -1 ] ;  e ls e  u l= W l [ i ] ;  
i f ( i== t.em pl)  u=S [pos+1] ; e ls e  u= W1 [i+1] ; 
fo r (u 2=0 ;u2<Amax;u2++) f o r ( z=0; z<2; z++) {

l l= qu a l_a  (L [z+2] , S_a [z] ,k [z+2] ,u2) ; 
i f ( i > 0  && W [ i ]  [u2] [z] ! =W [ i  — 1 ] [u2] [z] ) {

b=check_log (W [ i ]  [u2] [ z )/ W [ i - l ]  [u2] [z ] )/365 ;
b=W [ i -1 ]  [u2] [z] * (check_exp (b* (u-Wl [ i ]  ) ) -check_exp (b* (ul-Wl [ i ]  ) ) ) /b;
}

e ls e  b=W[i] [u2] [ z ] * (u - u l ) ;  
w e i+= l l*b ;

i f  ( f in>=beg) f o r ( i= b eg ; i< = f in ; i+ + )  num+=N[i]; 
f in = f im (X ,s i z e ,S  [pos] ) ; 
numl=0; 
w e i l= 0 ;
tem p=transf(S [p o s ] ) ; 
tem p l= tran s f (s i )  ; 
fo r ( i= tem p ; i<= tem pl; i + + ) {

i f ( i= = tem p ) ul=S [ j ] ; e ls e  u l= W l [ i ] ;  
i f ( i= = t e m p l )  u=sl; e ls e  u= W l[ i+ 1 ] ;  
fo r  (u2 = 0 ;u2<Amax,-u2 + + ) f o r  ( z = 0 ; z<2 ; Z + + )  {

l l= q u a l_a (L  [z+2] , S_a[z ] , k [z+2] , u2) ; 
i f  ( i>0 && W[i] [u2] [z] ! =W [ i -1 ]  [u2] [z] ) {

b=check_log (W [ i ]  [u2] [ z ]/ W [ i - l ]  [u2] [z ] )/365 ;
b=W [ i -1 ]  [u2] [z] * (check_exp (b* (u-Wl [ i ]  ) ) -check_exp (b* (ul-Wl [ i ]  ) ) ) /b;
}

e ls e  b=W[i] [u2] [ z ] * ( u - u l ) ;  
w e i l+ = l l * b ;
}

}
i f  ( f in>=beg) f o r ( i= b e g ; i < = f in ; i + + )  numl+=N[i]; 
i f (w e i l ! = 0  &Sc w e i l != w e i ) {  

h i = L [0] [pos-1] ; 
h3 = L [0] [pos] ;
h2 = check_exp ( (  (S [p o s ]-S [pos-1] ) * check_log (h i )  + (S [pos+1]-S [pos] ) * 

check_log(h3) ) / (S [pos+1] -S [pos-1] ) ) ;
ac=aceitacac_d (S  [pos+1] -S [pos-1] ,S [pos] -S [pos- 

1] , numl, num, w e i l ,  wei, k [0] , h i , h2, h3 , A, B) ; 
i f (a c< = 0 )  ac=1; 
e ls e  ac = check_exp( - a c ) ; 
u l = un(15+( t i p o - 1 ) *5 ) ;  
i f ( u l  <= ac) { 

k [0] = k [0] - 1; 
decrease_d (S ,p o s ,kmax +2);
L [0] [pos-1] = h2 ;
d e c rea s e (L [ 0 ] , pos + l ,km ax+ l) ;
TOT [mov-1] ++ ;
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}
}
b e g = in ic io _ d (X ,s i z e ,S [0 ] ) ;  
f  in= f  im_d (X , s i z e ,S [ l ] > ;  
wei=0;
temp=transf(S [0 ] )  ; 
tem p l= trans f (S [1 ] ) ;  
fo r ( i= tem p; i<=templ; i+ + ) {

i f ( i= = tem p ) u l=S [0 ] ;  e ls e  ul=Wl [ i ]  ; 
i f ( i= = t e m p l )  u=S [1] ; e ls e  u= W l [ i+ 1 ] ;  
for(u2=0;u2<Amax;u2++) f o r ( z = 0 ; z<2; z++) {

l l= qu a l_a (L [z+2 ]  , S_a [z] , k [z+2] , u2) ; 
i f  ( i  >0 && W[i] [u2] [z] ! =W [ i -1 ]  [u2] [ z ] )  {

b=check_log (W [ i ]  [u2] [ z ]/ W [ i - l ]  [u2] [z ] )/365 ;
b=W [ i -1 ]  [u2] [z] * (check_exp (b* (u-Wl [ i ]  ) ) -check_exp (b* (ul-Wl [ i ]  ) ) ) /b ;
}

e ls e  b=W[i] [u2] [z] * (u-ul) ; 
we i  + = 11 * b ;
}

}
num= 0;
i f  (f in>=beg) { f o r ( i=b eg ; i < = f in ; i+ + )  num+=N[i]; }
L [0] [0 ]=rgamma(num+A,wei+B,tipo) ; 
i f  (k [0] >0) f o r ( j  = l ;  j <= k [ 0 ] ; j++) {

f  in= f  im_d (X , s i z e ,S [ j + l ]  ) ; 
b e g = in ic io _ d (X ,s i z e ,S [ j ] ) ; 
num=0; 
we i  = 0 ;
tem p=transf(S [ j ] ) ;  
terapl=transf (S [j+1] ) ; 
fo r ( i= tem p; i<=templ; i + + ) {

i f ( i==terap ) ul=S [ j ] ; e ls e  u l=W l[ i ]  ; 
i f ( i= = t e m p l )  u=S [ j  +1] ; e ls e  u= W l [ i  + 1 ];  
f o r  (u2 = 0;u2<A.max;u2++) f o r  (z=0 ; z<2 ; z++) { 

l l=qua l_a  (L [z+2] , S_a [z] ,k [z+2] ,u2) ; 
i f  ( i >0 && W [ i ]  [u2] [z] ! =W [ i - 1) [u2] [z] ) {

b=check_log(W [i] [u2] [ z ]/ W [ i - l ]  [u2] [z ] )/365 ;
b=W [ i -1 ]  [u2] [z] * (check_exp (b* (u-Wl [ i ]  ) ) -check__exp (b* (ul-Wl [ i ]  ) ) ) /fa;

}
e ls e  b=W [ i ]  [u2] [z] * (u-u l) ; 

w e i+= l l*b ;

}

i f  ( f in>=beg) f o r ( i = b e g ; i < = f i n ; i + + ) num+=N[i];
L [0] [ j ] =rgamma(num+A,wei+B,tipo) ;

}
}
/ / * * * ♦ * * * * * * * * * * * * * * * * » *  updation o f  fsa  * * * * * * * * * * * * * * * * * * * * + + * *
vo id  f r _ s a ( in t  S [ ] , l o n g  double L [ ] , i n t &  k , in t  N [ ] ,  double W [ ] , i : i t  A, double B , in t  T 0 T [ ] ) {
in t  i , j , b e g l , b e g , f in i , f in ,n u m ,u 2 ,pos,mov,numl, temp, tem pi, s i , z ;
long double u ,u l ,a ,a c ,c o n s ,h l ,h 2 ,h 3 ,11 ,b;
double w e i ,w e i l ;
s t a t i c  in t  t ip o = l ;
t ip o+ + ;
i f ( t ip o = = 3 )  t i p o = l ; 
num= 0 ,- 
wei=0;
i f (k==0) sl=Amax; e ls e  s l= S [1] ; 
f o r ( i = 0 ;  i < s l ; i+ + ) {  

num+=N [ i ]  ; 
wei + =W [ i ]  ;

}
wei=wei/d iv isor_age;
L [0 ]=rgamma(num+A,wei+B,tipo);
L [0] = L [0] / d iv is o r_ag e ; 
i f (k > 0 )  f o r ( j = l ;  j <= k; j + + ) {

i f ( j = = k )  sl=Amax; e ls e  s l= S [ j  + l ] ;  
num=sl-S [j -1] ; 
i f (num >2){

i f  (L [ j -1 ]  ! = L [ j ]  ) S [ j ]  = f  saS (S [ j -1] , L [ j -1] , L [ j ] , s i , N, W, t ip o )  ; 
e ls e  S [ j ] =  S [ j -1 ]  + sample (s l -S  [ j - 1 ] -1) ;
i f  (S [ j ]  >=sl) cou t<<"erro l"<< "S  [ "< < j< < " ]= "< < S [ j ]< < "  S ["<< j  + l< < " ]= "< < S [ j+ l ]< < "\ n " ;  
i f  (S [ j ]  <=S [ j -1 ]  ) cou t<<"erro2" ;

}
num=0; 
we i  = 0 ;
f o r ( i = S [ j ] ;  i < s l ; i + + )  { 

num+=N [ i ]  ; 
wei + =W [ i ]  ;
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w ei=w e i/d iv isor_age ;
L [ j ] =rgamma(num+A,wei+B, t ip o )  ;
L [ j ] =L [ j ] / d iv is o r_age ;

}
num=0; 
wei=0;
i f (k==0 ) sl=Amax; e ls e  s l= S [1] ; 
f o r ( i= 0 ;  i < s l ; i + + ) {  

num+=N[i]; 
wei+=W[i ] ;

}
wei=w e i/d iv isor_age/
L [0 ]=rgamma(num+A,wei+B,tipo) ;
L [0 ]= L [0 ]/ d iv is o r _a g e ; 
i f (k > 0 )  f o r ( j = l ;  j <= k; j + + ) {

i f ( j ==k) sl=Amax; e ls e  s l= S [ j+ l ]/  
num=0; 
wei = 0 /
f o r ( i = S [ j ] ;  i < s l ; i + + )  { 

num+=N[i]/ 
w e i+=W [i ] ;

}
w ei=w e i/d iv isor_age ;
L [j ] =rgamma(num+A,wei+B, t i p o ) /
L [j ] =L [ j ] / d iv is o r _ a g e ;

}
mov=movimento(k);
u2 = 0;
num=0;
wei=0;
numl=0;
wei1=0;
i f (m ov !=3 ) TOT[1+mov]++; 
i f (m o v = = l ) {

s i  =sample( (Amax-1 ) ) ;  
pos=0;
while(u2 < k) { 

u2 = 0;
s i  =sample( (Amax-1)) ;  
pos = 0;
f o r ( i = l ; i<=k ; i++ )  {

i f ( S  [ i ]  != s i )  u2 + +;
i f (S [ i ] < Si) pos = i ;

}

}

f o r ( i= S  [pos] ; i<S [pos+1] ; i++) {num+=N [ i ]  ; wei+=W [ i ]  ; } 
f o r ( i = S [ p o s ] ; i < s l ; i+ + ) {n u m l+ = N [ i ] ;w e i l+ = W [ i ] ; }  
i f (w e i l ! = 0  ScSc w e i l ! = w e i ) {  

h2 -  L [pos] ;
cons = ( l/un (11+( t i p o - 1 ) *5) - 1 ) ;
h i = h2 * pow (cons, ( (s l -S  [pos+1] ) / (S [pos+1]-S [pos] ) ) )  ; 
h3 = cons * h i ;
ac=ace itacao_ i (S [pos+1 ]-S [pos ]  , s l -  

S [p o s ] , numl,num,weil,w e i , k ,h i ,h 2 , h3,A ,B *d iv is o r _ a g e ) ; 
i f (a c> = 0 )  ac= l;  
e ls e  ac=check_exp (ac) ,• 
ul=un(14+( t i p o - 1 ) *5 ) ;  
i f ( u l  <= ac) {

in c r e a s e _ i (S , s i , pos + l,kmax +2);
L [pos] = h i;
in c rea se (L ,h 3 ,pos + l ,km ax+ l) ;  
k = k + 1;
TOT[mov-1]++;

}
}

}
i f (raov==2) {

pos = sample(k ); 
s i  =S [pos] ;
f o r  (i=S [pos - 1] ; i<S [pos + 1] ; i  + + ) {num+=N [ i ]  ; wei +=W [ i ]  ; } 
f o r  (i=S [pos-1] ; i<S [pos] ; i++) {numl+=N [ i ]  ;weil+=W [ i ]  ; } 
i f ( w e i l ! = 0  ScSc w e i l != w e i ) {  

h i = L [pos-1] ; 
h3 = L [pos] ;
h2 = check_exp ( ( (S [pos]-S [pos-1] ) * check_log (h i )  + (S [pos+1]-S [pos] ) * 

check_log (h3) ) / (S [pos+1] -S [pos-1] ) ) ;
ac=ace itacao_ i  (S [pos+1] -S [pos-1] , S [pos] -S [pos- 

1 ] , numl,num,weil,w e i , k ,h i ,h 2 ,h3,A ,B *d iv is o r _ a g e ) ; 
i f (a c< = 0 )  ac= l;
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e ls e  ac = check_exp( - a c ) ; 
u l = un (15+(t i p o - 1) *5) ,- 
i f  (u l <= ac) { 

k = k - l ;
d e c rea se_ i (S ,p o s , kmax +2); 
L [pos~ l ]  = h2 ; 
decrease (L ,pos + l ,km ax+ l) ;  
TOT[raov-1]++;

}
}

}
num=0; 
wei=0;
i f (k==0 )  sl=Amax; e ls e  s l= S [1] ; 
f o r ( i= 0 ;  i < s l ; i + + ) {  

num+=N[i]; 
w e i+=W [i ] ;

}
w ei=w e i/d iv isor_age ;
L [0 ]=rgamma(num+A,wei+B,tipo) ;
L [0] = L [0 ]/ d iv is o r _a g e ; 
i f (k > 0 )  f o r ( j = l ;  j <= k; j + + ) {

i f ( j ==k) sl=Amax; e ls e  s l = S [ j + l ] ;  
num=0/ 
wei=0;
f o r ( i = S [ j ] ;  i < s l ; i + + ) { 

num+=N [ i ]  / 
w e i+=W [i ] ;

w e i=w e i/d iv iso r_age ;
L [j ] =rgamma(num+A,wei+B, t ip o )  ; 
L [ j ] = L [ j ] / d iv is o r _ a g e ;

)
}

t * * * - A - * * * * * * * i I/ / * * * * * * * * * * * * * * * * * * * * * *  updation o f  severidade_sa 
vo id  severidade_sa ( in t  S [ ] , l o n g  double L [ ] , i n t &  k . in t  N [ ] ,d ou b le  W [ ] , in t  alpha,double 
beta,double s i g . i n t  TOT[ ] ) {
in t  i , j , b eg , fin,num,u2,pos ,mov,numl, temp, tempi, s i , z ;
long double u ,u l , a , a c , cons, h i , h2 , h3,11, b ;
double w e i ,w e i l ;
s t a t i c  in t  t i p o = l ;
t ip o++ ;
i f ( t . ipo==3 ) t ip o = l  ;
f o r ( j=0 

num=0 
wei=0

j  <= k; j + + ) {

f o r ( i = S [ j ) ;  i<S [ j+1) ; i++ ) {num+=N [ i ]  ; w e i+ = W [i ) ; }  
a=num/pow(sig,2 )+ l/pow (beta ,2 );  
cons=wei/pow(sig ,2 )+alpha/pow(beta,2 ) ;
L [ j ] =rnorm(cons/a,pow(a,- 0 . 5 ) , t i p o ) ;

}
i f (k > 0 )  f o r ( j = l ;  j <= k,- j++) { 

num=S [j+1] -S [ j  -1] ; 
if(num>2) {

i f  (L [ j  -1] ! =L [ j  ] ) { S [ j ] =fsaS2 (S [ j -1] , L [ j -1] , L [ j  ] , S [ j+1] ,N,W, s ig ,  t ip o )  ,-} 
e ls e  S [ j  ] = S [ j  -1] + sample (S [ j+1 ]-S  [ j -1 ] -1 )  ;
i f  (S [ j ]  >=S [j+1] ) cou t<< "erro l"<< "S  [" << j <<" ] ="<<S [ j ]  <<" S ["<< j+ l<< " ]  ="<<S [j+1] <<"\n" 
i f ( S  [ j ] <=S[ j - 1 ] )  cout<<" e rro2 " ;

}
num= 0; 
wei=0;
f o r ( i = S [ j ] ;  i<S [ j  + 1] ; i++) {num+=N [ i ]  ; wei + = W [ i ] ; }  
a=num/pow (s ig ,  2) +l/pow (beta, 2) ,- 
cons=wei/pow(sig ,2 )+alpha/pow(beta,2 ) ;
L [ j ]  =rnorm (cons/a, pow (a, - 0.5) , t ip o )  ,-

}
fo r  ( j=0 ; j <= k; j++) { 

num=0; 
we i  = 0;
f o r ( i = S [ j ] ;  i<S [ j+1] ; i++ ) {num+=N [ i ]  ; wei + = W [ i ] ; }  
a=num/pow(sig,2 )+ l/pow (beta ,2 ) ; 
cons =wei/pow (s ig ,  2) +alpha/pow (beta, 2) ,- 
L [ j ] =rnorm(cons/a,pow(a,- 0 . 5 ) , t i p o ) ;

}
mov=movimento (k) ; 
u2 = 0 ;
num=0;wei=0;
numl = 0 ;we i 1 = 0;
i f (m o v !=3) TOT[1+mov]++;
i f (m o v = = l ) {
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s i  =sample( (Amax-1)) ;  
pos=0;
while(u2 < k) { 

u2 = 0;
s i  =sample( (Amax-1 ) ) ;  
pos = 0;
f o r ( i = l ; i<=k ; i++ )  { 

i f  (S [ i ]  != s i ) U2 + +;
i f ( s [ i ]  < s i )  pos = i ;

}
}
f o r ( i= S [p o s ]  ; i<S [pos+1] ; i++) {num+=N[i] ;wei + =W[i] ; }  
f o r ( i  = S[pos] ; i < s l ; i  + + ) {numl + =N[i] ;w e i l  +=W [ i ]  ; }  
h2 = L [pos] ; 
i f ( h 2 !=0 ) {
cons = (1/un(11+( t i p o - 1 ) *5) - 1) ; 
h i = (S [pos+1] -S [pos] ) *h2/ ( (S [pos+1] - s i )  /cons+sl-S [pos] ) ; 
h3 = hl/cons;
ac=ace i2 (doub le (S [pos+1 ]-S [pos ] ) , dou b le (s l -  

S [p o s ] ) , numl,num,weil,w e i , k , h i , h2, h3, i n t ( s i g ) , alpha, beta) ; 
i f  (ac> = 0) ac = l ;
e ls e  ( i f (a c< -7 0 0 )  ac=0; e ls e  a c= exp (a c ) ; }  
u=un(14+( t i p o - 1 ) *5) ; 
i f  (u <= ac) {

i n c r e a s e _ i (S , s i , pos + l,kmax +2);
L[pos] = h i ;
in c rea se (L ,h 3 ,pos + l,km ax+l) ;  
k = k + 1;
TOT[mov-1]++;

}

i f (mov==2) {
pos = sam p le (k );
f  or (i=S [pos-1] ; i<S [pos+1] ; i+ + ) (num+=N [ i ]  ; wei+=W [ i ]  ; } 
f o r  (i=S [pos -1 ] ; i<S [pos] ; i ++) {numl+=N.[i] ;weil+=W [i] ; } 
h i = L [pos-1] ; 
h3 = L [pos] ;
h2 = ( (S [pos] -S [pos-1] ) * h i + (S [pos+1]-S [pos] ) * h3) / (S [pos+1]-S [pos-1] ) 
i f ( h 2 !=0 ) {
ac=ace i_ i2  (S [pos+1] -S [pos-1] , S [pos] -S [pos- 

1 ] , numl,num,weil,w e i , k ,h i , h2, h3, s ig ,a lp h a ,b e t a ) ; 
i f (a c<=0 )  ac= l;
e ls e  { i f (a c>7 0 0 )  ac=0; e ls e  ac = e x p ( - a c ) ; }  
u = un(15+ (t i p o - 1 ) *5 ) ;  
i f ( u  <= ac) { 

k = k - l ;

d ec rea s e _ i (S , pos , kmax +2);
L [pos-1] = h2 ;
decrease (L ,pos + l,km ax+l) ;
TOT[mov-1]++;

}
}

}
}
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