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Abstract

xv



Linear stability has been an important method of industrial transition predic-

tion for many years. In this time there have been a number of improvements

made, and in almost all cases an increase in physical accuracy is bought by sac-

rificing a level of simplicity. This document presents the multiple scales method

to incorporate some of the physics which has traditionally been neglected. This

too comes with a complexity penalty, but in this case the additional complexity

is in the mathematics, and not the code. This means that the end user should

not feel its presence at all.

The mathematical prerequisites (linear stability analysis, and adjoint linear

stability analysis) for the multiple scales method are presented and explained.

Validation cases are shown for each step, calculated using a novel simulation

package.

Results with a multiple scales correction are generated across a variety of test

cases, including oblique waves in a swept non-similar boundary layer. In some

cases a significant impact on amplification is observed.

xvi



Motivation

xvii



The age of heavier-than-air human flight had its humble origins in 1903 when

the Wright brothers first achieved sustained, controlled flight of their fixed wing

machine. In 2016, the International Air Transport Association reported that

the global air passenger transport industry turned over $709 billion, carrying a

total of 3.8 billion passengers[16]. This total does not include air freight, mili-

tary aircraft, and private aviation, which are themselves significant industries.

The pace of development in that time has been rapid; great advances in safety,

efficiency, and all aspects of performance have been made.

The most significant concern of the industry is now, and always will be con-

tinuing to turn a profit, although the environmental consideration has recently

become a close second place. Both of these concerns can be addressed in many

ways. Larger aircraft can sell more tickets, more efficient engines burn less fuel,

which not only saves cost, but can also extend aircraft range. Fuel efficiency

can also be tackled by utilising better airframe design. Fuselage, wings, power

plants, landing gear, and aerodynamic surfaces all have a cost not only in man-

ufacturing time and capital, but also in aerodynamic drag. If this cost could

be reduced, it would provide the same benefits as increased engine efficiency

i.e. reduced fuel cost, increased aircraft range, and reduced emissions of envi-

ronmental pollutants. To reduce drag, it must first be understood. Especially

its origins and the factors which affect this. Only then can informed decisions

on design modifications with expected beneficial outcomes be made.

In an attempt to achieve a small part that goal, this document presents a

methodology for one piece of the drag reduction puzzle; prediction of the

laminar-turbulent transition location in a boundary layer. Such information

is important to engineers engaged in aerofoil design and analysis, and this

project has the explicit goal of delivering better information on this subject in

order to inform wing design. With such information engineers can design wings

with a more beneficial transition location, and gain the benefits described.
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Chapter 1

Introduction

1



Fluid flows exist in two main regimes; laminar and turbulent. Turbulent flows are characterised

by unsteady, highly vortical, and intrinsically three-dimensional behaviour. Laminar flows are

rather simple by comparison; these flows can be steady, are not highly vortical, and in some cases

are adequately described by a simplified two-dimensional (or even occasionally, one-dimensional)

problem.

Laminar-turbulent transition (or just transition), the subject of this thesis, is the set of processes by

which a laminar flow becomes turbulent. As a field of study it is of immense interest since laminar

flows, though often difficult to maintain, offer a significant skin friction drag benefit compared to

their turbulent counterparts. Turbulent flows however, are more resilient to flow separation, and

often offer a form drag benefit. This is demonstrated in a highly accessible way by the example

of rough golf balls versus smooth. Achenbach and Heinecke [1] give a good explanation of this

phenomenon. Given these facts, it would therefore be very useful to know precisely when a given

flow is likely to transition, or better yet, to design structures that control it.

The field of turbulence originated in the late nineteenth century with the experiments of Osborne

Reynolds, who famously demonstrated transition from “direct” (laminar) to “sinuous” (turbulent)

flow using streams of dye in a water filled tube [28]. In this paper he showed that the onset

of turbulence could be related to a certain dimensionless parameter composed of flow variables.

This is now known as Reynolds Number. Rayleigh was another key figure in the early history of

the field. He demonstrated analytically that for an inviscid flow, it is a necessary and sufficient

condition for transition, that the flow velocity profile have at least one point of inflection [27]. His

results were somewhat unintuitive, as there are well known flows whose profiles are not inflectional,

but which do transition. In fact, Reynolds’ pipe flow was one of these. The instability of these

flows was thereafter attributed to viscosity, previously thought to be an entirely stabilising factor.

William McFadden Orr and Arnold Sommerfeld provided another significant insight by considering

the stability of viscous flows [25, 36], deriving for the first time the equation which bears their

names.

In 1915 Taylor hinted that viscous effects could indeed be the source of instability [38], and in

1921 Prantdl [26] agreed. These theories suggested that at a critical Reynolds number, the flow

regime would almost instantaneously switch from laminar to turbulent. This was not observed.

Papers by Tollmien and Schlichting in the late 1920s and 1930s [31, 39] set the framework for

linear stability theory, predicting the instability of unstable convective waves which are named for
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them (TS waves). It wasn’t until the experiments of Schubauer and Skramstad [34] that the theory

became widely accepted. They were able to show experimentally, for the first time, the growing

TS waves.

In 1956 two papers were published; one by Van Ingen, and one by Smith and Gamberoni [40, 35]

which quite independently developed the same method for utilising the results from linear stability

theory (LST). LST gives an amplification rate of a particular wave at a particular location; what

it does not give is the precise amplitude of said wave. In fact such waves cannot even be measured

in real world situations since at the point of receptivity their amplitude is in general too small. If

the initial amplitude was known, the amplitude anywhere could be determined using the growth

rate, and this could be correlated with likelihood of transition. Van Ingen, Smith, and Gamberoni

do not quite give us this answer, but one which for engineering purposes, is close enough. They

realised that the integral of growth rate between two points along the path a wave travels will

give the total amplification ratio between those same points. It was determined that TS waves

would begin to transition where this value was around e9, and this method was aptly named the

e9 method. Of course it was not so simple, and by 1965 Van Ingen had published a database

which made allowances for varying free stream turbulence levels. This made it possible to relate

the free stream turbulence level to some new amplification ratio, eN , where transition would now

be expected. This method, now called the eN or N-factor method is still widely in use, although

many alternative databases of correlations have since been published.

Linear stability primarily consists of two complementary theories; the temporal theory, which

deals with disturbances growing in time, and spatial theory, where the disturbances grow in space.

Much of the early computational work dealt with the temporal theory, as it results in a slightly

easier formulation to solve. However, spatial theory more accurately reflects the situation in real

world applications, such as aerofoils. Gaster, in 1962 [11] published his often cited note on the

relation between the two theories. The present work is concerned mostly with the spatial theory,

although the solution methodology adopted can very easily be applied to temporal. Much of LST

is summarised by Mack in AGARD-R-709 [20].

LST is effective at predicting the behaviour of TS waves in their region of linear amplification.

However, this is not the only mechanism which can lead to transition. In swept wings, for example,

crossflow (CF) [7, 5]vortices typically dominate, and quickly become non-linear. Even on unswept
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wings, the non-linear interactions of TS waves cause the eventual breakdown. LST, as the name

suggests, does not predict these cases accurately.

Of course as computational power has increased, more sophisticated approaches have become

available. The parabolized stability equations (PSEs) which are summarised by Herbert [15] achieve

better agreement with experimental data than LST. It can take into account non-parallel and non-

linear effects. The penalty for accuracy, as ever, is cost; PSEs are solved as partial differential

equations (PDEs), compared to LST, which uses ordinary differential equations (ODEs). Even

more complex methods can be used: bi-global and tri-global stability or even DNS. Even though

these represent more flow physics and achieve greater accuracy, their cost is so great that they are

an unrealistic prospect for industrial use. PSEs therefore can be regarded as the state of the art,

at least from the industrial point of view. PSEs however, are not wholly superior to LST. Apart

from the additional complexity, there is also a certain restriction in the approach which comes with

treating the problem as non-local. If more resolution is required, for example upstream near the

point of neutral stability, the LST practitioner simply computes another base flow velocity profile

at the point required, then calculates the stability. PSEs on the other hand would require the

entire problem be recalculated with a finer grid.

It is the goal of this project to investigate the mathematics capable of driving a simulation tool

with the approximate accuracy of PSE, but with the speed and flexibility of LST.

In Chapter 2 the field of linear stability is discussed and several key equations are derived. These

are the Orr-Sommerfeld equation, which describes the 2D linear stability problem and the primitive

variable equations, which describe the 3D linear stability problem. The equivalence is also shown

between these two formulations, and their application is discussed. Some calculations are presented

here and comparisons are drawn with the literature. These results give an eigenvalue/vector pair,

which give the full growth rate in linear stability. It is intended that this chapter give a full

overview of the typical transition toolchain, but it must be kept in mind that this analysis is also

the first prerequisite for the multiple scales approach.

Non-parallel theory is discussed later in Chapter 4. In mathematical terms this gives the first order

term in an infinite series solution (where linear theory gave the zeroth order term). Practically

speaking it returns some physics to the problem which was simplified away in LST, specifically

that the boundary layer grows moving downstream, and that the structure of the instability also
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changes in space. This chapter also presents some calculations and comparisons using the newly

upgraded toolchain.

There are certain mathematical techniques required to apply the method of multiple scales. Partic-

ular attention is given to adjoints, and these are discussed in Chapter 3. The adjoint formulations

for several model problems are derived, these are used as stepping stones towards the adjoint for-

mulation of the linear stability problem. The equivalence between the adjoint Orr-Sommerfeld

equation, and the adjoint primitive variable system, is shown; a very important result for the pur-

poses of code validation. Here again some results are presented, along with existing values from the

literature. The adjoint eigenfunction combined with the LST eigenpair, comprise the eigentriplet

necessary to calculate the multiple scales correction.

In Chapter 5 details are given on the various numerical methods used to solve the systems that

have been developed. Solution methods for ordinary differential equations (ODE) are discussed,

as are methods for working with linear systems.

In Chapter 6 some details of code development are discussed, including a brief overview of the data

structures used, and the solutions to a few particular challenges:

• Making sense of a higher-dimensional parameter space

• Dealing with numerical methods with a limited radius of convergence

• Making sure that the final code is safe and where possible only presents the expected be-

haviours 1

Chapter 7 summarises the findings of the work. Some next steps which could be taken in this field

of study are also suggested. Comments are made here on the potential utility of these steps, and

advice on how to tackle them is given.

1As will be shown, occasionally it is necessary to turn these safety features off.
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Chapter 2

Linear Stability Theory and

Transition Analysis for Parallel

Flows
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2.1 Paths to transition

There are several processes which incite laminar boundary layer flows to become turbulent and

each pathway may contain many steps. Morkovin [23] summarised:

Figure 2.1: Paths to transition

His diagram attempts to map all the steps for every potential transition path. Moving from left

to right, the intensity of the initial disturbance grows. Route A for example refers to very small

amplitude disturbances such as the vortices in the upper atmosphere, whereas route E could deal

with the impinging flow on a supersonic turbine blade tip. These have quite different mechanisms

and physics involved, and also different applications; the vortices in the upper atmosphere, for

example, have a strong influence on the flow regime over the wings of aircraft at cruise conditions.

Receptivity refers to disturbances entering the boundary layer [22]. This is very sensitive to the

wall roughness and also the free stream turbulence levels. Primary modes usually appear as TS

waves on unswept wings, CF vortices on swept wings and Görtler vortices on concave surfaces. On

a swept wing the spanwise pressure gradient bends the inviscid streamline resulting in a crossflow
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component, whose profile is inflexional, which as shown by Rayleigh [27], makes it unstable. These

primary modes tend to have very small magnitude initially, but may grow. In this case, the primary

modes may begin to interact with each other, or be significant enough to influenced the base flow.

Turbulent spots can appear, which may in turn be elongated into streaks. Eventually, these will

tend to dominate the overall flow, which will become fully turbulent. This thesis will focus mostly

on route A, where small, already present disturbances grow linearly, although breakdown will be

touched upon.
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2.2 Linear stability theory

Linear stability theory seeks solutions to an equation or set of equations which describe a simplified

version of reality, in which the following are simplifications are made:

• Boundary layer growth can be neglected, at least when considering only local effects

• Transition is caused by phenomena which behave perfectly as waves

• The magnitude of the waves is small enough that the growth process can be considered linear

The wave will be described in terms of wavenumbers and frequency. α denotes streamwise

wavenumber, β denotes spanwise wavenumber in 3D problems, and ω denotes frequency. These

tell us how many complete waves fit into a certain space, or how many will complete in a certain

time period. All of these are dimensionless, and may be complex. A complex ω signifies a temporal

stability analysis. Complex α signifies a spatial stability analysis, where waves grow in the stream-

wise direction. Complex β signifies a spatial analysis where waves grow in the spanwise direction.

A combination of these is possible, although that case will not be discussed due to its complexity,

and rarity in real world applications. With the exception of a few temporal test cases, all of the

work presented concerns complex α only.

2.2.1 The Orr-Sommerfeld equation

Fluid motion can usually be described by the Navier-Stokes equations. Here the dimensionless

incompressible 2D form is used. Here u, v are velocities in two directions (x and y), p is pressure,

t is time and Re is the Reynolds number (Re = ρUeδ
∗/µ ) based on boundary layer displacement

thickness(δ∗), air density and viscosity (ρ, µ) and edge velocity (Ue):

∂u

∂x
+ ∂v

∂y
= 0 (2.1a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ 1
Re

(
∂2u

∂x2 + ∂2u

∂y2

)
(2.1b)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+ 1
Re

(
∂2v

∂x2 + ∂2v

∂y2

)
(2.1c)

First the velocities are decomposed into base flow and fluctuating disturbance parts (u = U + ũ

etc.) Then they are linearised by subtracting the base flow equation, and neglecting products of

the disturbances. Then by assuming parallel base flow (V = 0, ∂U/∂x = 0), the perturbation
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equations are derived:

∂ũ

∂x
+ ∂ṽ

∂y
= 0 (2.2a)

∂ũ

∂t
+ U

∂ũ

∂x
+ ṽ

∂U

∂y
= −∂p̃

∂x
+ 1
Re

(
∂2ũ

∂x2 + ∂2ũ

∂y2

)
(2.2b)

∂ṽ

∂t
+ U

∂ṽ

∂x
= −∂p̃

∂y
+ 1
Re

(
∂2ṽ

∂x2 + ∂2ṽ

∂y2

)
(2.2c)

Employing the stream function (ũ = ∂ψ/∂y, ṽ = −∂ψ/∂x) means continuity will become redun-

dant, and the remaining disturbance equations become:

∂

∂t

∂ψ

∂y
+ U

∂

∂x

∂ψ

∂y
− ∂U

∂y

∂ψ

∂x
= −∂p̃

∂x
+ 1
Re

(
∂2

∂x2
∂ψ

∂y
+ ∂2

∂y2
∂ψ

∂y

)
(2.3a)

− ∂

∂t

∂ψ

∂x
− U ∂

∂x

∂ψ

∂x
= −∂p̃

∂y
+ 1
Re

(
− ∂2

∂x2
∂ψ

∂x
− ∂2

∂y2
∂ψ

∂x

)
(2.3b)

Imposing the condition that the disturbances behave like waves in the x direction, but allowing

structure in the y direction (p̂ = p̃(y)ei(αx−ωt), ψ = φ(y)ei(αx−ωt)), allows certain derivatives to be

separated:

−iωφ′ + iαUφ′ − iαU ′φ = −iαp̂+ 1
Re

(
−α2 + φ′′

)
(2.4a)

−iωφ+ α2Uφ = −p̂′ + 1
Re

(
iα3 − iαφ′′

)
(2.4b)

Taking the derivative of equation (2.4a) and substituting into equation (2.4b) permits the removal

of any terms using pressure, and results in the Orr-Sommerfeld equation:

φ′′′′ − 2α2φ′′ + α4φ = iRe (αU − ω)
(
φ′′ − α2φ

)
− iReαU ′′φ (2.5)

We apply boundary conditions to the equations which tell us that the disturbance disappears at

the wall due to no slip, and that it also disappears as wall-normal distance tends to infinity i.e.:

φ, φ′ → 0 as y →∞ (2.6a)

φ = φ′ = 0 when y = 0 (2.6b)

11



This can then be solved with any suitable ODE solution algorithm. Shooting methods are a

common choice (see § 5.2.1).

2.2.2 Squire’s transformation

In his 1933 paper [37], Squire develops an expedient method for dealing with one part of the

three-dimensional stability problem. For a problem with a three-dimensional disturbance but a

one-dimensional base flow i.e.:

ũ = ũ, ṽ = ṽ, w̃ = w̃

U = U, V = 0, W = 0

He has shown that the Orr-Sommerfeld equation can be transformed to account for the three-

dimensionality of the disturbance. In this case all that is required is to calculate an equivalent

two-dimensional disturbance wavenumber, and equivalent Reynolds number. These are done as

follows:

α2 + β2 = α2
Sq (2.7a)

Reα = ReSqαSq (2.7b)

Although this is a rather elegant formulation, its use cases are limited, and if the fully three-

dimensional case is under investigation, the method presented in § 2.2.3 will be necessary.

2.2.3 Linear stability in primitive variables

Recall the dimensionless Navier-Stokes equations, now in 3D (the incompressible formulation is

still used, although compressible flow can be treated in the same way):

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (2.8a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −∂p

∂x
+ 1
Re

(
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)
(2.8b)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −∂p

∂y
+ 1
Re

(
∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2

)
(2.8c)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −∂p

∂z
+ 1
Re

(
∂2w

∂x2 + ∂2w

∂y2 + ∂2w

∂z2

)
(2.8d)
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The disturbance equations are found in the same way as they were in § 2.2.1: by expressing the

Navier-Stokes equations as the sum of a laminar base flow and a small disturbance (u = U+ũ et.c.)

and, subtracting the base flow solution, and neglecting the products of disturbances. The parallel

flow assumption neglects wall-normal velocity, chordwise base flow derivatives, and spanwise base

flow derivatives:

∂ũ

∂x
+ ∂ṽ

∂y
+ ∂w̃

∂z
= 0 (2.9a)

∂ũ

∂t
+ U

∂ũ

∂x
+ ṽ

∂U

∂y
+W

∂ũ

∂z
= −∂p̃

∂x
+ 1
Re

(
∂2ũ

∂x2 + ∂2ũ

∂y2 + ∂2ũ

∂z2

)
(2.9b)

∂ṽ

∂t
+ U

∂ṽ

∂x
+W

∂ṽ

∂z
= −∂p̃

∂y
+ 1
Re

(
∂2ṽ

∂x2 + ∂2ṽ

∂y2 + ∂2ṽ

∂z2

)
(2.9c)

∂w̃

∂t
+ U

∂w̃

∂x
+ ṽ

∂W

∂y
+W

∂w̃

∂z
= −∂p̃

∂z
+ 1
Re

(
∂2w̃

∂x2 + ∂2w̃

∂y2 + ∂2w̃

∂z2

)
(2.9d)

Assuming the disturbance behaves like a wave in the x and z directions, but allowing structure in

y, the following substitution is made: ũ = û (y) ei(αx+βz−ωt). The same substitution applies to v,

and w. Separating the separable derivatives and division by ei(αx+βz−ωt) results in:

iαû+ v̂′ + iβŵ = 0 (2.10a)

−iωû+ iαUû+ U ′v̂ + iβWû+ iαp̂− 1
Re

(
−α2û+ û′′ − β2û

)
= 0 (2.10b)

−iωv̂ + iαUv̂ + iβWv̂ + p̂′ − 1
Re

(
−α2v̂ + v̂′′ − β2v̂

)
= 0 (2.10c)

−iωŵ + iαUŵ +W ′v̂ + iβWŵ + iβp̂− 1
Re

(
−α2ŵ + ŵ′′ − β2ŵ

)
= 0 (2.10d)

A system of first order ODEs can be created by introducing two new variables and substituting

the wall-normal (y) derivative of equation (2.10a):

τ̂u = û′ (2.11a)

τ̂w = ŵ′ (2.11b)

iαû+ v̂′ + iβŵ = 0 (2.11c)

−iωû+ iαUû+ U ′v̂ + iβWû+ iαp̂− 1
Re

(
−α2û+ τ̂ ′u − β2û

)
= 0 (2.11d)

−iωv̂ + iαUv̂ + iβWv̂ + p̂′ − 1
Re

(
−α2v̂ − iατ̂u − iβτ̂w − β2v̂

)
= 0 (2.11e)

−iωŵ + iαUŵ +W ′v̂ + iβWŵ + iβp̂− 1
Re

(
−α2ŵ + τ̂ ′w − β2ŵ

)
= 0 (2.11f)
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This system can be expressed in matrix form:

Aq̂ − q̂′ = 0 (2.12a)

A =


0 a12 0 0 ReU ′ iReα
1 0 0 0 0 0
0 0 0 a12 ReW ′ iReβ
0 0 1 0 0 0
0 −iα 0 −iβ 0 0
− iα
Re 0 − iβ

Re 0 −a12
Re 0

 (2.12b)

a12 = iRe (αU + βW − ω) +
(
α2 + β2) (2.12c)

q̂ =


τ̂u
û
τ̂w
ŵ
v̂
p̂

 (2.12d)

This system can then be solved with an appropriate numerical method. The present work uses a

compact difference method (see § 5.2.2.2) to set up a large matrix system and then a lower-upper

matrix decomposition (see § 5.3.3) to return the eigenfunction for validation.

2.2.4 Equivalence between Orr-Sommerfeld and primitive variables

The Orr-Sommerfeld equation describes the problems whose base flow are two-dimensional. The

primitive variable problem can be used to describe those with three-dimensional base flows. First

the primitive variable problem given in equations 2.10 is reduced to two dimensions, omitting any

reference to the spanwise direction:

iαû+ v̂′ = 0 (2.13a)

−iωû+ iαUû+ U ′v̂ + iαp̂− 1
Re

(
−α2û+ û′′

)
= 0 (2.13b)

−iωv̂ + iαUv̂ + p̂′ − 1
Re

(
−α2v̂ + v̂′′

)
= 0 (2.13c)

14



Next the stream function definition is employed:

ũ = ∂ψ

∂y

ûei(αx−ωt) = ∂φei(αx−ωt)

∂y

û = φ′

ṽ = −∂ψ
∂x

v̂ei(αx−ωt) = −∂φe
i(αx−ωt)

∂x

v̂ = −iαφ

These can be substituted into equation (2.13b), and equation (2.13c). Substituting these into

equation (2.13a) renders it obsolete:

−iωφ′ + iαUφ′ − iαU ′φ+ iαp̂− 1
Re

(
−α2φ′ + φ′′′

)
= 0 (2.14a)

−αωφ+ α2Uφ+ p̂′ − 1
Re

(
+iα3φ− iαφ′′

)
= 0 (2.14b)

By taking the derivative of equation (2.14a) it will now contain the term p̂′, also in equation (2.14b).

This can be used to substitute one into the other giving:

φ′′′′ − 2α2φ′′ + α4φ+ iReωφ′′ − iReαUφ′′ + iReαU ′′φ− iReα2ωφ+ iReα3Uφ = 0

And with a some manipulation it can be shown that this equation is exactly identical to the

Orr-Sommerfeld equation:

φ′′′′ − 2α2φ′′ + α4φ = iRe (αU − ω)
(
φ′′ − α2φ

)
− iReαU ′′φ

2.3 Applying linear stability theory

2.3.1 Eigenvalue problems

For whichever formulation is chosen, the answer sought is still a particular value related to the

overall structure of the problem, which is to say it is an eigenvalue problem. A spectral solution

would return every eigenvalue, but in this type of problem we are typically only interested in the

dominant one. A different type of solution will be used. In each case we shall supply a guess for

what the eigenvalue is, then calculate the eigenvectors. These represent the shape of the wave, and

their magnitude is of no consequence, however, physical knowledge of the problem can be used to
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determine where certain values should be zero. This can then be used to check whether or not the

supplied eigenvalue satisfies physics, and if it fails, it can be changed. This can be repeated until

the correct eigenvalue is found.

2.3.2 The growth rate of waves

Interpreting the results of linear stability mostly depends on the relative growth rate of the wave.

This is because often the actual amplitude is unknown, and also too small to physically measure.

The relative growth rate (sometimes labelled σ) is given by:

σ =
[

1
q̃

∂q̃

∂x

]
r

=
[

1
q̂eiΦ

∂q̂eiΦ

∂x

]
r

= [iα]r = −αi (2.15)

Where:

Φ = αx+ βz − ωt (2.16)

Here subscripts i and r refer to the real and imaginary parts. Implied here is that q̂ is unchanged

in the x direction. As will be seen in § 4.1.3.4, we will be amending this assumption; in fact

the value of 1/q̂ × ∂q̂/∂x can be very large, especially when q̂ itself is small, but its derivative is

non-zero. This difference goes some way to explaining the discrepancies observed between theory

and experiment. Nevertheless, knowing this tells us that when the imaginary part of α is zero,

the wave is neutrally stable, neither growing nor decaying. By plotting the curve traced by this

condition in the Re−ω plane, neutral curves are generated, whose perimeters bound the region in

which waves grow. As will be shown in fig. 2.6 there is an area where no waves are amplified, and

a critical Reynolds number, where the first wave begins to grow.

2.3.3 Transition prediction

A growing wave may be responsible for transition, although often this is not immediate, instead

requiring the wave to develop as it travels downstream. Using the work of Smith, Gamberoni, and

Van Ingen [40, 35] as a basis, it is known that the integral of the growth rate along the path of the

wave will relate to the transition location. Integration of the growth rate between two points will

give the total amplification ratio (N) across that distance. It can very reasonably be assumed that
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waves will not cause transition upstream of their first point of neutral stability, and therefore this

point (x0) is taken to be the lower boundary of the integral. The upper boundary can be given by

any point (xN ) where total amplification ratio is sought. i.e:

N =
∫ xN

x0

−αidx (2.17)

The total amplification ratio between any two points in known. The magnitude of the wave is

still unknown. It is prohibitively difficult to measure the waves in real world applications. Instead

databases have been compiled and published which correlate the expected transitional N to the

free stream turbulence level. Therefore, if the free stream turbulence is known, a value of N where

the boundary layer will transition can be determined. N can then be calculated all along the path

of the wave, and the location where it reaches the critical value will be the predicted transition

location. It is also possible to determine a range of N, where the boundary layer is transitional, and

above which it is fully turbulent. This comprises the N-factor method, which is widely used.

2.4 Linear stability calculations

2.4.1 Single eigenvalue search results

As a step towards verification, several temporal stability cases are presented. As a base flow these

use the boundary layer over a flat plate. They are compared with results calculated by Davey, and

given in Gaster [13]. Davey’s results are noteworthy since they were generated using an alternative

asymptotic method and should therefore provide enhanced accuracy. The Reynolds number is

calculated using Re = ρUeδ
∗/µ Good agreement is shown.

Re α ω ωDavey

500 0.3 0.119304 - 0.000280i 0.119304 - 0.000280i
1500 0.2 0.063123 + 0.003157i 0.063123 + 0.003157i
3000 0.15 0.040219 + 0.002781i 0.040219 + 0.002781i

Table 2.1: Temporal eigenvalue comparison with Davey

Spatial Blasius stability cases are compared with results provided by Gaster [10]. Once again good

agreement is shown.
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Re ω α αGaster

725 0.13 0.336890 - 0.002064i 0.336891 - 0.002063i
1000 0.125 0.338399 - 0.002205i 0.338400 - 0.002205i
1200 0.11 0.310161 - 0.005616i 0.310163 - 0.005616i
2500 0.09 0.284744 - 0.004224i 0.284747 - 0.004219i
3000 0.08 0.263735 - 0.006507i 0.263739 - 0.006502i

Table 2.2: Spatial eigenvalue comparison with Gaster
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2.4.2 Eigenfunction calculation results

Since the solution method used to find eigenvalues necessitates finding first an eigenfunction,

several of these are presented in comparison with those given by Gaster [10]. η denotes the wall

normal distance, non-dimensionalised using displacement thickness (y/δ∗). § 2.2.4 shows that the

equivalent variables should be φ′ in the OS, and û for the primitive variables. There is good

agreement in all cases.
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Figure 2.2: Eigenfunction validation of ûr for a Blasuis velocity profile with Reδ∗ = 725, ω = 0.13
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Figure 2.3: Eigenfunction validation of ûr for a Blasuis velocity profile with Reδ∗ = 1000, ω = 0.125
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Figure 2.4: Eigenfunction validation of ûr for a Blasuis velocity profile with Reδ∗ = 1200, ω = 0.11
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Figure 2.5: Eigenfunction validation of ûr for a Blasuis velocity profile with Reδ∗ = 2500, ω = 0.09
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2.4.3 Stability curves

Calculating eigenvalues for a wide range of Reynolds numbers and frequencies allows the construc-

tion of stability curves. These can be given for any growth rate, but neutral stability is particularly

useful as it shows at a single glance the boundary of the region where waves are amplified. Shown

in fig. 2.6 is a curve of neutral stability in a Blasius boundary layer given by Gaster in [14] (in

black). Superimposed is the same curve generated by the current code (shown in red). Good

agreement is observed.

Figure 2.6: Curves of neutral stability in a Blasius boundary layer
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Chapter 3

Adjoint Equations
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In § 4.1.1 the adjoint equations will be invoked in order to generate a non-parallel correction term

for the parallel linear stability equations. However it is trivial neither to formulate nor solve these.

This section describes the procedure for finding adjoint equations of various kinds, and relates some

important adjoint formulations to each other. Adjoint sensitivity is also briefly explored.

3.1 Definition of the adjoint

The adjoint of any operator L is another operator L†, such that:

〈La,b〉 =
〈
a,L†b

〉
(3.1)

Where a and b are in the same domain, and 〈·, ·〉 is an appropriately defined inner product. As

this chapter proceeds, the specific definition will emerge, and by §3.4 will be fully apparent. The

domain for the present work will be defined by the physical space between a wall and the far field,

i.e. [0;∞). The direct problem under investigation in our case (see equation (2.12)) is of the

form:

Lq̂ − ∂q̂

∂y
= 0 (3.2)

Where q̂ is a six element vector and L is a six by six matrix. Therefore, it stands to reason that

the adjoint equation will also be comprised of a matrix term and a differential term.

3.2 Adjoint of a square matrix

To begin, an appropriate inner product must be defined:

〈a,b〉 = a · b (3.3)

The choice here is the conjugate dot product, rather than just the dot product. This is because

the stability problem which will eventually be solved exists in a complex vector space, not a real

one. The definition of the adjoint for an operator L becomes:

La · b = a · L†b (3.4)

24



For an n by n matrix this expands as:


l11 l12 . . . l1n
l21 l22 . . . l2n
...

...
. . .

...
ln1 ln2 . . . lnn



a1
a2
...
an

 ·

b1
b2
...
bn

 =


a1
a2
...
an

 · L†

b1
b2
...
bn

 (3.5)

Clearly then, L† must also be a square matrix, specifically, the conjugate transpose of L. This is

demonstrated below:

〈La,b〉 =
〈
a, L†b

〉

LHS =


l11 l12 . . . l1n
l21 l22 . . . l2n
...

...
. . .

...
ln1 ln2 . . . lnn



a1
a2
...
an

 ·

b1
b2
...
bn



= b1 (l11a1 + l12a2 + . . .+ l1nan) +

b2 (l21a1 + l22a2 + . . .+ l2nan) + . . .+

bn (ln1a1 + ln2a2 + . . .+ lnnan) +

RHS =


a1
a2
...
an

 ·

l11 l21 . . . ln1
l12 l22 . . . ln2
...

...
. . .

...
l1n l2n . . . lnn



b1
b2
...
bn



= a1
(
l11b1 + l21b2 + . . .+ ln1bn

)
a2
(
l12b1 + l22b2 + . . .+ ln2bn

)
+ . . .+

an
(
l1nb1 + l2nb2 + . . .+ lnnbn

)
= LHS

3.3 Adjoint of the differential operator

To find the adjoint of a continuous operator, a different inner product more suited for the task is

needed. The choice is typically:

〈a, b〉 =
∫ ∞

0

(
a b
)
dy (3.6)
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This is analogous to that chosen in §3.2. Both can be seen as taking the sum of all products of

two functions within the bounds of the problem. Now L† is sought such that:

〈
∂a

∂y
, b

〉
=
〈
a,L†b

〉
LHS =

∫ ∞
0

(
∂a

∂y
b

)
dy

RHS =
∫ ∞

0

(
a Lb

)
dy

Integrating the LHS by parts returns:

LHS = [ab]∞0 −
∫ ∞

0

(
a
∂b

∂y

)
dy

Which means that:

L† = − ∂

∂y

This holds with the restriction that the sum of the products of a and b at the domain boundaries is

equal to zero ([ab]∞0 = 0). This will inform the setting of boundary conditions when it comes time

to solve this type of equation. In our case, derived from equation (2.12), this means that at the

boundaries the dot products of the direct and adjoint solutions should be zero, this is guaranteed

by checking which boundary values are finite in the direct solution, and setting their corresponding

value in the adjoint form to zero.
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3.4 Adjoint of a combined matrix and differential

The stability problem is formulated with a continuous and discrete part. From §3.2, and §3.3 the

adjoints of each part are known from §3.2 and §3.3. The sum of the adjoints of two operators

is the adjoint of their sum. However, it is not necessarily true that combining adjoints in such a

fashion will leave the boundary restrictions unchanged. The inner product chosen for the combined

operator takes elements from each of the two constituent parts:

〈a,b〉 =
∫ ∞

0

(
a · b

)
dy (3.7)

Once again the definition of the adjoint must be satisfied:

LHS =
∫ ∞

0

((
La + ∂a

∂y

)
· b
)
dy

=
∫ ∞

0




l11 l12 . . . l1n
l21 l22 . . . l2n
...

...
. . .

...
ln1 ln2 . . . lnn



a1
a2
...
an

+


a′1
a′2
...
a′n


 ·


b1
b2
...
bn


 dy

=
∫ ∞

0
b1 (l11a1 + l12a2 + · · ·+ l1nan + a′1) +

b2 (l21a1 + l22a2 + · · ·+ l2nan + a′2) + · · ·+

bn (ln1a1 + ln2a2 + · · ·+ lnnan + a′n) dy

=
∫ ∞

0
b1 (l11a1 + l12a2 + · · ·+ l1nan) +

b2 (l21a1 + l22a2 + · · ·+ l2nan) + · · ·+

bn (ln1a1 + ln2a2 + · · ·+ lnnan) +

b1a
′
1 + b2a

′
2 + · · ·+ bna

′
n dy
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RHS =
∫ ∞

0

(
a ·
(
LHb− ∂b

∂y

))
dy

=
∫ ∞

0



a1
a2
...
an

 ·


l11 l21 . . . ln1
l12 l22 . . . ln2
...

...
. . .

...
l1n l2n . . . lnn



b1
b2
...
bn

−

b′1
b′2
...
b′n



 dy

=
∫ ∞

0
a1
(
l11b1 + l21b2 + . . .+ ln1bn

)
− a1b′1+

a2
(
l12b1 + l22b2 + . . .+ ln2bn

)
− a2b′2 + . . .+

an
(
l1nb1 + l2nb2 + . . .+ lnnbn

)
− anb′ndy

=
∫ ∞

0
a1
(
l11b1 + l21b2 + . . .+ ln1bn

)
+

a2
(
l12b1 + l22b2 + . . .+ ln2bn

)
+ . . .+

an
(
l1nb1 + l2nb2 + . . .+ lnnbn

)
−

a1b′1 − a2b′2 − · · · − anb′n dy

By splitting the terms with differentials and integrating by parts:

=
∫ ∞

0
a1
(
l11b1 + l21b2 + . . .+ ln1bn

)
+

a2
(
l12b1 + l22b2 + . . .+ ln2bn

)
+ . . .+

an
(
l1nb1 + l2nb2 + . . .+ lnnbn

)
dy +[

a1b1 + a2b2 + · · ·+ anbn
]∞
0 −

∫ ∞
0
−a′1b1 − a′2b2 − · · · − a′nbn dy

=
∫ ∞

0
a1
(
l11b1 + l21b2 + . . .+ ln1bn

)
+

a2
(
l12b1 + l22b2 + . . .+ ln2bn

)
+ . . .+

an
(
l1nb1 + l2nb2 + . . .+ lnnbn

)
dy +[

a · b
]∞
0 +

∫ ∞
0

a′1b1 + a′2b2 + · · ·+ a′nbn dy = LHS

This holds if and only if the dot product term at the domain boundaries is equal to zero. Once

again, this information can be used to generate appropriate boundary conditions to use in the

solution of the adjoint equation.
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3.5 Adjoint Orr-Sommerfeld equation

The vast majority of the literature concerning adjoint stability uses the Orr-Sommerfeld formula-

tion. Recall equation (2.5) the Orr-Sommerfeld equation:

φ′′′′ − 2α2φ′′ + α4φ = iRe (αU − ω)
(
φ′′ − α2φ

)
− iReαU ′′φ

This can be expressed as:

[
∂4 − 2α2∂2 + α4 − iRe (αU − ω)

(
∂2 − α2)+ iReαU ′′

]
φ = 0[

∂4 − 2α2∂2 + α4 − iReαU∂2 + iReα3U + iReω∂2 − iReωα2 + iReαU ′′
]
φ = 0

LOSφ = 0

So the adjoint operator (L†OS) must satisfy:

〈
LOSφ, φ†

〉
=
〈
φ,L†OSφ

†
〉

∫ ∞
0

(
∂4 − 2α2∂2 + α4 − iReαU∂2 + iReα3U + iReω∂2 − iReωα2 + iReαU ′′

)
φ · φ†dy

=
∫ ∞

0
φ ·
(
L†OSφ†

)
dy

(3.8)

Taking the Left hand side of the equation:

LHS =
∫ ∞

0
φ′′′′ · φ†︸ ︷︷ ︸

1

− 2α2φ′′ · φ†︸ ︷︷ ︸
2

+α4φ · φ†︸ ︷︷ ︸
3

− iReαUφ′′ · φ†︸ ︷︷ ︸
4

+ iReα3Uφ · φ†︸ ︷︷ ︸
5

+ iReωφ′′ · φ†︸ ︷︷ ︸
6

− iReωα2φ · φ†︸ ︷︷ ︸
7

+ iReαU ′′φ · φ†︸ ︷︷ ︸
8

dy

Each term in LOS will have a corresponding term in L†OS , so these will be dealt with in order.

Term 1 requires integration by parts four times:

1 =
∫ ∞

0
φ′′′′ · φ†dy =

[
φ′′′ · φ†

]∞
0
−
[
φ′′ · φ†′

]∞
0

+
[
φ′ · φ†′′

]∞
0
−
[
φ · φ†′′′

]∞
0

+
∫ ∞

0
φ · φ†′′′′dy
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Term 2 only needs to be integrated by parts twice:

2 = −2α2
∫ ∞

0
φ′′ · φ†dy = −2α2

([
φ′ · φ†

]∞
0
−
[
φ · φ†′

]∞
0

+
∫ ∞

0
φ · φ†′′dy

)

Term 3 is in a suitable form already. Term 4 however is worthy of attention, since it has a factor

of U , which is a function of y:

4 = −iReα
∫ ∞

0
Uφ′′ · φ†dy

= −iReα
([
φ′ · Uφ†

]∞
0
−
[
φ ·
(
Uφ†

)′]∞
0

+
∫ ∞

0
φ ·
(
Uφ†

)′′
dy

)
= −iReα

([
φ′ · Uφ†

]∞
0
−
[
φ ·
(
U ′φ† + Uφ†′

)]∞
0

+
∫ ∞

0
φ ·
(
U ′′φ† + 2U ′φ†′ + Uφ†′′

)
dy

)

Like term 4, term 5 already has a factor of U , however, like term 3, it is already in a suitable form.

Term 6 is treated similarly to term 2:

6 = iReω

∫ ∞
0

φ′′ · φ†dy = iReω

([
φ′ · φ†

]∞
0
−
[
φ · φ†′

]∞
0

+
∫ ∞

0
φ · φ†′′dy

)

And finally terms 7 and 8, which are in the correct form without manipulation as well. Of the

square brackets, most become zero due to boundary conditions on U , φ, or φ′. Those which do not

must be made zero in another way. By setting boundary values for each daggered variable to be

equal to their undaggered counterpart, the remaining square brackets cancel each other out. The

terms can then be reassembled into :

∫ ∞
0

φ · φ†′′′′︸ ︷︷ ︸
1

+ − 2α2φ · φ†′′︸ ︷︷ ︸
2

+α4φ · φ†︸ ︷︷ ︸
3

− iReαφ ·
(
U ′′φ† + 2U ′φ†′ + Uφ†′′

)
︸ ︷︷ ︸

4

+ iReα3Uφ · φ†︸ ︷︷ ︸
5

+ iReωφ · φ†′′︸ ︷︷ ︸
6

− iReωα2φ · φ†︸ ︷︷ ︸
7

+ iReαU ′′φ · φ†︸ ︷︷ ︸
8

dy = 0

which reduces to:

∫ ∞
0
φ · φ†′′′′ + −2α2φ · φ†′′ + α4φ · φ† − 2iReU ′αφ · φ†′ − iUReαφ · φ†′′

+ iReα3Uφ · φ† + iReωφ · φ†′′ − iReωα2φ · φ†dy = 0
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This will equal the RHS if and only if:

L†OS = ∂4 − 2α2∂2 + α4 − 2iReαU ′∂ − iReαU∂′′ + iReα3U + iReω∂2 − iReα2ω (3.9)

This gives the adjoint Orr-Sommerfeld operator as used by Gaster [10] and others.

3.6 Adjoint primitive variable linear stability system

Since the primitive variable operator (equation (2.12a)) comes in the form of a matrix and a simple

derivative, the adjoint equation should not be difficult to find. The matrix should be replaced by

its complex conjugate, and the derivative should be made negative, or since the right hand side of

the equation is zero, the matrix can be made negative instead:


0 1 0 0 0 − iα

Re
a12 0 0 0 −iα 0
0 0 0 1 0 − iβ

Re
0 0 a12 0 −iβ 0

ReU ′ 0 ReW ′ 0 0 −a12
Re

iReα 0 iReβ 0 0 0





q†1
q†2
q†3
q†4
q†5
q†6

+



q†1
q†2
q†3
q†4
q†5
q†6



′

= 0 (3.10a)

−


0 1 0 0 0 − iα

Re
a12 0 0 0 −iα 0
0 0 0 1 0 − iβ

Re
0 0 a12 0 −iβ 0

ReU ′ 0 ReW ′ 0 0 −a12
Re

iReα 0 iReβ 0 0 0





q†1
q†2
q†3
q†4
q†5
q†6

−


q†1
q†2
q†3
q†4
q†5
q†6



′

= 0 (3.10b)

3.7 Equivalence between adjoints systems

In order to show equivalence between the adjoint Orr-Sommerfeld and adjoint in primitive variables

formulations; first the adjoint primitive system is first reduced to 2D:

 0 1 0 − iα
Re

a12 0 −iα 0
ReU ′ 0 0 −a12

Re
iReα 0 0 0



q†1
q†2
q†3
q†4

+


q†1
q†2
q†3
q†4


′

= 0 (3.11)
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This can be split into four equations (here, where matrix elements have not been conjugated, it is

because they are real only):

q†2 −
iα

Re
q†4 + q†1

′ = 0 (3.12a)

a12q
†
1 − iαq

†
3 + q†2

′ = 0 (3.12b)

ReU ′q†1 −
a12

Re
q†4 + q†3

′ = 0 (3.12c)

−iReαq†1 + q†4
′ = 0 (3.12d)

Now equation (3.12d) can be manipulated:

−iReαq†1 + q†4
′ = 0

q†1 = i

Reα
q†4
′

Now equation (3.12a) can be manipulated:

q†2 −
iα

Re
q†4 + q†1

′ = 0

q†2 = iα

Re
q†4 −

i

Reα
q†4
′′

And equation (3.12b):

a12q
†
1 − iαq

†
3 + q†2

′ = 0

iαq†3 = a12

(
i

Reα
q†4
′
)

+
(
iα

Re
q†4 −

i

Reα
q†4
′′
)′

q†3 = a12

Reα2 q
†
4
′ + 1

Re
q†4
′ − 1

Reα2 q
†
4
′′′

And finally equation (3.12c):

ReU ′q†1 −
a12

Re
q†4 + q†3

′ = 0

ReU ′
(

i

Reα
q†4
′
)
− a12

Re
q†4 +

(
a12

Reα2 q
†
4
′ + 1

Re
q†4
′ − 1

Reα2 q
†
4
′′′
)′

= 0

iU ′

α
q†4
′ − a12

Re
q†4 + a12

Reα2 q
†
4
′′ + a12

′

Reα2 q
†
4
′ + 1

Re
q†4
′′ − 1

Reα2 q
†
4
′′′′ = 0
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iReαU ′q†4
′ − α2a12q

†
4 + a12q

†
4
′′ + a12

′q†4
′ + α2q†4

′′ − q†4′′′′ = 0

Now using the definition of a12 from equation (2.12c) modified to make it two-dimensional:

iRe (ω − αU) + α2 = a12 (3.13a)

−iReαU ′ = a12
′ (3.13b)

These are substituted in where appropriate:

iReαU ′q†4
′−α2 (iRe (αU − ω) + α2) q†4+

(
iRe (αU − ω) + α2) q†4′′+iReαU ′q†4′+α2q†4

′′−q†4′′′′ = 0

−q†4′′′′ + 2α2q†4
′′ − α4q†4 + 2iReαU ′q†4′ + iReαUq†4

′′ − iReα3Uq†4 − iReωq
†
4
′′ + iReαωq†4 = 0

q†4
′′′′ − 2α2q†4

′′ + α4q†4 − 2iReαU ′q†4′ − iReαUq
†
4
′′ + iReα3Uq†4 + iReωq†4

′′ − iReαωq†4 = 0(
∂4 − 2α2∂2 + α4 − 2iReαU ′∂ − iReαU∂2 + iReα3U + iReω∂2 − iReαω

)
q†4 = 0

(3.14)

Compare this to the adjoint Orr-Sommerfeld operator given in equation (3.9) it can be seen that

q†4 is exactly analagous to φ†, therefore:

L†OSq
†
4 = 0 (3.15a)

α† = α (3.15b)

q̂4 in the direct system corresponds to pressure (p̂) therefore as a shorthand, q̂†4 is referred to as

‘adjoint pressure’.
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3.8 Adjoint calculations

3.8.1 Single eigenvalue search results

The simplest use case for the adjoint is as a replacement for its forward counterpart. Solving the

forward and adjoint systems results in different eigenfunctions, however the eigenvalues should be

identical. Compared now are the same two-dimensional spatial stability cases provided by Gaster

[10] shown in Chapter 2. Each of these has a Blasius velocity profile, and Reynolds number is

calculated using Re = ρUeδ
∗/µ Forward and adjoint solutions are now included. All cases show

good agreement.

Re ω α αAdj αGaster αGasterAdj

725 0.13 0.336890 - 0.002064i 0.336889 - 0.002064i 0.336891 - 0.002063i 0.336889 - 0.002065i
1000 0.125 0.338399 - 0.002205i 0.338398 - 0.002206i 0.338400 - 0.002205i 0.338399 - 0.002207i
1200 0.11 0.310161 - 0.005616i 0.310161 - 0.005616i 0.310163 - 0.005616i 0.310161 - 0.005618i
2500 0.09 0.284744 - 0.004224i 0.284743 - 0.004224i 0.284747 - 0.004219i 0.284748 - 0.004228i
3000 0.08 0.263735 - 0.006507i 0.263735 - 0.006508i 0.263739 - 0.006502i 0.263739 - 0.006512i

Table 3.1: Spatial and adjoint spatial comparison with Gaster

Good agreement between forward and adjoint methods is also seen for Blasius cases with oblique

disturbances, in these cases β = 0.1. Both calculations are completed using the novel code.

Re ω α αAdj

725 0.13 0.333086 - 0.000783i 0.333086 - 0.000783i
1000 0.125 0.334539 - 0.000621i 0.334538 - 0.000621i
1200 0.11 0.305910 - 0.004109i 0.305910 - 0.004109i
2500 0.09 0.279692 - 0.001992i 0.279692 - 0.001992i
3000 0.08 0.258261 - 0.004311i 0.258260 - 0.004312i

Table 3.2: Oblique spatial comparison, β = 0.1

Most importantly, the method can be applied to oblique disturbances in 3D boundary layers.

Shown are stability results for a Falkner-Skan-Cooke profile with β = 0.1, θwedge = 10◦, and

θsweep = 30◦.
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Re ω α αAdj

725 0.13 0.344552 + 0.121012i 0.344538 + 0.121019i
1000 0.125 0.352349 + 0.101671i 0.352328 + 0.101685i
1200 0.11 0.323755 + 0.093360i 0.323733 + 0.093376i
2500 0.09 0.303033 + 0.063527i 0.302994 + 0.063566i
3000 0.08 0.280772 + 0.058731i 0.280731 + 0.058772i

Table 3.3: Oblique waves in a 3D boundary layer

And by forcing the calculation into some rather extreme conditions, even amplified oblique waves

in three dimensional boundary layers can be identified. In the same swept wedge as before:

Re β ω α αAdj

2000 0.8 0.05 0.120970 + 0.032103i 0.120957 + 0.032091i
4000 0.8 0.05 0.130371 + 0.012338i 0.130351 + 0.012331i
6000 0.8 0.05 0.134942 + 0.002624i 0.134916 + 0.002621i
8000 0.8 0.05 0.138380 - 0.003655i 0.138348 - 0.003654i
10000 0.8 0.05 0.141306 - 0.008157i 0.141269 - 0.008153i
12000 0.8 0.05 0.143909 - 0.011564i 0.143865 - 0.011558i
14000 0.8 0.05 0.146272 - 0.014231i 0.146221 - 0.014224i
16000 0.8 0.05 0.148440 - 0.016364i 0.148382 - 0.016356i

Table 3.4: Amplified oblique wave in a 3D boundary layer
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3.8.2 Adjoint eigenfunctions

As with the direct approach, the adjoint problem yields an eigenfunction. The equivalence of

the adjoint primitive variable system and adjoint Orr-Sommerfeld system is shown in §3.7; this

informs which values should be compared. Results from Gaster [10] using the traditional adjoint OS

equation are plotted along with the “adjoint pressure” from the present analysis. Good agreement

is observed in all cases.
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Figure 3.1: Adjoint eigenfunction validation of |p̂†| for a Blasuis profile with Re = 725, ω = 0.13
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Figure 3.2: Adjoint eigenfunction validation of |p̂†| for a Blasuis profile with Re = 1000, ω = 0.125
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Figure 3.3: Adjoint eigenfunction validation of |p̂†| for a Blasuis profile with Re = 1200, ω = 0.11
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Figure 3.4: Adjoint eigenfunction validation of |p̂†| for a Blasuis profile with Re = 2500, ω = 0.09

Absolute values of the eigenfunctions are used from fig. 3.1–fig. 3.4, since it is possible that the

results of the two analyses differ by a constant complex coefficient. The reader may be unconvinced

that absolute values do indeed represent the truth of the matter, or omit important phase infor-

mation; to nullify such doubts, a case is presented where the complex coefficient has been deduced,

and used to rescale one eigenfunction. The real part is shown. Good agreement is observed. This
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further validates the methodology for generating adjoint eigenfunctions, and should increase our

confidence that the choice of inner product shown in equation (3.7) was sound.
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Figure 3.5: Adjoint eigenfunction validation of p̂†r for a Blasuis profile with Re = 725, ω = 0.13
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3.9 Adjoint Sensitivity

Adjoints have a second function distinct from simply finding eigenvalues. As Juniper shows in [18],

if the right and left eigenfunctions are known, then the eigenvalue drift (or sensitivity to structural

change) from a change to the input parameters can be computed at reduced computational effort.

Luchini and Bottaro [19] give a thorough overview of these sensitivity fields in their 2013 paper.

Consider a square matrix A, which can be decomposed into the following:

A = BCB−1 (3.16)

where C is a diagonal matrix. It follows:

AB = BCB−1B = BC (3.17)

B−1A = B−1BCB−1 = CB−1 (3.18)

This implies that the rows of B are the right eigenvectors of A, the columns of B−1 are the left

eigenvectors, and the values in C are the corresponding eigenvalues. Stability eigenvalue problems

tend to have the form Mv̂ − v̂′ = 0 so the trial solution will take the form:

v̂ = χeλy

→ v̂′ = λχeλy

∴ Av̂ − v̂′ = 0→ Aχ = λχ

Where χ is a right eigenvector of A, and λ is the corresponding eigenvalue. Now consider the case

where a small change is made to A:

A→ A+ δA (3.19a)

λ→ λ+ δλ (3.19b)

χ→ χ+ δχ (3.19c)

χ† → χ† + δχ† (3.19d)
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Here the left eigenvector χ† has been introduced, which arises from:

χ†A = χλ (3.20)

The system given in equation (3.19) satisfies:

(A+ δA) (χ+ δχ) = (λ+ δλ) (χ+ δχ)

For terms of the order δ:

((λ−A) + (λ+ δλ)) (χ+ δχ) = 0

→ (λ−A) δχ+ (δλ− δA)χ = 0

Multiplying by the left eigenvector gives:

χ† (λ−A) δχ+ χ† (δλ− δA)χ = 0

Which reduces the first term to zero because as seen in equation (3.20), χ† (λ−A) = 0. This

leaves:

χ† (δλ− δA)χ = 0

χ†δλχ− χ†δAχ = 0

And eigenvalue drift is given by:

δλ = χ†δAχ

χ†χ
(3.21)

So if a very small change to the structure of the problem is required the corresponding change in

solution can be found using equation (3.21) at a significantly reduced computational cost. In fact

this method promises as many eigenvalues as necessary1, at the cost of solving only two matrix

systems. This method is not implemented in Chapter 4, but is nevertheless an important part of the

literature, and this example is useful in illustrating the terminological overlap in the field.

1Assuming these secondary eigenvalues are only a small change away from the original one.
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3.10 Categorising adjoint problems

This chapter has outlined two classes of problems where the adjoint formulation shows it has

distinct uses. In Chapter 4 a third class of problems is discussed. In these the adjoint will be used

to ensure that a certain set of equations has a non-trival solution; the method of multiple scales

is in this class. Taken together these classes of problems form a taxonomy, linked by the adjoint,

but applied quite differently. This new way of more precisely describing the relationships between

these classes of problems could be useful, especially as an introduction to the field.

Adjoints

Adjoint
eigenvalues

Adjoint
sensitivity

Adjoint
solubility

Multiple scales

Figure 3.6: The taxonomy of adjoint problems
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Chapter 4

Non-parallel Stability Theory and

Transition Analysis
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4.1 The Method of multiple scales

4.1.1 Derivation

This section presents the derivation of the multiple scales method, which provides a correction

term to the result generated by linear stability. For brevity, many of the more tedious steps are

omitted. A much more detailed derivation is included in Appendix A. Recall the dimensionless

Navier-Stokes equations as stated in equations 2.8 (the incompressible formulation is used here,

although compressible can be treated in the same way):

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (4.1a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −∂p

∂x
+ 1
Re

(
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)
(4.1b)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −∂p

∂y
+ 1
Re

(
∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2

)
(4.1c)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −∂p

∂z
+ 1
Re

(
∂2w

∂x2 + ∂2w

∂y2 + ∂2w

∂z2

)
(4.1d)

Disturbance equations would usually be found by expressing the Navier-Stokes equations as the

sum of a laminar base flow and a small disturbance (u = U+ũ etc.) and linearising in disturbances.

The parallel flow assumption usually equates wall-normal velocity, chordwise base flow derivatives,

and spanwise base flow derivatives to zero. In this case however they are allowed to remain, but

substituting V with εV , and inserting an ε next to the base flow derivatives in x and z. This ε

accounts for the new assumption that these values are not zero, but change slowly enough that

the separation of scales is possible. It can be thought of as a ratio of two important length scales,

specifically the length scale over which wave behaviour varies significantly, and the length scale

over which the boundary layer itself varies significantly. The actual value ε takes will therefore be

some measure of the non-parallelism of the flow; it will be important for § 4.1.3 and is discussed

in greater detail in § 4.1.3.1.

∂ũ

∂x
+ ∂ṽ

∂y
+ ∂w̃

∂z
= 0 (4.2a)

∂ũ

∂t
+ U

∂ũ

∂x
+ εũ

∂U

∂x
+ εV

∂ũ

∂y
+ ṽ

∂U

∂y
+W

∂ũ

∂z
+ εw̃

∂U

∂z
=

−∂p̃
∂x

+ 1
Re

(
∂2ũ

∂x2 + ∂2ũ

∂y2 + ∂2ũ

∂z2

) (4.2b)
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∂ṽ

∂t
+ U

∂ṽ

∂x
+ ε2ũ

∂V

∂x
+ εV

∂ṽ

∂y
+ εṽ

∂V

∂y
+W

∂ṽ

∂z
+ ε2w̃

∂V

∂z
=

−∂p̃
∂y

+ 1
Re

(
∂2ṽ

∂x2 + ∂2ṽ

∂y2 + ∂2ṽ

∂z2

) (4.2c)

∂w̃

∂t
+ U

∂w̃

∂x
+ εũ

∂W

∂x
+ εV

∂w̃

∂y
+ ṽ

∂W

∂y
+W

∂w̃

∂z
+ εw̃

∂W

∂z
=

−∂p̃
∂z

+ 1
Re

(
∂2w̃

∂x2 + ∂2w̃

∂y2 + ∂2w̃

∂z2

) (4.2d)

Using the expansion ũ = ũ0 + εũ1 + ε2ũ2 + · · · (and the same for ṽ and w̃), the equations are

expanded in the chordwise and spanwise directions, then split by similar powers of ε (it is also

necessary to use derivative expansion as Nayfeh suggests [24]):

∂ũ0

∂x0
+ ∂ṽ0

∂y
+ ∂w̃0

∂z0
= 0 (4.3a)

∂ũ1

∂x0
+ ∂ṽ1

∂y
+ ∂w̃0

∂z1
=

−∂ũ0

∂x1
− ∂w̃0

∂z1

(4.3b)

∂ũ0

∂t
+ U

∂ũ0

∂x0
+ ṽ0

∂U

∂y
+W

∂ũ0

∂z0
+ ∂p̃0

∂x0
− 1
Re

(
∂2ũ0

∂x2
0

+ ∂2ũ0

∂y2 + ∂2ũ0

∂z2
0

)
= 0 (4.3c)

∂ũ1

∂t
+ U

∂ũ1

∂x0
+ ṽ1

∂U

∂y
+W

∂ũ1

∂z0
+ ∂p̃1

∂x0
− 1
Re

(
∂2ũ1

∂x2
0

+ ∂2ũ1

∂y2 + ∂2ũ1

∂z2
0

)
=

1
Re

(
2 ∂2ũ0

∂x0∂x1
+ 2 ∂2ũ0

∂z0∂z1

)
− U ∂ũ0

∂x1
− ũ0

∂U

∂x0
− V ∂ũ0

∂y
−W ∂ũ0

∂z1
− w̃0

∂U

∂z0
− ∂p̃0

∂x1

(4.3d)

∂ṽ0

∂t
+ U

∂ṽ0

∂x0
+W

∂ṽ0

∂z0
+ ∂p̃0

∂y
− 1
Re

(
∂2ṽ0

∂x2
0

+ ∂2ṽ0

∂y2 + ∂2ṽ0

∂z2
0

)
= 0 (4.3e)

∂ṽ0

∂t
+ U

∂ṽ0

∂x0
+W

∂ṽ0

∂z0
+ ∂p̃0

∂y
− 1
Re

(
∂2ṽ0

∂x2
0

+ ∂2ṽ0

∂y2 + ∂2ṽ0

∂z2
0

)
=

1
Re

(
2 ∂2ṽ0

∂x0∂x1
+ 2 ∂2ṽ0

∂z0∂z1

)
− U ∂ṽ0

∂x1
− v0

∂V

∂y
− V ∂ṽ0

∂y
−W ∂ṽ0

∂z1

(4.3f)

∂w̃0

∂t
+ U

∂w̃0

∂x0
+ ṽ0

∂W

∂y
+W

∂w̃0

∂z0
+ ∂p̃0

∂z0
− 1
Re

(
∂2w̃0

∂x2
0

+ ∂2w̃0

∂y2 + ∂2w̃0

∂z2
0

)
= 0 (4.3g)

∂w̃1

∂t
+ U

∂w̃1

∂x0
+ ṽ1

∂W

∂y
+W

∂w̃1

∂z0
+ ∂p̃1

∂z0
− 1
Re

(
∂2w̃1

∂x2
0

+ ∂2w̃1

∂y2 + ∂2w̃1

∂z2
0

)
=

1
Re

(
2 ∂2w̃0

∂x0∂x1
+ 2 ∂2w̃0

∂z0∂z1

)
− U ∂w̃0

∂x1
− ũ0

∂W

∂x0
− V ∂w̃0

∂y
−W ∂w̃0

∂z1
− w̃0

∂W

∂z0
− ∂p̃0

∂z1

(4.3h)

45



Assuming the disturbance behaves like a wave in the x0 and z0 directions, but allowing structure

in x1, y, and z1, the following substitution is made: ũ = û (x1, y, z1) ei(αx0+βz0−ωt). Resolving the

derivatives and division through by ei(αx0+βz0−ωt) results in:

iαû0 + v̂′0 + iβŵ0 = 0 (4.4a)

iαû1 + v̂′1 + iβŵ1 =

−∂û0

∂x1
− ∂ŵ0

∂z1

(4.4b)

−iωû0 + iαUû0 + U ′v̂0 + iβWû0 + iαp̂0 −
1
Re

(
−α2û0 + û′′0 − β2û0

)
= 0 (4.4c)

−iωû1 + iαUû1 + U ′v̂1 + iβWû1 + iαp̂1 −
1
Re

(
−α2û1 + û′′1 − β2û1

)
=

1
Re

(
2iα∂û0

∂x1
+ 2iβ ∂û0

∂z1

)
− U ∂û0

∂x1
− ∂U

∂x0
û0 − V û′0 −W

∂û0

∂x1
− ∂U

∂z0
ŵ0 −

∂p̂0

∂x1

(4.4d)

−iωv̂0 + iαUv̂0 + iβWv̂0 + p̂′0 −
1
Re

(
−α2v̂0 + v̂′′0 − β2v̂0

)
= 0 (4.4e)

−iωv̂1 + iαUv̂1 + iβWv̂1 + p̂′1 −
1
Re

(
−α2v̂1 + v̂′′1 − β2v̂1

)
=

1
Re

(
2iα ∂v̂0

∂x1
+ 2iβ ∂v̂0

∂z1

)
− U ∂v̂0

∂x1
−W ∂v̂0

∂z1
− V ′v̂0 − V v̂′0

(4.4f)

−iωŵ0 + iαUŵ0 +W ′v̂0 + iβWŵ0 + iβp̂0 −
1
Re

(
−α2ŵ0 + ŵ′′0 − β2ŵ0

)
= 0 (4.4g)

−iωŵ1 + iαUŵ1 +W ′v̂1 + iβWŵ1 + iβp̂1 −
1
Re

(
−α2ŵ1 + ŵ′′1 − β2ŵ1

)
=

1
Re

(
2iα ∂v̂0

∂x1
+ 2iβ ∂v0

∂z1

)
− U ∂ŵ0

∂x1
− û0

∂W

∂x0
− V ∂ŵ0

∂y
−W ∂ŵ0

∂x1
− ŵ0

∂W

∂z0
− ∂p̂0

∂z1

(4.4h)

Two systems of ODEs can be created by introducing new variables τ̂u, and τ̂w, then substituting

the wall-normal derivatives of equation (4.4a) and equation (4.4b):

τ̂u0 = û′0 (4.5a)

τ̂u1 = û′1 (4.5b)

τ̂w0 = ŵ′0 (4.5c)

τ̂w1 = ŵ′1 (4.5d)

iαû0 + v̂′0 + iβŵ0 = 0 (4.5e)

iαû1 + v̂′1 + iβŵ1 =

−∂û0

∂x1
− ∂ŵ0

∂z1

(4.5f)
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−iωû0 + iαUû0 + U ′v̂0 + iβWû0 + iαp̂0 −
1
Re

(
−α2û0 + τ̂ ′u0 − β2û0

)
= 0 (4.5g)

−iωû1 + iαUû1 + U ′v̂1 + iβWû1 + iαp̂1 −
1
Re

(
−α2û1 + τ̂ ′u1 − β2û1

)
=

1
Re

(
2iα∂û0

∂x1
+ 2iβ ∂û0

∂z1

)
− U ∂û0

∂x1
− ∂U

∂x0
û0 − V τ̂u0 −W

∂û0

∂z1
− ∂U

∂z0
ŵ0 −

∂p̂0

∂x1

(4.5h)

−iωv̂0 + iαUv̂0 + iβWv̂0 + p̂′0 −
1
Re

(
−α2v̂0 − iατ̂u0 − iβτ̂w0 − β2v̂0

)
= 0 (4.5i)

−iωv̂1 + iαUv̂1 + iβWv̂1 + p̂′1 −
1
Re

(
−α2v̂1 − iατ̂u1 − iβτ̂w1 − β2v̂1

)
=

1
Re

(
2iα ∂v̂0

∂x1
+ 2iβ ∂v̂0

∂z1
+ ∂û0

∂x1
+ ∂ŵ0

∂z1

)
− U ∂v̂0

∂x1
−W ∂v̂0

∂z1
− V ′v̂0 + iαV u0 + iβV w0

(4.5j)

−iωŵ0 + iαUŵ0 +W ′v̂0 + iβWŵ0 + iβp̂0 −
1
Re

(
−α2ŵ0 + τ̂ ′w0 − β2ŵ0

)
= 0 (4.5k)

−iωŵ1 + iαUŵ1 +W ′v̂1 + iβWŵ1 + iβp̂1 −
1
Re

(
−α2ŵ1 + τ̂ ′w1 − β2ŵ1

)
=

1
Re

(
2iα ∂v̂0

∂x1
+ 2iβ ∂v0

∂z1

)
− U ∂ŵ0

∂x1
− û0

∂W

∂x0
− V τ̂w0 −W

∂ŵ0

∂z1
− ŵ0

∂W

∂z0
− ∂p̂0

∂z1

(4.5l)

Which can be expressed as matrices:

A =


0 a12 0 0 ReU ′ iReα
1 0 0 0 0 0
0 0 0 a12 ReW ′ iReβ
0 0 1 0 0 0
0 −iα 0 −iβ 0 0
− iα
Re 0 − iβ

Re 0 a12
Re 0

 (4.6a)

a12 = iRe (αU + βW − ω) +
(
α2 + β2) (4.6b)

b =



2iα∂û0
∂x1

+ 2iβ ∂û0
∂z1

+Re
(
−U ∂û0

∂x1
− ∂U

∂x0
û0 − V τ̂u0 −W ∂û0

∂z1
− ∂U

∂z0
ŵ0 − ∂p̂0

∂x1

)
0

2iα ∂v̂0
∂x1

+ 2iβ ∂v0
∂z1

+Re
(
−U ∂ŵ0

∂x1
− û0

∂W
∂x0
− V τ̂w0 −W ∂ŵ0

∂z1
− ŵ0

∂W
∂z0
− ∂p̂0

∂z1

)
0

∂û0
∂x1

+ ∂ŵ0
∂z1

− 1
Re

(
2iα ∂v̂0

∂x1
+ 2iβ ∂v̂0

∂z1
+ ∂û0

∂x1
+ ∂ŵ0

∂z1

)
+ U ∂v̂0

∂x1
+W ∂v̂0

∂z1
+ V ′v̂0 − iαV u0 − iβV w0


(4.6c)

q̂0,1 =


τ̂u
û
τ̂w
ŵ
v̂
p̂


0,1

(4.6d)
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Aq̂0 − q̂′0 = 0 (4.7a)

Aq̂1 − q̂′1 = b (4.7b)

The vector b can be rewritten by collecting derivatives of q̂0 in x1 and z1:

b = b1 + b2 + b3 (4.8)

b1 =



2iα∂û0
∂x1

+Re
(
−U ∂û0

∂x1
− ∂p̂0

∂x1

)
0

2iα ∂v̂0
∂x1
−ReU ∂ŵ0

∂x1
0
∂û0
∂x1

− 1
Re

(
2iα ∂v̂0

∂x1
+ ∂û0

∂x1

)
+ U ∂v̂0

∂x1


=


0 2iα−ReU 0 0 0 −Re
0 0 0 0 0 0
0 0 0 2iα−ReU 0 0
0 0 0 0 0 0
0 1 0 0 0 0
1
R 0 0 0 U − 2iα

Re 0

 ∂q̂0

∂x1

(4.9)

b2 =



2iβ ∂û0
∂z1
−ReW ∂û0

∂z1
0

2iβ ∂v0
∂z1

+Re
(
−W ∂ŵ0

∂z1
− ∂p̂0

∂z1

)
0
∂ŵ0
∂z1

− 1
Re

(
2iβ ∂v̂0

∂z1
+ ∂ŵ0

∂z1

)
+W ∂v̂0

∂z1


=


0 2iβ −ReW 0 0 0 0
0 0 0 0 0 0
0 0 0 2iβ −ReW 0 −Re
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1

Re 0 W − 2iβ
Re 0

 ∂q̂0

∂z1

(4.10)

b3 =


+Re

(
− ∂U
∂x0

û0 − V τ̂u0 − ∂U
∂z0

ŵ0

)
0

+Re
(
−∂W∂x0

û0 − V τ̂w0 − ∂W
∂z0

ŵ0

)
0
0

V ′v̂0 − iαV u0 − iβV w0

 =


−ReV −Re ∂U∂x0

0 −Re ∂U∂z0
0 0

0 0 0 0 0 0
0 −Re∂W∂x0

−ReV −Re∂W∂z0
0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 −iαV 0 −iβV V ′ 0

 q̂0

(4.11)

Solving equation (4.7a) results in an eigenfunction, whose shape is significant but with nor-

malised magnitude. Since it is not the true q̂0, it is renamed q̂n. It can however be related

to the magnitude of the actual zero order disturbance by a complex magnitude distribution:

q̂0 = Q(x1, z1)q̂n(x1, y, z1). In order for equation (4.7b) to have a non-trivial solution, the non-

homogeneous terms must be orthogonal to the solution of the adjoint equation [33]. This defines the

third class of adjoint problem discussed in §3.10, and gives the solubility condition (
∫∞

0 b·q̂†dη = 0).

The adjoint eigenfunction is labelled as q̂†, and is also discussed in Chapter 3. Assuming that the
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correct magnitude of the wave is now known i.e. substituting the new q̂0 into the equations leads

to the equation:

∫ ∞
0

b · q̂†dy =
∫ ∞

0
b3Qq̂n · q̂† + b1

∂Qq̂n
∂x1

· q̂† + b2
∂Qq̂n
∂z1

· q̂†dy = 0 (4.12)

This is a PDE for Q in x1, and z1. By using the product rule can it be expressed:

Q

∫ ∞
0

b3q̂n · q̂†dy +Q

∫ ∞
0

b1
∂q̂n
∂x1
· q̂†dy + ∂Q

∂x1

∫ ∞
0

b1q̂n · q̂†dy

+Q

∫ ∞
0

b2
∂q̂n
∂z1
· q̂†dy + ∂Q

∂z1

∫ ∞
0

b2q̂n · q̂†dy = 0

(4.13)

or as:

LQ+M
∂Q

∂x1
+N

∂Q

∂z1
= 0 (4.14)

where:

L =
∫ ∞

0
b3q̂n · q̂†dy +

∫ ∞
0

b1
∂q̂n
∂x1
· q̂†dy +

∫ ∞
0

b2
∂q̂n
∂z1
· q̂†dy

M =
∫ ∞

0
b1q̂n · q̂†dy

N =
∫ ∞

0
b2q̂n · q̂†dy

whose solution is simply:

Q = Q0e
− 1

2 ( L
M x1+ L

N z1) (4.15)

4.1.1.1 Eigenfunction derivatives

Solving equation (4.15) requires knowledge of not only the eigenfunction, but also of its derivatives

in the streamwise and spanwise directions. In the LST procedure these will be generated at a

number of streamwise locations. On first appearances it may seem that using a finite difference

between two locations would give an appropriate solution for ∂q̂/∂x, however this is not the case.

Each solution is scaled locally, and there are no assurances that the scalings correspond to each

other at all, in fact it should be surprising if they did. Instead to calculate the derivatives the
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following formulation is derived:

(A− ∂y) q̂ = 0

∂x (A− ∂y) q̂ = 0

∂x (Aq̂ − ∂y q̂) = 0

∂x (Aq̂)− ∂x∂y q̂ = 0

A∂xq̂ + q̂∂xA− ∂x∂y q̂ = 0

(A− ∂y) ∂xq̂ = −∂xAq̂

(4.16)

This formulation allows us to calculate derivatives using a non homogeneous version of the lin-

ear stability equations, using only information which is already known, and which is all locally

scaled.

4.1.2 Comparison with Gaster’s formulation

In order to compare results with Gaster, it must first be shown that the two formulations are

equivalent. The initial step is to show the terms used in the present analysis in the form used by

Gaster in [12]. Beginning with the linearised Navier-Stokes equations in 2D:

∂ũ

∂x
+ ∂ṽ

∂y
= 0 (4.17a)

∂ũ

∂t
+ U

∂ũ

∂x
+ ũ

∂U

∂x
+ V

∂ũ

∂y
+ ṽ

∂U

∂y
= −∂p̃

∂x
+ 1
Re

(
∂2ũ

∂x2 + ∂2ũ

∂y2

)
(4.17b)

∂ṽ

∂t
+ U

∂ṽ

∂x
+ ũ

∂V

∂x
+ V

∂ṽ

∂y
+ ṽ

∂V

∂y
= −∂p̃

∂y
+ 1
Re

(
∂2ṽ

∂x2 + ∂2ṽ

∂y2

)
(4.17c)

These are then assumed to follow a quasi-parallel behaviour, and certain terms are deemed small:

∂ũ

∂x
+ ∂ṽ

∂y
= 0 (4.18a)

∂ũ

∂t
+ U

∂ũ

∂x
+ εũ

∂U

∂x
+ εV

∂ũ

∂y
+ ṽ

∂U

∂y
= −∂p̃

∂x
+ 1
Re

(
∂2ũ

∂x2 + ∂2ũ

∂y2

)
(4.18b)

∂ṽ

∂t
+ U

∂ṽ

∂x
+ ε2ũ

∂V

∂x
+ εV

∂ṽ

∂y
+ εṽ

∂V

∂y
= −∂p̃

∂y
+ 1
Re

(
∂2ṽ

∂x2 + ∂2ṽ

∂y2

)
(4.18c)
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The stream function (ũ = ∂ψ/∂y, ṽ = −∂ψ/∂x) is used:

∂2ψ

∂y∂t
+ U

∂2ψ

∂x∂y
+ ε

∂ψ

∂y

∂U

∂x
+ εV

∂2ψ

∂y2 −
∂ψ

∂x

∂U

∂y
= −∂p̃

∂x
+ 1
Re

(
∂3ψ

x2y
+ ∂3ψ

y3

)
(4.19a)

− ∂2ψ

∂x∂t
− U ∂

2ψ

∂x2 + ε2
∂ψ

∂y

∂V

∂x
− εV ∂2ψ

∂x∂y
− ε∂ψ

∂x

∂V

∂y
= −∂p̃

∂y
− 1
Re

(
∂3ψ

x3 + ∂3ψ

xy2

)
(4.19b)

These equations are cross-differentiated to force pressure terms into equality and subtracted to

eliminate them altogether:

∂3ψ

∂y2t
+ ∂3ψ

∂x2t
− ∂2U

∂y2
∂ψ

∂x
+ U

∂3ψ

∂xy2

+U ∂
3ψ

∂x3 + ε
∂U

∂x

∂2ψ

∂x2 + ε
∂2U

∂xy

∂ψ

∂y
+ ε

∂U

∂x

∂2ψ

∂y2

+εV ∂
3ψ

∂y3 + εV
∂3ψ

∂x2y
+ ε

∂V

∂y

∂2ψ

∂y2 + ε
∂V

∂y

∂2ψ

∂x2

− 1
Re

(
2 ∂4ψ

∂x2y2 + ∂4ψ

∂x4 + ∂4ψ

∂y4

)
= 0

(4.20)

and then expanded into multiple scales:

∂3ψ0

∂y2t
+ ε

∂3ψ1

∂y2t
+ ∂3ψ0

∂x2
0t

+ ε
∂3ψ1

∂x2
0t

+2ε ∂
3ψ0

∂x0x1t
− ∂2U

∂y2
∂ψ0

∂x0
− ε∂

2U

∂y2
∂ψ1

∂x0
− ε∂

2U

∂y2
∂ψ0

∂x1

+U ∂3ψ0

∂x0y2 + εU
∂3ψ1

∂x0y2 + εU
∂3ψ0

∂x1y2 + U
∂3ψ0

∂x3
0

+εU ∂
3ψ1

∂x3
0

+ 3εU ∂3ψ0

∂x2
0x1

+ ε
∂U

∂x0

∂2ψ0

∂x2
0

+ ε
∂2U

∂x0y

∂ψ0

∂y

+ε ∂U
∂x0

∂2ψ0

∂y2 + εV
∂3ψ0

∂y3 + εV
∂3ψ0

∂x2
0y

+ ε
∂V

∂y

∂2ψ0

∂y2 + ε
∂V

∂y

∂2ψ0

∂x2
0

− 1
Re

(
2 ∂

4ψ0

∂x2
0y

2 + 2ε ∂
4ψ1

∂x2
0y

2 + 4ε ∂4ψ0

∂x0x1y2 + ∂4ψ0

∂x4
0

+ ε
∂4ψ1

∂x4
0

+ 4ε ∂
4ψ0

∂x3
0x1

+ ∂4ψ0

∂y4 + ε
∂4ψ1

∂y4

)
= 0

(4.21)

and by separating the scales (similar powers of ε):

∂3ψ0

∂y2t
+ ∂3ψ0

∂x2
0t
− ∂2U

∂y2
∂ψ0

∂x0
+ U

∂3ψ0

∂x0y2 + U
∂3ψ0

∂x3
0
− 1
Re

(
2 ∂

4ψ0

∂x2
0y

2 + ∂4ψ0

∂x4
0

+ ∂4ψ0

∂y4

)
= 0 (4.22a)
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∂3ψ1

∂y2t
+ ∂3ψ1

∂x2
0t
− ∂2U

∂y2
∂ψ1

∂x0
+ U

∂3ψ1

∂x0y2 + U
∂3ψ1

∂x3
0
− 1
Re

(
2 ∂

4ψ1

∂x2
0y

2 + ∂4ψ1

∂x4
0

+ ∂4ψ1

∂y4

)
+2 ∂3ψ0

∂x0x1t
− ∂2U

∂y2
∂ψ0

∂x1
+ U

∂3ψ0

∂x1y2 + 3U ∂3ψ0

∂x2
0x1

+ ∂U

∂x0

∂2ψ0

∂x2
0

+ ∂2U

∂x0y

∂ψ0

∂y
+ ∂U

∂x0

∂2ψ0

∂y2

+V ∂
3ψ0

∂y3 + V
∂3ψ0

∂x2
0y

+ ∂V

∂y

∂2ψ0

∂y2 + ∂V

∂y

∂2ψ0

∂x2
0

− 1
Re

(
+4 ∂4ψ0

∂x0x1y2 + 4 ∂
4ψ0

∂x3
0x1

)
= 0

(4.22b)

or:

−iReωφ′′0 + iReα2ωφ0 − iReU ′′αφ0 + iReUαφ′′0 − iReUα3φ0 − 2α2φ′′0 + α4φ0 + φ′′′′0 = 0

(4.23a)

−iReωφ′′1 + iReα2ωφ1 − iReU ′′αφ1 + iReUαφ′′1 − iReUα3φ1 − 2α2φ′′1 + α4φ1 + φ′′′′1

+ReV φ′′′0 +Re
∂U

∂x0
φ′′0 +ReV ′φ′′0 +Re

∂U ′

∂x0
φ′0 −ReV α2φ′0 −Re

∂U

∂x0
α2φ0 −ReV ′α2φ0

+ReU ∂φ
′′
0

∂x1
− 4iα∂φ

′′
0

∂x1
+ 2Reαω∂φ0

∂x1
−ReU ′′ ∂φ0

∂x1
− 3ReUα2 ∂φ0

∂x1
+ 4iα3 ∂φ0

∂x1
= 0

(4.23b)

A similar procedure can be carried out on the Orr-Sommerfeld equation (equation (2.5)) to show

equivalence. The Orr-Sommerfeld equation states:

φ′′′′ − 2α2φ′′ + α4φ = iRe (αU − ω)
(
φ′′ − α2φ

)
− iReαU ′′φ (4.24)

In order to expand correctly the following must be included:

φ −→ φ0 + εφ1 (4.25)
∂

∂x
−→ ∂

∂x0
+ ε

∂

∂x1
(4.26)

Expanding φ is simple, however, no derivatives in x remain, since they were all separated utilising

the wavelike properties of the disturbance. In their place stand powers of iα equivalent to the

orders of the x derivatives which were there beforehand. This allows construction of a map to
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generate the expanded terms:

iα −→ ∂
∂x −→ ∂

∂x0
+ ε ∂

∂x1
−→ iα+ ε ∂

∂x1

i2α2 −→ ∂2

∂x2 −→ ∂2

∂x2
0

+ 2ε ∂
∂x0x1

−→ −α2 + 2iαε ∂
∂x1

i3α3 −→ ∂3

∂x3 −→ ∂3

∂x3
0

+ 3ε ∂
∂x2

0x1
−→ −iα3 + 3iα2ε ∂

∂x1

i4α4 −→ ∂4

∂x4 −→ ∂4

∂x4
0

+ 4ε ∂
∂x3

0x1
−→ α4 + 4iα3ε ∂

∂x1

Now the OSE (equation 4.24) is expanded:

φ′′′′ − 2α2φ′′ + α4φ = iαReUφ′′ − iReωφ′′ − iα3ReUφ+ iα2ωReφ− iReαU ′′φ (4.27)

Using the aforementioned map, both φ, and ∂
∂x are expanded into multiple scales:

φ′′′′0 + εφ′′′′1

−2α2φ′′0 + ε4iα∂φ
′′
0

∂x1
− ε2α2φ′′1

+α4φ0 + ε4iα3 ∂φ0

∂x1
+ εα4φ1 =

ReUiαφ′′0 + εReU
∂φ′′0
∂x1

+ εReUiαφ′′1

−iReωφ′′0 − εiReωφ′′1

−iα3ReUφ0 − ε3α2ReU
∂φ0

∂x1
− iεα3ReUφ1

+iωReα2φ0 + ε2ωReα∂φ0

∂x1
+ iεωReα2φ1

−iReαU ′′φ0 − εReU ′′
∂φ0

∂x1
− iεReαU ′′φ1

(4.28)

And by splitting similar powers of ε:

φ′′′′0 − 2α2φ′′0 + α4φ0 −ReUiαφ′′0 +Reiωφ′′0 +ReUiα3φ0 −Reiα2ωφ0 +ReU ′′iαφ0 = 0 (4.29)

φ′′′′1 − 2α2φ′′1 + α4φ1 + iReUαφ′′1 − iReωφ′′1 − iReUα3φ1 + iReα2ωφ1 − iReU ′′αφ1

+4iα∂φ
′′
0

∂x1
+ 4iα3 ∂φ0

∂x1
+ReU

∂φ′′0
∂x1
− 3ReUα2 ∂φ0

∂x1
+ 2Reαω∂φ0

∂x1
−ReU ′′ ∂φ0

∂x1
= 0

(4.30)

This does not quite give the completed formulation: no account has yet been taken for the terms

involving a streamwise derivative of a base flow, which will have been considered negligible in the
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parallel case. Recall that the x and y momentum equations contained respectively:

εũ
∂U

∂x
+ εV

∂ũ

∂y
+ · · · = · · · (4.31)

U
∂ṽ

∂x
+ εV

∂ṽ

∂y
+ εṽ

∂V

∂y
+ · · · = · · · (4.32)

These too must be cross differentiated and the terms from the y momentum equation subtracted:

ε
∂2U

∂x∂y
ũ+ ε

∂U

∂x

∂ũ

∂y
+ εV

∂2ũ

∂y2 + ε
∂V

∂y

∂ũ

∂y
+ · · · = · · · (4.33)

−ε∂U
∂x

∂ṽ

∂x
− U ∂

2ṽ

∂x2 − εV
∂2ṽ

∂x∂y
− ε∂V

∂x

∂ṽ

∂y
− ε ∂

2V

∂x∂y
ṽ − ε∂V

∂y

∂ṽ

∂x
− · · · = · · · (4.34)

Then this is expanded into multiple scales, keeping only those terms with a factor of ε1:

ε
∂2U

∂x0∂y
ũ0 + ε

∂U

∂x0

∂ũ0

∂y
+ εV

∂2ũ0

∂y2 + ε
∂V

∂y

∂ũ0

∂y
+ · · · = · · · (4.35)

−ε ∂U
∂x0

∂ṽ0

∂x0
− εV ∂2ṽ0

∂x0∂y
− ε2 ∂V

∂x0

∂ṽ0

∂y
− ε2 ∂2V

∂x0∂y
ṽ0 − ε

∂V

∂y

∂ṽ0

∂x0
− · · · = · · · (4.36)

And then the stream function is substituted in:

ε
∂U ′

∂x0
φ′0 + ε

∂U

∂x0
φ′′0 + εV φ′′′0 + εV ′φ′′0 + · · · = · · · (4.37)

−εα2 ∂U

∂x0
φ0 − εα2V φ′0 − εα2V ′φ0 − · · · = · · · (4.38)

And simplified:

εV φ′′′0 + ε
∂U

∂x0
φ′′0 + εV ′φ′′0 + ε

∂U ′

∂x0
φ′0 − εα2V φ′0 − εα2 ∂U

∂x0
φ0 − εα2V ′φ0 + · · · = · · · (4.39)

And finally returned to the expanded OSE (with a factor of Re):

φ′′′′0 − 2α2φ′′0 + α4φ0 −ReUiαφ′′0 +Reiωφ′′0 +ReUiα3φ0 −Reiα2ωφ0 +ReU ′′iαφ0 = 0 (4.40)

φ′′′′1 − 2α2φ′′1 + α4φ1 + iReUαφ′′1 − iReωφ′′1 − iReUα3φ1 + iReα2ωφ1 − iReU ′′αφ1

+4iα∂φ
′′
0

∂x1
+ReU

∂φ′′0
∂x1

+ 2Reαω∂φ0

∂x1
− 3ReUα2 ∂φ0

∂x1
−ReU ′′ ∂φ0

∂x1
+ 4iα3 ∂φ0

∂x1

+ReV φ′′′0 +Re
∂U

∂x0
φ′′0 +ReV ′φ′′0 +Re

∂U ′

∂x0
φ′0 −ReV α2φ′0 −ReV ′α2φ0 −Re

∂U

∂x0
α2φ0 = 0

(4.41)
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Which gives an identical formulation to equation (4.23), and demonstrates that the two methods

are equivalent.

4.1.3 Definition of the growth rate

In equation (4.15) Q and Q0 are unknown, but the useful engineering quantities are actually the

relative growth rates in either direction which are given by:

[
1
q̃0

∂q̃0

∂x

]
r

(4.42a)[
1
q̃0

∂q̃0

∂z

]
r

(4.42b)

This can now be rewritten:

[
1
Qq̃n

∂Qq̃n
∂x

]
r

(4.43a)[
1
Qq̃n

∂Qq̃n
∂z

]
r

(4.43b)

and Expanded:

[
1
Qq̃n

(
Q
∂q̃n
∂x

+ q̃n
∂Q

∂x

)]
r

(4.44a)[
1
Qq̃n

(
Q
∂q̃n
∂z

+ q̃n
∂Q

∂z

)]
r

(4.44b)

and simplified:

[
1
q̃n

∂q̃n
∂x

+ 1
Q

∂Q

∂x

]
r

(4.45a)[
1
q̃n

∂q̃n
∂z

+ 1
Q

∂Q

∂z

]
r

(4.45b)

From equation (4.15) it can be deduced that:

1
Q

∂Q

∂x1
= − L

2M (4.46a)

1
Q

∂Q

∂z1
= − L

2N (4.46b)
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This can be used to find 1/Q ∂Q/∂x and 1/Q ∂Q/∂z:

1
Q

∂Q

∂x
= 1
Q

∂Q

∂x1

∂x1

∂x
= −ε L2M (4.47a)

1
Q

∂Q

∂z
= 1
Q

∂Q

∂z1

∂z1

∂z
= −ε L2N (4.47b)

And from equation (2.15) it is known that:

[
1
q̃n

∂q̃n
∂x

]
r

= −αi,
[

1
q̃n

∂q̃n
∂z

]
r

= −βi

However, this formulation does not account for the wall-normal variation in the eigenfunction

shape, which was considered negligible under the parallel flow assumption. Under the quasi-

parallel assumption this becomes a first order consideration, and must be included. Accounting

for it gives the modified form:

[
1
q̃n

∂q̃n
∂x

]
r

= −αi +
[

1
q̂n

∂q̂n
∂x

]
r

(4.48a)[
1
q̃n

∂q̃n
∂z

]
r

= −βi +
[

1
q̂n

∂q̂n
∂z

]
r

(4.48b)

These derivatives can be computed directly from the eigenfunctions which were generated and used

in the linear stability calculation, and together with equation (4.47) give the corrected growth rate

formulations:

[
1
q̃0

∂q̃0

∂x

]
r

= −αi +
[

1
q̂n

∂q̂n
∂x
− ε L2M

]
r

(4.49a)[
1
q̃0

∂q̃0

∂z

]
r

= −βi +
[

1
q̂n

∂q̂n
∂z
− ε L2N

]
r

(4.49b)

4.1.3.1 The value of ε

When it comes time to evaluate the growth rate using equation (4.49), the value of ε will be needed.

This has yet to be defined, save for mentioning that it in some way measures the deviation from

parallel of the boundary layer, and that it is small. Its value has been discussed by many, but it is

Gaster [12] who makes the most convincing argument. He assumes nothing about the magnitude

of ε and allows it to come out as part of his iterative solution. The value relates to the size of terms

which were ignored in LST, which for Gaster were of order O(Re−1/2
x0 ), where x0 is a location where
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a wave is assumed to exist. El Hady identifies its value as 1/
√
Rex. The present analysis also uses

this scaling and as will be shown, this facilitates good agreement with results in the literature.

This value should not come as a particular surprise; this is a measure of how quickly the boundary

layer changes, and of course the boundary layer growth is available in any good book on Boundary

layers[32, 29]:

δ99 ≈
4.9x√
Rex

(4.50)

So it might be reasonable to expect the 1/
√
Rex term to be present.

4.1.3.2 The problems in determining an amplitude metric

Capturing some knowledge about the mode shape change and boundary layer growth is necessary

to complete equation (4.49). However, quantifying this shape change is not trivial, since q̃ is a vec-

tor representing velocities, velocity gradients, and pressure, all given as a function of wall-normal

distance. Various amplitude metrics may be appropriate for different purposes. For example, a

comparison between simulated and experimental results may be best served by choosing the largest

value of û at each station, since this is a readily measured quantity in a wind tunnel. This is not

necessarily the best choice for comparison with other simulations, where some metric of energy

may be better suited. It is quite possible that there is no ‘true’ metric at all. The normalisation of

q̂ is also important, as might the part of q̂ (real, imaginary, absolute) chosen. A range of options

must therefore be explored. The following table shows various combinations used in the literature:

Author Metric Normalisation Wall-normal location of ∂xq̂/q̂

Bouthier [6] û2 + v̂2 - one location with positive growth rate
Bouthier [6] û2 + v̂2 - all locations with positive growth rate
Gaster [12] û2 + v̂2 - integrated wall-normally
Gaster [12] û2 - integrated wall-normally
Gaster [12] |û| - |û| inner lobe maximum
Gaster [12] |û| - |û| outer lobe maximum

Saric & Nayfeh [30] 2Uû c(x) = 1* effectively ignored
El Hady [8] ξ9 = U + û |ξ9|max = 1 |ξ9|max
El Hady [8] ξ9ξ9 |ξ9|max = 1 integrated wall-normally

Table 4.1: Legacy mode shape change metrics

* c(x0) =
[
∂q0
∂y

]
0
/
[
∂q1
∂y

]
0
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As can be seen, the literature provides a wealth of options, but each of these comes with its own

difficulties:

• Although Bouthier broke ground in this field, his metric is not quite what is needed; it

does give a criterion which can be used to define a neutral curve, but converting this into

something more practical like a modified N-factor is not feasible.

• As El Hady points out, the choice of wall-normal location is extremely consequential. If one

with large magnitude of the metric was chosen, then 1/q̂ becomes small. If the magnitude at

the chosen location was small then 1/q̂ becomes very large. Some, including Saric & Nayfeh,

have asserted that by choosing a location with large enough magnitude, the contribution of

the mode shape change becomes negligible. This is convenient, but ultimately unsatisfac-

tory. To further complicate matters, the stability curves given in their 1975 paper use a

“dimensionless frequency parameter” whose units appear to be s2. This makes comparison

difficult.

• Wall-normal resolution is also of concern, as it will affect the accuracy of any integrals,

and the detection of any maxima. The use of mixed base flow and fluctuating parts is also

unsatisfactory, since the fluctuation returned by a parallel flow solution is an eigensolution

and therefore arbitrary in magnitude. This makes it inappropriate to use in conjunction with

a base flow, whose value is not arbitrary, to calculate relative growth rates in most cases.

It is also noteworthy that, perhaps unsurprisingly, none of these options give matching results

consistently; and where they do this appears to be entirely accidental. To summarise, in each case

from the literature there is either an unsatisfactory metric or an unclear normalisation, and no real

consensus on any of these factors.

In order to proceed, some clarity is required on three broad questions:

1. Is there a better or worse part of q̂ to use, if so which part is which, and why? (§ 4.1.3.3)

2. Is there a better or worse way to reduce q̂ down to a single value at each station, if so, why?

(§ 4.1.3.4)

3. Is there a better or worse eigenfunction normalisation to use, if so what is it, and why?

(§ 4.1.3.5)
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4.1.3.3 Selecting a part of q̂

Something must be chosen to represent the mode shape change. The literature has spawned a

number of different ideas on this issue. The present analysis will proceed by using the kinetic

energy (E = û2 + v̂2 + ŵ2). It gives good agreement with Schubauer and Skramstad[34], it is

fairly intuitive to understand, and importantly, it gives a number which can be used to input into

a modified N-factor algorithm.

4.1.3.4 Reducing q̂ to a single value

In order to sensibly define the growth rate, 1/q̂ ∂q̂/∂x, a function in y is taken, and reduced down

to a single value. Precisely how this is done can have a dramatic effect on its contribution. Recall

in § 2.4.2 the shape of q̂ = f(y) has been shown. For example, fig. 2.2 (which is duplicated as

fig. 4.1) shows:
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Figure 4.1: Eigenfunction at Re = 725, ω = 0.13

The location of maximum q̂ could be selected; this would result in a vanishingly small contribution.

Conversely a location could be intentionally selected where the growth is largest, likely where q̂ is

smallest. Neither of these are satisfactory however. A method should not be chosen in order to

satisfy some preconceived notion of what the behaviour should be. Instead a method should be

chosen to best reflect what the behaviour actually is. This is why integral methods are used in the

present work. By taking the integral of the eigenfunction in the wall-normal direction, this takes

account not only of the extrema, but also of every point in between.

4.1.3.5 Eigenfunction normalisation

El Hady specifies an eigenfunction normalisation which makes his mass flow variable equal unity

at its maximum; Saric and Nayfeh use a different function which is shown in table 4.1; others in
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the literature don’t specify a particular normalisation at all. What follows is an explanation for

why the choice is irrelevant:

• The present normalisation comes from the chosen finite value of pressure at the wall

• Any factor applied to this value will be applied to the entire eigenfunction

• Recalling § 4.1.1.1 the derivatives of the eigenfunction are calculated using the eigenfunction

itself

• Therefore the relative (∂xq̂/q̂) change is calculated, the normalisation factor cancels itself out

This logic applies to the term ∂xq̂/q̂, but can also be applied to ∂xQ/Q since this works out as

proportional L/M , and both L, and M are generated using the original eigenfunction. Therefore

the scaling factor will cancel itself out here too. Calculations have been made with a number of

different scaling factors, including pseudorandomly generated. No effect whatsoever on the results

have been observed.

4.1.3.6 The solution to determining an amplitude metric

To summarise § 4.1.3.3-§ 4.1.3.5, the analysis which follows measures mode shape change by the

integral of the kinetic energy (
∫∞

0 û2 + v̂2 + ŵ2dη). The relative gradient is measured in such a

way that the normalisation holds no relevance whatsoever.
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4.1.4 Multiple scales calculations

4.1.4.1 Single eigenvalue validation

El Hady gives two results in [8] with a Mach number of zero and which can therefore be compared

with the present analysis. But first the scaling he uses must be understood. The length, velocity,

and time scales employed by El Hady are L∗ =
√
ν∗0x
∗/u∗0e, u∗0e, and L∗/u∗0e respectively, giving

a Reynolds number of Re = u∗0eL
∗/ν∗0 =

√
Rex. Results are given at Re = 1000, and Re = 500

which, at standard temperature and pressure, and using values free stream velocity of 10ms−1

give:

500 =
√
u∗0ex/ν

∗
0 =

√
10 · 1.2273088

1.7928066× 10−5

x = 5002 · 1.7928066× 10−5

10 · 1.2273088

= 0.36519061m

1000 =
√
u∗0ex/ν

∗
0 =

√
10 · 1.2273088

1.7928066× 10−5

x = 10002 · 1.7928066× 10−5

10 · 1.2273088

= 1.46076244m
Growth rates are calculated at these points and used to verify the method. El Hady gives growth

rates for the “most amplified non-parallel mode”, however the frequency of this mode is not pre-

cisely defined, nor is the resolution of the frequency domain. Results should therefore be taken in

this context. Comparisons are made excluding mode shape change as El Hady uses a metric which

is incompatible with the one used in the present analysis. Good agreement is observed.

Re −αi,ElHady (−αi + f(Q))ElHady −αi −αi + f(Q)
1000 0.006237 0.006813 0.00625 0.00684
500 0.0035 0.0046 0.00357 0.00467

Table 4.2: Non-parallel comparison with El Hady

4.1.4.2 Stability curve validation

Nayfeh and Gaster both provide neutral stability curves, but these do not agree with each other.

Nayfeh uses an erroneous “dimensionless” frequency, and his criterion is not satisfactory, therefore

results will be presented against those given by Gaster, and using his criterion. Gaster’s curve is

copied and a corresponding neutral curve from the present analysis is superimposed onto it for

comparison. Present results are shown in red. Reasonable agreement is observed.
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Figure 4.2: Neutral curve comparison with Gaster[12]

− Linear stability only, −−− Integral of kinetic energy criterion,

− · − Integral of u2 criterion, −Present analysis
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4.2 Surface curvature

Most surfaces of interest to engineers are not flat but instead, curved. This has a subtle, but

noticable effect on the stability, which should be included. The curvature modifies the governing

equations by adding several terms. These can be found by considering the Navier-Stokes equations

in a curvilinear coordinate system, a comprehensive derivation of which has been shown by Backer

Dirks [4], however for this problem only surface curvature terms (κxy, κzy) are included. Addition-

ally products of two curvatures are neglected, as are products of curvature and viscosity:

iαû+ v̂′ + iβŵ + κxy v̂ + κzy v̂ = 0 (4.51)

−iωû+ iαUû+ U ′v̂ + iβWû+ iαp̂− 1
Re

(
−α2û+ û′′ − β2û

)
+ κxyUv̂ = 0 (4.52)

−iωv̂ + iαUv̂ + iβWv̂ + p̂′ − 1
Re

(
−α2v̂ + v̂′′ − β2v̂

)
− 2κxyUû− 2κzyWŵ = 0 (4.53)

−iωŵ + iαUŵ +W ′v̂ + iβWŵ + iβp̂− 1
Re

(
−α2ŵ + ŵ′′ − β2ŵ

)
+ κzyWv̂ = 0 (4.54)

If the multiple scales approach is to be used, the flow is treated as locally parallel, but non-parallel

over longer distances. Consequently, the additional terms due to curvature should be included

along with boundary layer growth terms in the first order correction. Recall equation (4.7b),

which will now instead become:

Aq̂1 − q̂′1 = b+ bκ (4.55)

where bκ contains the additional terms arising from curvature.

4.2.1 Calculations

To demonstrate the effects of surface curvature, the development of a crossflow vortex in a relatively

fast flow is shown(fig. 4.3 & fig. 4.4). In both of these cases, the terms arising from surface curvature

are built into the LST calculation, not the MSM correction. The result appears to be highly

oscillatory close to the leading edge; this makes it very difficult to accurately determine where the

N-factor integration should begin1. Consequently, there is a disparity between them, even though

the eigenvalues are mostly in agreement.

1In fact for this case, safety features of the code were overridden in order to generate results.
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As a mathematical exercise it is fairly simple to build the curvature terms into the MSM. In

computational practice, it is not so. This is recommended as a fascinating possible avenue of

further investigation.
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Chapter 5

Numerical Methods
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The primary output from the present work is a code which implements the theory set out in

Chapter 4. This chapter explores some of the numerical methods which could be used in the

implementation, and highlights which are chosen.

5.1 Root finding

Often in engineering the governing equations are difficult or impossible to solve analytically. In such

cases a numerical approach is adopted. Such approaches typically use an educated initial guess,

then update that guess through many iterations with a root finding algorithm until a suitably

accurate answer is found. Usually the algorithm attempts to find the location where a function of

one or more variables is equal to zero.

5.1.1 The method of bisection

The method of bisection is a simple root finding algorithm which will always find a root, should

one exist within a chosen interval. An interval must be specified; the function is then carried out

and the outcome evaluated. The method begins by choosing the value in the centre of the interval,

then the function whose root is sought is applied to the chosen value. Should the output be too

large, the interval is split in half, retaining the lower half, and the process starts again. Should the

output be too small, the upper half of the interval is retained. This process is continued until the

root is found.

5.1.2 The Newton-Raphson method

This method is more complex than the method of bisection, and it is not always guaranteed to find

a root, even if one exists. However, when the conditions are correct, it closes in with much greater

speed. A guess must be made for the location of the root, then the function and its gradient are

evaluated at that point. The point and gradient are then used to construct a straight line, whose

root is easily obtained. This value is then used as the next guess. Formally, a single iteration is

given by:

xn+1 = zn −
f (xn)
f ′ (xn) (5.1)
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This procedure should be continued until the root has been found.

5.2 Numerical solutions of ODEs

The governing equations in linear stability theory have the form of ordinary differential equations

with boundary conditions at more than one boundary. These boundary value problems (BVPs)

have two widely used solution methodologies; shooting methods, and matrix methods.

5.2.1 Shooting methods

A shooting method comprises an initial value problem (IVP) numerical integration scheme, and a

root finding algorithm. The problem is initially treated as an IVP, specifying boundary conditions

on one end of the computational domain, including guesses for unknown values. Integration is

performed with those boundary conditions then the boundary conditions are checked on the other

edge of the domain to determine if the guesses were sufficiently accurate. If not, new guesses are

supplied according to a suitable root finding method. Typical integration schemes evaluate the

function at some point using its values and derivatives at a previous point. The first method of

this family was developed in 1768 by Euler [9].

5.2.1.1 The Euler method

If the problem is an IVP of the form: u′ = f(u) then Euler’s method and the values of u and its

derivatives are known at a point then the values at the next point are given by:

un+1 = un + hu′n (5.2)

Where h is the distance between the points. By taking a Taylor expansion about the zeroth point,

it can be shown that method has second order accuracy.

u (y0 + h) = u (y0) + hu′ (y0) + 1
2h

2u′′ (y0) + · · · (5.3)
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The error is given by:

ε = u (y0 + h)− u1 = 1
2h

2u′′ (y0) +O
(
h3)+ · · · (5.4)

5.2.1.2 The improved Euler method

Euler’s method can be improved by treating it as only the first step and then applying a correction

before moving on the the next point. The formulation is given by:

un+1 = un + h

2 (predictor + corrector)

predictor = f (un)

corrector = f (un + h× predictor)

(5.5)

By taking the Taylor expansion exactly as for the basic Euler method it can be shown that the

scheme has third order accuracy. Increased accuracy however, comes at a price. The additional

step inevitably adds computation time.

5.2.1.3 Runge-Kutta (RK) methods

Runge-Kutta is the name given to a family of numerical integration schemes which extend the

concept of the improved Euler method, seeking an ever more accurate estimate for the slope

between the points at n and n+ 1. The most common of these methods is the fourth order scheme

(RK4), which uses four steps to estimate the slope in the interval between n and n+ 1. The first

step is the same as in Euler, but three other estimates are used as well:

k1 = f (u)

k2 = f

(
u+ h

2 k1

)
k3 = f

(
u+ h

2 k2

)
k4 = f (u+ hk3)

un+1 = un + h

6 (k1 + 2k2 + 2K3 + k4)

(5.6)

There are other RK schemes, but RK4 is the most commonly used. As with the improved Euler

scheme, the benefit in accuracy is paid for in complexity, and computation time.
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5.2.2 Matrix methods

Matrix methods are a completely different approach to solving differential equations. The dif-

ferential operator is in some way approximated as a matrix, where boundary conditions can be

imposed on both ends (or anywhere else). This makes these types of schemes very useful for solving

BVPs.

5.2.2.1 Finite differences

The simplest of the matrix methods are the finite difference methods. In these schemes the gradient

at a point is given by the values at nearby points. Some popular choices are:

u′i = ui+1 − ui
h

(5.7)

u′i = ui+1 − ui−1

2h (5.8)

The order accuracy of this family of methods depends on how many points are used in the formu-

lation. Although this makes it easy in theory to add accuracy, larger stencils reaching further away

from i make implementation of boundary conditions more difficult, and often result in unwieldy

matrices.

5.2.2.2 Compact differences

Compact differences [21] attempt to achieve greater accuracy with a smaller number of points. By

limiting the scheme to two points, the matrix system should remain more manageable. However,

the formulation requires a little more effort to understand. Consider a set of equations in the

form:

Aq̂ = q̂′ (5.9)

The Euler-Maclaurin formula states[21]:

q̂k − q̂k−1 = h

2

(
d

dy
q̂k + d

dy
q̂k−1

)
− h2

12

(
d2

dy2 q̂
k − d2

dy2 q̂
k−1
)

+O
(
h5) (5.10)
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By differentiation of equation (5.9):

A′q̂ +Aq̂′ = q̂′′

A′q̂ +A (Aq̂) = q̂′′(
A′ +A2) q̂ = q̂′′

(5.11)

This can be substituted into equation (5.10) to give:

q̂k − q̂k−1 = h

2
(
Aq̂k +Aq̂k−1)− h2

12
[(
A′ +A2) q̂k − (A′ +A2) q̂k−1]+O

(
h5) (5.12)

For the full domain this results in a block bi-diagonal matrix multiplied by the eigenfunction equal

to a zero vector on the right hand side. This is not a particularly useful form to solve; a square

would be much more convenient.

5.2.2.3 Squaring a rectangular matrix

The matrix is block bi-diagonal, which means it is n × (n+m) in size, where n is the number of

points and m is the number of equations. Since square matrices make solution much easier, m

columns need to be removed. Fortunately this can be done by employing boundary conditions.

Firstly a modified identity matrix B is constructed with additional rows so its size is (n+m)× n.

The additional rows contain only zeros so that by taking BA the result is a matrix whose size

is n × n, and whose coefficients are identical to A, apart from m missing columns. The removed

coefficients are multiplied by the appropriate boundary condition and added to the right hand side

vector. This leaves a system which can be solved with an appropriate matrix decomposition or

inversion scheme.

5.3 Solution of linear systems

When the governing equations have been successfully expressed as a linear system, there are

a number of methods by which they can then be solved. This is by a wide margin the most

computationally intense part of the process, so the choice here is critical. In this section the linear

72



system is denoted by:

Ax = b (5.13)

5.3.1 Direct matrix inversion

The original method for solving these kinds of systems is matrix inversion, where the objective is

to obtain A−1 such that:

AA−1 = A−1A = I (5.14)

This involves computing the determinant of A and its matrix of minors, for small matrices this is

simple and can be done by hand, but it as the matrix size increases this becomes burdensome. As

a consequence this approach is never adopted for very large computations.

5.3.2 Gaussian elimination

An early form of matrix decomposition favoured by Alan Turing and his contemporaries, this

method shows that if the matrix can be manipulated into a triangular form, then multiplying its

inverse by a vector becomes simple. Typically it is useful to find either the upper triangle form,

or the lower triangle form:

U =
[u11 u12 u130 u22 u230 0 u33

]
, L =

[
l11 0 0
l21 l22 0
l31 l32 l33

]
(5.15)

(5.16)

These forms are found by adding multiples of rows to other rows, much as would be done for

solutions of simultaneous equations which are not expressed with matrices. To ensure that the row

operations are applied to the correct rows, the augmented matrix is formed:

[
x11 x12 x13 b1
x21 x22 x23 b2
x31 x32 x33 b3

]
(5.17)
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Once the system is in the correct form, it can be solved by working from top to bottom or vice

versa substituting in the answers from the previous row. This method uses O
(
n2) operations to

complete.

5.3.2.1 Pivoting

Occasionally, there will be a fortunate situation where a row already conforms to part of the

triangular shape; it is useful to have a tool which would allow shuffling of entire rows around at

will, leaving them in more optimum positions. The permutation matrix is just such a tool. When

applied to another matrix it shuffles the rows. For example, this permutation matrix swaps the

second and third rows of a three by three matrix:

P23 =
[1 0 0
0 0 1
0 1 0

]
(5.18)

(5.19)

Not only can this save a few operations, it also can increase the stability of the solution.

5.3.2.2 Gauss-Jordan elimination

Previously, applying Gaussian elimination to a vector provides a solution to a system of linear

equations. By applying the same principal to the identity matrix, the original matrix can be

reduced to identity, and in the process the identity on the right hand side of the dividing line is

converted into the inverse.

[ 1 0 0
A 0 1 0

0 0 1

]
→
[ 1 0 0

0 1 0 A−1
0 0 1

]
(5.20)

(5.21)

Although this requires more work than simply solving Ax = b, the result is much more useful as

A−1 can be used to find x given any b.
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5.3.3 Matrix decompositions

Using Gauss-Jordan elimination is powerful, but it is also computationally intense, and difficult

to implement for matrices of general dimension. Lower-upper (LU) decompositions, on the other

hand, are much simpler. Instead of seeking to solve a linear system, or to find the inverse, it is

possible to decompose a matrix into the product of an upper triangle and lower triangle. These

can then be used together to solve the linear system for any b.

5.3.3.1 Cholesky decomposition

For certain kinds of matrices (Hermitian, positive-definite) there exists a decomposition of the

form:

A = LL† (5.22)

Clearly this is an extremely useful form, as it only requires storage for one of the two matrices.

Unfortunately however, the matrices which are most useful for describing stability problems cannot

be guaranteed to be Hermitian.

5.3.3.2 Crout decomposition

The Crout decomposition exists for all non-singular square matrices. Since LU decompositions

are not unique, some properties which are useful can be specified. Crout specifies that the upper

matrix has ones on its leading diagonal:

A = LU =
[
l11 0 0
l21 l22 0
l31 l32 l33

] [1 u12 u130 1 u230 0 1

]
=
[a11 a12 a13a21 a22 a23a31 a32 a33

]
(5.23)

The unknown entries of L and U can be computed using the definition of the dot product used in

matrix multiplication.

5.3.3.3 Doolittle decomposition

The Doolittle decomposition is formed in the exact same way as the Crout, except that instead of

the ones making up the leading diagonal of U, they make up the leading diagonal of L:
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A = LU =
[ 1 0 0
l21 1 0
l31 l32 1

] [u11 u12 u130 122 u230 0 u33

]
=
[a11 a12 a13a21 a22 a23a31 a32 a33

]
(5.24)

5.4 Numerical methods used in the present analysis

There are plenty of numerical processes available. The code developed as part of the present work

uses the compact difference scheme to discretise the primitive variable problem, and the rectangular

matrix is squared off using the method suggested in § 5.2.2.3. This matrix system is inverted using

a modified Doolittle decomposition implemented in the Eigen C++ library [17] which achieves

greater efficiency by exploiting the sparsity of the system. The final boundary condition is checked

using a Newton-Raphson scheme.
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Chapter 6

Code Development
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A code has been developed which implements the non-parallel approach which has been outlined.

In order to do this, it of course must have the capability to solve linear stability problems and their

adjoints. This chapter will discuss some of the challenges involved with developing such a code,

and present the strategies used to overcome them.

6.1 Parameter space

To predict the onset of turbulence using linear stability, typically the growth rate of a particular

wave is tracked as it develops downstream. When this reaches some critical value, that location is

said to be the start of the transitional region or the turbulent region. Of course there are many

waves all influencing the same boundary layer at the same time. This means they must all be

tracked, or that those which are the most likely to cause transition must be identified and all of

those must be tracked. If the problem under consideration involves only purely two-dimensional

stability, a contour of amplification against frequency and chordwise position can be plotted:
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Figure 6.1: Parameter Space in 2D

If N-factors are calculated, these can all be superimposed together to show the maximum at each

chordwise location.

However in three dimensions things get much more complex. Waves that may share a frequency

but travel in different directions must be considered, and it may also be required to observe waves

at different spanwise positions. This more complex parameter space is a grid of grids.
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Figure 6.2: Parameter Space in full 3D

In practice however, the space is not fully explored. For each frequency there is a band of angles

with likely transition candidates, and only these bands are analysed. Maximal N-factors are still

superimposed as with the 2D case. The possibility of calculating stability at differing spanwise

positions has been suggested in Chapter 7. Since corrected growth rates are of concern in the

present work, at every point in this space where there is an eigenvalue, there is also a correction

to consider.

79



6.2 Navigating the Re− ω plane

For certain numerical root-finding methods, convergence on the correct solution can be dependent

on the choice of initial guess. Even if this radius of convergence is large, it is still beneficial to

supply a guess that is close to the solution, since this will usually result in fewer iterations and

therefore faster convergence. A particularly useful way of ensuring the guess is suitable, is to use the

solution from a nearby point in the Re−ω plane. This is especially useful for similar flow boundary

layers where the velocity profile can remain constant and only Re and ω change. A parametric

space filling curve may prove useful by guaranteeing that each Re − ω pair is reasonably close to

the previous one. Under the assumption that wavenumber is an analytical function of Reynolds

number and frequency, this should mean that the previous solution is sufficiently good as an initial

guess.

6.2.1 Space filling curves

A function is sought which will fill the entire Re − ω plane with data points in a useful pattern.

The pattern should provide a sequence of points which fill the plane, in which each subsequent

point is reasonably close (in the plane) to its neighbours in the sequence.

6.2.1.1 The Archimedean spiral

As a first approximation the Archimedean spiral (shown in fig. 6.3) was used. It has the parametric

equation:

x = θ cos θ (6.1a)

y = θ sin θ (6.1b)

6.2.1.2 Squaring the spiral

A spiral such as this leaves large areas in the corners of the plane completely empty. A scaling

function fs(θ) is needed to stretch out the corners of the circle whilst leaving the edge midpoints
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as they are. This condition is described by:

θ = nπ

2 , n ∈ Z→ fs = 1 (6.2a)

θ = nπ

2 + π

4 , n ∈ Z→ fs =
√

2 (6.2b)

As long as these conditions are satisfied and the function is well behaved in between, it will suitably

fill the corners of the plane. The following function which fits the criteria is deduced:

fs (θ) =
√

1 + |cos (2θ)| (6.3)

Its curve is shown in fig. 6.4. Its points are shown in fig. 6.5: When applied to the Archimedian

spiral, its equations become:

x = θ

fs
cos θ, y = θ

fs
sin θ (6.4)

6.2.1.3 Fitting the curve to the problem

The curve must now be rescaled to fit the stability plane, which might extend, for example, from

0 to 5000 on the horizontal (Reynolds number) axis and from 0 to 0.15 on the vertical (frequency)
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Figure 6.4: Corner scaling function

axis. The central value in fig. 6.6 marks a point whose eigenvalue should already be known, and

could be used as a starting point.

6.2.1.4 Correcting the point distribution

Immediately it is clear from fig. 6.6 that this spiral unfairly selects too many points near the centre,

and far fewer further away, this can be rectified by altering the distribution of θ, from linear to

parabolic, which gives rise to the points shown in fig. 6.7. This new plot shows a more uniform

point density along the spiral.

6.2.1.5 Correcting the spiral pitch

Finally it is clear that the distance between points along the curve is much smaller than the length

of the spiral pitch, this can be corrected using a pitch scaling factor. This is chosen based on the

total number of points in the plane. The scaling factor is most effective when the relation between

the two is:

fp = π
√
N (6.5)
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Figure 6.6: Rescaled squared spiral
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Figure 6.7: Rescaled squared spiral with corrected point distribution

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 1000 2000 3000 4000 5000

ω

Re

Figure 6.8: Rescaled squared spiral with corrected point distribution and corrected pitch
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Now the structure of the spiral has become difficult to see, but the points are much more evenly

distributed in the plane. A short MATLAB script which can be used to generate these points

is:

1 %% SquareSpiral .m
2 % resolution and centre
3 n = 10000 ;
4 c = [2500 , 0.09] ;
5

6 % pitch scaling factor
7 PSF = sqrt(n) * pi ;
8

9 % theta distribution
10 % t = linspace (0 ,2*pi ,n)
11 t = zeros (n ,1) ;
12 for i = 1: length (t) ;
13 t(i) = -1 + sqrt(i) ;
14 end
15 t = t / max ([ max(t), abs(min(t))]);
16

17 % Corner scaling factor
18 CSF = (1 + abs(cos (2 * PSF * t ))).ˆ(1/2);
19

20 % x and y coordinates
21 x = t .* cos(PSF * t) ./ CSF ;
22 x = x ./ max(abs(x)) * c(1) + c(1) ;
23 y = t .* sin(PSF * t) ./ CSF ;
24 y = y ./ max(abs(y)) * c(2) + c(2) ;

6.2.2 Intelligent navigation

The kind of shape filling curve described works extremely well when calculating stability curves

for boundary layers with similarity solutions. However, for a real aerofoil with a varying pressure

gradient this would mean also calculating a new base flow for every point. Clearly it would be

beneficial to choose a smaller number of stations and calculate velocity profiles at these points,

then use only these for stability calculations. A different scheme is employed that uses fixed

chordwise locations, and fixed frequencies; starting at some point in the plane likely to have the

most amplification, and working outwards in both directions from there.

6.2.2.1 Initial points

Assuming there are a predetermined number of stations, where the base flow velocity profiles and

Reynolds numbers are known, these can be scanned and a suitable profile selected. Typically it
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is of benefit to choose a profile for which a reasonable initial guess can be made with no prior

calculations.

6.2.2.2 Subsequent points

After the initial eigenvalue is calculated, there is a choice to be made of where in the plane to

attempt the next calculation; it is possible to move to a different frequency, or a different station.

The present code will first move to another frequency, since the current point solution will likely

be a better initial guess than if moving to a new station. Only after all frequencies have been

exhausted at a particular station will it move to the next. The first frequency chosen at the

new station is the one likely to be the most amplified. This is found by looking back at all the

eigenvalues from the previous station.

6.3 Outside the Re− ω plane

Outside of the Re − ω plane, the navigation strategy is much simpler. The code begins with a

wave angle of zero, and moves through the angles getting progressively larger. Every time a new

angle is taken, a new stability curve can be drawn. The first point in each new curve is selected by

identifying the most amplified point in the previous curve, and using the corresponding eigenvalue

as the initial guess. As long as the step in angle isn’t too large, this approach is quite successful.

The same kind of approach could be taken for spanwise position. Calculate everything for the

previous set of curves, move to the next spanwise position and start again at angle zero. If the wing

geometry at the new spanwise location is reasonably similar to the last, then this method is valid.

A significant change in geometry however, would require either something more sophisticated, or

for a new known value to be supplied.
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6.4 Data structures

A number of classes have been developed, which are intended to make the code much more read-

able, and encourage proper encapsulation. Stability problems are complicated and involve a large

amount of data, so this approach is vital.

6.4.1 Base flow data

6.4.1.1 A point in space

The smallest class employed is ‘D0’. It represents a point in space and contains information about

how the base flow behaves. Specifically, velocities in each direction, their wall-normal derivatives,

their wall-normal second derivatives, their chordwise derivatives, and their spanwise derivatives.

It also contains the distance of the point from the wall.

6.4.1.2 A velocity profile

The class ‘D1’ represents a velocity profile, it’s most important component is an array containing

many of ‘D0’. In addition it contains information which is specific to the particular velocity

profile, Reynolds number, displacement thickness, distance from the leading edge, and other such

quantities. Also included in this class is a method for interpolating the profile, should a different

point distribution be desired.

6.4.1.3 A 2D boundary layer

The class ‘D2’ represents a sequence of velocity profiles. It consists of an array, storing many of

‘D1’, and all the data that is specific for a particular boundary layer, most notably: chord length,

and the spanwise location of the layer.

6.4.1.4 A 3D boundary layer

The class ‘D3’ represents a sequence of 2D layers. It is constructed in the same way as ‘D2’ and

includes information specific to a whole wing, most importantly, free stream velocity. This class
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also reads data from external sources. It has access to all the smaller objects and can populate

them with data.

6.4.2 Disturbance data

The class ‘Mode’ decribes the behaviour of a wave. Its frequency and spanwise wavenumber are

included, as are methods for converting these to and from non-dimensional form. This class also

contains an array of ‘GrowthQuants’ which is discussed in § 6.4.7.

6.4.3 Linear stability

The class ‘LinearStability’ is where the first calculations are performed. It can read from ‘Mode’

and ‘D1’ to consruct a stability problem. Then it solves this problem, retaining the eigenvalue,

and eigenfunction if required.

6.4.4 Adjoint linear stability

The class ‘AdjointLinearStability’ contsructs the adjoint problem in a similar way. However, the

equations can be easily expressed as a modified version of those in ‘LinearStability’. By giving

‘AdjointLinearStability’ access to ‘LinearStability’, it can copy the equations directly, then make

the modifications and solve the system. Once again, eigenvalues and eigenfunctions can be re-

tained.

6.4.5 Non-parallel correction

The non-parallel correction is calculated by ‘MultipleScales’. It can access both ‘LinearStability’,

and ‘AdjointLinearStability’, both of whose eigenfunctions are needed. There are a large number

of possible ways to determine the value of the correction. All of these, or just a selection can be

retained.

6.4.6 Interaction between classes

The class ‘Problem’ coordinates the interactions between the other classes. It reads ‘D3’ and deter-

mines which ‘D1’ should be sent to ‘LinearStability’, ‘AdjointLinearStability’, and ‘MultipleScales’.
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It has a range of options for doing this including a single eigenvalue search, stability of a single

wave across a boundary layer, or stability of many waves across a boundary layer. This class im-

plements the appropriate Re−ω navigation strategies discussed in §6.2. methods are also included

here for calculating N-factors, and N-factors which have been modified by the application of the

non-parallel correction.

6.4.7 Growth rate data

The class ‘GrowthQuants’ stores all of the output data from every previously mentioned class.

Many instantiations of this class are stored in one instantiation of ‘Mode’, so if there are many

modes under examination, envelopes can easily be calculated. Even the eigenfunctions and adjoint

eigenfunctions may be stored if they are needed for later calculations.

6.5 Safety

The multiple scales method is quite complex and depends upon many prerequisites. If any one of

these fails then the correction methodology will at best be wrong, and at worst could crash the

code. For each step there are safety procedures built into the code which will halt the process

under circumstances which are likely to cause a crash, or spurious result.

6.5.1 Linear stability

The first step of the method is the linear stability calculation. For most cases a particular wave is

selected and its growth is calculated at all points in the boundary layer. If the code is scanning

upstream from the initial station and finds a station with very strong damping of the wave, or an

unphysical result, the upstream scan will be halted in that direction. The same rule is applied

scanning downstream. A flag is raised on any station without a valid LST result.

When calculating stability curves over multiple frequencies, the code starts at some middle fre-

quency and scans in both directions. If a frequency is found with no growth at all, the scan is

halted in the appropriate direction.
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6.5.2 Adjoint linear stability

If a station has not been flagged as invalid, it will be permitted to calculate an adjoint eigenfunction

there. A valid LST result is an indicator of a valid adjoint LST results, but not a guarantee. A

check is performed here too, that the result is still physical, and also not too strongly damped.

Another additional check is in place here to ensure the result matches LST. A different flag is

raised indicating any station without a valid adjoint LST result.

6.5.3 Multiple scales

If a station has valid LST and adjoint LST results, then it will be permitted to calculate a multiple

scales correction. This is once again checked for physicality and an invalid flag may be raised.

Further calculations (N-factor and corrected N-factors for example) are only permitted if none of

the associated invalid flags are raised.

6.5.4 Coding practices

The code is written in C++ and follows the object oriented paradigm. This is done to ensure proper

data encapsulation. The ‘Problem’ class which coordinates all the others is often instantiated only

once, but if the user wished to set up several distinct problems (For example, using different

boundary layer data) then many of these can be created to ensure that no information from an

earlier case can pollute a subsequent one. The same principal is applied to modes, each ‘Mode’ has

a ‘GrowthQuants’ as part of its composition, this way no growth information can move between

modes without express instruction to do so.
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Chapter 7

Conclusions and

Recommendations for Further

Work
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7.1 Objectives

At the outset, the goals of the present work were threefold:

1. Develop mathematics capable of driving a simulation tool using the multiple scale method

in fully three-dimensional boundary layers

2. Develop the simulation tool itself

3. Demonstrate the capability of the tool

As the work progressed however, another goal became clear; to resolve certain difficulties in the

literature and present it in a clear, succinct way. This would itself have two separate parts:

1. To explore the distinct meanings of overloaded terminology, particularly “adjoint”

2. To explore the historical disagreements in the field, and if possible, weigh in with new insights
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7.2 Technical Outcomes

The mathematics necessary for the intended tool are outlined in Chapters 2 to 4. Some further

details of the derivations are given in Appendix A. It has been shown for the LST case and the

adjoint LST case that the present primitive variable formulations are compatible with the Orr-

Sommerfeld/adjoint Orr-Sommerfeld approaches used by Gaster [10]. Analysis in Chapter 3 shows

that the adjoint stream function has an exact analogue in primitive variables, which has been

called the “adjoint pressure” in Chapter 3. This has enabled the creation of a simulation package

capable of calculating and displaying:

• Eigenvalues of the linear stability problem in boundary layers

• Adjoint eigenfunctions

• Multiple scale corrections1

• Traditional N-factors

All of these are available for swept non-similar BLs, and perturbations with a relative wave angle

to the inviscid streamline. In most cases we have observed that the correction term is responsible

for a slight destabilisation of the wave.

Good agreement is observed with LST results from Davey[13], Gaster[10], Atkin[2]. Eigenvalues

for both temporal and spatial stability are given, along with eigenfunctions, and stability curves.

Adjoint results, also from Gaster [10], show very close agreement as well. Good agreement is

observed between the present analysis and existing multiple scales results due to Gaster [12] for

the Blasius flow. Competing methods and results from other authors have been investigated, and

where appropriate, comparisons made.

7.3 Insights into the field

7.3.1 Understanding adjoints

Adjoints have historically been used in a number of ways2. One can think of the adjoint problem

as a partner to the existing direct problem. If all that are sought are solutions to an eigenvalue
1Calculated using integrated kinetic energy, but other options may be implemented.
2Even schoolchildren learning manual matrix inversion are taught that the adjoint is the transpose of the matrix

of cofactors.
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problem (i.e. eigenvalues), the adjoint formulation may be used. This is because both formulations

share common eigenvalues. In some cases these can even be calculated at reduced computational

effort.

The adjoint solutions find great utility as sensitivities. As discussed in §3.9 the adjoint forms

part of the gradient, from which the drift in eigenvalue due to a change in the structure of the

problem can be calculated. Again this can sometimes come with significant benefits in terms of

computational overhead.

Finally, the multiple scales method is a reformulated version of the parallel stability problem. It

takes a similar form to the non-parallel, with the addition of non-homogeneous terms. We know

that the solution to this can only exist where the non-homogeneous terms are orthogonal to the

adjoint solution, and this condition supplies an equation which can be solved to give modified

solutions.

The adjoint operator/function itself is the same in all cases and always satisfies the definition given

in §3.1. Occasionally, an alternate definition is given, and this can inspire some confusion. However,

in each of these cases, equation (3.1) is a more generalised version of the given alternative. Once

found, the adjoint can be used in any of the aforementioned ways. In §3.10 this concept has been

discussed and a new scheme has been created showing the related classes of problems, including

the categorisation of the multiple scales method.

7.3.2 Historical disagreements

In Chapter 4 we discuss some of the historical controversies in the field. There have been differing

opinions on a range of issues, and chief among these is the metric for amplitude for the multiple

scales correction. Firstly, a part of the eigenfunction to use as a proxy for amplitude must be chosen,

of course a variety of choices can be found in the literature, and different choices yield different

results. As each new option was published, it invariably cast doubt upon those which came before

it. Kinetic energy was chosen in this case, simply for ease of comparison with the literature.

Streamwise velocity may be easier to measure directly in a wind tunnel, so this parameter really

should be left to each individual investigator to select. There should be no particular difficulty in

the interpretation of results using either criterion, assuming that it has correctly noted.
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Secondly, the method to collapse the wall-normal distribution to a single value must be chosen.

Again there is no agreement in the literature. Here the wall-normal integral is chosen for compar-

ison.

Thirdly, the normalisation of the eigenfunction has been questioned. Several different approaches

exist in literature. It has been shown that with careful calculation of the eigenfunction gradients,

this choice can be rendered completely inconsequential.

Finally, and most importantly, there has been controversy over whether or not it is necessary to

include this metric at all. It has been shown in Chapter 4 that the inclusion of this term can indeed

affect the result significantly, and in the author’s opinion, the reasons given for its exclusion are

found to be unconvincing.

7.4 Recommendations for further work

As with any theoretical or computational work, there would be great value in experimentation to

validate the model. This would likely need to be conducted in a low turbulence wind tunnel with

a carefully selected aerofoil, and artificially generated wave. Data on the development of the wave

would be collected, but also highly resolved base flow data would be necessary as an input for the

simulation. Other numerical techniques could be employed too. PSEs, bi/triglobal stability, and

DNS may each be useful for comparison.

The suggestions for wall-normally distinct MSM corrections would especially benefit from compar-

isons, experimental or otherwise. It may be possible to identify new correlations and use these to

better predict transition.

Curvature has been included, but as part of the linear problem. As discussed in §4.2, it would be

appropriate to include this instead with the correction terms. The computational requirements to

successfully do this require further investigation and development.

Presently the boundary layer data used was generated by the ‘BL2D’ package, which assumed a

swept-tapered geometry which is similar in the spanwise direction. Output from a tool capable

of producing a fully three-dimensional boundary layer could be used to generate a more accurate

picture of the state of the flow across the entire wing. Perhaps rivets or even pylons could be

included in the analysis.
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As with any computational undertaking, there can always be improvements made in performance

and user experience. The multiple scale method is fully local, which makes it a prime candidate for

parallelisation. Gaster’s rapid eigenvalue method [14] might provide another good starting point

for better performance. It may also be possible to better define the safety features and edge case

handling.

Finally, the methodology presented could be adapted for wider use. Building this into existing

industrial analysis would allow greater accuracy in transition prediction, and benefits in wing

aerodynamics could result.
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Appendix A

Expanded Derivations

I



A.1 The method of multiple scales

In § 4.1.1 the governing equations of the method of multiple scales are derived. Presented here are

the full derivations, including many intermediate steps. Each equation will be dealt with seperately,

starting with continuity, which is shown in equation (4.1a):

A.1.1 Continuity

From the Navier-Stokes equations:

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0

Decompose into base flow and perturbaton using u = U + ũ etc. (remember that V is small, so

εV should be substituted, also base flow derivatives in x and z are small so ∂{U, V,W}/∂{x, z}

should be substituted with ∂{εU, εV, εW}/∂{x, z}):

∂(εU + ũ)
∂x

+ ∂(εV + ṽ)
∂y

+ ∂(εW + w̃)
∂z

= 0

Expand the brackets:

ε
∂U

∂x
+ ∂ũ

∂x
+ ε

∂V

∂y
+ ∂ṽ

∂y
+ ε

∂W

∂z
+ ∂w̃

∂z
= 0

Linearise in perturbations by subtracting the base flow solution:

∂ũ

∂x
+ ∂ṽ

∂y
+ ∂w̃

∂z
= 0

Expand x = x0 + εx1 + · · · etc. for u, v, w, p, x, and z:

(
∂

∂x0
+ ε

∂

∂x1

)
(u0 + εu1) + ∂

∂y
(v0 + εv1) +

(
∂

∂z0
+ ε

∂

∂z1

)
(w0 + εw1) = 0

Expand the brackets:

∂ũ0

∂x0
+ ε

∂ũ1

∂x0
+ ε

∂ũ0

∂x1
+ ∂ṽ0

∂y
+ ε

∂ṽ1

∂y
+ ∂w̃0

∂z0
+ ε

∂w̃1

∂z0
+ ε

∂w̃0

∂z1
+ · · · = 0

II



Split the equation using similar powers of ε, ignoring higher powers than 1:

ε0
{
∂ũ0
∂x0

+ ∂ṽ0
∂y + ∂w̃0

∂z0
= 0

ε1
{
∂ũ1
∂x0

+ ∂ṽ1
∂y + ∂w̃1

∂z0
= −∂ũ0

∂x1
− ∂w̃0

∂z1

Apply the assumption that the perturbation behaves as a wave when seen in the x, and z directions,

but not in y ([ũ, ṽ, w̃, p̃](x, y, z, t) = [û, v̂, ŵ, p̂](y)ei(αx+βz−ωt)):

∂û0e
i(αx+βz−ωt)

∂x0
+ ∂v̂0e

i(αx+βz−ωt)

∂y
+ ∂ŵ0e

i(αx+βz−ωt)

∂z0
= 0

∂û1e
i(αx+βz−ωt)

∂x0
+ ∂v̂1e

i(αx+βz−ωt)

∂y
+ ∂ŵ1e

i(αx+βz−ωt)

∂z0
= −∂û0e

i(αx+βz−ωt)

∂x1
− ∂ŵ0e

i(αx+βz−ωt)

∂z1

Now certain derivatives can be separated. This will leave the equation with every term still having

a common factor in ei(αx+βz−ωt). This can be divided through:

iαû0 + v̂′0 + iβŵ0 =0

iαû1 + v̂′1 + iβŵ1 =− ∂û0

∂x1
− ∂ŵ0

∂z1

The following manipulations and derivatives will be needed later :

v̂′0 = −iαû0 − iβŵ0 (A.1a)

v̂′′0 = −iαû′0 − iβŵ′0 (A.1b)

v̂′′1 = −iαû′1 − iβŵ′1 −
∂û′0
∂x1
− ∂ŵ′0
∂z1

(A.1c)
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A.1.2 Momentum (u)

From Navier-Stokes (equation (4.1b)):

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −∂p

∂x
+ 1
Re

(
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)

Decompose into base flow and perturbaton using u = U + ũ etc. (remember that V is small, so

εV should be substituted, also base flow derivatives in x and z are small so ∂{U, V,W,P}/∂{x, z}

should be substituted with ∂{εU, εV, εW εP}/∂{x, z}):

∂(U + ũ)
∂t

+ (U + ũ)∂(εU + ũ)
∂x

+ (εV + ṽ)∂(U + ũ)
∂y

+ (W + w̃)∂(εU + ũ)
∂z

=

−∂(εP + p̃)
∂x

+ 1
Re

(
∂2(ε2U + ũ)

∂x2 + ∂2(U + ũ)
∂y2 + ∂2(ε2U + ũ)

∂z2

)

Expand the brackets:

∂U

∂t
+ ∂ũ

∂t
+ εU

∂U

∂x
+ εũ

∂U

∂x
+ U

∂ũ

∂x
+ ũ

∂ũ

∂x

+εV ∂U
∂y

+ εṽ
∂U

∂y
+ εV

∂ũ

∂y
+ ṽ

∂ũ

∂y

+εW ∂U

∂z
+ εw̃

∂U

∂z
+W

∂ũ

∂z
+ w̃

∂ũ

∂z
=

−ε∂P
∂x
− ∂p̃

∂x
+ 1
Re

(
ε2
∂2U

∂x2 + ∂2ũ

∂x2 + ∂2U

∂y2 + ∂2ũ

∂y2 + ε2
∂2U

∂z2 + ∂2ũ

∂z2

)

Linearise in perturbations by subtracting the base flow solution and neglecting products of two

perturbations:

∂ũ

∂t
+ εũ

∂U

∂x
+ U

∂ũ

∂x
+ εṽ

∂U

∂x
+ εV

∂ũ

∂x
+ εw̃

∂U

∂x
+W

∂ũ

∂x
= −∂p̃

∂x
+ 1
Re

(
∂2ũ

∂x2 + ∂2ũ

∂y2 + ∂2ũ

∂z2

)
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Expand x = x0 + εx1 + · · · etc. for u, v, w, p, x, and z:

∂(ũ0 + εũ1)
∂t

+ ε (ũ0 + εũ1)
(

∂

∂x0
+ ε

∂

∂x1

)
U + U

(
∂

∂x0
+ ε

∂

∂x1

)
(ũ0 + εũ1)

+ε (ṽ0 + εṽ1) ∂

∂y
+ εV

∂

∂y
(ũ0 + εũ1)

+ε (w̃0 + εw̃1)
(

∂

∂z0
+ ε

∂

∂z1

)
U +W

(
∂

∂z0
+ ε

∂

∂z1

)
(ũ0 + εũ1) =

−
(

∂

∂x0
+ ε

∂

∂x1

)
(p0 + εp1) + 1

Re

((
∂

∂x0
+ ε

∂

∂x1

)(
∂

∂x0
+ ε

∂

∂x1

)
(ũ0 + εũ1)

+ ∂2

∂y2 (ũ0 + εũ1) +
(

∂

∂x0
+ ε

∂

∂x1

)(
∂

∂x0
+ ε

∂

∂x1

)
(ũ0 + εũ1)

)

Expand the brackets:

+∂ũ0

∂t
+ ε

∂ũ1

∂t
+ U

∂ũ0

∂x0
+ εU

∂ũ0

∂x1
+ εU

∂ũ1

∂x0
+ ε2U

∂ũ1

∂x1

+ε ∂U
∂x0

ũ0 + ε2
∂U

∂x1
ũ0 + ε2

∂U

∂x0
ũ1 + ε3

∂U

∂x1
ũ1

+εV ∂ũ0

∂y
+ ε2V

∂ũ1

∂y
+ ∂U

∂y
ṽ0 + ε

∂U

∂y
ṽ1

+W ∂ũ0

∂z0
+ εW

∂ũ0

∂z1
+ εW

∂ũ1

∂z0
+ ε2W

∂ũ1

∂z1

+ε ∂U
∂z0

w̃0 + ε2
∂U

∂z1
w̃0 + ε2

∂U

∂z0
w̃1 + ε3

∂U

∂z1
w̃1

+∂p̃0

∂x0
+ ε

∂p̃0

∂x1
+ ε

∂p̃1

∂x0
+ ε2

∂p̃1

∂x1

− 1
Re

(
+ ∂2ũ0

∂x2
0

+ ε
∂2ũ0

∂x0∂x1
+ ε

∂2ũ1

∂x2
0

+ ε2
∂2ũ1

∂x0∂x1
+ ε

∂2ũ0

∂x0∂x1
+ ε2

∂2ũ0

∂x2
1

+ ε2
∂2ũ1

∂x0∂x1
+ ε3

∂2ũ1

∂x2
1

+∂2ũ0

∂y2 + ε
∂2ũ1

∂y2

+∂2ũ0

∂z2
0

+ ε
∂2ũ0

∂z0∂z1
+ ε

∂2ũ1

∂z2
0

+ ε2
∂2ũ1

∂z0∂z1
+ ε

∂2ũ0

∂z0∂z1
+ ε2

∂2ũ0

∂z2
1

+ ε2
∂2ũ1

∂z0∂z1
+ ε3

∂2ũ1

∂z2
1

)
= 0

Split the equation using similar powers of ε, ignoring higher powers than 1:

ε0 :
{
∂ũ0
∂t + U ∂ũ0

∂x0
+ ṽ0

∂U
∂y +W ∂ũ0

∂z0
+ ∂p̃0

∂x0
− 1

Re

(
∂2ũ0
∂x2

0
+ ∂2ũ0

∂y2 + ∂2ũ0
∂z2

0

)
= 0

ε1 :


∂ũ1
∂t + U ∂ũ1

∂x0
+ ṽ1

∂U
∂y +W ∂ũ1

∂z0
+ ∂p̃1

∂x0
− 1

Re

(
∂2ũ1
∂x2

0
+ ∂2ũ1

∂y2 + ∂2ũ1
∂z2

0

)
=

1
Re

(
2 ∂2ũ0
∂x0∂x1

+ 2 ∂2ũ0
∂z0∂z1

)
− U ∂ũ0

∂x1
− ũ0

∂U
∂x0
− V ∂ũ0

∂y −W
∂ũ0
∂z1
− w̃0

∂U
∂z0
− ∂p̃0

∂x1

V



Apply the assumption that the perturbation behaves as a wave when seen in the x, and z directions,

but not in y ([ũ, ṽ, w̃, p̃](x, y, z, t) = [û, v̂, ŵ, p̂](y)ei(αx+βz−ωt)):

∂û0e
iφ

∂t
+U ∂û0e

iφ

∂x0
+v̂0e

iφ ∂U

∂y
+W ∂û0e

iφ

∂z0
+∂p̂0e

iφ

∂x0
− 1
Re

(
∂2û0e

iφ

∂x2
0

+ ∂2û0e
iφ

∂y2 + ∂2û0e
iφ

∂z2
0

)
= 0

∂û1e
iφ

∂t
+U ∂û1e

iφ

∂x0
+v̂1e

iφ ∂U

∂y
+W ∂û1e

iφ

∂z0
+∂p̂1e

iφ

∂x0
− 1
Re

(
∂2û1e

iφ

∂x2
0

+ ∂2û1e
iφ

∂y2 + ∂2û1e
iφ

∂z2
0

)
=

1
Re

(
2∂

2û0e
iφ

∂x0∂x1
+ 2∂

2û0e
iφ

∂z0∂z1

)
−U ∂û0e

iφ

∂x1
−û0e

iφ ∂U

∂x0
−V ∂û0e

iφ

∂y
−W ∂û0e

iφ

∂z1
−ŵ0e

iφ ∂U

∂z0
−∂p̂0e

iφ

∂x1

where φ = αx + βz − ωt. Now certain derivatives can be separated. This will leave the equation

with every term still having a common factor in ei(αx+βz−ωt). This can be divided through:

−iωû0 + iαUû0 + U ′v̂0 + iβWû0 + iαp̂0 −
1
Re

(
−α2û0 + û′′0 − β2û0

)
= 0

−iωû1 + iαUû1 + U ′v̂1 + iβWû1 + iαp̂1 −
1
Re

(
−α2û1 + û′′1 − β2û1

)
=

1
Re

(
2iα∂û0

∂x1
+ 2iβ ∂û0

∂z1

)
− U ∂û0

∂x1
− ∂U

∂x0
û0 − V û′0 −W

∂û0

∂x1
− ∂U

∂z0
ŵ0 −

∂p̂0

∂x1

VI



A.1.3 Momentum (v)

From Navier-Stokes(equation (4.1c)):

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −∂p

∂y
+ 1
Re

(
∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2

)

Decompose into base flow and perturbaton using u = U + ũ etc. (remember that V is small, so

εV should be substituted, also base flow derivatives in x and z are small so ∂{U, V,W,P}/∂{x, z}

should be substituted with ∂{εU, εV, εW, εP}/∂{x, z}):

∂(εV + ṽ)
∂t

+ (U + ũ)∂(ε2V + ṽ)
∂x

+ (εV + ṽ)∂(εV + ṽ)
∂y

+ (W + w̃)∂(ε2V + ṽ)
∂z

=

−∂(εP + p̃)
∂y

+ 1
Re

(
∂2(ε3V + ṽ)

∂x2 + ∂2(εV + ṽ)
∂y2 + ∂2(ε3V + ṽ)

∂z2

)

Expand the brackets:

ε
∂V

∂t
+ ∂ṽ

∂t
+ ε2U

∂V

∂x
+ U

∂ṽ

∂x
+ ε2ũ

∂V

∂x
+ ũ

∂v

∂x

+ε2V ∂V
∂y

+ εV
∂ṽ

∂y
+ εṽ

∂V

∂y
+ ṽ

∂v

∂y
+ ε2W

∂V

∂z
+W

∂ṽ

∂z
+ ε2w̃

∂V

∂z
+ w̃

∂v

∂z
=

+ε∂P
∂y

+ ∂p̃

∂y
+ 1
Re

(
ε3
∂2V

∂x2 + ∂ṽ

∂x
+ ε

∂2V

∂y2 + ∂ṽ

∂y
+ ε3

∂2V

∂z2 + ∂ṽ

∂z

)

Linearise in perturbations by subtracting the base flow solution and neglecting products of petur-

bations:

∂ṽ

∂t
+ U

∂ṽ

∂x
+ ε2ũ

∂V

∂x
+ εV

∂ṽ

∂y
+ εṽ

∂V

∂y
+W

∂ṽ

∂z
+ ε2w̃

∂V

∂z
= +∂p̃

∂y
+ 1
Re

(
+∂ṽ

∂x
+ ∂ṽ

∂y
+ ∂ṽ

∂z

)

VII



Expand x = x0 + εx1 + · · · etc. for u, v, w, p, x, and z:

∂(ṽ0 + εṽ1)
∂t

+ U

(
∂

∂x0
+ ε

∂

∂x1

)
(ṽ0 + εṽ1) + ε2 (ũ0 + εũ1) ∂V

∂x

+εV ∂

∂y
(ṽ0 + εṽ1) + ε (ṽ0 + εṽ1) ∂V

∂y

+W
(

∂

∂z0
+ ε

∂

∂z1

)
(ṽ0 + εṽ1) + ε2 (w̃0 + εw̃1) ∂V

∂z
=

+∂(p̃0 + εp̃1)
∂y

+ 1
Re

((
∂

∂x0
+ ε

∂

∂x1

)(
∂

∂x0
+ ε

∂

∂x1

)
(v0 + εv1)

+ ∂2

∂y2 (v0 + εv1) +
(

∂

∂z0
+ ε

∂

∂z1

)(
∂

∂z0
+ ε

∂

∂z1

)
(v0 + εv1)

)

Expand the brackets:

+∂ṽ0

∂t
+ ε

∂ṽ1

∂t
+ U

∂ṽ0

∂x0
+ εU

∂ṽ0

∂x1
+ εU

∂ṽ1

∂x0
+ ε2U

∂ṽ1

∂x1

+ε2 ∂V
∂x0

ũ0 + ε3
∂V

∂x1
ũ1

+εV ∂ṽ0

∂y
+ ε2V

∂ṽ1

∂y
+ ε

∂V

∂y
ṽ0 + ε2

∂V

∂y
ṽ1

+W ∂ṽ0

∂z0
+ εW

∂ṽ0

∂z1
+ εW

∂ṽ1

∂z0
+ ε2W

∂ṽ1

∂z1
+ ε2

∂V

∂z0
w̃0 + ε3

∂V

∂z1
w̃1

+∂p̃0

∂y
+ ε

∂p̃1

∂y

− 1
Re

(
+ ∂2ṽ0

∂x2
0

+ ε
∂2ṽ0

∂x0∂x1
+ ε

∂2ṽ1

∂x2
0

+ ε2
∂2ṽ1

∂x0∂x1
+ ε

∂2ṽ0

∂x0∂x1
+ ε2

∂2ṽ0

∂x2
1

+ ε2
∂2ṽ1

∂x0∂x1
+ ε3

∂2ṽ1

∂x2
1

+∂2ṽ0

∂y2 + ε
∂2ṽ1

∂y2

+∂2ṽ0

∂z2
0

+ ε
∂2ṽ0

∂z0∂z1
+ ε

∂2ṽ1

∂z2
0

+ ε2
∂2ṽ1

∂z0∂z1
+ ε

∂2ṽ0

∂z0∂z1
+ ε2

∂2ṽ0

∂z2
1

+ ε2
∂2ṽ1

∂z0∂z1
+ ε3

∂2ṽ1

∂z2
1

)
= 0

Split the equation using similar powers of ε, ignoring higher powes than 1:

ε0 :
{
∂ṽ0
∂t + U ∂ṽ0

∂x0
+W ∂ṽ0

∂z0
+ ∂p̃0

∂y −
1
Re

(
∂2ṽ0
∂x2

0
+ ∂2ṽ0

∂y2 + ∂2ṽ0
∂z2

0

)
= 0

ε1 :


∂ṽ0
∂t + U ∂ṽ0

∂x0
+W ∂ṽ0

∂z0
+ ∂p̃0

∂y −
1
Re

(
∂2ṽ0
∂x2

0
+ ∂2ṽ0

∂y2 + ∂2ṽ0
∂z2

0

)
=

1
Re

(
2 ∂2ṽ0
∂x0∂x1

+ 2 ∂2ṽ0
∂z0∂z1

)
− U ∂ṽ0

∂x1
− v0

∂V
∂y − V

∂ṽ0
∂y −W

∂ṽ0
∂z1

VIII



Apply the assumption that the perturbation behaves as a wave when seen in the x, and z directions,

but not in y ([ũ, ṽ, w̃, p̃](x, y, z, t) = [û, v̂, ŵ, p̂](y)ei(αx+βz−ωt)):

∂v̂0e
iφ

∂t
+ U

∂v̂0e
iφ

∂x0
+W

∂v̂0e
iφ

∂z0
+ ∂p̂0e

iφ

∂y
− 1
Re

(
∂2v̂0e

iφ

∂x2
0

+ ∂2v̂0e
iφ

∂y2 + ∂2v̂0e
iφ

∂z2
0

)
= 0

∂v̂0e
iφ

∂t
+ U

∂v̂0e
iφ

∂x0
+W

∂v̂0e
iφ

∂z0
+ ∂p̂0e

iφ

∂y
− 1
Re

(
∂2v̂0e

iφ

∂x2
0

+ ∂2v̂0e
iφ

∂y2 + ∂2v̂0e
iφ

∂z2
0

)
=

1
Re

(
2∂

2v̂0e
iφ

∂x0∂x1
+ 2∂

2v̂0e
iφ

∂z0∂z1

)
− U ∂v̂0e

iφ

∂x1
− v0e

iφ ∂V

∂y
− V ∂v̂0e

iφ

∂y
−W ∂v̂0e

iφ

∂z1

where αx + βz − ωt = φ. Now certain derivatives can be separated. This will leave the equation

with every term still having a common factor in eiφ. This can be divided through:

−iωv̂0 + iαUv̂0 + iβWv̂0 + p̂′0 −
1
Re

(
−α2v̂0 + v̂′′0 − β2v̂0

)
= 0

−iωv̂1 + iαUv̂1 + iβWv̂1 + p̂′1 −
1
Re

(
−α2v̂1 + v̂′′1 − β2v̂1

)
=

1
Re

(
2iα ∂v̂0

∂x1
+ 2iβ ∂v̂0

∂z1

)
− U ∂v̂0

∂x1
−W ∂v̂0

∂z1
− V ′v̂0 − V v̂′0

Although this is the v momentum equation, in the system of first order equations which will be con-

structed, the derivative variable will in fact be pressure. In order to achieve this, equation (A.1a),

equation (A.1b), and equation (A.1c) are substituted where appropriate, and using û′ = τ̂u, and

ŵ′ = τ̂w:

−iωv̂0 + iαUv̂0 + iβWv̂0 + p̂′0 −
1
Re

(
−α2v̂0 − iατ̂u0 − iβτ̂w0 − β2v̂0

)
= 0

−iωv̂1 + iαUv̂1 + iβWv̂1 + p̂′1 −
1
Re

(
−α2v̂1 − iατ̂u1 − iβτ̂w1 − β2v̂1

)
=

1
Re

(
2iα ∂v̂0

∂x1
+ 2iβ ∂v̂0

∂z1
+ ∂û0

∂x1
+ ∂ŵ0

∂z1

)
− U ∂v̂0

∂x1
−W ∂v̂0

∂z1
− V ′v̂0 + iαV u0 + iβV w0

IX



A.1.4 Momentum (w)

From Navier-Stokes (equation (4.1d)):

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −∂p

∂z
+ 1
Re

(
∂2w

∂x2 + ∂2w

∂y2 + ∂2w

∂z2

)

Decompose into base flow and perturbaton using u = U + ũ etc. (remember that V is small, so

εV should be substituted, also base flow derivatives in x and z are small so ∂{U, V,W,P}/∂{x, z}

should be substituted with ∂{εU, εV, εW, εP}/∂{x, z}):

∂(W + w̃)
∂t

+ (U + ũ)∂(εW + w̃)
∂x

+ (εV + ṽ)∂(W + w̃)
∂y

+ (W + w̃)∂(εW + w̃)
∂z

=

−∂(εP + p̃)
∂z

+ 1
Re

(
∂2(ε2W + w̃)

∂x2 + ∂2(W + w̃)
∂y2 + ∂2(ε2W + w̃)

∂z2

)

Expand the brackets:

∂W

∂t
+ ∂w̃

∂t
+ εU

∂W

∂x
+ εũ

∂W

∂x
+ U

∂w̃

∂x
+ ũ

∂w̃

∂x

+εV ∂W
∂y

+ εṽ
∂W

∂y
+ εV

∂w̃

∂y
+ ṽ

∂w̃

∂y

+εW ∂W

∂z
+ εw̃

∂W

∂z
+W

∂w̃

∂z
+ w̃

∂w̃

∂z
=

−ε∂P
∂x
− ∂p̃

∂z
+ 1
Re

(
ε2
∂2W

∂x2 + ∂2w̃

∂x2 + ∂2W

∂y2 + ∂2w̃

∂y2 + ε2
∂2W

∂z2 + ∂2w̃

∂z2

)

Linearise in perturbations by subtracting the base flow solution and neglecting products of pertur-

bations:

∂w̃

∂t
+ εũ

∂W

∂x
+ U

∂w̃

∂x
+ εṽ

∂W

∂y
+ εV

∂w̃

∂y
+ εw̃

∂W

∂z
+W

∂w̃

∂z
= −∂p̃

∂z
+ 1
Re

(
∂2w̃

∂x2 + ∂2w̃

∂y2 + ∂2w̃

∂z2

)

X



Expand x = x0 + εx1 + · · · etc. for u, v, w, p, x, and z:

∂(w̃0 + εw̃1)
∂t

+ ε (ũ0 + εũ1)
(

∂

∂x0
+ ε

∂

∂x1

)
W + U

(
∂

∂x0
+ ε

∂

∂x1

)
(w̃0 + εw̃1)

+ε (ṽ0 + εṽ1) ∂

∂y
+ εV

∂

∂y
(w̃0 + εw̃1)

+ε (w̃0 + εw̃1)
(

∂

∂z0
+ ε

∂

∂z1

)
W +W

(
∂

∂z0
+ ε

∂

∂z1

)
(w̃0 + εw̃1) =

−
(

∂

∂z0
+ ε

∂

∂z1

)
(p̃0 + εp̃1) + 1

Re

((
∂

∂x0
+ ε

∂

∂x1

)(
∂

∂x0
+ ε

∂

∂x1

)
(ũ0 + εũ1)

+ ∂2

∂y2 (ũ0 + εũ1) +
(

∂

∂x0
+ ε

∂

∂x1

)(
∂

∂x0
+ ε

∂

∂x1

)
(ũ0 + εũ1)

)

Expand the brackets:

∂w̃0

∂t
+ ε

∂w̃1

∂t
+ U

∂w̃0

∂x0
+ εU

∂w̃0

∂x1
+ εU

∂w̃1

∂x0
+ ε2U

∂w̃1

∂x1

+εu0
∂W

∂x0
+ ε2u0

∂W

∂x1
+ ε2u1

∂W

∂x0
+ ε3u1

∂W

∂x1

+εV ∂w̃0

∂y
+ ε2V

∂w̃1

∂y
+ v0

∂W

∂y
+ εv1

∂W

∂y

+W ∂w̃0

∂z0
+ εW

∂w̃0

∂z1
+ εW

∂w̃1

∂z0
+ ε2W

∂w̃1

∂z1

+εw0
∂W

∂z0
+ ε2w0

∂W

∂z1
+ ε2w1

∂W

∂z0
+ ε3w1

∂W

∂z1

+∂p̃0

∂z0
+ ε

∂p̃0

∂z1
+ ε

∂p̃1

∂z0
+ ε2

∂p̃1

∂z1

− 1
Re

(
∂2w̃0

∂x2
0

+ ε
∂2w̃0

∂x0∂x1
+ ε

∂2w̃1

∂x2
0

+ ε2
∂2w̃1

∂x0∂x1
+ ε

∂2w̃0

∂x0∂x1
+ ε2

∂2w̃0

∂x2
1

+ ε2
∂2w̃1

∂x0∂x1
+ ε3

∂2w̃1

∂x2
1

+∂2w̃0

∂y2 + ε
∂2w̃1

∂y2

+∂2w̃0

∂z2
0

+ ε
∂2w̃0

∂z0∂z1
+ ε

∂2w̃1

∂z2
0

+ ε2
∂2w̃1

∂z0∂z1
+ ε

∂2w̃0

∂z0∂z1
+ ε2

∂2w̃0

∂z2
1

+ ε2
∂2w̃1

∂z0∂z1
+ ε3

∂2w̃1

∂z2
1

)
= 0

Split the equation using similar powers of ε, ignoring higher powers than 1:

ε0 :
{
∂w̃0
∂t + U ∂w̃0

∂x0
+ ṽ0

∂W
∂y +W ∂w̃0

∂z0
+ ∂p̃0

∂z0
− 1

Re

(
∂2w̃0
∂x2

0
+ ∂2w̃0

∂y2 + ∂2w̃0
∂z2

0

)
= 0

ε1 :


∂w̃1
∂t + U ∂w̃1

∂x0
+ ṽ1

∂W
∂y +W ∂w̃1

∂z0
+ ∂p̃1

∂z0
− 1

Re

(
∂2w̃1
∂x2

0
+ ∂2w̃1

∂y2 + ∂2w̃1
∂z2

0

)
=

1
Re

(
2 ∂2w̃0
∂x0∂x1

+ 2 ∂2w̃0
∂z0∂z1

)
− U ∂w̃0

∂x1
− ũ0

∂W
∂x0
− V ∂w̃0

∂y −W
∂w̃0
∂z1
− w̃0

∂W
∂z0
− ∂p̃0

∂z1
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Apply the assumption that the perturbation behaves as a wave when seen in the x, and z directions,

but not in y ([ũ, ṽ, w̃, p̃](x, y, z, t) = [û, v̂, ŵ, p̂](y)ei(αx+βz−ωt)):

∂ŵ0e
iφ

∂t
+U ∂ŵ0e

iφ

∂x0
+v̂0e

iφ ∂W

∂y
+W ∂ŵ0e

iφ

∂z0
+∂p̂0e

iφ

∂z0
− 1
Re

(
∂2ŵ0e

iφ

∂x2
0

+∂2ŵ0e
iφ

∂y2 +∂2ŵ0e
iφ

∂z2
0

)
=0

∂ŵ1e
iφ

∂t
+U ∂ŵ1e

iφ

∂x0
+v̂1e

iφ ∂W

∂y
+W ∂ŵ1e

iφ

∂z0
+∂p̂1e

iφ

∂z0
− 1
Re

(
∂2ŵ1e

iφ

∂x2
0

+∂2ŵ1e
iφ

∂y2 +∂2ŵ1e
iφ

∂z2
0

)
=

1
Re

(
2∂

2ŵ0e
iφ

∂x0∂x1
+2∂

2ŵ0e
iφ

∂z0∂z1

)
−U ∂ŵ0e

iφ

∂x1
−û0e

iφ ∂W

∂x0
−V ∂ŵ0e

iφ

∂y
−W ∂ŵ0e

iφ

∂z1
−ŵ0e

iφ ∂W

∂z0
−∂p̂0e

iφ

∂z1

where αx + βz − ωt = φ. Now certain derivatives can be separated. This will leave the equation

with every term still having a common factor in ei(αx+βz−ωt). This can be divided through:

−iωŵ0 + iαUŵ0 +W ′v̂0 + iβWŵ0 + iβp̂0 −
1
Re

(
−α2ŵ0 + ŵ′′0 − β2ŵ0

)
= 0

−iωŵ1 + iαUŵ1 +W ′v̂1 + iβWŵ1 + iβp̂1 −
1
Re

(
−α2ŵ1 + ŵ′′1 − β2ŵ1

)
=

1
Re

(
2iα∂ŵ0

∂x1
+ 2iβ ∂ŵ0

∂z1

)
− U ∂ŵ0

∂x1
− ∂W

∂x0
û0 − V ŵ′0 −W

∂ŵ0

∂x1
− ∂W

∂z0
ŵ0 −

∂p̂0

∂z1
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