
              

City, University of London Institutional Repository

Citation: England, R. (2023). Agent-Based Modelling in the Insurance Industry: An 

Exploration of Emergent Systemic Risk. (Unpublished Doctoral thesis, City, University of 
London) 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/30954/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Agent-Based Modelling in the
Insurance Industry: an Exploration of

Emergent Systemic Risk

Rei England

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy
of

Bayes Business School, City, University of London.

Faculty of Actuarial Science and Insurance

Bayes Business School

City, University of London

29 June 2023



To my Mum,
My whole life I have always known that whatever else happened,

you would always be on my team, and so you have been through-
out these difficult last few years. My biggest supporter and my role
model, you inspired me with your analytical mind and love of learn-
ing - and your ubiquitous spreadsheets!

It means so much to me that you died knowing that I had fin-
ished writing this. I know it gave you joy. You told me you were
proud of me.

You won’t be here to see the next adventure. But for every new
peak I climb, I will know that I reached the mountain because I first
stood on your shoulders.

You loved and are loved. Always.

2



Contents

List of Figures 10

List of Tables 12

1 Introduction 18
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2 Game Theory Approach to Competition . . . . . . . . . . . . . . . . . . . 19

1.3 Network Approach to Interactions . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Agent-Based Models (ABMs) . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Modelling Sources of Systemic Risk . . . . . . . . . . . . . . . . . . . . . 23

1.6 Insurance Regulation and Systemic Risk . . . . . . . . . . . . . . . . . . . 24

1.7 Behavioural Bias in Insurance Markets . . . . . . . . . . . . . . . . . . . . 25

1.8 Structure of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

References for Chapter 1 29

2 An Agent-Based Model of Motor Insurance Customer Behaviour in the UK
with Word of Mouth 33
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.2 Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.3 Insurers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.4 Customers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 Data, Parameterisation and Validation . . . . . . . . . . . . . . . . . . . . 51

2.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4.2 Parameterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4.4 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.5.1 Base Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



2.5.2 Sensitivity Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.5.3 Heterogeneity of Customer Service . . . . . . . . . . . . . . . . . 63

2.5.4 Regulation Change . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

References for Chapter 2 68

3 The Effect of the Winner’s Curse on an Insurer’s Estimated Capital Require-
ment 72
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3 Model Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3.3 Starting Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3.4 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3.5 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3.6 Premium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3.7 Customer Allocation . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.3.8 Capital Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.3.9 Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3.10 Calculate Output . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3.11 Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4.1 Base Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4.2 Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4.3 Renewal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4.4 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

References for Chapter 3 95

4 An Agent-based Model of Insurance Market Price Dynamics with Heteroge-
neous Market Supply Strategies 97
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3 The artificial insurance market: outline . . . . . . . . . . . . . . . . . . . . 100

4.3.1 Basic assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3.2 Outline and notation . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4 Insurance demand in the artificial market . . . . . . . . . . . . . . . . . . . 102

4.5 Insurance supply in the artificial market . . . . . . . . . . . . . . . . . . . 103

Contents 4



4.6 Market premium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.7 Insurer market strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.7.1 Boundedly Rational insurers . . . . . . . . . . . . . . . . . . . . . 105

4.7.2 Chartist insurers . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.8 Data and Parametrisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.9 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.9.1 Bounded Rationalist Market . . . . . . . . . . . . . . . . . . . . . 108

4.9.2 Market with Chartists . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.10 Adaptively Rational Agents . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.10.1 Adaptive strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.10.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

References for Chapter 4 117

5 An Extension of the Taylor Model of Insurance Market Dynamics 120
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2.1 Insurance Market dynamics . . . . . . . . . . . . . . . . . . . . . 121

5.2.2 Taylor’s Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2.3 Examination of the Taylor Model . . . . . . . . . . . . . . . . . . 123

5.3 Model Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.3.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.3.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3.3 Competitive Premium . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3.4 Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3.5 Accounting Results . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3.6 Entry and exit of insurers . . . . . . . . . . . . . . . . . . . . . . . 130

5.3.7 Reallocation of market share . . . . . . . . . . . . . . . . . . . . . 131

5.3.8 Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.4.1 Base Model Results . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.4.2 Insurer Behaviour Parameters . . . . . . . . . . . . . . . . . . . . 134

5.4.3 Customer Behaviour Parameters . . . . . . . . . . . . . . . . . . . 137

5.4.4 Market Participation Requirements . . . . . . . . . . . . . . . . . 138

5.4.5 Regulator Controls . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.4.6 Catastrophe Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

References for Chapter 5 143

Contents 5



6 Conclusions and Future Work 145
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

References for Chapter 6 150

Contents 6



List of Figures

2.1 Swimlane overview of the processes in the customer word-of-mouth ABM . 39

2.2 Pseudocode for initialisation at the start of each simulation. See Figure 2.3

for the pseudocode describing the actions carried out in each timestep t. . . 40

2.3 Pseudocode for running a single timestep. This function is carried out for

each timestep after the model has been initialised (see Figure 2.2 for the

initialisation pseudocode). Figures 2.4, 2.5, 2.6, and 2.7 show pseudocode

for the Customer object functions SELECT INSURER, GETCLAIMS,

UPDAT EWOM, and UPDAT EOPINIONS respectively. . . . . . . . . . . 40

2.4 Pseudocode for claim generation and service experience . . . . . . . . . . 43

2.5 Pseudocode for a Customer agent selecting which insurer to purchase from 47

2.6 Pseudocode for a Customer agent obtaining word-of-mouth information . . 48

2.7 Pseudocode for a Customer agent updating their opinions Qi jt based on

information gained during a timestep t . . . . . . . . . . . . . . . . . . . . 50

2.8 Diagram of the Markov chain states and transition probabilities between

customer renewal states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.9 Comparison of fitted regression lines of customer estimate of service quality

versus actual service quality. The customers’ opinion of their own insurer is

higher than their true quality, and the average opinion is slightly lower, re-

flecting the small bias caused by the lack of new information about insurers

which customers perceive to be lower quality. . . . . . . . . . . . . . . . . 60

2.10 Market concentration versus ratio of customer sensitivity to service quality

(kQ) to brand preference sensitivity (kD). Market concentration is measured

by the market share of the insurer with the largest market share. The ratio

kQ/kD is the primary driver of market share inequality. . . . . . . . . . . . 61

2.11 The average of customers’ opinion of an individual insurer is close to zero

when word-of-mouth is turned off due to lack of information, but quickly

becomes close to the true value of 0.6 as the word-of-mouth influence factor

kW increases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



2.12 Average insurer profit versus customer service spend for different levels of

customer sensitivity to service quality (kQ). In general, the more insurers

spend on customer service, the greater the average profit that they make.

At very small values of kQ such as kQ=2, the customers’ preference for

better quality is no longer high enough to overcome the price change, and

the lower quality insurers attract more business. . . . . . . . . . . . . . . . 64

2.13 Average individual insurer profit as a proportion of average market profit

versus customer service spend for the base model and the regulation change

scenario. In general, the more insurers spend on customer service, the

higher their profit relative to their rivals. Under the regulation change, this

difference becomes even more pronounced, suggesting that this move could

increase incentives for good customer service. . . . . . . . . . . . . . . . . 66

3.1 Swimlane overview of the processes in the winner’s curse ABM . . . . . . 76

3.2 Distance between two locations in preference space . . . . . . . . . . . . . 79

3.3 Average CGR of Base Model: nDi,0 = 10. Error in capital estimation in-

creases for more insurers or fewer customers. . . . . . . . . . . . . . . . . 87

3.4 Average CGR of Heterogeneous Model: nDi,0 = 20, n jK = 256. The error

in capital estimation is worse for aware insurers when there are more aware

insurers in the market, and worse for unaware insurers when there are more

unaware insurers in the market. Overall, the total error is largest when there

are equal numbers of each type of insurer. . . . . . . . . . . . . . . . . . . 88

3.5 Average CGR of Renewal Model for different renewal rates: nI = 10, nDi,0 =

20. Renewal rates decrease the error in the capital estimation. . . . . . . . . 89

3.6 Average CGR of Renewal Model over time: nI = 10, nDi,0 = 20, R = 50%

and R = 0%. Over time, the results of the renewal model approaches that of

the base model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.7 Average CGR of Network Model: Poisson network, nI = 10, nDi,0 = 20,

nJ=1 = 10. The error in the capital estimation increases when the connection

probability is higher and each transaction has a greater number of rivals. . . 91

3.8 Average CGR of Network Model: Fitness network, nI = 10, nDi,0 = 20,

nJ=1 = 10. The error in the capital estimation increases when the fitness

parameter is higher and each transaction has a greater number of rivals. . . 91

3.9 Average CGR of Network Model: Cost-Benefit network, nI = 10, nDi,0 = 20,

nJ=1. = 10. The error in the capital estimation decreases when the cost

parameter is higher and each transaction has a smaller number of rivals. . . 92

3.10 Average CGR of Network Model split by Insurer Degree: Cost Benefit net-

work, nI = 10, nDi,0 = 20, nJ=1 = 10 . . . . . . . . . . . . . . . . . . . . . 92

3.11 Average CGR of Network Model, split by Insurer Neighbourhood Measure:

Fitness network, nI = 10, nDi,0 = 20, nJ=1 = 10 . . . . . . . . . . . . . . . 93

List of Figures 8



3.12 Average CGR of Network Model, split by Insurer Neighbourhood Measure:

Poisson network, nI = 10, nDi,0 = 20, nJ=1 = 10 . . . . . . . . . . . . . . . 93

4.1 Swimlane overview of the processes in the heterogeneous market supply

strategies ABM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2 Market premium by time for single sim of a boundedly rationalist market.

Cycles are seen arising from the market dynamics, a feature which is also

present in real-world markets. . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3 Market premium from a single simulation where the market contains one

and ten medium-term trend followers. The existence of the chartists disrupt

the cyclical pattern seen in the rationalist-only market and an increasingly

noisy market emerges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4 Average profit of the two types of insurers in the market for different number

of medium term trend followers. Chartists outperform rationalists in the

disrupted market. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.5 Standard deviation of the profit of the two types of insurers in the market

for different number of medium term trend followers. While the chartists

earn higher profits on average, their profits are much more volatile as they

are caught off-guard when the pattern changes. . . . . . . . . . . . . . . . 113

4.6 Number of each insurer type by time period averaged across 500 simula-

tions for choice parameter = 0.001. After an initial period of instability, the

medium term chartists tend to dominate the numbers. . . . . . . . . . . . . 114

4.7 Number of each insurer type at t=100 for varying values of choice parameter

ω . After an initial period where chartists and particularly medium term

trend followers tend to dominate, the agents become increasingly wary of

the higher volatilities, and the bounded rationalist strategy tends to dominate

the numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.1 Market capital and premium by time step from Taylor replication base model.124

5.2 Market capital and premium from Taylor replication where k3 = 0.3. . . . . 124

5.3 Single insurer net assets from Taylor replication base model. . . . . . . . . 125

5.4 Percentage deviation from the mean of a single insurer net assets from Tay-

lor replication and new model base models. . . . . . . . . . . . . . . . . . 133

5.5 Market capital and premium from Taylor replication and new model base

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.6 Premium diversity from Taylor replication and new model base models. . . 134

5.7 Market capital and premium for k1 sensitivity model with varying k1. . . . . 135

5.8 Market premium autocorrelation for k2 sensitivity model with varying k2. . 136

5.9 Average market profit margin for k1 and k2 sensitivity models with varying

k1 and k2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.10 Market premium autocorrelation for k7 sensitivity model with varying k7. . 137

List of Figures 9



5.11 Market solvency and premium for k6 sensitivity model where k6 = 0.02. . . 138

5.12 Insurer Numbers for k3 sensitivity model with k3 = 0.2 and k3 = 0.3. . . . . 139

5.13 Market Premium and Capital for simulation with a catastrophe loss. . . . . 140

List of Figures 10



List of Tables

2.1 Table of parameter values for base model . . . . . . . . . . . . . . . . . . 57

2.2 Table of varied parameter values for sensitivity model . . . . . . . . . . . . 58

2.3 Table of regression results for individual insurer outputs regressed on the

quality of the customers’ experiences with the insurer in the first timestep

according to the equation: yit = α0 +α1zi1 + εit . . . . . . . . . . . . . . . 59

2.4 Table of regression results for market retention rate dependency on market

premium using the equation: Rt = α0 +α1Pt + εit . . . . . . . . . . . . . . 59

2.5 Table of results for the outputs across all timesteps within a single simula-

tion regressed on the insurer service spend Ei/E according to the equation:

yk = α0 +α1Ei/E + εit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.6 Table of results for the average market share across all timesteps within a

single simulation regressed on the ratio of the customer sensitivities to ser-

vice quality and brand preference according to the equation: 1
t ∑t ms,it/nc =

α0 +α1kQ/kD + εit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.7 Table of results for regressing average of outputs across all timesteps

within a single simulation on the inputs kW and pW according to equation:
1
t ∑tfor simk yt = α0 +α1xk + εit . . . . . . . . . . . . . . . . . . . . . . . 62

2.8 Table of results for the average market share of the insurer with the

highest share across all timesteps within a single simulation regressed

on the value of the input memory factor ϕ according to the equation:
1
t ∑t max{ms,it}/nc = α0 +α1ϕ + εit . . . . . . . . . . . . . . . . . . . . . 63

2.9 Table of regression results for regulatory change scenario versus base model

using indicator variables for the equation: yk = α0 +α2Ik + εk . . . . . . . 65

2.10 Table of regression results on average output values for sensitivity tests run

on regulatory change scenario versus base model according to the equation:

yk = α0 +α1xk +α2Ik +α3IkXk + εk . . . . . . . . . . . . . . . . . . . . . 65

3.1 Input parameter variations for Base Model . . . . . . . . . . . . . . . . . . 84

3.2 Input parameter variations for Heterogeneous Model . . . . . . . . . . . . 84

3.3 Input parameter variations for Renewal Model . . . . . . . . . . . . . . . . 85

3.4 Input parameter variations for Network Model . . . . . . . . . . . . . . . . 85



3.5 Normalised Residual Risk of Capital Estimation from 100,000 simulations

of the Base Model and Comparison with Bignozzi and Tsanakas (2016b)

(denoted by B&T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.6 Normalised Residual Risk of Capital Estimation from Heterogeneous

Model split by Aware and Unaware Insurers . . . . . . . . . . . . . . . . . 87

4.1 Input parameters used for model . . . . . . . . . . . . . . . . . . . . . . . 108

4.2 Summary statistics of market premium and errors in fitted AR(2) model for

market where all agents are boundedly rational. The AR(2) model is a good

ft for this case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3 Market premium statistics for varying number of medium-term trend fol-

lower chartists. As the number of chartists is increased, the premium cycle

is disrupted, resulting in a more volatile market. The premium also becomes

increasingly negatively skewed, and the kurtosis increases. . . . . . . . . . 111

4.4 Market premium statistics for varying number of long-term contrarian

chartists. This shows similar patterns to the medium-term trend follower

example. Longer term chartists tend to cause less volatility and a greater

negative skew in the market premium than for the short and medium-term

chartists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.1 Definitions of environmental parameters used in the new model . . . . . . . 126

5.2 Definitions of dynamical parameters parameters used in the new model . . . 127

5.3 Table of base model parameter values . . . . . . . . . . . . . . . . . . . . 132

5.4 Table of sensitivity models parameter values . . . . . . . . . . . . . . . . . 133

5.5 Summary of key results and comparison between the new model and the

Taylor model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

List of Tables 12



Supervisor: Dr. Iqbal Owadally

Faculty of Actuarial Science and Insurance

Bayes Business School

City, University of London

London, UK

Co-supervisor: Dr. Douglas Wright

Faculty of Actuarial Science and Insurance

Bayes Business School

London, UK

Examiners: Prof. Daniel Ladley

School of Business

University of Leicester

Leicester, UK

Dr. Michalis Chronopoulos

Faculty of Actuarial Science and Insurance

Bayes Business School

City, University of London

London, UK



Declaration

I, Rei England, confirm that the work presented in this thesis is my own. Where information

has been derived from other sources, I confirm that this has been indicated in the work.

I hereby grant powers of discretion to the University Librarian of Bayes Business

School, City, University of London, to allow the thesis to be copied in whole or in part

without further reference to the author. This permission covers only single copies made for

study purposes, subject to normal conditions of acknowledgements.

Submission Date: 29 June 2023.



Acknowledgements

First and foremost, I would like to offer my deep and effusive thanks to my supervisors,

Dr. Iqbal Owadally and Dr. Douglas Wright. Their guidance and mentorship has been

invaluable, and their compassionate support and understanding helped me persevere when

health and personal hardships slowed my progress.

I am extremely grateful to Bayes Business School, City, University of London, for

providing me with financial support for four years, and extending this support during the

Covid pandemic. Without this resource, I would not have been able to continue my research.

I wish to extend my profound thanks to faculty and staff at Bayes. Prof. Andreas

Tsanakas, who so often shared his thoughts and experience and whose work inspired part

of mine. Malla Pratt, whose competence and dedication to the people at Bayes smoothed

my path and gave me the map out of hot water. And many others whose knowledge and

company enriched my experience.

Thanks must go to my friends and family, whose continued company and support—

both emotional and practical—give me joy and strength. Particular thanks to my parents, for

loving me and teaching me to ask questions. You put up with a lot of barely comprehensible

phone calls as I tried to explain this month’s problem. I hope this homework will fit on the

fridge.

And last but certainly not least, to my partner Matthew: you have been my carer,

private beta reader, lending library, and occasional 2am cheerleader. Thanks love.

Rei England

29 June 2023



Abstract

The insurance market contains systemic sources of risk and bias which emerge from the

interactions of the agents operating within that market. This type of risk is often not con-

sidered in traditional statistical or competitive pricing models. In this thesis, agent-based

simulation models (ABMs) are used to investigate and analyse sources of emergent systemic

risk.

Customers’ opinions of insurer service quality influence their loyalty and are often

spread via word-of-mouth networks. An ABM is used to examine patterns that might arise

from this phenomenon and parameterised with empirical data. The existence of the network

acts as a persistent memory, causing a systemic bias whereby an insurer’s early reputation

achieved by random chance tends to persist and leads to unequal market shares. This occurs

even when information transmission rates are low. This suggests that newer insurers might

benefit more from a higher service quality as they build their reputation. Insurers with a

higher service quality earn more profit, even when customer preference for better service

quality is small. The impact of this systemic effect is exacerbated under a new regulation

which bans the practice of charging renewing customers more than new customers.

The winner’s curse is a systemic under-estimation of risk caused by imperfect infor-

mation. Insurers that have under-estimated risk are more likely to be willing to offer lower

prices and therefore win more business. The systemic estimation bias caused by the win-

ner’s curse also impacts stochastic capital models commonly used by insurers to assess risks

and manage capital. This leads to capital requirements which are more often underestimated

than overestimated. ABM simulations show that there is increased parameter uncertainty

in capital estimation when there are either more competitors or fewer customers. Features

such as higher customer heterogeneity, higher renewal rates, and increased customer ten-

dency to seek quotes from a greater number of insurers, all functionally create a similar

situation and worsen the impact of the winner’s curse. An insurer should consider the im-

pact of the systemic estimation bias caused by the winner’s curse when setting risk and

capital management strategies.

An ABM is used to investigate heterogeneous insurer strategies for a market where

premium is determined by the balance of supply and demand. Insurers follow either a

boundedly rational strategy, or a chartist strategy where market premium is extrapolated

from recent trends. As the presence of chartists is increased, the model demonstrates that

the market becomes more volatile. Chartist insurers often take better advantage of this



disruption and make a higher profit than the rationalists. However, chartist performance is

also notably much more volatile. As a result, rationalists remain the dominant choice in

an adaptive market where agents may dynamically select strategies. This model suggests

that which strategy is ‘best’ depends on the current situation in the market. For insurers

primarily driven by profit, a chartist strategy may be optimal. Insurers who value stability

may prefer a rationalist strategy.

Finally, an ABM is constructed as an extension to the model produced by Taylor [North

American Actuarial Journal, 12(3): 242–26 (2008)] with the aim of establishing a market

framework with minimal parameters for use with future work. The model allows for entrants

and exits, customer loyalty and price sensitivity, as well as regulatory interventions such as

solvency requirements. It also allows for insurers choosing to move either towards or away

from the market average, and a strategy where insurers are more willing to take risks when

they have a higher capital adequacy. The insurance market simulated by this ABM retains

similar dynamics to actual insurance markets including reasonable market premium rates

with emergent cyclicality along with stable individual insurer assets. However, the cycles

display a slower periodicity than a real-world market.
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Chapter 1

Introduction

1.1 Background
There are several definitions of systemic risk. For the purposes of this thesis, systemic risk

refers to risks which increase the likelihood of widespread failures and thus threaten the

overall stability of the market. Systemic risk arises from the structure and purpose of the

system and the connections between the entities operating within that system.

Systemic risk is often considered to be an important issue within the insurance industry.

This type of risk is often viewed within the context of specific scenarios which impact

multiple companies within the market (Clissitt, 2021).

Financial markets—including the insurance market—often also include systemic

sources of risk and bias which emerge from the interactions of the entities (or ‘agents’)

which operate within that market. Danielsson and Shin, 2003 demonstrate the existence of

risks arising from the emergent coordinated strategies of the agents within the financial mar-

kets. They suggest that the use of standardised models by the agents may lead to systemic

risk as agents act in a concerted pro-cyclical fashion.

Bostrom et al., 2015 provide an overview of systemic risk in the insurance market

and describe the autopilot problem. This is where the level of trust in model results leads

to human agents exercising less judgement when applying the models. Sandberg (2015)

expands on this concept by discussing a variety of potential sources of systemic risk related

to the modelling process. The author groups this type of systemic risk into three categories:

• Modelling: It is common for insurance companies to purchase catastrophe and eco-

nomic scenario models from a small number of specialist vendors. The autopilot

problem occurs when too much trust is placed in these off-the-shelf models. It also

means that a large proportion of insurers are likely to have similar limitations to their

models relating to their estimation of this kind of risk.

• Organisational: Regulatory requirements and other market-wide conventions may im-

pact the way that insurers construct their risk models. For example, the Solvency II

directive requires insurers to be able to justify their modelling choices (EU, 2009).

This encourages insurers to adopt a standard approved approach. Again, this is likely

to lead to insurer models which contain similar weaknesses. Additionally, insurer



strategies in response to regulatory requirements may become synchronised.

• Behavioural: There are a number of known biases in human behaviour which may

cause human agents to display similar boundedly rational model-based decision-

making. For example, a Chief Underwriting Officer who receives risk reports daily

instead of quarterly is likely to place too much emphasis on daily fluctuations, causing

a systemic market overreaction to rate changes.

It is usual for insurers to estimate risk and base strategy on an internal analysis of

their own historical data in isolation from market-wide effects (Parodi, 2014; Kravych,

2013; Taylor, 2012). As a result, these kinds of emergent biases are not well-understood or

included in these traditional models.

This thesis aims to investigate and model some potential sources of this kind of sys-

temic risk in the insurance industry and their impact on risk estimation and business strategy.

1.2 Game Theory Approach to Competition
One commonly used approach to analysing competition is game theory, which models inter-

actions as a logical game between rational agents to calculate a long term Nash equilibrium

solution. For example, a life insurer must set the rates of acceptance or rejection of pol-

icyholders, who may be healthy or unhealthy and can be asked to take a medical exam.

The insurer can adjust the underwriting process to vary probabilities of acceptance or rejec-

tion to maximise payoff, which occurs when the expected payoffs are equal for healthy and

unhealthy insureds (Lemaire, 1980).

Under a simple Bertrand model, there are two insurers making identical products for

identical marginal costs and setting prices simultaneously. Customers buy from the lowest

price, or randomly select among multiple lowest if the insurers offer the same price. Under

this model the best response for both companies is to charge just less than the other’s price,

with a minimum of their marginal cost. Equilibrium occurs when both firms are setting a

premium equal to the cost (Bertrand, 1883).

The probability of renewal can also be assumed to have some ‘stickiness’ to it, where

customers have preferences and are reluctant to switch products. In that case it is possible

to find an equilibrium that is higher than the break-even premium. The equilibrium point

is found to increase with break-even premium, solvency coefficient, claims volatility, and

expense rate; it decreases with a decrease in lapse rate and capital (Dutang et al., 2012).

Since customers have preferences, if an insurer can introduce an innovation that is

more attractive to a lower risk group of customers, it will change the equilibrium point

for both insurers in the market. It is also possible for an insurer to make a strategic move

and manipulate the game to gain an advantage through the use of commitments, threats,

or promises; the effectiveness will depend on the insurer’s credibility. If the consequence

function used by an insurer looks beyond a single year to assess its maximum lifetime value

given customer loyalty, this can result in a situation which does not generate an equilibrium

point (Warren et al., 2012).
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The application of game theory analysis requires the definition of a utility function

to be maximised. In the earlier examples, this is taken to be the expected level of profit. It

could also include an allowance for the amount of capital tied up in reserves. This is found to

give an optimal premium mainly based on: the break-even premium; the company’s volume

of business of the preceding year; and the expectation of the market average premium, so

there is some allowance for competition (Pantelous and Passalidou, 2017).

In practice however, rationality is bounded by imperfect information. Insurers do not

know either the underlying risk or the demand behaviour of their customers and must es-

timate this information from historical data. In that case, it is possible that an equilibrium

solution does not exist, which suggests that the game theory approach may be insufficiently

robust for modelling real markets (Rothschild and Stiglitz, 1978).

The existence of limited information, differing and unknown lifetime goals, and market

manipulation strategies limit the use of game theory as a tool for examining extreme sce-

narios. An equilibrium assumption does not predict the existence of underwriting cycles,

which are a well known feature of insurance market premium.

Takahashi and Terano (2003) use an agent-based simulation model (ABM) containing

both rational fundamentalist traders and trend-following technical traders. These traders

select their willingness to supply or demand based on their heterogeneous strategies. They

find that the trend followers destabilise the equilibrium and are able to take advantage of the

resulting volatility, outperforming the fundamentalists in the long term. Similarly, traders

displaying a bias towards overconfidence have a large effect on the market and can also

obtain excess returns. This suggests that following a rational stance may not be best strategy.

Ingram, Tayler, et al. (2012) and Ingram and Bush (2013) use psychological theories

to introduce the idea of plural rationality. They show that it is possible to model four dif-

ferent attitudes towards risk, and that each of these attitudes perform better or worse under

particular market conditions.

These papers suggest that a strictly rationalist approach may not be the best way to

model insurer strategy. Additionally, the analysis of the game theory approach often re-

quires unrealistic assumptions about the nature of the market in order to find a mathemati-

cally tractable solution. This limits the use cases of this approach.

1.3 Network Approach to Interactions
Network theory examines how the properties of networks affect the dynamics of interactions

between agents. As such, a network-based approach may be a useful tool in analysing

emergent systemic risk.

Networks are particularly important when dealing with reinsurance markets. In the

late 1980s, many Lloyd’s syndicates who sold excess-of-loss reinsurance contracts were

also purchasing excess similar contracts on their own losses. This resulted in a network

with many connections known as the ‘LMX Spiral’. When several large catastrophe claims

occurred, these connections meant that the same risks came around again to the same rein-
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surers, and they did not have as much protection as they believed (Bell, 2014).

Reinsurance defaults can spread across reinsurance networks in the same way as credit

defaults. Lin et al. (2015) develop a network model of an insurer and multiple possible

reinsurers in order to evaluate the cost of this kind of contagion risk. This model includes

the benefit of ‘social capital’, where reinsurers that are better connected are more likely to

be reliable and trustworthy. This model is used to estimate an optimal reinsurance strategy

for the insurer.

By representing investment companies as vertices on a graph with a capital value de-

pending on the level of investment in other companies, it is possible to analyse the spread

of contagion when a company defaults. This is done through use of a simulation method

to discover the asymptotic properties of the network. This approach indicates that the key

measure for a network’s resilience is not dependent on the number of links itself, but by the

interconnectedness of nodes with a high number of contagious links (Amini et al., 2016).

Similarly, a network model of inter-bank lending finds that although such relationships can

improve stability by sharing risk, the systemic risk caused by larger economic shocks are

worsened by the existence of interconnected nodes (Ladley, 2013).

The shape of a network and the way that links form clusters can also affect how the

network behaves. For example, in a fitness network, the probability that a new node links

to an existing node depends on the number of existing links. This results in a power law

distribution of the number of links for each company. The shape of a network can affect

herding behaviour and the nature of competition and co-operation between nodes (Bargigli

and Tedeschi, 2014). In the example of an insurance market, the links would represent

which insurance companies that a customer asks for a quote before selecting a policy. In

that case, this changes the nature of the competition, as an insurer is only competing against

a select group of peers.

Network analysis is a useful tool for analysing how shocks and information travel

through interconnected agents. However, on its own, a network-based approach does not

incorporate decision-making or strategies which might change the network dynamics as

events unfold. Furthermore, if the network shape is more complex or if the equations gov-

erning behaviour are not simple and linear, then this kind of analysis can become mathe-

matically intractable. An additional tool will be needed to capture the key elements of a

dynamic insurance market with decision-making agents.

1.4 Agent-Based Models (ABMs)
There is an ongoing debate about the use of traditional equilibrium-based models in finance.

The assumptions of efficient markets, rationality, and assumed equilibrium, while being

true at the macro level most of the time, are not appropriate during times of crisis (The

Economist, 2010).

One alternative to equilibrium assumptions is the use of agent-based modelling

(ABM). This is a computational technique that makes use of Monte Carlo simulations to
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project the decisions of interacting heterogeneous agents, allowing the results of each time

step to affect the next. The simulated output often displays complex emergent behaviour

patterns, which are highly relevant to systemic effects.

Although concepts similar to ABMs have been in existence for many years - for ex-

ample, Neumann (1966) describes a self-replicating machine model first proposed by the

author in the 1940s - the earliest true agent-based models came about in the 1970s. One of

the earliest was a model demonstrating how segregated housing neighbourhoods could arise

from even a small preference to be near similar neighbours (Schelling, 1971). In the 1980s,

a Prisoner’s Dilemma tournament designed and run by Axelrod (1997) popularised the use

of ABMs to explore the success of competing strategies in dynamic simulations based on

game theory. However, the possibilities of agent-based modelling have risen along with

computing power, enabling researchers to simulate more complex models within reason-

able timeframes.

ABMs have been used to explore many ideas in social sciences, such as investigating

the mechanisms involved in producing co-operative behaviour. These have included mech-

anisms for establishing trustworthy reputations and the social punishment of defectors; the

effect of social inequality on creating hierarchies of neighbourhoods; and the development

of segregation when households have only a small preference for neighbours similar to

themselves (Bianchi and Squazzoni, 2015). One well-known example is the patterns of cul-

ture formed when interaction increases the spread of ideas according to the similarities of

agents (Axelrod, 1997).

There is a growing and substantial body of work on the application of agent-based

models to finance. ABMs have been used by financial companies themselves to inform

strategy—for example, a model used by a company on Wall Street for pre-payment patterns

in the housing market (Geanakoplos et al., 2012). In economics, ABMs have been used

to explore the dynamics of barter systems, the labour market, international trade, and the

“tragedy of the commons” (Hamill and Gilbert, 2015).

ABMs can be combined with other tools and informed by existing theories and studies.

For example, game theory approaches can be used to inform the calculations used in ABMs.

It is also possible to combine ABMs with evolutionary algorithms, where a selection process

is used to whittle down the available agents to find the ‘best’ population (Sarker and Ray,

2011). Networks can be incorporated into ABMs in order to capture the effects of network

shapes on interactions (Bargigli and Tedeschi, 2014). Liu et al. (2020) used an ABM to

extend a contagion network in order to examine contagion within the context of a network

which is changing dynamically in response to market conditions.

There is much less development in general insurance applications, but there is rising

interest among the actuarial community in the possibilities of agent-based computational

techniques from the field of artificial intelligence and whether these can be applied to actu-

arial problems (Panlilio et al., 2018).

It can be argued that the general insurance market is a natural fit for using a computa-
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tional intelligence paradigm as an analysis tool: it features heterogeneous intelligent agents

making decisions over time to maximise some reward function based on past experience,

for risks that change over time and information that is gathered gradually, features which

limit the usefulness of a classical game theory approach (Parodi, 2012).

ABMs have several advantages as tools for exploring this type of systemic risk. They

can capture a number of features, such as heterogeneity and irrationality, which are not

well reflected in traditional modelling approaches. They can show how collective phenom-

ena come about from interactions (e.g. movement of a traffic jam), and isolate the critical

behaviour that leads to the emergent pattern. ABMs are also flexible and can easily be im-

plemented within a modular framework, allowing alternate assumptions to be explored in

order to guide policymakers (Pyka and Fagiolo, 2005).

ABMs are useful when there is a possibility of emergent behaviour, such as when

(1) individuals behave non-linearly, (2) they can learn and adapt over time, (3) they interact

heterogeneously, (4) there is the possibility of instability from larger perturbations, (5) we

want to examine properties of the system itself (Bonabeau, 2002). These are characteristics

that feature in the problem being explored in this thesis.

The difficulty with ABMs is that the results are very dependent on decision-making

assumptions, and the output can be complex to analyse and difficult to validate. There

is a trade-off between more realistic features and tractability. ABMs are often used to

model human agents, who are potentially irrational, subjective, and complex. This can

make ABMs difficult to quantify, calibrate and justify (Bonabeau, 2002). However, this

feature is also why ABMs are useful for modelling such systems.

There are three main approaches: history-friendly, indirect calibration, and Werker-

Brenner (Fagiolo et al., 2007). The history-friendly approach uses historical data to con-

strain empirically-consistent initial parameters, interactions, and decision rules. The indi-

rect calibration approach uses comparison of the output with stylised facts to constrain the

parameter space to be consistent with the valid output. The Werker-Brenner approach uses

a Bayesian method to assess the likelihood of possible model specifications based on the

percentage of theoretical outputs comparable with each empirical output; this is a promising

approach but requires a lot of data.

Where appropriate, efforts will be made within this thesis to parameterise and validate

models from empirical data. Due to these limitations, ABMs are used in this thesis primarily

as a tool for exploring patterns and as critical indicators of behaviour rather than as statistical

prediction models.

The following sections contain some examples of ways in which ABMs have been

used to investigate the problem of systemic risk in insurance and financial markets.

1.5 Modelling Sources of Systemic Risk
Owadally, Zhou, and Wright (2018) use an ABM to examine the underwriting cycle. In

each modelled time step, insurers offer prices based on the marginal cost of the business,
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plus an allowance for the estimated elasticity of demand. Customers select a policy based

on their cheapest cost, accounting for preferences for insurers that are closer to them on a

market space, excluding insurers that have reached capacity. Losses and premium are then

generated for the year and the market loss ratios updated. Under this ABM, underwriting

cycles are generated endogenously due to the emergent patterns in the estimated demand

elasticity. This demonstrates that imperfect information can alter the behaviour of the mar-

ket and prevent the market from settling into a static state.

Heinrich et al. (2022) use an ABM to investigate systemic risk within catastrophe

insurance and reinsurance markets. The overwhelming majority of insurers within these

markets purchase data about the estimated risk of these events from the same same three

providers. This paper simulates a catastrophe insurance and reinsurance market and exam-

ines the effects of different scenarios of varying diversity of information where the available

catastrophe models each underestimate a particular type of loss. They find that lower model

diversity increases the rate of bankruptcies and decreases the overall levels of market capi-

tal, implying a possible source of systemic risk within the real-world catastrophe insurance

markets

The Winner’s Curse GIRO working party report (Chan et al., 2009) use a simple sim-

ulation model of insurers competing for a single customer. In this model, insurers do not

know the underlying risk distribution and must estimate this from historical data. The in-

surers then offer a price based on the estimated loss distribution. This model demonstrates

an effect called the ‘winner’s curse’, where insurers which have underestimated the risk are

more likely to win the business of the customer. This leads to a systemic bias whereby loss

ratios are consistently higher than expected.

1.6 Insurance Regulation and Systemic Risk
Dubbelboer et al. (2017) implement an ABM focussed on flood risk management with an

insurance component. This model is used to explore scenarios of public and private flood

risk cover within a London borough and the subsequent effect on homeowners, and is in-

tended as a tool to allow regulators to test strategies for managing flood risk. This paper

focuses mainly on the housing market, including homeowner and developer agents, and a

government flood reinsurance. There is no insurance market or competitive aspect to the

insurance, which is provided by a single insurer agent which prices its business purely on

the level of risk.

Aymanns and Farmer (2015) use an ABM to explore the ramifications of a simple fi-

nancial market where investors make decisions within a regulator-imposed capital constraint

based on the value-at-risk (VaR) measure. This leads to a leverage cycle, where market

downturns are exacerbated by feedback loops arising from investor decisions. This is not

unlike the capital constraints experienced by insurers, and may suggest a similar mechanism

related to underwriting cycles. The authors use this model to suggest alternative regulatory

regimes.
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Owadally, Zhou, Otunba, et al. (2019) extend their earlier model (Owadally, Zhou, and

Wright, 2018) (described above) with a framework aimed at testing and analysing model

outputs under current market conditions. This is intended to assist regulators in monitoring

and responding to cycles by running simulations of various regulation and brand strategy

scenarios.

Yusgiantoro et al. (2019) build an ABM of an insurance market with a similar set-up

to that used by Owadally, Zhou, and Wright (2018). They extend this model by including

an intermediary finance firm and regulation of maximum and minimum pricing rates. This

paper finds regulatory strategies that can decrease both volatility of the premium rates and

the uneven distribution of market shares in the insurance market.

1.7 Behavioural Bias in Insurance Markets
A key assumption behind many analyses of the effects of competition is that agents act

rationally, or at least that any bias is randomly distributed around the ‘true’ approach and

thus will cancel out on average. However, humans possess a number of innate biases in

their thinking, particularly around risk assessment, that tend to act in the same direction.

Behavioural finance is a relatively new discipline that aims to examine and quantify

the possible effects of behavioural biases in the world of finance. A recent survey was

carried out by a working party of the Institute of Actuaries to discover whether actuaries

display evidence of similar biases, which would imply that this is also something that could

affect insurance (Byrne and Cook, 2016). Overall, the results found that actuaries do show

the same biases as other people. However, actuaries show less bias in some areas, and

specifically less overconfidence bias and bias related to probability and statistics. In general,

age, education, and experience seem to be factors in reducing the impact of bias.

Prospect theory is an alternative to expected utility theory in explaining behaviour.

Studies indicate that humans perceive the impact of losses based on the change in wealth

given a starting reference point instead of considering only the end result, and that reference

point may not be the same as their current level of wealth. Because people tend to use the

deductible as a reference point, then a lower deductible is often overvalued by customers in

comparison to the gain. This is combined with a distortion in evaluation of loss probabilities

and a tendency to evaluate risks in isolation, leading to myopic risk aversion (Kunreuther

et al., 2013). This means that a standard loss aversion utility-based model of agent is often

not a good match for empirical data of customer behaviour.

The goal-based model of choice is another alternative decision-making theory where

people focus on achieving weighted goals rather than maximising some sort of value as in

utility or prospect theory. Examples of goals might be: collect money (seeing insurance

as an investment); satisfy regulatory requirements; reduce anxiety about risk; reduce regret

of disappointment, or sadness at the loss of something; appear prudent or fit in with social

norms. Other biases may include: status quo bias, where people resist change; availability

bias, where people assess probability by how easy it is to remember examples; or short-

1.7. Behavioural Bias in Insurance Markets 25



term availability of funds leading to a very short-term view of cash flows (Kunreuther et al.,

2013).

After large catastrophe events, insurers often raise premiums, seemingly more con-

cerned by recent losses than future probabilities. In one case, regulators stepped in tem-

porarily to slow down rate increases. By the time that insurers were able to revert to high

premiums, they refrained from doing so, indicating bias rather than a change in expected

probability. In other cases, insurers stopped offering coverage rather than acquiesce to rate

restrictions, even though they should expect to make a profit from such prices. This suggests

increased anxiety about losses immediately following a large loss, and echoes the customers

availability bias, or possibly anxiety-related goals. If it has been some time since a catas-

trophe has occurred, reinsurance rates tend to decrease (Kunreuther et al., 2013; Vasiljevic

et al., 2013; Kleindorfer and Kunreuther, 2000; Pitthan and De Witte, 2021). Nevertheless,

insurer behaviour is not yet thoroughly understood. It is possible that more standard risk

aversion and utility definitions combined with an aversion to ambiguity can explain some

apparent anomalies in the insurance market (Zweifel, 2014).

There are a few examples of ABMs developed to investigate behavioural finance. Haer

et al. (2017) use an ABM to analyse flood risk under different assumptions of household

behaviour. They find that using a model consistent with prospect theory in place of the more

traditional utility-based model has a considerable impact on the resulting levels of risk. The

authors conclude that it is important to use an accurate model of human behaviour when

modelling underlying risk.

Bertella et al. (2014) use an ABM of a finance market with a single asset where agents

set their willingness to supply or purchase based on either a fundamentalist or a chartist

trading strategy. Among other uses, this model was used to explore the impact of overcon-

fidence bias by allowing traders to underestimate volatility if they have been performing

well in recent years. This paper finds that the inclusion of the bias is able to reproduce key

features of real-world markets, such as the existence of market bubbles and crashes. This

bias is also likely to exist in insurance markets, particularly around estimation of rare events

such as catastrophes as described above.

1.8 Structure of Thesis
In this thesis, ABMs are used to investigate and analyse sources of emergent systemic risk

due to interactions between agents in the insurance industry.

Chapter 2 is a reproduction of a paper that was published in the Journal of Artificial

Societies and Social Simulations (England et al., 2022). This chapter examines the sys-

temic emergent risk caused by interactions between customers. An agent-based model is

constructed with two types of agents: customers and insurers. Insurers are price-takers

who choose how much to spend on their service quality, and customers evaluate insurers

based on premium, brand preference, and their perceived service quality. Customers are

also connected in a small-world network and may share their opinions with their network.
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This model is used to examine some of the systemic effects of the word-of-mouth

network on patterns of customer behaviour, and investigate possible implications of a pro-

posed change in UK insurance regulation. By modelling the network explicitly, the impact

of realistic network dynamics and in particular the repeated feedback of word-of-mouth

information back into the network can be explored.

The model used in chapter 2 is focussed primarily on customer behaviour, and the

insurers are modelled as price-takers. However, in practice insurers will base their premium

strategy on their estimation of customer risk, and may offer differing prices to potential

customers. Chapter 3 focuses on the insurer behaviour and systemic bias in risk estimation

due to an effect called the ‘winner’s curse’. In this model, insurers interact with each other

indirectly by competing for individual customers. Each customer purchases from the insurer

offering the lowest price.

The insurer premium is based on their independent estimates of the underlying risk.

Consequently, insurers that have under-estimated risk are also more likely to be willing

to offer lower prices and win more business. The systemic estimation bias caused by the

winner’s curse will also impact insurers’ capital models, causing estimated capital require-

ments to become more often underestimated than overestimated. The model results show

the resulting capital estimation errors. Additionally, the model is extended to include some

market features which impact customer purchase decisions. These are: policyholder het-

erogeneity; renewal rates; and network shapes, where customers consider premium from a

subset of the insurers only.

The model used in chapter 3 assumes that insurers set their prices based solely on the

estimated risk-based premium. In practice, although the risk premium is highly influential

on insurer premium, insurance premium is also informed by an analysis of the actions of

competitors. In chapter 4, an ABM is built which focusses on competitive market supply

strategies within a market where the premium moves according to the balance between

supply and demand. In this model, insurers have imperfect information about both customer

demand and underlying risk distributions. The ABM contains two types of insurers. One

type follows a rational strategy within the bounds of imperfect information. The other type

also seeks to maximise their utility gain, but base their market expectations on a chartist

strategy. Under this strategy, market premium is extrapolated from trends based on past

insurance prices. The relative performances of the different strategies are then compared.

Chapter 4 addresses some of the shortcomings of previous chapters by examining com-

petitive insurer strategies under imperfect information. However, this model does not in-

clude the influence of customer-to-customer interactions as in chapter 2. The models used

so far have been individually designed and do not easily combine into an overall model of a

market. There are also some market-level features missing, such as market entrants and ex-

its. Additionally, the insurer strategy does not account for capital management. In practice,

insurers become more risk-averse when their capital adequacy is lower.

Chapter 5 begins with a model which captures the dynamics of an insurance market
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with a minimal number of parameters. This is initially based on the Taylor model (Taylor,

2008), which includes a number of features such as premium cycles and market entrants and

exits. However, while the Taylor model replicates realistic market features in the aggregate,

it also tends to produce unstable individual insurer premium rates and asset values. To

address these limitations, the model is extended by using a new premium mechanism. In the

new model, insurers set their premium using the solvency ratio to determine the direction

of premium movement, with the size of the change depending on competitive pressures.

This extension also allows for more complex insurer strategies whereby an insurer may

deliberately choose to move away from the market average.

Finally, the investigations that have been carried out are drawn together and sugges-

tions for further work are described in chapter 6.
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Chapter 2

An Agent-Based Model of Motor Insurance
Customer Behaviour in the UK with Word of
Mouth

Note: This chapter is a reproduction of a paper that was published in the Journal of Artificial

Societies and Social Simulations (England et al., 2022).

2.1 Introduction
In this chapter, we begin our exploration into emergent systemic risk by considering first

the customer side.

Attracting and retaining loyal customers is a key driver of insurance profit. An impor-

tant factor is the customers’ opinion of an insurer’s service quality. If a customer has a bad

experience with an insurer, they will be less likely to buy from them again.

However, customer opinions are not formed in isolation. Customers who are seeking

a new insurer are likely to seek recommendations. Opinions are shared on review websites.

And customers who have a bad experience with an insurer are particularly likely to tell oth-

ers. In this way, word-of-mouth networks allow information to spread between customers.

In this chapter we build an agent-based model with two types of agents: customers and

insurers. Insurers are price-takers who choose how much to spend on their service quality,

and customers evaluate insurers based on premium, brand preference, and their perceived

service quality. Customers are also connected in a small-world network and may share their

opinions with their network.

We find that the existence of the network acts as a persistent memory, causing a sys-

temic bias whereby an insurer’s early reputation achieved by random chance tends to persist

and leads to unequal market shares. This occurs even when the transmission of informa-

tion is very low. This suggests that newer insurers might benefit more from a higher service

quality as they build their reputation. Insurers with a higher service quality earn more profit,

even when the customer preference for better service quality is small.

The UK regulator is intending to ban the practice of charging new customers less than

renewing customers. When the model is run with this scenario, the retention rates increase



substantially and there is less movement away from insurers with a good initial reputation.

This increases the skewness in market concentrations, but there is a greater incentive for

good service quality.

2.2 Background
Insurance is a service whereby providers offer compensation payouts if the customer suffers

a loss due to a specified type of event. In many countries, some types of insurance are

mandatory: for example, all motorists in the UK must have motor insurance against legal

responsibility for damage to another motorist’s person or property. Insurance is a substantial

part of the financial services industry and an important part of social fabric.

It is common for general (i.e. non-life) insurance contracts to cover a fixed term,

usually one year. At the end of the term, customers receive a renewal offer from their cur-

rent insurance providers. Since searching for new quotes costs both time and effort, many

customers choose to accept their renewal price without searching. UK motor insurance cus-

tomers consider the cost of searching for a new insurer to be worth 15% of the average cost

of their policy (FCA, 2020). It costs insurers less to retain an existing customer than to

attract and process a new one, and insurance is a highly competitive industry. Attracting

and then retaining loyal customers is therefore often a better strategy than competing on

price alone. It is common practice for insurers to offer a discount for new customers, often

pricing below the odds, then rely on loyalty and gradually increase the price. In essence,

loyal customers are used to cross-subsidize new customers (FCA, 2020).

The probability of renewal is commonly modelled as a logit relationship, and existing

literature has employed various techniques to identify which customers are likely to be

loyal. Smith et al. (2000) compares the performance of logistic regression, decision trees,

and a neural net in classifying and predicting the loyalty of motor insurance customers.

Günther et al. (2014) builds on the logit regression model, using generalised additive models

to allow for non-linear relationships. Zhang et al. (2017) combines a neural net with a

generalised linear model to take advantages of the strengths of both approaches.

Customer service is considered an important factor in customer retention in many in-

dustries, and this link has been confirmed in a number of empirical case studies in insurance

(Ansari and Riasi, 2016; Ghodrati and Taghizad, 2014; Tsoukatos and Rand, 2006). These

papers indicate that though price remains the main factor in customer choice, customer ser-

vice is a significant part of customer decision making. Customers are also highly influenced

by word-of-mouth recommendations from friends (Ghodrati and Taghizad, 2014; Tsoukatos

and Rand, 2006). Berger (1988) investigates this using a model where insurance customers

remain with a firm unless they have a bad experience, which happens infrequently as claims

are also infrequent. When they decide to switch, they choose a new insurer when a friend

makes a recommendation. Interestingly, as the rate of recommendation transmissions is in-

creased, the number of dissatisfied customers decreases but the average quality decreases.

This is because a higher number of dissatisfied customers switch providers, including to
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lower quality firms. Because customers usually do not have a customer experience, the

low quality is not often discovered, and so many of these customers felt satisfied. How-

ever, this paper does not include an allowance for pricing considerations or other customer

preferences, and does not model the network explicitly.

Berger et al. (1989) bases customer decisions on price as well as service. In this

model, customers have imperfect information and only gradually discover the available

prices through word-of-mouth. Customers favour renewals unless they believe there is a

sufficiently big price differential, and disatisfied customers requires a lower price gain to

be willing to switch. By fitting this model to real-world data, the authors estimate that cus-

tomers have a high speed of information transmission, but a high reluctance to switch. This

paper does not explicitly model the network, choosing instead to use a formula for the rate

of information spread. Since this paper was written, it has become easier for customers to

get hold of information, and for social networks to allow the transmission of word-of-mouth

information.

Conventional analytical approaches may be insufficient to capture network effects,

as some features are emergent properties of non-linear interactions. Agent-based models

(ABMs) have been used within sociology to model the spread of market innovations and

social opinions (Bianchi and Squazzoni, 2015; Squazzoni, 2012). Kowalska-Styczeń and

Sznajd-Weron (2016) use an ABM to examine the effect of different word-of-mouth pat-

terns on the resulting market shares. Goldenberg et al. (2001) use a cellular approach to

simulate ‘strong’ ties within a group and ‘weak’ ties between cells, finding that though

strong ties have higher influence within groups, weak ties are as important as strong as they

are responsible for new word-of-mouth information into the groups.

The general insurance market features interacting heterogeneous agents making deci-

sions over time to maximise some reward function based on past experience. This seems to

be a promising fit for an agent-based modelling approach (Palin et al., 2008; Mills, 2010;

Parodi, 2012). There are currently very few examples of ABM literature in the field of

insurance, though the possibilities of ABMs have attracted the interest of several actuarial

practitioners.

Crabb and Shapiro (1996) build a simulation game with the aim of educating students

by allowing them to set the strategy of a motor insurance company and compete against

other agents. Insurance World 2 (Gionta, 2000) is a simulation built by the AI analysis

company Complexica for a consortium of insurance and reinsurance companies to exam-

ine the consequences of different strategies in a catastrophe reinsurance market. Alkemper

and Mango (2005) build an ABM of a property-casualty reinsurance market where capital

requirements act as a capacity constraint on supply and the price is then calculated from a

demand-supply curve. This simple setup produces price cycles from the competitive inter-

actions. However, it is not possible to obtain a detailed description of these models and their

parameterisation.

Dubbelboer et al. (2017) implement an ABM focussed on flood risk management with
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an insurance component. This model is used to explore scenarios of public and private flood

risk cover within a London borough and the subsequent effect on homeowners. This paper

focuses mainly on the housing market, including homeowner and developer agents, and a

government flood reinsurance. There is no insurance market or competitive aspect to the

insurance, which is provided by a single insurer agent which prices its business purely on

the level of risk.

Owadally, Zhou, and Wright (2018) use an ABM of an insurance market to investigate

possible mechanisms for the cyclical behaviour exhibited by real-world insurance premi-

ums. This model contains two types of agents: insurers and customers. Insurers adjust their

initial risk-based premium according to an estimation of the current elasticity of demand.

Customers select their preferred insurers based on a combination of the cost and their own

preference for particular brand or product features. This ABM was found to produce cycles

similar to those seen in the real-world as an endogenous feature of the competitive mech-

anism. Owadally, Zhou, Otunba, et al. (2019) further extend this model with a framework

aimed at assisting regulators in monitoring and responding to cycles by running simulations

of various regulation and brand strategy scenarios parameterised with the current market

position and introducing extensive time-series analysis of the outputs. These models are

mainly concerned with the premium behaviour of insurers, and do not explore the impact

of insurer quality or the network effects of social influence on customer decisions. How-

ever, these papers are notable in the field of insurance ABMs for introducing a simple yet

credible model of both consumer and insurer behaviour within a competitive system, and

producing outputs which are validated against historical real-world market level premium

and loss data.

Heinrich et al. (2022) use ABMs to investigate systemic risk within catastrophe insur-

ance and reinsurance markets. The overwhelming majority of insurers within these markets

purchase data about the estimated risk of these events from the same same three providers.

This paper simulates a catastrophe insurance and reinsurance market and examines the ef-

fects of different scenarios of varying diversity of information where the available catas-

trophe models each underestimate a particular type of loss. They find that lower model

diversity increases the rate of bankruptcies and decreases the overall levels of market capi-

tal, implying a possible source of systemic risk within the real-world catastrophe insurance

markets.

The examples mentioned so far are focussed on the insurers or regulation rather than

on customer renewal and insurer selection. Boucek and Conway (2003) suggests a model

where customers will renew with an insurer if their new premium has decreased or increased

by only a small amount, and become more likely to seek further quotes the more their pre-

mium has increased. Customers are heterogeneous and possess various factors which in-

surers might use to assess their risk. e.g. age, gender, level of education. This model does

not include other factors such as satisfaction with service, though the author does note its

potential importance. The paper also mentioned the need for industry data and does not
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parameterise the model, though it does demonstrate some example scenarios. Ulbinaite and

Le Moullec (2010) propose a similar ABM for life insurance customer behaviour, though

again this model is described in theory but neither parameterised nor implemented. In this

paper, purchase decision is two stage: firstly, the customer decides whether to purchase

insurance at all, based on a linear combination of various factors which influence their per-

ception of the value of the insurance versus its affordability. In the second stage, customers

decide which insurer to purchase from based on their opinion of the quality of the insurer.

Though this paper includes interaction with social networks as a factor in customer deci-

sion, it does not specify how this interaction would be calculated or how such a network

would be modelled.

In this chapter, we develop an ABM to simulate a word-of-mouth network within an

insurance network where customer choices are influenced by their opinion of customer ser-

vice quality, and parameterise the model with data from the UK motor insurance market.

We will use this model to examine some of the systemic effects of the network on patterns

of customer behaviour, and investigate possible implications of a proposed change in UK

insurance regulation. By modelling the network explicitly, we can explore the impact of

realistic network dynamics and in particular the repeated feedback of word-of-mouth infor-

mation back into the network. This allows us to explore systemic effects not captured in

early models such as those of Berger (1988) or Berger et al. (1989).

We find that the existence of the network acts as a persistent memory, causing a sys-

temic bias whereby an insurer’s early reputation achieved by random chance tends to per-

sist and leads to market concentration with a few insurers holding large market shares. We

demonstrate that it only takes a very low rate of word-of-mouth transmission for this effect

to significantly impact market-wide customer decision-making. In a market where insurers

are of varying quality, we discover that higher quality insurers make a higher profit despite

offering higher prices. This occurs when customers have only a weak preference for better

service quality. Finally, we explore the impact of a new regulation change and discover that

this may lead to lower competition and an increasingly skewed market concentration, but

potentially also incentivise higher service quality.

Based on these findings, we can conclude that the potential impact of the word-of-

mouth network on customer decision-making and the resulting systemic biases is a signif-

icant one. These findings should be considered by both insurers considering strategies for

attracting and retaining customers, and regulators who are assessing possible impacts of a

change in the regulation of insurance pricing practices.

2.3 Model
2.3.1 Overview

The aim of this model is to explore patterns of insurance customer choices arising from the

existence of a word-of-mouth mechanism. As such, the design focuses on features observed

by the customers. The model therefore does not attempt to replicate the internal workings or
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processes affecting the strategic decision-making processes of the insurance companies such

as reinsurance or credit risk. We also assume that there is no claims fraud and that policies

have similar cover such that all insurers will sample from the same claims distribution.

The ABM contains two types of agents: insurers and customers. These act within the

environment of a motor insurance market. At each simulation, the model undergoes the

following steps:

1. Network generation: At the start of the simulation, the model generates a small world

network of social links between the customers, and randomly assigns each customer

to an initial insurer (sec. 2.3.4).

Then in each timestep:

2. Insurer spending: Insurers choose how much to spend per customer on their level of

customer service up to some maximum level (sec. 2.3.3). The more they spend, the

greater the chance that any given customer interaction will be a positive and not a

negative experience for the customer (sec. 2.3.3).

3. Insurer premium: As this model does not focus on insurer premium strategy, the

market premium is set exogenously and follows a simple cyclical pattern similar to

those found in existing research (Fenn and Vencappa, 2005) fitted to empirical data,

with a stochastic error term (sec. 2.3.2). Insurers will also add a margin to cover their

spending cost and profit markup (sec. 2.3.3). Prices for new customers are discounted

relative to prices for renewing customers (sec. 2.3.3).

4. Customer purchases: Customers decide whether to renew based on a logit probability

function (Günther et al., 2014) based on the change in cost over the previous year

(sec. 2.3.4). This is parameterised to give an average chance of renewal that matches

empirical data. If they do not renew, they will purchase from the insurer that offers

them the lowest total cost (sec. 2.3.4).

5. Claims: Loss events—e.g. theft or traffic accidents—are modelled probabilistically

using a Poisson frequency and Gamma severity (sec. 2.3.4). If a customer experiences

a loss, they make an insurance claim. Their interaction with their insurer’s customer

service which may generate a good or bad experience with probability based on the

amount spent on customer service. (sec. 2.3.3)

6. Customer word-of-mouth information sharing: Customer service experiences tend

to perpetuate across networks as customers tell their friends of their experiences or

experiences they’ve heard about (sec. 2.3.4). The influence of these opinions is calcu-

lated using a method similar to many opinion dynamic models (Deffuant et al., 2002)

(sec. 2.3.4).

7. Customer cost calculations: The customers re-assess insurers based on a cost func-

tion. Similar to Owadally, Zhou, and Wright (2018), this is not just based on pure

price. There is an allowance for preferences, and a cost factor based on a customer

satisfaction assessment of each insurer (sec. 2.3.4).

Figure 2.1 is a swimlane diagram representing the flow of processes in the model and
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Fig. 2.1 – Swimlane overview of the processes in the customer word-of-mouth ABM

which agent or environment is responsible for each step. The calculations carried out at

each step are described in more detail below, followed by an explanation of the data and

model parameterisation.

Figure 2.2 shows the pseudocode for the initialisation at the start of the simulation,

and Figure 2.3 demonstrates the pseudocode for a timestep. The parameter notation has

been kept consistent with the model descriptions below. The pseudocode for the functions

referenced are shown alongside the relevant sections. Additionally, the code has been made

available on CoMSES (England et al., 2021).

2.3.2 Market

Description

In this model, agents interact within the environment of an insurance market. The market

contains two types of agents: insurers and customers. Each timestep, all customers will

create an insurance contract with one insurer.

The model is based on the UK motor insurance market. In the UK, it is mandatory for

all motorists to purchase motor insurance, so demand is stable. It is therefore reasonable to

assume that all customers will purchase an insurance contract each timestep. There are no

exits or entrants in the model.

The expiration of the insurance contracts at the start of each timestep triggers the cus-

tomer agents to seek premium quotes and select an insurer with which to form a new con-

tract. The premium quotes are described further in section 2.3.3, and the customers’ insurer
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Fig. 2.2 – Pseudocode for initialisation at the start of each simulation. See Figure 2.3 for
the pseudocode describing the actions carried out in each timestep t.

Fig. 2.3 – Pseudocode for running a single timestep. This function is carried out for each
timestep after the model has been initialised (see Figure 2.2 for the initialisation pseu-
docode). Figures 2.4, 2.5, 2.6, and 2.7 show pseudocode for the Customer object func-
tions SELECT INSURER, GETCLAIMS, UPDAT EWOM, and UPDAT EOPINIONS re-
spectively.

selection process in section 2.3.4.

As this model does not focus on premium behaviour, the model does not attempt to

replicate the individual insurer strategy that would produce the patterns seen in competitive

premium rates. Instead, the market premium is assumed to follow an exogenous stochastic

process. The insurers are assumed to be price takers, and they use the market premium as a

basis for selecting their own premium to offer to existing and new customers.

Inputs and Initialisation

• nC: The number of customer agents seeking to purchase insurance.

• nI: The number of insurer agents operating in the marketplace.

• P−1: The market premium (price per customer) in the year prior to the first time step.
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• P−2: The market premium in the year two years prior to the first time step.

• θ0: The constant term in the market premium calculation.

• θ1: The dependency of the current market premium on the previous year’s market

premium.

• θ2: The dependency of the current market premium on the market premium two years

previously.

• σM: The stochastic variance of the market premium around its expected value.

At initialisation, each customer is randomly assigned to an existing insurer. This is the

insurer they will select if they choose to renew their contract in the first time step.

Calculations

Setting the market premium rate

It is common to model insurance market premium as an AR(2) process (Owadally,

Zhou, and Wright, 2018; Owadally, Zhou, Otunba, et al., 2019; Boyer and Owadally, 2015;

Fenn and Vencappa, 2005; Harrington and Niehaus, 2000; Cummins and Outreville, 1987).

Using this formulation, the market insurance price per customer Pt for timestep t is calcu-

lated exogenously according to equation (2.1) below.

Pt = θ0 +θ1Pt−1 +θ2Pt−2 + εt

where εt ∼ N (0,σM)
(2.1)

Outputs

• Pt : The (exogeneous) market premium in timestep t, calculated according to equation

(2.1).

• Πt : The market profit in timestep t. This is the sum of the profits made by the insurer

agents in time t.

• Rt : The market renewal rate in timestep t. This is calculated as the proportion of

customers in time t who choose to renew their insurance contract with their existing

insurer.

2.3.3 Insurers

Description

The insurer agents provide motor insurance cover for loss events experienced by their cus-

tomers, such as theft or damage caused by a car accident. As their aim is to make a profit,

insurers will usually charge customers more than the expected value of their losses. Because

they have pooled the risks from many customers, the relative volatility of an insurer’s total

loss is less than that of an individual customer.

Insurers are modelled as price takers, setting their premium according to the prevailing

market premium. They also charge a margin for their expenses, and an additional margin

for profit. To entice new customers, insurers remove the extra profit margin for new quotes,

effectively using the renewals of existing customers to subsidise new customers.
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When a customer makes a claim, they interact with the insurer’s customer service

department. This interaction can be either a good or bad experience for the customer, and

this outcome will directly alter the customer’s opinion of the insurer. The more money the

insurer has chosen to spend on their customer service quality, the higher the probability that

this interaction will be a positive experience for the customer.

Inputs and Initialisations

The insurer agents are indexed by i.

• E: The maximum effective insurer spend per customer on customer service quality.

• Ei: The amount spent by insurer i per customer on customer service quality at the

start of each timestep.

• R: The profit markup factor applied to existing customers renewing their insurance

contracts.

• T : The maximum time over which the renewing markup factor applied to existing

customers is increased.

Similarly to Owadally, Zhou, and Wright (2018), the insurers are also spaced out

evenly across a 1-dimensional abstract preference space in a random order. This repre-

sents differences in branding or product design features. As in the Owadally, Zhou, and

Wright (2018) model, this space is circular so that the value bounds have zero distance be-

tween them. The location on this space is valued between [0,2). This has been scaled so

that the distance between any two points must lie within [0,1]. The location assigned to an

insurer i is denoted LI,i.

Insurer i spends an amount Ei on customer service quality per customer at the start

of each timestep t. The higher this spend, the better the quality of customer service. It is

assumed that there is an upper bound past which extra spending will have little effect on the

outcome of customer service interactions; this is the maximum spend E.

In the real world, insurers might choose to vary this spend, though we might expect

that a particular brand would not generally wish to vary this by a large amount every year.

In this ABM, the focus is on customer behaviour rather than insurer strategy, so each insurer

i is assigned a single value which they spend every year.

Calculations

Setting the price of insurance for new customers

Insurers are modelled as price takers, so they base their premium on the market pre-

mium. They also add an expense margin to cover the cost of their customer service expen-

diture. Thus, the base premium charged to a new customer by insurer i in time step t is set

according to equation (2.2). Consequently insurers trade-off between attracting customers

with a lower premium or with a higher service quality.

Pit = Pt +Ei (2.2)

Offering renewal price to existing customers
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Fig. 2.4 – Pseudocode for claim generation and service experience

It is common practice for insurers to entice new customers with a lower initial premium

before then increasing the premium gradually on renewal to make a profit (FCA, 2020). The

FCA report into insurer pricing practices (FCA, 2020) shows that most of the increase in

prices for renewing customer take place over the first few years.

To mimic this increasing markup, Pi jt , the premium offered by insurer i to an existing

customer j at time step t, is calculated according to equation (2.3) where Ti jt is the number

of consecutive years that customer j has been a customer of insurer i at the start of time t.

R is the renewal markup applied to the base premium cost.

Pi jt = Pit(1+R)Min(Ti jt ,T) (2.3)

Note that equation (2.3) simplifies to equation (2.2) for new customers since Ti jt = 0

for new customers. We can therefore use the signifier Pi jt to indicate the premium offered

by insurer i for both new and renewing customers.

Dealing with customer claims

When a customer experiences a loss, they interact with their insurer’s customer ser-

vices. The probability pi of having a good experience will depend on how much the insurer

chooses to spend on their customer service, up to the maximum amount. This probability is

given by equation (2.4).

pi =
Min(Ei,E)

E
(2.4)

Figure 2.4 shows the pseudocode for the claims process. Each customer generates a

loss frequency and severity from a Poisson-Gamma aggregate distribution. For each claim

event, the customer records either a positive or negative outcome from their selected insurer.

Outputs

• Πit : The profit made by insurer i in timestep t. This is equal to the total premium in

minus the claims paid out and minus the total expenditure on customer service quality

per customer.

• Rit : The market renewal rate in time step t. This is calculated as the proportion of
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existing customers of insurer i who chose to renew their insurance contract in timestep

t.

• mn,it : Number of insurance contracts that insurer i sold to new customers in timestep

t.

• ms,it : Total number of insurance contract sales made by insurer i in timestep t.

• m−,it : Number of negative customer service experiences experienced by customers of

insurer i in timestep t.

• m+,it : Number of positive customer service encounters experienced by customers of

insurer i in timestep t.

• zit : Average output of customer service encounters experienced by customers of in-

surers i in timestep t. Calculated as zit =
m+,it−m−,it
m+,it+m−,it

(or set as 0 if there were no

customer service interactions).

2.3.4 Customers

Description

Customer agents seek to purchase a motor insurance contract from an insurer agent. Each

year, they decide whether to renew their existing contract with the same insurer. The greater

the increase in the perceived cost of the contract, the lower the probability that they will de-

cide to renew. If they choose not to renew their contract, they seek quotes from all available

insurers, and select the provider with the lowest perceived cost.

A customer’s assessment of perceived cost is not just based on premium, but also

includes an adjustment for branding and product preferences, and an adjustment for their

opinion of an insurer’s customer service quality. We should note that customer survey

data suggests that, though service quality has a significant influence on customer decisions,

price remains the largest factor (Ansari and Riasi, 2016; Ghodrati and Taghizad, 2014;

Tsoukatos and Rand, 2006). However, insurers in this model are assumed to offer similar

prices, differentiated only by their margin for service expenses and any renewal markup

(see equations 2.2 and 2.3). We would therefore expect that though changes to the market

premium will have a significant impact the customer’s decision to renew, the customer’s

product preferences and opinion of customer service quality will have a higher impact on

their selection of a new insurance provider.

During the ensuing year, a customer might experience event, such as a traffic accident

or theft. If this occurs, the customer makes a claim from their insurer by interacting with

their customer service. This experience could be a positive or a negative interaction for the

customer. Additionally, customers may ask each contact on their social network for their

opinion on each insurer. This gossip is interpreted as extra information about customer

service quality.

The customers update their opinion on each insurer in light of new information, either

from their friends or based on their own experiences, though they give more weight to their

own experiences. This will be used as their basis for selecting an insurer in the following
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year. In turn, they will also use it to spread word-of-mouth information to their friends

during the course of the following year. Thus, opinions will spread through friendship

groups.

Inputs and Initialisations

The customer agents are indexed by j.

• nK : Average number of links each customer has on their social network.

• β : Probability of re-wiring used to construct the social network.

• a: Sensitivity of renewal probability to change in cost.

• b: Baseline renewal probability parameter.

• kQ: Sensitivity of customers’ cost assessment to insurer customer service quality

• kD: Sensitivity of customers’ cost assessment to insurer branding.

• ϕ: Rate at which old information about insurers is forgotten as customers place more

emphasis on recent information.

• kW : Influence of social network on customers’ opinion of insurer service quality.

• µ f : A customer’s average number of claims per year.

• µs: Average size of an individual customer claim.

• σs: Standard deviation of the size of an individual customer claim.

• pW : Probability of a customer obtaining word-of-mouth information from a friend

who has information about an insurer.

To represent a social network, the Watts-Strogatz algorithm is used to generate a ‘small

world’ network between the customers (Watts and Strogatz, 1998) at initialisation. This

algorithm generates clustered groups with enough links between the clusters to create a

small path size, and is commonly used to model real-world social networks. We note that

although this algorithm produces the small path size and high level of clustering seen in

real-world networks, it does not produce a very varied degree distribution. In real-world

social networks, it is common for a small number of agents to be very well connected and

have a large amount of influence over the network (Garcia et al., 2017).

The network could instead be modelled using a preferential attachment model such

as the Barabási-Albert algorithm (Barabási and Albert, 1999), which generates a scale-

free network with a few extremely well-connected hubs. However, this algorithm does not

generate the high levels of clustering seen in real-world social networks. Further work could

be done to examine the impact of using different types of networks.

The algorithm is implemented using the following steps:

1. Each customer j is linked to their nK nearest neighbours, nK/2 on each side, wrapping

around to the start of the list at the end. This results in a regular ring-shaped network,

with a total of nK links per customer.

2. For every customer j, each nK/2 right-hand links ( j,k) are rewired with a probability

β . The new link ( j,k∗) must not replicate an existing link. Additionally, a customer

cannot be linked to itself.

As with the insurer agents, customers are randomly spaced along the preference space.
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The location assigned to a customer j is denoted LC, j. By the definition of the preference

space (see section 2.3.3), the shortest distance Di j between customer j and insurer i is

calculated according to equation (2.5) below:

Di j = Min
(∣∣LI,i−LC, j

∣∣ ,2− ∣∣LI,i−LC, j
∣∣) (2.5)

The variable Qi j0 represents customer j’s estimate of insurer i’s quality of service at

time t = 0. At initialisation, these values are all set to 0, representing a neutral opinion.

Calculations

Assessing the cost of insurance

Similarly to the method used by Owadally, Zhou, and Wright (2018) and Owadally,

Zhou, Otunba, et al. (2019), customers assess the cost of an insurance policy using not

just the premium Pi jt , but additional factors which matter to them. This total cost can be

regarded as a disutility function.

Owadally, Zhou, and Wright (2018) and Owadally, Zhou, Otunba, et al. (2019) in-

cluded the distance in a preference location space, calculated in a similar fashion to the

distance Di j. This model also includes an allowance for service quality. Specifically, a cus-

tomer j evaluates the cost of an insurance policy offered by insurer i at time t as a linear

combination of: (a) the quoted premium Pi jt (b) the customer’s current (subjective) estimate

of insurer i’s quality of service Qi jt (described further in equation(2.10) below) and (c) the

preference cost Di j the customer has for the insurer based on their relative positions in the

preference landscape. This is captured in equation (2.6) below:

Ci jt = Pi jt − kQQi jt + kDDi j (2.6)

Deciding whether to renew

Searching and comparing insurer premium quotes carries with it a cost in time and

energy. Customers therefore commonly prefer to renew unless they believe they can obtain

a significant decrease in cost by searching elsewhere (FCA, 2020).

The decision whether or not renew an existing insurance contract is modelled as a

probability. The value of this probability depends on the perceived change in the value of

the contract. This probability is modelled using a logit function, which is a common choice

(Günther et al., 2014). The probability of renewal r jt for customer j at time t according to

equation (2.7) where δCi jt =
Ci jt−Ci jt−1

Ci jt−1
is the rate of increase in customer j’s estimated cost

of their renewed insurance contract with insurer i at time t (see equation (2.6)).

r jt = 1
/(

1+ eaδCi jt+b
)

(2.7)

Selecting a new insurer

If a customer decides not to renew their existing contract, they will seek premium

quotes from all insurers in the market and calculate the total cost Ci jt for all insurers. This
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Fig. 2.5 – Pseudocode for a Customer agent selecting which insurer to purchase from

cost is calculated as in equation (2.6) and includes allowances for brand preference and

estimated quality of service. The customer will then aim to minimise their disutility by

purchasing from the insurer with the lowest total cost. If the lowest cost corresponds with

their existing insurer and renewal price, then they will decide to renew after all. If there

are multiple possible insurers offering the lowest cost, they select one of these insurers at

random.

Figure 2.5 shows the pseudocode used to carry out the insurer selection. First, the

customer agent calculates the total renewal cost and probability of renewal, and then decides

whether to renew and return their existing insurer. Otherwise, they calculate the total cost

for each insurer in turn, and select the lowest available option.

Making a claim

If a customer suffers a loss event which is covered by the insurance contract, they

will make a claim from their insurer. The frequency of these claims are modelled using

a Poisson distribution, and the size is modelled using a Gamma distribution. These are

common distributions used to model insurance claims (Jørgensen and Paes De Souza, 1994).

When a customer makes a claim, they interact with their insurer’s customer service

department. Consider a pair (i, j) consisting of customer j and insurer i. Define:

skt = the outcome of the kth service experienced by customer

j interacting directly with insurer i in the year (t−1, t)

In the description of the derivation of Qi jt described below, we suppress dependence on i, j

to simplify the notation.

The value of each interaction skt is +1 if the customer had a positive experience, and
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Fig. 2.6 – Pseudocode for a Customer agent obtaining word-of-mouth information

−1 if the interaction was negative. Note that a customer can only collect more experiences

with a particular insurer in time t if it has an insurance contract with them.

Word of mouth from the social network

Consider a pair of customers, j and j′, who are linked by the social network generated

at the start of the simulation. During a year, there is a probability pW that customer j will

share Qi jt , their current opinion of insurer i, with their friend j′. Similarly, j′ will share their

own opinion Qi j′t with the same probability. The word-of-mouth opinions act as another

source of information for customer j.

As with the service experiences, we can simplify the notation for a pair (i, j) consisting

of an insurer i and customer j. Define:

wkt = the value of the kth word-of-mouth opinion received by customer

j interacting indirectly with insurer i in the year (t−1, t)

Note that if a customer has no opinion about an insurer because they have received no

word-of-mouth information and also have had no direct experiences themselves (as will be

the case at the start of the first time step), they will not pass on any information.

Figure 2.6 shows the pseudocode run by each customer agent in order to obtain and

record word-of-mouth information during a timestep.

Opinion of insurer quality

As before, consider a pair (i, j) consisting of an insurer i and customer j. In any given

year (t − 1, t), j receives information about i from a finite number of direct and indirect

interactions. It is convenient to collect them in two vectors of finite length:

st = {s1t ,s2t ,s3t , ...}
′

(2.8)

wt = {w1t ,w2t ,w3t , ...}
′

(2.9)

where prime indicates a transpose, so that the above are column vectors.

We define two vector functions, d : Rk 7→ R and a : Rk 7→ R for some k ∈ N. The
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former describes the length of a vector, and the latter the sum of all the elements of a

vector. Consequently, d(st) is the number of direct claims interactions that customer j has

in relation to insurer i in year (t− 1, t) and a(st) is the sum total of the outcome of these

interactions. If customer j has no direct experiences with insurer i in year (t−1, t), then st

is empty, and we assume that d(st) = a(st) = 0. Likewise for wt if the customer receives no

word-of-mouth information about this insurer during the year.

It is a common assumption that agents in a dynamic market will weight newer infor-

mation more highly than old information (Sutton and Barto, 2018). This is consistent with

the fading of human memory and a sensible approach when parameters and conditions may

change over time. Though the insurer agents in this model maintain a constant customer

service quality, insurers in the real market may enact dynamic strategies. It is therefore

reasonable to weight each piece of information according to a memory factor ϕ t−τ where t

is the current time and τ is the time at which the information was received and 0 < ϕ < 1.

The closer ϕ is to 0, the less weight the agents will place on older information.

It is also usual for humans to weight their own experience more highly than the opin-

ions of others. For example, agents in opinion dynamic models take their own opinions as

a starting point and move in the direction of other opinions during interactions with other

agents with a weight proportional to the agents’ affinities for each other (Deffuant et al.,

2002). Similarly, we will place a higher weight on an insurer’s own experiences st than on

the indirect information wt .

By weighting each piece of information as described at the end of each time period,

customer j updates their opinion Qi jt of insurer i’s quality of service according to the equa-

tion (2.10) below:

Qi jt =
(1− kW )∑

t
τ=1 ϕ t−τa(sτ)+ kW ∑

t
τ=1 ϕ t−τa(wτ)

(1− kW )∑
t
τ=1 ϕ t−τd(sτ)+ kW ∑

t
τ=1 ϕ t−τd(wτ)

(2.10)

At t = 0, Qi j0 = 0; i.e. all customers begin with a neutral opinion of all insurers until

one of them makes a claim and has either a good or bad experience. As each customer will

pass on their Qi jt values by word-of-mouth, information is passed around clusters of friends

and will be assimilated into their own estimates at the end of the timestep. Note that as Qi jt

is ultimately a weighted average of claim interaction experience outcomes, it is bounded

(−1,+1).

In this model, there are no entrants or exits, and all insurers begin at the same time.

However, if an insurer were to enter the market, it would begin with a neutral reputation. If

the existing market insurers are of generally negative service quality, we would expect such

an insurer to attract a significant enough proportion of switching customers to establish a

reputation and compete in the market. However, if the existing insurers have a generally

positive reputation, then a new insurer would not attract many new customers. In order

to compete, a new insurer would likely need to offer a premium lower than the market to

attract customers.
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Fig. 2.7 – Pseudocode for a Customer agent updating their opinions Qi jt based on informa-
tion gained during a timestep t

Figure 2.7 shows the pseudocode of a customer agent updating their opinion. Note

that instead of re-calculating the complete sum of all information each time, Qi jt can be

calculated as an update to the existing value Qi jt−1 by keeping track of the totals used in both

the numerator and denominator. The pseudocode demonstrates this update and subsequent

calculation for each insurer i.

Outputs

• Si jt : Customer j’s opinion of insurer i at the start of time t based only on their own

experiences. This is defined by:

Si jt =
∑

t
τ=1 ϕ t−τa(sτ)

∑
t
τ=1 ϕ t−τd(sτ)

(2.11)

• Wi jt : Customer j’s opinion of insurer i at the start of time t based only on the word-

of-mouth information received from their social network. This is defined by:

Wi jt =
∑

t
τ=1 ϕ t−τa(wτ)

∑
t
τ=1 ϕ t−τd(wτ)

(2.12)

• Qi jt : Customer j’s overall opinion of insurer i at the start of time t based on a mixture

of their own experiences and word-of-mouth information.

• Q jt : Customer satisfaction. This is customer j’s opinion of their current insurer at

time t.

• δ jt : An indicator variable which is equal to 1 if customer j decided to renew at time

t, and 0 otherwise.

As the model will contain a large number of customer agents, these values are outputted
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and analysed as a mean and points along a distribution.

2.4 Data, Parameterisation and Validation
2.4.1 Data
This model is based where possible on data from the UK motor insurance market. However,

in some places this data was not available, and US motor data has been used as a proxy.

These data sources are listed here.

• The FCA report into insurer pricing practices (FCA, 2020) is used as a data source

regarding renewal behaviour. This report includes information about how insurance

prices for existing customers seeking a renewal compare with the prices quoted for

new customers, and the likelihood that customers choose to renew their existing con-

tracts. It also mentions a proposed regulatory change, which is used here as an alter-

native scenario.

• The market level data of premium and losses is taken from a summary of EIOPA

Solvency I submissions (EIOPA, 2016). This data is for the years 2006-2015.

• To adjust these values to a comparable level, CPI data is used to inflate the historical

values. Note that as the data is in Euros, the European CPI data is used (King, 2021).

• Summary statistics from a dataset of facebook social circles collected by Stanford

(Leskovec and Krevl, 2014) are used to parameterise the word-of-mouth-network.

• A set of statistical data of US insurance companies’ historical advertising spending

has been taken from Statista (Guttmann, 2020), a market and consumer data company.

• Statista was also used to obtain data on the market share of the top ten insurers in the

UK motor insurance market (Statista, 2020).

• Data from the Insurance Information Institute about how often customers tend to

make insurance claims per year (III, 2019).

• This was supplemented by the Allstate claims information available on Kaggle

(2016), which provided information about the shape of the severity distribution of

motor claims (note: this is US data but was used as a proxy for the variation of

claims).

• Information about the number of motorists in the UK was taken from the Society of

Motor Manufacturers & Traders (SMMT, 2020).

2.4.2 Parameterisation
Market Parameters
Simulating 35 million customers as individual agents would require a prohibitive amount

of computing power. However, the network will have a similar clustering co-efficient if it

is sufficiently large to satisfy nc >> nK (Barrat and Weigt, 2000), and remain connected if

nK >> lnnc >> 1 (Watts and Strogatz, 1998). Based on this requirement, the number of

customers nc is set at 10,000.

Owadally, Zhou, Otunba, et al. (2019) use 20 insurer agents, noting that the top twenty

insurers hold a significant majority of the market share in the UK motor insurance market
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and is a reasonable number for producing computationally tractable yet realistic simulation

dynamics. Similarly, the number of insurers nI is set to 20.

As nC does not represent the actual number of individual customers, we choose to

rescale the inflation adjusted market data from Europa so that the average loss per repre-

sentative customer agent is 100. An AR(2) curve is fitted to the rescaled market premium

to find the values of θ0, θ1, and θ2. The parameter σM is set as an unbiased estimate of the

standard deviation of the residuals. Finally, the P−1 and P−2 are set as the last two available

rescaled market premium values.

Insurer Parameters

The maximum effective spending level is based on the largest level of spend on advertising

per premium in a set of statistical data of US insurance companies (Guttmann, 2020). This

gives a maximum service spend of approximately 5% of the expected premium level per

premium.

As herding behaviour is common in markets, the base model assumes homogeneous

service quality where all insurers spend the same amount per customer on customer service.

Later the model is run with heterogeneous markets where insurers are assigned differing

levels of service spend. The base model uses a value of Ei = 0.8. This indicates that most

insurance interactions are generally positive, but insurers are not perfect and about 1 in 5

experiences are negative.

The FCA report into insurer pricing practices (FCA, 2020) indicates that most of the

increase in prices for renewing customer take place over the first 5 years, so we will set

maximum term of markup increase T = 5. Additionally, the FCA report indicates that that

the total average increase over that time is 30% of the customer premium, giving us an

annual increase of R approximately 5%.

Customer Parameters

Approximately one in two people in the UK own a registered car (SMMT, 2020). Addition-

ally, studies demonstrate that the median number of social links per person is approximately

231 (McCarty et al., 2001). Based on these data, the average number of links per customer

nK is set at 100.

For a Watts-Strogatz network, the global clustering coefficient is approximately equal

to 3(nK−2)
2(2nK−1) (1−β )3 for large nc. Stanford examined various online social networks and

found a global clustering coefficient of approximately 0.2647 (Leskovec and Krevl, 2014).

Based on this value and the chosen value of the parameter nK the probability of rewiring β

is set at 0.3.

For renewal behaviour, the parameters a and b are calibrated using two reference

points. The average retention rate for the UK motor insurance market is approximately

50% (FCA, 2020), so the standard renewal increase of 5% is assumed to correspond with a

renewal probability of 50%. For the second reference point, note that this report also tells

us that customers consider the cost of searching for a new insurer to be worth £42, or 15%
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of the average cost of an insurance policy. Based on this piece of data, the probability of

renewal if the cost increases by 15% is set at half the usual rate, or 25%.

The average claims frequency per customer µ f will dictate how many times a customer

will interact with an insurer’s service quality and thus is an important parameter. This is set

based on data from the Insurance Information Institute (III, 2019). The average severity µs

is then calculated such that the total average loss per customer is 100 to match the market

rescaling. Finally, to find a coefficient of variation, a distribution is fitted to the Allstate

claims information available on Kaggle (2016); this determines the parameter σS. These

pieces of information are then used to parameterise a Gamma severity distribution.

Behavioural Parameters

The remaining parameters are behavioural and thus are difficult to parameterise based on

data:

• kQ, the sensitivity of a customer to an insurer’s customer service quality

• kD, the sensitivity of a customer to an insurer’s brand

• kW , the relative influence of word-of-mouth versus direct experience

• ϕ , the rate at which old information is forgotten

• pW , the probability of a customer passing on word-of-mouth about a particular insurer

to a friend

These factors are given reasonable estimates for a base model based on judgement.

As these are judgement based, the model is also run for different values of the sensitivity

parameters to test the effect of different assumptions on the results.

Customer survey data suggests that, though service quality has a significant influence

on customer decisions, price remains the largest factor (Ansari and Riasi, 2016; Ghodrati

and Taghizad, 2014; Tsoukatos and Rand, 2006). The sensitivity coefficients are therefore

set according to a reasonable increase in insurance prices. This is calculated as a year’s

renewal markup on a premium increase of two standard deviations. This places limits on

these values as:

0 < kD < kQ < 32.65

This is explored further in the validation section below.

kW is set to 20%. This means that a piece of information skt obtained from direct

experience is given a weighting of 80% relative to the weighting 20% of an indirect piece

of word-of-mouth information wkt . Thus, it would take contrary information from at least

four friends to counterbalance an opinion based on one piece of direct experience.

ϕ is a memory factor. The higher the value of ϕ , the greater the weight a customer

places on older pieces of information. If ϕ = 0 then all estimates are based on the latest

information only, and if ϕ = 1 the customer places equal weight on all pieced of information

regardless of when they occurred. For the ‘base’ model, a value of ϕ = 60% is used. This

means a given piece of information which is now five years old is given a weighting just

less than 10% of that given to recent information.
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pW is set equal to 5%. As the average number of links nK is set to 100, this indicates

than on average, customers will seek an opinion from 5 friends a year on a particular insurer.

2.4.3 Validation

In the real world, firm size often follows an uneven distribution, with a few insurers taking

a significant proportion of the available market share (Gabaix, 2009). This pattern can also

be seen in the real world market share of the top 10 UK motor insurers (Statista, 2020).

This data can therefore be used to validate the model by comparison with the modelled

distribution of insurer share.

Preliminary regression tests indicate that the key parameter values which determine

the shape of this distribution are the relative ratios of the customer cost sensitivity pa-

rameters kD and kQ. Variations of the base model were run while this ratio was varied,

and a ratio of kQ
kD

= 2.2 was found to minimise the squared distance of the average sim-

ulated market shares and the empirical market data to within two significant figures.

To validate this output, we perform a Kolmogorov-Smirnoff test1 with the initial hypothesis

H0 : the real-world top 10 market shares are drawn from the same

distribution as the top 10 market shares in the model

To apply this test, we compare the sample of ten real-world values with the distribution

of market shares for the top 10 insurers across 300 simulations. The results are ignored for

the first 20 timesteps as the model is still settling into equilibrium, and otherwise included

for a further 80 timesteps, giving a total of 120,000 datapoints.

This gives us a test statistic of 0.231, at a p-value of 0.584. This is not enough to reject

the initial hypothesis at even a strict 80% level. We thus accept that this model produces

market share outputs which follow a similar distribution to those produced in the real-world.

From this validation exercise, kQ is equal to 2.2kD. From our earlier reasoning, this

puts an upper bound on kD of 15. For the base model, kD = 10 and kQ = 22.

Looking at the customer’s estimation of service quality (equation 2.10), we might

naively conclude that this is an unbiased estimate of the expected outcome of an inter-

action with an insurer in the event of a claim. As all word-of-mouth information is equal

to a friend’s own opinion Qi jt−1, the value of Qi jt is calculated as a weighted average of

experiences (unless the customer has no information at all as yet).

However, the existence of the word-of-mouth network can lead to systemic bias. To

see this, consider a simple example where there are two customers and two insurers. The

value of kw is 20%, ϕ = 60%, and both customers always pass information between them.

1While we would prefer to run a test with a larger set of data, we do not have access to the data for other
insurers (Statista, 2020). However, we note that the top ten insurers cover a total market share of 85.8%, which
is a significant majority of the total market.
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To start with, the two customers have a neutral opinion; customer 1 selects insurer 1, and

customer 2 selects insurer 2. Both customers have an 80% chance of good customer service,

and 20% chance of bad customer service.

In the first time step, customer 1 makes a claim, and by chance experiences bad service.

Customer 2 also makes a claim, but has a good experience. As a result, customer 1 decides

not to renew. Their opinion of insurer 1 is now at−1 based on their only information, so they

select insurer 2 over insurer 1. The two friends then exchange word-of-mouth information.

They now both hold an opinion of −1 on insurer 1, and +1 on insurer 2. After they have

both been with insurer 2 for a further three years, customer 1 has a bad experience with

insurer 2.

However, customer 1 and 2 have been exchanging word-of-mouth information every

year, reinforcing their established opinion by repeating it between themselves. This new

information means that customer 1’s opinion of insurer 2 is now:

Q214 =
0.8(−1)+0.2(+1+0.61+0.621)

0.8+0.2(1+0.6+0.62)
= −0.34

From this we can see that this is only a third as negative as their opinion of insurer 1.

In this case, the gain in premium from becoming a new customer is not enough to offset the

perceived decrease in quality, and customer 1 decides not to switch.

If both customers remain with insurer 2, then over time, they will amass enough in-

formation to get an accurate opinion. Although the initial opinion will be passed around

as with insurer 1, the long term equilibrium state tends toward the true value as we would

expect. This will solidify the perceived gap between insurer 2 and insurer 1, and it would

be very rare and fleeting for either customer to ever again purchase from insurer 1.

The persistence of negative opinions through the word-of-mouth network and the rarity

of obtaining corrective information causes a similar effect on a large scale in the model,

causing a systemic bias in the estimated service quality. We thus see that the expected value

of Qi jt is in fact a little lower than the true value, unless the true value is either 0 or 1, in

which case there is no variance in outcomes and all opinions are correct. The size of the bias

will depend on the shape of the network and how efficiently information is spread through

it.

Without this effect, we would expect that in a market where insurers are spending the

same amount on customer service, they would take an equal share of the customers. How-

ever, this systemic effect can cause some opinions based on a small number of experiences

to persist in the market, causing some insurers to be unfairly favoured over others. As a

result, the market share follows a distribution, with some insurers taking a greater or lesser

market share.
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2.4.4 Scenarios
Base Model

The model is implemented in C#. The inbuilt Random class was used to generate random

numbers and is based on a modified version of Knuth’s subtractive random number gener-

ator algorithm (Knuth, 1997). The starting seed is specified by an input file, and is used

consistently across different sensitivity tests and scenarios, making these results directly

comparable.

The base model outputs demonstrate that the market takes approximately six years for

the initialisation phase to end and insurer reputations to become established throughout the

market. The market opinion continues to show significant changes for a further 20 years.

While customer opinion and the skewness of market shares continue to show a slow pattern

of change, this indicates that the output patterns are valid examples of an established market

hereafter. In practice, a real-world market does not have time to settle into a truly long-term

pattern, since circumstances are always changing and dynamic competitive strategies mean

that insurers may change their customer service quality. As such, 100 time steps are deemed

sufficient to capture the model results. All models are therefore run for 100 time steps, and

300 simulations.

The parameters used in the base model are taken from the parameterisation and vali-

dation process described above and listed in Table 2.1.

Sensitivity Tests

Additionally, several sensitivity tests are run to explore the effect of changing some of the

key behavioural parameters. The range of these tests are described in Table 2.2.

Heterogeneity of Insurer Spending

This model does not allow for insurer strategies around service quality spend. However,

possible variations can be examined by running models with heterogeneous service quality.

This is done by randomly assigning each insurer a constant value of Ei in increments of

0.05E. In order to get a large enough range of scenarios generated in this way, this model

is run for 1,000 simulations.

Additionally, the heterogeneous model is run for varying values of kQ as in the sensi-

tivity tests.

Regulation Change Scenario

The FCA report (FCA, 2020) also proposed an enforced change to insurer pricing whereby

a customer who renews their policy must not be charged more than if they were a new

customer. This scenario is also run in the model, and the results compared with those of the

base model.

Without the expected discount for new customers, the insurers will increase their pre-

mium overall. To account for this, we model the customers’ renewal states as a Markov

chain with a 50% chance of returning to 0 years from each state (see Figure 2.8). Multi-

plying these out by the appropriate renewal premium markup give us an expected overall
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Parameter Description Value

nI No. of insurers 20

nC No. of customers 10,000

k No. of links per customer 100

β Rewiring probability in social network 30%

P−1 Market premium in year -1 91.85

P−2 Market premium in year -2 89.28

θ0 Coefficient in AR(2) process for market premium 76.03

θ1 Coefficient in AR(2) process for market premium 0.6675

θ2 Coefficient in AR(2) process for market premium −0.3580

σM Stochastic variability for market premium 14.19

E Max insurer spending on customer service per customer 5.83

Ei Level of annual insurer spend on customer service per
customer

4.664

R Renewal markup 5%

T Max renewal term 5

a Renewal probability scaling 10.986

b Renewal probability shift −0.5493

kQ Customer service sensitivity 22

kD Customer preference sensitivity 10

ϕ Memory factor 60%

kW Word-of-mouth influence factor 20%

µ f Average loss frequency per customer 13%

µs Average loss severity 755.8

σs Standard deviation of loss severity 730.1

pW Probability of word-of-mouth transmission 5%

Table 2.1 – Table of parameter values for base model

premium of: Pt ∑
i=5
i=0

1
2min(i+1,5) 1.05min(i,5). This gives an increase factor of 5.05%.

2.5 Results
2.5.1 Base Model
As described earlier, the market opinion of an insurer based on experiences in the first few

years persists as it gets passed around friendship groups and reinforced each time a customer
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Parameter Values

Ei/E 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9

kQ 14, 16, 18, 20, 24, 26, 28, 30

kD 6, 8, 12, 14, 16, 18, 20, 22

kW 0.05, 0.1, 0.15, 0.25, 0.3, 0.35, 0.4, 0.45

ϕ 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.8, 0.9

pW 0.02, 0.03, 0.04, 0.06, 0.07, 0.08, 0.09, 0.1

Table 2.2 – Table of varied parameter values for sensitivity model

Fig. 2.8 – Diagram of the Markov chain states and transition probabilities between customer
renewal states

hears the same information from a friend. This phenomenon, alongside the comparative

rarity of new experiences, makes it difficult for an insurer who had an unfortunate early

record to attract enough new customers to override the low opinion.

Regression analyses are carried out on the simulated model outputs to elicit an under-

standing of the variables that drive its behaviour. Table 2.3 shows the results of a regression

on the average outputs across each simulation versus the average quality of experiences in

the first time step for each insurer. This table shows that as expected from the systemic bias

described above, the initial performance is a significant factor with a high goodness of fit

on an insurer’s subsequent reputation, market share, and renewal rate.
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Output yit Intercept α0 Slope α1 p-value R2

Insurer reputation Qi jt 0.146 73.3% 0 0.802

Insurer market share ms,it/nc −18.4% 39.1% 0.000 0.611

Insurer renewal rate Rit −25.5% 108.4% 0.000 0.385

Table 2.3 – Table of regression results for individual insurer outputs regressed on the quality
of the customers’ experiences with the insurer in the first timestep according to the equation:
yit = α0 +α1zi1 + εit

Intercept α0 Slope α1 p-Value R2

144.7% −0.876% 0.000 0.239

Table 2.4 – Table of regression results for market retention rate dependency on market
premium using the equation: Rt = α0 +α1Pt + εit

As price remains the largest factor in customer purchasing decisions, although the

average retention rate is close to 50%, it varies throughout the simulation along with the

change in market premium. When the premium is increasing, retention rates go down as

customers see the increase and seek out new quotes. When it is decreasing, retention rates

increase as even with a markup, the renewal premium is not a significant increase. This

relationship can be seen in the results of a regression carried out on each individual timestep

for each simulation of the base model. These results are shown in Table 2.4.

In this model, insurers have a fixed service quality through a simulation. The possibil-

ities of a dynamic strategy are beyond the scope of this model, though could be explored

in future work. However, the above results imply that insurers who maintain good service

quality while premiums are rising may suffer a decline in renewal rates if they also pass that

expense along to their customers, yet are unlikely to benefit if their reputation has already

been well established.

2.5.2 Sensitivity Tests
Service Spend
As we would expect, the main impact of increasing the insurer’s chosen customer service

spend relative to the maximum spend is to increase the customer’s opinion of the insurers.

This is because the higher the spend, the higher the insurers’ service quality. Table 2.5

shows the p-values and goodness of fit of this regression relationship for both the customer

satisfaction — which is the customers’ opinion of their own insurer — and also for the

average customer’s opinion of all insurers. From this table, we see evidence of the bias that

causes the unequal market concentrations: the customer satisfaction regression line lies just

above the true value, and the average opinion of all insurers lay below it. This can be seen

in Figure 2.9. Additionally, the retention rates show a greater variation as Ei is increased.

This is because the main driver of retention rates is the change in premium, which increases
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Output yk Intercept α0 Slope α1 p-value R2

Average of Qit (Customer
satisfaction)

-0.943 2.004 0.000 0.997

Average of Qi jt (Customer
opinions of all insurers)

-0.1.016 2.001 0.000 0.975

Standard deviation of Rt

(market renewal rate)
27.3% 5.11% 0.000 0.383

Table 2.5 – Table of results for the outputs across all timesteps within a single simulation
regressed on the insurer service spend Ei/E according to the equation: yk = α0 +α1Ei/E +
εit

Fig. 2.9 – Comparison of fitted regression lines of customer estimate of service quality
versus actual service quality. The customers’ opinion of their own insurer is higher than
their true quality, and the average opinion is slightly lower, reflecting the small bias caused
by the lack of new information about insurers which customers perceive to be lower quality.

along with service spend.

Preference and Service Sensitivities

As discussed in the validation section, the main impact of these parameters is on the concen-

tration of the market shares between the insurers. When kD is high and kQ is low, customers

are more heavily influenced by their location on the brand preference space. Since the

agents were evenly spread out among this space, this creates a market concentration close

to even (i.e. 5% for each of the 20 insurers). The higher the value of the service sensitivity

kQ relative to the preference sensitivity kD, the more the customers’ choice of insurer is in-

fluenced by their opinion of an insurer’s customer service quality, leading to a more unequal

market concentration (Figure 2.10). Table 2.6 demonstrates the results of a regression on
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Fig. 2.10 – Market concentration versus ratio of customer sensitivity to service quality (kQ)
to brand preference sensitivity (kD). Market concentration is measured by the market share
of the insurer with the largest market share. The ratio kQ/kD is the primary driver of market
share inequality.

Intercept α0 Slope α1 p-Value R2

8.21% 3.02% 0.000 0.675

Table 2.6 – Table of results for the average market share across all timesteps within a single
simulation regressed on the ratio of the customer sensitivities to service quality and brand
preference according to the equation: 1

t ∑t ms,it/nc = α0 +α1kQ/kD + εit

the value of the market share of the top insurer respective to the ratio of these sensitivities,

and shows that this is a significant relationship which gives a strong fit.

Influence factor and Transmission rate

If either the influence factor kW or the word-of-mouth transmission rate pW is set to zero,

then there is no transmission of word-of-mouth information. In that case, the market con-

centration becomes more evenly spread, giving a top market share of 5.5%. Additionally,

the average customer opinion of an individual insurer is close to zero as most customers

do not have any information about a particular insurer. However, it does not require a very

high value before information reaches saturation and the consensus market opinion becomes

close to the true value. This is seen in Figure 2.11.

Table 2.7 displays the results of regression on the word-of-mouth influence factor kW

and on the word-of-mouth transmission rate pW . We see that although kW and pW are

significant factors for both the top insurer’s market share and the customer satisfaction, the

goodness of fit R2 is low. Additionally, the slope is quite shallow in comparison with the

size of the parameter change. The regression model suggests that the top insurer’s market
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Fig. 2.11 – The average of customers’ opinion of an individual insurer is close to zero when
word-of-mouth is turned off due to lack of information, but quickly becomes close to the
true value of 0.6 as the word-of-mouth influence factor kW increases

Output yt Input xk Intercept α0 Slope α1 p-Value R2

Top insurer market share kW 12.6% 12.7% 0.000 0.279

Customer satisfaction kW 64.2% 6.95% 0.000 0.168

Top insurer market share pW 13.0% 47.0% 0.000 0.182

Customer satisfaction pW 63.2% 42.0% 0.000 0.228

Table 2.7 – Table of results for regressing average of outputs across all timesteps within a
single simulation on the inputs kW and pW according to equation: 1

t ∑tfor simk yt = α0 +
α1xk + εit

share varies between 13% and 18% for the kW sensitivity tests, and the average customer

satisfaction varies between 65% and 67%. For the pW sensitivity tests, the top insurer’s

market share varies between 14% and 18%, and the average customer satisfaction varies

between 64% and 67%.

Memory factor

Without the word-of-mouth network, we would expect that a low memory factor ϕ would

lead to a more equal market share as old experiences do not have a high influence on opinion.

However, although a regression shows that ϕ is a significant factor in the market share of the

top insurer, the regression coefficient for the slope is low (3.45%), and the intercept is not

close to an equal split of 5% (see Table 2.8). This reflects the effect of the word-of-mouth

network, which circulates the experiences and maintains a systemic memory.
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Intercept α0 Slope α1 p-Value R2

13.8% 3.45% 0.000 0.118

Table 2.8 – Table of results for the average market share of the insurer with the highest share
across all timesteps within a single simulation regressed on the value of the input memory
factor ϕ according to the equation: 1

t ∑t max{ms,it}/nc = α0 +α1ϕ + εit

2.5.3 Heterogeneity of Customer Service
The base model was simulated 1,000 times. In each simulation, each insurer i is randomly

assigned a customer service spend Ei which is constant over time t and which is drawn

equally likely from the set {0,0.05E,0.1E,0.15E, · · · ,E}.
The most significant factor in a customer’s assessment of cost is the price. As a result,

changes in the market premium have a large impact on the renewal rates as already seen

in the base model (table 2.4). However, when a customer is selecting a new insurer, the

differences in the premium offered by each insurer are smaller than the overall change in

premium. As a result, we would expect the impact of product preferences and service

quality reputation to become more significant when selecting a new insurer. In this model,

insurers pass on the cost of their customer service spend to their customers. We would

therefore expect that the preference between insurers of different qualities to depend on the

balance between the difference in expense and the customer’s sensitivity to the differences

in perceived service quality, as determined by the size of the sensitivity parameter kQ.

Looking at the profit averaged across all scenarios, broken down by Ei, we find that

the companies assigned a value of Ei less than 75% of the maximum spend E are usually

unable to compete with the insurers who spent more money. Despite the increased cost

that is passed on to the customer, under the base model parametrisation, the optimal setting

is consistently set at the maximum value E. Higher quality insurers attract both a higher

renewal rate and a higher number of new sales.

Figure 2.12 shows that, as customer service spend increases, the average insurer profit

increases, except at very low levels of customer sensitivity to service quality kQ. In general,

Figure 2.12 demonstrates that the highest average profit is achieved by insurers when they

spend the most on customer service.

2.5.4 Regulation Change
We also consider the possible implications of the proposed regulation change by comparing

the results of this model with those of the base model, including the results of the sensitivity

tests. This was done by performing a series of regressions using indicator variables and

testing these variables for significance; i.e.: yk = α0 +α1xk +α2Ik +α3Ikxk + εk where Ik

is equal to 0 for an output from the base model and 1 for an output from a model with

the regulation change. If the coefficient α2 is significant, then it indicates a change in the

average value of the output between the two models. If α3 is significant, then it indicates a

change in the relationship between the sensitivity parameter and the tested output.
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Fig. 2.12 – Average insurer profit versus customer service spend for different levels of cus-
tomer sensitivity to service quality (kQ). In general, the more insurers spend on customer
service, the greater the average profit that they make. At very small values of kQ such as
kQ=2, the customers’ preference for better quality is no longer high enough to overcome
the price change, and the lower quality insurers attract more business.

Table 2.9 shows the significant results of this regression run excluding the sensitivity

tests; i.e. the pure change between the base model and the regulatory scenario. Note that for

these regressions, there is no variable xk, and so α1 = α3 = 0. As we would expect, these

results show a large increase in the average renewal rates for the regulation scenario and a

decrease in their variability. There is also an increase in the top market share, suggesting

a more unequal market concentration and thus a reduction in market competition. This

is because in the base model, there was a small but steady number of customers willing

to switch to a lower reputation insurer nearer their brand preference. After the regulation

change, the rate of switching is much lower. As a result, the original experiences have

more time to circulate among clusters, while there is simultaneously less new information

available to the network to correct the initial bad impression.

This result gives us an additional clue as to the likely outcome if a new insurer were to

enter an established market. As we would expect the rate of customers willing to switch to

the new insurer to be lower than in the initialisation phase, we would expect to see the same

effect as increased renewal rates. Therefore, we would expect that if the initial experiences

of a new insurer are negative, there would be less opportunity to correct the first impression,

and their reputation would be more strongly established by the network.

Table 2.10 shows the regression results for the sensitivity tests run on both the base

model and the regulation scenario. Without the noise in renewal rates caused by changing

market premium, a relationship can now be detected between renewal rates and the word-

of-mouth influence parameters kW , M, and pW . These parameters also have a higher impact
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Output yk Intercept
α0

Impact on
intercept α2

p-Value R2

Average of top insurer’s market share 15.8% 3.8% 0.000 28.1%

Standard deviation of top insurer’s market share 1.25% 0.974% 0.000 16.8%

Average of market renewal rate 48% 46.9% 0.000 99.9%

Standard deviation of market renewal rate 31.4% −27.6% 0.000 99.3%

Table 2.9 – Table of regression results for regulatory change scenario versus base model
using indicator variables for the equation: yk = α0 +α2Ik + εk

Output yk Input
xk

Intercept
α0

Slope
α1

p-
Value
for α1

Impact
on

intercept
α2

p-
Value
for α2

Impact
on slope

α3

p-
Value
for α3

R2

Top share kW 12.6% 12.7% 0.000 1.95% 0.000 9.69% 0.000 47.6%

Renewal rate kW 48.1% 0.0287% 0.806 45.7% 0.000 5.16% 0.000 99.9%

Top share ϕ 13.8% 3.45% 0.000 2.77% 0.000 2.22% 0.000 35.5%

Renewal rate ϕ 48% 0.0596% 0.314 43.7% 0.000 5.34% 0.000 99.9%

Renewal rate pW 48% 0.517% 0.386 45.3% 0.000 25.9% 0.000 99.9%

Table 2.10 – Table of regression results on average output values for sensitivity tests run on
regulatory change scenario versus base model according to the equation: yk = α0 +α1xk +
α2Ik +α3IkXk + εk

on market concentration. The higher these values, the more information the customers are

using to evaluate insurers, and the higher the renewal rates and unequal market concentra-

tion.

We also run a heterogeneous version of the regulatory change model. As with the base

model, the optimal position is the maximum spend on customer service quality. By plotting

the profit as a proportion of the market average, it can be seen that the relative advantage

for the regulation scenario is larger than for the base model (see Figure 2.13).

This is because without the additional premium increase from the renewal markup,

customers are far less likely to be motivated to switch due to a change in price. Customer

choices become instead much more influenced by their estimates of customer service qual-

ity. This implies that the regulatory change could also be an incentive to increase customer

service quality.

2.6 Conclusions
An ABM was constructed to explore the patterns that might arise in an insurance market due

to customers passing on their opinion of their insurer to their social network. The model is

not intended to be a complete model of all of the features of an insurance market, nor should

it be taken as a predictive model. Instead, it has been designed to focus on the particular

features of customer renewal decisions when a word-of-mouth network is present, and to be
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Fig. 2.13 – Average individual insurer profit as a proportion of average market profit versus
customer service spend for the base model and the regulation change scenario. In general,
the more insurers spend on customer service, the higher their profit relative to their rivals.
Under the regulation change, this difference becomes even more pronounced, suggesting
that this move could increase incentives for good customer service.

informative of patterns and emergent dynamics.

Empirical data was used to parameterise the model, though this was not always pos-

sible for behavioural parameters. In these cases, reasonable values were proposed, and

sensitivity tests carried out for these parameters. A validation check was carried out by

comparing the model output of market concentrations against real world data.

The ABM notably replicates a key feature of the real-world market: it produces an un-

even concentration of market share by insurer. This is because early variations in customer

service experiences persist in the market opinion as information is repeatedly repeated and

passed around within social groups. Because interaction is rare, it takes some time for an

individual to correct a biased perception once they select a new insurer. As a result, some

insurers gain a better or worse reputation than others even when they have the same service

quality. This phenomenon also causes the average customer’s opinion of their own insurer

to be higher than their true service quality. This suggests that new insurers particularly

benefit from having a high service quality as they establish their reputation.

As we would expect, the biggest driver in customers’ decision whether to renew is the

change in market premium. This is exacerbated when the insurers are charging a larger

margin for service quality. As a result, insurers who maintain good service quality while

premiums are rising may suffer a decline in renewal rates if they also pass that expense

along to their customers, yet are unlikely to benefit if their reputation has already been well

established.

If the insurers are allowed to have different service qualities, their relative success
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depends on the customers’ sensitivity to service quality. In the base model, insurers with

higher service quality do better as they both attract and retain more customers. If the cus-

tomers are less sensitive to customer service relative to the cost, then the extra premium

mitigates this effect, until eventually a higher customer quality is a detriment. However,

only a small sensitivity value is required for higher customer service quality to become

beneficial.

The UK regulatory authority (FCA, 2020) has recently proposed a change in regula-

tions that would prevent UK motor insurers from charging renewing customers a different

amount than they would if they were new customers. This change would be expected to

cause a large increase in renewal rates as customers’ prices change less each year and they

can expect less benefit from searching for quotes. Additionally, the relative advantage to

insurers attempting to entice new customers with better quality customer service has in-

creased. This implies that the proposed regulation change could also increase the incentive

for better customer service quality to compete against rival insurers. However, when the

retention rate is very high, customer choices are less influenced by the market cycle. There

is much less movement away from insurers with a good reputation and fewer customers

deciding to purchase from the lower valued insurers. As a result, the market concentration

becomes more skewed. This indicates that the proposed regulatory change might decrease

market competition.

Based on these findings, we can conclude that the potential impact of the word-of-

mouth network on customer decision-making and the resulting systemic biases is a signif-

icant one. These findings should be considered by both insurers considering strategies for

attracting and retaining customers, and by regulators who are assessing possible impacts of

a change in the regulation of insurance pricing practices.

In future work, we intend to expand the model to allow the insurers to employ a com-

petitive premium-setting strategy and vary their service quality or premium dynamically.

The model also contains some implicit behavioural assumptions: for example, good and

bad experiences are given the same weight, whereas many studies indicate that people are

more sensitive to negative than positive experiences. Additionally, the word-of-mouth in-

formation in this model does not include a measure of uncertainty around the customers’

opinions. This could potentially change the network dynamics which lead to such a high

persistence of opinions within social groups. Some experiments could also be carried out

with different types of network and network sizes, to investigate if the current number of

customer agents is sufficient to replicate the rate of information saturation and investigate

how the word-of-mouth effects vary at different market scales.
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Chapter 3

The Effect of the Winner’s Curse on an
Insurer’s Estimated Capital Requirement

3.1 Introduction
In the previous chapter, we examined systemic bias to insurer reputations caused by net-

worked interactions between customers. As chapter 2 was focussed primarily on customer

behaviour, the insurers were modelled as price-takers. However, in practice insurers will

base their premium strategy on their estimation of customer risk, and may offer differing

prices to potential customers. In this chapter, we will examine an effect called the ‘winner’s

curse’ and its impact on an insurer’s capital management. The winner’s curse is a systemic

under-estimation of risk caused by imperfect information in a competitive market. Insurers

interact indirectly when they compete for business. Since their premium is based on their

independent estimates of the underlying risk, insurers that have under-estimated risk are

also more likely to be willing to offer lower prices and win more business.

Insurance companies are increasingly making use of stochastic capital models to as-

sess risks and manage capital. These are Monte Carlo-based stochastic models of the capital

flows into and out of the insurance company, capturing the major risks that it faces, most no-

tably the uncertainty surrounding policy claims. It is standard practice among most general

insurance companies to make use of an internal capital model, both for regulatory purposes,

and also to inform business strategy. The systemic estimation bias caused by the winner’s

curse will also impact these models, causing estimated capital requirements to become more

often underestimated than overestimated.

In this chapter results are generated by an ABM designed to explore the effect of the

winner’s curse on capital estimates. This model includes two types of agents: insurers and

customers. Insurers set premium for each customer based on a simple risk-based premium

rule. Customers purchase from the cheapest price. The insurers then estimate their capital

requirement. The model results show the resulting capital estimation errors. Additionally,

the model is extended to include some market features which impact customer purchase

decisions. These are: policyholder heterogeneity; renewal rates; and network shapes, where

customers consider premium from a subset of the insurers only.



This chapter finds that more insurers and fewer customers increase the percentage gap

between the actual and estimated capital. This effect is mitigated when the model contains

renewal rates. When the market include two types of customers, capital estimates are at

their worst when roughly half of insurers are aware of the heterogeneity and half remain

unaware. When customers seek offers from a subset of the insurers, the gap between actual

and estimated capital widens when an insurer has a greater number of rivals and also when

insurers tend to share the same customers.

3.2 Background
The winner’s curse is a phenomenon that arises in auctions where an item is worth the same

to all bidders, and the bidders have imperfect information about the value of the item for

which they are bidding (Capen et al., 1971). The bidders will make a bid based on their

estimate, and the item is sold to the highest bidder. If the estimates are distributed with an

expected value equal to the true value, then the bidder that wins the auction is likely to have

overestimated its value (Thaler, 1988).

In the example of insurance, this arises when companies compete for customers by

offering a premium. In this case, a company that significantly overestimates the riskiness

of a customer is likely to offer a substantially higher premium than its competitors and is

therefore unlikely to have its product purchased. However, if the company significantly

underestimates the riskiness of a customer, it may offer a much lower premium, and it is

therefore more likely that the customer will buy its product. The greater the number of

competitors, the greater the chances of the winner having significantly under-estimated the

risk, and the worse this effect becomes (Bulow and Klemperer, 2002).

In an insurance market, the underlying risk of an individual policyholder is estimated

from past claims data and used to set premium strategy (Parodi, 2014). Due to the heteroge-

neous nature of the policyholders, lack of data for particular rare events, and the constantly

changing nature of the underlying risks, these estimates can contain significant levels of

parameter uncertainty. The insurance market is therefore vulnerable to the impact of the

winner’s curse.

It is common for insurance companies to use an internal capital model to assess risks

(Sheaf et al., 2017). These are stochastic models which use Monte Carlo methods to sim-

ulate the capital flows into and out of the insurance company. Internal capital models aim

to capture the major risks faced by the insurance company, most notably the uncertainty

surrounding policy claims (Kravych, 2013).

Under the Solvency II directive, regulatory capital is set according to a 99.5% value-

at-risk (99.5% VaR) measure of the insurer’s change in equity over a one year time horizon.

Additionally, companies must “demonstrate that the internal model is widely used in and

plays an important role. . . in particular their risk management. . . and their decision-making

process” (EU, 2009). Because of this, insurers are increasingly making use of their capital

models to inform business strategy.
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The parameters of the loss distributions used in the capital model are estimated based

on the same loss data as the premium. This introduces an error into the distribution and

therefore into the risk measure used to calculate the capital. As the loss data is also used

when the insurer sets its premium rates, the parameter misestimation will be subject to the

bias caused by the winner’s curse. This is particularly relevant for the regulatory capital

measure as VaR measures are particular impacted by parameter uncertainty (Cont et al.,

2010)

Mata (2000) examines the impact of parameter uncertainty on excess-of-loss reinsur-

ance layers using extreme value distributions. Borowicz and Norman (2006) build on this

approach using a Bayesian approach with extreme frequency/severity models. They find

that the impact of parameter uncertainty on this type of insurance business is significant and

should thus be accounted for in insurers’ risk models.

Bignozzi and Tsanakas (2016a) define a residual estimation risk measure used to quan-

tify the impact of parameter uncertainty on a risk measure such as VaR. For example: if an

insurer is seeking the 99.5th percentile of a loss distribution, this measure represents the ad-

ditional amount which should be added to their estimated value in order to be 99.5% certain

that the estimate is at least as large as the true 99.5th percentile of the loss distribution.

Bignozzi and Tsanakas (2016b) use this measure to calculate the impact on capital

estimated from a random claims history. This is done by taking example distributions and

using them to generate sample outputs. The parameters are then estimated based on the out-

puts, and the capital estimated from applying the risk measure to the estimated distribution.

These values are compared to the real capital values to indicate the difference caused by

this error for different sample sizes. While these papers aim to quantify parameter mises-

timation for a capital measurement, they do not account for estimation bias caused by the

winner’s curse effect.

Yan and Pryor (2018) model an insurance market where customers can be either ‘good’

risks or ‘bad’ risks, and insurers estimate which when deciding whether to accept or reject a

potential policyholder. Under this model, when a new insurer enters the market, the residual

customers still seeking insurance are more likely to be ‘bad’ risks than ‘good’. The new

insurer is thus more likely to encounter a higher claims rate than existing insurers. Testing

against empirical data shows that this model is consistent with product liability insurance

but not with homeowners’ insurance. This could reflect the greater homogeneity of risks in

a personal lines market.

Mumpower (1991) calculates a formula for setting insurance premium so as to account

for the winner’s curse effect. In this case, including a margin for ambiguity—as is common

practice amongst pricing actuaries—is shown to be rational behaviour for a risk-neutral

insurer since this approach offers some protection against the winner’s curse.

The Winner’s Curse GIRO working party report (Chan et al., 2009) describes the win-

ner’s curse and its implications for insurance. This report uses a simple simulation model

involving a single customer. The model assumes a simple rule for premium setting and
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for customer preference based entirely on price, and is used to quantify the effect of the

winner’s curse on loss ratios within a single time step. Although this is an informative

demonstration, the model fails to link the effect to the insurers’ estimated capital. Chan et

al. (2009) also mention brand preference and loyalty but do not go into this in detail, though

they do consider the effect of brokers and aggregators on the loss ratios.

In this chapter, a simple market simulation model is used with a similar setup to Chan

et al. (2009). This model is used to examine the resulting parameter uncertainty in capital

estimates in a manner similar to Bignozzi and Tsanakas (2016b). There are some implicit

assumptions in the calculation of capital: that all customer losses are independent; that there

is no runoff from past business; that all business is sold at the start of the year and is fully

earned with all loss amounts known by the end of the year; and finally, that each insurer has

enough capital that it will not go bankrupt. The focus is also solely on underwriting risk,

and there is no allowance for investment and other risks.

The model includes the market features listed below. These features are not well-

explored in the existing literature on the winner’s curse, but they impact customer purchase

decisions and are therefore also pertinent to an investigation of the winner’s curse effect:

• Heterogeneity: In real-world markets, customers are heterogeneous, and the insurers’

ability to tell them apart is crucial to their ability to offer competitive premium rates.

In this model we allow for the existence of two types of customers which we call ‘low

risk’ and ‘high risk’ in a manner similar to Yan and Pryor (2018) and allow a specified

fraction of the insurers to identify which customer belongs to which category. We

anticipate that this will reduce the number of insurers that are willing to compete over

a particular customer and therefore increase the effect of the winner’s curse.

• Renewal: It is common for insurance customers to renew an existing policy instead

of searching for a new insurer (FCA, 2020). In this model we allow for a fraction of

the customers choosing to renew. We expect this to effectively reduce the number of

customers seeking a quote from insurers and therefore to decrease the effect of the

winner’s curse.

• Networks: As noted in the Winner’s Curse GIRO working party report (Chan et al.,

2009), many customers have preferences regarding brands and products. Addition-

ally, customers may use a broker or a particular price comparison website. Searching

for further quotations carries a cost in time and effort. As a result, most customers

will not consider quotes from every insurer. In this model we allow customers to

build a network of links to insurers which they will consider. Three types of networks

are considered to reflect multiple ways in which customers may make their decision.

3.3 Model Specification
3.3.1 Overview

A simple agent-based model is constructed using C# to demonstrate the effect of the win-

ner’s curse on an insurer’s capital estimation. It is expected that when there are more com-
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Fig. 3.1 – Swimlane overview of the processes in the winner’s curse ABM

petitors, the residual estimation risk will be higher, because the winner’s curse means that

the business is won by the insurer that has the lowest risk estimate.

The model contains nI insurers, each labelled as either ‘aware’ or ‘unaware’ depending

on their ability to correctly differentiate between different types of customers. There are nJ

types of customers. For each customer type j, there are n jK distinct customers of that type.

For each simulation, the agent model begins by simulating starting data for each in-

surer, and generating a network of linked insurers for each policyholder.

It then undergoes the following steps in each time period:

1. Insurers use past loss data to estimate parameters for loss distributions.

2. Insurers offer each linked customer a contract using the standard deviation premium

principle.

3. If a customer renews, it will choose its existing insurer. Otherwise, the customer

selects the cheapest option from among its linked insurers.

4. Insurers with customers calculate their capital using 99.5% VaR method.

5. Losses are generated for each customer and recorded by the covering insurer.

6. Output results are calculated for each insurer.

Figure 3.1 is a swimlane diagram representing the flow of processes in the model and

which agent is responsible for each step. The code has been made available on CoMSES

(England, 2022).

Results are first obtained from a simple base model with homogeneous customers who
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select purchase from a single insurer with the lowest risk estimate. Further models are then

explored containing customer heterogeneity, renewal probability, and incomplete networks.

The calculations carried out at each step are described in more detail below.

3.3.2 Definitions

i = Insurer index

j = Index of customer type

k = Customer index of customers of specified type

t = Timestep

nDi,t = Number of loss data points recorded by insurer i at the start of timestep t

nDi, j,t = Number of loss data points recorded by insurer i of customer type j at the start of

timestep t

nI = Number of insurers

nIA = Number of aware insurers

nIU = Number of unaware insurers

nJ = Number of customer types

n jK = Number of customers of type j

q = Network parameter for Poisson network

F = Network parameter for Fitness network

C = Network parameter for Cost-Benefit network

Di,t = Degree network measurement of insurer i at timestep t

Ni,t = Neighbourhood network measurement of insurer i at timestep t

EEi,t [·] = Mean average of a function using parameters estimated by insurer i at timestep t

EAi,t [·] = Mean average of a function using actual parameters for insurer i at timestep t

VarEi,t [·] = Variance of a function using parameters estimated by insurer i at timestep t

VarAi,t [·] = Variance of a function using actual parameters for insurer i at timestep t

ηEi,t [·] = 99.5% VaR of a function using parameters estimated by insurer i at timestep t

ηAi,t [·] = 99.5% VaR of a function using actual parameters for insurer i at timestep t

Pi, j,t = Premium offered by insurer i to customers of customer type j during timestep t
µi, j,t

σ
2
i, j,t

}
=

Lognormal parameters for distribution of losses in a single timestep

for a single customer of type j as estimated by insurer i at timestep t

µ j

σ
2
j

}
=

Lognormal parameters for actual distribution of losses

in a single timestep for a single customer of type j
L j,k,t = Total losses generated by customer k of customer type j during timestep t

Li,t = Total losses generated for insurer i during timestep t

R = Renewal probability

CGRi,t = Capital gap ratio for insurer i at the end of timestep t

NRi,t = Normalised residual for insurer i at the end of timestep t

3.3. Model Specification 77



3.3.3 Starting Data
Each insurer generates a set of starting data that it can use to find starting estimates for

loss parameters. It is a common assumption to model losses using a lognormal distribution

(Bahnemann, 2015). Accordingly, losses are modelled as a single lognormally distributed

severity distribution for each individual customer.

Each insurer i begins with a random sample of size nDi,0 . This gives the starting loss

data as: (
Z`, `= 1, . . . ,nDi,0

)
(3.1)

where Z` ∼ i.i.d.Lognormal
(

µ j,σ
2
j

)
. For each datapoint, the associated customer type j

is drawn at random from the available customer types.

3.3.4 Networks
Since searching for premium quotes carries a cost, customers are unlikely to search for

quotes from every available insurer. The possible impact of this is examined through a

network, where customers seek quotations only from insurers to which they are linked.

The network is generated once for each network parameter, and the simulations run on

the resulting shape. Additionally, since customers must always purchase a policy, the result

is rejected and a new set of links is generated if a customer has no links.

Most of the models use a simple complete network. This is where each customer has

a link to every available insurer. For the network model, three common types of network

structures are used to investigate network effects: Poisson, Fitness, and Cost Benefit. These

three models have different characteristic properties and structures (Bargigli and Tedeschi,

2014).

Note that if a node generates zero links, the result is discarded and re-drawn, as the

model assumes that all consumer agents will purchase insurance. This means that the result-

ing link distribution will display a bias - for example, the Poisson network instead reflects a

zero-truncated Poisson distribution.

• Poisson: This type of network reflects a scenario whereby customers seek a small set

of quotes from a random subset of insurers. For each customer, a link to each insurer

is generated according to the network connection probability q.

• Fitness: This type of network reflects a scenario similar to the use of price aggregation

sites or brokers, where particular insurers are likely to have a larger base of potential

customers depending on their choice of distribution channel. In this network forma-

tion, when a new customer is added to the network, links are more likely to be formed

with insurers that already have many links. The probability of forming a link to an

insurer is equal to F multiplied by the proportion of existing links to the insurer out

of all links in the network. Here, F is a ‘fitness multiplier’ parameter. The higher this

parameter, the more links are expected to form. This type of network produces more

variation in the degrees of the nodes, resulting in a skewed power law distribution.

• Cost Benefit: This type of network reflects the assumption that customers will be
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Fig. 3.2 – Distance between two locations in preference space

drawn to certain insurers more than others based on personal preferences or targeted

marketing. This is represented using a circular 1D ‘preference’ space similar to that

used by Owadally et al. (2018). Insurers and customers are given a random location

between 0 and 1. As the location space is circular, the distance between locations 0

and 0.1 and the distance between locations 0 and 0.9= (1−0.1) are both equal to 0.1,

and the distance between 0.9 and 0.1 is 0.1+0.1 = 0.2 (see Figure 3.2). The distance

between the location γ j,k of the kth customer of the jth customer type and the location

γi of the ith insurer is then calculated as γi, j,k = min
(
|γi− γ j,k|,1−|γi− γ j,k|

)
. If the

distance between the insurer and the customer is less than the network parameter C,

which reflects the cost of searching an additional insurer, then the link is added. This

type of network produces a bipartite ring, where insurers that are close to each other

tend to form links with the same customers, and similarly for customers who are close

neighbours. The lower the value of C, the fewer the number of links, and the fewer

links customers and insurers will have in common with their neighbours. The higher

the value of C, the closer the network is to a complete network.

The shape of a network impacts the interactions between agents. Two key network

properties are the distribution of degree [where degree is the number of links to a node] and

the level of clustering, which indicates the formation of small interconnected communities

(Amini et al., 2016). Correspondingly, two quantities are calculated for each insurer i:

1. Degree Di,t : This is equal to the number of links from insurer i at time t.

2. Neighbourhood Measurement Ni,t : This measures whether policyholders and insurers

group together into neighbourhoods where policyholders tend to have links to the

same insurers. It is calculated as:

Ni,t =
1

nI−1 ∑
i∗ 6=i

Ni,i∗,t (3.2)
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where

Ni,i∗,t =
1

Di,t

Di,t

∑
l=1

∆i,i∗,l,t

∆i,i∗,l,t =

1 if insurers i and i∗ both have links to customer l at time t

0 otherwise

(3.3)

The model outputs are then compared for differing values of these properties.

3.3.5 Parameter Estimation
An insurer i estimates the loss parameters in timestep t by applying a maximum likelihood

approach to its past data,
(
Z`, `= 1, . . . ,nDi,0

)
, by each customer type.

µi, j,t =
1

nDi, j,t
∑

all l belong to customer type j
logZl (3.4)

σ
2
i, j,t =

1
nDi, j,t

∑
all l belong to customer type j

(logZl−µi, j,t)
2 (3.5)

Note that, for heterogeneous customers, there are two types of insurers: ‘aware’ and ‘un-

aware’. The aware insurers estimate the parameters for each customer type separately, and

so will correctly identify data as being of type j and estimate a separate µi, j,t and σ2
i, j,t for

each j. Unaware insurers are unable to differentiate between the different customer types,

and therefore incorrectly identify all datapoints as belonging to the same group, giving the

same values of µi, j,t and σ2
i, j,t for each customer type j.

In a real market, it is common for insurers to make use of a no-claims discount to

identify low-risk customers (Lemaire, 1988). This is not possible here as claims amounts

are approximated as a total lognormal distribution, which does not allow for the possibility

of zero claims. However, the use of no-claims discounts would offer unaware insurers

the possibility of a crude identifier of low-risk customers, and would therefore potentially

enable them to offer more competitive premiums to the low-risk customers. Note however

that, if such an insurer could attract lower-risk customers, it would not adapt its premium as

quickly for the highe- risk customers as it would have a mixture of high- and low-risk loss

experience.

3.3.6 Premium
The focus of this model is on estimation rather than premium strategy. To keep the model

simple, the insurers do not incorporate a competitor analysis into their premium. Instead,

premium is set based on a risk premium using a simple standard deviation method (Dickson,

2016).

Using this principle, the premium offered by insurer i to customers of type j during

time step t is:

Pi, j,t = EEi,t [L j,k,t ]+a
√

VarEi,t [L j,k,t ] (3.6)
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Based on the results of the parameter estimation process, the insurer calculates this as:

Pi, j,t = exp(µi, j,t
σ2

2
)+a[exp(σ2)−1]exp(2µi, j,tσ

2) (3.7)

3.3.7 Customer Allocation
Searching for quotes takes time and effort on the part of the policyholder, which creates

a disutility. If this disutility is expected to be higher than the utility gained from finding a

lower premium, then a rational customer will choose to renew their contract instead (Dutang

et al., 2012).

To reflect this, policy renewal is modelled as a simple Bernoulli trial. The kth customer,

belonging to customer type j, renews with their existing insurer at time t if r j,k,t < R where

R is the policy renewal probability and

r j,k,t ∼Uni f orm(0,1) (3.8)

If r j,k,t ≥R, the customer seeks premium quotes from all insurers in its network, and chooses

to purchase from the insurer offering the lowest premium.

Some types of insurance, such as third-party motor insurance, are mandatory. How-

ever, studies show that, even in voluntary markets, demand for insurance tends to remain

steady and is not materially affected by price (Daykin et al., 1993). The total number of

customers is therefore set as a constant across all timesteps.

3.3.8 Capital Estimation
For the insurer’s estimated capital requirement, the Value-at-risk measure of the 99.5% loss

is used. This mimics regulation such as Solvency II (EU, 2009).

In practice, most insurers make use of Monte Carlo simulation to produce their capital

estimate. However, using this method would greatly increase the computation time. In

order to run the model within a reasonable time frame, it is assumed that the sum of the

customers’ losses is also lognormal. The parameters are estimated by matching the first

two moments (Fenton, 1960). This gives the following calculation for insurer i’s estimated

capital requirement in timestep t:

ηEi,t [Li,t ] = ηEi,t

[
∑

j
∑
k

δi, j,k,tL j,k,t

]
(3.9)

where

δi, j,k,t =

1, if customer k in group j has a contract with insurer i during time step t.

0, otherwise.
(3.10)

Thus, this approximation can be calculated by equating the mean and variance of the sum

of the estimated independent distributions, denoted as MEi,t and VEi,t respectively. This gives
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the following equation:

MEi,t = ∑
j
∑
k

δi, j,k,t exp

(
µi, j,t +

σ2
i, j,t

2

)
VEi,t = ∑

j
∑
k

δi, j,k,t exp(2µi, j,t +σ
2
i, j,t)[exp(σ2

i, j,t)−1]
(3.11)

Thus:

ηEi,t [Li,t ]≈ ηEi,t [Xi,t ] (3.12)

where:

Xi,t ∼ Lognormal

log

 MEi,t√
1+

VEi,t

M2
Ei,t

 , log

[
1+

VEi,t

M2
Ei,t

] (3.13)

Similarly, the actual capital requirement for insurer i during time step t is calculated as:

ηAi,t [Li,t ]≈ ηAi,t [Yi,t ] (3.14)

where:

Yi,t ∼ Lognormal

log

 MAi,t√
1+

VAi,t

M2
Ai,t

 , log

[
1+

VAi,t

M2
Ai,t

] (3.15)

and:

MAi,t = ∑
j
∑
k

δi, j,k,t exp(µ j +
σ2

j

2
)

VAi,t = ∑
j
∑
k

δi, j,k,t exp(2µ j +σ
2
j )[exp(σ2

j )−1]
(3.16)

3.3.9 Losses

Losses are generated for each customer k of customer type j using a lognormal distribution

as follows:

L j,k,t ∼ Lognormal(µ j,σ
2
j ) (3.17)

The losses for each insurer i are then obtained by adding up the losses of all of its customers:

Li,t = ∑
j
∑
k

δi, j,k,tL j,k,t (3.18)

Each insurer then adds their new losses incurred to their history of losses. The insurer then

has a larger data sample to re-estimate the loss distribution parameters in the next time step.

3.3.10 Calculate Output

The model outputs two main results: the capital gap ratio and the normalised residual.
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The capital gap ratio (CGR) is calculated for each insurer i as:

CGRi,t = (ηEi,t −ηAi,t )/ηEi,t (3.19)

where ηEi,t = insurer i’s estimated capital during time step t, and ηAi,t is the actual 99.5th

percentile of insurer i’s total customer loss distribution. This is a measure of the ratio by

which the estimated capital should be increased in order to get to the actual capital.

When examining the average across all simulations, results are excluded when the

estimated and actual capital were both zero. The average is this a measure of the gap in

estimated capital for an insurer which is successfully selling business.

The normalised residual (NR) is calculated as:

NRi,t = (Li,t −ηEi,t )/(ηAi,t −E[Li,t ]) (3.20)

where Li,t is the value of the total loss generated for insurer i in the time step t. This

output can be used to replicate the normalised residual risk (NRR) used by Bignozzi and

Tsanakas (2016a) by taking the 99.5th percentile of the NR. Again, when calculating the

NRR, results are excluded where the insurer did not win any customers, so that this is a

measure of residual estimation risk for an insurer who is selling business.

3.3.11 Parameter Values

The model is run for four different sets of parameter values.

The first model is the Base Model. This model uses only one type of customer, a

complete network, and 0% chance of renewal. To explore how the level of competition and

parameter estimation risk affects the gap in the estimated capital the following parameters

are varied:

• Number of insurers

• Number of policyholders

• Number of initial data points

• Loss coefficient of variation

The second model is the Heterogeneous Model. In this model there are two types

of customers: ‘Low risk’ and ‘High risk’ customers, with a 50% split between the two.

The percentage of aware versus unaware insurers is then varied. As before, the network is

complete and there is 0% chance of renewal.

The third model is the Renewal Model. Here, the number of insurers is held stead, but

the number of policyholders and chance of renewal are both varied to explore the impact

of introducing the chance of customers choosing to renew their existing policies instead of

searching for new quotes. The customer types are homogeneous as in the Base Model, and

the network is complete.

Finally, a Network Model is run. For this model, the choice of network shapes and

the network parameter values are varied. In each model run, a single network shape is
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generated for each network parameter and simulations are run for each of these shapes. All

other inputs are held steady so as to concentrate on the network related effects.

No. Customer types nJ = 1

Loss Mean 100

Loss CV 0.1 and 0.5

No. of Insurers nI = 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10

No. of Policyholders n1K = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1,000

Size of starting data samples nDi,0 = 20, 50, 100

Network Complete

Prob. of Renewal R = 0%

Table 3.1 – Input parameter variations for Base Model

No. Customer types nJ = 2

Loss Mean (80, 120)

Loss CV (24, 60)

No. of Insurers nI = 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10

No. of Aware Insurers nIA=All values between 1 and no. Insurers

No. of Policyholders of each

type
n1K = n2K = 2, 4, 8, 16, 32, 64, 128, 256, and 500

Size of starting data samples nDi,0=20, 50, 100

Network Complete

Prob. of Renewal R = 0%

Table 3.2 – Input parameter variations for Heterogeneous Model
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No. Customer types nJ = 1

Loss Mean 100

Loss CV 0.5

No. of Insurers nI = 10

No. of Policyholders n1K = 2, 4, 8, 16, 32, 64, 128, 256, and 512

Size of starting data samples nDi,0 = 20

Network Complete

Prob. of Renewal R = 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%

Table 3.3 – Input parameter variations for Renewal Model

No. Customer types nJ = 1

Loss Mean 100

Loss CV 0.5

No. of Insurers nI = 10

No. of Policyholders n1K = 10

Size of starting data samples nDi,0 = 20

Network Poisson, Fitness, and Cost Benefit

Network Parameters

q = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

F = 1, 2, 3, 4, 5, 6, 7, 8, 9

C = 0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55

Prob. of Renewal R = 0%

Table 3.4 – Input parameter variations for Network Model

3.4 Results
3.4.1 Base Model
As described in the introduction, the normalised residual estimation risk is examined.

Bignozzi and Tsanakas (2016b) described the residual estimation risk as RRi,t = η(Li,t −
ηEi,t (Li,t)); i.e. the 99.5th percentile of the generated losses minus the estimated capital re-

quirement. This is a measure of the extra capital that should be added to the estimated capital

in order to be 99.5% certain of holding at least as much capital as the true 99.5th percentile

of the total loss distribution. The residual risk can be normalised to give us the normalised
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residual estimation risk NRRt = η(NRt) where NRt = (Li,t−ηEi,t (Li,t))/(ηAi,t −E[Li,t ]) and

the NRR is calculated by taking the percentile of the NR across 100,000 simulations.

In Table 3.5, values are tabulated for the normalised residual risk. The first two

columns describe the number of insurers and the number of customers in the market re-

spectively, and results are given for different coefficient of variation in the loss distributions

and for a differing number of starting data samples. The top row shows the NRR values

found by Bignozzi and Tsanakas (2016b); these are comparable with the model results for

one insurer and one customer.

CV=0.1 CV=0.5

nI nJ=1 nDi,0=20 nDi,0=50 nDi,0=100 nDi,0=20 nDi,0=50 nDi,0=100

B&T 0.156 0.066 0.034 0.212 0.098 0.052

1 1 0.155 0.066 0.032 0.193 0.089 0.056

1 1000 6.073 3.558 2.338 5.510 3.374 2.265

10 1 0.315 0.188 0.110 0.440 0.313 0.194

10 1000 7.924 4.814 3.223 6.987 4.460 3.092

Table 3.5 – Normalised Residual Risk of Capital Estimation from 100,000 simulations of
the Base Model and Comparison with Bignozzi and Tsanakas (2016b) (denoted by B&T)

From Table 3.5 it can be seen that the model results are comparable with those found

by Bignozzi and Tsanakas (2016a) for a single customer and insurer. Similarly to their

findings, the normalised residual estimation risk is greater when the loss distribution is more

variable, and when there are fewer initial data samples to inform the parameter estimation.

The normalised residual estimation risk is then found to significantly increase for a

greater number of policyholders, as parameter misestimation is amplified. As expected, the

effect of the winner’s curse causes an increase in the residual estimation risk for a greater

number of competitors.

Therefore, an insurer faced with competitors would likely need an even greater in-

crease in their capital in order to cover their losses with 99.5% certainty than the amounts

calculated by Bignozzi and Tsanakas (2016b).

Figure 3.3 shows the average value of the capital gap ratio. The x axis shows the effect

of varying the number of competing insurers, and the different series show the number of

customers. The average actual capital is higher than the insurers’ estimates. The capital gap

ratio increases for a larger number of competitors and a smaller number of policyholders.

This is a similar pattern found by the GIRO Winner’s Curse working party (Chan et al.,

2009), which investigated the effect of more competitors on the market loss ratio, but did

not examine the connection with capital estimation.
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Fig. 3.3 – Average CGR of Base Model: nDi,0 = 10. Error in capital estimation increases for
more insurers or fewer customers.

3.4.2 Heterogeneity

The GIRO Winner’s Curse working party (Chan et al., 2009) investigated the effect of in-

surers with superior models, finding that such insurers showed a lower loss ratio but tended

to attract less business. However, the paper did not examine heterogeneous customers. In

the heterogeneity model, the ‘aware’ insurers have superior models and are able to attract a

higher share of the lower risk business. Once again, values are produced for the normalised

residual estimation risk. This time the total number of insurers is kept at 10, with 5 aware

and 5 unaware insurers.

5 Aware Insurers

Insurer
Type

n jK nDi,0=20 nDi,0=50 nDi,0=100

Aware

Insurers

1 0.574 0.324 0.193

500 7.637 4.615 3.066

Unaware

Insurers

1 0.662 0.547 0.501

500 6.777 5.303 4.618

Table 3.6 – Normalised Residual Risk of Capital Estimation from Heterogeneous Model
split by Aware and Unaware Insurers

As before, Table 3.6 shows that a higher number of customers increases the normalised
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Fig. 3.4 – Average CGR of Heterogeneous Model: nDi,0 = 20, n jK = 256. The error in capital
estimation is worse for aware insurers when there are more aware insurers in the market, and
worse for unaware insurers when there are more unaware insurers in the market. Overall,
the total error is largest when there are equal numbers of each type of insurer.

residual estimation risk caused by parameter misestimation, as does a lower value of n.

Additionally, as would be expected, the unaware insurers have a much higher normalised

residual risk than the aware insurers in almost all cases.

However, it should be noted that although the aware insurers have more information

about the true nature of their customers, they have less data with which to estimate pa-

rameters when split by customer type. This results in a wider variation around their loss

estimates. For nD0,t = 20 and n jK = 500, this effect is large enough that the aware insurers

display a higher normalised residual estimation risk than the unaware insurers.

Figure 3.4 shows shows the average capital gap ratio by the fraction of insurers that

are aware, for each total number of insurers, where n jK = 256. This graph presents as a

horseshoe shape; as the fraction of aware insurers increases, the results seem to worsen

before improving again. The overall market results are at their worst when approximately

half of the insurers are aware.

The aware insurers are much more likely than the unaware to win the business of

the lower risk customers because they are able to offer a lower premium. Meanwhile, the

unaware insurers are more likely to win the business of the higher risk customers; their

results are much worse than for the aware insurers.

Here, the winner’s curse operates on the two groups. The greater the number of aware

insurers in the same market, the worse the capital gap ratio is likely to be for the insurer who

attracts the low risk customers. Similarly, the greater the number of unaware insurers, the

worse the capital gap ratio is likely to be for the insurer who attracts the high risk customers.

Therefore, when the ratio of aware to unaware insurers is low, the impact of the win-
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Fig. 3.5 – Average CGR of Renewal Model for different renewal rates: nI = 10, nDi,0 = 20.
Renewal rates decrease the error in the capital estimation.

ner’s curse is lower for the aware insurers and higher for the unaware group. When the

ratio is high, the impact of the winner’s curse is higher for the aware insurers, and lower for

the unaware insurers. Overall, the combined impact of the winner’s curse for both sets of

customers is at its highest when the market is composed of 50% aware and 50% unaware

insurers. This is what causes the horseshoe shape seen in figure 3.4.

3.4.3 Renewal

The GIRO Winner’s curse model (Chan et al., 2009) did not examine the possible mitigat-

ing effects of customer’s renewing rather than seeking a new insurer. This possibility is

investigated here. Figure 3.5 shows the average capital gap ratio for each total number of

customers, for nI = 10. Increasing the renewal rate slows down the rate of customer jumps

to the insurer with the lowest current estimate and thus mitigates the effect of the winner’s

curse, reducing the average gap between the estimated and actual capital requirement.

Examining the results over 100 timesteps shows that over time, the difference between

a model with a 50% chance of renewal and one with zero chance of renewal closes as the

customers gradually migrate towards insurers with lower premium estimates. With both

models, the effect of the winner’s curse reduces over time as insurers learn from experience

and the winning insurers update their estimates and increase their premium (Figure 3.6).

However, although the renewals market begins well, an increasing number of insurers

jump to the insurer with the lowest premium offer in the first few years. This means that the

capital gap ratio increases initially as the winner’s curse has an increasing influence on the

results.

Additionally, the winning insurers take longer to learn from experience since they do

not have as high a share of the market. This means that the improvement over time in the
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Fig. 3.6 – Average CGR of Renewal Model over time: nI = 10, nDi,0 = 20, R = 50% and
R = 0%. Over time, the results of the renewal model approaches that of the base model.

renewals market does not quite match the speed of the improvement over time in the control

market.

3.4.4 Networks

The Network models are used to allow us to explore the possibility of applying aspects

of network theory to the model. The GIRO Winner’s Curse working party (Chan et al.,

2009) model does not consider networks; however, it does examine the possibility of brand

strength allowing an insurer to charge a higher premium while maintaining market share,

which can mitigate the effect of the winner’s curse. This can be seen as analogous to an

insurer in the network which has many links but comparatively few rivals, allowing them to

be considered by more customers and thus indicating increased popularity.

Figures 3.7, 3.8, and 3.9 show the average capital gap ratio by the value of the network

parameter for the three different network types (q, F , or C respectively). The average

capital gap is low for the lowest value of the network parameter as insurers have few rivals

for each customer; this is comparable to the Chan et al. (2009) results where all insurers have

a stronger brand but with a smaller section of the market. As the parameter is increased,

the network approaches the complete network and there are more competitors for each link,

causing the winner’s curse to increase the capital gap.

Figure 3.10 shows that the cost benefit network demonstrates a weakly positive cor-

relation between degree and the capital gap ratio for a cost benefit model. For Poisson

and Fitness network types, there is a stronger correlation between a higher neighbourhood

measure and a higher average capital gap ratio, as demonstrated in Figures 3.12 and 3.11.

3.4. Results 90



Fig. 3.7 – Average CGR of Network Model: Poisson network, nI = 10, nDi,0 = 20, nJ=1 = 10.
The error in the capital estimation increases when the connection probability is higher and
each transaction has a greater number of rivals.

Fig. 3.8 – Average CGR of Network Model: Fitness network, nI = 10, nDi,0 = 20, nJ=1 = 10.
The error in the capital estimation increases when the fitness parameter is higher and each
transaction has a greater number of rivals.

3.5 Conclusion
A simple simulation model was built to explore the winner’s curse. In the context of insur-

ance, this occurs when the insurers that have underestimated the risk offer lower premium

and therefore win more business. This model allowed for imperfect information, where

insurers estimate loss distributions based on randomly generated past data. Insurers then

calculate their capital requirement based on their estimated distributions, and a capital gap
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Fig. 3.9 – Average CGR of Network Model: Cost-Benefit network, nI = 10, nDi,0 = 20,
nJ=1. = 10. The error in the capital estimation decreases when the cost parameter is higher
and each transaction has a smaller number of rivals.

Fig. 3.10 – Average CGR of Network Model split by Insurer Degree: Cost Benefit network,
nI = 10, nDi,0 = 20, nJ=1 = 10

ratio is calculated based on the gap between the estimated capital and the capital based on

the actual parameters. In this chapter, the focus is on the impact of the VaR measure of cap-

ital, as this is the measure commonly used with current regulation (Solvency II). However,

the results could be expanded to consider the impact on other risk measures, such as TVaR

or CVaR.

Outputs indicate that the winner’s curse increases the estimation risk due to parameter

uncertainty when there are more competitors, leading to a higher gap between the estimated
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Fig. 3.11 – Average CGR of Network Model, split by Insurer Neighbourhood Measure:
Fitness network, nI = 10, nDi,0 = 20, nJ=1 = 10

Fig. 3.12 – Average CGR of Network Model, split by Insurer Neighbourhood Measure:
Poisson network, nI = 10, nDi,0 = 20, nJ=1 = 10

and actual capital, and an increase in the parameter estimation risk considered by Bignozzi

and Tsanakas (2016b). The capital gap also increases when there are fewer customers. This

is similar to the conclusions reached by the GIRO Winner’s curse working party (Chan et

al., 2009); however, they examined the effect on the market loss ratio, and did not consider

the implications for capital estimation.

In a heterogeneous market, the capital gap was worse for unaware than aware insurers,

similar to the effect of possessing a superior model investigated by the GIRO Winner’s

curse working party (Chan et al., 2009). However, although the aware insurers have more
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information about the true nature of their customers, they have functionally less data with

which to estimate parameters, thus resulting in a wider variation around their loss estimates.

The average capital gap ratios across the market as a whole are at their worst when

when there are the greatest number of competitors for both an aware and an unaware insurer,

and thus gives the highest combined winner’s curse effect; this was not an effect previously

considered by the GIRO Winner’s curse working party.

The second extension to the simple model was to add in renewal rates. The higher the

renewal rate, the smaller the capital gap, as there are more insurers with renewals-driven

customers instead of winner’s curse driven customers. Long term, although the renewals

market begins well, an increasing number of insurers jump to the insurer with the lowest

premium offer in the first few years. Additionally, the insurer with the lowest premium

attracts fewer customers per time step and so doesn’t learn as fast. This means that after a

while, the market with renewals does slightly worse than the non-renewal market.

In the final model extension, a network was used to represent which insurers a given

customer will ask for premium quotes. When the network is sparse, there are fewer com-

petitors per customer and insurers are less affected by the winner’s curse. When the network

is dense, each insurer has more competitors, and the capital gap ratios is close to the higher

outputs of the complete network. In the simulated markets, the capital gap ratio is higher

for insurers with a higher degree for cost benefit network, and for insurers with a higher

neighbourhood measurement in a poisson or fitness network.

Overall, the implication is that an insurer should increase their capital estimate in order

to expect to cover their true capital requirement. The greater the effect of competition, the

more this adjustment is required.

This chapter demonstrates the interaction of imperfect information with a number of

key market features. However, the premium is based entirely on actuarial risk assessment.

Under this model, insurers do not account for competitive forces. This means that an in-

surer who underestimates risk does not increase offered premium based on its competitors.

Similarly, an insurer who fails to win business due to overestimation does not decrease its

premium to be competitive. In practice, it is often believed that premium levels are driven

by a competition-driven underwriting cycle. In this case, the winner’s curse becomes less

obvious, and mostly manifests in differences in the market volumes each insurer is willing

to seek at different premium levels. Future work should be done to combine the model

in this chapter with a competitive premium mechanism in order to examine the link with

underwriting cycles.

The winner’s curse effect is often assumed by modellers to have negligible impact

as insurers have access to a lot of data. However, there are common circumstances that

increase the significance of imperfect information, such as: high levels of heterogeneity,

underlying risk distributions that change over time, and very rare event such as catastrophes.

An exploration of threshold levels which might cause the winner’s curse to become more

significant could be a useful direction for future work.
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Chapter 4

An Agent-based Model of Insurance Market
Price Dynamics with Heterogeneous Market
Supply Strategies

4.1 Introduction
In the previous chapter, we explored systemic bias to risk estimation due to insurers com-

peting under imperfect information. In chapter 3, this resulted in an effect known as the

‘winner’s curse’, whereby insurers who win market share are more likely to have under-

priced.

However, in practice insurance premium will be based on a competitive analysis of

current market conditions and not the pure risk estimates. In this chapter we build an ABM

focussed on competitive market supply strategies within a market where the premium moves

according to the balance between supply and demand. In this model, insurers have imperfect

information about both customer demand and underlying risk distributions.

It is common for traditional models to assume that agents are rational decision-makers.

Under this premise, insurers set their supply with the aim of maximising their expected

utility gain whilst assuming the market as a whole will do the same. In this chapter, the

ABM contains two types of insurers. One type follows a rational strategy within the bounds

of imperfect information. The other type also seeks to maximise their utility gain, but base

their market expectations on a chartist strategy. Under this strategy, market premium is

extrapolated from trends based on past insurance prices.

As the presence of chartists in the market is increased, increased volatility is observed

in the market. When this occurs, the chartist insurers often outperform the rationalist in-

surers. However, their income is significantly more volatile. Because of this volatility, ra-

tionalists are found to remain as the dominant presence in an adaptive market where agents

may dynamically select their strategies.

Overall, which strategy is ‘best’ depends on the current situation in the market, includ-

ing both the current position in the market cycle and the spread of insurers following other

strategies in the market. For insurers who are primarily driven by profit, a chartist strategy



such as following a medium-term trend might be a better option. However, insurers who

value stability more might prefer to follow a rationalist strategy even though the average

profit is lower.

This chapter addresses some of the shortcomings of previous chapters by examining

competitive insurer strategies under imperfect information. However, this model does not

include the influence of customer-to-customer interactions as in chapter 2. There are a

number of market features missing from this model such as: market entrants; market exits;

catastrophe losses; more realistic loss distributions. Additionally, the insurer strategy does

not account for capital management. In practice, insurers become more risk averse when

their capital adequacy is lower. In chapter 5, we seek to find and extend a model which

captures the dynamics of an insurance market with a minimal number of parameters.

4.2 Background
It is common to assume that agents in financial markets are rational utility maximisers, and

that the prices in financial markets contain all available information.

However, some papers have questioned this assumption. Takahashi and Terano (2003)

use an agent-based simulation model (ABM) containing both rational fundamentalist traders

and trend-following technical traders. These traders select their willingness to supply or

demand based on their heterogeneous strategies. They found that the trend followers desta-

bilise the equilibrium and are able to take advantage of the resulting volatility, outperform-

ing the fundamentalists in the long term. Similarly, traders displaying a bias towards over-

confidence have a large effect on the market and can also obtain excess returns. This paper

suggests that following a rational stance may not be best strategy.

Bertella et al. (2014) builds on this work by comparing the simulated market features

produced by a similar ABM with empirical real-world market data. They find that a hetero-

geneous market containing technical traders is a better match than the pure fundamentalist

market, and is able to explain the excess volatility often observed in the financial market.

Additionally, the overconfidence bias is able to reproduce other features of the real-world

data, such as the existence of market bubbles and crashes.

Brock and Hommes (1997) introduce the idea of ‘adaptively rational agents’. Rather

than setting their strategy based on a fundamentalist approach alone, agents use a rational

choice model to decide on which strategy to follow based on how well agents performed

using those strategies in the previous time step. They found that the market becomes more

stable as more agents become fundamentalists, but the incentive to switch strategies become

greater, producing chaotic bifurcation dynamics.

Brock and Hommes (1998) build on the work done by Brock and Hommes (1997) by

examining some other common market strategies and analysing the bifurcation dynamics

in more detail. Dieci et al. (2006) explore the concept of a ‘market mood’ by including

non-adaptive agents with a fixed trading strategy. Chiarella et al. (2013) later expand the

adaptively rational agent market to include multiple risky assets, finding that such an ap-
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proach captures features not explained by a standard CAPM approach such as cycles and

persistent volatilities. Jackson and Ladley (2016) allow for more varied technical trading

strategies. Contrary to earlier models, this paper finds that technical traders can often act as

a stabilising force, reducing volatility in the market.

In a manner similar to the more standard modelling approach to financial markets,

insurance literature usually also assumes that insurers are rational agents. There is a sub-

stantial body of work which takes a game theoretical approach to determine the rational

competitive strategy, e.g. Boonen et al. (2018), Dionne (2013), Wu and Pantelous (2017).

However, there is also evidence to suggest that insurance agents may not behave ra-

tionally. Investigations into behavioural bias suggests that agents are subject to overconfi-

dence, hindsight bias, a preference for the status quo, emotional considerations such as trust

or regret, and a myopic short-term perspective (Raghuram, 2019; Suter et al., 2017; Richter

et al., 2019). Catastrophe markets in particular demonstrate a puzzle whereby customers

tend to underpurchase cover for extreme events. However, premium rates go up follow-

ing a catastrophe event and then gradually decrease, despite no change in the estimated

proabilities (Kunreuther et al., 2013). This may be due to several biases, in particular the

tendency of customers to underweight the risk of extreme events but to overweight when

there is recent available experience of an event (Kunreuther et al., 2013; Vasiljevic et al.,

2013; Kleindorfer and Kunreuther, 2000; Pitthan and De Witte, 2021).

Ingram, Tayler, et al. (2012) and Ingram and Bush (2013) use psychological theories

to introduce the idea of plural rationality. These papers show that it is possible to model

four different attitudes towards risk, and that each of these attitudes perform better or worse

under particular market conditions.

To investigate the implications of non-rational strategies within an insurance market,

an ABM is used to model an approach similar to Takahashi and Terano (2003) and Bertella

et al. (2014). The primary difference between the equity market modelled in these papers

and an insurance market is that whereas the finance market contains one kind of agent that

decides whether to be a buyer or seller, an insurance market contains two distinctly different

agents: insurers who provide the supply, and customers who are the source of the market

demand.

There are currently very few examples of ABM literature in the field of insurance,

though the possibilities of ABMs would seem to be a promising fit (Mills, 2010; Palin et al.,

2008; Parodi, 2012)).

Owadally, Zhou, and Wright (2018) use an ABM of an insurance market to investigate

possible competitive-driven mechanisms for the cyclical behaviour exhibited by real-world

insurance premiums. Owadally, Zhou, Otunba, et al. (2019) further extend this model with

a framework aimed at assisting regulators in monitoring and responding to cycles. These

papers also include imperfect information as agents must estimate demand functions and

loss distributions from their past data. However, they assume that all insurers are rational

within the bounds of imperfect information. These papers do not include agents using
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heterogeneous strategies.

England et al. (2022) use an ABM to investigate the behaviour of insurance customers

in an insurance market where insurers vary in customer service quality and customers are

connected in a word-of-mouth network which spreads opinions about insurers amongst the

customers. This paper finds that the network acts as a form of collective memory such

that early experiences dominate customer opinion and generate a persistent consensus rep-

utation. However, this paper concentrates primarily on consumer dynamics and does not

explore the selling strategies of the insurer agents.

In this chapter, an ABM is used to create a stylised insurance market containing both

consumer agents and two types of insurer agents. The first type of insurer follows a rational

strategy bounded by imperfect information, and the second follows a more technical strat-

egy. The model is run first with only the boundedly rational agents, and then with increasing

numbers of technical insurers. The impact on the market premium and performance of the

two types of agents are examined. The model is then run using adaptive agents in a man-

ner similar to Brock and Hommes (1997) and Brock and Hommes (1998) to examine the

resulting strategy dynamics and analyse the make-up of the evolving market.

4.3 The artificial insurance market: outline
4.3.1 Basic assumptions
The artificial insurance market consists of a number of insurers selling non-life insurance

contracts to consumers. The contracts are purchased at the start of the year and expire at the

end of the year. Insurance losses are stochastically generated on each policy, and insurers

indemnify their policyholders at the end of the year.

Consumers are risk-averse and informed of their own risk of loss. They decide on the

amount of insurance to buy by maximizing expected utility of year-end wealth. Consumers

are also variously referred to as policyholders or customers or insureds.

Insurers are risk-averse firms and set their target exposure to the insurance market in

order to maximize the expected utility of their year-end wealth. The movement of the market

price of insurance depends on the balance between the consumers’ demand to purchase

insurance and the insurers’ willingness to compete to supply contracts to policyholders.

Whereas consumers are homogeneous in the model, insurers are heterogeneous and

are differentiated by their expectations formation and their competitive strategies.

The economy consists of insurance products only, with the only risk present being a

pure insurance risk. No other asset is available. For simplicity, the risk-free rate is zero. The

only stochastic input driving the artificial market is an exogenous insurance claims process.

Insurers interact by competing in the market.

4.3.2 Outline and notation
It is helpful to outline the market process and set out the key notation here, with more

details appearing in the later sections of this chapter. It is assumed that time t ∈ Z+
0 is

discrete, representing yearly intervals. In the artificial insurance market, there are a number
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N of insurers, indexed by i ∈ I where I = {1,2, . . .N}. There are also a number M of

insurance consumers. During each time step t, a subset Mt of these customers are willing to

purchase insurance contracts at the given market premium Pt .

During each year (t, t +1), the market undergoes the following steps:

1. Each insurer i decides on their target number of policies sold N∗it . N∗it is set by

the insurer to maximize its expected utility, and depends on the expectation Ei
t−1P̃t

formed by the insurer about the future average market price.

2. The market premium Pt is determined using a market impact function based on the

balance between the total supply Nt = ∑i N∗it and the total demand Mt−1.

3. The new level of customer demand Mt is determined using a logistic choice function

based on the difference in the customer’s expected utility of either purchasing or not

purchasing insurance.

4. If Nt ≤Mt , then each insurer i acquires Nit = N∗it customers who pay premium Pt . If

Nt > Mt , then Nit =
N∗it
Nt

Mt .

5. Each customer suffers a random loss of L during the year, and claims this amount

from their insurer. An insurer’s profit is equal to the total premium revenue of PtNit

reduced by its random insurance losses.

6. Based on the experience during the year, each insurer i updates its estimates of: a)the

expected loss per customer; and b) Ei
t P̃t+1, the expected value of the market premium

in the next year

The market process iterates again as above. Figure 4.1 is a swimlane diagram repre-

senting the flow of processes in the model and which type of agent is responsible for each

step. The calculations carried out at each step are described in more detail below, followed

by an explanation of the data and model parametrisation.

Fig. 4.1 – Swimlane overview of the processes in the heterogeneous market supply strategies
ABM
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The code is written in C# and has been made available on CoMSES (England, 2022).

4.4 Insurance demand in the artificial market

Insurance customers are homogeneous with identical constant relative risk aversion (CRRA)

preferences with risk aversion coefficient γ . There is considerable theoretical support and

empirical evidence in favour of the CRRA utility for individuals: see for example Eeckhoudt

et al. (2005, p. 21) and Abellán-Perpiñán et al. (2006). At the start of every year, each

customer has known wealth W0, and suffers a random insurable loss L during the year,

leading to random end-of-period wealth W at the end of the year. The utility of end-of-

period wealth is

U(W ) = (W 1−γ −1)/(1− γ), (4.1)

where γ > 1 and W > 0. As γ → 1, logarithmic utility is recovered.

As this model is focussed on the premium dynamics, the wealth dynamics of individual

consumers are not modelled here: there is no labour income, investment return and non-

insurance consumption. At the start of the following year, customers’ wealth returns to W0.

This is in keeping with the fact that, in the artificial market, customers are homogeneous

and representative of a wider population of policyholders.

Customers may choose to purchase an insurance contract. This means that their insurer

will indemnify them in the event of a loss in exchange for a premium paid at the start of the

year. No other cash flow is modelled. Wealth is not invested and there is zero interest rate

in the market. Thus,

W =

W0−P if insurance purchased

W0−L otherwise
(4.2)

The loss L is assumed to be an identically distributed Bernoulli random vari-

able,independent over the customer population and over time:

P(L = `) = 1−P(L = 0) = π, (4.3)

with ` > 0 and 0≤ π ≤ 1.

At the start of year (t, t + 1), suppose that the market premium is Pt . The associated

value function Vt gives the expected utility for the consumer’s end of period wealth after

purchasing insurance as:

Vt =
1

1− γ

(
(W0−Pt)

1−γ − 1
)
. (4.4)

and the expected utility for the consumer’s end of period wealth without purchasing
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insurance as:

V0 =
1

1− γ

(
π(W0− `)1−γ + (1−π)(W0)

1−γ − 1
)
. (4.5)

It might be expected that customers would always purchase insurance if the value of

purchasing is greater than that of not purchasing. In practice, the demand tends to increase

at lower premium and decrease at higher premium. In such cases of consumer decisions, it

is common to use a multinomial logit model. This is also known as the logistic choice or

softmax function, and is often used in machine learning or for multi-armed bandit decision

models (Gao and Pavel, 2018).

The softmax function is scaled such that the total value of Mt is equal to the maximum

level M when the premium is equal to the expected value of L (i.e. PL = π`), and the total

value of Mt is equal to 0 when the value Vt of purchasing the insurance is equal to the value

V0 of not purchasing insurance.

Under this model, the number of customers Mt who choose to purchase insurance in

time t is equal to

Mt = M
eαVL + eαV0

eαVL− eαV0

eαVt − eαV0

eαVt + eαV0
(4.6)

where: VL = 1
1−γ

(
(W0−π`)1−γ −1

)
, V0 is defined as in equation 4.5, and α is a customer

price sensitivity parameter which determines how quickly the demand drops as prices are

raised.

Insurance demand changes only in response to a new market premium as consumers

do not anticipate changes in the market. Thus, the demand influencing the start of the period

is based on the last known price of the insurance from the previous time period.

4.5 Insurance supply in the artificial market
Each insurer agent sets a target market exposure N∗it by maximising the expected utility of

their end-of-period wealth - i.e:

maxE [U (Wi,t)] (4.7)

It is straightforward to model the risk preferences of consumer agents. By contrast, insurers

may be mutuals or stock corporations and the risk preferences of their decision-making

bodies, acting on behalf of their principals, are difficult to capture: see for example Gollier

(2013, p. 118) and Kunreuther et al. (2013, p. 146). In order to maintain consistency and

comparability with the model of Bertella et al. (2014), insurers are modelled with identical

constant absolute risk aversion. This gives the utility function of wealth as

U (Wi,t) = −e−λWi,t (4.8)

This gives us an expected end of period utility of:

E[U (Wi,t)] = −e−λ [E(Wi,t)− 1
2 λσ2

W,i,t ] (4.9)
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where σ2
W,i,t is the variance in the end of period wealth of insurer i at time t.

The wealth of insurer i at time t is equal to

Wi,t = Wi,t−1 +Ni,tPt +∑
Ni,t

L j,t (4.10)

Thus:

E (Wi,t) = Wi,t +Ni,t (Pt −πl) (4.11)

Also, the variance becomes:

σ
2
W,i,t+1 = N2

i,tσ
2
P +Ni,tσ

2
L (4.12)

where σ2
L is the variance of L and σ2

P is the variance of Pt . Note that σ2
L = π(1−π)`2. The

value of σ2
P is estimated by each insurer based on experience.

From equations 4.11 and 4.12, equation 4.9 can be maximised by maximising the value

of:

Ni,t (Pt −πl)− λ

2
(
N2

i,tσ
2
P +Ni,tσ

2
L
)

(4.13)

Equation 4.13 is maximised when:

N∗i,t =
Pt −πl− 1

2 λπ(1−π)`2

λσ2
P

(4.14)

Each insurer therefore selects their target market exposure based on their estimates of the

expected market premium Pt , the value of π , and the variance σ2
P.

Using the same estimation method employed by Bertella et al. (2014), the perceived

variance of the premium estimated by each insurer is updated at the end of each time period

as:

σ̂
2
P,t+1 = (1−θ) σ̂

2
P,t +θ [Pt −Ei (Pt)]

2 (4.15)

where θ is a learning rate parameter.

Similarly, the estimate of π is updated at the end of each time period as:

π̂t+1 = (1−θ) π̂t +θ
∑Ni,t δ j,t

Ni,t
(4.16)

where δ j,t = 1 if their jth customer makes a claim and 0 otherwise.

4.6 Market premium
The market premium evolves each period according to a market impact function, similar

to the price adjustment calculation developed by Farmer and Joshi (2002) and used in the

market model created by Bertella et al. (2014). This function is based on the balance of

insurance demand and supply, and gives a resulting market premium at the end of each time
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step as follows:

Pt+1 = Pte(Mt−∑i Ni,t)/β (4.17)

for a demand impact scale parameter β .

4.7 Insurer market strategies
4.7.1 Boundedly Rational insurers

Suppose all insurers are rational within the bounds of imperfect informaion and form unbi-

ased estimates of π and σP. Then a boundedly rational insurer i would expect the expected

average supply set by all market insurers to equal their own optimum supply N∗i,t .

Insurance demand is neither perfectly price-elastic, nor perfectly price-inelastic. In-

surers can thus establish a demand schedule (Petersen and Lewis, 1999). As the insurers

do not know the exact form of the demand function, they assume the relationship between

customer numbers and market premium can be modelled as approximately linear for a suf-

ficiently stable market with small changes to market supply. This is consistent with the

often-used linear demand function derived from a quasilinear quadratic utility model when

individual insurer premium is equal to the market premium (Choné and Linnemer, 2020),

and is similar to the linear approximation for an exponential price elasticity of demand as

used by Zhou (2013).

Then the premium can be modelled as approximately linearly related to Nt the average

market supply per insurer according to the equation:

Pt = a−bNt (4.18)

Then equation 4.14 becomes:

N∗i,t =
a−bN∗i,t −πl− 1

2 λπ(1−π)`2

λσ2
P

(4.19)

Rearranging this equation gives the bounded rationalist target market exposure as:

N∗i,t =
a−πl− 1

2 λπ(1−π)`2

λσ2
P +b

(4.20)

The values of a and b can be estimated from the most recent values of N∗i,t and Pt , and

smoothed with the learning parameter θ as with the other estimates:

ât+1 = (1−θ) ât +θ
PtNt−1−Pt−1Nt

Nt−1−Nt
(4.21)

b̂t+1 = (1−θ) b̂t +θ
Pt −Pt−1

Nt−1−Nt
(4.22)

4.7. Insurer market strategies 105



If N∗t−1 = N∗t−2, then the insurer does not update their estimates.

4.7.2 Chartist insurers

For the initial results, all insurers are assumed to be rational. For the rest of the simulations,

insurers follow one of two strategies to form expectations about the average market price of

insurance.

1. A proportion of the N insurers in the market employs a boundedly rational strategy

as described above

2. The remaining proportion of insurers follows a chartist strategy and extrapolate from

insurance price trends in the market.

This approach is similar to that used by Bertella et al. (2014), and the existence of

entities following a chartist strategy is well-established in financial markets. There is much

less research into the existence of insurers following similar strategies. However, it is worth

noting that insurance underwriters are commonly trained by professional bodies such as

the Chartered Insurance Institute to look for and follow underwriting cycles when setting

competitive premium (Burnell, 2022). Additionally, the change in customer demand to

changing levels of price is often unknown, and estimation can be both complex and contain

a high degree of uncertainty. As such, it is not unreasonable to assume that similar strategies

could emerge in the insurance markets.

The modelled chartists estimate a market trend parameter ϕ from recent history in a

manner similar to that used by Bertella et al. (2014):

ϕ =
1
n

n

∑
j=1

(Pt− j/Pt− j−1−1) (4.23)

There are two types of chartists: trend followers and contrarians. The trend followers be-

lieve that trends will continue, and estimate the market premium as:

Ei (Pt) = Pt−1(1+ϕ) (4.24)

However, the contrarians believe that the market tends towards a central value, and will

move in opposition to the trend. Contrarians estimate the market premium as:

Ei (Pt) = Pt−1(1−ϕ) (4.25)

Both of these groups of chartists can be further subdivided according to the time hori-

zon used to estimate the trend. n = 1 for short-term chartists, n = 5 for medium-term

chartists, and n = 10 for long-term chartists. The time horizons are taken from previous

financial research papers (Bertella et al., 2014; Takahashi and Terano, 2003))

To explore the effect of technical insurers on a heterogeneous market, the model is run

with a varying proportion of technical to fundamental insurers.

4.7. Insurer market strategies 106



4.8 Data and Parametrisation
The following data sources are used to parametrise the model:

• The value of M is set at 10,000 to get a large number of customers wile remaining

computationally feasible. The number of insurers is set at 20 because this repre-

sents a significant majority of the market share in a personal lines insurance market

Owadally, Zhou, and Wright (2018) and is a reasonable number for producing com-

putationally tractable yet realistic simulation dynamics.

• The market level data of premium and losses is taken from a summary of EIOPA

Solvency I submissions for the UK property market (EIOPA, 2016). This data is for

the years 2006-2015.

• To adjust these values to a comparable level, CPI data is used to inflate the historical

values. Note that as the data is in Euros, the European CPI data is used (King, 2021).

• The FCA data “General Insurance value measures data - year ending 31 August 2016”

(FCA, 2016) is used to estimate average claims frequency for the UK property market

by taking a weighted average of the centre of the given frequency ranges per insurer.

• The ratio of average household savings to the cost of property insurance is based on

information from the price comparison index from ‘MoneySupermarket.com’ (Mon-

eySupermarket.com, 2021)

• The resulting market parameters are rescaled per representative customer such that

the average loss per customer is 100, and the loss severity is set accordingly.

This leaves the behavioural parameters, which cannot be directly estimated from the

data. These values are set as follows:

• If the insurer learning rate is too high, the estimated variances vary substantially in

each time period. If it is too low, the insurer will never change the estimate as the

market changes. The insurer learning rate was selected such that the estimated vari-

ances were smooth but responsive to change. For this rate, it takes approximately six

years (close to the medium term time horizon) before the influence of an estimate is

halved.

• Customer risk aversion and price sensitivity both impact the customer demand curve.

At extremes, this becomes close to a ‘step’ function. The values are chosen from

a range which gives a curve with a noticeable step change for each whole-number

premium.

• The insurer risk aversion is then selected such that the minimum average adjusted

historical premium rate is the expected premium value at which the total supply is

equal to the total number of customers in the market.

• The premium demand scale factor is then set such that a standard step change in the

market premium for a market where all insurers are boundedly rational will be similar

to the historical premium changes.

The resulting parameter values are given in Table 4.1.

For the initial model simulations, all insurers are bounded rationalists. The model
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Variable Symbol Std Dev

No. Customers M 10000

No. Insurers N 20

Loss Frequency π 0.056

Loss Severity ` 1786

Initial Premium P0 120

Premium at t=-1 P−1 115

Initial Consumer Wealth W0 5711

Insurer Risk Aversion λ 0.00007

Insurer Learning Weight θ 0.1

Customer Risk Aversion γ 3.9

Customer Price Sensitivity α 2×1013

Premium Demand Scale Factor β 100,000

Table 4.1 – Input parameters used for model

is then run with a mix of only two types of agents: bounded rationalists and one type of

chartist. The number of chartists is varied from 1 to 19.

4.9 Simulation Results
4.9.1 Bounded Rationalist Market

Takahashi and Terano (2003) and Bertella et al. (2014) began with a market in which

all agents were fundamentalists, acting on the assumption that the market acts rationally

and thus reflects the fundamental price. For the initial market simulations, all agents are

bounded rationalists, which are equivalent to the financial fundamentalist agents.

The Takahashi and Terano (2003) and Bertella et al. (2014) fundamentalist simula-

tions produced results where the resulting price followed the fundamental price with some

estimation error. In this model, the demand estimation process in the bounded rationalist

market produces a regular premium cycle arising endogenously from the insurers’ demand

estimates (Figure 4.2. These results are similar to the results found by Owadally, Zhou,

Otunba, et al. (2019), and mimics the cycles found in real-world insurance markets.

It is common to approximate insurance market premium as an AR(2) process

(Owadally, Zhou, and Wright, 2018; Owadally, Zhou, Otunba, et al., 2019; Boyer and

Owadally, 2015; Fenn and Vencappa, 2005; Harrington and Niehaus, 2000; Cummins and

Outreville, 1987). An AR(2) equation can be fitted to the market premium generated by the

bounded rationalist model with an R2 value of 0.99. The residuals have a mean of 0 and a

small standard deviation (Table 4.2). From this it can be concluded that the AR(2) model
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Fig. 4.2 – Market premium by time for single sim of a boundedly rationalist market. Cycles
are seen arising from the market dynamics, a feature which is also present in real-world
markets.

Output Mean Std Dev Skew Kurtosis

Premium 141.23 29.4 0.52 −0.97

AR(2) Errors 0.00 2.46 −0.29 12.77

Table 4.2 – Summary statistics of market premium and errors in fitted AR(2) model for
market where all agents are boundedly rational. The AR(2) model is a good ft for this case.

is a good fit for the model output. This suggests that simple chartists may be able to take

advantage of this pattern, either by anticipating the upwards or downwards trends (trend

followers) or anticipating the change points (contrarians).

4.9.2 Market with Chartists
The model is then run for each of the six types of chartist with a mix of only bounded

rationalists and the chartist type. In each instance, the number of chartists is varied from 1

to 19, and the total number of insurers is 20.

Bertella et al. (2014) finds that as the presence of chartists increases, the market be-

comes more volatile and demonstrates increasingly negative skew and increasing kurtosis.

However, the market becomes less volatile when the number of chartists decrease below

25%. In the insurance market simulation, a similar pattern is seen (see Table 4.3 for the

medium-term trend follower results and Table 4.4 for the long-term contrarian results).

In the rationalist-only market, the premium showed a clear cyclical pattern (see figure

4.2). Introducing a small number of chartists disrupts this established market pattern, caus-

ing an overall decrease in the standard deviation. As the number of chartists is increased, the

market premium becomes noisier, causing the overall premium variance to increase again.
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(a) Market with one medium-term trend follower. (b) Market with ten medium-term trend followers.

Fig. 4.3 – Market premium from a single simulation where the market contains one and
ten medium-term trend followers. The existence of the chartists disrupt the cyclical pattern
seen in the rationalist-only market and an increasingly noisy market emerges.

Fig. 4.4 – Average profit of the two types of insurers in the market for different number of
medium term trend followers. Chartists outperform rationalists in the disrupted market.

When the market is dominated by chartists, the premium becomes more volatile and less

predictable (see figure 4.3).

As predicted, the chartists are able to take advantage of the patterns in the market

premium to earn more profit (Figure 4.4). However, their profits are much more volatile

as they are caught off-guard when the pattern changes (Figure 4.5). As the number of

chartists increase, the disruption to the market premium becomes larger and the bounded

rationalists’ standard deviation increases. Both types of insurers earn less profit on average,

and the difference in profit between the two types of insurers narrows.

Overall, similar patterns emerge for all types of chartists. Longer term chartists tend to

cause less volatility in the market as the agents’ estimates are smoothed out more over time.

Longer terms also tend to result in a greater negative skew in the market premium, and as a
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No.
Chartists

Std Dev Skew Kurtosis

1 7.2 0.1 2.6

2 5.7 −0.7 2.1

3 5.3 −1.2 2.6

4 5.4 −1.5 3.8

5 5.6 −1.8 5.9

6 5.9 −2.2 9.4

7 6.2 −2.8 13.3

8 6.5 −3.2 17.4

9 6.8 −3.7 21.3

10 7.4 −4 24

11 7.6 −4.3 26.1

12 8 −4.4 27.5

13 8.5 −4.7 29

14 8.7 −4.8 30.8

15 9.2 −5 31.3

16 9.5 −5 31.4

17 10 −5.1 31.3

18 10.2 −5.1 31.8

19 10.6 −5.1 31.1

Table 4.3 – Market premium statistics for varying number of medium-term trend follower
chartists. As the number of chartists is increased, the premium cycle is disrupted, resulting
in a more volatile market. The premium also becomes increasingly negatively skewed, and
the kurtosis increases.

result, less profit for either type of agent (see table 4.4).

4.10 Adaptively Rational Agents
4.10.1 Adaptive strategy

Finally, a model is run containing adaptively rational agents. These are based on the design

used by Brock and Hommes (1997) and built upon by later authors (Brock and Hommes,

1998; Dieci et al., 2006; Chiarella et al., 2013).

These agents select from among each available strategy k using a probability qi,k,t

calculated from a softmax choice function based on the average profit obtained by insurers
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No.
Chartists

Std dev Skew Kurtosis

1 7.8 0.6 4.2

2 6.1 −0.1 3.3

3 5.5 −1 3.5

4 5.3 −1.1 3.4

5 5.3 −1.5 4.6

6 5.4 −1.8 7.3

7 5.4 −2.3 10.3

8 5.7 −2.6 13.4

9 5.8 −3.1 17.2

10 5.8 −3.3 20.2

11 6.2 −3.9 25.9

12 6.4 −4.2 28.4

13 6.4 −4.3 30.1

14 6.8 −4.6 31.6

15 7.2 −5 36

16 7.2 −5 36.2

17 7.6 −5.3 39.3

18 8 −5.5 39.4

Table 4.4 – Market premium statistics for varying number of long-term contrarian chartists.
This shows similar patterns to the medium-term trend follower example. Longer term
chartists tend to cause less volatility and a greater negative skew in the market premium
than for the short and medium-term chartists.

using each strategy in the previous time period.

This is calculated using equation (4.26) as follows:

qi,k,t = expωΠ̂k,t−1/zi,tzi,t = ∑
k

expωΠ̂k,t−1 (4.26)

where ω is an adaptive choice parameter and Π̂k,t−1 is the average profit obtained by insurers

using strategy k in time period t− 1. Note that if no insurers are using strategy k in time

period t−1 then Π̂k,t−1 = 0, and there remains a probability of selecting this option.

For each strategy k, the insurer maintains a running estimate of the required variances.

These estimates are used to calculate the required market share N∗it for each available
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Fig. 4.5 – Standard deviation of the profit of the two types of insurers in the market for
different number of medium term trend followers. While the chartists earn higher profits on
average, their profits are much more volatile as they are caught off-guard when the pattern
changes.

strategy k, which in turn are used to estimate the variance in the following time period for

strategy k.

4.10.2 Results
When the choice parameter ω is too small, the decision becomes essentially random. It

would be expected that the insurers would be evenly split between all strategies. If it is too

high, then the insurers become reluctant to test different strategies at all unless they are mak-

ing a loss, and the market becomes stuck on a single strategy. In between these extremes,

there emerges a market where different strategies dominate for short periods and then wane

as the actions of the agents cause the market to push against prevailing expectations and

other types start to do better.

Figure 4.6 show an example of counts for each insurer type where the choice parameter

ω = 0.001. The counts are averaged across 1,000 simulations for each time period t. At

this value, the medium trend chartists tend to become the dominant market strategy.

Increasing the parameter ω leads to a domination of rationalist despite the profit ad-

vantages of chartist strategies (Figure 4.7). This is because the chartist profits have a much

higher volatility. As a result, the agents all eventually have a bad year and switch to the

more stable bounded rationalist strategy, where they stay because they don’t have a bad

enough year to overcome the reluctance to switch types.

4.11 Conclusion
It is common to assume that all agents in financial markets are rational utility maximisers.

However, a number of financial papers have used market simulation models to investigate
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Fig. 4.6 – Number of each insurer type by time period averaged across 500 simulations for
choice parameter = 0.001. After an initial period of instability, the medium term chartists
tend to dominate the numbers.

Fig. 4.7 – Number of each insurer type at t=100 for varying values of choice parameter ω .
After an initial period where chartists and particularly medium term trend followers tend to
dominate, the agents become increasingly wary of the higher volatilities, and the bounded
rationalist strategy tends to dominate the numbers.

the presence of trend-following technical traders as well as rational fundamentalist agents

within financial markets and discovered that the more technical trading strategy can out-

performs the rationalist traders in particular market conditions (Takahashi and Terano, 2003;

Bertella et al., 2014; Brock and Hommes, 1997; Brock and Hommes, 1998).
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To investigate the implications of non-rational strategies within an insurance market,

an ABM is used to model an approach similar to Takahashi and Terano (2003) and Bertella

et al. (2014). In this model, movements in market premium is determined by the balance

of supply and demand. The customer demand is based on a logit choice model applied to

the expected utility gain of purchase at the current market premium. The available supply

is set by each insurer individually by maximising their expected utility gain based on their

expectation for the new market premium value.

Similarly to Bertella et al. (2014), this model includes two types of insurers, both

bounded by imperfect knowledge of the underlying customer demand and of the loss distri-

butions. The first type are bounded rationalists. The second are chartists, who follow either

a trend-following or a contrarian assumption about the market premium.

When the model is run for a market of only bounded rationalists, the market produces

a regular premium cycle arising endogenously from the insurers’ demand estimates. This

premium cycle can be well-fitted to an AR(2) process. These results are similar to the results

found by Owadally, Zhou, Otunba, et al. (2019), and mimics the cyles found in real-world

insurance markets.

As with the financial papers that used similar methods, the market simulation indicates

that the existence of insurers following a more chartist based strategy tends to disrupt the

market, leading to increased volatility, negative skew, and increased kurtosis in the market

premium. These chartist insurers are often better able to take advantage of this disrup-

tion and make a higher profit, and thus often out-perform the bounded rationalist insurers.

However, their performance is also notably much more volatile than the rationalist insurers.

The model was then run with adaptively rational insurers. This type of of insurer

chooses between the available strategies in each time period with probability determined

by a logit choice model applied to the relative profits of each strategy in the previous time

period in a manner similar to (Brock and Hommes, 1997).

Although much of the existing insurance literature assumes that a rationalist approach

is the optimal solution to setting premium, these results indicate that this is not necessarily

the case, particularly when operating under imperfect information which necessitates the

estimation of the behaviour of both customers and competitors. Instead, it can be seen from

the market containing adaptively rational agents that which strategy is ‘best’ depends on

the current situation in the market, including both the current position in the market cycle

and the spread of insurers following other strategies in the market. For insurers who are

primarily driven by profit, a chartist strategy such as following a medium-term trend might

be a better option. However, insurers who value stability more might prefer to follow a

rationalist strategy even though the average profit is lower.

This model makes the primary assumption that premium is set as a balance of supply

and demand and insurers will all charge the same resulting premium. In practice, although

insurance premium is heavily influenced by the rest of the market, there exists variation

in individual insurer premium. Further work could be done to create a similar model for
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pricing strategies instead of focussing on supply and demand dynamics.

There are a number of market features missing from this model such as: market en-

trants; market exits; catastrophe losses; and more realistic loss distributions. Many of these

would be expected to impact levels of market competition. However, they also increase

the complexity of the rationalist calculation, making it difficult to impossible to find an

analytical solution.

Additionally, the insurer strategy does not account for capital management. In practice,

insurers become more risk averse when their capital adequacy is lower. This feature is

believed to be a key driver of the underwriting cycle in insurance markets. Further work

could be done to incorporate this feature.
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Chapter 5

An Extension of the Taylor Model of
Insurance Market Dynamics

5.1 Introduction
Chapter 2 focussed on customer choices and the impact of word-of-mouth networks on

insurers’ reputations. In this model, insurers were passive price-takers and the model did not

allow for supply and demand dynamics. Chapter 3 focussed on risk mis-estimation and the

resulting bias in risk-based pricing strategies, but did not allow for competitive strategies.

And chapter 4 examined competitive insurer strategies under imperfect information.

Models of the dynamics that drive an insurance market is a key component in investi-

gating these kind of emergent systemic patterns. However, the models used so far have been

individually designed and do not easily combine into an overall model of a market. There

are also some market level features missing, such as market entrants and exits and the link

between capital adequacy and insurer risk aversion.

This chapter seeks to find and extend a model which captures the dynamics of an

insurance market with a minimal number of parameters. One such model is suggested by

Taylor (2008). In Taylor’s model, insurers set premium according to their solvency ratio,

adjusted according to the recent prices set by competitors. The Taylor model produces

results that replicate realistic market features; however, there are large unstable swings in

an individual insurer’s premium rates and net assets.

An extension is created to Taylor’s model by adjusting insurers’ premium using the

solvency ratio to determine the direction of premium movement, with the size of the change

depending on competitive pressures. A base model is run along with a series of sensitivity

tests similar to Taylor’s original paper and the results of the two models are compared.

The new model produces market results with similar features to Taylor’s model but

more stable individual asset values, potentially enabling its use with a range of market envi-

ronments for other simulation-based models. However, the more stable individual premium

rates cause the market to be slower to respond to changes and produces cycles that are less

pronounced with a longer periodicity.

In this chapter, the new model is parametrised in order to allow for easy comparison



with the results in Taylor’s model. An investigation into parametrisation was inconclusive

as the algorithm was unable to find a reasonable set of parameters which produce values

that are a close fit with empirical data. Further work could be done to find appropriate

environmental and dynamical parameter values, and to compare the results of a standard

parametrisation exercise with different potential mechanisms.

5.2 Background
5.2.1 Insurance Market dynamics

In this chapter, a simulation model of market dynamics is extended in order to account for

some limitations in an existing model.

A significant component in the field of insurance is that of the dynamics that drive

an insurance market. This is a key part of understanding causes of underwriting cycles,

determining strategies, investigating the effects of interactions, and estimating the possible

impacts of regulation policies. It is therefore useful to find a model of insurance market

dynamics that can produce realistic market features, yet is flexible enough to be applicable

across different market assumptions and environments.

Most features of market dynamics arise from insurer premium strategies. If an insurer

sets its premium too high, it will attract fewer customers. It its premium is too low, then it

will not be able to cover its liabilities. Empirical tests indicate that as an insurer’s capital

decreases, its premium rates are increased, and vice versa (Choi et al., 2002). Additionally,

there is a large body of evidence and related theory demonstrating the existence of cycles in

insurance market premium rates (Cummins and Outreville, 1987; Fung et al., 1998; Lazar

and Denuit, 2012). These two features are inconsistent with a premium based on a pure

actuarial assessment of risk, such as setting premiums based on the expected loss plus a

margin for the variability (Parodi, 2014). It would therefore be expected for an insurer to

consider the effect of competition when setting premium rates.

One common approach to solving this problem is to make use of equilibrium based

pricing methods, where supply and demand exist in equilibrium and insurers are assumed

to choose a premium strategy which maximises their expected utility given a function that

links premium rates with demand. Berger (1988) use this method to construct a simple

model where an insurer’s concern for its probability of ruin can lead to the increase of

premium when its surplus capital is low and vice versa. This results in underwriting cycles

as more profit leads to more competition followed by declining profits. More recently,

Emms (2012) develops a differential model which finds that the competition from new

market entrants can produce an optimal strategy where insurers alternate between high and

low premium rates. Henriet et al. (2016) investigate a model with recapitalisation frictions,

which produces cycles related to insurer capital. Boonen et al. (2018) allow for competition

by seeking a Nash equilibrium for a game where the exposure flows between insurers are

related to solvency ratios. This also produces cycles, and demonstrates that an insurer with

a lower market share should offer a lower premium in order to attract customers.
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An equilibrium based approach is a useful and well established method, and as ref-

erenced above can produce both underwriting cycles and the link between premium and

capital. However, each solution is devised for use under a set of specific assumptions and

market environments. In practice, the insurance market possess many elements that can

complicate the use of this approach, such as cross-subsidising and adverse selection (Chi-

appori and Salanié, 2008). Warren et al. (2012) note that as customers are often willing to

pay a higher price to renew an existing policy rather than seek out a new one, insurers should

consider the lifetime value of a customer. Since this requires an assessment of future actions

by competitors as well as an accurate estimate of customer behaviour, this can be difficult

to calculate and some assumptions may prevent the existence of an equilibrium solution.

Rothschild and Stiglitz (1978) find that the existence of imperfect information - something

which is common in insurance markets, where risks are estimated based on past data - can

also prevent equilibrium or cause equilibria to have undesirable properties. This limits the

wider applicability of an equilibrium based method when these factors are explored.

Some papers deal with the effect of imperfect information by using an approxima-

tion to elasticity of demand to calculate an insurer’s premium (Kelsey, 1998; Guven and

McPhail, 2013; Yao, 2015). Owadally et al. (2018) use a similar approach in an agent-

based model which included customer preferences. They discover that a simulation based

on these dynamics could lead to underwriting cycles arising endogenously from the in-

teractions of competing insurers. However, although this approach is flexible and produces

cycles, it does not include the link with surplus capital that is a feature of empirical markets.

Taylor (2008) proposes a simple dynamic market model that produces cycles, links

premium rates with insurer capital levels, and is simple to transport for use in other simula-

tion models. However, this model contains some limitations that can cause instability under

some market environments. In this chapter, an extension to th Taylor model is considered

in order to address some limitations. The Taylor model and the new extended model are

described in further detail below.

5.2.2 Taylor’s Model

Taylor (2008) presents a simulation model of an insurance market with the aim of repro-

ducing the main competitive market features using a minimal number of parameters. The

paper then shows simulation results for a set of base parameter values and then sensitivity

to variations in the parameters.

Taylor’s model begins with a market of 20 insurers and an equal share of the total mar-

ket exposure, which is assumed to remain constant throughout the simulation. The model

then simulates a series of time periods, each dependent on the outcome of the previous time

step. A single time step t goes through the following steps:

1. Each insurer i sets their target premiums per exposure according to the equation

Ti,t = P0 exp [−k1(Sit −S0)] (5.1)
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where P0 = present value of the expected losses per exposure, Sit = current solvency

ratio of insurer i, S0 = target solvency ratio, and k1 = premium to solvency sensitivity

parameter. As the insurer obtains more capital, it will decrease its target premiums to

attract more business; if its capital decreases, it will increase its target premiums to

reduce the chance of insolvency.

2. The insurers then calculate competitive premium using the equation

Pi,t = max(k11P0, min(k13Tit [Tit/Pi,t−1]
−k2 +(1− k13)Pi,t−1, k12P0)) (5.2)

where Pi,t−1 = average last known competitive premium of the insurer’s nearest neigh-

bours, and k2, k11, k12, and k13 are dynamical parameters. The competitive premium

adjusts the target premium according to its relativity to the prices set by its com-

petitors, smoothed over time and subject to an upper and lower bound. This is the

premium that will be brought to the market.

3. Losses are generated for each insurer according to a Poisson/Gamma compound dis-

tribution, where the Poisson mean is proportional to an insurer’s exposure.

4. Insurance profit is calculated for each insurer based on the premium income, losses

paid, and asset returns. This model does not include an allowance for investment

variation. Dividends are then paid out according to the insurer’s current assets relative

to a target level.

5. The final net assets are set equal to the starting net assets plus insurance profit minus

dividends.

6. Insurers whose solvency has fallen below the minimum level exit the market. If the

market profit margin is higher than a threshold, it will attract new entrants into the

market.

7. Finally, the market exposure is rebalanced between the insurers. These flows are

calculated from each insurer to another with a lower premium using a set of transfer

functions, which are scaled according to the difference in competitive premium and

proportional to the receiving insurer’s existing market share. Insurers whose market

share falls below a threshold now exit the market

5.2.3 Examination of the Taylor Model
The Taylor model produces a set of base results demonstrating stable premium rates and

solvency (Figure 5.1), a diversity of premium rates, and a slowly increasing Herfindahl-

Hirschmann Index1. Adjusting the parameters which determine the insurer’s sensitivity to

competition and solvency when setting premium shows the possible emergence of under-

writing cycles (Figure 5.2).

These results look reasonable at a market wide level, which is the stated aim of the

1The Herfindahl-Hirschmann Index is a measure of market concentration, and is calculated as H = ∑
N
i=1 s2

i
where si is the market share of firm i, and N is the number of firms. For a given value of N, the index becomes
smaller if the market share is evenly split between the participants, and larger if a small number of firms
dominate.
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Fig. 5.1 – Market capital and premium by time step from Taylor replication base model.

Fig. 5.2 – Market capital and premium from Taylor replication where k3 = 0.3.

paper. However, by replicating the Taylor model and outputting the results for an individual

insurer, it can be found that the individual premium rates demonstrate much larger swings

that would be expected when compared with the market average. This is not necessarily a

concern in itself in light of the papers which suggest that this might be an optimal strategy;

however, in this case, the premium swings are driven by large changes in the level of capital

(Figure 5.3). This is more of a source of concern, particularly since it can be noted that the

replicated net assets would often fall short of a standard regulatory capital requirement to

hold sufficient capital to cover 99.5% of the insurer’s total loss distribution.

Additionally, it should be noted that there are two causes for a low insurer return: one

is that the premium is too low, and the other is that the premium is too high. Although the

Taylor setup takes account of capital size, this is done separately to the calculation related

to competition. This means that the competition related mechanism does not allow for

premium to move deliberately away from the market to achieve higher returns.
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Fig. 5.3 – Single insurer net assets from Taylor replication base model.

In this chapter, a new premium setting process is proposed for Taylor’s model which

attempts to account for these issues. A base model is run using a similar setup to Taylor’s

model in order to compare the results. Finally, a sensitivity analysis is performed on the

new parameters in a similar way to the original Taylor paper, and the results of these tests

are compared between the two models.

5.3 Model Specification
5.3.1 Outline
A simple model is constructed using C# in order to to capture key features of market dy-

namics, while also producing reasonable results for the individual insurers. A replication

of Taylor’s model is also constructed in order to compare results. To enable the comparison

of the two premium mechanisms, the rest of the model set-up will be maintained as in the

Taylor model. As in the Taylor example, homogeneous customers represented as a total

market exposure which is allocated amongst the insurers.

Some types of insurance, such as third-party motor insurance, are mandatory. How-

ever, even in voluntary markets, demand for insurance tends to remain steady and is not

materially affected by price (Daykin et al., 1993). It is therefore appropriate to continue to

use the Taylor assumption of a constant total market exposure across all time periods.

In each time period, the model undergoes the following steps:

1. Insurers set competitive premiums per exposure unit

2. Losses are generated based on each insurer’s share of the market exposure

3. Accounting results are calculated for each insurer

4. Insurers enter or exit the market based on the accounting results

5. Exposure is reallocated among the insurers based on their competitive premiums

Note that by placing the reallocation of exposure at the end of the time step, this set-up

includes an intrinsic time lag, as the effects of a change in premium on exposure and thus
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t = time step

i = insurer index where insurers are ordered in ascending size of market share

at the start of the time step

Pi,t = Competitive premium set by insurer i during time step t

P0 = Pure premium = Net present value of expected loss per exposure

Ei,t = Exposure allocated to insurer i at the start of time step t

E = Total market exposure = ∑alli Ei,t for all t

mi,t = Competition markup calculated by insurer i during time step t

Ki,t = Net assets of insurer i at the start of time step t

Si,t =
Ki,t

Pi,t−1Ei,t
= Solvency ratio of insurer i at the start of time step t

S0 = A ‘steady state’ target solvency ratio

rF = risk free rate of return

rM = stock market expected rate of return

πit = Insurance profit realized by insurer i during time step t

Di,t = Dividend paid out by insurer i during time step t

Li,t = Total losses incurred by insurer i during time step t

λC = Expected catastrophe claim frequency across entire market in a single time step

λN = Expected non-catastrophe claim frequency per exposure unit in a single time step

µN = Expected non-catastrophe claim severity for single claim

σN = Standard deviation of claim severity for single non-catastrophe claim

µC = Expected catastrophe claim severity for single claim across entire market

MC = Minimum value of claim severity for single catastrophe claim across entire market

Table 5.1 – Definitions of environmental parameters used in the new model

the rate of capital growth will not be seen until the following time step.

The code has been made available on CoMSES (England, 2022).

5.3.2 Definitions

A set of parameters describing the market environment is defined as in Table 5.1.

Additionally, a series of dynamical parameters is defined in Table 5.2. Parameters k3

to k13 are defined in the same as those used in Taylor’s model; k1 and k2 have been chosen

to have analogous functions to Taylor’s first two parameters.
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Insurer Behaviour Parameters

k1 = Baseline markup adjustment

k2 = Competition intensity

k10 = Dividend excess payout ratio

k13 = Lack of competitive inertia

Customer Behaviour Parameters

k7 = Market price sensitivity

k8 = Market presence limit

Market Participation Requirements

k4 = New entrant threshold attraction profit margin

k5 = New entrant attraction per unit market profitability

k6 = New entrant capitalization

k9 = Minimum viable market share

Regulatory Controls

k3 = Floor solvency ratio

k11 = Competitive premiums lower bound

k12 = Competitive premiums upper bound

k13 = Lack of competitive inertia

Table 5.2 – Definitions of dynamical parameters parameters used in the new model

5.3.3 Competitive Premium

Taylor’s model sets new premium using an exponential factor based on the solvency ra-

tio (equation 5.1), adjusted according to their competitors’ premium rates (equation 5.2).

Rather than using an exponential factor, the extended model uses the target solvency ra-

tio to determine the direction of movement in premium, and adjust the size of the change

according to the insurer’s premium relative to its competitors.

In the new model competitive premium per unit exposure for insurer i in time step t is

set by applying a markup function to the actuarial premium. As with Taylor’s model, this

is subject to a smoothing factor k13 and lower and upper bounds represented by k11 and k12

respectively.

Pi,t =


max(k11P0,min(P0emi,t ,k12P0)) for insurer’s first period of existence

max(k11P0,min(k13P0emi,t

+(1− k13)Pi,t−1,k12P0)) otherwise
(5.3)
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The markup function in each time step is adjusted accorded to the equation:

mi,t = mi,t−1 +g(Ei,t)h(Pi,t−1,g(Ei,t)) (5.4)

The function g(Ei,t) is an indicator function indicating the direction of the movement

in the premium markup. It is defined by:

g(Si,t) =

−1, if Si,t > S0.

+1, otherwise
(5.5)

From the above definition, it can be seen that if the insurer’s solvency ratio is higher

than the target solvency ratio, then the value of the markup and therefore the competitive

premium is decreased. This is expected to lead to an increase in the insurer’s market share.

If its solvency ratio is less than or equal to the target solvency ratio, then the insurer will

instead increase its premium, which will lead to a greater expected income per unit exposure

but a lower market share. This is consistent with empirical data (Choi et al., 2002).

The function h(Pi,t−1,g(Si,t)) is calculated using the equation:

h(Pi,t−1,g(Si,t)) = k1 exp(g(Si,t)k2(Pi,t−1−Pi,t−1)/P0) (5.6)

where Pi,t−1 = average of Pi−2,t−1, Pi−1,t−1, Pi,t−1, Pi+1,t−1, and Pi+2,t−1; if any of these

values do not exist they are deleted from the average. From the definition of index i, this

is an average of the insurer’s nearest neighbours according to market share. This definition

matches that used in the Taylor model during the competitive adjustment stage.

If g = +1 then the increase in markup will be scaled up if the insurer’s previous pre-

mium was less than its competitors, and scaled down if it was already greater than its im-

mediate competitors. If g = −1, then the reverse is true. Thus, the change in markup is of

a larger value if the insurer is moving towards its competitors, and smaller if it is moving

away. Additionally, when the insurer is moving towards its competitors, the movement will

be smaller the closer the insurer already was; when an insurer is moving away from its

competitors, it will move less the further away it already was from the competitor average.

If the insurer’s previous premium is equal to the average of those its closest peers, then

the markup will be changed by an amount equal to k1. From this, it can be seen that k1 is a

measure of the baseline markup adjustment, and k2 is a competition intensity parameter. Of

the parameters used in Taylor shows that Taylor’s k1 was a premium-to-solvency sensitivity,

and Taylor’s k2 was also a measure of competition intensity, though scaled differently.

k13 is a measure of a lack of competitive inertia. It is used here in the same way as in

Taylor’s premium calculations. Similarly, the lower and upper bounds represented by k11

and k12 are used in the same way as in Taylor’s calculation.
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5.3.4 Losses

For comparison with Taylor’s model, the same loss distributions are used. Catastrophe

claims are drawn across the entire market from a Poisson frequency and the total market

severity drawn from a Pareto distribution. Non-catastrophe claims are drawn for each in-

surer from a Poisson frequency and a Gamma severity.

This gives:

Li,t =

nNi,t

∑
j=1

xNi,t, j +
Ei,t

E

nCi,t

∑
k=1

xCt,k (5.7)

where:

nNi,t ∼ Poisson(Ei,tλN)

nCi,t ∼ Poisson(λC)

xNi,t, j ∼ Gamma( µ2
N

σ2
N
, µN

σ2
N
)

xCt,k ∼ Pareto( µC
µC−MC

,MC)

However, as the sum of gamma distributions is also gamma, Li,t can instead be calcu-

lated using:

Li,t = xNnNi,t
+

Ei,t

E

nCi,t

∑
k=1

xCt,k (5.8)

where:

xNnNi,t
∼ Gamma(nNi,t

µ2
N

σ2
N
, µN

σ2
N
)

From this, P0 is equal to:

P0 = E
[

Li,t

Ei,t

]
/(1+ rF)

P0 = (λNµN +λCµC/E)/(1+ rF)

(5.9)

As in the Taylor model, catastrophe losses are very rare events, and the base model

uses a simulation where no catastrophe losses occurred. For the sensitivity tests, an example

including a catastrophe loss is considered.

5.3.5 Accounting Results

The insurance profit includes the asset return, the total premium in, and the losses paid out.

It is assumed that the premium is invested in risk free assets during the year as a reserve

to cover the losses, and the initial net assets are invested in a representative market-based

portfolio. This gives the following equation:

πi,t = Ki,trM +Ei,tPi,t(1+ rF)−Li,t (5.10)

As in the Taylor model, investment risk is not included in the market dynamics, which

removes an element of volatility.
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The dividend is also calculated as in Taylor’s model:

Di,t = max(0, min[K∗i,t − k3Pi,tEi,t , k10(K∗i,t −S0Pi,tEi,t)]) (5.11)

where K∗i,t = New net assets pre-dividend = Ki,t +πi,t .

Thus, the dividend is paid by applying the dividend ratio k10 to the value of K∗i,t that is

in excess of the target solvency level, subject to a floor solvency ratio k3.

Finally, the closing net assets at the end of the time period are set equal to:

Ki,t+1 = Ki,t +πi,t −Di,t (5.12)

5.3.6 Entry and exit of insurers
The entry and exits of insurers is calculated as in the Taylor model.

An insurer i exits if its final capital is below the floor solvency ratio used in the dividend

equation; i.e. if:

Ki,t+1 < k3Ei,tPi,t (5.13)

For the entrants, define:

πt = ∑
i

πi,t = Total market insurance profit

Pt = ∑
i

Ei,tPi,t/E = Market average premium per exposure unit
(5.14)

Then there are new entrants to the market if:

πt/EtPt > k4 and πt−1/Et−1Pt−1 > k4 (5.15)

In that case, mt+1 new insurers are introduced into the market, where

mt+1 = bk5(πt/EtPt − k4 +πt−1/Et−1Pt−1− k4)c, (5.16)

and bzc denotes the greatest integer less than or equal to z.

Thus, the number of new insurers is proportional to the sum of the current and previous

excess profit margins (including asset return) over the threshold. The constant k4 indicates

the new entrant threshold attraction profit margin, and k5 represents the new entrant attrac-

tion per unit market profitability over the threshold.

Each new insurer is given a starting competition markup of

mi,t = log
(

Pt

P0

)
(5.17)

and a starting capital of

Ki,t+1 = k6 ∑
j

K j,t (5.18)
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This gives the starting premium per exposure unit equal to the average market premium

per exposure, and the starting capital as a k6 proportion of the total market capital. The

starting exposure is 0.

5.3.7 Reallocation of market share

Again, for comparison with Taylor, the same reallocation mechanism is used. Taylor as-

sumes that the total market exposure remains constant; however, the customers do not all

purchase from the insurer with the lowest premium. Instead, the market share flows between

insurers according to their relative premium and a rate of customer sensitivity to price in a

manner based on a logit choice model. This reflects both that customers have preferences,

and also will often renew an existing policy rather than immediately moving to find a new

insurer. As a result, insurers can charge a premium higher than the average and still attract

a market share.

The unscaled transfer function of market exposure from insurer i to insurer j at the end

of time step t is defined as:

αi, j,t = max(0,Pi,t −Pj,t)max
(

k8,
Ei,t

E

)
(5.19)

The unscaled transfer rate is then calculated as:

τi, j,t = [1− exp(−k7αi,t)]αi, j,t/αi,t (5.20)

where:

αi,t = ∑
j

αi, j,t (5.21)

The unscaled transfer rates are applied to the existing exposure amounts to get the new

unscaled exposure amounts:

E∗i,t+1 = Ei,t [1−∑
j

τi, j,t ]+∑
k

Ek,tτk,i,t (5.22)

There is now a second round of possible exits. If an insurer’s market share E∗i,t+1/E is

less than the minimum viable market share k9 then it exits the market.

Finally, exposures are rescaled so as to ensure they will add up to the total market

exposure:

Ei,t+1 = E∗i,t+1
E

∑ j E∗j,t+1
(5.23)

where j includes all insurers remaining in the market at the end of the time step t.

From the above, exposure is transferred from an insurer i to an insurer j if and only if

insurer j is offering a lower premium. The transfer function is proportional to the market

price sensitivity parameter k7 and to the difference in premium and to insurer j’s exist-

ing market share, reflecting the influence of marketing and word of mouth on an insurer’s
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Base Model Parameter Values

No. Starting
Insurers

20 k1 0.1

Ei,0 75,000 k2 1.8

E 1,500,000 k3 0.1

m0 log(160
P0
) k4 0.2

Ki,0 13,500,000 k5 30

S0 145∗ (1+
rF)/P0

k6 0.000333

rF 4% k7 0.1

rM 12% k8 0.01

λC 2% k9 0.0006

λN 12% k10 0.7

µN 1,000 k11 0

σN 1,000% k12 1,000

µC 120,000,000 k13 0.75

MC 100,000,000

Table 5.3 – Table of base model parameter values

attractiveness, with k8 as a limiting parameter to this effect.

5.3.8 Parameter Values
The parameter values have been chosen to allow for an easy comparison with the results in

the Taylor model (Taylor, 2008). Table 5.3 shows the parameter values for the base model.

Table 5.4 shows the parameter values used to run the sensitivity analysis.

5.4 Results
For ease of reference, a summary of the results can be found in table 5.5.

5.4.1 Base Model Results
Figure 5.4 is based on a typical insurer’s net assets according to a replication of Taylor’s

model and the new premium model, and shows the percentage deviation from the mean

value over time. Taylor’s model sets new premium based on an exponential factor based

on the solvency ratio (equation 5.1) which produces large, rapid oscillations in the individ-

ual insurer net asset values. The new model does not use this exponential factor, instead

choosing to use the target solvency to indicate only the direction of the change in premium

(equation 5.5). As a result, the individual insurer’s net assets shown in Figure 5.4 is much

smoother. The new model’s individual insurer assets have a coefficient of variation value
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Sensitivity Models Parameter Values

Testing Parameter Parameter Values

k1 0.04, 0.06, 0.08

k2 1, 6, 10

k3 0.2, 0.3

k4 0.15, 0.175, 0.24

k5 45

k6 0.001, 0.02

k7 0.04, 0.17

k8 0.001

k9 0.0025

k10 0.8, 0.9

k11 0.65, 0.8, 0.95, 0.97, 0.99, 1

k12 1.05, 1.2

k13 0.4, 0.9

Table 5.4 – Table of sensitivity models parameter values

(a) Replica of Taylor’s model. (b) New model.

Fig. 5.4 – Percentage deviation from the mean of a single insurer net assets from Taylor
replication and new model base models.

of gives a coefficient of variation value of 57% compared with the Taylor model’s value of

66%. Additionally, the new model displays only 22 peaks and troughs, whereas the Taylor

model shows 39 within the same timeframe.

Figure 5.5 shows the average market premium per exposure and the total market capital

over time from the new model and the replica of Taylor’s model. As in the Taylor model,

there are stable premium rates and market capital once the market has recovered from the
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(a) Replica of Taylor’s model. (b) New model.

Fig. 5.5 – Market capital and premium from Taylor replication and new model base models.

(a) Replica of Taylor’s model. (b) New model.

Fig. 5.6 – Premium diversity from Taylor replication and new model base models.

initial ‘kick’. The new model produces smaller swings in premium than the Taylor model,

and is thus slower to readjust.

In both models, the number of insurers in the market remains generally stable. How-

ever, the new base model demonstrates more pronounced cyclical behaviour, which leads

to small spikes as new insurers enter the market and then exit again when the premium

decreases.

Figure 5.6 shows the median and upper and low quartiles of the premium rates per

exposure on offer by time step for both the new model and Taylor’s model. Taylor’s model

produced significant diversity in premium rates caused by constant large oscillations in the

individual insurers’ premium rates. Since the new model is more stable and does not contain

the same large movements, it demonstrates a much lower diversity in premium rates than

Taylor’s model.

5.4.2 Insurer Behaviour Parameters

k1: Baseline Adjustment

This parameter represents the baseline amount by which the markup would move if the

insurer’s last premium was equal to the market average (equation 5.6). Since this defines
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Fig. 5.7 – Market capital and premium for k1 sensitivity model with varying k1.

how fast premium rates can change in response to its solvency ratio, it is a key parameter in

the new model.

In Taylor’s model, k1 determines the premium sensitivity to the solvency ratio. This is

analogous to the k1 in the new model, but produces larger swings as it is multiplied by the

excess solvency ratio (equation 5.1).

As might be expected, increasing k1 increases the diversity of premium rates as insurers

take further steps away from the market average. However, the diversity remains lower than

that produced by the Taylor model.

Figure 5.7 shows the average market premium rates over time for k1 = 0.04, 0.06, and

0.08. Since a large k1 results in more rapid changes in premium as well as larger swings,

the market premium dips further but corrects for the initial anomaly at earlier time periods

for larger values of k1; the premium also becomes less smooth.

A small value of k1 means smaller changes to premium and therefore less movement in

the number of participants. As it increases, there is an onset of new insurers and eventually

cycles as the competition drives the numbers back down.

k2: Competition Intensity

In Taylor’s mode, the k2 parameter represented the willingness of insurers to compete (equa-

tion 5.2), so increasing Taylor’s k2 results in cyclical behavior. In the new model, k2 plays

a similar role (equation 5.6). Figure 5.8 shows the autocorrelation in the market premium

produced by out model for varying values of k2. As a general trend, increasing k2 increases

the intensity of cyclicality and also decrease periodicity of the cycles; however, the exact

relationship is unclear and is masked at lower values by individual variation in the simula-

tions.

In general, the new extended model produces longer periodicity than Taylor, which

is consistently 6-7 years. The periodicity of the extended model varies between approxi-

mately 20-30 years. This is larger than empirical results suggest (Cummins and Outreville,
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Fig. 5.8 – Market premium autocorrelation for k2 sensitivity model with varying k2.

Fig. 5.9 – Average market profit margin for k1 and k2 sensitivity models with varying k1 and
k2.

1987), and implies that further work should be done to investigate appropriate values for the

environmental and dynamical parameters.

Figure 5.9 shows the average profit margin for varying values of both k1 and k2. As

k2 increases, so does competition, and this causes the profit margin to decrease. As k1

increases, so does the insurer’s concern with their solvency level, and this causes the profit

margin to increase.

k10: Dividend Excess Payout Ratio

In Taylor’s setup, the dividend payout calculation acts as a stabilizing force to bring capital

back towards the steady state. As a result, the number of market participants and concen-

trations are strongly affected by k10. Taylor found that increasing k10 caused an increase in

numbers and a small reduction in concentration index. This is followed by a crash as new

entrants cannot be supported by the market. In the new extended model, the use of k10 has
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Fig. 5.10 – Market premium autocorrelation for k7 sensitivity model with varying k7.

not changed. The results therefore indicate a similar pattern.

k13: Lack of Competitive Inertia

Taylor found that increasing k13 reduced premium stability and produced cycles as it re-

duced premium smoothing. Decreasing k13 caused a reduction in the number of market

participants as insurers moved premium rates too far, resulting in a non-viable solvency

level.

In the new model, the use of the markup includes an inherent smoothing factor, and

the use of k13 becomes confused with this effect. Although decreasing k13 does cause a

smoother premium, the results of this are unpredictable and the pattern is unclear. However,

increasing k13 does cause a marked increase in the premium rate diversity, as might be

expected.

5.4.3 Customer Behaviour Parameters

k7: Customer Price Sensitivity

This parameter represents the customer tendency to respond to high premiums by moving

between insurers. In Taylor’s model, increasing k77 caused an increase in the diversity

of premium rates. The new model does not show a significant impact on premium rate

diversity, which depends more on the direction of movements in exposure than on the size.

However, there are cyclical patterns emerging as k7 is decreased (Figure 5.10).

k8 Market Presence Limit

The parameter k8 determines the extent to which an existing market share can entice new

customers. Decreasing k8 leads to a decrease in insurer numbers as it becomes harder for

insurers to attract more exposure share. This is the same effect that Taylor found.
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Fig. 5.11 – Market solvency and premium for k6 sensitivity model where k6 = 0.02.

5.4.4 Market Participation Requirements

k4: New Entrant Threshold Attraction Profit

Decreasing the threshold parameter k4 represents a lower barrier to entry for new partic-

ipants, and therefore leads to an initial increase in insurer numbers. However, the new

entrants occur when the market has a lower average viability, and so the effect is temporary.

This is same pattern found by Taylor.

k5: New Entrant Attraction per Market Profitability

Increasing the parameter k5 increases the number of new entrants that join the market in a

time period. However, this high competition is unsustainable, leading to cycles and large

number of exits. As a result, the number increases are not permanent. Taylor’s model

demonstrated the same pattern.

k6: New Entrant Capitalization

Taylor found that increasing the new entrant capitalization led to the introduction of rapid

market cycles as new entrants are more competitive. As before, the new model is slower

to respond, and does not seem to be as sensitive to changes in k6 as the Taylor model was.

When k6 is increased to the level used in Taylor’s test, there is an increase in participant

numbers as new entrants are able to survive for longer. The value of k6 must be significantly

increased in order to induce visibly significant competitive cycles (Figure 5.11).

k9 Minimum Viable Market Share

Taylor found that increasing k9 caused more market exits as more insurers fail to meet the

required market share. The new model finds the same pattern, leading to a decrease in

insurer numbers.
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(a) k3 = 0.2. (b) k3 = 0.3.

Fig. 5.12 – Insurer Numbers for k3 sensitivity model with k3 = 0.2 and k3 = 0.3.

5.4.5 Regulator Controls

k3: Floor Solvency Ratio

Taylor found that increasing the required minimum solvency ratio k3 drives out a number of

insurers, setting off a period of intense competitive cycles. As seen before, the new model is

slower to react and cycle lengths are longer. Thus, there is not the same level of sensitivity

and resulting oscillations in market premium as in the Taylor results.

However, there are oscillations in insurer numbers reflected in the market participation.

Additionally, as seen earlier, the market takes longer than the Taylor model to adjust to the

initial instability, which causes a lower drop in market capital. Because of this, participation

is more sensitive to changing k3. For the sensitivity test k3 =, the minimum solvency ratio

is now sufficiently high that it has caused all insurers to exit the market (Figure 5.12).

Examining the autocorrelation shows that the peaks are more strongly correlated for

higher k3, implying a stronger cyclical relationship.

k11: Premium Lower Bound

As would be expected, an increase in the minimum premium k11 attracts new entrants and

reduces the large premium drop near the start, stabilizing the market. However, new en-

trants’ survival is short and numbers decline again. For a high enough k11, no entrants

remain in the market long enough to make a difference to the numbers. This is the same

pattern as in Taylor’s model.

k12: Premium Upper Bound

As with the Taylor model, changing k12 in the new model does not have as significant an

impact on the numbers as changing k11. Instead, as would be expected, the main effect of

introducing an upper bound is to reduce the diversity of premium numbers. Despite the

lower diversity of the new model, this effect can be seen by running the same parameter

tests as Taylor.
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Fig. 5.13 – Market Premium and Capital for simulation with a catastrophe loss.

5.4.6 Catastrophe Loss

For the final test, a version of the base model is run where a cat loss is simulated in time

period t = 36 with a total market cost of $107m. There is an initial dip in the number of

insurers to approximately 15, though the new model is not as sensitive as the Taylor model.

This leads to an increasing market premium, though the new model does not produce the

immediate sharp increase of Taylor. Instead the rise is spread out over several time periods

(Figure 5.13).

As a result, there is the same instigation of a series of cycles as increased rates lead

to new entrants which lead to more competition, the new model produces cycles which are

less pronounced and have a longer period.

5.5 Conclusion
A new model for competition premium is constructed to address some of the limitations of

Taylor’s model by reducing the large oscillations leading to instability in individual insurer

net assets, and by amending the competitive adjustment to account for the direction of the

premium movement. This is implemented within a model that remains otherwise unchanged

in order to allow comparison with Taylor’s results.

For many of the parameters, the new model displays similar patterns to the Taylor

model. Additionally, the individual insurer assets are more stable and the premium mecha-

nism allows for the insurer to choose to move away from the market average. However, the

more stable individual premium rates cause the model to be more sluggish in response to

changes, and cycles are less pronounced and have a longer periodicity. To address the slow

response time in premium changes, it might be possible to use some combination of aspects

of the new model and the solvency adjustment used in Taylor’s model.

This model produces competitive cycles, which are an important market feature. A key

parameter is the sensitivity of competitive premium setting to rival premium. Additionally,
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Parameter Taylor model New model

Base model Stable market premium and capital after initial
phase, rapidly oscillating individual insurer

capital

Stable market premium and capital, more
pronounced cycles, smaller premium swings,

smoother individual capital

k1: Baseline adjustment Increasing k1 produces larger and more rapid
changes in premium and increases diversity of

premium

Similar, though diversity remains lower and
swings are not as pronounced

k2: Competition intensity Increasing k2 increases intensity and rapidity of
cycles

Similar, but periodicity is much longer, and
exact relationship less clear for low values

k10: Dividend excess
payout ratio

Increasing k10 causes increase in numbers
followed by a market crash

Similar pattern

k13: Lack of competitive
inertia

Increasing k13 reduces premium stability.
Decreasing causes reduction in market

participants.

Parameter has much smaller impact on results as
markup factor already inherently smoothed

k7: Customer price
sensitivity

Increasing k7 causes increase in diversity of
premium rates

No significant impact on rate diversity, but
decreasing k7 increases cyclical behaviour

k8: Market presence limit Decreasing k8 leads to decrease in insurer
numbers

Similar pattern

k4: New entrant threshold
attraction profit

Decreasing k4 initially increases market
participants but effect is temporary

Similar pattern

k5: New entrant attraction
per market profitability

Increasing k5 increases no. of new entrants
causing increased competition and exits

Similar pattern

k6: New entrant
capitalization

Increasing k6 introduces rapid market cycles Slower to respond and not as sensitive to
changes in k6

k9: Minimum viable
market share

Increasing k9 causes more exits in the market Similar pattern

k3: Floor solvency ratio Increasing k3 causes more exits and subsequent
intense competitive cycles

Slower to respond and resulting cycles are longer

k11: Premium lower
bound

Increasing k11 attract more new entrants but the
effect is temporary

Similar pattern

k12: Premium upper
bound

Increasing k12 reduces diversity of premium
rates

Similar pattern

Catastrophe loss Drop in market numbers triggers increase in
premium and pronounced competition driven

cycles, which leads to market entrants

Impact is dampened, premium rise spread out
over several time periods, and resulting cycles

slower and less pronounced

Table 5.5 – Summary of key results and comparison between the new model and the Taylor
model

the average profit decreases with increased levels of competition and decreases as insurers

become more sensitive to their solvency level. Cycles are also affected by the customer’s

sensitivity to price as insurer premium responds to changes in their exposure share. The

introduction of a shock such as a catastrophe event can also instigate cycles.

Insurer numbers can be effected temporarily by a number of parameters. However,

lowering market participation requirements do not generally make a sustainable difference

as the new participants are of lower quality and are driven out by triggering competitive

cycles. Key parameters for long term market participation are the limit to the influence of

existing market share on customer attraction and the minimal viable market share; decreas-

ing the first or increasing the second leads to more difficulty in maintaining adequate market

share.
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As it is the direction of the premium change and not the amount of the change that

is driven by solvency, premium changes in the new model are slower than in the Taylor

model. As a result, price reactions to shocks such as a catastrophe loss are spread out and

the resulting cycles are less pronounced. However, as it also takes longer for the model to

stabilise after the initial capital shock, the model is also more prone to insurer exits due

to low solvency before the premium is able to increase again. An increase to the baseline

adjustment parameter or less premium inertia can both lead to faster premium changes.

Like Taylor’s model, this dynamic insurance market model uses a minimal number

of market parameters to produce results with realistic market features including a negative

correlation between capital and premium rates and cycles arising out of competition and

loss shocks. It addresses some of the limitations of the Taylor model and produces more

stable individual insurer assets, which potentially enables its use within a range of market

environments for other market simulation based models.

In this chapter, the new model was parameterised in order to allow for easy comparison

with the results in Taylor’s model. An investigation into parameterisation was carried out

in which environmental parameters were based on market data. In order to set behavioural

parameters, a particle swarm algorithm was carried out based on some market outputs such

as loss ratio means, loss ratio volatilities, and premium autocorrelation values. However,

this investigation was inconclusive as the algorithm was unable to find a reasonable set

of parameters using this market model. Further work could be done to find appropriate

environmental and dynamical parameter values, and to compare the results of a standard

parameterisation exercise with different potential mechanisms.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions
The insurance market—like the financial markets—include systemic sources of risk and

bias which emerge from the interactions of the entities (or ‘agents’) which operate within

that market (Danielsson and Shin, 2003). However, this type of risk is often not considered

in traditional statistical models used for pricing or setting capital (Parodi, 2014; Kravych,

2013). Typically, competition is modelled using equilibrium models under the assumption

that all agents are rational (Boonen et al., 2018; Dionne, 2013; Wu and Pantelous, 2017).

This kind of model may be inappropriate for the insurance market where there is imperfect

information, the underlying risk is constantly changing, and agents may be irrational.

In this thesis, this kind of systemic risk is investigated through the use of agent-based

models, (ABMs). This kind of model is a computational simulation of decision-making

‘agents’, producing outputs sampled from a large number of possible timelines. The sim-

ulated output often displays complex emergent behaviour patterns, which are of use when

exploring systemic effects in financial markets (Bonabeau, 2002).

ABMs are a good tool for situations where agents are heterogeneous, mechanisms may

be non-linear, agents display behavioural biases or are bounded by imperfect information,

and decision-making is impacted by the outcome of interactions with other agents. These

are all features of insurance markets and indicate that ABMs might be a good fit (Parodi,

2012). The existing insurance literature making use of ABMs is currently limited, but in-

cludes: the paper by Dubbelboer et al. (2017) examining government flood risk management

and reinsurance strategies within a housing market; the work by Owadally et al. (2019) to

produce an ABM informed framework for regulators to monitor and respond to market cy-

cles; and the investigation by Heinrich et al. (2022) into systemic risk caused by insurers

tendency to purchase catastrophe models from the same few sources.

However, ABMs are difficult to validate, particularly for behavioural mechanisms. Due

to these limitations, ABMs are used in this thesis primarily as a tool for exploring patterns

and critical indicators of behaviour rather than as statistical prediction models.

• In chapter 2, an ABM was constructed to examine the patterns that might arise in an

insurance market due to customers passing on their opinion of their insurer to their



social network. Empirical data was used to parameterise the model where possible.

The work in this chapter was also published in the Journal of Artificial Societies and

Social Simulations (England et al., 2022).

The existence of the network was found to act as a persistent memory, causing a sys-

temic bias whereby an insurer’s early reputation achieved by random chance tends to

persist and leads to unequal market shares. This occurs even when the transmission

rate of information is very low. This suggests that newer insurers might benefit more

from a higher service quality as they build their reputation. Insurers with a higher

service quality earn more profit, even when the customer preference for better ser-

vice quality is small. The impact of this systemic effect is exacerbated under a new

regulation which bans the practice of charging renewing customers more than new

customers.

These findings should be considered by both insurers considering strategies for at-

tracting and retaining customers, and by regulators who are assessing possible im-

pacts of a change in the regulation of insurance pricing practices.

• In chapter 3, a simple ABM was built to explore the impact of the winner’s curse

caused by bidding for customers under imperfect information on an insurer’s esti-

mated capital requirement. Outputs indicate that the winner’s curse increases the es-

timation risk due to parameter uncertainty when there are more competitors or fewer

customers, leading to a higher gap between the estimated and actual capital, and an

increase in the parameter estimation risk considered by existing literature on param-

eter mis-estimation risk.

Extensions which functionally decrease the number of customers attracted by a partic-

ular bid or increases the number of competitors for particular customers both worsen

the impact of the winner’s curse for that interaction. For example: increasing cus-

tomer heterogeneity; increased renewal rates; and increased customer tendency to

seek quotes from a greater number of insurers.

Modellers may assume that the winner’s curse effect would have a negligible impact

as insurers have access to data from a lot of customers. However, there are common

circumstances that increase the significance of imperfect information, such as: high

levels of customer heterogeneity, underlying risk distributions that change over time,

and very rare event such as catastrophes. Overall, this could have a significant impact

on an insurer’s willingness to take on risk which they have under-estimated. An

insurer should increase their capital estimate in order to expect to cover their true

capital requirement.

• In chapter 4, an ABM was used to investigate heterogeneous market strategies for a

market where premium is determined by the balance of supply and demand, and in

particular to compare the outcomes of insurers following chartist assumptions about

the market with insurers assuming a more boundedly rational approach.

Simulation outputs indicate that chartist insurers tend to disrupt the market, causing
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increased volatility. The chartist insurers are often better able to take advantage of this

disruption and make a higher profit than the rationalists, though their performance is

also notably much more volatile.

It is common to assume that a rationalist approach is the optimal solution. However,

this model suggests that which strategy is ‘best’ depends on the current situation

in the market, particularly when there is imperfect information about the actions of

customers and competitors. For insurers who are primarily driven by profit, a chartist

strategy such as following a medium-term trend might be a better option. However,

insurers who value stability more might prefer to follow a rationalist strategy even

though the average profit is lower.

• In chapter 5, a dynamic market model was built based on the Taylor model (Taylor,

2008) with the aim of establishing a market framework with minimal parameters for

use with future work. This chapter introduced a new premium mechanism in order

to address some limitations of the original Taylor model, and sensitivity tests carried

out in order to compare the results of the new model with the behaviour of the Taylor

model.

The model displays useful market dynamics. In particular, it produces stable pre-

mium rates, which display an emergent cyclicality. It includes allowances for mar-

ket entrants and exits, and the customer demand flows are based on the choice logit

models with premium-sensitive renewals used in earlier chapters. Additionally, there

are some parameters which reflect possible regulatory intervention, such as premium

limits and solvency requirements.

The new extended premium mechanism corrects for some limitations of the original

Taylor model. Specifically, the new model produces stable individual premium rates

and insurer assets. It also allows for insurers choosing to move either towards or away

from the market average, and a strategy where insurers are more willing to take risks

when they have a higher capital adequacy. The new model maintains the fundamental

shape of the market dynamics. However, the cycles do display a slower periodicity.

6.2 Future Work
The customer choice model with word-of-mouth network used in chapter 2 models insurers

as price-takers. In future work, this could be expanded and combined with the work in

chapters 4 and 5 to allow insurers to employ a competitive premium-setting strategy. This

would create a more realistic market setup on the insurer side.

Insurers in this model are also set at a fixed service quality throughout each simulation.

The insurers could be allowed to dynamically set their service quality in each time period

as part of their competitive strategy. This would allow for the exploration of the effective-

ness of different strategies in light of the systemic bias and resulting persistence of insurer

reputations.

The model also contains some implicit behavioural assumptions: for example, good
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and bad experiences are given the same weight, whereas studies indicate that people are

more sensitive to negative than positive experiences (Tversky and Kahneman, 1981). Addi-

tionally, the word-of-mouth information in this model does not include a measure of uncer-

tainty around the customers’ opinions. This could potentially change the network dynamics

which lead to such a high persistence of opinions within social groups.

Some experiments could also be carried out with different types of network and net-

work sizes, to investigate if the current number of customer agents is sufficient to replicate

the rate of information saturation and investigate how the word-of-mouth effects vary at

different market scales.

Similarly, although the imperfect information model in chapter 3 does allow insurers

to set a risk-based premium, the insurers do not account for competitive forces. In practice,

an insurer who is winning a lot of business is likely to increase their prices, and an insurer

who is failing to win business is likely to decrease its prices. In this case, the winner’s

curse becomes less obvious, and mostly manifests in differences in the market volumes

each insurer is willing to seek at different premium levels. Future work should be done to

combine the model in this chapter with a competitive premium mechanism such as those

used in chapters 4 and 5 in order to better examine and quantify the resulting estimation

bias and how this varies along with underwriting cycles.

As mentioned above, some common circumstances that increase the significance of

imperfect information, include: high levels of customer heterogeneity, underlying risk dis-

tributions that change over time, and very rare event such as catastrophes. An exploration

of threshold levels which might cause the winner’s curse to become more significant could

be a useful direction for future work with this model. This could be combined with market

data to find a more accurate estimation of the likely impact on real-world markets.

The model used in chapter 4 makes the primary assumption that premium is set as a

balance of supply and demand and insurers will all charge the same resulting premium. In

practice, although insurance premium is heavily influenced by the rest of the market, there

exists variation in individual insurer premium. Additionally, insurers become more risk

averse when their capital adequacy is lower, which is not reflected in this model. Further

work could be done to incorporate these features, for example by making use of the extended

premium mechanism proposed in chapter 5.

In chapter 5, the new model was parametrised in order to allow for easy comparison

with the results in Taylor’s model. An investigation into parametrisation was carried out

in which environmental parameters were based on market data. In order to set behavioural

parameters, a particle swarm algorithm was carried out based on some market outputs such

as loss ratio means, loss ratio volatilities, and premium autocorrelation values. However,

this investigation was inconclusive as the algorithm was unable to find a reasonable set

of parameters using this market model. Further work could be done to find appropriate

environmental and dynamical parameter values, and to compare the results of a standard

parametrisation exercise with different potential mechanisms. This work could be useful
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for establishing a validation framework for establishing a market framework which captures

key features and can be used to bring together and investigate systemic effects.

Once a generalised market design and validation procedure has been established, this

can be used to investigate some other systemic effects. For example: Aymanns and Farmer

(2015) demonstrated how a VaR-based capital requirement in the finance market can exacer-

bate instead of mitigate market downturns when a shock causes investors to simultaneously

pull out of certain companies. This is not unlike the capital constraints experienced in many

insurance markets. This suggests that an equivalent ABM of the insurance-reinsurance mar-

ket with a VaR based capital requirement might find a similar systemic effect. This could

be used to examine regulation strategies that might limit systemic risk or act to smooth out

market cycles.

Insurers may choose more tailored strategies based on their individual risk appetites.

Rather than specifying the format the premium strategy should take, To reflect this and to

allow for the construction of more tailored strategies, an ABM could be built with insurers

that are able to tune the parameters of a neural network or other machine learning algorithm

based on their goals of risk versus return.

Insurance practitioners do not include just new insurance business risk in their capital

models. To investigate the systemic biases in these models, a model could be constructed

based on a more standard capital model design. This would include reinsurance, reserve

risk, catastrophe risk, and investment risk as well as the new business risk investigated in

this thesis (Kravych, 2013). The differences could then be examined between an insurer’s

standard estimated capital model results and the results generated for the whole-market cap-

ital model. Note that such a model is likely to be impacted by both the imperfect information

effects investigated in chapter 3 and also by the systemic risks associated with all insurers

using the same sources for their catastrophe and economic scenario models as investigated

by Heinrich et al. (2022).

This thesis has also not considered the impact of behavioural biases, which could po-

tentially change the supply and demand dynamics. Further work could consider the impact

of such biases. For example, Bertella et al. (2014) modelled the impact of overconfidence

bias on investors in a financial ABM similar to the model used in chapter 4.
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