
              

City, University of London Institutional Repository

Citation: Kala, K. & Sodhi, M. (2023). Note: Demonstrating Analytics in a Low-Tech 

Context–Truck-Routing for Solid-Waste Collection in an Indian Metropolis. Transportation 
Research Part E: Logistics and Transportation Review, 176, 103219. doi: 
10.1016/j.tre.2023.103219 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/30965/

Link to published version: https://doi.org/10.1016/j.tre.2023.103219

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


 1 

Note: Demonstrating Analytics in a Low-Tech Context–Truck-Routing for 

Solid-Waste Collection in an Indian Metropolis 
 

Kaveri Kalaa 
ManMohan S. Sodhib* 

 

aDepartment of Mechanical Engineering, Indian Institute of Technology Delhi,  
New Delhi-110016, India 

bBayes Business School, City, University of London, 
106 Bunhill Row, London EC1Y 8TZ, UK. 

 
 
 
 
 
 
*Corresponding author:  
 Email: m.sodhi@city.ac.uk (M. S. Sodhi) 
  



 2 

Note: Demonstrating Analytics in a Low-Tech Context–Truck-Routing for 

Solid-Waste Collection in an Indian Metropolis 
 

Abstract: This paper describes an approach to introducing analytics through various algorithms and 

applications to users in a low-tech environment as a first step toward understanding such a context. The 

South Delhi Municipal Corporation (SDMC) of New Delhi, India, have partitioned their collection 

points into “wards” or clusters, each served by a dedicated truck depot and manually routing trucks for 

solid waste collection within each ward, with the waste from all wards going to a single landfill. To 

demonstrate analytics in tactical planning, we implemented the nearest neighbor algorithm mimicking 

the manual process to provide the baseline cost. Thus, we presented two very different vehicle routing 

algorithms: (1) a simple but fast revised nearest neighbor algorithm that decreased the baseline total 

routing cost by 1.57% and (2) an optimal but time-intensive algorithm using a mixed-integer-linear 

programming model, which decreased the total cost by 4.05%. To demonstrate strategic planning, we 

tested the efficacy of the cluster structure of collection points by comparing its total routing cost (using 

the revised nearest neighbor algorithm) to that of other partitions obtained with Minimum Spanning 

Tree (MST) and K-medoids clustering. The existing wards provided a lower waste pickup cost than the 

alternative clusters we created, showing SDMC that their existing ward structure was sound.  

Keywords: Hierarchical method, vehicle routing problem, municipal solid waste collection, Mixed-

Integer Linear Programming (MILP), India. 
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1. Introduction  

There is always a need for real-life contexts with hitherto undiscussed practical considerations, 

especially in environments such as these that are decidedly low-tech as regards the use of computers 

and analytics. Gorman (2021) notes that the contextual aspects of any optimization project are crucial, 

identifying contextual factors that may complicate or impact the modeling process. Comprehending the 

context is necessary to fully grasp the problem, find an appropriate solution, and implement it 

successfully. Failing to consider the context creates a disconnect between algorithms in the research 

literature and practice. As optimization-based analytics takes off in corporate and other sophisticated 

environments, we wish to consider low-tech environments that currently do not even use computers. 

Therefore, this paper seeks to present the context of a low-tech environment and demonstrate the use 

of analytics as a starting point. 

One low-tech environment is solid waste collection in developing countries. In 2007, the urban 

proportion of the global population exceeded the rural proportion, and that trend has continued since. 

The growing urban population also means high waste-generation rates in urban areas (Hoornweg et al., 

2012; Kookana et al., 2020; UN, 2019) with correspondingly high waste-collection costs (Erdinç et al., 

2019), especially in populated developing countries (Huang & Lin, 2015). For instance, in a typical 

Indian city, waste collection and related transportation costs amount to 60-85% of the municipal budget 

(Khan et al., 2022; Tirkolaee, 2019) because of high operating costs for maintenance, processing labor, 

and fuel (Wu et al., 2020). Thus, even minor improvements in cost reduction can provide significant 

savings to municipalities (Cattaruzza et al., 2017). Moreover, the improved waste collection helps 

reduce greenhouse gas (GHG) emissions and land pollution (Ferronato & Torretta, 2019; Hannan et al., 

2020). Much research has been reported in the literature on the waste collection problem, generally 

using a variation of the vehicle routing problem (VRP) for vehicles starting from a source, covering all 

the points (nodes) to pick up waste, and ending at a landfill (Badran & El-Haggar, 2006; Beliën et al., 

2014; Han & Cueto, 2015; Li et al., 2008; Tung & Pinnoi, 2000).  
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This paper's particular setting of choice is the solid waste collection by the South Delhi Municipal 

Corporation (SDMC) in New Delhi, India. The central zone of the South Delhi Municipal Corporation 

(SDMC) covers over 100 square kilometers, with an estimated 2021 population of 1.7 million (DDSIL, 

2022). The area is divided into wards, each ward being a cluster of collection points, each served by a 

dedicated depot from where trucks leave for waste collection and eventually return at the end of the 

day. There is a single landfill-and-processing center for all five wards to compost biodegradable waste, 

incinerate high-calorific waste, and dump the rest into the landfill (Sharma, 2022). The waste collection 

runs from 8 am to 6 pm every day of the week. There are nine trucks at each of the five depots, so 45 

trucks in total. Each truck has a capacity of 15 cubic meters to pick up solid waste. There are 288 

collection points across all the wards in four capacity-based categories: (1) fixed compact transfer 

stations (bins where garbage is collected and hydraulically operated through a compressor to reduce the 

volume of the waste), (2) open sites (open corners where waste is dumped), (3) waste collection bins, 

and (4) dhalaos, which are large three-walled concrete structures for garbage collection. The trucks 

must cover all the collection points in a single shift and return to their depots daily. Currently, these 

trucks are routed manually, with each truck effectively picking up the waste from the nearest available 

point on its way to the landfill.  

In this setting, the municipality or its contractors can use computer-based analytics for operational and 

strategic planning, so the two areas we picked for the demonstration were:  

(1) Operational planning, demonstrating how computers could provide better routes within each 

ward to route trucks and pick up waste from collection points, and  

(2) Strategic planning, evaluating whether the existing ward structure needs to be modified to lower 

costs.  

While “analytics” refers to the umbrella term that includes AI/ML, statistics, data science, and other 

methods, we focus on optimization and optimization-oriented heuristic algorithms. 
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For operational planning, we implemented the nearest neighbor algorithm mimicking the manual 

process to provide the baseline cost. In doing so, we demonstrated two algorithms for the vehicle routing 

problem (VRP) at extreme ends of the spectrum of speed and solution quality. The first was a simple 

but fast heuristic, a revised nearest neighbor (RNN) algorithm that decreased the baseline total routing 

cost by 1.57%. The second was an optimal but extremely time-intensive algorithm using a mixed-

integer-linear programming (MILP) model, which lowered the total cost by 4.05%. To reduce the 

problem size for MILP for a speedier solution, we further partitioned each ward into sub-wards using 

the K-medoid clustering method.  

For strategic planning, we sought an estimate for the daily running costs to compare the existing ward 

structure with other possible clusters of collection points. We used our previously developed revised 

nearest neighbor heuristic to create truck routes for any collection points in each ward using three 

different types of clusters of collection points–the existing ward structure and the clusters obtained from 

the Minimum Spanning Tree (MST) and K-medoids clustering. The results with multiple random 

variations on the distance matrix indicate that the existing ward structure provides a lower cost for waste 

collection than the cluster structures obtained from the K-medoid and MST methods, indicating that the 

current ward structure is sound.  

We contribute to the overlap of the OR modeling practice literature (Murphy, 2005abc; Gorman, 2021; 

Sharkey et al., 2022) with the multi-vehicle routing literature by showing how to introduce analytics 

and OR modeling in a low-tech context of solid waste management that is currently functioning without 

computers. We have described the challenges of an actual situation – namely, solid waste management 

in a developing country – and demonstrated the application of OR methods by applying both simple 

heuristics and optimal algorithms. Moreover, we show both an operational use of analytics with routing 

and a strategic use, evaluating the ward structure of waste collection points.  Our paper thus offers a 

practical approach for demonstrating the introduction of analytics in low-tech environments with a 

spectrum of techniques, from speedy less-sophisticated methods to slower but optimal approaches for 

operational and strategic applications. 
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The rest of the paper is structured as follows: Section 2 presents some pertinent literature to position 

our article and some specifics of the waste collection context in South Delhi. Then section 3 shows the 

tactical planning demonstrating two truck routing algorithms, while Section 4 explains strategic 

planning by evaluating the ward structure. Finally, Section 5 discusses managerial implications and 

possible research extensions. 

2. Context 

The organizational context and its associated complications significantly impact decision-making 

processes and outcomes. For instance, resource-intensive modeling techniques entailing sophisticated 

simulation models or complex optimization algorithms may not be feasible in resource-constrained 

organizations. In such cases, simpler or heuristic-based models that require fewer resources may be 

more suitable. Moreover, Gorman (2021) lists ten contextual factors that impact the success of 

implementation: (1) organization, (2) decision-making processes, (3) measures and key performance 

indicators, (4) rational and irrational biases, (5) decision horizon and interval, (6) data availability, 

accuracy, fidelity, and latency, (7) legacy and other computer systems, (8) organizational and individual 

risk tolerance, (9) clarity of model and method, and (10) implementability and sustainability of the 

approach. Several waste management research studies also emphasize that the modeling approaches 

employed are influenced by the specific context in which they are applied.  

Our interest is in the highly constrained residential and commercial waste collection in highly urban 

environments in developing countries with (1) low-tech organization, (2) decentralized decision-

making, (3) no apparent measures or KPIs, although cost is the primary driver, (4) unknown biases, (5) 

short decision horizon, (6) data is available (via Google maps, etc.) but not used, (7) no computers, (8) 

unknown risk tolerance, (9) no explicit models although nearest neighbor is a good proxy, and (10) 

unclear implementability and sustainability. As such, the first step in such an environment would be to 

demonstrate the range of things analytics can do to elicit information from the organization. In this case, 

we targeted the range of applications: the (daily or even hourly) tactical vehicle routing problem and 

the (annual) strategic problem of determining the structural boundaries for waste collection when 
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contracts are given out. Beliën et al. (2014) provide an extensive literature review on the waste 

management problem, while Han & Ponce-Cueto (2015) present vehicle routing for the waste-

collection problem, whether residential, commercial, or construction. We refer the reader to Gour and 

Singh (2023) for a review of the broad solid waste management literature focused on India. Indeed, 

many papers on solid waste collection are set in developing countries (Table 1). 

Table 1: A sampling of papers showing the diversity of approaches for municipal solid 
waste collection in developing countries.  
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A smart framework for municipal solid 
waste collection management: A case study 
in Greater Cairo Region 

Alsobky et 
al. (2023) 

Greater Cairo, 
Egypt 

   n n 

Municipal solid waste management 
challenges in 
developing countries – Kenyan case study 

Henry et al. 
(2006) 

Kenya  
  

Solid waste collection systems in developing 
urban areas of South Africa: An overview 
and case study 

Smith 
(2016) 

Winterveld, 
Bophuthatswana, 
South Africa 

 
  

An engineering approach to solid waste 
collection system: Ibadan North as case 
study 

Ayininuola 
& Muibi 
(2008) 

Ibadan North, 
Nigeria 

 
  

Appraisal of solid waste collection following 
private sector involvement in Dar es Salaam, 
Tanzania 

Kaseva & 
Mbuligwe 
(2005) 

Dar es Salaam 
City, Tanzania 

 
  

Truck scheduling for solid waste collection 
in the City of Porto Alegre, Brazil 

Li et al. 
(2008) 

Porto Alegre, 
Brazil 

n 
 

n 

Optimal location and proximity distance of 
municipal solid waste collection bin using 
GIS: A case study of Coimbatore City 

Nithya et al. 
(2012) 

Coimbatore, 
India 

 n 
 

Municipal solid waste collection routes 
optimized with ARC GIS Network Analyst 

Bhambulkar, 
(2011) 

Nagpur, India n 
 

n 

A multi-stage optimization approach for 
sustainable municipal solid waste collection 
systems in urban areas of Asia’s newly 
industrialized countries 

Mondal et 
al., (2019) 

Bangalore, India  n n 

Sustainable multi-trip periodic redesign-
routing model for municipal solid waste 
collection network: The case study of Tehran 

Mahdavi et 
al., (2022) 

Tehran, Iran n  n 

A multi-compartment capacitated arc routing 
problem with intermediate facilities for solid 
waste collection using hybrid adaptive large 
neighborhood search and whale algorithm 

Mofid-
Nakhaee & 
Barzinpour, 
(2019) 

Tehran, Iran n  n 
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This paper 
 

South Delhi, 
India 

n n n 

In a typical waste collection problem, a vehicle starts from the depot, visits several collection points, 

dumps waste at a disposal site whenever it gets full, continues for the shift time, and ends at the depot 

at the end of the shift (e.g., Huang et al., 2021). A functional variant will have multiple vehicles, sources 

(vehicle depots), trips, and disposal sites. Generally, the objective function minimizes the total 

transportation cost or travel time. For the SDMC, the trucks are initially located at the depots and move 

sequentially from one collection point to another. After filling capacity, they go to the disposal site to 

unload and start their next trip toward the waiting collection points if they still have waste to pick up. 

Finally, they return to the depot to conclude their service tour at the end of the day (Figure 1).   

 

Figure 1: A pictorial view of the waste-collection process 

The location of all the depots, collection points, and disposal site(s) is known. The ward structure, i.e., 

partitioning all the collection points, is also known. Each collection point must be served by exactly 

one truck. Waste collected at each stop is known beforehand and assumed to be constant. The capacity 

of each truck is known. The travel time between any two nodes is known, and for our demonstration, 

we assume this time is constant, not changing with the time of day. Fixed and variable costs for the 

trucks are known and assumed constant. We assume the same time and cost of a route for all garbage 

trucks suggesting no high-cost or priority route or time-dependent changes for our demonstration. 

In our context of South Delhi municipality, the operations staff at the SDMC provided the location of 

each of the 294 nodes in hardcopy. We plotted these on Google Maps (Figure 2) and obtained the inter-
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node distances by running a Python script through a programming interface, distance.ai, for distances 

between the collection points, depots, and the landfill as a 294x294 distance matrix. We checked the 

data for consistency. For instance, if any collection point is inaccessible, we place it on a nearby access 

road. The distance between any two nodes is the shortest drivable distance between them. 

 
Figure 2: The current ward structure for the central zone of the SDMC with a single landfill and 
five depots, one each for the five wards that are a partition of the collection points (the wards are 
shown in different colors)  

 
The SDMC also provided us with all the data on quantities handled by each collection point, the 

capacity of garbage trucks, and operational costs (Table 2). 

 
Table 2: Input parameters 

 
Item Symbol Value Source  

Number of depots  G 5	 SDMC  

Location of depots 
 

0,	1,	2,	3,	4	 Google Maps  

Number of landfills L 1	 SDMC  

Location of landfills 
 

293	 Google Maps  
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Number of collections points N 288	 SDMC  

Collection points 
 	  

 

Capacity of -- dhalao q 7	m3	 SDMC  

                   -- Open sites 
 

5	m3	 SDMC  

                   -- FCTS 
 

10	m3	 SDMC  

                   -- dustbins 
 

4	m3	 SDMC  

Max. number of trucks available across all wards I 56	 SDMC  

Distance matrix with 294 nodes 
 

294×294	 Distance.ai  

The average capacity of a truck container  Q 15	m3	 SDMC  
 

 With this data, we first tackled the tactical planning problem of route planning (Section 3) and then the 

strategic planning problem of evaluating the ward structure (Section 4). 

3. Improved Routes within a Ward using the Vehicle Routing Problem  

We interviewed the operations staff at the SDMC to understand how they designed the truck routes and 

understood that their routing effectively follows a greedy algorithm, the nearest neighbor algorithm, 

that starts from the source, then moves to the nearest collection point based on the length of the edge 

(here, distance traveled), repeating this step until the truck is full and then directing it to the disposal 

site. Next, we mimicked their approach into a Python 3.7 program with the nearest neighbor algorithm 

to provide a baseline transportation cost.  

With a baseline cost in hand, our first objective was to demonstrate how computers would help find 

routes with transportation costs that would be lower than the baseline. For the problem at hand, we took 

the approach of a vehicle routing problem (VRP) (Breakers et al., 2016; Toth & Vigo, 2014). As the 

VRP is an NP-hard optimization problem, the computation time for finding an optimal solution 

increases exponentially with the size of the problem. The search for solutions requiring an acceptable 

computation time for practical-sized problems has motivated researchers to investigate other 

approaches despite computers getting faster (Ramos et al., 2014; Yousefikhoshbakht & Khorram, 
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2012). These approaches–heuristics, metaheuristics, or hierarchical methods–produce acceptable 

results in a reasonable time rather than optimal ones that take an unacceptably large amount of time 

(Comert et al., 2017; Dondo & Cerdá, 2006). We take the hierarchical approach, dividing the problem 

into smaller sub-problems or levels and then using exact methods to find the (near) optimal solution for 

each sub-problem or level.   

We took the hierarchical approach, noting that the SDMC area is already divided into five wards, each 

with its dedicated depot and contractor responsible for waste collection. So, we can divide the overall 

problem into five smaller ones corresponding to the wards. Then, we applied the ward-by-ward 

approach to two extreme methods we developed: (1) a revised nearest neighbor algorithm (RNN) as a 

quick heuristic and (2) a MILP-based approach, for which we took the idea further, dividing each ward 

into sub-wards and then applying the exact optimal method to each.  

The RNN algorithm entailed tweaking the nearest neighbor algorithm by attempting swaps of collection 

nodes across any pair of tours to lower the total cost, giving us a slight improvement over the baseline 

for which we used the nearest neighbor algorithm. The MILP-based approach fits into the class of 

hierarchical algorithms called cluster-first-route-second (CFRS) approaches (Qi et al., 2012), and we 

describe the model in §3.1, some additional constraints in §3.2, the hierarchical approach with sub-

wards  §3.3, and results from both algorithms in §3.4. 

3.1 A MILP Formulation of the VRP  

We formulate this problem as a MILP model with variables and parameters (Table 3). The objective 

function (1) minimizes the total transportation cost with the fixed cost of operating a garbage truck (such 

as the salary of the drivers and maintenance cost) and the variable cost of the distance traveled by truck. 

The model itself has twenty constraints that capture operational and flow conservation requirements 

(Table 4). 
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Table 3: Sets, indices, variables, and parameters 

𝐒𝐞𝐭𝐬	𝐚𝐧𝐝	𝐈𝐧𝐝𝐢𝐜𝐞𝐬	
	

𝐼 = 𝑠𝑒𝑡	𝑜𝑓	𝑡ℎ𝑒	𝑡𝑟𝑢𝑐𝑘𝑠	𝑎𝑡	𝑎	𝑔𝑎𝑟𝑎𝑔𝑒	(1,2, … , I)			

𝑀 = 𝑠𝑒𝑡	𝑜𝑓	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑟𝑖𝑝𝑠	(1,2, … ,M)			

𝐺 = 𝑠𝑒𝑡	𝑜𝑓	𝑑𝑒𝑝𝑜𝑡𝑠	(1,2, … , G)			

𝑁 = 𝑠𝑒𝑡	𝑜𝑓	𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛	𝑝𝑜𝑖𝑛𝑡𝑠	(1,2, … ,M)			

𝐿 = 𝑠𝑒𝑡	𝑜𝑓	𝑙𝑎𝑛𝑑𝑓𝑖𝑙𝑙	𝑠𝑖𝑡𝑒𝑠	(G + N + 1,…G + N + L)						

𝑖 = 𝑣𝑒ℎ𝑖𝑐𝑙𝑒	𝑖𝑛𝑑𝑒𝑥	(𝑖 ∈ 𝐼)			

𝑗, 𝑘 = 𝑖𝑛𝑑𝑖𝑐𝑒𝑠	𝑜𝑓	𝑛𝑜𝑑𝑒𝑠	(𝑗, 𝑘 ∈ 𝐺 ∪ 𝑁 ∪ 𝐿)			

𝑚 = 𝑖𝑛𝑑𝑒𝑥	𝑓𝑜𝑟	𝑡ℎ𝑒	𝑡𝑟𝑖𝑝	(𝑚 ∈ 𝑀)		

𝑔 = 𝑖𝑛𝑑𝑒𝑥	𝑜𝑓	𝑡ℎ𝑒	𝑑𝑒𝑝𝑜𝑡𝑠	(𝑔 ∈ 𝐺)		

𝑙 = 𝑖𝑛𝑑𝑒𝑥	𝑜𝑓	𝑡ℎ𝑒	𝑙𝑎𝑛𝑑𝑓𝑖𝑙𝑙𝑠	(𝑙 ∈ 𝐿)		
	

Parameters	
	

	

B = 𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑟𝑢𝑐𝑘𝑠	𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦	𝑏𝑒𝑖𝑛𝑔	𝑢𝑠𝑒𝑑		

M = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑟𝑖𝑝𝑠	𝑎	𝑡𝑟𝑢𝑐𝑘	𝑐𝑎𝑛	𝑡𝑎𝑘𝑒	(ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑠)		

𝑞! = 0;	(𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦	𝑜𝑓	𝑤𝑎𝑠𝑡𝑒	𝑎𝑡	𝑑𝑒𝑝𝑜𝑡𝑠)		

𝑞" = 0;	(𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦	𝑜𝑓	𝑤𝑎𝑠𝑡𝑒	𝑎𝑡	𝑙𝑎𝑛𝑑𝑓𝑖𝑙𝑙𝑠)		

𝑞# = 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦	𝑜𝑓	𝑤𝑎𝑠𝑡𝑒	𝑎𝑡	𝑘$%	𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛	𝑝𝑜𝑖𝑛𝑡		

𝑑&,# = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑗$%	𝑎𝑛𝑑	𝑘$%	𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛	𝑝𝑜𝑖𝑛𝑡		

𝑡&,# = 𝑡𝑟𝑎𝑣𝑒𝑙	𝑡𝑖𝑚𝑒	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑗$%	𝑎𝑛𝑑	𝑘$%	𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛	𝑝𝑜𝑖𝑛𝑡		

𝐹(,! = 𝑐𝑎𝑝𝑎𝑝𝑐𝑖𝑡𝑦	𝑜𝑓	𝑖$%	𝑡𝑟𝑢𝑐𝑘	𝑓𝑟𝑜𝑚	𝑔$%	𝑑𝑒𝑝𝑜𝑡		

𝐶) = 𝑓𝑖𝑥𝑒𝑑	𝑐𝑜𝑠𝑡	𝑜𝑓	𝑟𝑢𝑛𝑛𝑖𝑛𝑔	𝑎	𝑡𝑟𝑢𝑐𝑘		

𝐶* = 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒	𝑐𝑜𝑠𝑡	𝑜𝑓	𝑟𝑢𝑛𝑛𝑖𝑛𝑔	𝑝𝑒𝑟	𝑘𝑚		

𝑇(,! = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚	𝑠ℎ𝑖𝑓𝑡	𝑡𝑖𝑚𝑒	𝑓𝑜𝑟	𝑖$%	𝑡𝑟𝑢𝑐𝑘	𝑓𝑟𝑜𝑚	𝑔$%	𝑑𝑒𝑝𝑜𝑡		

Decision	Variables	
	

𝑥𝑖,𝑔,𝑚 = 	 "1, 𝑖𝑓	𝑖
𝑡ℎ	𝑡𝑟𝑢𝑐𝑘	𝑓𝑟𝑜𝑚	𝑔𝑡ℎ	𝑔𝑎𝑟𝑎𝑔𝑒	𝑖𝑠	𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙	𝑜𝑛	𝑚𝑡ℎ	𝑡𝑟𝑖𝑝	

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
			

(𝑑𝑒𝑓𝑖𝑛𝑒𝑑	𝑓𝑜𝑟	𝑖	 ∈ 𝐼; 	𝑔	 ∈ 	𝐺; 	𝑚	 ∈ 	𝑀)	
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Minimize 
 
∑ ∑ 𝐶" ∗ 𝑥#,%,&	(

#)&
*
%)& +	∑ ∑ ∑ ∑ ∑ 𝐶+ ∗ 𝑑,,- . 𝑦#,%,.,,,--∈0∪2,∈340∪2

5
.)&

*
%)&

(
#)& ∑ ∑ ∑ ∑ 𝐶+ ∗,∈2

5
.)6

*
%)&

(
#)&

𝑑,,%. 𝑦#,%,.,,,%		
	

(1)	

 
Subject to:  
 
∑ ∑ 𝑥(,!,0 ≤ B1

(20
3
!20   (2)	

𝑦(,!,4,&,#		 ≤	𝑥(,!,4	∀𝑖, 𝑔, 𝑗, 𝑘,𝑚    (3)	

∑ ∑ ∑ ∑ 𝑦(,!,4,&,#&∈7∪9∪:
;
420

1
(20

3
!20 = 1						∀	𝑘 ∈ 𝑁  (4)	

∑ ∑ 𝑦(,!,4,&,##∈9∪:&∈7∪9∪: . <!=<"
>

≤ 𝐹(,!					∀𝑖, 𝑔,𝑚  (5)	

∑ 𝑦(,!,4,&,# ≤ 𝑥(,!,4		∀𝑖, 𝑔,𝑚 ∈ 𝑀, 𝑘 ∈ 𝑁			&∈9   (6)	

∑ 𝑦(,!,4,&,# ≤ 𝑥(,!,4		∀𝑖, 𝑔,𝑚 ∈ 𝑀, 𝑘 ∈ 𝐿&∈9   (7)	

∑ ∑ 𝑦(,!,4,&,##∈:&∈9 ≤	𝑥(,!,4	∀𝑖, 𝑔,𝑚  (8)	

∑ ∑ 𝑦(,!,4,&,##∈9∪{!}&∈: =	𝑥(,!,4	∀𝑖, 𝑔,𝑚  (9)	

𝑥(,!,4	 ≥	𝑥(,!,4=0	∀𝑖, 𝑔,𝑚  (10)	

𝑥(,!,4=0 ≤ 1 −∑ 𝑦(,!,4,&,!&∈: 			∀𝑖, 𝑔,𝑚  (11)	

∑ ∑ 𝑦(,!,4,&,##∈7&∈: = 	0	∀𝑖, 𝑔,𝑚, 𝑘 ≠ 𝑔  (12)	

∑ ∑ 𝑦(,!,4,&,!;
42>&∈: =		 𝑥(,!,4			∀𝑖, 𝑔  (13)	

∑ ∑ 𝑦(,!,4,&,##∈7∪9∪:&∈7 = 0		∀𝑖, 𝑔,𝑚	𝑗 ≠ 𝑔  (14)	

	𝑦(,!,0,&,# = 0		∀𝑖, 𝑔, 𝑗 ∈ 𝐿; 𝑘 ∈ 𝑁  (15)	

∑ 𝑦(,!,0,!,# = 𝑥(!0			∀𝑖, 𝑔#∈9   (16)	

∑ 𝑦(,!,0,&,# =	𝑦(,!,0!,&			∀	𝑖, 𝑔	, 𝑗	 ∈ 𝑁	#∈9∪:   (17)	

∑ 𝑦(,!,0,&,# = ∑ 𝑦(,!,0,#,&	#∈9∪7 		∀𝑗 ∈ 𝑁,			∀𝑖, 𝑔#∈9∪:   (18)	

∑ 𝑦(,!,4=0,&,# = ∑ 𝑦(,!,4,#,&	#∈9 			∀𝑗 ∈ 𝐿		∀𝑖, 𝑔,𝑚#∈7∪9   (19)	

∑ 𝑦(,!,4,&,# = ∑ 𝑦(,!,4,#,&	#∈9∪: 			∀𝑗 ∈ 𝑁		∀𝑖, 𝑔#∈9∪:   (20)	

∑ ∑ ∑ 𝑦(,!,4,&,# ∗ 𝑡&,##∈7∪9∪:&∈7∪9∪:
;
420 ≤ 𝑇(,!	∀𝑖, 𝑔  (21)	

𝑦𝑖,𝑔,𝑚,𝑗,𝑘 = "
1, 𝑖𝑓	𝑖𝑡ℎ	𝑡𝑟𝑢𝑐𝑘	𝑓𝑟𝑜𝑚	𝑔𝑡ℎ	𝑔𝑎𝑟𝑎𝑔𝑒	𝑔𝑜𝑒𝑠	𝑓𝑟𝑜𝑚	𝑗	𝑡𝑜	𝑘	𝑖𝑛	𝑖𝑡𝑠	𝑚𝑡ℎ𝑡𝑟𝑖𝑝		

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
						

(𝑑𝑒𝑓𝑖𝑛𝑒𝑑	𝑓𝑜𝑟	𝑖	 ∈ 	𝐼; 	𝑔 ∈ 𝐺; 		𝑗 ∈ 𝐺 ∪ 𝑁 ∪ 𝐿; 	𝑘 ∈ 𝐺 ∪ 𝑁 ∪ 𝐿)		
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Table 4: Explanation for each constraint  
 

Constraint 
 

Explanation 
 

 

2 Trucks used for the routing are less than or equal to trucks available  

3 Trucks used in their first and subsequent trips should be operational  

4 All the collection points are served only once  

5 The total amount of waste that a truck carries in a trip is less than the truck's capacity.  

6,7 

8 

Only one truck visits a stop or landfill from a stop 

A truck can go to only one landfill from a stop   
 

 

9 The rest of the trip's starting point is a landfill  

10 The subsequent trips could happen if the previous trip ended  

11 The penultimate trip happens at the landfill.  

12 Each truck reaches its own depot  

13 

14 

Across all trips, only one trip ends at the depot 

Each truck leaves from its own depot 

 

15 No truck can leave from landfill in its first trip   

16-20 Connectivity constraints that maintain the integrity of a route and ensure that every truck 

entering a node is also leaving that node 

 

21 The total travel time for a given truck from depot to landfill should be less than the maximum 

shift time 

 

 

3.2 Sub-Tour Elimination Constraints and Exogeneous Heuristic  

A sub-tour is a closed loop among some collection points, where none is a depot or a disposal site. To 

eliminate such a loop, we added the Miller–Tucker–Zemlin (MTZ) sub-tour elimination constraint 

(SEC) to the formulation (Bektaş & Gouveia, 2014). The (MTZ) formulation has O(n2) extra variables 
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and constraints with n nodes as opposed to other approaches for which the number of additional 

constraints increases exponentially with n (Bazrafshan et al., 2021).  

The structure of the MTZ constraints we develop in equations (22-25) is different from the previously 

used structure (Sawik, 2020; Sundar et al., 2016.; Yuan et al., 2020) as we solve a multi-trip problem. 

Since the MTZ SECs can be computationally challenging, we used various settings (in CPLEX). For 

instance, "Emphasis-Memory" is set to 1 to optimize the working memory. To yield competitive upper 

and lower bounds with smaller gaps, "MIP-Emphasis" is set to 2, emphasizing optimality over 

feasibility in MILP solving.  

𝑧𝑖,𝑔,𝑚,𝑗 = 	 {𝑅𝑎𝑛𝑘	𝑜𝑓	𝑖𝑡ℎ	𝑡𝑟𝑢𝑐𝑘	𝑓𝑟𝑜𝑚	𝑔𝑡ℎ	𝑔𝑎𝑟𝑎𝑔𝑒	𝑜𝑛	𝑚𝑡ℎ	𝑡𝑟𝑖𝑝	𝑓𝑟𝑜𝑚	𝑗𝑡ℎ	𝑝𝑜𝑖𝑛𝑡  

𝑆 = 𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑛𝑜𝑑𝑒𝑠  

𝑧#,%,&,%	 =			 𝑥#%&			∀𝑖, 𝑔		 (22)	

𝑧#,%,&,,		 ≥ 𝑧#,%,&,-			 + 1 − 𝑆71 − 𝑦#,%,&,-,,				8									∀𝑖, 𝑔,𝑚	𝑗 ∈ 𝑁 ∪ 𝐿, 𝑘 ∈ 𝐺 ∪ 𝑁	𝑗¹𝑘		 (23)	

𝑧#,%,.,,	 = 𝑥#%.					∀𝑖, 𝑔,𝑚 > 1, 𝑗 ∈ 𝐿		 (24)	

𝑧#,%,.,,		 ≥ 𝑧#,%,.,-			 + 1 − 𝑆71 − 𝑦#,%,.,-,,				8									∀𝑖, 𝑔,𝑚 > 1, 𝑗 ∈ 𝐺 ∪ 𝑁, 𝑘 ∈ 𝑁 ∪ 𝐿	𝑗¹𝑘		 (25)	

The following heuristic determines M, the maximum number of trips allowed for a vehicle.  

1. Identify the farthest collection point from a disposal site 

2. Compute the travel time (tm) associated with the distance between the collection point and the 

disposal site 

3. Compute the maximum number of collection points (c) a vehicle can visit in a trip  

4. Compute the loading (tl) and unloading (tu) time at the collection points and the disposal sites, 

respectively  

The maximum number of trips by a vehicle then is 𝑀 = 𝑇/(𝑡! + 𝑐𝑡" + 𝑡#), where T is the total shift 

time. 
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3.3 Partitioning the Wards Further 

Despite modifying the default CPLEX settings, we could not solve this problem optimally for any ward, 

even in 72 hours of computation time on a Windows 2019 server machine with 64 RAM. However, we 

did obtain solutions for the wards as a whole after running the model for much longer, as we mention 

later in §3.4. Therefore, we created sub-clusters within each primary cluster (ward) using the K-medoid 

method using the algorithm below. Then, we split up each ward into sub-wards, and noted that each 

sub-ward took 12 hours.   

Initialize variable 𝜏 = 12	ℎ𝑜𝑢𝑟𝑠  

𝒊𝒇	𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒	 ≥ 	𝜏																																																																																																												 

                      Apply K-medoid clustering algorithm with k=2 

                                Choose two random nodes as medoids (a and b) 

      Initialize min_diff = 100 

   Loop over all the nodes 

                                           Choose the medoids that generate the least difference between the size of the clusters 

                                           c = abs(len(clusters[a]) – len(clusters[b])) 

                                           if (c<min_diff) 

                               a=a* and b= b* (a* and b* are the medoids for the most balanced clusters) 

                                                         Solve for each sub-cluster and check 𝜏 again  

The average computation time for the exact routing problem using the MILP model within each sub-

cluster is then reduced to the manageable figure of approximately 10-12 hours on average (50-60 hours 

for the whole ward, if run sequentially) because of the fewer nodes and trucks in the sub-cluster. Of 

course, we can run the models in this hierarchical approach for all the sub-cluster in a ward (and all 

wards) in parallel, as even laptops have processors with multiple cores.  

3.4 Results for Truck Routing 

We compared the total transportation cost across all five wards for: (1) the existing manual method with 

the nearest neighbor algorithm (baseline), (2) the revised nearest neighbor (RNN) heuristic for routing 
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for the entire ward, and (3) the method using MILP in a hierarchical approach using the K-medoid 

method for creating sub-clusters within each ward (H-MILP). The results show we can reduce the cost 

with improved routing across the entire SDMC zone comprising all five wards. The RNN algorithm we 

propose with the existing wards can result in a percentage savings of 1.57%, a savings of Rs 3.9mn 

(US$51,000) for the year. The HMILP would lead to an annual savings of 4.05%, or INR10mn (US$ 

1,32,000) (Table 5).   

Table 5: Results from different solution methods 
 

 

 

           Model 

 

Parameters 

 

Baseline 

approach 

 

Revised nearest  

neighbor on the full ward 

(RNN) 

 

MILP model for each sub-

cluster in a ward using K-

medoid sub-clusters (HMILP) 

 

Daily running 

cost (INR = Indian 

rupees) 

INR 679287.70 INR 668615.70 INR 651738.90  

Daily absolute savings 

over baseline 

- INR 10672.00 INR 27548.80  

Percentage savings 

over baseline (%) 

- 1.57% 4.05%  

Average solution time 

for each ward 

2 minutes 2 minutes 50-60 hours (with sub-clusters 

run sequentially) 

 

 

As mentioned before, we ran the MILP-based exact method for each ward as a whole by letting the 

computer run for several days. With an 8% optimality gap, we obtained 5.51% in cost savings over the 
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baseline, a saving of INR13mn (US$ 159,000), but the method was impractical as it took 20-30 days to 

reach optimality. Overall, even a very basic heuristic like the RNN can give decent solutions quickly, 

so there is scope to improve the solution quality or use it without modification in a real-time context to 

obtain further savings.  

4. Evaluating the Ward Structure  

The other question for the SDMC was whether the ward structure could be improved. Recall that the 

zone is partitioned into five wards. As the RNN gave decent solutions, we used it to compare the running 

costs of clusters of collection points obtained using different methods with the existing ward structure. 

The two methods we used for clustering nodes were:  

1) K-medoid: It is based on a greedy algorithm and is insensitive to outliers (Arora et al., 2016). 

It attempts to minimize the distance between nodes classed in a cluster and a point titled as the 

cluster's center or medoid (k). In this case, the medoids are the location of the depots (k=5). 

The algorithm assigns collection points to a cluster so that they are nearer to the depot in the 

cluster and further from the other depots. 

2) Minimum Spanning Tree (MST): The MST takes any undirected, connected, and weighted 

graph and finds a tree sub-graph with all the nodes but only those arcs that minimize the total 

length of the edges. The edge length, in our cases, is the inter-node distance (Pop, 2020).  

Perturbing the distance matrix: To get a more convincing result than that obtained from a single run, 

we perturbed the distance matrix by multiplying each cell that is not on the diagonal with (1 + 𝑥/10) 

where 𝑥 ∈ [0,1] is a random number generated each time. We thus generated 20 randomly perturbed 

distance matrices. Besides, we have the original distance matrix and its symmetric equivalent, replacing 

each distance with the average of to-and-fro distances between the two nodes. Then, we applied our 

RNN algorithm for each clustering method to obtain tours and their total transportation cost, ranking 

the three clustering methods (including the existing ward structure) by lower transportation cost for 

each distance matrix in turn (Table 6).  
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Table 6: Transportation costs obtained for tours generated for the existing ward structure and 
that generated with MST and K-Medoids for the 22 instances of the distance matrix, and the 

rank of the clustering method based on the lower transportation cost for each instance 
Distance 

matrix 

Total transportation cost by clustering 

method 

Rank among clustering methods by 

lower total transport. cost 

 Existing 

wards 

 

MST 

 

K-medoid 

Existing 

wards 

 

MST 

 

K-medoid 

Distance_1 679737.62	 694218.76	 689754.19	 1	 3	 2	

Distance_2 678189.95	 679476.93	 691032.43	 1	 2	 3	

Distance_3 692901.47	 692722.77	 692326.69	 3	 2	 1	

Distance_4 691183.08	 690052.70	 690526.69	 3	 1	 2	

Distance_5 676939.29	 693197.43	 692540.23	 1	 3	 2	

Distance_6 690370.54	 692353.32	 693145.98	 1	 2	 2	

Distance_7 689877.38	 692221.22	 690718.34	 1	 3	 3	

Distance_8 676909.80	 679425.59	 689508.52	 1	 2	 2	

Distance_9 680129.61	 690483.20	 689801.51	 1	 3	 3	

Distance_10 688668.58	 694507.52	 689032.85	 1	 3	 2	

Distance_11 676746.27	 692437.75	 692324.70	 1	 3	 2	

Distance_12 676746.27	 689922.58	 688022.66	 1	 3	 2	

Distance_13 679442.83	 690314.05	 690600.61	 1	 2	 2	

Distance_14 681288.50	 692471.56	 691833.72	 1	 3	 3	

Distance_15 678555.00	 691084.18	 690216.10	 1	 3	 2	

Distance_16 689571.77	 690695.63	 691924.99	 1	 2	 3	

Distance_17 692435.12	 692097.52	 689337.90	 3	 2	 1	

Distance_18 691441.33	 691500.89	 691414.95	 2	 3	 1	

Distance_19 676440.16	 691237.47	 687686.77	 1	 3	 2	

Distance_20 679945.07	 692329.67	 692752.08	 1	 2	 3	

Original 668615.70	 679907.00	 681762.60	 1	 2	 3	

Symmetric 681810.30	 673985.40	 682130.50	 2	 1	 3	

Modal rank -	 -	 -	 1	 3	 2	
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Then we used the nonparametric Wilcoxon matched-pair signed-rank test in Stata SE 17 to compare 

the existing ward structure with either partition obtained using the MST and K-medoids. The null 

hypothesis is that the median of the differences is zero, without any assumptions about the distributions 

(unlike the parametric t-test or z-test) (Ramachandran & Tsokos, 2015). The null hypothesis amounts 

to the true proportion of positive (negative) signs, with the differences being 0.5. The exact p-values 

are 0.0002 and 0001 for the existing structure versus the MST and K-medoids, respectively, showing 

we can reject the null hypothesis in either case, even at a 0.0001 level.  

Alternatively, with the equivalent test in R language, the value of the test statistic of the Wilcoxon test 

(𝑊) for the existing ward structure versus MST is 21 and versus K-medoids is 19, both of which are 

significantly smaller than the critical value of 75 for the statistic (𝑊$)	at	𝑁 = 22	(𝑝 < 0.05). Also, the 

modal ranks show that the existing ward structure has a lower cost than the K-medoids clustering of 

collection points. In turn, the K-medoid clustering has a lower cost than the clusters created by the MST 

(Table 6). 

5. Conclusion  

This paper demonstrates using analytics in a low-tech environment, using an optimization-based 

improvement approach for a currently manual process of planning truck routes for an urban solid-waste-

collection system in the South Delhi region of Delhi, India. The current route planning process is a 

manual method, effectively the nearest neighbor method, to pick up waste from collection points. The 

municipality wanted to know how computers and analytics could help them. We suggested improved 

route planning and evaluating the existing ward structure. 

Using the nearest neighbor routing as a proxy for the current manual process, we implemented two 

algorithms on the opposite ends of the spectrum for speed and optimality to demonstrate the tradeoff 

between solution quality and computation time for the first question. The first algorithm was a revised 

version of the nearest neighbor algorithm giving a slight improvement of 1.57% in solution quality over 

the baseline. The second algorithm used an optimal MILP-based approach, first by using the K-medoid 
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method to partition the nodes within each ward further and then by solving each sub-ward optimally, 

resulting in a 4.05% improvement. Thus, we demonstrated the range of solutions SDMC could expect 

regarding solution quality and computation time, paving the way for developing more sophisticated 

approaches. For the second question, we were able to show that the existing ward structure was better 

than other partitions we tried, giving SDMC the confidence that they need not make changes there and 

that they could use analytics to answer strategic questions.  

5.1 Managerial Implications 

Despite the attractions of new technology, including analytics, low-tech environments are naturally 

cautious, perhaps even skeptical, in understanding the costs and benefits of tactical and strategic 

(structural) planning. A demonstration like ours can help municipalities focus on getting higher benefits 

at lower costs and ignore areas that are working fine.  

For the SDMC's strategic problem, we showed that they do not need to change the ward structure as the 

benefits of making any changes are not obvious. At the same time, the costs of any changes are high 

due to contractual relations with the different contractors for each ward. For their tactical problem, we 

demonstrated that even the simplest route planning method could give better routes than their existing 

method. Moreover, the algorithm can be run in minutes, even on a slow computer, allowing it to be run 

several times a day as conditions change due to road closure or other conditions. 

More generally, the critical managerial implication is the design of such demonstrations of analytics in 

a low-tech context can focus on (a) the speed vs. solution quality tradeoff so that the organization can 

decide what it wants and (b) a range of applications to that the organization can decide which application 

could be adopted first (Table 7). Such a demonstration can be a foray into a context where we know 

little about the ten contextual dimensions Gorman (2021) has outlined. 
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Table 7: An approach for demonstrating analytics in a low-tech environment, exemplified here 
by the solid waste collection context. 

 Demonstrate speed vs solution quality tradeoff 

Fast solution Optimal solution 

Demonstrate 
a range of 

applications 

Tactical 
planning 

Revised nearest 
neighbor algorithm 

Vehicle route planning 
using MILP modeling 

Strategic 
planning 

Evaluation of wards with 
different clustering 
methods (K-medoids, 
MST) using the revised 
nearest neighbor method 
for route planning 

Did not attempt – need a 
fast route planning 
algorithm 

 

5.2 Research Implications 

Our efforts here were to develop a “proof-of-concept” demonstrating what is possible with analytics in 

a low-tech context rather than implementing an operational system. Assuming that an analytics 

approach is being adopted, there are several opportunities to extend this paper on both the theoretical 

and practical fronts:  

(1) More operational constraints: We must consider precedence relationships among the various 

collection points as some residential collection points tend to fill up earlier in the day than 

commercial ones. Further, the travel times in routes change during the day based on known traffic 

patterns. For instance, schools and offices have peak crowding in specific time windows. Avoiding 

pickups during those times is highly desirable, and the models must be tuned to capture such 

requirements. 

(2) Strategic location choices: At a more strategic design level, we need to consider the location of 

collection points and possibly the depots and disposal sites. Using ideas from the facility location 

models and geospatial analysis, we can determine better locations for placement collection centers 
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and landfills. Such models can also account for location-specific environmental or hygiene factors, 

thus connecting health and waste management systems. Moreover, as we go from simply dumping 

waste to sorting and recycling waste, the location of sites for these activities would also have to be 

considered within the same strategic location problem.  

(3) Real-time routing algorithms: For an operational setting, we need to determine what to emphasize–

the heuristics or the optimization–in a heuristic-optimization framework when there are unplanned 

or disruptive changes in distances and time between nodes in real time. For example, would it be 

better to keep running the revised nearest neighbour algorithm (or a more sophisticated version) 

with the latest distances and times obtained from Google Maps, or would it be better to create (near) 

optimal static routes with overnight computer runs and then tweak these in real-time as data change 

during the day? Moreover, there are existing algorithms that could be both efficient and exact. We 

refer the reader to the Han & Ponte-Cueoto (2015) review on waste collection and the Braekers et 

al. (2016) review on algorithms for vehicle routing. 

(4) Machine learning: Besides an operations research approach, machine learning (ML) could be 

explored independently or with optimization models for the solid waste process. Xia et al. (2022) 

review machine learning algorithms in (a) waste generation prediction, (b) waste collection and 

transportation (including route optimization), and (c) waste treatment and disposal. Andeobu et al. 

(2022) also review AI/ML applications for solid waste management. However, ML approaches 

require a huge amount of high-quality data that may not be available in this low-tech environment 

of developing countries. Indeed, creating synthetic data may provide another research opportunity.  

(5) Increasing the scope from collection to management: Our paper focuses on solid waste collection 

to disposal at a landfill. Given that the world is urbanizing, particularly in developing countries, 

and people are producing more waste, there is an urgent need to consider not just collection and 

disposal but also recycling at different stages; incineration; anaerobic digestion to produce fuel or 

even electricity (e.g., Naveenkumar 2023); and simply reducing the waste produced (e.g., Khan et 

al., 2022). Kurniawan et al. (2022) describe the need and approach to reducing, reusing, and 

recycling solid waste using digitalization in urban China. 
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We hope our paper will trigger further research on practical-sized problems of waste collection that 

large cities face, particularly in developing countries. More than that, we hope that our overall approach 

of tackling both the operational and strategic aspects using a variety of algorithms will be beneficial in 

low-tech contexts when considering the adoption of analytics. 
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