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Abstract

The problem of experiencing early terminations of life insurance contract has greatly 
affected insurers and yet, is one of the areas in the actuarial literature in which has 
received little attention. As a result of this, insurers guarantee a high yield, and 
sometimes offer high payouts (surrender and maturity values) in order to avoid 
surrenders. This makes the pricing of insurance contracts and also, the management of 
the corresponding asset portfolio difficult. Therefore, we have proposed methods or 
techniques to minimise the impact of surrenders on the life insurance company’s fund. 
Particularly, we have looked at the impact of lapses on the performance (leading to 
profit/loss) of life insurance funds- a profit/loss model has been developed to be used 
by actuaries to determine the cost of the surrender option arising from the effects of 
financial and non-fmancial adverse selection in this regard. As a result, we have 
proposed techniques that will involve the policyholder in sharing the cost of surrender 
due to the option available to him, usually, at times which are favourable to him.

Further, numerical optimization routines and stochastic simulation techniques have 
been used to determine optimal strategic decisions that maximize the expected 
shareholders’ profit. It links the approaches of utility theory and mean-variance 
analysis in obtaining numerical solutions (optimal values). In view of the fact that the 
life office could lose most of its prospective policyholders as a result of charging a 
higher premium (the proposed strategy), we have introduced a premium penalty 
model to take care of this effect.

In the case where there is a financial incentive to surrender, the optimal strategy is to 
impose a low premium loading for all values of r, which is different from the market 
loading and a low surrender penalty. By this strategy, the volume of business is 
expected to increase and so is the shareholders’ expected profit. However, for the case 
where there is no financial incentive to surrender, the optimal strategy is to impose a 
high premium loading, not too close to the assumed market loading and charge a 
higher surrender penalty for relatively risk tolerant investors (for r > /2). This was 
found to increase the corresponding shareholders’ expected profit. Also, the results 
show that an optimal way of regulating the surrender basis is to change the surrender 
basis whenever the rate of investment return on assets rises by one and half percent or 
falls by a little above one percent. In view of the fact that the strategic decisions are 
considered in the context of utility theory, the results of the analysis have been shown 
to be similar to those of modern portfolio theory, as presented by Markovitz (1952). 
Finally, we have shown that the use of incorrect strategies can have an important 
effect on the shareholders’ expected profit.
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Chapter 1

INTRODUCTION

1.1 Background and Aims

The possibility of early surrender of life insurance policies is a ‘systematic’ risk for 

insurers and the consequences have greatly affected many life insurance companies in 

the U.K. and other parts of the world. The amount of benefits paid associated with this 

surrender amount in Britain to about several million pounds sterling, Scobbie et al 

(1969). Therefore, insurers are faced with the problems of either experiencing early 

terminations of life insurance contracts or have to guarantee a high yield in order to 

avoid these surrenders. This makes the pricing of insurance contracts and also, the 

management of the corresponding asset portfolio very difficult.

It is worth mentioning that Lapse occurs when premiums cease, before the policy 

“expiry” date is reached, without payment of a surrender value, for example, a term 

product at early durations. On the other hand, “surrender” is used to describe a 

discontinuation under which surrender values are available, Belth (1968). Further, 

from the insurance dictionary the actuarial word "lapse" in the context of life 

insurance is defined as the termination of a policy because of failure to pay a premium 

and lack of sufficient cash value to make up a premium loan.

The causes of lapses have been extensively studied for many decades by the insurance 

industry, and over the years several papers (for example, Belth (1968), Scobbie et al 

(1969), Thornber (1984), Le Grys (1987), Chung and Skipper (1987), Outreville 

(1990) and many more) have been published which investigate the factors affecting 

lapses. Some of these factors are mainly due to economic, financial, political and
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market performance. Other factors are due to mortality and change of geographical 

environment. For example, a policy is likely to be lapsed if the policyholder moves 

from one country to another. These factors will be reviewed in the subsequent 

sections of this chapter.

It is important to note that the research published in this area does not just centre on 

economic and market factors. But also, there are other approaches that have been used 

to analyse lapses some of which we will discuss later on in this thesis. For example, 

the area of selective lapsation, application of financial derivatives to manage interest 

rate and surrender option, adverse selection and withdrawals and many more have 

been looked at and reported in the literature as well. These concepts have a substantial 

influence on lapses and hence, the profitability of a company. So, it is important that 

we look into this area in great depth. Further, the risk level of an insured can also 

influence the lapse rate of a life company. For example, insureds with bad health are 

more likely to hold on to the policy than those with better health. Several authors, 

including Dukes and Macdonald (1980), Shapiro and Snyder (1981), Becker (1984), 

Macdonald (1997), and Jones (1998) have presented methods of looking at the impact 

of selective lapsation on mortality.

However, we have noticed that some of the methods used failed to address ways of 

providing lasting solutions to the consequences of lapses for life funds as opposed to 

exploring the factors affecting lapses. In other words, there has not been any 

published work on methods or techniques that could be used to minimise the impact 

of surrender on the life insurance company’s fund. This is an area that mainly 

concerns life insurers. Therefore, this thesis will be looking at the impact of lapses on 

the performance (leading to profit/loss) of life insurance funds. We will consider 

surrenders due to financial and non-financial anti selection effects. Particularly, we 

will employ the methodology of Geman et al (1994), Macdonald (1997), and Jones 

(1998) to determine the profitability of a life company. We will look at these papers in 

detail later on in this chapter.

On this basis, we will be looking at strategic ways or approaches to minimise the life 

insurance company’s losses due to surrender. In particular, we will design techniques 

or models that will involve the policyholder in sharing the cost of surrender due to the 

option available to him, usually, at times which are favourable to him. Numerical
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optimization techniques will be used to minimise the losses due to surrender if it

occurs.

1.2 Overview/Structure of the Thesis

In the section that follows, a survey of published work on lapses and optimisation 

procedures is given. Although most of the papers have focused on the factors that 

affect lapse rate, we look at the concept of selective lapsation and numerical 

optimization techniques as well.

Chapter 2 discusses the effect of payouts on life assurance lapse rate. An empirical 

analysis was performed to find out if there is any relationship between lapse rate and 

relative payouts (surrender and maturity values relative to average market value). 

Financial data were available from the Department of Trade and Industry for the 

analysis. Statistical analysis, using rank correlation analysis, was performed on this 

data.

In Chapter 3, we propose a stochastic investment model corresponding to an office 

liability under investigation. In particular, we use the Wilkie (1995) gilt model at time 

t, with mean gilt yield replaced by our proposed surrender force of interest, 3* . This 

is equal to the redemption yield in year t of an (n-t) year gilt. We also show how a 

model of 8 5t can be fitted. Further, the main properties of this model are reviewed. 

Simulation results from the model are presented and analysed.

Chapter 4 introduces the general methodology used to derive the expected surrender 

profit/loss for non-participating life insurance policies. Particularly, we show how to 

develop a model of the expected surrender profit/loss in which there is no selection 

effect and another, where the effects of financial and non-financial adverse selection 

are incorporated. These models make it possible to investigate the impact of adverse 

selection effect on expected surrender profit/loss at time t-n. We describe the 

multiple state models used in the model of the expected surrender profit/loss. A
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method used to compute the transition probabilities to be used in the lapse model is 

also discussed. A sensitivity analysis of the results to economic factors will be 

performed as well. Chapter 4 attempts to lay the groundwork for building a model that 

will be used in Chapter 5.

Chapter 5 discusses or defines strategies by which the management of life insurance 

companies can provide its investors (shareholders) with acceptable profiles of returns 

from their investment. In other words, we discuss strategies that can be used to 

maximize the expected utility of shareholders’ profit. Numerical optimisation will be 

described and then its application to the valuation of shareholders' expected profit will 

also be looked at. A sensitivity analysis to changes in model parameter values will be 

performed and the effects on profitability of using inappropriate strategies are 

discussed as well.

Finally, chapter 6 concludes by summarising the main arguments and by suggesting 

promising areas for future research.

1.3 Related Literature

The surrender of a policy (if it occurs) can have a tremendous effect on a company’s 

profitability. Yet, very little has been researched and reported in the literature. Several 

authors have proposed different ways of analysing lapse rates, coupled with 

investigations of the effect of economic factors on lapse rate, some of which we will 

review shortly.

The earliest extensive discussion of methods for improving persistency/lapse rates 

was reported in 1914 in Record of American Institute of Actuaries (RAIA) journal. 

By 1921, a significant change in point of view about lapses being laid on the agent of 

the company had occurred. It was around this time that the effect of economic 

conditions on lapse rates was demonstrated. About 1925, measurable factors that are 

associated with lapse rates were discovered too. Even though there were substantial 

agreement on the factors causing high lapse rates, there was no information that gave

16



useful clues to effective action. So, by the late thirties, the effect on lapse rates of 

income, occupation, sex, age, previous insurance, premium frequency, plan, and 

several other variables had been reported by a large number of studies. These 

variables were later on studied extensively by Richardson et al (1951). Also, there is 

historical evidence that economic recessions mostly affected the terminations of 

packages at durations subsequent to the second year.

Surprisingly, all of these analyses failed to measure the recognised interaction of 

various factors affecting lapse rates. Finally, a study by the Agency Management 

Association, AMA (1949) was able to provide a remedy to the above-mentioned 

deficiency. Since then there have been several papers on lapses/lapse analysis which 

are reviewed in this section.

For example, Richardson et al (1951) studied the causes of high lapse rates and the 

characteristics of business which has either high or low persistency. This study did not 

use any mathematical techniques in the calculation of lapse rate and also, did not 

perform any formal statistical analysis in their investigations. They conclude that a 

purely statistical approach is inadequate and that lapses are caused by human factors- 

“the reasons for which are not susceptible of statistical treatment”.

Buck (1961) presents the result of a study of first year lapse rates and not-taken-up 

rates on a block of standard direct Ordinary policies recently paid for. The purpose of 

his studies were as follows:

• To identify attributes of policies and policyholders that influence lapse rates. 

These attributes were considered in the calculation of premiums and 

dividends.

• To determine the attributes of agents that influence lapse rates.

• And to demonstrate ways to improve the persistency of new business.

Then again, Buck did not perform any formal statistical analysis in his investigations 

and lapse rates are shown only by number of policies. He observed that the first year 

lapse rates decreased markedly with increasing amount of insurance and with 

increasing annual premium. Other factors that affect the first year lapse rate are sex
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and age of insured, and attributes of the agents- for example, newly appointed agents, 

length of service of agent, as the more experienced agents made a higher proportion of 

their sales to older policyholders of the company. However, age of the agent did not 

have a significant effect.

Further, Belth (1968) measured the effect of changes in lapse rates on the price of life 

insurance protection to policyholders. The effect of changes in lapse rate was 

compared with the effect of changes in mortality rates. In this analysis, lapse data 

relative to a number of companies (91 companies) were used to illustrate some of the 

differences among companies in their lapse experience. Also, the lapse rate formulas 

used by Belth were developed by the Life Insurance Agency Management Association 

(LIAMA) that conducts a continuing survey of the lapse experience of a number of 

companies that furnish data to the association; the annual publications of Bests’ Life 

Insurance Reports; and the Institute of Life Insurance. The LIAMA, Best and the 

Institute of Life Insurance formulae are discussed in section 1.4.2 of this chapter. The 

conclusion of Belth’s analysis is that lapse rates have a substantial effect on the price 

of life insurance protection to the policyholder, and that the use of expected lapse 

experience in the classification of life insurance applicants should be considered.

Also, Scobbie et al (1969) examined the level of withdrawal rates, the factors 

influencing these rates and some financial considerations. They analysed the office’s 

withdrawal experience by the duration in force at date of withdrawal; occupation of 

proposer; purpose of assurance; originating branch office and agency connection. 

Note that Scobbie et al did not perform any formal statistical analysis in their 

investigations. The results of the analysis shows that withdrawal rates fall with 

increasing duration except during the third year where a significant increase was 

observed after exactly two complete years’ premiums had been paid. Also, the 

analysis by occupation of the policyholder showed that withdrawal rates for manual 

workers (non-apprenticed and apprenticed trades) were much higher than those for 

managerial classes. Other conclusions drawn from the analysis include the following:

• The withdrawal rates for whole life without-profits had higher rates than other 

policies.
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• The withdrawal rates for mortgage protection policies had poorer than the 

average experience.

• The withdrawal rates for endowment assurances, particularly with-profits 

assurance were observed to be lower than for all other classes of assurance. 

This is probably due to the savings element incorporated in this type of policy.

• The authors showed that poor withdrawal experience may be due to 

circumstances outside the control of the office such as a branch in an area 

being subjected to a temporary trade recession with associated high rates of 

unemployment.

Then, Crombie et al (1978), investigated the withdrawal experience of ordinary life 

business by using data supplied by seven Scottish life offices from 1972-1976. Their 

analysis indicate that four characteristics contribute ‘significantly’ to the variations in 

lapse rates. These are office, type of policy, age at entry, and duration of policy. It is 

worth mentioning that no formal statistical investigation was undertaken by the 

authors to qualify the term ‘significant’ as used in the discussion of the result of the 

analysis.

They observed that for with-profits endowment and term assurance, female lives 

experienced higher withdrawal rates (80%) than male lives at all durations and all 

ages at entry. Also, for with-profit and non-profit whole life assurance, female 

withdrawal rates were slightly higher (10-20%) than those for males. Further, it was 

observed that the withdrawal rates for with-profit endowment assurance increased as 

payment frequency increased. However, in the analysis of withdrawal rates by type of 

agent introducing the business, Crombie et al observed that insurance brokers were 

much more heavily involved in non-profit endowment and non-profit whole life 

assurance policy classes with heavy withdrawals. Again, estate agents had the 

heaviest overall withdrawal rates and chartered accountants had the highest rates 

overall, closely followed by the miscellaneous groups of other agent and no agent. 

Note that the estate agents were heavily involved in non-profit and term assurance, 

where term assurance was mainly being used as a cover for capital and interest 

repayment mortgages. Finally, middle level withdrawal rates were experienced by 

Banks, Building Societies, Solicitors and the office’s own staff.
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Further, Haberman and Renshaw (1987) performed an extensive statistical analysis of 

life assurance lapses or withdrawal experience by applying the methodology of 

generalised linear models and a computer software package GLIM to lapse data 

considered earlier on by Crombie et al (1978). This improved the estimation of the 

underlying parameter values. One of the models fitted to the data was a linear model 

with normal error structure. The other model was a binary response model where the 

lapse data was treated as binary responses with the observed number of lapses in each 

category or policy characterization, modelled as a binary response variable. The 

discussion of these models is presented in section 1.4.2. The conclusions drawn from 

this analysis were similar to those of Crombie et al (1979) and include the following:

• Offices experienced similar patterns of lapses but to varying degrees of 

intensity.

• Lapse rates decreased with increasing age at entry.

• They observed a marked reduction in lapses for all types of policies at long 

durations in force.

• The non-profit whole life policies maintained decreasing pattern of lapses with 

increasing duration in force.

• There was a steady reduction in lapse rates with increasing age at entry for 

unit-linked. However, lapse rates were higher for non-profit policies than for 

the corresponding with-profit policies. Also, unit-linked policies had higher 

lapse rates than the other policy types at the youngest ages.

It is important to note that the Haberman and Renshaw (1987) models incorporated 

possible interactions between factors, while Crombie’s approach could not deal with 

this aspect.

Sarma (1987) investigated the experience of lapses and surrenders of Rajkot 

Divisional Office of the Life Insurance Corporation of India by using a statistical 

based analysis. Particularly, analysis of variance was used in this case. Note that a 

preliminary analysis was performed initially, followed by an analysis of a three-way 

table. See section 1.4.2 for the model used for the three-way analysis.
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The groupings recommended for the analysis by various factors were as follows:

1. Age (at date of investigation).

2. Duration in integral years. This is counted as at the beginning of the policy 

anniversary.

3. Plan of Assurance. That is, endowment, anticipated endowment and money 

back plans, whole-life policies, childrens’ assurance and other plans.

4. Mode-wise (frequency of payment of premium) analysis (i.e., monthly, 

quarterly, half yearly and yearly).

5. Original policy term in groups (12 years or less, 13-15 years, 16-20 years, 21- 

25 years, 26-30 years and above 30 years).

6. Age at entry in 8 groups. (Age at 15-19 at entry, 20-24, 25-29, 30-34, 35-39, 

40-44, 45-49, and 50 and over).

7. Sum assured in Rupees (Rs) ranges: 10,000 or less, 10,001-25,000, 25,001- 

50,000, 50,001-100,000 and above 100,000.

8. Occupation code.

9. Rural and Urban classification.

10. Non-medical and medical.

11. Agent’s status.

The following results were obtained from the preliminary analysis:

• The withdrawal rates decreased with duration. However, duration was not 

significant when duration and sum assured range were the factors for the two- 

way table.

• Mode was a significant factor. However, duration became significant but 

mode did not when the data were analysed by duration and mode.

• The plan of assurance was a significant factor along with duration in the two 

way table of plan and duration.

• The sum assured range was a significant factor when the data were analysed 

by sum assured range and age at entry, and also by sum assured range and 

duration.

• The original policy term was a significant factor when data were analysed by 

sum assured range and original term.

• Medical and non-medical was not a significant factor in this analysis.
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• Age at entry was a significant factor when the data were analysed by plan and 

age at entry.

The conclusions drawn out from this analysis are as follows:

• The withdrawal rates increased for the younger age groups 15-19 and 20-29, 

but decreased with the later age.

• Durations 1 and 2 have an effect of increasing the rate. However, there is a 

decrease at later durations, the decrease being marked at durations 16 years 

and over.

• Both monthly and quarterly mode are associated with an increase in the rate 

(particularly, quarterly mode). Also, half-yearly and yearly modes are 

associated with a decrease in the rate.

• The effect of the interaction between age and duration is not significant. 

However, there was an increase in the withdrawal rates in the age group 15-19 

and duration groups 3-8, and 9-15 years. In the case of age group 40 and over, 

there is an increase in the rate for durations up to 8 years.

• The interaction effect of age and mode was significant. Further, increases in 

the withdrawal rate arise in the case of age group 20-29 and modes (monthly, 

and quarterly) and also, for higher age groups for all modes except, monthly.

It is worth mentioning that Sarma’s methods are inferior to Haberman and Renshaw 

(1987), but superior to Crombie et al (1979), in methodological and analytical terms.

Chung and Skipper (1987) examined the effect of interest rates on the cash and 

surrender values in order to determine whether policies with higher interest rates 

(insurer’s currently advertised interest rates being credited on policies) generate 

higher values or not. The Spearman rank order correlation coefficient was used as part 

of a statistical analysis of surrender values and interest rates. Particularly, cash values 

and surrender values for durations of 1, 5, 15, and 20 years were compared with each 

insurer's currently advertised interest rate. Note that the values were based on a non-

smoking male age 45 and the analyses were conducted using a level face amount of 

($100,000).
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Chung and Skipper (1987) observed no significant correlation between year one and 

five cash values and the credited interest rate. However, the interest rate becomes 

significant at durations 10, 15 and 20. Further, they observed a significant negative 

correlation between the level of surrender values and currently credited interest rate at 

duration one and a negative, but not significant, correlation at duration five. However, 

a significant positive relation exits at durations 10, 15, and 20. These suggest that 

policies with higher current interest rates do not necessarily generate higher surrender 

values for durations less than 10 years. Thus, the interest rate is a poor gauge if the 

person's planning horizon is less than 10 years. Over greater durations, higher interest 

rates tend to be associated with higher surrender values. However, it is important to 

note that even though there is a significant result at the longer durations, the 

dispersion of surrender values was large (determinant coefficients were quite small). 

This suggests that it is not always the case that policies with a higher interest rate 

usually provide higher surrender values in the long run and so the individual 

consumer should consider the large dispersion in surrender values in decision-making. 

Finally, Chung and Skipper suggested that “since current interest rates are not 

particularly reliable indicators of policy value, the prospective purchaser would be 

well-advised to place greater weight on the absolute level of projected surrender value 

accumulations (for a given outlay) rather than interest rates”.

Outreville (1990) performed a statistical analysis on testing the emergency fund 

hypothesis (originally proposed by Linton (1932)) in relation to the annual average 

lapse rates for whole-life and ordinary life insurance policies. The emergency fund 

hypothesis, according to Outreville (1990), is that "cash values are utilized by 

policyholders as an emergency fund to be drawn upon in times of personal financial 

crisis", and that lapses should increase during recessions because some policyholders 

are unable to maintain premium payments for insurance coverage. The analysis was 

performed by using a regression equation which expresses lapse rate as a function of 

the variables: real transitory income per capita, real rate of return on alternative assets, 

price of insurance, unemployment rate and anticipated inflation rate. The results 

provided evidence in favour of the emergency fund hypothesis.

It is worth mentioning that tests of emergency fund hypothesis by Cummins (1975) 

proved unsuccessful for policy loans, and no direct estimation of lapse rates was
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provided. Further analysis on this hypothesis will be performed in chapter 2 of this 

thesis.

Another interesting area within the same context, but with different methodology 

from the ones mentioned so far, is an application of financial derivatives to manage 

interest rates and surrender options, authored by Albizzati and Geman (1994). They 

“addressed the surrender option pricing problem as the valuation of a contingent claim 

for the insurer, where the contingency is closely related to the level of interest rates, 

and directly priced by arbitrage the surrender option embedded in the life insurance 

policies”. Further discussion on this investigation is given in section 1.4.3.

An important area which will be applied in this thesis is the area of selective 

lapsation. For example, Jones (1998) presents a model for examining the effect of 

various relationships between mortality rates and lapse rates on the mortality 

experience of a cohort of insured lives. In other words, he presents a model for 

individual mortality and its relation to lapsation. This is further discussed in detail in 

section 1.10. Similarly, Norberg (1988) presented a multiple-state model of temporary 

selection which provides an explanation for many selection phenomena.

1.4 Analysis of Lapse Risk Reported in the literature.

Now, in this introductory chapter we will look at the different ways of analysing lapse 

rates as reported in the literature. We shall divide our discussion into the following 

sections:

1. Causes/ factors affecting lapse rate (section 1.4.1)

2. Lapse Rate Models (section 1.4.2)

3. Valuation of Surrender Option in Life Insurance Policies (section 1.4.3)

4. Adverse Selection and Lapses (section 1.4.4)

5. Numerical Optimisation Techniques (section 1.4.5)

In what follows, we present a review of each of the above sections.
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1.4.1 Causes/Factors Affecting Lapse Rate

The causes of lapse rate have been under study for many decades by the insurance

industry and many researchers. Several papers have been published over the years on

the factors affecting lapse rate and what follows is a review of some of these papers.

Note that most of the factors listed are economic, financial or political in character.

i. An immediate need for cash to pay off outstanding debts, school fees, divorce, 

etc, may affect lapse rate.

ii. Various circumstances of the policyholder may also affect lapse rate- 

especially, for policyholders who are not fully familiar with the true nature of 

the financial contract they had purchased. So, with fluctuations in their 

personal circumstances occasioned by economic conditions, their financial 

resources may worsen. Therefore, such policyholders are likely to surrender or 

discontinued their policies in order to ease them of their financial difficulties, 

(Scobbie et al (1969)). Another example is that, an investor with a personal 

pension policy who unexpectedly changes employment to a non-contributory 

occupational pension scheme is most likely to lapse the former plan.

iii. The overselling or incorrect selling of business by sales organizations and 

agency will inevitably affect the level of lapse rates. That is, agency and sales 

agents are only interested in the quantity of business they issue since a high 

level of remuneration is related to the amount of business sold and so, they 

may overlook the policyholder’s personal resources or circumstances and 

requirements (Thornber (1984), Le Grys (1987), SIB (1988)).

iv. Alterations to a mortgage can contribute to withdrawals since most life 

assurance contracts are effected in connection with house mortgages. Further, 

a policyholder may surrender the policy if the original purpose for setting up
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the policy is no longer relevant, for example, the policyholder may no longer 

have a mortgage.

v. Changes in either economic conditions or tax structure under which savings 

are encouraged could also have an effect on life assurance business as a 

policyholder may feel that the incentives to save are no longer there. 

Consequently, this could have an effect on withdrawal. Also, general 

economic conditions are a factor: Lapse rates are normally affected by the 

state of the economy, for example, lapses due to redundancy because of the 

inability to afford the premiums charged.

vi. The anticipated inflation rate and the real rate of return on alternative assets 

available on the market have an impact on lapses (Outreville (1990). Other 

factors could include the fact that surrenders are perceived as being more cost 

effective in the short term than taking a personal loan due to high interest 

rates, (Lamb (1989), Pipe (1990), Alexander (1991), Survey Research 

Associates (1992)). Finally, a change in interest rate (mainly a rise in interest 

rate) is another factor affecting the lapse rate (Chung and Skipper, 1987). 

Thus, policyholders may decide on early terminations of their existing policies 

and choose a higher yield savings alternative offered in the capital markets 

(e.g., money market funds), if the guaranteed return promised by the life 

insurers is not high enough compared to other forms of investment, mainly in 

the case of rise in interest rates, Albizzati and Geman (1994).

vii. Economic and political conditions may also affect a life insurance plan, 

thereby causing policyholders to lapse. For example, new pension legislation, 

new taxation rules or events, such as recession, may cause policyholders to 

lapse their policies. (SIB (1988)).

viii. Affordability and Suitability: An investor is more likely to stop paying 

premiums on a policy that is not affordable and does not meet his or her needs 

than one that is affordable and suitable. Further, an investor may stop paying 

premiums where the investor is sold a policy which costs more than he can 

afford.
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ix. Changes in product design involve a loss to the policyholder and this may 

affect the lapse rate. Examples include the introduction of innovative product 

design (for example, for a switch from a personal pension plan to an FSAVC 

when the policyholder joins an occupational scheme), and the withdrawal of 

“old’' products from the market, which involve a loss to the policyholder and 

may affect the lapse rate.

1.4.2 Lapse Rate Models

Having looked at the factors that affect lapse rates, we now consider some of the 

models that have been used in the analysis of lapse rates. The most common ones 

reported in the literature use the traditional way of measuring lapse rate. That is, the 

ratio of insurances going off the books due to termination of a policy by the insured 

(with or without surrender values) to a measure of the amount of the life insurance in 

force. However, in some of these examples, the approach used does not take into 

account the number of policies exposed to the risk of lapsing from the previous 

calendar years. But this is an important factor that could have an important effect on 

the results of any lapse analysis. Such a model is discussed in chapter 2. In what 

follows, we discuss some of the models reported in the literature.

A lapse model (for a 12-month period) to analyze the effect of changes in lapse rates 

on the price of life insurance protection to policyholders essentially defines a lapse 

rate for the first policy year in terms of the face amount of insurance. This measure, 

which was used by Belth (1968), was developed by the Life Insurance Agency 

Management Association (LIAMA), that conducts a continuing survey of the lapse 

experience of a number of companies that furnish data regularly to the Association. 

This was calculated by dividing the sum of lapses for each of the twelve months by 

the sum of the average monthly productions for the corresponding production periods 

(US and Canada 13-month Ordinary Lapse Survey, (1964)). A model of this kind does 

not consider ‘exposed to risk’ of lapsing.
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Another lapse model similar to LIAMA was developed by Best (1967 and 1991). The 

model expressed the lapse rate as the sum of surrenders, expirations, lapses and net 

decreases with deductions made for amounts of ordinary business revived or 

increased. This expression is then divided by the sum of the previous year’s amount of 

insurance issued, reinsurance assumed and the total in force at the end of the previous 

year. Note that the traditional approach was used here too.

Next, the formula for the voluntary termination rates compiled by the Institute of Life 

Insurance are described as follows:

“The termination rate is the ratio of the number of policies lapsed or surrendered (for 

cash, extended term, or reduced paid-up insurance), less reinstatements, to the mean 

number of policies in force”. Life Insurance fact Book (1967).

Further, we consider a model that defines withdrawal rate of a policy at a given 

curtate duration (probabilistic model) as discussed by Sobbie et al (1969). This is 

given by :

where,

R(a) is the withdrawal rate for curtate duration a and

f(b) is the probability of withdrawal at curtate duration b, for b=0,l,

At the inception of a policy the probability of withdrawal occurring in a particular 

year at curtate duration t is calculated by dividing the number of policies terminating 

by lapse or surrender with t complete years premiums paid by the original population. 

The original population in this context was modelled to incorporate the number of 

new policies effected in the past calendar years. Actually, this was an approximation 

to the “original population” from which withdrawals could come and is given below. 

In this case, the assumptions made were as follows:

• The policy anniversaries are spread evenly over the calendar year.

• The distribution of policies by frequency of premium payment is 60% payable 

monthly, 25% payable quarterly, 5% payable half-yearly and 10% payable 

yearly.

a=l,2,........, and R(0)=f(0).
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• Policies terminating by withdrawal in a particular year are evenly spread over 

that year.

• The probability of withdrawal at exact duration t+r (0 < r < l) is constant for 

all values of r and is independent of the frequency of premium payment.

• The policies terminating by withdrawal are removed from the live file two 

months after the date of the first.

The formula adopted is given by:

0.4562£( +0.5396£m  +0.0042£(_2

where,

Et_a represents the number of new policies effected in the calendar year (t -  a ) . For 

full explanation of the derivation of this formula see appendix 1 of Scobbie (1969).

An approach better able to describe the structure of data previously analysed by 

Scobbie et al (1979) was proposed by Plaberman and Renshaw (1987), discussed 

earlier in section 1.3. We present in this section the models used. Here, the following 

covariates are investigated:

A- age at entry; 3 categories, i.e.

D- duration of policies; 3 categories, i.e.,

F- office, these are 7 denoted by k = 1,2,....,7

T- type of policies; 5 categories, i.e.,

Also, the number of lapses wu, out of n

i = 1: early (15 -  29years)
< i = 2: medium (30 -  39years) 

i = 3 : late (40 -  64years)

y = l: short (1 -  3years)
<¡7 = 2: medium (4 -  8years)

7 = 3: long (9 or more years)

/  =  1 : with -  profit 1
> endowment 

1 = 2: non -  profit J
1 = 3: with -  profit 1 1 1 whole -  life
1 = 4: non -  profit

1 = 5: temporary 

exposures, for different u, are available for

the analysis. The first model is a linear model with normal error structure. This is 

fitted to the lapse data (wu nu).
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The model is written as

Yu = mu + £u for each u

where, su ~ N(0,cr2) and Yu ~ N(mu,cr2) (since E(su) = 0 and so, mu = E(YU)) 

for all u. According to Haberman and Renshaw (1987), the response variable is of the 

form

Yu = log
w„

Knu- w

and the structure of mu, as

u J

mu = a, + pj + yk +8,

where the parameters a , /?, y, 8 relate to the covariates A, D, F, and T respectively. 

Further, by performing a test on the interactions between the various covariates, a 

significant result for the interaction term D.T is obtained. Therefore, the modified 

fitted model becomes

mu = n  +a, + pj +yk +S, + (PS)J

The parameters are estimated by using the maximum likelihood estimation method. 

See appendix A of Haberman and Renshaw (1987) for a full derivation of the 

parameter estimates.

Now, in the second model, the lapse data, (wu nu) are treated as binary responses with

the number of lapses in each unit u, modelled as a binomial response variable 

wu ~ Bin{nu, Pu)

where pu is lapse probabilities. Here, the structure of the model is given by

logr Pu ^ 
\ - P u

-  p + or,. + p +yk +8, + {PS)I

The estimates of the parameters are also estimated by using the maximum likelihood 

estimation method. See appendix B of Haberman and Renshaw (1987) for a full 

derivation of the parameter estimates.

In section, 1.3, we presented a review of the Sarma (1987) analysis. We now look at a 

model for describing how lapse rates vary within a population as discussed by Sarma.
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In this work, withdrawal rates are calculated as the ratio of the number of withdrawals 

to total exposed to risk. In this case, withdrawals include lapses, foreclosures and 

surrenders and these are assumed to contribute one year to the total exposed to risk in 

the year of withdrawal. Note that exits other than withdrawals include deaths, 

maturities and transfers. These were assumed to contribute a fractional exposure.

In this analysis, 0jk is denoted as the value of the transformed variable corresponding

to the observed ratio of withdrawals in age group i, duration j  and mode k. Note that

k Ratio ^the transformed variable is given by logt 

‘model’ value ¡ujjk can be expressed as:

1 -  Ratio
. The corresponding theoretical

ju,jk = m + «, + Pj + n  + M y  + {fiy)jk + M , k + *

where,

H is the overall mean value of all groups 

a , is the addition for age group i 

P is the addition for duration group j  

yk is the addition for mode group k

(ay)J is the addition due to interaction of age group i and duration j.

(fir). is the addition due to interaction of duration group j  and mode k.

(iay)lk is the addition due to interaction of age group i and mode k. 

s is the error term.

In order to minimise the error term, s ,  we need to minimise the sum of squares 

expression -  jul/k )2 . This leads to the following parameter estimates:

/u = 9 (mean values of 6t]k).

a , = 0,., -  6 , where dt„ is the mean of the values of 6ijk for age group i over duration 

groups and mode groups.

¡3 = 0 , - 0  , where 6%j, is the mean of the values for duration j  over age groups and 

mode groups.
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yk =  Ommk -  6  , where 6„k is the mean of the values for mode k  over age groups and 

duration groups.

{aP)ij. =Oij~ -  O.j. + 0 > where Gy is mean of the values for age group i duration 

group j over all modes, and 

{fiy\jk and {ccy)imk have similar expressions as (a/3)

Note that in the analysis of variance, the main factors are age, duration and mode and 

the interaction effects are age and duration, age and mode, and duration and mode.

A new development in calculating lapse rates was reported in the 1990’s. In a study 

on lapse experience under lapse supported policies1 carried out by the Canadian 

Institute of Actuaries (1996), lapse rates were determined monthly by sex, smoking 

status, policy size, issue age, premium frequency, calendar year, plan code, and for 

total company. In this investigation, there was no statistical analysis, and the model is 

descriptive and hence cannot be used for prediction purposes.

Given the methods and techniques used in the above papers for modelling lapse rates, 

we will use a lapse model that takes into account the risk factors associated with the 

business issued in the previous calendar years which the models reviewed above do 

not. In particular, we will allow for the number of policies exposed to the risk of 

lapsing from previous calendar years. We included this in our lapse rates calculation 

because the exposed to risk in the first year is based on new business figures in the 

current year and the previous year. Note that this type of model is dealt with in section 

2.4.2.

From the papers reviewed so far we observed that most of the approaches used to 

analyse lapse rates are descriptive based, i.e., there were no statistical analyses 

involved. However, Haberman and Renshaw (1987) presented a statistical analysis of 

life assurance lapses that is better able to describe the structure of data previously 

analysed by Scobbie et al (1979). Also, Sarma (1987) used an approach similar to 

Haberman and Renshaw (1987) to analyse the lapse experience of Rajkot Divisional

1 The reported experience is for policies whose lapse experience is not distorted by premium rate 
changes, not distorted by nonforfeiture values and is expected to be non-increasing over time.
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Office of Life Insurance Corporation of India. From these we can conclude that 

Sarma’s methods are inferior to Flaberman and Renshaw (1987), but superior to 

Crombie et al (1979), in methodological and analytical terms.

1.4.3 Valuation of Surrender Option in Life Insurance Policies

1.4.3.1 Introduction

This is an interesting area within the context of surrender of a life policy. 

Albizzati and Geman (1994) address how to value the surrender option in the 

context of stochastic interest rate by using financial derivatives. In addition 

Albizzati and Geman consider a pool of homogeneous life insurance policies and 

use the fundamental averaging effect of the insurance mechanism in addressing 

problems of valuing surrender option. Although this thesis does not use financial 

derivatives in any of the analysis performed, we employ some of Albizzati and 

Geman’s methodology, which will be reviewed shortly.

1.4.3.2 Valuation o f Surrender Option.

The Surrender option is an exchange option, which gives the holder the right to 

exchange one security for another, Margrabe (1978). In valuing the surrender 

option, Albizzati and Geman (1994) considered a single premium deferred 

annuity contract. This contract is a tax-advantaged savings product offered by life 

insurers in France, so that, if the policy is held for eight years then interest 

income on it is tax free. However, there is a guaranteed minimum return paid to 

the policyholder. In addition the policyholder receives a cash surrender value on 

termination of the contract. In the case of early surrender, the tax rate on the 

policy depends on whether surrender occurs before or after four years. Thus, the 

tax rate at time t is represented by

*(0 = 0.381/ +0.181 /
t< 4 4<«8
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where /  denotes an indicator function, with 1 = 1 if the above inequality (e.g., t<4) 

is satisfied, and 7=0 otherwise. It is important to note here that there is no penalty 

on surrender. By using the tax rate model Albizzati and Geman suggest that the 

payoff for a policyholder who terminates an insurance contract at time t (cash 

surrender value) is as follows:

K(t)=l+(ew o - l ) ( l - x ( 0 )

where A R(0, T) represents the return effectively paid to the policyholder ( A is a 

positive constant not greater than one and R(0,T) is the yield on the assets). 

Further, Albizzati and Geman introduce a stochastic model of the dynamics of the 

term structure of interest rate which is assumed to be driven by a one-factor 

model with deterministic term structure of volatilities. For details of the 

modelling of the dynamics of term structure of interest rate, see Albizzati and 

Geman (1994). Finally, a closed form solution for the surrender option is derived 

and computed numerically under different interest rate volatilities.

Numerical values are calculated for the surrender (European) options with 

maturities, t = 1,2,...,7 for different parameter values and the following 

observations are made.

i. This is a practical observation:- “At variance with a belief shared by a 

number of insurers preoccupied by this problem, the maximum value of 

the European option is observed for maturities reached two to four years 

after inception of the contract and not for maturities greater than four 

years. This means that “the tax effect is dominated by the time value of 

the option”.

ii. “The surrender option on a policy has a greater value than the supremum 

of the values of the corresponding European option for different possible 

exercise dates”.

iii. The price of the surrender option is sensitive to the volatility of interest 

rate and also, the value of A .

iv. The price of the surrender option increases with the slope of the initial 

yield curve. However, it decreases with the level of the initial yield curve.
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The conclusions drawn out from this study are as follows:

• the risk of experiencing early surrender of life insurance policies can be 

hedged by incorporating floating rate notes in the assets portfolio (interest 

rate caps that are available for 7- to 10-year maturities). According to 

Albizzati and Geman, “these caps should be tied to the interest rate index 

most closely related to the policy lapses that need to be hedged”.

• In defining the insurer’s marketing policy, the coverage cost or amount of 

benefit paid as a result of policy surrenders must be incorporated in the 

coefficient A , which defines how much of the portfolio yield is allocated 

to the policyholder.

We will employ some of Albizzati and Geman’s methodology in our analysis.

These would be discussed in detailed in the subsequent chapters of the thesis.

1.4.4 Adverse Selection and Lapses

1.4.4.1 Introduction

In the discussion of the above review we realised that there is an important area that 

was not mentioned. This is the area of adverse selection and withdrawals. This 

concept has a substantial influence on lapses and hence, the profitability of the 

company. So, it is important that we look into this area in great depth. Further, the risk 

level of an insured can also influence the lapse rate of a life policy. For example, 

insureds with bad health are more likely to hold on to the policy than those with better 

health. Therefore, the risk level of the insured reflects the heterogeneity of the insured 

group. Hence, our lapse model should recognise the heterogeneity of the insured lives 

and include a random component that allows a substantial deterioration in the health 

of an individual. Several authors, including Dukes and Macdonald (1980), Shapiro 

and Snyder (1981), Becker (1984) and Jones (1998) have presented methods of 

looking at the impact of selective lapsation on mortality. We will look at some of 

these papers in detail and employ some of the methods used to determine the
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profitability of the company. What follows are definitions and the description of 

methods used in analysing selective lapsation.

1.4.4.2 Selection

Selection is defined as the operation of any variable factor, other than age, which 

tends to influence rates of mortality (Anderson and Dow, (1948)). In fact, selection is 

the process of subdividing data into more homogenous groups.

1.4.4.3 Adverse Selection

Suppose that an insurer offers coverage at the same price to insured with high and low 

loss probabilities. By this action, the high-risk insured would be prompted to buy 

larger policies than the low-risk insured and/or will cause some or all of the low-risk 

to remain uninsured. Thus, according to Cummins et al (1982) the tendency of high 

risks to be more likely to buy insurance or to buy larger amounts than low risks is 

known as adverse selection. We notice that adverse selection arises because of an 

“informational asymmetry”, Cummins et al (1982), that is, applicants for insurance 

know their loss probabilities but companies either do not or are not permitted to use 

this knowledge even if they know.

We can illustrate adverse selection using a simple model given by Cummins et al 

(1982). They consider a market for one-year term life insurance in which there are 

high- and low-risk insureds with associated probability of death as 0H and 6, 

respectively. They assume an equal number of high- and low-risk insureds with 

“identical financial characteristics and identical utility functions”. Further, they 

assume the loss amount to be Q for both groups. They expressed the demand for 

insurance by consumers in the two groups by the functions QH (P) and QL (P), where 

Qi(P) is the demand curve for risks in group i, and p  is the premium per dollar of 

coverage. Note that as price declines, each group of risks demands more coverage. 

Thus, “the actuarial fair or expected value premiums per dollar of coverage are 0H for 

the high-risk group and 01 for the low risk group”. Now, consider the graph of 

demand curves in figure 1.1.
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Quantity Demanded
Figure 1.1-Adverse Selection in a Simple Insurance Market

From the graph, we observe that the curve for the high-risk group lies to the right of 

that for the low-risk group. This shows that “high risks will purchase more insurance 

at every relevant premium rate because they are more likely to sustain losses”. So, if 

companies can identify applicants who are high-risk and low-risk and offer coverage 

to each group at actuarial fair rates, then all consumers will demand coverage Q. 

However, because each group is charged the actuarially fair rate, premium revenues 

are produced in exactly the amounts needed to pay loss costs. This is given by the 

amount 0H Q (area O 0H AQ) for high risks and 0L Q (area O 9, BQ) for the low risks.

On the other hand, suppose that companies are unable to classify risks into high-and 

low-loss probability groups either because firms are unable to measure loss 

probabilities accurately before issuing coverage or because regulation or legislation 

does not permit them to classify. If high and low risks cannot be identified, the

company will charge the average premium 9 to every one who applies for coverage. 

However, this will cause the low-risk consumers to cut back their demand for 

coverage to 0 L, whereas high-risk insureds will still purchase the full coverage 

amount Q, assuming that overinsuring is not permitted. This type of situation is 

known as adverse selection.
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The effect of adverse selection on a company’s profitability can be identified or 

studied by considering the following. From above the company thus collects 

premiums of 6 Q (area of rectangle 0 6 CQ) from high-risk policyholders and has to 

pay expected losses of 0H Q. This will result in a loss to the company, equal to the

area OHAC0. This loss is offset partially by overcharges to the low-risk insureds 

(area is denoted by straight lines). But the expected loss from each high-risk insured is 

larger than the gain from each low-risk insured. Hence, if even “none of the low-risks 

drop out of the market, the company will lose money and the plan will fail”.

On the other hand, adverse selection behaviour in relation to lapsation is observed 

when an insured experiences a severe deterioration in health. For example, if an 

insured becomes terminally ill, all efforts will be made to ensure that his/her policy 

remains in force, Jones (1998).

1.4.4.4 Temporary Initial Selection

Consider a group of lives of the same age at the date of issue of a contract. As time 

goes by, some lives may fall sick or suffer accidents and so, the effect of medical 

underwriting tends to wear off with time. Eventually, this gets to a point where there 

is no difference between the health of this group of lives and any other group of lives 

of the same attained age, whose policies were issued at earlier ages. This effect of 

better than average health at the time of medical underwriting gradually wearing off 

with time since that event passes is called temporary initial selection.

Note that the process of checking that an applicant who is taking out new insurance 

contracts and having passed the medical examination tests (and so tends to be of 

better than average health) and is in reasonably good health is called medical 

underwriting (Subject A2 Core reading, 1996).

1.4.4.5 Heterogeneity

A population of individuals is homogeneous with respect to mortality if it consists of 

lives with similar characteristics, which affect an individual’s mortality experience.
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However, if such a population consists of lives with different characteristics, then it is 

heterogeneous. Heterogeneity in a population can be approached by subdividing the 

population into homogeneous groups. However, because individual lives are affected 

by a large amount of factors like sex, smoking, nature of employment, nutrition, 

environmental and lifestyle and the fact that every person is different from everyone 

else, any real sample of more than one life is likely to be heterogeneous and it will be 

impossible to produce a homogeneous population. Hence it is important that we 

consider heterogeneity.

The heterogeneity of insured lives has some interesting and important implications. 

Firstly, the expected lapse experience of any subset of an insured group depends on 

which lives are included in the subset. Secondly, because decisions on whether 

insured lives are to continue their life insurance policies are influenced by their 

perceived probabilities of death, the insured group at duration k after issue does not 

comprise a random sample of the insured group at issue. However, those whose health 

deteriorates drastically during the first k policy years are less likely to lapse their 

policies than those who remain healthy. This situation is another example of adverse 

selection. In this chapter we discuss the causes of heterogeneity in any population and 

the models of adverse selection as proposed in the literature.

1.4.5 Norberg’s Model of Temporary Initial Selection

The Norberg (1988) model, which models the temporary initial selection effect and 

provides explanation of the selection phenomenon is discussed briefly in this section. 

This model is a simple Markov model in which the population is divided into “Insured 

and Not Insured” groups. Within each group, the individuals can be either “Insurable” 

or Uninsurable”, with excess mortality among uninsurable individuals. Further, 

Norberg assumes that everyone in the population starts from the “Insurable and Not 

Insured” state but disallows transitions from the “Uninsurable, Not Insured” state into 

the corresponding insured state. In other words, he models the “declinature of 

uninsurable lives by the insurance company”. Thus, in the Norberg model, adverse 

selection does not exist. Note that in this model the insured lives remain insured. But
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in practice, this is not so as a policy can be surrendered or lapsed. The model of the 

expected surrender profit/loss where the effect of financial and non-fmancial adverse 

selection are incorporated will be looked at later on in section 4.5.3. For details of the 

Norberg model and results, see Norberg (1988).

1.4.6 Macdonald’s Model of Adverse Selection.

Macdonald (1997) considered the combined effect of underwriting and adverse 

selection among heterogeneous populations by using a simple Markov model. 

Although this discussion is in the context of genetic tests, the methodology will be 

applied later on to our investigations.

Following on from Cummins et al (1982), the three main elements that determine the 

extent of adverse selection in life insurance are:

i) The rate at which people buy life insurance. Thus, the higher the rate, the 

smaller the impact of a small proportion of adverse selectors.

ii) The extent to which people with a known risk factor, who are potential 

‘adverse selectors’, are more likely to buy insurance.

iii) The extent to which “adverse selectors” insure their lives for higher amounts.

The Markov model shown in figure 1.2 represents the above elements. In the model a 

life is assumed to start at age x in the originating state (Not Tested, Not Insured). 

From there, a life can move between states as shown by the arrows, with probabilities 

governed by the transition intensities , ¡u'^ and so on.

Thus, for small dt we define:

¡uf+tdt as the probability that a life in state ij at time x+t moves to state ik during the 

next dt. Note that the intensities are expressed using a time unit of one year.
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Figure 1.2 shows Macdonald’s Markov model for the ith of M  subgroups.

Figure 1.2- Macdonald’s Markov Model for the ith ofM subgroups 

v -measure adverse selection

The main features of the model are as follows (these were quoted from Macdonald

(1997)):

i) In the originating state a life is neither insured nor had any genetic test. From 

this state, a life can die, obtain insurance without taking a genetic test, or have 

a genetic test with a positive or negative result.

ii) “The rate of movement from the originating state and the “tested but negative” 

state into the insured state models the “normal” level of insurance against 

which adverse selection is measured”.

iii) The rates of movement from the originating state into the two tested states 

model the extent of genetic testing. However, the difference between them 

models the likelihood of a genetic disorder being present.

iv) Finally, “the rate of movement from the “tested and positive” state into the 

corresponding insured state models the incentives of potential “adverse 

selectors” to insure themselves”.
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The heterogeneity of the population is represented by assuming that the population is 

divided into M subgroups, and that all members of a subgroup experience the same 

mortality relative to the average mortality of the population. For simplicity, suppose 

that the population is divided into two subgroups (i.e., M=2) with 1 as a “low 

mortality” subgroup and 2 as a “high mortality” subgroup. From figure 1.2, movement 

from the originating state il into state i2 models the ‘normal’ level of insurance. Also, 

movement from state iO into state il or i3 models the extent of genetic testing. Finally, 

movement from state i3 into state i4 models the incentive of potential ‘adverse 

selectors’ to insure themselves.

Now, to model adverse selection, Macdonald varies the following characteristics of 

subgroup 2:

i) the rate of transfer to the insured state from the ‘tested and positive’ state,

and

ii) the sums assured taken out by ‘adverse selectors’.

Then Macdonald assumes the following:

a) The (average) force of mortality has Gompertz form based on the AM80 ultimate 

mortality table and is given by

jux+t = 0.00002072e° 103571('t+') .

This forms the baseline for the analysis.

b) The rate of adverse selection in Group 2 to be /uf+] = 0.25, 0.5 or 1.0 (i.e. a high 

level of adverse selection).

c) Sums assured are one, two or four times as high as other lives; and

d) Lives who have tested positive are charged ordinary premium rates.

Using these assumptions, Macdonald computes the mean present value of losses as a 

percentage of baseline costs, with Tow’ and ‘high’ incidence of genetic testing, 

assuming all sums assured are £1. In this case no adverse selection effect (i.e., 

ju2̂ t =0) was considered. The results show that these ratios are small with the highest 

referring to short terms of insurance, whereas it is likely that ‘adverse selectors’ 

would prefer longer terms, including the more likely ages at death.
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Later on, the case with adverse selection is taken into account. Thus, considering the 

fact that ‘adverse selectors’ tend to insure their lives for higher sums assured, 

Macdonald assumes the lives in group 2 who have tested positive apply for sums 

assured two or four times as high as other lives. Then he re-computes the mean 

present values of losses as a proportion of the baseline costs.

The results show that the losses exceed 20% of the baseline costs, only in the most 

extreme case (which require possibly unlikely circumstances to hold), and over short 

periods. Thus, the longer the time period considered, the greater would be the number 

of lives who buy insurance, and hence the larger is the pool of lives for spreading the 

cost of adverse selection. This suggests that “adverse selection with average sums 

assured might not, by itself, have a large effect on the ordinary class; the most costly 

aspect is likely to be higher than the average sums assured. This highlights the 

importance of limiting the sums assured which might be obtained without disclosure 

of known genetic information”. Note that the above model of adverse selection is 

discussed within the context of modelling the ordinary rates class of business. In 

conclusion, Macdonald tentatively suggested that “if life insurance companies refrain 

from using (or are forbidden to use) the results of any genetic test in underwriting, 

additional mortality costs are likely to arise. However, if adverse selection does not 

extend to untypically large sums assured the magnitude of these costs is greatly 

reduced; large sums assured are the costliest aspect of adverse selection”.

1.4.7 Jones’s Model of Adverse Selection

Following Macdonald, Jones (1998) proposes a model that allows for population 

heterogeneity with respect to mortality in analysing the relationship between mortality 

rates and lapse rates. The force of mortality for an individual is assumed to be equal to 

the product of the frailty value and a function of age or time (this function can be 

thought of as the force of mortality of an individual with frailty one), so that those 

with higher frailty values have higher forces of mortality. It is worth mentioning that 

the application of frailty models to mortality has been extensively studied for many
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decades by several authors, including Beard (1959) and the important work of Vaupel 

et al (1979) which investigated the impact of heterogeneity in individual frailty on the 

dynamics of mortality.

Using the above frailty assumptions, Jones models anti-selective behaviour in 

lapsation by considering a cohort of insured lives of the same underwriting 

classification all of whom are issued policies at age a. Suppose that at issue, all 

insureds are in the healthy state. At any time thereafter an insured can move between 

the states as shown by the arrows in figure 1.3 which represents the appropriate 

multiple state model.

Figure 1.3: State transition diagram

Now, associated with each insured is a positive, continuous unobservable random 

variable Z, referred to as “risk level” of an insured. This allows us to reflect the 

heterogeneity in insured lives that exists. Let ju:j (t, z) be the “force of transition”

from state i to state j  at time t after policy issue for an insured of risk level z.

The main features of the model are as follows:

i. In the originating state, a life is in the healthy state. From there an insured can 

lapse, thereby moving to the withdrawn state, or die, thereby moving to the 

dead state or get sick, thereby moving to the impaired state.
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ii. If the insured moves to the impaired state before lapsing or dying, he/she is 

subject to a considerably elevated rate of mortality. Further, it is assumed that 

the insured is aware of this and therefore does not lapse while in this state. In 

other words, movement from the “impaired” state to the withdrawn state is not 

possible. Further, transition from the “impaired” state to “healthy” state (or 

recovery) is not allowed.

iii. Assume that juu (t,z) to be larger than jUu (t,z) , and /un (/,z) =0 for all values 

of t and z.

Further assumed that /uu (t,z) = z/uH(t) , where jUH(t) represents the force of 

mortality at time t for a healthy insured of risk level 1. Then insureds of other risk 

levels have forces of mortality proportional to//]4(/). Similarly, assume that 

Hu {t,z)=z/iu (t), juu (t,z) = z^n (t) and juu (t,z) = z r/uu (t) , -co< y< co. The 

parameter y allows us to specify the impact of the risk level on the force of lapsation 

while healthy. For example, if y = 0, then the force of lapsation is independent of the 

risk level. If y > 0, then insureds of a higher risk level are more likely to lapse than 

those of a lower risk level. On the hand if y <0, then those of a higher risk level are 

less likely to lapse than those of a lower risk level.

Jones then assumed the form of the above functions to be:- juu (t) has a Gompertz 

form, given by juu (t) = 5 1c,35+' (insured is age 35 at issue), where B] = 0.00005 and 

c, = 1.075. The values of 5, and c, were chosen so that the resulting force is of an 

appropriate magnitude. Also, /in {t) = juu (t) and ju24(t) = \0jUu (t) . The force of 

lapsation for a standard individual has Makeham’s form given by = A2 + B2c2, 

where A2 = 0.03, B2 =0.12, and c2 = 0.7 (c2 < 1 in order to produce a function that 

decreases exponentially from 0.15 at t = 0 towards 0.03 as t gets large). Finally, Jones 

assumed that the risk level Z has a gamma distribution with probability density 

function given by

/,(*) = — z>  0.
T (a)

Then E[Z]=1 and the shape parameter,a, controls the degree of heterogeneity at 

policy issue. For example, with a - 1, there is considerable heterogeneity. Using the
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above functions, Jones examined the behaviour of the cohort force of mortality by 

simply observing the ratio of this cohort (force of mortality) when Z has the above 

distribution at policy issue, to the Gompertz force, /Ul4(t) , for different values of y 

(1,0, and -1) and for two choices of a (land A). Under these assumptions we can 

observe the effect of heterogeneity on the relationship between the risk level and the 

force of lapsation.

The following results were obtained when a = 1.

i. When y = 1, there is a higher force of lapsation associated with higher risk 

levels. So, the proportion of insureds in state 1 is lower at the higher risk levels 

and “this tends to elevate the cohort force of mortality”.

ii. For y = 0 , we observe that the force of lapsation is independent of the risk 

level and is smaller relative to the force of mortality at higher risk levels. “This 

produces a larger proportion in state 1 at the higher risk levels, which tends to 

reduce the cohort force”.

iii. Finally, for y = -1 , the force of lapsation is inversely related to the risk level. 

Tike (ii) above, this produces a larger proportion in state 1 at the higher risk 

levels, which tends to reduce the cohort force of mortality.

With a -  4, the relationship between the risk level and the force of lapsation is of 

smaller magnitude.

We note that the model of Jones (1998) does not allow for transitions from the 

impaired to the healthy state and nor from the impaired to the withdrawn state. But the 

transition from state 2 to 1 (sick to healthy state) can affect the lapse rate, mortality 

rate, and consequently, the profitability of the company and so it is important that we 

allow for such transitions in our model.

In chapter 4 of this thesis, we will employ the frailty models of Jones (1998) and the 

adverse selection model of Macdonald (1997) to model the expected surrender 

profit/loss where the effect of financial and non-financial adverse selection are 

incorporated. This means that our model will allow for transitions from the impaired 

to the healthy state and also, from the impaired to the withdrawn state. It is worth 

noting that allowing for transitions from sick to healthy will complicate the model and 

also, make the computation of the transition probabilities difficult. In view of this we
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will adopt an alternative approach suggested by Jones (1994) to deal with this 

problem. This is discussed in section 4.5.3 of the thesis.

From the models described in this section we have seen that Norberg (1988) models 

the temporary initial selection effect where there is no possibility of a transition from 

the ‘uninsurable’ state into the ‘insurable state’ and so, adverse selection does not 

exist. However, Macdonald (1997) introduced a simple Markov model to measure the 

combined effect of underwriting and adverse selection among heterogeneous 

populations by assuming that insurers do not behave in the way described in the 

Norberg model. Also, the Macdonald model illustrates the possible extent of the costs 

of adverse selection in the context of genetic tests. Finally, Jones (1998) model allows 

for population heterogeneity with respect to mortality in analysing the relationship 

between mortality rates and lapse rates.

1.5 Optimisation Techniques and Lapse Rate

As mentioned already, this thesis will apply optimisation techniques to minimise a life 

office’s expected losses due to excessive surrender. In other words, we will apply 

optimisation techniques (specifically, numerical optimisation) to maximise the 

expected utility of shareholders. There are many types of numerical optimisation 

routines. The appropriate one to use depends on the type of objective function, i.e. 

whether it is linear or non-linear, whether the problem is constrained or 

unconstrained, whether first and possibly second derivatives for the objective function 

are available, etc. Several types of optimisation routines have been suggested to tackle 

the type of classification under investigation. For example, Powell’s method is used 

for an objective function that is non-linear and whose first derivative cannot be 

computed. Also, conjugate gradient and quasi-Newton methods are appropriate if the 

first derivatives can be computed.

In our context, an unconstrained non-linear optimisation without derivatives will be 

appropriate. Particularly, Powell’s method described in Press et al (1992) and Conn 

(1997). We will discuss these optimisation techniques in detail and suggest why this is
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appropriate in the subsequent chapters. Various results using this technique have been 

discussed by Powell (1964), Box (1965), Fletcher (1965), Powell et al (1975), Callier 

(1977 and 1978), Press et al (1992), and Conn (1997).

Powell (1964) has described a method of solving a non-linear unconstrained 

minimization problem based on the use of conjugate directions. The main idea of this 

proposal is that the minimum of a positive-definite quadratic form can be found by 

performing at most n (number of variables) successive line searches along mutually 

conjugate directions. The same procedure may be applied to non-quadratic functions, 

by adding a new composite direction at the end of each cycle of n line searches. This 

algorithm has enjoyed a lot of interest amongst many researchers and practitioners. 

We will discuss this method again and its application to our work in Chapter 5 of this 

thesis.
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Chapter 2

Effect of Life Insurance Payouts on Lapse Rate

2.1 Introduction

This chapter of the thesis looks at the effect of life insurance payouts on lapse rates in 

the U.K. This is to investigate whether surrendering policyholders are better off than 

those who maintain their policies until maturity. Further, we will investigate if 

payouts are a determining factor for lapsing. This information will be used to 

determine the profitability of a company in the subsequent chapters of the thesis. The 

motivation for carrying out the above investigations is from Outreville (1990) on 

testing the emergency fund hypothesis (originally proposed by Linton (1932)). The 

emergency fund hypothesis, according to Outreville (1990), is that "cash values are 

utilized by policyholders as an emergency fund to be drawn upon in times of personal 

financial crisis". Then lapses should increase during recessions because some 

policyholders are unable to maintain premium payments for insurance coverage. His 

results provide evidence in favour of this hypothesis. On this note, one can expect a 

higher lapse rate if higher payouts are paid on surrender. What follows is a description 

and discussion of our investigations performed either to support or refute this claim. 

In this context we look at the effect of payouts (surrender and maturity values) and 

relative payouts (payouts relative to average market values) on life assurance lapse 

rates in U.K. These are areas of major concern for life insurers since high early 

terminations have frequently resulted in heavy losses to many companies and are one 

of the major causes of dissatisfaction among policyholders within the life business, 

Richardson and Hartwell (1951). Also explored is the use of a statistical based 

approach to determine the relationship if any, between surrender and maturity payouts, 

as well as between lapse rates and relative payouts.
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These investigations are carried out partly by statistical modelling and partly, through 

empirical analysis. This chapter is divided into two sections.

The first section discusses the relationship between maturity and surrender values 

offered by the U.K. life insurance companies. This part is to investigate whether 

surrendering policyholders are better or worse off than those who maintain their 

policies until maturity. A rank correlation analysis is used in this regard. Other 

variables like the return on assets are also considered in the analysis. This is important 

in measuring the performance of a company’s investment portfolio. We have included 

this variable in order to establish whether or not companies with high return from their 

investment portfolio do offer high benefit pay out.

The second section discusses the effect of relative payouts on lapse rates. In this 

context, we will investigate the effect of maturity and surrender values, relative to the 

average market payouts, on lapse rates. Here too, a rank correlation analysis is 

performed to access any relationship that might exist between lapse rate and relative 

payouts. Also, graphs of the ratio of SV:MV over time are plotted to investigate 

whether or not companies are paying out more surrender values at the expense of 

maturity values or vice versa. The next section presents the empirical hypotheses, the 

methodology used for the analysis, the results and the discussion of our findings.

50



2.2 Empirical Hypotheses

Life Insurance lapse rates are hypothesized to be related to several factors discussed in 

chapter 1. Hypothesis testing clearly sets out what we expect to observe or happen 

from this study and so it is important that we mention the hypothesis to be tested 

before we discuss the methodology used to perform the statistical analysis. In what 

follows, we set out the initial hypotheses (what we intuitively expect to exist) that 

were tested in this study and also discuss how the variables such as surrender and 

maturity values, and yield on assets, are expected to relate to lapse rate. Notice that it 

is unlikely that all of the hypotheses will be true.

1. Surrender and Maturity Values

Surrender values are cash payment to policyholders on termination of their existing 

policies before maturity. In this analysis, surrender values are defined by year of 

payment and current values provided. Here, we hypothesize that policies with higher 

surrender values (denoted by SV) tend to have higher maturity values (denoted by MV) 

than the ones with lower surrender values, assuming both contracts are expected to 

cover the same duration before surrender. Specifically, we compare the surrender 

value of an m-year endowment that has been in force for « years (denoted by m\n SV) 

with the maturity value of an «-year policy (denoted by «-year MV), m in this case is 

equal to 15 and 25 and « = 5, and 10 years. In other words, surrendering 

policyholders are not better off than continuing policyholders since both policyholders 

will receive some amount of benefit either at maturity or on termination of the 

contract before maturity. Therefore, we expect a positive correlation between 

surrender and maturity values.

2. Maturity Values relative to average market maturity value and Lapse rates 

Policyholders are always looking for companies that offer higher maturity benefit than 

the overall average maturity value offered on the market for the same policy type. On 

this note, we hypothesize that companies that issue policies with lower maturity 

values relative to the average market maturity value are expected to have a higher
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lapse rate. In other words, companies that offer high maturity values relative to the 

average market maturity value tend to have low lapse rates. So, we expect a negative 

correlation between maturity values (relative to average market value) and lapse rates.

3. Surrender Values relative to average market surrender value and Lapse rates 

We anticipate that companies that issue policies with surrender values higher than the 

average market surrender value are likely to experience higher lapse rate. This is due 

to the fact that policyholders normally will utilize this offer and tend to withdraw 

money in times of personal financial crisis. Therefore, we expect a positive correlation 

between surrender values (relative to average market value) and lapse rates.

4. Yield on Assets and payouts

Higher investment returns facilitate insurers in meeting their obligations to 

policyholders. Here, we anticipate that companies with higher returns are likely to pay 

out higher benefits (SV and MV) than those with lower returns. Hence, we expect a 

positive correlation between the yield on assets and payouts (MV and SV).

5. Ratio of SV to MV

The ratio SV/MV is a measure of determining whether or not companies are paying out 

more in terms of surrender values than corresponding maturity values or vice versa. In 

this case we compared m\n SV with n-year MV, where m -  15 and 25 and n -  10. 

Thus, we hypothesize that companies that experience a high ratio over time are more 

likely to pay out a higher surrender value relative to the corresponding maturity value.
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2.3 Data and Sample Characteristics

2.3.1 Data

Data on variables such as surrender and maturity values, return on assets, and relative 

payouts (i.e., surrender and maturity values relative to average market values), were 

sought in order to investigate the effect of these variables if any, on lapse rates. The 

source of data used is “Planned Savings” and the period of magazine issues was from 

1986 to 1994. Note that 1985 data for most companies was missing and so, we did not 

consider it in the analysis. However, we did use it to illustrate a point in the numerical 

examples of section 2.4.3 and 2.5.1 (since 1985 data on Scottish Mutual was 

complete). The total sample consists of 25 life assurance companies with the selected 

policy types being 25, 15 and 10 year with profit endowment. The 25 companies were 

chosen because they appeared in almost all of the data sources under investigation and 

provided complete information on the variables of interest for this research . Further, 

data on surrender values consisted of values corresponding to the number of years the 

policy had run prior to surrender. For example, we considered for the case of a 25-year 

endowment policy, the surrender values corresponding to a policy that had run for 20 

years, 10 years and 5 years since the inception of the policy. Similarly, for a 15-year 

endowment, we considered the surrender values corresponding to a policy that had run 

for 10 years and 5 years since the inception of the policy. These payouts were 

available for a gross annual premium of £100 to a male aged 29 years, 11 months at 

outset. Note that age at entry was the same throughout. The data were merged with 

historical data from the Department of Trade and Industry (DTI) returns of life 

insurance companies for the analysis. Data on new business issued during the year, 

total surrenders, and the total premium value in force at the start of year in question, 

for the 25 life offices were also obtained from the (DTI) returns database compiled by 

“Thesys Information limited”. It is worth mentioning that information used to 

determine the gross return on assets and the adjusted lapse rate were obtained from 

Forms 9, 40, 43 and, 56 of the DTI Returns. Further note that lapse rates were 

measured by “premium” terminations. This is due to the fact that systems dependent 

on policy numbers are unreliable as a measure of termination rates. The reason for this 

is the “practice known as clustering- whereby a policy is given several policy 

numbers”, SIB (1988).
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2.3.2 Limitations o f the Data

As mentioned already, data on 25 companies was available for the analysis. We note 

that not all of these companies appear in all the surveys, thereby disrupting the trend 

in payouts and lapse rates.

2.3.3 Sample Characteristics

Summary statistics of all the variables under investigation were computed and shown 

in Appendix 2.1. Figures 2.1-2.6 show the plots of the mean, median, first and third 

quartile of payouts (MVs and SVs) over time. Note that for this sample, m\n SV is as 

defined in section 2.2. i.e., the surrender value at duration n of an /«-endowment 

policy.

Figure 2.1 shows a plot of the average MV of a 10-year endowment paid over years, 

1986-1994. Also shown are the median and lower and upper quartile of MVs. From 

figure 2.1, we observe that the average MVs of a 10-year endowment of all companies 

under investigation were quite stable over the entire period of 1986-1990, usually 

between £2000 and £2200. However, between 1991 and 1994, most of the companies 

were offering lower maturity values, as revealed by the plot. The highest average MV 

occurs in 1990 (a value of £2200) whereas the lowest average MV occurs in 1994 with 

a value of £1800.

Also, figure 2.2 shows a plot of the average MV of a 25-year endowment paid over 

years, 1986-1994. The median, lower and upper quartile of the MVs are shown as 

well. From figure 2.2, we observe that the mean MV a 25-year endowment policy 

increases during the period of 1986-1992, usually between £10,000 and £16,000. This 

time, it became quite stable after 1992 (see figure 2.2). The highest average MV 

occurs in 1992 (a value of £16,197) whereas the lowest average MV occurs in 1986 

with a value of £10,905.

Further, figure 2.3 and 2.4 shows a plot of average SV of a 15-year and 25-year 

endowment at duration lOyears, paid over years, 1986-1994. Also shown are the 

median, lower and upper quartile of the SVs. From figure 2.3, observe that the mean
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surrender values, SVs, of a 15-year endowment policies, surrendered after 10 years, 

were quite stable over the entire years under investigation. With this policy, the 

highest paid average SV occurred in 1990 with a value of £1686 while the lowest 

average SV, in 1994 and the value was £1542 (see figure 2.3).

Also, the mean SV of 25-year endowment policies, surrendered after 10 years was 

quite stable and consistent over the entire years of 1986-1994. The highest paid 

average SV occurred in 1990 with a value of £1430 and the lowest average value of 

£1289, in 1994 (see figure 2.4).

Finally, figure 2.5 and 2.6 compare the mean SV of a 15-year and 25-year endowment 

at duration 10 with MV for a 10 year policy made over the years, 1986-1994. From 

figure 2.5 and 2.6, we observe that companies were offering relatively lower SVs for 

long term policies (e.g., 25-year endowment) than short term policies (e.g., 15 year 

policy). This is due to the fact that the SV tend to blend towards the MV as duration 

increases. For example, a 15-year endowment surrendered after 10 years is closer to 

maturity than a 25 year, surrendered after 10 years.

It is worth noting that in figure 2.5 and 2.6, more MVs were paid than SVs over the 

entire period of 1986-1994 for the 15 and 25-year policies, indicating that low 

amounts are usually paid out on surrender.
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Plot of lOyr.MV (Mean, Median, First and Third Quartile) vs

—*— Mean —■— Median —*— Ist Quartile —*— 3rd Quartile___ ' -- ■ — .......................— ' ' ' -----  . : --- — ___
Figure 2.1: Plot ofMean, Median, First and Third Quartile of 10 yr. MV over time

Plot of 25yr.MV (Mean, Median, First and Third Quartile) vs

Figure 2.2: Plot of mean, Median, First and Third Quartile of 25 yr. MV over time

Plot of 15|10SV (Mean, Median, First and Third Quartile) vs Time

Year
—*— Mean —■— Median —*— Ist Quartile —x— 3rd Quartile

Figure 2.3: Plot of mean, Median, First and Third Quartile of 15| 1OSV over time
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Plot of 25|10SV (Mean, Median, First and Third Quartile) vs Time

F  ♦ Mean —8— Median —*— IstOuartile —*— 3rd0uartilel

Figure 2.4: Plot of mean. Median, First and Third Quartile of 25| 10SV over time.

Plot of lOyr.MV & 15|10SV vs Time

__________________  Year______________
-•— lOyrMV(mean) —■— 15|10SV(mean)

Figure 2.5: Plot of mean lOyr MV & of 15| 10SV over time.

Plot of lOyr.MV & 25|10SV vs Time

: —♦— lOyr MV(mean) —• — 25|10SV(mean)

Figure 2.6: Plot of mean lOyr MV & of 25| 10SV over time.
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2.4 Determination of Adjusted Lapse Rate and Yield on Assets

2.4.1 Lapse Rate

The calculation of a lapse rate as reported in the literature mostly uses the ratio of 

insurance going off the books due to termination of a policy by the insured (with or 

without surrender values) to life insurance in force. For example, Hayward (1959) and 

Best’s Insurance Management Report (1991) measured lapse rate by simply dividing 

the number of such lapses in a calendar year by the number of policies taken up in that 

year (volume of new business). Further, there are different kinds of approach that have 

been used to model lapse rate. Examples of such kinds are given in chapter 1. In these 

examples, the approach used does not take into account the number of policies 

exposed to the risk of lapsing from the previous calendar years. But this is an 

important factor that could have an effect on the results of any lapse analysis.

Therefore, our proposed model takes this factor into account and modifies the crude 

lapse rate to incorporate the number of policies exposed to the risk of lapsing in the 

year leading up to the rth policy anniversary (=curtate duration r-1). Note that the 

exposed to risk is defined as the number of those policies in force that could terminate 

within a 12 months period. For example, we calculate the exposed to risk of lapsing in 

the year leading up to the first policy anniversary (^curtate duration zero) in calendar 

year y, by using new business figures in the current and previous years. The 

information used in deriving the adjusted lapse rate can be obtained from the DTI 

returns. As mentioned in section 2.3, we measure lapse rate by “premium” termination 

since systems dependent on policy numbers are unreliable as a measure of termination 

rates. We derive a model for lapse rate as follows:
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2.4.2 The Lapse Model

In this model, we consider a lapse rate in year y  and define:

X x\y\ = Year 1 lapse rate in calendar year y  (Lapse rate in the first policy 

year i.e. between duration zero and one).

X2 [y ] -  Year 2 lapse rate in calendar yearly (Lapse rate in the second policy 

year i.e. between duration one and two).

Y3[y] = Year 3 lapse rate in calendar yeary (Lapse rate in the third policy year i.e. 

between duration two and three).

£, [y] = Exposed to risk of lapsing in year leading up to first policy anniversary 

(=curtate duration zero) in calendar year y .

E2 [y] = Exposed to risk of lapsing in year leading up to second policy anniversary 

(=curtate duration one) in calendar yearp.

E3\y\ = Exposed to risk of lapsing in year leading up to third policy anniversary 

(=curtate duration two) in calendar year y.

Now, we define the number of crude lapses in a given year y  as :

CL\y] = X, M  ■ E, [y] + X, \y\E2[y] [>■] 2.1

Further, we express year 2 and year 3 lapse rate in terms of year one's lapse rate for 

simplicity, and assume that lapse rate in year two is one half year 1 lapse rate and that 

of year 3 is % year 1 lapse rate ( deduced from the empirical work of Butler (1994)). 

This implies that:

x i[y] = ^ - ^ i M  for ally;

X 3 [y] = — • Y, [y] for all y; 2.2
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Then again, we define :

5[y,z]= the business in force at start of year;;, issued in year y-z, and 

A'rZ?[y]= New business issued during year y.

If we assume that new business are issued uniformly over the year y, then, we obtain :

s[v,2]=WB[)/ - 2 ] - i i - T j r , [ v - 2 ] l - i i - i - j r , [ y - i ] i - i i - T j r !b - i ]

2.3

2.4

Now,

E M = j t m \ y \ +--B \y ,\\

E M =  V  B W \ ' i l  ~ V  a l l ' l l  + v Sf 2 ]

2.5

2.6 

2.7Ei[y\= F \y ] - E \y \ - E 2[y] 

where,

F[y] = total premium in force at start of year;;.

By substituting equations (2.2), (2.3) and (2.4) in equations 2.5-2.7, we obtain the 

following equations:
_ f  1 _ A

2.5a£ , M = v A '5 [ q + T A 'f i b - i ] { i - T ^ , [ y - i (
Z Z  \  L  j

£ 2[ v l = i . A ' S b - l ] . ( l - i . X lLv -l] )^ l-T jr,[> .]j  +

E,b]=  F [y ] -E \yy  E^y] 2.7a

By putting equations 2.5a-2.7a in equation (2.1), we obtain the following quadratic 

equation:
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( X ,  M ) 2 ■ N B \ y - ! ] )  ■[] -  i  ■ J r, [ > . - ! ] ) }  -

|'A '5[>'] + i - M l y - l ] i l - i 'Z , [ y - l ] l  + 7 - F [ y ] + i - ^ - 2 ]
x M

CL[y] = 0

which by solving for X t [y ] yielded

2.8

X , [ y ]  =
b ± j b 2-  4- a ■ c

2 a
2.9

where

b =
l . N B [ y ] + ^ - N B [ y - \ ] - \ \ - l - X l[y- \ ] \  + \ -F[y]  + l; -NB[y-2]
8
f
1

IV

c = CL\y]

The items in the above equation can readily be found in Forms 43 and 56 of the DTI 

returns, with the exception of X ,[y -l]  and X ] \y -  2] (the previous year and a year 

immediately prior to previous year lapse rate) which cannot be determined directly 

from the information available. As a result of this we set the initial values of A, [y -  l] 

and AT, \y -  2] to zero.

Therefore, equation (2.9) then becomes :

( 3 • NB[y] + -  ■ NB[y -  l] + -  • F[y\ + -  • NB[y -  2]
v8

"3
V

2 8
+

,  ' « T F  T  NB\y-1]+ i  F[y] + V  NB\y - 2]j -  M)[y] • \

-  , VZ?[ y -  I ]

2.10
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From this equation, we can ca lcu la te [y ] for all companies. Hence, X 2\y] and 

X 2[y\ can be found easily from (2.2). In this case, since the available information 

obtained from the DTI returns is from 1985-1994, coupled with the fact that we had to 

set the initial values of the previous two years' lapse rate to zero for a particular 

calendar year, it was appropriate that the yeary = 1987 be used. The next step is then 

to calculate X , [88] by using X , [87] and (X , [86]=0) as the new initial values. This

process is repeated for 1989, 1990,...... ,1994. The average value of all the X, [y]

values (where y  is from 1987-1994) for a particular company can then be used as our 

initial values for X, [86] and X, [85], We then repeat the above process until no 

further change to X , [y] ensues (i.e. converges). Subsequently, we can follow the

same procedure as outlined above to find the values of X : [88], X t [89],.....W, [94] for

i=l,2 and 3.

2.4.3 Numerical Example

To illustrate the process described in section 2.4.2, we used the information given in 

the DTI Returns of Scottish Mutual Insurance Company for our calculations. Notice 

that we are using the year 1987 as the base year for reasons given in section 2.4.2. 

Thus, we desire to calculate the lapse rates for X t [87], for i=l,2 and 3. Subsequently, 

we can follow the same procedure as outlined in section 2.4.2 to find the values of

26, [88], X,[89],.....W,[94] for i=l,2 and 3. In this case, we used data on new

business, total surrenders, and total premium in force for the years, 1985,1986, and 

1987 in computing year 1, 2, and 3+ adjusted lapse rate. We obtained the adjusted 

lapse rate for this company as follows:

Given :

NB[85] = 6160; NB[86] = 7536; NB[87] = 7467 

Total Surrender in 1987, CL[87] = 2019
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Total premium, F[87] = 45754 

We calculate Xj[87] as,

^  • jV7?[87] + 1 • tV5[86] + ^  ■ F[8l] + 1 • NB[S5]j ±

X,[87] =
|  ■ A^[87] + ~ ■ M?[86]+ • F[87]+ ^  • NB[85]j -  ~ • A^[87] • Cl[87] j

-  A^[86]

Thus,

-  ■ [7467]+ • [7536]+ -  ■ [45754] + -  ■ [6160]] ±

X,[87] =
l  ■ [7467]+ i  ■ [7536]+ i - [45754]+ h[6160]j -  T[7467]- [2019]!

1 [7536]

Hence,

18776.625±18675.99
x , 187]=--------- ^ ----------0.1068.

Therefore, X , [87]= 0.1068; X 2 [87]= 0.0534; and X 3 [87]= 0.0267.

Hence, the adjusted lapse rate for year 1 is 10.68%, for year 2 is 5.34% and for year 

3+ is 2.67%.
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2.5 Calculation of Gross Return on Assets

Having derived the adjusted lapse rate used in this analysis, we attempt to model the 

return on company’s asset. This is also an important variable considered in our 

analysis. We model this return as follows.

Suppose that the values of a company asset portfolio at the beginning and end of the 

year are respectively A and A t . Further, assume that claims occur on average, in

the middle of the year. Then, the investment return on this portfolio can be expressed 

as

A, =A,_, (1+i, )+(/>,-E , -C , )x ( . \  + i , / 2 ) -T  2.11

This implies,

(A, + T) - [A „ + (Pt - Et - Ct)]
z ,=  -------------------------------------------  2.12

A t, +(Pt - E t - Ct) / 2

where,

Pt = Premium received at start of year t.

E, = Expenses incurred in year t.

C, = Claims in policy year t.

T = Taxation. 

i t = gross return at time t.

From equation 2.12, we can determine the gross return on a company’s investment at 

time t. However, for any particular company, we are interested in calculating the 

average yield over several years. This is to measure the investment performance of the 

company assets portfolio (office fund) over that period. This is described by 

McCutcheon and Scott (1986) as follows:
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Suppose the period in question is from time 10 to time t n (t is measured in years) and 

that
t 0< t \ < t 2< ........<t„

Then, the overall period [/ 0 , t n ] can be divided into specified subintervals,

[t 0 , t 1 2 ] , ....[t n_] , t n ]. Therefore, the average yield, I, for company j  over

the defined interval is given by
i

I j= « 1+i i (1+i 2 ) '2" ‘............. (1+i „ )'*"'*" } '"‘'0 -1 , j-1 ,2 ,.........25 2.13

This equation can be used to determine the average return on the company's assets. 

All items in the above equation are readily available from the DTI returns (form 9 and 

40). So, we can determine the average return for each office from 1986-1994 by first 

computing the gross return on assets from each year (i.e, 1985-1994). Then by using 

equation 2.13, we can calculate the average returns for company j ,j= l,2 ,..... ,25.

2.5.1 Numerical Example

In this example, we used information given in the DTI Returns of Scottish Mutual life 

Insurance Company for our calculations. In computing the return on assets we choose 

the year 1986. Subsequently, we can compute the returns for other calendar years 

using the same approach as 1986. We chose 1986 because of the fact that we had to 

consider the company asset portfolio at the beginning and end of the year in order to 

derive the return on asset. But since the available data is from 1985 onward, it was 

appropriate to use the year 1986. Now, to calculate the return on asset we use the 

following information which are given below :

P* = 271,494 r86=-763

C86= 89,863 A85 = 894,572

E86 = 40,635 =1,259,427

We obtained
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(1,259,427 -  763) -  [894,572 + (271,494 -  40,635 -  89,863)] 
[894,572 + (271,494 -  40,635 -  89,863) / 2]‘86

= 0.2312

By using the above procedure we obtain the following gross returns for the other 

years, 1987-1994:

i„ = 0.00594 i90 = -0.04306 i93 = 0.2931

iu = 0.1125 i9] = 0.1759 /94 = -0.0720

z'89 = 0.1584 iq2 = 0.2943

Hence, by using equation (2.13), we obtain 

/, = 0.1207

Thus, the average return on Scottish Mutual assets from 1986-1994 is 12.07%.

The approach outlined in this example can be used to calculate the average returns on 

assets of the remaining companies used in this analysis.
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2.6 Descriptive Analysis and Scatter Plots

2.6.1 Scatter Plots

Scatter plots were initially plotted to determine if any apparent correlation exists 

between lapse rate and the variables, SV, MV, yield on assets (denoted by YA), X(i,t), 

R(i,t), R '( i,t)  and R"(i,t). We define these variables X(i,t), R(i,t), R '( i,t)  and

R"(i,t) as follows:

R(i,t)
M V(i,t) 
M V(t)

X(i,t) = lapse rates of company /' in year t

R  =  15\10SV(i,t) 
15\10SV (t)

R'V,t) 25\10SV(i,t) 
25\10SV(t)

where

M (i,t) = MV of company i at time t, i = 1,2.... 25.

MV (t) = mean MV of all companies at time t.

15| 10 SV (i,t) = SV after 10 years of a 15-year endowment policy of 

company i at time t.

15|105W(t) = mean SV of all companies at time t (SV of a 15-year endowment at

duration 10)

25|105,F(/,O = SV at duration 10 years of a 25-year endowment policy of 

company i at time t.

25I10.SF(t) = mean SV of all companies at time t (SV of a 25-year endowment at

duration 10).

Thus, R(i,t) is the ratio of the individual companies MV to the average market MV of 

all companies. Further, R '( i ,t) and R"(i,t) are respectively, the ratio of m\n SV and 

m'\n SV to the corresponding average market surrender value of all companies, where 

m =15, m' = 25 and n=10 years in this case. The variable R(i,t), measures the relative 

maturity payout offered by different companies against the average market value, 

whereas R '( i ,t) and R"(i,t) measure the relative surrender payout offered by 

different companies against the average market value.
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Figures 2.7-2.9 show the plots of n-year MV against m\n SV of different companies in 

each calendar year. We also show in Figures 2.10-2.12, the plots of lapse rates against 

the variables R(i,t), R'(i,t) and of all the companies under investigation for the

calendar year 1986-1994. Any significant trend (either positively or negatively) would 

indicate a stronger correlation between the variables under consideration or 

investigation. Consequently, further statistical tests, particularly a rank correlation 

analysis will be performed to confirm any significant correlation.
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Figure 2.7: Plot of lOyear MV against 15| 10 SV
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Figure 2.11: Plot of Lapse Rate against R'(i,t) ( 15| 10 SV/Av.SV)
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From the scatter plots of Figures 2.7-2.9, we observe that the surrender values at 

duration 10 years, paid on 15 and 2 5-year with profit endowment appear to be 

positively related to maturity values of a 10-year endowment over the period of 1986- 

1994. Further, we observe that the 25\10 SV also appears to be positively related to a 

25-year MV (see figure 2.9). This means that as MV of a contract increases, SV paid 

out also increases. Note that for both contracts, the policy had run for only 10 years 

and so the SVs paid were based on this duration.

On the other hand, we observe that the plots of lapse rate against relative payouts, 

R(i,t), R'(i,t) and R"(i,t), (i.e., SVs and MVs relative to average market value) follow a 

pattern different from the one described in figures 2.7-2.9. This time, the plot of lapse 

rate is inversely related to R(i,t) for some of the years under investigation. For 

example, in the year 1986, 1992 and 1993 (see figure 2.10). This means that as R(i,t) 

increases, lapse rate decreases. In other words, companies with maturity values greater 

than the average market maturity value are likely to have lower lapse rates. This is not 

surprising as policyholders normally prefer policies with better value.

Also, the lapse rates appear to be inversely related to R'(i,t) (not strong correlation) for 

some of the years under investigation (e.g., in years 1988 and 1993 ). see figure 2.11. 

This means that as R'(i,t) increases, the lapse rate decreases.

In a similar way, the lapse rates appear to be inversely related to R"(i,t) in the years 

1988, 1989 and 1993 (see figure 2.12). This means that as R"(i,t) increases, the lapse 

rate decreases.

The observations of figures 2.11 and 2.12 imply that companies with policies that pay 

surrender values higher than the average market surrender value are likely to have 

lower lapse rates. In other words, lower values of SV (relative to average surrender 

market value ) are accompanied by higher lapse rates. This is not surprising since 

policyholders tend to surrender their policies when they perceive poor value for 

money. Note that further analysis will be performed to confirm or refute any 

significant correlation. This is discussed in the next section of this chapter.
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Finally, there appear to be no obvious pattern or relationship between the variables, 

MV and SV, against yield on assets (not shown). This means that the correlation 

coefficient would probably be very close to zero.

2.6.2 Methodology

From the above discussions, we note that the scatter plots suggest that either there is a 

general association between the variables considered or no obvious pattern at all. 

Flowever, to determine whether or not there is a true association or correlation, one 

needs to perform a statistical analysis. We will particularly look at any significant 

association by calculating the correlation coefficient between the lapse rate and the 

variables R(i,t), R'(i,t) and R"(i,t). The methodology underlying this analysis is 

discussed below.

2.7 Rank Correlation Analysis

As in Chung and Skipper (1987), a rank correlation analysis is performed to find out if 

there is any relationship between the variables, surrender and maturity values of with 

profit endowment policies, on the basis of the payouts offered by the sample of 

companies under consideration. Also considered is the correlation between the lapse 

rate , L(i,t), and the variables R(i,t), R'(i,t) and R"(i,t). A rank correlation analysis is 

used in this case because it does not require any parametric or distributional 

assumptions and it is one of the most frequently used measures of association.

To determine the existence of any significant correlation between the above 

mentioned variables, we calculate the Spearman Rank correlation coefficient. Further, 

to calculate this coefficient we first need to rank the data in a sequence and then
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compare the rankings for each group. In this context we compare and calculate the 

correlation coefficient between the following pairs, (X l t Y i), ( L , ,R ,), (Li ,R ',),

and ( L , , R " , ) t

where,

X = rank of maturity values of company i, i=l,2, ...25.

Y , = rank of surrender values of company i=l,2, ...25.

L, = rank of lapse rate of company i, i=l,2, ....25.

R, = rank of R(i,t).

R ', = rank of R'(i,t).

R", = rank of R"(i,t).

Now, the Spearman rank correlation coefficient, rs, can be calculated from the 

formula

rs = 1------ ------
7 ( 7 - 1 )

where,

rs = Spearman's rank correlation coefficient.

/; = number of pairs of ranked data.

d, = difference between ranks for the two observations within a pair.

2.14

The value of rs will vary between +1 and -1, which indicates perfect positive and 

negative correlation respectively. The closer the value of rs is to either +1 or -1 shows 

how significant the result is. Thus, after calculating rs, we test for the following null 

hypothesis:

H0: p , =  0

against the alternative hypothesis

H\-Ps * 0 ,

where rs is an estimate of p s .
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The value of rs is compared with the critical values at 95% or 99% level for various 

values of 7 . In our context we compared the value of rs with a table of critical values 

at 95% which is listed in table A-8 of Appendix A of Triola (1992). Since the number 

of data pairs in this analysis is less than 30, we referred to the critical values of 

Spearman’s rank correlation coefficient. However, when the number of data pairs is 

greater than 30, the sampling distribution of rs is approximately normal distribution

with mean zero and variance —-— .
7 -1

It is important to note that in table 2.5 and 2.7, we performed a correlation analysis on 

the company’s average return over the time period of [1986-year (n-1)] against the 

SVs paid to policyholders who surrendered the policy in year n, where n =1991, 

1992,....1995. We chose the time interval to be from 1986 because the complete data 

set available starts from that year (1986). Further, we match the average returns from 

1986 to year (n-1) against SV paid in year n because we deem it appropriate to 

compare year (n-1) returns to surrender benefits paid in year n. Note that the 

difference between table 2.5 and 2.7 is that, in table 2.5, the policies under 

investigation have been in force for 10 years, whereas in table 2.7, it has been in force 

for 5 years.

Further, in table 2.6, we performed a correlation analysis on the company’s average 

return over the time period of [1986-year (n-l)\ against the MVs paid to policyholders 

in policy year n, where n =1993 and 1994.

We present below a detailed results and discussion from this analysis.
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2.7.1 Empirical Results o f Rank Correlation Analysis and Discussions

The results of the rank correlation analysis are reported below:

Table 2,1
Rank Correlation Analysis of Life Assurance Surrender Values after n years of a 
25 year with profit endowment vs. Maturity Values of a 25 year with profit 
endowment (1986-1994)

Type of Policy Years Number of 
Observations

Spearman’s Rank Correlation Coefficient
n ( years)

25 Year with Profit 20 10 5
Endowment 1986 25 0.6176** 0.5077** -

1987 25 0.6634** 0.6184** 0.2299
1988 22 0.7008** 0.5051** 0.1451
1989 23 0.6757** 0.4115* 0.2318
1990 23 0.5623** 0.4468* 0.1844
1991 24 0.5069** 0.1223 0.1354
1992 19 0.4782* 0.1639 0.2174
1993 25 0.5200** 0.1152 0.1624
1994 20 0.4534* 0.2117 0.3163

** Significant at 1% Level 
* Significant at 5% Level

Table 2,2

Rank Correlation Analysis of Life Assurance Surrender Values after n years of a 
15 year with profit endowment vs. Maturity Values of a 15 year endowment 
(1986-1994)

Type of Policy Years Number of Spearman’s Rank Correlation Coefficient
Observations n (years)

15 Year with Profit 10 5
Endowment 1986 25 0.5459** 0.3666

1987 25 0.6099** 0.4595*
1988 22 0.6654** 0.1582
1989 23 0.4243* 0.2864
1990 23 0.4019* 0.297
1991 24 0.5592** 0.4118*
1992 19 0.6015** 0.3762
1993 25 0.6595** 0.3946*
1994 20 0.6443** 0.6679**
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Table 2.3
Rank Correlation Analysis of Life Assurance Surrender Values after 10 years of a 15 year with profit 
endowment vs. Maturity Values of a 10 year with profit endowment (1986-1994)

Type of Policy Years Number of Spearman’s Rank Correlation Coefficient
Observations Number of Years Policy has been in force

15 Year with Profit 10
Endowment 1986 25 0.4097*

1987 25 0.6190**
1988 22 0.7600**
1989 23 0.5866**
1990 23 0.3594
1991 24 0.3708
1992 19 0.6792**
1993 25 0.7046**
1994 20 0.6917**

Table 2.4

Rank Correlation Analysis of Life Assurance Surrender Values after 10 years of a 25 year with profit 
endowment vs. Maturity Values of a 10 year endowment (1986-1994)

Type of Policy Years Number of Spearman’s Rank Correlation Coefficient
Observations Number of Years Policy has been in force

25 Year with Profit 10
Endowment 1986 25 0.3862*

1987 25 0.5299**
1988 22 0.5847**
1989 23 0.5599**
1990 23 0.5313*
199! 24 0.2789
1992 19 0.2099
1993 '25 0.4421*
1994 20 0.5618**

79



Table 2.5: Rank Correlation Analysis of Life Assurance Average Yield vs. Surrender Values (1986-1994)

Type of Policy Number of Year Policy Spearman's Rank Correlation Coefficient

Years Policy Surrendered
0 - u

Has been in [1986-1992] [1986-1993] [1986-1994]

Force {20} {21} {19}

25 Year Endowment 10 1993 0.0391

Policy 10 1994 0.2658

10 1995 0.3281

15 Year Endowment 10 1993 0.0075

Policy 10 1994 0.1228
10 1995 -0.1

{ } = Number of observations.
[ ] = Overall investment period is from calendar year t0 to tn .

Table 2.6: Rank Correlation Analysis of Life Assurance Average Yield vs. Maturity Values (1986-1994)

Type of Policy Policy Year Spearman's Rank Correlation Coefficient

0 > 'J

[1986-1992] [1986-1993]
{20} {21}

25 Year Endowment 1993 -0.3398
Policy 1994 0.0578

Fable 2,7: Rank Corrélation Analysis of Life Assurance Average Vield vs. Surrender Values (1986-1994)

Type of 

Policy

Number of 

Years Policy

has been in 

Force

Year Policy 

Surrendered

Spearman's Rank Correlation Coefficient

[ ' « • ' J
[1986-1990] [1987-1991] [1988-1992] [1989-1993] [1990-1994]

{22} {20} {20} {21} {19}

25 Year 5 1991 0.2377

Endowment 5 1992 -0.1309

Policy 5 1993 -0.0677

5 1994 0.1293

5 1995 0.0105

15 Year 5 1991 0.2763

Endowment 5 1992 0.1573

Policy 5 1993 0.1474

5 1994 0.1812

5 1995 -0.0746
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Table 2.8
Rank Correlation Analysis of Lapse Rate against R(i,t)

Type of Policy Years Number of observation Spearman's rank correlation coefficient

With profit Endowment 1986 25 -0.4162*
1987 25 -0.5392**
1988 22 -0.3936
1989 23 -0.3529
1990 23 -0.1329
1991 24 -0.2009
1992 19 -0.5204*
1993 25 -0.4977*
1994 20 -0.3385

Table 2.9
Rank Correlation Analysis of Lapse Rate against R'li.t)

Type of Policy Years Number of observation Spearman's rank correlation coefficient

15 Year with profit 1986 25 -0.2738
Endowment 1987 25 -0.1869

1988 22 -0.6329**
1989 23 -0.4951*
1990 23 -0.0826
1991 24 -0.2052
1992 19 -0.3281
1993 25 -0.5769**
1994 20 -0.4235

Table 2.10
Rank Correlation Analysis of Lapse Rate against R"(i,t)

Type of Policy Years Number of observation Spearman's rank correlation coefficient

25 Year with profit 1986 25 -0.0773
Endowment 1987 25 -0.0315

1988 22 -0.2282
1989 23 -0.0974
1990 23 -0.0712
1991 24 -0.0878
1992 19 -0.0702
1993 25 -0.3685
1994 20 -0.0173

* Significant at 5% Level 
** Significant at 1% Level
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From table 2.1, we observe a positive and significant correlation between SVs of a 25- 

year with profit endowment, which had run for 20 years and the corresponding MV’s 

paid on this policy for the entire period of 1986-1994. This is not surprising since 

surrender values bases tend to "blend" towards maturity values as duration increases. 

However, interesting results were obtained at duration 10, which is 15 years from 

maturity. Thus, we observed a positive and significant correlation at this duration over 

the period of 1986-1990. This shows that in the 1980's (including 1990), companies 

that pay out higher SVs to surrendering policyholders also pay higher MVs to 

continuing policyholders. But we observe no significant correlation at duration 5, 

which is 20 years away from maturity. This is not surprising since there is normally 

high expense loading at the early durations of a life insurance policy, as observed by 

Chung and Skipper (1987).

However, we observe from table 2.2 significant results in some years (for e.g., 1987, 

1991, and 1993-94) for the case of 75|5 S V against a 15-year MV. This is probably due 

to the fact that this duration is not too far from maturity. We also observe significant 

results for the case of 15\ 10 SV against a 15-year MV.

Furthermore, table 2.3 and 2.4 present interesting results for the case where the 

durations of the policies being compared are the same. That is, 25\10 SV against 10- 

year MV and 15\10 SV against 10-year MV. In this case, we observe a positive and 

significant correlation between 15\10 SV and 10-year MV in the following years:

1986-1989 and 1992-94. See table 2.3. Also, we observe a positive and significant 

correlation between 25\10 SV and 10-year MV in the following years: 1986-1990 and 

1993-94. See table 2.4. In both cases, the result is not surprising since surrender 

values tend to blend towards maturity values as duration increases.

A significant correlation between MVs and SVs suggests that, from a statistical 

standpoint, policies with higher SVs tend to have higher MVs than ones with lower 

SVs. This also suggests that higher SVs are not paid out at the expense of MVs, and so 

we can infer that surrendering policyholders are not better off than those who maintain 

their policies until maturity as hypothesized. However, this does not mean that 

subsidizing payouts by other means is completely ruled out. Rather, other factors like
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return on assets could be used in paying out benefits. Table (2.5-2.7) present results on 

this analysis (i.e., lapse rate against yield on assets).

In this analysis, we were expecting a positive and significant correlation between 

payouts and average yield on assets as hypothesized. But surprisingly, we observe no 

significant correlation between yields and payouts (see table 2.5-2.7). However, there 

is a positive correlation between surrender values and average yield on assets for both 

15 and 25 year endowment at duration 10 (in this case, the average yield was 

calculated over the period 1986-1992, 1986-1993, 1986-1994). Note that there is a 

negative correlation for a 15-year endowment for which the period is 1986-1994 (see 

table 2.5). Also, the r values of both 15 and 25 year endowment at duration 5 and 10, 

calculated over the period 1986-1992, 1986-1993, 1988-1992, and 1990-1994 were 

close to zero (see table 2.5-2.7 again).

Further, there is some negative and positive correlation between surrender values and 

average yield on assets for both 15-year and 25-year endowment at duration 5 

depending on the period used to calculate the average yield. Thus there is a negative 

correlation between surrender values and average yield on assets over the period of

1987- 1991, 1988-1992 for 25-year endowment and at 1990-1994 for 15-year 

endowment. However, there is a positive correlation over the period of 1986-1990,

1988- 1992 for both 15-year and 25-year endowment; over the period 1987-1991, 

1988-1992 for a 15-year endowment and in 1990-1994 for a 25-year endowment (see 

table 2.7). Also, from table 2.6, we observe a negative but not significant correlation 

between the average return on assets over the period of 1986-1992 and the MV’s paid 

in the policy year 1993 of a 25-year endowment policy.

Since there is no significant correlation between surrender/maturity values and 

average yield on assets for the type of policy under investigation (15 and 2 5-year 

endowment that has been in force for about 5 and 10 years), this suggests that a 

company’s ability to pay out more benefits to policyholders does not depend primarily 

on their investment returns alone, but on other factors that need to be investigated. 

Regrettably, there was not enough information, such as economic variables, available
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to enable us to explore these factors. However, this could possibly be a future research 

topic of interest.

This result is similar to Chung and Skipper (1987) where a significant negative 

correlation between the level of surrender values and currently credited interest rate 

was observed at duration one and a negative correlation but not significant, was 

observed at duration five. However, a significant positive relation was found at 

durations 10, 15, and 20.

Finally, from table 2.8-2.10, we observe a negative and significant correlation 

between the lapse rate and R(i,t) for 1986, 1987, 1992 and 1993. Also, we observe a 

similar one (negative and significant correlation) between the lapse rate and R'(i,t) in 

1988, 1989 and 1993. However, there are no significant results for the case of lapse 

rate versus R"(i,t).

The results of table 2.8-2.10 suggest to some extent that lower MVs relative to the 

average market value are accompanied by higher lapse rate. This is not surprising 

because policyholders normally prefer policies with better value. Thus, policyholders 

are not likely to surrender if a higher maturity benefit (relative to the average market 

maturity value) is offered by the life office. This confirms our initial hypothesis that 

lower MVs relative to average market tend to be associated with higher lapse rates.

On the other hand, the above results could also mean that higher SVs relative to the 

average market value are not accompanied by high lapse rates- suggesting that 

policyholders do not surrender on the basis of the surrender value offered by the 

policy. This result does not confirm our initial hypothesis (3). So, we reject this 

hypothesis and can infer that policyholders do not necessarily surrender the policy 

when a higher surrender value is offered by the policy.

However, the results of tables 2.1-2.4 confirm hypothesis one. So we can infer that 

companies that pay out higher surrender values to surrendering policyholders tend to 

pay out higher maturity values.
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The results of tables 2.5-2.7 do not confirm hypothesis four since we do not obtain 

any significant correlation between payouts and average yield on assets. Hence, we 

can infer that companies that offer higher MV or SV do not necessarily have a higher 

yield on their assets.

Further, the results of tables 2.8-2.10 also confirm hypothesis two. So we can infer 

that companies that offer higher maturity value relative to the average market maturity 

value tend to have lower lapse rates.

The next section discusses a graphical presentation of the behavior of companies’ 

lapse rates over time.

2.8 Graphical presentation of the behavior of Companies Lapse Rate over 

time period (1986-1994).

We present in figure 2.13, a graph showing the behavior of the companies lapse rates 

over time period, 1986-1994. Also, figure 2.14 shows the graph of the mean lapse 

rate, as well as the median and quartiles (lower and upper quartile) lapse rate over 

time period, 1986-1994.

Figures 2.13 and 2.14, indicate that on average the lapse rate decreased from 1988 to 

1989 and 1991-94, suggesting that companies were probably paying out higher MV or 

SV relative to average market MV or SV value. However, during some years, for 

example, 1989-91, the average lapse rate moved up either because companies were 

then paying out lower MV or SV relative to average MV or SV market value, or 

probably due to economic factors. Regrettably, these factors were not considered in 

this analysis due to lack of data on economic variables as mentioned before. We also 

observe that on average, most of the companies experienced a lapse rate of about 8- 

9% over the period of 1986-1994. However, a higher number of lapse rates were 

observed in 1987 and 1990/91, which was the time that the unemployment rate was 

high in the U.K.
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Now, to determine if the changes as observed in figure 2.13 and 2.14 are actually real 

changes, but have not happened just by chance, a non-parametric test of homogeneity 

was performed. This was investigated by testing the hypothesis that lapse rates are the 

same over time (1986-1994), by using the Friedman’s Test, described by Sokal et al 

(1981). Interestingly, the result shows that lapse rates differ significantly over time 

(and hence are not homogenous). See appendix 2.2 for detailed results of this analysis.

Further, figures 2.15 and 2.16 show the plot of the ratio of mean of SV  / MV of all 

companies between 1986 and 1994. In particular, figure 2.15 shows the mean of 

15\10 SV/lOyear MV, whereas figure 2.16 shows the mean of 25\10 SV / 10-year MV. 

Also shown is the median and quartiles of SV/MV. In these plots, our objective is to 

find out if companies were paying out more SV than MV or vice versa.

From figure 2.15, we observe a steadily upward trend from 1987 to 1993. This was 

then followed by a downward trend after 1993 (see figure 2.15). The increase in the 

ratio, SV:MV may well be due to falling bonus rates. Nevertheless, SVs did not fall so 

quickly. Also, figure 2.16 followed a trend similar to figure 2.15, except that there was 

a downward trend after 1993. That is, we observe a steadily upward trend from 1987 

to 1993. Similarly, the increase in the ratio, SV.MV may well be due to falling bonus 

rates. Meanwhile, SVs did not fall so quickly. But the ratio values of figure 2.15 are 

higher than that of figure 2.16. This is probably due to the fact that the SV of a 15-year 

endowment at duration 10-years tend to blend towards the maturity values more than 

for a 25-year endowment at duration 10-years.

It is important to note that the Friedman’s test was used again to determine if the ratio 

SV:MV actually differ significantly over time (1986-1994). This is to investigate 

whether or not companies were offering more SV to policyholders that surrender the 

policy as oppose to those who stayed on to receive maturity benefit. However, from 

figures 2.15 and 2.16, the ratio of SV.MV appears to differ slightly from 1986 to 1991 

and so, the Friedman’s test was then repeated on this variable, SV.MV over the stated 

period (1986-1991). See Appendix 2.2 for details of the results obtained.
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Lastly, from the plots of figure 2.15 and 2.16, we observe that the ratio SV:MV 

increases over time, indicating that the a higher SV is paid out relative to the MV over 

the period. In other words, a lower MV is offered relative to SV over the period. This 

also confirms hypothesis five.

Plot of Lapse Rate (Mean, Median, First and Third Quartile) vs 
Time

Year

-*— M e a n  —*— M e d ia n  — *— 1 s t  Q u a r t i le  x  3 rd  Q u a r t i le

Figure 2.14: Plot of mean, median, first and third quartile lapse rate over time
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Plot of 15|10 SV:10yr. MV (Mean, Median, First and Third 
Quartile) vs Time

Year
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Figure 2.15: Plot of mean, median, first and third quartile of 15| 10 SV:10yrMV overtime
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In this chapter we have proposed a model of lapse rate that takes into account the 

number of policies exposed to risk of lapsing in the year leading up to the rth policy 

anniversary (=curtate duration r-1). From the analysis performed we can conclude that 

payouts {MV or SV) do have an effect on lapse rate. That is, lower values of MV or SV 

(relative to the average market surrender or maturity value) are accompanied by a 

higher lapse rate. This implies that policyholders surrender the policy when they 

perceive poor value for money. We notice that this feature is particularly prevalent in 

the periods 1986-1987 and 1989-1991, - suggesting that it was very much in the 

public awareness at that time. Further, we observe that policies with higher SVs tend 

to have higher MVs than the ones with lower SVs. This implies that companies that 

pay out higher SVs to surrendering policyholders also pay higher MVs to continuing 

policyholders, indicating that the surrendering policyholders are not relatively better 

off than those that hold on to the policy until maturity. Lastly, we have shown that 

higher SVs relative to the average market value are not accompanied by high lapse 

rates- suggesting that policyholders do not surrender on the basis only of the surrender 

value offered by the policy.

The next chapter discusses the investment model used in this thesis.
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Appendix 2

Appendix 2.1

Summary statistics of Life Assurance Maturity Values

T y p e  o f  P o l ic y Y e a r s N u m b e r  o f  

O b s e v a t i o n s

M e a n S ta n d a r d

D e v i a t i o n

M e d ia n First
Quartile

Third
Quartile

2 5  Y e a r  w i th  P r o f i t  

E n d o w m e n t

1 9 8 5 2 6 9872.5 1295.74 9648.5 8894.25 10975.25
1 9 8 6 2 5 10904.64 1331.6 10691 10097 11656
1 9 8 7 2 5 12186.28 1443.64 12219 11159 13405
1 9 8 8 2 2 12668.68 1578.53 12906 11670.5 14005
1 9 8 9 2 3 13593.78 1717.23 14115 11790.5 14985.5
1 9 9 0 2 3 15208.83 1890.72 15792 13850 16836
1 9 9 1 2 4 15964.46 1842.23 14830.5 13201 16355.5
1 9 9 2 19 16197.11 1578.62 16151 14884 17311.5
1 9 9 3 2 5 15623.19 1638.27 15669.44 14740.83 17060.83
1 9 9 4 2 0 16183.76 1657.96 16735.83 14912.78 17315.56

Summary statistics of Life Assurance Maturity Values

T y p e  o f Policy Y e a rs N u m b e r of 

O b se v a tio n s

M ean S ta n d a rd

D eviation

M edian F i r s t

Q u a r t i l e

Third
Q u a r t i l e

10 Y e ar w ith P rofit

E n d o w m e n t 1986 25 2085 .72 219.43 2078 1873 2263

1987 25 2169 .04 213.61 2160 1991 2322

1988 22 2139 .82 184.67 2093 2015 ,5 2282 .25

1989 23 2122.3 162.98 2138 1992.5 2237

1990 23 2189 .68 168.52 2237 2035 .25 2328.5

1991 24 2084 .54 160.51 2134 1997.5 2260

1992 19 1970.05 117.94 1979 1889.5 2064 .5

1993 25 1833.28 128.6 1836.94 1750 1912.5

1994 20 1821.67 84.31 1815.56 1751.46 1867.57

Summary statistics of Life Assurance Adjusted Lapse Rate

T y p e  o f  P o licy Y e a rs N u m b e r of 

O b se v a tio n s

M ean S ta n d a rd

D eviation

M edian

2 5  a n d  10 Y e a r  w ith P rofit 

E n d o w m e n t

1986 25 0 .0 8 0 7 0 .0 3 3 4 0 .0 8 1 3

1987 25 0 .0 9 3 6 0 .0 4 8 9 0 .0 9 4 3

1988 22 0 .0 9 4 3 0 .0 6 2 5 0 .0 8 4

1989 23 0 .0 5 9 7 0 .0 3 0 6 0 .0 5 3 8

1990 23 0 .0 8 4 5 0 .0 4 5 9 0 .0 8 0 8

1991 24 0 .0 9 9 4 0 .0401 0 .1 0 1 2

1992 19 0 .0 8 8 3 0 .0 4 3 6 0 .0 7 3 7

199 3 25 0 .0 7 9 3 0 .0 4 4 5 0 .0 7 4 3

199 4 20 0 .0 5 9 8 0 .0 2 9 3 0 .0 5 9 6
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Summary statistics of Life Assurance Surrender Values: 
Policy has been in effect for 20 Years

T y p e  o f  P o l ic y Y e a r s N u m b e r  o f  

O b s e v a t io n s

M e a n S t a n d a r d

D e v i a t i o n

M e d ia n First
Quartile

Third
Quartile

2 5  Y e a r  w i th  P r o f i t  

E n d o w m e n t

1 9 8 5 2 6 4510.19 971.79 4266.5 3890 5011
1 9 8 6 2 5 4732.76 1104.62 4373 3968 5380
1 9 8 7 2 5 5060.2 1291.58 4494 4128 6172
1 9 8 8 2 2 5566.59 1376.79 5639 4210.5 6696
1 9 8 9 2 3 5872.74 1413.99 6072 4586.5 7092
1 9 9 0 2 3 6263.13 1829.88 6539 4513.5 7380.5
1 9 9 1 2 4 6455.42 1752.71 6237.57 4521.38 7176.75
1 9 9 2 19 6748.21 1493.21 6890 5802.5 7691.5
1 9 9 3 2 5 6572.6 6827.78 5474.17 7612.78 1361.68
1 9 9 4 2 0 6926.17 7226.39 6400.97 7560.42 1209.05

Summary statistics of Life Assurance Surrender Values: 

Policy has been in effect for 10 Years

T y p e  o f  P o l ic y Y e a r s N u m b e r  o f  

O b s e v a t i o n s

M e a n S ta n d a r d

D e v ia t i o n

M e d ia n First
Quartile

Third
Quartile

2 5  Y e a r  w i th  P r o f i t  

E n d o w m e n t

1 9 8 5 2 6 1307.08 166.2 1277.5 1211.25 1386
1 9 8 6 2 5 1316.32 185.31 1281 1183 1358
1 9 8 7 2 5 1348.48 213.59 1310 1179 1391
1 9 8 8 2 2 1392.27 238.92 1328 1244 1476
1 9 8 9 2 3 1405.13 216.86 1391 1261 1452.5
1 9 9 0 2 3 1430.83 241.34 1390 1271.5 1487
1 9 9 1 2 4 1380.21 236.67 1349 1243.5 1471.25
1 9 9 2 19 1349.37 193.22 1332 1231 1403.5
1 9 9 3 2 5 1316.72 161.84 1280.83 1210 1400.83
1 9 9 4 2 0 1288.71 160.29 1260.28 1160.49 1392.36

Summary statistics of Life Assurance Surrender Values: 

Policy has been in effect for 10 Years

T y p e  o f  P o l ic y Y e a r s N u m b e r  o f  

O b s e v a t i o n s

M e a n S ta n d a r d

D e v i a t i o n

M e d ia n First
Quartile

Third
Quartile

15  Y e a r  w i th  P r o f i t  

E n d o w m e n t

1 9 8 5 2 6 1526.31 229.58 1467 1380.25 1607.75
1 9 8 6 2 5 1561.4 237.48 1491 1390 1637
1 9 8 7 2 5 1605.24 273.66 1504 1431 1765
1 9 8 8 2 2 1659.86 270.89 1618 1463.75 1801.75
1 9 8 9 2 3 1661.74 250.98 1640 1504 1808.5
1 9 9 0 2 3 1685.91 267.44 1634.5 1562 1848.25
1 9 9 1 2 4 1640.92 230.38 1634.5 1508.5 1766.5
1 9 9 2 19 1597.32 196.89 1579 1461.5 1702.5
1 9 9 3 2 5 1552.34 158.47 1558.89 1439.44 1620.28
1 9 9 4 2 0 1542.11 142.51 1566.25 1453.61 1633.19
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Appendix 2.2

Nonparametric test of Homogeneity
This test was performed to determine if the changes as observed in the plots of lapse rate and 
payouts over time are actually real changes, or just happened by chance. Friedman's method, 
described by Sokal et al (1981) was used in this case. Note that in Friedman’s method, the 
variates are ranked within each block (column in this case). Further note that in this analysis, 
the lapse rate and the ratio, SV:MV, of all companies are treated as blocks. The procedure is 
given below:

i) Assign ranks to items within blocks (columns). Note that if there are ties, treat them 
in the conventional manner by way of finding the average of ranks.

ii) Sum the ranks for each calendar year over the companies (rows in this case).

Define R = sum of ranks over j  for each i. The following test statistics is used :

where
a = treatments (i.e., years)
b = blocks (i.e., companies lapse rates and SV:MV)
The above test statistics follows a chi squared distribution with (a-1) degree of freedom.

In this test, we are interested in the hypothesis that, lapse rate does not differ significantly 
over time.
The table below shows the lapse rates of a sample of Life companies from 1986-1994.

Therefore, we reject the under mentioned null hypothesis if X 2) ^ 2[a -  1]. 

Now, we consider the results of the following test:

1/

In this table, a=9 and b= 14. Also shown are the corresponding ranks of each lapse rate over 
the time period, 1986-1994.
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Lapse Rate

C o m p a n y c le r e q u ita b l] fr ie n d s  |G .A  L ife N a t M u tJ N o rw ic h  |P e a rl |R e fu g e S co t A m (S c o t L lfe |S c o t M u tjS c o t P ro |S c o t W i S t a n d a r d

Y ear L a p se  R a te

1986 0 .0 4 5 4 0 .0 2 9 6 0 .0 7 4 6 0 .0488 0 .114 0 .0 6 9 5 0 .0 8 2 2 0 .0 5 3 5 0 .0 7 4 5 0 .0 8 5 2 0 .0 8 1 3 0 .1 4 5 2 0 .0 6 3 2 0 .0 7 8 6

1987 0 .0 3 8 9 0 .0 2 1 9 0 .0 6 1 4 0 .0 5 7 7 0 .1 5 2 5 0 .0 6 2 6 0 .1 0 0 5 0 .0 8 4 3 0 .0 5 0 6 0 .0 9 6 7 0.1081 0 .2 5 9 5 0.0561 0 .0 9 4 3

1988 0 .0 3 9 3 0 .0 3 0 4 0 .0 8 7 2 0 .049 0 .0 8 4 0 .0 6 4 8 0 .1 2 6 9 0.071 0 .0 6 7 5 0 .0 6 6 7 0 .0 7 8 6 0 .3 5 1 2 0 .0 6 2 6 0 .0 8 2 6

1989 0 .0 2 7 8 0 .0 1 7 9 0 .0 2 8 6 0 .0 3 2 5 0 .1 2 0 7 0 .0 5 7 2 0 .0 8 5 6 0 .0 4 0 4 0 .0 5 4 0 .03 0 .0 4 9 5 0.1041 0.0271 0 .0 5 6 8

1990 0 .0 6 9 6 0 .0 3 0 8 0 .0 8 9 5 0 .0 4 6 2 0 .0 7 8 2 0 .0 8 2 4 0 .0 8 5 5 0.0521 0 .0 9 3 6 0 .0 7 9 7 0 .0 8 0 8 0 .1 1 6 7 0 .0 6 5 5 0 .0 9 7 7

1991 0 .0 7 1 9 0.0461 0 .1 3 6 9 0 .0 6 1 8 0 .1 7 6 2 0 .1 1 9 9 0 .1 0 1 2 0 .0 4 2 2 0 .0 9 7 6 0.1481 0 .1 0 8 6 0 .0 8 3 8 0 .0 9 3 8 0.1131

1992 0 .0 5 1 9 0 .0 4 6 3 0 .0 6 4 9 0 .0 5 6 9 0.131 0 .0 6 2 4 0.05 0 .0 5 2 2 0 .0 9 2 5 0 .1 1 3 2 0.0701 0.1011 0 .0 9 7 3 0.0751

1993 0 .0 2 9 6 0 .0 4 3 3 0 .0582 0 .0 4 4 6 0 .1 0 9 2 0 .0 5 6 3 0 .0 4 7 6 0 .0 4 6 0 .0 8 1 5 0 .0 9 6 8 0 .0 6 9 8 0 .0 7 8 7 0 .0 5 2 6 0 .0 5 8 8

1994 0 .0 3 3 9 0 .0 4 5 7 0.071 0 .0 4 1 8 0 .0 6 3 9 0 .0 5 1 5 0 .0 6 1 6 0 .0 4 0 3 0 .0 5 9 6 0 .0 4 1 7 0.0861 0 .072 0 .0 5 1 5 0 .0 5 2 2

T a b le  1 i.

R a n k  o f  L a p s e  ra te
Company cler equitabl]friends |G .ALife Nat Muti]Norwich Pearl | Refuge | Scot Amj Scot Life] Scot Mutj Scot Pro| Scot W i| Standarj Rij (Rij)A2
Year Rank of Lapse Rate

1986 6 3 6 5 5 7 4 7 5 5 6 7 6 5 77 5929
1987 4 2 3 8 8 5 7 9 1 6 8 8 4 7 80 6400
1988 5 4 7 6 3 6 9 8 4 3 4 9 5 6 79 6241
1989 1 1 1 1 6 3 6 2 2 1 1 5 1 2 33 1089
1990 8 5 8 4 2 8 5 5 8 4 5 6 7 8 83 6889
1991 9 8 9 9 9 9 8 3 9 9 9 3 8 9 111 12321
1992 7 9 4 7 7 4 2 6 7 8 3 4 9 4 81 6561
1993 2 6 2 3 4 2 1 4 6 7 2 2 3 3 47 2209
1994 3 7 5 2 1 1 3 1 3 2 7 1 2 1 39 1521

49160

T a b le  l i i .

W e  c a lc u la te  ^ 2 =  4 8 .1 9 .

F ro m  ta b le s ,  / 2 ( 8 ) a t 1%  s ig n if ic a n t  le v e l is 2 0 .0 9 .

H e n c e ,  r e s u l t  is s ig n i f ic a n t  a t  1%  le v e l o f  s ig n if ic a n c e  a n d  so  w e  r e je c t  th e  a b o v e  h y p o th e s is  

a n d  c o n c lu d e  th a t  th e  la p se  ra te  d if f e r s  s ig n i f ic a n t ly  o v e r  t im e  (1 9 8 6 -1 9 9 4 ) .

2/

In  ta b le  2 i b e lo w , w e  a re  in te re s te d  in te s t in g  th e  h y p o th e s is  th a t ,  th e  ra tio  15| 1 O S V : lO y r.M V  

d o e s  n o t d if f e r  s ig n i f ic a n t ly  o v e r  t im e  ( 1 9 8 6 -1 9 9 4 ) .  T h u s , w e  h a v e , a = 9  a n d  b = 1 4 .

15| 10 SV: 10yrMV
Company ClerM&G Equitable l Friends Pr] G.A Life Nat Mutuali Norwich U| Pearl Assi] RefugeAsi Scot Arrie] ScotLifeAs Scott Muti] ScotPrcvA] Scottish V\ Standard
Year 15|10SV:10>rMV

1986 0.611537 0.663053 0.624573 0.789967 0.714633 0.9466 0.796583 0.683302 0.83719 0.82435 0.653168 0.892098 0.826907 0.843954
1987 0.546455 0.637435 0.595753 0.751966 0.682403 0.939511 0.747544 0.680235 0.856834 0.813739 0.646518 0.828821 0.810737 0.839457

1988 0.773454 0.966798 0.585697 0.88256 0.717478 0.935897 0.731788 0.705882 0.783174 0.815154 0.694215 0.761083 0.823723 0.838658
1989 0.773748 0.968071 0.649476 0.904046 0.680263 0.931949 0.715914 0.726441 0.782785 0.826174 0.694014 0.788841 0.832317 0.847478

1990 0.776674 0.991427 0.554398 0.905925 0.680641 0.924362 0.676759 0.686997 0.773025 0.824737 0.692308 0.751274 0.836671 0.847319
1991 0.674632 0.990004 0.725118 0.907446 0.717718 0.919509 0.707328 0.728736 0.731959 0.842162 0.614092 0.805258 0.857004 0.862206

1992 0.795809 0.98271 0.760231 0.845377 0.7552 0.927825 0.693069 0.755887 0.769112 0.849114 0.711075 0.805955 0.811521 0.880429
1993 0.87545 0.977137 0.821496 0.862519 0.780159 0.882437 0.755283 0.778248 0.839514 0.87496 0.746862 0.843513 0.88352 0.901536
1994 0.880627 0.966193 0.84245 0.861801 0.737225 0.890021 0.765535 0.791139 0.840167 0.871196 0.731895 0.89117 0.850083 0.911765

T a b le  2 i
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Ranks o f 15|10SV:10yr.MV (by Rows)

Ccrrpeny iQ a-fV ^lE qL it^e ljF riaTdsR iG A  Life/ ra M iiU lr trw c h U F^/^F^uge4s^ScrtM ic^S xtljfe^Sccttl\A iL jS cc iR TM /jScx itishV \|aax iariL jR j IC W 2

Yea- R=nkcf 15 10S /:10m W
1906 2 2 4 2 4 9 9 2 6 3 3 9 4 3 62 3844

1907 1 1 3 1 3 8 6 1 9 1 2 6 1 2 45 2025

1988 4 4 2 6 5 7 5 4 5 2 6 2 3 1 56 3136

1989 5 5 5 7 1 6 4 5 4 5 5 3 5 5 65 4225
1990 6 9 1 8 2 4 1 3 3 4 4 1 6 4 56 3136

1991 3 8 6 9 6 3 3 6 1 6 1 4 8 6 70 4900

1992 7 7 7 3 8 5 2 7 2 7 7 5 2 7 76 5776
1993 8 6 8 5 9 1 7 8 7 9 9 7 9 8 101 10201
1994 9 3 9 4 7 2 8 9 8 8 8 8 7 9 99 9801

47044

T a b le  2 ii

W e  c a lc u la te  x" ~ 2 8 .0 8 .

F ro m  ta b le s ,  ^ 2 (8 )  a t 1%  s ig n if ic a n t  le v e l is 2 0 .0 8 .

H e n c e , r e s u l t  is s ig n i f ic a n t  a t 1%  le v e l o f  s ig n if ic a n c e  a n d  so  w e  r e je c t  th e  a b o v e  h y p o th e s is  

a n d  c o n c lu d e  th a t  th e  r a tio  1 5 |1 0 S V :1 0 y r .M V  d if fe r s  s ig n if ic a n t ly  o v e r  t im e  ( 1 9 8 6 -1 9 9 4 ) .

3 /

In  ta b le  3 i, w e  a re  in te re s te d  in te s t in g  th e  h y p o th e s is  th a t, th e  r a tio  1 5 |1 0 S V :1 0 y r .M V  d o e s  

n o t d i f f e r  s ig n i f ic a n t ly  o v e r  t im e  ( 1 9 8 6 -1 9 9 1 ) .  H e re , a = 6  a n d  b = 1 4 .

1 5 |1 0 S V :1 0 y r .M V

Corrpany CierM&G|EquitableijFriends P rjG A  Life4 N stV U ual|N avviitiU |Peerl/\ssilRefug6A sjScctM icjScolLjf6ft£|ScottM jtdScctPrw A ]ScottishV \|Standard 
Yeer__________________________________________________________________15|10SV:10yiM /_______________________________________________________________

1986 0.611537 0.663053 0.624573 0.789967 0.714633 0.9466 0.796583 0.683302 0.83719 0.82435 0.653168 0.892098 0.826907 0.843954

1987 0.546455 0.637435 0.595753 0.751966 0.682403 0.939511 0.747544 0.680235 0.856834 0.813739 0.646518 0.828821 0.810737 0.839457

1988 0.773454 0.966798 0.585697 0.88256 0.717478 0.935897 0.731788 0.705882 0.783174 0.815154 0.694215 0.761083 0.823723 0.838658

1989 0.773748 0.968071 0.649476 0.904046 0.680263 0.931949 0715914 0.726441 0.782785 0.826174 0.694014 0.788841 0.832317 0.847478

1990 0.776674 0.991427 0.554398 0.905925 0.680641 0.924362 0.676759 0.686997 0.773025 0.824737 0.692308 0.751274 0.836671 0.847319

1991 0.674632 0.990004 0.725118 0.907446 0.717718 0.919509 0.707328 0.728736 0.731959 0.842162 0.614092 0.805258 0.857004 0.862206

T a b le 3 i

R a n k  o f  15| 1O S V : 1 O yr.M V  (b y  ro w s )

Ccrrpany ae r MSG |E q u a te  l| Friends FVjGA Life/ Nat Miucl| NcnMchUlPealyAssijR^uge^ Sect /V ric^ScaO e^SccttN /ljt^ScctPn^ Scottish VN| Standard L|Rij ( W 2

Yea- Rank cf 15 10SV: 10yrW
1986 2 2 4 2 4 6 6 2 5 3 3 6 3 3 62 3844

1987 1 1 3 1 3 5 5 1 6 1 2 5 1 2 45 2025

1988 4 3 2 3 5 4 4 4 4 2 6 2 2 1 56 3136

1989 5 4 5 4 1 3 3 5 3 5 5 3 4 5 65 4225

1990 6 6 1 5 2 2 1 3 2 4 4 1 5 4 56 3136
1991 3 5 6 6 6 1 2 6 1 6 1 4 6 6 70 4900

14708

T a b le  3 ii
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W e  c a lc u la te  %2 = 6.\6.

F ro m  ta b le s ,  ^ " ( 5 )  a t 5 %  s ig n if ic a n t  le v e l is 11 .07 .

H e n c e , r e s u l t  is n o t s ig n if ic a n t  a t 5%  le v e l o f  s ig n if ic a n c e  an d  so  w e  d o  n o t r e je c t  th e  a b o v e  

h y p o th e s is  a n d  c o n c lu d e  th a t  th e  ra tio  1 5 |1 0 S V :1 0 y r .M V  d o e s  n o t d if f e r  s ig n i f ic a n t ly  o v e r  

t im e  (1 9 8 6 -1 9 9 1 ) .

4 /

In ta b le  4 , w e  a re  in te re s te d  in  te s t in g  th e  h y p o th e s is  th a t ,  th e  r a tio  2 5 |1 0 S V :1 0 y r .M V  d o e s  

n o t d i f f e r  s ig n i f ic a n t ly  o v e r  t im e  (1 9 8 6 -1 9 9 4 ) .

T h u s ,  in  th e  ta b le  b e lo w , a = 9  a n d  b = 1 4 .

2 5 11 OS V : 1 Oyr.lVTV

Company QerM&G E qjtab le  LJ Friends Prj G.A Life fi Nat Mjtuall Ncrvuch U | F’esri As sl | R efugees: Scot A rie l ScotLifeA Scott Mutd ScotProA j Scottish V\| Standard
Year 25(10 SV:10yr1\A/

1986 0.525462 0.584996 0.546502 0.619074 0.633447 0.815153 0.717565 0.498134 0.659917 0.601059 0.646975 0.829428 0.554484 0.694444

1987 0.469438 0.595113 0.511619 0.608285 0.620887 0.799657 0.676817 0.495703 0.682958 0.595205 0.633462 0.731069 0.520768 0.679712
1988 0.600086 0.905199 0.511786 0.644153 0.654419 0.794872 0.665563 0.52381 0.645707 0.596525 0.681818 0.670555 0.550247 0.683307

1989 0.600604 0.9051 0.616352 0.672718 0.620722 0.786125 0.653443 0.547575 0.646688 0.611888 0.682147 0.710438 0.567509 0.694547

1990 0.600432 0.930562 0.622759 0.677235 0.62082 0.770888 0.619616 0.506989 0.633348 0.610416 0.68019 0.677165 0.76502 0.69341
1991 0.463235 0.928727 0.635502 0.678387 0.652152 0.762165 0.648794 0.549425 0.60075 0.632959 0.594038 0.724927 0.768969 0.719539
1992 0.560429 0.919626 0.66779 0.613177 0.685333 0.777999 0.607426 0.578568 0.637913 0.632911 0.690789 0.728953 0.739768 0.75305
1993 0.64783 0 938756 0.71634 0.640516 0.701429 0.750429 0.660691 0.605839 0.70753 0.669087 0.720399 0.760374 0.763859 0.788442
1994 0.656629 0.922728 0.727083 0.639189 0.652745 0.758016 0.631644 0.61965 0.680493 0.661786 0.698936 0.803334 0.767266 0.805728

T a b le  4 i

R a n k  o f  25 | 1O SV : 1 O yr.M V  (b y  ro w s )

Company Cler M&G | Equitable Lj Friends Pr^G.A. Life Nat Mutual Norwich U | Pearl Asst] RefugeAs^ Scot Amic^ ScotLifeAs| Scott Mutij ScotProvAjScottish V\| Standard L] Rij
Year Rankof 25|10SV: 10yrMV

1986 3 1 3 3 4 9 9 2 6 3 3 9 3 4 62 3844
1987 2 2 1 1 3 8 8 1 8 1 2 6 1 1 45 2025
1988 5 4 2 6 7 7 7 4 4 2 5 1 2 2 58 3364
1989 7 3 4 7 1 6 5 5 5 5 6 3 4 5 66 4356
1990 6 8 5 8 2 4 2 3 2 4 4 2 7 3 60 3600
1991 1 7 6 9 5 3 4 6 1 7 1 4 9 6 69 4761
1992 4 5 7 2 8 5 1 7 3 6 7 5 5 7 72 5184
1993 8 9 8 5 9 1 6 8 9 9 9 7 6 8 102 10404
1994 9 6 9 4 6 2 3 9 7 8 8 8 8 9 96 9216

46754

T a b le  4 ii

W e  c a lc u la te  %2 = 2 5 .2 8 .

F ro m  ta b le s ,  j 2 ( 8) a t  1%  s ig n if ic a n t  le v e l is 2 0 .0 9 .

H e n c e ,  r e s u l t  is s ig n i f ic a n t  a t  1%  le v e l o f  s ig n if ic a n c e  a n d  so  w e  r e je c t  th e  a b o v e  h y p o th e s is  

a n d  c o n c lu d e  th a t  th e  r a tio  2 5 |1 0 S V :1 0 y r .M V  d if fe r s  s ig n if ic a n t ly  o v e r  t im e  ( 1 9 8 6 -1 9 9 4 ) .
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In ta b le  5 , w e  a re  in te re s te d  in  te s t in g  th e  h y p o th e s is  th a t ,  th e  r a t io  2 5 |1 0 S V :1 0 y r .M V  d o e s  
n o t  d i f f e r  s ig n i f ic a n t ly  o v e r  t im e  ( 1 9 8 6 -1 9 9 1 ) .  H e re , a = 6  a n d  b = 1 4 .

5/

2 5 |1 0 S V :1 0 y r .M V

Ccnpany Qer M&G I Equtcble Ü Friends Pr G A  Life Net Mutuali Norwich U| Pearl Assi) RefugeAs^ Sect A ric^  ScctUfeA^ Scott Mutij ScctPrcvA) Scottish V\ Standard L

Year 25|10SV:10yrM/

1986 0.525462 0.584996 0.546502 0.619074 0.633447 0.815153 0.717565 0.498134 0.659917 0.601059 0.646975 0.829428 0.554484 0.694444

1987 0.469438 0.595113 0.511619 0.608285 0.620887 0.799657 0.676817 0.495703 0.682958 0.595205 0.633462 0.731069 0.520768 0.679712

1988 0.600086 0.905199 0.511786 0.644153 0.654419 0.794872 0665563 0.52381 0.645707 0.596525 0.681818 0.670555 0.550247 0.683307

1989 0.600604 0.9051 0.616352 0.672718 0.620722 0.786125 0653443 0.547575 0.646688 0.611888 0.682147 0.710438 0.567509 0.694547

1990 0.600432 0.930562 0.622759 0.677235 0.62082 0770888 0.619616 0.506989 0.633348 0.610416 0.68019 0.677165 0.76502 0.69341

1991 0.463235 0.928727 0.635502 0.678387 0.652152 0.762165 0.648794 0.549425 0.60075 0.632959 0.594038 0.724927 0.768969 0.719539

T a b le  5i

R a n k  o f  2 5 |1 0 S V :1 0 y r .M V  (b y  ro w s )

Corrpsny Cler M&G | Equitable lj Friends Pr| G A  Life A Nat Mutuali Norwich U | Pearl Assi) RefugeAs  ̂Scot Amc| ScotUfeAsj Scott Mudj ScctPrcvAj Scottish V\| Standard L| Rij (■Rijrs
Year Ranket 25 10SV:10yr.MV

1986 3 1 3 2 4 6 6 2 5 3 3 6 3 4 51 2601
1987 2 2 1 1 3 5 5 1 6 1 2 5 1 1 36 1296
1988 4 4 2 3 6 4 4 4 3 2 5 1 2 2 46 2116
1989 6 3 4 4 1 3 3 5 4 5 6 3 4 5 56 3136
1990 5 6 5 5 2 2 1 3 2 4 4 2 5 3 49 2401
1991 1 5 6 6 5 1 2 6 1 6 1 4 6 6 56 3136

14686

T a b le  5 ii

W e  c a lc u la te  /^ 2 = 5 .7 1 .

F ro m  ta b le s ,  %2(5) a t  5 %  s ig n if ic a n t  le v e l is 11 .07 .

H e n c e ,  r e s u l t  is n o t  s ig n if ic a n t  a t  5 %  le v e l o f  s ig n if ic a n c e  a n d  so  w e  d o  n o t r e je c t  th e  a b o v e  

h y p o th e s is  a n d  c o n c lu d e  th a t  th e  ra tio  2 5 |1 0 S V :1 0 y r .M V  d o e s  n o t d if fe r  s ig n i f ic a n t ly  o v e r  

t im e  ( 1 9 8 6 -1 9 9 1 ) .

F ro m  ta b le  2 -5 , a  s ig n i f ic a n t  r e s u l t  w a s  o b ta in e d  o v e r  th e  p e r io d  o f  1 9 8 6 -1 9 9 4 , w h ic h  

s u g g e s ts  th a t  th e  r a tio  S V :M V  w e re  n o t th e  s a m e  o v e r  th is  p e r io d . T h is  s u p p o r t  th e  f a c t  th a t  

c o m p a n ie s  w e re  p a y in g  o u t m o re  S V  to  s u r re n d e r in g  p o lic y h o ld e r s  as  o p p o s e d  to  th o s e  th a t  

s ta y e d  o n  to  r e c e iv e  m a tu r ity  b e n e f it .  H o w e v e r ,  a  n o n - s ig n if ic a n t  r e s u l t  w a s  o b ta in e d  o v e r  th e  

p e r io d  o f  1 9 8 6 -1 9 9 1 , w h ic h  m e a n s  th a t  th e  ra tio  S V :M V  w a s  h o m o g e n o u s  f ro m  1 9 8 6 -1 9 9 1  

a n d  n o n -h o m o g e n o u s  a f te rw a rd s .  T h is  a g a in  c o n f irm s  th a t  life  o f f ic e s ’ w e r e  p a y in g  h ig h e r  

S V s  a s  M V s  a f te r  1991 .
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Chapter 3

3.1 The Investment Model

3.1.1 Introduction

In this section, we propose a stochastic investment model corresponding to the 

office’s liability, to be defined in chapter 4. This model is similar to the model of 

index-linked gilts in Wilkie (1995), but with the mean value a function of the 

surrender force of interest. In particular, we use Wilkie’s 1995 model of gilt yield, 

with mean gilt yield replaced by our proposed surrender force of interest, S, . This is

equal to the redemption yield at 27/5/98 of a t-year gilt. With this feature, it can be 

used to meet the life office’s liability when the insured can terminate the policy at any 

time t. A model of 8 st is obtained by fitting a non-linear regression equation via least

squares to relevant financial data, to be discussed later on in this chapter. This model 

is realistic and relevant to our investigations, as well as the life office, faced with a 

possibility of early termination of life contracts.

A simulation-based approach will be used since the model under investigation follows 

a stochastic process. A description of the Wilkie model is given and also, measures 

taken to allow for some of its limitations are given as well. Further, we give a 

description of our proposed model. The simulation results produced by our model are 

then compared with those of Wilkie (1995) and subsequently analysed. A sensitivity 

analysis of the model to changes in the parameter values is presented as well.
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3.1.2 Choice o f Investment Model

Since this thesis is considering a conventional non-profit life policy that can be 

purchased in a lump sum, a suitable investment model corresponding to the life 

office’s liability is the one mentioned in the introduction of section of 3.1.1. i.e., a 

model similar to Wilkie’s 1995 model of gilt yield at time t, with mean gilt yield 

replaced by our proposed surrender force of interest, 5 st . We employed Wilkie’s 1995

model because it remains the most widely used and accepted model in the actuarial 

profession in spite of the criticism it has attracted and also, because we desire to 

model a simple AR(1) process, independent of inflation for our investment model. 

Since it would be impractical to include in our model all the series suggested by 

Wilkie (1995), we will discuss only those that are relevant to our investigation, and 

also discuss our proposed model in the next section of this thesis.

3.2 Wilkie Stochastic Investment Model

The Wilkie model (originally proposed in 1986, and revised later on in 1995) is the 

principal stochastic investment model in use in the UK. Even though the model has 

attracted some criticism (for example, as reviewed by Kitts (1988,1990), Clarkson 

(1991), Geoghegan et al (1992), and Huber (1995)), little of this has been backed up 

with the suggestion of a meaningful alternative model. Nevertheless, Wright (1999), 

has recently suggested an alternative to the Wilkie model (see Wright (1999)). The 

proposed model (by Wilkie (1986)) discussed the following series:

i) force of price inflation,

ii) share dividend yield,

iii) force of share dividend growth,

iv) long-term interest rate (yield on 2 j%  Consols).

The model was then extended by Wilkie (1995) to cover the following additional 

series:
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v) force of salary growth,

vi) short-term interest rate,

vii) yield on long-dated, index-linked gilts,

viii) property rental yield,

ix) force of property rental growth.

Further, the model parameter values used in the original model have been updated 

based on the experience of the intervening 9 years.

As mentioned before, we will not review all the series listed above. Instead, we 

discuss in detail the gilt yield model (an AR(1) process, independent of inflation) since 

such a model is directly related to our investigations.

3.2.1 Model o f Index-linked gilt Yield

The model proposed for index-linked gilt yield at time t, R(t), published in Wilkie 

(1995) is as follows:

In R(t) = In RMU + RA{InR(t -1) -  In RMU]+ RE(t) 3.1

where :

R(t) is the yield on index-linked gilt at time t;

RMU is the mean gilt yield;

RE(t)=RSD.RZ(t) is the random component of the gilt yield at time 

t\ and

RZ(t) is N(0,1) white noise series.

This model implies that gilt yields follow an AR(1) process independent of inflational 

process with log-normally distributed error terms. RMU and RSD reflect the general 

level of the mean and standard deviation of gilt yields respectively. RA is a parameter, 

which controls the strength of the auto-regression. Thus, a higher value of RA implies 

that the series can be expected to move more slowly back towards the mean value 

over time, and vice versa.

The parameter values suggested by Wilkie (1995) are:
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RMU  = 0 .0 4

RA =0.55 

RSD = 0.05

Note that we are using the initial starting value used by Wilkie, which is 

R(0)=RMU =4%.

Wilkie shows that:

l n £ ( /  —> oo) ~ N In RMU, RSD 
1 -R A 2

2 A

Therefore, the ultimate distribution of the gilt yield is log-normal with 

E[R(t —> co)] = exp
1 r RSD2 }

In RMU + -
2 1̂ -  RA2 JJ

= 4%

and

F [tf( t-> o o )]  = ( £ [ £ ( / ^ o o ) ] ) 2 expf  RSD2 A
1 -R A 1

-1

=(0.24%)2.

It is worth mentioning that the simulations were obtained on the basis of the initial set 

of conditions provided (which we need in order to start any simulation). Thus, in this 

simulation, we use the ‘neutral’ starting conditions suggested by Wilkie (1995). This 

represents the long-term mean of the variables under investigations assuming that the 

random component is set equal to zero. Further, we generate values for the series R(t), 

starting at time t=0 for t=l to n (n=20 in this case) and perform many simulations (for 

example, 1000). We simulate independent unit pseudo-random variables for the white 

noise. It is worth noting that the randomization routine used in the program generates 

the same set of 20 x 1000 random numbers. This is to remove sampling error when 

comparing results.

Now, by using Wilkie’s suggested parameter values, we plot 25 simulations of the 

future path of yield, R(t), over a 20 year projection period.

Figure 3.1 shows the first 25 of the 1000 simulations of the gilt yield variable, R(t).
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Figure 3.1-Twenty five simulations of the index-linked gilt yield model over 20 years using Wilkie
(1995).

Figure 3.2 shows a plot of 10th, 25th, 50th, 75th, and 90th percentiles of gilt yield 

distribution by using Wilkie’s 1995 model. These percentiles are obtained by using 

the same 1000 simulations of future investment experience.

Figure 3.2-10th, 25th, 50th, 75th and 90th percentiles of the index-linked gilt yield over 20 years using
Wilkie (1995).

From figure 3.2, we observe that the equilibrium position is reached very quickly. 

Therefore, according to Wright (1998), the annual yields on gilts in consecutive years 

are (largely) independent.

Furthermore, figure 3.3 gives an empirical distribution of the shape of the gilt yield 

using the standard Wilkie(1995) model after the equilibrium position has been

0  5 10  15  2 0

Time
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reached.

Figure 3.3: Empirical equilibrium distribution of the shape of index-linked gilt yield
For standard Wilkie model.

From figure 3.3, we observed that the distribution appears to be positively skewed. 

This is clearly what would be expected for a log-normal random variable.

We assess the log normal fit on the simulated result by transforming the data using a 

natural logarithmic transformation. Thus, if the transformed distribution (i.e, ln(R(t)) 

is normal, then it follows that R(t) has a log normal distribution. The empirical 

distribution of the shape of the transformed data from the standard Wilkie (1995) 

model is shown by figure 3.3a.

Figure 3.3a: Empirical equilibrium distribution of the shape of ln( gilt yield) for standard Wilkie model.
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From figure 3.3a, we observe that the distribution appears to be normal.

Also, figure 3.3b shows a normal q-q plot of the transformed data. This is used to 

assess whether the data have a particular distribution, or whether two data sets have 

the same distribution. Thus, if the distributions are the same then the plot will be 

approximately a straight line, but the extreme points will have more variability than 

points towards the centre. However, a plot with a 'U' shape means that one 

distribution is skewed relative to the other and finally, an 'S' shape implies that one 

distribution has a longer tail than the other.

Normal Q-Q Plot of In(yield)

O b s e rv e d  V a lu e

Figure 3.3b: Normal q-q plot of ln( gilt yield) for standard Wilkie model

From figure 3.3b, we observe that the plot is approximately a straight line indicating 

that the distribution appears to be normal. Hence, from figures 3.3a and 3.3b, we can 

say that InR(t) is normal indicating that the distribution of R(t) at equilibrium is log 

normal.

It is worth mentioning that the results of section 3.2.1 are similar to those reported by 

Wilkie (1995).

3.3 A model of Force of Interest for projection year t

3.3.1 Introduction

Before we discuss our stochastic investment model (gilt yield model) to be applied to
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the profit/loss model, it is important that we first look at a model of the gilt yield 

curve, which is the redemption yield at 27/5/98 of a t-year gilt considered as a 

function of surrender force of interest for projection year t, obtained by fitting a 

smooth curve to financial data (for example, the redemption yield of UK gilts plotted 

against redemption dates and published in the Financial Times (1998)). Such a model 

connects the gross redemption yields of gilt with different redemption dates. We seek 

a model of this kind because it is assumed that the investment decisions of investors 

are based on the expectations of the future level of interest rates for different time 

horizons. Further, the gilt yield with different/several redemption dates is appropriate 

for our studies, whereby surrender of a policy can be made at any time and the life 

office can redeem such a security to repay the policyholder.

We discuss below the types of term-structure models reported in the literature and a 

model of yield curve used in this investigation. We also look at different yield curves 

and attempt to investigate the effect of the shape of these curves on our investment 

model. These models are discussed below:

3.3.2 Types o f Term-Structure Models

The models of term-structure of yield curve can be divided into three main categories.

These are 'descriptive', 'equilibrium', and 'evolutionary' models. Fieldman et al. (1997)

describes these models as follows:

• Descriptive models aim to describe the yield curve in terms of a mathematical 

equation, for example, a polynomial.

• Equilibrium models start with assumptions about economic variables, and then 

use these to drive the entire yield curve.

• Evolutionary models take the initial term structure as input, and then allow it 

to evolve into the future.

The actuarial approaches to modelling the gilt market have centred on descriptive

models which are well suited for statistical analysis (e.g., yield indices). On the other
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hand, financial economics has tended to focus firstly on the equilibrium models, and 

then more recently on the evolutionary models. These models are used for the 

valuation of interest-rate contingent claims and other derivative products. On this 

note, we can say that a key factor to dictate the appropriate choice of a model is the 

purpose to which it is to be put.

Thus, in this thesis, we will use descriptive models to describe the yield curve under 

investigation. It is important to note that there are other approaches to describe the 

term-structure of interest rate as mentioned in the Bank of England Quarterly Bulletin, 

(1972), (1976), (1982), (1990), (1991) (these are descriptive models) and in the 

financial economics literature: see for example Panjer et al (1998).

3.3.3 Fitting o f Yield Curve Model

The fitted model used in this thesis is similar to the FTSE Actuaries Government 

Securities (FTSEAGS) yield indices developed by Dobbie and Wilkie (1978) and later 

reformulated by Cairns (1997), which will be discussed later on in this section. That 

is, a model of redemption yield at 27/5/98 of a /-year gilt, which is obtained by fitting 

a non-linear regression via least squares to financial data. Such a model connects the 

gross redemption yields of gilts with different redemption dates.

In general, various techniques have been proposed in the literature for fitting yield 

curves. Examples of such techniques include the following:

• The use of piecewise polynomial functions- this is a consecutive series of 

polynomial functions which when joined together forms a curve.

• Cubic Spline technique- this connects each successive pair of nodes using 

cubic polynomials. A cubic spline is made up of natural and clamped cubic 

splines. For a natural cubic spline, the curve tends towards a straight line at the 

end points, (i.e., the second derivative of the function at the end points equals 

zero). Whereas for a clamped cubic spline, the first derivative of the function 

at the end points has specified values. (For a description of the cubic spline
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techniques, see De Boor, (1978), McCutcheon, (1981), Burden and Faires 

(1985) and Booth et al (1993)).

Further, many authors have proposed models for the yield curve of gilt-edged stocks 

using different approaches. For example, Marshall (1954) and Pepper (1964) 

formulated a model for the yield curve defined by the gross redemption yields of 

stocks with different redemption dates or volatilities. Also, Burman and White (1972) 

formulated the adjustments required to incorporate the effect of coupon on the curves 

using the expectation hypothesis (i.e., investors’ expectation of the future levels of 

interest rates), and introduced the notion of par yield curves to assist in judging the 

appropriate terms of new issues of gilt-edged securities. Their model has been used by 

the Bank of England for quite some time until it was superseded in 1990 by the 

modified model of Mastronikola (1991). Dobbie and Wilkie (1978) proposed a 

descriptive model of gross redemption yield (compounded semi-annually) for a bond 

which matures at time t. Their method splits the type of bond into high, medium and 

low-coupon bands and fits separate yield curves to each. A simple least-squares 

approach was used to estimate the parameters. However, this method has been 

identified as “susceptible to ‘catastrophic’ jumps when the least-squares fit jumps 

from one set of parameters to another set of quite different values”. As a result of the 

findings of Dobbie and Wilkie (1978), Cairns (1997) reformulated their model in 

order to remove the risk of catastrophic changes. See Cairns (1997) for details of the 

yield model used. Also, Clarkson (1979) described the effect on the relationship 

between coupons and yields of the relative attractiveness of capital gains with coupon 

income. It is worth mentioning that our proposed yield curve model is similar to 

Dobbie and Wilkie and that of Cairns (1997), but approached differently.

In fact we could use a natural cubic spline to fit a curve passing through given data 

points so as to get a perfect fit. But this could result in achieving an erratic curve. In 

addition, the natural cubic spline is highly parameterised and too many parameters 

create problems with projections. As a result of this, the use of cubic splines is 

undesirable here. Therefore, to fit a model that will capture the underlying trend of the 

crude data but is not too erratic, we use a non-linear regression approach via least 

squares. This approach tries to estimate parameters to minimize the sum of squared
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differences between the response (i.e., the observed gross redemption gilt yields) and 

the prediction.

3.3.4 The Fitted Model

Now, a scatter plot of gross redemption yield against term to maturity (of financial 

data (UK Gilts) from the Financial Times for a typical day- May 27, 1998) follows a 

non-linear pattern. Therefore we propose a model of the form:

S ' = A + exp(5 ■ t + C) + s 2 2

where,

St' is the redemption yield at 27/5/98 of a t-year gilt.

A, B, C are parameters and s , an error term is assumed Gaussian with constant 

variance.

Note that non-linear regression needs starting estimates for the parameters. These can 

be obtained from the plot of figure 3.4, which suggest that S, is near 0.0585 at t near 

20.

The model estimated parameters are given below.

Table 3.2: Model parameter values

Parameters Value Std Error t-value p-value

A 0.058500 0.0000865 675.0000 0.0001

B -0.354991 0.0200896 -17.6704 0.0360

C -4.420810 0.0384400 -115.005 0.0040

R e s id u a l  s t a n d a r d  e r ro r :  0 . 0 0 0 2 5 6 4 1 3  o n  17 d e g r e e s  o f  f r e e d o m .

By substituting the estimated parameter values (from the fitted model) in equation 3.2, 

we obtain the following model:

S; = 0.0585 + exp(--4.4208 -  0.35499 *t), 3 3

From the above estimates we observe that the parameter values are significant. Also, 

from figure 3.4, we observe that there are a number of departures from the curve from 

time 7 onwards, where the data show a series of waves and the fitted curve cuts 

through these. Nevertheless, since the curve captures the underlying trend of the crude
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data points and it is neither so erratic nor so regular that the trend is lost, we can say 

that the fitted curve is adequate. Thus, the fitted model is an exponential function of 

force of interest for projection year t and represents the mean function at time t, of our 

proposed stochastic investment model.

A scatter plot of the observations and a plot of our fitted model are shown in figure

3.4.

Figure 3.4- plot of fitted yield curve of redemption gilt yields on May 27, 1998 against time to
redemption

We notice that Booth et al (1993) fitted a “best fit” spline to a large set of data points 

(gross redemption dates for British government bonds (gilt-edged securities) with a 

coupon rate between 7% and 13% on 8 January 1991)- the data points do not all lie 

precisely on the fitted curve. Further, Mastronikola (1991) modelled a par yield curve 

by using a smoothly spliced structure of cubic polynomial. This model was fitted to 

gilts data for each of 32 dates ranging from 1974 to 1989. The yield curve produced 

by Booth and that for March 31, 1989 and October 4, 1989 by Mastronikola are 

similar to our curve even though the methodology used is different. We chose these 

particular dates for comparison purposes.
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3.3.5 Yield Carve with Positive gradient

We consider the effect of the shape of yield curves on our investment model. In 

particular, we look at the effect of yield curves with positive gradient, and also a flat 

yield curve, on our investment model. Figure 3.5 shows a new yield curve with 

positive slope. This curve was obtained by transforming the yield curve of figure 3.4, 

using the function defined by equation 3.4.

Figure 3.5 - Yield Curve of gilt yields (with Positive Gradient)

The modified model is given by:

8? =0.0585 + {exp(- 4.4208)}-{l -  exp(-0.35499/)} 34

where,

8' is the redemption yield at 27/5/98 of a /-year gilt (with positive gradient).

This model is also an exponential function of force of interest for projection year t and 

represents the mean function at time t, of our proposed stochastic investment model.

Finally, figure 3.6 shows a plot of flat yield curve, with constant value of 0.0585.
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Figure 3.6 - Yield Curve of gilt yields (flat yield curve)

3.3.6 A model o f Force o f Interest for projection year t.

We now propose a model of a /-year gilt yield, St , which is given by equation 3.5. 

This model is based on Wilkie (1995) model for R(t) in 3.2.1 with RMU replaced by 

the surrender force of interest 5 st . We have replaced RMU by the surrender force of

interest because we believe that this is appropriate for modelling the life office’s 

liability when the insured can terminate the policy at any time /, which is the case 

considered here.

Thus,

In 5t = In ¿7 + a. In (?(',_!)]+ <J .sit) 3.5

where

8t is the yield of a /-year gilt.

8 st is the redemption yield at 27/5/98 of a /-year gilt. This is a function of the

proposed yield curve model, as defined in section 3.3.4.

<r.e{f) is the random component of the gilt yield at time /. 

a  is the parameter controlling the strength of the auto-regression, as defined in 

section 3.2 and

£•(/) is a N(0,1) white noise series.



This model says that the natural logarithm of a gilt yield follows a first order auto-

regression process, with a mean. In S ' , and a parameter a , such that the expected yield 

in each year is equal to the mean at that time plus a  times last years deviation from 

the mean at time t.

Parameter values:

The parameter values of model 3.5 are listed below. In view of the nature of our 

model, we believe that the following parameter values considered are reasonable.

a = 0.9

a  = 0.05

S(0) = 0.065.

S{0) is the ‘neutral’ starting condition. The standard deviation value cris the same as 

suggested by Wilkie.

From the above model (equation 3.5), the mean function for the process ln8t

is given by:

£[ln S, ] = In S; + a[E(In ¿(M)) -  In

Note that in equation 3.6, we are using the limiting values for large n as an 

approximation. Hence, letting t -» oo, we obtain :

£[ln £(,->«,) ] =
■ a  In S

1 -  a 3.7

= In [0.0585 + exp(-4.4238 -  0.4567;)]/-»co

= ln(0.0585)

=-2.8387.

Further, the variance function for the process In 5, is given by :

V[\nS,] = a 2.V[lnS[l_])] + ar2

Letting t —» co, we obtain 1

P[ln ¿(,-«)] = 1 -  a

= 0.11472.
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Now, if X  is a random variable such that:

lnX~N(/u, crI 2) ,

then, we can show that X  has a log-normal distribution with:

3.10

E[X] = exp(/7 +1 cr2)

E[X] = {E[X\}2 ,[exp(cr2) - 1]

3.11

3.12

Therefore, we obtain
■j

£[<W ) ] = exp In 8(f m) + -  • —
2 l^l -or 3.13

= 5.89%.

3.14

(0.678%)2.

Now, by using equation 3.5, we generate values for the series 8,, starting at time t=0

for t=l to n (.n=20 in this case) and perform many simulations (for example, 1000). 

Also, by using the above parameter values, we plot 25 simulations of the future path 

of yield, 8t , over a 20 year projection period. Figure 3.7 shows the 25 independent 

simulations of the future progress of gilt yield using equation 3.5.

Figure 3.7-Twenty five simulations of a gilt model over 20 years using our proposed model 

From above plot (figure 3.7), we observe that the process is erratic from year to year.
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Further, figure 3.8 gives an empirical distribution of the shape of the probability 

distribution function (obtained by means of 1000 simulations) of the gilt yield (using 

our model) after equilibrium position has been reached.

0 .2 5

0.2

0 .1 5

0.1

0 .0 5

Figure 3.8: Empirical equilibrium distribution of the shape of gilt yield using our proposed model

From figure 3.8, we observed that the distribution is positively skewed, similar to the 

Wilkie (1995) model. This is what we would be expected for a log-normal random 

variable.

Further, we assess the log normal fit on the simulated result (using our proposed 

model) by transforming the data using a natural logarithmic transformation. Figure 

3.8a gives an empirical distribution of the shape of the transformed data using our 

proposed model.

Figure 3.8a: Empirical equilibrium distribution of the shape of ln( gilt yield) using our
proposed model.
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From figure 3.8a, we observe that the distribution appears to be normal.

Also, figure 3.8b shows a q-q plot of the transformed data using our proposed model.

Normal Q-Q Plot of In(yield)

O b s e rv e d  V alue

F ig u r e  3 .8 b :  N o r m a l  Q - Q  p lo t  o f  ln (  g i l t  y ie ld )  u s in g  o u r  p r o p o s e d  m o d e l

From figure 3.8b, we observe that the plot is approximately a straight line indicating 

that the distribution appears to be normal. Hence, from figure 3.8a and 3.8b, we can 

say that In 8, is normal indicating that the distribution of t>( at equilibrium is log 

normal.

Finally, figure 3.9 shows a plot of the 5th, 10th, 25th, 50th, 75th, 90th and 99th percentiles 

of the distribution of the nominal annual yield on gilts in year t. These percentiles are 

obtained by using 1000 simulations of the future investment experience.

F ig u r e  3 .9 -  5 th, 10th, 2 5 th, 5 0 th, 7 5 th a n d  9 0 th p e r c e n t i l e s  o f  th e  g i l t  y ie ld  m o d e l  o v e r  2 0  y e a r s
u s in g  o u r  m o d e l
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Like the percentiles from the Wilkie (1995) model of index-linked gilts, it can be 

seen that the equilibrium position is reached very quickly. This shows that the annual 

gilt yields achieved in consecutive years are (largely) independent.

3.3.7 Simulation Results

The expected yield from simulation, rounded to the nearest percent, to be realised at 

any future time t by using the gilt yield model (our model) is shown in table 3.2. Also 

shown, is the corresponding standard deviation of the process.

Term (years) 1 5 10 15 20
Mean(%) 6.2328 5.8273 5.7839 5.7830 5.8190

STD(%) 0.3158 0.5392 0.6099 0.6597 0.6523

Table 3.4: Results for gilt yield from 1,000 simulations using model 3.5

From table 3.4, we observe that the mean rate of return on the gilt is over 6% for term, 

n =1, dropping quickly to around 5.8% by term 5, and slowly further to a little over 

5.7% for longer terms (i.e., term 10 and 15), and a little over 5.8% at term 20. The 

standard deviation is around 0.3% for term 1, but over 0.5% for terms 5, 10, and 15, 

reaching a maximum of 0.66% at term 15 and drops to 0.65% at term 20. Therefore, 

we can conclude that the mean returns are approximately constant (as the term 

increases) and also, there is less variability in the interest rate for shorter terms than in 

the longer terms.

We now looked at the effect of using different parameter values on the process. This is 

discussed below.

3.4 Effect of changing model parameter values on the process

Different parameter values were applied to our gilt yield model. This is to determine 

the effect on the expected yield in the long run as the model parameter values are



changed. The model parameter values considered are discussed below. Note that apart 

from these values, all other model parameter values remained the same as before. In 

what follows, we calculate the expected value of gilt yield at expiry of the policy (i.e., 

term 20) and perform 1000 simulations as before.

Standard deviation effect

The effect of changing the standard deviation of the process on the expected gilt yield 

in the long run is looked at. That is, a standard deviation of 1%, 5%, 10%, 15%, 20%, 

and 25% are considered. Table 3.5 shows the results obtained.

-  (%) 1 5 10 15 20 25
Mean(%) 5.7923 5.8191 5.9185 6.0962 6.3601 6.7214

STD(%) 0.1287 0.6522 1.3479 2.1273 3.0389 4.1435

Table 3:5 Results for gilt yield from 1,000 simulations using model 3.5 for different values of a

We observe that as we increase the standard deviation of the process, the expected gilt 

yield in the long run increases. The mean increases because for a lognormal random 

variable the mean depends on a , as shown by equation 3.13.

a  - effect

The effect of a  , the strength of auto-regression on the process is now looked at and 

the following results, shown at table 3.6, are obtained.

a  (%) 50 60 70 80 90
Mean(%) 5.8531 5.8556 5.8582 5.8578 5.8191

STD(%) 0.3365 0.3655 0.4094 0.4848 0.6522

Table 3:6 - Results for gilt yield from 1,000 simulations using model 3.5 for different values of a

We know from section 3.2.1 that a higher value of a  implies that gilt yields can be 

expected to move more slowly to the mean value and vice versa. Therefore, the results
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of table 3.6 shows that the mean rate of return on the gilt seems to reach a peak, which 

could be due to a random variation since the standard deviations are large.

On the basis of the above results, we re-ran the analysis with more simulation (for 

e.g., 5000) to check if the results are actually due to a random variation. The following 

results, shown at table 3.6a are obtained.

a  (%) 50 60 70 80 90
Mean(%) 5.8553 5.8553 5.8555 5.8531 5.8134

STD(%) 0.3405 0.3687 0.4125 0.4886 0.6574

Table 3:6a - Results for gilt yield from 5,000 simulations using model 3.5 for different values of a

The results of table 3.6a shows that the mean rate of return on the gilt is level until a 

reaches values of over 0.80 and then it falls. This indicates that the peak in Table 3.6 

is due to random variations.

Starting value effect

The effect of changes in the starting values of the process on the expected gilt yield in 

the long run was also looked at and the following results, shown at table 3.7, were 

obtained.

smW 5 6 7 8 9 10

Mean(%) 5.6364 5.7628 5.8718 5.9679 6.0539 6.1319

STD(%) 0.6318 0.6459 0.6582 0.6689 0.6786 0.6873

Table 3:7: Results for gilt yield from 1,000 simulations using model 3.5 for different values of J (0)

We observe that as we increase the model starting values the expected yield at term 20 

increases as does the corresponding standard deviation. This is as expected.
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Effect of shape of yield curve (yield curve with positive slope)

By using the yield curve of figure 3.5, we re-ran the simulation keeping the same 

parameter values as before. This is to determine the effect of the shape of yield curve 

(slope of curve) on the expected yield in the long run. Table 3.8 shows the results 

obtained.

Term(years) 1 5 10 15 20
Mean(%) 6.8418 7.3617 7.3625 7.2323 7.1742

STD(%) 0.3467 0.6812 0.7763 0.8250 0.8041

Table 3:8: Results for gilt yield from 1,000 simulations using model 3.5 with yield curve of positive
slope as surrender force of interest.

Unlike the previous result where a yield curve of negative slope was considered, we 

observed that the mean rate of return on gilt yield steadily rises over 6.8% this time for 

term 1 until term 15, where it drops steadily thereafter. The standard deviation is 

around 0.3% for term 1, but over 0.6% for terms 5, 10, and reaches a maximum of 

about 0.83% at 15 and falls to about 0.80% at 20, which shows that there is less 

variability in interest rate for shorter terms than in the longer terms (the variability in 

interest rate increases as term increases). Thus, by comparing the results of tables 3.4 

and 3.8 (where the shape of the yield curve is changed from one with a negative slope 

to a positive slope), we observe that the mean rate of gilt yield has increased and so 

has the standard deviation of the process. This means that the shape of yield curve has 

an effect on the expected yield in the long run.

Effect of flat yield curve on model

The simulation result obtained by using the flat yield curve of figure 3.6 in the 

investment model is shown table 3.9:

Term(years) 1 5 10 15 20
Mean(%) 6.4481 6.2971 6.1509 6.0204 5.9697

STD(%) 0.3267 0.5827 0.6486 0.6868 0.6691

Table 3:9: Results for gilt yield from 1,000 simulations using model 3.5 with flat yield curve as
surrender force of interest.
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The results from the above table exhibit a pattern, which is different from the other 

two yield curves considered. This time, we observed that the mean rate of return on 

gilts is over 6.4% for term 1. This drops steadily thereafter until the end of term. 

However, the standard deviation followed the same pattern as the other two cases. 

That is, the standard deviation is around 0.3% for term 1, but over 0.5% for terms 5, 

10, and reaches a maximum of about 0.69% at 15 and falls to about 0.67% at 20, 

which shows that there is less variability in interest rate for shorter terms than in the 

longer terms (the variability in interest rate increases as term increases). It is worth 

mentioning that by comparing the results of tables 3.4 and 3.9 (where the shape of the 

yield curve is changed from one with a negative slope to a zero slope), we observe that 

the mean rate of return on gilts has increased and so does the standard deviation of the 

process. This means that the shape of yield curve has an effect on the expected yield in 

the long run.

In this chapter, we have considered an investment model that can be used to represent 

the life office’s liability when the insured can terminate the policy at any time t. This 

model is similar to Wilkie (1995) gilt model (constructed from past experience), but 

with the mean value a function of the surrender force of interest. This feature makes 

the model more realistic for the long term than the random walk style of model 

established among financial economists and also, will appeal to the life office.

The result of the simulations obtained from our proposed investment model are 

similar to those of Wilkie (1995). Thus, we observe that the mean returns are 

approximately constant (as the term increases) and also, there is less variability in 

interest rates for shorter terms than for the longer terms. From the simulation results 

obtained, we can say that the shape of the surrender force of interest (shape of yield 

curve) has an effect on the expected yield in the long run. In addition, other variables 

like 5{Q), cr and a  affect the expected yield in the long run.

We shall apply the investment model discussed in this chapter to modelling the 

expected present value of surrender profit/loss (surrender due to no selection effect 

and another due to financial and non-financial adverse selection effect). This is 

discussed in greater depth in the next chapter.
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Chapter 4

4.1 Models of Surrender Profit/Loss of Non Participating 
Life Insurance Policies and Adverse Selection

4.1.1 Introduction

In this section, we shall consider non-participating (non-profit) ‘conventional’ life 

assurance business only. But the methodology can be extended to deal with problems 

involving conventional participating life contracts. In a traditional non-profit contract, 

the “contractual terms are agreed between the company and policyholder at the outset 

of the policy”. Booth et al (1999). However, the terms cannot be changed thereafter. 

Under this contract, the policyholder agrees to pay a premium (could be single or 

annual), in return for a guaranteed benefit payable on the occurrence of the insured 

event(s) within a specified period of time, either for a whole life or for a limited 

period (term of the contract). Further, the operation of a non-profit policy within a life 

office is such that premiums paid by policyholders are accumulated in a fund of 

assets, expenses of the office are deducted from the fund and the policyholders’ 

benefits are paid as claims occur. Therefore, the excess of fund value over expenses 

and claim payout constitutes profit, which is distributed to the providers of capital: 

namely, shareholders (or with-profit policyholders for a mutual company). We notice 

that the sale of a without-profit policy is considered by the life office as an 

“investment” on the part of the shareholders and/or with-profits policyholders. 

Similarly, the sale of a with-profit policy may be considered to be an “investment” on 

the part of the office’s shareholders whereby future profits are shared between the 

with-profits policyholders and the shareholders.

Now, since the surrender of a life policy is at the option of the policyholder, it can 

greatly affect the profitability of the company if not properly controlled. For example,
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life office expects to make a loss if it pays for some policies surrender values greater 

than the corresponding accumulation of premiums less charges (asset shares). On the 

other hand, profits are expected to be made if the life office pays less than the 

corresponding asset shares. The consequences of the former risk to a life office (if it 

occurs) and the measures to be adopted to hedge such risks are what this chapter and 

the next one will attempt to address. In particular, we shall propose a model to 

determine the profitability of the company; that is, a model to compute the expected 

present value of surrender profit/loss at time t = n, where n is the term of the contract. 

Such a model will take into account the discontinuance risk (namely the extent to 

which the surrender value exceeds the policy’s asset share at the same date) and the 

mortality risk. Further, we shall consider models of financial and non-fmancial 

adverse selection (for example, selective lapsation), similar to Macdonald (1997) and 

Jones (1998) as discussed in chapter one, and their impact on profitability of a life 

company. Note that non-financial adverse selection is a phenomenon related to 

mortality lapses. That is, non-healthy lives are less likely to lapse the policy for 

financial gains. On the other hand, the financial adverse selective effect relates to 

financial lapses, whereby the individual lives (healthy or non-healthy) are more likely 

to lapse for financial gains. In this context, it is worth noting that more surrenders are 

expected to occur among those policyholders who are offered high surrender values 

compared to those who are offered low surrender values. However, our results of 

chapter 2 does not support this.

The methodology used to compute the proposed model is simulation-based since the 

underlying process of the model can be stochastically described. In particular, the 

investment model used follows a stochastic process as described in chapter three. 

Thus, a Monte Carlo Simulation approach will be used to compute the expected 

surrender profit/loss at time t = n, (n=20 years in this case). In what follows, we 

discuss the model of the office’s expected profit/loss due to the options available to 

the policyholder- the most common of which is the right to terminate the contract for a 

cash surrender value.
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4.2 Model of Expected Profit/Loss due to antiselective Lapsation

4.2.1 Introduction

In this model we assume (for simplicity) that surrender may occur only at the end of 

each policy year. Also, the model assumes that any member of the cohort has the same 

probability to surrender - : this follows the hypothesis that “lapses are nonselective”. It 

is important to note that the model proposed in this section considers possible 

surrenders and policies still active at time t. This is similar to Albizzati and Geman 

(1994), but approached differently. Thus, the result from this model will serve as a 

preliminary analysis upon which we can build subsequent related models. Then we 

shall extend the model to take into account financial and non-financial adverse effects. 

This will be discussed in the next section. A sensitivity analysis of the proposed 

model to different factors will be discussed in section 4.7.3.

Like Albizzati and Geman (1994), we assume that the insurance policy considered 

can be purchased in a lump sum. Thus, we assume that a single premium, P0, is paid

at the inception of the contract. We further assume that the lifetime of this contract is 

t=20 years if there is neither early termination nor rollover. However, if a 

policyholder terminates the contract at any time t, a cash surrender value, SV, defined 

below is paid out. It is worth noting that there is normally a penalty, A, charged on all 

policies surrendered. For simplicity, we will initially assume that there is none. This 

assumption will be relaxed later on to incorporate a surrender charge on policies 

surrendered. Further, the value of the policy at maturity, denoted by MV, is also 

defined below.

Now, corresponding to the above liability, the life insurer invests the single premium 

in a portfolio of bonds. Particularly, the life office buys a nominal amount of gilts at 

time t=0 with the single premium. Note that the investment model to use to match this 

liability is discussed in chapter 3. Suppose surrender occurs at time t, in which case 

the life office needs to sell assets sufficient enough to provide a cash sum of SV(t). 

The corresponding amount of assets to be redeemed to pay for the surrender claim at 

time t (if it occurs) is denoted by Am(t), and is also defined below.
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4.2.2 Cash Surrender Value Calculation Basis

As mentioned before, the surrender of a policy constitutes a financial option, which 

may be exercised by the policyholder against an office’s interests. Therefore, in setting 

up a scale of surrender values, the life office must make sure that the amounts which it 

pays do not normally exceed the corresponding asset shares it has earned. Thus, in 

ensuring that its surrender values come within the corresponding earned asset shares, a 

life office must adopt scales which offer payment that are equitable between the 

various classes of policyholders. A suitable method that can enable us to arrive at an 

equitable and practical scale of surrender values is the prospective approach and we 

have used this method in this case. This method is an alternative approach to Albizzati 

and Geman (1994), where the same force of interest was assumed for both MV and SV 

in the calculation of SV (reviewed in chapter 1). We adopt the prospective calculation 

method because, according to Lumsden (1987), it enables a high degree of equity 

between those policyholders who surrender and those who do not. It is worth noting 

that to calculate the prospective value of a policy, the life office discounts the 

expected future benefit and premium payments on reasonable assumptions, and the 

assumptions that we use are mentioned below.

Reasonable Assumptions

We based our calculation of surrender basis on the following reasonable assumptions:

i. Single premium, Pa, is assumed to be 1, for simplicity.

ii. Initial expenses, Es, constitute 10% of premium.

iii. No renewal expenses are charged since the contract is a single premium 

policy.

iv. Interest rate applied is the redemption yield at 27/5/98 of a t-year gilt, 5 st . 

Also, interest applied to MV is the yield of a 20-year gilt, 8n, (equal to 5.87%).

v. There is a surrender penalty, A , charged on all surrendered policies. In the 

initial case, we have assumed there is no charge for simplicity.

vi. Mortality is assumed to be zero.
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Based upon these assumptions, we therefore propose a model of cash surrender value 

at time t, denoted by SV(t), valued prospectively, as follows:

SV(t) = (1 -  X) ■ MV • eHn-‘-')S' 4.1

Where

8 st is the assumed surrender force of interest as defined in chapter 3.

MV is the value of policy at maturity. This is given by

MV = (P0 - E s)es"n 4.2

By using equations 4.1, 4.2 and the following parameter values: P0= 1; Es= 10%; 

Sn =5.87%; n=20; A=0%  and S, as defined in 3.3, we obtain a plot of cash

surrender value received by a policyholder who terminates his or her contract at time t 

against policy years as in figure 4.1:

Figure 4.1: Plot of Cash Surrender value against Time (Years)

From the above plot we observe that a policyholder is expected to receive a surrender 

amount (prospective value of the policy) less than 1, during the early duration or early 

years of the contract. This is due to the high initial expenses associated with the 

contract. However, the net worth of the policy increases as time goes on, depending 

upon the office’s future investment performance. In that case the surrendering 

policyholders are expected to receive a surrender amount at time t based on figure 4.1. 

It is worth mentioning that the numerical value of MV in this case is 2.9114.

124



4.2.3 Lapse Model

Next, we propose a model of the lapse rate, l(t), used in the profit model. We define 

l(t) as the probability of lapse in year t for a policy “alive” at start of year t. The 

proposed lapse rate, l(t), is expressed as a deterministic function of time /. This is 

represented by a decreasing piecewise linear function which expresses the relationship 

between lapse rate and the policy year as shown in figure 4.2. Note that the proposed 

lapse rate follows the experience of past lapse rate, as analyzed by the Committee on 

the Expected Experience, Individual Insurance Section of the Canadian Institute of 

Actuaries, CIA (1996), coupled with the lapse analysis of chapter 2. In the former 

analysis, it is observed that lapse rate, as measured by calendar year decreases at time t 

= 1 until t = 9, where it appears to level off. The maximum lapse rate, Imax, at t = 1 is 

9.0% and the corresponding lapse rate where it appears to level off, Imin, at t = 9 is 

1.4%. However, in our case, we assume that lmax=10% and lmin=6%. This is due to 

the fact that from the lapse analysis of chapter 2, we observe a maximum average 

lapse rate of 10% and a minimum average lapse rate of 6%. Further, we assume that 

the lapse rate is expected to level off between time t , and t2 at a value of Imin, 

similar to CIA (1996). From there, lapse rate is expected to decrease as duration 

increases until the expiry of the contract simply because it is unlikely for a policy to 

be surrended at these times, other than through death. The proposed form of l(t) is 

shown in figure 4.2:
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Where / denotes an indicator function, 1=1 if the inequality (e.g. t < tx) is satisfied and 

1=0 otherwise. As mentioned above, the values of Imax and lmin are respectively 0.10 

and 0.06. Further, the corresponding t values are t = 0 , t , = 8, t2 =17 and tn_x = 

19. Note that 1(0) (or la) corresponds to a zero lapse rate (i.e., l(0)= 0).

Now, in what follows, we propose a model of expected surrender profit/loss at time t= 

n and then discuss the simulation results obtained.

4.2.4 The Expected Surrender Profit Model

As mentioned earlier on, the contract under investigation is a conventional non profit 

policy which is purchased by a lump sum. Thus, a single premium is paid at the 

inception of the contract. In this context, the proposed expected present value of 

future profit/loss is the discounted value of the following terms at a constant force of 

interest 5n:
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Policy value at maturity (i.e., accumulated value of single premium less 

expenses at force of interest Sn),

Less

Accumulated value of SV(t) to policyholders still alive at time t, at force of 

interest 8 multiplied by the probability l(t).

Less

Maturity benefit paid to survival policyholders at time t=n.

From this we can compute the expected present value of surrender profit/loss at time 

t=n. This is given by:

n-l
S"(0) = £ (P0 -  Es)es"n - £ ( / ( 0  • (ap)t ■ Am(t))-(ap)„ ■ MV(n) -8„n 4.4

/=0

Where,

S n (0) = Expected present value of surrender profit/loss at time t= n, valued at time 
zero.
l(t) = lapse rate at time t, a function of past lapse experience, as proposed 

above.

Sts = Surrender basis force of interest at time t.

8t = Stochastic redemption yield of a t-year gilt.

Es = Initial expenses.

MV(n) = Value of policy at maturity as defined before.

SV(t) = Cash surrender value at time t defined above.

(aP)/ = Proportion of policies still alive at time t.

Am(t) = Nominal amount of gilts needed to be redeemed to cover the surrender 

value at time t. We may define this as the surrender value at time t per nominal price 

of gilt. In other words, the amount of nominal, Am(t), can be seen as the surrender 

value at time t, accumulated at stochastic force of interest, 8t, to the end of the 

contract.
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This is given by:

Am(t) = SV(t)e{n-‘-')S'

By substituting SV(t) from equation 4.1, we obtain

4.5a

Am(t) e-(n-t-\)St
And

r-1

(ap), =n^>-'(*)}•
k =0

Expressions for ¿>, , are given in chapter 3.

4.5b

4.6

By using the profit model and values of /max and Imin, we generate values for the 

surrender profit model, starting at time t-0  for t=l to n (n=20 in this case) and 

perform the required number of simulations. The results obtained are presented in 

section 4.3.
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4.3 Simulation Results

4.3.1 Model with no selection effect on Lapsation

The aim here is to determine the profitability of a company where no adverse selection 

effect is considered. In particular, the model neither considers the adverse mortality 

effect nor the financial adverse selection effect. Profitability is only dependent on the 

lapse rates and the proportion of policies still active in the pool of insurance policies. 

Note that the case of adverse selection will be considered later on in this chapter.

Another important feature that can affect the simulated results of the profit model is 

the relative difference between the force of interest as assumed in the surrender basis, 

denoted by 8*, and the return on the stochastic investment model, denoted by 8t . In 

other words, to access the profitability of a life company and the subsequent effect of 

adverse selective lapsation on the model, it is important to observe whether the force 

of interest as assumed in the surrender basis, 8t\  is paying out more or less than the 

return on the investment model, St . We show below plots showing these effects. We 

also take note of the yield curve slope: whether it is positive or negative as this can 

affect the simulated results of the profit model. We look at the effect of slope of yield 

curve on the profit model.

We show in figure 4.3 and figure 4.4, graphs of yield curve of negative and positive 

slope respectively. For each figure, we show plots of 8ts 5{ over time, where 

S*0) =0.071 and 8(0)-  0.065 (initial starting values of the gilt yield model) in figure 

4.3a and, S f =  0.071 and ¿>(0)=0.07 in figure 4.3b. We denote the case where S f  -  

0.071 and S(0) = 0.065 by 8, > 8, for most t as shown in figure 4.3a and for the case 

where 8L = 0.071 and J  = 0.07, by 8, <8, for most t. See figure 4.3a and figure 

4.3b for each case. We notice that figure 4.3a is the plot of surrender force of interest,
c* s  . . .
°t , and the mean gilt yield at equilibrium position over each year, St (i.e., plots of 

means from 1000 simulations). In this case, the initial starting value of the gilt yield
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model is 0.065 as stated above. However, figure 4.3b is generated in a similar way as 

figure 4.3a, with new initial starting condition as 0.07 this time. The initial starting 

value of 0.07 was chosen in order to obtain a curve where 8, < S: .

F igure  4.3: P lo t o f <5t\a n d  5t against tim e for a yield curve o f  nega tive  slope.

These plots show the extent on average of the adverse differences between the 

surrender value basis and the current redemption yield, illustrating the opportunity for 

loss that arises during the simulations.

F ig u re  4 .4a: <5/ <  8, F ig u re  4 .4 b : 8st > 8t

F igure  4.4: P lo t o f (5 /a n d  <5t aga inst tim e for a yield curve o f  positive slope

1 3 0



Further, we show in figure 4.4 above, a plot of 8t' and 8, over time for a yield curve of 

positive slope. This is obtained by inverting the yield curve of figure 4.3 (i.e., invert 

plot of 8* against time). With this, we re run the simulations to obtain a mean 

simulated yield at equilibrium position, denoted by 8,. In this case, an initial starting 

condition of 0.0585 was used. This is to obtain a curve where 8, > 8, . Similarly,

figure 4.4b was obtained by multiplying 8* by a scale factor of 1.025 and then re-

running the simulations to obtain 8, (same initial starting condition of 0.0585 was 

used for 8,). This new shape (yield curve of positive slope) enables us to determine its 

effect on the profit model. Similarly, in figure 4.4, we denote the case where ¿'('0) =

0.06 and <5 = 0.0585 by 8, > 8, for most t as shown in figure 4.4b and for the case

where SL  = 0.0585 and 8(0) = 0.0585, by 8, < 8t for most t as shown in figure 4.4a.

Now, what follows is a discussion of the simulation results of the surrender profit/loss 

model with no selection effect obtained by using the results in figures 4.3 and 4.4.

Expected Present Value of Surrender Profit/Loss at f=20 years.

In computing the expected present value of surrender profit/loss, the following model 

parameter values were used:

Term of contract 

Simulation 

Surrender penalty, A 

Initial Expenses

Standard deviation in the gilt model, cr 

/max and lmin are respectively 10% and 6%

The expected profit/loss obtained by using the above model parameter values are 

shown below (table 4.1). Note that we present results for both cases where 8, > 8,

and 8, < 8, for most t. Further note that these parameter values were used as a

= 20years 

=  1000 

= 0%

-  10%

= 5%
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baseline for these analysis. Unless otherwise stated, this will be used in all subsequent 

analyses. Also shown is the corresponding standard error of the process.

a  =5%

Slope of Yield curve : Negative

Difference in Payout: s;  > s t s; < S'

E(Profit): 0.028026 -0.0004049

Std error (profit) : 0.000803 0.0008731

T a b le  4 .1 : R e s u l t  o f  e x p e c te d  p r e s e n t  v a lu e  o f  s u r r e n d e r  p r o f i t / lo s s  a t  t= 2 0  y e a r s  fo r  y ie ld

c u rv e  o f  n e g a t iv e  s lo p e .

For the case where 8, > 8,, we observe a small profit when the model does not 

consider the adverse selection (financial and non-financial) effect on surrender. This is 

probably due to the fact that the model does not consider any anti-selective lapsation, 

coupled with the fact that the assumed surrender basis pays out more than the return 

on the investment model.

However, for the case where 8, < 8,, a small loss is observed. By taking into account 

the fact that the assumed surrender basis is paying less than the return on asset, this 

appears to be reasonable. That is, the no selection model in this case produces a small 

loss as expected. We notice that the standard error of profit increases when we 

changed the assumption of 8, > 8, to 8/  < 8,. This is probably due to the fact that we 

have introduced more variation in the stochastic model by increasing £ (but this 

effect would disappear as the term of the contract extends).

4.3.2 Effect of Relative payout on model.

From the results of the above analysis, we can determine the effect of changing the 

model assumption of8? >8, to 8, <8, on the expected profit model. Note that a 

yield curve of negative slope is used. Thus, we observe that the expected profit 

decreases when we change the assumption of 8 st > 8, to 8, < 5\ . This is actually 

reasonable, because we have increased the stochastic force of interest in the stochastic
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model and so we need to redeem a greater amount of assets to cover surrender value at 

t. Hence, a loss is observed when we changed 8, > 8, to 8* < 5t . We also notice that 

the standard error of profit increases when we change the assumption of 8/  > St to 

8 st < 8,. This is probable due to the fact that we have introduced more variation in the 

stochastic model by increasing the value of£(0 .

By repeating the analysis of table 4.1 for the case where a yield curve of positive slope 

is used, we obtain the following results presented in table 4.2. Note that the baseline 

model parameter values of table 4.1 were used here too.

Expected Present Value of Surrender Profit/Loss at t=20 years.

©X•ryIIb

S lope o f  Y ie ld  cu rve : Positive

D ifference in P a y o u t : V  > S, V  < S.

E (P ro f i t ) : 0 .006289 -0 .0038928

Std erro r ( p ro f i t ) : 0 .000957 0.0009613

T a b le  4 .2 : R e s u lt  o f  e x p e c te d  p re s e n t  v a lu e  o f  s u r re n d e r  p ro f i t / lo s s  a t  t= 2 0  y e a r s  fo r  y ie ld
c u rv e  o f  p o s i t iv e  s lo p e .

From table 4.2, we observe a result similar to the one described in table 4.1. However, 

there is a slight decrease in the expected profit and loss this time when the model 

assumption is changed from S ' > 8, to S ' < S, . Further, we observed that the profit

and loss amount has decreased when a yield curve of positive slope is used, with the 

corresponding slightly change in the standard error of profit. This is probably due to 

the fact that by using a yield curve of positive slope, the stochastic force of interest in 

the stochastic model has increased than before. Therefore we need to redeem a greater 

amount of assets to cover surrender value at t. Hence, a reduced profit and loss is 

observed.

It is worth noting that from tables 4.1 and 4.2, we observe significant differences in 

mean value in relation to size of standard error of profit for the case where the model
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assumption is changed from S, > 8, to S' < 8,, and also, for the case where a positive 

and negative slope of yield curve is used. This makes direct comparison possible.

4.4 Sensitivity of Expected Profit to Different factors

4.4.1 Effect o f Yield Curve Slope

We look at the effect of the slope of yield curve (shape of yield curve) on the profit 

model by considering a yield curve of positive and negative slope as shown in figure

4.3 and 4.4. In this case, we consider the case where S ' > S, as assumed before, for 

consistency. Table 4.3 shows the results obtained.

Expected Present Value of Surrender Profit/Loss at t=20 years.

G =5%

Difference in Payout: s;  > s,

Slope of Yield curve : Negative Positive

E(Profit): 0.028026 0.006289

Std error (profit) : 0.000803 0.000957

T a b l e  4 .3 :  R e s u lts  o f  e x p e c te d  s u r re n d e r  p ro f i t / lo s s  d u e  to  d i f f e r e n t  s h a p e s  o f  y ie ld  c u rv e .

From table 4.3, we observe that the expected profit decreases as the slope of the initial 

yield curve increases for S ' > 8t . The results is not surprising because the increase in

the yield curve slope only affects the amount of assets that need to be sold to cover 

surrender values at time t. So, since the yield on assets has now increased, this 

implies that for a fixed lapse rate, the expected profit will decrease.

Also, the result is partly due to the fact that the assumed surrender basis is paying out 

more on surrender than the returns on investment model. Thus, the slope of the initial 

yield curve probably has some effect on expected profit.
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Now, we re-ran the analysis of table 4.3 with more simulations, (i.e., 10,000) to 

determine its effect on the standard error of profit. The following results were 

obtained.

a  =5%

Difference in Payout : > s,

Slope of Yield curve : Negative Positive

E(Profit) : 0.028979 0.007382

Std error (profit) : 0.000246 0.000285

T a b l e  4 .3 a  : R e s u lts  o f  e x p e c te d  s u r re n d e r  p ro f i t / lo s s  b y  u s in g  1 0 ,0 0 0  s im u la t io n .

From table 4.3a, we observe that the expected profit has slightly increased, and that 

the standard error of the profit has reduced by a small amount (which is reasonable).

4.4.2 Lapse Effect

Next, we consider the effect of lapse rates on the expected surrender profit at time 

t=n. In this case, we consider different values of Imin for fixed Imax. Note that the 

baseline yield curve is used here (i.e., negative slope), and also, 5, > S ,. Also note

that the baseline model parameter values were used and standard deviation of the 

process is equal to 0.05. The following results as shown in the table 4.4 below were 

obtained.

Expected Present Value of Surrender Profit/Loss at t=20 years.

Lapse rate lmin=0.05,lmax=0.1 lmin=0.06, lmax=0.1 

(baseline results)
lmin=0.07, lmax=0.1

E(Profit) 0.027209 0.028026 0.028806

Std error (Profit) 0.000749 0.000803 0.000852

T a b le  4 .4 : R e s u l ts  o f  e x p e c te d  s u r re n d e r  p ro f i t / lo s s  d u e  to  d i f fe r e n t  la p se  r a te  v a lu e s

135



The lapse model is an important parameter in the computation of the expected 

surrender profit. Thus, from above table we observe that the expected surrender profit 

increases with increasing average lapse rate. Broadly speaking, increasing average 

lapse rate is normally accompanied by a decrease in expected profit since the company 

needs to sell more of its assets to pay for surrender benefits. Nevertheless, we observe 

that the expected profit in table 4.4 is probably influenced by the fact that the 

surrender basis pays more than the return on the investment model. So, in this case 

with 5 st > 5t , it is not surprising that profits increase with increases in the average

lapse rate. Further, we observe that the standard error of profit increases as we 

increase lapse rate.

4.4.3 Sensitivity to volatility o f interest rates

The parameters involved in the gilt model which contributed to the volatility of the 

process are a  (controls the strength of auto-regression) and a  (standard deviation in 

the gilt model). For fixed a  , we consider different values of cr and determine its 

effect on the profit model. Table 4.5 shows the results obtained.

Expected Present Value of Surrender Profit/Loss at t=20 years.

8't > 8,
Slope of Yield Curve: Negative

Stdev in Gilt Model, 3% 5% 10%
a :
E(Profit): 0.029794 0.028026 0.019795

Std error (Profit): 0.000499 0.000803 0.001671

Table 4.5: Result of changing the standard deviation, cr , of the stochastic yield model

From table 4.5 we observe that the expected surrender profit decreases with increasing 

volatility. The reason for this is that, increasing the volatility of the process implies 

that there is more uncertainty in the nominal amount function, and this affects the 

amount of assets that need to be redeemed to cover a surrender value at time t. Thus,
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for a fixed lapse rate, coupled with the fact that the surrender basis pays more than the 

return on assets, the expected profit is likely to decrease as observed. However, we 

observe that the option value increases as volatility increases, as in Albizzati and 

Geman (1994), since options are usually more valuable as a  increases. This is 

consistent with our results.

4.4.4 Sensitivity to a  , strength o f auto-regression (used in the investment model).

Following the discussion of sensitivity of cr, we look at the effect of a  on 

profitability by considering different values of a  for fixed a  . The table below shows 

the results obtained.

Expected Present Value of Surrender Profit/Loss at t=20 years.

S't > S,
Slope of Yield Curve: Negative

a  effect: 85% 90% 95%

E(Profit): 0.024721 0 . 0 2 8 0 2 6 0.032245

Std error (Profit): 0.000718 0 . 0 0 0 8 0 3 0.000911

T a b l e  4 . 5 a  : R e s u l t s  o f  e x p e c t e d  s u r r e n d e r  p r o f i t / l o s s  d u e  t o  d i f f e r e n t  v a l u e s  o f  a  .

We know from section 3.2.1 that a higher value of a  implies that the gilt yield returns 

can be expected to move slowly back towards the mean value and vice versa. 

Therefore, from table 4.5a, we observe that as a  increases, the expected profit steadily 

increases and so does the corresponding standard error. This is as expected since the 

standard deviation of the process increases as a  approaches 1, (see equations 3.13 and 

3.14).

For the above analysis studied so far, we have shown that a life office is expected to 

make a small profit under the assumptions set out in the model. Particularly, we have
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looked at the case where the model assumed no selection effect on surrender. We 

believe that the selection effects can affect profitability and so it is important that they 

are considered; therefore, we propose incorporating the mortality anti-selection effect 

as well as financial adverse selection effect in the model. This will be discussed in 

detailed in section 4.5 and subsequent sections. It is worth noting that this modified 

model is more realistic and more relevant to the life office. There may be a loss to the 

company as a result of adverse selection on surrender. Consequently, this loss can be 

charged to the policyholder for the right to surrender the policy at conditions 

favourable to him. This is to be discussed later on in chapter 5 of this thesis. In what 

follows we discuss in detail a model of adverse selection on surrender (both financial 

and non-financial) and its effect on the expected surrender profit/loss. A sensitivity 

analysis of the model parameter values is also performed.

4.5 Model of Adverse Selection on Surrender

4.5.1 Introduction

In this section we propose a model of financial and non-fmancial adverse selection on 

surrender, similar to that proposed by Albizzati and Geman (1994) and Jones (1998), 

and discuss its effect on the expected surrender profit/loss. In this context, we notice 

that a rational policyholder will exercise the option to surrender the policy i f :

• the earned asset shares of the policy (accumulations of premiums less charges) 

fall below the surrender values (SVs) allowed.

• the surrender value of a policy exceeds the single premium of a new policy 

(market premium basis). Thus, an option will be exercised if the maturity 

value arising from initiating a new contract exceeds that of holding the 

existing contract till maturity. In other words, reinvesting the SV in another 

policy and getting a higher MV after n-t years than from the first policy.

Thus, if we let D(t) be the ratio of the surrender value of a policy to the premium of a 

new policy, then a policyholder will exercise the option if D(t)>l. Throughout this 

chapter we may refer to D(t) as a decision criterion. This is time dependent and it is 

similar to the one proposed by Albizzati and Geman (1994).
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However, it is important to note that not all insureds may surrender the policy when 

D(t)>l, a feature which Albizzati and Geman did not consider. The risk level of the 

insured will influence their perception about when to exercise the option to surrender 

the policy and so it is important that we incorporate this feature when valuing the 

surrender profit/loss. Further note that the “risk level”, a positive and continuous 

unobservable variable, represents the state of the individual. For example, unhealthy 

individuals are less likely to lapse their policy than are those who remain healthy 

(adverse selection). By incorporating this in our model, we could investigate the 

significance of the financial effect as well as the non-fmancial adverse selection effect 

on the model as opposed to just the financial effect in relation to D(t), as investigated 

by Albizzati and Geman (1994). The adverse selection effect has already been 

discussed in chapter 1. Therefore, we shall model the expected surrender profit by 

allowing for the non-fmancial (e.g., mortality selection effect) effect as well as the 

financial anti-selection effect on surrender. Firstly, we present a lapse model which is 

a function of the risk level of the insured at time t and D(t). This is based on Albizzati 

and Geman (1994) and Jones (1998).

But the risk level depends on the state of the individual, which can be described by 

considering a multiple state model as discussed below.

4.5.2 Multiple State Models for Life Contingencies

In this model, we consider a full endowment assurance contract (i.e., a contract with 

level death benefit equal to maturity benefit). Further, we consider a population 

comprising two risk-groups (healthy and unhealthy) so that there are possible transfers 

between them. Each group has different mortality and lapse rates. Now, we consider a 

cohort of insured lives with the same underwriting category, all of whom are issued 

policies at age x. Suppose that all insured are in a state called “healthy” at issue. At 

any time thereafter, an insured can experience the transitions shown in Figure 4.5:
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Figure 4.5: State transition diagram

The four states are labeled as follows: 1, healthy; 2. unhealthy (sick); 3, surrender; and 

4, dead. The transitions are shown with arrows. Note that we have allowed for 

recovery from sickness (i.e., from sickness to healthy) in this model for reasons given 

in chapter 1. This transition was not allowed in Jones (1998) “for simplicity”. 

Transitions from states 3 and 4 are taken to be not possible (i.e. absorbing states). It is 

assumed that healthy policyholders will lapse their policies for financial incentives, 

but unhealthy individuals will not lapse (adverse selection).

Now, let jU0(x  +  / )  represent the transition intensities from state / to state j  at an exact

moment t, and these govern the rates of continuous transfer between states. Note that 

the force of transition is the instantaneous rate of transition from state i to state j  at 

time t. Further, we denote the conditional probabilities associated with these 

transitions by JF(x,x + 1), which is the probability that the process is in state j  at time

(x+t) given that it was in state i at time x.

In deriving an explicit expression for the conditional probability functions (see 

below), we assume that the transition intensities are constant (over each year of age of 

the policyholder) for simplicity and also in order to make the calculations tractable. 

This is presented below. Subsequently, we will apply the expressions for the 

conditional probability functions in the surrender profit/loss model.
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4.5.3 Constant Forces o f Transition

The assumption of a constant transition intensity is equivalent to the assumption that 

the time spent in each state is exponentially distributed and has no effect on the future 

length of time the policyholder will spend in that state. This means that a time- 

homogenous continuous time Markov process can be used to represent the transition 

between the states under consideration. Note that a process is time-homogenous if the 

transition probability PtJ (x,x + t) depends only on t and not on x and x+t individually

(Haberman and Pitacco (1999)).

Define the transition probability function as

Pj (x, x + 1) = Pr{(x + t) = y](x) = /}, i, j  e (1,2,3,4}.

For t > 0, we define :

Py (T 0 = <5,j,

where,

8tj denotes the Kronecker delta which is given by

5 = j 1 \f  i = J
[ 0 otherwise

We notice that the conditional transition probability satisfies the following properties.
k

J P u(x,x  + 1) -  1 for all t > 0 4.8a
7=1

and

0 < Pij(x,x + 1) < 1 for all t > 0. 4.8b

Moreover, the transition probabilities satisfy the Chapman-Kolmogorov equation 

given by
k

P0(x,x +1 + u) = ^ /> ;(x,x + t)P,j{x + t,x  +1 + u) i , j  e (1,2,....,k) 4.9
M

4.7

4.7a

4.7b
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This equation describes a path by which an individual in state i at time x must follow 

in order to get to state j  at time x+t+u. Thus, he must visit some state / at an arbitrary 

intermediate time x+t.

The transition intensities are defined as:

P Jt,t + h)
= ------ , { i * j )  4.10a

J h - >  0 / j

These limits are assumed to exist for all t and all i*  j . If the above Markov process is 

assumed to be time homogenous, then we have 

P (h)
juv(t) = 4.10b

J a->o h

Further, we assume that the transition intensities are constant functions i.e. 

jUjj(t) = jU'j. With this we can find explicit expressions for the conditional transition

probability functions. Also, for each i, we define /un = -'YJMIJ (note that summation
j - j * i

is over the states j  which are linked directly to state /). Thus, we have:

Hn = force of incidence of sickness.

jix3 = force of incidence of lapsing by healthy individuals.

fiu = force of mortality for healthy individuals.

ju2X = force of recovery from sickness.

/^3 = force of incidence of lapses by sick individuals. 

ju24 = force of mortality for sick individuals.

We can now set up equations for the transition probabilities by using the Kolmogorov 

system of difference-differential equations and the constant transition intensity 

assumption mentioned above. The Kolmogorov systems of difference-differential 

equations are presented below.

Kolmogorov’s Forward and Backward Equation

Now, the forces of transition and the transition probability functions are related by the 

Kolmogorov’s forward and backward equations, which are
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4.11d k
— P,j (x, x + 0 = Y j Pu (*, x  + 0  Mij (* + 0  » 
at i~\

and

4~ pu■(x>x + t) = - Y iMu(x)pij(x,x + t) 4.12

respectively, with boundary conditions as given in equation 4.8b. We use the above 

Kolmogorov backward system of difference-differential equations to set up equations 

for the conditional transition probabilities (e.g., Jones (1994), Haberman (1995), and 

Rickayzen (1997)). Note that the backward system of equations is derived by 

partitioning the intervals (0, t+h] into two non-overlapping intervals (0, h] and (h, 

t+h]. By letting h -» 0, we obtained a set of difference-differential equations which 

in our case, are given by:

“7~^u(0 = C/̂ l2 Mu -̂*12 (07̂ 21at

~T P\2 (0 = C/̂21 7̂23 7̂24 )P\2 (0 ■*" P\ 1 (07̂12at

4  Pn (0 = (0 + ,̂2 (07̂ 23at

dt 4.13

~ T  -̂ 21 (0  = (7̂ 12 + 7̂13 + 7̂14 ) Al (0  + 2̂2 (0/^21at

~ 7  P j l (0 = (7̂ 21 7̂23 7̂24 )̂ 22 (0 2̂l(07̂ 21at

~ T  1 2 3 ( 0  =  7^13^21 ( 0  O 2  (0 7 ^2 3  dt

~ T  O4 (0 = 7̂14-̂ 2l(0 + O2 (07̂24 at

It is worth mentioning that in equation 4.13, we have collapsed the conditional 

transition probability notation from PJu,u + t) to 77 (t) as shown in the definition of

transition intensities where we have assumed the Markov process to be time 

homogenous and assumed jû  (t) = n i}.

We follow the method outlined by Jones (1994) to solve this set of differential 

equations. That is, we first express the forces of transition probability functions in a
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matrix form. Thus, let Q  be a 4 x 4  matrix with (i,j) entry u i; and P it) a 4 x 4  matrix with 

(i,j) entry Py ( t ) . Now, corresponding to Equations (4.11) and (4.12), the Kolmogorov

differential equations can be written respectively as

P \ t )  = P ( t ) .Q  4.14a

P ' ( t )  = Q .P ( t )  4.14b

with boundary conditions P(0)=I, where I is identity matrix. Note that P ' ( t )  is the

matrix entry — PM).  The solution to Equations (4.14a) and (4.14b) is given by
d t

P { t )  = e Ql. 4.15

However, if Q  has distinct eigenvalues, d ] d 2 d 2 d 4 then, according to Cox and Miller

(1965),

Q  = A  ■ D  ■ C  4.16a

where,

C = A ~ l , and D  = d i a g ( d x,....... , d 4) 4.16b

and the i 'th column of A  is the right-eigenvector associated with eigenvalue

d, ( i= l , . . . . ,4 ) .

Furthermore,

P ( t )  = A - d i a g ( e ‘1'1, ....... , e di‘ ) - C .  4.17

From equation (4.17), we can now write

P¡J( t ) ^ aincnj■ed'̂, 4.18
n=1

where a y and c y are the (i,j) entries of A  and C, respectively.

Hence, the problem of finding the transition probabilities is now reduced to a problem 

of determining the eigenvalues and eigenvectors of the force of transition matrix Q. 

By using computer software such as Mathematica, we can obtained an expression for 

P (t) . Details of the formulation of P(t) are shown in Appendix 4.1.
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4.5.4 Parameter Values

Having obtained an expression for P(t), we now consider how each parameter value 

has been chosen. We assume that the parameter values listed below are for insured 

lives aged 35.

For jun , (i.e., Healthy-Sick), we consider values of the sickness inception rate as 

described in part C o f CMIR 12 (1992). We used values for a deferred period of 4 

weeks because we want to include all sickness rates, but exclude trivial sickness 

claims.

Also, for p 2], (i.e., Sick -> Healthy), we consider the recovery rates described in 

section 3, part B o f CMIR (page 34). The rates as listed vary by duration of sickness 

(measured in weeks), thus requiring a semi-Markov presentation. However, for the 

purpose of our model, we considered a value of 2.0 at all ages, which seems 

reasonable, as observed in Rickayzen (1997).

Further, for ¿uu , (Healthy-^Dead), we consider the mortality rates for male- 

permanent Assurance of 1979-82, duration 0 as shown in Table El 7 o f CMIR 12 

(1992). In this case we use mortality rates listed in the CMIR paper because our model 

is considering only healthy lives.

For p u , (Sick-> Dead), we consider mortality intensities described in section 6, part 

B o f CMIR 12. We therefore use values of vx+n at various ages set out on page 39, 

where vx+tt is the transition intensity from sick to dead at current age x+t and 

duration of sickness t.

Finally, we have assumed a lapse rate of 6% (average lapse rate) as a base of our 

analysis (from the previous analyses discussed in chapter 2). Then, we can investigate 

the effect of lapses on profitability by varying lapse rate values whilst the other 

parameter values are fixed. It is important to note here that we have also assumed p 23
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to be zero as in Jones (1998). This is due to the fact that we have assumed that only 

healthy lives will lapse their policies.

4.5.5 Proportion o f Sick and Healthy Lives

For the two risk-group population (healthy and unhealthy) under investigation, it is 

important to know the relative proportion of lives in each group at any particular age, 

x. This is useful in explaining the impact of selective lapsation on profitability. Thus, 

the proportion of sick and healthy lives between ages x and x+t can be found by using 

the following models:

Ix+t+i = 1;+, ■ Pu ( x  + t , x  + 1 + \) + l sx+t ■ P2f x  + t,x + 1 + 1) 4.19

&,+i -ll+t ■ P22(x + L x +1 + 1) +i f ,  • P\2(x + Ux +1 +1) 4.20

Where,

lx+t’lx+t are respectively the proportion of healthy and sick lives who are expected to 

survive to age x+t, and the transition probability, Py (x,x  + 1) as defined (4.7). Note 

that the initial values are given by: i f  = 1 and lsx = 0 for x=30 and t = 0,1,.... (n-1).

In the computation of P f  s defined in above equation (4.19 and 4.20), we have 

assumed the following parameter values of for reasons as given before. That is, 

jun = 0.2059; /z13 =0.06; /u22 = 0; p u =0.0008; 0.125. By using these values, we

obtained plots of proportion of healthy and sick for different recovery rates, ju2X, as 

shown below. The particular values of p2X considered are 2, 1, and 0.5 and the

corresponding plots are as shown by figures 4.6a, 4.6b, and 4.6c respectively. We

choose these values for comparison purposes.

Figure 4.6 below shows the plot of the proportions of sick and healthy lives at time t 

(from 0 to 20) for different values of p 2].
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Figure 4.6 : Plot of /f+, , lsx+l against ¡ilx = 2, 1, and 0.5.

I,5.,

Figure 4.6a: p 2 = 2 Figure 4.6b: ju2]= 1 Figure 4.6c: //21 = 0.5

4.5.6 Model of Lapse Rate as a function of Decision Criterion, D(t)

Now, having chosen the multiple state model and the model parameter values, we 

propose a model of lapse rate, which in this case is a function of D(t) and the risk level 

of the insured. As mentioned before, D(t) is the ratio of the surrender value of the old 

contract to the single premium of the new contract.

Thus, an expression for D(t) is given by:

D(t) =
(1 /0,Ax+1+l:n_M|(i?|s) 
(l+^)Ax+t+î ~yj(tf)

Where,

<p = management fees of initiating a new contract. 

A = surrender penalty 

8 ‘ Ô\ as defined before.

4.21
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A t i——- is an endowment assurance payable continuously at the death of a

policyholder or when he/she survives at the expiry of the policy (i.e. at time t = n). An 

expression for this term is given by:

A  ----: , = 1 - ö st - a
x + t + \ : n - t - \ \ ( S j  )  1 x + t + \ : n - t - \ \

4.22a

But,

j r + / + l : n — /— 1
= ax+t+\:n-l-\\ 2

l - A
x+l+\:n-l-\\

4.22b

and
n-t-1

a
x + / + l : n - ( - l r - 2 '-

l x + I + l  7 = 0

,-jS,
X+Î + 1 + j 4.22c

where,

/x+t = /H
X + t

+ 1s
x+t •

Also,

A _
x + / + l : « - / - l |

^x+n g (n 1 
^x+t+1

Hence,

1 7 ] Z j ‘x+l+\+j e 0 V

n-i-l

JC+/ + 1 7=0
‘x+i+l ^

4.22d

4.23

We assume that a rational policyholder will surrender the policy if D(t)>l. The above 

decision criterion is similar to that proposed by Albizzati and Geman (1994), but 

approached differently. Therefore, we propose a lapse rate model that can be 

expressed as a deterministic function of the decision criterion, D(t), in a similar way to 

Albizzati and Geman (1994). Like Albizzati and Geman (1994), this function is a non-

decreasing piecewise linear function, which expresses the relationship between the 

lapse rate and the policyholder's decision criterion. This is shown in figure 4.7.
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Figure 4.7: Lapse rate versus policyholders decision criterion, D(t)

Given the presentation in figure 4.7, we propose the following lapse model:

A m  ) = /„,„ /  I  + f m  I  4.24
D(i)<D, £>,<D(0<£>2 D(t)>D1

Where, fmax and fmin are respectively the maximum and minimum lapse rate 

expected to observe or experience. In this case we choose fmin=l, which is the 

minimum level if policyholders behave ‘irrationally’ (i.e., a policyholder may decide 

to surrender the policy even if there is no financial incentive to do it). In this case, D(t) 

is less than Dl. The region between D1 and D2 represents the lapse rate when the 

policyholder behaves ‘rationally’, i.e., a surrender due to financial incentives. Finally, 

we choose fmax=6, a maximum level which we deem to be reasonable. Furthermore, 

we assume D l=l and D2=2 which satisfy the conditions set out in the above 

equation.

4.5. 7 Model o f Adverse Selection effect on Surrender

Now, by using the proposed lapse model we redefine the force of incidence of lapsing 

by healthy lives (/.z13 ) as a function of the above lapse model. This is to enable us to 

investigate the significant financial anti-selection effect on surrender. In this context, 

we assume that only healthy lives will lapse their policies for financial gains (as in 

figure 4.5). We assume that lapse will only take place if D(t)>l. Since unhealthy
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individuals are less likely to lapse even if D(t)>l (adverse effect), we have therefore 

assumed ¿u2x3+[ -  0. With this structure, we can determine the impact of the adverse 

financial effect due to lapses on the expected profit/loss model.

We therefore propose an ‘adverse’ force of incidence of lapsing as follows:

¿ 1 ,'= Mil, ■ A m )  4.25

Where, /u[3+l represent force of incidence of lapsing due to selection effect; ju]x3+l and 

f(D(t)) as defined already and f(D(t)) follows 4.24. Note that by the constant force of 

transition assumption ju'3+l is equal t o / / ' .  By using the proposed model we can re-

compute the transition probability Pu (x + t,x  +1 + 1), by using equation 4.25 this

time. Subsequently, this will be used in the expected surrender profit/loss model. We 

now present a model of expected surrender profit/loss in the context of adverse 

selection effect.

4.6 Model of Expected Surrender Profit/Loss due to selective effect

4.6.1 Introduction

This section presents a model for computing the expected surrender profit/loss of the 

insurer by allowing for the above selective effects. Firstly, we shall consider only the 

non-financial adverse selection effect (i.e., mortality adverse selection effect). This is 

to enable us to investigate the impact of adverse mortality selection effect on 

profitability. Then again we look at the impact of both financial and non-financial 

adverse selection effect on the company’s profitability. Then we will be able to 

compare the relative effect of one type of selection with the other. Further, we perform 

a sensitivity analysis in respect of the model parameter values. Thus, we will also look 

at the effect of the yield curve slope on the profit model and also, examine the effect 

of volatility of the process on the model. Finally, we will consider the effect of a , 

strength of auto-regression, on profitability.
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4.6.2 Model o f non-financial (mortality) adverse effect

The proposed model in this context is similar to the one proposed in section 4.2. That 

is, the single premiums paid less the expenses of the office are accumulated in a fund. 

This time, suppose a policyholder dies or surrenders the policy at time t, then the 

office needs to sell assets sufficient enough to pay for death or surrender benefits at 

that time. Survival benefits are also paid out to policyholders that survive to the end of 

the contract. Therefore, the excess fund value over expenses and claims payout 

constitutes the expected surrender profit, which is distributed to providers of the 

capital.

Note that in this model we consider only the non-financial adverse effect. Further, we 

assume that lapses occur at the end of the calendar year and that all the assumptions of 

section 4.2 hold. We propose a model of the form:

n~\ n-1
s n(0) = E\ (P0 -  E)es”n -  -  ( l \ +n + l s*+n)MV

t = 0 1=0

- 5 „ n

4.26

Where,

S" (0) = Expected present value of surrender profit/loss at time t = n.

ly(t), lapse rate at time /, = i f ,  -Pu (x + t,x  + t + \) + l f ,  -P2i(x + t,x + t + \) 4.27

d(t), death rate at time t, = i f ,  ■ Pu (x + t,x  +1 +1) + i f ,  ■ P1A (x + 1, x + 1 + 1) 4.28

-  -  E)MV = Ale----- L (maturity benefit valued at 5n)
z.=,

(1 -A) A —
Am(t) = ---- -(nlf\)g ' (Am(t) is the amount of nominal to redeem to cover SV at

time t).

X = surrender penalty

8n = 5.87% (redemption yield of a 20 year gilt) 

5, 5, as defined before, and 

Ax.~, as defined already.



The expression is similar to equation 4.5a, i.e., the MV at time t,

accumulated at stochastic force of interest, 8t to the end of contract.

It is worth noting that lp(t) is the probability that a policyholder (healthy) aged x will 

lapse between ages x+t and x+t+1, and d(t), probability that a policyholder (healthy) 

aged x will die between ages x+t and x+t+1.

4.6.3 Model o f combined adverse mortality and financial effect

Unlike the profit model of section 4.6.2 which considered only the non financial 

adverse selection effect, our new proposed model takes into account both the financial 

and non financial anti-selection effects. In other words, we now consider a model that 

can enable us to investigate the impact of financial anti-selection effect on the profit 

model. This modified model assumes that healthy individuals will surrender their 

policy due to financial incentives.

In this case the proposed model is given by equation 4.26, where the lapse model lp(t) 

this time incorporates the adverse selective model of equation 4.25. Here too, we 

assume that //23= 0. By using this model, we can compute the present value of the 

expected surrender profit/loss at time t = n and hence, can analyze the impact of 

selective lapsation on profitability. Stochastic simulation was used to compute the 

expected surrender profit/loss and the procedure is the same as used in section 4.2.

In this context, we anticipate a loss to the insurer due to financial anti-selection effect 

on surrender. In other words, we expect more healthy lives to surrender the policy for 

financial gain since unhealthy lives are less likely to lapse the policy for financial 

gains. This is the period of greatest financial loss on surrender to the insurer, as the 

company needs to sell more of its assets to pay for surrender benefits at those times. 

Consequently, this loss could be charged to the policyholder for the right to surrender 

the policy at times that are favourable to him (a strategy to minimize the rate of 

surrenders). This is discussed fully in the next chapter of this thesis.
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W hat fo llow s is a d iscu ssio n  o f  the  resu lts  o b ta ined  from  th is  analysis.

4.7 Discussion of Results

4. 7.1 Model considers non-financial anti-selection effect.

This section examines the results obtained by using the expected surrender profit/loss 

model. Note that in the discussion of the results that follow, the model considers only 

the non-fmancial anti-selection effect on surrender. In order to measure this effect we 

have assumed that //21 = 2. We set out below Table 4.6 showing the results obtained 

from this model. Further, it is worth noting that, in this analysis, the assumed 

surrender basis pays out more than the return on the investment model and so this may 

affect the result of the surrender profit model. In other words, the result of the 

surrender profit model is affected by the case where the parameter value SL  =0.071 is

greater thanj(0) =0.065. The model parameter values given below are used as a

baseline for this analysis and the expected profit or loss observed is expressed as a 

proportion of the premium paid. A yield curve of negative gradient is used. The 

proportion of sick and healthy lives in each population discussed in section 4.5.5 will 

be used throughout this analysis.

Simulation Results (Model considered only non financial anti selection)

The following parameter values were used:

Term of contract = 20years

Simulation = 1000

Surrender penalty, X = 0%

Initial Expenses = 10%

Standard deviation in the gilt model, a  = 10%
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Model Parameter Values (baseline values): 

jU]2 = 0.2059

A21 = ^ 

yi/,3 =0.06 

= 0

jUH = 0.0008

/j2i =0.125

The expected profit from the 1000 simulations, obtained by using the above model 

parameter values are given in Table 4.6. Also shown is the corresponding standard 

deviation of the profit.

Expected Present Value Surrender Profit/Toss at T=20years ( u2X -  2)

L a p s e
ra te

0 % 2 % 5 % 8% 10% 12% 15%

E (p r o f i t ) 0 .0 0 0 5 0 -0 .0 8 6 1 6 -0 .2 1 3 0 5 -0 .3 3 6 3 3 -0 .4 1 6 5 5 -0 .4 9 5 2 5 -0 .6 1 0 4 7

S td(profit) 0 .0 2 4 5 4 0 .0 3 1 4 9 0 .0 4 1 7 0 0 .0 5 1 6 3 0 .0 5 8 0 9 0 .0 6 4 4 3 0 .0 7 3 7 2

T a b le  4 .6 : R e s u l t  o f  e x p e c te d  p r e s e n t  v a lu e  s u r re n d e r  p ro f i t / lo s s  a t  T = 2 0 y e a r s  ( fi2X =  2 )

We observe a loss due to the adverse mortality effect. This increases as the lapse rate 

increases. The reason for this is that, as the lapse rate increases, more healthy lives 

leave the system, leading to higher average mortality amongst the continuing 

policyholders. This results in a loss as presented above. Note that even though the life 

office is expected to make a loss due to adverse mortality effect, this is more 

significant when there is a higher lapse rate than about 5%. Also, we notice that our 

model produces effectively a zero profit/loss at zero lapses as anticipated which can 

be attributed to the fact that most of the time, the assumed surrender basis (c>/) offers 

payouts which are relatively higher than the return on our investment model (S, ). We 

shall look at the case where S'  <8\ and its effect on the expected surrender profit/loss 

model later in section 4.7.3. We notice that the standard deviation of profit/loss
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increases as we increase lapse rate. This is due to the fact that there is more variability 

in the system as more healthy lives leave the system.

Lastly, we would like to emphasis here that although the expected losses as observed 

are quite high for higher lapse rates, we are anticipating greater losses when the model 

considers financial anti-selection effect. Subsequently, we should be able to compare 

the relative effect of one type of selection to the other. We shall discuss this effect in 

section 4.8.

Recovery Rate effect (Effect of changing u2]= 2 to u2X =1)

We also look at the effect of the recovery rate on profitability by reducing the value of 

ju2X from 2 to 1. In other words, we look at the impact on the profit model by 

assuming that the unhealthy individuals spend more time sick. With ju2X= 1 and with 

the same parameter values given above, we obtain the following results as set out in 

table 4.7.

Expected Present Value of Surrender Profit/Loss at T=20years (at u2] = 1)

Lapse
rate

0% 2% 5% 8% 10% 12% 15%

E(profit) 0.00152 -0.07529 -0.18779 -0.29709 -0.36824 -0.43803 -0.54025

Std(profit) 0.03639 0.04254 0.05153 0.06027 0.06596 0.07155 0.07973

Table 4.7 : Result of the expected present value of surrender profit/loss at ¡u2x =1

The results reveal that as the lapse rate increases, the expected loss due to the adverse 

selective effect also increases. This time the losses are relatively lower than the 

previous case (when the baseline parameter values were used). The reason for this is 

that lives in the system spend more time sick and therefore, are less likely to surrender 

their policies for financial gains. Nevertheless, the lower recovery rates lead to higher 

average mortality amongst the continuing policyholders. This produces loses as shown 

in table 4.7.
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The next section of this chapter looks at the results of incorporating the financial anti 

selection effect in the profit model.

4. 7.2 Model considers Financial anti selection effect as well as Mortality effect

So far the above results of the expected surrender profit/loss model discussed do not 

consider the financial anti-selection effect. We now look at the results of analysis 

when this effect (financial anti-selection effect) is included. It is possible that such an 

effect can lead to significant losses. Then again, we assume that /u2X = 2 in this case. 

Table 4.8 below shows the results of both financial and non-fmancial anti selection 

effect on the expected surrender profit/loss. Further, a sensitivity analysis of the 

results to changes in different factors is also presented.

Simulation Results

In this section the model parameter values are the same as in table 4.6. However, the

following values were used.

The Term of contract = 20years

Simulation = 1000

Surrender penalty, X = 0%

Initial Expenses = 10%

New Contract fees, cp = 5%

Standard deviation in the gilt model, cr = 10%

Note that the parameter values Dl, D2, fmax and fmin are the same as defined in 

section 4.5.6.
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T able  4.8 se ts o u t the resu lts  o f  the analysis.

Expected Present Value Surrender Profit/Loss at t=20years ( u2] = 2)

L a p s e
ra te

0 % 2 % 5 % 8 % 10% 12% 15%

E (p ro f i t ) 0 .0 0 0 5 0 -0 .1 0 6 6 5 -0 .2 6 2 9 3 -0 .4 1 4 0 2 -0 .5 1 1 9 6 -0 .6 0 7 7 4 -0 .7 4 7 4 7

Std(profit) 0 .0 2 4 5 4 0 .0 4 6 9 1 0 .0 7 9 4 4 0 .1 0 9 7 9 0 .1 2 8 8 2 0 .1 4 6 9 1 0 .1 7 2 3 7

Table 4.8: Result of expected present value surrender profit/loss at t=20 years ( ¿u2l = 2)

In this case, we observe a relatively greater surrender loss due to financial anti 

selection effect. These losses increase as the lapse rate increases. The reason for this is 

that since there are financial incentives available to the policyholders, coupled with 

the fact that lives spend less time sick, lapse rates are expected to increase. This is also 

the time of greatest financial loss to the insurer, as the company needs to sell more of 

its assets to pay for surrender benefits at those times. Therefore, the life insurance 

company is expected to experience a greater loss than the previous case (non-financial 

anti selection effect). This implies that the adverse financial effect is more marked 

than the mortality effect in this case.

4.7.3 Sensitivity o f Expected Profit to Different factors

We look at the effect of different factors on the profit model. This can be done by 

varying the variables of interest one at a time whilst the other parameter values are 

fixed. We therefore consider the following variables and discuss how sensitive they 

are to the profit model.

Recovery Rate effect (Effect of changing u2[ = 2 to u2] = 1)

We look at the effect of recovery rate on profitability by reducing the value of p 2X 

from 2 to 1. In other words, we look at the impact on the profit model by assuming 

that the unhealthy individuals spend more time sick. With /u2] = 1 and with the same
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parameter values given above (section 4.7.2), we obtain the following results as set 

out in table 4.9.

Expected Present Value of Surrender Profit/Loss at t=20years ( /A, -  1)

Lapse
rate

0% 2% 5% 8% 10% 12% 15%

E(profit) 0.00152 -0.08737 -0.21729 -0.34323 -0.42505 -0.50519 -0.62235

Std(profit) 0.03639 0.05024 0.07057 0.08992 0.10219 0.11399 0.13079

Table 4.9: Result of the expected present value of surrender profit/loss at /u2] =1

From above table, the relative amount of losses due to the adverse financial effect 

when the recovery rate is halved is not surprising. This is due to the fact that the 

unhealthy lives in the system spend more time sick and therefore, are less likely to 

surrender the policy in spite of the financial incentives available to them. This is 

consistent with the theory of selective lapsation.

Effect of changing the standard deviation, a  , of the Stochastic yield model

Further, we look at the effect of changing the standard deviation of the stochastic gilt 

yield model on the expected surrender profit/loss. Here, for fixed a  (strength of auto-

regression) we consider different values of cr and repeat the analysis of Table 4.8 

(baseline analysis). We set out below, a table showing the effect of a  on the expected

surrender profit/loss at time t = 20 years. Note that jU2l = 2 and /2,3 = 0.05 are as

assumed in base case result. The parameter values are the same as used in the base 

case.

Expected Present Value of Surrender Profit/Loss at time t=20year

Stdev of 
Yield Model

5% 10% 15% 20% 25%

E(profit) -0.23532 -0.26293 -0.31854 -0.40844 -0.54068

Std(profit) 0.02346 0.07944 0.177235 0.331403 0.577626

Table 4.10 : Result of changing the standard deviation, cr , of the Stochastic yield model
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We observe that as the standard deviation of the yield model increases, the expected 

loss increases as expected. The reason for this is that an increase in volatility implies 

that there is more uncertainty in the nominal amount function which in turn affects the 

amount of assets which need to be redeemed to cover the surrender value at time t. 

Therefore, for a fixed lapse rate, coupled with the fact that the surrender basis pays 

more on surrender than the return on assets, the expected loss is likely to increase as 

observed. This means that the profit/loss model is sensitive to the standard deviation 

of the gilt model.

Note that the standard deviation of profit increases as a  increases. The result is 

consistent with that of table 4.5 where the expected profit decreases as a  increases. 

However, we observe that the option value increases as volatility increases in the case 

of Albizzati and Geman (1994). This is consistent with our results.

Sensitivity to a  , strength of auto-regression (used in the investment model).

Following the discussion of sensitivity of a , we look at the effect of a  on 

profitability by considering different values of a  for fixed a  . Table 4.10a shows the 

results obtained.

Expected Present Value of Surrender Profit/Loss at t=20 years.

8't > 8,
Slope of Yield Curve: Negative

a  effect: 85% 90% 95%

E(Profit): -0.26083 -0.26293 -0.26689

Std(Profit): 0.065193 0.079436 0.101569

Table 4.10a : Result of expected present value of surrender profit/loss for different value of a

We know from section 3.2.1 that the higher the value of a  implies that the gilt yield 

returns can be expected to move more slowly towards the mean value and vice versa.

Therefore, from table 4.10a, we observe that as «increases for fixed a  and /^3, the
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expected loss steadily increases and so does the corresponding standard deviation. 

This is as expected since the standard deviation of the process increases as 

cr approaches l,(see equations 3.13 and 3.14).

Effect of Surrender penalty on Expected Profit/Loss

In practice, small surrender penalties are normally charged on policies that are 

surrendered because of competition from other companies, Albizzati and Geman 

(1994). These charges vary from one life office to other. Nevertheless, there is a 

maximum penalty that a life office can realistically charge. It is hoped that imposing a 

higher surrender penalty may reduce lapses. Such a strategy will be looked at in 

Chapter 5.

In this analysis, we look at the effect of surrender penalty on the expected surrender 

profit/loss by varying the values of A, whilst the other model parameter values 

remained fixed. Table 4.11 shows the effect of A on the expected surrender 

profit/loss.

Expected Present Value of Surrender Profit/Loss at Time t=20years

Surrender
Penalty

0% 5% 10% 15% 20% 25%

E(profit) -0.26293 -0.23899 -0.22085 -0.20559 -0.19196 -0.17911

Std(profit) 0.07944 0.06354 0.05254 0.04532 0.04092 0.03841

Table 4.11: Result of expectec present value of surrender profit/loss for different values of A

From table 4.11, we observe that as the surrender penalty increases, the expected loss 

decreases as anticipated. This means that increasing the surrender penalty may 

probably discourage policyholders from lapsing, and therefore reduce any expected 

losses. Note that a 0% surrender penalty means that there is no surrender penalty 

charge on lapsing. Further, we observe that as the surrender penalty increases, the 

standard deviation of profit decreases. This is probable due to the fact that as 

surrender penalty increases, there is less financial incentive to surrender and so, there 

is less variation in the Am(t) model.
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Effect of New Contract fees on Expected Profit/Loss

For most life insurance contracts, there is a fee charged whenever a new contract is 

initiated. Broadly speaking, we believe that charging higher contract management fees 

may likely discourage policyholders from lapsing. Thus, in this section we look at the 

effect of new contract management fees, cp on the expected surrender profit/loss. We 

set out below, a table showing the effect of (p on the expected surrender profit/loss. It 

is also important to note that the baseline parameter values were used in order to 

observe effectively the (p effect.

Expected Present Value of Surrender Profit/Loss at t=20years

(p 1% 5% 10% 15% 20% 25%

E(profit) -0.27916 -0.26293 -0.25253 -0.24709 -0.24398 -0.24217

Std(profit) 0.09239 0.07944 0.06677 0.05804 0.05209 0.04813

Table 4.12: Result of expectec present value of surrenc er profit/loss for different values of

In this case, the expected loss due to surrender decreases when we increase the 

management fee of initiating a new contract, (p. As expected, increasing (p implies 

that the financial incentive available for lapsing has reduced. So, we expect the rate at 

which policyholders lapse their policies to decrease. This in turn implies that the 

expected loss due to surrender decreases as observed. The result of table 4.12 is 

consistent with that of table 4.11, where the expected loss decreases as A, increases. 

This is as expected since the decision criterion variable involves A,cp and the ratio 

(1 - T )/(1 + <p).

Effect of Yield Curve Slope on Model

We look at the effect of the slope of the yield on the profitability of the company by 

considering a yield curve of positive and negative slope as shown in figures 4.3 and 

4.4. In this case, we consider the case where S ' > St as assumed before, for 

consistency. Table 4.13 shows the results obtained.
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E x p ec ted  P resen t V alue o f  S u rrender P ro fit/L oss at T im e t=20years

Difference in Payout : § s > s

Slope of Yield curve : Negative Positive

E(Profit) : -0.26293 -0.31139

Std(profit): 0.07944 0.11255

Table 4.13: Result of expected present value of surrender profit/loss for different shape of
yield curve

We observe that the expected loss increases with the slope of initial yield curve. In 

other words, the expected profit decreases with the slope of the initial curve for 

S st > 5t . The results are not surprising because the increase in the yield curve slope

only affects the amount of assets that need to be sold to cover surrender values at time 

t. So, since the yield on assets has now increased, this implies that for a fixed lapse 

rate, the expected loss will increase. Also, the result is partly due to the fact that the 

assumed surrender basis is paying out more on surrender than the returns on the 

investment model. Therefore, the expected profit/loss is affected by the slope of initial 

yield curve.

Effect of Relative payout on model.

From the above analysis performed so far (from section 4.5 onwards), we notice that 

the profit/loss model assumed a surrender basis that pays out values which are higher 

than the return on the proposed investment model, (i.e., 8 ‘ > 8t ). We therefore 

consider the case where the assumed surrender basis pays out values which are lower 

than the return on our investment model, (i.e.,8‘ <5t ) and the results obtained are 

shown below.
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The above-mentioned scenario can enable us to determine the effect of changing the 

model assumption ofS'm =0.071 and S(0) =0.065 (i.e., S ' > S ,) to S'w =0.071 and

S{0) =0.07 ( S ' <5() on the expected profit model. Table 4.14 shows the results

obtained when the baseline model parameter values are used. In this case a yield curve 

of negative slope is used.

Expected Present Value of Surrender Profit/Loss ( yield curve of negative slope)

Slope of Yield curve : Negative

Difference in Payout: S ' > 5\ S ' < 5t

E(Profit): -0.26293 -0.29332

Std(profit) : 0.07944 0.09670

Table 4.14: Result of expected present value of surrender profit/loss when the assumption 
S' > 5, is changed to S ' < St (for yield curve of negative slope)

As shown in table 4.14, we observe that the expected loss relatively increases when 

we change the assumption of S ' > 5, to S ' < 5t . This is actually reasonable, because

we have assumed in the model that there is financial incentive to surrender the policy, 

coupled with the fact that a yield curve of negative slope is used. This means that with 

increased stochastic force of interest in the stochastic model, we need to redeem a 

greater amount of assets to cover surrender value at t. Hence, a greater loss is 

observed.

We notice that the standard deviation of profit increases when we change the 

assumption of S ' > St to S ' < S,. This is probable due to the fact that we have 

introduced more variation in the stochastic model by increasing the value of £ . This

result is consistent with that of table 4.1, where the expected profit decreases as the 

assumption of table 4.14 changes.

By repeating the analysis of table 4.14 for the case where a yield curve of positive 

slope is used, we obtain the following results presented in table 4.15.
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E x p ec ted  P resen t V alue  o f  S u rrender P ro fit/L oss (y ield  curve o f  positive  slope)

Slope of Yield curve : Positive

Difference in Payout: fi* > S, < 5t

E(Profit): -0.31139 -0.31563

Std(profit) : 0.11255 0.11574

Table 4.15 : Result of expected present value of surrender profit/loss when the assumption 
S', > 8, is changed to 8* < 8, (for yield curve of positive slope)

From table 4.15, we observe a result similar to the one described in table 4.14. 

Elowever, there is a slight increase in the expected loss this time when the model 

assumption is changed from 8, > 8, to 8, <8,. Further, we observe that the loss

amount has increased when a yield curve of positive slope is used, with the 

corresponding high value of standard deviation. This is probably due to the fact that 

by using a yield curve of positive slope, the stochastic force of interest in the 

stochastic model has increased. Therefore we need to redeem a greater amount of 

assets to cover surrender value at t. Hence, a greater loss is observed. Also, there is 

more variation in the stochastic model by increasing the value ofc>(0). This accounts

for the higher standard deviation of expected profit.

4.8 Relative effect of one type of selection compared with another

From tables 4.7 and 4.8, we have shown the results of the expected profit/loss when 

the recovery rate is halved and also, when the financial anti-selection effect is 

introduced in the model. Now, in order to explore the effect of these additional factors 

on the proposed profit model, and also, to investigate which factor has the greatest 

effect, we compare the results of tables 4.7 and 4.8 against our baseline result of table

4.6. Particularly, we look at the difference in the expected profit/loss between the 

baseline values and that due to the financial effect and recovery rate effect.
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Let the baseline expected loss be mh and the baseline variance of loss be ■

Let the expected loss due to recovery rate effect (when ju2] = 2 is changed to ¡un = 1] 

be m] and the corresponding variance of loss be s 2 ■

Let the expected loss due to financial anti-selection effect be m2 and the 

corresponding variance of loss be S i .

By looking at the ratio of —r  and — , we obtained the following results presented in 

tables 4.16 and 4.17.

Table 4.16 shows the difference in baseline expected surrender loss and that due to 

changes in recovery rate (i.e., when ju2x = 2 is changed to //,,=1). Also shown is the 

ratio of the corresponding variance of the process.

Difference in Expected Surrender Profit/Loss at time t=20years due to recovery rate
(when u2i = 2 was changed to u2] = 1)

Lapse rate 0% 2% 5% 8% 10% 12% 15%

m] -  mh 0.00102 0.01087 0.02526 0.03924 0.04831 0.05722 0.07022

A l
2.19895 1.82494 1.52703 1.36269 1.28931 1.23323 1.15916

Table 4.16: Result of expected present value of surrender profit/loss due to recovery rate
effect

From table 4.16, we observe that the expected profit due to recovery rate effect 

increases as the lapse rate increases. As mentioned before in section 4.7, this could be 

attributed to the fact that the significant number of unhealthy lives in the system spend 

more time sick (due to /u2] =1) and therefore are less likely to surrender the policy for 

financial gains.

Next, we present in table 4.17 below, the difference in expected baseline surrender 

loss and that due to the introduction of financial anti-selection effect in the profit 

model. In other words, the difference between the expected surrender profit due to 

financial anti-selection effect and the baseline values is presented in table 4.17.
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Difference in Expected Surrender Profit/Loss at time t=20years due to financial anti-
selection effect

Lapse rate 0% 2% 5% 8% 10% 12% 15%

m2 -  mh 0.00000 -0.02049 -0.04988 -0.07769 -0.09541 -0.11249 -0.13700

s i /
A i

0.03639 2.21914 3.62916 4.52190 4.91772 5.19908 5.46705

Table 4.17: Result of expected present value 01'surrender profit/loss cue to financial adverse
selection effect

From table 4.17 above, we observed that the expected loss due to financial anti 

selection effect increases as the lapse rate increases. This is due to the fact that the 

significant number of unhealthy lives in the system spend less time sick (due to 

/u2] -2) and so, these healthy lives are more likely to surrender the policy for financial 

gains which is offered by the policy.

Therefore, by comparing the two effects (recovery rate and financial anti selection 

effect), we note that, for the parameter values investigated, the financial anti-selection 

effect is more significant than the recovery rate effect. Hence we can say that the life 

office is likely to increase its expected losses due to financial incentives available to 

policyholders (lapse rate is expected to increase as well). On this note the life office 

needs to devise and adopt strategies to meet these expected losses due to the financial 

anti-selection effect. We will discuss ‘strategies’ to use in order to maximize the 

expected utility of shareholders' profit in chapter 5.
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But C=A~1

Hence, P(t) = A ■ diag(eJ'',....... , edi' ) • C .

Therefore, we can now write

P,M) = ' ed"‘
n=\

Where atj and ctJ are the (i,j) entries of A and C, respectively.

A4.5

A4.6
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Chapter 5

Utility-Maximisation of Shareholders’ Expected Profit

5.1 Introduction

This section considers a typical U.K. proprietary life office that transacts conventional 

non-profit business, with surplus distributed to shareholders. Note that the same type 

of business was considered in chapter 4. There, we showed that the profitability of a 

company is mostly affected by adverse selection effects.

Ideally, the management of a life insurance companies aims to provide its investors, 

(policyholders or shareholders or both) with an acceptable profile of returns from their 

investment. One way by which this can be achieved is when the expected utility of 

shareholders’ profit is maximized, while an acceptable level of solvency (an important 

aspect of the profile of returns to policyholders) and a suitable premium basis are 

maintained. Further, we can achieve this by developing strategies that would involve 

the policyholder in sharing the cost of surrender at times which are favourable to him. 

These strategies will be discussed shortly. There are other ways by which this can be 

achieved, as discussed by several authors. For example, Chadburn (1998) has 

examined the relative effects of a range of life insurance management strategies upon 

the profile of returns experienced by with-profits life insurance policyholders. Also, 

Ong (1995) and Booth et al (1997) have looked at optimal asset allocation strategies 

for a life office by using the utility maximization approach. Further, Kroll et al (1984) 

have compared the expected utility of the optimum portfolio for given utility 

functions with the expected utility of well-selected portfolios from the mean-variance 

efficient frontier.
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In this chapter, we shall attempt to choose a blend of strategies that maximizes the 

expected utility of shareholders profit. A description of these strategies will be given 

in the next section. Numerical optimization procedures, similar to Ong (1995), have 

been used to produce all our results, and these are described in section 5.4. The results 

are analysed and a sensitivity analysis of the profit to changes in the model parameter 

values is also performed. Finally, the effect on profitability of using inappropriate 

strategies will be discussed.

5.2 Utility-Maximisation

5.2.1 Description o f Optimal Strategic Decision-Making Process

In this section, we give a description of strategies used to maximize the expected 

utility of shareholders' profit. It is worth noting that the interest of life insurance 

company’s investors (shareholders and policyholders) can be met (bearing in mind the 

possibility of lapses) by considering the four strategies described below.

The strategies are based on the insurance company’s response to changes in interest 

rates. In other words these strategies are designed to control the frequency with which 

the surrender basis is changed. We propose these strategies based on the fact that a 

life office surrender basis sometimes pays out more than that which is provided by the 

investment model (returns) and vice versa. In what follows, we present the four 

strategies used in the maximization process.

Strategy 1 involves changing the surrender value basis whenever the difference 

between the average of the past three years’ surrender basis interest assumptions and 

the average of the company's return on assets is greater than a decision variable, d l . 

That is, we change the surrender basis to a new basis if



; ( 3) .5, is the average of the past three years’ return on assets and
~iv(3) .5, is the average of the past three years’ surrender basis. Thus,

-(3) 5t + St_x + St_2 -svw 8;'" + 8*v_x + S,™2St = —------------— and St = —------ y ---- — , for t=3,4,...,(n-l).

Note that dl presents the insurance company’s response to a fall in interest rates. In 

other words, the company needs to change the surrender basis whenever the average 

of the past three years’ stochastic force of interest corresponding to the return on 

assets is lower than the average of the past three years surrender basis less dl. Further 

note that we choose three years for the averaging period because we believe it is a 

reasonable period over which to smooth the asset returns and the surrender basis 

assumptions.

Strategy 2 involves the life office changing its surrender basis whenever the 

difference between the average of the past three years returns on the company’s assets 

and the corresponding surrender assumptions for that period is greater than a decision 

variable d2, defined below. That is, change the surrender basis if

s ? ]
- x M  3)

- d . >d 2

Also note that d2 is the company’s response to a rise in interest rate. Thus, the value 

of dl and d2 determines when to change the surrender basis on the basis of changes 

(rise or fall) in interest rates. For example, an optimal strategic way of regulating the 

surrender basis will be to change the basis if interest rates rise by dl or fall by d2.

Strategy 3 involves charging the policyholder for the right or option to surrender the 

policy during the most unfavourable economic conditions (i.e., impose a premium 

loading). However, there is a risk of undercharging or overcharging the policyholder 

for this right. Therefore, we have proposed a model for the premium penalty to allow 

for such a risk. This will be discussed in section 5.2.4.

Strategy 4 involves charging the policyholder who surrenders the policy with a higher 

surrender penalty. This is to discourage policyholders from lapsing. However, we feel 

that it will not be ethical to charge an excessive amount because of regulations and
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competition from other companies. Therefore, we include a constraint on the amount 

of the penalty.

Finally, the probability of insolvency must be controlled. Then, we shall choose a 

blend of these strategies that maximises the expected utility of shareholders’ profit. 

These strategies are represented by the following decision variables outlined below:

dl Change the surrender value basis to a new basis (defined below), whenever the 

difference between the average of the past three years surrender basis and the 

returns on company assets (past three years) is greater than the decision 

variable under consideration, named surrender basis 1.

Note that the new basis is the old basis, adjusted by adding or subtracting the 

above difference.

d2 Change the surrender value basis to a new basis whenever the difference 

between the average of the past three years returns on assets and the 

corresponding surrender basis (of past three years) is greater than the decision 

variable under consideration, named surrender basis 2.

d3 Charge the policyholder (impose a premium loading) for the right or option to 

surrender the policy during the most unfavourable economic conditions.

d4 Charge the policyholder who surrenders the policy with a higher surrender 

penalty. This is to discourage frequent surrender of policies.

5.2.2 Formulation o f Problem

In this section we shall denote SP as the present value of shareholders’ surrender 

profit which is defined below, and d={dl,....,d4}, a vector of decision variables.

We write SP as:
f  f  n - 1 n - 1 'N

SP = ( p;-  E )e ‘-"-  -  J > ( r )  ; M V-(n-t-\)S, - ( lHX+n+ lSX+n)MV -S „ n

\ t=0 /=0
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where

P0 -  P0+ d3

MV = f ; - g )

Am*(t) ■
(1 ~d4)A

x + t + \ . n - t - \ \ ( d l &  d 2 ) (i.e., A
x + t + Y . n - t - \ \

is defined in a similar way to

equation 4.22a-4.23 with 8* adjusted by diord2 and Am*(t) is the amount of 

nominal to redeem to cover SV at time t).

It is important to note that for the case where the model considers financial adverse 

selection effect, the ‘adverse’ force of incidence of lapsing is defined in a similar way 

to equation 4.25 where the decision criterion formula, D(t), is re-defined as

D(t) =
(1 ~d,)-A

x + t + \ : n - t - \ \ ( d { &  d 2 )

(1+V)A.
x + t + Y . n - t - \ \ ( 8 , )

Now, our objective is to choose d that maximises the expected utility of SP subject to 

m (m=4 in this casej constraints of the form gk <dk < hk, k=l,2,...m, where the

lower and upper constraints gk and hk are constants. Thus, the form of the 

optimization problem in this case can be expressed as

Max E{U(SP)}
d

subject to the following constraints :

0 <dx < 0.02 

0 < d 2 < 0.02 

0 < d} < 0.50 
0 < d4 < 0.25

where U(SP) is the utility of the present value of the shareholders’ profit.

The constraints, dl and d2 were chosen to be less than 0.02 because on the basis of 

our surrender force of interest and stochastic models, we believe the rise or fall of 

interest rate (based on the value of force of interest) should not exceed 0.02 in order to
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trigger a change in surrender basis. Alternatively, we believe that if the difference 

between the average of the past three years surrender basis and that of the interest rate 

is less than the chosen constraint of 0.02, then there cannot be any change of basis 

irrespective of the movement of interest rate.

Further, the constraint of d3 was chosen to lie within the range 0 to 0.5 because we 

believe that it is reasonable to charge an amount of up to 0.5 considering the fact that 

the single premium paid by the insured is assumed to be 1. However, we believe that a 

value of 0.8 would be too high to charge since this could lead to loss of business.

Finally, we chose d4 to be 0.25 because we believe that it is a reasonable amount to 

charge, since imposing a higher penalty will probably lead to loss of business due to 

competition from other companies.

Clearly, the objective function is highly non-linear since the model of SP has a 

stochastic element in it. In this case the first (and possibly even second) derivatives of 

the objective function are unavailable.

Furthermore, when faced with a constrained optimization problem, the general aim 

according to Walsh (1979) is to reduce it to an unconstrained problem or to a 

sequence of unconstrained problems. In view of this we shall consider a 

transformation by which the above-defined constrained optimization can be reduced 

to a form in which no constraints explicitly appear so that the derivatives are not 

required. Such a transformation will be discussed in section 5.3.4. Subsequently, we 

will resort to Powell (1964), (1965), (1975)’s method of finding the minimum of a 

function which does not require the use of derivatives. This method has been 

described by Fletcher (1965), Nash (1979), Press (1992), Ong (1995), and Conn et al 

(1997). We will discuss this method (Powell (1965), (1975)) in section 5.3.3. Next 

we look at how the utility function was chosen.
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5.2.3 Choice o f Utility function

The utility function is an attempt to assign a numerical value to different levels of 

wealth allowing for an individual’s preferences. Although utility functions may take 

many functional forms, there are in general some properties which most utility 

functions should satisfy in decisions involving wealth. That is, for a given level of 

wealth, the utility function, U() should be monotonically increasing. That is, 

U'(.) > 0, meaning that individuals do not prefer less wealth to more. According to 

Booth (1997), “any individual who did prefer less wealth to more could presumably 

find ways of disposing of wealth until this position was rectified.” Also, the utility 

function, U() should be concave. That is, U"{.) < 0, which corresponds to investors 

being risk averse. In other words, the value that one puts on a given increment in 

wealth does not increase as one's level of wealth increases.

There are several forms of the utility function that have been proposed and their 

properties discussed in the literature, for example, quadratic utility, exponential, 

logarithmic and power utility functions. However, this section will look at only one 

example, (exponential utility function), which is relevant to our work. For further 

discussion of the properties of utility functions, see Booth (1995), (1997), Pratt 

(1964), Kroll (1984), Fishburn (1970), Ong (1995) and Gerber and Pafumi (1999).

Broadly speaking, the choice of utility function depends in part, on the function under 

investigation and also, whether its risk aversion properties are reasonable. Risk 

aversion was defined by Pratt (1964) as follows. For a given utility function U(), the 

requirement U"(.) < 0 ensures that an individual is risk averse. However, the extent to 

which an individual can see how risk aversion changes is by looking at the risk 

premium an investor requires for an actuarially neutral investment. Pratt (1964) 

showed that any risk premium is approximately proportional to:

U” (•)
K-) = U\.)

where y/(.) is defined as the measure of risk aversion (absolute). Thus, the higher 

becomes, the more averse the individual to risk and so lower risk tolerance. On 

the other hand, relative risk aversion was defined by Pratt to be p(x) = xi//(x) for
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wealth x. Note that according to Bernstein and Damodaran (1998), the risk premium 

is the expected rate of return in excess of the risk-free interest rate that an investor 

demands to compensate for the risks inherent in an investment. In other words, the 

risk premium is the reward for holding a risky asset or portfolio rather than the risk-

free asset.

5.2.4 Properties o f Utility Functions

We consider the risk aversion properties of some utility functions discussed by Pratt 

(1964), Ong (1995) and Booth (1997) to help us choose an appropriate utility function 

for our investigations. Thus, with a starting value of wealth x, the linear utility 

function is defined by:

U(x) = a+ bx

With 

And so,

U '=b  and U" = 0

u/(x) = —^  ^  = 0 for all values of x. 
V U \x)

Therefore, by using Pratt’s measure of risk aversion, the linear utility function has a 

constant (zero) risk aversion.

The quadratic utility function takes the form:

U(x) = a + bx + cx2, c < 0, b > 0 

We have U'=b+2cx and U" = 2c

And so, w(x) = ----——
b + 2cx

In order for the function to exhibit risk aversion it is necessary for c < 0. This measure 

of risk aversion increases until such a point that b = -2cx. According to Booth (1997), 

this is the point at which the quadratic utility function peaks and it is only meaningful 

over this range. Therefore, the quadratic utility function implies increasing risk 

aversion over all relevant values of the starting value of wealth. According to Ong 

(1995), the main disadvantage of using the quadratic utility function is that "the 

restricted range in which this function is meaningful and the property of increasing 

risk aversion make it less appealing, especially in comparison with the exponential, 

logarithmic or power utility functions".
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The exponential utility function is of the form:

U(x)= -exp(-kx), k>0

with U \x)  = k exp(-kx) and U"(x) = - k 2 exp(-Ax)

and therefore,

y/(x) = k,

which is referred to as the constant absolute risk aversion property. This implies that 

the decision making process will depend on the amount invested and not initial level 

of wealth for a given investment. This is illustrated below.

Suppose an investor with an exponential utility function of wealth x invests an amount 

w at a random rate of return R, then the utility maximizing decision is to maximize: 

E[U(x+wR)]= E[-exp(-k(x+wR))]= p. E[exp(-kwR)]

Where p  = -exp(-kx). Hence, according to Ong (1995), the optimal decisions based on 

maximizing E[U(x+wR)] and E[U(wR)]  will be identical.

The logarithmic utility function is given by:

U(x) = ln(x)

with U \x ) = — and U"(x) = ---- j
x x

Clearly, this function will be valid only for positive real values of x.

Therefore,

V(x) = ~> x

which displays a decreasing absolute risk aversion, though it has the property of 

constant relative risk aversion, defined in Pratt(1964) as:

p(x ) = x^(x) = l

This means that decisions will depend upon the proportion of wealth invested, and not 

on the starting level of wealth. Hence, according to Booth (1997), “investors having a 

logarithmic utility function, which invest in the same proportion of their wealth, 

would require the same risk premium for a risky investment and would have the same 

optimal strategy for the investment of a given proportion of wealth”.
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The power utility function is of the form:

U(x) = xc

where 0 < c < 1. This function also exhibits constant relative risk aversion.

Thus,

U \x)  = cxc 1 and U \x ) = c(c -  l)xc"2 

And i//(x) = - ( c -  l)x~'

Therefore,

p(x) = 1 -  c

which is less than one. This means that the power function is also less averse than the 

logarithmic function. If c=l, then it is simply a linear utility function and 

^(x) = p(x)=  0, which implies risk neutrality.

Throughout this chapter, the investor will be assumed to have an exponential utility 

function because of its desirable properties and for reasons of tractability. The use of 

the exponential function can enable us to compare a range of investor risk 

preferences.

We therefore define the utility of shareholders profit as follows:

f  N (l)-SP AU(SP) = -  exp
v J

5.1

where,

SP is the present value of shareholders profit at time t = 20, defined in section 

5.2.2.

r is the reciprocal of the risk aversion parameter, k, which is a relative measure 

of risk tolerance. The higher is the value of r, the greater is the tolerance to 

risk. That means that for a given amount invested, an investor with a higher 

value of r would be expected to invest in a more risky portfolio. In our case 

the optimal strategic decision is that which maximizes

f  S P  \
- N  ( / ) —

- e r
v

or minimizes E e r
\

The latter optimization problem represents 

the conventional way of approaching a problem like this.

2
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N(l) is the amount of business issued per loading /, and is introduced to take care of 

any bias caused by charging a higher premium penalty. This is discussed in the 

next section.

5.2.5 Model o f Number o f Business Issued at Office Loading

In view of the fact that a life office could lose most of its prospective policyholders as 

a result of charging a higher premium (in order to cover the cost of the policyholder's 

right to surrender the policy), the optimization result could be biased if no action is 

taken to compensate for this. As a result, we need to impose a premium penalty to 

take care of such bias. We present below a model of the premium penalty to allow for 

this effect. This model is similar to the hazard rate function of an exponential 

distribution. We choose this model because it is simple, but essential in this

investigation. According to Ross (1996), the hazard rate of a continuous random 

variable A having distribution function F and probability density function/ is defined 

by

r i  0 = m
Fit)

m
1 -F it )

By using the above definition, we model the amount of business issued per office 

loading as follows:

Suppose the rate at which the number of policies, N(l), are issued at life office’s 

loading /, relative to the market loading is y{l) . Then

dN{l)
dl = - r ( ! ) W )

which implies that

N(l) = No.ex pj- y(s)dsI“!

5.2

5.3

where N (/) is the number of policies issued at office’s loading /, and N(j3)=N(t is the 

initial number of policies at initial loading, J3. We assume a hazard rate of the form

Yd l) = K-
f  l  \ b° ~ x

f i .

for / > ¡3 5.4
\ y  J
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which is a power function of order (bB-l), with ka representing the base rate of 

reduction in new business if / > /?, and ba , the shape parameter of the model.

Further, we assume that /? is a loading factor at which the office initial loading equals 

the market initial loading. In this case, if the office loading were to become greater 

than the market loading, then the volume of new business would decrease. However, 

if the office loading is less than the market loading, then, the volume of new business 

will increase. By solving equation 5.3, we obtain the following equation

A'(/) = i V „ .e x p |- - ^ - ( ; ‘*-/?*•)} 5.5

Now, for l< p , we assume that the volume of business depends on the office’s 

loading in relation to the market loading and therefore propose a hazard rate of the 

form:

7,(/) = «1 + V P
, 6i —1

/ + c1
5.6

where

k] is the base rate of reduction in new business if / < J3 

c, is a constant parameter to remove singularity at zero.

a] is a constant.

By substituting this hazard rate function in equation 5.3 and solving it, we obtain the 

following equation:

m  = V, ■ exp jo, • OS -  0  + k-̂p-[((/? + c, )M‘ -  (/ + )“ ' )]j 5.7

where N ] = Nl) (initial number of policies at initial loading, /?). Hence, by combining 

equations 5.5 and 5.7, we obtain the following model of the number of policies issued 

at office loading /.

N0.exp
/3h°-'b

N(l) =

if l> p

Nx.exp| a ,- (/ ? -0  + J| ^ - [ ( ( iS + c-|) ^ - ( /  + i'l) ^ ) ] J  if t< f i

5.8
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Note that we have assumed N0 =100% if (5 =20%>. This value of beta is chosen

because it represents a realistic value at which market loading equals office loading. 

The implication of this model is a discontinuity in the gradient of N(l) at /= (5. 

it is worth mentioning that the value of / used in the utility model is the optimized 

value found by our optimization procedure; see section 5.3.2 for the optimization 

method used.

Also, in above equation, the following parameter values are used:

N0 =100%; A, = 100%; (5 = 0.2; è0 =4;6, =3 /2  ;k0 =3;*, = l;a, = 0.2;c, =0.001

By using the above model (equation 5.8), we obtain the following plots:

N ( 1)

Loading(1)

F i g u r e  5 . 1 :  P l o t  o f  N u m b e r  o f  b u s i n e s s  a g a i n s t  p r e m i u m  l o a d i n g  f o r  t h e  c a s e  w h e r e
(5=0.2

In the above figure 5.1, the implication is that the company would have no new 

business left if / exceeded about 45%.

Figure 5.1a shows the plot of number of business against premium loading for the 

case where (5=0.3.
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N ( 1 )

F i g u r e  5 . 1 a :  P l o t  o f N u m b e r  o f  b u s i n e s s  a g a i n s t  p r e m i u m  l o a d i n g  f o r  t h e  c a s e  w h e r e
/3=0.3

In figure 5.1a, the implication is that the company would have no new business left if 

/ exceeded about 65%.

Now, suppose that / is reduced to 0.1, then, by using equation (5.8) and the following 

parameter values:

Ng = 100%; ¡3 = 0.2; 60 = 5; 6, =2;k0 =4;*, = 0.9995; c0 = 0.009, 

we obtain the following plot as shown below.

N(l)

Loading(1)

F i g u r e  5 . 2 :  P l o t  o f N u m b e r  o f  b u s i n e s s  a g a i n s t  p r e m i u m  l o a d i n g  f o r  t h e  c a s e  w h e r e  ¡5 - 0 . 1.
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We have decided on the value of /? = 0.1 and 0.3 for comparison purposes and for the 

sensitivity analysis, which is reported later on in this chapter. From figure 5.2, the 

implication is that the company would have no new business left if /? exceeded about 

25%.

In the following sections, we discuss the optimization method used in the 

maximization process and the analysis of the results obtained.

5.3 Optimisation Method

5.3.1 Introduction

This section is concerned with a type of optimization problem in which the objective 

function is highly non-linear and the number of independent variables is small. 

Broadly speaking, the problem to consider is that of finding the maximum or

minimum of a function of n variables, / (* , , ..... ,xn) , say, where n may be any integer

greater than zero. The derivatives of the objective function may or may not be 

available. In either case, there is a method or optimization routine that we can follow 

in order to solve such a problem, Walsh (1975). Further, the function may be 

unconstrained or subject to one or more constraints. But, the most obvious case is the 

general unconstrained optimization problem and the problem is merely to find values 

of x, which maximize or minimize / ( x). Even for a given constrained problem, 

techniques exist which makes it possible to convert or write down an equivalent 

unconstrained problem, Walsh (1975). This will be discussed later on in section 5.3.4.

In this chapter, we shall specifically consider a problem of minimizing a nonlinear 

objective function of a small number of independent variables (four in this case) when 

derivatives of the function are unavailable. The derivatives are unavailable because 

the objective function is a result of a large and complex computer simulation (arising 

from a stochastic element associated with it). Further note that since the objective

183



function is subject to the same number of constraints as the independent variables, we 

have applied certain techniques in order to convert it into an equivalent unconstrained 

problem which will be discussed later on in section 5.3.4. However, transforming the 

variables is not necessarily the most numerically efficient way of addressing 

constrained problems as it increases the extent of non-linearity in the problem. 

Nevertheless, it had been noted by Box (1966) that “despite not being one-to-one, 

such transformations would still yield correct results as additional local optima would 

not be introduced as a consequence”. In this case converting the problem to an 

unconstrained one appears to work well and is simpler than working with a more 

sophisticated algorithm for a linearly constrained problem.

Since the derivatives of the objective function are unavailable, we shall use Powell’s 

(1965) method, described by Press (1992) and Sprott (1991), to find the optimized 

strategic decisions and an estimate of the objective function. Further, there are other 

optimization methods which have been applied to problems without constraints.

These include the following: the method of Fletcher and Reeves (1964), which uses 

the properties of conjugate directions and Barnes’ (1965) method for solving sets of 

simultaneous non-linear equations. These methods are not appropriate for our 

problem - Fletcher and Reeves’ (1964) method requires the first derivatives of the 

function to be computed whereas in the latter method, it is often not feasible to 

reformulate each optimization problem as the solution of a set of simultaneous 

equation. As a result of this we did not use these methods in our investigation. In what 

follows, we describe the numerical optimization routines used to optimize the 

strategic decision values and to obtain an estimate of the objective function.

5.3.2 Numerical Optimization

In view of the complexity of the model to be optimized, we use numerical 

optimization routines to obtain the expected utility maximization of the present value 

of shareholders profit. In this case, by simulating a number of scenarios (e.g. 500) 

from the profit model, an estimate of the objective function may be optimized using 

the minimization algorithms discussed below.
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Furthermore, for each decision, the expected frequency of ruin (probability of ruin) is 

calculated as the proportion of the 500 in which the life office becomes technically 

insolvent at least once during the 20-year projection period.

The classification of numerical optimization routines depends on whether the 

objective function is linear or non-linear, whether the problem is constrained or 

unconstrained, and so on. As mentioned before, the current problem under 

investigation requires a non-linear optimization routine, since the objective function is 

non-linear in d. Further, by using a suitable transformation, we are able to transform 

the decision variables in the unconstrained case. Flence, it suffices to consider a 

problem of unconstrained non-linear optimization in this section. We discuss below 

some of the optimization routines used in this section.

5.3.2 Unidimensional Minimization

For one-dimensional minimization (line minimization) without calculation of the 

derivative, we bracket the minimum by using the golden section search method 

described in Press et al, (1992), and then the method of Brent (1973), which is 

discussed below.

The golden section search guarantees that an interval containing the minimum 

converges to this minimum. We employ this procedure, because it is more robust than 

the inverse parabolic interpolation used by Brent (1973) and the number of iterations 

does not have to be determined in advance. The process can then be terminated at any 

iteration by any criterion.

Brent's method is used to obtain a minimum by combining the above method (golden 

section search) with inverse parabolic interpolation. Inverse parabolic interpolation 

means that if the function is parabolic near to the minimum, then a parabola fitted 

through any three points will take us in a single leap to the minimum. Therefore, 

Brent’s method uses the inverse parabolic interpolation when the function is well 

behaved and switches to the more robust golden section search when this fails.

185



5.3.3 Multidimensional Minimization

The algorithms for multidimensional minimization are all iterative-based processes. 

They work by an iterative process of deriving an appropriate search direction and 

minimizing the given function along this direction by using a unidimensional sub-

algorithm as discussed above. Thus, if we denote x,,x2,......x, as successive

approximations to the minimum of a function, f(x), and P¡, as a search direction, then 

the ith iteration involves minimizing f { x t +/ l,P¡) with respect to the scalar,/!,. 

Setting x i+1 = x- + X¡P¡, the process is repeated until a tolerance level is satisfied.

There are many types of multidimensional minimization routines reported in the 

literature, for example, Powell’s method (1964), (1975), and one described in Press et 

al (1992), which do not require the calculation of derivatives. Others include the 

conjugate gradient method and the quasi-Newton method, which do involve the use of 

derivatives in the determination of search directions. However, since for the current 

problem we do not require the use of derivatives in the minimization process, we shall 

use Powell’s method, which is described below. For description of the other two 

methods, see Walsh (1979), Gill et al (1981), Scales (1985), and Beale (1988).

Powell’s Method

Powell’s described method of solving a non-linear unconstrained minimization 

problem is based on the use of conjugate directions. In order to define conjugate 

directions, we begin by supposing that F(x) is a positive definite quadratic function, 

whose second derivative matrix is G. The N  nonzero directions P(/ (d=l,2, are 

mutually conjugate if and only if the equations 

PjGP(/ = 0, d * q ,  

hold, Powell (1975).

Thus, the main idea of Powell’s method is that the minimum of a positive-definite 

quadratic form can be found by performing at most N  (number of variables) 

successive line searches along mutually conjugate directions. That is, for a starting 

vector X 0, the function in question is successively minimized along N  linearly
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independent directions P]5..... ^ (sea rch  vectors) to produce a new pointX N.

Suppose Pt/ is the search vector which causes the largest decrease in function value, 

then we replace the direction P(/ byP/+l, P(/+1 byP/+2 and so on until Pv_,= P,v • The 

next stage is to setPv ^X ^  - X 0. This process is repeated for the updated starting

vector and direction vectors until the process converges. Note that the above 

procedure may be applied to non-quadratic functions, by adding a new composite 

direction at the end of each cycle of N line searches.

It is important to note that the conjugate direction methods avoid the drawbacks of 

other methods described by Walsh (1979), Gill et al (1981), Scales (1985), and Beale 

(1988) (for example, quasi-Newton method) because according to Powell, they do not 

require estimates of gradient vector, gk at X *  . However, it has some disadvantages

e.g., it is sometimes “awkward to ensure that all the N  nonzero directions P(/ 

(id=l,2..... ,N) have good linear independence”, Powell (1975).

5.3.4 Bound Constraints

As mentioned before, the constrained optimization problem defined here can be 

reduced to an unconstrained problem by transforming the independent variables and 

leaving the objective function unaltered. Powell’s (1964) method has been used in this 

case. That is, a given independent variable, x,, subject to constant lower and upper 

constraints, g: < x, < ht , in the x-space, can be transformed to an unconstrained

optimum in the y-space by using the following model suggested by Box (1966) and 

Powell (1964):

x, = Si + (h, ~ Si)'  sin2 y, ■ 5.9

By using this transformation, we can eliminate the appearance of the inequality 

constraints from the optimization problem under investigation. According to Box 

(1966), the advantage of this transformation is that “they have been found to result in 

the correct solutions being obtained easily for problems for which alternative methods 

made only slow progress, or ceased to make any progress whatsoever once one or two
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constraints are reached, even when the current point was still a long way from the 

optimum”.

By applying Powell’s (1964) and Box’s (1966) method to our problem, we obtained 

the following transformations:

d] = 0.02 • sin2 y ] 
d-, = 0.02 ■ sin2 y,

2 ^2 5.10
¿3 = 0.5 • sin2 _y3

d4 = 0.25 • sin2 y 4

Thus, we have transformed from the constrained case in the d-space to an 

unconstrained case in y-space. Hence we can apply the optimization methods of 

solving for the minimum of an unconstrained problem which we have discussed 

already.

5.4 Optimisation Results

5.4.1 Results where there is no financial incentive on surrender

The aim here is to obtain optimal strategies that maximize the expected utility of 

shareholders’ profit at time t=20 years valued at time zero, when different values of 

fi are used (/? is the loading factor at which the office’s initial premium loading 

equals the market initial loading). We show below the optimization results for the 

cases where fi = 0.2 and/? =0.1. The sensitivity analysis of the model parameter 

values will be looked at. Finally, we look at the effect of using incorrect strategies on 

the company’s profitability. It is important to note that in the discussions to follow we 

have assumed that there is no financial incentive on surrender in the profit model. 

Further, the parameter values (base values) of the profit model used in chapter 4 will 

be used here too. Also note that in this section the assumed surrender basis is paying 

out more on surrender than returns on the investment model. Finally, the optimization 

results for fi = 0.2 will serve as the base result.
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5.4.2 Optimization Results (where (5 = 0.2, N 0 =  100% ; iV, =  100% ; ¿>„ =  4;

6, = 3/2;k0 =3;k{ = \;ax = 0.2;c, = 0.001)

The optimal strategic decision values that maximize the expected utility of present 

value of shareholders’ profit for various values of r are given in the table below. Also 

shown are the expected present value of shareholders’ profit and standard deviation of 

the profit.

r Sbasisl
w

Sbasis2
(d2)

Ploading
(d3)

Spenalty
( d j

E(USP) E(SP) Std(SP)

8 0.01514 0.01138 0.22871 0.13037 -0.9873 0.1564 0.04115

4 0.01517 0.01139 0.22834 0.13031 -0.9748 0.1562 0.04073

2 0.01514 0.01133 0.22699 0.12964 -0.9489 0.1557 0.04033

1 0.01504 0.01110 0.22004 0.12648 -0.8675 0.1529 0.03971

0.5 0.01472 0.01058 0.20562 0.11958 -0.8114 0.1476 0.03697

0.25 0.01418 0.00986 0.18711 0.11038 -0.6499 0.1402 0.03692

0.125 0.01339 0.00872 0.15688 0.09559 -0.4112 0.1287 0.03309

Table 5.1. Optimal decisions that maximizes expected utility of shareholders’ profit, with mean 
utility and standard deviation of shareholders’ profit.

Here, we are using an arbitrarily chosen range of values of risk tolerance, r, in order 

to compare different strategies. We use optimal strategic decision values for the case 

where r=l as our base values.

From table 5.1, we observe that for r-1  (base result), the optimal strategies for a 

company to maximize the expected utility of its shareholders profit is to charge a 

loading of 22.00% on the premium. Then impose a penalty of 12.65% on all policies 

surrendered. In addition, optimal ways of regulating the surrender basis according to 

above results would be to change the surrender basis whenever the difference between 

the average of the past three years return on assets and that of the past three years 

surrender basis is within 1.11% and 1.50%. In other words, it is optimal for 

companies to change the surrender basis if the interest rate on assets rises by 1.50% or 

falls by 1.11%.
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Further, we observe that as the relative risk tolerance increases, the expected 

shareholders’ profit also increases, which is intuitive since an investor with a higher 

value of r would be expected to invest in a more risky portfolio and so, expect to 

increase his profit for increasing values of r (shown in table 5.1). Also, we observe 

that as r increases the standard deviation of the shareholders’ expected profit 

increases, which is intuitive. This result is similar to Ong (1995) but in a different 

context, -thus, Ong (1995) has observed that the means and standard deviations of the 

accumulated fund (an initial amount of 1 invested with no explicit liabilities involved) 

increase with increasing r values. It is also interesting to note that the above results 

are similar to those of modern portfolio theory, Markovitz (1952). That is, for a 

shareholder investing in a more risky portfolio is likely to receive higher expected 

shareholders’ profit, accompanied by higher degree of uncertainty. That is, the risk 

tolerant investor is expected to receive a greater amount of return from the greater 

amount of risk incurred.

Finally, we note that the expected frequency of ruin is zero in all cases investigated.

We notice that the optimal values of d] and d2 are close to zero which implies that 

the company would be changing the surrender value basis continuously. This is 

probably an expensive task to embark upon since there is a cost associated with 

changing the surrender value basis too frequently. Therefore, we expect this to reflect 

on the results of our expected profit model. However, this does not happen because 

our profit model does not incorporate or consider (for reasons of simplicity) the cost 

of changing the surrender value basis too frequently. This could be a useful area for 

future research as a possible extension to the thesis.

As a check that the optimization routine and the optimal decision values are efficient 

and precise, we re-ran the optimization analysis with varying constraints. That is, we 

vary the lower bound constraints by adding to it, 0.01, whilst the upper bound 

constraints remain fixed. Similarly, we add 0.01 to the upper bound constraints whilst 

the lower bound constraints remain fixed. We chose 0.01 for comparison purposes.
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For the case where the lower bound constraints are changed, the following results as 

presented in table 5.1a are obtained.

r Sbasisl
W

Sbasis2
(d2)

Ploading
(d3)

Spenalty
( d j

E(USP) E(SP) Std(SP)

8 0.01514 0.01138 0.22874 0.13038 -0.9873 0.1564 0.04114
4 0.01517 0.01138 0.22833 0.13030 -0.9748 0.1562 0.04072
2 0.01514 0.01133 0.22700 0.12965 -0.9501 0.1557 0.04032
1 0.01504 0.01110 0.22004 0.12648 -0.8675 0.1529 0.03971
0.5 0.01472 0.01058 0.20560 0.11957 -0.8114 0.1476 0.03698
0.25 0.01418 0.01026 0.18710 0.11038 -0.6502 0.1408 0.03694
0.125 0.01339 0.01015 0.15688 0.09560 -0.4119 0.1295 0.03315

Table 5.1a. Optimal decisions that maximizes expected utility of shareholders’ profit, with mean utility 
and standard deviation of shareholders’ profit for the case where the lower bound constraint is changed.

From table 5.1a, we observe that the results/values of the optimal decision variables, 

dx -dA are similar to that of table 5.1. This shows that the results are reasonable and 

precise.

Further, for the case where the upper bound constraints are changed, we obtained the 

following results as shown by table 5.1b.

r Sbasisl
( d j

Sbasis2
(d2)

Ploading
(d3)

Spenalty
( d j

E(USP) E(SP) Std(SP)

8 0.01514 0.01139 0.22878 0.13041 -0.9873 0.1564 0.04111
4 0.01516 0.01137 0.22800 0.13015 -0.9748 0.1561 0.04073
2 0.01514 0.01134 0.22704 0.12968 -0.9501 0.1557 0.04030
1 0.01504 0.01110 0.22004 0.12649 -0.8675 0.1529 0.03970
0.5 0.01472 0.01058 0.20558 0.11957 -0.8114 0.1476 0.03697
0.25 0.01418 0.00986 0.18706 0.11037 -0.6499 0.1402 0.03692
0.125 0.01339 0.00872 0.15688 0.09561 -0.4115 0.1287 0.03310

Table 5.1b. Optimal decisions that maximizes expected utility of shareholders’ profit, with mean utility 
and standard deviation of shareholders’ profit for the case where the upper bound constraint is changed.

Also, the results/values of the optimal decision variables, dx - d4 are similar to that of 

table 5.1, which shows that the results are reasonable and precise.
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5.4.3 Optimization Results where ¡3 =0.1

Now, for the case where ¡3 = 0.1, we obtained the following optimal strategic decision 

values for different values of r as shown in the table below. Also shown is the 

corresponding expected shareholders’ profit and standard deviation for each value of 

r.

r Sbasisl
w

Sbasis2
(d2)

Ploading
(d\)

Spenalty
( d j

E(USP) E(SP) Std(SP)

8 0.01025 0.00679 0.10237 0.04750 -0.9918 0.1060 0.06012

4 0.01063 0.00717 0.10891 0.05043 -0.9841 0.1055 0.05991

2 0.01029 0.00687 0.10440 0.04850 -0.9671 0.1022 0.05832

1 0.01052 0.00676 0.09379 0.04267 -0.9340 0.0994 0.05181

0.5 0.01023 0.00632 0.08209 0.03693 -0.8674 0.0945 0.04688

0.25 0.01018 0.00595 0.06703 0.02912 -0.7483 0.0884 0.03902

0.125 0.00986 0.00533 0.04810 0.01964 -0.5546 0.0809 0.03226

Table 5.2. Optimal decisions that maximizes expected utility of shareholders’ profit, with mean
utility and standard deviation of shareholders’ profit.

From table 5.2, we observe that the expected present value of shareholders’ profit 

increases as r increases. This is similar to the base result of table 5.1. However, we 

observe that the expected shareholders’ profit in this case is lower than the previous 

results. This is due to the fact that we have imposed an optimal loading lower than or 

close to the market loading, (3, and a lower surrender penalty, for r < 1 since ¡3 has 

been reduced. Thus, the shareholders’ expected profit reduces as shown in table 5.2. 

Also, we observe that as r increases the standard deviation of the shareholders’ profit 

increases as expected. This is similar to the results of table 5.1. It is worth mentioning 

that according to our volume of business model, if the company’s loading is greater 

than the market loading, then we expect the volume of business to decrease. However, 

if the company’s loading is lower than the market loading, then we expect the volume 

of business to increase.
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5.4.4 Optimization Results where J3 = 0.3

For the case where /3 = 0.3, we obtained the following optimal strategic decision 

values for different values of r as shown in table 5.2a. Also shown is the 

corresponding expected shareholders’ profit and standard deviation for each value of 

r.

r Sbasisl
w

Sbasis2
(d2)

Ploading
( d f

Spenalty
( d j

E(USP) E(SP) Std(SP)

8 0.01713 0.01641 0.38215 0.19984 -0.9859 0.2168 0.05718

4 0.01717 0.01638 0.38038 0.19919 -0.9719 0.2162 0.05722

2 0.01709 0.01615 0.37329 0.19602 -0.9438 0.2134 0.05782

1 0.01711 0.01581 0.36100 0.19096 -0.8871 0.2086 0.05731

0.5 0.01676 0.01471 0.32627 0.17551 -0.7728 0.1946 0.05349

0.25 0.01531 0.01183 0.24256 0.13661 -0.5688 0.1615 0.04518

0.125 0.01379 0.00902 0.16205 0.09888 -0.3119 0.1311 0.03190

Table 5.2a. Optimal decisions that maximizes expected utility of shareholders’ profit, with mean 
utility and standard deviation of shareholders’ profit.

From table 5.2a, we observe that the expected present value of shareholders’ profit 

increases as r increases. This is similar to the base result of table 5.1. However, we 

observe that the expected shareholders’ profit in this case is higher than the previous 

results (base result). This is due to the fact that we have imposed a loading higher than 

13 and a higher surrender penalty for relatively risk tolerant investors (for r > ]/2), 

since P has increased. Thus, the expected shareholders’ profit increases as shown in 

table 5.2a. Also, we observe that as r increases the standard deviation of the 

shareholders’ profit increases as expected. This is similar to results of table 5.1.

Beta effect (when f  = 0.2 is changed to f  = 0.1)

We have defined f  as a loading factor by which the office initial loading is equal to 

the market loading (see section 5.2.5 for model of volume of business issued). Now,

193



by comparing the above results (tables 5.1 and 5.2) we can assess the effect of varying 

P (changed from 0.2 to 0.1) on profitability.

Let the expected shareholders profit for which /?= 0.2 (baseline results from table 

5.1) be (f>x and the corresponding variance (baseline) be s,1 ■

Let the expected shareholders’ profit for which /?= 0.1 (from table 5.2) be and the 

corresponding variance be s 22.

By looking at the ratio of —7-, we obtained the following results as presented in
s 2

tables 5.2b.

Table 5.2b shows the difference in expected shareholders’ profit for which /? =0.2 and 

J3 =0.1. Also shown is the ratio of the corresponding variance of the process.

Difference in Expected Shareholders’ Profit at time t=20years due to 3  (when 0 =
0.2 was changed to p  = 0.1)

r 0.125 0.25 0.5 1 2 4 8

(f)\ — <f)2

re l. d i f fe r e n c e

0.0478
(0.3714)

0.0518
(0.3695)

0.0531
(0.3598)

0.0535
(0.3499)

0.0535
(0.3436)

0.0507
(0.3246)

0.0504
(0.3223)

VA i
1.05212 0.89526 0.62190 0.58745 0.47821 0.46220 0.46849

Table 5.2b : Results of Expected Shareholders’ Profit due to /? effect (when /?= 0.2 was
changed to /?= 0.1)

From tables 5.1 and 5.2, we observe that for different values of r when p  is changed 

from 0.2 to 0.1, the expected shareholders’ profit has reduced to the values shown in 

table 5.2b. That is, the percentage of reduction in shareholders’ expected profit 

relatively decreases as r increases. The reason is similar to that discussed for Table 

5.2. Further, the corresponding ratio of variance when p  is changed from 0.2 to 0.1 

shows that there is a difference in the variance of shareholders’ expected profit for 

different r.
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Beta effect (when ¡5= 0.2 is changed to f  =  0.3)

Following the discussion of the above beta effect (when [3- 0.2 is changed to /? = 

0.1), we also look at the effect of ¡3 when (3= 0.2 is changed to (3= 0.3. Table 5.2c 

shows the results obtained.

Let the expected shareholders’ profit for which (3= 0.3 (from table 5.2a) be f  and 

the corresponding variance be $ \ •

s 2By looking at the ratio of we obtained the following results as presented in 

tables 5.2c.

Table 5.2c shows the difference in expected shareholders’ profit for which /3= 0.2 and 

¡3= 0.3. Also shown is the ratio of the corresponding variance of the process.

Difference in Expected Shareholders’ Profit at time t=20years due to (3 (when j3 =
0.2 was changed to (3= 0.3)

r 0 .1 2 5 0 .2 5 0 .5 1 2 4 8

(rel. difference)

0 .0 0 2 4 0 0 .0 2 1 3 0 0 .0 4 7 0 0 0 .0 5 5 7 0 0 .0 5 7 7 0 0 .0 6 0 0 0 0 .0 6 0 4 0

( 0 .0 1 8 3 ) ( 0 .1 3 1 9 ) ( 0 .2 4 1 5 ) ( 0 .2 6 7 0 ) ( 0 .2 7 0 4 ) ( 0 .2 7 7 5 ) ( 0 .2 7 8 6 )

si
Si

0 .9 2 9 3 7 1 .4 9 7 5 1 2 .0 9 3 3 7 2 .0 8 2 8 6 2 .0 5 5 4 2 1 .9 7 3 6 4 1 .9 3 0 8 5

Table 5.2c : Results of Expected Shareholders’ Profit due to (3 effect (when ¡3= 0.2 was
changed to /?=0.3)

From tables 5.2c, we observe that for different values of r when ¡3 is changed from 

0.2 to 0.3, the corresponding changed in expected shareholders’ profit increases. That 

is, the relative change in shareholders’ expected profit increases as r increases. The 

reason is similar to that discussed for table 5.2a. Also, the corresponding ratio of 

variance when (3 is changed from 0.2 to 0.1 shows that there is a difference in the 

variance of shareholders’ expected profit for different r.
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So far the above results concerning the optimal decisions that maximize the expected 

shareholders’ profit do not include the effect of the financial incentive to surrender in 

the model. We now look at results of the analysis when this effect is considered. 

Particularly, we have assumed in our model that there is an additional financial 

incentive to surrender. It is possible that such an effect can lead to significant profit to 

the shareholders since there is a penalty charged on surrender. We set out below a 

table showing the optimized strategic decision values for various values of r. Also 

shown are the expected shareholders’ profit and standard deviation of the profit. As 

mentioned in chapter 4, we begin with the assumption that ju2x = 2. Note that the table 

below shows the optimization results where f  = 0.2.

5.4.5 Results where effect o f  financial incentive to surrender are included

r Sbasisl
( d f

Sbasis2
(d2)

Ploading
( d f

Spenalty
(d4)

E(USP) E(SP) Std(SP)

8 0.01298 0.00821 0.14436 0.08925 -0.9739 0.22409 0.05264
4 0.01297 0.00818 0.14349 0.08887 -0.9484 0.22365 0.05207

2 0.01292 0.00812 0.14214 0.08815 -0.8994 0.22292 0.05130
1 0.01288 0.00809 0.14166 0.08784 -0.8092 0.22266 0.05091
0.5 0.01283 0.00802 0.13936 0.08675 -0.6558 0.22125 0.04962

0.25 0.01270 0.00778 0.13263 0.08359 -0.4319 0.21757 0.04539

0.125 0.01267 0.00768 0.12963 0.08223 -0.1937 0.21574 0.03979

Table 5.3. Optimal decisions that maximizes expected utility of shareholders’ profit, with mean
utility and standard deviation of shareholders’ profit.

As with the results of table 5.1, we observe from table 5.3 that expected profit 

increases as r increases. This is due to the fact that more lapses are expected to occur 

since there is an additional financial incentive available to surrender. Moreover, since 

lapse rates are linked to the level of surrender penalty, it implies that more profit is 

expected on surrender. Therefore, the expected profit increases as shown in the above 

table. Further, we observe that as r increases the standard deviation of the 

shareholders’ profit increases as expected. This is similar to the results of table 5.1.

An important feature worth noting from the above strategies and the corresponding 

relative risk tolerance in table 5.3 is that, E(SP) increases as the premium loading is 

increased, and relatively low values of dx and d2 are optimal for all values of r
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examined. Further we note that the risk averse shareholders (low values of r) have a 

slight preference for more regular monitoring and changes in the surrender basis, 

while the risk tolerant shareholders have a slight preference for the upfront loading 

approach (which is clearly more risky, as the company has less ongoing or 

retrospective control) as the surrender value basis is only allowed to change less often.

5.5 Sensitivity Analysis of Model Parameter Values.

In this section we look at the effect of varying the model parameter values on the 

expected shareholders' profit. Thus, by using the base result (when r=l and 

J3 = 20% ), we calculate the expected value of shareholders profit for different values

of a particular decision variable, say jJ2], whilst the other optimal decision variables 

are kept constant. The following results are obtained.

H 21 EffeCt

By increasing the value of/ulx, we mean that the insured lives spend less time sick. 

This means that the time spent in the sick state is expected to be shorter, and so, the 

overall death rate decreases. Therefore, the amount of benefits paid on death are 

expected to be reduced, which subsequently would lead to an increase in profit. Thus, 

we look at the effect of //21 on profitability by varying the transition intensity, fi2X, 

parameter. Table 5.4 shows the results obtained. (Note that the base recovery rate is 

2.0).

jU2l Effect

fh\ E[U(SP)] E[(SP)] Std[(SP)]

J3 = 0.2 
r =1

0.5 -0.95137 0.05544 0.06477
1.0 -0.90896 0.10356 0.05072
1.5 -0.88395 0.13312 0.04264
2.0 -0.86751 0.15297 0.03971
2.5 -0.85589 0.16739 0.03374
3.0 -0.84726 0.17818 0.03103

Table 5.4. Results of E[U(SP)], E[SP], and Std[SP] for different values of /U2\ parameter.
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As expected, we observe from Table 5.4 that the expected shareholders’ profit 

increases as ¡ulx increases.

Ai 3 Ef f ect

The force of lapsation is a significant parameter in the computation of the expected 

surrender profit. Therefore, it is important that we look at its effect on company 

profitability by way of varying the parameter /uu . Table 5.5 shows the results 

obtained.

//l3 Effect

A l  3
E[U(SP)] E[(SP)] Std[(SP)]

f  = 0.2 
r = 1

0.01 -0.96721 0.03623 0.03205
0.05 -0.86751 0.15297 0.03971
0.10 -0.79432 0.24769 0.04116
0.15 -0.74840 0.31159 0.04226
0.20 -0.71439 0.36143 0.04524

Table 5.5. Result of E[U(SP)], E[SP], and Std[SP] for different values of p n

From Table 5.5, we observe that as /un increases, the expected shareholders’ profit

increases. Essentially, this is due to the fact that on average, lapses lead to profits 

since there is a surrender penalty imposed on the policy. It is worth noting that in the 

profit model, we have assumed that p u is linked to the level of surrender penalty 

imposed on the policy, (see section 4.5.7)

Life Office Initial Expenses Effect

Broadly speaking, a life insurance policy normally incurs higher expenses during the 

early stages than during the latter part of the policy. This means that changes in the 

office initial expenses may have some effect on the expected shareholders’ profit. We
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therefore look at this effect by varying the initial expense parameter. The following 

results as shown in table 5.6 are obtained.

Initial Expenses Effect

Expenses E[U(SP)] E[(SP)] Std[(SP)]

o
 

—<
II 

II

0.05 -0.85571 0.16779 0.03986
0.10 -0.86751 0.15297 0.03971
0.15 -0.87947 0.13833 0.03613
0.20 -0.89160 0.12359 0.03486
0.25 -0.90390 0.10886 0.03359
0.30 -0.91638 0.09413 0.03233

Table 5.6. Result of E[U(SP)], E[SP], and Std[SP] for different values of initial expenses

From table 5.6, we observe that the expected shareholders profit decreases with 

increasing initial expenses as expected - the so call “front end” loading effect.

Effect o f Yield Curve Slope on Model

We look at effect of the slope of yield curve on profitability of a company by 

considering a yield curve of positive and negative slope as discussed in chapter 4.

(See figures 4.3 and 4.4). In this case, we consider the case where 5° > 5t as assumed 

in the profit model. Table 5.7 below shows the results obtained.

cr=10%

Difference in Payout: % > s,

Slope of Yield curve : Negative Positive

E(SP) : 0.15297 0.11925

Std(profit) : 0.03971 0.04801

Table 5.7. Result of E[U(SP)], E[SP], and Std[SP] for slope of Yield Curve
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We observe that the expected shareholders’ profit decreases as the slope of initial 

yield curve increases for 8, > 5t . The results are not surprising because an increase in 

the slope of the yield curve only affects the amount of assets which need to be sold to 

cover the surrender values to be paid at time t. So, an increase in the yield on the 

assets implies that, for a fixed lapse rate, the expected profit will decrease. Also, the 

result is partly due to the fact that the assumed surrender basis is paying out more on 

surrender than the returns on the investment model ( 5 > A,). Therefore, the expected 

profit is affected by the slope of initial yield curve. It is important to note that this 

result is consistent with that of chapter 4, section 4.7.3 where the expected loss 

increases with the increase in the slope of the yield curve.

Effect o f Relative payout on model.

From the above analysis performed so far, we note that the profit model assumes that 

the surrender basis that pays out values which are somewhat higher than the return on 

the proposed investment model, (i.e., 8* > St ). We therefore consider the case where 

the assumed surrender bases rather pays out values which are somewhat lower than 

the return on our investment model (i.e., <5/ < 8t ). The results obtained are shown 

below.

The above-mentioned scenario can enable us to determine the effect of either 

¿>(0) =0.071 andS(0) =0.065 (i.e., S, >8t ) or =0.071 and £(O)=0.07 (8, < S f  on

the expected profit model. Table 5.8 shows the results obtained when both 8, < S, 

and 8* > S' are considered. In this case a yield curve of negative slope, similar to that 

of chapter 4 is used, for consistency.

Slope of Yield curve : Negative

Difference in Payout: 8, > S, 8, < A,

E(Profit): 0.15297 0.13503

Std(profit) : 0.03971 0.04007

Table 5.8. Result of E[U(SP)], E[SP], and Std[SP] for different mode of payment
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We observe that the expected profit decreases relatively when we change the 

assumption of 8 st > St to S, < 8,. This is as expected because we have assumed in

the model that there is financial incentive to surrender the policy, coupled with the 

fact that a yield curve of negative slope is used. This means that for an increased force 

of interest, we need to redeem a greater amount of assets to cover the surrender value 

at t. Hence a smaller expected profit is obtained.

We notice that the standard deviation of profit increases when we change the 

assumption of 8( > 8, to 8( < St . This is due to the fact that we have introduced 

more variation in the stochastic model by increasing the value of ¿>(0). It is worth 

mentioning that this result is also consistent with that of chapter 4 where the expected 

loss relatively increases when we consider the above assumptions of 8? > 8, and

S't <St .

Effect o f changing the standard deviation, a , o f the Stochastic yield model (when

s ; > 8 t)

Now, we look at the effect of varying the standard deviation parameter of the 

stochastic gilt yield model on the expected surrender profit/loss. Here, for fixed 

«(strength of auto-regression) we consider different values of cr. Table 5.9a below 

shows the results obtained. Note that 8 st > 8t in this case.

Volatility Effect

cr E[U(SP)] E[(SP)] Std[(SP)]

P = 0.2 
r =1

0.05 -0.86163 0.15996 0.01926
0.10 -0.86751 0.15297 0.03971
0.15 -0.87758 0.14170 0.05949
0.20 -0.89405 0.12412 0.09124
0.25 -0.92342 0.09644 0.14568

Table 5.9a. Result of E[U(SP)], E[SP], and Std[SP] for different values of cr when 8( > 8t .
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We observe that, as the standard deviation of the yield model increases, the expected 

profit decreases. The reason for this is that an increase in volatility implies that there 

is more uncertainty in the nominal amount function; which in turn affects the amount 

of assets which need to be redeemed to cover a surrender value at time t. Therefore, 

for a fixed lapse rate, coupled with the fact that the surrender basis pays more than the 

return on assets, the expected profit is likely to decrease as observed. This means that 

the results of the profit model are sensitive to the standard deviation of the gilt model.

Here too, the result is consistent with that of chapter 4 where the expected loss 

increases as standard deviation of the yield model increases. However, we observe 

that the option value increases as volatility increases in the case of Albizzati and 

Geman (1994). This is consistent with our results.

Effect o f changing the standard deviation, a , o f the Stochastic yield model (when

s; <§,)

Following the discussion of sensitivity of cr for 8( > 8,, we look at the effect of cr 

when 8 st < 8t . Table 5.9b shows the results obtained.

Volatility Effect

cr E[U(SP)] E[(SP)] Std[(SP)]

P = 0.2 
r = 1

0.05 -0.88678 0.15559 0.02109
0.10 -0.89181 0.14876 0.04128
0.15 -0.90103 0.13652 0.06626
0.20 -0.91655 0.11691 0.10245
0.25 -0.94484 0.08508 0.16527

T a b le  5 .9 b . R e s u lt  o f  E [U (S P ) ] ,  E [S P ] , a n d  S td [S P ]  fo r  d if f e r e n t  v a lu e s  o f  cr w h e n  8( < 8t .

Tike the results of table 5.9a, we observe that the expected present value of 

shareholders’ profit decreases as the standard deviation in the gilt model increases. 

This is for reasons similar to those discussed for table 5.9a. However, we observe that 

the expected shareholders’ profit in table 5.9a is somewhat greater than that obtained
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here whereas the corresponding standard deviation is less than that obtained here. 

This is probably due to the fact that the surrender basis this time pays less than the 

return on the assets. Further, since S* < 8,, a greater amount of assets need to be sold 

to cover the surrender values at time t. Hence, the expected shareholders’ profit 

decreases.

Effect o f New Contract fees on Expected Profit/Loss

For most life insurance contracts, there is a fee charged whenever a new contract is 

initiated. Broadly speaking, we believe that charging higher contract management fees 

is likely to discourage policyholders from lapsing. Thus, we look at the effect of new 

contract management fees on expected surrender profit/loss by varying this parameter. 

The results are shown in table 5.10.

Management fee effect

<P E[U(SP)] E[(SP)] Std[(SP)]

ß  = 0.2 
r = 1

0.10 -0.80191 0.21047 0.03855
0.15 -0.80494 0.20687 0.03836
0.20 -0.80784 0.20345 0.03817
0.25 -0.81061 0.20019 0.03799

Table 5.10. Result ofE[U(SP)] , E[SP], and Std[SP] for different values of new contract fees

In this case, the expected profit due to surrender decreases when we increase the 

management fee for initiating a new contract, <p. Increasing cp implies that the 

financial incentive available for lapsing has reduced. So, we expect the rate at which 

policyholders lapse their policies to decrease. This in turn implies that the expected 

profit due to surrender decreases as observed.
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5.6 Effect of using inappropriate decision strategies on Expected 

Shareholders’ Profit

We have shown in section 5.5 that the expected shareholders’ profit is affected by 

changes in some of the model parameter values. Now, suppose that our initial 

assumptions used in the optimization procedure are different from the experience in 

the real world. Then in that case our strategies too will differ and the expected profit 

will also be affected.

In this section, we look at the extent to which the strategies have changed and how 

much profit/loss is gained/lost by using the wrong strategies. One way to achieve this 

is to re-optimize the optimization problem in question at the new assumptions 

considered below (supposed real world value). The difference in profit/loss amount 

due to the old and new assumptions would then show how much would be gained or 

lost. On the other hand, the difference in profit between the actual experience and that 

of using the optimal strategic values based on the new assumptions leads to a 

profit/loss on using the wrong decision. Note that the profit due to the actual 

experience is the profit obtained by re-running the simulation with our new 

assumption as a new variable while maintaining the optimal decision values obtained. 

The initial assumptions and the supposed real world values are assumed to be as 

follows:

• /3 changed from 20% to 10%. ( J3 is a loading factor by which the office initial 

loading equals to the market loading)

• Recovery rate changed from 2 to 1

• Tapse rate changed from 5% to 10%

• New contract management fees changed from 5% to 10%

We shall consider the effect from each assumption separately. It is important to note 

that in the discussions to follow, we consider only the case r =1. This is because we 

are interested in how the shareholders’ expected profit is affected by using 

inappropriate strategies for the case where the shareholders have an intermediate level 

of risk aversion.
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Results due to 3  effect

In this example, when we assume that J3 = 0.2, (used in the new business model) the 

expected profit is 0.1530 and the optimal decision parameters are as follows: for r=l, 

dx = 0.0150; d2 = 0.0111; d3 = 0.1264; and dA = 0.2200.

Now, suppose from experience, that the actual value of /? = 0.1, for which the actual 

profit is 0.15485. Note that the actual profit of using ¡3 = 0.1 is obtained by re-running 

the simulation with J3 = 0.1 as a new variable while maintaining the optimal decision 

values obtained. Therefore, there is a profit of 0.15485-0.1530 = 0.00185. Further, if 

we had known /3 = 0.1, then we would have chosen the following strategies:

for r—1, d] = 0.0105; d2 = 0.0068; d3 =0.0427; and dA = 0.0938 (i.e., optimized value 

obtained by using ¡3 = 0.1) with expected profit equal 0.0994. Hence, the expected 

loss arising from using the incorrect decision is 0.0994-0.15485 = 0.05545.

Results due to un effect

In this example, when we assume that //13 =5%, the expected profit is 0.1530 and the 

optimal decision parameters are as follows: for r=l, dx = 0.0150; and d2 = 0.0111; 

d3 = 0.1265; and d4 = 0.2200.

Suppose from experience, the actual value of/^13=10%, for which the actual profit is 

0.2477. Therefore, there is a profit of 0.2477-0.1530 = 0.0947.

Further, if we had known //13 =10%, then we would have chosen the following 

strategies:

for r=l, dx = 0.0149; d2= 0.0109; d3 = 0.1235; and d4 = 0.2138 (i.e., optimized 

values obtained by using juu = 10%) with expected profit equal 0.2445. Hence, the 

expected loss arising from using the wrong decision is 0.2445-0.2477 = 0.0032.

Results due to u2] effect

In this example, when we assume that ju2x = 2, the expected profit is 0.1530 and the 

optimal decision parameters are as follows: For r=l, dx = 0.0150; d2 =0.0111; d3 = 

0.1264; and d4 = 0.2200.
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Suppose from experience, the actual value of ¡u2] = 1, for which the actual profit is 

0.1036. Therefore, there is a loss of 0.1530-0.1036 = 0.0494.

Further, if we had known /u2, =1, then we would have chosen the following strategies: 

for r=l, dx = 0.0162-, d2 = 0.0133; d2 = 0.1559; and d4 = 0.2829. (i.e., optimized 

values obtained by usings, =1) with expected profit equal 0.1236. Hence, the 

expected profit arising from using the wrong decision is 0.1236-0.1036 = 0.0200.

Results due to new contract management fees, (p effect

In this example, when we assume that, <p= 5%, the expected profit is 0.2227 and the 

optimal decision parameters are as follows: for r=l, dx = 0.0129; d2 = 0.00809. d2 = 

0.0878; and d4= 0.1417.

Suppose from experience, the actual value ofcp = 10%, for which the actual profit is 

0.21047. Therefore, there is a loss of 0.2227-0.2105 = 0.0122.

Further, if we had known (£> = 10%, then we would have chosen the following 

strategies:

for r=l, dx = 0.0129; d2 = 0.00810; d2 = 0.0879; and d4 = 0.1469 (i.e., optimized 

values obtained by using fux2 =10%) with expected profit equal 0.21847 Hence, the 

expected profit arising from using the wrong decision is 0.21847-0.21047 = 0.0080.

From the above results, we observe that making a wrong decision on the basis of a 

wrong assumption about the loading factor has an effect on the expected shareholders’ 

profit. Thus, there is an expected loss of about 5% from using the incorrect decision in 

this case. This result is probably due to the fact that if a higher value of ¡3 is assumed 

instead of a relatively lower one, then we need to impose a higher loading than 

expected and so this could lead to higher expected profit than anticipated, as 

explained before.

Also, there is an expected loss arising from making a wrong decision based on the 

lapse rate assumption (i.e., assumed a lapse rate of 5% instead of 10%). Thus, there is 

an expected loss of about 0.3% from using the incorrect decision in this case. The 

result is probably due to the fact that a higher lapse rate could lead to a higher
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expected profit and vice versa since a surrender penalty is linked to lapse rate, as 

mentioned before.

On the other hand, there is a small expected profit arising from making a wrong 

decision based on the //21 assumption (i.e., assumed a higher value of the recovery rate 

(ju2]= 2) instead of a lower one (//2]=1)). Thus, there is an expected profit of about 

2% from using the incorrect decision in this case This is probably due to the fact that 

less benefit is expected to be paid on death since the individuals spend less time sick 

than expected.

Lastly, there is also a small expected profit on making a wrong decision based on the 

new contract management fees assumption (i.e., assuming a fee of 5% instead of 

10%). Thus, there is an expected profit of about 0.8% from using the incorrect 

decision in this case. This is probably due to the fact that assuming a lower value of (p 

increases the financial incentive available for lapsing. Hence, we expect a profit from 

higher/more lapses than expected, since the surrender penalty is linked to lapse rate.

From above results, we can say that the expected shareholders’ profit will be affected 

by using the incorrect strategies. The main conclusions are given in the next chapter.

2 0 7



Chapter 6

Conclusions and Future Work

6.1 Overview and Main Results

In this thesis, we have applied numerical optimization routines to determine optimal 

strategic decisions that maximize the shareholders’ expected present value of profit. It 

links the approaches of utility theory and mean-variance analysis in obtaining 

numerical solutions (optimal values). In addition, we have developed a profit/loss 

model that can be used by actuaries to determine the cost of the surrender option 

arising from the effects of financial and non-fmancial adverse selection. Further, the 

strategies that have been developed can enable insurers to involve policyholders in 

sharing the above cost (due to surrender at times which are favourable to the 

policyholder).

In view of the fact that the strategic decisions are considered in the context of utility 

theory, the results of the analysis have been shown to be similar to those of modern 

portfolio theory, Markovitz (1952). The results are computed by using stochastic 

simulation techniques and numerical optimization routines. We have decided on this 

technique in order to show greater realism in the decision models used. Before we 

discuss the main results of this thesis, we shall briefly review the main concepts and 

results of the previous chapters.

In chapter 1, we have asserted that not all insureds will surrender the policy for 

financial gains. Rather, the risk level of the insured has a certain degree of influence 

over one’s perception of when to exercise the option to surrender the existing policy.
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Chapter 2 looked at the effect of life insurance payouts on lapse rates in the U.K. In 

this chapter, we have developed a model of lapse rate that takes into account the 

number of policies exposed to risk of lapsing in the year leading up to the rth policy 

anniversary (=curtate duration r-l). Statistical analysis of lapse rate and payout 

variables revealed that:

a) Companies that pay out higher surrender values (SV) to surrendering 

policyholders also pay higher maturity values (MV) to continuing policyholders, 

indicating that the surrendering policyholders are not relatively better off than 

those that hold on to the policy till maturity. Furthermore, analysis of the ratio 

of SV:MV over the years of 1986-1994 and 1986-1991 supports the hypothesis 

that companies were paying out more SVs to surrendering policyholders than to 

those that stayed on to receive maturity benefits.

b) Lower values of MV and SV (relative to average market value) are accompanied 

by higher lapse rates. Therefore, we can say that policyholders tend to surrender 

their policies when they perceive poor value for money.

c) Further, we have shown that higher SVs relative to the average market value are 

not accompanied by high lapse rate- suggesting that policyholders do not 

surrender on the basis of the surrender value offered by the policy.

d) Cash surrender values are utilized by policyholders as an “emergency fund” to 

be drawn from in times of personal financial crisis (as in Outreville (1990)).

In chapter 3, we have proposed a stochastic investment model corresponding to the 

office’s liability. In particular, we have used the Wilkie (1995) model of gilts at time 

t, with mean gilt yield replaced by our proposed surrender force of interest, 5 *. This

is equal to redemption yield at 27/5/98 of a ¿-year gilt. A model of S ' was obtained

by fitting a non-linear regression equation via least squares to a particular set of 

financial data for U.K gilts. The results of the simulations obtained from our proposed 

investment model are similar to Wilkie (1995). However it is important to note that 

there are other ways of describing the term structure as mentioned in Bank of England 

Quarterly Bulletin, (1990), (1991) and the financial economics literature: see for 

example Panjer et al (1998).
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In chapter 4, we have developed models of surrender profit/loss for non-participating 

life insurance policies. Particularly, we have developed a model of the expected 

surrender profit/loss in which there is no selection effect and a second model where 

the effect of financial and non-financial adverse selection are incorporated. These 

models make it possible to investigate the impact of adverse selection on expected 

surrender profit/loss at time t=n. Thus, the following conclusions are reached.

a) A small expected profit is obtained when the model considers no selection effect 

and the assumed surrender basis pays more than the returns on investment (and 

vice versa).

b) For the case where the model considers the non-financial adverse selection 

effect on surrender, the results produce an expected loss to the insurer. The 

expected loss is more significant when there is a higher lapse rate than about 

5%.

c) Interestingly, a relatively greater surrender loss is obtained when the profit 

model considers financial adverse selection effect (i.e., the model assumes that 

there is an additional financial incentive to surrender). This means that the life 

office is likely to increase its expected loss due to the financial adverse selection 

effect.

Nevertheless, we observe that the risk level of the insured affects the 

profitability of the company in spite of the financial incentive available on 

surrender. For example, we observe that the expected loss decreases when we 

assume that the individuals or lives in the system spend more time in the sick 

state. In this case, those with a higher risk level probably do not surrender 

whether there is a financial incentive or not. Therefore, the risk level of an 

insured can significantly affect the propensity to lapse (as in Jones (1998) and 

Berger (1976)). This affects the profitability of the company as observed in this 

research.

d) From the profit/loss analysis performed, we also observe that the following 

factors affect the profitability of the company:- surrender penalty, new contract 

management fees, slope of yield curve, lapse rate and recovery rate.
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In addition, we observe that whether we assume that the surrender basis pays out more 

than the returns on asset, S' > St or vice versa (i.e., S' < 5,)) also affects the 

profitability of the company. That is, the expected profit/loss decreases/increases 

when we change the surrender basis assumption from S ' > 5t to S' < 8t.

Chapter 5 discusses ways by which the management of life insurance companies can 

provide its investors (shareholders) with acceptable profiles of returns from their 

investment. In other words, we have discussed strategies that can be used to maximize 

the expected utility of shareholders' profit. Sensitivity analyses of model parameter 

values are performed and the effect on profitability of using inappropriate strategies 

has been discussed as well.

In view of the fact that a life company’s profitability is affected by financial and non 

financial adverse selection effects on surrender, we have developed strategies for the 

insurance company to involve the policyholders in sharing the cost due to surrender at 

times which are normally favourable to them, i.e., to impose a premium loading for 

this right and a surrender penalty on policies surrendered. These modifications are 

intended to reduce the number of lapses.

Further, we have proposed strategies to control the number of times the surrender 

basis is changed. These can reduce the cost involved arising from frequent changes of 

basis. The strategy is as follows:

Either

• change the surrender basis whenever the difference between the average of the 

past three years’ basis and the returns on company’s assets (past three years’ 

returns) is greater than an optimal value found.

or

• change the surrender basis whenever the difference between the average of the 

past three years’ returns on company’s assets and the corresponding basis (past 

three years’ returns) is greater than an optimal value found.

To reduce the risk of overcharging/undercharging the policyholder for the right to 

surrender the policy at times, which are favourable to him, we have introduced a



premium penalty model. This model can be used by actuaries to determine the penalty 

(expected volume lost) of charging higher/more premium loading than the market 

loading and also, the expected volume gained if we charge a lower premium loading 

relative to the market loading. The following results or/and conclusions are reached:

a) From the simulation results produced by the profit/loss model, the optimal 

strategic decision values seem to be intuitive. That is, for the case where there is 

no financial incentive to surrender, the optimal strategy is to impose a high 

premium loading, not too close to the assumed market loading and charge a 

higher surrender penalty for relatively risk tolerant investors (for r > /2). 

Therefore, this increases the corresponding shareholders’ expected profit. See 

table 5.1.

b) In the case where there is a financial incentive to surrender, the optimal strategy 

is to impose a low premium loading which is different from the market loading, 

and a low surrender penalty for all values of r. By this strategy, the volume of 

business is expected to increase and so is the shareholders’ expected profit. See 

table 5.3.

c) From the volume of new business per loading model, if the company’s loading 

is greater than the market loading, J3, then we expect the number of business to 

decrease. However, if the company’s loading is lower than the market loading, 

then we expect the number of business to increase. On this note, we have shown 

that if the market loading is increased, it is optimal to impose a higher loading 

(greater than J3) and a high surrender penalty for relatively risk tolerant 

investors. On the other hand, if J3 is decreased, it is optimal to impose a lower 

loading and surrender penalty for r < 1. See tables 5.2 and 5.2a.

d) In addition to a), b), and c), we observe that the risk averse shareholder (low 

values of r) has a slight preference for more regular monitoring and changes in 

the surrender basis, (since the surrender basis is only allowed to change less). 

However, the risk tolerant shareholders have a slight preference for the upfront 

loading approach (which is clearly more risky, as the company has less ongoing 

or retrospective control).
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It is important to note that we have shown that the results of tables 5.1 and 5.3 

are similar to those of modern portfolio theory, Markovitz (1952). That is, we 

have observed that as the relative risk tolerance increases, the expected 

shareholders’ profit increases, which is intuitive since an investor with a higher 

value of r would be expected to invest in a more risky portfolio and so, expect 

to increase his profit for increasing values of r. Further, we observe that as r 

increases the standard deviation of the shareholders’ expected profit increases, 

which is intuitive.

e) It is worth mentioning that the following model parameter variables affect the 

expected shareholders profit: lapse rate, recovery rate, initial expenses, slope of 

yield curve, and standard deviation of stochastic yield model (as in chapter 4).

f) The use of wrong strategies did have some effect on the shareholders’ expected 

profit. Thus, there is a loss on making a wrong decision based on an 

overestimate of ¡3 (i.e., assumed a higher value of ¡3 (=0.2) in the model 

instead of a lower value (= 0.1)). This result is probably due to the fact that a 

higher value of ¡3 could lead to a higher expected profit and vice versa, as 

explained before.

g) Also, there is a loss on making a wrong decision based on an overestimate of the 

lapse rate assumption (i.e., assumed a lapse rate of 5% instead of 10%). The 

result is probably due to the fact that a higher lapse rate could lead to a higher 

expected profit and vice versa, as explained before.

h) However, there is a small profit on making a wrong decision based on an 

overestimate of the recovery rate assumption (i.e., assumed a high value of 

recovery rate (//21= 2) instead of a lower one (//21=1)). This is probably due to 

the fact that less benefit is expected to be paid on death since the individuals 

spend less time sick than expected.

i) Lastly, there is a small profit on making a wrong decision based on an 

underestimate of the new contract management fees assumption (i.e., assumed a 

fee of 5% instead of 10%). This is probably due to the fact that assuming a 

lower value of ̂  increases the financial incentive available for lapsing. Hence, 

we expect a profit from higher/more lapses than expected since the surrender 

penalty is linked to lapse rate.
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6.2 Future Research

The models used are complex in an attempt to match the important features of the real 

world. However, it would clearly be possible to relax many of the assumptions or 

augment many of the features of the models. This exercise would be a trade-off 

between complexity and adherence to the real world.

This section considers useful areas for future research as possible extensions to the 

thesis:

a) In the model of expected surrender profit/loss due to selective effect, we have 

assumed a constant force of transitions between all states. It would be more 

realistic to use force of transition functions which are piecewise constant (as 

discussed by Jones (1994) and Rickayzen (1997)).

b) The model of financial disincentive, D(t) (decision criterion) used in this thesis 

is a non-decreasing piecewise function. It would be possible to assume a smooth 

continuous function based on a hazard rate function.

c) Further, it would be possible to adapt the multiple state model to include 

transitions from the healthy state to a “long term sick” state from which it is 

assumed that recovery is impossible (as in Rickayzen (1997) or Haberman and 

Pitacco (1999)) and also, to apply the methodology used in this thesis to 

different types of insurance, including with profits business, annual premiums.

d) In addition, it would be possible to consider other utility functions (as discussed 

in chapter 5) and other changes to the model (for example, a different model for 

describing the term structure of interest rates) to the model.

e) It would be possible to use Jones’ model of selective lapsation based on frailty.

f) Also, other asset models apart from the Wilkie model could be considered.

g) Finally, other performance criteria other than maximum expected utility could 

be considered.

214



References

AKG Ltd, Life Assurance- Policy Termination Rates, (1988) Securities and 
Investments Board Report.

Albizzati, M., Geman, H., (1994), Interest Rate Risk Management and Valuation of 
the Surrender Option in Life Insurance Policies, Journal o f Risk and Insurance, vol 
61, No. 4, pp616-637.

Alexander, S., (1991) Cash on Delivery, Post Magazine, pp 17-19.

Anderson, J.L., and Dow, J.B., (1948), Actuarial Statistics Vol. II. Construction o f 
Mortality and other tables, Cambridge University Press, Cambridge.

Bank of England Quarterly Bulletin, (Dec. 1982) Yield Curves for gilt-edged stocks: 
an improved model, pp 226-231.

Bank of England Quarterly Bulletin, (June 1976) Yield Curves for gilt-edged stocks: a 
further modification, pp 212-215.

Bank of England Quarterly Bulletin, (Dec. 1972) Yield Curves for gilt-edged stock, 
pp 467-486.

Bank of England Quarterly Bulletin, (Feb. 1990) A new Yield Curve model, pp 84-85.

Barnes, J.G.P., (1965), An algorithm for solving non-linear equations based on the 
secant method. The Computer Journal, Vol. 8, p.66.

Beale, E.M.L., (1988), Introduction to Optimization, John Wiley & Sons, New York.

Beard, R.E., (1959), “Appendix: Note on some mathematical mortality models”, 
CIBA Foundation Colloquia on Ageing, Vol. 5 pp. 302-311.

Belth, J.M., (1968), The Impact of Lapse Rates on Life Insurance Prices, Journal o f 
Risk and Insurance, vol. 35, ppl7-34.

Berker, D.N., (1984), Pricing for Profitability in ART, Best's Review (Life/Health 
Insurance Edition), 85 (September) 26.

Bernstein P.L., and Damodaran, A., (1998), Investment Management, John Wiley & 
Sons, New York.

Best's A.M., Insurance Management Report, (1967), Lapse Ratios on Ordinary Life 
Business, ppl-3.

Best's A.M., Insurance Management Report. (1991), Lapse Ratios on Ordinary Life 
Business, ppl-3.

2 1 5



Booth P.M., England, P. D., and Bloomfield, D.S.F., (1993), Investment Mathematics 
and Statistics, Kluwer Academic Publishers Group, U.S.A.

Booth, P.M., Haberman, S., Chadburn, R.G., Cooper, D.R., and James, D., (1999), 
Modern Actuarial Theory and Practice, Chapman and Hall/CRC Press, New York.

Booth, P.M., (1997), The Analysis of Actuarial Investment Risk, Actuarial Research 
Paper No 93, The City University, London.

Booth, P.M, and Ong, A.S.K., (1994), A Simulation-based Approach to Asset 
Allocation Decisions, Proceeding o f the 4th Actuarial Approach to Financial Risks 
International Colloquin, 1, 217-240.

Booth, P.M, Chadburn, R.G., and Ong, A.S.K (1997), Utility-Maximisation and 
Control of Solvency for Life Insurance Funds, Actuarial Research Paper No 93, The 
City University, London.

Box, M.J., (1966), A comparison of several current optimization methods and the use 
of transformations in constrained problems. Computer Journal, 9:67-77.

Box, M.J., (1965), A new method of constrained optimization and a comparison with 
other methods, Computer Journal, 8:42-52

Brent, R.P., (1973), Algorithms for Minimization without Derivatives, Prentice-Hall, 
Englewood Cliffs, N.J.

Buck, N.F., (1961), First Year Lapse Rates, 1960, Transactions o f Society o f 
Actuaries, 12, pp258-314.

Burden, R.L. and Faires, J.D., (1985), Numerical Analysis, 3rd Edition, pp. 117-129, 
Prindle, Weber and Schmidt.

Burman, J.P and White, W.R., (1972), Yield Curves for Gilt-Edged Stocks, Bank of 
England Quarterly Bulletin 12 (4).

Butler, R.A., (1994), Insurance Distribution Channel Study, Centre for Insurance and 
Investment Studies, City University Business School, pp 1-58.

Cairns A.J.G., (1997), Descriptive Bond-Yield and Forward-Rate Models for The 
British Government Securities’ Market, Report presented to the Institute o f Actuaries, 
pp53-109.

Cannon, G.E., A study of Persistency, (1948), Record o f the American Institute of 
Actuariesi  37, pp 267-282.

Chadburn, R.G., (1998), A Genetic Approach to the Modelling of Sickness Rates, 
with application to Life Insurance Risk Classification, City University Actuarial 
Research Paper Flo. 111, pp 1-17

2 1 6



Chadburn, R.G., (1998), Controlling Solvency and Maximising Policyholders returns: 
A comparison of management strategies for accumulating with-profits long term 
insurance business, Actuarial Research Paper No 115, The City University, London.

Chambers, J.M., and Hastie, T.J., (1997), Statistical Models in S, Chapman and Hall, 
London.

“Changing Times for With Profit Life Assurance” September, (1986) Planned 
Savings, pp. 21-40

Chung, Y. and Skipper, H.D., Jr., (1987), The Effect of Interest Rates on Surrender 
Values of Universal Life Policies, The Journal o f Risk and Insurance, Vol. 54, pp. 
341-347.

Clarkson, R.S., (1979) “A Mathematical Model for the Gilt-Edged Market” Journal of 
the Institute o f Actuaries, Vol. 106, pp. 85-148.

Conn, A.R., Scheinberg, K., and Toint, Ph.L., (1997), Recent progress in 
unconstrained nonlinear optimisation without derivatives, Mathematical 
Programming 79, 397-414.

Continuous Mortality Investigation Report, No 12 (1991/ Institute and Faculty o f 
Actuaries.

Cox DR and Miller HD, (1965), The Theory o f Stochastic Processes, Chapman and 
Hall.

Crombie, J.G.R., Forman, K.G., Gibbeans, P.R., Mason, D.C., Paterson, M.D., Shaw, 
P.C., Smart, M.G., Smith H., Thomson, C.G. and Thomson, R.G., (1979), An 
Investigation into the Withdrawal Experience of Ordinary Life Business, Transaction 
o f the Faculty o f Actuaries, 36, pp 262-316.

Cummins, J.D., (1975), An econometric model of the life insurance sector in the US 
economy. Lexington, MA.

Dobbie, G.M., and Wilkie, A.D., (1978), The F.T.-Actuaries Fixed Interest Indices, 
Journal o f the Institute ofActuaries\ 105, 15-26 and T.F.A. 36, 203-213.

De Boor, C.A. (1978) A practical Guide to Splines, Springer-Verlag, New York.

Dukes, J., and Macdonald, A.M., (1980), Pricing a Select and Ultimate Annual 
Renewal Term Assurance Products, Transactions o f the Society o f Actuaries, 32: 547- 
84.

“Endowment and Profits” Planned Savings, July (1994), pp. 41-50.

Feldman, K.S., (1977) “The Gilt-Edged Market Reformulated, Journal o f the Institute 
o f Actuaries, Vol. 104, pp. 227-240.

Fishburn, P.C., (1970), Utility Theory for decision making process, Wiley, London.

2 1 7



Fletcher, R., (1965), Function minimization without evaluating derivatives- a review, 
Computer Journal, 8:35-41.

Fletcher, R., and Reeves, C.M., (1964), Function minimization by conjugate 
gradients, Computer Journal, vol. 7, p. 149.

Fletcher, R., (1969), Optimization: Symposium o f the Institute o f Mathematics and Its 
Applications, Academic Press, London & New York.

Freeman, H.N., Menzies, G.F., and Ogborn, M.E, (1946), Surrender and Paid-Up 
Policy Values, Transactions o f Society o f Actuaries, pp 1-25.

Geman, H., El Karoui, N., and Rochet, J.C., (1994), Changes of Numeraire Changes 
of Probability Measure and Option Pricing, Journal o f Applied Probability, 32: 443- 
458

Geoghegan, T.J., Clarkson, R., Feldman, K., Green, S., Kitts, A., Lavecky, J., Ross, 
F., Smith, W. and Toutounchi, A. (1982), Report on the Wilkie stochastic investment 
model. Journal o f the Institute o f Actuaries, Vol. 119, ppl73-228.

Gerber, H.U. and Pafumi, G., (1999), Utility Functions: From Risk Theory to Finance, 
North American Actuarial Journal, Vol. 2, Number 3, pp 74-100.

Gill, P.E., Murray, W., and Wright, M.H., (1981), Practical Optimization, (Academic 
Press, London and New York).

Haberman, S., and Renshaw, A.E., (1987) Statistical Analysis of Life Assurance 
Lapses, Journal o f Institute o f Actuaries, Vol. 113 pt3, pp459-497.

Haberman, S., (1995), HIV, AIDS, Markov Chains and Health and Disability 
Insurance. Journal o f Actuarial Practice, 3, 51-75.

Haberman, S, and Pitacco, E., (1999), Actuarial Models for Disability Insurance, 
Chapman and Hall/CRC Press, New York.

Hayward, R.E., (1957), Note on Industrial Assurance Lapse Rates, Transaction of 
Faculty o f Actuaries, 19, pp 255-256.

Huber, P. (1995). A review of Wilkie’s stochastic investment model. Actuarial 
research No. 70, City University, London.

Jones B. J. (1994), Actuarial Calculations Using a Markov Model, Transaction o f 
Society o f Actuaries, 46, 227-250.

Jones, B.L., (1998), A Model for Analysing the Impact of Selective Lapsation on 
Mortality, North America Actuarial Journal, Vol. 2. No. 1, pp 79-86

Kitts, A. (1990). Comments on a model of retail price inflation, Journal o f the Institute 
o f Actuaries, 117, 407.

2 1 8



Kroll, Y., Levy, H. and Markowitz, H.M, (1984), Journal o f Finance, 39: 47-62.

Le Grys, D.J., (1987), The Financial Management of a Developing Life Office, (UK 
:Munich Reinsurance Company).

Life Insurance fact Book (1967), pp 48.

Linda Drake, Planned Savings, 1991.

Linton, M.A., (1932), Panics and Cash Values. Transactions o f the Actuarial Society 
o f America, 33, 265-394.

Lumsden, I. C., (1992), Surrenders, Alterations and Other Options, Life Assurance 
Monographs, pp 1-85.

Macdonald A.S., (1997), How will improved forecasts of individual lifetimes affect 
underwriting? Philosophical Transactions o f the Royal Society o f London, Series B, 
352,1067-1075

Margrabe, W., (1978), The Value of an Option to Exchange One Asset for Another, 
Journal o f Finance, vol. 33, pp 177-186.

Markovitz, H., (1952), Portfolio Selection, Journal o f Finance, 7:77-91.

Marshall, J.B., (1954) “British Government Securities”, Transactions o f the Faculty o f 
Actuaries, Vol.22, pp. 19-35

Mastronikola, K. (1991) “Yield Curves for Gilt-Edged Stocks: A new Model” Bank of 
England Discussions Paper, Technical Series.

McCutcheon J.J., and Scott W.F., (1986), An Introduction to The Mathematics of 
Finance, Heinemann Professional Publishing.

McCutcheon, J.J., (1981) “Some Remarks on Splines”, Transactions o f the Faculty of 
Actuaries, Vol.37, pp. 421-438.

McLeod, H.D. (1990)”Development of a Market Yield Curve-The South African 
Solution” Actuarial Approach for Financial Risksi Preceedings o f the 1st 
International AF1R Colloquium, Paris, Vol. 2, pp. 196-212.

Microsoft Visual Basic, User’s Manual, Division of MathSoft, Inc., Seattle, 
Washington.

Nash, J., (1979). Compact Numerical Methods for Computers-linear algebra and 
function minimization. (Bristol: Hilger).

Norberg R (1988), Select Mortality: possible explanations, Transactions o f the 
International Congress o f Actuaries, 3, 215-223.

2 1 9



Ong, A.S.K., (1994), A Stochastic Model for Treasury-Bills: An Extension to 
Wilkie’s Model, City University Actuarial Research Paper No. 68, pp 1-12.

Ong, A.S.K., (1995), Asset Allocation Decision Models in Life Insurance, PhD thesis, 
The City University, London.

Outreville, F., (1990), Whole-Life Insurance Lapse Rates and Emergency Fund 
Hypothesis, Insurance Mathematics and Economics, vol. 9, pp 249-255.

Panjer et al (1998), Financial Economics: With Applications to Investment, Insurance 
and Pension, Actuarial foundation, Schaumburg.

Pedersen, J.S., and Ramlau-Hansen, H., (1994), Surrender Charges in Life Insurance, 
Institute o f Insurance and Pension Research,, pp 1-15.

Pepper, G.T., (1964) “Selection and Maintenance of a Gilt-Edged Portfolio” Journal 
o f the Institute o f Actuaries, Vol. 90, pp. 84-89.

Pipe, P (1990), Going,Going, Gone, Insurance Age, pp 48-49

Powell, M.J.D., (1964), An efficient method for finding the minimum of a function of 
several variables without calculating derivatives, Computer Journal, 7:155-162.

Powell, M.J.D., (1965), An method for minimizing a sum of squares of non-linear 
functions without calculating derivatives, The Computer Journal, 7 Vol. 303.

Powell, M.J.D., (1975), A view of unconstrained minimization algorithms that do not 
require derivatives, ACM Transactions on Mathematical Software, Vol 1, No.2

Pratt, J., (1964). Risk Aversion in small and large. Econometrica, 32: 122-136.

Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. (1992). Numerical Recipes 
in C: The Art o f Scientific Computing, Second Edition (Cambridge University Press).

Report of the Committee on Expected Experience (Individual Section), (1996), Lapse 
Experience under Lapse-Supported Policies, Canadian Institute o f Actuaries, ppl-21.

“Return of the Early Surrender” Planned Savings, 1995, pp 47-54.

Richardson, C.F.B., and Hartwell, J.M., (1951), Lapse Rates, Transactions o f Society 
o f Actuaries, 3, pp338-396.

Rickayzen, B.D., (1997), A sensitivity Analysis of the Parameters Used in a PHI 
Multiple State Model, City University Actuarial Research Paper No. 103, pp 1-18.

Ross, S.M., (1996), Stochastic Processes (John Wiley and sons, New York).

Sarma, K.P., (1987), Lapses and Surrenders of Life Insurance Policies, National 
Insurance Academy, pp 1 -49.

2 2 0



Scales, L.E., (1985), Introduction to Non-Linear Optimization, (Macmillan Publishers 
Ltd. London).

Scobbie, A and Patrick F.D., (1969), Some Aspect of Withdrawals in Ordinary Life 
Business, Transaction o f the Faculty o f Actuaries, 31(231), pp 53-119.

Shapiro, R.D., and Snyder, J.B., (1981), Mortality expectations under Renewable 
Term Insurance Products, Proceedings o f the Conference o f Actuaries in Public 
Practice, 1980-1981: 592-614.

Sharp, K.P., (1996), Lapses, Terminations, CIA Valuation Technique, Paper No.l and 
NAIC Regulation XXX, Institute o f Insurance and Pension Research Report, pp 1 -21.

Sherris, M, (1992), Portfolio Selection and Matching: a Synthesis, Journal o f the 
Institute o f Actuaries, 119:87-105.

Sprott, J.C., (1991), Numerical Recipes Routines and Examples in Basic Companion, 
(Cambridge University Press).

Sokal R.R. and Rohlf F.J, (1981), The Principles o f Statistics in Biological Research, 
W.H., Freeman and Company.

S-Plus, User’s Manual, Version 3.2, Division of MathSoft, Inc., Seattle, Washington. 
Subject A2 Core reading, 1996, Faculty and Institute of Actuaries.

Synthesis Life (1996), Thesys Information Ltd.

Thornber, F., (1984), The Alternatives to Surrendering, Insurance Mail, p30-31. 

Triola M.F, (1992), Statistics, Addison-Wesley Publishing Company.

US and Canada 13-month Ordinary Lapse Survey, (1964).

Vaupel, J.W., Manton, K.G., and Stallard, E., (1979), The impact of heterogeneity in 
individual frailty on the dynamics of mortality, Demography, Vol. 16, No.3, pp 439- 
454.

Walsh, G., (1975), Methods o f Optimisation, (Wiley, London).

Warrack B., and Keller G, (1994), Essentials o f Business Statistics, International 
Thomson Publishing.

Wilkie, A.D (1986) A Stochastic model for Actuarial Use, Transactions o f the Faculty 
o f Actuaries, Vol.39, pp. 341-403.

Wilkie, A.D (1992). Stochastic investment model for XXIst century actuaries. 
Transactions o f the 24th International Congress o f Actuaries, 5: 119-137.

221



Wilkie, A.D (1995). More on Stochastic model for Actuarial Use, British Actuarial 
Journal, 1: 777-964.

“With Profits” Planned Savings, November 1991, pp. 41-50.

“With Profits” Planned Savings, November 1989, pp. 52-57.

“With Profits” Planned Savings, November 1990, pp. 34-40.

“With Profits” Planned Savings, 1992, pp. 23-36.

“With Profits” Planned Savings, 1988, pp. 55-61.

“With Profits Life Assurance- Payouts Continue to Climb”, Planned Savings, 
September 1985, pp. 25-47.

“With Profits Life Assurance- The Investment Challenge ” Planned Savings, 
September 1984, pp. 41-50.

Wright, I.D., (1997), The Application of Stochastic Asset-Liability Modelling 
Techniques within a Pension Fund Environment, Ph.D. Thesis, Heriot Watt 
University, Edinburgh.

Wright, I.D., (1998), A Stochastic Asset Model Using Vector-Autoregression, 
Actuarial Research paper No. 108, City University, England.

Wright, I.D., (2000), A Stochastic Asset Model Using Vector-Autoregression, British 
Actuarial Journal, to appear.

2 2 2


