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Abstract

This thesis is concerned with solutions of the one-dimensional and two-dimensional 
Swift-Hohenberg equation as a model of nonlinear convection. In particular it is 
concerned with the influence of lateral boundaries on nonlinear solutions.

We start by giving a linear stability analysis for the one-dimensional case and 
use this as a basis for finding one-dimensional nonlinear periodic solutions. We 
also study the bifurcation structure and stability of nonlinear mode interactions.

We use Floquet theory to analyse, in a spatial sense, the departure of the 
nonlinear solutions from their periodic form and locate the Eckhaus boundary 
for the one-dimensional case.

We then use the Floquet analysis to find nonlinear solutions of the Swift- 
Hohenberg equation in the presence of a lateral boundary and determine the 
restriction imposed by the boundary on wavenumber selection.

In the two-dimensional case, we obtain linear stability results for the solution 
in a channel of finite width and use this as a basis for finding nonlinear solutions 
which are periodic along the channel.

We then use Floquet theory to analyse, in a spatial sense, the departure of 
nonlinear solutions from their periodic form and to locate the two-dimensional 
equivalent of the Eckhaus boundary.

Finally, the Floquet theory is used as the basis of an approximate method 
of finding the restriction on wavenumber selection imposed by the presence of a 
lateral boundary across the channel.
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Chapter 1 

Introduction

There are many examples of systems that spontaneously develop a periodic cel-
lular pattern through a continuous bifurcation from a structureless state. Such 
patterns have been observed in hydrodynamic instabilities of simple fluids, in 
electro-hydrodynamic instability o f liquid crystals, in crystal growth and in buck-
ling o f plates. In this thesis we will be considering hydrodynamic instabilities of 
simple fluids. In particular, we will be considering the problem of thermal con-
vection in a fluid contained between horizontal plates (an example of such an 
experimental apparatus is shown in Figure 1.1). For a critical temperature gra-

| Cold thermal bath ~]
Upper Plate_______________________

Fluid

| Low er plate
Warm thermal bath

Figure 1.1: A  schematic diagram of an experimental set up used to study Rayleigh 
Bénard convection.

dient between the upper and the lower plates, buoyancy forces overcome the 
dissipative effects of viscous shear and thermal conduction, and the motionless 
fluid spontaneously breaks up into convective rolls of upward- and downward- 
moving regions o f fluid (see Figure 1.2). This problem was first considered in 
Bénard’s work (1900, [3]; 1901, [4]) and later in Rayleigh’s theoretical analysis 
(1916, [43]); and it is commonly known as Rayleigh-Bénard convection or simply

15



Figure 1.2: Diagram illustrating convective rolls formed by upward- and 
downward-moving regions of fluid.

as Bénard convection1.
Amplitude equations, also known as envelope equations, have been derived 

and used in a variety of cases to obtain, for example, bifurcation diagrams and 
small amplitude stationary solutions. In the context of convection, amplitude 
equations were first introduced, nearly simultaneously, by Segel (1969, [45]), and 
Newell and Whitehead (1969, [40]). The fact that their derivation had overlooked 
the role of large scale horizontal flow allowed by stress-free boundaries was pointed 
out by Siggia and Zippelius (1981, [48]).

Many of the early investigations of Rayleigh-Bénard convection are concerned 
with the unconfined problem (the problem with no lateral walls). Later, the 
need for a realistic comparison with experimental investigations led to studies of 
Rayleigh-Bénard convection in a confined box. The earliest study of the confined 
problem was provided by Davis (1967, [23]). He found that convection rolls line-
up so that the axes are parallel with the shorter sides of the rectangular box. 
Davies-Jones (1970, [22]), in his study of convection in an infinite channel with 
no-slip sidewalls, shows that the preferred configuration at the onset of convec-
tion is with the axes of the convection rolls perpendicular to the sidewalls. Cross 
(1982, [13]) recognises that these are two competing effects, i.e., a sidewall ef-
fect that favours rolls perpendicular to the sidewalls, and so tends to produce 
0 (1) rotation of the roll orientation over the cell, and the bulk effects that favour 
straight parallel rolls. He uses the notion of a Lyapunov functional (which is used

historically, the name is inaccurate; Bénard’s pioneering work, although for long believed to 
be related to the description above, was mostly of another phenomenon (Marangoni convection) 
that gives rise to similar effects. However, the name, Rayleigh-Bénard convection, is so well 
established that its usage does not cause any confusion. Note that some authors still use Bénard 
convection to refer to Marangoni convection.
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to order the stability of various patterns) to examine the role of the competing 
effects on textural transitions. Segel (1969, [45]) was the first to consider the 
boundary conditions which the amplitude equation must satisfy when the fluid 
layer is confined laterally by rigid, perfectly insulating sidewalls. His analysis 
was later corrected by Brown and Stewartson (1977, [6]) in their study of ther-
mal convection in a large box. Their study was an extension of the investigation 
by Daniels (1977, [19]), who had studied the effect of distant sidewalls on the 
transition to finite amplitude convective rolls. He showed that if there is a small 
heat transfer through the walls the bifurcation is in general replaced by a smooth 
transition to finite amplitude convection. Other work on the confined problem 
includes the well referenced work by Pomeau and Manneville (1981, [41]) and 
Cross, Daniels, Hohenberg and Siggia (1980, [14]; 1983, [15]), who studied the 
wave-number selection mechanism in a confined box. In their papers they showed 
that the allowable band of wave-vectors which can occur in the bulk of the con-
tainer is reduced if the system has sidewalls (i.e., greatly reducing the number of 
steady states).

Many experimental investigations have been undertaken with different ge-
ometries and thermal conditions. The first detailed experimental investigation of 
convection in rectangular and cylindrical planforms was made by Koschmieder 
(1966, [32]). He found with rectangular planforms that straight rolls formed 
whose axes were parallel to the shorter side of the container in agreement with 
the theory of Davis (1967, [23]). With cylindrical planforms circular concentric 
rolls were found. This is one of many possible configurations. Croquette, Mory 
and Schosseler (1983, [11]) also experimented on cylindrical planforms and they 
found fields of disordered rolls whose axes tend to be perpendicular to the circular 
wall. Their results were verified by Ahlers, Canned and Steinberg (1985, [1]) in 
their work on flow patterns in cylindrical planforms. A detailed review of much 
of the experimental work is given by Koschmieder (1993, [33]).

An important question in the context of Rayleigh-Bénard convection already 
referred to above is concerned with the selection of the wavenumber, q (where q 
may be dependent on initial conditions, boundary conditions, and external noise) 
and the evolution mechanism towards the steady state defined by q. Several 
different mechanisms have been proposed to answer this question •

• If the equation has a Lyapunov functional we have the notion of minimising 
this functional to order the stability of various patterns.
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• The second mechanism (containing the first as a special case), is based on a 
balance of forces between solutions of different q value. This is not restricted 
to systems with a potential function.

• The third idea assumes that the system selects the mode most susceptible 
to external noise, i.e., via external forcing.

• The last mechanism deals with the resultant periodic patterns via front 
propagation. This mechanism includes the effects observed by Cross (1982, 
[13]), and does not relate to any of the previous mechanisms.

Beyond the primary bifurcation, i.e., transition from a structureless base state 
to a pattern formed of convective rolls o f upward- and downward-moving regions 
o f the fluid, it is commonly observed (experimentally by Lowe and Gollub (1985, 
[37]); analytically by Clever and Busse (1974, [9]) and Kramer and Zimmerman 
(1985, [35]); and numerically by Hemândez-Garcia et al. (1992, [30])) that these 
rolls become unstable by the Eckhaus instability. The Eckhaus instability or 
compression/dilatation instability was first analysed by Eckhaus (1965, [26]). It 
takes place for rolls with wavenumber, q, sufficiently larger or smaller than the 
optimal wavenumber (known as the critical wavenumber), qc. Let us assume 
for example a roll configuration with q sufficiently larger than qc. The modu-
lation2 within the bulk of the system produces both compression and dilation 
regions, but the dilation regions are unstable and are suitable for a collapse of 
a pair of rolls. This collapse results in a decrease in the average wavenumber, 
or equivalently, q approaches the optimal value, qc . Figure 1.3 illustrates this 
transformation. A theoretical treatment for Rayleigh-Bénard convection in large

Figure 1.3: Evolution for rolls beyond the Eckhaus instability.

aspect ratio containers was provided by Clever and Busse (1974, [9]) and Kramer 
and Zimmerman (1985, [35]). It has been studied experimentally by Lowe and

2 Modulation to some ideal periodic solution with wavenumber qc.
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Gollub (1985, [37]) by preparing a state with the wavenumber in the stable re-
gion and lowering the temperature gradient until it falls into the Eckhaus bands. 
The rolls are then too narrow or too wide and the system abruptly gains or loses 
one or more rolls. Lowe and Gollub (1985, [37]) also initialised the system in an 
unstable wavenumber state by spatially-periodic forcing.

A number of phenomenological models have been studied as a means of gain-
ing insight into the Rayleigh-Bénard phenomenon (see, for example, Manneville 
(1990, [38]) and Cross and Hohenberg (1993, [16])). The following relaxational 
model equation was first derived by Swift and Hohenberg (1977, [49]):

^  =  ( e - [1 + A]2) u - u 3, (1.1)

where t is time, u =  u (x ,y ,t) is a two-dimensional scalar field, e — (R — Rc)/Rc 
is the reduced Rayleigh number, R is the Rayleigh number3, Rc — (277t4)/4  is 
the critical Rayleigh number4, and A =  V 2 is the two dimensional Laplacian. 
The function u represents the rescaled fluid field in a given horizontal plane, e.g., 
the vertical velocity component in the mid-plane of the convective rolls. Swift 
and Hohenberg (1977, [49]) used this model which they derived in an appendix 
to their paper, to discuss the role of fluctuations close to the onset of convection. 
They derived the model from the Boussinesq approximation5 in the limit of in-
finite Prandtl number6, corresponding to an infinitely viscous fluid. This limit 
is well approximated in practice by certain fluids such as oils (fluids with large 
Prandtl number). Certainly, the Swift-Hohenberg (SH) equation is an immense 
simplification of the Boussinesq approximation that was considered in detail in 
Chandrasekhar (1961, [8]). The SH equation contains the essential ingredients of 
cubic nonlinearity and diffusion which are also a feature of the Rayleigh-Bénard 
system. It is expected to be quantitatively accurate only for temperature differ-
entials close to threshold, and only in the limit of large domains.

The derivation of the amplitude equation for the SH model equation leads
3 The Rayleigh number is a ratio of the temperature gradient to the damping due to viscosity 

and thermal diffusion. It is a measure of the driving force on the system.
4The critical Rayleigh number (for stress-free upper and lower boundaries) corresponds to 

the critical temperature gradient, mentioned in the first paragraph, when the motionless fluid 
spontaneously breaks up into convective rolls.

5Hydrodynamic equations that describe Rayleigh-Bénard convection in a simple fluid. For a 
detailed study refer to the references Chandrasekhar (1961, [8]) and Drazin and Reid (1981,[25]).

6The Prandtl number is a ratio of viscosity to the thermal diffusion coefficient. It charac-
terises the fluid.
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to the same type of amplitude equation as the hydrodynamic equations (in the 
Boussinesq approximation). In the latter case the systematic expansion to non-
trivial order for a two-dimensional amplitude function was first considered by 
Newell and Whitehead (1969, [40]) and was further reviewed by Cross (1980, [12]) 
who compiled the values of the coefficients for convection with no-slip boundary 
conditions. Derivation of the one-dimensional amplitude equations for the SH 
equation at leading and higher orders is described by Cross et al (1983, [15]), 
with applications to the wavelength selection problem in a finite container. In 
more recent work, Daniels and Weinstein (1992, [20]; 1996, [21]) used the two- 
dimensional SH amplitude equations to consider the role of orthogonal roll pat-
terns in describing the features of the finite-amplitude motion near an imperfect7 
lateral boundary and within a general rectangular domain.

Even phenomenological models of the type mentioned above cannot be com-
pletely solved by analytical techniques; thus numerical simulations are of fun-
damental importance in gaining an understanding of some of these problems. 
Simulations of the SH equation in a rectangular geometry were performed by 
Greenside, Coughran and Schryer (1982, [28]) and subsequently by Greenside 
and Coughran (1984, [29]); and simulations in a cylindrical cell were performed 
by Morris, Bodenschatz, Canned and Ahlers (1993, [39]). These works have all re-
lied on an operator-splitting approach based on the fast direct constant-coefficient 
biharmonic solver described by Bjorstad (1983, [5]). However, this method has 
several drawbacks: it does not support large time-steps due to numerical stabil-
ity; it is not easily parallelised; and it can not be easily adjusted to take account 
of different boundary conditions or coordinate systems. Anderson (1996, [2]) has 
implemented a noxdinear finite-difference, Newton-Krylov scheme that overcomes 
each of the above drawbacks, successfully pursuing a time-dependent trajectory 
over a large spatial grid and large time-steps, and resulting in a time-independent 
Newton solution; it is easily parallelisable; and equally effective for rigid or peri-
odic boundary conditions and for rectangular or polax coordinate systems.

Our work is motivated partly by the work of Cross, Daniels, Hohenberg and 
Siggia (1980, [14]; 1983, [15]), who studied the wave-number selection mechanism 
in a confined box both for the Rayleigh-Benard system and for the SH model. 
In their papers they showed that in the weakly nonlinear regime the band of

7The imperfection could be used to represent a finite porosity or thermal conductivity of the 
sidewall.
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allowed wave-vectors which can occur in the bulk of the container is reduced if 
the system has sidewalls. Our work aims to extend these results to the fully 
nonlinear regime and to do this we must first classify all the possible steady 
state solutions that can occur in the bulk of a semi-infinite container (Cross et 
al (1983, [15]) showed that for weakly nonlinear motion this number is greatly 
reduced because of the lateral wall). Once these solutions are found the lateral 
walls can be incorporated by finding how they adjust to satisfy the relevant 
boundary conditions. Our classifying problem turned out to be more complicated 
than we had first thought. There are a myriad of bifurcation structures that 
exist even for the simplified Swift-Hohenberg model. This thesis will concentrate 
on identifying some of these bifurcation structures and classifying the periodic 
solutions of the Swift-Hohenberg equation in the fully nonlinear regime for both 
one- and two-dimensional situations. We will also consider how the relevant 
solutions are modified in a semi-infinte domain by the introduction of a lateral 
wall. In the case of the one-dimensional SH equation, this problem has been 
considered numerically by Kramer and Hohenberg (1984, [34]) who have obtained 
some isolated results in the nonlinear regime.

Other work on the Swift-Hohenberg equation includes that by Tsiveriotis and 
Brown (1989, [50]) who investigate the bifurcation structure and the Eckhaus 
instability. They show that the Eckhaus diagram is destroyed with simple mode 
coupling such as in a coupled pair of Swift-Hohenberg equations. Hernandez- 
Garcia et al (1992, [30]) consider the influence of noise in pattern selection and 
show that noise destroys long-range order in the long-time patterns. Kuwamura 
(1996, [36]) considers the stability of roll solutions of the two-dimensional equa-
tion. He used spectral analysis and found that the system size can affect the 
stability of the roll solutions.

The plan of the thesis is as follows. In Chapter 2 we investigate the one-
dimensional SH equation in an infinite domain, identifying nonlinear periodic 
steady-state solutions. In fact, we find that the Swift-Hohenberg equation has 
solutions that are spatially periodic, quasi-periodic and unbounded. We study 
the linear stability of the trivial solution to different Fourier modes. Restricting 
our investigation to periodic solutions we perform a multiple-scale analysis to 
determine their weakly nonlinear form. Then, we describe numerical methods 
which we used to follow the nonlinear solutions as a function of e and L, where L 
is used to denote the half-wavelength of the periodic solution. Various nonlinear
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bifurcations and mode interaction solutions are identified and are investigated 
analytically and numerically.

In Chapter 3 we study the perturbation of periodic solutions (at finite e) to 
spatial disturbances by using Floquet theory. We analyse their Floquet exponents 
and obtain the Eckhaus boundary (the locus that separates the regions where 
the perturbations are spatially decaying or growing from perturbations that axe 
oscillatory). We extend the weakly nonlinear analysis of Chapter 2 to analyse 
the Eckhaus boundary for small e and compare it with the numerical results for 
arbitrary e.

In Chapter 4 we consider solutions of the SH equation in a semi-infinite do-
main. This is done by introducing no-slip boundary conditions at a lateral wall 
x =  0. Using numerical and analytical methods for general e and the results of 
the Floquet theory we find that the choice of the wavenumber q at large distances 
from the boundary is restricted by the presence of the boundary (we shall call this 
restriction the q-restriction). We compare numerical results for general e with the 
weakly nonlinear result of Cross et al (1983, [15]) for small e and find that the 
weakly-nonlinear result agrees remarkably well, even up to e =  1.

In Chapter 5 we investigate the spatially periodic solutions of the two-dimen-
sional SH equation in a channel with no-slip sidewalls at y =  0 and y — Ly. 
First we consider the linear stability of the trivial solution in the two-dimensional 
domain by using a scaling in the channel width Ly. Then we use a numerical 
method to calculate nonlinear solutions which are periodic in x along the channel.

In Chapter 6 we investigate further the steady two-dimensional SH equation 
for a channel of width Ly. Using Floquet theory, we perturb the two dimensional 
periodic solution and classify regions where the perturbation is spatially decay-
ing or growing and regions where the perturbation is spatially oscillatory. The 
boundary separating the two regions is analogous to the Eckhaus stability bound-
ary for the one-dimensional case. Our aim, as in the one dimensional theory of 
Chapter 3, is to determine the asymptotic form of the solution which applies in 
a semi-infinite channel at large distances from a lateral wall at x — 0.

In Chapter 7 we consider solutions of the steady two-dimensional SH equation 
for a channel of width Ly with the presence of a lateral boundary at x =  0. We 
use the Floquet theory of Chapter 6 to determine an estimate of the wavenumber 
restriction at general e.

We conclude with a discussion of our findings in Chapter 8.
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Chapter 2

Solutions of the One Dimensional 
Swift-Hohenberg Equation

2.1 Introduction

In this chapter we obtain steady-state solutions of the one-dimensional SH equa-
tion. In Section 2.2 a shooting method is used to find solutions corresponding to a 
range of different initial conditions at x =  0. Periodic solutions are considered in 
Section 2.3 and are obtained analytically in both linear form and in weakly non-
linear form for values of e close to zero. Nonlinear periodic solutions are found in 
Sections 2.4 and 2.5 using a modified version of the shooting method. A Newton 
iteration is used to adjust the starting values at x =  0 for a given wavelength 2L. 
The results indicate the existence of further bifurcations of the solution which are 
discussed in Section 2.6.

2.2 Initial Value Computations

One approach to finding steady-state solutions u(x) of the one-dimensional SH 
equation is to simply compute solutions from specified initial conditions at x — 0. 
However, it is readily shown that in general these do not approach a periodic form 
as x —> oo. Indeed, in this section we show that the steady-state one-dimensional 
SH equation has many solutions other than periodic solutions—solutions that 
also exist include quasi-periodic and unbounded solutions. This is investigated 
by imposing the free boundary conditions, m(0) =  u"(0) =  0, and solving for 
various values of w'(0) and ii'"(0), where primes are used to denote
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Consider the initial value problem (IVP)

un" +  2 u" +  (1 — e)u +  vf — 0, (2-1)

with
u(0) =  0, u'(O) =  a, u"(0) =  0 and u'"(0) =  b, (2.2)

where a,b e  R . Equation (2.1) belongs to a general class of reversible fourth 
order systems whose local and global properties have been reviewed recently by 
Champneys (1998, [7]). A conserved first integral can be obtained by multiplying 
by v! and integrating with respect to x to give

2u'u'" -  (u")2 +  2{u 'f  +  (1 -  e)u2 +  \uA =  R, (2.3)
Z

where R is an arbitrary constant. Using the conditions (2.2) we get

2 a(b +  a) =  R. (2.4)

By setting v — l/u' equation (2.3) can be written as a second order equation for 
v as a function of u :

-2̂ĝ  + 5 (olu) + ( ~ R  + (* _ e)“2 + + ̂  ~

In the terminology of Champneys, equation (2.1) falls within the focus case (see 
[7], Section 3.4) in which there are families of periodic orbits and consequent 
resonant subharmonic bifurcations. Such solutions are considered in detail in 
Section 2.3-2.6 below.

Now we formulate the numerical problem so that we can solve equation (2.1) 
for various values of (a, b) in the domain R x R. The fourth order ordinary 
differential equation (2.1) is written as a system of first order differential equations

«1 =  U2, (2.6)

«2 =  «3, (2.7)

u3 =  «4, (2.8)

«4 =  - 2 u3 -  (1 -  e)«i -  u\, (2.9)

where u\, u2, U3 and U4 denote u, u' , u" and u'" respectively. Then the initial
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conditions, equation (2.2), become

Ui(0) =  0, u2(0) =  a, u3(0) =  0 and « 4(0) =  b, (2.10)

where a,b R. The nonlinear system (2.6)-(2.10) can be efficiently solved by 
an ODE solver such as ODE45, a solver from the Matlab’s ODESUITE  (1996, 
[46]). The solver is an implementation of the explicit Runge-Kutta (4,5) pair by 
Dormand and Prince. It has also been called variously RK5(4)7FM, DOPRI5, 
D P {4,5) and DP54. The code uses adaptive and free interpolation techniques to 
speed up the calculations. This particular version was designed and documented 
by Shampine and Reichelt (1994, [47]).

We have solved the problem for various values of (a, b) 6 I x R  and found 
that there are regions where the numerical solutions are periodic, quasi-periodic 
or unbounded. Figures 2.1, 2.2 and 2.3 show examples of periodic, quasi-periodic 
and unbounded solutions respectively. The top left-hand plot of each figure shows 
the profile of the solution. The top right-hand plot is a projection of the solution’s 
phase diagram (i.e., the plot of u against its derivative u'). The bottom two plots 
show the discrete Fourier decomposition of the solution. The first plot shows 
the decomposition between zero wavenumber, q, and the Nyquist number, and 
the second plot is a magnification of the region of interest. Notice that Figure 
2.4 shows that there are bounded solutions near1 to unbounded solutions. More 
exotic solutions for values of e < 0 and e > 1 can be found as shown in Figures 2.5 
2 .12.

Figures 2.1- 2.12 are representative of the types of solutions that occur. For a 
fixed value of e, our simulations indicate that the parameter space, (a, b), divides 
into regions in which the solution is bounded and regions in which it is unbounded. 
We have also found that there were difficulties in identifying bounded solutions by 
this approach, especially when e >  1. Within our region of integration the solution 
might seem to be periodic or quasi-periodic but at higher values of x becomes 
unbounded. An alternative approach (to be described below) was adopted in 
order to identify the periodic steady-state solutions.

1 The term ‘near’ is used to indicate proximity in our parameter space of a =  u'(0) and 
b = m"'(0).
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Solution with e-0.65, a=u’(0)=0.5666 and b -u ”’(0)*— 0.9764 Phase plot

Figure 2.1: An example of a periodic solution at e =  0.65.

x 10-3 Solution with e=0.5, a=u'(0)=0.0001 and b=u’” (0 )=-0 .001 x 10"3 Phase plot

Figure 2.2: An example of a quasi-periodic solution at e =  0.5.
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Solution with e«0.1, a=u'(0)-0.02722 and b*=u”’(0)**0.05 Phase plot

Spectral plot (forq  below Nyquist number, 214.4661) Spectral plot (for q in (0,2))

Figure 2.3: An example of an unbounded solution at u'(0) =  0.02722 and 
m" '(0) =  0.05 with e =  0.1. Our adaptive numerical algorithm has stopped 
due to numerical overflow.

Solution with e=0.1, a -u ’(0 )-0.02721 and b -u ’” (0 )-0 .0 5

x-axis

Spectral plot (for q below Nyquist number, 128.6796) 
0.25 c--------------- -----------------1----------------*----------------i--------------- -----------------•-----------

0.2

| ° , 5

CO

0.05

0*---- ------ '— 1------ 1------*•----- 1 ---
0 20 40 60 80 100 120 140

wavenum ber q

Phase plot

Spectral plot (for q in (0,2))

Figure 2.4: A bounded solution at e =  0.1 with a =  0.02721 and b =  0.05.
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1.5

.-a Solution with e— 0.0001, a=u’(0)»1e-08 and b=u”'(0)— 1e-08 x 10' Phase plot
3

2

1

0
-1

-2

- 3
- 2  0  2  4

x1(T*
x !  g“8 Spectral plot (for q  below Nyquist number, 10.7233) Spectral plot (for q in (0 ,2))

Figure 2.5: An example of a solution with e =  —0.0001.

Spectral plot (for q  below Nyquist number, 10.7233) Spectral plot (for q  in (0 ,2))

Figure 2.6: A solution with e =  —0.001 .
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J-6 Solution with e— 0.01, a=u'(0)*1 e-08 and b=u'"(0)»-1 e-08 Phase plot

Spectral plot (for q  below Nyquist number, 10.7233) x ]  o '3 Spectral plot (for q  in (0 ,2 ))

Figure 2.7: A solution with e =  —0.01.

x JQ -4 Solution with e— 0.05, a « u ’(0 )»1 e -0 8  and b -u '” (0)— 1 e -0 8  x ^q - 4 Phase plot

Spectral plot (for q below Nyquist number, 32.1699) x i q - 5 Spectral plot (for q  in (0 ,2))

Figure 2.8: A solution with e =  —0.05.
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Spectral plot (for q below Nyquist number, 12.868) Spectral plot (for q in (0,2))

Figure 2.9: An example of a solution with e =  1.01, a =  0.1 and b =  0.1.

Spectral plot (for q below Nyquist number, 12.868) Spectral plot (for q in (0,2))

Figure 2.10: An example of a solution with e =  1.01, a =  0.1 and b =  —0.1.
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Solution with e~1.01, a=u'(0)~0.01 and b»u”’(0)— 0.01

Spectral plot (for q below Nyquist number, 12.868) Spectral plot (for q in (0,2))

Figure 2.11: An example of a solution with t =  1.01, a — 0.01 and b — —0.01.

Solution with e -1 .1 , a -u '(0 )-0 .0 1  and b -u ”’(0 )— 0.01 Phase plot

wavenum ber q

Spectral plot (for q in (0,2))

Figure 2.12: An example of a solution with e =  1.1.
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2.3 Periodic Steady-state Solutions

We want to investigate periodic steady-state solutions of wavenumber, q. Such 
solutions can be expressed in the form (Kramer and Hohenberg (1984, [34]))

O O

up{x) =  %̂2 Am Sin(mqx), (2.11)
m= 1

where the coefficients Am correspond to the amplitudes of the fundamental and 
its harmonics. We believe that such solutions will be relevant within the bulk of 
a large system with lateral walls, i.e., between and away from the lateral walls. 
The coefficients can be computed by substituting (2.11) into (2.1) and solving the 
resulting set of coupled nonlinear equations (1984, [34]; [30], 1992; [44], 1986). 
However, this involves truncation of the system, and it is more convenient here 
to find the periodic solutions by numerical integration of the steady-state version 
of the boundary value problem

du
dt

u — u3, (2.12)

subject to the stress-free boundary conditions

g2u
u — —— =  0 at x =  0, L, (2.13)

dx2

for some finite L e  R. This problem contains all periodic solutions of the form 
(2.11) through the correspondence L =  mr/q where n is an integer. By adding 
the extra stress-free boundary conditions at x =  L we restrict the solution set of 
the initial value problem, (2.1)—(2.2), to bounded solutions with finite period.

We shall proceed with our analysis of periodic solutions as follows. In Sec-
tion 2.3.1 we shall perform a linear analysis of our problem. This will provide us 
with solutions that are infinitesimal perturbations from the trivial state, u — 0, 
equivalent to the conduction state in the Rayleigh-Bénard problem. Then in Sec-
tion 2.3.2 we look for weakly nonlinear solutions by performing a perturbation 
analysis for e <S 1. From this we obtain information about the nature of weakly 
nonlinear periodic solutions. These results assist in finding numerical steady-state 
solutions of the full nonlinear problem (2.12)-(2.13) in Sections 2.4 and 2.5.
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2.3.1 Linear Analysis

First consider the linear analysis of the time dependent SH equation (2.12) with 
boundary conditions (2.13). Certainly, the trivial state, u =  0, is a solution to 
the system (2.12)-(2.13). Any infinitesimal perturbations from the trivial state 
are governed by the linearised version of (2.12), i.e., by neglecting the nonlinear 
term to obtain

du (
Yt =  y 1 + dx2

¿a
u. (2.14)

We want to look for normal modes in the form u =  U(x) exp(sf), and by substi-
tuting into (2.14) and (2.13) we get the homogeneous linear differential equation 
for U,

U"" +  2U” +  (1 +  s -  e)U =  0,

to be solved subject to

U — U" — 0 at x  =  0, L.

Solving the boundary value problem we obtain solutions

U =  Asin(gn:c) and qn =
rnr

where n =  1, 2, 3 ,.. . ,  with

s =  sn =  e - ( q l ~  l ) 2.

Individual modes are marginally stable when sn =  0, i.e., when

e =  (qn ~ l )2 =  ( ( W ^)2 -  l ) 2- (2-15)

Figure 2.13 shows the first ten marginal curves for the different modes. Notice 
that when L is small the most unstable mode is well isolated from its immediate 
neighbours. In contrast, when L becomes larger, the first eigenmodes (say n — 
1, 2 , . . . ,  5 for L =  47t) stay well grouped. In this chapter we shall focus attention 
on the modes n =  1, n =  2 and n — 3. It should be stressed that at a given value 
of e the separate modes shown in Figure 2.13 actually represent just one periodic 
solution, the higher values of L simply accommodating additional oscillations in 
the interval (0, L). However, we shall see below that the representation is useful
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Figure 2.13: Marginal curves for individual modes.

in identifying further periodic forms which arise in the nonlinear spectrum of 
solutions.

2.3.2 Weakly Nonlinear Analysis

The linear analysis shows that steady-state periodic solutions of small amplitude 
exist in the neighbourhood of the marginal curves shown in Figure 2.13, and that 
as e increases these are first encountered when e reaches zero and L =  wr, i.e., 
at a critical wavenumber qn =  1. Here we shall consider how nonlinear periodic 
steady-state solutions (i.e. weakly nonlinear solutions) emerge from this point.

Thus we consider (2.12)-(2.13) and assume that e is small and positive. Bal-
ancing the terms in the partial differential equation suggests that u(x,t) develops
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with terms of order, e1/2, e, e3/2, . . so that

u =  +  e«i +  e3//2u2 +  • • • > e —»• 0. (2.16)

In order to analyse equation (2.12) we shall let the solution contain modulations 
on the scales X  =  y/ex and T — et so that in (2.16) we assume that u* =  
Ui(x,X,T). After substitution into (2.12) we collect and compare coefficients of 
powers of e. We obtain

d 4tto

dx4 
d4ui 
~d^  
dAU2
lh £

nd2u0
+  2â ^  +  "°

nd2ui
+  2 a ?  +  Kl 

nd2u2
+  2 a ?  +  “ 2

o,

- 4 C^uo 92Uo
dx3dX

54ui

+

+  4
d2ui

+  6 -
dAUf\

d xd x3 ¿w ax  a x w
a«o „ a y  »

+  ^Jr +  +  «0 -dT dX 2

(2.17)

(2.18)

(2.19)

at orders e1/2, e and e3/2 respectively. Solving equation (2.17), the relevant peri-
odic form is

u0{x, A , T) =  Ao{X, T ) exp (fa;) +  c.c., (2.20)

where A0 is a complex amplitude function and c.c. denotes the complex conjugate. 
Substitution for u0(x ,X ,T )  into equation (2.18) then gives

d V
dx4

+ 2 a y
aa;2 +  Mi — 0,

so that
u1{x ,X ,T ) =  Al (X ,T )exp(ix) +  c.c., (2.21)

where Ai is a further complex amplitude function. We now substitute for u0(x, X, T) 
and u i(x ,X ,T ) in equation (2.19) to get

d4u2 a2« 2+  2-^—̂- +  u2
dx4 dx2

+  - ^  +  A0 -  SAolAof* +  4 ^

+  -  3yioMo|2 +  4-^-A

— Aq exp(3fa;) — Â03 exp(—3far),

exp(fx) 

exp (—fa;)

(2.22)

35



where A0 denotes the complex conjugate of A0. In order that u2 is periodic, the 
secular terms proportional to exp(±ix) must vanish, requiring that A0 satisfies 
the partial differential equation

(̂ = ^  +  Ao-ZAo\Ao\2. (2.23)

Since we are interested in periodic solutions, we shall assume Aq takes the 
form

A0 =  Ap =  Rexp(iQX), (2.24)

where R is independent of X . Equations (2.16), (2.20) and (2.24) now imply that

u ~  \/e [i?exp(f(x +  Q X )) +  R exp(—i(x +  <2^f))] , (2.25)

where R denotes the complex conjugate of R. Now u must satisfy the conditions 
(2.13) at the boundary. The conditions u =  =  0 at x — 0 imply that

Re(.R) — 0,

and the conditions ^ =  §^f =  0 at x =  L imply that

lm(R) sin(L +  QA^L) =  0.

A non-trivial solution requires Im(R) 7̂  0 in which case

sin(L +  Qel/2L) =  0,

and we have the relationship between L and Q

L(1 +  Qe1/2) — nir, for n =  l , 2 , ----

(2.26)

(2.27)

(2.28)

(2.29)

Now consider the steady-state solution to equation (2.23). In this case the 
solution (2.24) satisfying (2.26) has

(2.30)
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This shows that weakly nonlinear periodic steady-state solutions

u « ± 2 y ^ ( l - 4 Q 2) i s i n ^ ,  ~  < Q < (2.31)

where Q and L are related by (2.29), exist in the regions inside the marginal 
stability curves, which correspond to the limiting values Q =  ± 1/ 2. The results 
obtained here are thus consistent with the results obtained in the linear analysis, 
the value of q here being approximated by 1 ±  y/eQ near the critical point. In 
Section 2.4 we shall use the results obtained here to initiate solutions of the fully 
nonlinear problem.

2.4 Numerical Methods for Finding Periodic So-

lutions

In this section we discuss two different methods which were used to compute 
periodic solutions for the one-dimensional SH equation.

2.4.1 Shooting Method

By converting the boundary value problem into an extended initial value problem 
we can use the same techniques as in Section 2.2 to solve our problem.

Consider the boundary value problem (2.12)-(2.13). As in Section 2.2, we 
convert the steady-state version of equation (2.12) to the system of first order 
ordinary differential equations

*40*0 =  «2 0*0 , (2.32)

«2 0*0 =  «3 0*0 , (2.33)

*40*0 =  «4 0 0 , (2.34)

*40*0 =  - 2u 3(x ) -  (1 -  e)ui(x) -  (ui(:r))3. (2.35)

The boundary conditions (2.13) become

rti(O) =  u3(0) =  0 and ui(L) =  u3(L) =  0, (2.36)

where L € R.
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Writing the boundary-value problem (2.32)-(2.36) as an initial value problem 
we get

« ' =  /(*>«)> (2-37)

subject to the initial condition

u(s, 0) =  s,

where u =  [ui(s, x), u2(s, x ),u3(s, x), u4(s, x )]T, s =  [0, a, 0, (3]T and

(2.38)

f(x ,u )  =

u2(s,x) 
u3(s, x) 
u4(s, x)

- 2 u3(s,x) -  (1 -e )u i(s ,x )  -  (ui(s,a;))3

The shooting parameters a and /3 correspond to the constants a and b used in 
Section 2.2.

We wish to find an s* =  [0, a*, 0, /3*]T such that ui(s, L) =  0 and u3(s, L) =  0. 
First, we define

F (a ,0 ) =

1-----

3
 

1 ___ Ui(s, L)

i 53 p 3 i__
_ _ u3(s ,L)

Newton’s method applied to F (a , ¡3) =  0 is

-̂k+l — §-k ~~ J (iLk)F-{Sk)i

where sk — [ak,/3k]T and

¿ (& )
I&Ufc) %H®*)

We need to find and Differentiating the initial value prob-
lem (2.37) with respect to a we get

dg_
da

(u2{s,x ))a 
(u3(s, x ))a 
(u4(s, x ))a

-2{u3(s ,x ))a -  (1 -  e)(«i(s,a :))a -  3(«i(s, x ))2^ !^ ,  x))a _

. (2.39)
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Assuming the order of differentiation can be reversed the left hand side of equa-
tion (2.39) becomes

dg_
da dx

(«1 (& *))«
X )Ya

(u3(s,x))'a 
{ua(s , x))'a

(2.40)

Let u5 =  «6 =  7̂ ,  u7 =  ^  and u8 — Then equation (2.40) becomesda da da

x) ue(s, x)

«eU .x ) u7(s,x)
u'7(s, x) u8(s, x)

_ iig(s,a:) _ - 2 u7(s,x) -  (1 -  e)M5(s,ar) -  3(ui(s, x))2u5(s, x)

(2.41)

The initial conditions (2.38) imply that

Ui(s, 0) =  0, m2(s , 0) =  a, u3(s, 0) =  0, and u4(s, 0) — fi. 

Differentiating with respect to a we get

(«l(s> °))a 
(u2(s, 0))Q 
(«3(s, 0))a 
(u4(s, 0))Q

0,
1,
0,
0,

« 5(5,0) 
u 6 ( s ,  0) 

u7(s, 0)

« 8(s, 0)

0,
1,
0,
0,

(2.42)

du2where u5 =  u6 =  u7 ^  and u8 =  It can be seen that ^  =  it5(L) 
and ^  =  u 7(L).  Similarly, we differentiate the initial value problem (2.37) with 
respect to ¡3 and use the same argument as above to obtain the initial value 
problem

(2.43)

(2.44)

(2.45)

2Un(s, x) -  (1 -  e)ug(s,x) -  3 («i(s, x))2Ug(s, x), (2.46)

u9(s, x) =  U10(s,x),

u[oU,x) =  un (s,x),

u'n (s, x) =  u12(s,x),

u'12{s ,x ) =  -2 u n (s,
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subject to
« 9(1, 0) =  0,

« i o ( l , 0 )  =  0 ,

« n ( l , 0 )  =  0 ,

« 12( l ,0) =  1,

where ug =  uio =  «n — ^af anc* “ 12 =  It can be seen that
=  u9(L) and ^  =  un (L).
The original boundary value problem has become the problem to solve the 

larger initial value problem

« i( l, x) =  «2  ( s , x ) ,

«2(1, X) =  «3(1,2:),

U3U,  X) =  «4(1,3;),

U4U, x) =  - 2  u 3( s ,x ) -  (1 -  e)ux(s, x)  -  (« i(l, x ) ) 3 ,

u'5( s , x ) =  u6(s,x),

u'e ( s , x ) - U7(s,x),

u'7(s, x) =  u8( s , x ) ,

«s(l, x) =  —2u 7(s , x ) -  (1 -  e)u5( s , x )  -  3 ( ^ ( 3 ,  x ))2u 5(s , x ),

U9U1 x) =  «10(1, z),

«10 U> x) =  u n ( s , x ) ,

«11 ( l ,® ) =  «12(1,3;),

«12 (l, x ) =  —2 u u ( s , x ) -  (1 -  e)u9( s , x )  -  3 (wi(s, x ) )2Ug(s, x)

(2.47)

su b je c t to

« 1 ( 1 , 0 )  =  0 , « 7 ( 1 , 0 ) =  0,

« 2 ( 1 , 0 )  -  a , «8 ( l ,0 ) =  0,

« 3 ( 1 , 0 )  =  0 , « 9 ( 1 ,0 ) =  0 ,

« 4 ( 1 ,0 )  =  /?, « 10 ( 1 ,  0) =  0 ,

« 5 ( 1 , 0 )  =  0 , «1 1  ( 1 ,0 ) =  0 ,

« e ( l ,  0) =  1 , « 1 2 ( 1 , 0 ) =  1 ,

and a t each ste p  w e ite rate  usin g

ak+1 ak “ t 52 <£>?
?■ 

__
_1 -1 1----S1___

f3k+1

___1 < «11 . . U3 .

(2.48)

where k denotes the iteration step. In this way, starting from an approximate
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initial guess cr° and /3° the scheme is designed to find the values of a =  «'(0) 
and ¡3 =  u"'(0) corresponding to a steady-state solution of (2.12) and (2.13). The 
scheme can be started from small values of e, where the weakly nonlinear theory 
can be used to provide estimates of a and /? for small t. Results can then be 
extended to larger e and a range of values of L by incrementing the values of 
both L and e.

2.4.2 Boundary Value Problem: Finite Difference Method

The shooting method used in Section 2.4.1 often presents problems of numerical 
instability at large L. The method we present in this section has better stability 
characteristics, but generally requires more work to obtain a specified accuracy. 
This is because in the shooting method each contributing differential equation 
solution can be made as accurate as we please by use of modern computer routines 
in which the combined selection of interval size (adaptive stepsize) and order 
(adaptive order) of the method for a required accuracy are more or less automatic, 
whereas for the Finite Difference (FD) method described here these parameters 
(stepsize and order) must be specified from the start. Finite difference methods 
are generally faster since the relevant equations are solved simultaneously rather 
than in a step-by-step manner.

Consider the steady-state version of the boundary value problem (2.12)-(2.13). 
We introduce a finite set of grid points xn =  nh, for n =  1, 2 , . . . ,  N, where N  G N 
and h =  L/(N +  1). Using the finite difference approximations

(̂*̂ re)
h U:rx (Xji ) — Un+i 2Un Wn_i,

h x̂xxxix̂ n) ^n+2 ~~ U 1Ln—2,

to approximate u, uxx and uxxxx respectively, the ordinary differential equation 
(2.12) becomes

un+2 +  (—4 +  2h2)un+i -)- (6 — 4h2 +  (1 — e)h4)un +

+  (—4 +  2h2)un-i  +  un- 2 +  Un =  0, (2.49)
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at the nodal points xn =  nh, 1 <  n < N. The boundary conditions become

u0 =  0, i — 2 u0 +  u\ =  i +  Ui =  0,
Mjv+1 =  o, Ujv+2 ~  2«iv+l +  Wat =  «AT+2 +  Uyy =  0.

Substituting for u_i and Ujv+2 in the first {n — 1) and the last (n — N) equations 
in (2.49), we obtain in matrix form

Au +  b =  0, (2.50)

where b — [n f ,« ! , . • •, u3N_l,iiiN]T and A is an N x N  matrix defined by

Oi - 4  +  2 h2 1 0 0

- 4  +  2fi2 a2 - 4  +  2/i2 1

1 - 4  +  2 h2 a3 - 4  +  2h2

- 4  +  2h2 O-N- 2 - 4  +  2h2 1

1 - 4  +  2h2 cl n—i —4 +  2/z2
0 0 1 —4 “4" 2/i2 0-tv

with a*, for i =  1, 2, . . . ,  iV, defined by

5 -  4/i2 +  (1 -  e)fi4
6 — 4 h2 +  (1 — e)fi4 
6 — 4/i2 +  (1 — e)h4

6 — 4h2 +  (1 — e)hA 
6 — 4 h2 +  (1 — t)hA 
5 — 4 h2 +  (1 — e)h4

The truncation error associated with the system (2.50)can be obtained as

Tx =  (59fi6M6)/360,
Tn =  (h6M6)/6, for 2 <  n <  N  -  1,
Tyv =  (59h6M6)/360,

Oi

«2
«3

« at-2
Oyv-l

oat
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where M6 =  max0<x<L |«^(:r)|. Given a sufficiently close initial guess the non-
linear system (2.50) can be efficiently solved using a Newton-Krylov algorithm.

The FD code is used when the shooting method fails. Generally, this is when 
L is large.

2.5 Numerical Results

We use the ODE solver within Matlab’s ODESUITE  (1996, [46]) to solve the 
extended initial value problem (2.47)-(2.48).

We can follow the solutions by incrementing2 in L or e; and by using the results 
of the previous nearby calculations as our initial Newton iterative guess, denoted 
by a 0 and /?°, the shooting parameters a and ¡3 can be efficiently calculated within 
the parameter space (L, e) 6 [0,oo) x [0, oo). Fixing L = n and e =  0.1 we set 
the algorithm to find solutions for an initial guess of (a0, /3°) calculated from the 
results of the weakly nonlinear theory for small e. Possible solutions at these 
values include the trivial solution and a symmetric pair of solutions, i.e.,

(a,jS) 6 { ( 0, 0), (0.365814,-0.370378), (-0.365814,0.370378)}.

The plot of the solution with (a, ¡3) =  (0.365814,-0.370378) and x G (0,50) 
together with its phase diagram and its power spectrum is shown in Figure 2.14. 
From this diagram we can see that if the solution is extended to values of x beyond 
the range [0, L\ it eventually diverges from its approximate sine function profile 
(i.e., the phase plot shows that the solution is moving off the closed loop), as 
would be expected for a shooting method (due to the linear growth of the error). 
The variation of a and (3 as a function of L for various values of e is shown in 
Figure 2.15.

Fixing L =  7T and increasing e in steps of 0.1, the results in Figure 2.16 show 
that the solution has a profile which increases in amplitude as we increase e. 
Increasing e further, Figure 2.17, we see that the solution becomes more square 
in profile.

The behaviour of a  and ¡3 as a function of L at e =  0.65 indicates a much

2 In our path following-code we used a heuristic method to increment the step-size in L or 
e. The code monitors the number of Newton iterations and reduces or increases the step-size 
when the number of iterations increases or decreases respectively. This adaptive code is faster 
and can also resolve the curvature more finely.
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Solution with £=0.1, a=u'(0)=0.36581 and b=u”’(0 )= -0 .37038

Spectral plot (for q below Nyquist number, 257.3593)
0.4---------------r-------------.----------------.-------------t-------------- 1--------------

o.35.............;•............ ■;.............•;............. ; ............. ;•.............

0 .3 .............: .............:............. : ............. : .............: .............
E
2 0.25 ............. ............ :.............•:............. : .............  ............

IGO 0 .2 .............. ............. ;..............•;............. : ...............: ..............
<D
I  0.15 r ............. .............. : .............. : .............. : ..............
Q.

0.1 :........•:....... j........>........
o.o5............. ;•.............;.............•;............. |............. r .............

o L  — ■ —  ■ —  ■ 1 - 1 ------------
0 50 100 150 200 250 300

wavenumber q

Phase plot

wavenumber q

Figure 2.14: A solution at the point (L, e) =  (7r, 0.1). At this parameter point 
(a, ¡3) — (0.365814,-0.370378). We have extended the solution by plotting the 
solution for x (E (0,40).

more complicated bifurcation structure than we had first thought. Fixing e =  0.65 
and increasing L in steps of 0.1, the results in Figure 2.18 show that the solu-
tion changes to a profile with a third of the wavelength. This change can be 
seen more gradually in Figure 2.19. The change is due to the interaction of 
different Fourier modes leading to multiple branches at fixed values of e and 
L. Figures 2.20 and 2.21 show the bifurcation diagram of typical multi-solution 
structures that exist3. The plots are for the regions (L,e) =  ( t |£G(4.9)5.2) ,0.4^

and (T,e) =  (^L\Le(772) ,0.65^ respectively. As we show in Section 2.6 the bi-
furcation structures in Figures 2.20 and 2.21 are first generated at the points 
(L,e) =  (\/T07r /2, 9/25) and (L,e) =  (VEn, 16/25) respectively. With reference

3More complicated structures, corresponding to the mixing of higher modes, can exist for 
sufficiently large L.
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Figure 2.15: Plots of the parameters a and /3 as a function of L for e =  0.01, 0.1, 
0.3, 0.4 and 0.6.

to Figure 2.13, the point (L, e) =  (\/l07t/ 2, 9/25) corresponds to the intersec-
tion of the first and second curves (we shall call this point the mixed-1-2 critical 
point). Similarly, the point (L, e) =  (\/57r, 16/25) corresponds to the intersection 
of the first and third curves (and we shall call this point the mixed-1-3 critical 
point). We shall investigate these points in more detail in Section 2.6. Note that 
there are also symmetric solutions which correspond to both of the parameters a 
and /? switching signs. These are equivalent to Figure 2.20 or 2.21 flipped upside 
down.

The profiles of the solutions in Figure 2.20 show three different types of 
solutions— the mode 1 solution, the mode 2 solution and solutions which have 
a mixture of the first and second modes. Examples of mixed-1-2-mode solutions 
are shown in Figures 2.22-2.24.

The profiles of the solutions in Figure 2.21 show two different types of solu-
tions: the mode-3 solution and solutions which have a mixture of the first and
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Figure 2.16: Profiles of the solution u for fixed L — n and increasing e.

Figure 2.17: Profiles of the solution u for fixed L =  7r and higher e.
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third modes. Our results also indicate that there are no solution branches con-
sisting purely of the first Fourier mode. This will be made clear by the local 
analysis in Section 2.6. An example of a mode-3 solution is shown in Figure 2.25; 
and three examples of mixed mode solutions are shown in Figures 2.26-2.29.

In Section 2.6 we perform a local analysis at the mode-1-2 and the mode-
l-3  critical points, i.e., at (L,e) =  (\/l07r/2,9/25) and (L,e) =  (7r\/5,16/25) 
respectively.
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1 r

Figure 2.18: Profiles of the solution u obtained from the numerical scheme for 
fixed e =  0.65 and L =  7r, 7T+0.1, 7T+0.2, . . . ,  7T+3.9. A more detailed examination 
of all possible solutions (displayed in Figure 2.21 below) reveals that the final 
profile is on the red branch of Figure 2.21, whilst the other profiles are on the 
green branch.
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0.25 T T T T

Figure 2.19: Profiles of the solution u for fixed e =  0.65 and finer increments of 
L near n 4- 3.9. The final two profiles are on the red branch of Figure 2.21 below, 
whilst the other profiles are on the green branch.
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CnO

Figure 2.20: Plot showing multiple steady-state solutions in the region (L,e) =  yL\Le .̂ÿt5.2) , 0.4J. Also shown is the profile 
of the solution at various points.



Figure 2.21: Plot showing multiple steady-state solutions in the region (L,e) =  yL|Le(772) , 0.65J. Also shown is the profile
of the solution at various points. Note that the bifurcation point of the dark blue (mode 1 ) solution obtained numerically at
L =  7.13677273 is consistent with the value L =  7r(l — e^)~5 =  7.13677275 predicted by linear theory.



Solution with e=0.4, u’(0)*0.24797 and u”'(0 )«—0.35239 Phase plot

Spectral plot (for q  below Nyquist num ber, 8 .0 42 5 ) Spectral plot (for q in (0 ,2 ))

Figure 2.22: An example of a mixed-1-2-mode solution at L =  4.9495, e — 0.4.

Solution with e=0.4, u’(0 )= 0 .2 52 9 2  and u'” (0 )= -0 .3 0 4 1 6  P hase plot

w a ven um b er q

Spectral plot (for q  in (0 ,2 ))

Figure 2.23: An example of a mixed-1-2-mode solution at L =  4.9673, e =  0.4.
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Solution with e=0.4, u’(0)=0.22609 and u'”(0)=-0.22516 Phase plot

Spectral plot (for q below Nyquist num ber, 8 .0425) Spectral plot (for q  in (0 ,2 ))

gure 2.24: An example of a mixed-1-2-mode solution at L — 4.9867, e =  0.4.

Solution with e -0 .65 , u’(0)«0.2691 and u’”(0)— 0.4814 Phase plot

Spectral plot (for q below Nyquist number, 8.0425) Spectral plot (for q in (0,2))

Figure 2.25: An example of a pure-3-mode solution at L =  7.0248, e =  0.65.
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Solution with e*0.65, u’(0)=0.14184 and u’”(0)— 0.21448 Phase plot

Spectral plot (for q below Nyquist number, 8.0425) Spectral plot (for q in (0,2))

Figure 2.26: An example of a mixed-1-3-mode solution at L =  7.0248, e =  0.65.

Solution with e-0 .65, u ’(0 )— 0.040779 and u’”(0 ) -0 .12084 Phase plot

Spectral plot (for q below Nyquist number, 8.0425) Spectral plot (for q in (0,2))

Figure 2.27: An example of a mixed-1-3-mode solution at L =  7.0248, e — 0.65.
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Solution with e=0.65, u '(0 )-0 .12579 and u”'(0)— 0.21278 Phase plot

Spectral plot (for q below Nyquist number, 8.0425) Spectral plot (for q in (0,2))

Figure 2.28: An example of a mixed-1-3-mode solution at L =  7.0203, e =  0.65.

Solution with e=0.65, u’(0 ) -0 .13745 and u”'(0 )— 0.17626 Phase plot

Spectral plot (for q below Nyquist number, 8.0425) Spectral plot (for q in (0,2))

Figure 2.29: Another example of a mixed-1-3-mode solution at L =  7.0307, e =
0.65.
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2.6 Mode Interactions

In Section 2.5 we have found evidence of the interaction of the first and second 
Fourier modes (we shall refer to this as the mode-1-2 interaction); and the first 
and third Fourier modes (similarly, we shall refer to this as the mode-1-3 inter-

steady-state solutions. From now on we shall denote by the term ‘primary bi-
furcation’ a bifurcation from the zero state to a non-zero (or primary solution) 
convective state with increasing e; and by 1secondary bifurcation’ any further bi-
furcation of the primary convective solution with increasing e (we shall denote 
the solutions that arise at a secondary bifurcation as secondary solutions). The 
marginal curves that we have computed in Section 2.3.1 given by (2.15) (see also 
Figure 2.13) represent the primary bifurcation loci of different individual Fourier 
modes. In this section we shall derive the loci of secondary bifurcations, and 
in particular, bifurcations to mixed-1-2 and mixed-1-3 solutions. The results of 
Section 2.5 have indicated that the primary solutions first undergo bifurcations to 
secondary solutions in the neighbourhood of the intersection points of the different 
marginal curves. The first and second pure mode solutions first undergo bifurca-
tions to mixed-1-2 solutions near the intersection of the first and second marginal 
curves, i.e., at the mixed-1-2 critical point =  (\/ÎÔ7r/2 ,9 /25 ). The
first and third pure mode solutions first undergo bifurcations to mixed-1-3 so-
lutions at the intersection of the first and third marginal curves, i.e., at the 
mixed-1-3 critical point ec1’3̂ ) =  (7r-\/5,16/25). In this section we shall
perform local analyses and derive the bifurcation loci local to the mixed-1-2 and 
the mixed-1-3 critical points. Cox (1996, [10]) has considered similar interactions 
in Rayleigh-Bénard convection.

First, let us consider the mixed-1-2 interaction.

action). The numerical results indicate that these interactions produce multiple

2.6.1 Mode-1-2 Interaction

Consider the one-dimensional Swift-Hohenberg equation for u(x,t)

(2.51)
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with boundary conditions

u
d2u
dx2

0 at x =  0, L. (2.52)

We seek to calculate the solution structure in the neighbourhood of the mixed-1-2 
critical point, i.e., e('c1,2'> =  9/25. Perturbing about Cc1,2' we substitute e =  ec1,2̂ +  
Se, where e is a small and positive real parameter and into equation (2.51).
We have introduced the parameter 8 to allow consideration of e < 6c 2 . Balancing 
terms in equation (2.51) suggests that u(x,t) expands in powers of e1/2, that is

u =  ëx̂ 2Up +  èu\ +  è3/2u2 +  . . .  . (2.53)

In order to analyse equation (2.51) we shall incorporate modulations on the scales 
X  — èx and T =  it so that rq =  Ui(x, X ,T ). After substitution into (2.51), we 
collect and compare coefficients of powers of ë and we obtain

d̂ up nd2u0 16
dx4 dx2 25 U°
dAu\ nd2ui 16
dxA dx2 25Ul
d4u2 nd2u2 16
dx4 dx2 25U2

0,

0,

d4up d2u0 dtip 3
, +  4 —— +  —-  +  Un -  8up

dXdx3 dXdx dT

(2.54)

(2.55)

(2.56)

at orders e1/2, ë and ë3/2 respectively. Solving equation (2.54) we get

Up =  B exp(iVÏÔx/5) +  C exp(2iVlÔx/5) +c.c., (2.57)

where B (X ,T ) and C (X ,T ) are complex amplitude functions and c.c. denotes 
the complex conjugate. On substituting for u0(x ,X ,T )  into equation (2.56) we 
obtain

d4u2 d2u2
dx4 dx2

dB_
dT

+ 3B\B\2 +  6B\C\2 -S B

12 y/ÏÔ.dB
25 %dX

.ixy/ÏÔ. 
exP( g )

'dC
dT

T 3C\C\2 +  6C\B\2 -  ÔC
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24 V b.dC  
25 ldX

,2ix\/ÏÔ. 
exP(-----=---- )

-  (B3 +  3BC2) e x p ( ^ )  -  3B2C e x p ( i ^ )
5 5

— 3B2C exp(^ Xy ^ ) — 3BC2 exp(ix\/ÏÔ)

— C3exp(
6hr\/I()

) +  c.c., (2.58)

where B denotes the complex conjugate of B. The secular terms arise from the 
presence of ±exp(iVT0a:/5) and ±exp(2i\/T0a;/5). They can be eliminated by 
setting

dB PRIRI2 I fiRiri2 AR i dBd f  +  W \B\ +6B\C\ - 6 B  + - ^ - r — 0, (2.59)

0. (2.60)

We are interested in solutions which are periodic in x and satisfy the boundary 
conditions (2.52) and so we set

B =  b(T) exp(iQX  +  iD(T)) and C =  c(T) exp(2iQX +  iE(T)), (2.61)

where b, c, D and E are real functions of T ; and Q is a constant. The boundary 
conditions u — uxx =  0 at x — 0 then require that cos D =  cos E =  0 in which 
case we may take D =  E =  7r /2. The remaining conditions u — uxx =  0 at x =  L 
are then satisfied provided that

cos
f  V T Ô  7T
I —-—L +  QaL +  — ) — cos

2\/ÏÔ 7r—— L +  2QeL +  — 
5 2

=  0.

This is possible, and requires that

VÎÔ
L +  QIL — mr,

where n is an integer. The choice n — 1 ensures that Q =  0 corresponds to the 
critical point L =  \/l07r/2.
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(6 + q )b -3 b 3 -6 b c2, (2.62)

(5 -  4g)c -  3c3 -  6c62, (2.63)

where q =  12\/T0Q/25. A more general form of the coupled system (2.62), (2.63) 
has been studied by Dangelmayr (1986, [17]) and Dangelmayr and Knobloch 
(1986, [18]) in their examination of steady state mode interactions in the presence 
of 0(2)-symmetry. Define the functions fi  and f 2 as

From equations (2.59), (2.60) and (2.61) we get

/ x(6,c) =  (5 +  <?)6 -  363 -  66c2, (2.64)

f 2(b, c) =  (6 — Aq)c — 3c3 — 6c62. (2.65)

For the steady-state solutions we need to solve the nonlinear system (see, for 
example, Golubitsky and Schaeffer (1985, [27]))

fi(b,c) =  0, (2.66)

h{b,c) =  0. (2.67)

We find that there are four qualitatively different sets of solutions. These are

1. the trivial solution set, where 5 =  0 and c =  0,

2. the pure mode-1 solution set, where b =  ±(\/35 +  3q)/3 and c =  0 (solu-
tions exist for 5 >  — q),

3. the pure mode-2 solution set, where 6 =  0 and c =  ±\/35 — 12q/3 (solutions 
exist for Ô >  4q),

4. the mixed-1-2 solution sets, where 6 =  ±\A5 ~  9ç/3, c =  ±y/fi~+~6q/ 3
and 6 =  ±y/5 — 9<?/3, c =  +  6g/3 (these solutions exist for 5 >
m ax{—6q, 9ç}).

Figure 2.30 is a plot of the amplitude, \Jb2 +  c2, against q for the four different 
sets.

db_
dT
dc
dT
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From (2.53), (2.57) and (2.61) these correspond to

Figure 2.30: An amplitude plot at S =  0.01, showing the bifurcation structure of 
the mode-1-2 interaction.
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Mode-1-2 Interaction: Stability Analysis

Now, we seek to analyse the stability of the solutions found in Section 2.6.1. 
Consider the Jacobian matrix of the nonlinear system (2.64)-(2.65)

(6 +  q) — 9 62 — 6c2 —126c
—126c (6 — 4 q) — 9c2 — 662

For the trivial solution set

J\(b=0,c=0) =

and the trivial solution bifurcates to the primary solution along 6 =  —q and 6 =  
4q. The trivial solution is only stable when m in{—6, 6 /4 } < q < m ax{—6, 6 /4 } 
(in Figure 2.30 unstable solutions are shown by dashed lines and stable solutions 
by a solid line). Figure 2.31 shows the bifurcation loci in terms of the parameters 
e and q =  n/L using the relations (2.69). Here the results are also compared with 
the numerical results of Section 2.5.

For the pure mode-1 primary solutions

J I (&=±( V3<5+3g)/3,c=0) =

and the primary solutions bifurcate to the secondary solutions along 5 =  —6q for 
q < 0. The pure mode-1 primary solution is only stable when q >  m ax{—S, —6/ 6} 
and it exists only within the region q < —6 (see Figures 2.30 and 2.31).

For the pure mode-2 primary solutions

- 6  +  9q 0
0 -2 6  +  8 q ’

and the primary solutions bifurcate to the secondary solutions along 5 =  9q for 
q > 0. The pure mode-2 primary solution is only stable when q <  m in{6 /4 ,6 /9 } 
and it exists only in the region q < 6/4 (see Figure 2.30).

For the mixed-1-2 solutions or secondary solutions

-2 6 /3  +  6q -4 y / (5 -9 q ) (6 +  6g)/3 ’
- 4 ^ ( 6 -  9q)(6 +  6q)/3 -2 6 /3  -  AqJ\{b=±V7=9q/3,c=±̂ 5+6q/3)

A 6=0,c=±V3<5—12g/3)

-2 6  - 2q 0 
0 — 6 — 6q

6 +  q 0 
0 6 — Aq

<Ux 2A
db dc

dj* d j2
db dc .
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and

^l(6=±v^=9ç/3,c=Tv/3+6|/3)
-2 5 /3  +  6 q 4^/(5 — 9ç)(5 +  6ç)/3 

4v/ ( 5 - 9 ç ) ( 5  +  6ç)/3 -2 5 /3  -  4ç

The two Jacobians have the same eigenvalues4

25 +  3q ±  y/1652 -  485ç -  639ç2 
3

and they vanish when 5 =  —6ç and 5 =  9q. Hence the mixed-1-2 secondary 
solutions bifurcate back to the primary solutions along 5 =  — 6q for q < 0 and 
5 =  9q for q > 0. Note that the solution exists only for q <  m in{—5 /6 ,5 /9 } and 
q > m ax{—5 /6 ,5 /9 } and it is stable when

^ 25 +  3q ±  v / 1652 -  485g -  639q1 ̂  >  Q

This is only true on the lines q — —5/6 and q =  5/9 (see Figures 2.30 and 2.31). 
Figure 2.31 compares the results from the numerical method with those from the 
perturbation analysis. The results agree very well for (L , e) close to the critical 
point (l £1,2),Cc1,2)) =  (n/TOtt/ 2 ,9/25).

Now, consider the mode-1-3 interactions.

2.6.2 Mode-1-3 Interaction

Progressing in a similar way as in Section 2.6.1, we seek to calculate the solution 
structure in the neighbourhood of the mixed-1-3 critical point, ê 1,3̂ =  16/25. As 
before, perturbing about ê 1’3̂ we substitute e =  Cc1,3̂ +  5e, where e is a small 
and positive real parameter and 5 € R , into equation (2.51). Assuming u(x,t) 
expands in powers of e1/2, i.e.

u =  ê^ iio  +  ëtti +  ë3/,2u2 +  • • •, (2.70)

4Notice that the Jacobian is a real and symmetric matrix. Thus all eigenvalues are real.
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Figure 2.31: A plot showing the bifurcation set for the mode-1-2 interaction.
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and incorporating modulations on the scales X  =  lx  and T =  et such that 
Ui =  Ui(x,X,T) we obtain

d Au 0 d 2Up

dx4 dx2
d4Ui d2u\
9a:4 9a:2
94u 2 92u 2
9a:4 9a:2

9
+  25"° 

9
+  25“ 1 

9
+  25“ 2

0, (2.71)

0, (2.72)

4 +  4 _ ^
9X9a:3 9.Y 9a;

+
9n0
9T

+  Wo - (2.73)

at orders ë1/2, ë and ë3/2 respectively. Solving equation (2.71) we get

Up =  B exp (ix/\/5) 4- C  exp(3io:/\/5) +  c.c., (2-74)

where B (X ,T ) and C (X ,T ) are complex amplitude functions and c.c. denotes 
the complex conjugate. On substituting for up(x,X,T) in equation (2.73) we 
obtain

94n2 92m2
dxA dx2

3B_
9T

+  3£|H|2 +  6B|Cj2 +  3 £ 2C

r p  I 16V5. dB
SB +  I T ' « exp(hr/-\/5)

dC
—  +  3C|C|2 +  6C|j5 |2 +  B 3

_  48\/5.9C
— 5 0 -----——î exp(3zo:/\/5)

25 9X

— (3BC2 +  3B2C) exp(\/5ô:)

— 3BC2exp(7zx/v/5) — C3 exp(9za:/v/5)

+  c.c, (2.75)

where 5  denotes the complex conjugate of B. Here secular terms arise from the 
presence of ±exp(*x/\/5) and ±  exp(3u;/\/5) and vanish when

dB
dT

+ 3B\B\2 +  6B\C\2 +  3B2C -  SB +  

d r
-^= +  3C\C\2 +  6C\B\2 +  B3 - Ô C -

16>/5 .dB 
25 ldX  

48\/5. dC 
25 *9X

=  0,

=  0.

(2.76)

(2.77)

We are interested in solutions which are periodic in x and satisfy the boundary
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conditions (2.52) and so we set

B =  6(T) exp(z(QX +  D(T))) and C =  c(T) exp(3i(QX  +  D(T))), (2.78)

where 6, c and D are real functions of T and Q is a constant. The boundary 
conditions u =  uxx =  0 at x =  0 then require that cos D =  cos 3D =  0 in which 
case we may take D =  7t / 2. The remaining conditions u =  uxx =  0 at x — L are 
satisfied provided that

cos +  QcT +  ^  =  cos ^ =  0.

This is possible, and requires that

—t=L +  QeL =  nn,
V5

where n is an integer. The choice n =  1 ensures that Q — 0 corresponds to the
critical point L =  y/bn.

From equations (2.76) and (2.77) we get

db
dT

(6 +  q)b — 363 — 66c2 — 362c, (2.79)

dc
dT

(6 — 9 q)c — 3c3 — 6c62 — 63, (2.80)

where q =  16y/bQ/25. Let

/ i ( M  = (6 +  q)b — 363 — 66c2 — 362c, (2.81)

/ a ( M  = (6 — 9ç)c — 3c3 — 6c62 — 63. (2.82)

For the steady-state solutions we need to solve the nonlinear system

flip-,c) =  0, (2.83)

/ 2(6, c ) =  0. (2.84)

Here we find that there are three qualitatively different sets of solutions. These 
are

1. the trivial solution set, where 6 =  0 and c =  0,
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2. the pure mode-3 solution set, where 6 =  0 and c =  ±y/[(S — 9g)/3) (solu-
tions exist for 5 > 9q),

3. the mixed-1-3 solution set, where 6 ^ 0  and 0.

Notice that there are no pure mode-1 solutions local to this region. This is due 
to the cubic nonlinearity of the SH equation. We have noticed in Section 2.5 that 
the mode-1 solution first bifurcates from the trivial branch (i.e., with respect to 
the parameter L) as a pure Fourier mode solution but the Fourier composition 
changes with L to a mixed-1-3 solution. Also, we have avoided writing down, 
analytically, the expressions for 6 and c of the mixed-mode solutions, because 
they are quite long expressions. We have found that it is much more efficient 
to obtain these solutions via numerical methods such as the Newton iteration 
scheme or the bifurcation analysis package AUT097 ([24], 1997). We used the 
Newton iteration scheme to solve for all real and non-zero solutions of 6 and c. 
The results are presented in Figure 2.32.

From (2.70), (2.74) and (2.78) these correspond to

u «  ë1/2 l 6 sin 

where

1 25 J
|An/ 5 + 16VI<' 11

+  csin

25\/2__

/  1 25 ;
3 W 5  +  Ï W 5 9 11

16
L «  tts/5 [ 1 ----- —— ëç I , e =  — +  18.

24 25

(2.85)

(2.86)

M ode-1-3 Interaction: Stability Analysis

Now we seek to analyse the stability of the solutions so let us consider the Jacobian 
matrix of the system (2.81)-(2.82)

J =
(6 +  q) — 962 — 6c2 — 66c 

- 1 2 6 c -  362
—126c — 362 

(Ô — 9 q) — 9c2 — 662

For the trivial solution

(2.87)

T|(b=o,c=o)
S +  q 0 

0 6 -  9q ’

and the trivial solution bifurcates to a primary branch along S =  —q and S =  
9g; and it is stable for m in{—<5,6/9} < q <  m ax{—8,6/9}. Figure 2.32 shows
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Figure 2.32: An amplitude plot at S =  0.01, showing the bifurcation structure of 
the mode-1-3 interaction.

the stability regions and Figure 2.33 shows the bifurcation loci in terms of the 
parameters e and q =  n/L using the relations (2.86). Here the results are also 
compared with the numerical results of Section 2.5.
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For pure mode-3 primary solutions

JI(b=0,c=±y/(S-9q)/3)
-Ó +  19 q 0

0 -2Ó +  18 q ’

and the primary solutions bifurcate to secondary solutions along Ô =  19q. The 
pure mode-3 primary solution is stable when q <  min{5/19, 25/18} and it exists 
only in the region q > S/9 (see Figures 2.32 and 2.33).

The mixed-1-3 problem is more complicated than the mixed-1-2 problem of 
Section 2.6.1. Here, the analytic solution for 6 ^  0 and c ^  0 is too complex to be 
considered directly. We shall approach it differently. Consider the determinant 
of J\(b̂ o,ĉ o)- The solution bifurcates when det J =  0, i.e., when

[{6 +  q )~  9b2 -  6c2 -  6be] [(5 -  9q) -  9c2 -  6b2] -  [12be +  3b2] 2 =  0. (2.88)

Using equations (2.83) and (2.84) we write 6 and q in terms of b and c

6 =  (33c62 +  57c3 +  276c2 +  &3)/10c, (2.89)

q =  -(3cb2 - 3 c 3 -3 b c2+  b3)/10c. (2.90)

Substituting for 5 and q in (2.88), and simplifying we get

-  1264 -  72cb3 -  108b2c2 +  18c36 -  0.
c

Define a  such that b =  ac (a is real since b and c are real). Substituting for b we 
get

c4 ( - 6a 5 -  12a4 -  72a3 -  108a2 +  18a) =  0,
- 6ac4 (a4 +  2a3 +  12a2 +  18a -  3) =  0,

=> a4 +  2a3 +  12a2 +  18a -  3 =  0.

Note that we have used the conditions that b ^  0, c 0 and a  ^  0 (note that 
a /  0 since b ^  0). Solving the quartic polynomial in a  we obtain a pair of real 
roots and a complex conjugate pair. The real solutions are

a+ =  -1 /2  -  c/2  +  l/2y/(-14c -  392(1/3)c +  14) / c> 
a_ =  -1 /2  -  c/2  -  l/2 -y /(—14c -  392(V3)c +  14) /c ,

where c =  y/—7 +  392(1/3). Numerically, a+ ~  0.15105 and a_ ~  —1.71550.
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<5 -  18.28751<7, for q >  0, (2.91)

6 =  -17.33676q, for q < 0. (2.92)

Equations (2.91) and (2.92) are the loci formed of turning points of the solutions. 
In Figure 2.32 we can see the two turning points represented by the loci.

To calculate the stability region of the mixed-1-3 solutions we substitute values 
of b and c, derived from the Newton iteration scheme, into (2.87) and note the 
points where the eigenvalues change sign. The results can be seen in Figure 2.32.

2.7 Summary

In this chapter we have found solutions of the one-dimensional SH equation, with 
particular emphasis on solutions which are periodic in x with wavelength 2L. 

Summarising what we have found in Chapter 2:

• We have calculated the marginal curves of linear stability to different Fourier 
modes, i.e.,

e =  (in2 -  l )2 =  ((«7r/L)2 -  l ) 2, for n =  1 ,2 ,3 , . . . .

• We have calculated the weakly-nonlinear periodic solutions

[ e , o . rt'KX  1 _  1
u «  2W -(1  - 4 Q 2)5 sin— , e - > 0.

where Q is related to L by (2.29).

• We have calculated numerically nonlinear periodic solutions u =  up for 
different values of e and L.

• We have analysed the interaction of the first and second Fourier modes 
leading to multiple steady-state periodic forms near e =  ^  and L =  •

• We have analysed the interaction of the first and third Fourier modes leading 
to multiple steady-state periodic forms near e =  and L — 7t\/5.

Substituting b =  a±c into equations (2.89) and (2.90) we get
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Figure 2.33: A plot showing the bifurcation loci for the mode-1-3 interaction.
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Chapter 3

Floquet Theory for the 
One-Dimensional 
Swift-Hohenberg Equation

3.1 Introduction

In this chapter we study the perturbation of periodic solutions at finite e to 
spatial disturbances. In Section 3.2 the perturbed system that is formed suggests 
the use of Floquet theory. By analysing the Floquet exponents we determine the 
locus that separates the regions where the perturbations are spatially decaying 
or growing from the regions where the perturbations are oscillatory. The latter 
constitute what is known as the Eckhaus instability. In Section 3.3 we extend 
the weakly nonlinear analysis of Section 2.3.2 to obtain an approximation to 
the Eckhaus instability boundary1 for small e. In Section 3.4 we compare the 
weakly nonlinear results with the numerical results for general e obtained from 
the Floquet analysis.

1We shall refer to it as the Eckhaus boundary.
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3.2 Asymptotic Solution

Consider the steady-state one-dimensional Swift-Hohenberg equation (2.1). We 
wish to find solutions at finite values of e which approach2 the periodic solution

OO
up(x) =  Am sin mqx, (3.1)

m=1

as x —̂ oo, where q — ^ is the wavenumber. In practice we can use the numerical 
form of up, where up is any periodic solution of

i d 2 \ 2
V dx2 +  1 ) up ~ €Up +  uI =  0, (3.2)

subject to the free boundary conditions

Up(0) =  -^ ^ (0 ) =  0 and up(L) = ~ ^ { L) =  (3-3)

as calculated in Section 2.5. Solutions which tend to the periodic solution, up, as 
x —> oo may be found by considering a perturbation to up so that u is written as

u(x) =  Up(x) +  kU(x) +  . . . ,  (3.4)

where the constant k <C 1. Substituting (3.4) into equation (2.1) using (3.2) and 
ignoring nonlinear terms in k we find that U satisfies

2

U — ell +  3 UpU =  0. (3.5)

Equation (3.5) is a linear ordinary differential equation with periodic coef-
ficients. Hence Floquet theory (see Ince (1956, [31])) suggests that there is a 
solution to this equation of the form

U{x) =  e~cxP {x ), (3.6)

where P(x) is periodic and has a period the same as that of uv. Note that if c
or P  is complex then the conjugate of kU is also a solution and can be added in

2 We study solutions which tend to the periodic solution as x ->  oo with the view of adding
a lateral boundary at x =  0.
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(3.4) to ensure that u is real. We shall denote the wavelength as A =  2L. To find 
the characteristic exponent, c, we assume that the solution U(x) can be written 
as

U{x) =  AU\(x) +  BU2(x ) +  CU3(x) +  DUA(x). (3.7)

We shall use the following four different sets of initial conditions to generate the 
four independent3 solutions, U\, U2, U3 and t/4,

tM o) =  i, U[( 0) =  t/"( 0) =  t/"'( 0) =  0, (3.8)

U'2{ 0) =  1, u 2(0) =  u2 (0) =  t̂ "(0 ) =  0, (3.9)

u r n  =  i, u 3( 0) =  t / '(0) =  t̂ (0) =  0, (3.10)

0) =  1, t/4(0) -  0) =  U'i{0) =  0. (3.11)

Substituting equations (3.6) and (3.8)-(3.11) into equations (3.7) we get

A = P{ 0), (3.12)

B = -c P (0 )  +  P'(O), (3.13)

c  = c2P(0) -2 c P '(0 )  +  P"(0), (3.14)

D = —c3P(0) +  3c2P'(0) -  3cP"(0) +  P '"(0). (3.15)

At the boundary x =  A we have

AUi(X) +  BU2{ A) +  CU3{ A) +  DUa( A) 

AU[{ A) +  BU'2{\) +  CP'(A) +  DU[{ A) 

At/" (A) +  BU''{ A) +  CT#(A) +  DU"(\)

At/"'(A) +  BU”\ A) +  CU3 {\) +  DU'l'{ A)

P(A)e~cA, (3.16)

(—cP(A) +  P'(A)) e_cA, (3.17)

(c2P(A) -  2cP'(A)

+ P "(A ))e -cA, (3.18)

( - c 3P(A) +  3c2P'(A) - 3 cP"(\)

+P '"(A )) e_cA. (3.19)

Using equations (3.12)—(3.15) and the periodicity conditions, i.e. P(0) =  P(A), 
P'(0) =  P'(A), P"(0) =  P"(A) and P'"(0) =  P"'(A), equations (3.16)-(3.19)

3The independent set of solutions is a basis for the solution space of equation (3.5); and so 
(3.7) is a general solution.
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become

AUi(X) +  BU2{ A) +  CU3( A) +  DUa{ A) =  T e -cA, (3.20)

AU[( A) +  BU'2{\) +  CU'3{\) +  DU[{ A) =  Be~cX, (3.21)

AU'{{ A) +  BUZ( A) +  CU” { A) +  DU'l{ A)

01OII (3.22)

AU'{'{\) +  BU ?{ A) +  CUS'{ A) +  DU'"(X) =  De~cX. (3.23)

Writing (3.20)-(3.23) in matrix form we obtain the condition for a non-trivial 
solution as

det W  =  0,

where W , also known as the Wronskian matrix, is defined by

W(c)

U\(X) — e_cA U2( A) U3( A) U,(X)
U[( A) U '( \ ) - e - cX A) Ui(\)
C/i'(A) V?( A) U3{\) -  e~cX U'H A)
U?( A) ^"(A ) U?{ A) U'l'i X) -  e -c\

(3.24)

(3.25)

Equation (3.24) is a complex determinantal equation for c. By solving the 
ordinary differential equation (3.5) with the four sets of initial values (3.8)—(3.11) 
we can obtain values for U\{X), U2(\), C/3(A), [/4(A) and their derivatives respec-
tively, i.e., all terms required to find c, the Floquet exponent. The calculations 
were done numerically using a method similar to that of Section 2.2. We also 
use the numerical values of up{x) from Section 2.4.1. The Floquet multipliers, 
e_cA, are then obtained from the eigenvalues of the Wronskian matrix, equa-
tion (3.25). Once we have values for c we can derive the corresponding P {x ) from 
equations (3.6)-(3.7) and the eigenvector4 (A, B,C, D) corresponding to e_cA.

Note that U =  u' is a solution of equation (3.5). We use this solution, for 
which c =  0, as a check on our numerical algorithm.

The Eckhaus boundary is the boundary separating solutions U(x) that are 
spatially decaying or growing from solutions U(x) that are oscillatory. We shall 
find that this occurs when c =  0 (or when e~cX =  1).

First let us extend the results of Section 2.3.2 and calculate the weakly non-
linear approximation of the Eckhaus boundary.

4To avoid ambiguity the eigenvector, (A ,B ,C ,D ), is chosen such that
VA2 +  B2 +  C2 +  D2 =  1.
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3.3 Weakly Nonlinear Analysis

Consider the steady-state amplitude equation (2.23) of Section 2.3.2, that is

rfi A
4 +  Aq — 3̂ 4° |̂ 4° |2 =  0. (3.26)

We study perturbations to the spatially periodic solutions for A0 found in Sec-
tion 2.3.2, which can be written in the form

\  =  ^ /| (l -  4Q 2)e«-ï+ c >, (3.27)

where the value of C corresponding to (2.30), (2.31) is 7r /2. Introducing a per-
turbation kB , Aq is written as

A0(X ) =  Ap{X ) +  kB(X) +  . . . , (3.28)

where the constant k is small and real. Substituting (3.28) into (3.26) and ne-
glecting nonlinear terms in k we find that B satisfies

J2 D
4dX 2 +  B ~ QB\Ap\2 ~ 3Al Ë =  °-

Writing
B  _  p ei{Q X + C )+ K X

where K  is real and ¡3 is complex, equation (3.29) becomes

(3.29)

(3.30)

(AK2 — 1 +  4 Q2 +  8iQK)/3 +  (—1 +  AQ2)/3 — 0, (3.31)

where f3 is the conjugate of /?. Writing ¡3 — f3r -I- ifc equation (3.31) becomes

(2K 2 -  1 +  AQ2)(3r -  4QKpi +  i{2K2̂  +  4QK/3r) =  0. (3.32)

Comparing real and imaginary parts and writing this in matrix form we get

M/3 — 0, (3.33)
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where

M  =
2K2 — 1 4- 4Q2 -4 Q K  

4 QK 2 K 2
(3.34)

and ¡3 =  [/3r, f3i]T. This is an eigenvalue problem for K, so for non-trivial solutions 
we equate the determinant of the matrix M  to zero, i.e.,

K 2(2K2 +  12Q2 -  1) =  0.

Solving equation (3.35) we get
K 2 =  0,

or
2 =  1(1 -  12

and in the second case K  is real when

1
2^3

< Q <
1

2\/f

(3.35)

(3.36)

(3.37)

(3.38)

The parameter K  is related to c from Section 3.2 and this shows that when 

— TTf <  Q < 2\/3 ^ iere are alwa.ys tw0 zero Floquet exponents and two that are 
real5. Thus in this region, perturbations exist which are spatially decaying or 
growing. Figure 3.1 shows this region in the e, q plane, the overall wavenumber q 
being related to Q by the formula q — 1 +  \ftQ from the analysis of Section 2.3.2. 
The results of this weakly nonlinear theory can be related to the general form 
(3.4) with U given by (3.6) by noting from (3.33) that Pi =  —2QK~lPr so that 
in (3.30)

B =  pr{ 1 -  2QK~li)eKX+i{QX+c). (3.39)

Then since u and Aq are related by (2.16) and (2.20), and setting C =  7r /2, we 
have

2t\

and, for the perturbation which decays as x —> oo,

( l  — 4Q2) 2 sin |x 1̂ +  ê Q̂ J , e —>■ 0, (3.40)

U =  e~cxP{x) (3.41)

5Notice that the two real exponents have opposite sign. This indicates that there is one 
growing and one decaying solution.
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Figure 3.1: Plot displaying regions of spatially decaying/growing and spatially 
oscillatory solutions for e <C 1. The Eckhaus boundary separates the two regions.

where the Floquet exponent

1
c ~ - ^ = ( l - 12Q2)K  e —> 0, (3.42)

and the periodic eigenfunction

P(x) ~  jsin x ( l  +  e2<2 )j +  2\/2Q (l -  12Q2) 2 cos +  |
3.43)

as e —> 0.
For perturbations associated with K  — 0, we clearly have c =  0 in (3.41) and 

since, from (3.34), it follows that /?r =  0, the periodic eigenfunction is given by

P{x) ~  —/3je2 c o s x ( l  + € * « ) ] ,  6 —y 0 (3.44)
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Comparing with (3.40), we see that (to within an arbitrary multiplicative con-
stant) this is equivalent to the solution U =  u'p mentioned earlier.

Now we search for solutions for B that are spatially oscillatory by writing

B _  ei(QX+C) y eiKX+ y e -iK X )t (3.45)

where K  is real and P and 7 are complex. A more general form can be assumed 
in which the term elKX is replaced by e~lKX with K  allowed to be complex, 
but it emerges that fully complex solutions for K  do not occur. Equation (3.29) 
becomes

[(4Q2 -  8QK  -  AK2 -  1 )b +  ( -1  +  AQ2)j ] eiKX +

+  [ ( -1  +  AQ2)p +  (AQ2 +  8QK -  AK2 -  1)7] e- iKX =  0. (3.46)

Comparing the coefficients of elKX and e~lKX and taking the conjugate in the 
second case gives

(4Q2 -  8QK -  AK2 -  1 )/3 +  ( -1  +  4Q2)y =  0, (3.47)

(4<32 +  8QK -  AK2 -  1)7 +  ( -1  +  AQ2)/3 =  0, (3.48)

or, in matrix form
Mp =  0,

where

M =
AQ2 -  8QK -  AK2 -  1 - 1  +  4Q2

- 1 + 4 Q 2 AQ2 + 8 Q K -A K 2 - 1

(3.49)

(3.50)

and ft =  [P ,iY- Equation (3.49) is an eigenvalue problem for K, so for non-
trivial solutions we equate the determinant of the matrix M  to zero and get the 
condition

K 2(2K2 -  12Q2 +  1) =  0. (3.51)

Solving equation (3.51) we get
K 2 =  0, (3.52)

or
K 2 =  i(12Q 2 -  1), (3.53)
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and in the second case K  is real when

Q <
1

2\/3
or Q >

2\/3
(3.54)

This indicates that when Q < — or Q > ^  (see Figure 3.1) there are two zero 
Floquet exponents and two that are purely imaginary. Equivalently, there exist 
two Floquet multipliers that are unity and two that are complex and within this 
region we see that perturbations are spatially oscillatory. The weakly nonlinear 
form of the Eckhaus boundary for the one-dimensional SH equation has been 
found previously by Kramer and Hohenberg (1984, [34]).

The weakly nonlinear results plotted in Figure 3.1 show the region of spatially 
decaying or growing solutions and the region of spatially oscillatory solutions. The 
results also show that there are always two Floquet multipliers that are unity, 
which correspond to the solution U — u'p, c — 0 mentioned in Section 3.2.

Now let us consider the numerical results for general e.

3.4 Numerical Results

We used the ODEsolver within Matlab’s ODESUITE  by Shampine and Reichelt 
(1996, [46]) to solve the ordinary differential equation (3.5) with the four sets of 
initial values (3.8)-(3.11).

As in Section 2.5 wherever we can find the periodic solution6, up, in our 
parameter space, (A,e), we can also calculate the Floquet multipliers, e~cX, for 
each point (A,e). Note that there are four Floquet multipliers for each (A,e). 
Figures 3.2-3.5 show the results for e G {0.01, 0.1, 0.4, 0.6}.

Consider Figure 3.2. This is the result for a fixed e =  0.01. The top plot is the 
plot of the shooting-parameters a and /3 of up as given in Section 2.5. It shows 
that non-trivial solutions exist for 5.991 < A < 6.623. The bottom plot is the 
plot of the real and imaginary parts (blue and green lines respectively) of all four 
Floquet multipliers within the marginal stability curve. Two Floquet multipliers 
are always equal to one (this solution exists for all (A, e) and is equivalent to the 
solution U = u'p mentioned in Section 3.2). For the other two Floquet multipliers 
we found regions where they are real and regions where they are complex (Eckhaus 
instability). At the join, where e~cX =  1 and c =  0, is the Eckhaus boundary. This

6Note that up is non-unique at some points within the parameter space.
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shows that the periodic solutions (represented by the top plot of Figure 3.2) are 
unstable to the Eckhaus instability except where 6.11 < A < 6.47. Figures 3.3-3.5 
are plots at higher values of e.

Figure 3.6 shows the plots of the Floquet exponent c corresponding to Fig-
ures 3.2-3.5. Here we see two Floquet exponents that are always zero; and the 
other two exponents separate into regions where both are real (with equal and 
opposite values) and regions where both are purely imaginary, with equal and 
opposite values and |e~cA| =  1 (Eckhaus instability). At the join is the Eckhaus

Figure 3.7 shows the plot of the eigenfunctions P\{x), P2(£), Pz{x) and P4(:r) 
at (A,e) =  (27T, 0.1), corresponding to the four Floquet exponents c given by 
Cx =  —0.21956, C2 =  0.21956, C3 =  0 and c4 =  0 respectively.

The Eckhaus instability develops between the marginal stability curve and 
the Eckhaus boundary which for small e is given in Section 3.3 as

The numerical method described here was used to trace the Eckhaus bound-
ary (c =  0) for general values of e. A comparison of the numerical results and the 
weakly nonlinear result is shown in Figure 3.8; this shows that the weakly nonlin-
ear theory is remarkably accurate even up to e =  1. The Eckhaus boundary for 
the one-dimensional SH equation and general values of e found here is consistent 
with earlier results reported by Kramer and Hohenberg (1984, [34])7.

Inspecting Figure 3.5 and the lower-right plot in Figure 3.6 near A =  10.3 
we can see that for e =  0.6 there is a gap (the blue bubble at A =  10.3) in the 
Eckhaus instability region. This region lies in the neighbourhood of the mode-
l-2 interaction (which we have considered in Section 2.6.1). This gap seems to 
emanate from the mixed-1-2 critical point. We shall leave the investigation of 
this phenomenon as a proposal for further investigation.

Summarising what we have found in Chapter 3:
7Kramer and Hohenberg (1984, [34]) gave no details of the numerical method that they used.

boundary.

(3.55)

3.5 Summary

80



• We have considered perturbations to periodic solutions of wavelength 2L of 
the one-dimensional SH equation.

• The weakly-nonlinear results show analytically that there are regions where 
there are spatially decaying or growing solutions and regions of spatially 
oscillatory solutions (Eckhaus instabilities).

• For small e the weakly-nonlinear locus of the Eckhaus boundary is given by

where A =  2L.

• We have computed the numerical results for the Eckhaus boundary at ar-
bitrary e.

• The numerical results and the weakly-nonlinear theory of the Eckhaus 
boundary show good agreement even up to e =  1.

• We have determined the form of steady nonlinear solutions of the one-
dimensional SH equation which approach the periodic form up(x) as x —» oo. 
Such solutions exist within the Eckhaus boundary and at other isolated 
locations within the neutral curve.
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Figure 3.2: Plot of the real and imaginary part of the Floquet multipliers for fixed
e =  0.01 and for A such that (A, e) lies above the neutral curve.
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Figure 3.3: Plot of the real and imaginary part of the Floquet multipliers for fixed
e — 0.1 and for A such that (A, e) lies above the neutral curve.
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Shooting parameters a  and p for up at e=0.4

Real and imaginary parts of the Floquet multipliers

Figure 3.4: Plot of the real and imaginary part of the Floquet multipliers for fixed
e =  0.4 and for A such that (A, e) lies above the neutral curve.
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Real and imaginary parts of the Floquet multipliers

Figure 3.5: Plot of the real and imaginary part of the Floquet multipliers for fixed
e =  0.6 and for A such that (A, e) lies above the neutral curve.
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Figure 3.7: Plot of the functions up(x), Pi(x), P2 (:r), P3 (:c) and P4(x) at the parameter point (A,e) =  (27r, 0.1) where Pi, P2,
P3 and P4 correspond to the c values ci =  —0.21956, c2 =  0.21956, c3 =  0 and C4 =  0 respectively.
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Figure 3.8: Plot comparing the numerical results from the Floquet method and the weakly-nonlinear approximation of the
Eckhaus boundary.



Chapter 4

Steady Solutions of the 
One-Dimensional 
Swift-Hohenberg Equation in a 
Semi-infinite Domain

4.1 Introduction

In this chapter we consider solutions in a semi-infinite domain x >  0 with no-slip 
boundary conditions applied at a lateral wall at x =  0. Thus the problem is to
solve

u"" +  2u" +  (1 -  e)u +  u3 =  0, (4.1)

subject to
u =  vl =  0, at x =  0, (4.2)

and
u —¥ uv(x +  (j)), as x —» oo. (4.3)

Here it is assumed that the solution approaches a periodic form at large distances 
from the wall, with the phase shift (j) to be determined as part of the solution. 
We expect the periodic form (4.3) to be achieved through an exponential decay 
of the form

u ~  up(x +  <j>) +  ke~cxP(x  +  (/)), x  —»■ oo, (4.4)
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where c and P (x ) are the Floquet exponent and eigenfunction determined in 
Chapter 3; the coefficient k, like <f>, is to be found as part of the solution. In 
Section 4.2 we consider the solution of this problem for small e. By extending the 
weakly-nonlinear analysis of Section 2.3.2 to higher orders of approximation and 
by matching solutions in inner and outer regions we find that the wall imposes a 
restriction on the choice of the wavenumber q =  7r/L. We shall call this restric-
tion, first discussed by Cross et al (1983, [15]), the (/-restriction. In Sections 4.3 
and 4.4 we use the Floquet analysis of Section 3.2 and obtain two different meth-
ods for calculating the (/-restriction at general e. The first method (Section 4.3) is 
an approximate asymptotic method based on the use of (4.4) for all x >  0. This 
is easy to implement but is found to have poor accuracy. The second method 
(Section 4.4) solves the fully-nonlinear SH equation (4.1) and is therefore accurate 
but involves more effort to implement. We compare the weakly nonlinear result 
with the results from the second numerical method and obtain good agreement 
even for values of e up to e =  1. Previously Kramer and Hohenberg (1984, [34]) 
have used a purely numerical method to obtain the wavenumber restriction at 
two values of e. However, our method has the advantage of ensuring an accurate 
representation of the solution as x —> oo, by making use of the Floquet form and 
allowing analytical insight into the existence and non-uniqueness of solutions. In 
addition, we obtain results over a range of values of e up to e =  1 and make a 
detailed comparison with the weakly nonlinear theory.

4.2 Weakly Nonlinear Analysis

We proceed as in Section 2.3.2 with an (outer) expansion in the region where 
X  =  e^x =  0(1) but here we need to consider higher orders of approximation. 
We also need to introduce an inner region near the wall where x = 0(1) (see 
Figure 4.1).

Assuming that in the outer region u(x) develops with the form,

u =  e^2Uo +  e«i +  e3//2«2 +  e2«3 +  • • •, (4.5)

we let the solution contain a modulation on the scale X  =  s f i x  so that tq — 
Ui(x,X). Substituting into (2.12) and collecting and comparing coefficients of
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Figure 4.1: Diagram illustrating the inner and outer approximation regions and 
the matching that is required. The inner solution is formulated in equation (4.45) 
below.

powers of e we obtain

d4u0 d2u0
dx4 dx2
d4ui nd2Ui
■-- ---- + 2--- -
dx4 dx2
d4u2 d2u2
dx4 dx2

+  up

+  U\

+  u2

d4u3 d2uz
dx4 dx2

+  u3 —

0,

- 4
d4up d2up 

dx3dX  +  dxdX ?

' Ö4« ! 92Ui
d X d z3 +  dX2dx2

d2u0 3

' d4u2 d2u2 
dXdx3 dX&r

_ d % _  d V  29 V
<9X3dx dX2dx2 <9X2

+  3uo^i -  wi] ,

(4.6)

(4.7)

(4.8)

(4.9)

at orders e1/2, e, e3/2 and e2 respectively. Solving equation (4.6), the relevant 
periodic form is

up(x, X)  =  Ap(X) exp(ix) +  c.c., (4-10)

where Ap is a complex amplitude function and c.c. denotes the complex conjugate. 
Substituting for up(x,X),  equation (4.7) becomes

d4u\ nd2Ui
----- - +  2----- -
dx4 dx2

+  tii — 0, (4.11)

and the relevant periodic form is

Ui(x,X)  =  A\(X) exp(ix) +  c.c., (4-12)
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where A\ is another complex amplitude function. We substitute for uo(x, X ) and 
Ui(x,X) in equation (4.8) to get

di u2 
dx4

+ 2d2u2 
dx2 +  U2 Aq — 3A0|A0|2 +  4

d?A0

+

dX2 
d2A0 
dX2

Aq exp(3hr) — Aq exp(—3ix),

Aq — 3Ao |t40|2 +  4-

exp(hr) 

exp(—ix)

(4.13)

where A denotes the complex conjugate of A. In order for u2 to remain finite for 
X  =  0 (1 ) the secular terms proportional to exp(±hr) must vanish, requiring A0 
to satisfy the first order condition

i]2
4  ̂̂ 2 +  — 3A0\A0\2 =  0. (4-14)

Equation (4.13) becomes

~dxA +  2~dxA +U2Z= ~ A  ̂exp(3hr) -  A\ ex p (-3 ix), (4.15)

and the relevant solution is

u2(x,X)  =  - -^ -A 03exp(3hr) 4- A2(X)  exp(hr) + c .c ., (4.16)
64

where 4̂2 is a further complex amplitude function. Substituting equations (4.10), 
(4.12) and (4.16) into (4.9) we get

<94m3 r,d2u3 
dxA dx2 +  U3 4 * -~dX  ̂ +  6Ai \A0\2 

-\-3AqA\ — A\

4 ^  +
dX2

elx +

_ . .0 9 , .0dA0
3A1A0 +  - iA0— e3lx +  c.c. (4.17)

In order for u3 to remain finite for X  =  0 (1 ) the secular terms proportional to 
exp(±hr) must vanish, requiring A\ to satisfy the second order condition

4 i d3 Ao
~dX*

+  6 A\\Aq\2
d x -

+  3AqA i — Ai — 0, (4.18)
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Consider the first order condition (4.14). Writing A0(X) — r(X)e l and 
comparing real and imaginary parts we get the equations

4r" +  r -  3r3 -  Ar{0'f =  0, (4.19)

2 r'O' +  rd" =  0, (4.20)

from the real and imaginary parts respectively. Integrating (4.20) with respect 
to X  we get

r20' =  K0, (4.21)

where K0 is an arbitrary constant. Assuming that the condition u =  0 at x =  0 
can be applied to the leading order solution at X  =  0 (alternative strategies lead 
to inconsistencies) it follows that

0 =  A0(0) =  r (0)e<tf(0\ (4.22)

which implies that

and so

Then

r(0) =  0,

Ko =  0. 

r29' =  0.

(4.23)

(4.24)

(4.25)

We are interested in solutions for u that are non-trivial, bounded and periodic as 
X  —» oo in the outer region, so we require that r be non-zero. This implies that 
O' =  0, so that 0 is a constant, independent of X.

Since 6' =  0, (4.19) becomes

4r" +  r — 3r3 =  0. (4.26)

For a stable solution it is expected that r remains positive for X  > 0 in which 
case

r —» —;= as X  —>• oo. 
\/3

(4.27)
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(4.28)

Letting s =  r', then r" — s' =  Equation (4.26) becomes

and integrating we get

Thus

. ds q _
4s—  +  r — 3r3 =  0, 

dr

4 J  sds =  J (3r3 — r) dr. 

8(r ')2 =  3r4 -  2r2 +  K,

(4.29)

(4.30)

where K  is a constant. Using (4.27) and the condition r' -> 0 as X  - »  oo we get 
K  =  1/3 and equation (4.30) becomes

8(r ')2 =  3r4 -  2r2 +  - .

Solving for r we get

r =  —= tanh
\/3

X
2y/2

+ K'

(4.31)

(4.32)

where K' is an arbitrary constant. Using the condition r(0) = 0  we get

and thus

The solution for r is shown in Figure 4.2.

1 ,  X  r =  —-= tanh — 7=, 
\/3 2y/2

(4.33)

a 1 - X
A , - C ^ 3 tanh2V2'

(4.34)

Consider the second order condition (4.18), which is an inhomogeneous equa-
tion for A\

A. A*
(4.35)4 ^ p -  + A i -  ôAil^ol2 -  3AIÀ, =  4i

Writing Ai =  ei0(Ar +  iAi) and comparing real and imaginary parts we get

X
4A" +  Ar — 3Ar tanh2 — -= =  0,

4A" +  Ai — Ai tanh2

2y/2
X

2\f2 ~  2y/6

(4.36)

=  —*7= sedi2 ̂ -=  (̂ 3 tanh2 — -  1̂ ) ,(4.37)
2x/6 2\[2 V 2V 2 J
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Figure 4.2: The solution for r.

from the real and imaginary parts respectively. The bounded solution of (4.36) 
is Ar =  A;r sech2 ( ^ 75)  where kr is an arbitrary real constant. The other possible 
solution is exponentially large as X  —> 00 and so we can ignore it. The general 
solution for is

A ( X )  =
4y/6 4x/6

3 l2 X  L Xtanh — 7= +  ki tanh -—7= +
2V 2 ïV2

+  / f  Xtanh -  2 ,  (4.38)

where ki and / are arbitrary real constants. This solution was checked using the 
symbolic mathematics package MapleVR5 ([51], 1998). Then

M X ) AB kr sech2 — +  i2y/2 UVE 4v^6
3 , 2 Xtanh

2y/2

+ki tanh
X

2V 2
+ l \ Xtanh

X
2V^

2y/2j I (4.39)

As X  —* 00, the solution (4.5) develops into a periodic solution of uniform 
amplitude

(4.40)u ~  —,=eiqx+ld +  c.c. . 
\/3

For an infinite layer it was shown that solutions of more general amplitude

62

7 !
(1 -  4Q2)2 (4.41)
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exist for |Q\ < 1/2 with q — 1 +  e?Q but the relevant solutions here correspond
to small values of Q, of order e .̂ Indeed, since from (4.34) and (4.39) as X  —> oo

u ~
62

W
A x+iO (l + iekxVZ^ +  c.c.,

^= etx+l6{l+ ie lxV 3 )  + C.C.,

(4.42)

(4.43)

it is seen that matching with (4.40) requires that, correct to order e, the wavenum-
ber q must be given by

q =  1 +  elV3. (4.44)

A formal derivation of the solution (4.40) and (4.44) obtained by assuming a 
two-scale expansion with length scales x ~  1 and x ~  e-1 is given by Cross et al 
([15], 1983) in their Appendix E. It is seen that the parameter l is equivalent to 
an order e correction to the critical wavenumber in the solution at large distances 
from the wall. An alternative procedure (Proctor (2000, [42])) is to incorporate 
the correction (4.44) to the wavenumber directly in the outer expansion (4.5) 
(and the inner expansion (4.45) below), in which case an outer expansion can be 
formulated which remains uniformly valid as A  —> oo.

Consider the solution in the inner region (see Figure 4.1). The outer solution, 
(4.5), breaks down on the scale x =  0 (1 ) where locally the solution has the form

u =  eu0(x) +  . . . ,  as e —» 0. (4.45)

Substitution into (4.45) shows that u0 satisfies the equation

d4u0 6Ì2Un
------ +  2------
dx4 dx2

+  Uq — 0.

The general solution is

(4.46)

u0 =  ((p +  ax)elx +  (v? +  ax)e lx, (4-47)

where ip and a are complex constants. We would like to match this solution as 
x —y oo with the solution from the outer region as X  —> 0 (see Figure 4.1) where

u =  e1* (A0eix +  A0e~ix) +  e (Aieix A Aie~ix) + . . . ,  e -a  0. (4.48)
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Writing
A0 — Aq(0) +  A’A q(O) +  . . .

and
A\ — Ai(0) +  X A [(0) +  . . . ,  

as X  —> 0 and comparing with equation (4.47) we get

0 =  A0(0), o =  A'0(0), <p =  A1{ 0). (4.49)

The first of these conditions has already been used in obtaining the outer solution. 
The other two give

a

f  =

(4.50)

(4.51)

Consider the conditions at the no-slip wall. Applying these wall conditions to 
the solution (4.47) we get

u =  0 at x =  0 => ip +  <p =  0, (4-52)

ux — 0 at x =  0 => iip +  a — i(p +  ô  =  0. (4.53)

Writing

V  — Vr +  i<Pi

and
U — <Tr +  XOi

(4.54)

(4.55)

then the equation (4.52) implies ipr =  0, equation (4.53) implies ar — ipi and from 
equation (4.50), or — ^  cos 6* and =  ^ s i n 0 .  Thus equation (4.51) gives

<P* =  0 =  kr cos 9 -  ^-^=-2^/21^ sin 9,

Vi 2 y/6
cos 9 =  kr sin 9 +

a V g
2\[21 ) cos 9.

(4.56)

(4.57)
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Solving for / and kr we get

l = ------i-pC0s29, (4.58)
16y3

kr — —- =  sin 29, (4.59)
4\/6

respectively. Thus this gives a range of solutions with \l\ <  i-e-> fhe
wavenumber restriction

1 — —e < q < 1  + ^-e. (4.60)
16 ~  16

Figure 4.3 shows this ç-restriction as the region between the two red lines.

Figure 4.3: Plots of the wavenumber restriction, equation (4.60), together with 
the neutral curve and the Eckhaus boundary.

For a given wavenumber and its corresponding value of l there are two possible 
values of 9, say

— 90,

-  7T 9q.

9

9

98

(4.61)

(4.62)



kr =  — 7= sin 20o, (4.63)
4V6

kr =  ——̂ 7= sin 20o, (4.64)
4%/6

respectively. These two solutions coalesce when 0o reaches | and l =  and 
when 9q reaches 0 and l =  — at the other extreme (see Figure 4.4). In both 
limits kr approaches zero. Next we identify the main features of the two solutions 
in order to facilitate a comparison with the numerical results for general e to be 
obtained in Section 4.4 below.

The solutions for kr corresponding to (4.61) and (4.62) are

Figure 4.4: The figure shows the two possible values of 6 as the intersections of 
the blue and green lines. The red arrow indicates the possible positions that the 
green line can take.

First consider the inner solution and its derivatives

u(x) — e {(<£ +  ax)elx +  (<p +  ax))e~lx}  +  . . . ,  (4.65)

u\x) =  e {[¿(<p +  ax) +  a\elx +  [—*(<£ +  ax) +  a] e~txj  +  . . . ,  (4.66)

u"(x) =  e {[-(<£ +  crx) +  2io\ etx +  [-{ip +  ox) -  2ia] e~lx) +  . . . ,  (4.67)

u"\x) =  e{[-i{<p +  a x ) - 3 a ] e ix +  [i{<p +  a x ) - 3 a } e ~ ix} +  . . .  . (4.68)
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At x  =  0 the wall conditions require that u  =  u ' — 0 but the second and third 
derivatives of u  are non-zero. At x  =  0 we have

u" =  e { —p  -I- 2io A {—p  — 2ia)} A . . . , (4.69)

and since p + p =  0 we have

u " — —4eai A . . .  =  — p e sin 6 -I-. . . ,  when x  =  0. (4-70)
v 6

Similarly, at x  =  0 we have

u'" =  e { ( —ip) — 3a) +  ip — 3a} +  . . . . (4.71)

and since — ip — a + ip  — a =  0 we have

2
u — —4eoy A . . .  —

V 6
e c o s ^ A . . . ,  when x  =  0. (4.72)

Second, consider the behaviour as X  -A oo implied by the outer solution
(4.48). Taking into account the decay of the tanh solution as X  —> oo and 
writing the solution in terms of the variable x , this gives

u ~
262

7 !
sin | ( l  +  ¿ \ / 3 x A 9 A — +  O(es) j  i l  — 2

162
2\/2

1 -----sin 26 e TT J ,

(4.73)
as x  —y oo, and comparing with (4.4) we see that we may assume that the Floquet 
exponent and eigenfunction have the forms

_162
c ~ - ^ = ,  P(x) ~  

and that the phase shift 4> is given by

8e
Up (x ) ,  6 y 0 , (4.74)

7T
4> ~  0 +  2> 6 (4.75)

and the coefficient k is given by

k ~  (  1 -----7 =  sin 26 I , e -A 0.
y/S 2^2

(4.76)
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Here, the normalisation of P (x ) in (4.74) is chosen to be consistent with that 
defined in Section 3.2. For the two solution branches (4.61) and (4.62), the two 
values of k coalesce at —2 when 90 =  0 (l =  —^ 75) and when 90 =  f  (/ =  y ^ ) .  
The phase shifts of the two solutions are </> =  90 + 1 and (f) — ~  — 90 so that these 
differ by 7r at 90 — 0 and are equal at 90 =  f .

4.3 Approximate Theory for General e

In this section we consider an approximate method of incorporating the lateral 
wall by assuming the asymptotic form (4.4) is valid for all x >  0. In other words, 
we assume that the solution for u(x) is given by

u(x) =  up(x +  0) +  kP{x +  (j))e-cx, (4.77)

for all x >  0 where c and P  are the Floquet exponent and eigenfunction. We 
now apply the wall conditions to this solution. At x =  0 we have u(0) =  0 which 
implies

Up(<f>) +  kP{(f)) =  0. (4.78)

Also we have u'(0) =  0 which implies that

u ;^ )  +  A:[P/((A ) - c P ( 0 ) ] = O .  (4.79)

Eliminating the parameter k we get

f w  s  «;w f (<a) -  nPm p 'w  -  cm ] = 0. (4.80)

Thus we look for the roots <p of F  and then use (4.78) to fix the corresponding 
values of k. Since up, c and P  are functions of e and A (=  2L), the existence 
of roots is dependent on the values of e and A. Figure 4.5 shows the range of 
values of A for which zeros of F  exist when e =  0.1. Corresponding results for 
e =  0.5 and e =  1.0 are shown in Figures 4.6 and 4.7 respectively. The results are 
summarised in Figure 4.8 and are seen to be skewed to the left in the e, A plane 
relative to the weakly nonlinear theory.

An alternative method was also used to compute the above solutions. Setting

1 0 1



Figure 4.5: The red and blue lines are plots of F((f)) for a fixed e =  0.1 and different
values of A. Their positions in the (A, e) space are represented respectively by the
red and blue crosses in Figure 4.8.
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Figure 4.6: The red and blue lines are plots of F(</>) for a fixed e =  0.5 and different 
values of A. Their positions in the (A, e) space are represented respectively by the 
red and blue crosses in Figure 4.8.

Figure 4.7: The red and blue lines are plots of F(<f>) for a fixed e — 1 and different 
values of A. Their positions in the (A, e) space are represented respectively by the 
red and blue crosses in Figure 4.8.
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Figure 4.8: The blue and green curves are the marginal curve and the Eckhaus 
boundary respectively. The red lines represent the weakly-nonlinear result for 
the wavenumber restriction (from Section 4.2). The red and blue crosses are the 
solutions determined by the zeros of F  in Figures 4.5-4.7.
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k — ke c<t> in (4.77), then we have

u(x) =  up(x +  <f>) +  kP(x +  (j))e c(x+<i>\ (4.81)

Using the substitution x =  x +  (p equation (4.81) becomes

u(x) — up(x) +  kP(x)e~cx, (4.82)

We are interested in solutions that have the periodic form up when x is suf-
ficiently large but as we approach the boundary of the semi-infinite domain we 
would like the solution to satisfy the no-slip boundary conditions. We shall as-
sume that the no-slip boundary conditions are satisfied at some free boundary, 
x =  x* where x* is large and negative. Presumably this can be done for a suitable 
choice of k which we shall denote as k*. We would like to calculate values of x* 
and k* in the parameter space (A, e) such that if we define

u(x; k) =  up(x) +  k,P(x)e~cx, (4.83)

then u(x*;k*) =  u'(x*;k*) =  0. We used an iterative method to solve the free 
boundary problem. The method proceeds as follows.

Given an initial guess for k which we shall denote as ko we define the point Xo 
such that u'(x0; /e0) =  0 at the m ’th maximum1 measured from the point x =  0 
(see Figure 4.9). We can iterate for ki by using

T _ Up{xn— l)
P ^ X n -^ e-^ -1

where n — 1. We repeat the process by choosing X\ such that u'{x\\ k\) =  0 at 
the m ’th maximum and iterate for k2 using equation (4.84). We continue until 
the no-slip boundary condition at the free boundary is reached. We denote the 
final iterands as k* and x*. Once x* is known the phase shift 4> can be calculated 
from the relation (j) =  x* and then k =  k*e~c<t>.

Figures 4.10-4.12 show the results of all possible solutions at the parameter 
values e =  0.1, 0.5, 1. The results agree with those of the previous method using 
F (</>). Both k and 0 (mod A) are shown as a function of A. At any given e the

1 We need to choose m sufficiently large so that u(x;k) is sufficiently close to the periodic 
form Up for x =  0. Refer to Figure 4.9 where we have chosen m — 5 and k0 =  0
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Figure 4.9: An example of an iterative scheme used for the evaluation of x* and 
k*, where m =  5 and ho =  0.

solutions are restricted to a specific range of A, for example Figure 4.10 shows 
that the solutions are restricted to the range 6.14 < A < 6.28. Outside this range 
the solution is complex. The solutions appear as pairs which coalesce as the 
parameter A reaches its limiting values. This is illustrated in Figures 4.10-4.12 
by the upper-left plots showing the red and blue crosses merging2. The two lower 
diagrams show the profile of the solution, i.e., u(x). If we super-imposed the two 
lower diagrams we would see the two profiles coalesce at A =  6.28. At A =  6.14 
the lower-left profile is the negation of the lower-right profile.

Figure 4.13 shows the results of the restriction limit obtained from the iterative 
method for a larger set of values of e up to e =  1. The red lines are the weakly 
nonlinear results obtained from Section 4.2. The approximate method does not 
give good agreement with the weakly nonlinear theory, even at low values of e.

2The solutions from the iteration scheme can jump interchangeably between the two branches 
of solutions (the upper and lower curves of the top-left plots) when we are near the restriction 
limits. This is due to the inaccurate initial solution guess for our iterative scheme.
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The derivation of (4.77) assumes the second term on the right-hand side is small 
compared to the first, so that the approximation is expected to be good only if 
the solution is close to its periodic form, up. By applying the no-slip boundary 
condition we diverge from this assumption and hence lose accuracy. We shall look 
at an accurate method that uses the fully nonlinear equation in the next section.
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Figure 4.10: Results of the approximate method at e =  0.1.
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Figure 4.13: Plot comparing the approximate theory for the wavenumber restriction (crosses) with the weakly-nonlinear 
results (red line). The top graph shows the wavelength, A, and the lower graph shows the wavenumber, q.



4.4 Nonlinear Theory for General e

We proceed as in the second method of Section 4.3 but instead of using the 
asymptotic form for all x we solve the fully nonlinear SH equation for u(x) =  u(x) 
where x =  x +  4>, namely,

u"" +  2u" +  (1 -  e)u +  uz =  0. (4.85)

We need to calculate values of x* and k* in the parameter space (A, e) such that 
u and its derivatives are given by the asymptotic formula

u ~  up(x) +  kP(x)e~cx, (4.86)

at a suitably chosen value of x (in practice this was taken as x =  0) and u(x*) =  
u'(x*) =  0. We use an iterative method to solve the free boundary problem. The 
method we used proceeds as follows.

Given an initial guess for k which we shall denote as ko we first calculate 
the initial values u(0), u'(0), u"(0) and u"'{0) from (4.86). We use these initial 
values together with equation (4.85) to calculate m(x ), defining the point xq such 
that u'(xo) =  0 at the m’th maximum3 (cf. Figure 4.9). We then repeat the 
calculation for a neighbouring value of k and use a Newton iteration to define the 
next approximation kx. We then repeat the whole process, defining xx such that 
u'(xi) =  0 at the m ’th maximum, and so on, until the second no-slip boundary 
condition (u =  0) is satisfied at the free boundary. We denote the final iterands 
as k* and x*. Once x* is known, the phase shift 0 can be calculated from the 
relation (j) =  x* and then k =  k*e~c<̂.

Figures 4.14-4.16 show the results of all possible solutions at the parameter 
values e =  0.1, 0.5, 1. Both k and $ (mod A) are shown as functions of A. We 
can see in Figure 4.14 that the two solution branches (the lines of red and blue 
crosses) coalesce at A =  6.245 and A =  6.325 and are restricted to only a specific 
range of A. Outside this range the solution becomes complex. The two lower 
diagrams from Figure 4.14 show the profile of the solution for 6.245 < A < 6.325. 
If we super-imposed the two lower diagrams we would see the two profiles coalesce 
at A =  6.245. At A =  6.325 the lower-left profile is the negation of the lower-right

3We choose m sufficiently large so that u(x) is sufficiently close to the periodic form uv for 
x — 0. Checks were made with different values of m to test the validity of the results.
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profile.
The weakly-nonlinear results are seen to agree really well with the nonlinear 

results for small values of e. The variation of k and 4> is consistent with the weakly 
nonlinear predictions (4.76) and (4.75) and the variation of ii"(0) and w"'(0) (see 
Figures 4.17-4.19) is consistent with (4.70) and (4.72) as e -> 0. Figure 4.20 
shows the results of the q-restriction for the range of values of e up to e =  1. 
The black crosses are the (/-restriction limits for e < 1 and the red lines are the 
weakly-nonlinear theory. As e increases, the allowed waveband is somewhat larger 
than that predicted by the weakly nonlinear theory.

4.5 Summary

Summarising what we have found in Chapter 4:

• We have determined solutions of the one-dimensional SH equation in a semi-
infinite domain x > 0 which approach a periodic form with wavenumber 
q =  7r/L as x —> oo and satisfy the no-slip boundary conditions at x — 0.

• Solutions are restricted to a band of wavenumber q within the Eckhaus 
boundary which for small e is given by

and for larger e has been determined numerically.

• We have shown that within this band there are two solutions which coalesce 
at the limits of the restriction. •

• We have found profiles of the solutions and determined how rapidly the 
periodic form is attained as x —» oo. This length scale x is associated with 
the inverse of the Floquet exponent, c_1, and is long (~  \/2e~5) as e —» 0 
but relatively short (just a few roll widths) for e >  0.5.
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Figure 4.14: Results of the nonlinear method at e =  0.1.
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Figure 4.15: Results of the nonlinear method at e =  0.5.
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Figure 4.16: Results of the nonlinear method at e =  1.
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Plot showing k for e=0.1

Plot of u’” at the wall for e=0.1

k-axis

Figure 4.17: Plots comparing the results of the nonlinear method (crosses) and 
the weakly nonlinear approximation (lines) of k, u"(0) and u'"(0) at e =  0.1. 
Notice that we have used A =  2ir/q, (4.44) and (4.58) to get an expression in A.
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Figure 4.18: Plots comparing the results of the nonlinear method (crosses) and 
the weakly nonlinear approximation (lines) of k, u"(0) and u"'{0) at e =  0.5.
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Figure 4.19: Plots comparing the results of the nonlinear method (crosses) and 
the weakly nonlinear approximation (lines) of k, u"(0) and u'"(0) at e =  1.
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Chapter 5

Solutions of the Two Dimensional 
Swift-Hohenberg Equation

5.1 Introduction

In this chapter we investigate the two dimensional Swift-Hohenberg equation. 
The equivalent physical system is the Rayleigh-Bénard problem in a channel 
with no-slip boundary conditions applied at the channel wall (Figure 5.1). We 
shall consider the two dimensional steady-state Swift-Hohenberg equation

^ y2 T  l )2 tt — eu T i f 3 — 0, (5.1)

subject to the boundary conditions

du
u =  —  =  0, at y =  0, Ly, (5.2)

dy

where u =  u(x, y) and y 2 =  J ^ - t - I n  Section 5.2 we investigate the linearised 
version of (5.1) and look for the existence of solutions periodic along the channel, 
which therefore take the form u(x,y) =  eiqxÜ(y) (Le., linear stability analysis 
of the trivial solution, u =  0). Then in Section 5.3 we compute fully nonlinear 
solutions that are periodic along the channel. These are found using a Fourier 
decomposition in x and a finite difference representation in the y direction.
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Figure 5.1: 
problem.

Diagram illustrating the geometry of the equivalent Rayleigh-Benard

5.2 Linear Analysis

Any infinitesimal perturbation from the trivial state is governed by the linearised 
form of the Swift-Hohenberg equation

(V 2 +  l ) 2 «  — ew =  0, (5.3)

where u =  u(x, y) and V 2 =  This must be solved subject to the no-slip
boundary conditions (5.2) at the channel wall (see Figure 5.1), i.e.,

Ou
u -  —  -  0, at y =  0,Ly. (5.4)

dy

A complex solution for u, the real part of which will give the actual solution, is 
assumed to take the form

u(x, y) =  eiqxU(y), (5.5)

where q is the wavenumber in the ^-direction. Substituting for u in (5.3) we get

~ q2 +  1)  O ~ e U : = 0 ' (5 ‘6)
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and from (5.4)
U =  U' — 0, at y =  0, Ly. (5.7)

We simplify this system by reducing the number of parameters from three (Ly, q 
and e) to two (K  and e) by the following transformations

y = LyY, (5.8)

a2 =
, K
1 +  Z f ’

(5.9)

U= U(Y), (5.10)

e =
e

Vy'
(5.11)

(5.4) becomes

i d 2 \ 2
(5.12)U r2 K )

U — eU =  0,

U =  U' =  0, at Y =  0,1, (5.13)

and depends only on the modified wavenumber K  and e. Solving equation (5.12) 
we get

U(Y) =  AeaV +  Bepv + Ce~aY +  De~p r,

where

a. — +  e2 j 2 ,

d  =  ( x - p y ,

(5.14)

(5.15)

(5.16)

and A, B, C and D are arbitrary constants. Using the no-slip conditions of 
equation (5.13), we obtain the condition for the existence of non-trivial solutions

det(M) =  0

where
1 1 1 1

P a ~P —a
e? ea e~P e~a

Pe? aea -p e~ p —ae~

(5.17)

(5.18)
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(—a2 — (32 +  2a/3) cosh(o: +  ¡3) +  (a2 +  f32 +  2a/3) cosh(o: — ¡3) — 4a/3 — 0. (5.19) 

Simplifying we get

— (a2 +  /32) sinh a  sinh j3 + 2f3a cosh a cosh /3 — 2/3a =  0. (5.20)

If we consider the nature of a and /? for different values of K  and e, there are 
four possible regions of the (K, e)-plane which are as follows.

1. When K  =  — we have a =  0, i.e., an apparent solution but in fact the 
eigenfunction U is zero, except at certain discrete points.

2. When —eh < K  < eh. a. is real and (3 is imaginary, so we have two expo-
nential and two oscillatory functions in (5.14).

3. When K  < — eh, a and ¡3 are imaginary, so we have four oscillatory functions 
in (5.14).

4. When K  > eh, a and ¡3 are real, so we have four exponential functions in 
(5.14).

As mentioned above, one solution of (5.20) is K  = —eh which we shall refer to 
as the ID-neutral-curve locus since it is equivalent to the marginal curve for the 
one-dimensional case found in Section 2.3.1. However, in the present problem it 
only corresponds to a non-zero eigenfunction where it intersects other branches 
of solutions of (5.20). These other branches were found by using a numerical 
iterative scheme based on the Newton-Krylov method to trace the roots of (5.20). 
The first two solution branches are shown in Figure 5.2. The eigenfunctions 
associated with these two branches are even and odd about Y  =  \ and so we 
shall refer to these as the even-solution and odd-solution respectively. The even- 
solution has the lowest e and inter-weaves with the odd-solution as K  decreases. 
The critical point corresponding to a solution with the lowest value of e is at

K  =  K c — -12.69043, e =  ec =  343.7456. (5.21)

Expanding (5.17) we obtain the equation that determines the existence of lin-
earised solutions as
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Notice that in practice the minimum occurs at finite wavelengths only for suffi-
ciently wide channels (Ly > 3.562) with

<Zc =  1
12.69043y

Ll
er —

343.7456

Lt '
(5.22)

Figure 5.3 shows the solution branches scaled back to the (q, e)-plane for the case 
Ly — 2n. Figures 5.4 and 5.5 show the eigenfunction U(Y)  to the right of the first 
intersection between the even-solution and odd-solution branches respectively. As 
we trace the curves left of the first intersection point the U(Y )-profile changes. 
For the even solution two further rolls start to develop at the channel wall which 
then grow and move inwards as we move further left of the first intersection (see 
Figure 5.6). More rolls develop in a similar way at further intersection points.

There are further solution loci above the calculated loci and they appear at 
much larger values of e which are outside our region of interest (see Figure 5.7).

5.2.1 Even and Odd Solutions

We consider here briefly the decomposition of the solution into even and odd 
eigenfunctions. Writing equation (5.14) in symmetric form we get

U(Y ) =  A cosh a ( Y — ^ j  -F Ssinha ( y  — ^ +

+ C cosh (3 ( y  -  +  D sinh /? ^  , (5.23)

where A, B, C and D are arbitrary constants.
Consider first the even form of (5.23) which we shall denote as Ue. Setting 

B — D =  0 we have non-trivial solutions in the two cases:

( A cosh a (Y — |) +  CcoSjd (Y — i ) ,  for — e* < K  < ea 
[ A cos a (T  — |) +  C cos ft (Y — 1), for K  < —eh,

where a and ¡3 given by (5.15), (5.16) and a =  y/—K  — e2 and ¡3 =  V - K  +  e* 
are all real. Applying the no-slip conditions at Y  =  1, i.e.,

Ue(l) =  U'e{l) =  0, (5.25)
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we get the condition for existence of solutions as

det(Me) =  0, (5.26)

where Me is real and is given by

Me =

cosh | cos |
a  sinh | ~P sin |

>
cos | cos f

—âsin | ~P sin |

for — £2 < K  <  £2,

for K  < —e 2.
(5.27)

Expanding (5.26) we obtain the equations for the existence of even solutions as

(5.28)
—/3cosh | sin | — a sinh | cos | =  0, for —6 2 < K < e 2,

—p cos | sin | +  a sin | cos § =  0, for K  < - € 2.

Note that the critical eigenfuntion associated with (5.21) corresponds to a solution 
with the first of the two forms given in (5.24).

Similarly we can consider the odd form of (5.23) which we shall denote as U0. 
Setting À =  C — 0 we again have non-trivial solutions in the two cases:

_  i B sinh a: (F  -  |) +  Dsin/3 (F  -  |), for - e * < K < € * ,  
° | Bsinâ {Y — |) +  Dsin/3 (F  — |), for K < —eh.

The equations for the existence of odd solutions are

ft sinh § cos | — a cosh f  sin | =  0, for

(5.29)

P sin | cos Ï  — a cos f  sin | =  0, for K  < —e2.
(5.30)

Equations (5.30) and (5.28) are equivalent to (5.20). By inspection of equa-
tion (5.28) it is seen that intersections of the even branches with the lD-neutral- 
curve are at (K , ë) =  (—2 n 27r2 , 4 n 47r4) where n =  1 ,2 , . . .  and

U(Y)  =  ( - l ) nC (cos [2n7rF] -  1) .

Similarly, intersections of the odd branches with the ID-neutral-curve occur at 
the roots of tan f  =  f  • Four of these intersections are shown in Figure 5.7.
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Figure 5.2: The lowest even and odd solution branches. The critical point, 
(.Kc,ec), is also shown, along with the locus of the ID-neutral-curve (red curve).
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Figure 5.3: The two lowest solution branches scaled back to the (q, e)-parameter 
space for the case Ly =  2tt. The critical point corresponds to (qc, ec) =  
(0.82374, 0.22056) in this case, and the ID-neutral-curve is also shown (red 
curve).
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Figure 5.4: Profile of U(Y)  in the lower region of the even-solution branch.

l

Figure 5.5: Profile of U(Y ) in the lower region of the odd-solution branch.
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5.3 Two Dimensional Periodic Solutions

Now consider the fully nonlinear Swift-Hohenberg equation

( v 2 +  l )2 u — eu =  — u3, (5.31)

where u = u(x,y)  and y 2 =  We consider no-slip boundary conditions
at the channel wall (see Figure 5.8) and periodic conditions in the x direction, 
that is

u =  uy — 0, at y — 0, Ly, (5.32)

u =  uxx =  0, at x =  0, L. (5.33)

We search for solutions that have the form

N

Up{x, y) =  ^ 2  sin (5-34)
i=i

where q — 7r/L  is the wavenumber in the x direction. The value of N  is infinite in 
general, but in practice solutions can be found by truncating the infinite series. 
Note that (5.34) excludes the possibility of rolls with axes parallel to the x-axis, 
equivalently to q =  0, but the linear theory indicates that in general these are 
not significant until relatively high values of e which for a given value of Ly can 
be determined by setting K  =  —Ly2 in Figure 5.2.

In the one-dimensional problem we used a shooting method to determine 
periodic solutions, but a similar method proves difficult to implement in the two- 
dimensional case; for example, a Galerkin representation in the variable y results 
in individual modes at the higher end of the spectrum which, if the nonlinearity 
is weak, have rapid exponential growth in the x direction, leading to numerical 
instability in the coupled set of equations. Instead we consider a finite difference 
method. Substituting (5.34) into (5.31) we get

N  r

E d4cij d2a-i
L dyl +2(1 -  J ' V ) ^  + -  2 i ¥  +  1 -  e)aj

N

sin jqx

3

sin jqx 
j = i

(5.35)

128



subject to the boundary conditions

Oj(0) =  a '(0) =  aj(Ly) =  a' (Ly) =  0, for j  =  l , . . . ,  N. (5.36)

When the truncation level is taken as jV =  1 we have the ordinary differential 
equation

+  (2 -  2ç2) ^ y  +  (q4 -  2q2 +  1 -  e)ax
a y z

sin qx

— (ai sin qx)3 — — (3 sin qx — sin 3qx) . (5.37)

Comparing coefficients of sin qx we get

Cx <i\ — —b\ (5.38)

where

A ~ ^ i +2(1

and
bi =

3af
T '

To solve equation (5.38) we use finite difference approximations. First we 
introduce a finite set of grid points yr =  rh, for r =  0 ,1 , . . . ,  M, where M  G N 
and h =  Ly/M. We can write (5.38) as

tfai.o
dy

i|p +  2(1 -  ç2)J-f +  (q4 -  2q2 +  1 -  en 

( I d  +  2(* _  ^2)|d +  -  2?2 +  1 -  en  api

( I t  +  2(* ~  ?2)| t  +  “  2ç2 +  1 -  e)j ai)2

+  ~ ^ l ?  +  -  V  + 1 -  <0̂  CL\,M-2

+  2(X -  ?2)| t  +  “  292 +  1 “  e))

(£r +  2(1 -  92)|^ +  (ç4 -  2ç2 +  1 -  £)) « i ,m
dai,M

dy

-

0
0

ai,i

3 0\,2

4
al,M-2
al,M-l

0
0

(5.39)
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where aiiT — ai(yr) — a\{rh) for r =  0 ,1 , . . . ,  M. Notice that the first and last 
equations from (5.39) are specified by the boundary conditions. Also, wherever 
the values a^o and a\tM appear in the equations they are set to zero, so that 
the boundary conditions aii0 =  Oi ,m  =  0 are not included explicitly in the sys-
tem (5.39). Approximating the differential operators with the following central 
difference formulae

h4a'”'r =  di)r-2 — 4ai;J._i +  6cti)r — 4ai)7.+i -I- cti!r+2 +  0 ( /i6), (5.40)

12h?a!{r — — Ui,r-2 +  16ax,r-i — 30aijr +  16ai>r+x — ai,r+2 +  0 (h 6), (5.41) 

12 ha\r =  aiir_2 — 8ai)7._i +  8aiir+i — ai,r+2 +  0 ( /i5), (5.42)

the shape of the final finite difference approximation matrix for the left hand side 
of equation (5.39) has the form1

- 2 - 1 1

X X X

X X X

X X

X

X

2 3 4
X

X

X X

X X X

X X X

X X X X

X X X X

X X X X

X X X X

X X X X

where the top row represents the indices of r. The resultant matrix is an (M  +  
3) x (M  +  3) matrix which we shall denote as C{d and equation (5.39) becomes 
the nonlinear system

C{d a ̂ =  -b ,  (5.43)

1The finite difference scheme uses points that are outside the boundary (i.e., the points with 
indices r =  —2, —1, M  + 1, M  +  2). Some authors call these points ghost points. Notice that we 
have removed the columns with indices r =  0 and r — M. This is because the values of ai.o 
and a\tM are already specified and so we do not need to recalculate them.
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where

and

Ql  1 —  [ « 1 , - 2 )  ( ¿ 1 ,1 ,  a 1 ; 2 , • • • , n i , A i - 2 ,  < b , A f - l ,  O l , M + l ,  O l , M + 2 ] J

[0 >  0 5 a l , l >  a l ,2 >  • • • > a l , M — 1> a l , M + l >  0 ,  O f .

Given a sufficiently close initial guess the nonlinear system (5.43) can be efficiently 
solved using the numerical Newton-Krylov iterative scheme.

When N > 1 the problem (5.35) and (5.36) becomes a coupled system of 
ordinary differential equations. For example, when N =  2 we have

£ a  =  —b (5.44)

where

Ci 0
0 C2

d d2
Ct ~  ï ÿ i  +  2(1 ~ q^d yï +  e)’

C i  -  | j + 2 ( l - V ) ^  +  (165‘ - 8 ^  +  l - f).

a  =  [ a l , a 2] T ,

(5.45)

(5.46)

(5.47)

(5.48)

and

b =
3af . 3aiap  ̂

4
3 a?

+
+ 3a2ap (5.49)

We can use the same finite difference approach as for the case with N  =  1, with 
appropriate adjustments to cater for the additional terms involved at the higher 
truncation levels, where the symbolic algebra package MapleVR5 ([51], 1998) was 
used to good effect.

We found that it is most efficient to solve the problem for small N  first and 
then use the solutions as initial guesses for problems with higher values of N. 
The problem was solved for iV =  1, 2 , . . . ,  9 and for N  =  9 the results are shown 
in Figures 5.9-5.13.

Figure 5.9 shows the profiles of a , j ( y ) ,  j  =  1 ,2 , . . . ,  9, for a channel of width 
Ly =  2-7T, wavenumber q — 1 and the discretisation parameter M  =  50. Notice
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that the figures show that as e decreases and as we move in our parameter space 
(■q,e) toward the 2D-linear stability boundary from above (see Figure 5.12) the 
profiles of a,j(y), j  =  1 ,2 , . . . ,  9 become zero. Also note that aj(y), j  =  2,4,6,8 in 
Figure 5.9 are considered to be zero since their numerical values are insignificantly 
small. It is readily established that the cubic nonlinearity in (5.35) only generates 
sine functions whose arguments are odd multiples of qx.

Figure 5.10 shows contour plots of aj(y), j  =  1,3, . . . , 9  as a function of 
wavenumber for a channel width Ly — 2tt and e — 0.5. As expected, aj(y), 
j  =  1 ,3 , . . . ,  9 (and thus u(x, y)) are non-zero above the neutral curve and zero 
below. The neutral curve is the boundary that separates the two regions. We 
can see a clearer plot of a\(y) in Figure 5.11 which shows the profile decreasing 
to zero outside the relevant band of values of q. By varying the wavenumber q at 
different values of e until the profiles of aj(y), j  =  1 ,3 , . . . ,  9 are zero we can trace 
the 2D neutral curve. The results for e =  0.4, 0.5,0.6 are shown in Figure 5.12 by 
the red crosses and are in good agreement with the results of the linear stability 
theory.

Notice also that there are spikes in the plot of the maximum values of aj(y), 
j  =  3,7,9 in Figure 5.10. This may be an indication of mode interactions and 
the possibility that there is a more complex bifurcation structure in this region. 
We shall not investigate this here but hope to investigate this region in further 
studies.

Figure 5.13 shows the solution u(x,y) =  aj(v) sin jgx  as a function of 
x and y for a channel of width Ly =  2n, wavenumber q =  1 and e =  0.5. 
This is a typical solution that is periodic along the x-axis. We shall use this 
periodic property in Chapter 6 where we undertake a Floquet analysis of the two 
dimensional periodic solutions.

5.4 Summary

Summarising what we have found in Chapter 5:

• We have found the neutral curve for the two-dimensional SH equation in a 
channel with no-slip sidewalls of arbitrary width Ly. The critical value of 
e and the critical wavenumber q are given by (5.22) provided Ly >  3.562. 
For narrow channels, the linear theory predicts that disturbances will set in 
with infinite wavelength (q — 0) but the corresponding value of e is greater
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than e =  2.134, so that the results in such cases are expected to be of limited 
physical significance.

• The critical disturbance corresponds to a solution which is even in y about 
the centre of the channel. For sufficiently wide channels and at lower 
wavenumbers the odd and even modes are alternately the most dangerous 
mode of disturbance.

• We have obtained numerical approximations to nonlinear periodic solutions 
of the form OO

V) =  ^ 2  ai(y) sin jqx.
3 =1

and have verified that these are consistent with the linear stability results 
for a channel of width Ly =  2tt.
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Figure 5.7: The first four even and odd solution branches. The crosses and circles 
show the intersection of the even and odd branches with the ID-neutral-curve.
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Figure 5.8: The geometry and boundary conditions of the two-dimensional prob-
lem.

135



C O
0 5

y-axis

x 10"

0
0 2 4

y-axis
x 10~6

x 10-2 5
y-axis

Figure 5.9: Profiles of aj(y) for j  =  1 , 2 , . . . ,  9 with e =  1 (blue profile) and decreasing in steps of 0.02 (green profiles). The
solution is for a channel of width Ly =  27T, wavenumber q =  1 and discretisation parameter M  =  50.
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Figure 5.10: The top row shows the contour plots of aj(y), j  =  1 ,3 , . . . ,  9 for Ly =  2n, e =  0.5 and discretisation parameter
M  =  50. The bottom row shows plots of the maximum values of aj(y), j  =  1, 3 , . . . ,  9 with the same parameters.
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Figure 5.11: Profiles of ax(y) for different wavenumbers q with Ly =  2tt, e — 0.5 and the discretisation parameter M  50.



Figure 5.12: Plot comparing the 2D neutral curve derived in Section 5.2 with 
the neutral curve derived from the fully nonlinear finite difference method. The 
results are for a fixed channel width Ly =  2tt. The small kink should be ig-
nored, being an artifact introduced by the numerical procedure used to solve 
equation (5.20) which has a non-meaningful solution a =  0, equivalent to the 
one-dimensional neutral curve.

139



o

-u.o

y-axis x-axis

Figure 5.13: The solution u(x, y) =  ^ =1 aj(y) sin jqx  for a channel width Ly =  2tr, wavenumber q =  1 and e =  0.5.



Chapter 6

Floquet Theory for the Two 
Dimensional Swift-Hohenberg 
Equation

6.1 Introduction

In this chapter we investigate more general solutions of the steady two dimensional 
Swift-Hohenberg equation for a channel of width Ly. We proceed by introducing a 
perturbation to the 2D periodic solution determined in Chapter 5 and classifying 
regions where the perturbation is spatially decaying or growing and regions where 
the perturbation is spatially oscillatory. The boundary separating the two regions 
is the Eckhaus stability boundary. One aim, as in the one dimensional theory of 
Chapter 3, is to determine the asymptotic form of the solution which will apply 
in the channel at large distances x from a lateral wall at x =  0.

6.2 Floquet-Fourier Method

We proceed as in Section 3.2 and search for solutions which approach the two 
dimensional periodic solution

N

(6.1)
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as x  —»• oo. Notice that we have already calculated the coefficients a , j ( y ) which 
appear in this formula for u p ( x , y ) in Section 5.3. Now consider a perturbation 
to Up so that u  is written as

u(x, y )  =  up(x, y )  +  kU(x, y )  +  . . . ,  (6.2)

where the constant k is small. Substituting into (5.1) and (5.2), expanding and 
taking terms of order k we get the equation

dAU d*U ( d 2U dAU d2U --------i---------- (. 2 I --------1---------------L -----
dxA +  dyA ^  Z V &x2 dx2dy2 ^  dy2

+ + +  (1 -  e)U =  -ZulU, (6.3)

for U to be solved subject to the boundary conditions

U =  Uy =  0 at y — 0, Ly. (6.4)

Equation (6.3) is a linear partial differential equation with periodic coefficients. 
We again found that if we use a shooting method (via the Method of Lines) to 
solve (6.3), (6.4) this leads to numerical instability. Instead, the solution for U is 
expressed in the Floquet form

N

U{x,y) =  e~Cx {bn(y) cos nqx + cn(y) sin nqx) , (6.5)
n= 0

where C is the characteristic exponent and the periodic part of the solution is 
expressed as a Fourier series in x whose coefficients bn(y) (n =  0,1, 2 , . . . ,  N) and 
cn(y) (n =  1 ,2 , . . . ,  AT), are bounded functions of y. Note that if C is complex 
then the conjugate of kU can be added in (6.2) to obtain the real solution for u. 
The value of N  is infinite in general but in practice approximate solutions can be 
found by truncating the infinite series in both (6.1) and (6.5).

For example, when TV =  1 and N =  1 equation (6.3) gives

0 +2<c2 + 1)0  +  (c4+2C2 +  1 - e)i,» +  
dAbi o . d2ci

+ l ^ +2(c " +1)̂ " 4<,ĉ  +
+  (C4 +  2(1 -  3q2)C2 +  qA -  2q2 +  1 -  e)bx +

+  4qC(—C2 +  — l)cj cos qx +
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dACi „ ._o  o , .d 2Ci , ^ePci
+ LdÙ+2(c ? +1V +4,C^  +

+  (C4 +  2(1 -  3q2)C2 +  q4 - 2 q 2 + l -  e)cx +

+  4 qC{C2 — q2 +  l)6i sin qx —3a2 sin2 qx (b0 + b\ cos qx +  

+  Ci sin q x ).

(6.6)

Using the orthogonality property of sines and cosines we get the system of ordi-
nary differential equations

d%
dy4

d%

+ 2(C2 + l Æ  + (C4 + 2C2 + 1 -  e)bo
dy

d2b\ ,d2Ci
+  2(C2 - q 2 +  l ) — ^ - 4 q C —i  +

dy4 ' * ' ’ dy2 dy2
+  (C4 +  2(1 -  3q2)C2 +  q4 - 2 q 2 +  l -  e)bx +

+  4 qC(—C2 +  q2 — l)ci

d4c\ „ . - 9  9 „ . gP c i t . d2Ci_ i  +  2(C2 _ ?2  +  1 ) _ + 4 ( ; C _  +

+  (C4 +  2(1 -  3q2)C2 +  q4 - 2 q 2 + l -  e)Cl +

+  4gC(C2 -  ?2 +  l)òi

-^a?6o, (6.7)

-^a?&i, (6.8)

-^ « ? c i ,  (6-9)

for the coefficients b0, b\ and Ci. Notice that the equation for 60 is disjoint from 
that for bi and ci. Moving the right-hand sides of equations (6.7)-(6.9) to the 
left gives the system

where

M  =

A4 a; =  0, (6.10)

0,0,6 0 0
0 £ l , l , & £ l , 2 , c , (6.11)

0 A ,1,6 ^ 2 , 2 , c  .

£o,o,b =  +  2( C 2 +  1)^2 +  +  2C2 + 1 -  e +  -a 2, (6-12)

A '1't =  ¿ î + 2(c2_?2 + 1)|? +
+  U4 +  2(1 -  3q2)C2 +  q4 - 2 q 2 +  l - e  +  ^a2, (6.13)
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(6.14)A , 2 ,c

A ,1,6

A,2,c

-AqC
S +(c* - q2+i)

AqC

d
S + ( c l ~ q2 + i )

—  +  2 (A  - q 2 +  1)
d2

dy4 '  ̂ ' 'd y 2 +

+  C1 +  2(1 -  3?2)C2 +  <j 4 -  292 +  1 -  e +  - o j ,

(6.15)

(6.16)

and a =  [60, 6,, c,]r . The boundary conditions are

MO) =  M L ,) =  | ( 0 )  = ~ ( L y )  =  0, (6.17)

6, (0) =  6,(L ,) =  ^t(O) =  ^ - ( L . )  =  0, (6.18)

MO) =  Ci(Ly) =  ^ ( 0 )  =  =  0. (6.19)

We use the same finite difference scheme from Section 5.3 to discretise the differ-
ential operator M. in equation (6.10), subject to the boundary conditions (6.17)- 
(6.19). From now on we shall denote the finite difference approximation of the 
operator M  as M fd. The formulae (6.10)-(6.19) can be expanded to incorporate 
higher truncation levels N  and iV in a straightforward but lengthy manner. The 
discretised system forms an eigenvalue problem and for solutions M.^d must have 
a zero determinant or equivalently, A4^d has a zero eigenvalue1. This is possible 
within our parameter space defined by Ly, q, e and C.

Notice that if we differentiate equation (5.1) with respect to x we see that 
U — is a solution of (6.3) which satisfies the boundary conditions (6.4). We 
can use this solution, for which C =  0 for all (Ly, q, e), as a check on our numerical 
algorithm. Notice that Oj, for i =  1,2, . . . , 9 ,  was calculated in Section 5.3 and 
that di =  0 for even i. Therefore we expect either solutions with b0] b2, c2; 64, c4,
. . .  non-zero or solutions with ¿q, Ci; b3, c3; . . .  non-zero. Freedom in the choice 
of the imaginary part of C suggests we can restrict attention to the latter case.

1The product of the eigenvalues of M fd is equal to the determinant of M fd so the zeros of 
det M ^d are equivalent to the zeros of eigenvalues.
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6.3 Numerical Results

Here we concentrate on the case when N  =  1 and N  =  1, and it follows from 
(6.10)-(6.19) that the eigenfunctions bi, c\ and the characteristic exponent C are 
solutions of the sub-problem

M i d i  =  0, ( 6.20)

where

Mi(C) £ 1,1,6 £l,2,c
£ 2,1,6 £ 2 , 2 , c

(6.21)

£ 1,2,6, £ 2,1,6 and £ 2,2,6 are defined in equations (6.13)-(6.16) and a x =  
[61, c i f .  The relevant boundary conditions are

f»i (0) =  bl( L , ) = ^ (0) =  ^  (L =  0, (6.22)

ci(0) =  Cl(L,) =  ^ ( 0 )  =  ^ ( L , )  =  0. (6.23)

We proceed as in Section 5.3 and introduce a finite set of grid points yr =  rh, for 
r =  0 ,1 , . . . ,  M, where M e N  and h =  Ly/M. Then using the central difference 
formulae (5.40)-(5.42) we discretise the linear operators £ 1,1,6, £ 1,2,6, £ 2,1,6 and 
£ 2,2,6 which we shall denote as C{dlb, £ 1,2,6’ £ 2,1,6 and £ 2,2,6 respectively. The 
problem (6.20)-(6.23) becomes the eigenvalue problem

M { dd  1 =  0, (6.24)

where

and

M { d(C)
r f d

6 *-1,2,0
r f d
*-l,l,i
/*fd rfd
*-2,1,6 *-2,2,.

(6.25)

Oil — [ b i - 2 ,  6 1 , - 1 ,  6 1 , 1 ,  6 1 , 2 ,  • ■ • , 6 i , m _ 2 ,  6 i , m _ i ,  6 i , m + l >  6 i , m + 2 ,

Cl,_2, Ci,—1 , Ci,i, Ci,2, • • • , Ci,m_2, Ci,m_i, Ci,m_|_i, Ci,m_(-2] • (6.26)

Normally, the function det M { d(C] Ly, q, e) is a very large complex function so to 
avoid truncation errors we search for zeros of the eigenvalue with the minimum 
modulus, i.e., min |(eigM { d)\, instead. The value of M  was taken as M  =  16 for 
most computations.
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Initially, the parameter values were fixed at (Ly, q, e) =  (27r, 0.82374, 0.5) and 
C varied within the complex plane to find the zeros of min | (eig M { d)\. Figure 6.1 
shows the shading and contour plots of the function

min eig M { d(C] 2?r, 0.82374,0.5)

for — 5 < Re(C) < 5 and —5 < Im(C) < 5. The plots show the regions where the 
zeros of min |(eigM { d)\ are located; a Newton iterative scheme was used to home 
in on the precise location of the zeros. Notice that the three roots of smallest 
absolute value lie on the real axis, located at C ~  —0.4, 0.4, and (7 =  0. We shall 
denote them as C_, C+ and C0 respectively. The root C =  0 represents the solution 
^  which was mentioned in Section 6.2 and occurs for all (Ly,q,e). Figure 6.1 
also shows that there appear to be two sets of roots in the first quadrant of 
the complex C-plane (the sets are represented by the magenta coloured lines; and 
individual roots by the red crosses). These roots occur in conjugate pairs and also 
pairs that are symmetric about the imaginary axis. Although we expect there to 
be an infinite number of roots associated with a complete set of eigenfunctions in 
y, the distribution shown in Figure 6.1 is likely to be significantly affected by the 
severe truncation as the value of \C\ increases. In addition, the various roots are 
only guaranteed to represent distinct solutions if the value of Re(C) is distinct, 
because any multiple of q in the imaginary component can also be incorporated 
in the periodic part of the Floquet form. The highest set of roots in Figure 6.1 
approximates to a reflection of the lowest set about the line C =  iq, suggesting 
that the lowest and highest sets are equivalent, and leaving one significant set 
of roots in the first quadrant. This argument suggests that the root C+ defines 
the dominant term in the spatial decay of the solution (6.5) as x  —>• oo and its 
behaviour is therefore of greatest interest.

Figure 6.2 summarises the main results at a particular point in parameter 
space, showing the geometry of the channel, the coefficient ax of the periodic 
solution up and the eigenfunctions b\ and cx at the parameter values (Ly,q,e) =  
(2n, 0.82374,0.4), corresponding to the characteristic exponent C+ =  0.3533. 
Figure 6.3 shows a shading plot of the functions up(x,y) =  ax(y)smqx and 
[fq (y) cos qx +  cx (y) sin qx] at the same parameter values.

From now on we concentrate our investigation on the three values of C of small-
est absolute value. By fixing (Ly,e) =  (27r,0.45) and evaluating min |(eigM { d) \ 
for a range of values of q about the critical wavenumber, qc — 0.82374, we
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can follow the transition that C± makes. Figure 6.4 shows the contour plots 
of min |(eig A4{d)| for q G {0.5, 0.6, 0.7, 0.8, 0.82374, 0.85, 0.9, 1}. From these 
plots we see that if we increase or decrease the value of q from its critical value 
we pass a boundary where the values of C± reach zero and thereafter become 
purely imaginary. Equations (6.2) and (6.5) indicate that these purely imaginary 
values of C± represent spatially oscillatory solutions (Eckhaus instability). We 
can see the transition more clearly in Figure 6.5. This shows the continuous plot 
of \C+\ for e =  {0.3, 0.35, 0.4, 0.45}. Consider the curve with e =  0.3. The red 
arrows indicate the region where C+ is real and the green arrows indicate the re-
gion where C+ is purely imaginary. At the join, C+ =  0, is the Eckhaus boundary 
for a channel of width Ly =  2 t x .

Fixing Ly =  27r and inspecting the values of (q, e) at which C+ =  0 we can plot 
the entire Eckhaus curve for a channel of width Ly — 27t . The plot is shown in 
Figure 6.6. Notice that the lower part of the Eckhaus curve is missing. We found 
that it is difficult to resolve the values of C+ in this region since it is relatively 
small and also close to the root at the origin (i.e., C0). The red crosses on the 
plot indicate the points in parameter space at which the plots of Figure 6.4 
are evaluated and the red pluses indicate the points at which further plots in 
Figure 6.7 are evaluated. Figure 6.7 shows the contour plot of min |(eigM { d)\ 
for the values (Ly,q) =  (27T, 0.82374) and e G {0.25, 0.35, 0.45, 0.5, 0.55, 0.75}. 
The plot shows how the roots C± approach the origin as the value of e approaches 
the critical value ec =  0.22056. This creates the difficulty in resolving the zeros 
corresponding to C± for e near ec.

Figures 6.8-6.14 show the profiles of oi, bi and c\ with C =  C+ as q varies 
between the critical wavenumber qc =  0.82374 and q =  0.96874 for e =  0.4. 
The plots in Figures 6.9-6.14 also include mesh plots of bi cos qx +  C\ sin go ; and 
eCx [bi cos qx +  Ci sin qx].

Note that we have taken the truncation levels at the lowest values N =  N  =  1. 
At these truncation levels the even modes in x are not respresented, but we do 
not expect that this would affect our results since the even and odd modes in x 
do not couple (due to the cubic nonlinearity). We expect the accuracy to increase 
as we increase N  and N  but observe that in the nonlinear periodic form, cq is 
significantly larger than a3, a5, . . .  for the range of e under consideration. By 
increasing N  and N  we would also be able to consider solutions which involve 
mode interactions.
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I

There are Three roots
Exam ple o f  points where 

det(M^ ) are zero
that lie on  the real axis

q=0 82374. e=0 !

0.15138

0.41083

0.80004
M61S3

0.36759

0.23785

Figure 6.1: The two plots show the zeros of min |(eigM.{d)\. The upper and 
the lower plots are of the identical region and differ by representing values of 
min |(eigM.fd)\ as shades and contours respectively. The zeros (examples are in-
dicated by the arrows) correspond to different eigenvalues becoming zero. Notice 
that there are three zero-eigenvalues on the real axis.
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Figure 6.2: Diagram illustrating the geometry of the 2D problem and showing the coefficient ai of the periodic solution up
and the eigenfunctions bx and cx at (Ly,q,e) =  (2n, 0.82374,0.4) corresponding to the characteristic exponent C+ =  0.3533.
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Figure 6.3: Shading plot of the functions up{y) =  ai(y) sin qx and [bi(y) cosqx+Ci(y) sin qx] at the parameter values (Ly,q,e) 
(2tt, 0.82374,0.4) and C+ =  0.3533.
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indicate that the numerical algorithm may be converging to another nearby solution branch. The investigation of such 
solution branches is left for future work.



Figure 6.6: Plots showing the neutral curve (green curve) and the Eckhaus bound-
ary (blue curves) for a channel of width Ly — 2n. The red crosses indicate points 
at which the plots in Figure 6.4 are evaluated and the red pluses indicate points 
at which the plots in Figure 6.7 are evaluated.
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Figure 6.8: Plots showing the profiles of a\, b\ and C\ at fixed (Ly,e) =  (27t , 0.4) and qc =  0.82374 <  q < 0.95374. The green
profiles represent the profiles at qc =  0.82374. The cyan arrow points in the direction of increasing values of q.
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Figure 6.9: Plots of the profiles of ax, bx and cx; and the functions bx cosqx+cx sin go; and eCx[bx cosqx+cx s in ^ ] at q =  0.82374
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Figure 6.10: Plots of the profiles of ax, bx and cx; and the functions bxcosqx 4- cxsmqx and eCx[bx cosqx +  Cisingx] at
q =  0.84874
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Figure 6.11: Plots of the profiles of ax, bx and cx; and the functions bicosqx +  cisinqx and eCx[biCosqx +  cxsin^x] at
q =  0.89874
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Figure 6.12: Plots of the profiles of m, bi and cx; and the functions bicosqx +  Cisinqx and eCx[bi cosqx +  Cisingrr] at
q =  0.92374
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Figure 6.13: Plots of the profiles of au bx and cx; and the functions bxcosqx +  Cisinqx and eCx[biCOsqx +  Cisingx] at
q =  0.94874
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Figure 6.14: Plots of the profiles of aiy bi and cx; and the functions bicosqx + cisinqx and eCx[biCosqx +  cisingx] at
q =  0.96874



6.4 Summary

Summarising what we have found in Chapter 6:

• We have considered perturbations to two-dimensional periodic solutions 
of the SH equation in a channel with no-slip sidewalls. We have found 
regions where there are spatially decaying or growing solutions and regions 
of spatially oscillatory solutions (Eckhaus instabilities).

• We have calculated numerically the two dimensional Eckhaus boundary for 
a channel with width Ly =  2n.

• We have found solutions in the first quadrant of the complex C-plane (see 
Figure 6.1) which, within the Eckhaus boundary, provide solutions which 
decay as x —» oo. Outside the Eckhaus boundary, one of these solutions 
becomes spatially oscillatory.

• Our solutions in this chapter are limited to the severest Fourier truncation of 
both the periodic form up and the Floquet perturbation. However, we have 
seen in Chapter 5 that the periodic form up is dominated by the first Fourier 
mode and it may be that the same is true of the Floquet perturbation for 
the roots C of smallest absolute value. This remains to be investigated in 
detail.
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Chapter 7

Solutions of the Two-Dimensional 
Swift-Hohenberg Equation in a 
Semi-infinite Channel

7.1 Introduction

In this chapter we consider solutions in a semi-infinite channel x > 0 of width 
Ly =  2tt with no-slip boundary conditions applied at a lateral wall at x =  0. 
Thus the problem is to solve

( y 2 +  Ï)2 u -  eu +  u3 =  0, (7.1)

subject to the boundary conditions

dii
u =  —  =  0, at 

ay y = 0, Ly , (7.2)

duu =  —  =  0, at 
ox

x = 0, (7.3)

and
u -»• up(x +  <f>,y), as x oo, (7.4)

where u — u(x,y) and y 2 =  ^  As in Chapter 4 we assume that the
solution approaches a periodic form at large distances from the wall, with the 
phase shift (j) to be determined as part of the solution. We expect the periodic
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form (7.4) to be achieved through an exponential decay of the form

u(x,y) ~  up(x +  (f>,y) +  ke~CxP{x  +  <?!>,y) +  x oo, (7.5)

where C =  C+ and up(x,y) and P (x,y) can be approximated by their Fourier 
representations

N N

up{x,y) =  ^  aj(y) sin jqx, P (x ,y ) =  (bn(y) cosnqx +  Cn(y) sinnqx).
j —1 n=0

(7.6)
The coefficient k, like 4>, is to be found as part of the solution. In Sections 7.2 
we use the periodic solutions, up, found in Chapter 6 and derive an approx-
imate method for calculating the two-dimensionanl «/-restriction at general e. 
The method is similar to the approximate asymptotic method used for the one-
dimensional problem in Section 4.3 and is based on the use of (7.5) for all x >  0. 
It is relatively easy to implement but is likely to have poor accuracy. We obtain 
results over a range of values of e up to e — 0.5.

7.2 Approximate Theory for General e

The solution (7.5) is used as an approximate solution for all x >  0 with C =  C+ 
and up(x,y) and P (x,y) approximated by their one-mode Fourier truncations

up(x,y) =  ai(y) sinqx, P(x, y) =  bi(y) cosqx + d {y) sinqx. (7.7)

A proper approximate treatment would also require the infinite number of other 
spatially decaying modes to be incorporated in (7.5), allowing the wall conditions

u =  ux =  0, at x =  0, (7.8)

to be satisfied for all values of y. However, noting from Figure 6.8 that the shapes 
of the profiles o i , b\ and c\ are very similar, we can make a further approximation 
and apply the conditions (7.8) at the central point y =  ^  only. Elimination of k 
then leads to the requirement that the phase shift (j) is determined by solutions 
of the equation

B\ sin 2«/</> — C\ cos 2</0 — —‘¿¡qC (7.9)
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where Bx =  bx(^-) and Cx =  c i (^ ) .  The left-hand side is an oscillatory function 
of (j) with amplitude (Bl +  Cf)* so that solutions exist only if

\2qC~lBx +  Ci| < {B\ +  C?)s. (7.10)

As an example, consider the detailed results for e =  0.4 shown in Figure 6.8, 
along with the variation of C shown in Figure 6.5. It is evident that the left-hand 
side of (7.10) becomes large at the Eckhaus boundary (q ~  0.67 and q ~  0.97) 
where C —> 0 and is zero near the position where q ~  0.87 (with B\ ~  0.07, 
Cx ~  —0.37 and C «  0.34). Solutions of (7.9) for e =  0.4 are thus confined to 
a narrow band of wavenumbers centred around q =  0.87 and, in fact, roughly 
within the band shown in Figure 6.8.

Figure 7.1 shows the wavenumber restriction for values of e between 0.25 < 
e <  0.5 calculated from (7.10). Notice that the restriction region is skewed to the 
right. This skewness is also a property of the equivalent approximate method for 
the one-dimensional case (see Figure 4.13).

7.3 Summary

Summarising what we have found in Chapter 7:

• We have provided an approximate theory for solutions of the two-dimensional 
SH equation in a semi-infinite channel x > 0 of width Ly =  27T which ap-
proach a periodic form with wavenumber q =  n/L as x —>oc  and satisfy 
the no-slip boundary conditions at the channel walls and at the lateral wall 
at x =  0.

• We have found that solutions are restricted to a band of wavenumber q 
within the Eckhaus boundary. As in the one-dimensional case, we might 
anticipate that the skewness of this band (c/. Figure 7.1 and Figure 4.13) 
which is due to the approximate use of (7.5) for all x > 0 and may not be a 
feature of the actual solution. However, we can expect that in the presence 
of a lateral wall at x =  0, the present theory will lead to the identification of 
a restricted band of two-dimensional solutions, the precise nature of which 
remains to be determined.
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Figure 7.1: The top plot shows the neutral curve, the Eckhaus boundary and the wavenumber restriction (red lines) for
the channel of width Ly = 2ir. The lower plot shows the functions {B\ +  Cf)^ and \2qC~lBx +  Cx\ for values of e =
0.25, 0.3, 0.35, 0.4, 0.45 and 0.5.



Chapter 8 

Discussion

8.1 Conclusions

The Swift-Hohenberg equation is a relaxational model equation which we have 
used for the study of pattern selection in Rayleigh-Bénard convection. The equa-
tion can capture much of the observed physical behaviour and has become a 
general tool for investigating certain features of other pattern forming systems, 
see Cross and Hohenberg (1993, [16]). Although it is a relaxational model equa-
tion our aim has been to develop methods for a fully nonlinear system which can 
then be applied to the nonlinear Boussinesq equations.

In this thesis we started by giving a linear stability analysis of the trivial 
solution to the different Fourier modes for the one dimensional case and used this 
as a basis for finding one-dimensional nonlinear periodic solutions. We showed 
the existence of nonlinear mode interaction solutions and studied their bifurcation 
structure and stability.

We used Floquet theory to analyse, in a spatial sense, the departure of the 
nonlinear solutions from their periodic form. We found regions consisting of spa-
tially growing or decaying solutions and regions of spatially oscillatory solutions, 
and located the Eckhaus boundary which separates these regions, in agreement 
with previous results for the one-dimensional case.

We used the Floquet analysis to find nonlinear solutions to the SH equation 
in the presence of a lateral boundary (the semi-infinite problem), finding the 
wavenumber restriction, at arbitrary e, for the one-dimensional case.

We also obtained linear stability results for the two dimensional case, in a 
form that explicitly determines the dependence of the solution on the channel
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width Ly and used this as a basis for finding two-dimensional nonlinear periodic 
solutions. As Ly —> oo, the two dimensional linear stability results approach 
those of the one dimensional case. We did not investigate mode interactions for 
the two dimensional case but propose this as a topic for further investigation.

We used Floquet theory to analyse, in a spatial sense, the departure of the 
nonlinear solutions from their periodic form, giving specific results for a channel 
of width Ly =  2n. The corresponding results for a channel of arbitrary width Ly 
can also be calculated in a straightforward manner.

We also used an approximate method based on the Floquet analysis to find 
solutions for the channel in the presence of a lateral boundary at x =  0, and 
to find the wavenumber restriction at arbitrary e. Further work is needed to 
determine its precise form.

8.2 Further Work

Due to time constraints, there are a number of aspects which we have not ex-
plored. We would like to propose the following for further study:

• To extend the two-dimensional Floquet analysis of Chapter 6 to higher 
levels of truncation to check the accuracy of results.

• To complete the determination of the wavenumber restriction for the two- 
dimensional problem, enabling results to be compared with numerical so-
lutions of the SH equation in large boxes (e.g., Greenside and Coughran 
(1984, [29])).

• To undertake a weakly-nonlinear analysis of periodic solutions, the Eck- 
haus boundary and the wavenumber restriction for the two dimensional 
problem, in particular to resolve the lower parts of the Eckhaus boundary 
in Figure 6.6.

• To undertake a stability analysis of the two branches of solutions within 
the restricted wavenumber region, both for the one-dimensional and two- 
dimensional problems.

• To study possible mode-interactions and nonlinear bifurcations for the two 
dimensional problem.
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• To investigate whether the bifurcation loci of nonlinear mode interactions 
encroach on the wavenumber restriction at higher e, both for the one-
dimensional and two-dimensional problems.

• To investigate the gap in the Eckhaus instability region associated with 
mode interactions (see Figure 3.6).

• To extend the methods discussed in this thesis to the Boussinesq equations, 
enabling results such as the Eckhaus boundary and wavenumber restriction 
to be compared with those from experimental methods.
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