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Abstract
This thesis investigates the use of parametric models for projecting mortality rates. 

The basic framework used is that of generalised linear models and can be considered 

as an extension of the Gompertz-Makeham models (Forfar, McCutcheon and Wilkie, 

1988) to include calendar period. The data considered are the CMI ultimate 

experience for immediate annuitants (male and female) over the period 1946 to 1994 

and for life office pensioners (male and female) over the period 1983 to 1996.

The modelling structure suggested by Renshaw, Haberman and Hatzopoulos (1996) is 

used to investigate the data sets and to determine a range of suitable models, 

analysing the data by age and calendar period. The properties of these models are 

investigated and recommendations are made on which models are appropriate for use 

in projections.

Mortality improvement models are derived from the recommended models and the 

associated reduction factors are compared with CMI mortality reduction factors.

In addition, the female annuitants’ ultimate experience is investigated using a method 

that combines parametric and time series models to generate forecasts. The procedure 

used by McNown and Rogers (1989) is used to project forces of mortality over time. 

The parametric models (Gompertz-Makeham type) are fitted in the framework of 

generalised linear models. Projected forces of mortality based on the combined 

parametric-time series model are compared with the projected forces of mortality 

recommended on the basis of the parametric models.
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Chapter 1

Introduction

1.1. Objective and Outline
Forecasting mortality rates involves two different tasks, both of which are of interest 

to the actuary, (Tolley, Hickman and Lew, 1993). The first type of forecast involves 

the determination of the future mortality experience of groups of individuals, where 

the individuals of a group are assumed to be subject to mortality according to some 

known set of probabilities. For example, we might need to forecast the probability 

that an individual aged x exact, chosen at random from among the group of 

individuals, will live to age x + t. The principal tool for making such forecasts is the 

life table. The life table is one way of presenting the probability distribution of the 

random variable representing the future lifetime of an individual.

A second type of forecast involves assessment of future patterns of the mortality 

process. This approach involves forecasting the changes in the life table itself. As 

early as 1949, Jenkins and Lew observed that mortality rates were declining and 

would continue to follow a downward trend to lower levels. The unprecedented 

improvements in mortality over the last century have led actuaries, as well as 

demographers, economists and others to seriously deal with the problem of future 

changes in mortality. It is this second type of forecast that is the subject of this thesis.

In the UK, the Government Actuary’s Department and the Continuous Mortality 

Investigation (CMI) Bureau of the Institute and Faculty of Actuaries undertake 

regular studies of mortality changes in the population of the UK in general and in the 

insured sub-population respectively. The Government Actuary’s Department produces

6



national population projections, which include a mortality projection basis (ONS 

publications). The most recently published reports describing trends in the mortality 

of assured lives in England and Wales are CMIR16 and CMIR17. A series of papers 

on UK mortality trends have appeared in the actuarial literature (e.g. Daykin, 1996). 

An international series of studies of mortality trends was started by Gwilt (1956) and 

continued by Anderson and Whitehead (1960), Giles and Wilkie (1973), Wilkie 

(1976) and Macdonald et al (1998).

For USA mortality experiences, the declining trend in mortality is well documented in 

mortality studies by the Social Security Administration (Actuarial Studies on United 

States life tables) and reports in The Transactions of the Society of Actuaries (e.g. 

Myers and Bayo, 1985, Society of Actuaries, 1981 and Wilkin, 1981).

Under conditions of improving mortality, projection of future mortality rates for 

annuitants is essential. A company selling life annuities at prices based on mortality 

levels current at the time the annuities were sold would be likely to make a loss since 

policyholders would live longer than anticipated (Benjamin and Pollard, 1993). If the 

standard mortality table used for calculation of annuity rates and reserves predicts 

higher mortality rates than actually experienced by the policyholders, the financial 

stability of the company selling the annuities would be in jeopardy since the 

policyholders would have been undercharged and reserves understated. It is therefore 

of considerable financial importance for insurance companies to be able to make 

accurate predictions of future rates of mortality for annuitants, thereby ensuring that 

they are able to determine correctly premium rates and reserves.

The aim of this study is to develop a model, or models, suitable for predicting future 

mortality rates for UK annuitants and pensioners. To this end, an analysis of recent 

trends in the mortality of immediate annuitants and life office pensioners is carried 

out, with the objective of developing models that take into account both the age 

variation in mortality, and the underlying time trends in the mortality rates. The main 

focus is on the modelling structure suggested by Renshaw, Haberman and 

Hatzopoulos (1996). The basic framework used for analysis is that of generalised 

linear models and can be considered as an extension of the Gompertz-Makeham 

models (Forfar, McCutcheon and Wilkie, 1988) to include calendar period. Renshaw
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et al (1996) developed a method of graduating mortality data that incorporates both 

the age variation in mortality and the underlying time trends. In this study, the focus 

has been on identifying the particular forms of the Renshaw et al (1996) modelling 

structure that are suitable for forecasting forces of mortality for annuitants and 

pensioners. The models are then compared with various forecasting methods, 

particularly the method currently used by the CMI Committee to project pensioners’ 

and annuitants’ mortality and the method based on time series analysis used by 

McNown and Rogers (1989).

The basic textbook on mortality referred to throughout this study is Benjamin and 

Pollard (1993). There are also frequent references to Elandt-Johnson and Johnson 

(1980), whose treatment of the subject is primarily focused on clinical data.

Chapter 2 covers measures of mortality (including the life table) and graduation 

methods. In Chapter 3 methods of projecting mortality are discussed. The results of 

modelling the immediate annuitants’ experience are presented in Chapter 4 while the 

pensioners’ experience is presented in Chapter 5. Chapter 6 is a brief discussion on 

modelling the experiences using parametric methods in combination with time series 

methods.

1.2. Notation
jux the force of mortality at age x

jux[ the force of mortality at age x attained in calendar year t

(x) a life aged x years exactly

T(x) the future lifetime of (x)

tqx the probability that (x) will die within t years

,px the probability that (x) will survive for at least t years

ex the complete expectation of life of (x)

ex the curtate expectation of life of (x)

Rx the central exposed-to-risk at age x

Rxt the central exposed-to-risk at age x in calendar year t



RF(x,t)

the initial exposed-to-risk at age x

the initial exposed-to-risk at age x in calendar year t

observed number of deaths corresponding to Rcx or Rx

observed number of deaths corresponding to Rcxt or Rxl

the mortality improvement factor for a life attaining age x at time t
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Chapter 2

Measures of Mortality and Graduation

2.1 Introduction
Benjamin and Pollard (1993) state that ‘the purpose of measuring mortality is to 

enable inferences to be drawn about the likelihood of death occurring within a 

specific population during a specific period of time’.

The above statement implies that in assessing an individual’s probability of dying (or 

surviving), we need to consider the number of deaths among a group of individuals 

under specified conditions. In addition to recording the number of deaths among the 

group of individuals under observation, we need to know for each individual, the 

period of exposure to risk, that is, the specific period of time during which the death 

of an individual will actually be recorded and contribute to the observed deaths 

(Elandt-Johnson and Johnson, 1979). Hence the basic measure of mortality is 

expressed as a proportion of the number of deaths to the period of exposure to the risk 

of death. Various age-specific probabilities involving mortality are described in 

Section 2.2.

Studies in mortality show that the risk of dying varies with a number of factors such 

as age, sex, and other factors that influence the environment of the people such as 

geographical location of residence, occupation and nutrition. The variation of 

mortality with age has always been of great interest to actuaries ‘since many of their 

calculations o f contingencies depend upon this variation’ (Benjamin and Pollard, 

1993). The study of this variation has led to many attempts to fit analytic or
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mathematical expressions to the progression of mortality by age. The term ‘law of 

mortality is used to describe a mathematical expression for the force of mortality, jux 

(or other measure of mortality) which can be explained from biological or other 

arguments (Scott, 1996). Such an expression has the advantage that calculations of 

mortality functions are greatly simplified and statistical inference is facilitated when 

only a few parameters need to be estimated (Gerber, 1995). A discussion of laws of 

mortality is covered in Section 2.3.

Most studies in mortality are based on mortality experiences that are samples from 

much larger experiences. Thus, the death rates derived at individual ages are subject 

to sampling error. The adjustment procedure that reduces the random errors is referred 

to as graduation and this procedure is described in Section 2.4. Section 2.5 covers the 

specific type of graduation involving generalized linear models, which is the method 

of graduation applied in this study.

2.2 Measures of mortality
In measuring mortality we are essentially concerned with probabilities of death (or 

equivalently, survival) of an individual at birth or at a given age x. There are various 

functions that are used as a measure of mortality and some of these functions are 

described in this section. Many books give detailed descriptions of survival 

distributions, among them Bowers et al (1986), Elandt-Johnson and Johnson (1980) 

and London (1988).

2.2.1 Probabilities of death and survival
Formulae for probabilities of death and survival have as their basis the distribution of 

failure time as developed in renewal theory (see for example Cox and Oakes, 1984).

Consider a person aged exactly x years, referred to as a life aged x or denoted by (x), 

and denote his future lifetime by T or T{x). T(x) is a random variable with a 

continuous distribution over the range (0, co). The cumulative distribution function of 

T(x)

11



F{t) =  P(T < t) (2.1)

represents the probability that (x) will die between the ages x and x + t years for any 

fixed value of t and is denoted by the symbol tqx in International Actuarial Notation.

Complementary to F(t) we have the survivor function S(t), representing the 

probability that (x) survives to age x + t. In International Actuarial Notation, S{t) is 

denoted by the symbol tp x . Thus

,p x = S(t)= P (T> t)= \-F (t) (2 .2)

This implies that:

0 ? i= F(0) = 0; „?, = F(oo)=r

>

oPx = ^ (°)=1; «/h = s(°°)=o.

Thus, F(t) is a non-decreasing function of 

t.

(2.3)

while S(t) is a non-increasing function of

The probability that (x) dies between the ages x and x + 1 is denoted qx while px is the 

probability that (x) survives for at least a year. qx, the probability that (x) dies within 

the year is called the initial rate of mortality at age x.

The probability density function of the random variable T is

/ ( i )  = F '(0  = -5 '(i). (2.4)
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2.2.2 The force of mortality
The force o f mortality or hazard rate of (x) at age x + / is defined as

Mx+t lim ^ ± L  
dt

(2.5)

The force of mortality is a measure of mortality at the instant age x + t is attained, 

expressed as an annual rate, and may therefore be defined as the instantaneous rate of 

mortality.

Noting that:

\ r/ \ v F[t — T <t + di') F \t) = f i t )  = hm —--------------
0+ dt

the force of mortality may be written as

M,
n )

1 -  F(t) '

That is,

Fx+t = -  —  ̂ (l~ F (t))
dt

which is equivalent to

Integrating (2.9) and using the condition that 0p x = 1, we have

tPx = exP' -  \ p x+udu

from which we obtain the formula:

(2 .6)

(2.7)

(2 .8)

(2.9)

(2 . 10)
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(2.11)tqx = l - e x p  -  \ p x+udu

Alternatively, using (2.2) and (2.4), expression (2.7) maybe written as

/OKPxM* (2 .12)

so that tqx may be expressed as

t

,(L = juPxMx+udu• (2.13)

2.2.3 The central mortality rate
The central mortality rate mx is defined as the average mortality rate over the age 

interval x to x+1, that is, the average risk to which the group of individuals under 

observation is exposed in the year of age x to x+1. The rate mx may be expressed as

m, =

i

\,PxMx+,dt 
~\
\,Pxdt

(2.14)

By considering the number who survive to exact age x, mx is seen to be the ratio of the 

expected deaths between exact ages x and x + 1, to the number of years expected to be 

lived between exact age x and exact age x + 1.

2.2.4 The expected future lifetime

The expected future lifetime of a life aged x, E[7] is written ex and is referred to as 

the complete expectation o f life. The complete expectation of life of (x) is defined by
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e (2.15)
co

x =  Uj>xMx+,dt
0

On integrating by parts, formula (2.15) simplifies to

i  = \ , p A  (2-16)0

The discrete random variable K or K(x) representing the number of complete years to 

be lived by (x) in future is known as the curtate future lifetime of (x). The probability 

distribution of the random variable K is given by:

P(K = k) = P(k<T<k+1) (2.17)

= S(k) -  S(k+1)

=  k P x  k+ \P .x  '

That is:

P(K  = k)=tPAti. (2.18)

We may also deduce (2.18) by general reasoning since

P(K = k) = P{(x) survives to age x + k and then dies between ages x + k and x + k + 1} 

= P{(x) survives to agex + k}.P{(x + k) dies within 1 year}

The expectation of the random variable K is

CO

k=0

(2.19)

which simplifies to
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(2.20)
oo

k=0

E(K) is denoted ev and is called the curtate expectation of life.

An approximation to the relationship between the complete expectation of life and the 

curtate expectation of life is

« , • « ,+ 1  (2-21)

The approximation can be derived by letting S be the random variable representing 

the fraction of a year during which (x) is alive in the year of death, that is

T= K  + S

Then,

E[7] =E[AT + 5] = E[AT] +E[S]

S has a continuous distribution between 0 and 1, and approximating the expected 

value of S by Zi, the result in (2.21) follows. The result is exact if deaths are uniformly 

distributed between ages x and x + 1.

2.2.5 The life table
The probability distribution of the future lifetime of a life aged x can be summarised 

by a life table, also called a mortality table. Gerber (1995) describes a life table as ‘a 

table o f one-year death probabilities qx, which completely defines the distribution of 

K \

The concept of the life table can be traced back to John Graunt whose Natural and 

Political Observations Mentioned in a following Index, and made upon the Bills of 

Mortality, was published in 1662. Amongst the many observations he made in his

16
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Mortality Rates at Non-Integer Ages

Although lx is assumed to be continuous and hence defined for all values of x, it is 

usually tabulated for integral values of x and an approximate distribution of the future 

lifetime T, is found by interpolation. The approximate distribution of T is dependent 

on the assumptions made regarding the probability of death uqx, or the force of 

mortality ¡ux+u, for x integer and 0 < u < 1. Batten (1978) provides an extensive

review of the various mortality assumptions made in determining rates at non-integral 

ages. The mortality assumptions are also discussed in other actuarial texts such as 

Gerber (1995), Bowers et al (1986) and Elandt-Johnson and Johnson (1980). Three 

such assumptions are summarised here.

Uniform distribution o f deaths

Under this assumption uqx is linear over the interval 0 < u < 1, so that

uqx = u.qx , for 0 < u < 1. (2.23)

The assumption is based on Abraham de Moivre’s hypothesis made in the eighteenth 

century, that the survivorship curve lx, could be represented by a single straight line, 

(Batten, 1978). According to Neill (1977), the uniform distribution of deaths is the 

most commonly used assumption in interpolating fractional ages.

The Balducci Hypothesis

Under the Balducci hypothesis, it is assumed that the function ,_uqx+u is linear over 

the interval 0 < u < 1, so that

i-„hx+u = (l ~ u)qx > for 0 < u < 1. (2.24)

18



Gaetano Balducci made extensive use of this hypothesis in his writings (see Batten, 

1978, London, 1988).

Constant force of mortality

Under this assumption, the force of mortality px+u is assumed to be constant over the 

unit age interval, that is:

Batten (1978) provides a comprehensive demonstration of the derivation of life table 

functions based on these three assumptions.

Life tables are useful in many fields of science. For example, demographers use life 

tables as tools in population projections while actuaries use life tables to build models 

for insurance systems. A published life table usually contains tabulations, by 

individual ages, of the basic functions qx, lx, dx, and, possibly, additional derived 

functions. When the underlying mathematical formula is unknown, values of nx can 

be determined only approximately, (Jordan, 1967 and Neill, 1977). Neill (1977) goes 

on to discuss the formulae he considers as being the most useful for estimating^.. 

One of the formulae Neill describes is based on expression (2.10), that is

Taking logs of both sides and substituting t = 1 in the above expression, we have

The definite integral in expression (2.26) represents the mean value of ¡a between the 

ages x and x + 1. If this mean value is approximated to be /ux+y2 > then

Mx+U = M> for 0 < u < 1. (2.25)

\ogPx = \p x+udu . (2.26)
0
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Mx+yi * ~ 1 o g p (2.27)

Thus an estimate of /ux+l,2 is obtained frompx (or equivalently, qx).

Life tables are constructed from observed data and the construction involves 

estimation, graduation and forecasting techniques. The first two techniques are 

discussed in Sections 2.2.6 to 2.5 of this chapter and the third is the subject of Chapter 

3.

Extensive discussions of life tables are made by Elandt-Johnson and Johnson (1980) 

and in textbooks on life contingencies such as Jordan (1967), Elooker and Longley- 

Cook (1953) and Neill (1977). Other books on actuarial science and demography 

include discussions of life tables. Examples are Pollard (1973), Keyfitz (1977, 1985) 

and Benjamin and Pollard (1993).

2.2.6 Deriving Crude Mortality Rates
In a mortality investigation, mortality rates have to be estimated from statistical data 

generated by a group of lives observed for a specified period, referred to as the 

observation period. The rates are derived by dividing the number of deaths of lives 

having a particular age definition, by the corresponding exposed-to-risk. The method 

of tabulating deaths will determine the ages at which mortality rates will be 

determined. The definition of age for the deaths is therefore of fundamental 

importance in estimating mortality rates. Batten (1978) and Benjamin and Pollard 

(1993) give detailed descriptions of methods of tabulating mortality data.

Exposed-to-risk
Consider a given population which is observed over a calendar year period from time 

t = 0 to t = 1 say, and denote by Px(t) the number of lives aged x at time t, where the 

age x is determined by reference to any one of the following points in time:

a) an individual’s birthday {lifeyear)', or

b) a fixed point in the calendar year, or

20



c) the anniversary of the date the individual effected an insurance policy or joined a 

pension scheme, etc {policy year).

The period of time during which an individual’s recorded age remains the same is 

called the rate interval.

The central exposed-to-risk, R) at age x is the number of years of life lived by the

Px(t) lives in the age range (x, x+1) during the year of observation. The corresponding 

number of deaths is denoted ax. The central exposed-to-risk for a one-year observation 

period can be expressed as:

1
Rcx = \Px(t)dt. (2.28)

0

For a mortality investigation covering a period of T years, Rcx is:

K  = J>,('>* ■
0

If the period of exposure for each death is continued up to the end of the year (i.e. age 

x + 1 and time t = 1) and the total additional exposure is added to the central exposed- 

to-risk, the initial exposed-to-risk Rx, is obtained. Assuming that deaths occur 

uniformly over the year of age, the initial and central exposed-to-risk are related by:

+ ^  (2.30)

Dividing ax by Rcx leads to an estimate of the force of mortality Mx+y (or of the 

central mortality rate mx) which may be denoted p*x+y (or m*) and division of ax by

Rx provides an estimate of the initial rate of mortality qx which may be denoted qx .

The rates derived from the data in this manner are referred to as age-specific crude 

rates.
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The central exposed-to-risk can be evaluated exactly using the exact exposure method, 

a method that involves counting the number of days of exposure for each life during 

the period of observation. However, in many practical situations, detailed data are 

available for deaths only and hence the exact exposure method cannot be adopted 

(Benjamin and Pollard, 1993). In this case, provided the values of Px(t) are available 

at specific points in time t (e.g. at t = 0 and t = 1 for a one-year observation period), 

then the values at these census dates can be used to obtain an estimate of Rcx .

Assuming that Px(t) varies linearly during the year of investigation, the trapezoidal 

rule of integration can be used to obtain an approximate integration over the period. 

This method of approximating the central exposed-to-risk is known as the census 

method.

The census formula approximations for the central exposed-to-risk depend on the type 

of rate interval being used. For a life-year or policy-year rate interval, assuming that 

birthdays or policy anniversaries and entries to and exits from the experience are 

uniformly spread over the year, the census formula is:

The corresponding formulae for a more general investigation period, from time t = 0 

to t = T for a life-year or policy-year rate interval is:

(2.31)

For a calendar-year rate interval, the census formula is:

(2.32)

T- 1

r ; = y1pAo)+ZpA‘)+x pAt ) (2.33)
t= \

and for a calendar-year rate interval the formula is:
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(2.34)
T-1

For any rate interval, the actual age to which the age label x applies is determined by 

the method of tabulating deaths. The derived crude rate is often not at exact age x (or 

x + Vi for ju) but at some other age:

which is the average actual age at the beginning of the rate interval.

Select Rates
The rates considered above depend only on age. Mortality functions might vary not 

only with age but also with the time that has elapsed since the individual entered into 

the class of lives under consideration. For example, the class of lives might be assured 

lives where medical evidence is obtained before acceptance; or annuitant lives where 

a person who is ill is unlikely to purchase an annuity. Based on this information it 

would be reasonable to assume that a life aged x at entry experiences lighter mortality 

than that of lives aged x in the group as a whole. Hence for lives aged x at entry, the 

form of mortality at age [x] + t, that is t years after entry into the specific class of 

lives, would be a function of both the attained age [x] + t and the duration t. The 

square brackets are used to identify the variable representing the age at selection. 

Thus for example, /M+/ denotes the number of lives expected to survive to age x + t 

out of the l[X] lives who are select at age x, d[x]+, is the number expected to die between 

ages x + t and x + t + 1 and q[X]+t is the one-year probability of death at age x + t. Rates 

according to age and duration are referred to as select rates.

The relationships between mortality functions in a non-select life table apply equally 

to the select table provided we are considering functions that apply to the same age at 

entry. Hence an equivalent expression for the number of lives expected to die between 

ages x and x + 1 is:

x + f  (orx + /+  Vi for /J), (2.35)

(2.36)
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The mortality advantage for select lives diminishes and becomes negligible for 

practical purposes after a few years. The period for which the duration effect is 

significant is called the select period. For durations equal to or greater than the select 

period, rates relating to age only would be required and these are referred to as 

ultimate rates.

Consider an individual whose exact age at entry (into assurance say) is x. With a 

select period of 2 years, the initial rates of mortality needed would be as follows:

Qfx] > Q[x]+i > .̂v+2 > Qx+i’ ■ ■ • (2.37)

A life table that varies only with the attained age x is called an aggregate life table.

Select rates are not always lighter than non-select rates. For example, entry into 

‘select status’ might mean retirement from a pension scheme due to ill health, in 

which case mortality is likely to be heavier. In this thesis, we are concerned with the 

mortality of annuitants and life office pensioners who retire at normal retirement age, 

and hence for these experiences, the effect of selection is a reduction in mortality, 

leading to the inequalities:

^[x]  <  [̂x-ll+l <  d [ x - 2)+2 <  ' ' ' (2.38)

A comprehensive discussion of selection in the context of mortality studies, including 

the different ways in which selection can arise, is provided by Benjamin and Pollard 

(1993). The type of selection described here is referred to as temporary initial 

selection, and is also called self selection for purchasers of annuities.

In the case of CMI data, each of the contributing offices carries out a census of the 

number of lives, or policies, or pound amounts in force at 1 January and 31 December 

of each year, subdivided by age nearest birthday, and for most investigations, by the 

number of complete years since the policy was effected (curtate duration). The 

number of deaths is recorded by lives, policies or amounts as appropriate, subdivided
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by age nearest birthday at death and where necessary, also by curtate duration at 

death. Hence for CMI data, we have a life year rate interval for age and a policy year 

rate interval for duration. Therefore the value o f /in  expression (2.35) is -1/2 so that 

ax/R x gives an estimate of qx_l/2 while ax/R x provides an estimate of px or mx̂ 2

(see for example, Forfar et al, 1988). The maximum select period available for CMI 

data is 5 years. In contrast, the continuous mortality investigations conducted by the 

Society of Actuaries in the USA have a select period of 15 years.

2.3 Laws of mortality
According to Jordan (1967), the earliest proposed law of mortality was that of De 

Moivre (1724). De Moivre postulated the existence of a maximum age w for human 

beings and assumed that the random variable T, the future lifetime of (v), was 

uniformly distributed over the range 0 to w -  v. The formula for the force of mortality 

at age x + t then becomes:

p x+t = -----------, forO < t< w -x  (2.39)
w -  x - t

De Moivre himself noted that his formula was a rough estimation of the pattern of 

mortality and recommended that the assumption be used only for the age range 12 to 

86 years (Jordan, 1967). A spin-off from De Moivre’s formula that is in wide use 

today is the assumption of uniform distribution of deaths in estimating rates at non-

integral ages (Batten, 1978). It should however be noted that this assumption 

(described by equation (2.23)), is applied on a year by year basis unlike (2.39).

Laws of mortality subsequently developed are reviewed in Sections 2.3.1 to 2.3.3.

2.3.1 Gompertz and Makeham laws
The most famous laws of mortality are those of Gompertz and Makeham. Gompertz 

(1825) postulated that the force of mortality would grow exponentially. That is:
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/ux = Bcx ; where B, c are constants and B >  0, c >  1. (2.40)

Gompertz restricted the use of his formula to ages ranging from 10 to 55 or 15 to 60 

(Jordan, 1967).

Applying the log transformation to (2.40) results in the log-linear relationship

log//^ = log5 + xlogc (2.41)

which implies that if log /ux is plotted against age x, the graph would be approximately 

linear. The constant B reflects the general level of mortality in the population under 

study while c reflects the rate at which the force of mortality increases with age.

Equivalently, the Gompertz function may be expressed as:

Bx = exp(A + P.x) (2.42)

where B = ep°, and c = ep' .

Makeham (1860) suggested an improvement of Gompertz law by adding a constant 

term to the formula. Thus Makeham’s law assumes that

jux = A + Bcx, (2.43)

Makeham’s law reflects the division of causes of death into those due to chance, 

reflected by the constant A and those due to deterioration (Benjamin, 1964).

As for Gompertz law, an equivalent form for Makeham’s law is:

Mx =a + exp(/?0 + p xx) (2.44)

Jordan (1967) and Benjamin and Pollard (1993) observe that both Gompertz’s and 

Makeham’s laws possess properties of practical importance in the manipulation of
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functions involving more than one life so that both laws continue to be used today. 

Jordan (1967) and Neill (1977) demonstrate the evaluation of joint-life and contingent 

functions under these laws.

In general, the Gompertz law has been found to provide a good fit to mortality data at 

the adult ages. Recent studies include the study by Wetterstrand (1981) who used the 

Gompertz model to analyse US life insurance mortality data over the period 1948 to 

1977 and showed that the Gompertz model was a good fit for ages 30 to 90. The 

Gompertz curve has also been found to provide a good fit at the higher ages for some 

UK experiences. For example, Humphrey (1970) derived mortality rates at ages 86 to 

104 based on deaths in England and Wales in 1942-57 and found that the rates 

followed the Gompertz curve. Thatcher (1987), remarked in his study of mortality at 

the highest ages that ‘mortality rates at high ages in England and Wales still look 

remarkably like Gompertz curves’. However, Wilkin (1981) carried out a study of 

mortality among the aged based on US mortality experiences and concluded that 

above age 90 the observed patterns showed deviations from the Gompertz curve. 

Other studies where the validity of the Gompertz model has been questioned have 

been by individuals such as Myers and Bayo (1985) and Coale and Kisker (1990). 

Tuljapurkar and Boe (1998) observe that in spite of the problems associated with the 

model, the 1 Gompertz picture of an exponentially rising force o f mortality at old ages 

has strongly influenced much work on old-age mortality patterns’.

After the early years of the 20lh century, changes in the basic age-pattern of mortality 

meant that it was increasingly difficult to obtain satisfactory graduations over the 

whole lifetime using Makeham’s formula, (Benjamin and Pollard, 1993). In an 

attempt to find a ‘law’ of mortality that would represent mortality experience over a 

wider range of ages more accurately, more complex mathematical formulae have been 

developed. Benjamin and Pollard (1993) provide an extensive review of the 

mathematical curves developed and a summary of some of these laws is presented in 

Section 2.3.2 below.
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2.3.2 Other laws of mortality

Thiele (1872), postulated the relationship between the force of mortality /u and age x 

to be

Mx =
-b ,x + a2e[-y^x-cf + a3eb-,x (2.45)

where the first term is a decreasing Gompertz curve representing childhood mortality, 

the last term is a Gompertz curve representing old age mortality and the middle term 

is a normal curve representing mortality in adulthood.

Perks (1932) proposed a family of curves of the form

Mx
A + Bcx
1 + Dcx

and

(2.46)

A + Bcx 
K c x +1 + Dcx

(2.47)

According to Benjamin and Pollard (1993), Perks’ formulae represented the most 

promising attempt to fit a single curve to the whole range of ages at the time.

Weibull (1939) suggested the formula

Mx+, =  * ( *  +  0 "  ( 2 -4 8 )

with fixed parameters k> 0 and n > 0.

In graduating English Life Table Number 11, based on the deaths in England and 

Wales in 1950 to 1952, and the population census of 1951, the formula adopted was:

m, = a + ■
1 + e1

b
-a { x ■ + ce[-£(* —*2 f] (2.49)
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The same form of curve was used to produce English Life Table Number 12, which 

was based on the deaths in England and Wales in the years 1960 to 1962 and the 

population census of 1961.

Formula (2.49) is seen to be a combination of a logistic curve with a symmetrical 

normal curve. Benjamin and Pollard (1993) observe that with 7 parameters to be 

estimated for each curve, the formula seems to provide a complicated method of 

graduating population data that generally requires little graduation.

The CMI Committee of the Institute and Faculty of Actuaries produced a new 

standard mortality table based on the pooled mortality experience of contributing life 

insurance offices for the years 1949 to 1952. Beard derived the following formula 

used in producing the table:

<lx = A  +
Bcx

E c lx +1 + Dcx '
(2.50)

Clearly (2.50) is related to Perks’ family of curves.

Barnett suggested the following formula for graduating the United Kingdom assured 

lives’ mortality experience for the years 1967 to 1970 (Joint Mortality Investigation 

Committee, 1974):

—  = A -  Hx + Bcx (2.51)
Px

which is equivalent to

A -H ir + Bcx 
1 + A -  Hx + Bcx '

(2.52)

Experiments with the pensioners’ experience for the same period indicated the 

following formula to be appropriate:
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exp{p(x)}
(2.53)

1 + exp{p(x)} ’

where P(x) is a polynomial in age x.

Formula (2.53) may be expressed as:

f  \
In = P(x).

{ P x J

(2.54)

Graduations of the pensioners’ and annuitants’ mortality experiences for the period 

1967-1970 were carried out using formula (2.54).

More recently, the following formula proposed by Heligman and Pollard (1980) has 

produced promising results over the whole life span:

The Heligman and Pollard law has a structure that is similar to (2.45), the law of 

mortality postulated by Thiele (1872). Whereas Thiele’s law decomposes the force of 

mortality fux into three components, the Heligman and Pollard law decomposes qx,

the probability that a life aged x exact will die before age x + 1 into three components: 

an infant and child mortality curve; a hump representing mortality due to accidents at 

the younger adult ages; and a Gompertz curve representing mortality at older ages. 

Hence, when considering mortality at the older ages only, the first two terms can be 

neglected so that the Heligman and Pollard law is very similar to the Gompertz law at 

the older ages (see Thatcher 1990, Congdon 1993).

The formula has been used in studies by Forfar and Smith (1987) using data from 

English Life Tables, and McNown and Rogers (1989) on American mortality data.

Px
ü i _ _ A(x+3)c + Fexpj- £(lnx -  InF)2}+ GH*. (2.55)
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2.4 Graduation
Graduation has been defined in various forms in the actuarial literature such as:

‘the process o f securing, from an irregular series o f observed values o f a continuous 

variable, a smooth regular series o f values consistent in a general way with the 

observed series o f values', Miller (1946);

‘an effort to represent a physical phenomenon by a systematic revision of some 

observations o f that phenomenon ’, Andrews and Nesbitt (1965);

‘the principles and methods by which a set of observed {or crude) probabilities is 

adjusted to provide a suitable basis for inferences to be made and further practical 

calculations to be made’, Haberman and Renshaw (1996).

Each of the above statements implies that graduation involves the revision of an initial 

set of data to produce a better representation of the underlying true values.

The most common application of graduation in actuarial science is the graduation of 

mortality rates with respect to age. We consider a set of age-specific crude 

probabilities of death qx , or forces of mortality p*x calculated from observed data. If

the true rates of mortality were independent ‘then the crude values would be our final 

estimates of the true underlying rates', Haberman and Renshaw (1996). However, a 

prior opinion most frequently used in graduating mortality rates is that the true 

underlying rates at neighbouring ages are related and progress smoothly from age to 

age. This is because age is a continuous variable and any effect it has on mortality 

would be expected to change gradually, with a few exceptions at certain ages. 

Elphistone (1951) emphasized the relations between neighbouring mortality rates 

when he stated that: ‘ The theory o f graduation is the theory of relations between 

neighbouring r a t e s . .

If the sample sizes at each age could be increased to infinity, the crude rates would 

represent the true underlying rates, and would therefore progress smoothly with age 

under the hypothesis that mortality rates at neighbouring ages are related. In practice, 

there are severe limitations to sample sizes. The solution is to smooth the individual
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crude rates to obtain improved estimates of the unknown underlying {qx} or {¡ux} 

rates. ‘This is done by systematically revising the crude values to remove the random 

fluctuations', Haberman and Renshaw (1996). Benjamin and Pollard (1993) define 

graduation as: ‘the adjustment procedure that reduces the random errors in the 

observed rates as well as smoothing them...'.

Keyfitz (1982) and Bloomfield and Haberman (1987) list the following five distinct 

uses of graduation:

(a) To smooth the data. Graduation facilitates the processing of the data, makes it 

easier to handle and removes awkward irregularities and inconsistencies. A part of 

the reason under this heading might be called aesthetic, i.e. to make the set of rates 

look better. For insurance tables, if a reasonable degree of smoothness has not 

been achieved, complicated derived functions such as policy values might display 

worrying irregularities.

(b) To make the results more precise, on the assumption that the true experience 

underlying the observations follows a smooth curve.

(c) To aid inferences from incomplete data. In those populations for which complete 

registration of events, like births and deaths is not available, indirect methods of 

estimation based on graduation are important.

(d) To facilitate comparisons of mortality. One would like to be able to compare the 

mortality of two populations, or of two cohorts or of one population at two points 

in time, summarizing the difference in a set of parameters.

(e) To aid forecasting and projection. A clear progression over recent time in the 

values of a set of parameters enables extrapolation into the future to be used for 

forecasting of probabilities, rates and derived functions such as the life table.

Additionally, Keyfitz (1982) gives one other purpose of graduation which is to 

construct life tables.

The purpose of this study is to develop a model suitable for projecting mortality rates 

and hence we are ultimately concerned with (e). Since we are dealing with insurance 

data, objectives (a) and (b) are an essential part of the graduation process in this case.
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Graduation methods are generally divided into two classes: parametric and non- 

parametric. In parametric graduation, an analytic expression, say fix), is used to 

represent all or part of the age pattern of mortality in terms of qx or jux, or other 

mortality measure. London (1985) observes that our prior opinion regarding the 

smoothness and shape of the sequence of underlying mortality values is implicit in the 

form of the analytic expression chosen, so that fix) is expected to be a smoothly 

progressing continuous function of age x. The models of Gompertz and Makeham are 

examples of analytic expressions used in graduating mortality.

In non-parametric graduation, no analytic expression is specified although in some 

cases, a functional form is implicitly assumed for the underlying mortality rates. 

Examples of non-parametric graduation methods include moving-weighted-averages, 

Whittaker-Henderson graduation and Kernel smoothing.

There has been extensive written work on the subject of graduation in the actuarial 

literature, and statistical and applied mathematical periodicals. Benjamin and Pollard 

(1993) describe the more recent methods of graduation such as the graphic method; 

graduation by mathematical formula; graduation with reference to a standard 

mortality table and graduation using splines. Forfar et al (1988) give a full description 

of the graduation methodology currently used by the CMI Bureau to produce standard 

mortality tables for use by the UK life insurance industry.

London (1985) discusses both parametric and non-parametric graduation while Copas 

and Haberman (1983), Bloomfield and Haberman (1987), Gavin et al (1993, 1994, 

1995) and Verrall (1996) discuss non-parametric methods.

Recent papers by Renshaw (1991, 1995), Renshaw and Haberman (1997) and Verrall 

(1996) demonstrate the applications of generalized linear models to graduation with 

respect to age. Renshaw et al (1996) and Renshaw and Hatzoupoulos (1996) develop 

the applications further by proposing a modelling structure in the framework of 

generalized linear models which incorporates both the age-variation in mortality and 

underlying time trends in the mortality rates.
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2.4.1 Statistical Considerations

The two measures of mortality of primary interest in graduation, q and are 

associated with two probability models: the binomial model and the Poisson model 

respectively. Batten (1978) and Elandt-Johnson and Johnson (1980) present thorough 

reviews of the estimation of q. Many other authors have discussed models for q and ¡u, 

among them are Forfar et al (1988) who describe in detail the estimation of both 

parameters while Benjamin and Pollard (1993) describe the model for q.

For brevity, in this section it is assumed that the mortality rates depend only on the 

age of the individual.

Estimation o f q
Given the initial exposed-to-risk at age x, Rx, and the corresponding observed number 

of deaths ax, the initial rate of mortality qx is modelled using the binomial distribution. 

Under the binomial model, Ax, the random variable representing the number of deaths 

occurring in the year, has a binomial distribution with parameters qx and Rx. It is 

assumed that the death or survival of each individual is independent of the death or 

survival of each of the other individuals and that the probability of death for each 

individual is the same. It is also assumed that the individuals are observed from exact 

age x to exact age x + 1 or until prior death.

The probability of ax deaths is therefore given by:

(2.56)

Further, the likelihood of obtaining ax deaths exactly is

(2.57)
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Ignoring the first term in expression (2.57), which does not depend on qx, the 

likelihood becomes:

The natural logarithm of L(g_) is

(2.58)

+ RX lo g ( l-? J (2.59)

The value of q which maximises the likelihood L[gj is the same as that which 

maximises the log-likelihood q'). By differentiating (2.59) and equating to zero, the 

maximum likelihood estimator of qx, qx is determined as:

qX
(2.60)

The expected value of qx is qx and the variance is
K

The traditional actuarial approach described fully by Batten (1978) is to assume that 

the binomial model is applicable even when the dotal exposure is made up from a 

number o f shorter periods of exposure’, Forfar et al (1988).

Estimation o f ju

Given the central exposed-to-risk at age x, Rx and the corresponding observed deaths

ax, the appropriate probability model is the Poisson distribution with parameter juxRx .

The choice of the Poisson distribution is based on the assumption that the force of 

mortality is constant in each age interval x to x + 1. Sverdrup (1965) discusses this 

point in detail with particular reference to multiple state models.
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Under the Poisson model, the probability of ax deaths occurring is:

(2.61)

The likelihood of obtaining ax deaths is:

l (u ) = n ^ ' exp̂ x )
1 a \

(2.62)

and the log-likelihood is:

K / A = Z  k  lo§ K  + log Mx -  MxK  ) (2.63)
x

ignoring the denominator which is not dependent on pix. By differentiating the log- 

likelihood (2.63) and equating to zero, the maximum likelihood estimator for fix is:

If the underlying mortality is assumed to follow a particular mathematical formula, /ux 

or qx will be a function of the unknown parameters in that formula. The maximum 

likelihood estimates of the unknown parameters are the values which maximise the 

log-likelihood (2.63) when modelling /ux, or (2.59) when modelling qx. In this thesis, 

the focus is on the force of mortality ¡dx and hence we are concerned with parameter 

estimates that maximise the log-likelihood (2.63), which is equivalent to maximising 

the likelihood (2.62).

(2.64)
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2.4.2 The current CMI graduation practice
A comprehensive presentation of the graduation methodology used by the CMI 

Committee to graduate the 1979-82 mortality experiences (CMIR 9, CMIR 10) and 

the 1991-94 mortality experiences (CMIR 16, CMIR 17), is given by Forfar et al 

(1988).

The Committee graduated fax or qx using the “Gompertz-Makeham” class of functions 

defined as:

r — l
GMg(r,s) = ^oCiX1 + exp

1=0

5-1

X / v
KJ-0

(2.65)

and the “Logit Gompertz-Makeham” formulae defined by:

LGMx(r,s) GMX r>s)
1 + GMx(r,s)

(2 .66)

The Gompertz-Makeham formula GMx(r,s) is subject to the convention that when 

r=0 , the first group of terms is absent, and when 5 = 0 , the second group of terms is 

absent. The cases jux =GMX{0,2), jUx =GMX(1,2) and qx = LGMX(.2,2) correspond

respectively to the Gompertz formula (2.42), the Makeham formula (2.44) and the 

Barnett formula (2.51). Formula (2.53), used to graduate the pensioners’ and 

annuitants’ experiences for the years 1967 to 1970, is equivalent to qx -  LGMx(0,n) 

for some positive integer n.

Thus, for example,

GMX (0,2) = exp (j30 + fax) (2.67)

GMX (0,3) = cxp(/?0 + J3tx + p2x2 ) (2 .6 8 )

GMX (l,3) = a 0 + exp(y0o + fixx + p 2x2 ) (2.69)
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For convenience, the Gompertz-Makeham and the Logit Gompertz-Makeham 

formulae were expressed in terms of orthogonal polynomials, with the age variable x 

transformed to x' = (x - u)/v where u and v were chosen to be 70 and 50 respectively.

Orthogonal Polynomials
The particular set of orthogonal polynomials used is Chebycheff polynomials of the 

first type defined by:

Q ( c o s ö )  = coskO

so that

C0 (x) = 1 , Ci (x) = x , (2.70)

and by the addition formula for trigonometric functions:

Cn+1 (x) = 2xC„ (x) - C„-i (x) , n > 1 . (2.71)

In general, the continuous form of orthogonal polynomials in relation to a given 

interval [a, b] is obtained by constructing a sequence of polynomials (p,(x), i = 

0 ,1,2 ,...} such that

\w(x)pr{x)ps{x)dx = \ . ,  (2 -72),, [er if  r = s

where w(x) is a given positive weight function defined on the interval [a, b\ and er is 

some non-zero real number (Forfar et al 1988).

The Chebycheff polynomials are orthogonal on the interval [-1, 1] with 

w(x) = [ i - G *  . Over the same interval, when w(x) = 1, we obtain the Legendre 

polynomials {C,(x)} defined by the initial equations:

Lq (x) = 1, L\ (x) = x, (2.73)
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and the recurrence relation:

(n+\)L„+i (x) = (2n+\)xLn (x) -  nLn-\ (x) (integer n > 1) (2.74)

Numerical analysis textbooks such as Conte and de Boor (1980), give a detailed 

discussion of the derivation of orthogonal polynomials.

The use of orthogonal polynomials means that if a  = (cc\, «2, • • ■ , «») defines the 

best-fitting polynomial of order n, and a ' = (a \, a \, . . . , a'„+1) defines the best- 

fitting polynomial of order n + 1, then

a '1 = a\, a  2 = «2, • • •, oc'n = an (2.75)

Thus by considering the value of the additional coefficient a'„+\, it may be possible to 

explain the consequence of increasing the degree of best-fitting polynomial by one 

(Forfar et al, 1988).

The range of values ux and qx can take is relevant to the choice of function type, that 

is GM or LGM. The possible range of values for jux is between 0 and infinity, making 

the GM class of formulae the more appropriate. On the other hand, qx can take values 

between 0 and 1, so that the LGM formula is the more suitable for qx.

In constructing the standard mortality tables based on the 1979 to 1982 experiences 

and the current standard mortality tables based on the 1991 to 1994 mortality 

experiences, the CMI Committee graduated the force of mortality jux, using central 

exposures, with maximum likelihood estimation of the parameters. To estimate the 

unknown parameters {«,} and {$•}, the actual (observed) number of deaths at age x, 

ax, were modelled as independent realisations of Poisson random variables Ax, with 

mean and variance equal to Rcx/ux.
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Expressed in terms of the Chebycheff polynomials, the graduation formulae for ¡ix are 

of the form:

r - 1 ( s - 1

M.x = GMx(r,s) = £a,C,.(x') + exp ^ / ? yC7(x')
V=°1=0

(2.76)

which is equivalent to

Mx =GMx(r,s) = Y jalCif  x - u \------  +exp S p f , { ~ )  • (2.77)
(=0 L v ; J=0 V v JJ

Thus, for example the GMX(0,2) and the GMX(1,3) formulae applied were:

Mx = G u i  0,2 ) = exp(/?0 + p,x') (2.78)

and

jux = GM(l,3) = a0 + exp Po + P\x ' + Pi (2 x'2 -l)}, (2.79)

-, , x -  70with x = ------- .
50

The graduation process involves choosing the lowest values of r and 5 , which produce 

a satisfactory fit for the experience.

In graduating the 1991-94 immediate annuitants’ and life office pensioners’ mortality 

experiences, the GMX( 1,3) and the GMX(2,3) formulae were found to be the most 

satisfactory, (CMIR 16 and CMER 17).

2.5 Graduation and generalized linear models
Based on the CMI graduation methodology detailed by Forfar et al (1988), Renshaw 

(1991) demonstrated that the models used for graduation could be formulated within 

the framework of generalized linear and non-linear models, (GLM and GNLM). He 

used the attendant statistical package GLIM to implement the graduations and
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advocated scrutiny of residual plots as an additional diagnostic check on any adopted 

graduations.

Renshaw et al (1996) extended the GLM framework proposed by Renshaw (1991) to 

include calendar time. The authors modelled the United Kingdom male assured lives’ 

mortality trends over the calendar year period 1958 to 1990, by individual age x and 

individual calendar year t. Renshaw and Hatzopoulos (1996), experimented with 

amounts-based data and showed how the data could be graduated within the same 

framework of generalized linear models, also with respect to age and time. Haberman 

and Renshaw (1996) give a complete overview of the applications of generalized 

linear models to graduation and other actuarial problems.

Verrall (1996) presents graduation theory within the framework of statistical models 

in the computer software package S-PLUS. The framework of generalized linear 

models is extended to generalized additive models (GAM) to include non-parametric 

smoothing. Hence both parametric and non-parametric graduations are performed and 

compared within the same framework and using the same statistical package.

In this thesis, the modelling structure proposed by Renshaw et al (1996) is used to 

investigate annuitants’ and pensioners’ mortality experiences within the framework of 

statistical models in S-PLUS. The modelling structure has the distinct advantage that 

the models adopted can be used directly to project mortality rates into the future.

A brief introduction to generalized linear models is presented in Section 2.5.1. 

McCullagh and Nelder (1983, 1989) provide a thorough treatment of the subject while 

Dobson (1990) gives a shorter introduction.

2.5.1 Generalized linear models
Generalized linear models are an extension of classical linear models. The term 

generalized linear model is due to Nelder and Wedderbum (1972) who demonstrated 

how many statistical methods involving linear combinations of parameters could be

41



unified. Many other papers on generalized linear models have since been written and 

international conferences on generalized linear models held (e.g. Gilchrist, 1982).

A generalized linear model is characterised by independent response variables, 

Y = {f,,•••,}),•■■Yn) each of which is assumed to have the same distribution in the 

exponential family, taking the form:

f
f Y(y,9,</)) = exp

V

yO -b{d ) 
a(<p)

\
+ c{y,(f) (2.80)

for some specific functions «(•), b(-) and c(-). If (j) is known, the distribution of Y is a 

one-parameter exponential family with canonical parameter 0. An unknown <fi may be 

regarded as a nuisance parameter and treated as though it were known.

The log-likelihood function considered as a function of 9 and </>, with y given is:

l(fl,^;y) = log7 ;(y;fl,^)= / ^  + c(y,^). (2.81)

The mean and variance of Y can be derived from the log-likelihood function and the 

relations

E ' d £
{de ,

= 0

and

( + E 1 1 ^E
[de 2] K80J

Denoting m = if[y], it is found that

(2.82)

(2.83)

m = b'(9), 

and

Var (Y) = a(<!>)b"(9).

(2.84)

(2.85)

42



The full derivation of the expectation and variance of 7 is given in Appendix 1.

From (2.85), it is observed that the variance of 7 is a product of two functions, a{<j>), a 

function independent of 6, and b”(6), a function of 6. The quantity b"(6), which 

depends on the canonical parameter #and hence on the mean m, is called the variance 

function and may be written as V(m). The function a((f)) is usually of the form

a(if>) = (fw (2 .8 6 )

where tf>, called the dispersion parameter or the scale parameter, is constant over 

observations, and w is a known prior weight that varies from observation to 

observation.

Well known distributions such as the Poisson, Normal, binomial and gamma 

distributions all belong to the exponential family. As an illustration, a Poisson random 

variable with parameter A, has the likelihood:

Ay  ; A) = exp[y log A - A - logy!] (2.87)

so that,

0= log A 

b(9) — A = exp 6 

m = b'(9) = exp 9 

V(m) = b"(9) = exp 0= m 

</>=!

c(y;<t) = -logy!

Similarly, a binomial random variable with parameters n and p  has the likelihood:

f(y ,p )= exp 7  log T-----  + « lo g (l- jp)+log
v] - / v

n\ ' 
lk !(« -7 )!y

(2 .88)
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giving the following characteristics:

'  P '6»- log 

b{6)= \og[\ + e0)'

m =*'(«)=
ne

T 7 7

V(m) = b"{6) =
(l  + e )

</> = '■

= m 1 m
K n ,

In estimations involving the binomial distribution, we are often interested in the 

proportion having a given characteristic and hence we would consider the distribution 

of the random variable defined by Yin.

The explanatory variables Jt, influence the distribution of 7, through a linear predictor 

>h = 2X/?,- ■ (2.89)
7 =  1

The linear predictor rfr is a function of nij, the expected value of 7„ and xtJ is the value 

of the /th covariate for 7,. Thus

mi =E[Yi], (2.90)
and

rli = g{ml). (2.91)

In matrix notation,

(2.92)

where x t is ap x 1 vector of explanatory variables and (3 is ap x 1 vector of unknown 

parameters, which have to be estimated from the data.
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The function g(-), called the link function, is both monotonic and differentiable so that 

its inverse, g _1Q exists.

A generalized linear model is therefore specified by the following three components:

• The random component: independent response variables Y = {FJ, • • •, Y(, • • •, Yn} with 

the same distribution typically from the exponential family, with E[Y\ = m.

• The systematic component: known covariates xL, Xg, . . . , Xp which influence Y 

through a linear predictor rj = xfi, where x  is a matrix of dimension n x p.

• A monotone link function g-(-), which specifies the relationship g{m) = r] , between 

the random and systematic components.

The special link function where 

T] = g(m ) = 9

is called the canonical link function. From equations (2.87) and (2.88), it can be seen

that the canonical link function for the Poisson distribution is the log-link, that is

7 , = log(m,) or m{ = e*7' ; (2.93)

while the canonical link for the binomial distribution is the log-odds or logit-link 

defined by:

Vi = log
m,

1 — m
or m. = • e”'

¡J \ + en
(2.94)

Model fitting
The unknown parameters are estimated by maximising the quasi-log-likelihood 

function defined by Wedderbum (1974) as:
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(2.95)

where rrii is the mean of the z'th response 7„ with the F,’s independent, and (j)V{mi )M

is its variance. A comprehensive treatment of quasi-likelihood functions is given in 

Chapter 9 of McCullagh and Nelder (1989).

Wedderbum (1974) and McCullagh (1983) show that quasi-likelihood functions have 

properties analogous to those of likelihoods. In particular, the maximum quasi-

likelihood estimator of /? is asymptotically normal with mean (5 and the asymptotic 

covariances may be derived from the second derivative matrix of q. For members of 

the exponential family of distributions, quasi-log-likelihood estimators are identical to 

maximum likelihood estimators.

The quasi-log-likelihood function for a Poisson parameter m based on data y  is given 

by:

which is equivalent to the log-likelihood.

The parameter estimates are obtained by differentiating (2.95) with respect to the 

unknown J3/s and solving the resulting system of linear equations:

q(y;m) = yiogm - m . (2.96)

For the complete data_g, the quasi-log-likelihood is:

(2.97)

y m A  ZHLÊ^J. = 0  for all j. (2.98)
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Since the system of equations is non-linear in /?, the maximum quasi-log-likelihood 

estimates are obtained by a numerical algorithm (see for example McCullagh and 

Nelder, 1989, Chambers and Hastie, 1993 and Venables and Ripley, 1997).

A special feature of quasi-likelihood functions is that they are specified entirely by the 

mean and variance functions rather than by a specific distribution or likelihood. 

Hence quasi-likelihood enables a fitting procedure to be defined for distributions with 

a given variance function, but without belonging to the class of distributions required 

for a generalized linear model proper.

Firth (1987) investigates the efficiency of quasi-likelihood estimation for models with 

constant variance, models with constant coefficient of variation and models with over-

dispersion relative to some exponential family and concludes that “quasi-likelihood 

estimation retains fairly high efficiency under ‘moderate’ departures from the 

corresponding natural exponential family". Nelder and Pregibon (1987) propose an 

extended quasi-likelihood function to allow for comparison of variance functions as 

well as comparisons of linear predictors and link functions.

Measuring goodness o f fit
Denote the resulting values of the parameter estimators, linear predictor and fitted 

values by f j , 77,, and mi respectively, where:

mi = g ' i d )

and
P

d  = X v A  •
7=1

Given n observations, the full or saturated model f  has n parameters, one per 

observation, so that the fitted values match the observed data exactly, i.e. mi = y, for 

all i. The goodness-of-fit criterion or measure of discrepancy of the fit, can be written 

as:
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(2.99)- 2 “ ) " « (£>)} = Î > ,  }■

where D^y;m^j is known as the deviance function for the current model denoted c,

and D ^ m 'j/tf) , which is minus twice the quasi-likelihood based on the current

model, is known as the scaled deviance. The current model is defined to be the 

specific generalized linear model under investigation at any one time. The fitted 

values of the current and saturated model impact on the formula (2.99) through the 

lower and upper limits respectively.

McCullagh and Nelder (1989) list forms of déviances for some common distributions 

including the binomial and Poisson distributions. For the Poisson distribution the 

deviance is:

2S  {>', ]og(>’ M  ) -  (y, -  m,)} • (2 -100)

Writing D {c ,f) for £>(y;m), then for a Gaussian modelling distribution with identity 

link, the scaled deviance has distribution:

S(c,f) =D ( c j )
<t>

(2.101)

where p  is the number of parameters involved in the current model c. Hence an 

unbiased estimator of the scale parameter (f) is:

D(c. f)
n -  p

(2 .102)

Under other modelling distributions, the distribution for the scaled deviance (2.101) is 

approximate.
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Dividing both types of residuals by the estimated value of ^  gives rise to

studentized residuals of the particular type. Plots of residuals against some function of 

the fitted values provide informal visual checks on the various modelling 

assumptions.

The two sets of residuals are identical for the normal modelling distribution for which 

V(nii) = 1 and w, = 1 for all i. McCullagh and Nelder (1989) note that the deviance 

residual is generally preferred to the Pearson residual for model checking because it 

has distributional properties that are closer to the residuals arising in linear regression 

models. Pierce and Schafer (1986) provide an extensive examination of residuals in 

exponential family models.

2.5.2 Graduation with respect to age using GLMs
It is possible to reformulate and extend the graduation methodology used by the CMI 

by using generalized linear and non-linear models as described by Renshaw (1991) 

and Haberman and Renshaw (1996). Most of what follows in this section is a 

reproduction of the description of graduation with respect to age given by Haberman 

and Renshaw (1996).

As described in Section 2.4.1, the actual number of deaths Ax are modelled as Poisson 

random variables when targetting /ux and as binomial random variables when 

targetting qx. Hence for jux- graduations with responses {Ax},

(2.106)

v ("l, )= '» ,,

w, = 1,

0 = 1 -

Equivalently, when graduating ¡ix with responses Ax / Rcx ,
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(2.107)

V(mx) = mx,

k = K ,

t = 1 .

For ^-graduations with responses {Ax},

m,=E[A,}=Rxq„ (2.108)

= 1 l

<j> = l.

The graduation formulae are presented as predictor-link relationships with age x as the 

sole covariate. Thus for /^-graduations, the focus is on either the log-link with 

responses {Ax}, so that from (2.106) we have,

log ™x = Vx = log K  + log Mx+y2

with inverse

= exp k  “ logRx) ’

or the parameterized power link with responses Ax/ Rx , so that

K +y2=Jh  (2 .1 H)

with inverse

(2 .H 2 )

The term logfl?)) in expression (2.109), which does not involve any unknown

parameters, is known as the offset. An offset is a fixed known term in the linear 

predictor, which does not contain a parameter to be estimated. In (2.109), the offset 

log(i^) automatically allows for the exposed-to-risk term in the log-likelihood.

(2.109)

(2 .110)
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For ^-graduations with {Ax} as responses, the focus is on the log-odds-link, so that

f

log
V r : -  mx

f
= log

V

<L = *L (2.113)

with inverse

Qx (2.114)

or the complementary log-log-link,

logs -  log
f  \

v R* J
log{- log(l -  qx )} = tjx (2.115)

with inverse

qx = 1 -  exp(- er,x ). (2.116)

Also, for ^-graduations, the parameterized family of link functions

Vx = l°g' (2.117)

with inverse

Qx (2.118)

reduces to the logit link when y= 1 and the complementary log-log-link as y —> 0.
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The graduation formula

Mx = GMx{r,s) = £ a ,C ,
r r  x - u ^
i=0 V v ;

+ exp
i-i
2>,c,
7=0

 ̂X-U^
\  v J

(2.119)

(equation 2.77) comprises the identity link (y = 1) and the non-linear Gompertz- 

Makeham predictor GMx(r,s). When r = 0, the formula reduces to the log-link in 

combination with a polynomial predictor.

For ^-graduations, A. D. Wilkie suggested the use of the log-odds link in 

combination with polynomial predictors, that is:

(
log

Vi -q X

U\
(2 .120)

with u and v suitably chosen and an orthogonal basis hj, where hj denote either 

Chebycheff polynomials of the first type or Legendre polynomials as defined in 

Section 2.4.2. The graduation formula (2.120) was used by the CMI Bureau to 

construct all ^-graduations published by the Continuous Mortality Investigation 

Committee (1976).

The LGMx(r,s) formula:

LGMx(r,s) G M x ( r ’ S )

1 + GMx(r,s)’

suggested by Forfar et al (1988), comprises the odds-link in combination with the 

Gompertz-Makeham predictor rjx =GMx(r,s). When r = 0, the formula reduces to 

the logit-link in combination with the polynomial predictor, and when s = 0 or 1 (with
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r > 0), the predictor is linear in combination with the odds-link; otherwise when r > 0 

and s > 1, the predictor is non-linear.

Renshaw (1991) suggested the graduation formula:

comprising the complementary log-log-link in combination with a polynomial 

predictor and which includes the Gompertz formula as a special case when r = 1.

2.5.3 The distribution of deaths in the presence of 

duplicates
The effect of duplicate policies on the variance of the distribution of the number of 

deaths in a mortality experience based on policies has been extensively discussed in 

papers by, among others, Seal (1945), Beard and Perks (1949), Daw (1951), and more 

recently by Forfar et al (1988) and Renshaw (1992).

Beard and Perks (1949) showed that for a sample of Nx independent lives selected at 

random at age x, the variance of the number of claims Ax is given by

(2.121)

(2.122)

where n {l)  is the probability that a policyholder aged x, holds i policies; i = 1, 2, 3 , . . .  

and

Expression (2.122) may be written as

var(X ) = (j)xRxqx (1 -  qx ) (2.123)
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with

</>* =

r-J‘)

■O-ix)"

and
;,(<)

(2.124)

(2.125)

is the initial exposed-to-risk based on policies.

When there are no duplicates present, = 1, 7r^ = 0 otherwise; so that <f>x = 1 and 

Ax has a binomial distribution with parameters Rx and qx as in Section 2.4.1.

Since qx is small, equation (2.124) may be approximated by

i

(2.126)

Use of the approximate form (2.126) is important in that in an empirical study of the 

distribution of duplicate policies, the parameter (¡>x can be estimated without reference 

to qx.

In an empirical study, the variance ratios <f>x are estimated by

r = (2.127)

where is defined to be the proportion of policyholders in the study group aged x, 

who have i policies.
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Forfar et al (1988) also demonstrated that although altering the variance, the existence 

of duplicates does not change the expected value of the number of deaths, so that

E(AX) -  Rxqx, when modelling qx; 

and

E(Ax) = Rxnx+y , when modelling jux.

Renshaw (1992) discusses the feasibility of using two-stage generalized linear (or 

non-linear) models to graduate mortality rates with allowance for over-dispersion 

attributed to duplicate policies. The first stage involves modelling the responses using 

generalized linear or non-linear models as appropriate; and the second stage involves 

modelling the dispersion parameters fa as secondary interrelating generalized linear 

models along the lines first proposed by Pregibon (1984) in his review of the 1st 

edition of the monograph by McCullagh and Nelder (1983), and subsequently 

developed by Nelder and Pregibon (1987). The method implies the joint modelling of 

the mean and the dispersion of the response variable, a subject covered in detail in 

Chapter 10 of McCullagh and Nelder (1989). The proposed model structure is as 

follows:

1. Model the Ax’s as independent response variables with:

E(AX) = mx, var(Ax) = fa V(mx), (2.129)

and predictor-link qx = g{mx)= 'Y jlx]fij .
j

2. Model the unknown dispersion parameters fa using a dispersion parameter dx 

with:

E(dx) = fa, \2x(dx) = zVD(fa), (2.130)
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and predictor link %x = h(<f>x)= ^ v t/£ ; ,
j

where Vd (-) is the variance function for the second stage generalized linear model 

and ris a scale factor.

The ux/ s  and vy’s are known covariates, while the parameters and Sj need to be 

estimated. The optimisation procedure depends on the specific form of dx.

Renshaw (1992) re-emphasises the point made by Cox (1983), that the modelling of 

excess variation in this context has little effect on the estimation of the parameters of 

primary concern (the fi/s), but that statistical tests and confidence intervals may be 

seriously in error unless the effect of the excess variation is taken into account.

2.5.4 Graduation with respect to age and time
Renshaw et al (1996) used generalized linear models to model the force of mortality 

juxl, at age x, in calendar year t, for the specific duration d = 5 years and over (5+), to 

give a trend analysis of United Kingdom male assured lives’ mortality over the 

calendar year period 1958 to 1990, for ages 22 to 89 inclusive.

The actual number of deaths axt, are modelled as independent realisations of over-

dispersed Poisson random variables Axh with mean and variance given by:

E{Axt ) mxt RxiMxt (2.131)

Var (Axt) = <t»nxt (2.132)

The scale parameter <j> is included to take account of the fact that the data are based on 

policy numbers rather than counts of lives, and as such there may be duplicate 

policies issued on the same lives, resulting in over-dispersion of the Poisson random 

variable. In the particular study by Renshaw et al (1996), it was felt that the effect of
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modelling the scale parameter ^ as a function of age would be negligible and hence (j) 

was modelled as a constant over all ages.

The function fixt is modelled using graduation formulae involving the log-link in 

combination with bivariate polynomial predictors with age and calendar year as the 

covariates, for the specific duration under consideration. The polynomial based- 

formulae are of the form:

subject to the convention that some of the yy parameters may be pre-set to zero, x! and 

t' are transformed ages and calendar-years such that both the age and calendar-year 

ranges are mapped onto the interval [-1, 1], thus:

cx and c, denote mid-points of the age and calendar-year ranges respectively, while wx 

and wt denote semi-ranges, that is

with equivalent expressions for ct and wt. Lj(x') denotes Legendre polynomials of 

degree j.

Equivalently, expressions (2.133) and (2.134) may be written as:

(2.133)

and

(2.134)

x' = { x - c x ) l wx\ f  = { t - c t ) tw, \

s r

logGO = Ë  £ / ;(* ')+  Z « / '  ’ (2.135)
¿ = 1

and
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(2.136)M / O = Z / ?A ( x' ) + Z « / '+ I X r ^ M Y  •
y=0 1=1 i= l 7 = 1

The predictor-link relationship is of the type

log 0 0  = 17* = logfc)+ log(//t,). (2.137)

Hence,

rjxl = log(m „) = lo g fc  )+ A  + Z  PjLj (*') + Z  (2 •13 8)
7=1 1=1

and

tjx, = log;(m J  = lo g fe )+  ¿ / ? / y(x')+ ¿ « 7 "  + H r A « "  • (2.139)
7=0 1 = 1 i = l 7=1

The term, log(.K^) offsets the general mean /?0, by a known amount, conditional on 

the values of age x and calendar time t.

The unknown parameters are estimated using the quasi-log-likelihood approach which 

involves maximising the expression:

mxl+a*l ]°g tnJ ’ (2-14°)
Y x,t

or, equivalently, minimising

t Z ( ^  ~ axA°Zmx)- (2-141)
Y x,t

Firstly, formulae of the form

log Mx, = A> + Z  iPjLA x ')} + Z  a it ' i »
7 = 1 >=1
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are fitted. As more terms are added to the structure of the linear predictor, the 

differences in scaled déviances are approximately distributed as % > with degrees of 

freedom determined by the number of additional parameters added. Therefore, a test 

of whether the total improvement in the model as a result of the additional parameters 

is significant, can be carried out, and optimum values for r and 5 thereby determined.

The (unsealed) deviance for the current model is:

D ( c , f )  =  2 Y J \ a J o g

(  \  
a xt

-  1 l  r n x , J J
(2.142)

where mxt = Rxljuxt, that is, mxt is the number of deaths predicted by the model.

The scale parameter (j), can either be estimated from the unsealed deviance goodness- 

of-fit statistic, as

f . ë s A .
v

(2.143)

or, from the Pearson goodness-of-fit statistic, as

(2.144)
v TT tnx,

where v is the number of degrees of freedom.

Starting with the pre-determined values of r and s, mixed polynomial terms in age and 

calendar-year effects are then introduced to the model. Thus, the model is now 

extended to:

j=o i= 1 <=1 j=1
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with some of the yj parameters equal to 0 .

It should be noted that although only polynomial effects of calendar time t and age x 

are allowed for in the models fitted, fractional polynomials could be used to improve 

the fit. In addition, semi-parametric procedures (such as Generalised Additive models) 

could be used to explore the functional link between mortality rates and {x, t).

Tests o f Graduation
Noting that graduation can be regarded as a smoothing procedure of observed 

mortality rates, a satisfactory graduation should satisfy the following two criteria:

• Overall goodness-of-fit or fidelity to data: the graduated rates should be 

close enough to the crude mortality rates for them to be representative of the 

underlying mortality rates.

• Smoothness: Bizley (1958) defined smoothness as follows: ‘a plane 

continuous curve is smooth at those points which are such that the absolute 

value o f the rate o f change of curvature with respect to distance measured 

along the curve is small'. In the context of mortality, the requirement of a 

small rate of change is equivalent to a requirement that third order differences 

are small, which is consistent with the widely held view that low order 

polynomials are smooth.

Benjamin and Pollard (1993) observe that “the two qualities ‘smoothness’ and 

‘goodness-of-fit’ tend to conflict, in the sense that smoothness may not be improved 

beyond a certain point without some sacrifice o f goodness-of-fit, and vice versa. Thus 

a graduation will often turn out to be a compromise between optimal fit and optimal 

smoothness". Therefore the graduated rates should not follow the crude mortality rates 

too strictly at the expense of smoothness (under-graduation) or too loosely at the 

expense of goodness-of-fit (over-graduation).

As an initial check on the goodness-of-fit of the model, informal techniques involving 

a visual inspection of plots of the residuals are recommended (Renshaw, 1991,
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McCullagh and Nelder, 1989). A good model is taken as one that, among other things, 

“leaves a patternless set o f residuals” (McCullagh and Nelder, 1989).

In graduating using GLMs, residuals can be used to explore the adequacy of the 

model with respect to choice of variance function, link function and terms in the 

linear predictor. They may also indicate the presence of anomalies requiring further 

investigation. Therefore the overall goodness-of-fit of a given model can be assessed 

using the residuals. Not surprisingly, the statistical tests that have been devised to test 

the adequacy of fit of a graduation are essentially applied to residuals.

Renshaw et al (1996) used two common types of residuals for model testing in 

graduating with respect to age and time using generalized linear models:

1) the deviance residuals defined by:

McCullagh and Nelder (1989) discuss a third type of residual proposed by Anscombe 

(1961). Noting that the Pearson residuals have the disadvantage that for non-normal 

distributions, the distribution is often markedly skewed and so may fail to have 

properties similar to those of a normal distribution, the residuals proposed by 

Anscombe are such that the distribution is as normal as possible. For the distribution 

of deaths (Poisson distribution), the Anscombe residuals take the form:

(2.145)

and,

2) the Pearson residuals defined by:

(2.146)

(2.147)
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However, in line with Renshaw et al (1996), in this study, statistical tests of 

graduation are applied on the studentized Pearson residuals and the studentized 

deviance residuals1.

The null hypothesis tested is:

Ho', the true underlying forces o f mortality for the experience are the graduated rates.

The statistical test of graduation applied to test for overall goodness-of-fit of the 

model is the chi-square goodness-of-fit test. The chi-square goodness-of-fit statistic 

is defined as:

x 2 =Z
x,t

*Xt 9 (2.148)

where the z2xt are the squared studentized Pearson residuals, that is

zXt (2.149)

Under the hypothesis that the studentized Pearson residuals (equivalent to the relative 

deviations referred to by Forfar et al, 1988) have a normal distribution, the statistic $  

is expected to be distributed as a chi-square random variable with n-p degrees of 

freedom, where n is the total number of ages or age groups and p is the number of 

parameters estimated. The model is rejected for high values of the j 2 statistic.

The ^  distribution provides a good estimation provided the numbers in each cell are 

not too small. The approximation is generally considered to be unreliable if the 

number in a cell is small (less than 5 say). Therefore, where necessary, the data are 

grouped so that the expected number of deaths in each cell is at least 5.

i Studen tized  residuals are the residuals d iv ided  b y  the square roo t o f  the scale p aram eter <j>.
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The test has certain serious limitations when applied to mortality data and Benjamin 

and Pollard (1993) detail these limitations as follows:

a) it does not detect the existence of a number of excessively large deviations 

counterbalanced by a large number of small deviations;

b) it does not detect a large cumulative deviation over part or the whole of the 

age range;

c) it does not detect an excess of positive or negative deviations over part or 

the whole of the age range;

d) it does not detect excessive clumping of deviations of the same sign.

Because of these limitations, Benjamin and Pollard (1993) conclude that although the 

chi-square test provides a useful comparison in the form of a single statistic, further 

tests are necessary, and the authors further observe that some of the other tests may be 

of greater importance than the chi-square test. The tests applied in this study are 

described below.

• Distribution of individual standardised deviations:- test for overall goodness- 

of-fit and for detecting excessively large deviations. The individual standardised 

deviations test is used to test whether the individual numbers of deaths conform to 

the probability distribution assumed. Under the null hypothesis, the individual 

standardised deviations, that is the zxt's defined above, are expected to be 

distributed as /V(0,1). Most of the problems that might be present in a graduation 

can be detected by an examination of the distribution of the standardised 

deviations.

• Signs of deviations test:- test for overall bias in the graduation, i.e. whether the 

graduated rates are too high or too low. Under the null hypothesis, the deviations 

of the observed deaths from the expected are independent normal random 

variables. If there is no bias in the graduated rates, the signs of the individual 

deviations are independent and are equally likely to be positive or negative. 

Therefore, the distribution of the signs of the deviations would be expected to be 

binomial with parameters n and 0.5, where n is the number of ages or age groups
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(the number of data cells). An excessively large number of positive or negative 

deviations will indicate that the graduated rates are biased.

• Cumulative deviations test:- test for overall goodness-of-fit and for detecting 

large positive or negative relative deviations over a specified range. Under the null 

hypothesis, the number of deaths axt have an approximate normal distribution with 

mean mxt and variance rhxt(j). It follows that the total, ^  {a xt -  m xt), summed
X , t

over a selected range of ages (chosen without reference to the data) in the 

appropriate calendar year (or years), will have an approximate normal distribution

with mean 0 and variance ’Y jh xt(j) , so that the statistic
x t

X (a« - < )
x t

V x t

(2.150)

is expected to have a standardised normal distribution i.e. N(0,1). The null 

hypothesis is rejected if the absolute value of the test statistic is high.

• Stevens’ grouping of signs test:- test for over-graduation. If the positive and 

negative standardised deviations are arranged in random order, R+, the number of 

runs of positive deviations would be expected to have mean

n+(n_ + l) 
n+ + n_

(2.151)

and variance

Oh»-)2
(n++n_y ’

(2.152)

where n+ and are the numbers of positive signs and negative signs respectively. 

If both n+ and are not small, the test statistic R+ can be approximated by a
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normal distribution with mean and variance given by (2.151) and (2.152) 

respectively. The exact distribution of R+ is the hypergeometric distribution.

The rates are over-graduated if there are too few runs. Daw (1954) pointed out 

that the test can lead to different conclusions depending on whether the test has 

been applied to positive or negative signs. However, the effect is of little 

consequence except in the case when the total number of signs is small.

The above summary of statistical tests of graduation is by no means exhaustive. 

Graduation tests are described in detail in textbooks on mortality such as Benjamin 

and Pollard (1993). In addition, the paper by Forfar et al (1988) includes an extensive 

discussion of statistical tests of graduation.
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Chapter 3

Forecasting Mortality Rates

3.1 Background
The methods of forecasting or projecting mortality rates, and evaluating the forecast 

rates vary depending on the quality of the data available and the application of the 

projected rates. Regardless of the method adopted, the projection of age-specific 

mortality rates for actuarial applications is essentially a process of extrapolation of 

past mortality trends, as opposed to forecasts based on expected medical advances or 

the emergence of new diseases.

Keyfitz (1982) provides a review of some general aspects of forecasting mortality. He 

stresses the importance of curves fitted to mortality data (that is parametric 

graduation) as a tool for forecasting future mortality rates. His discussion focuses on 

minimising the parameter representation of the mortality function by aggregating 

ages. Implicit in the discussion is the trade-off between parsimony (using a smaller 

number of parameters) and the level of age detail to be used (more details require 

more parameters). He notes that 'the simpler the curve, the more realistic is likely to 

be its projection into the future

Pollard (1987) discusses various methods of projecting age-specific mortality rates 

that have been used by actuaries and demographers: projection by extrapolation of 

mortality rates (or transformations of mortality rates) at selected ages; projection by 

reference to a Taw of mortality’; projection by reference to model life tables; 

projection by reference to another ‘more advanced population’; projection by 

reference to an ‘optimal’ life table attainable under ideal conditions; and projection by 

cause of death. He assesses the potential strengths and weaknesses of each of the
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methods and gives examples of the use of these methods. The book by Benjamin and 

Soliman (1993) also provides a useful summary of methods of projecting age-specific 

mortality rates.

Tolley et al (1993) review some of the methods of forecasting mortality rates in the 

context of the private life insurance industry operating under U.S. insurance law. The 

authors observe that actuaries are not ‘experts in stochastic models for forecasting 

changes in mortality’. They go on to discuss various benefits of mortality forecasts to 

the insurance industry (and the actuarial profession) particularly in light of the 

unprecedented mortality improvement in the last century that has resulted in financial 

losses in the annuity business.

Tuljapurkar and Boe (1998) carry out a critical assessment of existing knowledge 

about mortality change and forecasting methods, based on forecasts of mortality 

change in Canada, Mexico and the U.S. The researchers provide a comprehensive 

discussion of broad mortality patterns in the U.S., Canada and Mexico and discuss 

analytical methods and theories used to study mortality and mortality change.

Macdonald (1997) documents mortality trends and methods of projecting mortality 

improvements in future for annuity and pension business adopted in some countries in 

Western Europe, notably Austria, France, Germany, Italy and the UK.

Renshaw et al (1996) develop a modelling structure based on the Gompertz-Makeham 

models described by Forfar et al (1988) to incorporate both age and time. The method 

is used to analyse United Kingdom ultimate mortality experience from the insured 

sub-population using generalized linear models.

In a paper presented at a meeting of the Staple Inn Actuarial Society in Fondon, 

Willets (1999) provides a comprehensive analysis of mortality changes in the UK 

over the course of the 20th century and makes comparisons with mortality experience 

from other countries in Europe, Asia, Australia and the Americas. He discusses 

different methods of mortality projections and proposes an alternative method based 

on the birth cohort (that is the year of birth) for estimating future mortality 

improvements.
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Felipe, Guillen and Nielsen (2001) propose a method for exploring the evolution of 

mortality rates based on kernel hazard estimation. The methodology, which involves 

analysing mortality as a two-dimensional multiplicative function of chronological 

time and age, is used to compare mortality experiences of Denmark and Spain.

In this chapter, various methods of projecting age-specific mortality rates are 

presented. However, the methods presented here are by no means exhaustive. In 

Sections 3.2 to 3.5, the methods described by Pollard (1987) are summarised. The 

Lee-Carter method of projecting mortality using statistical time series methods is 

described in Section 3.6 and methods used to project mortality for annuity business in 

Western Europe, including the Renshaw et al and the Willets methods, are described 

in Section 3.7.

3.2 Projection by Extrapolation of Mortality Rates
The simplest method of projecting age-specific mortality rates and the most widely 

used is that of projection by extrapolation of the mortality rates. The method has as its 

basis the assumption that the mortality rates are simple functions of time t, for both 

historic and future values of t. A particularly simple version of this assumption is that 

the proportinate reduction from one year to another in the age-specific mortality rates 

is relatively constant over a long period of time. This means that if the mortality rate 

at age x is plotted for successive years, the curve is close to being a straight line. The 

linearity may be improved by some transformation of the mortality rates such as the 

logarithmic transform, hence the method is sometimes referred to as the logarithmic 

method (see Benjamin and Soliman, 1993).

Extrapolation may be performed either graphically or by mathematical formula. The 

most commonly used formula for extrapolation is:

Qx,t=PxYU (3-1)

where qx l is the mortality rate at age x experienced in year (or time period) t ;
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Px is the level of mortality at age x at a particular point in time, that is, the 

initial level of mortality;

Yx, (0 < yx < l) is the annual rate of improvement in mortality at age x.

The equivalent formula for the logarithmic transformation of qxt is

ln?,,r =Bx +tCx , (3.2)

where Bx = In (3X and Cx = In yx .

The log-linear relationship holds for age-group rates as well as rates for single years 

(Benjamin and Soliman, 1993).

Formula 3.1 allows the mortality rate at age x to decrease indefinitely towards zero. 

An alternative formula preferred by those who postulate an ultimate level of mortality 

at age x, ax say, is

<h,t = • (3-3)

The function extrapolated need not be qx. Other life table functions (such as /ux) or 

transformations of life table functions may be used.

Extrapolation by mathematical formula involves estimating the improvement factor yx 

for various recent time periods using log-linear regression on the qXi, for time periods t 

when (3.1) holds, or using non-linear regression methods when (3.3) holds. 

Alternatively, when (3.1) is valid, yx may be found using the following formula valid 

between time periods 5 and t (t > s):

^  = (3-4)

Projected mortality rates are then calculated using formula (3.1) or (3.3) as 

appropriate.
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Under the graphical approach, mortality rates at each selected age x at recent time 

periods t are plotted against t. A smooth curve is drawn through the points and similar 

curves are drawn on the same graph for neighbouring ages x. The curves are all then 

extrapolated to yield projected values of qx t. Projected mortality rates at intervening 

ages are found by interpolation or by multiplying the base mortality rates (initial 

mortality rates) at those ages by the projected reduction factor at the nearest selected 

age.

The Institute and Faculty of Actuaries (UK) annuitant tables of 1924 (Anderson and 

Dow, 1964) based on life office annuitant mortality between 1900 and 1920 used 

mortality rates projected by formula (3.3). Subsequent annuitant tables have been 

derived using similar methodology. The current methodology used by the Institute 

and Faculty of Actuaries to project annuitant mortality is an extension of (3.3). The 

method is described in detail in Section 3.7. The Society of Actuaries (1981) used 

formula (3.1) to derive the ‘1983 Table a ’ for individual annuity valuation.

The method of extrapolation by mathematical formula has also been used in 

population projections. For example, two sets of population projections made in 

Canada in the 1950’s by the Dominion Bureau of Statistics (1950, 1954) each 

projected future mortality rates on the basis of the log transformation given by 

formula (3.2). The Government Actuary’s Department of the United Kingdom (1965) 

also used formula (3.1) in the projections of the population from 1965 to 2000. 

Golulapati, De Ravin and Trickett (1984) projected mortality rates of the Australian 

population from 1981 to 2020 by the same method, among others.

Pollard (1987) comments that the formula chosen for mathematical extrapolation 

should have few parameters and behave in a simple, appropriate and well-understood 

fashion as the time period t is varied. He further stresses the importance of the life 

table function chosen being sensitive to changes in mortality. An example given is

that of the expectation of life ex t which is affected by mortality at all ages above age 

x but is not particularly sensitive to any of the mortality rates; hence one can project
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the expectation of life for future time periods t and selected ages x, but mortality rates 

deduced from the extrapolation are unlikely to be reliable.

3.3 Projection through parameters

3.3.1 Projection by reference to a law of mortality
The curve representing a law of mortality (described in Chapter 2), is fitted to the 

observed age-specific mortality rates at each of several different time periods (e.g. by 

the method of maximum likelihood, least squares or minimum chi-square as described 

in Chapter 2) and the values of the parameters at each time period t are estimated. For 

example, in the case of Makeham’s law (equation 2.43):

M x .t = a t +  P t c , x ; ( 3 -5 )

the parameters ah [lt and ct are estimated for various time periods t.

Trends in the parameters are extrapolated to provide estimates of the parameters at 

future time periods t. The extrapolation may be graphical or by mathematical formula. 

Projected age-specific mortality rates are then obtained by substituting the projected 

parameters and the various ages into the formula describing the law.

Cramer and Wold (1935) applied the method to Swedish mortality rates from 1801 to 

1930 for lives aged between 30 and 90 using Makeham’s formula. The parameter a, 

was fitted as a straight line separately for males and females; /?, and ct were both 

transformed by taking logarithms and then each was fitted to the logistic function:

_ A + Bexp[k(t + f,)]
1 + exp[^(? + 10)]

where yt is either log/?, or logc,. Cramer and Wold predicted mortality rates to 1980

using their model. The method however failed when it was applied in 1949 to the 

considerably shorter sequence of Australian mortality rates by Pollard (1949), because
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‘the small number o f observations on the parameters provided no discernible trend' , 

(Pollard, 1987).

The Heligman and Pollard eight-parameter curve has been used in studies by Forfar 

and Smith (1987) using the already graduated rates from English Life Tables 1-13, for 

ages from 0 to 85. Each of the parameter estimates is examined graphically for 

extrapolation purposes and, by adopting appropriate time periods, Forfar and Smith 

then used log-linear extrapolation to obtain parameter estimates for 1981.

McNown and Rogers (1989) also used the Heligman and Pollard curve in studies 

involving U.S. mortality data. The projected parameter values were obtained using 

Box and Jenkins univariate time series models.

Pollard (1987) observes that although the method of projection by reference to a law 

of mortality has a certain theoretical appeal, independent extrapolation of individual 

parameters may lead to projected mortality rates which are quite unreasonable, 

making it difficult to apply the method. Congdon (1993) however shows ‘the ability 

o f a parametric approach both to reproduce observed patterns with a high degree of 

accuracy and to facilitate comparisons across space and time'.

Tolley et al (1993) noted that the method of projection by reference to a law of 

mortality is more common in epidemiology and demography than in actuarial science 

because ‘such forecasting through parameters has been o f little practical use to 

actuaries'. Perhaps the basis of this statement is the authors’ assertion that actuaries 

do not view forecasting methods as scientific tools but rather as business tools.

Hickman and Miller (1981) produced a graduation method that allows for forecasting 

by assuming that the forces of mortality jux t are, a priori, distributed over time as 

correlated random variables. The researchers form the likelihood of the observed

3.3.2 Projection using Bayesian graduation

deaths and survivors of discrete age intervals in terms assuming a
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normal likelihood for deaths given (jux ,)^ , and a normal prior distribution for (jux ,Y2 

(the conjugate prior), posterior estimates of /uxl are obtained. The posterior 

distribution of juxt for values of t beyond the data provides forecasts of future 

mortality rates.

More recently, Olivieri and Pitacco (2002) propose a Bayesian inferential model for 

future mortality changes based on the Weibull distribution. The probability 

distribution of the random lifetime for a fixed generation of lives is assumed to be 

represented by the Weibull model with two random parameters.

Tolley et al (1993) note the following points in favour of the Bayesian graduation 

method:

(a) The method provides a simple method of incorporating past data and any prior 

knowledge into the forecast.

(b) Because the method is a graduating technique, forecasts are smooth extensions of 

current experience.

(c) The method does not depend heavily on a parameterized relationship of the force 

of mortality over time.

3.4 Relational Models

3.4.1 The Brass two-parameter logit system
The basic idea of relational models for mortality projections, due to Brass (1971) is to 

construct a function of a life table function such as jux or lx and relate the mortality 

under study to that in a reference population. Brass (1971) observed empirically that 

the logit transformation Ax, given by:

A . ,  =  2 l o g
(3.7)

can be expressed as a linear function of the logit Asx in a standard table, so that:
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A ,, = «, + P A  . (3-8)

where a, and (5t are more or less independent of x.

For the purpose of projecting mortality, use of the Brass two-parameter logit system 

reduces the problem to the extrapolation of two times series, at and /?,. The parameter 

a, reflects the level of mortality while indicates the relationship between child and 

adult mortality relative to the standard (Benjamin and Soliman, 1993). The more (3, 

falls the lower is the predicted mortality at younger ages in relation to the standard 

and the higher is the predicted mortality at older ages compared with the standard 

(Congdon, 1993).

Brass (1971) used the system to obtain results for Sweden as well as England using 

generation data (that is, birth cohort data). He suggests that, for projection purposes, 

one of the life tables under study would be the best base to use. The system is one of 

the methods applied by Congdon (1993) in his study of mortality for the 32 London 

boroughs and Greater London.

3.4.2 Projection by Reference to Model Life Tables
Various systems of model life tables have been developed over the past quarter 

century (Brass, 1971; Coale and Demeny, 1966; Organisation for Economic Co-

operation and Development, 1980; United Nations, 1955 and 1982). These model life 

tables are particularly useful for estimating complete life tables or abridged life tables 

from limited mortality data. They can also be used for projecting mortality.

The method of projection by reference to model life tables may be thought of as a 

special case of the method of projection by reference to a law of mortality (or vice 

versa). Furthermore, when certain systems of model life table are employed, the 

method can also be thought of as an example of projection by reference to more 

advanced populations (described in Section 3.4.3 below).
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Firstly, a system of model life tables is chosen which, it is believed, represents and 

will continue to represent the mortality of the population of interest. The system may 

involve a single parameter or two or more parameters. In the single parameter case, 

the parameter of the system is measured in the population at each of several time 

periods. Any trend in the parameter is extrapolated graphically or by mathematical 

formula to provide estimates of the parameter at future time periods. Projected age- 

specific mortality rates are obtained by entering the model life table system for the 

various projected values of the parameter. To adjust for the fact that the observed base 

mortality rates in the population may not coincide with those in the model life table 

having the same parameter, the relative projected change on the model life table 

mortality rates is applied to the observed base mortality rates of the population.

Pollard (1987) observes that this method is one of several commonly used for 

projecting the mortality of less developed populations.

3.4.3 Projection by Reference to a More Advanced 

Population
According to Pollard (1987), the method of projection by reference to a more 

advanced population is one of the commonest methods of mortality projection 

adopted in respect of both developed and less developed countries.

The method may be summarized as follows:

• A more advanced population with adequate mortality statistics is chosen, having 

a mortality history which, it is hoped, the population under study will emulate.

• The mortality characteristics of the population under study are compared with 

those of the more advanced population and similarities are noted. For example, it 

may be that the mortality of the population under study is essentially the same as 

that of the more advanced population with a lag of, say, 20 years, which appears 

to be slowly shortening.

• Projections of mortality for the population under study are taken as those 

mortality rates already experienced by the more advanced population and (when 

necessary) projected for the more advanced population.
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New Zealand mortality in the 1930s was the lightest in the world, and it was used in 

the period immediately after the Second World War as a model for projecting the 

mortality of other countries. A projection of Japanese mortality made in 1954 by 

Okazaki assumed a smooth decline in Japanese mortality of 1948, age by age, until 

the level of the 1934-1938 New Zealand mortality was attained in 1965 (Preston, 

1974). No improvement in mortality was projected beyond 1965.

3.4.4 Projection by Reference to an ‘Optimal’ Life Table 

Attainable under Ideal Conditions
Several writers have addressed the question: ‘What is the optimal life table one could 

expect in respect of a given population?’ and a variety of approaches have been 

adopted in an attempt to answer the question.

For example, in 1947, Whelpton, Eldridge and Siegel studied the age-specific 

mortality rates in each of the states in the United States, and noted that the mortality 

rates in states with low mortality at any given time indicated the likely death rates for 

the nation as a whole some years later. Based on this information, they estimated 

expectations of life at birth of 68.4 and 71.8 for males and females, respectively, on 

the basis of individual state mortality rates in 1940. On the assumption that advances 

in public health and living standards would make it possible even to exceed these 

expectations, they concluded that the figures represented lower bounds for the year 

2000. Using data from other nations rather than state data, and the same reasoning, 

they obtained expectations of life at birth of 68.6 and 70.9, for males and females 

respectively. (Cause-of-death trends were also used less formally and on a regional 

basis to estimate attainable reductions in mortality.)

Bourgeois-Pichat (1952) asked a similar question: ‘Can mortality decline indefinitely 

or is there a limit, and if so, what is this limit?’ He distinguished two categories of 

deaths: those that were exogenous (provoked by health conditions etc.) and those that 

were endogenous (coming from within). Using six broad groupings of cause of death 

and Norwegian data, Bourgeois-Pichat estimated ultimate expectations of life of 76.3 

and 78.2 for males and females, respectively.
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More recently, Benjamin (1982) has made some ‘extreme assumptions’ about 

improvements in mortality by cause in an attempt to come up with a life table under 

optimal conditions. Briefly, he assumed:

(a) Congenital/early infancy diseases reduced to one third;

(b) Smoking drastically reduced, eliminating 90 per cent of lung and bronchus cancer 

deaths and one third of pre-65 ischaemic heart disease deaths;

(c) Remaining heart disease deaths, cerebrovascular and other circulatory disease 

deaths deferred 10 years;

(d) Bronchitis, emphysema and asthma deaths prevented;

(e) Other cancer deaths eliminated;

(1) Accidental death unchanged;

(g) Small residual deaths from tuberculosis and diabetes;

(h) Unspecified causes of death deferred 10 years.

On this basis and using England and Wales data, he estimated an ultimate expectation 

of life at birth of 81.3 for males and 87.1 for females.

The essential steps in this method are the following:

• A suitable optimal life table attainable under ideal conditions is selected from 

those developed by other researchers or developed from the population's own 

cause-of-death data, taking account of optimal improvements for each cause along 

the lines suggested by Benjamin (1982).

• A decision is taken as to how the population will approach the optimal mortality 

schedule and how quickly it will do so. A formula like (3.3) will often be adopted, 

with ax the optimal mortality rate at age x.

3.5 Projection by Cause of Death
Pollard (1949) studied various methods of projecting mortality using Australian data. 

Among them was the method of projecting total mortality from individual groups of 

diseases. He argued that a better projection of total mortality would be obtained by 

first separately projecting mortality from certain groups of disease and then adding
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these individual projections together. Pollard distinguished 13 cause groups: 

influenza, pulmonary tuberculosis, epilepsy, bronchitis and pneumonia, accidents, 

growths, intercranial lesions, diabetes, nephritis, appendicitis, diseases of the 

circulatory system, ulcers of the stomach and duodenum, and other causes. Mortality 

rates for these causes were calculated for selected ages for each of the years 1921- 

1938 and projected forward graphically towards 1970. In the event, the projected age- 

specific mortality rates obtained by combining the projected age-specific rates by 

cause were significantly higher than the rates obtained by any other method. Pollard

(1987) argues that the high mortality rate predicted reflects the rapidly rising mortality 

rates from circulatory system diseases and, to a lesser extent, accidents.

Some of the more recent work in projecting mortality rates by cause of death has been 

done by actuaries in the United States Social Security Administration. Their method 

involves: a historical analysis of age-specific death rates by cause using 10 broad 

categories based on the International List of Diseases and Causes of Death code (see 

for example SSA Actuarial Study 112, Social Security Administration 1997); the use 

of expert opinion and judgement to assess future trends by cause; and, a mapping of 

history and expert opinion into projections.

The method of projection by cause of death may be summarized as follows:

• Cause-of-death statistics are used to calculate age-specific mortality rates by 

cause at each of several recent time periods for selected ages.

• The age-specific mortality rates by cause are projected separately for the selected 

ages, using one of the methods already outlined in the sections above.

• The projected age-specific mortality rates by cause are then combined to yield the 

projected mortality rates at the selected ages.

• Projected mortality rates at the intervening ages are found by interpolation or by 

an abridged life table technique.

The method of projection by cause of death is a complex approach not least because 

many different causes can result in the same disease. Wilmoth (1995) showed that 

when extrapolative methods are applied by cause of death and separately to aggregate
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mortality, the results are generally not the same over time. The cause of death that 

declines most slowly is the one that dominates in the end.

The method assumes that causes of death are independent. A more accurate method 

would involve allowing for dependency. For example, Carriere (1994) investigated 

the effect of removing heart and cerebrovascular diseases as a cause of death from the

U.S. population. Assuming that these diseases were dependent on other causes, the 

dependence was modelled using the theory of copula functions. Loosely, a copula is 

defined as a multivariate cumulative distribution function that has uniform marginals. 

For a more precise definition refer to Carriere (1994) or Schweizer and Sklar (1983) 

for example.

Pollard (1987) also observed that the method requires reliable cause-of-death statistics 

at several recent time periods and that changes in the International Classification of 

Diseases, changes in medical diagnosis and medical ‘fashions’ can make comparisons 

over a number of years difficult.

3.6 Lee-Carter Method
In 1992, Lee and Carter published a model for forecasting the level and age pattern of 

mortality based on a combination of statistical time series methods and a simple 

approach to dealing with the age distribution of mortality.

They produced the following model, which is essentially a relational model:

log mxtt= ax +/3xk,+£xt (3.9)

where

mxj is the central death rate for age x at time t;

ax coefficients describe the average shape of the age profile over time; 

y3X coefficients describe the pattern of deviations from the age profile when the 

parameter kt varies;
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kt describes the variation in the rates of death with time t; and 

sx t is an error term.

The model is over-parameterised in that if {ax, (3X, kt) are one solution, then for any 

constant c, {ax -  J3xc, px, kt+ c} and {ax, fixc, k jc} must also be solutions. Therefore kt 

is determined only up to a linear transformation, (3X is determined only up to a 

multiplicative constant, and ax is determined only up to an additive constant.

To distinguish a unique solution, two further conditions are imposed:

(i) 2 X = 1 ;and
JC

(»)

Under these conditions, the ax coefficients are simply the average values over time of 

the log(mt f) values for each age x, i.e.

a = -Y \° g { m x) .  (3.10a)
« t~\

Alternatively, the ax coefficients can be viewed as the logarithm of the geometric 

mean of the central death rates mx, averaged over time for each age x, that is,

a, =iog n mX,
t=i

(3.10b)

Lee and Carter (1992) used the single value decomposition (SVD) method to find a 

least-squares solution. The procedure is applied to the matrix of the logarithms of the 

death rates, after the averages over time of the (log) age-specific rates (3.10a or 3.10b) 

have been subtracted. The SVD procedure is available in many statistical packages 

including S-Plus.
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The time factor kt is modelled as a stochastic time series process using standard Box- 

Jenkins procedures. Lee (2000) observes that in most applications of the method so 

far, kt is modelled by a random walk with drift, that is:

kt = c + kt_x + et (3-11)

where c is a constant average rate of change and et is a random term whose statistical 

properties are estimated from the data. In this case, the forecast of kt changes linearly 

and each forecasted death rate changes at a constant (age-specific) exponential rate.

The log of each age-specific mortality rate is forecast 5 periods ahead from base 

period t0 using the following equation:

where the A indicates estimates of the associated parameters. If the error term cXJ, in

correlated with one another, because all are linear functions of the same time-varying 

parameter kt. This means that probability bounds can be calculated on all (period) life 

table functions directly from the probability bounds on the forecasts of kt.

Lee and Carter applied their method to the age-specific aggregate (sexes combined) 

US death rates from 1933 to 1987 and produced forecasts, with confidence intervals, 

for the period 1990 to 2065. A further study by Carter and Lee (1992) extended the 

basic method by implementing the model to male and female data separately. 

Wilmoth (1996) used the method to forecast Japanese mortality with variations to the 

model, in which the long-term decline of the time-factor is eventually forced to some 

specified level.

Lee (2000) discusses the forecasts to which the method has led and various extensions 

and applications of the method. One extension proposed involves estimating the ax 

coefficients as the average of the log(mx,t) values of the most recent death rates, rather 

than the average of the log(mXit) values over all t.

(3.12)

equation (3.9) is ignored, the variations values will be perfectly
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Brouhns, Denuit and Vermunt (2002) describe an extension to the Lee-Carter 

approach whereby the numbers of deaths are modelled as Poisson random variables 

AX)h that is:

Axl ~ Poisson(RcXJMx,t ),

where Rxt is the exposure-to-risk and juxl is the force of mortality. The function jux t 

is then modelled as:

= exp (ax + Pxk, ).

Hence the force of mortality is assumed to have the log-bilinear form:

The parameters ax, ßx and k, (defined as in the classical Lee-Carter model (3.9)) are 

estimated by maximising the log-likelihood. The time series part of the Lee-Carter 

methodology is not modified and is thus used to forecast kt.

Renshaw and Haberman (2003) present a re-interpretation of the model underpinning 

the Lee-Carter methodology for forecasting mortality. A parallel methodology based 

on generalised linear modelling is introduced and the two methods are compared in 

terms of structure and assumptions.

3.7 Projections for Annuity Business
Under conditions of improving mortality, projection of future annuitant mortality is 

essential since any increased longevity will result in higher obligations in the future. 

Macdonald (1997) identifies two approaches to the setting of tariffs for annuity 

business in Western Europe. Firstly, he observes that if the tariff is regulated as in 

Sweden, and the interest basis is very strong, then technical mortality losses are likely 

to be of comparatively little significance, and the mortality basis can be chosen in a
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pragmatic way. On the other hand, where competition on the basis of price is allowed 

and offices often set their own tariffs using current interest rates, then the avoidance 

of technical losses is a critical matter, so that it is necessary to allow for future 

improvements in mortality, and possibly temporary initial selection as well. In the 

UK, both of these conditions apply, and consequently, the standard mortality tables 

produced by the Continuous Mortality Investigations (CMI) Committee of the 

Institute and Faculty of Actuaries for pensioners and annuitants allow for projected 

improvements in mortality.

Other countries in Western Europe making use of projected mortality for annuity 

business are Austria, France, Germany, Italy and The Netherlands (Macdonald et al, 

1998 and Macdonald, 1997). The forecasting models adopted by these countries are 

described in Sections 3.7.1 and 3.7.2, using the study edited by Macdonald (1997) as 

the basis, with particular emphasis on the CMI model (described fully in CMI Report 

10, 1990). In Section 3.7.3, the Renshaw et al (1996) GLM approach to modelling 

time trends in mortality, which is the main focus of this thesis, is described, while the 

Willets (1999) method is briefly described in Section 3.7.4.

3.7.1 Current CMI Practice
The current practice of the CMI is to graduate the force of mortality at age x, jux, by 

fitting the “Gompertz-Makeham” class of formulae described in Section 2.3.2 as:

Mx
r - 1

GMx{r,s) = 'YjCtiX' + exp
i=i

(3.13)

with the convention that when r = 0, the polynomial term is absent, and when 5 = 0, 

the exponential term is absent (Forfar et al, 1988). Values of qx are estimated from 

those of jUx using Simpson’s rule and Romberg integration or ‘accelerated 

convergence’. A full description of the method of approximation is given by Waters 

and Wilkie (1987).
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Tables resulting from the graduation, referred to as base tables, are then projected by 

applying time reduction factors, RF(x,n), for an ultimate life attaining exact age x at 

time n, where n is measured in years from an appropriate origin (the base year), that 

is, n = 0,1,2,-••.

The projection formula used by the CMI Committee is of the form:

qx,n = qx,o ■ RF(x,n) (3.14)

where:

qx n is the rate of mortality for a life attaining exact age x during calendar year 

base year + n;

qX!o is the rate of mortality in the appropriate base table corresponding to lives 

attaining exact age x, in the base year;

and,

RF{x,n) = ^ .  (3.15)
?*,o

Similarly for select lives (immediate annuitants), RF{x,n) is the ratio of q[x] n, the

select rate of mortality for a life newly selected at age x in calendar year, base year + 

n, and q[x]0, the select rate of mortality in the appropriate base table. The select

period used for immediate annuitants is one year.

Having considered a variety of relevant factors and an assessment of likely changes in 

future improvements in mortality rates, the CMI Committee determined a time 

reduction factor of the form:

RF(x,n) = a(x)+ {l -  a(x)}e_/3'" (3.16)

where, 0 < a(x) < 1 and Px > 0 for all x; so that,

\\mRF{x,n) = a(x) (3.17)
«-»co

and
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(3.18)

Thus the form of the model assumes that at each age x, the limiting rate of mortality is 

non-zero and that the rate of mortality decreases to its limiting value by exponential 

decay. The parameter /3X determines the speed with which the mortality rate 

decreases to its limiting value.

Denoting f s(x) to be the fraction of the total future reduction in qx which will occur by 

some given future time s, that is,

By substituting expression (3.20) in equation (3.16), the time reduction factor 

becomes

Assuming that relative to the limiting value, the speed of convergence does not 

depend on age, that is J3X = ¡5 for all x, then expression (3.20) becomes:

(3.19)

it can be shown that:

(3.20)

(3.21)

er P  - (3.22)

and expression (3.16) becomes:

(3.23)
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The more recent CMI mortality improvement model for pensioners and annuitants, is 

used with mortality tables based on mortality experience over the quadrennium 1991- 

94, (CMI Report 16, 1998; CMI Report 17, 1999). The graduated rates of mortality at 

age x apply on average to lives attaining exact age x in calendar year 1992 (i.e. 

halfway through 1992) and hence time is measured in years from 1992. The reduction 

factor is based on a study of the mortality experiences of the five quadrennia 1975-78 

to 1991-94. The form of the model is that of expression (3.21) with 5 = 20, that is, it is 

assumed that a given percentage of the total future decrease in mortality, / s(x), will 

occur in the first 20 years, with the percentage varying by age.

The functions a(x) and f s(x) are both linear functions of age x for 60 < x < 110 and are 

defined as:

0.13

, , 0.87(^-110) 
50

1

x < 60 

60 < x < 110 

x > 110

(3.24)

and,

0.55

(l 10 -x)0.55 + (x -  60)0.29 
50 

0.29

x < 60 

60 < x < 110 

x > 110

(3.25)

The mortality improvement model is such that the rate of improvement in mortality is 

assumed to depend on both age and time for lives aged between 60 and 110 years 

only. At ages below 60 years, the rate of improvement is assumed to depend only on 

time while no improvement is assumed for lives aged 110 years and above. The same 

reduction factors apply for all pensioners’ and annuitants’ experiences, male and 

female, for data based on both lives and amounts.

The CMI mortality improvement model used with tables based on the 1979-82 

mortality experiences (that is, the previously published mortality tables), was of the
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form of expression (3.23) with 5 also equal to 20. The exact format of the reduction 

formula was:

RF{x,n) = a{x)+ {l -  a(x)j0.4"^20, (3.26)

where:

0.5 x < 60

60 < x < 110 (3.27)

1 x > 110

As for the more recent mortality improvement model (expressions 3.21, 3.24 and 

3.25), model (3.26) is such that the rate of improvement in mortality is assumed to 

depend on both age and time for lives aged between 60 and 110 years only. In the 

earlier model, it was further assumed that 60% of the total future decrease in mortality 

would occur in the first 20 years, for all values of x.

3.7.2 Other Methods of Projecting Annuity Business
As noted above, other European countries also make use of projected mortality for 

annuity business. The methods of forecasting are described in detail in the study 

edited by Macdonald (1997). In general cohort (generation) mortality tables based on 

population data form the basis of the projections. A summary of some of these 

methods is given below.

Austria

The generation mortality tables produced in 1986 took into account projected 

improvements in mortality, using information up to and including the 1980-82 

experience. The forecasting model was:

^ W = ^ (O e x p { -4 c (* -0 } , (3.28)
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For each age x, the optimum projection period, denoted Switch, before which the short-

term data should be used and beyond which the long-term data should be used; and 

the earliest year in either set of data, denoted t^n and tj^J, which should be included 

in the fitting process were determined by considering confidence intervals of 

projected mortality rates. The values of Switch and tmin, which resulted in the smallest 

confidence intervals, were chosen. Because the results obtained were variable, 

averaged results were used as follows:

Males:

tswitch

f 1970 x e [67,82]
[1950 otherwise

J1870 x <= [l0,85]
[1950 otherwise

= 18 x e  [l,100]

Females:

(1  =1950 i  s  [0,100]

„ [1903 k  [10,95]
n™ 1̂ 1950 otherwise

',„■«,=16 * 6 [l ,100].

This therefore resulted in four graduations for males and three for females, each 

resulting in a different projection model for qx(t). The separate models were then 

combined into a weighted average, taking into account the values of Switch and tmm, 

with the weights varying with age.

The published tables pertained to the 1950 generation, with age adjustments 

recommended for other generations.

Because the mortality rates obtained as above were based on population data, the 

pensioners’ mortality tables incorporated further reduction factors to allow for the 

difference between population mortality and annuitants’ mortality. At ages up to 85,
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reduction factors of 0.75 for males and 0.85 for females were used; at ages 96-99, a 

factor of 0.8 was used for both males and females; and at ages 86-95, the factors were 

interpolated.

The projections were reviewed in 1995 on the basis of the 1990-92 experience and 

some adjustments recommended. The age adjustments originally recommended for 

males in the 1986 study were all decreased by 1 year, while the age adjustments for 

females were left unchanged.

France
The published mortality table for annuity business sold after 1 July 1993, referred to 

as the TPRV 93, represents the mortality of female lives bom in 1950, projected into 

the future, together with a table of age adjustments for other generations. The table is 

based on the mortality experience for the period 1961-87, in 5-year age groups. For 

fixed ages x, the crude rates were interpolated and extrapolated using functions of the 

form:

exp(/(Q)
1 + exp(/(t)) ’

(3.33)

where/(t) is a polynomial, that has the form:

/(0=Ec/  •
k

(A linear function was actually used). For each fixed period t, mortality rates at 

individual ages were obtained by assuming an exponential progression of the 

probabilities of death between two 5-year age groups.

Germany

In projecting future mortality rates, an annual improvement rate, depending on age, 

based on the trend of mortality in the population is assumed. The improvement rate is 

applied to a projected table in the immediate future, using the most up-to-date
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information. The recommended mortality tables for annuity business are based on the 

population mortality projected to the year 2000 and adjusted as follows:

(3.34)

Hcre,/r is a piecewise linear adjustment quantity ranging from 0.9 at ages between 0 

and 20, to 0.75 at ages between 75 and 110, to allow for the lower mortality of 

annuitants, sx is a safety loading for the statistical risk of variation calculated such 

that the actual number of deaths are kept above the expected number (on the basis of 

q'x) with probability 1 -  a  , where a is very small. Thus, sax is such that:

is the random number of deaths and Lx is the population aged x.

The resulting basic rates apply to the 1952-58 cohorts (male) and the 1952-57 cohorts 

(female) with age adjustments being used for other cohorts.

The first Italian annuity table was a select table based on adjustments to population 

mortality data, (see the article by Pietrobono in McCutcheon, 1986), with the 

adjustments only applying to mortality due to non-accidental causes. The more recent 

tables follow the same principle, adjusting the 1970-72 population data to allow for 

both future improvements and selection. Overall and accident-only (denoted by 

superscript a) mortality rates are projected using exponential factors as follows:

(3.35)

where,

t = Y ,t <
X

Italy

qx{\97\ + n)= qx(\97\)r(xy ' 

qax(\97\ + n)= qax(\9 7 \y (x )n
(3.36)
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where,

qx{\91\ + n) is an estimate of the rate of mortality for a life attaining age * in 

calendar year (1971 + n);

¿7v(l97l) is the rate of mortality obtained from the base table (1971 mortality 

table);

r(x) is the average annual rate of variation of mortality during the projection 

period, based on mortality variations with reference to the 1961, 1971 and 

1978 mortality tables; and

n is the number of years of the projection period (20 years for males and 25 

years for females).

A selection factor g(x,t) depending on age and duration, is then applied to the rates of 

mortality excluding accidental deaths, giving the final projection formula:

qx+, (1971 + n)= qax+t (l971 + n)+g(x,t){qx+t (l971 + n ) - q ax+t (1971 + «)}• (3.37)

3.7.3 The GLM Approach
The modelling structure proposed by Renshaw et al (1996) detailed in Section 2.4.4 

allows for mortality projections to be performed within the context of the model 

formula by evaluating /uxt at future time periods t. The procedure involves fitting to 

historical data models of the form:

exP
7=0 1= 1 1=1 7 = 1

(3.38)

where x' and /' are the transformed ages and calendar years respectively, such that 

both x! and t' are mapped onto the interval [-1, +1], and L/x') are Legendre 

polynomials as defined in Section 2.3.2. In particular,

x! = (x — cx)/wx and f  = ( t -  ct)/w,
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where cx and ct denote mid-points of the range of x values and t values respectively, 

and wx and w, denote semi-ranges as described in Section 2.5.4.

Rewriting equation (3.38) as

(3.39)

the second multiplicative term in (3.39) may be interpreted as an age-specific trend 

adjustment term, provided at least one of the yy terms is not pre-set to zero (Renshaw 

et al, 1996). In determining a suitable model, we are therefore interested in 

smoothness not only over age but also over time.

Assuming that a well-behaved model that adequately describes mortality trends in the 

experience under study can be determined, then it is possible to derive a mortality 

improvement model directly from the model formula. The same mortality 

improvement format as that used by the CMI is applied, except that the reduction 

factor is defined to be a ratio of forces of mortality rather than a ratio of mortality 

rates. Thus

jux0 is the force of mortality for a life attaining exact age x in the base

calendar year (taken as year 0); that is, the base rate from the mortality table 

for the appropriate experience;

jux is the force of mortality for a life attaining exact age x in calendar year 

base year + n] and

RF{x,n) is the reduction factor for an ultimate life attaining exact age x at time 

n where n is measured in years from the base calendar year, thus n -  1,2, ■ • •.

Rewriting expression (3.40) as

Mx,n=Mx,o-RFix>n), (3.40)

where,
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RF(x,n) (3.41)

it is clear that

log RF(x,n) = \og(juxn) -  log(/rv 0). (3-42)

Denoting the base calendar year as t0 (rather than 0), n may be expressed in terms of 

calendar year t and !„ as 

n= t -  t0.

Hence taking logs of expression (3.38) or (3.39) and applying (3.42),

which is the trend adjustment term in the model formula (3.39), with adjustment for 

the transformed calendar time.

Therefore, in the GLM approach, rather than use ad-hoc methods to determine an 

appropriate mortality improvement factor, it is the form of the best-fitting graduation 

model that determines the form of the improvement factor, so that the improvement 

factor depends on the specific mortality experience. The general trend in mortality is 

represented by the a, terms while the differences in mortality change with age are 

represented by the yy terms.

In the specific case where the trend adjustment term is linear in time (that is r = 1), the 

mortality improvement factor simplifies to:

(3.43)

(3.44)
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»  ) vv,
(3.45)

The formula for the reduction factor (3.45) can be expressed as:

logi?F(x,«) = (a + bx)n (3.46)

where a is a constant and bx is a polynomial in x.

The Renshaw et al method can be likened to the method suggested by Wetterstrand 

(1981). Wetterstrand used an extension of the Gompertz law to describe mortality 

trends of United States ultimate mortality experience from life insurance for the 

period 1948-77 at ages 30 to 90 years. He proposed a three-dimensional model with 

attained age x and experience year t (measured from an appropriate base year which 

was 1900 in the study) as independent variables and the force of mortality as the 

dependent variable. The model was of the form:

Wetterstrand concluded that Gompertz’s law described fairly accurately the ultimate 

mortality of insured lives over the 30-year period of study. He however did not use his 

model to forecast future forces of mortality.

The GLM approach to forecasting mortality rates is in fact a type of projection by 

extrapolation of mortality rates, with the extrapolation carried out by mathematical 

formula. Further studies on the methodology have been carried out by Renshaw and 

Haberman (2000, 2003).

Renshaw and Haberman (2000) suggest a method for modelling mortality reduction 

factors in the framework of generalized linear models. The methodology is both 

capable of assessing existing reduction factors, with the benefit of hindsight, and 

capable of projecting established data patterns in order to forecast future reduction

Mx,t = exP(a  +  f i t +  yx ) . (3.47)
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factors. Three case studies based on the UK pensioner lives’ mortality experience and 

the UK annuitants’ mortality experience are presented to illustrate the different 

aspects of the methodology.

Renshaw and Haberman (2003) describe ways in which the Lee-Carter methodology 

of fitting and constructing mortality trends can be modified to forecast future 

behaviour of mortality reduction factors. A comparison is drawn with the GLM based 

regression methods described in Renshaw and Haberman (2000). By way of 

illustration, the UK male pensioner lives’ experience and the UK male annuitants’ 

experience are considered.

3.7.4 The Willets method
Willets (1999) developed a ‘cohort’ model for projecting mortality improvements 

over time and compared the model with the CMI projection model and the GLM- 

based model. In the Willets model, trends are projected by year of birth rather than 

attained age. The ‘current’ improvement rates for particular years of birth were 

derived from the England and Wales data for the period 1992 to 1997 and were 

chosen to be broadly consistent with values given in the 1996-based GAD National 

population projections and smoothed using a graphical method.

It was assumed that mortality improvement rates would remain at their current levels 

(by year of birth) for the period 1992 to 1997 and would move exponentially towards 

‘long-term’ average rates, with half the change in rate occurring during the first 5 

years and half of the remaining change occurring every 5 years. The 5-year time 

period was chosen to reflect the fact that smoking was considered to have begun to 

stabilise so that the part of improvements due to reduced smoking was assumed to 

fade away relatively rapidly. The long-term rates were based on average 

improvements from 1961 to 1997.

A final loading of 25% was applied to the improvement rates to convert from 

population improvements to improvement rates suitable for pensioners. The loading 

of 25% was broadly based on past differential between population and pensioner
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improvements. The alternative approach of using improvement rates by individual 

year of birth derived directly from pensioners’ data was not done primarily because 

the appropriate data is not available. In addition, it was considered that the 

fluctuations in the pensioner experience would make it difficult to extract underlying 

trends, and that the population experience has a more stable exposed-to-risk.
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Chapter 4

Modelling of Immediate Annuitants’ 

Mortality Experience

4.1 Introduction
In this chapter, the GLM modelling structure proposed by Renshaw et al (1996), 

described in Chapter 2, Section 2.5, is used to investigate mortality trends for 

immediate annuitants’ ultimate experiences over the period 1946 through to 1994, 

based on data provided by the CMI Bureau. The aim of the investigation is to identify 

the particular form of the models appropriate for forecasting ultimate mortality rates 

for annuitants.

The composition of the CMI immediate annuitants’ investigation has changed to some 

extent during the period of study. Firstly, there was a well-documented change in the 

class of lives taking out annuity contracts as a result of the Finance Act 1956. 

Secondly, the experience has been declining rapidly over the years (see for example 

CMIR 16, 1998). The inclusion of annuities with a guarantee period from 1988 has 

gone some way to boost the experience (CMIR 14, 1995). However, this same 

inclusion might have the effect of changing the underlying mortality trends. Thirdly, 

in CMIR 16 (1998), the CMI Committee reported that ‘a handful o f substantial 

contributors’ were not able to contribute data for each year of the quadrennium 1991 

to 1994. Again this might have an effect on the underlying mortality rates but any 

such effect has not been quantified. In this study, no attempt is made to investigate 

explicitly changes in mortality trends that might be due to changes in the composition 

of the experience.
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The most recent standard mortality tables for immediate annuitants produced by the 

CMI Committee, were constructed with a one-year select period, providing rates for 

duration 0 and duration 1 year and over (1+). However, it was shown in CMIR 9

(1988), in the report on the graduation of the 1979-82 mortality experiences, that there 

was statistical justification for a five year select period, with durations 0 to 4 

combined and duration 5 years and over (5+) separate. The Committee’s decision to 

retain a one-year select period was based on the practical advantages, notably 

consistency with previous mortality tables for annuitants, the a(55) and a(90) tables, 

which were both produced with a one-year select period. In this study, the two 

definitions of ultimate experience were considered, but greater emphasis was placed 

on the experience at duration 1 year and over in order to facilitate comparisons with 

the results obtained by the CMI Committee.

Determining an appropriate trend model was done in stages. Firstly, a model that 

provides the best fit to the data was determined for each experience. Projections based 

on the model were then considered. As Forfar et al (1988) commented, ‘if  one 

graduation produces sensible extrapolations, and another (equally satisfactory in 

other respects) does not, then the former may be preferred, since it would then be 

possible to use the graduated rates without special adjustment’. Therefore using the 

information obtained by fitting the model, and the projected mortality rates, the model 

was revised as necessary, noting that the preferred model is the model that produces 

sensible extrapolations.

An analysis of mortality trends over time in the annuitants’ ultimate experience is 

presented in Section 4.2 separately for males and females. In Section 4.3, a method 

developed by Renshaw and Haberman (1997) for modelling select mortality rates 

relative to the corresponding ultimate rates is applied to female annuitants’ data as an 

illustration of a complete GLM modelling procedure for mortality data that includes 

select rates.
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4.2 Trend analysis of the immediate annuitants’ 

mortality experience
The immediate annuitants’ data analysed are for the calendar year period 1946 

through to 1994, based on lives, excluding data for calendar years 1968, 1971, and 

1975 which were not available. For each calendar year t, the CMI data are grouped by 

age v nearest birthday, and by curtate policy duration d, of 0, 1, 2, 3, 4, or 5 years and 

over (5+), tabulated separately for males and females. The data consist of the number 

of deaths occurring in calendar year t, and matching exposure to the risk of death 

tabulated as follows:

• 1946 - 1974: numbers in force as at 1 January of each calendar year t for 

individual ages x ranging from 51 to 100  years, and classified into age groups for 

x < 50 and x > 100.

• 1976 - 1982: initial exposed-to-risk for each calendar year t for individual ages 14 

to 110  years.

• 1983 - 1994: numbers in force at the start and end of each calendar year t for 

individual ages 0 to 110  years.

In addition, data pertaining to contracts issued prior to 1957 are tabulated separately 

for the calendar years 1969 to 1981.

Estimation o f the central exposed-to-risk
In line with recent CMI graduation practice, (Forfar et al 1988, CMIR 9 1988, CMIR 

10 1990, CMIR 16 1998 and CMIR 17 1999), the force of mortality is modelled using 

the central exposed-to-risk. It is therefore necessary to estimate the central exposed- 

to-risk, Rcxt, at each age x in calendar year t for the annuitants’ experience. In 

estimating Rcxt it is assumed that birthdays, entries to and exits from the experience 

are spread uniformly over the calendar year.
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For the actual number of deaths given, daxt, at age x in calendar year t, with policy 

duration d, matching central exposures to the risk of death, dRcxl, are estimated as 

follows:

• 1946-1974 and 1983 - 1994:

Average of the number in force at the beginning of the year, dPxt(0), and the 

number in force at the end of the calendar year (or beginning of the following 

calendar year), d Pxt( 1), where 0 and 1 denote the beginning and end of each 

calendar year t respectively. Thus:

1R l * ( dP „ m dPa(\))ll (4.1)

• 1976- 1982:

The difference between the initial exposed-to-risk, dRxt and half the number of 

deaths, that is:

dK * dR » - 1a j 2  (4.2)

4.2.1 Data Summary
An initial analysis of the immediate annuitants’ mortality data revealed the following 

general features:

• The females’ experience is by far the larger experience, with the females’ 

exposed-to-risk constituting about 76% of the total exposed-to-risk for the period.

• For each calendar year t, the bulk of the experience is above age 65, with some 

occasional entries at younger ages.

A summary of the mortality experience is given in Table 4.1. For each experience 

(male or female) and for each duration d, the crude death rate is calculated as the total 

number of deaths divided by the corresponding central exposed-to-risk, ignoring the 

age variation. As can be seen from the table, the crude death rate is higher for males 

than for females at each of the durations. The crude death rates increase with policy
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duration, with the rates at policy duration 5 years and over being significantly higher 

than at either of durations 0, 1, 2, 3, or 4 years, evidently as a result of the self-

selection known to be exercised by annuitants. The crude death rates pertaining to 

contracts issued prior to 1957 appear to be higher than for contracts issued after 1956, 

perhaps because of the combined effects of the Finance Act (1956) and the 

improvement in mortality over time. However, these crude rates are influenced by 

differences in the age structure for each experience, and as such can only serve as a 

broad indication of the underlying features of the mortality experience(s).

Although crude death rates for contracts issued prior to 1957 and contracts issued 

after 1956 would suggest a difference in the underlying mortality trends between the 

two periods, the data pertaining to the two periods were combined in the analyses, 

primarily because the pre-1957 investigation is only available for a limited period of 

11 years, from 1969 to 1981 excluding 1971 and 1975. However, a separate analysis 

of mortality trends over the period 1958 to 1994 was also carried out.

Table 4.1 Immediate Annuitants’ Mortality Experience: 1946-94

M ales Fem ales

C entra l C rude C entra l C rude

E xposed- Death E xposed- Death

D eaths T o -risk Rate D eaths T o-risk Rate

P re-1957

D uration  5+ 1802 12608.75 0.1429 11603 97553.25 0 .1189

P ost 1956

D uration  0 1784 48439 .00 0.0368 2512 104775.25 0 .0240

D uration  1 2133 47329 .00 0.0451 3303 105251.50 0 .0314

D uration  2 2247 43950 .25 0.0511 3547 100133.50 0 .0354

D uration  3 2220 40310.50 0.0551 3704 94920 .75 0.0390

D uration  4 2236 37708.25 0 .0593 3758 92022 .50 0 .0408

D uration  5+ 37781 416783.50 0 .0906 104536 1449620.25 0.0721

P ost 1956

Tota l 48401 634520.50 0 .0763 121360 1946723.75 0 .0623

Grand Total 50203 647129.25 0.0776 132963 2044277.00 0.0650
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calendar year
fem a le  annu itan ts

calendar year
m ale  annu itan ts

Figure 4.1 Immediate annuitants, durations 0 and 5+: crude death rates plotted on the log scale against calendar 
year

fe m a le  a n n u ita n ts m a le  a n n u ita n ts

calendar year calendar year

Figure 4.2 Immediate annuitants, duration 5+: crude mortality rates plotted on the log scale against calendar year
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A further examination of the data reveals that the decline in numbers noted in Section 

4.1 above is more pronounced in the females’ experience; the females’ exposed-to- 

risk for all durations combined, has declined from over 57000 in 1946 to just under 

15000 in 1994, a decrease of about 74%. In contrast, the males’ exposed-to-risk has 

decreased by approximately 37%, from around 13600 in 1946 to just over 8600 in 

1994. As a consequence of the decline in numbers (and therefore a decline in new 

policyholders), the proportion of the population at risk at the higher ages is increasing, 

whilst the proportion of the population at risk at the younger ages is decreasing for 

both males and females, thus giving rise to an ageing experience. Consequently, the 

crude death rates shown in Figure 4.1 are increasing with time for the females’ 

experience, as the population at risk is becoming older. For males, because the decline 

in numbers is relatively small, the decrease appears to have little effect on the overall 

trend.

The bulk of the data are at duration 5 years and over, and as such the general pattern 

in mortality trends may be discerned from a plot of crude mortality rates for the 

experience at this duration. Figure 4.2 shows crude mortality rates in 5-year age 

intervals from age 70 to 95 years, plotted on the log scale against calendar year, for 

male and female immediate annuitants’ ultimate experiences at duration 5 years and 

over.

The crude mortality rate would be expected to increase steadily with age, and this is 

apparent from the plots. In addition, for the range of ages shown, there is clear 

evidence of a downward trend at each age, as would be expected with improvements 

in mortality over time. At the younger ages and at extreme old age, the data are sparse 

and as such the observed mortality rate is unreliable, and there is not much that can be 

deduced from a plot of the data. The pattern is clearer for the females’ experience, 

reflecting the larger volume of the experience.

Since the aim is to make inferences about rates of mortality over time, the mortality 

experience is graduated over the range of ages for which trends over time are 

discernible, and this is at ages 65 to 95 for males and at ages 65 to 100 for females. 

Notwithstanding the observation made by Forfar et al (1988), that ‘there is no 

justification for missing out ages where the data are just scanty ’, it is perceived that
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since consistent trends are virtually impossible to discern at ages where data are 

sparse, it would seem reasonable to exclude such ages when graduating with respect 

to age and time. It should be noted that methods such as those by Coale and Kisker 

(1990) and Coale and Guo (1989) could be used to analyse data at the extreme old 

ages excluded in this study (that is, ages above 95 for males and 100 for females).

A summary of the immediate annuitants’ ultimate experience is given in Table 4.2. 

From the table, it can be seen that in terms of the exposed-to-risk, more than 90% of 

the observed experience is in the age range 65 to 95 for males and 65 to 100 for 

females. In other words, less than 10% of the available information is left unused 

when the experiences are modelled over these respective age ranges.

Table 4.2
Immediate Annuitants’ Ultimate Experience, 1946-94

dura tion

M a le s F e m a le s

A ge range D eaths

C entra l
E xposed-
to -risk

P ercentage 
O f Tota l 
E xposure A ge range D eaths

C entra l
E xposed-
to -risk

P ercentage 
O f Tota l 
E xposure

d1 + all ages 
6 5 - 9 5

48419
46393

598690.3
545734.8 91%

all ages 
6 5 -1 0 0

130451
127871

1939501.80
1754446.75 91%

d5+ all ages 
6 5 - 9 5

39583
38068

429392.3
401515.8 94%

all ages 
6 5 -1 0 0

116139
114193

1547173.50
1440355.50 93%

4.2.2 Summary of Procedures and Models used
For each experience (male or female) and the specific ultimate duration d, the force of 

mortality, juxt at age x in calendar year t, is modelled using formulae of the type:

Mxt = exp ä +I>a F')+ T v " + E2>,a F’>"
7 = 1 1=1 i = l  7=1

(4.3)

x' and t' are the transformed ages x and calendar years t respectively, such that
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(4.4)and t' = f r - c )

where cx, c, denote the mid-points of the age and calendar year ranges respectively; 

wx, w, denote the semi-ranges; and Lj(x') are Legendre polynomials defined in Chapter 

2.

To estimate the unknown parameters «„ fij and /¡j, the actual number of deaths axh at 

age x in calendar year t, are modelled as independent realisations of Poisson response 

variables Axh of a generalised linear model with mean and variance given by:

E[Axt\ tnxt RxtMxt > (4.5)

var(Axt) = (¡mxt. (4.6)

Rxl is the central exposed-to-risk, and (j) is a scale (dispersion) parameter to take

account of the fact that, as the data are based on policy numbers rather than head 

counts, there may be duplicate policies issued on the same lives, resulting in over-

dispersion of the Poisson random variable. The absence of over-dispersion would 

result in a value of (f> equal to 1 .

The unknown parameters are linked to the mean through the log function:

n x, =  logm xt =  logR xl +  log¡uxt, (4.7)

so that,

iog ,* „ = i o g c + / ? „ + ! > / > ' ) + ! > , < " + Y L r „ i , ( x y  . <4.8)
M  1=1 1=1 7=1

Estimation of the parameters is carried out by minimising the negative of the quasi- 

log-likelihood, that is, minimising the expression:

T X ( m xt ~  a xt l ° g mxl) • (4.9)
<P x,t
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To determine the optimum values of r and s, the improvement in the scaled deviance 

for successive increases in the values of r and s, is compared with a xj random 

variable with 1 degree of freedom as an approximation. The optimum values chosen 

are the minimum values of r and s beyond which improvement in the deviance is not 

statistically significant. It should be noted that a backward-type selection procedure 

could have been used to determine the optimum values of r and s.

Values of the £  random variable with 1 degree of freedom, at selected probabilities, 

are given in the table below.

Table  of X\ values a t se lected  probabilities

probab ility 0 .05 0 .025 0.01

X\ va lue 3.841 5 .024 6 .635

From the table, it is seen that as an initial approximation, any improvement of less 

than about 4 in the deviance would not be considered significant.

The parameter estimates obtained are also checked for statistical significance at each 

stage.

In addition, when the choice between models on the basis of the analysis of deviance 

is not clear-cut, then based on the principle of parsimony, the model with the least 

number of parameters is chosen. According to Klugman, Panjer and Willmot (1998), 

the principle of parsimony states that ‘unless there is a very good reason to do 

otherwise, the more parsimonious model should be used'. The authors give the 

following definition of parsimony for modelling purposes:

‘ One model is more parsimonious than another if  it can be completely specified using 

a smaller number of objects. These objects are usually the number o f parameters of 

the model'.
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They further note that models with a large number of parameters tend to perform 

poorly when used for prediction. Therefore in this study, considerable importance is 

attached to the principle of parsimony. Indeed Keyfitz’s (1982) discussion of general 

aspects of forecasting mortality focuses on the principle of parsimony.

The (unsealed) deviance corresponding to the predicted forces of mortality, juxt is:

where mxt = Rxtjuxt, that is, mxt is the number of deaths predicted by the model. The 

corresponding scaled deviance is defined as the deviance divided by the scale 

parameter (/>, with (f> estimated from dividing the deviance by the number of degrees of 

freedom v, determined from the most complex of the models being compared. Hence 

the number of degrees of freedom provides an estimate of the scaled deviance.

Diagnostic plots of studentized residuals and formal statistical tests of graduation are 

carried out on residuals computed from the data as a whole, and from each of the 

calendar years separately. The residuals used are:

• the deviance residuals, sign(axt -  mxl )^dxi ,

where dxl is the contribution of the particular observation in the domain {x, t}, 

to the deviance; and

• the Pearson residuals, — — ,

that is, the signed square root of the particular component of the Pearson 

goodness-of-fit statistic.

The statistical tests applied are the chi-square goodness-of-fit test; the distribution of 

individual standardised deviations test; the signs of deviations test; the cumulative 

deviations test and Stevens’ grouping of signs test. Where necessary, before the 

residuals are computed, the data are grouped such that the expected number of deaths 

in each cell is at least equal to 5.

(4.10)
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Implementation is done using the computer software package S-PLUS. The modelling 

procedure in S-PLUS is simplified by the availability of the function glm that 

computes the maximum likelihood estimates of the parameters /?, by solving the score 

equations

d£_
d/3

= 0,

where i  is the (quasi) log-likelihood function (described in Chapter 2). Because the 

score equations are non-linear in /?, they are solved iteratively using an algorithm 

referred to as iteratively reweighted least-squares (IRLS). The procedure is described 

in detail by McCullagh and Nelder (1989) and Chambers and Hastie (1993).

Alternatively, the model can be fitted using the general minimisation function ms in

S-PLUS.

Detailed descriptions of statistical modelling in S and S-PLUS can be found in 

Chambers and Hastie (1993) and Venables and Ripley (1994).

4.2.3 Analysis of the 1946-1994 female mortality 

experience at duration 1 year and over
The female immediate annuitants’ experience at curtate policy duration 1 year and 

over has been analysed at individual ages x ranging from 65 to 100 years, over the 

calendar-year period 1946 to 1994, giving a total of 1656 data cells. As noted in 

Section 4.2.1, a separate analysis of mortality trends over the period 1958 to 1994 has 

also been carried out and the results are given in Section 4.2.5.

The fitting procedure adopted has been to determine an optimal value for 5 in the first 

instance (the Gompertz-Makeham term, GMX{0, 5+1)), and then to introduce the age 

independent trend adjustment term taking into account the value determined for 5 . In 

addition, under the assumption that the underlying shape for mortality graduation at
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adult ages is always o f  Gompertz (i.e. GMX(0, 2), (see for example Forfar et al, 1988)

the focus is primarily on values o f  s > 1.

Table 4.3
Female Immediate Annuitants, Duration 1 year and over, 1946-1994 experience 
Déviances for some polynomial predictors of degree rand s________________

r- 0 r- 1 r= 2 r= 3 r =  4 r =  5 r= 6 r= 7
S -  1 5830.95 3580 .84 3553.19 3529.93 3500.95 3491.80 3464.66 3459.38
s  = 2 5686.45 3453.91 3428.96 3406.65 3381.55 3371.22 3345.09 3339.37
s = 3 5608.43 3367.18 3342.40 3321.41 3295.51 3284.65 3257.52 3251.88
s = 4 5606.40 3365.77 3340.99 3320.03 3294.18 3283 .25 3256.12 3250.42

Table 4.3 shows the unsealed deviance profile resulting from fitting formulae 

composed of the Gompertz-Makeham term for age effects, together with the 

multiplicative age independent factor to adjust for calendar year effects. That is, a 

model of the form:

Mx, = exp Ÿ JP j L j ( x ' ) + Y Ja i t ' ,
i =0 1=1

with,

and

cx = 82.5, wx = 17.5, so that x

c, = 1970, w, = 24, giving t' =

, _ x-82.5 
17.5

t -1970 
24

(4.11)

(4.12)

(4.13)

From the table, it can be seen that the improvement in deviance for successive 

increases in the value of s would suggest the optimum value of s to be 3, 

corresponding to a GMX{0, 4) graduation. When s is increased to 4, the improvement 

is not significant and /?4, the additional parameter introduced is not significantly 

different from zero.

Although there is a steady improvement in deviance for successive increases in the 

value of r, up to r = 6 , when r is increased from 4 to 5, one of the 9 parameters in the 

model (assuming s is 3) is not statistically significant. However, subsequent increases
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in the value of r result not only in an improvement in deviance, but all the parameters 

introduced up to and including «<, are statistically significant. The value of r can 

therefore be chosen to be either 4 or 6 . Based on the principle of parsimony, the 

model with fewer parameters is preferred and hence the value of r is chosen to be 4. 

As observed by Klugman, Panjer and Wilmot (1998), the aim lis to create simple 

models that adequately (but not necessarily perfectly) capture the essence o f our 

data’.

The complete model is therefore of the form:

p x, = exp Z  P j L j  (* ')  +  Z 0^ "  +  Z  Z  Y i j L j  ( X ' Y (4.14)
j =o i=i i=i M

. 1 r / t\ , r / i\ 3x' 2 -1  5x' 3 -  3x'with L fx )  = x ; L2(x ) = — -— ; L fx )  =---------- ;

subject to the condition that some of the 12 % terms (i= 1, 2, 3, 4 and7 = 1,2,3) may 

be set to zero.

The next stage involves introducing mixed product terms in age x and time t, that is, 

the Yy terms. The deviance profile shown in Table 4.4, indicates that there is 

significant improvement in deviance only when y„ and yu are the additional 

parameters introduced. Replacing yn with y2l in the model results in an improvement 

in deviance of 0.97, clearly not significant. Thus the model chosen is:

exp Z  P j L j  (* ')  +  Z  +  r' Z  Y \ j l j  (x ')
j =0 (=i j = i

(4.15)

that is, a model consisting of a GMX(0,4) term in age effects and a trend adjustment 

term that is a polynomial of degree 4 in time t on the log scale. The interaction term in 

age and time is a linear function of t on the log scale, with the coefficient of t being a 

quadratic in age x.
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Parameter estimates based on the model given by expression (4.15), their standard 

errors, and the associated ¿‘-statistics are given in Table 4.5. The absolute values of the 

¿-statistics are all greater than 2 , indicating statistical significance of each of the 

parameters. The estimated value of the scale parameter (f) is 1.94.

Table 4.4
Female Immediate Annuitants, Duration 1 year and over, 1946-1994 experience 
Deviance profile (terms added sequentially 1st to last)_____________________
P aram eter D eviance D egrees o f freedom D iffe rence  in D eviance

A 77881.91 1655

A 5830.95 1654 72050 .96

A 5686.45 1653 144.49

A 5608.43 1652 78.03
as 3367.18 1651 2241.24
«2 3342.40 1650 24.78
03 3321.41 1649 20.99
at 3295.51 1648 25.9

7« 3252.44 1647 43.07

Yu 3214.41 1646 38.03
Y\3 3213.09 1645 1.32

Table 4.5
Female Immediate Annuitants, Duration 1 year and over, Model based on the 1946-94 experience
P aram eter E stim ate std. e rro r t-s ta tis tic

A -2.565261 0.01 -313.68

A 1.810082 0.01 137.24

A -0 .086329 0.01 -6.35

A -0 .115944 0.01 -7.82
a\ -0.264841 0.02 -14.48
02 0 .108129 0.05 2.35
03 0 .056555 0 .03 2.17

04 -0.194091 0.05 -3.81
711 0 .069489 0.02 3.52
712 0 .107053 0.02 4.43

Table 4.6
Female Immediate Annuitants, Duration 1 year and over, analysis of the 1946-94 experience, 
Distribution of individual studentized deviance residuals for the data as a whole
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R ange ■ 8 i CO (-3,-2) (-2,-1) M ,0) (0,1) (1,2) (2,3) (3,co)
expected  frequency 2.16 34.24 217.45 546 .15 546.15 217.45 34.24 2 .16
observed  frequency 2.00 31.00 237.00 550 .00 536.00 203.00 38.00 2.00

Figure 4.3 Female immediate annuitants, d l+  years, analysis o f the 1946-94 experience, diagnostic plots: 10 
parameter log-link model with r = 4, s  = 3, yn and y12

Diagnostic plots of studentized deviance residuals for the data as a whole are shown 

in Figure 4.3. The plots, together with the distribution of studentized deviance 

residuals shown in Table 4.6, appear to indicate a normal distribution for the 

residuals, with less than 5% of the residuals exceeding 2 in absolute size. In addition, 

plots of the residuals against the graduated forces of mortality, age and calendar year 

do not show any obvious pattern. It would therefore appear that the model defined by 

equation (4.15) provides a good representation of the underlying forces of mortality 

over the period as a whole. The model passes all the statistical tests of graduation 

applied to the data as a whole, confirming the adequacy of the model and the 

distributional assumptions. The p-values for the various graduation tests are shown in 

Table 4.7.
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Female immediate annuitants, duration 1 year and over, analysis of the 1946-94 experience 
p-values based on a 10-parameter model ______________________________________

Table 4.7

Chi square 0.50
Cumulative deviations 0.40
Individual standardised deviations 0.61
Grouping of signs 0.94
Signs of deviations 0.31

It is interesting to note that when the individual standardised deviations test is applied 

to the studentized Pearson residuals, the model fails this test (/»-value 0.0178). As has 

been noted in chapter 2, Pierce and Schafer (1986) observed that the deviance residual 

is preferred to the Pearson residual for model checking procedures because its 

distributional properties are known and are closer to the residuals arising in linear 

regression models. The underlying distribution of deaths is non-normal and hence the 

Pearson residuals arising from model fitting might not have a normal distribution. 

Therefore, in all subsequent analyses in this study, the individual standardised 

deviations test is applied to the studentized deviance residuals.

When the graduation tests are applied to each of the calendar years separately, the 

graduation fails some of the tests applied in a significant number of years in the 

earlier part of the observation period, particularly in calendar years 1947, 1951, 1963, 

1969, 1972, 1976 and 1977, when the graduation fails the chi-square goodness-of-fit 

test and the cumulative deviations test. In the later period from 1979, the statistical 

tests applied to each calendar year prove to be quite supportive of the model, with the 

graduation only failing the chi-square test in 1979; the cumulative deviations test and 

signs of deviations test in 1993; and the signs of deviations test in 1994. A summary 

of the /»-values resulting from the statistical tests applied separately to each calendar 

year is given in Table 4.8, with the corresponding plots of deviance residuals against 

age v for each calendar year t, and plots of deviance residuals against calendar year t 

for each age x shown in Figures 4.4, 4.5, 4.6 and 4.7.
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Although the overall shapes of the residual plots generally show a random pattern, 

there is however some evidence of patterns being exhibited in the residuals for some 

of the calendar years and ages. For example, the residuals for calendar years 1948 and 

1962 appear to follow a cyclical pattern; for calendar year 1969, and at specific 

individual ages 67 and 100, there is an excess of negative deviations indicating that 

the graduated forces of mortality might be too high. Indeed, the residual plot 

pertaining to 1969 is notable for the non-null pattern exhibited.

Plots of graduated forces of mortality and crude mortality rates against age for each of 

the 46 calendar years, seem to confirm the biasedness of the graduated rates implied 

by the failure of the cumulative deviations test in a number of years, such as 1947, 

1948, 1951, 1956, 1963 and 1969. These plots are shown in Figures 4.8 and 4.9. In 

the later part of the investigation period from 1979, the model appears to provide an 

adequate fit in each of the calendar years although the underlying forces of mortality 

in 1993 seem overestimated. This is very likely a problem with the data rather than 

the model, since some contributors were unable to provide data during this period.

Figure 4.10 shows crude mortality rates and graduated forces of mortality plotted 

against t at 5-year age intervals from age 65 to 100 years. For clarity, the plot has 

been split into two, with each plot showing the rates in 10-year age intervals, from 65 

to 95 and from 70 to 100 years. A visual inspection of the plots indicates that the 

model provides a good fit at all ages shown with the exception of age 1 0 0 , where the 

graduated forces of mortality tend to be higher than the observed crude rates in most 

years from 1964 onwards. From the plot of crude and graduated rates at each age x, 

forx = 95 to 100, shown in Figure 4.11, it appears that the graduation is satisfactory 

for all x less than 100 years. Observed mortality rates at old ages are generally 

considered unreliable and this seems to be confirmed by the absence of a smoothly 

progressing pattern at age 1 0 0 .
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Female Immediate Annuitants, Duration 1 year and over, analysis of the 1946-94 experience 
Tests of graduation applied to individual calendar years: p-values1_____________________

Table 4.8

year chi-square cumdev isd runs signs
1946 0.10 0.67 0.94 0.46 0.62
1947 0.00 0.00 0.00 0.90 0.41
1948 0.01 1.00 0.11 0.51 0.18
1949 0.17 0.80 0.40 0.19 1.00
1950 0.19 0.05 0.82 0.25 0.87
1951 0.03 0.00 0.02 0.81 0.00
1952 0.01 0.97 0.61 0.12 0.31
1953 0.00 0.89 0.08 0 .17 0.09
1954 0.15 0.94 0.76 0.08 0.18
1955 0.58 0.71 0.31 0.20 1.00
1956 0 .04 0.01 0.43 0.49 0.62
1957 0.11 0.97 0.12 0.07 0.62
1958 0.01 0.52 0.98 0 .74 0.62
1959 0 .03 0.00 0.17 0 .36 0.31
1960 0.01 0 .76 0.10 0.62 0.24
1961 0.14 0 .08 0.72 0.25 0.87
1962 0.16 0.01 0.55 0.41 0.24
1963 0.00 0.00 0.00 0.88 0.01
1964 0.17 0.98 0.26 0.45 0.07
1965 0.41 0.98 0.25 0.45 0.07
1966 0.73 0.19 0.16 0.90 0.41
1967 0.31 1.00 0.04 0 .87 0.03
1969 0.00 1.00 0.00 0.05 0.00
1970 0 .03 0.97 0.27 0.19 0.07
1972 0.03 0.03 0.61 0.02 1.00
1973 0.46 0.59 0.82 0.09 1.00
1974 0.37 0.10 0.29 0.04 0.03
1976 0.00 0.00 0.02 0.32 0.01
1977 0.01 0.00 0 .13 0.45 0.03
1978 0.21 0.15 0.47 0.18 0.41
1979 0.03 0.04 0.57 0.63 0.13
1980 0.60 0.85 0.40 0.08 0.18
1981 0 .58 0.24 0.64 0 .58 0.31
1982 0 .43 0.98 0.48 0.71 0.09
1983 0.49 0.17 0.11 0.54 0.23
1984 0.18 0.95 0.30 0.06 0.23
1985 0.05 0.46 0.65 0.56 1.00
1986 0 .28 0.44 0.35 0.29 0 .73
1987 0.42 0.97 0.47 0.90 0.30
1988 0.52 0.78 0.50 0.11 0.22
1989 0.77 0.85 0.26 0.92 0.86
1990 0.57 0.15 0.78 0.90 0.60
1991 0.57 0.06 0.57 0.15 0.22
1992 0.39 0.22 0.07 0.89 1.00
1993 0.24 0.98 0.16 0.85 0.03
1994 0.47 0.35 0.09 0.07 0.01

1 cumdev denotes cumulative deviations, isd denotes individual standardised deviations, runs denotes 
grouping of signs, signs denotes signs of deviations
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Figure 4.4 Female immediate annuitants, dl+ years, analysis of the 1946-94 experience, studentized deviance
residuals plotted versus age on the log scale for individual calendar years 1946 to 1980
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Figure 4.5 Female immediate annuitants, d l+  years, analysis o f the 1946-94 experience, studentized deviance 
residuals plotted versus age on the log scale for individual calendar years 1981 to 1994

Figure 4.6 Female immediate annuitants, dl+ years, analysis of the 1946-94 experience, studentized deviance
residuals plotted versus calendar year on the log scale for individual ages 65 to 76
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Figure 4.7 Female immediate annuitants, d l+  years, analysis o f the 1946-94 experience, studentized deviance 
residuals plotted versus calendar year on the log scale for individual ages 77 to 100
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Figure 4.8 Female immediate annuitants, d l+  years, analysis o f  the 1946-94 experience, crude mortality rates and 
graduated forces o f mortality plotted versus age on the log scale for individual calendar years 1946 to 1980
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Figure 4.9 Female immediate annuitants, d l+  years, analysis o f the 1946-94 experience, crude mortality rates and 
graduated forces of mortality plotted versus age on the log scale for individual calendar years 1981 to 1994

Figure 4.10 Female immediate annuitants, dl+ years, 1946-94 experience, ages 65-100: crude mortality rates and
graduated forces of mortality plotted versus period on the log scale
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Figure 4.11 Female immediate annuitants, d l+  years, 1946-94 experience, crude mortality rates and graduated 
forces o f mortality plotted versus period on the log scale for individual ages 95 to 100 years

4.2.4 Projection of female immediate annuitants’ 

mortality at duration 1 year and over, based on the 1946- 

1994 mortality experience
By evaluating values of juxt at future time periods t, projections of the forces of 

mortality may be performed. Figure 4.12 shows predicted fixt values for female 

annuitants based on the 10-parameter model formula (4.15), for t -  1946 to 2014, at 5- 

year age intervals from age 55 to 110 years. The graduated rates are at ages 65 to 100 

years in calendar years 1946 to 1994. The predicted forces of mortality are tabulated 

at quadrennial periods in Tables 4.9a, 4.9b and 4.9c.

It is clearly seen that the predicted forces of mortality for females do not have the 

desired shape. For the period considered, the ¡ixt values increase with age x in a 

consistent manner when x lies in the range [59, 103] years. At ages below 59, the 

progression of the forces of mortality with age is consistent up to and including
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calendar year 1987. On the other hand, at ages above 103, the progression of /axt 

values is inconsistent in the earlier years where for example, the predicted force of 

mortality at age 110 in calendar year 1946 is lower than the corresponding rate at age 

100.

The rapid rate of improvement in mortality over the projection period (1995 to 2014), 

apparent from the plot is unlikely to provide a satisfactory representation of the rate of 

improvement that might actually occur. Although it is important not to over estimate 

annuitant mortality, premium rates determined from a basis allowing for such a rapid 

improvement in mortality might prove to be too high and hence render the company 

using such rates uncompetitive. A limit lifetable controlling the asymptotic level of 

mortality could be introduced. However, in this study, an improved model has been 

identified by excluding the observed data in calendar years prior to 1958 from the 

analysis. The results are presented in Section 4.2.5.

Figure 4.12 Female immediate annuitants, d l+  years, predicted forces of mortality based on a 10-parameter log- 
link model applied to the 1946-94 mortality experience
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Table 4.9a Female Immediate Annuitants, Duration 1 year and over
Analysis of the 1946-1994 experience, predicted force of mortality at quadrennial periods 1946-66
age 1946 1950 1954 1958 1962 1966
55 0 .007110 0 .007749 0 .008058 0 .008136 0 .008092 0 .008010
56 0 .007417 0.008051 0 .008337 0 .008385 0 .008305 0 .008188
57 0 .007789 0.008422 0 .008688 0 .008703 0 .008587 0 .008434
58 0 .008232 0 .008868 0 .009115 0 .009097 0 .008942 0 .008750
59 0 .008753 0 .009397 0 .009623 0.009571 0 .009375 0.009141
60 0.009361 0.010015 0 .010223 0 .010133 0 .009892 0 .009613
61 0 .010065 0.010735 0 .010922 0.010791 0 .010502 0 .010173
62 0 .010877 0 .011566 0 .011733 0 .011558 0 .011214 0 .010830
63 0.011811 0 .012524 0 .012668 0 .012444 0 .012039 0 .011594
64 0 .012883 0 .013623 0 .013743 0 .013464 0 .012992 0 .012478
65 0 .014109 0 .014883 0 .014977 0 .014636 0 .014088 0 .013497
66 0 .015510 0 .016323 0 .016389 0 .015979 0 .015345 0 .014668
67 0 .017110 0 .017968 0 .018002 0 .017514 0 .016783 0 .016009
68 0 .018934 0 .019845 0 .019843 0 .019268 0 .018428 0 .017543
69 0.021011 0 .021983 0 .021942 0 .021268 0 .020304 0 .019294
70 0 .023374 0 .024416 0.024331 0 .023546 0 .022443 0 .021293
71 0 .026060 0 .027182 0 .027049 0 .026138 0 .024878 0 .023569
72 0 .029107 0 .030322 0 .030136 0 .029085 0 .027647 0 .026160
73 0 .032560 0 .033883 0 .033638 0 .032429 0 .030793 0 .029105
74 0 .036466 0 .037913 0 .037604 0 .036220 0.034361 0 .032448
75 0 .040876 0 .042466 0 .042090 0.040511 0 .038403 0 .036238
76 0 .045844 0.047601 0 .047152 0 .045358 0 .042974 0 .040528
77 0 .051427 0 .053377 0 .052853 0 .050822 0 .048133 0 .045376
78 0 .057683 0 .059857 0 .059258 0 .056968 0 .053942 0 .050842
79 0 .064672 0 .067107 0 .066433 0 .063864 0 .060469 0.056991
80 0 .072453 0 .075192 0 .074446 0 .071577 0 .067782 0 .063892
81 0 .081082 0 .084174 0 .083365 0 .080177 0 .075950 0 .071613
82 0.090611 0 .094112 0 .093253 0.089731 0.085041 0 .080225
83 0 .101086 0 .105060 0 .104170 0 .100302 0 .095123 0 .089795
84 0 .112539 0 .117062 0 .116167 0 .111948 0 .106256 0 .100388
85 0 .124992 0 .130147 0 .129283 0 .124713 0 .118492 0 .112062
86 0 .138447 0 .144329 0.143541 0.138631 0 .131872 0 .124864
87 0 .152888 0 .159599 0 .158944 0 .153717 0 .146422 0 .138829
88 0 .168269 0 .175926 0 .175473 0 .169962 0 .162145 0 .153974
89 0 .184517 0 .193244 0 .193076 0 .187333 0 .179023 0 .170292
90 0 .201526 0 .211455 0.211671 0 .205762 0 .197005 0.187751
91 0 .219152 0 .230424 0 .231135 0 .225146 0 .216009 0 .206286
92 0 .237214 0 .249972 0 .251304 0.245341 0 .235910 0 .225796
93 0 .255489 0 .269880 0 .271973 0 .266159 0 .256546 0 .246140
94 0 .273717 0 .289883 0 .292887 0 .287368 0 .277706 0.267131
95 0.291601 0 .309677 0 .313750 0 .308688 0 .299133 0 .288537
96 0 .308810 0 .328916 0.334221 0 .329796 0 .320526 0.310081
97 0 .324988 0 .347226 0 .353925 0 .350326 0 .341540 0 .331438
98 0 .339765 0 .364207 0 .372455 0 .369880 0 .361789 0 .352244
99 0 .352762 0 .379449 0 .389387 0 .388034 0 .380862 0 .372097
100 0.363611 0 .392543 0 .404289 0 .404352 0 .398322 0 .390572
101 0 .371966 0 .403095 0.416741 0 .418395 0 .413728 0 .407226
102 0 .377520 0 .410746 0 .426345 0 .429746 0 .426648 0 .421619
103 0 .380019 0 .415187 0.432751 0 .438020 0 .436674 0 .433325
104 0 .379279 0 .416178 0 .435667 0 .442886 0 .443443 0 .441952
105 0 .375198 0 .413559 0.434881 0 .444084 0 .446650 0 .447160
106 0 .367763 0 .407266 0 .430273 0.441441 0 .446075 0 .448679
107 0 .357059 0 .397338 0 .421828 0 .434883 0 .441588 0 .446328
108 0.343271 0.383921 0 .409640 0 .424448 0 .433166 0 .440025
109 0 .326676 0 .367269 0 .393917 0 .410288 0 .420900 0 .429796
110 0 .307639 0.347731 0 .374975 0 .392665 0 .404995 0 .415786

126



Table 4.9b Female Immediate Annuitants, Duration 1 year and over
Analysis of 1946-1994 experience, predicted force of mortality at quadrennial periods 1970-1990
age 1970 1974 1978 1982 1986 1990
55 0 .007948 0 .007932 0 .007959 0 .008000 0 .007995 0 .007856
56 0 .008092 0 .008043 0 .008038 0 .008046 0 .008008 0 .007838
57 0 .008302 0 .008220 0 .008183 0 .008159 0 .008090 0 .007887
58 0 .008582 0 .008465 0 .008396 0.008341 0 .008239 0 .008002
59 0 .008934 0.008781 0 .008678 0.008591 0 .008456 0 .008185
60 0 .009363 0 .009172 0 .009035 0 .008914 0 .008745 0 .008436
61 0 .009877 0 .009645 0 .009470 0 .009314 0 .009108 0 .008758
62 0 .010483 0 .010206 0.009991 0 .009797 0.009551 0 .009157
63 0 .011192 0 .010865 0 .010606 0 .010370 0.010081 0 .009638
64 0 .012013 0 .011632 0 .011324 0 .011043 0 .010707 0 .010209
65 0 .012962 0 .012519 0 .012158 0 .011827 0 .011439 0 .010879
66 0 .014053 0 .013542 0.013121 0 .012734 0 .012288 0 .011660
67 0 .015306 0 .014717 0 .014229 0 .013780 0 .013269 0 .012564
68 0 .016739 0 .016064 0.015501 0 .014982 0 .014398 0 .013607
69 0 .018378 0 .017605 0 .016958 0.016361 0 .015695 0 .014806
70 0 .020249 0 .019366 0 .018624 0 .017940 0 .017182 0 .016182
71 0.022381 0 .021375 0 .020526 0 .019744 0 .018883 0 .017759
72 0 .024810 0 .023665 0 .022697 0 .021804 0 .020826 0 .019562
73 0 .027573 0 .026272 0 .025169 0 .024153 0 .023046 0 .021623
74 0 .030712 0 .029236 0 .027984 0 .026830 0 .025576 0 .023975
75 0 .034275 0 .032603 0 .031184 0 .029876 0 .028458 0 .026658
76 0.038311 0 .036422 0 .034817 0 .033338 0 .031738 0 .029713
77 0 .042877 0 .040747 0 .038936 0 .037268 0 .035466 0 .033190
78 0.048031 0 .045636 0 .043599 0.041721 0 .039696 0.037141
79 0 .053839 0 .051152 0 .048867 0.046761 0 .044489 0 .041624
80 0 .060366 0 .057362 0 .054806 0 .052452 0 .049910 0 .046703
81 0 .067683 0 .064334 0 .061487 0 .058864 0 .056030 0 .052445
82 0 .075859 0.072141 0 .068982 0.066071 0 .062920 0 .058923
83 0 .084964 0 .080854 0 .077364 0 .074149 0 .070660 0 .066215
84 0 .095067 0 .090543 0 .086708 0 .083174 0 .079326 0 .074399
85 0 .106229 0 .101277 0 .097085 0 .093222 0 .089000 0 .083556
86 0 .118506 0 .113115 0 .108562 0 .104366 0 .099757 0 .093766
87 0 .131939 0 .126108 0 .121198 0 .116672 0.111671 0 .105108
88 0 .146557 0 .140295 0 .135040 0 .130197 0 .124808 0 .117653
89 0 .162366 0 .155696 0 .150120 0 .144984 0.139221 0 .131464
90 0.179351 0 .172307 0 .166449 0 .161058 0 .154948 0.146591
91 0 .197463 0 .190099 0 .184015 0 .178423 0 .172007 0 .163066
92 0 .216622 0 .209010 0 .202774 0.197051 0.190391 0 .180898
93 0 .236709 0 .228942 0 .222647 0 .216885 0 .210060 0 .200068
94 0 .257560 0 .249754 0 .243515 0 .237827 0 .230939 0 .220523
95 0 .278968 0.271261 0 .265216 0 .259736 0.252911 0.242171
96 0 .300678 0 .293230 0 .287538 0 .282425 0.275811 0 .264875
97 0 .322389 0.315381 0 .310222 0 .305654 0 .299426 0 .288449
98 0 .343753 0 .337387 0 .332959 0 .329136 0 .323490 0 .312655
99 0 .364386 0 .358877 0 .355394 0 .352530 0 .347683 0 .337202
100 0 .383870 0 .379442 0 .377127 0 .375450 0 .371635 0 .361745
101 0 .401766 0 .398647 0 .397726 0 .397468 0.394931 0 .385886
102 0 .417625 0 .416037 0 .416733 0 .418124 0 .417113 0 .409187
103 0 .431008 0 .431158 0 .433679 0 .436939 0 .437698 0 .431170
104 0 .441497 0 .443568 0 .448098 0 .453427 0 .456187 0 .451334
105 0 .448718 0 .452859 0 .459550 0 .467116 0 .472082 0 .469170
106 0 .452356 0 .458673 0 .467634 0 .477564 0 .484906 0 .484176
107 0 .452176 0 .460723 0.472011 0 .484380 0 .494222 0 .495880
108 0 .448039 0 .458810 0 .472422 0 .487247 0 .499654 0 .503860
109 0 .439908 0 .452835 0 .468704 0 .485936 0 .500910 0 .507763
110 0 .427865 0 .442814 0 .460805 0 .480324 0 .497797 0 .507330
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Table 4.9c Female Immediate Annuitants, Duration 1 year and over
Analysis of 1946-1994 experience, predicted force of mortality at quadrennial periods 1994-2014
age 1994 1998 2002 2006 2010 2014
55 0 .007482 0.006781 0 .005723 0 .004384 0 .002962 0 .001708
56 0 .007434 0.006711 0.005640 0 .004303 0 .002896 0 .001663
57 0 .007452 0 .006700 0 .005610 0 .004264 0 .002858 0 .001635
58 0 .007533 0 .006748 0.005629 0 .004262 0 .002846 0 .001622
59 0 .007678 0 .006854 0.005697 0 .004298 0 .002860 0 .001625
60 0 .007886 0 .007016 0 .005812 0.004371 0 .002899 0.001641
61 0 .008162 0 .007238 0 .005977 0.004481 0 .002962 0.001671
62 0 .008508 0 .007522 0 .006193 0 .004629 0.003051 0 .001716
63 0 .008929 0 .007873 0 .006463 0 .004817 0 .003166 0 .001776
64 0 .009433 0 .008295 0 .006792 0 .005048 0 .003309 0.001851
65 0 .010028 0 .008796 0 .007184 0 .005326 0 .003483 0 .001944
66 0 .010722 0 .009384 0 .007646 0 .005656 0 .003690 0 .002055
67 0 .011529 0 .010068 0 .008187 0 .006043 0 .003934 0 .002186
68 0 .012462 0.010861 0 .008814 0 .006493 0 .004219 0 .002339
69 0 .013536 0 .011776 0 .009540 0 .007015 0 .004550 0 .002518
70 0 .014770 0 .012829 0 .010376 0 .007618 0 .004933 0 .002726
71 0 .016186 0 .014039 0 .011338 0 .008313 0 .005374 0 .002966
72 0 .017807 0 .015426 0 .012442 0.009111 0 .005883 0 .003243
73 0 .019662 0 .017014 0 .013708 0 .010027 0 .006468 0.003561
74 0.021781 0 .018830 0 .015158 0 .011077 0 .007139 0 .003927
75 0 .024200 0 .020906 0 .016817 0 .012280 0 .007908 0 .004347
76 0 .026959 0 .023276 0 .018713 0 .013657 0 .008790 0 .004829
77 0.030101 0 .025980 0 .020879 0 .015232 0 .009799 0.005381
78 0 .033677 0 .029060 0 .023349 0 .017030 0 .010954 0 .006014
79 0.037741 0 .032566 0 .026164 0 .019083 0 .012274 0 .006739
80 0 .042352 0 .036549 0 .029369 0 .021423 0.013781 0 .007567
81 0 .047574 0 .041068 0.033011 0 .024087 0 .015500 0 .008514
82 0 .053477 0 .046186 0 .037143 0 .027116 0 .017457 0 .009593
83 0 .060134 0.051971 0 .041822 0 .030552 0 .019682 0 .010823
84 0 .067623 0 .058492 0 .047109 0 .034443 0 .022208 0.012222
85 0 .076022 0 .065824 0 .053068 0 .038839 0 .025067 0 .013810
86 0 .085414 0 .074043 0 .059765 0 .043793 0 .028298 0 .015608
87 0 .095875 0 .083225 0 .067268 0 .049358 0 .031937 0 .017640
88 0 .107484 0 .093445 0 .075645 0 .055589 0 .036025 0 .019928
89 0 .120307 0 .104772 0 .084960 0.062541 0 .040599 0 .022497
90 0 .134403 0 .117269 0 .095273 0 .070265 0 .045700 0.025371
91 0 .149816 0 .130987 0 .106638 0 .078809 0 .051362 0 .028573
92 0.166571 0 .145962 0 .119095 0 .088212 0 .057619 0 .032126
93 0 .184668 0 .162210 0.132671 0 .098505 0 .064497 0 .036048
94 0 .204075 0.179721 0 .147373 0 .109705 0 .072016 0 .040354
95 0 .224727 0 .198456 0 .163185 0.121811 0 .080184 0 .045055
96 0 .246518 0 .218338 0 .180062 0 .134803 0 .088998 0 .050154
97 0 .269294 0 .239253 0 .197925 0 .148638 0 .098437 0 .055646
98 0 .292853 0 .261040 0 .216659 0.163241 0 .108464 0 .061516
99 0 .316939 0 .283489 0 .236106 0 .178510 0 .119020 0 .067737
100 0 .341244 0 .306339 0 .256066 0 .194306 0 .130023 0 .074269
101 0 .365406 0 .329282 0 .276293 0 .210454 0 .141366 0 .081056
102 0 .389017 0 .351957 0 .296498 0 .226745 0 .152917 0 .088029
103 0 .411624 0 .373962 0 .316347 0 .242933 0 .164517 0.095101
104 0 .432744 0 .394857 0 .335474 0 .258740 0.175981 0 .102170
105 0 .451878 0 .414177 0 .353478 0 .273857 0 .187105 0 .109119
106 0 .468519 0 .431446 0 .369944 0 .287959 0 .197663 0 .115817
107 0.482181 0 .446188 0 .384447 0 .300705 0 .207417 0 .122124
108 0.492411 0 .457953 0 .396574 0 .311755 0 .216124 0 .127892
109 0 .498816 0.466331 0 .405937 0 .320782 0 .223542 0 .132973
110 0 .501079 0 .470974 0.412191 0.327481 0 .229442 0 .137218
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The mortality improvement factor derived from the model (4.15), for an ultimate life 

attaining exact age x in calendar year t, is of the form of (3.44) with r -  4 and s = 3, 

that is:

RF(x,t - t 0) (4.16)

where t0 is the base calendar year. Denoting t-t0 as n, RF(x,n) = RF(x,t - t 0) is the

reduction factor for an ultimate life attaining exact age x at time n, where n is 

measured in years from the base calendar year t0.

Expression (4.16) is the same as:

F F (x ,t- t0)=expj]>] (4.17)

since only yu and yn are non-zero in equation (4.15). The parameters a, (/ = 1, 2, 3, 4) 

and yXJ (/' = 1, 2), are as given in Table 4.5. Noting that Z,,(x') = x' and

4 h ’)= , the improvement formula (4.17) may be written as:

01 i V, „ v „ V)1 . 0 - t o)
1 h ( w , r

1 1
o

!

r  ».
y ux 1/12

{ 2 JJ
(4.18)

From formulae (4.17) and (4.18), it is evident that the mortality improvement formula 

is essentially the trend adjustment term in the model formula, with adjustment for the 

transformation of the time variable t. The trend adjustment term (and hence the 

mortality improvement formula) involves higher order polynomials in both time t and 

age x, leading to undesirable features when extrapolating. Hence this 10-parameter 

model would not seem to be appropriate for mortality projections without major 

adjustments.
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4.2.5 Analysis of the 1958-94 female annuitants’ 

mortality experience at duration 1 year and over
In an effort to identify a model or models that would not only provide a good fit for 

the observed data but also provide reasonable projections of the forces of mortality at 

future time periods t, and for values of * outside the range of ages over which the 

model has been fitted, the observed mortality experience in calendar years prior to 

1958 was excluded from the analysis of the female immediate annuitants’ experience. 

The calendar year 1958 was chosen because of the apparent change in the class of 

lives taking out immediate annuity contracts as a result of the Finance Act 1956. The 

female annuitants’ experience over the period 1958-94 was analysed over the same 

range of x values as for the 1946-94 experience, that is over the ages 65 to 100 years, 

giving a total of 1224 data cells.

An examination of the improvement in deviance as a result of increasing terms in r 

and 5 in the first instance, and then introducing mixed product terms, leads to the 

adoption of a 7-parameter model formula:

Mx, = exp Z  P j L j ( x ' )  +  a i +  ' L h j L j i x ' )  \ t '
j = 0 l 7=1 J

with,

and

, x-82.5 , ~x = ---------as before;
17.5

, _t_—1976 ^ at -s = 19 -7 5  an(j w  = jg 
18

(4.19)

(4.20)

The unsealed deviance profile for successive increases in the values of r and s is 

shown in Table 4.10, while Table 4.11 shows the analysis of deviance for the model. 

It is clear from Table 4.10 that the optimum value of 5 is 3; increasing the value of s to 

4 does not result in a significant improvement in deviance. As for the model based on 

the 1946-94 experience, the improvement in deviance for successive increases in the 

value of r shows some irregularities. When the value of r is increased from 1 to 2, the 

improvement is not significant, but subsequent increases of r up to and including r=6,
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result in improvements in deviance. However, the parameter a2 remains non-

significant. Therefore, on the basis of parsimony, and bearing in mind that higher 

order polynomials in the trend adjustment term tend to have features undesirable for 

projections, the value of r is chosen to be 1.

The fitted model (4.19) again consists of a GMX(0,4) term in age effects x, but the 

trend adjustment term is greatly simplified to a linear function of t on the log scale, 

while the coefficient of the trend adjustment term is itself a quadratic in x. Details of 

parameter estimates based on the 7-parameter model are given in Table 4.12.

Table 4.10
Female immediate annuitants, duration 1 year and over, analysis of the 1958-94 experience 
Déviances for some polynomial predictors of degree rand s__________________________

r= 0 r= 1 r= 2 r= 3
s = 1 3719.01 2459.17 2452.36 2425.50C\JIICO 3630.68 2373.93 2367.48 2343.37COIICO 3566.45 2308.54 2302.59 2276 .96
S =  4 3565.18 2307.50 2301.58 2276.96

Table 4.11
Female Immediate Annuitants, Duration 1 year and over, Analysis of the 1958-1994 experience 
Deviance profile (terms added sequentially 1st to last)___________________________________
P aram eter D eviance D egrees o f freedom D iffe rence  in D eviance

j f t 56046.00 1223
3719.01 1222 52326.99

A 3630.68 1221 88.33

P> 3566.45 1220 64.23
a t 2308 .54 1219 1257.92

7" 2292.80 1218 15.74

yt2 2260 .66 1217 32.14

Y\ 3 2259.75 1216 0.91
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Figure 4.13 Female immediate annuitants, d l+  years, analysis o f the 1958-94 experience, diagnostic plots: 7- 
parameter log-link model with r = 1, s  = 3, yw and yl2

Table 4.12
Female Immediate annuitants, Duration 1 year and over, Analysis of the 1958-94 experience 
7-parameter log-link model (<ft= 1.8534)
param e te r_________________________________

A 
A 
A 
A
a\
yn
j \2_______________________

E stim ate S tandard  e rro r t-va lue
-2 .619459 0 .0070 -376 .8458
1.823799 0 .0158 115.4447

-0 .060129 0 .0165 -3 .6557
-0 .117402 0.0171 -6.8481
-0 .186520 0.0121 -15.4538
0 .022634 0 .0230 0 .9838
0 .116310 0 .0279 4.1752
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Although the data are supportive of the model as is evident from the diagnostic plots 

shown in Figure 4.13, some of the predicted forces of mortality outside the range of 

ages analysed are in fact increasing with time rather than decreasing. Figure 4.14 

shows the predicted forces of mortality up to calendar year t = 2014, plotted against t 

on the log scale. At both ends of the age range, the predicted forces of mortality are 

such that there is a crossing over of forces of mortality. As an example, the predicted 

force of mortality for a life aged 55 in 2005 is higher than the predicted force of 

mortality for a life aged 66 in the same year. Hence it appears that this model would 

in general only be useful for predictions of future forces of mortality provided the 

predictions are made within the range of ages over which the model has been fitted.

From Table 4.12, it is observed that the 7-parameter model fitted includes one 

parameter that is not statistically significant (yn, with a ¿-value of 0.9838). The next 

step might then be to fit a model that excludes the parameter yu. However, on grounds 

of simplicity, the parameter yn that involves a term in x2, was next excluded from the 

model formula. It turns out that when the parameter yn is excluded from the formula, 

all the remaining 6 parameters in the model (including yu) are statistically significant. 

Therefore the six-parameter model that excludes the quadratic coefficient in age 

effects from the trend adjustment term, was next fitted to the data. The revised model 

is:

Mx, = exp Po + X Pj l j ( * ')  +(«i + r iA (x')y  ■
j =1

(4.21)

Parameter estimates for the revised fit are given in Table 4.13.

The predicted forces of mortality based on each of the two models (4.19) and (4.21), 

together with the crude mortality rates, are plotted against time t on the log scale at 

10-year age intervals, and shown in Figure 4.15. From the plot, it is clear that there is 

little difference between the predicted rates from the two models in the age range 75 

to 95 years. However, outside this range of ages, the forces of mortality predicted 

from the two models follow differing patterns, with the 7-parameter model tending to 

follow the crude mortality rates more closely than the 6-parameter model.
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Table 4.13
Female immediate annuitants, Duration 1 year and over,
6-parameter log-link model based on the 1958-94 experience (^ = 1.8846)
param e te r estim a te S tandard  erro r t-va lue

f i -2 .627386 0 .0068 -384 .9264

f i 1.850637 0 .0148 125.3246

f i -0 .083299 0 .0158 -5 .2843

f i -0 .099143 0 .0167 -5 .9264

«1 -0 .220583 0.0090 -24 .4358

yu 0 .061607 0.0213 2.8877

Figure 4.14 Female immediate annuitants, d l+  years, analysis o f the 1958-94 experience, predicted forces of 
mortality based on a 7-parameter log-link model with r = 1, s = 3, yu and yi2

It would be expected that the model involving more parameters would provide a 

better fit and this is obviously the case based on an analysis of deviance and a visual 

inspection of the plotted rates shown in Figure 4.15. However, from the chi-square 

goodness-of-fit test and other formal statistical tests of graduation (Tables 4.14 and 

4.15), it is difficult to make any real distinction between the two models, with each 

model providing a satisfactory fit for the data overall. Therefore, all other factors 

being equal, the model with fewer parameters is preferred.
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Figure 4.15 Female immediate annuitants, d l+  years, 1958-94 experience, crude and graduated forces of mortality 

plotted on the log scale; comparison of the 7-parameter and 6-parameter log-link models

Table 4.14
Female Immediate Annuitants, duration 1 year and over, Analysis of the 1958-94 experience 
Comparison of p-values based on the 2 models fitted_________________________________
S ta tis tica l tes t 6 -pa ram e te r m odel 7 -pa ra m e te r m odel

C h i-squa re 0.4945 0.4945
C um u la tive  dev ia tions 0.4290 0.4330
Ind iv idua l s tandard ised  d ev ia tions 0.5521 0.5141
G roup ing  o f s igns o f dev ia tions 0.9785 0 .9886
S igns o f dev ia tions 0.3965 0.3505

Table 4.15
Female Immediate Annuitants, d1 year and over, Analysis of the 1958-94 experience 
Comparison of the distribution of individual studentized deviance residuals for the data as a whole
R ange (-00,-3) (-3,-2) (-2,-1) (-1,0) (0,1) (1,2) (2,3) (3,co)
expected  frequency 
observed  frequency

1.58 25.04 159.01 399.37 399.37 159.01 25.04 1.58

6 -pa ram e te r m ode l 1.00 28.00 167.00 404 .00 404 .00 137.00 25.00 4.00
7 -p a ra m e te r m odel 2.00 28.00 171.00 403 .00 397 .00 142.00 27.00 5.00
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Table 4.16
Female Immediate Annuitants, Duration 1 year and over, analysis of the 1958-94 experience 
Tests of graduation applied to individual calendar years: p-values (6-parameter model)
year ch i-square cum dev isd runs s igns
1958 0 .03 0 .44 0.99 0.91 0.87
1959 0 .06 0.00 0.28 0.24 0.09
1960 0 .03 0.71 0.08 0.41 0.41
1961 0.25 0 .06 0.64 0.49 0.87
1962 0.25 0.00 0.13 0.75 0.87
1963 0.00 0.00 0.00 0.95 0.07
1964 0 .23 0 .98 0 .03 0.20 0.01
1965 0.57 0.99 0.12 0 .33 0.03
1966 0 .86 0 .23 0.05 0.91 0.62
1967 0 .38 1.00 0 .04 0.95 0.01
1969 0.00 1.00 0.00 0.05 0.00
1970 0.05 0.99 0 .13 0.11 0 .03
1972 0.10 0 .06 0 .63 0.02 1.00
1973 0.67 0.72 0.41 0 .02 1.00
1974 0 .60 0.16 0.29 0 .18 0 .03
1976 0 .00 0.00 0.01 0.19 0 .00
1977 0 .03 0.00 0 .13 0.45 0 .03
1978 0 .34 0 .17 0.61 0.07 0.62
1979 0 .06 0.04 0 .36 0.42 0 .04
1980 0 .77 0.86 0 .42 0.08 0 .18
1981 0.76 0.21 0 .25 0.37 0.50
1982 0.59 0.98 0.56 0.68 0.12
1983 0.40 0.13 0.06 0.47 0.12
1984 0.39 0 .93 0.47 0.05 0.30
1985 0.05 0 .38 0.70 0.29 0.73
1986 0 .44 0 .38 0.57 0.01 0.30
1987 0.60 0.97 0.61 0.90 0.60
1988 0 .77 0.77 0.77 0 .20 0.60
1989 0 .83 0 .87 0 .23 0 .92 1.00
1990 0.81 0.20 0.69 0 .50 1.00
1991 0.80 0.12 0.57 0.39 0.22
1992 0 .58 0.40 0.69 0.89 1.00
1993 0 .28 1.00 0.02 0 .30 0.00
1994 0.69 0 .74 0.61 0 .05 0 .26

Based on the preferred 6-parameter model (4.21), various statistical tests of 

graduation are applied separately to each of the 34 calendar years. The p-values 

obtained are given in Table 4.16. Although in a number of years, the model fails some 

of the tests of graduation applied, the tests are generally quite supportive of the model. 

One of the problems of graduation using a mathematical formula is that no single 

curve can accurately fit a whole range of ages, more so when the covariates are both 

age and time period. Figure 4.16 is a graph of graduated forces of mortality and crude 

mortality rates, plotted on the log scale for the specific calendar years 1958 to 1992.
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Figure 4.16 Female immediate annuitants, d l+  years, analysis o f the 1958-94 experience, crude mortality rates 
and graduated forces o f mortality plotted versus age on the log scale for individual calendar years 1958 to 1992: 6- 
parameter model
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Figure 4.17 Female immediate annuitants, d l+  years, analysis o f the 1958-94 experience, predicted forces of 
mortality plotted on the log scale; 6-parameter log-link model with r=  1,5 = 3 and /,,

Apart from the goodness-of-fit of the model, a further consideration in choosing an 

appropriate model is whether the shape of the predicted rates outside the main range 

of the data is sensible. Figure 4.17 is a plot of the predicted forces of mortality based 

on the 6-parameter model given by equation (4.21), plotted at 5-year age intervals 

from age 55 to 110 years. The predicted rates are also shown at quadrennial periods in 

Tables 4.17a, 4.17b and 4.17c. As for the projections based on an analysis of the 1946 

to 1994 experience, the force of mortality was projected to calendar year 2014.

The revised model appears to provide reasonable predictions within and outside the 

range of ages over which the model was fitted. The predicted forces of mortality 

progress smoothly with respect to both age and time, and it can be seen that the model 

naturally predicts a reduction in the rate of improvement in mortality at the older ages. 

Therefore the 6-parameter model described by (4.21) would be preferred since this 

model seems to be appropriate for making predictions of future forces of mortality for 

female immediate annuitants, although the 7-parameter model defined by (4.19) 

provides a marginally better fit to the data.
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Table 4.17a Female Immediate Annuitants, Duration 1 year and over
Analysis of 1958-94 experience, predicted force of mortality at quadrennial periods 1958-74
age 1958 1962 1966 1970 1974
55 0 .008592 0 .008007 0 .007462 0 .006953 0 .006480
56 0 .008868 0 .008270 0 .007713 0 .007194 0 .006709
57 0 .009213 0 .008599 0 .008026 0.007491 0 .006992
58 0.009631 0 .008996 0 .008403 0 .007849 0 .007332
59 0 .010129 0 .009468 0.008851 0 .008274 0 .007735
60 0 .010713 0 .010023 0 .009377 0 .008772 0 .008207
61 0 .011393 0 .010667 0 .009987 0.009351 0 .008755
62 0 .012178 0.011411 0 .010692 0 .010019 0 .009388
63 0.013081 0 .012267 0 .011503 0 .010787 0 .010116
64 0 .014116 0 .013248 0 .012433 0 .011668 0 .010950
65 0 .015299 0 .014369 0 .013495 0 .012675 0 .011905
66 0 .016647 0 .015648 0 .014708 0 .013825 0 .012995
67 0 .018183 0 .017105 0 .016090 0 .015136 0 .014238
68 0.019931 0 .018763 0 .017664 0 .016629 0 .015655
69 0 .021916 0 .020648 0 .019454 0 .018329 0 .017268
70 0 .024169 0 .022789 0 .021488 0.020261 0 .019104
71 0 .026725 0 .025219 0 .023797 0 .022456 0 .021190
72 0 .029622 0 .027974 0 .026418 0 .024948 0.023561
73 0.032901 0 .031095 0 .029389 0 .027776 0.026251
74 0 .036610 0 .034628 0 .032753 0 .030980 0 .029302
75 0.040801 0 .038622 0 .036559 0 .034607 0 .032758
76 0 .045528 0 .043130 0 .040859 0 .038707 0 .036668
77 0 .050853 0 .048213 0 .045709 0 .043336 0 .041086
78 0 .056842 0 .053933 0 .051172 0 .048553 0 .046068
79 0 .063563 0 .060357 0 .057313 0 .054422 0 .051677
80 0 .071090 0 .067558 0 .064200 0 .061010 0 .057978
81 0 .079499 0 .075607 0 .071906 0 .068386 0 .065039
82 0 .088867 0 .084583 0 .080505 0 .076624 0 .072930
83 0.099271 0 .094560 0.090071 0 .085796 0 .081724
84 0 .110788 0 .105612 0 .100678 0 .095975 0.091491
85 0 .123489 0.117812 0 .112396 0 .107228 0 .102299
86 0 .137438 0.131222 0 .125287 0.119621 0.114211
87 0 .152689 0 .145898 0 .139408 0 .133208 0 .127283
88 0 .169283 0.161880 0.154801 0.148031 0 .141558
89 0.187241 0 .179193 0.171491 0 .164120 0 .157066
90 0 .206563 0 .197839 0 .189483 0.181481 0 .173816
91 0 .227219 0 .217793 0 .208758 0 .200098 0 .191797
92 0 .249148 0 .238999 0 .229264 0 .219925 0 .210967
93 0 .272252 0 .261367 0 .250917 0 .240884 0 .231253
94 0 .296392 0 .284764 0 .273592 0 .262859 0 .252546
95 0.321381 0 .309015 0 .297124 0.285691 0 .274697
96 0 .346988 0 .333897 0 .321300 0 .309178 0 .297514
97 0 .372929 0.359141 0 .345862 0 .333074 0 .320759
98 0 .398875 0 .384428 0 .370504 0 .357084 0 .344150
99 0 .424449 0 .409395 0 .394876 0.380871 0 .367363
100 0 .449232 0 .433639 0 .418586 0 .404057 0 .390032
101 0 .472773 0 .456720 0.441211 0 .426230 0 .411757
102 0 .494596 0 .478176 0.462301 0 .446953 0 .432114
103 0 .514215 0 .497533 0.481391 0 .465773 0 .450662
104 0 .531146 0 .514316 0 .498020 0 .482240 0 .466960
105 0 .544926 0 .528073 0.511741 0 .495913 0 .480576
106 0.555131 0 .538383 0 .522140 0 .506388 0 .491110
107 0 .561393 0.544882 0 .528857 0 .513303 0 .498206
108 0 .563419 0 .547277 0 .531597 0 .516366 0 .501572
109 0 .561008 0.545361 0 .530150 0 .515364 0 .500990
110 0 .554062 0.539030 0 .524406 0 .510179 0 .496338
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Table 4.17b Female Immediate Annuitants, Duration 1 year and over
Analysis of the 1958-94 experience, predicted force of mortality at quadrennial periods 1978-94
age 1978 1982 1986 1990 1994
55 0 .006039 0 .005627 0 .005244 0 .004887 0 .004554
56 0 .006257 0 .005835 0 .005442 0 .005076 0 .004734
57 0 .006526 0.006091 0 .005685 0 .005306 0 .004952
58 0 .006849 0 .006397 0 .005976 0 .005582 0 .005214
59 0.007231 0 .006760 0 .006319 0 .005907 0 .005522
60 0 .007678 0 .007183 0 .006720 0 .006287 0 .005882
61 0 .008197 0 .007675 0 .007186 0 .006728 0 .006299
62 0 .008797 0 .008243 0 .007723 0 .007237 0.006781
63 0 .009486 0 .008895 0 .008342 0 .007822 0 .007335
64 0 .010276 0 .009644 0.009051 0 .008494 0 .007972
65 0.011181 0.010501 0 .009863 0 .009264 0.008701
66 0 .012215 0.011481 0 .010792 0 .010144 0 .009535
67 0 .013394 0 .012599 0.011852 0 .011149 0 .010488
68 0 .014738 0 .013875 0.013062 0 .012297 0 .011577
69 0 .016270 0 .015329 0.014442 0 .013607 0 .012820
70 0 .018013 0 .016984 0 .016015 0 .015100 0 .014238
71 0 .019996 0 .018869 0 .017805 0 .016802 0 .015855
72 0 .022250 0 .021012 0 .019844 0 .018740 0 .017697
73 0 .024810 0 .023449 0 .022162 0 .020945 0 .019796
74 0 .027716 0 .026215 0 .024795 0 .023453 0 .022183
75 0 .031009 0 .029353 0 .027785 0.026301 0 .024897
76 0 .034737 0 .032908 0 .031175 0 .029533 0 .027977
77 0 .038953 0 .036930 0 .035012 0 .033194 0.031471
78 0 .043710 0 .041473 0 .039350 0 .037336 0 .035425
79 0 .049070 0 .046595 0 .044245 0 .042013 0 .039894
80 0 .055096 0 .052358 0 .049756 0 .047283 0 .044934
81 0 .061855 0 .058827 0 .055947 0 .053208 0 .050603
82 0 .069414 0 .066068 0 .062883 0.059851 0 .056966
83 0 .077845 0.074150 0.070631 0 .067278 0 .064085
84 0 .087217 0 .083142 0 .079258 0 .075555 0 .072025
85 0 .097596 0 .093109 0 .088829 0 .084745 0 .080849
86 0 .109046 0 .104114 0 .099406 0 .094910 0 .090617
87 0.121621 0 .116212 0 .111043 0 .106104 0 .101385
88 0 .135367 0 .129448 0 .123787 0 .118374 0 .113197
89 0 .150315 0 .143854 0.137671 0 .131753 0 .126090
90 0 .166475 0 .159445 0.152711 0.146261 0 .140084
91 0.183841 0 .176214 0 .168904 0 .161897 0.155181
92 0 .202374 0 .194130 0 .186223 0 .178637 0 .171360
93 0 .222007 0.213131 0 .204609 0 .196428 0 .188574
94 0 .242639 0 .233120 0 .223974 0 .215187 0 .206745
95 0 .264127 0 .253964 0.244191 0 .234795 0 .225760
96 0 .286290 0 .275489 0 .265095 0 .255094 0 .245470
97 0 .308899 0 .297478 0.286479 0 .275887 0 .265686
98 0 .331685 0.319671 0 .308093 0 .296934 0 .286179
99 0 .354334 0 .341767 0 .329646 0 .317955 0 .306678
100 0 .376493 0 .363425 0 .350810 0 .338633 0 .326878
101 0 .397775 0 .384269 0.371221 0 .358615 0 .346438
102 0 .417768 0 .403898 0 .390489 0 .377525 0.364991
103 0.436041 0 .421895 0 .408207 0 .394964 0 .382150
104 0 .452164 0 .437836 0 .423963 0 .410530 0 .397522
105 0 .465713 0 .451309 0.437351 0 .423825 0 .410717
106 0 .476293 0 .461924 0 .447988 0 .434472 0 .421364
107 0 .483554 0 .469332 0 .455529 0 .442132 0 .429128
108 0.487201 0 .473242 0 .459683 0 .446513 0 .433720
109 0 .487017 0 .473434 0 .460229 0 .447393 0 .434915
110 0 .482872 0 .469772 0 .457027 0 .444628 0 .432565



Table 4.17c Female Immediate Annuitants, Duration 1 year and over
Analysis of the 1958-94 experience, predicted force of mortality at quadrennial periods 1998-2014
age 1998 2002 2006 2010 2014
55 0 .004244 0 .003955 0 .003686 0 .003435 0.003201
56 0 .004415 0 .004117 0 .003840 0.003581 0 .003340
57 0 .004622 0 .004314 0 .004027 0 .003758 0 .003508
58 0 .004870 0 .004549 0 .004249 0 .003969 0 .003708
59 0 .005162 0 .004826 0.004511 0.004217 0 .003942
60 0 .005503 0 .005148 0 .004816 0 .004506 0 .004216
61 0 .005898 0 .005522 0 .005170 0.004841 0 .004532
62 0 .006354 0 .005954 0 .005579 0.005227 0 .004898
63 0 .006879 0.006451 0 .006049 0 .005672 0 .005319
64 0.007481 0.007021 0 .006589 0 .006184 0 .005803
65 0 .008172 0 .007675 0 .007208 0 .006770 0 .006359
66 0 .008962 0 .008424 0 .007918 0 .007443 0 .006996
67 0 .009866 0.009281 0 .008730 0 .008212 0 .007725
68 0 .010899 0 .010260 0 .009659 0 .009093 0.008561
69 0 .012078 0 .011380 0.010721 0.010101 0 .009517
70 0 .013425 0 .012658 0 .011935 0 .011254 0.010611
71 0.014961 0 .014118 0 .013322 0.012571 0 .011863
72 0 .016713 0 .015783 0 .014905 0 .014076 0 .013293
73 0 .018709 0.017682 0 .016712 0 .015794 0 .014928
74 0 .020982 0 .019846 0.018771 0 .017755 0 .016793
75 0 .023567 0 .022308 0 .021117 0 .019989 0 .018922
76 0 .026504 0 .025108 0 .023786 0 .022533 0 .021346
77 0 .029837 0 .028287 0 .026819 0 .025426 0 .024106
78 0 .033612 0 .031892 0 .030260 0.028711 0.027241
79 0 .037882 0.035971 0 .034157 0 .032434 0 .030798
80 0.042701 0 .040578 0 .038562 0 .036645 0 .034824
81 0 .048126 0 .045770 0 .043530 0 .041399 0 .039372
82 0 .054220 0 .051606 0 .049118 0 .046750 0 .044496
83 0 .061043 0 .058146 0 .055386 0 .052757 0 .050253
84 0 .068660 0 .065453 0 .062395 0 .059480 0.056701
85 0 .077132 0 .073586 0 .070204 0 .066976 0 .063897
86 0 .086519 0 .082606 0 .078870 0 .075303 0 .071898
87 0 .096875 0 .092566 0 .088449 0 .084515 0 .080756
88 0 .108247 0 .103513 0 .098986 0 .094658 0 .090518
89 0 .120670 0 .115484 0 .110520 0 .105770 0 .101223
90 0 .134168 0 .128502 0 .123075 0 .117877 0 .112898
91 0 .148744 0 .142573 0 .136659 0 .130990 0 .125556
92 0 .164380 0 .157685 0 .151262 0 .145100 0 .139190
93 0 .181035 0 .173796 0 .166848 0 .160177 0 .153772
94 0 .198634 0.190841 0 .183354 0.176161 0 .169250
95 0 .217073 0 .208720 0 .200689 0 .192966 0.185541
96 0 .236209 0 .227298 0 .218722 0.210471 0 .202530
97 0 .255863 0 .246402 0 .237292 0 .228518 0 .220069
98 0 .275813 0 .265823 0 .256195 0 .246915 0 .237972
99 0 .295802 0.285311 0 .275192 0 .265432 0 .256018
100 0 .315532 0 .304580 0 .294007 0 .283802 0.273951
101 0 .334675 0.323311 0 .312333 0 .301727 0 .291482
102 0 .352873 0 .341158 0 .329832 0.318881 0 .308295
103 0 .369752 0 .357756 0 .346149 0 .334919 0 .324053
104 0 .384926 0 .372729 0 .360919 0 .349483 0 .338409
105 0 .398014 0 .385704 0 .373775 0 .362215 0 .351012
106 0 .408652 0 .396323 0 .384366 0 .372770 0 .361524
107 0 .416507 0 .404258 0 .392368 0 .380828 0 .369628
108 0 .421294 0 .409223 0 .397498 0 .386110 0 .375047
109 0 .422785 0 .410993 0.399530 0 .388387 0 .377555
110 0 .420830 0 .409413 0.398305 0 .387499 0 .376986



The trend adjustment term in the 6-parameter model (4.21) is a simple linear function 

of t on the log scale, with the coefficient of t being itself linear in x. Thus the formula 

for the reduction factor is simplified to:

RF(x,n) = exp 

which is the same as 

RF(x,n) = exp

— I«, +yux'}
w.

—Wx+Yu^ x - c ^
w. V /

(4.22)

(4.23)

where cx=82.5, wx=T7.5, vv,=18 as defined above and n is measured in years from the 

base calendar year. In particular, based on the data-set for female immediate 

annuitants analysed and the parameter estimates given in Table 4.13, the formula for 

RF(x,n) is:

RF(x,n)= exp n
18 ’

•0.220583 + 0.061607 x -  82.5
v 17.5 J

or

RF(x,n) = exp[(- 0.028390 + 0.000196x)«]

(4.24)

(4.25)

As for the CMI mortality improvement formula described in Chapter 3, the form of 

the mortality improvement model defined by expression (4.25) assumes that the rate 

of mortality decreases by exponential decay. However, unlike the CMI model, no 

limiting value is assumed for the improvement factor based on the log-link model and 

indeed there is no pre-determined maximum age assumed. The rate of improvement 

depends on both age and time for all ages x and the form of the model is such that 

mortality is assumed to improve at all ages x unless x is greater than the (unlikely) age 

of 145. By using this model, the problem of determining a precise maximum age for 

policyholders, which is the subject of ongoing debate among actuaries, does not arise 

(see for example Thatcher, 1999; Tuljapurkar and Boe, 1998; Wachter and Finch, 

1997).
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In determining a suitable mortality trend model for female immediate annuitants 

based on the 1958-94 experience, various other models involving higher order terms 

in time and/or higher order terms in age in the mixed product trend adjustment term 

were also fitted to the data. Although these models provided marginally better fits to 

the data, the predicted rates in each case were unsuitable. Including mixed product 

terms involving higher order terms in x resulted in mortality rates that did not progress 

smoothly at the extreme ages. On the other hand, introducing higher order terms in 

time t resulted in an unrealistically rapid improvement in mortality. It is apparent that 

in searching for a model that has a good shape for the purpose of making predictions, 

there has to be a trade-off between goodness-of-fit and predictive shape.

4.2.6 Analysis of the 1946-94 male annuitants’ mortality 

experience at duration 1 year and over
The male immediate annuitants’ mortality experience at curtate policy duration 1 year 

and over was analysed at individual ages x ranging from 65 to 95 years. An initial 

analysis of the experience at duration 5+ years revealed an inconsistency at age 94 in 

calendar year 1970, where there were 96 recorded deaths corresponding to a central 

exposed-to-risk of 52.5, resulting in a crude mortality rate of 1.8. This could be due to 

one individual (or several individuals) with a disproportionate number of policies, a 

factor that might not be adequately accounted for by the dispersion parameter, thereby 

resulting in a distortion of the results. Noting that the bulk of the experience with 

policy duration 1 year and over is comprised of the experience with policy duration 5 

years and over, the data cell corresponding to this observation was excluded from the 

analyses. Hence the dataset analysed comprised of 1425 data cells with transformed 

age x' in the form:

r  — 80
x' = — —, that is cx = 80 and wx = 15. (4.26)

The transformed calendar year t '  is given by (4.13), that is:
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c, = 1970, wt = 24, giving /' t -1970 
24

On the basis of the analyses of deviance shown in Tables 4.18 and 4.19, and the 

significance of the parameters introduced, the best fitting model was determined to 

be:

(4.27)

where L0(x’)= 1, Z,(x') = x' and L2(x') = — - —  . The model adopted, which may 

be expressed as:

= exp Y JfiJL,ix ') + a /  + (a2
j = 0

+ y2\x ')t '2 , (4.28)

consists of a GMX(0,3) term in age effects, and a trend adjustment term that is 

quadratic in time / on the log scale, with coefficients that are linear in age x.

The parameter estimates, their standard errors and the associated /-statistics are shown 

in Table 4.20. The values of the /-statistics associated with each parameter estimate 

are almost all greater than 2, indicating statistical significance of the parameters. The 

exception is the estimate ofy2], the coefficient of the mixed product term in age and 

time, which has an associated /-statistic value just under 2. Statistical tests of 

graduation carried out on the data as a whole also indicate that the model fits the data 

reasonably well. The /»-values for the various graduation tests applied are shown in 

Table 4.21.
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Table 4.18
Male immediate annuitants, duration 1 year and over, analysis of the 1946-94 experience 
Déviances for some polynomial predictors of degree rand s________________________

r= 0 r= 1 r= 2 r= 3

oIICO 20613 .47 20498.29 20483 .38 20411 .93
s = 1 3530.96 2647.24 2642.49 2642.45
S= 2 3520.49 2639.41 2634.27 2634.25

CO II C
O 3520.23 2638.91 2633.76 2633.73

Table 4.19
Male Immediate Annuitants, Duration 1 year and over, Analysis of the 1946-1994 experience 
Deviance profile (terms added sequentially 1st to last)_________________________________
P aram eter D eviance D egrees of freedom D iffe rence  in D eviance

20613 .47 1424
3530.96 1423 17082.52

A 3520.49 1422 10.46
a . 2639.41 1421 881.08

«2 2634.27 1420 5.15
2627.59 1419 6.67
2624.26 1418 3 .33

Figure 4.18 Male immediate annuitants, d l+  years, analysis o f the 1946-94 mortality experience, crude mortality 

rates and graduated forces of mortality plotted on the log scale: 6-parameter model with r = 2 , s  = 2 and y2]
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Table 4.20
Male immediate annuitants, 
log-link model based on an

Duration 1 year and over,
analysis of the 1946-94 experience (^=  1.88)

param e te r estim a te S tandard  e rro r t-va lue

A -2 .4025 0.0102 -236.4201

A 1.3350 0 .0204 65.3380

A -0 .0378 0.0177 -2 .1305

(X\ -0 .2470 0 .0114 -21 .6733

a 2 -0 .0444 0.0219 -2 .0304

Y * 0 .0883 0.0468 1.8866

Table 4.21
Male immediate annuitants, duration 1 year and over, analysis of the 1946-94 experience 
p-values based on a 6-parameter model (4.27)____________________________________
Chi square 0.37

Cumulative deviations 0.50
Individual standardised deviations 0.07
Grouping of signs 0 .36
Signs of deviations 0 .04

Figure 4.19 Male immediate annuitants, d l+  years, analysis o f the 1946-94 mortality experience, predicted forces 

o f mortality plotted on the log scale: based on a 6-parameter model with r = 2 , s  = 2 and y2i
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Graduated forces of mortality and crude mortality rates plotted on the log scale 

against calendar year are shown in Figure 4.18. From a visual inspection of this 

figure, the model seems to provide an adequate fit for the data.

Predicted forces of mortality for male immediate annuitants with policy duration 1+ 

years are shown in Figure 4.19. The forces of mortality are projected over the 

calendar-year period 1995 to 2014 and are shown at 5-year age intervals from age 55 

to 110 years. From the plot, it is observed that the predicted rates show a consistent 

increase in mortality with age in each calendar year. However, although the predicted 

forces of mortality exhibit a downward trend at most ages, the rates at extreme old age 

(age 100 and above) tend to increase with time, a factor which is very likely a result 

of the rapid increase in the mixed product term involving r  . In addition, the forces of 

mortality at these extreme ages seem exceptionally high, indicating that the recent 

improvements in male mortality might not be adequately represented by a model 

fitted to mortality experience from 1946, with each calendar year accorded the same 

weight in the modelling procedure.

As in the case of female annuitants, the male annuitants’ mortality experience in 

calendar years prior to 1958 was then excluded from the analysis, in order to address 

the problem of recent changes in mortality trends.

4.2.7 Analysis of the 1958-94 male annuitants’ mortality 

experience at duration 1 year and over
The male immediate annuitants’ mortality experience over the period 1958-94, at 

curtate policy duration 1 year and over was analysed at individual ages x ranging from 

65 to 95 years, excluding the one extreme observation at age 94 in calendar year 

1970, giving a total of 1053 data cells. Thus x is described by (4.26) while t '  is 

described by (4.20), that is:

x — 80x' =------- , that is, cx = 80 and wx = 15;
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and

, i —1976 . . inns j 10t =--------- , that is, ct = 1976 and w, = 18.
18

Based on an analysis of deviance (Tables 4.22 and 4.23) and the significance of the 

parameters introduced (Table 4.24), a simple 3-parameter model consisting of a 

GMX(0,2) term in age effects and an age-independent trend adjustment term linear in 

time t on the log scale, was found to fit the data adequately.

Thus the best-fitting model was:

Mxt =explA + M  (*') + « /'] (4.29)

or
juxl = exp[/?0 + pxx' + a / ] (4.30)

since L\(x') = x '.

The model defined by expression (4.30) is in fact equivalent to the model fitted by 

Wetterstrand (1981) to US mortality data from life insurance.

Table 4.22
Male Immediate Annuitants, Duration 1 year and over, Analysis of the 1958-94 experience 
Déviances for polynomial predictors of degree rand s______________________________

r  = 0 r= 1 r= 2

O

II
CO 15677.61 15634.34 15516.68

s  = 1 2319.39 1895.36 1895.25

C
MII

CO 2318.50 1893.67 1893.60

Table 4.23
Male immediate annuitants, Duration 1 year and over, Analysis of the 1958-94 experience 
Deviance profile (terms added sequentially 1st to last)______________________________
P aram eter D eviance D egrees of freedom D iffe rence  in D eviance

/ f t 15677.61 1052

/ft 2319.39 1051 13358.22

a t 1895.36 1050 424.03

111__________________________ 1894.09 1049 1.27
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Table 4.24
Male immediate annuitants, Duration 1 year and over,
3-parameter log-link model based on the 1958-94 experience (^= 1.8223)
param e te r estim a te s tandard  erro r i-va lue

A -2 .467967 0 .0075 -329 .3263

F 1.352702 0.0158 85.7659

a\ -0 .194558 0.0127 -15 .2822

The formula for the reduction factors derived from equation (4.30) becomes:

RF(x,n)= exp a ,
w.

(4.31)

For the particular data set modelled and the parameter estimates given in Table 4.24, 

the reduction factor is:

RF{x,n)= exp j- 0.194558 x ̂  j 
or

RF(x,n) = exp{- 0.010809«} for all x.

(4.32)

(4.33)

In applying this model to predict future mortality rates, there is an underlying 

assumption that mortality trends over time only depend on the time factor and not on 

the age of the individual. This assumption does not seem reasonable since the rate of 

improvement in mortality over time is expected to vary with age (see for example 

CMIR 14, 1995 and CMIR 16, 1998).

It is possible that because the male immediate annuitants’ investigation is small, the 

underlying pattern is not fully captured by a model derived from analysing this 

experience over a period of 34 years. A longer investigation period could be 

considered. However, in view of the results of the analyses of the male and female 

annuitants’ experiences over the period 1946-94, the observed changes over time in 

the composition of the annuitants’ experience and the changes in mortality trends that 

have occurred in recent years, a longer period is likely to result in a model that does
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not represent the more recent trends adequately since each of the calendar years 

would be accorded the same weight in determining a suitable model under the 

methodology used. It was therefore considered appropriate to model the male 

annuitants’ data using the 6-parameter model formula (4.21) adopted for the larger 

females’ experience, but with the parameters estimated from the males’ experience.

Table 4.25
Male immediate annuitants, Duration 1 year and over,
6-parameter log-link model based on the 1958-94 experience (deviance = 1894.09 on 1047 d.f., (/>= 1.8314)
param e te r estim a te s tandard  erro r f-value

A -2 .473453 0 .0086 -287 .86

1.361608 0 .0178 76.36

A -0 .024799 0 .0210 -1 .18

A 0 .010189 0 .0228 0.45

a t -0 .199500 0 .0136 -14.69

yu 0 .029327 0 .0292 1.00

Increasing the number of parameters can only improve the goodness-of-fit of the 

model, although the additional parameters introduced would not be expected to be 

statistically significant. The particular form of the six-parameter model results in rates 

that progress smoothly over both age and time, so that the smoothness criterion is also 

satisfied.

Table 4.25 gives the parameter estimates derived from again fitting a model of the 
form:

Mxt = exp Po + l M '( i ')+(ai
7 =  1

Equations (4.22) or (4.23) then give the form of the reduction factors. Based on the 

parameter estimates given in Table 4.25, the mortality improvement model for male 

annuitants becomes:
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(4.34)RF(x,n) = exp \  n f

c
 

oc 1X

—  < -  0 .1995 +  0 .029327
L18 1 l  15 J J j

or

i?F(jc,n) = exp[(- 0.019773 + 0.000109x)»]. (4.35)

The mortality improvement formula (4.35) is such that mortality is assumed to 

improve at all ages x up to age 180 approximately.

A third alternative is to fit a model consisting of the age effects term as determined 

from an analysis of the male annuitants’ data, but with the form of the trend 

adjustment term constrained to be linear in both age and time on the log scale as in 

formula (4.21), that is, a 4-parameter model of the form:

Mx, = exp[/?0 + A*' + («, + Ynx')t'] . (4.36)

Consequently, the mortality improvement model would again be of the form of 

equation (4.22) or (4.23). Based on the parameter estimates given in Table 4.26, the 

mortality improvement model is:

RF(x,n) = exp\ n  f

coc1* 1
-  0.198336 + 0.023960

L181 l  15 J J j

or

RF{x,n) = exp[(- 0.018118 + 0.0000887x)n].

(4.37)

(4.38)

Table 4.26
Male immediate annuitants, Duration 1 year and over,
4-parameter log-link model based on the 1958-94 experience (deviance = 1891.48 on 1049 d.f., < j> -1.8240)
param e te r estim ate standard  erro r t-va lue

A -2 .468777 0.01 -326 .42

F 1.353717 0.02 85.53
-0 .198336 0.01 -14.67

rii 0 .023960 0 .03 0.84
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Table 4.27
Male Immediate Annuitants, duration 1 year and over, Analysis of the 1958-94 experience 
Comparison of p-values based on the 3 models fitted

S ta tis tica l tes t 6 -pa ram e te r m odel 4 -pa ra m e te r m ode l 3 -pa ra m e te r m odel

C h i-squa re 0.4941 0.4941 0.3723
C um u la tive  d ev ia tions 0 .4626 0 .3088 0.3280
Ind iv idua l s tanda rd ised  d ev ia tions 0.0651 0 .0172 0.0096
G roup ing  o f s igns o f dev ia tions 0 .2405 0 .3466 0.3572
S igns o f dev ia tions 0 .2585 0 .1246 0.1172

Table 4.28
Male Immediate Annuitants, duration 1 year and over, Analysis of the 1958-94 experience 
Comparison of the distribution of individual studentized deviance residuals for the data as a whole
R ange (-oo,-3) (-3,-2) (-2,-1) (-1,0) (0,1) 0,2) (2,3) (3,co)
expected  frequency  
observed  freauencv

1.37 21.72 137.94 346 .46 346.46 137.94 21.72 1.37

6 -pa ra m e te r m ode l 1.00 15.00 158.00 352 .00 347.00 114.00 25.00 3.00
4 -pa ra m e te r m ode l 2 .00 13.00 161.00 358 .00 348.00 109.00 24.00 3.00
3 -pa ra m e te r m ode l 1.00 14.00 163.00 357 .00 348.00 108.00 25.00 3.00

Figure 4.20 Male immediate annuitants, d l+  years, analysis o f the 1958-94 experience, crude and graduated forces 
o f mortality plotted on the log scale: comparison o f 3 models
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Figure 4.21 Male immediate annuitants, d l+  years, predicted forces o f  mortality plotted on the log scale: 
comparison o f 3 models based on an analysis o f the 1958-94 experience

The three models fitted are:

1. n x, =exp[/?0 + /?,*' + a / ] ;

2. nxt = exp[/?0 + pxx' + (a, + yux')t']; and

3. ¡uxt = exp p0 + p,x' + I {/?/,.(*')}+ (a, + yi,x')t'
j =2

From the plot of crude mortality rates and graduated forces of mortality shown in 

Figure 4.20, very little differences can be discerned between the three models, apart 

from the fact that the 6-parameter model results in the lowest forces of mortality at 

age 65. Each of the models provides an adequate fit to the data based on the Chi- 

square goodness-of-fit test, but the 4-parameter and the 3-parameter models fail the 

individual standardised deviations test (Tables 4.27 and 4.28).
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Figure 4.21 is a comparative plot of the predicted forces of mortality at 5-year age 

intervals from age x = 55 to 110 years for the male annuitants’ experience. The 

predicted forces of mortality are based on the three models given above, with the 

corresponding parameter estimates given in Tables 4.24, 4.25 and 4.26. As for the 

females’ experience, predictions have been made to calendar year t = 2014. As 

already observed, there is little difference in the predicted rates from the three models 

for the period and age range over which the mortality experience has been analysed. 

The predicted forces of mortality based on each model progress smoothly with respect 

to both age and time. However, at the younger ages, predicted rates based on the 6- 

parameter model are noticeably lower than the predicted rates from the other two 

models, with the 3-parameter model providing the highest rates. At extreme old age, 

the reverse occurs with the 6-parameter model giving the highest forces of mortality, 

although the differences at these higher ages are relatively small.

The choice between the 3 models would be a matter of personal judgement although 

the 3-parameter model is the least favourable since using this model implies that 

changes over time do not depend on age. The principle of parsimony would suggest 

using the 4-parameter model while consideration of annuity pricing and reserves 

would suggest the 6-parameter model, the model that gives the lowest forces of 

mortality. In this study, the preferred model is the 6-parameter model, a model that 

has been identified from analysing a larger amount of data (the females’ experience). 

The 6-parameter model exhibits the desired features for making predictions of future 

forces of mortality and the inclusion of the interaction term in age and time in the 

model formula means that changes over time in the forces of mortality vary with age, 

for all ages x. In addition, the model provides a satisfactory fit to the data based on 

each of the statistical tests of graduation applied, and, except for ages above 100 

years, forces of mortality predicted on the basis of this model are generally the lowest 

over the projection period.

For all 3 models, the predicted forces of mortality at extreme old age exhibit a rapid 

increase with age. For example, in calendar year 1995, the force of mortality for a 

male aged 100 years is just under 0.5 while the corresponding predicted rate at age 

110 is above 1. The predicted forces of mortality for males at these extreme ages still 

seem rather high. It would appear that the improvements in mortality, which have
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occurred in the male population in the more recent years, are not adequately reflected 

in the predicted forces of mortality at the older ages. In order to give more weight to 

the mortality experience in the more recent years, it might be necessary to determine 

the parameter estimates from an observation period, which excludes the earlier years, 

while still fitting the same model structure. This is considered in Section 4.2.8. An 

alternative approach, considered in Section 4.2.9, is to model the 1958-94 experience 

using weighted likelihood to estimate the parameters.

It should be borne in mind that the male annuitants’ experience is small, so that at 

each individual age x in each calendar year t, the observed experience is even smaller 

and this can present problems in modelling the data.

4.2.8 Analysis of the 1974-94 annuitants’ mortality 

experiences at duration 1 year and over
The 6-parameter log-link model structure

was also fitted to the male immediate annuitants’ mortality experience at duration 1 

year and over, for the calendar year period 1974 to 1994, so that the scaled calendar 

time t' is given by:

t -1984t' = ----------; that is, c. = 1984 and w = 10.
10

(4.39)

The period was chosen in order to put emphasis on the more recent experience. 

Although the choice of the specific calendar-year 1974 was arbitrary, it is worth 

noting that in deriving the current mortality improvement model for pensioners and 

annuitants, the CMI Committee considered mortality experiences over the quadrennia 

beginning with 1975-1978.
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As for the 1958-94 experience, the 1974-94 male annuitants’ mortality experience 

was analysed over the age range 65 to 95 years (620 data cells). Hence as before, the

transformed age is defined as x' = ——— .
15

Parameter estimates for the model are given in Table 4.29. Here 2 parameters, /?3 and 

yn are not statistically significant (compared with 3 parameters in the 6-parameter 

model based on the 1958-94 experience). From the analysis of deviance (Tables 4.30 

and 4.31), both /?3 and yu could well be excluded from the model. However the 

parameters were included because the aim was to determine parameter estimates that 

would result in reasonable projected forces of mortality, based on the pre-determined

6-parameter model structure given by (4.21).

In fact, the model provides a good fit to the data and the statistical tests of graduation 

carried out are supportive of the model. Some results of the tests of graduation on the 

data as a whole are shown in Tables 4.32 and 4.33.

Table 4.29
Male immediate annuitants, Duration 1 year and over,
6-parameter log-link model based on the 1974-94 experience (deviance = 924 on 614 d.f., <!> = 1.5159)
param e te r estim ate s tandard  erro r t-va lue

A -2 .564089 0 .0113 -226 .6192
1.383162 0.0242 57.2702

A -0 .059597 0.0271 -2.1981

A -0 .028188 0 .0283 -0 .9948

a\ -0 .139243 0.0165 -8 .4168

Y" 0 .026200 0.0342 0.7650

Table 4.30
Male Immediate Annuitants, Duration 1 year and over, Analysis of the 1974-94 experience 
Déviances for polynomial predictors of degree rand s______________________________

r= 0 r= 1 r= 2 r= 3

C
o II O 8732.10 8721.45 8716.30 8716.29

s = 1 1051.07 937.68 931 .72 931.06
s = 2 1044.20 926.53 921 .30 920.50
s = 3 1043.48 924 .96 919 .39 918.57
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Table 4.31
Male Immediate Annuitants, Duration 1 year and over, Analysis of the 1974-94 experience 
Deviance profile (terms added sequentially 1st to last)______________________________________
P aram eter________________________________ D eviance  D egrees o f freedom  D iffe rence  in dev iance

8732.10 619.00
1051.07 618.00 7681 .03
1044.20 617.00 6.87
1043.48 616 .00 0.72

924 .96 615 .00 118.52
924 .07 614 .00 0.89

Table 4.32
Male Immediate Annuitants, Duration 1 year and over, Analysis of the 1974-94 experience 
Distribution of individual studentized deviance residuals for the data as a whole: 6-parameter model
R ange (-oo,-3) (-3,-2) (-2,-1) (-1,0) (0,1) (1,2) (2,3) (3,°°)
expected  frequency 0.79 12.48 79.23 199.00 199.00 79.23 12.48 0.79
observed  frequency 1.00 8.00 94.00 194.00 205 .00 66.00 13.00 2.00

Table 4.33
Male Immediate Annuitants, Duration 1 year and over, Analysis of the 1974-94 experience 
p-values based on a 6-parameter log-link model___________________________________
S ta tis tica l test p -va lue
C h i-square 0 .4922
C um u la tive  dev ia tions 0 .3933
Ind iv idua l s tandard ised  dev ia tions 0 .2308
G roup ing  of s igns o f d ev ia tions 0 .9736
S igns o f dev ia tions 0 .6788

From the plot of predicted forces of mortality shown in Figure 4.22, this model would 

appear to result in forces of mortality that are more realistic, particularly at extreme 

old age. Whereas predicted forces of mortality based on parameter estimates 

determined from an analysis of the 1958-94 experience are as high as 1, the rates 

predicted from the model based on the 1974-94 experience have a maximum value 

just above 0.5. In general, predicted rates based on a trend analysis of the 1974-94 

mortality experience are lower than predicted rates based on the 1958-94 mortality 

experience except for ages below 60 years. It would therefore appear that parameter 

estimates based on the 1974-94 mortality experience would give the preferred 

predicted forces of mortality for annuity pricing.
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Figure 4.22 Male immediate annuitants, d l+  years, predicted forces of mortality plotted on the log scale; 6- 
parameter log-link model with r =  1, s = 3 and y\\, based on an analysis o f the 1974-94 mortality experience

The formula for the reduction factors based on the parameter estimates given in Table 

4.29 is:

RF(x,n) = exp
n „ ___ ( x -  80̂ | 1

— < -  0.139243 + 0.026200L10l l l i  JJj
or

RF(x,n) = exp[{- 0.0278976 + 0.0001747x}«].

(4.40)

(4.41)

For consistency, the same 6-parameter model structure was also fitted to the female 

immediate annuitants’ mortality experience over the calendar-year period 1974-94 for 

age x = 65 to 95 years, giving a total of 620 data cells. The parameter estimates thus 

obtained, shown in Table 4.34, are all statistically significant with the exception of /?2. 

An analysis of deviance (Tables 4.35 and 4.36) shows that when the value of s is
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increased from 1 to 2, thus introducing [32, the improvement in deviance is not 

significant. However, a subsequent increase in the value of s to 3 results in a 

significant improvement in deviance.

Based on the distribution of individual standardised deviations shown in Table 4.37 

and the results of statistical tests of graduation shown in Table 4.38, the fitted values 

from the model provide a satisfactory representation of the underlying forces of 

mortality.

Table 4.34
Female immediate annuitants, Duration 1 year and over,
6-parameter log-link model based on the 1974-94 experience (deviance = 937 on 614 d.f., <j>- 1.5264)
param e te r estim ate s tandard  erro r t-va lue

A -2 .958437 0 .0113 -262 .6085
1.622580 0 .0236 68.8798

A 0 .033533 0 .0246 1.3612

A -0.066741 0 .0210 -3 .1782

«1 -0 .177477 0.0151 -11 .7715

yn 0 .057479 0 .0267 2.1519

Table 4.35
Female Immediate Annuitants, Duration 1 year and over, Analysis of the 1974-94 experience 
Déviances for polynomial predictors of degree rand s________________________________

r= 0 r= 1 r= 2 r= 3

OIICO 2 2302 .26 22207.91 22185.40 22185 .09
s= 1 1277.52 959.71 952.57 951.69CMIICO 1277.51 959.36 952.05 951.15

CO II CO 1265.29 944.10 937.23 936 .25
s = 4 1264.70 943.15 936.21 935.21
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Table 4.36
Female Immediate Annuitants, Duration 1 year and over, Analysis of the 1974-94 experience 
Deviance profile (terms added sequentially 1st to last)
P aram eter D eviance D egrees o f freedom D iffe rence  in dev iance

22302 .26 619.00
1277.52 618.00 21024 .74

fa 1277.51 617.00 0.01
1265.29 616.00 12.22

a\ 944.10 615.00 321.19

Hi______________ 937.01 614.00 7.09

Table 4.37
Female Immediate Annuitants, Duration 1 year and over, Analysis of the 1974-94 experience 
Distribution of individual studentized deviance residuals for the data as a whole: 6-parameter model
R ange (-oo,-3) (-3,-2) (-2,-1) (-1,0) (0,1) (1,2) (2,3) (3,oo)
expected  frequency 0.77 12.20 77.47 194.57 194.57 77.47 12.20 0.77
observed  frequency 1.00 14.00 82.00 189.00 210.00 61.00 10.00 3.00

Table 4.38
Female Immediate Annuitants, Duration 1 year and over, Analysis of the 1974-94 experience 
p-values based on a 6-parameter log-link model___________________________________
S tatis tica l test p -va lue
C h i-square 0.4921
C um u la tive  dev ia tions 0 .3490
Ind iv idua l s tanda rd ised  dev ia tions 0 .3615
G roup ing  o f s igns o f dev ia tions 0 .5990
S igns o f dev ia tions 0 .9666

Figure 4.23 is a comparative plot of predicted forces of mortality for female 

immediate annuitants with policy duration 1 year and over, for the period 1992 to 

2014, with model parameters estimated from the 1958-94 and the 1974-94 mortality 

experiences. A similar pattern as for the male annuitants emerges in that predicted 

forces of mortality based on the 1974-94 mortality experience are lower over the 

whole period for x greater than 65 years, and higher at ages below 60 years. For ages 

between 60 and 65 years, the rates based on the 1974-94 experience are generally 

higher during the earlier years of the projection period. Overall, it would appear that 

as for male annuitants with policy duration one year and over, the model based on the
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1974-94 mortality experience gives lower predicted forces of mortality for female 

annuitants at duration 1 year and over.

The corresponding formula for the reduction factors based on parameter estimates 

given in Table 4.34 is:

RF(x,n)= exp n
10

f
0.177477 + 0.057479

V

x — 80 
15

or

RF{x,n) = exp[{- 0.048403 + 0.000383* }w].

(4.42)

(4.43)

1958-94 experience -------- 1974-94 experience

Figure 4.23 Female immediate annuitants, d l+  years, 1992-2014 predicted forces o f mortality plotted on the log 

scale; 6-parameter log-link models with r = 1, s  = 3 and y\\, based on the 1958-94 and the 1974-94 mortality 

experiences
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Predicted forces of mortality for male and female immediate annuitants, with 

projections made over a 20-year period, from 1995 to 2014 are shown in Figure 4.24. 

The predicted forces of mortality for male annuitants are consistently higher than 

predicted forces of mortality for female annuitants at all ages and in each of the 20 

calendar years, for which the rates have been projected, with the highest differences 

occurring at the older ages. Tables 4.39a, 4.39b and Tables 4.40a, 4.40b give the 

predicted forces of mortality for males and females respectively, tabulated at 

quadrennial periods from 1974 to 2014.

As an illustration of confidence intervals for future forces of mortality for both male 

and female annuitants, Appendix 2 shows confidence intervals for predicted forces of 

mortality in the calendar-year 2014 based on modelling the 1974-94 mortality 

experiences.

male annuitants -------  female annuitants

Figure 4.24 Immediate annuitants, d l+  years, 1992-2014 predicted forces of mortality based on the 6-parameter 

log-link models derived from the 1974-94 mortality experiences
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Table 4.39a Male Immediate Annuitants, Duration 1 year and over
Analysis of the 1974-94 experience, predicted force of mortality at quadrennial periods 1974-1994
age 1974 1978 1982 1986 1990 1994
55 0 .009569 0 .008894 0 .008267 0 .007683 0.007141 0 .006638
56 0 .010316 0 .009595 0 .008924 0 .008300 0 .007720 0.007181
57 0 .011146 0 .010374 0 .009656 0 .008987 0 .008365 0 .007785
58 0 .012067 0 .011240 0 .010469 0 .009750 0 .009082 0 .008459
59 0.013091 0.012201 0 .011372 0 .010600 0 .009879 0 .009208
60 0 .014227 0 .013270 0 .012377 0 .011544 0 .010767 0 .010042
61 0 .015489 0 .014457 0 .013493 0 .012594 0 .011754 0.010971
62 0 .016889 0 .015774 0 .014733 0.013761 0 .012853 0 .012005
63 0 .018443 0 .017237 0.016111 0 .015058 0 .014074 0 .013155
64 0 .020166 0.018861 0.017641 0 .016500 0 .015433 0 .014434
65 0 .022077 0 .020663 0 .019340 0 .018102 0 .016943 0 .015858
66 0 .024196 0 .022662 0 .021226 0 .019880 0 .018620 0 .017440
67 0 .026543 0 .024878 0 .023317 0 .021855 0 .020484 0 .019199
68 0 .029142 0 .027333 0 .025637 0 .024045 0 .022553 0 .021153
69 0 .032018 0 .030052 0 .028206 0 .026474 0 .024848 0 .023322
70 0 .035199 0.033061 0 .031052 0 .029165 0 .027393 0 .025729
71 0 .038714 0 .036387 0 .034200 0 .032145 0 .030213 0 .028397
72 0 .042594 0 .040062 0 .037680 0 .035440 0 .033333 0 .031352
73 0 .046872 0 .044116 0 .041523 0 .039082 0 .036784 0 .034622
74 0 .051584 0 .048586 0.045761 0.043101 0 .040596 0 .038236
75 0 .056768 0 .053505 0 .050430 0 .047532 0 .044800 0 .042225
76 0 .062462 0 .058913 0 .055566 0 .052409 0.049431 0 .046623
77 0 .068707 0 .064849 0 .061207 0 .057770 0 .054526 0 .051464
78 0 .075544 0 .071352 0 .067392 0 .063652 0 .060120 0 .056784
79 0 .083017 0 .078465 0 .074162 0 .070096 0 .066252 0 .062619
80 0 .091168 0 .086229 0 .081558 0 .077140 0.072961 0 .069008
81 0 .100040 0 .094687 0 .089620 0 .084824 0 .080285 0 .075988
82 0 .109675 0 .103878 0 .098388 0 .093188 0 .088263 0 .083598
83 0.120111 0 .113842 0.107901 0 .102270 0 .096932 0 .091873
84 0 .131387 0 .124617 0 .118196 0 .112105 0 .106329 0 .100850
85 0 .143535 0 .136234 0 .129305 0 .122728 0 .116485 0 .110560
86 0 .156584 0 .148723 0 .141257 0 .134166 0 .127430 0 .121033
87 0 .170555 0 .162106 0 .154076 0 .146443 0 .139189 0 .132294
88 0 .185463 0 .176398 0 .167777 0 .159577 0 .151778 0 .144360
89 0.201311 0 .191606 0 .182369 0 .173577 0 .165209 0 .157245
90 0 .218094 0 .207725 0 .197849 0 .188443 0 .179483 0 .170950
91 0 .235793 0 .224740 0 .214204 0 .204163 0 .194592 0 .185470
92 0 .254375 0 .242620 0 .231408 0 .220714 0 .210515 0 .200787
93 0 .273792 0 .261322 0 .249420 0 .238060 0 .227218 0 .216869
94 0 .293977 0 .280784 0 .268183 0 .256147 0 .244652 0 .233673
95 0 .314847 0 .300928 0 .287624 0 .274908 0 .262754 0 .251137
96 0 .336299 0 .321655 0 .307650 0 .294254 0.281441 0 .269187
97 0 .358207 0 .342850 0 .328150 0.314081 0 .300615 0 .287727
98 0 .380429 0 .364373 0 .348995 0 .334266 0 .320158 0 .306646
99 0 .402800 0 .386069 0 .370034 0 .354664 0 .339933 0 .325814
100 0 .425134 0 .407760 0 .391097 0 .375115 0 .359785 0 .345082
101 0 .447228 0.429251 0 .411997 0 .395437 0 .379542 0 .364286
102 0.468861 0 .450329 0 .432530 0 .415435 0 .399015 0 .383244
103 0 .489798 0 .470768 0 .452477 0 .434897 0 .418000 0 .401759
104 0 .509793 0 .490329 0 .471607 0.453601 0.436281 0 .419624
105 0.528591 0 .508764 0.489681 0 .471313 0 .453635 0 .436619
106 0 .545935 0 .525824 0 .506455 0 .487799 0 .469830 0 .452523
107 0 .561567 0 .541259 0 .521685 0 .502819 0 .484636 0 .467110
108 0 .575239 0 .554824 0 .535134 0 .516142 0 .497824 0 .480157
109 0 .586715 0 .566288 0 .546572 0 .527543 0 .509176 0 .491449
110 0 .595775 0 .575435 0 .555789 0 .536814 0 .518486 0 .500785

163



Table 4.39b Male Immediate Annuitants, Duration 1 year and over
Analysis of the 1974-94 experience, predicted force of mortality at quadrennial periods 1998-2014
age 1998 2002 2006 2010 2014
55 0 .006169 0 .005734 0 .005329 0 .004953 0 .004604
56 0 .006679 0.006212 0 .005778 0 .005374 0 .004998
57 0 .007246 0 .006744 0 .006277 0 .005843 0 .005438
58 0 .007878 0 .007338 0 .006834 0 .006366 0 .005929
59 0 .008582 0 .007999 0 .007456 0 .006949 0 .006477
60 0 .009367 0 .008736 0 .008148 0 .007600 0 .007088
61 0 .010240 0 .009557 0 .008920 0 .008326 0.007771
62 0 .011212 0 .010472 0.009781 0 .009136 0 .008533
63 0 .012295 0 .011492 0.010741 0 .010039 0 .009383
64 0.013501 0 .012627 0 .011810 0 .011046 0 .010332
65 0 .014842 0 .013892 0 .013002 0 .012170 0 .011390
66 0 .016335 0 .015299 0 .014330 0 .013422 0.012571
67 0 .017995 0 .016866 0 .015808 0 .014816 0 .013887
68 0 .019840 0 .018608 0 .017453 0 .016370 0 .015354
69 0 .021890 0 .020545 0 .019284 0 .018099 0 .016988
70 0 .024165 0 .022697 0 .021318 0 .020023 0 .018806
71 0 .026690 0 .025086 0 .023578 0.022161 0 .020829
72 0 .029488 0 .027735 0 .026086 0 .024536 0 .023077
73 0 .032586 0.030671 0 .028868 0 .027170 0 .025573
74 0 .036013 0 .033920 0 .031948 0.030091 0.028341
75 0 .039798 0.037511 0 .035355 0 .033323 0 .031408
76 0 .043974 0 .041476 0 .039119 0 .036897 0.034801
77 0 .048574 0 .045846 0 .043272 0 .040842 0 .038548
78 0 .053632 0 .050656 0 .047845 0 .045190 0 .042682
79 0 .059185 0 .055940 0 .052872 0 .049973 0 .047233
80 0 .065269 0 .061733 0 .058389 0 .055226 0 .052234
81 0 .071922 0 .068073 0 .064430 0 .060982 0 .057719
82 0 .079179 0 .074995 0.071031 0 .067277 0.063721
83 0 .087078 0 .082534 0 .078226 0 .074144 0 .070274
84 0 .095653 0 .090724 0 .086050 0 .081616 0 .077410
85 0 .104936 0 .099599 0 .094533 0 .089724 0.085161
86 0 .114957 0 .109186 0 .103705 0 .098499 0 .093554
87 0 .125740 0.119511 0.113591 0 .107964 0 .102616
88 0 .137305 0 .130594 0 .124212 0.118141 0 .112367
89 0 .149664 0 .142449 0 .135582 0 .129046 0 .122824
90 0 .162823 0 .155082 0 .147708 0 .140686 0 .133997
91 0 .176776 0 .168489 0.160591 0 .153062 0 .145887
92 0 .191508 0 .182658 0 .174217 0 .166166 0 .158487
93 0 .206992 0 .197564 0 .188566 0 .179978 0.171781
94 0 .223186 0 .213170 0 .203603 0 .194466 0 .185739
95 0 .240035 0 .229423 0 .219280 0 .209585 0 .200319
96 0 .257466 0 .246255 0 .235533 0 .225277 0 .215468
97 0.275391 0 .263584 0 .252283 0 .241467 0 .231114
98 0 .293704 0 .281308 0 .269436 0 .258064 0 .247173
99 0.312281 0 .299310 0 .286878 0 .274963 0 .263542
100 0 .330980 0 .317455 0 .304482 0 .292039 0 .280105
101 0 .349644 0 .335590 0.322101 0 .309154 0 .296727
102 0 .368097 0 .353548 0 .339574 0 .326153 0 .313262
103 0 .386150 0 .371147 0 .356726 0 .342866 0 .329545
104 0 .403602 0 .388192 0 .373370 0 .359114 0 .345403
105 0 .420242 0 .404479 0 .389307 0 .374705 0 .360650
106 0 .435854 0 .419798 0 .404335 0 .389440 0 .375095
107 0 .450217 0 .433936 0 .418243 0 .403118 0 .388540
108 0 .463116 0 .446680 0 .430828 0 .415538 0 .400790
109 0 .474339 0 .457824 0 .441885 0 .426500 0 .411652
110 0 .483687 0 .467174 0 .451224 0 .435819 0 .420939



Table 4.40a Female Immediate Annuitants, Duration 1 year and over
Analysis of the 1974-94 experience, predicted force of mortality at quadrennial periods 1974-1994
age 1974 1978 1982 1986 1990 1994
55 0.009631 0 .008652 0 .007773 0 .006984 0 .006274 0 .005637
56 0 .009807 0 .008823 0 .007937 0 .007140 0 .006423 0 .005778
57 0 .010040 0 .009044 0 .008147 0 .007338 0 .006610 0 .005954
58 0.010331 0 .009318 0 .008405 0.007581 0 .006838 0 .006167
59 0 .010683 0 .009648 0 .008714 0 .007870 0 .007108 0 .006419
60 0 .011098 0 .010037 0 .009077 0 .008208 0 .007423 0 .006713
61 0 .011583 0 .010489 0 .009498 0 .008600 0 .007788 0 .007052
62 0.012141 0 .011008 0 .009982 0 .009050 0 .008206 0.007441
63 0 .012779 0 .011602 0 .010534 0 .009564 0 .008683 0 .007883
64 0 .013504 0 .012277 0.011161 0 .010146 0 .009224 0 .008386
65 0 .014324 0 .013040 0 .011870 0 .010805 0 .009836 0 .008954
66 0 .015249 0 .013900 0 .012670 0 .011548 0 .010526 0 .009595
67 0 .016289 0 .014867 0 .013569 0 .012385 0 .011303 0 .010317
68 0 .017457 0 .015954 0 .014580 0 .013324 0 .012177 0 .011129
69 0 .018765 0.017171 0 .015713 0 .014379 0 .013158 0.012041
70 0 .020228 0 .018535 0 .016983 0 .015562 0 .014259 0 .013066
71 0 .021863 0 .020060 0 .018405 0 .016887 0 .015493 0 .014215
72 0 .023690 0 .021764 0 .019995 0 .018369 0 .016876 0 .015504
73 0 .025728 0 .023667 0 .021772 0 .020028 0 .018425 0 .016949
74 0 .028000 0.025791 0 .023757 0 .021883 0 .020157 0 .018567
75 0.030531 0 .028160 0 .025973 0 .023956 0 .022095 0 .020379
76 0 .033348 0 .030799 0 .028444 0 .026270 0.024261 0 .022407
77 0 .036482 0 .033737 0 .031199 0 .028852 0.026681 0 .024674
78 0 .039965 0 .037006 0 .034267 0.031731 0 .029382 0 .027207
79 0.043831 0 .040640 0.037681 0 .034938 0 .032394 0 .030036
80 0 .048118 0 .044673 0 .041476 0 .038507 0 .035750 0.033191
81 0 .052867 0 .049147 0 .045689 0 .042474 0 .039485 0 .036707
82 0 .058119 0.054101 0 .050360 0 .046878 0 .043637 0 .040620
83 0.063921 0 .059579 0 .055533 0.051761 0 .048246 0 .044969
84 0 .070318 0 .065628 0.061251 0 .057166 0 .053354 0 .049796
85 0 .077359 0 .072295 0 .067562 0 .063139 0 .059006 0 .055143
86 0 .085093 0 .079627 0 .074512 0 .069726 0 .065247 0 .061056
87 0 .093570 0 .087675 0.082151 0 .076975 0 .072125 0.067581
88 0 .102839 0 .096487 0 .090526 0 .084934 0 .079687 0 .074765
89 0 .112948 0 .106110 0 .099686 0.093651 0.087981 0 .082655
90 0 .123940 0 .116589 0 .109675 0.103171 0 .097052 0 .091296
91 0 .135856 0 .127967 0 .120536 0 .113536 0 .106943 0 .100733
92 0 .148730 0 .140277 0 .132305 0 .124786 0 .117695 0 .111006
93 0 .162589 0 .153550 0 .145014 0 .136953 0 .129339 0 .122149
94 0 .177449 0 .167805 0 .158685 0 .150060 0 .141905 0 .134192
95 0 .193315 0 .183049 0 .173328 0 .164123 0 .155407 0 .147154
96 0 .210178 0 .199278 0 .188943 0 .179144 0 .169854 0 .161045
97 0.228011 0.216471 0 .205514 0 .195112 0 .185237 0.175861
98 0 .246770 0 .234588 0 .223007 0 .211998 0 .201532 0 .191583
99 0 .266387 0 .253569 0 .241368 0 .229754 0 .218699 0 .208176
100 0 .286772 0 .273332 0 .260523 0 .248313 0 .236676 0 .225584
101 0.307811 0.293771 0 .280372 0 .267583 0 .255378 0 .243730
102 0 .329362 0 .314753 0.300791 0 .287449 0 .274698 0 .262513
103 0 .351256 0 .336117 0 .321630 0 .307767 0 .294502 0 .281808
104 0 .373296 0 .357677 0 .342710 0 .328370 0 .314630 0 .301465
105 0 .395259 0 .379218 0 .363828 0 .349063 0 .334897 0 .321305
106 0 .416896 0 .400503 0 .384754 0 .369625 0 .355090 0 .341127
107 0 .437935 0 .421267 0 .405234 0.389811 0 .374975 0 .360704
108 0 .458085 0 .441230 0 .424995 0 .409358 0 .394296 0 .379788
109 0 .477043 0 .460094 0 .443748 0 .427982 0 .412777 0.398111
110 0 .494494 0 .477553 0 .461192 0.445391 0 .430132 0 .415395
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Table 4.40b Female Immediate Annuitants, Duration 1 year and over
Analysis of the 1974-94 experience, predicted force of mortality at quadrennial periods 1998-2014
age 1998 2002 2006 2010 2014
55 0 .005064 0 .004550 0 .004088 0 .003672 0 .003299
56 0 .005198 0 .004676 0 .004207 0 .003784 0 .003404
57 0 .005364 0.004831 0 .004352 0 .003920 0.003531
58 0 .005563 0 .005017 0 .004525 0 .004082 0 .003682
59 0 .005798 0 .005236 0 .004729 0.004271 0 .003857
60 0.006071 0 .005490 0 .004965 0 .004490 0 .004060
61 0 .006386 0 .005783 0 .005236 0 .004742 0 .004294
62 0.006747 0 .006117 0 .005547 0 .005029 0 .004560
63 0 .007157 0 .006498 0 .005900 0 .005357 0 .004863
64 0 .007623 0 .006930 0 .006300 0 .005728 0 .005207
65 0 .008150 0 .007419 0 .006754 0 .006148 0 .005597
66 0 .008745 0.007971 0 .007266 0 .006623 0 .006037
67 0 .009416 0 .008594 0 .007843 0 .007159 0 .006534
68 0 .010170 0 .009295 0 .008494 0 .007763 0 .007094
69 0 .011019 0 .010083 0 .009227 0 .008444 0 .007727
70 0 .011972 0 .010970 0 .010052 0 .009210 0 .008440
71 0 .013043 0 .011967 0 .010979 0 .010074 0 .009243
72 0 .014244 0 .013086 0 .012022 0.011045 0 .010147
73 0 .015592 0 .014343 0 .013194 0 .012138 0 .011166
74 0 .017103 0 .015754 0.014511 0 .013367 0 .012313
75 0 .018797 0 .017337 0 .015990 0 .014748 0 .013603
76 0 .020694 0 .019112 0.017651 0.016301 0 .015055
77 0 .022817 0.021101 0 .019513 0 .018045 0 .016687
78 0 .025193 0 .023328 0 .021602 0 .020003 0 .018522
79 0 .027849 0 .025822 0 .023942 0.022199 0 .020583
80 0 .030815 0 .028609 0.026561 0.024660 0 .022895
81 0 .034124 0 .031723 0.029491 0 .027416 0 .025487
82 0.037811 0 .035197 0 .032763 0 .030498 0 .028390
83 0 .041915 0 .039068 0 .036415 0 .033942 0 .031636
84 0 .046475 0 .043375 0 .040482 0 .037782 0 .035263
85 0 .051533 0 .048159 0 .045006 0 .042060 0 .039307
86 0 .057134 0 .053464 0 .050029 0 .046816 0 .043808
87 0 .063323 0 .059333 0 .055595 0 .052092 0 .048810
88 0 .070146 0 .065813 0 .061747 0 .057933 0 .054354
89 0.077651 0 .072950 0 .068533 0 .064384 0 .060486
90 0 .085882 0 .080789 0 .075997 0 .071490 0 .067250
91 0 .094884 0 .089374 0 .084184 0 .079296 0.074691
92 0 .104697 0 .098747 0 .093135 0 .087842 0 .082850
93 0 .115359 0 .108946 0 .102890 0 .097170 0 .091768
94 0 .126899 0 .120002 0 .113480 0 .107313 0 .101480
95 0 .139340 0 .131940 0 .124933 0 .118298 0 .112016
96 0 .152693 0 .144774 0 .137266 0 .130147 0 .123398
97 0 .166960 0 .158509 0 .150486 0.142869 0 .135638
98 0 .182125 0 .173134 0 .164587 0 .156462 0 .148738
99 0 .198159 0 .188624 0 .179548 0 .170909 0 .162686
100 0 .215012 0 .204935 0.195331 0 .186177 0.177451
101 0 .232613 0 .222003 0 .211877 0 .202212 0 .192989
102 0 .250869 0.239741 0 .229106 0 .218944 0 .209232
103 0 .269662 0 .258039 0 .246918 0 .236275 0.226091
104 0.288851 0 .276764 0 .265183 0 .254087 0 .243455
105 0 .308266 0 .295755 0 .283752 0.272237 0 .261188
106 0 .327713 0 .314827 0 .302447 0 .290554 0 .279129
107 0 .346976 0 .333770 0 .321067 0 .308848 0 .297093
108 0 .365814 0 .352354 0 .339389 0.326901 0 .314873
109 0 .383967 0 .370325 0 .357168 0 .344479 0 .332240
110 0 .401163 0 .387419 0 .374146 0 .361328 0 .348949



4.2.9 Analysis of the 1958-94 male annuitants’ mortality 

experience at duration 1+ years using weighted likelihood
From the preceding discussions, it can be inferred that the preferred model for 

projecting mortality for male immediate annuitants with policy duration 1 year and 

over would be a 6-parameter model based on an analysis of the 1974-94 experience. 

The model appears to provide a better representation of the likely future trends in 

male annuitants’ mortality when compared to models based on the 1958-94 

experience.

An alternative approach would be to analyse the 1958-94 experience using weighted 

likelihood to estimate the model parameters. The likelihood is weighted by calendar 

year, with the greatest weight given to the most recent calendar year in the 

investigation. This approach would mean that while trends are analysed over a longer 

period, greater contribution in the determination of the model parameters is provided 

by the more recent experience, which is considered to be of greater relevance to future 

mortality trends.

Denoting the weight factor applicable to calendar year t as co„ and the maximum 

weight as co, with 0 < co < 1 and 0 < co, < co, co, may be defined as

for some suitably chosen value of co. The unknown parameters are therefore estimated 

by maximising the expression:

(4.44)

(p x,t
(4.45)

Using this approach, the 6-parameter model
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was refitted to the 1958-94 male annuitants’ mortality experience with co= 0.9. Forces 

of mortality predicted on the basis of the revised parameter estimates, together with 

forces of mortality derived in Section 4.2.7 using unweighted likelihood, are shown in 

Figure 4.25. Clearly the rapid increase with age of forces of mortality at extreme old 

age has been reduced. In particular, the revised parameter estimates are such that in 

general, the predicted forces of mortality are lower at each age above 90 years and fux, 

< 1 for all x < 110.

An examination of the parameter estimates involving terms in x and higher order 

terms in x, reveals that while the estimate of f i  in the original model is positive, the 

revised estimate in the model based on weighted likelihood is negative, thereby 

having the general effect of reducing predicted forces of mortality particularly when x 

is large. Even though the parameter yftis not statistically significant, its assumed value 

will still have an effect on the values of the predicted forces of mortality at each age. 

In addition, the absolute value of /?2, the other negative parameter estimate involving 

terms in x, is larger in the revised model. The parameter estimates are shown in Table 

4.41.

Table 4.41
Male immediate annuitants, d1+ years, 6-parameter log-link model based on the 1958-94 experience, 
parameter estimates based on weighted and unweighted likelihood____________________________
P aram eter E stim ate  based on unw eighted  

like lihood

E stim ate  based on w e igh ted  

like lihood2

f i -2 .473453 -2 .477385  (0 .0091)

fi 1 .361608 1.357315  (0 .0191)

f i -0 .024799 -0 .044192  (0 .0208)

f i 0 .010189 -0.010001 (0 .0220)
OL\ -0 .199500 -0 .202962  (0 .0156)

__________________ 0 .029327 0 .050063  (0 .0331)

2 S tandard  erro rs are g iven  in  paren thesis.
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Figure 4.25 Male immediate annuitants, d l+  years, analysis o f the 1958-94 mortality experience, 6-parameter log- 
link model with parameter estimates based on weighted and unweighted likelihood

The pattern of the revised predicted forces of mortality seems to confirm the assertion 

that the improvements in male annuitants’ mortality that have occurred in the more 

recent years are not adequately reflected in a model derived from the experience from 

1958, with equal weighting given to each calendar year. It is also worth noting at this 

point that parameter estimates derived from the 1974-94 experience still provide the 

lowest projected forces of mortality for male annuitants with policy duration 1 year 

and over.

For completeness, the predicted forces of mortality on the basis of the revised 

parameter estimates shown in Table 4.41, are given in Tables 4.42a, 4.42b and 4.42c.
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Table 4.42a Predicted forces of mortality for male Immediate annuitants, duration 1+ years, 1958-74
Based on an analysis of 1958-94 experience, model parameters estimated using weighted likelihood
age 1958 1962 1966 1970 1974
55 0 .010840 0.010172 0 .009545 0 .008956 0 .008404
56 0 .011852 0 .011130 0.010451 0 .009814 0 .009216
57 0 .012965 0 .012184 0 .011449 0 .010759 0.010111
58 0 .014188 0 .013343 0 .012548 0.011801 0 .011098
59 0 .015533 0 .014618 0 .013758 0 .012948 0 .012185
60 0.017011 0.016021 0 .015089 0.014211 0 .013384
61 0 .018635 0 .017564 0 .016554 0 .015603 0 .014706
62 0 .020419 0 .019260 0 .018166 0 .017135 0 .016162
63 0 .022379 0 .021124 0 .019940 0.018821 0 .017766
64 0.024531 0 .023173 0 .021890 0 .020677 0 .019532
65 0 .026894 0 .025423 0 .024033 0 .022719 0 .021477
66 0 .029486 0 .027894 0 .026389 0 .024964 0 .023617
67 0 .032329 0 .030607 0 .028976 0 .027432 0.025971
68 0 .035446 0 .033582 0 .031817 0 .030144 0 .028560
69 0.038861 0 .036845 0 .034934 0 .033122 0 .031404
70 0.042601 0.040421 0 .038353 0.036391 0 .034529
71 0 .046694 0 .044338 0 .042100 0 .039976 0 .037959
72 0.051171 0 .048625 0 .046205 0 .043906 0 .041722
73 0 .056063 0 .053313 0 .050698 0 .048212 0 .045847
74 0 .061407 0 .058438 0 .055613 0 .052924 0 .050366
75 0 .067238 0 .064035 0 .060984 0 .058079 0 .055312
76 0 .073596 0 .070142 0 .066850 0 .063712 0 .060722
77 0 .080522 0 .076800 0 .073249 0 .069863 0 .066634
78 0 .088059 0.084051 0 .080225 0 .076573 0 .073088
79 0 .096254 0.091941 0.087821 0 .083886 0.080127
80 0 .105154 0 .100517 0 .096084 0 .091847 0 .087796
81 0 .114810 0 .109828 0 .105062 0 .100504 0 .096143
82 0 .125272 0 .119926 0 .114807 0 .109907 0 .105216
83 0 .136596 0 .130863 0 .125370 0 .120108 0 .115067
84 0 .148835 0 .142694 0 .136807 0 .131162 0 .125750
85 0 .162047 0 .155476 0 .149172 0 .143123 0 .137320
86 0 .176289 0 .169266 0 .162523 0 .156048 0 .149832
87 0 .191618 0.184121 0 .176917 0 .169995 0 .163344
88 0 .208092 0 .200099 0 .192413 0 .185022 0 .177915
89 0 .225770 0 .217259 0 .209068 0 .201187 0 .193602
90 0 .244707 0 .235657 0.226941 0 .218547 0 .210465
91 0 .264958 0 .255348 0 .246087 0.237161 0 .228559
92 0 .286577 0 .276387 0 .266560 0 .257083 0 .247942
93 0.309611 0 .298824 0 .288413 0 .278365 0 .268667
94 0 .334107 0 .322706 0 .311694 0 .301058 0 .290785
95 0 .360104 0 .348074 0 .336446 0 .325206 0 .314342
96 0 .387636 0 .374965 0 .362707 0 .350850 0.339381
97 0 .416732 0 .403408 0.390511 0 .378025 0 .365939
98 0 .447410 0 .433426 0 .419880 0 .406757 0 .394044
99 0 .479679 0.465031 0 .450832 0 .437066 0 .423720
100 0 .513538 0 .498226 0.483371 0 .468959 0 .454977
101 0 .548975 0 .533002 0 .517494 0 .502437 0 .487818
102 0 .585965 0 .569338 0 .553183 0 .537486 0 .522234
103 0 .624468 0 .607199 0 .590407 0 .574079 0 .558203
104 0 .664430 0 .646534 0.629121 0 .612177 0 .595689
105 0 .705779 0 .687279 0 .669265 0 .651722 0 .634640
106 0 .748427 0 .729350 0 .710760 0 .692644 0 .674989
107 0 .792269 0 .772648 0 .753512 0.734851 0 .716652
108 0 .837180 0 .817052 0 .797408 0 .778237 0 .759526
109 0 .883016 0 .862425 0 .842315 0 .822674 0.803491
110 0 .929613 0 .908610 0.888081 0 .868017 0 .848405
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Table 4.42b Predicted forces of mortality for male immediate annuitants, duration 1+ years, 1978-94
Based on an analysis of 1958-94 experience, model parameters estimated using weighted likelihood

age 1978 1982 1986 1990 1994
55 0 .007886 0 .007400 0 .006943 0 .006515 0 .006113
56 0 .008654 0 .008126 0.007631 0 .007166 0 .006729
57 0.009501 0 .008929 0.008391 0 .007885 0 .007410
58 0 .010437 0 .009815 0 .009230 0 .008680 0 .008163
59 0 .011468 0 .010793 0 .010157 0 .009559 0 .008997
60 0 .012606 0 .011872 0 .011182 0.010531 0 .009919
61 0.013861 0 .013064 0 .012313 0 .011605 0 .010938
62 0 .015244 0 .014379 0 .013562 0 .012792 0 .012066
63 0 .016770 0 .015829 0 .014942 0 .014104 0 .013313
64 0.018451 0 .017429 0 .016464 0 .015552 0.014691
65 0 .020303 0 .019193 0 .018143 0.017151 0 .016213
66 0 .022342 0 .021136 0 .019995 0 .018916 0 .017895
67 0 .024588 0 .023278 0 .022038 0 .020864 0 .019752
68 0 .027058 0 .025636 0 .024288 0.023011 0.021801
69 0 .029775 0.028231 0 .026767 0 .025378 0 .024062
70 0 .032762 0 .031086 0 .029495 0 .027986 0 .026554
71 0 .036043 0 .034225 0 .032498 0 .030858 0.029301
72 0 .039646 0 .037673 0 .035799 0 .034018 0 .032325
73 0 .043598 0 .041459 0 .039426 0 .037492 0 .035653
74 0.047931 0 .045614 0 .043408 0 .041310 0 .039313
75 0 .052677 0 .050168 0 .047778 0 .045502 0 .043334
76 0 .057872 0 .055156 0 .052568 0.050101 0 .047749
77 0 .063554 0 .060616 0 .057814 0 .055142 0 .052593
78 0.069761 0 .066586 0 .063555 0 .060662 0.057901
79 0 .076537 0 .073107 0.069831 0 .066702 0 .063713
80 0 .083924 0 .080223 0 .076685 0 .073303 0.070071
81 0.091971 0 .087980 0 .084162 0.080511 0 .077017
82 0 .100725 0 .096426 0 .092310 0 .088370 0 .084599
83 0 .110238 0.105611 0 .101178 0 .096932 0 .092863
84 0 .120562 0 .115587 0 .110818 0 .106246 0 .101862
85 0.131751 0 .126409 0 .121283 0 .116365 0 .111647
86 0 .143863 0 .138132 0 .132629 0 .127345 0 .122272
87 0 .156953 0 .150812 0 .144912 0 .139242 0 .133794
88 0.171081 0 .164509 0 .158190 0 .152114 0.146271
89 0 .186304 0 .179280 0 .172522 0 .166018 0 .159759
90 0.202681 0 .195184 0 .187966 0 .181014 0 .174319
91 0 .220269 0 .212280 0.204581 0 .197160 0 .190009
92 0 .239126 0 .230624 0 .222424 0 .214516 0 .206889
93 0 .259307 0 .250272 0 .241553 0 .233137 0 .225015
94 0 .280862 0 .271278 0.262021 0 .253080 0 .244444
95 0.303841 0 .293690 0 .283879 0 .274395 0 .265229
96 0 .328287 0 .317555 0 .307174 0 .297133 0 .287420
97 0 .354239 0 .342913 0 .331950 0 .321336 0 .311063
98 0 .381729 0 .369799 0.358241 0 .347045 0 .336198
99 0.410781 0 .398238 0 .386078 0 .374289 0 .362860
100 0.441411 0 .428250 0 .415482 0 .403094 0 .391075
101 0 .473625 0 .459844 0 .446464 0 .433474 0 .420862
102 0 .507416 0 .493017 0 .479028 0 .465435 0 .452228
103 0 .542766 0 .527756 0.513161 0 .498970 0.485171
104 0 .579645 0 .564033 0 .548842 0 .534060 0 .519676
105 0 .618005 0 .601806 0 .586032 0.570671 0 .555713
106 0 .657784 0 .641018 0 .624679 0 .608757 0 .593240
107 0 .698903 0 .681594 0 .664714 0 .648252 0 .632197
108 0 .741265 0 .723444 0 .706050 0 .689075 0 .672508
109 0 .784755 0 .766456 0 .748583 0 .731128 0 .714079
110 0 .829237 0.810501 0 .792189 0.774291 0 .756797
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Table 4.42c Predicted forces of mortality for male immediate annuitants, duration 1+ years, 1998-14
Based on an analysis of 1958-94 experience, model parameters estimated using weighted likelihood
age 1998 2002 2006 2010 2014
55 0 .005736 0 .005383 0.005051 0 .004739 0 .004447
56 0 .006319 0 .005933 0 .005572 0 .005232 0 .004913
57 0 .006963 0 .006544 0 .006149 0 .005779 0 .005430
58 0 .007677 0 .007220 0 .006789 0 .006385 0 .006005
59 0 .008467 0 .007969 0 .007499 0 .007058 0 .006642
60 0 .009342 0 .008798 0 .008286 0 .007804 0 .007350
61 0 .010310 0 .009717 0 .009159 0 .008632 0 .008136
62 0.011381 0 .010735 0 .010125 0 .009550 0 .009008
63 0 .012566 0 .011862 0 .011196 0 .010569 0 .009976
64 0 .013877 0 .013109 0 .012383 0 .011697 0 .011049
65 0 .015327 0 .014489 0 .013697 0 .012948 0 .012240
66 0 .016929 0 .016016 0.015151 0 .014333 0 .013560
67 0 .018700 0 .017704 0.016761 0 .015868 0 .015022
68 0 .020655 0 .019569 0.018541 0 .017566 0 .016643
69 0 .022814 0.021631 0 .020509 0 .019445 0 .018437
70 0 .025196 0 .023907 0 .022684 0 .021523 0 .020422
71 0 .027822 0 .026418 0 .025085 0 .023819 0 .022618
72 0 .030717 0 .029188 0 .027736 0 .026356 0 .025045
73 0 .033904 0.032241 0 .030660 0 .029156 0 .027726
74 0 .037412 0 .035603 0 .033882 0 .032244 0 .030685
75 0 .041270 0 .039304 0.037431 0 .035648 0 .033950
76 0 .045508 0 .043372 0 .041337 0 .039397 0 .037548
77 0 .050162 0 .047843 0.045631 0 .043522 0 .041510
78 0 .055265 0 .052750 0 .050349 0 .048057 0 .045870
79 0 .060858 0.058131 0 .055526 0 .053038 0 .050662
80 0 .066980 0 .064027 0 .061203 0 .058504 0 .055924
81 0 .073675 0 .070478 0 .067420 0 .064495 0 .061696
82 0 .080988 0.077531 0 .074222 0 .071054 0.068021
83 0 .088966 0 .085232 0 .081654 0 .078227 0 .074944
84 0 .097659 0 .093629 0 .089766 0 .086062 0.082511
85 0 .107119 0 .102776 0 .098608 0 .094610 0 .090773
86 0.117401 0 .112724 0 .108234 0 .103922 0.099782
87 0 .128560 0 .123530 0 .118697 0 .114053 0 .109590
88 0 .140652 0 .135249 0 .130054 0 .125058 0 .120255
89 0 .153736 0.147941 0 .142364 0 .136997 0 .131832
90 0 .167872 0 .161663 0 .155684 0 .149926 0.144381
91 0 .183118 0 .176476 0 .170075 0 .163906 0 .157962
92 0 .199533 0 .192438 0 .185596 0 .178997 0 .172633
93 0 .217176 0 .209609 0 .202307 0 .195258 0 .188456
94 0 .236103 0 .228046 0 .220264 0 .212748 0 .205488
95 0 .256368 0 .247804 0 .239525 0 .231524 0 .223789
96 0 .278024 0 .268936 0 .260144 0 .251640 0 .243414
97 0 .301117 0 .291490 0 .282170 0 .273149 0 .264416
98 0.325691 0.315511 0 .305650 0 .296098 0 .286844
99 0 .351780 0 .341038 0 .330625 0 .320529 0 .310742
100 0 .379415 0 .368102 0 .357127 0 .346479 0 .336148
101 0 .408616 0 .396727 0 .385184 0 .373977 0 .363096
102 0 .439396 0 .426928 0 .414813 0 .403043 0 .391606
103 0 .471754 0 .458708 0 .446022 0 .433687 0 .421694
104 0 .505679 0 .492059 0 .478807 0.465911 0 .453362
105 0 .541147 0 .526963 0.513151 0 .499700 0 .486602
106 0 .578119 0 .563384 0 .549024 0 .535030 0 .521392
107 0.616541 0.601271 0 .586380 0 .571858 0 .557696
108 0 .656340 0 .640560 0 .625159 0 .610129 0 .595460
109 0 .697428 0 .681165 0 .665282 0 .649769 0 .634617
110 0 .739698 0 .722986 0.706651 0 .690685 0 .675080
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4.3 Modelling of immediate annuitants’ select 

mortality experience
In general, immediate annuitants exercise a strong degree of self-selection, resulting 

in lower mortality rates during the initial years following selection. Therefore, in 

addition to modelling the ultimate experience, it is necessary to model the select 

experience for immediate annuitants. In this section, the method of modelling select 

mortality data using GLMs, applied by Haberman and Renshaw (1996), Renshaw and 

Haberman (1997), is applied to the mortality experience of female immediate 

annuitants as an illustration of a complete GLM modelling procedure for mortality 

data that includes select data.

Renshaw and Haberman (1997) suggested a two-stage modelling structure that firstly 

involves modelling the ultimate experience by any suitable method, and then 

modelling the log crude mortality ratios for the select experience relative to the 

ultimate experience. As modelling select experiences is not the focus of this study, 

only a brief description of the modelling procedure is given in Section 4.3.1.

4.3.1 Modelling select mortality: Methodology
For a given observation period, let daxl be the observed number of deaths at age x, 

time t and duration d, and dRcxl the matching central exposed-to-risk at age x, time t 

and duration d.

For an individual select duration d relative to the corresponding ultimate duration 

denoted d+ at age x and time t, define the statistic

d (4.46)

The statistic defined by expression (4.46) is simply the log of the ratio of the crude 

mortality rate at select duration d, to the crude mortality rate at ultimate duration d+, at
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age x in time t and hence provides an estimate of the log of the ratio of the 

corresponding forces of mortality.

The underlying patterns are then modelled by targetting

£ [ 'Z „ ] * lo g
L

^x +y,t
= nxj: (4.47)

with weights

dW = dax /  + axj 
d a x , t + d + a x,<

(4.48)

where d/ux t and d+jux t denote the force of mortality at age x, time t, for select duration 

d and ultimate duration d+ respectively.

The resulting forces of mortality for the individual select durations are given by:

Mx+y2,<= Mx+y., exP(ddx,,)- (4.49)

For CMI data, ax J R cxt provides an estimate of ¡ux rather than of jux+[l2, and hence the 

resulting forces of mortality are given by:

V . ^ X . e x p t V , ) .  (4.50)

The force of mortality at age x, in each time period t and select duration d can 

therefore be considered as a proportion of the corresponding force of mortality at age 

x and ultimate duration d+, where the adjustment factor is given by exp^^  J .

Assuming that the changes in mortality due to time are the same for select and 

ultimate lives, and that these are adequately represented in the modelling of the 

ultimate experience, the suffix t can be dropped from ^i/^and the linear predictor
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denoted drix. The responses dzx are then modelled from the combined experience

over the observation period, for each select duration d = 0, 1, . . . and the ultimate 

duration d+. This is particularly useful when modelling the select experience for 

immediate annuitants where the data are scanty.

As an example of the application of the method, the select mortality experience for 

female immediate annuitants over the period 1974 to 1994 was modelled at select 

durations 0 and 1 to 4 combined, relative to the ultimate experience at duration d+=5+ 

years. The results of analysing the ultimate experience and the select experience are 

given in Sections 4.3.2 and 4.3.3 respectively.

4.3.2 Modelling of the 1974-94 female immediate 

annuitants’ mortality experience, duration 5+ years
The 6-parameter log-link model structure

applied to the immediate annuitants’ mortality experience at duration 1 year and over, 

was fitted to the female immediate annuitants’ mortality experience at duration 5 

years and over, over the calendar-year period 1974 to 1994 for the age range 65-100 

years, giving 720 data cells. The transformed calendar year t' and age x' are:

, t -1984 J , x -  82.5 t = ----------, and x =
10 17.5

The results of graduating the ultimate mortality experience at duration 5 years and 

over, would generally be expected to be similar to the results of graduating ultimate 

mortality experience at duration 1 year and over, over the same age range. This is 

because the ultimate experience at duration 5 years and over is a subset of the ultimate 

experience at duration 1 year and over, with the bulk of the data being at duration 5
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years and over. Thus the same features would be exhibited in the graduated forces of 

mortality for the two experiences. This is in fact borne out by the results obtained 

from modelling the female annuitants’ mortality experience, even though the age 

range is not the same (ages 65-100 at d5+ years and 65-95 at dl+ years).

The parameter estimates obtained from the analysis are given in Table 4.43. As for the 

model of the female annuitants’ experience at duration 1+ years, one parameter /?2, is 

not statistically significant.

The corresponding time reduction factor is:

RF(x,n)= exp — -  0.170246 + .061594 
10 V

x -  82.5 
17.5

V

or

RF{x,n) = exp[(- 0.046062 + 0.00035x)«]

(4 .51)

(4.52)

Table 4.43
Female immediate annuitants, Duration 5 years and over,
6-parameter log-link model based on the 1974-94 experience (deviance = 1060.18 on 714 d.f,, ^ = 1.500)
param e te r estim a te s tandard  e rro r t-va lue

F -2 .684160 0 .0110 -243 .8409

F 1.819016 0 .0246 73.9200

F -0 .022700 0.0250 -0 .9087

F -0 .103723 0.0240 -4 .3168

a\ -0 .170246 0.0135 -12 .5707

0 .061594 0 .0293 2.1008
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4.3.3 Modelling of the female immediate annuitants’ 

select experience: 1974 to 1994
For each of the select durations d = 0 and 1-4 years combined, and ultimate duration 

d+ = 5+ years, the data analysed were the 1974-94 combined mortality experiences, at 

individual ages 65-85 years. There was little data at ages above 85 years for the select 

durations, particularly at duration 0.

In line with Renshaw and Haberman (1997), the dzx responses for the select durations

are determined and the response plots against age x are shown in Figure 4.26. There is 

no clear pattern that can be discerned from the plots although models of the form:

dnx = ed (4.53)

or

drix =Od +Pdx (4-54)

for each duration d would seem reasonable. The best fitting model for each of the 

select durations was of the form of expression (4.53). For each select duration d, the 

parameter ¡3d was not statistically significant. The model represents a horizontal 

straight-line structure and hence a constant adjustment factor at all ages x for each 

duration d.

Table 4.44 shows the linear predictors and adjustment factors for each select duration 

d.

Table 4.44
Fem ale im m ediate annuitants, 1974-94 com bined experience: Linear predictors and adjustm ent 
factors based on ultim ate rates at duration 5 years and over___________________________________
D uration  d L inear P redictor, 9a A d jus tm en t factor: Exp(6b)
0 -0 .3979885 0.67166975
1-4 -0 .1605232 0 .85169806
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Figure 4.18 Female immediate annuitants, 1974-94 mortality experience: differences o f log crude mortality rates 
plotted against age

The forces of mortality for each select duration d are obtained by applying the 

relevant adjustment factor to the predicted forces of mortality at ultimate duration 5+ 

years, based on modelling the 1974 to 1994 mortality experience with respect to both 

age and time as detailed in the preceding sections. For a given select duration d = 0 or 

1-4 combined, the predicted force of mortality at age x in calendar year t is given by:

The form of the model assumes that changes in mortality due to both age and time are 

the same for ultimate and select lives, and that these changes are adequately 

represented in the modelling of the ultimate experience at duration 5 years and over.

The constraints:

°Tjx<drjx <0 for d = 1 to 4 combined,

(4.55)
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are satisfied, ensuring the ordering of forces of mortality with respect to duration d at 

each age x.
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Chapter 5

Modelling Life Office Pensioners’ 

Mortality Experience and Comparison 

of Mortality Improvement Models

5.1 Introduction
The Continuous Mortality Investigations Committee applies the same mortality 

improvement model for both annuitants and life office pensioners. The pensioners’ 

mortality experience was therefore modelled using the same GLM procedures applied 

to immediate annuitants’ mortality data, as detailed in Chapter 4, in order to make 

comparisons of improvement factors arising from the models derived.

The pensioners’ data based on lives, were modelled for males and females separately, 

at individual calendar years t = 1983 to 1996. As with the immediate annuitants’ 

experience, the CMI Bureau provided the data analysed and these pertain to 

pensioners who retired on or after normal retirement age. Data for the period prior to 

1983 were not available for study. For each calendar year t, the data as provided by 

the CMIB are tabulated by age x nearest birthday and by curtate policy duration 

d = 0,1,2,•••, 9 or 10 years and over, separately for males and females. The tabulated 

data consist of the number of deaths, axl occurring at each individual age x in 

calendar year t, and matching initial exposed-to-risk, Rxt.

A summary of the data provided is given in Table 5.1. The central exposed-to-risk, 

Rcxt has been calculated as: Rcxt= Rxt- a xJ 2. That is, the difference between the 

initial exposed-to-risk and half the number of deaths at age x in calendar year t.
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Table 5.1
Life Office Pensioners’ Mortality Experience: 1983-1996

D eaths C entra l E xposed-To-risk C rude  Death Rate

M ale 253041 4009642 0.0631

Fem ale 45706 1313868 0.0348

Total 298747 5323510 0.0561

In line with the current CMI practice, the pensioners’ mortality experience was 

modelled for all durations combined and hence only the aggregate experience is 

presented in Table 5.1. In contrast to the immediate annuitants’ mortality experience 

where the females’ experience is the larger experience, here the male pensioners’ 

experience is the larger experience, constituting just over 75% of the total pensioners’ 

experience in terms of the exposed-to-risk.

For each experience (male or female), the crude death rate was calculated as the total 

number of deaths divided by the corresponding central exposed-to-risk. It is 

interesting to note that the crude death rate for pensioners is lower than the crude 

death rate for immediate annuitants at duration 5+ years, for both males and females 

(0.0763 and 0.0623 respectively for immediate annuitants). It is difficult to draw 

inferences from this observation since the crude death rate does not take into account 

the age of an individual. However, it is worth noting that the annuitants’ experience is 

an ageing experience and that the pensioners’ data is based only on the more recent 

experience, so that the heavier mortality of the earlier years is excluded (assuming 

there has been a decline in mortality over time).

As with the annuitants’ experience, the force of mortality juxt at age x in calendar year 

t, was modelled using formulae of the form:

Mxl = exp 2> / ' +YLnLA*Y
7 = 0 i=i i=l 7=1

(5.1)
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with x', t' and Lj(x') the transformed age, transformed calendar year and Legendre

polynomials respectively, as detailed in Chapter 4.

5.2 Trend analysis of the male life office pensioners’ 

mortality experience
The male life office pensioners’ mortality experience was modelled over the age

range 60 to 100 years, so that the scaled age x’ is given by:

, x -  80x = ------- ;
20

and the scaled calendar year f  is 

, t - 1989.5t = ------------ .
6.5

The data analysed consisted of 574 data cells.

From an analysis of deviance shown in Tables 5.2 and 5.3 and the statistical 

significance of additional parameters introduced to the model formula, the best fitting 

model was determined to be a 7-parameter model of the form:

Mxl = exp H \P jLi  0')}+ {(«i + Ynx')t' + a / 2}
7 = 0

(5.2)

This is a GMX(0,4) term in combination with a trend adjustment term that is quadratic 

in time t on the log scale.

The estimated parameters are given in Table 5.4.

Table 5.2
Male life office pensioners, analysis of the 1983-96 experience
Déviances for polynomial predictors of degree rand s

r =  0 r= 1 r= 2 r=3
s  = 0 105168.63 105158.32 105059.92 105052.67
s =1 3472 .58 1808.00 1788.47 1784.16
s = 2 2607 .44 1071.36 1058.40 1053.26
s =3 2607.00 1061.05 1048.20 1043.12
s = 4 2605.87 1060.85 1047.93 1042.85
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Table 5.3
Male life office pensioners, analysis of the 1983-96 experience 
Deviance profile (terms added sequentially 1st to last)
P aram eter D eviance  D egrees o f freedom  D iffe rence  in dev iance

fa 105168.63 573

fa 3472.58 572 101696.05
1808.00 571 1664.58

fa 1071.36 570 736 .64
Ch 1058.40 569 12.96

fa 1048.20 568 10.20

7>1 937 .14 567 111.06

Yn 933 .38 566 3 .76

Table 5.4
Male life office pensioners, 7-parameter log-link model based on the 1983-96 experience (</>= 1.6600)
param e te r estim ate s tandard  e rro r f-value

fa -2 .524362 0.0056 -447 .9598

fa 1.822949 0.0140 129.9956
» -0 .127455 0.0044 -28 .7098

fa -0 .264690 0.0122 -21 .6416
0.7 -0 .031453 0.0078 -4 .0422

fa -0 .047932 0.0153 -3 .1253

J ±__________________ 0 .105513 0.0129 8.1535

Renshaw and Hatzopoulos (1996) modelled the male life office pensioners’ mortality 

experience over the period 1983-1990 and individual ages 60 to 95, by targetting the 

probability of death, qxt. The number of pension policies was modelled as a binomial 

response variable of a generalised linear model with possible over-dispersion, in 

conjunction with the complementary log-log link function:

lo g { -lo g (l-? J} = ^ ,. (5-3)

Using the result that juxt = -  logpxt, assuming a constant force of mortality between 

ages x and x + u, where 0 < u < 1, then modelling the complementary log-log link 

function (5.3) would be approximately the same as modelling log/uxl, since

Px, = 1 -  ih, ■

The formula adopted in that study was:
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(5.4)log{ log(l - qx)}=  exp I  {/?/,(*')}+ {(a, + yux')t' + a2t'2 + a / 3} .

The difference between equations (5.2) and (5.4) is the one additional term in 

equation (5.4) involving t' , ie the trend adjustment term in (5.4) is a cubic in time t on 

the log scale. In this study, no attempt was made to fit the same 8-parameter model 

since the analysis of the annuitants’ data had shown that higher order terms in t result 

in unreasonable projections.

Based on the 7-parameter model described by equation (5.2), the corresponding 

mortality improvement model for a life attaining exact age x in calendar year t is a 

quadratic in time t on the log scale given by:

where t0 is an appropriate origin (the base calendar year). The model (5.5) may be re-

expressed as:

improvement model (5.6) or (5.7) is the reduction factor for an ultimate life attaining 

exact age x at time n, where n is measured in years from the base calendar year t„.

Figure 5.1 shows predicted forces of mortality at 5-year age intervals for x = 55 to 110 

years and t = 1983 to 2016 together with mortality improvement factors for the period 

t = 1993 to 2016, based on the 7-parameter model. The predicted forces of mortality 

are plotted on the log scale. In deriving the mortality improvement factors, 1992 was 

taken as the base calendar year in order to be consistent with the current CMI 

improvement model.

(5.5)
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Figure 5.1 Male life office pensioners, predicted forces o f mortality: 1983-2016, and mortality improvement 
factors: 1993-2016; based on a 7-parameter log-link model with r = 2, 5 = 3 and yn

7-parameter model -------  6-parameter model

Figure 5.2 Analysis of male life office pensioners’ mortality experience: 1983-96, crude mortality rates and
predicted forces of mortality based on a 7-parameter and a 6-parameter log-link model
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Although the predicted forces of mortality progress gradually with respect to age, the 

rates tend to progress rapidly with time, a feature that would not be desirable in 

determining prices and reserves. The rapid improvement in mortality over time is not 

surprising since the mortality improvement formula (5.5) or (5.6) includes the 

exponential of negative terms in t2 thereby giving rise to a rapid decrease in RF(x,n) 

as t increases.

In view of these results and the conclusions drawn in Chapter 4 in the analyses of 

immediate annuitants’ experiences, a six-parameter model excluding the term 

involving t'2 was then fitted to the data. Thus the form of the revised model was the 

same as the model formula adopted for immediate annuitants, that is:

Details of the parameter estimates for the 6-parameter model are given in Table 5.5.

Figure 5.2 shows crude mortality rates and graduated forces of mortality for male 

pensioners based on the 7-parameter model (5.2) and the 6-parameter model (5.7), 

plotted against calendar year t = 1983 to 1996 on the log scale. The rates are shown at 

10-year age intervals from x = 60 to 100 years and from x = 65 to 95 years.

Although the 7-parameter model has a trend adjustment term that is quadratic in time t 

on the log scale, while the 6-parameter model is linear in t on the log scale, it is 

difficult to discern any differences between the graduated rates from the two models 

based on a visual inspection of the graph. A detailed examination of the predicted 

forces of mortality reveals that in general, the rates based on the 7-parameter model 

are lower than the rates based on the 6-parameter model. However, for the graduated 

rates the differences are small. Both models generally fit the data adequately as can be 

seen from the results of statistical tests of graduation shown in Tables 5.6 and 5.7.

(5.7)
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Table 5.5
Male life office pensioners, 6-parameter log-link model based on the 1983-96 experience 
(deviance = 964.33 on 568 d.f., ^ = 1.7019)______________________________________
param e te r estim ate s tandard  e rro r i-va lue

/*> -2 .535627 0.0050 -510.5671
1.823223 0.0142 128.3969

-0 .264853 0 .0124 -21 .3905
-0 .047458 0 .0155 -3 .0559

a\ -0.125691 0 .0045 -28.2352

yn 0 .096744 0 .0129 7.5275

Table 5.6
Male life office pensioners, analysis of the 1983-96 mortality experience 
Comparison of p-values based on 2 models________________________
S ta tis tica l test 7 -pa ra m e te r m odel 6 -pa ram e te r m odel
C h i-square 0.4921 0.4921
C um u la tive  dev ia tions 0 .5152 0.5048
ind iv idua l s tandard ised  dev ia tions 0 .9288 0.8653
G roup ing  o f s igns  o f dev ia tions 0 .9894 0.9757
S igns o f d ev ia tions 0 .7369 0.9331

Table 5.7
Male life office pensioners, analysis of the 1983-96 experience 
Comparison of the distribution of individual studentized deviance residuals
R ange (-oo,-3) (-3,-2) (-2,-1) (-1,0) (0,1) (1,2) (2,3) (3,co)
expected  frequency  
O bserved  freauencv

0.77 12.13 77.06 193.54 193.54 77.06 12.13 0.77

7 -pa ra m e te r m odel 1.00 12.00 72.00 203.00 187.00 77.00 14.00 1.00
6 -pa ra m e te r m ode l 2 .00 14.00 71.00 198.00 194.00 73.00 14.00 1.00

Predicted forces of mortality and mortality improvement factors for male pensioners, 

based on the 6-parameter log-link model, are shown in Figure 5.3. The projections 

have been made over a 20 calendar year period from 1997 to 2016, and the projected 

forces of mortality are presented at quadrennial periods in Tables 5.8 and 5.9. From 

the graph, it can be observed that the model has a reasonable shape for projections at 

all ages other than extreme old age above 105 years, where the projected forces of 

mortality are increasing with time rather than decreasing. The resulting mortality 

improvement factors at ages less than 106 years exhibit a gradual progression with
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time. For example, based on the 7-parameter model, the force of mortality for a life 

age 55 in 2016 would be expected to be 23% of the force of mortality applicable in 

1992 (a decrease of 77%), whereas on the basis of the 6-parameter model, the 

corresponding percentage reduction is 40%.

The mortality improvement model for male pensioners is simplified to the form:

RF(x,n)= exp — {a, +y,,x'} 
w.

(5.8)

with iv, = 6.5. For the particular parameter estimates given in Table 5.5, the 

improvement formula is:

RF{x,n) = exp[(- 0.078872 + 0.000744*)«]. (5.9)

Figure 5.3 Male life office pensioners, predicted forces of mortality: 1983-2016, and mortality improvement 
factors: 1993-2016; based on a 6-parameter log-link model with r=  1,5 = 3 and yu
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Table 5.8
Male life office pensioners
Projected forces of mortality based on a 7-parameter log-link model
age 1996 2000 2004 2008 2012 2016
55 0 .004349 0 .003525 0 .002789 0 .002155 0 .001626 0 .001198
56 0 .004912 0 .003994 0.003171 0 .002458 0.001861 0 .001375
57 0 .005549 0 .004526 0 .003605 0 .002804 0 .002129 0 .001579
58 0 .006268 0 .005130 0 .004099 0 .003198 0 .002437 0 .001813
59 0.007081 0 .005814 0.004661 0 .003648 0 .002789 0.002081
60 0 .007999 0 .006588 0 .005299 0.004161 0.003191 0 .002390
61 0 .009033 0 .007465 0 .006023 0 .004746 0.003651 0 .002743
62 0 .010199 0 .008455 0 .006845 0 .005410 0 .004176 0 .003147
63 0 .011510 0 .009574 0 .007775 0 .006166 0 .004775 0 .003610
64 0 .012985 0 .010835 0 .008828 0 .007024 0 .005457 0 .004139
65 0 .014640 0 .012256 0 .010019 0 .007997 0 .006233 0 .004744
66 0 .016496 0 .013855 0 .011362 0 .009099 0 .007115 0 .005432
67 0 .018574 0 .015650 0.012877 0 .010345 0 .008115 0 .006217
68 0 .020896 0 .017664 0.014581 0 .011752 0 .009249 0 .007108
69 0 .023487 0 .019919 0 .016496 0 .013339 0 .010532 0.008121
70 0 .026374 0 .022440 0 .018644 0 .015125 0.011981 0 ,009268
71 0 .029583 0 .025252 0 .021048 0.017131 0 .013615 0 .010565
72 0 .033143 0 .028383 0 .023735 0.019381 0 .015453 0.012031
73 0 .037085 0 .031862 0.026731 0 .021898 0 .017516 0 .013682
74 0 .041439 0 .035719 0 .030064 0 .024709 0 .019829 0 .015538
75 0 .046238 0 .039985 0 .033764 0 .027840 0 .022414 0 .017622
76 0 .051513 0 .044692 0.037861 0 .031319 0 .025298 0 .019953
77 0 .057297 0 .049872 0 .042387 0 .035177 0 .028506 0 .022557
78 0.063621 0 .055556 0.047371 0 .039442 0 .032066 0 .025456
79 0 .070516 0 .061777 0 .052847 0 .044144 0 .036006 0 .028677
80 0 .078009 0 .068564 0 .058844 0 .049313 0 .040353 0 .032244
81 0 .086128 0 .075947 0 .065392 0 .054978 0 .045135 0 .036182
82 0 .094895 0 .083949 0 .072517 0 .061168 0 .050380 0 .040517
83 0 .104329 0 .092594 0 .080245 0 .067906 0 .056112 0 .045274
84 0.114441 0 .101900 0 .088597 0 .075217 0 .062355 0 .050475
85 0 .125240 0 .111878 0 .097589 0.083121 0.069131 0 .056142
86 0 .136725 0 .122534 0 .107232 0.091631 0 .076457 0 .062293
87 0 .148886 0 .133867 0 .117530 0 .100758 0 .084346 0 .068944
88 0 .161706 0 .145867 0 .128482 0 .110505 0 .092805 0 .076106
89 0 .175155 0 .158513 0 .140074 0 .120867 0 .101838 0 .083785
90 0 .189194 0 .171774 0 .152287 0 .131832 0 .111438 0 .091982
91 0 .203769 0 .185609 0 .165087 0 .143378 0 .121592 0 .100689
92 0 .218816 0 .199963 0 .178433 0 .155472 0 .132277 0 .109894
93 0 .234255 0 .214768 0 .192266 0.168071 0.143461 0 .119573
94 0 .249993 0 .229942 0.206521 0 .181118 0.155101 0 .129694
95 0 .265925 0 .245392 0 .221113 0 .194546 0 .167142 0 .140218
96 0.281931 0 .261008 0 .235949 0 .208275 0 .179519 0 .151090
97 0 .297879 0 .276669 0 .250920 0 .222210 0 .192153 0 .162249
98 0 .313626 0 .292242 0 .265905 0 .236246 0 .204955 0 .173622
99 0 .329017 0 .307580 0 .280772 0 .250266 0 .217823 0 .185123
100 0.343891 0.322531 0 .295377 0 .264140 0 .230647 0 .196659
101 0.358081 0 .336932 0 .309568 0.277731 0 .243303 0 .208125
102 0 .371415 0 .350615 0 .323187 0 .290893 0.255661 0 .219408
103 0 .383722 0.363411 0 .336072 0 .303473 0 .267585 0 .230387
104 0 .394834 0 .375150 0 .348056 0 .315317 0 .278933 0 .240939
105 0 .404589 0 .385668 0 .358978 0 .326269 0 .289560 0.250931
106 0 .412833 0 .394807 0 .368680 0 .336176 0 .299323 0 .260235
107 0 .419429 0 .402419 0 .377010 0 .344890 0 .308080 0 .268720
108 0 .424255 0 .408373 0 .383832 0 .352273 0 .315697 0 .276259
109 0 .427208 0 .412553 0.389021 0 .358197 0 .322050 0 .282735
110 0 .428212 0 .414866 0 .392475 0 .362552 0 .327026 0 .288037



Table 5.9
Male life office pensioners
Projected forces of mortality based on a 6-parameter log-link model
age 1996 2000 2004 2008 2012 2016
55 0 .004486 0 .003854 0.003311 0 .002845 0 .002444 0 .002100
56 0 .005065 0 .004365 0 .003762 0 .003242 0 .002793 0 .002407
57 0.005721 0 .004944 0 .004274 0 .003694 0 .003193 0 .002759
58 0.006461 0.005601 0 .004856 0 .004209 0 .003649 0 .003163
59 0 .007297 0 .006345 0 .005517 0 .004797 0.004171 0 .003626
60 0.008241 0 .007186 0 .006267 0 .005465 0 .004766 0 .004156
61 0 .009304 0 .008138 0 .007118 0 .006226 0 .005446 0 .004763
62 0 .010502 0 .009213 0 .008082 0 .007090 0 .006220 0 .005457
63 0 .011849 0 .010426 0 .009173 0 .008072 0 .007102 0 .006249
64 0 .013362 0 .011792 0 .010407 0 .009184 0 .008105 0 .007153
65 0.015061 0.013331 0 .011800 0 .010445 0 .009245 0 .008183
66 0 .016964 0 .015060 0 .013370 0 .011870 0 .010538 0 .009356
67 0 .019093 0 .017002 0 .015139 0 .013480 0 .012003 0 .010688
68 0 .021473 0 .019177 0 .017127 0 .015296 0 .013660 0 .012200
69 0 .024126 0.021611 0 .019358 0 .017340 0 .015532 0 .013913
70 0 .027080 0 .024329 0 .021858 0 .019638 0 .017643 0.015851
71 0 .030362 0 .027360 0 .024654 0 .022216 0 .020018 0 .018039
72 0 .034002 0.030731 0 .027774 0 .025102 0 .022687 0 .020504
73 0 .038030 0 .034474 0 .031250 0 .028327 0 .025678 0 .023277
74 0 .042477 0 .038620 0 .035112 0 .031923 0 .029024 0 .026388
75 0 .047375 0.043201 0 .039395 0 .035924 0 .032759 0 .029873
76 0 .052757 0 .048252 0 .044132 0 .040364 0 .036917 0 .033765
77 0 .058654 0 .053805 0 .049358 0 .045278 0 .041535 0 .038102
78 0 .065098 0 .059895 0 .055108 0 .050703 0.046651 0 .042922
79 0 .072120 0 .066553 0 .061417 0 .056676 0 .052302 0 .048265
80 0 .079747 0 .073812 0 .068318 0 .063233 0 .058526 0 .054170
81 0 .088007 0 .081699 0 .075843 0 .070408 0.065361 0 .060677
82 0 .096920 0 .090242 0 .084024 0 .078234 0 .072843 0 .067824
83 0 .106506 0 .099463 0 .092885 0 .086743 0 .081006 0 .075649
84 0 .116776 0 .109378 0 .102450 0 .095960 0.089881 0 .084188
85 0 .127736 0 .120002 0 .112735 0 .105909 0 .099495 0.093471
86 0 .139387 0 .131337 0 .123752 0 .116605 0 .109870 0 .103525
87 0 .151717 0.143381 0 .135503 0 .128058 0 .121022 0 .114372
88 0 .164707 0.156121 0 .147983 0 .140269 0 .132958 0 .126027
89 0 .178328 0 .169536 0 .161178 0 .153232 0 .145677 0 .138495
90 0 .192537 0.183591 0 .175060 0 .166926 0 .159169 0 .151773
91 0 .207282 0 .198240 0 .189592 0.181321 0.173411 0 .165846
92 0 .222496 0 .213424 0 .204722 0 .196375 0 .188368 0 .180688
93 0 .238098 0.229071 0 .220386 0 .212030 0 .203992 0 .196258
94 0 .253994 0 .245093 0 .236503 0 .228215 0 .220217 0 .212500
95 0 .270077 0 .261389 0 .252980 0 .244842 0 .236966 0 .229343
96 0 .286226 0 .277844 0 .269708 0 .261810 0 .254144 0 .246702
97 0 .302308 0.294331 0 .286563 0.279001 0 .271639 0 .264470
98 0 .318179 0 .310706 0 .303408 0 .296282 0 .289324 0 .282528
99 0 .333683 0 .326817 0 .320093 0 .313507 0 .307056 0 .300738
100 0 .348658 0 .342503 0 .336455 0 .330515 0 .324680 0 .318947
101 0 .362936 0.357591 0 .352325 0 .347136 0 .342024 0 .336987
102 0 .376345 0 .371908 0 .367524 0 .363190 0 .358908 0 .354677
103 0 .388714 0 .385276 0 .381869 0.378491 0 .375144 0 .371826
104 0 .399873 0 .397518 0 .395177 0 .392849 0 .390536 0 .388236
105 0 .409660 0.408461 0 .407266 0 .406075 0 .404887 0 .403702
106 0 .417923 0 .417942 0 .417962 0 .417982 0.418001 0.418021
107 0 .424523 0 .425809 0 .427098 0.428391 0 .429689 0 .430990
108 0 .429339 0 .431923 0 .434523 0 .437138 0 .439769 0 .442415
109 0 .432270 0 .436168 0.440101 0 .444070 0 .448074 0 .452114
110 0 .433237 0 .438447 0 .443720 0 .449056 0 .454456 0.459921
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5.3 Trend analysis of the female life office 

pensioners’ mortality experience and comparison 

with male life office pensioners
The female life office pensioners’ mortality experience was modelled over the age 

range x = 60 to 95 years, a total of 504 data cells. In modelling the experience, an 

analysis of the deviance suggested choosing 5 = 1 or 3, r = 2 and the age-specific 

trend adjustment term involving x and t, that is, yu (see Tables 5.10 and 5.11). Given 

the analyses of the immediate annuitants’ experience in Chapter 4 and the male life 

office pensioners’ experience in Section 5.2, the value of r was constrained to be 1. 

Assuming r = 1, y0 = 0 for i, j  * 1, two models were then applied to the female 

pensioners’ mortality data, a 4-parameter model with s = 1 and a 6-parameter model 

with 5 = 3. Hence the same 6-parameter model given by expression (5.6) was also 

applied to the female pensioners’ experience. The 4-parameter model was of the form:

Mx, = exp [A  +  A * '  +  («i + 7 6 ,* ') '] •  ( 5 -10)

Parameter estimates for the two models are presented in Tables 5.12 and 5.13. The 6- 

parameter model includes two parameters, /?2 and /?3, that could be excluded from the 

model on the basis of values of the associated t statistics. On the other hand all the 

parameters derived from the 4-parameter model defined by equation (5.10) are 

statistically significant. Statistical tests of graduation applied are all supportive of both 

models as can be seen in Tables 5.14 and 5.15.

Table 5.10
Female life office pensioners, analysis of the 1983-96 experience
Deviances for polynomial predictors of degree rand s

r=0 r=1 r=2 r=3
s=0 33100 .55 32904.21 32860 .65 32851 .49
s=1 882 .79 778 .84 755 .53 750 .75
s=2 877.81 776.01 752 .97 748 .18
s=3 871 .15 770 .98 748 .24 743.41
s=4 870 .99 770 .68 748 .06 743 .24
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Table 5.11
Female life office pensioners, analysis of the 1983-96 experience 
Deviance profile (terms added sequentially 1st to last)
P aram eter D eviance D egrees of freedom D iffe rence  in dev iance

A 33100 .55 503

A 882.79 502 32217 .76

A 877.81 501 4.98

A 871.15 500 6.65

a\ 770 .98 499 100.18

yn 760 .76 498 10.22

Table 5.12
Female life office pensioners, 6-parameter log-link model based on the 1983-96 experience 
(deviance = 760.76 on 498 d.f., d> = 1.5186)
p aram e te r estim ate s tandard  e rro r f-value

A -3 .177138 0.0069 -462.4352

A 1.838014 0.0143 128.5235

A -0 .025876 0.0170 -1 .5197

A -0 .036419 0 .0189 -1 .9252

a,\ -0.083041 0 .0098 -8 .4430

r " 0 .055605 0 .0215 2.5910

Table 5.13
Female life office pensioners, 4-parameter log-link model based on the 1983-96 experience
(deviance = 771.69 on 500 d.f., <)> = 1.5248)_____________________________________________________
P aram eter estim a te  s tandard  e rro r i-va lue

-3 .171249 0 .0060 -526 .4383
1.845645 0 .0129 143.3259

-0 .083762 0 .0098 -8 .5053
0 .045107 0 .0208 2 .1653

Table 5.14
Female life office pensioners, analysis of the 1983-96 mortality experience 
Comparison of p-values based on 2 models__________________________
S ta tis tica l test 6-p a ram e te r m odel 4 -pa ra m e te r m odel

C h i-squa re 0 .4916 0.4916
C um u la tive  dev ia tions 0 .5046 0 .1244
Ind iv idua l s tanda rd ised  dev ia tions 0.6111 0 .3546
G roup ing  o f s igns o f dev ia tions 0 .9194 0.8117
S igns o f dev ia tions 0.5041 0.7552
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Table 5.15
Female life office pensioners, analysis of the 1983-96 mortality experience
Comparison of the distribution of individual studentized deviance residuals from two log-link models
R ange (-ao ,-3) (-3 ,-2 ) (-2 ,-1 ) ( -1 ,0 ) (0 ,1 ) (1 ,2 ) (2 ,3 ) ( 3 ,co)

expected  frequency 
O bserved  freauencv

0 .68 10.79 68.50 172.04 172.04 68.50 10.79 0.68

6 -pa ra m e te r m odel 1.00 7.00 77.00 175.00 165.00 71.00 8.00 0.00
4 -pa ra m e te r m odel 2 .00 9.00 83.00 162.00 170.00 71.00 7.00 0.00

Figure 5.4 shows a comparative plot of forces of mortality predicted from the two 

models. Although there is little difference between the predicted rates within the 

range of ages over which the graduation was carried out (ages 60 to 95 years) there 

are marked differences outside this range of ages. The differences are more 

pronounced at the older ages where the 6-parameter model produces the lower forces 

of mortality. For example, the predicted force of mortality for a life age 110 in 1983 is 

approximately 0.68 based on the 6-parameter model and approximately 1.29 on the 

basis of the 4-parameter model. This characteristic is to be expected because the two 

additional parameters in the 6-parameter model are negative parameters both 

involving higher order terms in x, thereby having the general effect of producing 

lower forces of mortality at each age than those predicted on the basis of the 4- 

parameter model.

The preferred model is the model that produces lower forces of mortality and this 

again is the 6-parameter model defined by expression (5.7).

The mortality improvement model based on either model is given by:

RF(x,n) = exp
6.5 a.+T'n

x -  77.5 
17.5 J

(5.11)

x-77.5that is, x' = ------- — and w, = 6.5. Based on the parameter estimates for the 6-
17.5

parameter model given in Table 5.12, the formula for the reduction factors is

RF(x,n) = exp[(- 0.050660 + 0.000489x)«]. (5.12)
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6-parameter model -------  4-parameter model

Figure 5.4 Female life office pensioners, comparison of predicted forces of mortality based on 6-parameter and 4- 
parameter log-link models: 1983-2016

Figure 5.5 Comparison of predicted forces of mortality for male and female life office pensioners: 1983-2016;
predictions based on 6-parameter log-link models with r =  1,5 = 3 and y,,
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A comparative plot of male and female life office pensioners’ predicted forces of 

mortality up to calendar year 2016 is shown in Figure 5.5. The predicted forces of 

mortality show a declining trend at all ages below 103 years for females and 106 

years for males. At all ages the predicted rates for males appear to be improving at a 

faster rate than the females’ predicted rates. For ages above 95 years, the predicted 

rates for male pensioners are lower than the predicted rates for females. Although this 

could be a reflection of the form of the underlying forces of mortality, it is also 

possible that this is the result of problems arising from extrapolating the rates.

It is worth noting that although the life office pensioners’ mortality experience has 

been modelled over a period of 14 years only, the model derived still predicts 

reasonable future forces of mortality at most ages and for the 20 calendar-year period 

over which forces of mortality have been projected.

5.4 Comparison of CMI mortality improvement 

factors with log-link based mortality improvement 

factors for pensioners and annuitants
The most recent CMI mortality improvement model for pensioners and annuitants, 

used with mortality tables based on graduation of the mortality experience over the 

quadrennium 1991-94, was summarized in Chapter 3 and described in detail in CMI 

Report 17 (1999). The graduated rates of mortality at age x apply on average to lives 

attaining exact age x in calendar year 1992 (i.e. halfway through 1992) and hence time 

is measured in years from 1992. The same reduction factors apply for all pensioners’ 

and annuitants’ experiences, male and female, for data based on both lives and 

amounts.

The CMI improvement model is such that a given percentage of the total future 

decrease in mortality is assumed to occur in the first 20 years. The model is defined 

by:

(5.13)
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where n is measured in years from the base calendar year (1992 in this case), a(x) is 

the limiting value of the reduction factor for a life age x in the base year, i.e.

a  (x)=limi?F(x,«) ,
« - » c o

(5.14)

and / 20(x) is the percentage of the total future decrease in mortality for a life age x, that 

will occur in the first 20 years.

The functions a(x) andf20(x) are defined as:

0.13

, 0.87(jc -110)
50

1

x < 60 

60 < x < 110 

a: >110

and,

0.55

-x)0.55 + (x-60)0.29 
50 

0.29

x <60 

60 < x < 110 

x > 110

(5.15)

(5.16)

Although the CMI mortality improvement model is applied to initial rates of 

mortality, while the log-link models are based on forces of mortality, the reduction 

factors can still be compared directly since the general trend in mortality rates and 

forces of mortality would be the same.

Figure 5.6 is a comparison of CMI mortality improvement factors with improvement 

factors derived from the log-link models for male and female pensioners. The factors 

are shown for the period 1993 to 2016 at 5-year age intervals from age 55 to 100 

years. The highest age for which the factors have been plotted is 100 because at ages 

above 100, there are inconsistencies in the patterns exhibited by the log-link based 

reduction factors. For consistency with the CMI mortality improvement model, 1992 

has been taken as the base year for the log-link models.
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In general, the log-link based reduction factors for pensioners exhibit a similar pattern 

to CMI reduction factors, although the reduction factors based on the log-link models 

would predict lower forces of mortality for male pensioners and higher forces of 

mortality for female pensioners for a given base table of forces of mortality (or 

mortality rates).

A comparative plot of the CMI and log-link based reduction factors for immediate 

annuitants is shown in Figure 5.7, for ages 55 to 110 years over the calendar year 

period 1993 to 2016. The log-link model reduction factors are based on the analysis of 

the 1974-94 mortality experiences for male and female immediate annuitants, that is, 

the reduction factors described by expression (4.36) or (4.37) for males and 

expression (4.38) or (4.39) for females.

Given a base table of forces of mortality for immediate annuitants, the CMI reduction 

factors predict lower forces of mortality at the younger ages (up to age 70) and higher 

forces of mortality at the older ages than those predicted by the log-link based 

reduction factors. In addition, reduction factors based on the log-link models are 

relatively close to the CMI reduction factors at the younger ages, with large 

differences occurring at ages above 90 years. By age 110, the CMI mortality 

improvement model assumes that there is no longer improvement in mortality over 

time.

The log-link based mortality improvement models assumed for both pensioners and 

immediate annuitants are reproduced in Table 5.16.

Table 5.16
Mortality improvement models for life office pensioners and immediate annuitants
Experience R F ( x , n )

M ale annu itan ts , d1+  (basis: 1974-94  experience) e x p [(-  0 .027898  + 0 .0 0 0 175*)«]

Fem ale  annu itan ts , d1 + (basis: 1974-94  experience) e x p [(-  0 .048403  + 0.000383.x)«]

M ale pensioners  (basis: 1983-96  experience) e x p [(-  0 .078872  + 0 .000744*)« ]

Fem ale  pensione rs  (basis: 1983-96  experience ) e x p [(-  0 .050660  + 0 .000489* )« ]
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age 95 age 100

Figure 5.6 Comparison o f time reduction factors, 1993 to 2016: CM1 mortality improvement model and log-link 
models for life office pensioners based on analyses of the 1983-96 mortality experiences

1995 2000 2005 2010 2015 1995 2000 2005 2010 2015 1995 2000 2005 2010 2015 2000 2005

age 70

-------- CM I model

1995

log-link, males

2000 2005

age 105

2010 2015

log-link, females

1995 2000 2005 2010 2015

age 110

Figure 5.7 Comparison of time reduction factors, 1993 to 2016: CM1 mortality improvement model and log-link
models for immediate annuitants based on analyses of the 1974-94 mortality experiences



o 55 yrs
60 yrs

+ 65 yrs
x 70 yrs
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85 yrs
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100 yrs

Figure 5.8 Comparison o f log-link based reduction factors and CMI reduction factors for immediate annuitants, 
d l+  and life office pensioners

The mortality improvement factors based on the CMI model and on each of the log- 

link-based models, i.e. male and female pensioners, and male and female annuitants 

are shown separately in Figure 5.8. The factors are shown at 5-year age intervals from 

age 55 to 100 years. It should be noted that the CMI reduction factors at ages below 

60 are given by the reduction factors at age 60 years.

From the plots it can be seen that while the CMI reduction factors and the log-link 

based reduction factors for pensioners have a similar shape, the log-link based 

reduction factors for immediate annuitants have a very different shape. It would 

appear that the CMI reduction factors have a shape with respect to age and time that is 

different from that which emerges from a model-based analysis of the immediate 

annuitants’ mortality experience, raising doubts about the suitability of the CMI 

reduction factors for making predictions of future forces of mortality (or mortality 

rates) for immediate annuitants.
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The reduction factors that would apply in 2014 based on the log-link models assumed 

and the CMI model are shown in Table 5.17. In practice, where the model-based 

reduction factor exceeds one, the value would be set to one.

Table 5.17
Reduction factors for pensioners and annuitants3 applicable in calendar year 2014
A tta ined
Age

m ale
annu itan ts

d1+

fem ale  
annuitan ts  

d1 +

m ale
pensioners

fem a le
pensioners

CMI

55 0.6687 0.5482 0.4340 0.5927 0.4915
60 0.6817 0.5717 0.4710 0 .6255 0.4915
65 0.6949 0.5964 0.5112 0.6600 0.5630
70 0 .7084 0.6220 0 .5548 0.6965 0.6301
75 0.7221 0.6488 0.6021 0.7350 0.6927
80 0.7361 0.6768 0.6535 0 .7756 0 .7506
85 0 .7504 0.7059 0 .7092 0 .8184 0.8039
90 0.7650 0.7363 0.7697 0 .8636 0 .8526
95 0 .7798 0.7680 0.8354 0 .9113 0 .8966
100 0.7949 0.8010 0.9067 0.9617 0 .9358
105 0.8104 0.8355 0.9840 1.0148 0 .9703
110 0.8261 0.8715 1.0680 1.0709 1.0000

5.5 Revised mortality improvement models for life 

office pensioners
The models derived for projecting life office pensioners’ mortality exhibit some 

anomalies at extreme old age. Firstly, for both the male and female models, the 

projected forces of mortality above specific ages increase with time contrary to 

expectations. Secondly, for all ages above 95 years, the forces of mortality for males 

are lower than the forces of mortality for females, again contrary to expectations. 

These inconsistencies would require further investigation. In this section the 

discussion is confined to the problem of forces of mortality increasing with time.

3 R eduction  factors fo r im m edia te  annuitan ts are based  on analyses o f  the 1974-94 experiences
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For brevity, the parameters a, and are denoted a  and y  respectively. For each

experience, the mortality improvement model derived can then be expressed as:

RF(x,n) : exp — < a + y
w.

y \  x -  c

\  y

from which it can be deduced that for a given value of x, the force of mortality

decreases with time if a + y 

scenarios to consider:

^ x — c, ^

V
< 0. Assuming that a  < 0, there are four

C ase  1 : y < 0 and x> cx

The condition a + y 

the values of a  and y.

y \  x -  c

\  Wx
< 0 is satisfied without imposing further conditions on

C ase  2 : y <0 and x < cx

The condition a + y  ̂x -  c ^

v y
< 0 is satisfied if y

y \  x -  c

v y
< «

C ase  3: y > 0 and x> cx

As in case 2, the condition a + y ' x - c ^

v y
< 0 is satisfied if y

y \  x -  c

v y
< \a\.

C a se  4 : y >0 and x <cx 

As in case 1 the condition a + y 

conditions on the values of a  and y.

y \  x -  c

v y
< 0 is satisfied without imposing further

201



Therefore for each experience, if  parameter values a* and y* can be determined such

that the condition y
C \x -  c

v y
< c m , is true for all x < maxx, where maxx is a suitably

large value of x which should be at least as large as the highest age assumed in the 

(base) mortality table, then the mortality improvement models derived would give 

forces of mortality decreasing with time for all x < maxx.

The GLM modelling procedure used to derive mortality trend models is such that the 

associated standard errors of the parameter estimates are provided directly. Denoting 

the parameter estimates as /?, the estimates could be reported as /? ± standard error. 

The true value of each parameter will probably lie within 2 standard errors of the 

estimated value with an approximate probability of 0.95.

Here, the problem is essentially that of reducing the current values of the reduction 

factors at extreme old age, and hence finding revised parameter estimates that are 

lower than the ‘current’ estimates obtained from the model would have the desired 

effect. It therefore seems reasonable to take sets of parameter values determined from 

P -  (standard error) or -  2{standard error) to produce revised sets of mortality 

improvement factors. Clearly, being optimistic in the determination of the 

improvement factors leads to a less risky option for pricing and reserving annuities.

The mortality improvement models for male and female pensioners thus revised are 

shown in Table 5.18 and the reduction factors determined from the revised models are 

given in Table 5.19.

Table 5.18
Revised mortality improvement models for life office pensioners and immediate annuitants
Experience R F ( x , n )

ß -  (s ta n d a rd  e rm i) ß -  2 (s ta n d a r d  e rm i)

M ale pensioners ex p [(-  0 .071647  + 0 .000645 x )k ] e x p [(-  0 .064423  + 0 .000546x)« ]

Fem ale  pensioners e x p [(-  0 .037552 + 0 .000300x)«] e x p [(-  0 .024443  + 0 .0 0 0 1 12x)«]
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Table 5.19
Revised reduction factors for life office pensioners applicable in calendar year 2014
A tta ined  age Life  o ffice  p en s io ne rs ’ rev ised  log -lin k  m odels CM I m odel

Basis: p- (standard erroi) Basis: P-2 (standard error)
M ale pensioners¡max A A A v( X = 111)

Fem ale  
pensione rs  

(maxx = 125)

M ale  pensioners  
r * j c = i i 8 )

Fem ale 
pensioners 

(maxx = 219)
55 0 .4514 0 .6294 0.4695 0.6684 0.4915
60 0 .4846 0 .6506 0.4986 0.6767 0.4915
65 0 .5203 0 .6724 0.5295 0.6850 0.5630
70 0 .5585 0 .6950 0.5623 0.6935 0.6301
75 0 .5996 0 .7183 0.5971 0.7020 0.6927
80 0 .6437 0 .7424 0.6341 0.7107 0 .7506
85 0.6911 0 .7673 0.6734 0.7195 0.8039
90 0 .7419 0.7931 0.7151 0.7283 0 .8526
95 0 .7965 0 .8197 0.7594 0.7373 0.8966
100 0.8551 0 .8472 0.8065 0.7464 0.9358
105 0 .9180 0 .8757 0.8564 0.7556 0 .9703
110 0 .9855 0.9051 0.9095 0.7650 1.0000

From the reduction factors given in Table 5.17, it can be seen that if we assume the 

maximum age in a given life table to be 110 years, then the objective is achieved. The 

reduction factors applicable at all ages up to age 110 are all less than 1 and these 

reduction factors decrease with time for all x < maxx. Modifying the mortality 

improvement models in this way has a greater effect on reduction factors applicable to 

female pensioners. This is because the parameter estimates for a,, and yu in the 

female pensioners’ model have relatively large standard errors compared with 

parameter estimates for the male pensioners’ model. Although the forces of mortality 

for male pensioners are still predicted to improve at a faster rate than for female 

pensioners at most ages, higher improvements in mortality would be predicted for 

female pensioners at extreme old age.

It would seem that the reduction factors determined from -  {standard error) would 

be the most appropriate for forecasting forces of mortality for life office pensioners. 

The factors vary steadily with age and while an improvement in mortality is predicted 

at all ages, the improvement at extreme old age is small.
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Further, it can be deduced that given forces of mortality in a base calendar year t0, the 

mortality improvement model for a life age x bom in calendar year ris:

R F ( x , x  +  t  - t 0) = exp- (x + T - t0)
W,

( a + 7*0 (5.23)

, x - c r , , t - c ,  with x = ------- and t = ----- -
wr w,

( V x + r -  c, note: (x + z) = ---------- -
t \ w,i y

A parallel model to the GLM-based cohort-forecasting model described here is the 

Austrian mortality-forecasting model described in Chapter 3 (pages 90-92):

q[= qx{x + z)

where:

& M = ?, (O exP{“ 4  ( '“ *<>)}•

(5.24)

(5.25)

The difference is that the Austrian improvement model is defined in terms of the 

initial rate of mortality, as is the CMI model. The equivalent form of the function 

in the Austrian model (5.25) is described by a linear function of x in the GLM-based 

models (expression (5.23)).

In effect, the year of birth cohort mortality improvement model (5.23) and the period 

mortality improvement model (5.20) are equivalent since t - x +  r. The predicted forces 

of mortality derived in this study are largely supportive of this form particularly in the 

case of male life office pensioners. Inconsistencies are apparent at a few ages at both 

extremes of the age range over which forces of mortality have been predicted. These 

inconsistencies are probably a result of the observed data at these and neighbouring 

ages being scanty or perhaps a result of the assumed model being inappropriate for 

these specific ages. A detailed investigation of this problem would be required but 

such an investigation has not been undertaken in this study.

Alternatively, a GLM-based mortality trend analysis by year of birth can be carried 

out by replacing age x with year of birth z - t - x  in fitting the model structure (5.1) as

205



It is worth noting that a satisfactory analysis of mortality data by cohort generally 

requires a long series of consistent data, which is not always available.

was done by Renshaw et al (1996) in analysing mortality trends in UK male assured

lives.
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Chapter 6

Comparison of GLM-based Mortality 

Forecasts and a Time Series-based 

Approach: Female Annuitants

6.1 Introduction
In this chapter, an alternative approach to modelling forces of mortality over time is 

considered. The forecasting procedure applied is that used by McNown and Rogers

(1989) to develop forecasts of US mortality, a method that combines parametric 

models and time series methods to generate forecasts. The approach is essentially a 

three-stage process. The first stage involves fitting to mortality data for each calendar 

year t the same age-dependent parametric model. McNown and Rogers (1989) used 

the Heligman-Pollard model described by expression (6.1) to model US mortality 

over the period 1900 to 1985:

qx = A{x+B)c + Dexp{- E(\nx - \n F )2}+ GHX/(l + GHX) (6.1)

The parameter estimates obtained represent a set of observations over time. The 

second stage is then to model the trends in the observations using time series methods 

to develop forecasting models for the mortality measures. McNown and Rogers 

(1989) applied univariate autoregressive integrated moving average (ARIMA) 

models to observations over time on each of the 8 parameters in the Heligman-Pollard 

model (6.1) to describe mortality trends in the US population. The time-series model 

for each of the parameters was identified according to the methods of Box and Jenkins
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The final stage is to use the forecasting models developed to make predictions of the 

mortality measures.

Felipe, Guillen and Artis (1998) have applied the NcNown and Rogers’ (1989) 

methodology to model the evolution of Spanish mortality patterns using Heligman- 

Pollard law number two. Thus for each calendar year t, the probability of death is 

modelled using:

As an illustration of the McNown and Rogers’ method, only one of the four data sets 

modelled in Chapters 4 and 5, that is, the female immediate annuitants’ mortality 

experience, is considered. For each calendar year t, the force of mortality ¡ixt at age x 

is modelled using Gompertz-type parametric models, fitted in the framework of 

GLMs. Time series methods are then used to project the forces of mortality and 

comparisons made with forces of mortality projected by applying the GLM approach 

of Chapter 4.

A brief description of time series models is given in Section 6.2. Detailed descriptions 

can be found in textbooks such as Box and Jenkins (1976), Chatfield (1996), 

Hamilton (1994) and many other books on time series analysis. The procedures 

applied in analysing the mortality of female immediate annuitants using time series, 

and the results obtained are presented in Section 6.3.

(1976), using 35 observations from 1941 to 1975. (Trends in the observations for the

period prior to 1941 were considered to be unsuitable for forecasting purposes.)

6.2 Univariate time series models
Suppose that the series of observations over time {y, :t = 1,2 ,•••,«} is a sample of size 

n of some random variable {Yi :t = 1,2,-••,«}. The sequence {Yt} is referred to as a 

time series process. Each random variable Yt has a distribution, a mean and a variance.
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Probability models for time series are collectively called stochastic processes. 

Chatfield (1996) defines a stochastic process as ia collection o f random variables 

which are ordered in time and defined at a set o f time points which may be continuous 

or discrete'1.

The expectation of the tth observation of a time series process {Yt} is the mean 

function mt :

The second moments are specified by the variance function and the autocovariance 

function. The usual definition of the variance applies to the variance function erf 

thus:

They'th autocovariance function yJt, is the covariance of Y ,  and Y t+ j, and is defined by:

The difference in time between Y ,  and Y t +j is called the lag and hence Yjt is the 

autocovariance at lagy.

A key assumption in using Box-Jenkins time series procedures is that of stationarity. 

Broadly ‘a time series is said to be stationary if there is no systematic change in the 

mean, if  there is no systematic change in the variance, and if strictly periodic 

variations have been removed’ (Chatfield, 1996).

If neither the mean mt nor the autocovariances Yjt depend on t, then the sequence {Yt} 

is said to be covariance-stationary or weakly stationary.

m,= £ [r ,] . (6.2)

y  =E[(Y,-m, f  ]. (6.3)

(6.4)

E [ r y m for all t
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and,

E t e  -  m, )(y,+J -  m,+j)} = Yj for all t and any y.

Thus the process {Yt} is weakly stationary if its mean is constant and its 

autocovariance function depends only on the lagy.

In contrast a time series process is said to be strictly stationary if the joint distribution 

of (y,,T ,Yl+j Yt+jn) depends only on the intervals between yj, y2,• • •, j n and not 

on the time t.

The autocorrelation function at lag y, pj of a stationary time series process is defined 

by

Pj
Ll

To ’
(6.5)

where y0 is the autocovariance at lag 0, i.e. y0is the variance function of the process. 

The autocorrelation function pj measures the correlation between Y, and Yt+j and hence 

satisfies the usual property of a correlation coefficient, that is

N - 1-

For any covariance-stationary process, the autocovariance is an even function:

Yj = Y-j for y = 1,2,

Some classes of stochastic processes useful for time-series modelling are described in 

Section 6.2.1 below.

6.2.1 Probability models for time-series
White noise process
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(i.i.d.) with mean 0 and variance a 2, the process {st} is called a white noise process. 

The white noise process is the basic building block for time series models considered 

in this thesis.

The simplest example o f a time-series model is a white noise process. Suppose the

random variables {e ,: t - 1,2,3, •••,«} are independent and identically distributed

Moving average process

The time series process {7; : t = 1,2,3,•••,«} is a moving average process of order q 

(denoted MA(g) process) if

Yt = m + e, + Gxet_x + 02et_2 + • • • + Gqet_q (6.6)

where m and {0i : i = 1,2,•••,#} are constants and {et :t = 1,2, is a white noise 

process with mean 0 and variance a 2.

A moving average process is covariance-stationary for any values of the {$} 

constants. The expectation of a MA(^) process is:

E { y , ) =  E (m  + £ , +  6 \ £ t- \  +  • ■ • +  d qS t - q ) =  m  ( 6 -7 )

and the variance function is:

7o = varf r ) = var(m + e, + 6», .̂, + • • • + 0qe,_q) = cr2 (l + 6»,2 + • ■ • + ) (6.8)

since the {st} are independent and identically distributed with mean 0 and variance 

cr2. By considering

r, = + 0xet. + --- +  d q£ , - q ) x (a - + Q\£t-j-\ + ■ °q£'-j, J ] . (6.9)
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and noting that E[sisk = 0] for i * k , it is seen that for j  = l,2,---,q, the 

autocovariance function y is

7  j  = < J ~ i@j + 0 j + A  + 0 j +2^2 + • • • + )> (6.10)

and is 0 for j  > q.

Autoregressive process
The process {7,} is said to be an autoregressive process of order p (denoted AR(p) 

process)if

7, =C + + ^2^-2  +'"  + <t,pYl-P + £t (6.11)

where f  and {</>k :k = 1,2 are constants and {st} is again a white noise process

with mean 0 and variance a 2.

Let B denote the backward shift operator such that

B'Yt = Yt_j for ally. (6.12)

By applying the backward shift operator to equation (6.11), the equation may be 

expressed as:

Y,(l-fB-</>2B2------ </,pB”) = f  + et (6.13)

An AR(y>) process will only be stationary if the parameters {^} lie within a certain 

range. In particular, an AR(y>) process will only be stationary if the roots of the 

equation

<f>{B)=(\-frB-(/>2B2 -------<f>pBp)= 0 (6.14)
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lie outside the unit circle. For example, in the case of an AR(1) process:

Y'=<Z +</>Yl_1+e t (6.15)

the process is covariance-stationary if \<fi\ < 1.

Assuming that the stationarity conditions are satisfied, the mean function of an AR(y>) 

process is given by

m = ---- i ---- , (6.16)
i -2>,

k=1

and the second moments satisfy the equations:

ro = ^ r i + ^ 2  + "- + ^ p + o'2 (6-17)

and

Yj = 1 + </>2Y j-2 + • • ’ + <PpYj-p for ally >0 (6.18)

where, as before, cr2 = var(^).

Using the fact that y. = y_ j , autocovariances are found by solving the system of 

equations (6.17) and (6.18) for j  = 0,1,2,•■•,/? as functions of cr2,^ ,^ , - • -(¡)p. For 

example, for an AR(2) process:

Y, -  C +  1 +  W t-i  +  £t (6.19)

Yo = <kY\ +  <P2Y2 +  r r 2 (6.20)

Yj = faYj-i + faYj- 2  fory >  0 . (6.21)
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Solving equation (6.21) recursively for y, and y, yields

h  =

and

r2 = 1 ~<t>2
n

(6 .22 )

(6.23)

Substituting the expressions for y, (6.22) and y2 (6.23) in expression (6.20) gives an 

equation for y0 as a function of <r2,0, and 02, thus

0 ~  £  k

((l-02)2 -02J(l + 02)' (6.24)

Mixed autoregressive moving average processes
A mixed autoregressive moving average process of order p,q (denoted ARMA(p,^) 

process) has p  autoregressive terms and q moving average terms:

r ( =4'  + ^ „ ,  +■•• + ,K Y t - p  +  £ , +  0 \ S t - \  +  • ■ • +  ® qe t- q  ■ (6.25)

Stationarity of an ARMA(p,g) process depends entirely on the autoregressive 

parameters {0t}.

The mean function of an ARMA(p,g) process is simply the mean of the autoregressive 

terms, that is

m = £
1—01 — 02 — 0p
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as given by equation (6.16). The equation for the mean function may be written in the 

form:

C = m ( 1 - A - f c ------- (6.26)

Using the result (6.26), the process (6.25) may be expressed as

Y , -m  =#,(%_,-m )+ - - -  + 0p( r t_p -m)+£ t + 0,£t_,+--- + 0g£i_q. (6.27)

By multiplying (6.27) by (Yt - m )  and taking expectations, the autocovariance

function of an ARMA(p,g) process can be obtained. Indeed the same method can be 

used to find the autocovariance function of an AR(p) process.

For an ARMA( 1,1) process

Yt =C  + 4Yt_l + e l +est_l , (6.28)

it can be shown that

_ (l +208 + 61) ,
To~ 1 - f -  '

( i+ te y it+ e ) 2
"  \ - f

and

fory>2.

The full derivation of the autocovariance functions described by expressions (6.29), 

(6.30) and (6.31) is shown in Appendix 2.

(6.29)

(6.30)

(6.31)
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Random walk
A process {Yt} is said to be a random walk if

Yt = Yt_x+e t . (6.32)

where {£,} is a purely random process with mean 0 and variance a 2 (i.e. the random 

variables {st} are independent and identically distributed). The process has the same 

form as an AR(1) process (equation 6.15), except that (f> is one for a random walk 

process.

Repeatedly substituting for past values of Y, gives

r = r>+ I k  ■ (6-33)
/=1

If the initial value To is fixed, the mean and variance functions are mt = yQ and 

a 2 = ter1 respectively. A random walk is therefore a non-stationary process.

The first differences of the process {Y,\ are defined by:

VT( =Yt -  T,_j = et (6.34)

The sequence {VT,} is the same as the purely random process {st}. Hence a stationary

process can be derived from a random walk by taking the first differences of the 

random walk process.

A random walk with drift 8 is defined as the process:

Yt = 8 + T,_j + st (6.35)

where 8 is a constant.
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Autoregressive integrated moving average processes
Suppose {Yt} is a time series process and {Wt} is a sequence formed by taking the fif-

th differences of the process {Y,}, that is

Wt = VdYt . (6.36)

For example,

(6.37)

Writing BYt = Yt_x, then VF( = Yt -  Yt_x = (l - B)Yt . Expression (6.36) may thus be

{F,} is an autoregressive integrated moving average process (ARIMA(p,i/,^) process)

is  an  ARMA(p,g) p ro c e s s . T h u s  an  ARIMA(p,<i,g) p ro c e s s  is  a  n o n -s ta t io n a ry  p ro c e s s  

w h o s e  fif-th d if fe re n c e  p ro d u c e s  a s ta t io n a ry  A R M A ( /v / )  p ro c e s s .

The Box-Jenkins approach to time series analysis is a method for forecasting non- 

stationary time series based on ARIMA models. Hamilton (1994) breaks down the 

Box-Jenkins approach into four steps:

(1) Transform the data, if necessary, so that the assumption of covariance-stationarity 

is a reasonable one.

(2) Make an initial guess of small values of p  and q for an ARMA(p,g) model that 

might describe the (transformed) series.

(3) Estimate the unknown autoregressive and moving average parameters.

written as:

W ,= (\-B )dYt . (6.38)

if:
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(4) Perform diagnostic analysis to confirm that the model is indeed consistent with the

observed features o f the data.

6.2.2 Model Selection
An initial indication of a suitable model can be provided by an examination of the 

sample autocorrelation function. The autocovariance function yj at lag j  is usually 

estimated by:

c; = n Y S y t - y i y » j
t=l

where

y 1 V
t=i

(6.40)

is the sample mean of the process and n is the number of observations. The estimator 

Cj is a biased estimator of y (with bias of order 1 In). However, it is asymptotically 

unbiased, that is

lim E(ci)=Y;«—»co \ J ' ' J (6.41)

Having obtained an estimate of the autocovarince function, the autocorrelation 

function Pj is then estimated by:

rj = (6.42)

For a MA(g) process, % is zero for |y] > q so that a plot of the sample autocorrelation

function against lag (called a correlogram) would be a useful tool in identifying a 

MA(i7) process.
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In contrast, if the process is an AR(p) process, the autocovariances are generally all 

non-zero and the autocorrelation coefficients pj would tend towards zero 

exponentially. An AR(p) model can however be identified from a plot of the partial 

autocorrelation function. The pi\\ partial autocorrelation coefficient is defined as the 

last coefficient <j)p after regression on Yl,Yt+l,---,Yt+p_] when fitting an AR(p) model. It

‘measures the excess correlation at lag p which is not accounted for by an AR(p-l) 

model’ (Chatfield, 1996). For an AR(p) process, the partial autocorrelation between Y, 

and Y t+j is zero for j  > p.

The coefficients of an AR(p) process satisfy the Yule-Walker equations:

Pj = t\Pj-i + faPj- 2 + ’'' + <t>PPj-p for ally > 0. (6.43)

By solving the Yule-Walker equations (6.43) with p  replaced by r, the partial 

autocorrelation function and the unknown {$•} parameters can be estimated.

Model identification among ARMA processes can also be done using Akaike’s 

information criterion (AIC) which is minus twice the log-maximised likelihood plus 

twice the number of parameters estimated. The model chosen is that which minimises 

AIC. Hamilton (1994) provides a detailed discussion of maximum likelihood 

estimation of time series processes.

A common approximation to the likelihood function for an ARMA(p,g) process is 

conditioned on initial values of the {Y,} and {s,}. Box and Jenkins (1976) 

recommended setting the {st} to 0 and the {Yt} to their observed values. Thus 

assuming the {f,} are i.i.d. random variables with a normal distribution, mean 0 and

variance a 2, the log-likelihood function for an ARMA(p,^) process conditioned on 

the first p  values of the series can be shown to be:

t , f j -  (6.44)
2 t=p+1 2cr
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When the observations are normally distributed, the likelihood function can be 

expressed in terms of the residuals, {et} (the differences between the observed values 

and the predicted values). This is known as prediction error decomposition (Harvey, 

1993). The variance of et is the same as the conditional variance of Yt, i.e.

var(e,) = var(F( \Y,_j , Yt_2, • • •, 7,). (6.45)

Writing var(e,) as a 2 f , the prediction error decomposition form of the conditional 

log likelihood is:

^ g f{Y n,---,Yp+\Yp,--- ,Y )= -^— ^ l o g g e r 2 ¿ l o g  f (6.46)
^  ^  t = p +1 t =p + ] J t

The procedure for fitting ARIMA models available in S-Plus uses this latter form 

(equation 6.46) of the conditional log-likelihood.

The optimal forecast of Yt+\ is the conditional expectation £’(t ,+1|T/,---,T1).

6.2.3 Model Diagnostics
As in the case of fitting GLM models discussed in Chapter 3, the adequacy of fit of an 

ARIMA model can be explored through an examination of the residuals. The analysis 

of residuals for time-series models is discussed in detail in textbooks on time series 

such as Box and Jenkins (1976) and Harvey (1993) for example.

If the correct ARIMA model has been fitted, a plot of the standardised residuals 

('et/y[fi) against time should behave like a standardised normal random variable (a

normal random variable with mean 0 and variance 1) approximately. The plot against 

time will reveal any outliers and any obvious non-randomness in time.

In addition, Chatfield (1996), notes that the autocorrelations of the true errors should 

be uncorrelated and have an approximate normal distribution with mean 0 and
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variance \/n for reasonably large values of n. Although the correlogram of the

residuals has somewhat different properties, it turns out that 1 jyfn forms an upper 

bound for the standard error of the residuals and hence the presence of 

autocorrelations which lie outside the range ±2/\fn  would give evidence of the 

inadequacy of the model at the 5% significance level (see for example Box and 

Pierce, 1970).

Another useful diagnostic described by Box and Jenkins (1976) is based on the 

sample autocorrelations taken as a whole. The portmanteau test statistic Q is defined 

by:

Q  =  ”  i (6.47)

where rk is the estimated autocorrelation function defined in (6.42), K  is a fixed

maximum number of lags and is the number of observations used to compute the 

(log) likelihood. If the appropriate ARIMA model is fitted and the data have a normal 

distribution, then Q has an approximate j 2 distribution with K-p-q  degrees of 

freedom, where p  and q are the number of autoregressive and moving average terms 

respectively, in the model.

6.3 Time series analysis of female annuitants’ 

mortality experience
The mortality experience of female immediate annuitants with policy duration 1 year 

and over (1+ years) was analysed over the calendar year period 1958 to 1994 

(excluding the experience for the years 1968, 1971 and 1975), giving 34 observations 

for each of the parameter estimates. No attempt was made to include the pre-1958 

mortality experience in the time-series analysis since the inclusion of this experience 

in the GLM-based modelling procedures of Chapter 4 resulted in models unsuitable
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for forecasting. For each calendar year t, the experience was analysed over the age 

range x = 65,66, ■•■,100 years.

6.3.1 Age-dependent parametric models
The first stage of the time-series analysis of mortality trends of female annuitants 

involves modelling for each calendar year t, the force of mortality /uxt at age x using 

Gompertz-type parametric models of the form:

M* = exp |  %PitLj (x') | • (6-48)

Lj(x) are the Legendre polynomials described in Chapter 2 and x' is age x scaled such 

that the maximum value of x' is 1 and the minimum value is -1. For the female

immediate annuitants’ experience modelled, x' x-82.5  .---------- for each age x.
17.5

The GLM modelling procedures used in Chapters 4 and 5 were also used to estimate 

the unknown fy, parameters for each calendar year /. Thus the actual number of deaths 

axt at age x in calendar year t are modelled as independent realisations of Poisson 

response variables Axt of a generalised linear model with mean and variance given by:

E[Axl]=mxt =RcxImxI\ (6.49)

var {Axl)=Ktmxt. (6.50)

Rxt is the central exposed-to-risk and k , is a scale parameter to take account of

possible over-dispersion of the Poisson random variable due to duplicate policies on 

the same lives. The unknown parameters are linked to the mean through the log 

function:

Rxi = = 5 (6.51)
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that is,

Vxl = logC  + t p .L j ix ' ) .
7 = 0

(6.52)

Estimation of the parameters is carried out by minimising the negative of the quasi- 

log-likelihood, that is by minimising:

K,
- a xt log mxl) (6.53)

The optimum value of s chosen is the minimum value of 5 beyond which 

improvement in the scaled deviance for successive increases in the value of 5 is not 

statistically significant, assuming a j 2 distribution for the improvement. A more 

detailed discussion of model fitting using GLM procedures is given in Chapters 3 and 

4 of this study while McCullagh and Nelder (1989) give an authoritative discussion of 

GLMs.

The parametric model adopted for each calendar year t is in the form of a GMX(0,3) 

model defined by:

(6.54)

which is equivalent to:

Mxt = exP1 Po, + Pux ' +  Pi,
3x'2 -1 

2
(6.55)

3x'2 _ |
since L0(x')= 1, Z,(x')=x' and L2(x') = — -— . For each calendar year t, the

parameter J30, represents the general level of mortality while /i,, and ¡3lt represent the 

mortality level pertaining to age x.
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Figure 6.1 Female immediate annuitants, d l+  years: plots o f observed parameters over time; estimates based on 

GMX(0,3) graduation models fitted to mortality experience for each calendar year from 1958 to 1994 (excluding 

1968, 1971 and 1975)

Table 6.1 shows the 34 observations of each of the 3-parameter estimates, together 

with the associated standard errors and /-values. Although some of the observations 

on the p2, parameter have an absolute /-value less than 2, indicating statistical non-

significance, (and hence suggesting possible over-parameterisation), the 3-parameter 

age-dependent model was still retained because of the better forecasting performance 

over a 2-parameter model, for example.

From the plots of ‘observed’ parameters over time shown in Figure 6.1, it is evident 

that there has been a steady decline in the general level of mortality as indicated by 

the steady decrease in the estimates of the parameter /30, over /. The observed values of 

/?„ appear to fluctuate about some value in the range 1.7 to 2 while the observed 

values of /?2, tend to fluctuate about some value between -0.3 and 0.
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Table 6.1
Female immediate annuitants, d1+ years: parameter estimates based on CM x(0,3) graduation models for 
each calendar year 1958 to 1994 (excluding 1968,1971 and 1975) ___________________________

_______________ à _______________ _______________ ê ________________ _______________ à _______________
Y ea r (?) estim ate Std erro r i-v a lu e 1 estim a te Std e rro r f-va lue1 estim a te Std erro r i-v a lu e 1

1958 -2 .391899 0.0391 -61.22 1.823163 0.0735 24.82 -0 .083837 0 .0986 -0.85
1959 -2 .382317 0 .0338 -70.57 1.855283 0.0630 29.44 -0 .162014 0 .0850 -1.91
1960 -2 .459115 0 .0414 -59 .34 1.856512 0.0781 23.76 -0 .127725 0 .1034 -1.24
1961 -2 .437456 0.0325 -74.91 1.943654 0.0614 31.66 -0 .193643 0 .0802 -2.41
1962 -2 .465134 0.0310 -79.59 1.924045 0.0582 33.03 -0 .271126 0 .0763 -3.55
1963 -2.416211 0.0341 -70 .96 1.962524 0.0643 30.54 -0 .242308 0 .0836 -2.90
1964 -2 .561308 0.0350 -73.21 1.862250 0.0667 27.94 -0 .170808 0.0861 -1.98
1965 -2 .529934 0 .0294 -86 .18 1.862973 0.0565 32.96 -0 .057560 0 .0717 -0.80
1966 -2 .527692 0.0270 -93.60 1.885102 0 .0516 36.55 -0 .158785 0 .0662 -2.40
1967 -2 .559028 0.0235 -109 .04 1.763904 0.0452 38.99 0 .025532 0 .0580 0.44
1969 -2 .706943 0.0362 -74 .86 1.707638 0.0697 24.50 -0 .065999 0 .0885 -0.75
1970 -2 .632070 0.0332 -79.22 1.864585 0.0638 29.22 -0 .118763 0 .0812 -1.46
1972 -2 .561615 0 .0336 -76 .33 1.909122 0.0643 29.68 -0 .179197 0 .0816 -2.19
1973 -2 .624880 0.0265 -99.12 1.905449 0.0508 37.50 -0.154161 0 .0644 -2.39
1974 -2 .536236 0 .0238 -106.57 1.841314 0.0458 40.18 -0 .006697 0 .0582 -0.12
1976 -2 .545036 0 .0358 -71 .13 1.872427 0.0687 27.24 -0 .076539 0 .0866 -0.88
1977 -2 .564476 0.0325 -78.86 1.855735 0.0623 29.77 -0 .126989 0 .0786 -1.62
1978 -2 .654422 0 .0353 -75 .28 1.906954 0.0680 28.06 -0 .155942 0 .0837 -1.86
1979 -2 .608433 0 .0386 -67 .54 1.868590 0.0750 24.92 -0 .095427 0 .0907 -1.05
1980 -2 .697848 0.0295 -91.52 1.854805 0.0575 32.25 -0 .055267 0 .0682 -0.81
1981 -2 .715723 0.0367 -74.01 1.917469 0.0711 26.95 -0 .231196 0 .0834 -2.77
1982 -2 .721537 0.0372 -73.21 1.891316 0.0722 26.19 -0 .006064 0 .0854 -0.07
1983 -2 .619136 0.0383 -68.31 1.907554 0.0744 25.63 0 .026394 0 .0870 0.30
1984 -2 .742584 0.0455 -60 .34 1.845451 0.0875 21.09 -0 .029333 0 .1027 -0.29
1985 -2 .683218 0.0561 -47 .83 1.942125 0.1088 17.86 0 .014987 0 .1226 0.12
1986 -2 .779569 0.0599 -46.39 2 .004058 0.1157 17.32 -0 .148679 0 .1274 -1.17
1987 -2 .830635 0.0550 -51.43 2.002781 0.1073 18.67 -0 .123694 0 .1129 -1.10
1988 -2 .765239 0.0455 -60.74 1.818199 0.0890 20.43 -0 .040018 0 .0939 -0.43
1989 -2 .755176 0.0415 -66.42 1.848914 0.0811 22.81 0.047771 0 .0840 0.57
1990 -2 .801633 0.0491 -57.03 1.893994 0.0949 19.96 -0 .197790 0 .0977 -2.03
1991 -2 .774284 0.0502 -55.24 1.910234 0 .0974 19.61 -0 .155815 0 .0984 -1 .58
1992 -2 .903917 0.0695 -41.80 2 .190260 0.1357 16.14 -0 .203313 0 .1259 -1.61
1993 -2.957471 0.0796 -37 .17 2 .125543 0 .1558 13.65 -0 .081956 0 .1423 -0.58
1994 -2 .759032 0.0557 -49 .50 1.871659 0.1092 17.13 0 .116824 0 .1005 1.16

1 T he i-value is ca lcu la ted  as the estim ate  d iv ided  by  the standard  error
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Having determined the observed parameter estimates using GLM procedures, the 

second stage in the modelling process is to identify appropriate time series models 

that describe the trends in the f5jt parameters (j = 0, 1, 2). To this end univariate time

series models for each of the 3 parameters were determined according to the methods 

of Box and Jenkins (1976).

6.3.2 Univariate ARIMA models of the (3 jt parameters
Time series modelling of each of the {j3jt : j  = 0,1,2} parameters was implemented in

the S-Plus environment. To facilitate the analysis using methods available in S-Plus, 

the missing observations for calendar years 1968, 1971 and 1975 were approximated 

from the available observations to produce regularly spaced time-series processes.

For each of the series \j3jt : j  = 0,1,2}, the models fitted were assumed to have a 

Gaussian distribution i.e. the {ej t \ were assumed to be independent and identically 

distributed normal random variables with mean 0 and variance crj. Model 

identification was performed using Akaike information criterion (AIC).

The series {/30t : t = 1,2,•••,36} was modelled by a random walk with drift, 5:

Po,t ~ Av-i + S +£,. (6.56)

The initial value /?00 was assumed to be the observed value in calendar year 1958. 

The A>steps ahead forecast function is therefore:

A>,„+*=A ),„+M  , (6.57)

where /30 n is the observed value of J30 in calendar-year 1994 and k is the number of 

years after 1994.
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The estimated value of the parameter 5 is -0.010763 with standard error 0.012490. 

Thus the fitted model is:

A>,= A,-, -0.010763, (6.58)

with <r02 estimated as 0.005466.

The series {y6U : t = 1,2,•■•,37} was modelled by an ARIMA(2,0,0) model (effectively 

an AR(2) model):

Pu -™ = <l>\ (A,,-i -™ ) + <t>2 (Pu-2 -m ) + su , (6.59)

where m is the process mean. The model fitted is:

P ,- m  = 0 . 6 8 6 6 8 3 —m)—0.36325l(/?,,_2 - m j , (6.60)

with an estimate of o] given by 0.005527 and standard error of the parameter 

estimates ^  and^2 given by 0.159784. The mean of the process is estimated as 

1.891219 giving an estimate of C, of 1.279537 (equation (6.26)).

The ARIMA(1,0,0) model fitted to the series {/?,,: t = 1,2,•••,37} is:

P2t-m  = 0.324959 (/?2 M -m V  (6.61)

with <r2 estimated as 0.007552, and standard error of the derived coefficient given by 

0.162191. The process mean is estimated to be -0.099999 with ^  estimated as 

-0.0675035.

The models fitted are summarised in Table 6.2 and the predicted parameter values for 

the 20-year period from 1995 to 2014 are given in Table 6.3. As would be expected,
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predicted values of fa are declining steadily with time while the predicted values of fa 

and fa converge to their respective means. Figure 6.2 shows the predicted parameter 

values together with the associated approximate 95% confidence intervals.

Table 6.2
Time-series models fitted to observations of the parameters f a ,  f a  and over the period t =  1958-94
P aram eter M odel P aram eter estim a tes  (w ith s tanda rd  e rro rs) M ean m G1

fa R andom  W alk  w ith  d rift 8 =  -0.010763 (0.012490) -2 .63739 0 .005466

fa A R IM A (2 ,0 ,0 ) ^  =0.686683(0.159784) 1.891219 0.005527

=-0.363251(0.159784)

fa A R !M A (1 ,0,0) ^ = 0.324959 (0.162191) -0 .099999 0.007552

Table 6.3
Female immediate annuitants, d1+ years: predicted parameter values for the period 1995-2014, 
based on time-series models fitted to observations over the period 1958-1994______________

Y ear(f) fa fa fa
1995 -2 .769796 1.792669 -0.029541

1996 -2 .780559 1.830651 -0 .077103

1997 -2 .791322 1.885426 -0 .092559

1998 -2 .802086 1.909242 -0.097581

1999 -2 .812849 1.905699 -0 .099214

2000 -2 .823612 1.894615 -0 .099744

2001 -2 .834376 1.888291 -0 .099916

2002 -2 .845139 1.887974 -0 .099972

2003 -2 .855902 1.890054 -0 .099990

2004 -2 .866665 1.891598 -0 .099996

2005 -2 .877429 1.891902 -0 .099998

2006 -2 .888192 1.891550 -0 .099999

2007 -2 .898955 1.891198 -0 .099999

2008 -2 .909719 1.891084 -0 .099999

2009 -2 .920482 1.891134 -0 .099999

2010 -2 .931245 1.891209 -0 .099999

2011 -2 .942009 1.891243 -0 .099999

2012 -2 .952772 1.891239 -0 .099999

2013 -2 .963535 1.891224 -0 .099999

2014 -2 .974298 1.891215 -0 .099999
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Figure 6.2 Female immediate annuitants, d l+  years: plots o f observed (1958-1994) and predicted (1995-2014) 

parameters f}0, Pi and p 2 over time t, together with approximate 95% confidence intervals for the predicted values

The final stage of the time-series modelling procedure applied is to use the parametric 

model (equation (6.54)) to predict future forces of mortality for female immediate 

annuitants with policy duration 1 year and over, assuming the time-series based 

forecast parameter values for each year of prediction. Figure 6.3 is a comparative plot 

of the forces of mortality thus predicted and the forces of mortality predicted from the 

6-parameter log-link model derived from modelling the 1958-94 mortality experience 

for female annuitants. The forces of mortality have been predicted over a 20 calendar- 

year period from 1995 to 2014 for ages 55 to 110 and are shown at 5-year age 

intervals in the graph. The predicted forces of mortality applying in calendar years 

1998, 2002, 2006, 2010 and 2014 are also shown in Table 6.4.
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Table 6.4
Female immediate annuitants, d1+ years: predicted forces of mortality based on a 6-parameter 
log-link model for modelling forces of mortality and ARIMA models for forecasting parameters

age 1998 2002 2006 2010 2014
55 0 .002210 0 .002172 0 .002068 0 .001982 0 .001899
56 0 .002529 0 .002484 0 .002366 0 .002268 0 .002172
57 0.002891 0 .002838 0 .002704 0 .002592 0 .002482
58 0 .003302 0.003240 0 .003088 0 .002959 0 .002834
59 0 .003768 0 .003695 0 .003522 0 .003375 0 .003233
60 0 .004296 0 .004209 0 .004013 0 .003846 0 .003684
61 0 .004893 0.004791 0 .004569 0 .004378 0 .004194
62 0 .005568 0 .005448 0 .005196 0 .004979 0 .004769
63 0 .006330 0 .006188 0 .005904 0 .005657 0 .005419
64 0 .007189 0 .007023 0.006701 0.006421 0.006151
65 0 .008157 0 .007962 0 .007599 0.007281 0 .006974
66 0 .009246 0 .009018 0 .008609 0 .008248 0.007901
67 0.010471 0 .010204 0 .009743 0 .009335 0 .008942
68 0 .011846 0 .011534 0 .011015 0 .010554 0 .010109
69 0 .013390 0 .013026 0 .012442 0.011921 0 .011419
70 0 .015120 0 .014695 0 .014040 0 .013452 0 .012885
71 0 .017058 0 .016563 0 .015828 0 .015164 0 .014525
72 0 .019225 0 .018650 0 .017826 0 .017078 0 .016358
73 0 .021647 0 .020979 0 .020056 0 .019214 0 .018404
74 0.024351 0 .023576 0 .022543 0 .021597 0 .020686
75 0 .027367 0 .026468 0 .025314 0.024251 0 .023229
76 0 .030726 0 .029686 0 .028397 0 .027204 0 .026058
77 0 .034465 0 .033262 0 .031825 0 .030487 0 .029203
78 0 .038622 0 .037233 0 .035632 0 .034134 0 .032695
79 0 .043240 0 .041638 0 .039855 0 .038178 0 .036569
80 0 .048362 0 .046518 0 .044535 0.042661 0 .040863
81 0.054041 0 .051918 0 .049716 0 .047622 0 .045616
82 0 .060328 0 .057890 0 .055445 0 .053109 0.050871
83 0 .067282 0 .064484 0 .061774 0 .059170 0 .056677
84 0 .074966 0 .071760 0 .068758 0 .065859 0 .063083
85 0 .083448 0 .079778 0 .076457 0.073231 0 .070145
86 0.092801 0 .088606 0 .084934 0 .081349 0.077921
87 0 .103103 0 .098314 0 .094259 0 .090279 0 .086475
88 0 .114440 0 .108979 0 .104505 0 .100090 0 .095873
89 0 .126902 0 .120682 0.115751 0 .110860 0 .106188
90 0 .140586 0 .133512 0 .128083 0 .122667 0 .117499
91 0 .155598 0.147561 0 .141589 0 .135600 0 .129886
92 0 .172048 0 .162928 0 .156366 0 .149749 0 .143439
93 0 .190055 0 .179720 0 .172517 0 .165213 0 .158252
94 0 .209746 0 .198049 0 .190149 0 .182095 0 .174422
95 0 .231256 0 .218033 0 .209378 0 .200506 0 .192057
96 0 .254728 0 .239799 0 .230326 0 .220562 0 .211268
97 0 .280315 0 .263479 0.253121 0 .242386 0 .232173
98 0 .308177 0 .289214 0.277901 0 .266110 0 .254897
99 0 .338485 0 .317152 0 .304807 0 .291869 0.279571

100 0 .371419 0 .347449 0.333991 0 .319808 0 .306333
101 0 .407167 0 .380268 0.365611 0 .350078 0 .335328
102 0 .445930 0 .415778 0 .399833 0 .382839 0 .366708
103 0 .487916 0 .454160 0 .436830 0 .418255 0 .400632
104 0 .533345 0.495600 0 .476783 0 .456500 0 .437266
105 0 .582447 0.540291 0.519881 0 .497755 0 .476783
106 0 .635462 0 .588436 0 .566319 0 .542206 0.519361
107 0 .692640 0 .640243 0.616301 0 .590048 0 .565188
108 0.754241 0 .695930 0 .670038 0 .641484 0 .614457
109 0 .820536 0 .755720 0 .727748 0 .696720 0 .667366
110 0 .891806 0 .819844 0 .789654 0 .755972 0 .724122
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Figure 6.3 Female immediate annuitants, d l+  years: a comparison of predicted forces o f mortality derived from a 

parametric model and predicted forces o f mortality derived from a combination of parametric and univariate 

ARIMA models

From the plot in Figure 6.3, it can be observed that in general, forces of mortality 

projected on the basis of the parametric model are lower than the time-series based 

projected forces of mortality, except at ages below 65 years. The greatest differences 

occur at extreme old age, where the highest projected forces of mortality are just 

under 0.5 for the parametric model and just under 1 for the time-series model. 

Flowever both modelling approaches would appear to produce forces of mortality that 

would be suitable for premium calculation and determining of reserves. It is 

interesting to note that based on the forces of mortality projected over the calendar- 

year period from 1995 to 2014, there is little difference between the forces of 

mortality projected on the basis of the two approaches at ages between 65 and 100 

years (that is, the range of ages over which the data has been modelled).
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The GLM modelling structure that has age x and time t as covariates might be 

preferred to the time series approach applied in this thesis. The GLM-approach is an 

integrated procedure that provides a single model to describe past trends in mortality 

and provide future predicted mortality rates. On the other hand the time series 

approach involves some three stages requiring a comparatively large number of 

computations: modelling the historical data for each calendar year t to determine an 

appropriate age-dependent model; determining forecast models for each of the 

parameters in the age-dependent model and deriving the forecasts; and using the 

forecast parameters to derive future mortality rates. It therefore seems that the 

integrated GLM procedure would be easier to implement. In addition, in general, the 

parametric model assumed here produces the lower forces of mortality, suggesting 

that this would be the preferred model for premium calculation and determining of 

reserves.

The univariate time series procedure applied in this section is based on the assumption 

that the series (3jt, j  = 1,2,3 are independent. Empirical covariances computed seem

to support this assumption. However, the parameter forecasts might be improved by 

modelling the trends using multivariate time series methods, thereby incorporating 

(any) interaction effects between the model parameters. This has however not been 

applied in this study. The computed covariances are presented in Appendix 4.

An alternative time series approach to determine mortality forecast models is the Lee- 

Carter method (Lee and Carter, 1992; Lee, 2000). The method, described in Chapter 

3, has been applied to UK immediate annuitants’ and pensioners’ mortality 

experiences and compared with the GLM-based method by Renshaw and Haberman 

(2003b).
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Chapter 7

Conclusion

7.1 Summary
The aim of the thesis is to investigate trends in the mortality of UK immediate 

annuitants and life office pensioners, and to develop a model or models suitable for 

predicting future patterns in mortality. The measure of mortality considered is the 

force of mortality. The salient points presented in the thesis are summarised in this 

section.

Chapter 2

Measures of mortality are discussed in general and methods of deriving crude 

mortality rates to estimate from observed mortality data, the force of mortality px, and 

the initial rate of mortality qx at age x, are also discussed. The concept of selection is 

briefly described and its relevance to annuitants’ mortality experience noted. Various 

laws of mortality, i.e. mathematical formulae that have been used to describe levels of 

mortality, and methods of graduating mortality data are presented. Two graduation 

methods are described: the Continuous Mortality Investigation (CMI) Committee 

method of graduation and the extension to incorporate generalised linear models 

(GLMs) proposed by Renshaw (1991). The Renshaw et al (1996) GLM-based trend 

analysis methodology for the force of mortality is discussed in detail with a view to 

applying the same procedure to immediate annuitants’ and pensioners’ mortality data. 

The tests of graduation applied in the study are described.
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Chapter 3

Methods of projecting mortality rates discussed by Pollard (1987) are described. The 

methods described are: projection by extrapolation of mortality rates; projection 

through parameters by reference to a law of mortality or using Bayesian graduation; 

projection using relational models, by relating the mortality under study to either a 

reference population, model life tables, a more advanced population, or an ‘optimal’ 

life table attainable under ideal conditions; and projection by cause of death. The 

time-series based Lee-Carter method of projecting central death rates is also 

described. Finally, methods that have been used in some countries of Western Europe 

to project mortality rates for annuity business are presented, with emphasis on the 

CMI model. The Renshaw et al (1996) GLM model is presented as an alternative to 

the CMI model. It is shown that a mortality improvement formula of the same basic 

format as the CMI mortality improvement model can be derived directly from the 

GLM-based graduation model that incorporates age and time. The mortality 

improvement formula is of the form:

Mx,n=Mx, 0-RF(x,n)

where,

jux0 is the force of mortality for a life attaining exact age x in the base

calendar year (taken as year 0); that is, the base rate from the mortality table 

for the appropriate experience;

ju is the force of mortality for a life attaining exact age x in calendar year 

base year + n\ and

RF(x,n) is the reduction factor for an ultimate life attaining exact age x at time 

n, where n is measured in years from the base calendar year, thus n = 1,2, •• •.

Chapter 4
The Renshaw et al (1996) modelling structure is used to investigate trends in the 

mortality experience of immediate annuitants’ (ultimate). The ultimate experience
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analysed pertains to policyholders with policy duration 1 year and over and the data 

covers the calendar year period from 1946 to 1994.

It is shown that a trend analysis of the female experience over the period 1946-94 

results in a 10-parameter model formula that is unsuitable for projections although the 

model provides a good fit to the observed experience. The trend adjustment term in 

this 10-parameter model is a polynomial of degree 4 in time t on the log scale. 

Predicted forces of mortality at future time periods are seen to exhibit a rapid 

improvement in mortality that is considered unrealistic. It is therefore concluded that 

the model is unsuitable for projections of forces of mortality at future time periods.

Taking note of the changes in the class of lives taking out immediate annuity contracts 

as a result of the Finance Act 1956, data prior to 1958 is then excluded and GLM 

models refitted to the experience. Two models are identified as providing the best fit 

to the observed experience. The first model consists of a Gompertz-Makeham term 

GMX(0,4) in combination with a trend adjustment term that is a linear function of t on 

the log scale, with a coefficient that is a quadratic function of age x (7 parameters). 

The second model is a 6-parameter model consisting of a GMX(0,4) term plus a 2- 

parameter trend adjustment term linear in time t on the log scale, with a coefficient 

that is linear in age x. It is shown that forces of mortality projected on the basis of the

7-parameter model do not progress smoothly at the extreme ages, particularly at ages 

outside the range of ages over which the model is fitted. On the other hand the 6- 

parameter model produces forces of mortality that progress smoothly with respect to 

both age and time and would therefore be a suitable model for mortality projections 

for annuity business. In addition, it is shown that a simple mortality improvement 

model can be readily derived from the trend model formula. The 6-parameter model is 

of the form:

M *  = exp A + Z t t
j =1

C \x - c

V J
+ < a  + y x - c „

V 7

t-C ,

K w<

and the corresponding mortality improvement model is of the form:
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RF(x,n)= exp
w.

,a  + y
( \  x - c

V J

Lj(pc) are Legendre polynomials; cx, wx, c, and w, are chosen such that age x and 

calendar-year t respectively, are each mapped onto the interval [-1 ,+l] in the model 

structure; and n is time measured in years from an appropriately chosen base 

calendar-year.

The best-fitting model for the male immediate annuitants’ ultimate mortality 

experience over the period 1946 to 1994 is shown to be a 6-parameter model 

consisting of a GMX(0,3) term in age effects and a trend adjustment term that is 

quadratic in time t on the log scale, with coefficients that are linear in age x. Projected 

forces of mortality on the basis of this model are found to have some undesirable 

features at extreme old age: the rates tend to increase with time and also exhibit a 

rapid increase with age at ages above 95 years.

As for the females’ experience, data prior to 1958 is then excluded from the analysis 

of the male annuitants’ mortality experience. The simplest model providing a good fit 

to the male immediate annuitants’ mortality experience over the period 1958 to 1994 

is found to be a 3-parameter model consisting of a GMX(0,2) term in age effects and 

an age-independent trend adjustment term linear in time t on the log scale. The 

projected forces of mortality for male annuitants based on this 3-parameter model are 

compared with projected forces of mortality based on the same model structure as for 

the corresponding female experience, and a third model consisting of a GMX(0,2) term 

in age effects and a trend adjustment term of the same format as for the female 

annuitants’ 6-parameter model. The 6-parameter model structure is shown to provide 

the lowest projected forces of mortality over a 20-year period. It is however suggested 

that the choice between the three models fitted would be a matter of personal 

judgement since all three models exhibit patterns suitable for projections, although the 

3-parameter model would be an unlikely candidate because of the age-independent 

trend adjustment term. It can therefore be inferred that the GLM-based modelling 

structure can be used to predict future forces of mortality for immediate annuitants
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The forces of mortality for male annuitants predicted on the basis of a trend analysis 

of the 1958-94 experience are however seen to exhibit a rapid increase with age at 

extreme old age (over 100 years). It is suggested that a projection model for male 

annuitants based on the experience from 1958, with equal weighting given to each 

calendar year, does not adequately reflect the improvements in mortality in the male 

population in the more recent years. In order to give more weight to the mortality 

experience in the more recent years, two approaches are presented. One approach 

taken is to fit the ‘adopted’ 6-parameter model structure to the male annuitants’ 

ultimate experience over a period that excludes the earlier years. In this case the 

period excluded is the calendar years prior to 1974. A second approach is to estimate 

the model parameters on the basis of the 1958-94 experience using likelihood 

weighted by calendar year, with the greatest weight given to the most recent calendar 

year of the investigation period. In both cases, it is shown that the rapid increase of 

forces of mortality with age at extreme old age is greatly reduced, producing rates that 

are preferable for annuity pricing.

As an illustration of a complete GLM modelling procedure for mortality data that 

includes select data, the method proposed by Renshaw and Haberman (1997) is 

applied to female annuitants’ data. In this specific case the ultimate experience is 

taken to be policies with duration 5 years and over.

when the trend adjustment term is linear in time t on the log scale and the coefficient

o f this term is itself linear in age effects.

Chapter 5

The results of applying the GLM modelling structure to life office pensioners’ 

mortality experience over the 14-year period from 1983 to 1996 are presented. The 

best fitting model for male pensioners is shown to be a 7-parameter model consisting 

of a GMX(0,4) term in combination with a trend adjustment term that is quadratic in 

time t on the log scale. Projections based on this 7-parameter model are shown to 

exhibit unrealistically rapid improvements in mortality with time. Fitting the 6- 

parameter model structure fitted to the annuitants’ experiences is shown to result in
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It is therefore concluded that the GLM-based modelling structure proposed by 

Renshaw et al (1996) can be used to predict future forces of mortality for immediate 

annuitants and pensioners provided the trend adjustment term is linear in time t on the 

log scale and the coefficient of this term is itself linear in age effects. Including 

interaction terms involving higher order terms in x results in forces of mortality that 

do not progress smoothly at the extreme ages. On the other hand, introducing higher 

order terms in time t results in unrealistically rapid improvements in mortality.

It is suggested that the future mortality pattern for pensioners could be better 

projected by a model based on a longer period of observation (which is not available), 

or by using the lower confidence limits derived for the parameters in the model 

formula.

Despite the short observation period over which the pensioners’ projected forces of 

mortality are based, the mortality improvement factors derived for life office 

pensioners are shown to be consistent with CMI mortality improvement factors, 

which are based on the pensioners’ mortality experience. It is also shown that the 

improvement factors derived from modelling the immediate annuitants’ experience do 

not have a similar pattern. The underlying mortality trends in the two experiences are 

different. For example, because the annuitants exercise some degree of self-selection, 

there is less improvement in mortality over time and less variation in mortality 

changes over age than there is for pensioners. The selection processes for immediate 

annuitants and for pensioners are different: pensioners’ population effectively 

corresponds to compulsory purchase of annuity, whereas annuitant population 

effectively corresponds to voluntary purchase of annuity. Finkelstein and Poterba 

(2002) have explored adverse selection in the voluntary and compulsory individual 

annuity markets in the UK. They observe that the mortality differences between 

annuitants and non-annuitants are more pronounced in the voluntary than the 

compulsory annuity market and estimate that the amount of adverse selection in the 

compulsory market is about one half of that in the voluntary sector. Thus, mortality

reasonable projections for both male and female pensioners at most ages, particularly

at ages below 100 years.
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It is also shown that to some extent, the period mortality improvement formula 

derived can be considered equivalent to a mortality improvement model based on year 

of birth (cohort) experience.

improvement factors appropriate for the pensioners’ experience are not necessarily

appropriate for the immediate annuitants’ experience.

Chapter 6

Consideration of an alternative approach to modelling time trends in annuitants’ 

mortality using time series methods is made for comparative purposes. The time 

series approach applied is that used by McNown and Rogers (1989), a method that 

combines parametric models and time-series models to generate forecasts. Univariate 

time series procedures are used to forecast each of the parameters in the age- 

dependent model for the force of mortality px and then the forecast parameters are 

applied in the age dependent model to project forces of mortality at future time 

periods, t.

The data set considered is the female annuitants’ experience over the period 1958 to 

1994. Projected forces of mortality based on the GLM modelling procedure and the 

time-series based modelling procedure are found to be quite similar, particularly 

within the range of ages over which the data is modelled. It is however suggested that 

the 6-parameter log-link model (with a linear trend adjustment term in time t on the 

log scale), derived in Chapter 4 is the better model since the forces of mortality 

projected on the basis of the univariate time-series models are generally higher than 

the forces of mortality projected on the basis of the parametric model. It is further 

suggested that the GLM modelling procedure is more attractive to apply as it is an 

integrated procedure providing a single model to describe past trends in mortality and 

to produce projected forces of mortality.

The Renshaw et al (1996) GLM modelling procedure is such that the model 

determined from analysing the historical data incorporates an appropriate mortality 

improvement model for predicting future mortality rates. Hence a mortality
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improvement model is determined statistically rather than by using ad hoc methods, 

as is the case with the CMI model. Notwithstanding this, it is recognised that, in 

choosing appropriate mortality reduction factors, a degree of personal judgement will 

always be exercised bearing in mind that overestimating mortality will endanger the 

company's financial position; while an underestimate will undermine the company's 

competitive position.

7.2 Areas of Further Research
Projection using Bayesian methods
The GLM-based projected forces of mortality are based on a deterministic approach 

for future forces of mortality. An area of further research would be the derivation of 

stochastic models for pu  using Bayesian graduation methods (e.g. Carlin, 1992, 

Dellaportas, Smith and Stavropoulos, 2001)

Year o f birth cohort mortality improvement model
In Chapter 5, Section 5.6, it is suggested that the period (year of attaining age x) 

mortality improvement model is equivalent to a year of birth cohort mortality 

improvement model. A detailed investigation of the annuitants’ and pensioners’ 

mortality experiences by year of birth should provide empirical evidence in support 

(or otherwise) of this assertion.

Time-series modelling o f parameters in the age-dependent model 
The time series approach applied in this thesis is to use univariate time series 

procedures to forecast each of the parameters in the age-dependent model, ignoring 

any interaction effects between the parameters. It would be worthwhile to consider 

multivariate time series methods that would then incorporate interaction effects in the 

modelling procedure.
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Investigation o f links between GLM-based mortality forecasting methods and Lee- 

Carter framework

Links between the GLM approach to forecasting mortality data and the Lee-Carter 

time-series approach have not been investigated in this thesis. A detailed investigation 

of the links between the methods would be desirable. Renshaw and Haberman 

(2003b) have suggested ways in which the Lee-Carter method can be modified to 

forecast mortality reduction factors and have noted similarities in the results with 

results obtained from applying GLM forecasting methods.

Investigation o f links between GLM-based mortality forecasting methods and the log- 

bilinear approach

The 6-parameter log-link model proposed in this thesis is very close to the log- 

bilinear approach briefly described in Chapter 3, Section 3.6. There is need for a 

careful comparison of the two approaches in order to identify their respective 

drawbacks.
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Appendix 1

Likelihood functions for generalized linear models

A vector of observations y having n components is assumed to be a realisation of a 

random variable F whose components are independently distributed with means m. 

Each component of Y is assumed to have a distribution in the exponential family, 

taking the form:

for some specific functions a(.), b(.) and c(.). If (j> is known, the distribution of F is a 

one-parameter exponential family with canonical parameter 6. If (f) is unknown the 

distribution may or may not be a two-parameter exponential family.

The mean and variance of F can be derived from the log-likelihood function:

( A l . l )

(A1.2)

and the relations:

(A1.3)

and

(A 1.4)

From (A1.2) we have

se \y -b je ) \
ÔG a(<j>)

(A1.5)
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and

d2i  = b"{e)

d02 a{(j))

From (A1.3) and (A1.5), we have

0 = EL 50,
{m -  b'{6)\ 

a(</>)

so that

E(Y) = m = b'{e).

Similarly, from (A1.4), (A1.5) and (A1.6) we have 

b-(e) var(y)

4 * )  W ’
so that

var (Y) = b"(0)a(ij>).

(A1.6)
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A ppendix 2

Confidence intervals for predicted forces of mortality in 2014 based on the 6- 

parameter log-link models derived from the 1974-94 annuitants’ mortality 

experiences

Figure A2.1
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A ppendix 3

Derivation of variance and covariance functions for ARMA(1,1) process 

An ARMA(1,1) process is defined by:

Yl =C + <t>Yt_l+ st +del_x. (A3.1)

where the {st} is a white noise process with mean 0 and variance a 2. Taking 

expectations of (A3.1) and noting that E(T,) = m for all t, we have

m =
w

or

f  = m( 1 ■

(A3.2)

(A3.3)

Using the result (A3.3), (A3.1) may be expressed as:

Yt = m(l — + (j)Yt_j + s( + ,

that is:

Yt —m = -  m) + st + 9st_x. (A3.4)

The covariances of Yt and the white noise terms £, and st.\ are derived as follows:

cov(Yl,£l) = cov(f + <f)Yl_] + s, + 9st_x,£t)= <j 2 (A3.5)

cov(Yl,£t_]) = cov(i^+ (f>Yt_l +£t + 9£[_v £l_l)= <j 2(</> + 9) . (A3.6)

The variance function y0, is given by:

Yo = c o v (T ,,Yt)~  cov(^ +<fiYt_l +£l +9£t_l,Yt) = <pyi + a 2 + 9a1 (</> + 9 ). (A3.7)
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Using similar relationships, it is found that:

Y\ =cov(yr„y<_1) = ^ '0 +9cr2, (A3.8)

y2=cov(Yt Yl_2)=<t>yx (A3.9)

and the recurrence relation

Y j=(l>Yj-1 foral ly>2.  (A3.10)

Expressing yx (A3.8) in terms of y0 in the expression for y0 (A3.7), the results

2 (\ +  2<f>6 + 0 2)
r°=a i s

and

(A3.11)

a 2((/) + d \ l  + (f>e)
\ - f

(A3.12)
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Appendix 4

Female immediate annuitants, dl+ years: covariances o f parameter estimates based 
on GMX(0,3) graduation models for each calendar year 1958 to 1994 (excluding 
1968, 1971 and 1975)

year cov(/3o,/?i) cov(/3ò,/2?) cov(/? i M
1958 -0 .0003 0 .0026 -0.0001
1959 -0 .0003 0 .0019 -0 .0003
1960 -0 .0006 0 .0028 -0 .0008
1961 -0 .0005 0 .0017 -0 .0008
1962 -0 .0005 0 .0016 -0 .0008
1963 -0 .0007 0.0019 -0 .0010
1964 -0 .0006 0.0019 -0 .0008
1965 -0 .0004 0 .0013 -0 .0006

1966 -0 .0004 0.0011 -0 .0005
1967 -0 .0002 0 .0008 -0 .0002

1969 -0 .0006 0 .0019 -0 .0008

1970 -0 .0006 0 .0016 -0 .0009
1972 -0 .0008 0.0017 -0 .0012

1973 -0 .0005 0.0010 -0 .0008

1974 -0 .0004 0.0008 -0 .0007

1976 -0.0011 0.0019 -0 .0020
1977 -0 .0010 0 .0016 -0 .0018

1978 -0 .0013 0 .0019 -0 .0024

1979 -0 .0016 0.0023 -0 .0030

1980 -0 .0010 0 .0013 -0 .0019

1981 -0 .0017 0.0022 -0.0031

1982 -0 .0016 0.0022 -0 .0030

1983 -0 .0018 0 .0023 -0 .0033

1984 -0 .0026 0 .0034 -0 .0047

1985 -0 .0043 0 .0050 -0 .0077

1986 -0 .0052 0 .0058 -0 .0092

1987 -0 .0047 0 .0047 -0 .0080

1988 -0 .0032 0 .0032 -0 .0054

1989 -0 .0027 0 .0026 -0 .0045

1990 -0 .0038 0 .0036 -0 .0062

1991 -0.0041 0 .0037 -0 .0065
1992 -0 .0083 0 .0067 -0 .0127

1993 -0 .0109 0 .0084 -0 .0163
1994 -0 .0053 0 .0040 -0 .0079
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