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Abstract.
This thesis is concerned with tracking man made objects moving in natural 
open world scenes and based on the tracking data, construct a structural 
representation of that scene, frame by frame. The system developed uses a 
static camera and a statistical frame differencing technique for detecting 
motion in an image that has a relatively static background. Objects with a 
measured temporal consistency are tracked across successive image frames. 
Based on the tracking data, regions in the scene are associated with 
particular types of dynamic event. For example regions containing 
movement (could be roads) and regions where objects seem to disappear or 
partially disappear (could be hedges).

Because of the sensitivity of the motion estimator to changes in scene 
illumination and environmental conditions, a tile-based method is used to 
detect scene motion based on the estimations of statistical variations within 
the tiles. An updating process is used to ensure that a reliable estimate of 
the background reference image is maintained by the system. Motion cues 
are matched against tracked objects from a previous frame using an 
estimate of the temporal continuity of an object. A spatial-temporal 
reasoning process is used to infer the structure in the image. This inference 
mechanism is implemented using a semantic network.

The system has been tested on several open world sequences and in each 
case has demonstrated that it can identify and track vehicles moving in the 
scene. Based on the motion of these vehicles regions in the image were 
identified and scene maps constructed for each scene. The map identified 
regions where vehicles can be expected to be observed moving and regions 
where they could become occluded.

A CD-ROM is included with this thesis that contains the results obtained 
by the system for the two image sequences used in chapter seven. These 
results incorporate some of the enhancements outlined in chapter 8, section 
8.3. A windows movie player is included on the CD-ROM and appendix d 
provides information on the contents of the CD-ROM together with 
installation and operating instructions.
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Chapter 1 Introduction.

Chapter 1 
Introduction.
1.1 Background.

There are many civilian and military applications where it is important to 
identify and track man made objects moving in natural open world scenes. 
In a military situation for example the need is to identify and track potential 
threats with the possibility of an engagement with that threat. One of the 
problems faced in this type of situation is that the object to be engaged can 
become occluded just prior to the engagement, this means that time is lost 
whilst trying to re-acquire the target, with potentially very serious 
consequences. The military environment has a variety of systems in use 
that acquire, identify and track targets ready for an engagement. The target 
being engaged will quite naturally be trying to manoeuvre (man-made non 
predictable manoeuvres) and employ countermeasures such as smoke or 
flares etc, to avoid being engaged or break the engagement.

The current systems in use do have serious problems if the target is lost 
during the engagement as corrective actions are taken only after the target 
is lost. The problem of a target moving behind another object in the scene, 
such as a building (the target is still in the field of view, but not visible to 
the camera) is not addressed at all by current weapon systems and the 
consequences of the loss of a target while in an engagement situation are 
self evident. Target identification, tracking and engagement are all 
concerned with the so called 'sharp end of the stick', there are other military 
applications where being able to track objects even if they have become 
occluded would be required.

Battlefield management and surveillance is a prime example of where we 
would also need to be able to identify and track objects, particularly if the 
objects being tracked have become occluded by other objects in the scene. 
The ability of a system to still be able to track that object after it had 
become occluded would prove extremely useful in initial and mid-course 
defence encounter scenarios. Though military applications continue, the 
current political situation has reduced the need to develop military systems 
and this shift has fuelled the development of civilian applications.

1



Chapter 1 Introduction.

Civilian applications have become more relevant in the 1980's-90's and the 
trend suggests that applications such as crowd monitoring and security will 
be major areas for machine vision as we head into the next century. With 
security and surveillance systems we would be more concerned with being 
able to track man-made objects moving around perimeter fences, 
particularly if the object being tracked moved behind another object in the 
scene, such as a hedge, becoming occluded from the system but still in its 
field of view. The tracking system must still be able to track the object in 
the scene, not from a point of view of engagement, but more concerned 
with the fact that the object is still in the scene and although it is not 
visible, generate some form of condition (automatic alarm) to the operator.

The understanding of crowd behaviour in semi-confined spaces is a very 
important part of the design of new pedestrian facilities (Davis, [49]). 
Closed circuit television systems support the data collection and 
monitoring of crowds, with the potential for expansion to security 
applications where such systems could track individuals moving in a crowd 
providing extra support to security staff in the prevention and solving of 
crime.

With the growth of crime and the increasing problem of congestion in our 
pedestrian areas, the need to maintain higher and tighter security has led to 
a major growth area for the application of machine vision. There would 
therefore be a clear need to develop machine vision systems that are 
capable of spotting crowd problems or detecting and tracking man made 
objects moving by security fences and automatically triggering alarm 
conditions.

The above applications are all concerned with identifying and tracking 
objects moving in open world scenes. Systems have been developed for the 
identification and tracking of man made objects moving in open world 
scenes. Feature based geometric model matching, (Tan [1], Worral [2]) has 
been shown to be successful in traffic management situations where 
vehicles have been identified and tracked in a road traffic scene, primarily 
traffic roundabouts and in airport scenes where aircraft service and support 
vehicles have been identified and tracked as they moved in and around 
parked aircraft on a runway.

The vehicles in the traffic roundabout scene do however occupy a 
significant proportion of the image and even in the airport situation, the 
vehicles were less than 200 meters from the camera. These model based 
methods tend to be less successful when the object to be identified and 
tracked is further away from the camera and occupying a smaller 
proportion of the image pixels. In this research the objects to be identified
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Chapter 1 Introduction.

and tracked are expected to be large distances from the camera and 
consequently will only occupy a small number of image pixels. In this 
case, it has been found that the matching of crude object descriptors is 
more robust, (Rosin [3], Teal [4]).

If the objects to be tracked are expected to be further away from the 
camera, then more of the image will be occupied by the background objects 
in the scene. We cannot consider that these objects will be static: trees, 
bushes, even the grass can have apparent motion when the wind blows. The 
wide angled view of the scene compounds the apparent motion problem 
further as illumination changes can also be perceived as motion.

To the problems of wind and illumination changes can be added further 
weather conditions such as rain or snow. If we consider an image 
processing system that is analysing the motion of vehicles moving within 
an open world scene, then it can be clearly seen that these environmental 
conditions make it a complex image to analyse.

If we consider tracking, then the system must resolve the ‘correspondence 
problem’. This is where to track an object moving in a scene the tracking 
system must first recognise the object to be tracked in say frame,, by 
extracting a set of object descriptors (features) that describe the object. At a 
later time say framen+1 it must extract those object features again and 
resolve that the two sets of object features are in fact from the same object 
viewed at two different times. The environmental problems outlined above 
complicate this process as they can generated a large amount of apparent 
motion (clutter) which the system must reject.

The task of tracking however is further complicated by the fact that the 
objects to be tracked will have changing pose with respect to the camera 
and the wide range of distances between object and camera will give many 
possible interpretations to the identity of the object. The objects as they are 
tracked may become partially or fully occluded by other tracked objects or 
by static objects in the scene. These factors are generally beyond control 
but complicate both the recognition and frame to frame matching 
processes. The tracking of objects that are no longer visible in the scene 
(they have become fully occluded) but are still in the field of view of the 
camera has received little attention by current machine vision systems.

Clearly to overcome the problems outlined a new approach is required. The 
system must learn over many frames areas where certain motion events 
occur and based on this learning process build some form of symbolic map 
representation of that scene that associates areas of the image with motion 
events and other areas of the image with occlusion. The constructed map

3



Chapter 1 Introduction.

could then be used to focus the image processing system to regions of the 
image that are expected to contain object motion. The consequence of this 
is that any motion detected in those areas of the map would increase our 
belief that this is a region associated with object motion but also that the 
current detected motion is an object of interest. The areas of the image 
identified with potential occluding objects could be used to predict 
potential object occlusion during tracking.

If the tracked object fails to be re-located in the image (it does not re-
appear), the fact that the tracked object had become occluded in an 
identified region of the map could be used as the basis for continued 
tracking of that object.

1.2 Aims and objectives.

1.2.1 Aims.

The first aim of this research was to investigate the problems associated 
with tracking man made objects moving in open world scenes, where the 
tracked objects are expected to be a large distance from the camera.

In a security application we would want to be able to continue tracking the 
object even if it became occluded (went behind a large bush for instance). 
The importance of the system still being able to detect and track that object 
has already been outlined. For the machine vision system to be able to 
continue tracking an object when it has become occluded, it would require 
the system to have an interpretation of structural features within the scene.

This led to the second aim of this research, to analyse and interpret 
structural features in a scene based on the motion of objects moving within 
the scene. From this detected motion, to build a symbolic representation (a 
map) on a frame by frame basis. These two aims led to three objectives.

1.2.2 Objectives.

1: To develop a new algorithm for tracking man made objects moving in 
natural open world scenes, where the object to be tracked is expected to be 
a large distance from the camera.
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Chapter 1 Introduction.

2: To develop a spatial-temporal reasoning algorithm that builds a 
structural representation (a map) of a scene on a frame by frame basis, 
based on the object motion within the scene. The map giving a level of 
confidence in the structural interpretation of that scene.

3: To integrate these two algorithms into a complete system.

1.3 Organisation of the thesis.

This thesis has been organised into 8 chapters. Each chapter is largely self 
contained with an introduction and overview, analysis, results and finally a 
summary and discussion. The first chapter introduces some of the reasons 
why we would want to track man made objects in natural images, together 
with the problems faced by systems developed to accomplish this task. The 
second chapter reviews the literature on identification and tracking of man-
made objects, it also examines some of the issues concerned with the 
analysis and interpretation of structure in natural open world scenes.

The third chapter gives an overview of the image processing system that 
has been developed by this research. It shows how the main processing task 
of the system has been functionally decomposed into three image 
processing functions. The fourth chapter looks at problems concerned with 
the acquisition of images and the generation of motion cues representing 
objects moving within a scene.

Chapter five addresses the problem of tracking and develops a new 
algorithm for tracking man made objects moving in a scene where the 
tracked objects are expected to be a large distance from the camera. The 
sixth chapter looks at building a symbolic map using spatial-temporal data 
of objects moving in the scene. It develops a new algorithm that interprets 
structural features within the scene. It builds a map of that scene on a frame 
by frame basis, identifying regions in the image where tracked objects can 
be expected to be observed moving and regions where objects can become 
occluded.

The seventh chapter addresses the integration of the tracking and spatial- 
temporal reasoning processes into a complete system. It shows that the 
system is capable of identifying and tracking man-made objects moving 
within open world scenes, constructing a map of that scene based on the 
tracked object motion. It discusses the results obtained by the application of 
the algorithms to real world scenes. The final chapter rounds up the thesis 
with conclusions and outlines future work.
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Chapter 1 Introduction.

1.4 Discussion and Summary.

In this chapter we have identified the reasons for undertaking this research 
and highlighted areas and applications of machine vision where the 
identification and tracking of man made objects moving in natural open 
world scenes would be necessary. Perhaps more importantly this chapter 
has identified that any system engaged in this task faces considerable 
problems.

Occlusion, illumination and environmental effects all complicate the frame 
to frame matching process needed to describe the spatial-temporal 
behaviour of the objects moving within a image sequence.

6



Chapter 2 Identification, Tracking and Structure (A Review).

Chapter 2 
Identification,
Tracking and 
Structure 
(A Review).
2.1 Introduction.

In computer vision we are concerned with the transformation of 
information. Generally that information is an image or sequence of images 
consisting of thousands of picture elements that are to be transformed into a 
concise symbolic description of the image which can be used by a viewer 
or computer system and is not cluttered with irrelevant information. This 
process can be divided into a series of levels (low, intermediate and high) 
giving a range of image representations. Low-level vision involves 
operations directly on the picture elements, intermediate to high-level 
vision uses the information obtained from the lower-level image processing 
to build more useful descriptions of the image and the world that is viewed.

The low-level processing is essentially general purpose, applying image 
processing algorithms direct to the pixels and usually does not make use of 
domain specific knowledge. High-level vision however is concerned with 
finding a consistent interpretation of the features found by the lower-level 
processing and is therefore based on recognition, i.e. the matching of 
internal representations of the world with the image data obtained from the 
sensors. Depending on how the vision systems internal representation of 
the outside world is organised and how the recognition mechanism is
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Chapter 2 Identification, Tracking and Structure (A Review).

implemented, the vision system can be classified into one of two main 
categories, namely

1: model-based.
2: knowledge based.

In a model-based vision system the internal representation of data is based 
on geometric models and the mechanism for recognition consists of 
matching these models with two dimensional or three dimensional 
descriptions obtained from the image. Model-based vision systems must 
have a robust feature extraction mechanism to obtain reliable image data 
for the generation of the object descriptions that will be used in the 
matching and recognition processes.

In knowledge-based systems the representation of an object is symbolic, 
and includes information about the objects and their relationships to one 
another. The recognition process does not require an explicit model of the 
object, this process is realised by the inference of the known data and the 
known facts about the domain. Feature extraction is performed on the 
image to construct a symbolic description of the objects that could be in the 
scene. The knowledge about objects that could be in the scene and their 
relationships to one another is generated before the recognition process 
begins. The extracted image features are used in combination with acquired 
knowledge to deduce the location of relevant objects; however, our 
knowledge about the relationships between the image features (evidence) 
and the objects in the world (hypothesis) is often uncertain, leading to the 
misclassification of objects found in the image.

Many ad-hoc systems have been developed that use techniques from both 
model-based and knowledge based systems to solve the recognition 
problem, but generally they tend to be domain specific.

The majority of computer vision literature concerns itself with the 
interpretation and analysis of constrained images, the so called widget, 
where the environment is well controlled, for example an industrial 
inspection environment. In contrast to this there are many applications 
where we are concerned with the interpretation of the more difficult open 
world scene such as that depicted by figure 2.1 on the next page. In this 
image for example we may be concerned with identifying and tracking the 
van as it moves in the image. Alternatively, we may be concerned with 
interpreting structural features in the scene, such as the roads or buildings.
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Chapter 2 Identification, Tracking and Structure (A Review).

The interpretation of these images introduces many more complexities into 
the analysis, namely:

(i) uncontrolled and variable light conditions.
(ii) different object scales.
(iii) orientation of the object with respect to the camera.
(iv) partial or full occlusion of the object.

These additional features further complicate the recognition and tracking

Figure 2.1 Natural Open World Scene.

2.2 Model Based Identification.

Object identification in natural scenes relies on the segmentation of an 
image into a number of self contained regions where each region represents 
a particular object in the known world. There has been a considerable 
amount of research effort put into the identification of vehicles moving in 
open world scenes, not only for military applications but also civilian 
applications, particularly traffic monitoring and control. A major objective 
of the MMI 007 Alvey consortium was the integration of data driven image 
processing methods and goal driven methods to develop a generalised
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vision system architecture capable of identifying vehicles in natural open 
world scenes.

The data driven approach uses the measurement of local attributes in the 
image to identify features which characterise objects that may be in that 
scene. Conversely, the goal driven approach uses prior expectations, often 
in the form of explicit models to guide the analysis of the image. 'The 
knowledge based approach' (Baker & Sullivan, [5]) presented the 
philosophy of the MMI 007 exemplar which identified and discussed the 
major issues faced.

One of the important points highlighted was the fact that the vision system 
was not expected to operate on a single hypothesis generation and 
evaluation cycle, but rather expected a reasoning strategy to generate many 
sub hypotheses and evaluate them using evidence drawn from different 
sources of information, combined with knowledge of the structure of 
objects in the scene. This would of course require a large number of 
intermediate hypotheses to be generated as the understanding of the scene 
evolves. However a first stage hypotheses could be inferred from the 
results of an initial low-level segmentation process together with the 
reasoning processes that labelled the segmented areas.

This initial hypothesis generation would provide a bounded set of 2D 
image data, though only imprecise evidence for the existence of an object, 
it would strongly constrain the search space for more computationally 
expensive verification algorithms. Having generated these hypotheses, it is 
necessary to perform a quantitative evaluation of the presence of the object 
in the 2D image data. There are two major factors affecting this task, 
namely the number of different viewpoints of each object and the possible 
number of different objects. Together they form a vast search space which 
must be made manageable so as to limit the computational costs of 
performing the actual search. Several methods can be employed to limit the 
search space, but if a general scene understanding system is to be 
developed, then clearly these restrictions would have to be removed.

Limiting the search space to say for example a single object and 
constraining the position of occurrence in the image to certain defined 
regions assists in reducing the total search space. These constraints 
however do not find the exact location and orientation of the object with 
respect to the viewer. Establishing the correspondence between 2D image 
features and 3D object components is a major problem in model based 
vision systems. The solution of the non-linear spatial correspondence 
problem being one of the major impediments to the application of model- 
based methods for vision systems.

10



Chapter 2 Identification, Tracking and Structure (A Review).

Psychological evidence has suggested that the human vision system relies 
on the perceptual organisation of objects for the interpretation of a scene, 
(e.g. Kubovy and Poerantz, [6]). Image features can be used as cues in an 
automatic recognition process (Lowe, [7],[8]), where the discovery of a 
specific feature group can be used to search for related features according 
to the structure contained in a model. This would progressively constrain 
the search each time new evidence contributes to the scene interpretation. 
Lowe's work however used images which contained multiple instances of 
well defined groups of edge segments, which have a low probability of 
accidental occurrence.

The open world scene does not tend to produce this form of simple edge 
grouping, with the edge data in these scenes being viewpoint determined. It 
is more likely that Lowe’s work would need to consider object specific 
features in addition to or in support of the extracted edge data. The use of 
knowledge based systems to perform the identification of vehicles in a 
natural scene requires a reasoning strategy to guide the identification and 
verification process. 'The development of reasoning strategies', (Baker & 
Sullivan, [9]) looked at the concept of reasoning strategies that would be 
the pre-requisite to specifying the control mechanisms needed to guide the 
automatic recognition of man made vehicles.

The reasoning strategy used a common technique in vision systems in that 
the recognition process begins with the detection of a cue, (some feature or 
cluster of features that are thought to have some perceptual significance). 
This can be especially significant for cues that trigger a series of reasoning 
processes each of which is seeking more evidence to support or disprove 
the evolving hypothesis. The combination of cues and reasoning processes 
is usually known as the reasoning strategy and this work highlights the fact 
that any reasoning strategy developed is likely to have a limited application 
and that a general vision system reasoning strategy would probably require 
many different strategies.

This is partly due to the fact that in an open country scene parallel lines and 
coloured image segments would provide strong cues for the identification 
of a vehicle, but in an urban scene these cues would produce much poorer 
performance. The main problems arise from the fact that it is 
fundamentally difficult to devise robust algorithms for the initial 
segmentation and feature extraction in an image of a natural open world 
scene. For a vision system, the identification of characteristics in the image 
data which could be used to initialise the high-level structures and thus 
initiate a reasoning process is a particularly difficult problem to solve. As 
part of the MMI-007 consortium, Godden et al [10] looked at the problem
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of image segmentation and attribute generation, (a major problem area 
highlighted by Baker & Sullivan [9]).

The nature of the images used were found not to lend themselves easily to 
derivation of precise 3D structural information by either optical flow or 
stereo techniques and they used static segmentation techniques to capture 
information present within the image. The scheme used a bottom up 
strategy to provide image description and an initial set of hypotheses to 
bootstrap top down processes. Surface homogeneity, texture homogeneity, 
colour, boundary smoothness and continuity were used to provide 
segmentation and region information. The algorithms demonstrated that a 
vehicle could be segmented in an image and that attributes generated for 
that segmented region used to identify a vehicle. The types of algorithms 
developed were region and edge based, running very loosely coupled. It 
was highlighted that better performance could be achieved if the results of 
these two techniques were more closely coupled.

Sullivan [11] highlighted that part of the motivation for using a knowledge 
based approach is due to the fact that with natural scenes it is very difficult 
to derive a 3D description of the scene as large areas of these images 
tended to consist of groups of objects such as trees, bushes, roads and 
buildings which generally have no easy 3D description. The paper linked 
together the work carried out by Godden, [10] who used attributes of 
segmented regions to classify major areas of the image, which provided 
initial cues to the presence of a vehicle, with the work carried out by 
Brisden [12]. This used detailed knowledge of the 3D geometry of a 
vehicle expressed as an explicit model to make the decision as to the 
existence, position and type of vehicle in the image.

This model defined the exact relationship between the object features of the 
vehicle, specifying the features that are present in a vehicle in the image 
under any viewing condition. This allows a given instance of the model to 
be evaluated with great precision if the view point is know. The hypothesis 
generation uses low-level scene description to identify potential regions 
and provide loose bounds on the position of the vehicle in the image 
together with its distance and orientation with respect to the camera. These 
bounds establish constraints on the eventual matching between the object 
model and the image, but there is still a great deal of uncertainty.

Two more methods are now used in support of one another to reduce the 
level of uncertainty in the model matching process. The first method uses 
geometric reasoning, which is based on assumed correspondences between 
object features and key features found in the image. The second method is 
to limit the search applied to small subspaces of the view transform. These
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methods help to reduce the computational burden of testing and model 
matching, but it can still be prohibitively high and relies on partial 
hypothesis to concentrate the search.

However a further constraint can be introduced from prior knowledge of 
the camera position with respect to the ground plane and the knowledge 
that the vehicle will be in an upright position. These additional constraints 
leave only one degree of freedom. The approach taken adopted a 
hypothesis and test strategy, where different types of knowledge constrain 
the hypothesis generation stage. Scene knowledge and groupings of 
features initialised the detailed analysis of candidate areas using specific 
knowledge of the geometry of the car. Attention is drawn to a plausible 
hypothesis which is progressively refined to the point where a specific 
evaluation could be carried out. This means that there would be potentially 
many erroneous matches between irrelevant features and the model due to 
low-level features being mislocated or perhaps view dependent boundaries. 
These features must be rejected by the initial stage of the scene analysis. 
The paper highlighted the fact that the identification strategy could extract 
a vehicle from an image since the strategy bypassed the hardest problem 
for a vision system; that of accessing the appropriate object specific 
knowledge from the very large host of possible interpretations of the 
image.

The geometric modelling so far discussed has concentrated on how a 3D 
model of the object is matched to extracted features in the image. An 
alternative to this method is to extract features from the image space and 
transform them into a parameter space and identify features in the 
parameter space.

'Vehicle detection in open world scenes using a Hough transform 
technique' , (Radford [13]), looks for arc/circle features in parameter space 
which could correspond to features in the image space such as wheels and 
wheel-arches. Simple spatial operators are used to extract edge data in the 
image and identify straight line segments with the edge map. A Sobel 
operator is first applied to the image and the resulting edge image thinned 
to single lines by a process of non-maximal gradient suppression. Noise in 
the edge image is further reduced by suppressing edgels that turn more than 
90 degrees with respect to the neighbours of the edge pixel. A hysteresis 
technique similar to Cannys (Canny [58]) is applied to the edge gradient 
and the edge strength is thresholded between an upper and lower bound via 
an 8 neighbourhood connectivity method. A fractal line discriminator is 
applied to the thresholded edge image and a roughness factor 'R' calculated 
by applying a mask to the image in a raster scan order and calculating the 
change in edgel direction A9 between each pixel in the mask and its four
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neighbours. Radford argued that natural features in an image would give 
rise to rough edges, but man made features are more likely to have 
straighter edges. The roughness measure R is calculate from

n
where

n is the total number of edgels in the connected line.
A9 is the change in edge direction between the centre pixel and

its four neighbours as defined by the mask M.

R is thresholded to retain lines which are either above the threshold and 
therefore would give rise to natural edges (trees, bushes, etc) or below the 
threshold which would give rise to man made edges. The resulting straight 
line segments only are transformed into a 3D parameter space (a, b, r) using 
a standard Hough Transform defined by:

(x -  a)2+(y -  b f  = r2 (2.2)

One of the main virtues of the Hough Transform is its ability to accumulate 
partial local evidence in an image for a shape into its parameter space, 
giving strong support for the existence of that shape in the image. Once the 
Hough Transform is complete, the algorithm looks for the centres of 
wheels or wheel-arches in the parameter space by finding maximum values 
and performing statistical analysis on that portion of the accumulator space, 
based on the assumption that the vehicle is approximately horizontal and a 
pair of centres are to be found.

The algorithm found the vehicle in the image, as long as the vehicle was 
viewed side on. It was stated that this form of identification was likely to 
be used more as a region cueing aid for a more complete object recognition 
algorithm than as a stand alone recognition system. Figure 2.2(a) on the 
next page shows the highlighted wheel centres and a cue window for the 
car and figure 2.2(b) shows the edge input data to the Hough transform 
after the fractal line finder was applied with threshold set to 0<=R<=0.5. 
Figure 2.2(c) shows the circle Hough transform space for r<= 15. Finally 
figure 2.2(d) shows the extracted peak regions from the Hough space 
labelled in the order they were extracted.

Techniques for model based vision usually rely on a hypothesise, test and 
refine cycle to recover an accurate estimate of an objects pose, typically 
using Lowe's method [14] or an exhaustive tree search. However Lowe’s 
method has been found to frequently fail (L. Du, [15]) and an exhaustive 
search is computationally expensive. An alternative approach has been
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developed by L. Du [15], where detection of an object specific cue feature 
begins a search for additional evidence to support that cue feature. This 
method provided a better estimate of the pose of the object as it is now 
based on the correspondence of an extended feature set. This grouping 
method is referred to as the viewpoint consistency constraint (VCC).

Measurement of the viewpoint consistency is based on the match between 
model features and image features determined by three criteria. First the 
difference in orientation between the model features and the image features 
(measured in degrees), second the perpendicular distance between the 
image and model features (measured in pixels) and third, the length of the 
image feature to the model feature.

Figures 2.2(a) to 2.2(d) Results obtained using Radfords 
open world vehicle detection algorithm, (Radford [13]).

Two criteria are used to determine the viewpoint consistency constraint, the 
first is a graded measure of the result of matching each of the above three 
features with each of the features being weighted to ensure that they are 
roughly equal. Secondly a binary acceptance measure is used given a pre-
set threshold to accept or reject the match.
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The starting point for determining the set of features for measurement of 
viewpoint consistency is derived from an initial pose estimate (Lowe, [14]) 
and to allow for possible inaccuracies with this initial pose estimate a 
relaxed value is used for the pre-set threshold. This gives a set of n data and 
m model features which require an exhaustive search of all possible 
pairings of these features. The evaluation of consistency is the main 
computational burden for determining the 3D grouping between image 
features and model features, with the computational cost being determined 
by the estimate of the number of VCC evaluations. While there maybe a 
perfect match, a strategy is needed to find desirable matches and pursue 
these.

This 3D grouping problem has been tackled by a number of methods. 
Lowe's incremental model matching method (Lowe, [14]) works iteratively 
and has the advantage that no backtracking is needed so that it is 
computationally inexpensive. When it is applied to more complex images, 
such as natural open world scenes where there is a large amount of clutter 
in the scene, the method fails due to mismatching features in the image 
with features in the model, particularly initial features.

Mismatches cannot be corrected nor can further mismatches be prevented. 
This failure is typical for systems that are attempting to match 3D models 
to 2D edge images. Alternative methods to this, are to use shape constraints 
to specify thresholds between feature pairs, but even these shape-only 
constraints cannot discriminate against clutter.

The VCC can be used to prune an interpretation tree however, providing an 
acceptance criteria that justifies the pruning. Interpretation trees are 
combinatorial, but the pruning operation of the VCC removes subtrees and 
hence reduces the computational complexity. L. Du [15] experimented with 
different criteria, by changing the pre-set threshold for the VCC, but it was 
found difficult to successfully solve the grouping problem with open world 
images. A new algorithm was developed for solving the 3D grouping 
problem using a state space representation approach.

The 3D grouping process became a sequence of state transitions with the 
performance determined by the initial state, transition steps and a 
termination condition. The developed algorithm was called the Viewpoint 
Consistency Ascent (VCA), this new algorithm demonstrated an improved 
reliability and a worse case computational complexity of 0(n2), it also 
demonstrated that in cluttered images new methods would have to be 
developed to impose the VCC constraint for model matching far more 
stringently. Figure 2.3 on the next page shows the results obtained from
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using both Lowe's algorithm and the VCA to recover the pose of the 
vehicle.

2.3 Model Based Tracking.

The model based techniques outlined in the section 2.2 have shown 
techniques that can be used for the recognition and the pose recovery of a 
vehicle in a single image. This knowledge can be used to track an object 
(typically a vehicle) moving through a sequence of images. Work has been 
carried out under ESPRIT P2152 VIEWS project, where model based 
techniques are used to classify and track moving objects in uncontrolled 
and cluttered scenes.

Figure 2.3 The top three images are the initial pose of 
the vehicle, the middle three images are the results 
using Lowe’s algorithm and the lower three images are 
the results obtained using the VCA, (L. Du 15).
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Worrall [2] uses models consisting of three dimensional geometric 
representations of known vehicles together with a constructed camera and 
scene model to track vehicles moving in a road traffic scene. Having 
models for both the camera and scene, and given the initial position and 
orientation of the vehicle moving in the scene, a 3D model can be projected 
onto a set of extracted 2D image features. A 'goodness of fit1 score can be 
obtained by comparing the modelled features with the extracted image 
features.

This results in a search in both position space and orientation space which 
is used to maximise an evaluation score between the extracted image 
features and the 3D model features. When the maximum score is found, the 
three dimensional position and orientation of the object is known and this 
information used to predict the position and orientation of the vehicle in the 
next frame, enabling the tracking of the vehicle through the sequence of 
frames. The evaluation process essentially defines a scalar function of six 
dimensions. In world co-ordinates this defines three Cartesian co-ordinates 
and three angles.

To cut down on the computational requirements, the vehicle can be 
specified as travelling on the ground plane. This assumption limits the 
search space from six dimensions to three. A search space of three 
dimensions can still be computationally high to search and performing 
three one dimensional searches has been found to be quicker.

The system demonstrated that it could recover the position and orientation 
of the vehicle to a fair degree of accuracy, however the tracking tended to 
go awry when strong edges in the image were detected that were not part of 
the object and the recovered position tended to oscillate when the vehicle 
was viewed head on.

The paper demonstrated that model-based vision techniques developed for 
the recovery of the pose of a vehicle in a single image could be used to 
recover the position and orientation of a vehicle in a sequence of images 
and track that vehicle across the sequence. The constraint of the vehicle 
only being allowed to travel on the ground plane, as outlined in the 
previous paragraph reduces the problem of localisation and recognition of 
the vehicle from a six degree of freedom problem to a three degree of 
freedom problem. Figure 2.4 on the next page shows the superposition of 
the 3D model onto the original 2D image from selected frames between 
140 and frame 280.

Using this constraint, Tan [1] developed a generalised Hough Transform 
algorithm based on grouping evidence from line features. This is used to
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identify approximate poses of a vehicle. Simple geometric reasoning about 
the peaks in the expected orientation of the object give rise to mutually 
exclusive object hypotheses of the object pose and accepting the 
hypotheses with the greatest evaluation score, recovers the correct pose of 
the vehicle. The algorithm is fast and robust coping with identifying the 
vehicle in an outdoor scene even if the vehicle became partially occluded.

Figure 2.4 Tracking a single car in an image sequence from 
frame 140 to frame 280, (Worral [2]).

The system could also reject image clutter generated by this form of scene, 
still being able to extract the vehicle from the scene in area’s of high 
clutter. Model based recognition schemes usually require explicit feature 
extraction and matching, which has a high computational cost. The
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developed algorithm eliminates the need for explicit feature extraction and 
matching and hence the computational costs are considerably lower 
requiring neither explicit line segments nor symbolic image features. This 
is made possible by using two assumptions, (i) the ground plane constraint, 
which reduces the number of degrees of freedom from six to three and (ii) 
the weak perspective assumption, where if the angle subtended by the 
object is small and the object is viewed on the axis, then the projection is 
scaled orthographic.

The algorithm determines the object orientation by matching image line 
directions with directions of model lines. These are estimated from the 
peaks in a 1-D histogram of the gradient directions of the original intensity 
image, this eliminates the need for explicit line extraction. The algorithm 
computes the location of the object on the ground plane by analysing the 
projections of the intensity gradients along the directions in the image as 
determined by the orientation previously found.

The algorithm was extensively tested with outdoor traffic scenes and could 
successfully recover the vehicle from the scene. This algorithm 
considerably reduces the computational costs for the model matching, with 
the constraints specified and the algorithm has been developed specifically 
for real-time applications.

Roller et al [17] developed a system that would automatically track 
vehicles in image sequences of road traffic scenes. The system exploited a 
priori knowledge about the shape and motion of the vehicles, with a 
vehicle model being used for interframe matching and a recursive estimator 
based on a motion model being used for the motion estimation. Motion was 
initially detected by segmentation of optical-flow vectors which are 
assumed to represent a moving object in the image. Based on the 
assumption that detected motion is on the road and that the motion is 
forward yields an estimate of the position and principle orientation axis of 
the model as this is assumed to be parallel to the motion direction. Straight 
line edge segments are extracted from the image and matched to line 
segments in the model using the Mahalanobis distance (Deriche et al [31]).

In order to avoid incorrect matches between model segments and image 
segments that arise from shadows of vehicles, an illumination model 
provides a priori knowledge of the geometrical relationship between 
vehicles and the projection of shadows from the vehicles onto the road. A 
motion model describes the dynamic behaviour of the vehicle in the 
absence of any knowledge of the drivers intention. If the steering angle of 
the vehicle remains constant, then the motion of the vehicle is described by 
a constant angular component and a constant magnitude component. To
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allow for the unknown driver intention, a process noise component is added 
to the motion parameters. These motion parameters are estimated using a 
recursive maximum a posterior estimator. Figure 2.5 below shows the 
results of the tracking system when the vehicle being tracked is well 
defined against the road (the white vehicle produces well defined edges 
together with strong shadow edges).

Figure 2.5 The 3rd, 25th and 49th frame of a road traffic 
sequence. The top row shows the original image sequence, 
the middle row shows the corresponding enlarged portions 
of the image where the detected vehicle is. The lower row 
shows the extracted line segments and model segments in 
the same enlarged section of the image as the middle row,
(Roller [17]).

Figure 2.6 on the next page shows the results for tracking a vehicle that 
does not produce well defined edges. In the first case the inclusion of the 
illumination model allows for correct matching of edges in the image with 
the model of the vehicle, in the second case the stronger edge lines of the 
shadow enable the matching process to match the shadow edges as there 
are poor edges extracted from the vehicle.
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Figure 2.6 Shows the original image sequence, an enlarged 
portion of the image where the detected vehicle is and the 
extracted line segments and model segments in the same 
enlarged section of the image as the middle row. This 
example demonstrated the necessity of using shadow edges 
in the matching process as the dark coloured car produces 
very poor edges against the road, (Roller [17]).

An alternative method for model based tracking to that of specific 
geometric model matching previously described, is to use a deformable 
model. Shen [16] developed a method for recovering the shape of a 3-D 
object from a moving sequence of images using a deformable model. The 
deformable model is initially set to be spherical, but is allowed to be 
progressively deformed under the action of simulated forces derived from 
the image and applied to the model. This drives the model to fit the profile 
of the object extracted from the image. The model is constrained to be 
symmetric to a plane parallel to the direction of motion, the resulting 
deformed model represents the 3-D shape in the image, effectively 
recognising and tracking the object. The system was tested on several 
sequences of images depicting a traffic scene in a car park, demonstrating 
that from the initial spherical state the model progressively deformed into
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the shape of the vehicle under the forces derived from the image and 
approached the shape of the image object, in this case a vehicle.

2.4 Tracking Objects in Cluttered Scenes.

The previous section has concentrated on tracking rigid objects that can be 
well described by a geometric model. However the vehicles to be tracked 
may be several hundred meters from the camera and consequently will only 
occupy a small number of pixels. The object will therefore not provide 
sufficient extracted image features for matching with a model. In fact at 
these ranges the vehicle may even appear to be an articulating non-rigid 
objects as it moves and changes orientation in the scene. These features 
tend to suggest that geometric modelling would become less robust as the 
distance increases and that tracking based on some form of crude object 
descriptor may be more robust in such circumstances.

Rosin and Ellis [3] developed a knowledge based vision system for the 
interpretation of alarm events resulting from a perimeter intrusion 
detection. Unlike the previous systems which are tracking rigid geometric 
objects, Rosin and Ellis are concerned with tracking articulating non-rigid 
objects which are not easily modelled. The actual vision system has the 
task of interpreting alarm events, discriminating between humans (an alarm 
event) and noise (weather-related or animals, false alarms). Problems that 
occur when recognising complex objects in outdoor scenes, include 
occlusion, shadows, illumination changes, but more importantly, the large 
range over which objects have to be detected, recognised and tracked, 
results in poor spatial resolution.

Motion is detected in the image by using a frame differencing technique. 
Optical flow or feature correspondence techniques are inappropriate due to 
the time interval between successive frames (up to 1 second), but more 
importantly the low spatial resolution of the object to be tracked means that 
little image data will be available for feature extraction. Following the 
frame differencing, a thresholding operation forms regions in the image 
that have shown motion. These regions are analysed by a boundary based 
feature extraction algorithm which calculates size and position. Temporal 
filtering allows noise regions to be removed from the image sequence.

Scene models which consist of a map of the area covered by the camera, 
are constructed for each fixed camera, (a map contains labelled areas such 
as the ground, fence etc). There is a camera calibration model for each map. 
The map allows sequences to be ignored that are outside the trigger zones, 
the labelled map aids model matching by restricting the interpretation
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based on the location of the object in the image, and the camera model 
enables range measurements of objects to be made. Target models are 
described by two components; the first component describes individual 
instances of the object, the second describes the dynamic behaviour of the 
object over time. Model matching is performed in a top down manner, with 
matches between individual models and models extracted from the image 
sequence. At each level in the model matching, the match with the highest 
probability is chosen. The system reliably detected and classified humans 
in a number of test image sequences, however it was less robust in its 
classification of false alarms.

Figure 2.7 below shows the binary detected objects for two birds overlaid 
on the original image (top). The middle and bottom images in figure 2.7 
show the results for a human running across the image. The images show 
the minimum bounding rectangles detected in the sequence and the final 
extracted sequence for the human. The system correctly classifies this form 
of image sequence as a human.

Figure 2.7 Binary objects detected and tracked, birds (top) 
and a human (centre) and (bottom), (Rosin and Ellis [3]).
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Although not aimed at any specific application or defining any particular 
object, Picton [19] developed a system that could segment and track a 
moving object in a natural scene without any specific prior knowledge. The 
system used only general object knowledge, hence making it as flexible as 
possible. Picton proposed a system which is only interested in pixels that 
are moving and that certain predictions can be made about the scene based 
on the information obtained from the changing pixel values only.

He loosely based his system on studies in biological vision carried out by 
Schneider [20], who demonstrated that the vision in hamsters can be 
divided into two separate vision systems, namely: one for following a 
moving object with the eyes and the second for identifying the object. The 
first observation would tend to suggest that detecting object motion exists 
in a much older part of the brain (in an evolutionary sense) than the second. 
Picton tended to postulate that there is some form of evolutionary 
advantage in being able to track objects without necessarily identifying 
them. Differences between consecutive frames of image data is used to 
generate motion cues about object movement in the image.

However rather than using just difference pixel information, the difference 
edge (DE) was used. This was calculated using

DE =<\F(iJ,n)\ -  \F(iJ,n -  l)\).E(iJ,n) (2.3)

where
\F(iJ,n)\ is the grey level intensity at pixel co-ordinates i,j in 

frame n.
|F(iJ,n -  1)| is the grey level intensity at pixel co-ordinates i,j in 

frame n-1.
E(ij,n) is the edge strength at pixel co-ordinates i,j in

frame n.

If DE is greater than some pre-set threshold, the pixel would be classified 
as a moving edge. The main points put forward for using 2.3, were that a 
pixel could only generate a large value if it had both a large difference 
value and a large edge value. There would also be a requirement for one 
and not two thresholds values thus reducing one of the areas where vision 
systems can be made to work in one instance and not another. This point 
would tend to move the vision system away from a general form to a 
specific form. The edge strength was determined using a Sobel operator. 
The Sobel operator has been shown to produce accurate values for the 
direction of the edge (Kittler [21]). The moving edges found in the current 
frame are stored and compared with the moving edges found in the 
previous frame. The values that corresponded to the difference in co-
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ordinates of the moving edges are used to increment a Hough accumulator 
cell whose parameters where expressed in terms of the difference in pixel 
co-ordinates. The system worked well but was limited to tracking only one 
object and it had problems tracking that object if the object rotated or 
moved away from the camera.

All tracking systems so far discussed have used monochrome images. 
Brock-Gunn [18], developed a system for tracking people in crowded 
scenes by using colour templates. The system examines the colours of 
objects that are moving in the scene and translates these colours into a 
template space. The templates are then matched with a pre-stored data base.

A simple frame differencing technique is used to generate object cues. The 
difference image is thresholded so that objects below a certain size are 
removed and for each of the remaining objects a four dimensional template 
(three colour and one spatial) is calculated. The templates are tracked by 
using a comparison technique, where each template is compared to one in 
the data base. The use of a four-dimensional template will mean a task of 
matching over 65000 pairs of values, which would take a considerable 
amount of computational time. To overcome this problem a hierarchical 
approach is used to perform the template matching where a pyramid of 
templates are calculated for each object. The pyramid gets progressively 
coarser, going from four-dimensions with 16 bins (65536) to four- 
dimensions with 2 bins (16). The generation of the new templates at each 
resolution effectively involves averaging the finer resolution bins, requiring 
a minimum of processing time to calculate the lower resolution templates.

The matching starts at the coarser resolution, where the matching process 
still contains sufficient information to dismiss incorrect matches and only 
the object templates that match go on for further processing at the finer 
resolution. The advantages of this hierarchical approach are self evident, 
with the computation saving in the order of twenty for a database size of 
thirty, this rapidly increases as the size of the database is increased. 
Experimental results of the system demonstrated that two people can be 
tracked even when one person occluded the other, the system successfully 
re-acquired the occluded person as that person became visible to the 
camera. The hierarchical approach worked well for dissimilar looking 
objects, however for objects that are similar in appearance (same colour 
structure and size), then these were found to require the higher resolution 
templates to resolve the matching.

The general nature of the system demonstrated that it was capable of 
tracking objects of similar size and shape even if those objects have 
irregular motion and go through occlusion. If a large database is necessary
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then the hierarchical approach to the template matching can be 
computationally very efficient, further enhancing the system performance.

Gong [22] addressed the issues of focused computation in computer vision 
using a scheme to link scene-oriented contextual knowledge and 
computational constraints to perform visual motion segmentation and 
tracking in a road traffic scene. The approach claimed that perception is 
really an opinion on the state of affairs in the world rather than a passive 
response to sensory stimuli. It emphasised the importance of focused vision 
using explicit contextual knowledge to constrain the computational 
requirements of the system in a framework that dynamically determines the 
way the visual modules function.

The studies showed that it is possible to link contextual knowledge of 
visual behaviour to an appropriately linked network of chosen parameter 
sets. Thus the issue of mapping knowledge to computational constraints 
resides in how explicit contextual knowledge can be represented as 
distributed implicit parameter sets and what computational mechanisms are 
used to manipulate these parameters sets. Using a Bayesian network for the 
knowledge representation (belief network) it demonstrated that improved 
consistency in segmentation and tracking in the VIEWS system can be 
obtained for a small computational overhead introduced by mapping 
explicit knowledge to computational constraints.

2.5 Structure.

It has already been highlighted how complex the task is to identify and 
track man made objects moving in a natural open world scene. This task 
has been accomplished to varying degrees of success with several different 
image processing systems and techniques. One of the objectives of this 
research was to construct some form of representation of the structure 
within the scene, a symbolic map that represents that structure prior to or 
during the tracking. With this map it may be possible to predict object 
occlusion and identify the regions in the image that are associated with 
object motion.

Xu Li-Qun [23], presented research on building a model of a road junction 
using moving vehicle information. The constructed model, specified the 
ground plane orientation in camera co-ordinates and the position of traffic 
lanes. The model was constructed based on the movement of vehicles in 
the scene and no static analysis was performed at all. The developed system 
used the differencing between two consecutive frames of image data based 
on the absolute difference between the convolution of two Sobel templates
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to determine motion cues. Threshold values used were determined by use 
of the mean of the local minima in the smoothed histogram of the absolute 
difference between image frames. The difference regions generated were 
grouped using an 8-neighbourhood connectivity method to form a 
bounding rectangle. The establishment of feature correspondence between 
the two related images uses a method where the path coherence and motion 
smoothness form a similarity matrix. In the similarity matrix are 
measurements of height, position and width, which are used to form a 
template. This template is matched with calculated features in the next 
frame. Problems of discontinuous objects found in each frame are dealt 
with by the assumption that this is a new object. This simple object 
tracking method was found to be adequate if not optimal for tracking.

It was found that applying more optimal methods for solving the feature 
correspondence between frames (such as [24]) were not significantly better 
but increased the computational cost for solving the correspondence 
process. The ground plane estimation was based on the fact that under 
perspective projection, parallel lines in a 3 dimensional scene form a fan of 
lines in a 2 dimensional scene. These lines all intersect at a common point, 
this point is called the vanishing point. The vanishing points are 
determined by segmenting the trajectories into straight line segments and 
using a parameterised Gaussian hemisphere together with a hierarchical 
Hough transform to find the vanishing points. Given two vanishing points, 
it is possible to obtain the ground plane parameters up to a certain scale 
factor.

Each line segment should pass through a vanishing point and the 
orientation between the trajectory line and the horizon is measured. These 
measurements are weighted by the duration in time of the trajectory and 
then inserted into a histogram. Smoothing the histogram and finding local 
maxima yields the lane centres and taking a bisection of the centre in the 
direction of the segment gives the lane boundaries. The system 
demonstrated that by making certain suitable assumptions a model of a 
traffic scene could be constructed. Figure 2.8 on the next page shows the 
tracking trajectories found by the system and the estimated horizon 
together with the lane structure determined by the system superimposed on 
the original image.

Stat [25] describes results of ongoing work in context based vision which is 
trying to recognise objects using both 2 dimensional and 3 dimensional 
information. The system analyses complex outdoor scenes and using 
simple procedures, processes colour and stereo monochrome images to 
build a scene description of the image. One of the major problems in 
analysis of natural scenes is that natural objects do not have uniform shapes
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and as the local surface properties of these objects is variable, it is difficult 
to uniquely determine their identity. Explicit contextual knowledge is used 
to control the decision making process involved in identifying the natural 
objects in the scene. The developed system, 'condor', integrates information 
obtained from both 2-D and 3-D images and uses a consensus of many 
simple procedures to achieve reliable results. It exploits contextual 
information to aid its recognition process and augment its own database of 
contextual information with the results of its own recognition process.

Figure 2.8 Trajectories found by the tracking system (top & 
middle rows), the lane structure superimposed on the 
original image (bottom left) and the trajectory line 
segments together with estimated horizon position (bottom 
right), (Xu Li-Qun [23]).
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This technique improves the system performance incrementally over time. 
The 'condor' system eliminates the traditional dependence on stored 
geometric models and the usual image segmenting algorithms providing a 
basis for semantic interpretation of the image. The system only analysed 
static images and does not take into account any motion in the image.

Toal et al [26] developed a knowledge based system for spatio-temporal 
reasoning within a traffic surveillance system. The system integrated a 
perception component which detects and recognises the vehicle trajectories 
and a situation assessment component which understands a situation as it 
develops over time. The system required additional modules for the real-
time control and scene acquisition together with behavioural knowledge of 
the objects in the scene.

The main exemplar the system was tested on, concentrated on a roundabout 
where a lorry occluded a saloon car, with the saloon car later re-emerging 
from behind the lorry. Perceptual processing involves the detection, 
tracking and classification of the visible moving objects. This information 
is given by updates at different levels of analysis and speed of processing. 
These estimates are always with respect to the ground plane and are passed 
to the situation assessment module in a basic form of <label, position, 
time>. The first level processing deals with events such as starting/stopping 
and entering/exiting, the next level deals with consistency checking and 
maintains space time histories of vehicles moving in the scene.

The paper highlighted that a vision tracking system must be able to 
overcome problems of occlusion and any situation assessment process must 
be able to maintain a long term memory capability. This enabled the 
situation processor to keep high level explicit representations of total 
occlusions that occur in the dynamic scene, coupling the behavioural 
knowledge to aid the relabelling of objects that have become occluded and 
then re-emerge in the scene.

The multi-purpose representation maintains the structure of the world. Key 
static knowledge requirements are conversion of the ground plane 
geometry into meaningful regions and a description of the connectivity of 
those regions. The tracking system also requires a means to represent 
dynamic information such as the identifying areas occupied by a vehicle, 
the velocity and orientation of that vehicle and any inter-vehicle 
orientations and distance. The perception component of the system is based 
on the VIEWS configuration as detailed by (Sullivan et al, [27]).

In the case of tracking being lost by total occlusion, mechanisms for re-
acquiring the object based solely on velocity have been found to be poor
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performers in the long term due to the unpredictable vehicle manoeuvres 
that an occluded vehicle might make. The situation processor maintains an 
occluded by relationship that defines in the image a potential emergence 
area. This area aids in relabelling the vehicle when it reappears in the 
image. During a typical occlusion a number of situations may develop, 
such as vehicles may emerge from occlusion or vehicles may join the 
occlusion. The occluding vehicle may itself become occluded, the occluded 
vehicle may exit the scene and the occluded vehicle could become 
occluded behind vehicles that are already occluded. To overcome these 
problems behavioural knowledge is used to disambiguate the labelling 
problems as vehicles emerge. The exemplar demonstrated that the system 
could deal with total occlusion and develop spatio-temporal histories for 
use in a behavioural evaluation.

2.6 Discussion And Summary.

Section 2.2 of this review looked at the problems and complexities in using 
model based techniques to identify man made vehicles in natural open 
world scenes. The work carried out demonstrated that it was not only 
possible to identify a man made object in a scene but it was also possible to 
recover the pose of the object and fit a three-dimensional model of the 
object to the image data. The techniques developed for the recognition 
process were further expanded in section 2.3 to show that model based 
techniques could be used to identify, segment and track a vehicle moving 
in a road traffic scene with successful results (Worrall et al [2]).

However, one of the major points with these techniques is the fact that the 
vehicles generally occupy a significant proportion of the image (perhaps 
15% or more of the image). With my research the vehicles are expected to 
be a large distance from the camera and hence will only occupy a small 
area of the image and under these conditions model based techniques are 
expected to be less successful.

Roller’s tracking system (Roller et al [17]) did track vehicles at street 
intersections where the vehicle size in the image varied from 30 by 60 
pixels to 20 by 40 pixels across the sequence, (more comparable with 
vehicle sizes I shall be tracking). Their work emphasised the complexity in 
tracking objects that only occupy a small part of the image. However the 
vehicles being tracked were moving across a road intersection. This type of 
scene reduces the edge clutter in the image because the roads, being man 
made, tend to be smooth and so produce fewer edge pixels. If the vehicles 
to be tracked only occupy a small proportion of the image and are moving 
in a open world scene which will have many natural features, then the
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amount of background edge clutter will be significantly larger. This 
background edge clutter can have edge pixel boundaries with a stronger 
edge response than the actual vehicle to be tracked. These clutter edges 
make the matching of a 3-D model of the vehicle to the extracted edge 
information far more prone.

When the object to be tracked only occupies a small area of the image, it 
has been found that matching crude object descriptors is more robust, 
(Rosin [3], Teal [4]). Section 2.4 highlighted the fact that when the objects 
to be identified and tracked were at a larger distance from the camera then 
model based methods tended to fail and instead of trying to match complex 
models to the image data, the matching of simple object descriptors provide 
a more robust method for tracking.

The work by Xu Li-Qun [23], showed that it was possible to track vehicles 
moving in a traffic scene using simple techniques and still achieve accurate 
and robust results. From these results it was possible to build a 
representation of a traffic scene based only on the motion of the objects 
moving in the scene. Again however the vehicles were close to the camera, 
the camera being mounted approximately 25 meters above the road 
junction. This shows that complex techniques are not required and that 
tracking can be achieved using knowledge of the objects motion 
characteristics and the context in which the tracking system is being used.

Static analysis of open world natural scenes has been widely researched 
with many schemes, systems and algorithms being developed to build up a 
representation of the structure within the scene ([25], [29], [30]). They 
make use of specific object models and tend to analyse open world scenes 
where objects to be identified in the scene and on which the interpretation 
of that scene is to be performed are close to the camera.

This research is concerned with the identification and tracking of man 
made objects moving in a natural open world scene where these objects are 
expected to be a large distance from the camera. If the tracked object 
becomes occluded, then the fact that the tracked object has become 
occluded behind a static object in the scene is of interest, not the fact that 
this static object is a hedge or a wall and as such these systems yield little 
usable information.

The man made objects of interest here are vehicles and as such will have a 
rigid not articulating geometry, but at a large distance from the camera 
coupled with the fact that they can be viewed from any angle, these objects 
only occupy a small proportion of the image pixels. With reference to 
figure 2.1, it is self evident that the lighting conditions can vary across the
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entire scene causing illumination changes and shadows that make edge 
based model matching analysis difficult as the scene will yield a 
considerable amount of edge clutter. This edge clutter has already been 
shown to make model based tracking particularly difficult. This of course 
does not include the added complexity of self occlusion, occlusion by 
another tracked object and occlusion by a static object in the field of view.

In addition to these problems must be added the large range over which the 
system has to identify and track objects. The tracked objects at large range 
may only occupy 30 by 40 pixels. Consequently very little information is 
available for a model based tracking method. To this fact must be added 
that model based methods require specific geometric models of the scene, 
knowledge of where the ground plane is and a camera model. With 
reference to figure 2.1, the identification of the roads, ground plane etc 
would be a considerable task in its self and would require camera models 
for a large number of areas of the image (Rosin, [3]).

The identification and tracking system being developed by this research is 
to have no initial specific geometric knowledge of the scene. Therefore the 
system being developed will have to be able to detect and track using a new 
form of identification and tracking process. Rosin [3] has shown that the 
matching of crude object descriptors can be more robust for tracking when 
the objects to be tracked have poor spatial resolution. Ballard has suggested 
that vision is best understood in terms of the context of visual behaviours in 
which the vision system is engaged as these behaviours often do not require 
elaborate representations of the three-dimensional world (Ballard, [28]).

As already outlined the system will have no specific geometric knowledge 
of the scene, it is to be a ‘plug and go’ system. The ideas of Toals grammar 
based system maintaining history files of objects being tracked (Toal, [26]), 
will be extended to deal with occlusion of objects being tracked. Using the 
history of tracked objects, regions in the image will be associated with 
dynamic events.

These dynamic events effectively map out areas in the image where objects 
can be expected to be observed moving. Breaks in the trajectories of 
tracked objects could define regions where objects may become occluded 
behind other objects that are in the field of view. These regions effectively 
form a structural representation of the scene (a map). This structural 
representation of the scene is generated on a frame by frame basis with 
continual updating every time new objects are tracked in the scene. If the 
motion is seen on a regular basis in certain regions of the image, this would 
further increase confidence, that the region is associated with vehicle 
motion (a road for example).
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Chapter 3
System
Overview.
3.1 Introduction.

When tackling complex problems a frequently used approach is to split the 
problem up into several smaller tasks (modules). Each of these modules is 
then solved independently of the others. When the smaller tasks have been 
implemented and tested, they can be gradually recombined (system 
integration). The integration process highlights if there are any problems 
with the modules. If a problem is to be tackled using this approach, then 
some form of structured analysis and design methodology is required to 
ensure that the developed system meet its functional requirements.

Throughout this research, the YOURDON structured analysis and design 
methodology has been used for the development of the machine vision 
system. Appendix A of this thesis gives an overview of the YOURDON 
structured analysis and design methodology.

Complex image processing systems require a visual control strategy, which 
will dictate the processing and flow of information through the system. 
Generally two possible control strategies can be employed; namely: 
Hierarchical control and Heterarchical control. Hierarchical control systems 
operate by controlling the flow of data through the system in either a 
bottom-up or top-down manner. A bottom-up system is where the control 
process is data driven, starting with raw image data it proceeds to segment 
structures, produce geometric relationships and finally produce decisions 
based on the processed image data.

A top-down system is where the control strategy is driven by an internal 
model where high level models in the knowledge data base generate 
expectations and/or predictions of the geometric, segmented or image 
structure that is in the input data which is then verified.
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This form of strategy is commonly implemented in a hypothesis and test 
procedure where an initial hypothesis is made, the system attempts to verify 
this by calling high level modules which process the image to produce data 
that either supports or dis-proves the initial hypothesis. This control method 
has an advantage over a bottom-up control strategy in that the evolving 
hypothesis can be used to guide the processing, choosing one from a 
number of methods for extracting information from the image data, 
whereas in bottom-up, all the image processing methods are run 
simultaneously.

Heterarchical control uses a combination of both top-down and bottom-up 
control and can sometimes yield better results. For example an initial 
bottom-up control could be used to generate the most likely hypothesis that 
then invokes a top-down strategy. The image processing system being 
developed here is mainly data driven. It requires information derived 
directly from the input image data, and as such a bottom-up control strategy 
has been used.

3.2 Overview of the system.

When designing any system, the first major task is to identify the input and 
output information. The context diagram in figure 3.1 identifies all the 
external interfaces to the system (the terminators) together with the data 
that will flow to and from these interfaces. From this diagram and by 
analysing the aims and objectives of the image processing system that is to 
be developed by this research, a first level DFD for the target tracking and 
image interpretation system was designed and is shown in figure 3.2.

The first level DFD identifies the main processing tasks and how the 
processed data from these tasks will flow through the system. From the 
level 1 DFD the data processing tasks identified are:

(i) Process 3:- ‘Acquisition And Motion Detection’.

(ii) Process 4:- ‘Target Identification And Tracking’.

(iii) Process 5:- ‘Spatial-Temporal Reasoning’ 

and the control processing tasks identified are:

(v) Process 1:- ‘Goal Processor’.

(vi) Process 2:- ‘Graphics User Interface’.
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Figure 3.1 Context diagram for the target tracking and 
image interpretation system.

Figure 3.2 Level 1 DFD for the target tracking 
and image interpretation system.
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3.2.1 Data Processes.

(i) Process 3 ‘Acquisition And Motion Detection’.

This processing task has four sub-processes to perform, namely

(a) acquire intensity images from the sensor.
(b) filter the images to reduce noise.
(c) produce reference image data for the motion detection.
(d) generate motion cues based on the differences in statistics between 

the current input frame of image data and the reference frame of 
image data.

This task performs processing in the following order ‘a’, ‘b’, V  and
finally ‘d \ The acquisition and motion detection process then returns a 
status signal indicating the results of the processing just executed. This 
task’s processing actions can be overridden by the goal processor in that 
only certain processes may be called; thus the goal processor can alter the 
processing requirements of the acquisition and motion detection process.

(ii) Process 4 ‘Target Identification And Tracking’.

This processing task has two sub-processes to perform, namely

(a) initial object identification.
(b) tracking.

The process determines which motion cues are objects and which motion 
cues are targets (vehicles). It tracks both objects and targets, generating 
target and object data. Processes 4 performs its processing tasks ‘a’ first 
then ‘b’, a status signal is returned upon the completion of sub-process ‘b’ 
indicating the status of the processing just carried out by the target 
identification and tracking process.

(iii) Process 5 ‘Spatial-Temporal Reasoning’.

This processing task has two sub-processes to perform, namely

(a) spatial analysis
(b) spatial reasoning

This process constructs a symbolic map of the image based on the motion 
of targets moving within the image. It defines areas where targets are likely 
to be observed moving, and areas where targets could become occluded.
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It takes data from the target identification and tracking process and analyses 
the target tracks across multiple frames. It attaches a statistical probability 
to each identified region. The probability value effectively gives an 
indication to the confidence with which the region has been identified in 
the map. As with processes 3 and 4, the spatial-temporal reasoning process 
performs first task ‘a’, then ‘b’ and a status signal is returned indicating the 
status of the processing just carried out by the spatial-temporal reasoning 
process.

3.2.2 Control Processes.

(v) Process 1 ‘Goal Processor’.

The goal processor controls the entire system; it is responsible for two main 
tasks, namely

(a) belief maintenance

(b) goal achievement

The goal processor first performs all initialisation required by the system. It 
carries out the task of belief maintenance, a passive background data driven 
activity that keeps beliefs consistent and updated. The goal processor is 
also responsible for the goal achievement of the system, an active 
knowledge driven foreground activity that consists of planning all future 
system activities. It also performs all the systems error detection and 
correction activities to ensure that the processing carried out by the system 
is consistent with the aim of the system.

(vi) Process 2 ‘Graphics User Interface’.

The graphic user interface provides an interactive capability between the 
user and the image processing system. It permits the user to display results, 
alter processing priorities, take alternative error corrective actions and 
override system decisions.

The three data transforms form the core of the image processing required 
by the system and all the image processing carried out by these data 
transforms, together with the results of intermediate processing carried out 
within each task, is written to the processed image data store. All data 
written to the processed image data store is accessible to the user via the 
graphics user interface.
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3.3 Discussion and Summary.

The YOURDON structured analysis and design methodology has been 
extensively used in the analysis, design, and development of the target 
tracking and image interpretation system. Section 3.2 used YOURDON to 
analyse the main interfaces to the system (context diagram) and build a top 
level design for the target tracking and image interpretation task (level 1 
DFD). The first level DFD shows the key data and control processes, 
together with how the processed data will flow around the system.

A brief explanation of each of the data and control processes has been 
given and appendices B and C show the complete behavioural and 
environmental models developed during this research for the system. The 
actual implementation has been undertaken using the C++ programming 
language, the developed code has been written using Borland’s C++ 
compiler version 3.1 for the DOS environment.
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Chapter 4 
Acquisition and 
Motion 
Detection.
4.1 Introduction and Overview.

It has been demonstrated that motion can be extracted from monochrome 
images obtained from a static camera using a frame differencing technique 
to perform the motion detection (Rosin [3], Picton [19], Brock-Gunn [18], 
Karmann [86]). The level 1 DFD for the system (figure 3.2) has identified 
that the task of motion detection will be carried out by the ‘acquisition and 
motion detection’ process. After initialisation the first processing task the 
system must perform is to acquire images from the sensor and determine if 
there was any motion in those images. Analysis of image acquisition and 
motion detection process, identified that this task can be broken down into 
four smaller data processes. A second level data flow diagram describing 
these processing tasks is shown in figure 4.1 on the next page. The four 
process identified are:

(i) acquiring the images.
(ii) filtering those images (noise removal).
(iii) reference data generation (if required).
(iv) motion cue generation.

The level 2 DFD does not show the dynamic behaviour of the image 
acquisition and motion detection sub-processes, i.e. the order in which 
these processing tasks are going to be performed. To do this we require a 
state transition diagram. Figure 4.2 on the next page shows the state 
transition diagram for the 'acquisition and motion detection control'
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process. This diagram describes the dynamic behaviour of the image 
acquisition and motion detection process.

Figure 4.1 Acquisition and motion detection Level 2 DFD.

Figure 4.2 Acquisition and motion detection control 
State Transition Diagram.
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Each of the four data transformation processes generates a control signal 
upon completion of its processing. These control signals are used as 
conditions to traverse the state transition diagram generating the trigger or 
enable signals that control the processing and flow of data through the 
acquisition and motion detection process. Upon receipt of an enable signal 
from the 'goal processor', the 'acquisition and motion detection control' 
generates a frame request to the image sensor which supplies a frame of 
image data to the system (the intensity image). A trigger is then sent to the 
'image filtering process'.

The image filtering process applies a median filter to the intensity image 
producing the ‘filtered intensity image’. Upon completion of its processing 
the image filtering process passes a filter status control signal back to the 
acquisition and detection control process. The filter status signal triggers 
the 'motion detection process', which performs statistical analysis on fixed 
size areas of the filtered intensity image.

This process calculates the difference between the current frame of image 
statistics and a reference frame of image statistics. The results of this 
operation provide regions of interest in the image where object motion may 
have occurred (motion cues). Upon completion of its processing the motion 
detection process passes a motion status control signal back to the 
acquisition and detection control process.

The motion status signal enables the 'update image reference process' 
which uses the results generated by the 'initial target analysis process' 
(chapter 5) to determine if a new set of reference image data needs to be 
generated. After analysis of the perceived motion in the image is complete, 
the acquisition and motion detection control process receives an update 
reference control signal. If new reference image data is required then the 
'image reference generator process' is enabled, which then generates new 
reference image data based on the current frame (intensity image).

Finally the acquisition and motion detection control process passes an 
acquisition status word to the 'goal processor', indicating the status of the 
processing carried out this frame. The filtered intensity image, reference 
image data and the motion cues are all written to the 'acquisition, motion 
and reference data store'. This store is accessible by the rest of the system.

4.2 Image Filtering.

The images used to test the system were obtained from a static camcorder 
set up to film sequences of open world scenes where objects (typically
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vehicles) were moving in that scene. The output from the camcorder was 
later digitised to disc as a 768 by 576 pixel intensity image with 8 bits per 
pixel using JPEG coding. From these 768 by 576 images, 512 by 512 pixel 
images were generated by taking the centre 512 pixels only. The camcorder 
images are initially recorded onto tape and later played back into a image 
digitisation system. This form of image generation results in noise being 
added to the image. Noise has been added to the image from:

the camera, (optics, digitisation, etc) 
recording onto tape, 
playing the recorded image back, 
the digitising processes (JPEG etc).

The noise added from these sources will be accumulative and complex to 
analyse. However I have assumed that this accumulative effect may be 
approximated by a Gaussian distribution and that spatial filter operators 
will reduce the effects of the accumulated noise. The noise added to the 
image will have the effect of generating false motion cues and edge clutter. 
These effects need to be minimised by some form of filtering operation. 
Spatial filter operators can be used to suppress noise in an image due to the 
fact that noise generally has a higher spatial frequency spectrum than 
normal image components and may be effectively reduced (smoothed) by 
using a low pass filter.

If we consider a general 2D convolution operator:

G(i J)= X„ X„, P(x,y)H(x -  i,y -  j) (4.1)

where
G(iJ) is the output image.
P(x,y) is the input image.
H  is a convolution mask.

For a low pass filter, typical masks available are simple average, centre 
emphasis, centre plus neighbourhood emphasis; these are only a few of the 
common low pass filter operators available to smooth out noise. Each mask 
contains a scaling factor to give the filter an overall gain factor of unity. 
The filter works by convolving the weighted masks with the image pixels, 
summing the results of the convolution process and multiplying the result 
by the scaling factor gives the new pixel value. A problem with using a 
simple averaging filter to overcome noise in an image, is that it tends to 
smooth out image features such as edges. Edges can be an important 
feature in motion analysis and need to be retained, therefore a simple
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convolution filter is required that suppresses the noise but retains edge 
information.

4.2.1 Median Filter.

Median filters are effective at removing noise from an image. The median 
filter retains image details such as edges. This is due to the fact that unlike 
general spatial low pass filters that convolve a weighted mask with the 
image pixels to obtain a new pixel value, the median filter works on the 
spatial areas of the image by sorting the image pixels into an ascending 
order by grey level value. The value in the middle of the sorted grey levels 
is used to replace the centre pixel in the local neighbourhood of the image.

The acquisition and motion detection control process triggers the image 
filtering process, which applies a 3 by 3 median filter to the image. Upon 
completion of the filtering operation the image filtering process returns the 
filter status signal to the acquisition and motion detection control process 
which indicates that the image filtering is complete. Figures 4.3(a) and 
4.3(b) show an original image input (intensity image) as supplied by the 
image sensor to the system and the results of applying the median filter to 
the image (filtered intensity image).

Figure 4.3(a) Original image 
image (intensity image).

Figure 4.3(b) Median filtered 
(filtered intensity image).

4.3 Motion Detection.

With the open world scene that is of interest here (figure 2.1) there is a 
wide field of view. This creates problems with variations in intensity of 
individual pixels due to illumination change. In addition to this problem
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there can be apparent motion in the scene due to the grass, bushes or trees 
moving in the wind, shadows from clouds and movement by the camera. 
These problems all contribute to making areas in the image appear to be in 
motion, when to all intents and purposes they are either static background 
objects (grass, bushes, trees etc) or do not exist (cloud shadows, camera 
movement). To alleviate these problems a pyramid has been adopted. 
Levels in the pyramid are created by simply averaging square pixel regions 
of different sizes. This effectively smoothes out small pixel variations 
(false motion cues).

However this smoothing processes reduces the image resolution by a factor 
2n where n is the size of the square pixel region that will be averaged. This 
averaging process affects the distance at which objects of interest can be 
detected (resolution). Experiments were carried out to determine which 
level in a pyramid of averaged square pixel regions would give best 
performance at rejecting false motion cues whilst detecting actual motion 
cues. Square pixel areas of 2 by 2, 4 by 4 and 8 by 8 were used. Figure 4.4 
below shows the actual number of motion cues generated for an input 
sequence of open world images.

Labels Generated
140

120 -

100 -

80 -

60 -

40 -

20 -

0

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71
Frame No

Figure 4.4 Plot showing the total number of motion cues 
found per frame using an open world image sequence for 2 

by 2, 4 by 4 and 8 by 8 square pixel regions.
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From figure 4.4 we can see that the number of false motion cues generated 
was reduced the larger the area of pixel averaging. From this we can 
conclude that an 8 by 8 pixel region should be used. However it was 
detected visually that motion cues were lost when vehicles travelled down 
the road into the cove. In fact at this level in the pyramid only vehicles on 
the entry\exit road were detected. This is due to the loss of resolution 
caused by the averaging process. The 2 by 2 pixel region generated motion 
cues for all vehicles observed moving in the scene. But the number of false 
motion cues generated by this level in the pyramid (grass and bushes 
moving in the foreground) would result in a large number of false motion 
cues having to be processed.

The 4 by 4 pixel region provided a compromise between the number of 
false motion cues generated and the range from the camera that vehicle 
motion could still be detected. By observation of the motion cue sequence, 
vehicles could still be detected moving within the image at this resolution, 
whilst the number of false motion cues was reduced by approximately 30% 
across the 75 frames of the input image sequence. From figure 4.4 level 2 
in the pyramid gives the best compromise between false motion cue 
generation and target resolution, therefore only level 2 in the pyramid will 
be used.

Using a pyramid structure and a frame differencing technique for motion 
detection, identifies two distinct data process, namely, statistical analysis 
(generation of level two in the pyramid) and motion cue generation. The 
motion detection process was therefore broken down into a third level 
DFD, which is shown on the next page in figure 4.5.

When triggered by the ‘acquisition and motion detection control’, the 
'motion detection control’ triggers the 'image statistics process' this 
calculates the mean and standard deviation of fixed four by four pixel 
regions in the filtered intensity image. A 4 by 4 pixel region defines a 
single statistical image tile. Upon completion of the statistical analysis the 
image statistics process returns a statistical status control signal to the 
motion detection control process to indicate that the statistical processing is 
complete.

The motion detection control then enables the 'image motion cues process'. 
This process uses a standard t-test, [32] to identify significant changes in 
the grey level statistics between the reference frame of image statistics and 
the current frame of image statistics. Regions of the image where there is 
no significant difference (null hypothesis) shows that there was no motion 
in that region. However regions that show significant difference 
(alternative hypothesis) are areas where motion may have occurred. The
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hypothesis testing effectively forms a statistical difference map which 
defines regions in the image that may contain motion.

frame count

Figure 4.5 Level 3 DFD for the motion detection process.

4.3.1 Image Statistics.

The image statistics process calculates the mean and standard deviation for 
each image tile in the current input image frame based on groups of 16 
pixels. These groups are arranged as 4 by 4 non-overlapping regions 
(image tile). For each region its mean pt and standard deviation <rt are 
calculated using 4.2 and 4.3 respectively.

tile mean pt

x X £  P(x + Ax,y + Ay)
Ax=\ Ay=l

tile standard deviation crt

Pt(x,y) =yl6 (4.2)

where

<Jt(x,y)= 1/16 x 2
A*=l

Z ( p(x + Ax,y + Ay)-ft,)2 (4.3)

P(x,y) is pixel magnitude at position (x,y) in the image

The statistical analysis generates the second level in the pyramid. This is 
shown diagramatically in figure 4.6 on the next page.
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Figure 4.6 Statistical Image Tile Plane.

The statistical technique reduces the resolution of the image from 512 by 
512 pixels to 128 by 128 tiles. This reduction in resolution (a factor of 16) 
can be tolerated as objects of interest moving within the scene including 
object orientation changes have been found to be still detectable at the 
required distances, (Teal et al, [4]). Objects of interest occupy several or 
more statistical tiles depending on their exact distance and orientation from 
the camera. The reduction in resolution becomes a problem for objects 
moving at distances further away from the camera, typically ranges above 
500 meters.

4.3.2 Image Motion Cues.

One of the simplest techniques for detecting the changes between 
consecutive frames of image data is to use a difference image (Jain ,[33]). 
If f(x, y, tj) is a reference frame of image data taken at a time t, and f(x, y, 
tj) is a frame of image data at some time tj, where tj is later than t, then a 
difference image may be defined by

djj(x,y) = 1 if |f(x, y, tj) - f(x, y, tj)| > 0, (4.4)
0 otherwise

where 0 is a pre-set threshold.

The difference djj(x,y) has a value 1 at spatial co-ordinates (x,y) only if the 
grey level difference between the two images is above the threshold. This 
form of motion detection relies on the illumination between images 
remaining relatively constant within the limits set by the threshold 0. In an
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open world natural scene there will be motion value entries in dy(x,y) as a 
result of noise and illumination changes in the image. The statistical 
analysis however provides a set of statistics for the image tiles, where the 
mean represents spatially smoothed areas of the original image. This 
averaging process reduces noise due to variation in pixel intensities at the 
cost of resolution of objects to be identified and tracked. The differences 
between two frames of statistical tile data dy(x,y) can be determined using 
a standard t-test, [32]. The t-test identifies tiles that have no differences (the 
NULL hypothesis) or tiles that have significant differences in their grey 
level statistics (the ALTERNATIVE hypothesis).

Consider:

a 2 = ((m - 1) W  +(m -  l)*a;2)/fo, + m  -  2) (4.5)
where

a 2 is the 'pooled estimate of variance' 
nj = n2 = 16 pixels (size of 1 image tile) 
a ref2 is the variance of a reference image tile 
CT,2 is the variance of a current image tile

and
nL + n 2-2 = 30 degrees of freedom.

The variation in statistics is given by

A -  (¡u/; -  \iirej)/ a  JCL/m+Vm) (4.6)
where

pti is the current tile mean.
plref is the corresponding reference tile mean.

For a significance level of 5%, we can evaluate a test measure from the
table of percentage points of the t-distribution:
then

d(x,y) = 1 if | A | >= 2.042 (4.7)
0 otherwise

If the statistical difference image dy(x,y) has tiles with a value 1 at spatial 
co-ordinates (x,y), they are considered to be due to the result of motion in 
the image. Tiles with a value 0 at spatial co-ordinates (x,y) are as a result of 
no detectable motion in the image. The resulting statistical difference 
image is now scanned in a raster scan order using an 8 region 
neighbourhood connectivity operator. Single instances of statistical tiles 
showing motion are removed from the statistical difference image. The 
results of the current image motion cue processing is added to a store of
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previous image motion cues found. This effectively builds an accumulated 
motion cue image (Jain, [35]) showing all areas of the input image 
sequence where motion has been detected. The current image statistics, the 
current motion cues and the accumulated motion cues form the motion cue 
data and are written into the acquisition and motion detection store. Upon 
completion the motion detection control generates a motion cue status 
signal to the acquisition and motion detection control indicating the 
completion of the motion detection process.

Figures 4.7(a-d) are four input frames from an image sequence show a car 
park scene (lower left hand side of the image). The car park has a single 
entry\exit road (left hand side of the image slightly above centre) which 
joins a main road (just above the centre of the image), the main road travels 
down into a cove (top left hand side of the image). A vehicle is seen 
leaving the car park and becoming occluded behind a hedge. The vehicle 
later re-emerges from behind the hedge, but it is still partially occluded.

Figure 4.7(a) Input image frame 3. Figure 4.7(b) Input image frame 5.

Figure 4.7(c) Input image frame 7. Figure 4.7(d) Input image frame 9.
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Figures 4.8(a-d), show the motion cues generated by the motion detection 
process for the input image sequence shown in figures 4.7(a-d). Figure 4.9 
shows the accumulated motion cues generated across this complete input 
image sequence, demonstrating that vehicles can still be tracked despite the 
statistical process reducing the image resolution by a factor of 16.

Figure 4.8(a) Motion cues frame 3. Figure 4.8(b) Motion cues frame 5.

Figure 4.8(c) Motion cues frame 7. Figure 4.8(d) Motion cues frame 9.

Figure 4.9 Accumulated motion cues.
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4.4 Update Image Reference.

When using a static camera and a frame differencing technique to perform 
motion detection, there are two important requirements that such systems 
must meet. The first is that there must be no camera motion between 
consecutive frames of image data at any time, the second is the generation 
of the background image data that will be used as the reference against 
which current images will be compared. It can be difficult to ensure that the 
camera remains static at all times and undesired motion arising from the 
camera moving between consecutive image frames usually occurs due to a 
wind or ground disturbance. Disturbances from either source generate large 
numbers of differences between the current frame of image data and the 
reference frame of image data, leading to an excessive number of objects to 
analyse.

To limit the effect of these problems, the maximum number of objects 
found per frame by the 'target identification and tracking process' (chapter 
5) is limited to 64, with any number of objects greater than this being 
removed. If the target identification and tracking has to limit the number of 
objects found in a frame, then that frame number and the object count for 
that frame are stored as an error vector in the ‘Initial Object Description 
Table’ (table 5.2) calculated by the ‘initial target identification process’. If 
the system has to continually limit the number of objects found per frame, 
then this could be an indication that the background reference image data is 
no longer a true representation of the background of the image. This could 
perhaps be due to fluctuation of the light intensity level in the scene. 
Alternatively the camera may be in motion due to one or more of the 
highlighted disturbances. The motion of the camera could have been caused 
either in this frame or when the reference image was generated. If the 
camera motion occurred in this frame, then the disturbance will probably 
be temporary, which can be detected and compensated for.

If excessive motion is occurring every frame or nearly every frame, then 
that motion is probably due to the camera being in motion when the 
reference image was generated, in which case the reference image needs to 
be updated. The system uses multi-level reference images for the motion 
detection and initial target identification processes. The filtered intensity 
image is used to generate reference statistics and reference edge data 
(section 4.5). The motion detection process uses differences between the 
reference image statistics and the current image statistics to determine if 
there was any perceived motion in the image. These motion cues are used 
to focus the initial target identification process which is performing an 
initial identification of the motion found in the image. The reference
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filtered intensity image is therefore essential to both the motion detection 
and identification processes.

The selection of a reference image for motion detection using a frame 
differencing technique has been widely researched with several algorithms 
for selecting or determining the background reference image being 
developed (Long et al, [37] Borofferio [38], Rosin et al [47]). These factors 
make the process of selecting the reference image difficult. Building up a 
stationary background image (Long et al, [37]) on a frame by frame basis 
for use as the reference image would probably be prone to error. This 
would be due to the wide variation of pixel intensities both spatially and 
temporally that will be encountered from the above sources.

The motion detection process calculates image statistics for four by four 
pixel regions (tiles) in the image. A simple neighbourhood operator raster 
scans the statistical difference image removing small instances of tile 
differences reducing the amount of apparent motion in the image caused by 
small local disturbances, pixel errors, etc, (the statistical operation 
effectively smoothes the image). Rather than building up a background 
image from pixels averaged over time that have not displayed any motion, 
a classification process has been developed. The classification process 
classifies the results of a statistical analysis of the perceived motion in the 
image to determine if a new reference image is required.

4.4.1 Update Reference Selection Criteria.

The reference selection criteria is just another term for thresholding, that is, 
some processed characteristic of the image is going to be compared to one 
or more pre-determined values and a decision taken based on the results of 
that comparison. Thresholding can be considered as a classification 
problem (Kittler et al, [36]), and the reference selection criteria is a 
classification problem where the analysis of the motion in the image needs 
to be classified and used to determine if a new reference image is needed. 
The update image reference process is broken down into two further data 
processes, this is shown on the next page in a level 3 DFD.

Upon receiving an enable signal from the ‘acquisition and motion detection 
control’ the ‘update image reference control’ triggers the ‘motion analysis 
process’. An initial target analysis process (chapter 5, section 5.2). 
calculates a set of object descriptors and performs edge analysis on each 
motion cue found in each frame. Based on the results of this analysis, the 
motion cues are labelled as either targets (vehicles) or objects (anything not 
deemed to be a vehicle).
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The motion analysis takes the data generated by the initial target analysis 
process and produces a set of motion statistics based on the areas and 
distribution of the image occupied by moving objects across a window of 
processed image frames. Upon completion of its processing the motion 
analysis generates a motion analysis status signal to the update image 
reference control process, indicating the status of the processing carried out 
by the motion analysis.

update
reference

frame count Update Imagé 
Reference ; 
Control /

r
/  j . 

motion analysis/

"\
classification

status
\

motion
statistics

Figure 4.10 Level 3 DFD for the update reference process.

The motion statistics data is passed to the ‘classification process’ which 
classifies the data based on type and area of objects and targets found 
moving within the processed image window. It passes a classification 
status signal to the image reference control process indicating the status of 
the processing carried out by the classification process. This information is 
passed back to the acquisition and motion detection control process by the 
update reference signal.

This signal controls the path through the acquisition and motion detection 
control process (state transition diagram shown in figure 4.2). If new 
reference image data is required (update image reference is true), then the 
current filtered intensity image is taken as the new reference intensity 
image and new reference data generated from that image. If excessive 
motion still continues, then either the camera is unsteady or a large number 
of objects are moving in the image. If the excessive motion continues to 
occur despite corrective action being taken (three reference images 
generated one after the other), the ‘goal processor’ flags an error to the user 
via the ‘graphics user interface’ and awaits a user response.
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4.4.1.1 Motion Analysis.

The ‘initial target analysis process’ (chapter 5) performs an initial 
identification of the motion cues in the image producing an initial object 
description of a rectangular window that encompasses the entire region of 
interest (the motion cue) every frame. These results are written into the 
initial object description table (chapter 5, table 5.2) on a frame by frame 
basis, which effectively forms a history of the detected motion in the 
image. Statistical analysis is performed across a sliding window of the 
detected motion as shown in figure 4.11. The following statistical 
parameters are calculated across the sliding window:

1 The Window Mean u,win.
2:- The Window Median MEDwin.
3 The Window Mean Target Area u/tawin.
4:- The Window Object Motion Area u/oawin.

Figure 4.11 Sliding window.

Having performed the statistical analysis across a sliding window of the 
perceived motion in the image, criteria have to be developed on which 
some form of classification of that perceived motion can be made. If we 
were analysing a scene that contained a motorway for instance, we could 
expect there to be a large number of vehicles moving. It could also be 
argued that the motorway would restrict the area in the image where these 
objects would be moving. In this case parameters could be determined that 
allowed large numbers of objects to be moving, but within restricted areas 
of the image. However the natural open world scene as depicted in figure 
2.1, would require different parameters for the numbers of objects and their 
position in the image.
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There are of course many more situations than these two extremes and 
ideally the system would learn what particular situation it is in by the 
distribution and occurrence of motion in the image. However this research 
is aimed at the open world scene, where the objects to be observed could be 
in any region of the image. It can be argued that it is unlikely that in these 
scene’s there will be a large number of man made objects moving (greater 
than 64) as small country roads tend not to have large amounts of traffic on 
them. The man made objects to be tracked are expected to be several 
hundred meters from the camera and hence the areas of individual motion 
cues should be relatively small.

If then there are any large areas of the image displaying motion, then these 
motion cues could indicate that the background reference image is out-of- 
date, (the illumination level has changed for instance) and that a new 
reference image must be generated. These situations led to an experiment 
(section 4.3) where the number and size of motion cues were observed 
across the image sequence. From the experiment an initial estimate on the 
maximum number of objects (motion cues) that should be in the image at 
any one time was set to be 64. Further an estimate of the amount of an 
image area associated with that motion should be less than 20% of the total 
image area. These values were found to give acceptable system 
performance for the test sequence input to the system.

4.4.1.2 Classification.

The basic idea behind classification is to recognise objects based on a set 
of measured object features. Commonly used classification techniques such 
as the ‘Bayesian Classifier’ or ‘Nearest Neighbour Classifiers’ assume that 
‘N’ features have been detected in the image and that these features have 
been normalised so that they can be represented in some form of parameter 
space. The nearest neighbour classifier determines the class of an object by 
computing its distance from points representing each class in the feature 
space and assign the nearest class. The distance measure is usually some 
form of Euclidean or weighted combination of features and this type of 
classifier can be effective for recognising objects when the distribution of 
the objects is straightforward. The Bayesian approach is based on the use 
of probabilistic knowledge about the features and frequency of the objects.

This approach means that knowledge of the conditional probability of an 
object belonging to a class j given a feature value of x is p(xAvj) and this is 
known a prori.
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Based on this knowledge the a posteriori probability p(w/x) can be 
calculated for the unknown object belonging to class j.

Using Bayes rule, this probability is given by

P(Wj/x)= p(x/wj)P(Wj)
p(x)

(4.8)

where

N
P(x)= X  p(x/Wj)P(\Vj)

j=1

The unknown object is assigned to the class with the highest a posteriori 
probability P(w/x). However in this application a priori knowledge about 
the feature probabilities and the class probabilities is not available and the 
distribution of object features is unlikely to be straightforward, making 
both of these classical classification process unsuitable.

There are two basic matching techniques that can be used to classify an 
object, the first of these is ‘feature matching’. Here the object class is 
represented by a set of features, which are compared to a set of model 
features using an absolute difference or Euclidean type technique. The 
result of this comparison is then weighted by the relative importance of the 
feature. These are summed over all features and the object is labelled with 
the model giving the highest sum. The second method for matching 
features is ‘symbolic matching’. Here the object to be classified is not only 
represented by its features but also by relationships among its features and 
the object is usually represented in a graphical form. Each feature in the 
object is a node in the graph and the object classification problem then 
becomes a graph matching problem.

The classifier developed here uses a modified form ‘feature matching’ to 
make the classification. The extracted motion statistics calculated in 4.4.1.1 
are used to traverse through a set of conditions and the classifier makes it 
decision based on the path traversed. Figure 4.12 on the next page shows 
how the classification process is implemented using a flowchart.

The classification process is triggered by the update reference image 
control process after the completion of the motion analysis. This trigger is 
effectively a function call. The mean and median values across the sliding 
window were set to 64. The mean area threshold was set to 20 percent of 
the total image area. Figure 4.13 shows the rate of cue detection over the 
entire input frame sequence. At frame 75 the classification process updates
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the image reference with the current image frame (frame 75) and it is 
observed that the number of motion cues perceived in the image was 
reduced from 96 down to 2.

Start

Figure 4.12 Flowchart representation of the classification process. 

Labels Generated

Figure 4.13 Plot showing the total number of object and 
target cues found per frame across the input image sequence.
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4.5 Image Reference Generator.

There are two sets of reference data required by the system, the first is the 
reference statistics (mean and standard deviation of fixed four by four 
square regions) for the motion cue generation process and secondly a 
reference edge image is required by the initial target analysis process 
(chapter 5). The ‘image reference generator process’ generates new 
reference data for the system when enabled by the acquisition and motion 
detection control process.

A level 3 DFD for the image reference generator process is shown below in 
figure 4.14. Upon receipt of an enable signal, the ‘reference generator 
control process’ triggers the ‘reference edge data process’. The reference 
edge data process applies a Marr-Hildreth edge operator to the current 
filtered intensity image which produces the reference edge data. On 
completion of its processing, the reference edge data process generates a 
reference edge status signal to the reference generator control which 
triggers the ‘reference statistics process’. This applies the statistical 
operators described in section 4.3.1 to the current filtered intensity image 
to produce the reference image statistics.

Upon completion the reference statistics generates a reference statistics 
status signal to the reference generator control which then returns the 
reference status signal to the acquisition and motion detection control 
process. All reference image data is written to the ‘acquisition, motion and 
reference image data store’.

Reference 
Generator j- 
Control

reference
status

reference 
image data

Figure 4.14 Image reference generator Level 3 DFD.
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4.5.1 Reference Statistics.

The reference statistics are generated using the image tile technique 
described in section 4.3.1, using equations 4.3 and equation 4.4. The results 
of the statistical processing are written to the acquisition, motion detection 
and reference image data store.

4.5.2 Reference Edge Data.

The reference edge data process uses a Marr-Hildreth edge operator to 
perform the edge detection. The Marr-Hildreth is a common and well 
known edge operator, (Marr & Hildreth, [34]). The image is first smoothed 
by applying a Gaussian function, (the Gaussian is unique in that it has a 
minimal bandwidth frequency product), the Gaussian filtered image is then 
convolved with the Laplacian operator. These two operators are usually 
combined to form a single convolution mask which is convolved with the 
image. If there is an edge in the image or a sharp change in the intensity, 
this gives rise to a zero crossing in the convolved image. Detection of the 
zero crossings enables a edge map to be determined.

The Marr-Hildreth operator can be defined by

V2 G(x,y)® P(x,y) (4.9)

Where

P(x,y) is the original image.
® is the convolution operator.

V 2 G{x,y)= -(x1 + //2 < j2)exp-(',*’‘/!"’>>
na

_2
y  is the Laplacian operator.
a  is the standard deviation of the Gaussian filter and is

proportional to the size of the neighbourhood on which the 
filter operates.

x,y are image co-ordinates.

The Marr-Hildreth edge operator is applied to the entire image. The results 
of the edge detection process is written to the acquisition, motion detection 
and reference image data store.
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4.6 Discussion and Summary.

The image acquisition and motion detection process provides all the low 
level image processing functions necessary to reduce the noise added to the 
image by the digitisation process and detect object motion in the image. 
Rather than just applying a simple spatial convolution operator to remove 
noise introduced into the image by the digitisation process, a median filter 
was used as this retains image details such as edges, which simple spatial 
convolution operators tend to smooth out.

The statistical analysis of the pixels within four by four pixel regions (tiles) 
yields the mean and standard deviation of the pixel values within those 
tiles. This statistical analysis effectively smoothes those areas and removes 
most of the false motion cues generated by pixel differences not due to 
object motion. The statistical differencing technique demonstrated that 
sufficient resolution remained to generate motion cues and identify regions 
of interest where objects may be moving in the image irrespective of the 
object orientation.

Figures 4.6(a) to 4.6(d) show a sequence of images where the vehicle goes 
through orientation changes and occlusion as it move across the image. 
Figures 4.7(a) to 4.7(d) show the results of the motion cue generation. 
Despite the orientation changes and occlusion, the vehicle is still detected 
across the sequence by the motion cue generator.

The reference images required for the frame differencing technique are 
computed by the reference generation process. This process generates not 
only the reference image statistics but also a reference edge image that is 
used later by the initial target identification process (chapter 5). The 
reference selection criteria for this process is not based on grey-level 
histograms (Otsu, [39]), but applies a set of rules to statistical parameters 
calculated across a window of the detected object motion.

The update criteria is based on the fact that with open world scenes, if an 
excessive number of objects is moving or if large areas of the image are 
showing motion, we need to determine if this motion has been generated 
by genuine objects moving in the scene, the camera moving or a change in 
the illumination condition across the scene. If there appears to be an 
excessive number of objects moving in the image, then the reference 
selection criteria identifies whether that motion is from a large number of 
objects moving (high mean and a high median value) or if the camera 
moved between frames (high mean, low median).
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If the camera moved between frames, a large number of objects appear to 
be in motion in the image and this detected motion will increase the mean 
across the window. However this motion is unlikely to affect the median 
motion value. This fact can be used to classify the detected motion as 
camera motion (it appears only as a temporary disturbance). If the median 
and the mean have high values then this indicates that a large amount of 
object motion has been observed across a number of consecutive image 
frames.

This detected motion can either be due to a considerable amount of object 
motion (not very likely with an open world country scene), the camera is 
continuously in motion (strong winds) or the reference data is out of date. 
In this case the selected course of action is to update the reference. If this 
selected course of action does not reduce the amount of apparent motion in 
the image, then this condition can be recognised and an error flagged to the 
user.

If the image is showing a large area of motion or the total motion detected 
across the image in that frame is large, ( > 20 %), then the update reference 
rules identify the contributing factors from that motion. For example, is it a 
vehicle close to the camera or is it a large cloud moving across the scene. If 
it is a cloud moving in front of the sun and causing a general illumination 
change across the whole scene then the large area showing motion in the 
image will be identified as an object and not a target, (illumination change 
should have little effect on the edges detected in the image, i.e. no 
structural change within that region). However if it was a vehicle close to 
the camera, then the structure of the vehicle (being man made and smooth 
with straight edges) reduces the edginess in the image for the region 
showing motion. These conditions are detected by the update reference 
criteria rules, and for the illumination change condition, new reference 
image data is generated from the current image.

A real world image sequence of over 90 frames was input to the system. 
The initial target analysis (chapter 5) is analysing the perceived motion in 
this sequence. At frame 75 based on this analysis the classification process 
determined that a new reference image was required. New reference data 
was generated based on the current image frame. Updating the reference at 
this point reduced the perceived motion in the image from 96 objects down 
to 2.

This simple classification process has demonstrated that good results can 
be achieved based on a few simple assumptions about the number and size 
of objects expected to be observed moving in the image. Frame 
differencing techniques in open world scenes are used extensively for
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detection of both man made objects (Malik, [48]) and people (Rosin, [47]). 
Though both applications were with open world scenes, Malik was 
detecting vehicle movement on motorways and Rosin, individuals who are 
50 to 100 meters from the camera.

The acquisition and motion detection process developed here is for 
detecting man made objects moving in scenes which will have a large 
amount of background clutter. To this end the system was tested on real 
world image sequences, where the objects moving within the scene became 
both fully and partially occluded and made manoeuvres that change the 
orientation of the object with respect to the camera. These manoeuvres 
were man made and non-predictable. The motion detection process has 
demonstrated that it can generate motion cues for these objects. Figures 
4.7(a-d) show a van moving across the scene. It becomes first partially and 
then fully occluded, making manoeuvres that change its orientation with 
respect to the camera. Despite this, the motion detection process continued 
to generate region of interest cues for this object.

The loss of spatial resolution as a result of applying the statistical analysis 
process is thus deemed not to impact on the performance of the system for 
vehicle detection and tracking in this application. The motion detection 
process in conjunction with the classification process provided a method 
for motion cue detection of man made objects moving in natural open 
world scenes.
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Chapter 5 
T arget 
Identification 
and Tracking.
5.1 Introduction and Overview.

Tracking man made objects moving in an open world scene is a complex 
task. The motion of these objects makes their outline variable and hence 
these objects are difficult to model in conventional terms. The problem of 
identifying and tracking objects moving in natural open world scenes has 
received considerable attention in the literature, with model based vision 
techniques outlined in chapter 2 (Koller [17], Worral [2]) and more recently 
Ferryman [67], Worral [68].

In these papers they are concerned with trying to fit an a proiri geometric 
representation of the object (a parameterised model) to some form of 
extracted image feature, (typically edges) on a frame by frame basis and 
thus tracking the object across the image sequence. If however the object to 
be tracked occupies only a small proportion of the image, then the image 
data will not contain sufficient resolution to reliably extract the geometric 
features necessary for model based methods. One of the main objectives of 
our research is to develop an identification and tracking algorithm that is 
able to recognise and track man made objects (vehicles) where the tracked 
object is expected to be a large distance from the camera (typically 400 
meters).

Kollnig et al, [40] estimated the pose of a vehicle by directly fitting image 
gradients to polyhedral models of the vehicle. The system could still track 
vehicles that were partially occluded by textured objects and a large 
distance from the camera, (typically a vehicle occupied 50 by 30 pixels).
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However the scene depicted was a road traffic scene and although this type 
of scene generates clutter, we can expect there to be more background 
clutter generated by a natural open world scene (trees, bushes, grass etc). In 
this type of scene, the vehicle orientation and motion are not so well 
constrained and the tracked object may also be capable of making un-
predictable manoeuvres which may partially occlude it from the camera. 
These additional features considerably complicate the model matching 
process.

Clearly we need to move away from the approach of trying to fit some form 
of geometric model to individual object data extracted from the image and 
develop a new identification and tracking algorithm that will address these 
issues. The matching of object descriptors (Rosin. [3], Teal, [4]) has been 
found to be more robust for tracking objects where the tracked object only 
occupies a small proportion of the image pixels and may be viewed at any 
orientation. A new algorithm has been developed that does not rely on 
fitting specific geometric models to extracted image data, but uses a 
description of the ‘ edginess’ of the object to provide an initial indication of 
the presence of the vehicle in the image and then an a priori estimation of 
the motion of the object to track it on a frame by frame basis.

A simple form of motion detection is to subtract the current frame of image 
data from an estimate of the background (Kilger, [41], Dubusson, [42]). 
The acquisition and motion detection process (chapter 4) uses the 
differences between a reference frame of image statistics and a current 
frame of image statistics to provide an estimate of moving areas (motion 
cues) in the image. Although this form of motion detection is relatively 
simple, many potential moving objects generated by this method may not 
be due to motion of objects of interest (vehicles) and these unintentional 
signals have to be identified and removed from the tracking process.

The first stage in the identification process is to take the individual areas of 
interest generated by the motion detection process (motion cues) and 
segment them into regions. For each of these regions a set of object 
descriptors is calculated and translated back into image co-ordinates that 
define a Region Of Interest (ROI) in the original image. An edge operator 
is applied to the regions of interest defined in the original image. The 
generated edge data gives a measure of the ‘edginess’ for that region. The 
natural open world scene consists of objects that do not have uniform shape 
or intensity and consequently an edge operator generates large quantities of 
edgel data for these types of objects.

Man made objects on the other hand consist mainly of straight line edges 
which usually do not occur in nature (Radford [13]) and the surfaces of
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man made objects (vehicle) tend to be smooth and uniform in intensity. 
Consequently this form of object gives fewer edge pixels. Given the region 
of interest in the original image and having generated a reference edge 
image (chapter 4), then a measure of edginess in the reference image for 
that ROI can also be calculated. Edgel analysis of the corresponding area in 
the current frame enables a measure of edginess for the region to be 
calculated in that frame. Edge detection operators are relatively invariant to 
changes in intensity; hence if the motion cue was generated by a cloud or 
noise in the image then the measure of edginess for that region should 
remain relatively unchanged.

However, if the motion cue was due to a vehicle, then the structure within 
that region is different and a different measure for the edginess for that 
region would be detected. This difference between the two regions edginess 
is used to give a further cue as to the identification of that region and a 
‘target label’ is generated, indicating an initial identification of that region 
of interest as a target. The target label together with the object descriptors 
for the region are entered into an initial object description table (IODT).

If there is no detectable difference in the edginess in the region then an 
‘object label’ is generated for that region and the object label together with 
the object descriptors for the region are also entered into the initial object 
description table, (an object that fails this initial edge analysis may still be a 
target). This initial identification is only another cue in the identification of 
a region of interest. The variation of intensity, disturbances in the field of 
view such as trees or bushes moving in the wind or partial occlusion of the 
vehicle, all affect this identification process.

The initial identification is repeated on a frame by frame basis. Target and 
object labels are generated for each region found in the image and object 
descriptors calculated for both. Vehicles exhibit known motion 
characteristics, and constraints (estimates) on that motion can be applied to 
all the entries in the IODT. The use of motion constraints enables a frame 
to frame correspondence between target labels and object labels to be 
assessed (Roberts [56], Zhang [57]).

Essentially there are four possible outcomes for this analysis; firstly all 
target labels that satisfy the motion constraints across a number of frames 
(which is a further cue to the identification of a region), are identified as 
targets (vehicles are considered to be targets) and displayed. Secondly, 
target labels which have not satisfied the constraints are re-labelled as 
objects (objects are anything else not considered to be a target). Thirdly, 
object labels that have satisfied the motion constraints (it is unlikely that a 
natural disturbance would move in the characteristic manner of a vehicle)
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are identified as targets, re-labelled and displayed. Lastly, objects that have 
failed to meet the motion constraints are removed from the tracking process 
and no longer displayed. The target identification and tracking process can 
therefore be broken down into two distinct processes, namely, ‘initial target 
analysis’ and ‘target tracking’. From the first level DFD (figure 3.2) 
process 4 can be sub-divided into another DFD to reflect the processing 
requirements of the target identification and tracking. The level 2 data flow 
diagram for the target identification and tracking process is shown below in 
figure 5.1.

Figure 5.1 Level 2 DFD for the target identification and tracking process.

Upon receipt of an enable signal from the ‘goal processor’, the ‘target 
analysis and tracking control process’ enables the ‘initial target analysis’. 
The initial target analysis uses the current motion cues generated by the 
image acquisition and motion detection process and segments the regions 
into objects and calculates a set of object descriptors for each region of 
interest. Next the initial target analysis performs an edge detection 
operation on the current filtered intensity image. Analysis of the difference 
between this edge image and a reference edge image (initially the first 
frame) generates target or object labels for those regions dependent on the 
results of the edge difference calculations. This information together with 
the object descriptors is written into the initial object description table.
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Upon completion of its processing the initial target analysis generates a 
status signal to the target analysis and tracking control process. This signal 
then enables the ‘target tracking process’. The target tracking process 
determines the frame to frame correspondence between target and object 
labels using constraints on the permitted motion of these labels. The results 
of this processing identifies targets or objects that have moved in the scene 
to be identified as targets (target data). The target analysis and tracking 
control process now writes the target data to the ‘processed image data 
store’ and as such is available to all processing elements of the system.

Finally a tracking status signal is generated and sent to the goal processor 
indicating the status of the processing carried out this frame by the target 
identification and tracking process. Figure 5.2 below shows the state 
transition diagram for the ‘target analysis and tracking control process’. 
This diagram describes the dynamic behaviour of the target identification 
and tracking process. Both of the data transforms generate a status signal 
upon completion of their processing, these status signals are used to 
traverse the state transition diagram controlling the processing and flow of 
data through the initial identification and tracking process.

Figure 5.2 Target Identification and Tracking 
State Transition Diagram.

5.2 Initial Target Analysis.

The ‘initial target analysis process’ provides region segmentation and 
analysis together with an initial target identification of regions of interest 
found by the image acquisition and motion detection process. This
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processing requirement is functionally decomposed into three further sub-
processes, namely region segmentation and analysis, edge detection and 
initial target identification. These are shown below in figure 5.3.

Figure 5.3 Level 3 DFD for the initial target analysis process.

When enabled by the ‘target analysis and tracking control process’, the 
‘initial target analysis control’ enables the ‘region segmentation and 
analysis process’. This process segments (labels) each ROI found in the 
image and calculates a set of descriptors for each of them. Upon completion 
of its processing it generates a status signal back to the initial target 
analysis control indicating that its processing is complete. The initial target 
analysis control then enables the ‘edge detection process’, which performs 
edge detection on the current filtered intensity image for each ROI found in 
this frame. When the edge detection operation is complete a status signal is 
generated back to the control process to indicate that the edge detection 
process is complete.

Finally the ‘initial target identification process’ is enabled, which performs 
initial target analysis on each ROI in the current frame. Upon completion a 
status signal is returned to indicate completion of the initial target analysis. 
The results of region segmentation and analysis, edge detection and initial 
target analysis are combined to form the initial target data which is used by 
the target tracking process, but is also accessible by the rest of the system.
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5.2.1 Region Segmentation And Analysis.

Region segmentation labels each region of interest found in the image with 
a unique integer identifier. Each of these identified regions has a set of 
object descriptors calculated for it. The region segmentation algorithm is 
based on an 8-neighbourhood connectivity mask using a two pass 
connected component analysis algorithm (Sonka et al [43]). Each region in 
the image displaying motion is labelled with a unique integer identifier. If 
we assume that a segmented image R consists of n disjoint regions R j; then

U r , = r , r c <51>/=!,/*/>

where
Rb is considered to be background
Rc is the set complement

The segmentation and analysis employs a sequential approach to labelling 
the segmented image. An 8-neighbourhood connectivity mask is applied to 
the current motion cues by scanning through the motion cue data and 
labelling any non-zero value in the mask with an integer number and then 
increasing the integer value by one. This form of labelling suffers from 
'label collision' [43], where regions within the mask have already been 
labelled and consequently have a non-zero value. To overcome this 
problem during the first pass of the region labelling, if a label collision 
occurs then this is detected and we store the two numbers as an equivalent 
label pair.

The label pairs are grouped to form an equivalent label pairs table. A 
second scan pass of the region data is then performed using the equivalent 
pairs table to re-label regions where a collision has occurred. The region 
labelling algorithm produces a segmented image with all regions in the 
image that may be a potential moving object labelled with a non-zero 
integer value. The region analysis algorithm calculates for each labelled 
region its :

(i) Area.
(ii) Centroid co-ordinates.
(iii) Minimum x,y and maximum x,y co-ordinates.

The area and centroid co-ordinates for an object are calculated using 
moments. All moment characteristics are dependent on the linear grey 
level transformations of regions. The moments of a digitised bounded 
image function of two variables can be defined by 5.2 [44],
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Mm T Z ' W j ) (5.2)
i j

Where
f(i ¡) = pixel magnitude at i,j 
p and q define the order of the moment 
i and j are pixel co-ordinates

However to describe region shape properties, the input image is put into a 
binary form where f(y) = 1 for a region pixel and f(y) = 0 for a none region 
pixel. This removes the dependence on the linear grey level transformation, 
thus we can re-write equation 5.2 as

Mpq = 'Z'Li’J' (5.3)
i j

Using 5.3 we calculate the zeroth order moment as

nop nop
M m  = Y L i ’ f  <5'4>

1=1 H
where

nop is the number of tiles in a labelled object.

The zeroth order moment defines the area of the object and this moment 
can be used to normalise the higher order moments. The normalised first 
order moments M10 and M0I define the centroid of the object and can be 
calculated using 5.5 and 5.6.

~i = M J  M o o  (5 -5 )

J =  M J  M o o  ( 5 -6 )

Alternatively they may be calculated relative to the image origin (0,0) by 
using

nob
M \0 = ! MooH —1

(5.7)
Al—1
nob

M 01 = X y n ! MoOn=1
(5.8)

where
nob is the number of boundary tiles.
xn,yn are the co-ordinates of each boundary point

The max and min x,y co-ordinates for each region in the segmented image 
is determined by scanning the segmented image in a raster scan order and
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noting the max and min x,y co-ordinates for each numbered region. This 
gives each region an x_max, x_min, y_max and y_min co-ordinate (tile co-
ordinates). However the initial target analysis process examines the image 
edge structure. This requires the regions of interest to be image co-
ordinates not tile co-ordinates (tile co-ordinate system has x,y values 
between 0 and 127, the image co-ordinate system has x,y values between 0 
and 511). A simple translation from tile co-ordinates to image co-ordinates 
is achieved using equations 5.9, 5.10, 5.11 and 5.12 respectively.

x_max’ = (x_max+l)*4+3 (5.9)
x_min’ = (x_min-l)*4 (5.10)
y max’ = (y_max+l)*2048+1536 (5.11)
y min’ = (y-min-l)*2048 (5.12)

The values for x max’, x min’, y_max’ and y_min’ provide a region of 
interest window in image co-ordinates that is one statistical tile larger (in 
both x and y directions) than the corresponding region found by the motion 
analysis. This takes into account the potential loss of object data in the 
original image caused by using fixed four by four pixel regions in the 
motion detection process. The object descriptors generated by the region 
segmentation and analysis together with the number of objects found, the 
object number and the region of interest co-ordinates are written into a 
region analysis table every frame. This process builds up a record (history) 
of the regional analysis results for any input sequence applied to the 
system. The table is shown below in table 5.1.

Frame No No Objects
1 n

Object No Object Descriptors window co-ordinates
1 M0oi,M0ll,Mlol v maxjTi' miri[,y maxl5y min1

n h4oon?Moln,Mlon xm ax„ ri_mi nn ,_y_max„ y  min„

Frame No No Objects
N n

Object No Object Descriptors window co-ordinates
1 M00i,M01 j ,M10j x max]rx: mini,y maxb>’ minj

n Moorphlf, ln,M | on x max„rr min,,,}' max,,,}' min,,

Table 5.1 Region Analysis Table.
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5.2.2 Edge Detection.

The ‘edge detection process’ is performed using the Marr-Hildreth edge 
detector as described in chapter 4 section 4.5.2. The standard deviation of 
the filter is passed by the parameter sigma to the edge detection process. 
The entire image is processed by the edge detector operator and the 
resulting edge data is stored as the current edge image.

5.2.3 Initial Target Identification.

One of the problems already highlighted with using a frame differencing 
technique to perform motion detection of natural open world scenes, is that 
intensity differences can result from changes in illumination and scene 
conditions that are beyond our control (clouds, wind etc.). To further 
complicate the identification and tracking process, the object to be tracked 
is expected to be a large distance from the camera and may be viewed at 
any orientation. Other objects within the scene (grass, bushes, trees etc) 
produce a large amount of clutter making the identification of the region of 
interest more complex.

The initial target identification attempts to provide an indication that a 
region of interest is a potential target. Rather than attempting to fit some 
form of geometric model to edges extracted from the image (Kollnig et al 
[40], Worral et al [45]), a simpler edge measure is used. An edginess 
reference is calculated for the region of interest from the reference edge 
image and an edginess value is calculated for the same region in the current 
image. As already outlined, images which contain man made objects are 
assumed to consist mainly of straight line edges and their surfaces tend to 
be smooth and uniform in intensity, consequently giving fewer edge pixels 
(Radford [13]).

Therefore a difference between the two edge measurements could indicate 
the presence of a man made vehicle. This is a crude metric for the detection 
of a vehicle, but in cluttered scenes (bushes, trees, hedges etc) can give an 
initial indication to the presence of the vehicle. If the absolute size of this 
edge difference is more than a threshold ®, then it can be postulated that 
the change in the number of edge pixels within the region is likely to be 
due to the presence of a man made object, rather than an illumination 
change for example as the edge detection process is fairly invariant to 
changes in illumination. The initial target identification can therefore be 
broken down into three further processes, namely, edgel analysis, edge 
difference analysis and initial object description.
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5.2.3.1 Edgel Analysis.

The objects to be analysed will probably occupy small regions of the image 
and the edge information within these regions is likely to be very sparse 
(road feature) or conversely it could be very rich (trees, bushes, hedges etc). 
The edgel analysis has to calculate a reference edge pixel ratio and an 
object edge pixel ratio for each region found in the region analysis table 
(table 5.1).

These calculations are the same except for the fact that the reference edge 
pixel ratio calculation uses the reference edge image data and the object 
edge pixel ratio calculation uses the current edge pixel data. These 
calculations are performed using 5.13 and 5.14 respectively.

Reference Edge Pixel Ratio (REPR) for each region is given by

n m

Y L E r + i j )
REPR = tL t l---------  (5.13)

(,n*m)

and the Object Edge Pixel Ratio (OEPR) for each region is given by

OEPR =
T T E o d J )
j= 1 j  = \

(,n*m)
(5.14)

where

n m
X X Erej(jJ) is the sum of edge pixels in the reference image ROI.
i= i j=\ 

n m

X X Eo(iJ) is Iiie sum °f edge pixels in the current image region
i'=i i=i

ROI.
where

m = xrnax’- x_min’ 
n = y_max’- y_min’

5.2.3.2 Edge Difference Analysis.

The edge operation is fairly invariant to illumination changes, so 
differences in edge pixels within regions of interest should be due to
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structural changes within those regions. We calculate an edge difference 
ratio between the reference edge pixel ratio and the objects edge pixel ratio 
using

EDR=|OEPR-REPR|/REPR (5.15)
and

IF EDR >= <D THEN 
label := target;

ELSE
label := object;

From the experiment carried out in chapter 4 (section 4.3) the edge 
difference ratio for all objects moving in the image were calculated. It was 
observed that for vehicles moving in the image the EDR averaged 10.77%. 
and that for false motion cues (motion cues that are not due to vehicle 
movement) average only 5.57 % difference. With the threshold ® initially 
set to 10%, the initial target analysis correctly labelled 57.3% of the motion 
cues due generated by vehicle motion with a target label and 81.5% of the 
motion cues generated by non-vehicle motion were correctly labelled with 
an object label. The low value of correctly identified target labels was 
found to be due to the distance that vehicles were from the camera as they 
moved down into the cove. At these distances there is insufficient edge 
information for the initial target analysis to make decision. Figure 5.4 
below shows a region of interest found from the input image sequence 
translated back into co-ordinates in the original image (chapter 4, figure 
4.8(a) shows the actual motion cue generated). Figures 5.5(a), 5.5(b) and 
5.5(c) show the region of interest enlarged, the edges found within that 
region and the edges found within the same region in the reference image 
respectively.

Figure 5.4 Region Of Interest (ROI) found in the current frame.

75



Chapter 5 Target Identification and Tracking.

Figure 5.5(a) Enlarge region of interest.

Figure 5.5(b) Edges in current image.

Figure 5.5(c) Edges in reference image.
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5.2.3.3 Initial Object Description.

The final parameter calculated by the initial target analysis is a rectangular 
window that encompasses the entire region of interest (win_size). This can 
be easily calculated from the window co-ordinates. The results of the 
segmentation analysis, (the region analysis table) is combined with the 
initial target analysis results to form the initial target data. This data is 
written to the Initial Object Description Table (IODT), shown on the next 
page in table 5.2. This data is available for access by the rest of the system.

5.3 Target Tracking.

The initial identification process can only provide another cue to the 
identification of a region of interest in the image. This is due to the fact that 
orientation of a vehicle (viewpoint), partial occlusion of the vehicle and the 
distance of the vehicle from the camera all affect the edginess of a region 
and hence the initial identification process. The initial target identification 
process is repeated on a frame by frame basis, with targefiobject labels 
being generated for each region found in the image and each region has a 
set of object descriptors calculated for it.

Frame Number Total Number Of Objects
1 n

Object No Object Label Object Parameters
1 Object OEPR1,REPR1,M00l,M0ll,MI0l,win_size1, 

x maxlyr minlty max^y minj

n Target OEP Rn,REP Rn,M00n,M01n,M 10n,win_sizen, 
x max„y minn.y max„y minn

Frame Number Total Number Of Objects
N n

Object No Object Label Object Parameters
1 Object OEPR j ,REPR J ,M001 ,M0 ll,M10l, win_size, 

x maxjy_minjy max]y  min.

n Target OEPRn,REPRn,M00n,M0ln,M10n,win_size, 
x maxny  minn,y max„y minw

Table 5.2 Initial Object Description Table.
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The structure of the scene will constrain the motion of a vehicle moving 
within that scene; trees, buildings, walls and fences would be areas in an 
scene where vehicles are not expected to move. However roads, tracks and 
possibly level grass fields are areas where vehicles would be expected to 
move. Vehicles moving in these areas exhibit known motion characteristics 
(acceleration, velocity, orientation change etc) which constrain the motion 
of the vehicle in a known way. These characteristics can be estimated a 
priori and used to help solve the frame to frame correspondence problem 
(Lacey [66]).

Solving the correspondence problem not only determines the trajectory of 
the vehicle in the image but also provides another cue to the identification 
of that region of interest. This is because the region appears to be moving 
in a known manner and as such is unlikely to be due to noise Target labels 
that satisfy the motion constraints are simply kept as targets. Object labels 
on the other hand that satisfy the motion constraints indicate that this 
region of interest is probably not an object but in fact is likely to be a 
target, (an object is unlikely to move with the known characteristics of a 
vehicle) and was probably mis-identified by the initial target analysis and 
as such it is re-labelled as a target. Target labels that fail to be matched are 
re-labelled as objects for processing in the next frame. Objects that fail to 
be matched are no longer processed. This method does address some of the 
issues of incorrect data (outliers, Torr [62]) by solving the correspondence 
problem between consecutive frames of image features. However if the 
system was to solve the correspondence problem over a larger number of 
frames, i.e. the labels must meet the motion constraints across a 
consecutive five frame window to be identified as a target, then this would 
give the system a larger temporal consistency for the motion tracks of 
objects moving in the image (Sobttka [85], Daum [46], Bordia, [63]) 
which may provide a more robust mechanism for tracking.

5.3.1 Frame To Frame Correspondence.

The continuous action of the motion cue generation (chapter 4) and initial 
target analysis essentially form a feature vector for each region of interest 
in the image, Consider:

Oj = [ Alj ••• Amj ] (5.16)

where
j = 1, 2 .... n. (number of regions of interest this frame).
A l j ........Amj (measured features of a region).
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Across an image sequence, an array of feature vectors would be formed:

" •  I ' 1;! A :":.' (5.17)

where
j = 1, 2 .... k.
i = 1, 2 .... f. (image frames).

The frame to frame correspondence process has to match the features found 
in frame, with the features found in framei+1.

5.3.1.1 Dynamic Motion Constraints.

The objects of interest for tracking are man made (cars, vans etc) and as 
such their speed and turning ability (change of orientation) with respect to 
the camera can be estimated a priori. The objects to be tracked are assumed 
to be rigid, with any detected motion in the image being generated by the 
object moving and not due to any deformable surface in the object being 
tracked.

Though the performance characteristics of vehicles are different, a Ferrari 
F40 for example has 'slightly' higher performance than a Mini Metro, in 
general a fixed set of constraints can be placed on the velocity, acceleration 
and change in size that the object may undergo between consecutive 
frames. These constraints are based on the fact that the objects to be 
tracked are a large distance from the camera (>100 meters) and that these 
objects may be viewed at any orientation. Given this information and 
knowing the frame rate (frames per second input to the system), motion 
constraints can be estimated.

These estimates have been translated into a simple set of rules which limit 
the variation in object parameters between frames. Table 5.3 below shows 
the estimated variation for object parameters between consecutive frames.

Item Parameter. Variation.
1 OEPR ±10 %
2 MOO ±6 image tiles
3 MOI ±8 tile positions
4 M10 ±8 tile positions

Table 5.3 Object Parameter Variation Table.
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5.3.1.2 Tracking Implementation.

The tracking algorithm attempts to minimise a Euclidean distance measure 
between a subset of parameters from the object vectors, within the limits 
defined by the object parameter variation table.

A Euclidean function can be defined by

A = d2 (OjPi)= YJa^-O ni) (5.18)
n=1

Object correspondence is solved on a frame by frame basis. From table 5.3, 
the area of a region of interest is used as the initial matching feature. The 
largest area in frame ‘i’ is matched using the Euclidean distance measure to 
all areas in frame ‘i+1 ’ within a search perimeter space defined by items 3 
and 4 in table 5.3. This matching process continues until all regions of 
interest are matched; any unmatched regions are assumed to be new tracks 
(Li-Qun, [23]). The correspondence matching process is shown in flow 
diagram form by figure 5.6.

Figure 5.6 Flow Diagram for the frame 
to frame correspondence matching process.
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The target data generated by the tracking process consists of the active 
target data (table 5.4) and the in-active target data (table 5.5). The active 
target data is made up from the Object Edge Pixel Ratio (OEPR), the 
Euclidean distance measure and the zeroth and first order moments. The in-
active target data comprises the Object Edge Pixel Ratio, zeroth and first 
order moments, and the frame number that the object was removed from 
the tracking process.

Frame Number Target Parameters
3 Label^, Labelm, A,OEPR, 

M00k...M00m,M10k...M10m,M01k...M01m

n Labelk, Label, A,OEPR,
M00k..,M00m, M10k.. .M10m,M01 k.. .MO 1 m

Table 5.4 Active Target Data Table.

Label Parameters Frame
Removed

Target OEPR,MOO,MIO,MOI Frame No
Object OEPR,MOO,M 10,M01 Frame No

Target OEPR,MOO,MIO,MOI Frame No

Table 5.5 In-active Track Data Table.

5.4 Results.

A static camcorder was set up and an open world image sequence filmed 
showing vehicles and people moving within that scene. From this sequence 
a 90 frame clip was digitised to disk at a rate of approximately two frames 
a second.

5.4.1 Single Target Identification and Tracking.

Figure 5.7 shows a six frame clip from that sequence where a single vehicle 
is moving. This vehicle is approximately 400 meters from the camera (focal 
length of the camera is fl.4) and figure 5.8 shows the resultant track of the 
target superimposed on the original image.
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Figure 5.7 A six frame clip from an image sequence of over 
90 frames. The top three images show the vehicle moving 
in a well defined manner left to right and up a slight 
gradient. The next three images show enlarged areas of the 
original image where the vehicle is moving. The following 
three images show the vehicle turning left and then 
becoming fully and then partially occluded behind a hedge. 
The last three images show the corresponding enlarged 
portions of the original image depicting this motion.
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This sequence was used initially to test the tracker and debug the system as 
the vehicle movement is relatively well defined. Figure 5.9 shows a plot of 
the tracking error between the systems calculated centroid position for the 
target in the image and the actual position of the target in the image, 
determined by manually measuring the object motion using vehicle 
landmark features.

Figure 5.8 Resultant tracking sequence 
superimposed onto the original image.

% Error Y positional 
error

«— 'y' positional 
error

Frame No

Figure 5.9 Plot showing the tracking error between the manually estimated 
centre of the tracked target and the trackers calculated centre of the target.

5.4.2 Multiple Target Identification and Tracking.

The tracking system will encounter multiple targets moving within the 
scene. Figure 5.10 shows six frames from an image sequence in which 
multiple moving targets that become occluded and occlude one another. 
Figure 5.11 shows the output from the tracker, as a result of these motion 
cues.
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Figure 5.10 A six frame clip from an image sequence of over 90 frames. 
The top three images shows multiple vehicles moving within the scene, two 
vehicles are moving down the road into the cove and a third vehicle is 
starting to leave the car park moving up the slight gradient in a left to right 
direction. The next three images show enlarged areas of the original images 
where these vehicles are moving. The following three images are slightly 
later in the sequence and show a fourth vehicle turning right and entering 
the car park. The car leaving the car park eventually occludes the vehicle 
that entered the car park. The last three images show enlarged 
corresponding portions of the original image where these vehicles are 
moving.
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Figure 5.11 Tracking plots superimposed 
onto the original image.

Figure 5.12(a) Motion cues generated frames 2 to 69.

Figure 5.12(b) Extracted un-matched motion cues for frames 2 to 69.
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Number of Targets

Figure 5.14 Plot showing actual targets per frame 
against actual tracked targets per frame.

5.5 Discussion and Summary.

The open world image sequence used to test the identification and tracking 
algorithm was filmed for approximately one and a half minutes using a 
static camcorder. The resulting image sequence shows multiple vehicles 
moving such that they become occluded behind static objects in the scene. 
Vehicles also occlude one another as they moved into or out of the car 
park. The initial target analysis uses a crude measure of the edginess of an 
object to perform the initial identification of that object. This simple 
measure gave good results for the correct identification of a region. 
Looking at figure 5.4, the van is approximately 400 meters from the camera 
and only occupies an area of 48 by 16 pixels.

Figure 5.5(a) shows the van enlarged with figure 5.5(b) showing the edge 
pixels found within that region of interest. Figure 5.5(c) shows the edge 
pixels for that region of interest found within the reference edge image. 
There is a clear change in the distribution and number of edge pixels within 
this region. This is expected as the structure for that region has changed. As 
just outlined the initial target identification process is not trying to match 
edge pixels within a region with some form of parametric model of a 
vehicle. Instead it uses a simple edge ratio calculation between the edges 
found for an object in the current frame and edges found in the 
corresponding area of a reference edge image. For the van, the reference
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edges found totalled 350 and the current edges found totalled 305, a 
decrease of nearly 13% in the ‘edginess’ between regions. This measure 
includes a contribution due to the shadow of the vehicle. The shadow of the 
vehicle does not significantly affect the identification and tracking process 
as the vehicles are a large distance from the camera. As the distance from 
the camera is large the contribution of the shadow to the motion cue is 
small. However for vehicles that are closer to the camera, if the shadow of 
the vehicle is found to significantly affect the initial identification process, 
then the shadow could be removed using a shadow detection algorithm 
such as that of Scanlan, [50],

Figure 5.13 shows a plot of the number of object and target labels 
generated by the initial target identification process, together with the 
actual number of targets in the scene. The misclassification of target and 
object labels is due to the fact that vehicle motion occurs at distances over 
500 meters and at this distance the motion cues generated have insufficient 
edge information for the edginess comparison.

Due to the large distances and orientation changes that the target undergoes 
as it moves in the image, tracking mechanisms based on vertices or line 
segments (Crowley [59], Deriche [60]) will tend to fail. The approach taken 
here is therefore based on region tracking using the centre of gravity of the 
object being tracked to form the motion vector (Gordon [61]). Meyer [82], 
highlighted that region tracking generally reduced to tracking the centre of 
gravity of an object and that this form of tracking could not capture 
complex motion of objects in the image plane. However the objects to be 
tracked in the image do not have complex motion components and this is 
not deemed to be a problem.

The target tracker was initially tested using part of the image frame 
sequence where there was only a single vehicle moving in the image. 
Figure 5.7 shows six frames of a sequence where a van is moving in the 
image. Although its movement is relatively well defined, the vehicle 
undergoes first partial then full occlusion. The system tracked the van 
through the image sequence until it became fully occluded behind the 
hedge. It was also able to re-acquire the target after it re-appeared in the 
image even though the frame used for re-acquisition shows the van still 
partially occluded by the hedge.

Figure 5.8 shows the output from the tracker superimposed onto the 
original image for this sequence. The tracking system is implementing a 
multi-resolution approach (Caplier [69]) to tracking that is capable of 
tracking objects despite the fact that the tracked object is viewed at various 
orientations. Figure 5.9 shows a plot of the error in the trackers calculated
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position in the image for the centre of the van and a manually determined 
value for the centre of the van. If you take into account the fact that the 
reference centre for the van was determined manually and the region 
analysis process calculates the centroid positions based on tiles not pixels 
(possible error of +/- 0.8%). Then the error of 1.5% is probably worse case 
and as Bers [77] highlights it is very difficult to assess the performance of a 
tracking system.

Figure 5.14 shows a plot of the actual number of targets in each frame 
across the sequence together with the actually tracked targets. The disparity 
is due to the tracking algorithm not being able to resolve object motion 
unless there is at least 1 tile between object tracks. If objects occlude one 
another, then the motion cue generator will only produce one motion cue (a 
draw-back of a frame differencing technique, Rowe [75]) and the tracker 
associates the best matched track with the single target during the 
occlusion.

The problem of target tracking being lost during occlusion is due to the 
mechanistic nature of the algorithm. It has already been highlighted that 
this may be improved by considering the correspondence problem over a 
larger number of frames. However we must remember that tracking targets 
that are capable of making unpredictable manoeuvres in natural scenes is 
considerably difficult (Hutchins, [78]). The tracking system did reject most 
multiple false motion cues, however two tracks were produced by the 
system, but these tracks were however only identified as objects and were 
generated just prior to the reference data being updated. The identification 
and tracking system is intended to be used as a region cueing aid providing 
scene driven information to the ‘spatial-temporal reasoning process’ 
(chapter 6) which is constructing a map of the scene on a frame by frame 
basis based on the motion of targets within the scene.

What is significant is that only identified vehicles are tracked and that 
motion cues due to other sources (illumination changes, noise etc) must not 
be tracked. Looking at figure 5.12(a), it clearly shows that a large number 
of motion cues were generated by the input image sequence, but those 
motion cues actually tracked were in fact cues due to vehicle motion. 
Figure 5.12(b) shows the motion cues that were extracted and not tracked 
(false motion cues), while figure 5.12(c) shows the motion cues tracked by 
the system. These results show that the system can track actual vehicles 
using relatively simple techniques, producing accurate and reliable 
estimates of vehicle motion in the image (this is seen as an essential factor 
in target tracking in dense environments [51]).
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Also the multi-resolution approach does not significantly alter tracking 
accuracy, b ut provides a more focused computation (Burt, [73]). The 
tracking system has demonstrated that it is capable of extracting and 
tracking man made objects in open world scenes, even though those 
tracked objects changed their orientation or became occluded. In the next 
chapter we shall see that the extracted motion data is sufficiently accurate 
for use by a spatial-temporal reasoning process.

90



Chapter 6 Spatial-Temporal Reasoning.

Chapter 6 
Spatial-T emporal 
Reasoning.
6.1 Introduction and Overview.

Scene understanding is generally dominated by two main themes, firstly 
measurement of local attributes in an image are used to identify features 
which characterise objects in a scene and secondly the use of prior 
expectation to guide interrogation of the image. In AI studies the two 
themes generally correspond to data driven methods and goal driven 
methods. The spatial reasoning process requires input from the bottom up 
processes in the form of factual descriptions of areas of the image and so 
encompasses aspects of a data driven approach, but it also incorporates 
knowledge of objects and their relationships in the scene and so 
incorporates aspects of goal-directed methods.

Systems developed by Godden et al [10] and Morton [64] inferred that a 
first-stage hypothesis can be generated from the results of low-level 
segmentation algorithms together with some form of contextual reasoning 
process to label those segmented areas where an object might exist. Further 
support for the presence of the object could then be obtained by statistical 
analysis on groups of those regions (Flutber et al [76]). However unlike 
these systems, the system described in this thesis bases the support for the 
existence of an object on the detection of image motion which, coupled 
with constraints placed on that motion, are used to determine its presence 
within the image.

The knowledge-based reasoning being carried out here is not trying to 
determine the presence of the object within the image, as this task has 
already been accomplished (chapters 4 & 5). The system is trying to 
determine the likely structure of areas within the image based on this 
motion. The knowledge-based reasoning is attempting to construct a map 
of the scene based on the movement of man made objects in the image.
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The map gives a measure for regions in the scene where vehicles are likely 
to be observed moving and regions where they are likely to become 
occluded. The second objective of this research was to develop an 
algorithm capable of interpreting major structural features in the scene 
based on the motion of objects moving within the image, where these 
interpreted regions are related to spatial-events (Howarth [65]) that have 
been detected across a number of frames. Major structural features are 
defined as regions in the image where man made vehicles can be expected 
to be observed moving and regions where vehicles could become occluded 
from the camera but are in fact still in the field of view. In general objects 
only enter or leave the field of view at image boundaries (or at occlusions). 
The point of identifying potential occlusive regions in the image does not 
appear to have received much attention in the machine vision literature.

The previous chapters developed an identification and tracking algorithm 
that uses a multi-resolution approach (James, [81]) to track objects moving 
in an image. The output from this tracking stage is target data that 
represents the trajectory of the vehicles, a time index and information about 
their size (tables 5.4 and 5.5). The target data thus yields information on 
the spatial-temporal events of vehicles moving in the scene. It is now the 
task of the spatial-temporal reasoning process to use this tracking data in 
conjunction with a knowledge database, to build up the map that represents 
spatial areas within the image where vehicles can be expected to be 
observed moving and perhaps more importantly, identify areas in the 
image where the tracked objects could become occluded from the camera 
but are still in its field of view.

6.2 Knowledge Representation.

The internal knowledge base is divided into both ‘analogical’ and 
‘propositional’ models as this reflects a similar theory concerning how the 
human vision system represents the world (Johnson-Laird, [89]). It is 
argued that a multi-representation strategy for machine vision would be 
more efficient than translating all the problems into one form of 
representation and solving the recognition problem using one specific 
representation.

The system developed here uses both analogical and propositional 
representations for the knowledge representation and a semantic network is 
a convenient way to represent both forms of knowledge. The semantic 
network supports analogical and propositional knowledge by representing 
analogical knowledge as objects and propositional knowledge as
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relationships between those objects in a graph structure of nodes and 
labelled arcs.

6.3 Implementation.

It has already been demonstrated [23, 55] that the motion of objects 
moving within an image can be used to construct some form of 
representation of that image. This interpretation process takes the form of 
identifying areas within the image where vehicles can be expected to be 
observed moving and areas where vehicles could become occluded. This 
interpretation process is split into two main tasks, firstly the data supplied 
by the tracker must be analysed. The analysis groups the trajectory data 
into connected sets of tiles which represent spatial areas in the image where 
vehicles have been observed moving (map segments). The second task 
takes the map segments from the spatial analysis process and applies a 
spatial reasoning process to the possible spatial and temporal 
interpretations between these map segments.

Figure 6.1 on the next page shows the level 2 DFD for the spatial reasoning 
process. When enabled by the ‘goal processor’ the ‘spatial-temporal 
control process’ triggers the ‘spatial analysis process’ which constructs the 
map segments from the data supplied by the tracker. Upon completion of 
its processing it generates a status signal indicating that its processing is 
complete and the spatial-temporal control then triggers the spatial- 
reasoning process that interprets (infers) the spatial structure of the scene 
based on a rule-production scheme of the most likely spatial relationships 
between the constructed image segments. When the spatial reasoning 
process has completed its processing, it generates a status signal back to 
the spatial-temporal control process, which then returns a ‘reasoning status’ 
signal to the goal processor indicating the status of the processing carried 
out by the spatial-temporal reasoning process.

6.3.1 Spatial Analysis.

The spatial analysis takes the target tracking data output from the tracker 
and constructs sets of map segments based on the target trajectories. The 
segments are mapped into the image in tile co-ordinates. Each segment has 
an edginess factor calculated for it, a time index based on the frame 
number and an observation factor is calculated from the number of 
instances targets have been observed in that segment. The map segments 
generated by the spatial analysis process are used by the spatial reasoning 
process to perform an interpretation of the possible structure of that region
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of the image. No assumptions are made about any a priori structure within 
the scene, so initially all regions in the map are labelled as being 
‘unknown’, thus the system effectively starts with an empty map.

Figure 6.1 Level 2 DFD for the Spatial-Temporal 
Reasoning Process.

6.3.1.1 The Map Segment.

The map segment is the fundamental building block in the generation of 
the map. A map segment consists of a connected set of image tiles and 
each of these connected sets has a basic form < Label, Position, Time > 
(Toal et al, [26]), plus an additional quantity which is a measure of 
edginess in the areas of the map that have shown motion. The structure of a 
map segment is shown on the next page in figure 6.2.

6.3.1.2 Time Index.

The time index for the map segment is derived directly from the frame 
number.

6.3.1.3. Observation.

Map segments are stored in an array as they are created. The observation 
function searches the previously processed map segments (stored in the
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array) and increments an observation count for each segment if motion is 
detected in the same position in the current map segment.

Figure 6.2 Map Segment Structure.

6.3.1.4 Position.

Position information is derived directly from the active target data table 
(chapter 5, table 5.4) which contains the area and centroid positions of the 
matched targets in the current frame in tile co-ordinates. From this 
information a straight line segment is derived from the pair of centroid co-
ordinates using a modified form of Bresingham’s line drawing algorithm 
(as described in [87]) to extract the tiles in a straight line segment.

The assumption that a vehicles movement can be approximated by a 
straight line segment is based on the large distance a vehicle is expected to 
be observed moving from the camera and that image data will be generated 
at sub-second intervals (typically 10 frames a second); in this case the 
distance a vehicle can move in the image between frames is small and this 
movement can be approximated by a straight line.

6.3.1.4.1 Directional Vector.

As part of the position data, a directional vector is added based on the 
targets motion in the x and y directions between consecutive frames of 
target data. The compass is shown in a diagrammatic form in figure 6.3.

95



Chapter 6 Spatial-Temporal Reasoning.

N O R T H  (0)

Figure 6.3 8-point directional compass.

6.3.1.5 Edginess.

The tiles calculated by the position function indicate an area in the image 
where motion has been detected. From this information the edge structure 
for that area can be determined. Unlike the initial target analysis, which is 
attempting to identify changes in edge structure between a reference frame 
of edge data and the edge data generated from the current frame, the 
edginess function is only interested in evaluating the background edginess 
for the region that has shown motion using the edginess of the region to 
give an indication as to its possible identity. The number of edgels within a 
single tile can be calculated using

4 4
X X Eref{l'J) (6-1)
i = 1/=1

From 6.1 the number of edgels within a map segment can be calculated 
using

i No 4 4
— *L X YErefdJ) (6.2)
No 1 i= \ 7=1

where
Eref(i,j) is the reference edge pixel image.
No is the number of tiles showing motion (position data).
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6.4 Spatial Reasoning.

The spatial reasoning process builds the map of the scene based on the 
premise ‘that a scene can contain one or more of the following objects: 
Road, Ground, Static and Unknown’. The spatial reasoning process takes 
the map segments generated by the spatial analysis process and uses a rule 
based approach to infer the most likely interpretation for regions in the 
image that have exhibited target motion. The spatial reasoning is structured 
using the semantic network shown below in simplified form.

The network has two arcs, namely ‘part o f, and ‘between’ and four object 
nodes ‘road’, ‘ground’, ‘static’ , and ‘map segment’. However as the scene 
map starts off by being labelled as ‘unknown’, the system effectively starts 
with an empty map. The unknown node is not shown on the semantic net 
as the map can only be labelled as being unknown by the system on 
initialisation, any segments that are labelled as either road, ground or static 
cannot be re-labelled as unknown unless the system is re-initialised.

As all regions of the map have initially been labelled as being unknown, 
the network starts off with no a priori knowledge of any structure within 
the scene. ‘Part o f takes a map segment and checks to see if it could 
already be part of either a road segment or a ground segment, invoking a 
set of spatial and structural operators to accomplish this task. If the 
identified segment is a repeat of an already identified map region, then 
‘part of ‘ stores this in a current scene map (short term memory) and a node
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consistency rule adds it to the already identified map region, resolving any 
label conflicts. If the identified segment has not been observed before then 
‘part o f  generates a new map region for that segment. The ‘between’ 
operation applies a set of geometric rules that use the premise, ‘roads or 
ground regions that are associated with motion can be linked using straight 
line segments (roads are considered to be straight within a defined search 
space). If a link can be established then this could potentially indicate the 
presence of an occluding object in that region of the image. If links are 
established between identified regions, those links are labelled as static, i.e. 
that area of the image contains an object that may occlude vehicles moving 
into that region of the image.

However if motion is observed in any of the spatial links established 
between identified regions using the above premise, then that region is re-
labelled as either road or ground. The resulting scene map is an array of 
labelled nodes, essentially a 2-D array of structures. Each node in the array 
has a likelihood value and node activity value associated with it. The 
likelihood value gives the measure of the node being correctly labelled as a 
road and the activity value gives a measure of the amount of target motion 
that has been observed for that labelled node. Figure 6.5 below shows the 
expected layout of a scene map generated by the spatial reasoning process.

ROAD

x direction (0-127) Activity HIGH

Figure 6.5 Structure of the Scene Map.
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6.4.1 Network Arcs.

The network arcs are used to infer the likely identity of a map segment. 
Inference is a process of deducing facts from known facts, which is the 
cornerstone of rational thought. There are a number of mechanisms we can 
use to implement inference, namely , predicate logic, production systems, 
labelling and active knowledge (Ballard & Brown, [84]).

Taking each in turn, predicate logic is a method for expressing propositions 
and deriving consequences based on facts. Production systems are a 
general rewriting system, which consist of a set of rules and an executive 
program which applies those rules. Labelling schemes tend to involve 
methods of mathematical optimisation in some form of continuous space. 
Finally active knowledge is where each chunk of our knowledge is 
represented by a program, this effectively procedurises the implementation 
of propositions.

All of these methods for implementing inference have their strengths and 
weaknesses. However production-based knowledge systems generally tend 
to be more robust and easily modified up to a certain level of complexity, 
but above that level rule-based systems tend to become un-manageable. 
The system being developed here keeps the complexity of the inference 
mechanism to a minimum and as such the inference mechanism used to 
construct the map adopts a rule-based probabilistic reasoning approach 
(Sucar et al, [88]).

Structuring the inference mechanism in a semantic network offers the 
advantages of

Being easily modified.

Producing a modular design and implementation.

It is easily understandable.

Production systems support a general form of inference by using a 
matching technique to identify which inference to make. This action 
requires an explicit set of situation-action nodes which are evaluated 
against a database of situations. To form even a simple production system 
requires a database, a set of rules and an interpreter for those rules. These 
requirements are used to form the basis for traversing each of the arc’s and 
consequently each arc has its own set of rules, its own data base and its 
own interpreter.
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6.4.1.1 Part Of.

The ‘part o f arc has the task of identifying whether a map segment in the 
current image frame is either road or ground (ground is considered to be 
anything else that can contain vehicle motion that is not a road) and then 
create either a new road segment or a new ground segment in the map, (the 
process of creation can also mean just adding the current map segment to 
an already identified map segment). The ‘Part O f arc uses two processes to 
determine the likelihood of a map segment being a road, namely: Has 
Structure and Has Displacement.

6.4.1.1.1 Has Structure.

The map segments calculated by the spatial analysis provide the target 
trajectories in the image in tile co-ordinates. These co-ordinates represent a 
straight line segment calculated from the centroid of the target between two 
frames. This trajectory data is not entirely representative of the area of the 
image containing target motion (the road for example), and so the straight 
line segment is expanded by a factor equal to half the area of the target 
(lower half of target area) which gives the area of the image that the target 
is actually moving in (the road is assumed to be under the vehicle).

Figures 6.6(a and c) show two enlarged sections of the image where vehicle 
motion has been detected and tracked by the tracker. In the first instance a 
vehicle has been detected and tracked on a road, in the other, the vehicle 
has been detected and tracked on grass. Figures 6.6(b and d) show the 
edgels generated by the edge detector for those two regions before the 
vehicles entered that area of the image. This edge data is extracted from the 
reference edge image (no further application of the edge detector being 
required), thus the tracking data has effectively focused the image 
processing on those particular sections of the edge image.

The target trajectory co-ordinate data for the road case, covered an area 
almost identical to that occupied by the road. The edge count for this 
extracted region was 21 edge pixels and the tile area was 18 tiles 
(18*16=288 pixels). Using equation 5.13 the edge pixel density (ratio of 
edges to area) can be calculated, this gives an edge density for the extracted 
map segment for the road region of 0.073. The grass region however 
yielded an edge count of 61 edge pixels for a corresponding tile area of 15 
tiles (15*16=240 pixels), giving an edge pixel density for this grass region 
of 0.254.
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Figure 6.6(b) Extracted edges for the corresponding road region.

The structural data base table is based on the premise ‘that road surfaces 
being man made tend to be smooth and flat and as such will produce 
significantly fewer edges’ (as shown by figure 6.6(b)). However with none 
road surfaces the opposite of this premise will be true, as grass or dirt 
regions (dependent on their range) will be highly textured producing a rich 
number of edges, which is shown by figure 6.6(d). From the experiment 
carried out in chapter 4 (section 4.3) edge pixel densities were calculated 
for all regions that contained vehicle motion.

From this experiment a database was constructed that relates the edge pixel 
density to a percentage likelihood of a region being a road, this is shown in 
table 6.1. In these two cases shown (figures 6.6(a) - 6.6(d)) the ‘Has 
Structure’ rule returned that it was 85 % likely that the road segment was in 
fact a road, but that it was only 30 % likely that the grass region was a 
road.
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Figure 6.6(c) Identified and tracked vehicle on a grass region.

Figure 6.6(d) Extracted edges for the corresponding grass region.

Edge Density Likelihood of 
Road(%)

Likelihood of 
Ground (%)

0.000 - 0.025 95 05
0.026 - 0.050 90 10
0.051 - 0.075 85 15
0.076 - 0.100 80 20
0.101 -0.150 70 30
0.151 -0.200 60 40
0.201 - 0.250 50 50
0.251 - 0.300 30 65

>0.301 20 80

Table 6.1 Percentage likelihood of segment being 
road or ground, based on region edge structure.
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6.4.1.1.2 Has Displacement.

We could postulate that vehicles will tend to have a higher velocity when 
moving on a road surface than when they are moving on a dirt track or a 
grass surface. It could be argued that when cars turn from one road junction 
to another or when they come to enter or leave a car park that their velocity 
would also be small. In general a vehicles velocity on a road will tend to be 
higher than when the vehicle is moving on a non road surface.

Here the velocity of a vehicle is calculated based on the distance the target 
moves between two frames (centroid to centroid). As the distance from the 
vehicle is unknown, it is necessary to normalise this calculation by the 
average area of the vehicle between the two frames. The area of the vehicle 
could be considered to provide a crude estimate of the range the vehicle is 
from the camera as the area changes approximately linearly with distance. 
Consider

x diff = abs(M10k - M10m) (6.3)

y_diff = abs(M01ji - M01m) (6.4)

the mean area of a target between frames can be calculated using

mean area = (MOO^ M00m) /2 (6.5)
then

estimated displacement = ~J(x_diff2 + y_diff2)' /
/ mean area (6.6)

For the map segments depicted by figures 6.6(a) and 6.6(c) the x,y centroid 
positions for the current and previous frames were (119,44), (113,43) and 
(122,67), (117,67) respectively and the associated areas for each instance 
was (27,24) and (34,31) respectively. This gives an estimated displacement 
for the vehicle moving on the road of 0.225 and an estimated displacement 
of 0.164 for the vehicle moving on the grass. Like the data table for the 
edginess of a region being used as a measure of its structure, the values 
within table 6.2 for structure of a region based on motion were determined 
experimentally using velocity results for all the vehicles moving within the 
image sequence (determined by experiment).

The values estimated for the displacement are now used to look up the 
likelihood of that particular map segment being a road, based on that 
estimated displacement. From table 6.2 the system returned a 60 %
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likelihood of the road segment being road and a 50 % likelihood of the 
grass being a road segment.

Estimated
Displacement

Likelihood of 
Road(%)

Likelihood of 
Ground (%)

0.000 - 0.050 10 90
0.051-0.100 20 80
0.101 -0.150 40 60
0.151 -0.200 50 50
0.201 - 0.250 60 40
0.251 -0.300 80 20

>0.301 90 10

Table 6.2 Percentage likelihood of segment being 
road or ground, based on a targets velocity.

These results are not unexpected, as in these particular cases the car on the 
road is leaving the car park and going up a slight gradient and as such is 
not moving very quickly. With the grass region, the car manoeuvres as it 
comes to a halt for parking and its area reduces between the two frames 
giving a slightly higher apparent displacement. The system cannot make a 
more definitive determination of the likelihood of the map segment being a 
road based on the estimated displacement. However this problem can be 
alleviated by increasing the frame rate of the system from approximately a 
second to a tenth of a second, which would reduce the effect of self 
occlusive manoeuvres on the estimated displacement.

Overall the system has calculated a likelihood road value of (85% + 
60%)/2 = 72.5% for the road region being a road and a likelihood road 
value of (30% + 50%)/2 = 40.0% for the grass region being a road. For this 
particularly difficult case the system demonstrated that it could discern 
between road and grass regions.

6,4.1.1,3 Label Current Map.

The function ‘Label Current Map’ is not an arc in the network, it is a 
control function within the overall semantic network. This function labels a 
current scene map (a short term memory representation of the scene, it 
exists for one frame only). The node kernel updates the scene map (long 
term memory) when it evaluates the node labels for consistency.

104



Chapter 6 Spatial-Temporal Reasoning.

6.4.1.2 Between.

If target motion is detected and tracked in the image at some position (x ^ )  
at time f and at a later time tj target motion is again detected and tracked at 
a position (xj,yj), then these two target tracks could be related to the same 
target but the target was occluded by some object in the image for the time 
(tj-tj). A region in the image can therefore be defined by a straight line 
segment between co-ordinates (x^y^x^yj) which may indicate the presence 
of an occluding object in the image at those co-ordinates. This region is 
estimated by searching the scene map using the line segment end points 
and directional vector, linking any regions with a ‘static label’ if they are 
within the predefined search area. Using the directional vector to control 
the search direction results in 9 possible masks, figure 6.7 below shows the 
typical layout of the south-east (5) mask.

m ap  se g m e n t en d  p o in t

Figure 6.7 Typical layout of the search mask.

The ‘Between’ arc implementation has its rules, data-base and interpreter 
embedded within it. If at any time a new map segment is added that 
occupies the same co-ordinates as a static node, the static node is 
overwritten with the new map segment. The ‘between’ arc identified two 
main static object areas in the image. These areas corresponded to an actual 
hedge in the scene where vehicles did become occluded from the camera, 
but were still in the field of view.

6.4.2 Network Nodes.

The basic requirements of an image processing system engaged in image 
analysis and interpretation are, an ability to represent classes of objects or 
events that may be in the scene and some form of criteria for calling the
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knowledge representation scheme adequate. The ‘epistemological 
adequacy’ that is: “a representation is called epistemologically adequate for 
a person or machine if it can be used practically to express the facts that 
one actually has about aspects of the world” (McCarhty [80]). Brachman
[83] pointed out that the epistemological adequate scheme must be neutral 
with respect to a conceptional level of knowledge base. That level should 
be built of concepts and relationships between those concepts that are 
relevant to the given task.

To this end the semantic network used here for the knowledge 
representation scheme has unlike Niemann [79] or Deruyver [74] only 4 
nodes and two arcs to represent the domain knowledge. The system is 
engaged in a tracking and interpretation task, identifying regions of the 
image that are associated with motion and as such within the problem 
domain only a few objects are permitted. These few objects however can in 
fact encompass a far greater number of objects, for instance, the ground 
node could represent a dirt track or grass. Both of these objects occur in the 
natural world, but for my application they are just objects that can contain 
vehicle motion and as such I am not particularly interested in whether the 
region is a dirt track or grass.

The network clearly serves two of the three general requirements for an 
image sequence understanding system as defined by Nagel [72]; that is: the 
system should serve a clearly defined purpose, and the system should be 
able to recognise explicitly the limits of its capabilities. Nagel’s third 
requirement called for an exhaustive internal representation for all its tasks 
and environmental conditions it is expected to handle. This would 
generally result in an extremely complex and difficult to manage database 
that will tend to defeat the objective of the system by making the 
computational burden of the recognition and interpretation processes 
excessive. Knowledge based systems are also faced with the problem that 
information about the problem domain, the knowledge database, tables 6.1 
and 6.2 for example, only provide uncertain knowledge. To this must be 
coupled the fact that the symbolic data extracted from the image sensor 
will also be uncertain (illumination conditions, viewing angle, disturbances 
etc) which also leads systems to mis-classify objects with the consequence 
that different labels are generated for the same region in the image.

To resolve this problem the network nodes are constructed such that each 
node has a core process, ‘a node kernel’. The node kernel is responsible for 
maintaining the label consistency of the node, it therefore resolves any 
label inconsistency. The node kernel also calculates an activity factor for 
each identified node which gives an indication of the level of motion 
activity for each identified region in the scene map.
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6.4.2.1 Node Kernel.

To accomplish the tasks of maintaining consistent labelling of nodes and 
estimating the activity of a node, the node kernel uses two core processes, 
namely the ‘Node Label Consistency’ process and the ‘Node Activity’ 
process.

6.4.2.1.1 Node Label Consistency.

The system is learning the structure of the scene on a frame by frame basis, 
and has both a short term and long term memory, (figures 6.8(a) and 
6.8(b)) and as such does not want any single (or few) mis-classifications to 
adversely effect the interpretation process. The node consistency process 
uses temporal filtering to resolve label mis-matches. Initially this can lead 
to the system mis-classifying segments due to the fact that only a few 
frames will have been processed. However as the system continues to 
learn, the average across a wider number of frames will tend to classify a 
segment as either road or ground correctly.

The label current map function labels the short-term memory with the 
current label for a map segment as shown in figure 6.8(a). The node kernel 
scans through the scene map (effectively long term memory, figure 6.8(b)) 
checking to see if the current map segment has been observed before.

G R O U N D

x  direction (0-127)

Figure 6.8(a) Section of short term memory.
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R O A D
road likelihood = 72% 
A c tiv ity  H IG H

x  direction (0-127)
road likelihood = 80% 

ctiv ity  H IG H

Figure 6.8(b) Corresponding section of Scene Map (Long term memory).

If a co-ordinate clash is detected then the labels for the current and 
previous map segments are checked for consistency. If the labels are the 
same then the node consistency process updates the likelihood value 
adding any extra co-ordinates to the previous node (if required). If the 
labels are inconsistent then the node consistency process resolves the label 
conflict by averaging the two likelihood values.

6.4.2.1.2 Node Activity.

The node activity process calculates the node activity based on the ratio of 
observed segment motion to the number of processed frames (time index). 
This ratio is used as a look up value into table 6.3, which adds the current 
motion activity for the labelled node.

If node activity becomes excessive, then this is likely to be due to a tracked 
object that has entered the field of view of the camera and then stopped at 
some point in the image, so that its motion is constant at one point. The 
node activity function now scans the entire current scene map (short term 
memory) and updates the scene map (long term memory) with the results 
of the current short term memory, it then clears the short term memory 
ready for the next frame.
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node activity ratio node activity
0.000- 0.050 VERY LOW
0.051 -0.100 LOW
0.101 -0.150 MEDIUM
0.151 -0.200 HIGH
0.201 -0.250 VERY HIGH

Table 6.3 Node activity table.

6.5 Results.

The input image sequence was applied to the system and frame 1 was taken 
as the reference image (first frame into the system) with reference 
statistical and edge image data being generated from it. The following 
pages show frames 1,9,25,29,37 and 60 from the input image sequence, 
where frame 1 is the initial frame (reference), frame 9 shows a car entering 
a grass region of the car park and frame 25 shows the car in the grass 
region manoeuvring to park as another car starts to leave the car park on a 
road region (entry\exit road).

Frame 29 shows the car that is leaving the car park at the junction to the 
main road just as another car enters the car park from the road junction, 
which then becomes occluded behind the car leaving the car park. Frame 
37 shows a stream of cars moving down the main road into the cove and 
the car on the grass finally parking. Finally frame 60 shows another car 
starting to enter the car park from the main road junction. Frames 1, 9, 25, 
29, 37 and 60 are shown in figures 6.9(a, b, c, d, e and f).

Figure 6.9(a) Input image 
sequence frame 1.

Figure 6.9(b) Input image 
sequence frame 9.
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Figure 6.9(c) Input image 
sequence frame 25.

Figure 6.9(e) Input image 
sequence frame 37.

Figure 6.9(d) Input image 
sequence frame 29.

Figure 6.9(f) Input image 
sequence frame 60.

Figures 6.10(a to f) show the scene map being constructed at those specific 
instances, i.e. figure 6.10(a) shows the initial scene map, no identified 
regions, and figures 6.10 (b, c, d, e, and f) show the scene map as it is 
constructed by the system at frames 9, 25, 29, 37 and 60 respectively.

Figures 6.11 (a to f) show the main regions of interest identified by the 
spatial temporal reasoning process together with the label that the system 
generated for that region and its corresponding node activity value. Figures 
6.11 (a, b, c, d, e, and f) show the results of the map building process at 
frame 60.
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Figure 6.10(a) Scene map 
construction at frame 1.

Figure 6.10(b) Scene map 
construction at frame 9.

Figure 6.10(c) Scene map 
construction at frame 25.

Figure 6.10(d) Scene map 
construction at frame 29.

Figure 6.10(e) Scene map 
construction at frame 37.

Figure 6.10(f) Scene map 
construction at frame 60.
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Figure 6.11(a) Ground region. 
Region Identified as Ground. 
Likelihood Road = 30%. 
Node Activity = High.

Figure 6.11(c) Road region. 
Region Identified as Road. 
Likelihood Road = 80%. 
Node Activity = High.

Figure 6.11(e) Ground region. 
Region Identified as Ground. 
Likelihood Road = 35%.
Node Activity = Low.

Spatial-Temporal Reasoning.

Figure 6.11(b) Static region. 
Regions identified as Static. 
Likelihood Road = 0%
Node Activity = Very Low.

Figure 6.11(d) Road region. 
Region identified as Road. 
Likelihood Road = 75% 
Node Activity = Medium.

Figure 6.11(1) Ground region. 
Region identified as Ground. 
Likelihood Road = 30%
Node Activity = Very High.
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6.6 Discussion and Summary.

In our daily lives we frequently reason about shapes and how these shapes 
are arranged as objects in a scene. We use practical reasoning through a 
variety of levels about how these objects can be manipulated (Fleck, [71]). 
Understanding of scene structure based on a sequence of images requires 
very careful selection and management of the information that they offer, 
as the interpretation of visual data is a classically under estimated problem 
(Buxton, [70]). The algorithm developed by this research for interpreting 
the scene structure uses multi-resolution image data and practical reasoning 
about how objects are arranged in the image to build a structural 
representation of the scene.

The multi-level representation of the image available to the spatial- 
temporal reasoning process has two levels. The 1st level consists of edge 
pixels derived directly from the image using an edge operator and has a 
resolution of 512 by 512 pixels. The second level consists of target motion 
data. This motion data has been derived from the image sequence by the 
target tracker and represents areas of the image that are of interest to the 
system. They are essentially high level data structures that represent target 
motion in the image. Stewart [91] highlights that for an image processing 
system engaged in traffic scene analysis, the system must be focused to 
areas of interest to reduce the amount of image data that must be processed.

The target data extracted from the image sequence by the tracker 
effectively focuses the image processing system directly to areas of interest 
in the scene, a key point for any real-time implementation. The input image 
sequence used to test the spatial-temporal reasoning process is shown in 
figures 6.9(a) to 6.9(f) inclusive. These show frames 1, 9, 25, 29, 37 and 60 
from the complex outdoor scene used to test the rest of the system. 
Multiple vehicles can be observed moving into and out of a car park, with 
some of the vehicles undergoing both full and partial occlusion by both 
other vehicles and other objects in the scene.

Figures 6.10(a) to (f) show the construction of the scene map at those 
particular frames, superimposed onto the original image, together with a 
region label, percentage likelihood of that region being a road and an 
indication of the level of activity in that region. Figures 6.11(a) to (f) show 
six enlarged areas of the scene map corresponding to identified structural 
regions. Figure 6.11(a) shows an actual section of road, that has been 
identified as ground; this is a mis-classification of the region. Flowever the 
actual road surface is occluded by the hedge and only partial observation of 
vehicles lead to this region being mis-identified.
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The mis-classification is not deemed to be a problem because the node 
activity for this region is high. Two main static regions were identified 
(figure 6.11(b)) showing two distinct areas in the image where tracked 
vehicles became occluded. Figures 6.11(c) and 6.11(d) show the road 
junction with the car park entry\exit road has been correctly identified as 
road. The difference in node activity is due to the fact that a number of 
vehicles were tracked in the junction region but they did not enter the car 
park, but in fact went down the road into the cove.

Figure 6.11(e) shows a grass area of the car park where a vehicle entered 
the scene and parked. The region has been correctly identified and has a 
low node activity value. With figure 6.11(f) the road down into the cove 
was mis-classified as being ground; this is due to the road being well over 
500 meters away from the camera and as can be seen in the image, it is not 
completely visible to the camera. Figure 6.11(f) also shows four possible 
static objects that have been generated using the ‘between’ arc.

Several vehicles were tracked moving both to and from the cove and as the 
system processed the tracks using the ‘between’ premise it identified 
effectively occluding objects between those tracks and the entry\exit road. 
In fact this area does not contain occluding objects in the sense that 
vehicles can disappear behind them and then later re-appear in the image. 
This region of the image contains buildings and other features that inhibit 
the motion of vehicles in that region. This indicates that static regions may 
not just define an area where objects can become occluded, my original 
aim, but may also represent a region where vehicles may never be expected 
to be observed moving.

The results obtained by the spatial-temporal reasoning process for this 
input image sequence correctly identified 67% of the main structural 
features the system was attempting to learn from the scene. The system 
successfully identified all areas of the image associated with target motion. 
It did not identify the large hedge in the image that vehicles were fully 
occluded behind, due to the fact that motion was never again observed in 
those regions. The system did however highlight that motion stopped short 
of the edge of the image, as such it would be possible to extrapolate in a 
straight line to the edge of the image in a direction based on the last 
observed target motion. This would identify that region of the image as 
containing an occluding object.

The mis-classified regions have already been highlighted and are not 
deemed to cause a problem due to their high level of node activity. The 
regions have in fact still been identified as being associated with target 
motion. The results obtained show that using relatively straight forward
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image processing techniques coupled with a simple reasoning strategy, a 
map of a complex scene can be constructed. This map identifies areas of 
the image where vehicle motion is likely to be detected and areas where 
vehicles can become occluded from the camera but are in fact still in the 
field of view. This last point is considered to be one of the main results of 
my research.

Unlike Bouthemy [93] and perhaps to a lesser extent Murray [92] the 
system developed here is heuristic in nature. This is due to the fact that the 
observed motion in the image is being derived from vehicles that can be 
viewed over a wide range of distances from the camera; the consequence of 
which is that their appearance in the image varies considerably. To this can 
be added the problem that these objects may be partially occluded in the 
image as they are being tracked.

The problem with a heuristic system and in general image processing 
systems that have any form of thresholding decision making processes, is 
that they can be adapted to work for a specific image sequence. In chapter 
7 ‘goal achievement’ two distinctly different complex outdoor traffic 
scenes are applied to the system; the results of which clearly show that the 
system is robust and not reliant on a specific type of image scene.
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Chapter 7
System
Integration.
7.1 Introduction and Overview.

With high-level vision we are generally concerned with constructing some 
form of model of the world and using this model at a later time for 
recognition tasks. Chapter 2 gave a brief introduction to high-level vision 
and knowledge based systems, outlining that such systems use analogical, 
propositional and procedural models to represent knowledge about objects 
in the real world and the recognition task is generally realised using 
inference. Inference does not require the construction of explicit models of 
an object but instead uses the results obtained from evaluating the 
analogical and propositional models with extracted image features to 
deduce the presence or not of an object in the image.

To perform the identification tasks a knowledge based system usually 
divides this task into a number of main processes, namely:

(a) Feature extraction.
(b) Knowledge acquisition.
00 Inference.
(d) Planning.
(e) Control.

(a) Feature extraction is concerned with extracting information from the 
image, (chapters 4 & 5) from which a symbolic description of the objects 
in the image can be constructed.

(b) Knowledge acquisition is the construction of a model that will represent 
our knowledge of the real world. This is generally done prior to the start of 
the recognition process and this previously acquired information is stored 
in a knowledge data base (experiments carried out in chapters 4, 5 and 6).
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(c) Inference is the process by which the knowledge based system deduces 
(infers) from facts in the knowledge data base and information extracted 
from the image, the identity and location of objects in the real world 
(chapters 5 & 6).

(d) Planning is the problem solving and simulation activity that anticipates 
future world states, it determines how the visual environment is expected to 
change if certain actions are performed.

(e) Control or control strategies, control the way the high-level vision 
system performs its processing. These control strategies are important 
because computation in image processing systems is very expensive and 
any operations that are not really necessary, should not be performed and 
the control strategy should ensure this. However it should be noted that 
even the simplest biological vision systems exhibit sophisticated control of 
their image processing functions.

The processes just outlined for a knowledge based vision system can be 
organised into a structure as shown below in figure 7.1.

A vision system using such a knowledge data base is therefore engaged in 
two distinct activities, namely

(i) belief maintenance.
(ii) goal achievement.
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(i) Belief maintenance is a passive, data driven background activity that 
keeps beliefs consistent and updated through the use of inference.

(ii) Goal achievement is an active, knowledge driven foreground activity 
that consists of planning the future activities of the system via a planning 
mechanism.

However the knowledge that we acquire prior to the recognition process 
(evidence) and the information that we extract from the image (hypotheses) 
is often uncertain. This uncertainty leads to a probabilistic relationship 
between the observed image features and the knowledge data base. To this 
end high-level vision systems tend to use semantic networks, production 
systems and predicate logic, all of which have logic as their underpinning 
principle with the reasoning (inference) processes also based on logic.

Generally knowledge based systems when applied to real world images 
attempt to interpret the structure of the scene using some form of region 
analysis to segment the image into regions which produces a data set for 
those regions that contains information about their size, location, edges, 
colour etc (Draper, [52]). This data is used to generate hypothesis about 
objects that may be in the scene and control strategies build up and 
maintain beliefs about objects in the scene in a test and refine manner. 
Draper [52], highlighted results obtained for a house scene and a road 
scene, in these examples the major objects in the scenes were identified, 
but the scene analysis was based on the classification of large scale regions 
in the image and made no use of object motion. More recent work on the 
analysis of outdoor scenes has involved the use of neural networks to 
interpret the major structure features in a scene.

Campbell [53], developed a new segmentation quality metric to segment 
regions in outdoor scenes using a neural network. The neural network was 
trained to recognise a set of features within these regions that could be used 
to classify those regions into sky, roads, buildings, grass etc. The system 
automatically classified over 81 % of the area of the image into those 
known regions, but again used static information to interpret the scene. 
However we live in a dynamic not a static world and Giusto [54], used a 
knowledge based system to interpret 3-D time varying scenes from an input 
of 2-D images of simple solid shapes.

Giusto system used colour to recognise the solid shapes and interpretation 
was obtained by segmenting matching regions to solid models defined by a 
qualitative view. Analysis of the motion was used to propagate the most 
likely hypothesis and help solve ambiguities in the system. Johnson, [55] 
trained a neural network to learn the distribution of object trajectories from
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an image sequence of a pedestrian scene. The resulting model did not 
identify grass or sky, but built a representation of the scene where 
‘meanings’ could be attached to areas of the image to flag event recognition 
and trajectory prediction. The results of this work showed that trajectories 
of objects moving in the image could be learned by the neural network. 
However the scene is very constrained, with objects that are to be tracked 
occupying a significant proportion of the image pixels. The system used the 
motion of objects within the scene to build up an interpretation of that 
scene, demonstrating that motion alone could be sufficient to interpret 
structural features within a scene. Each of these systems had their own 
desired goal, whether it was to identify a house and a road or track an 
object. There is a considerable amount of literature available on knowledge 
based systems for analysing static images. The goal is generally identifying 
objects within that image, the identification process usually relates to areas 
of the image identified.

7.2 Goal Processor.

As already outlined goal achievement is an active knowledge driven 
foreground activity which plans the future activities of the system. The goal 
processor has the task of controlling the overall image processing system 
such that the processing being carried out is consistent with the aims of the 
system. To meet these aims, three image processing tasks were identified as 
being required namely, ‘acquisition and motion detection’, target 
identification and tracking’ and ‘spatial-temporal reasoning’. These tasks 
were implemented such that they are totally self contained. That is having 
been enabled by the goal processor, they require no further attention from 
it, running until they have performed their processing on a single frame of 
image data. They then return a status signal when their task is complete.

Planning is therefore relatively straight forward in so far as the goal 
processor must ensure that each task is called in the correct order and that 
the status returned by the task indicates that the processing produced no 
errors. A display function takes the results of the image processing task and 
displays them in one or more image display windows, textual information 
is displayed in a message window indicating the status of the processing 
carried out. If an error occurs the system halts the processing sequence and 
awaits a user response. The previous three chapters have demonstrated the 
performance of each image processing task (chapter 4 :-acquisition, 
filtering and reference generation, chapter 5 :- target identification and 
tracking and in chapter 6 :- scene map construction). Although the scene 
used was a particularly difficult open world scene, difficult because the 
vehicles to be tracked were around 400 meters from the camera and going
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through occlusion, the system must now demonstrate that it is not scene 
dependent.

7.3 Scene Analysis.

To test that the image processing system was not scene dependant and that 
results were not obtained by careful choosing of threshold values, two 
further open world image sequences were applied to the system without any 
adjustment to threshold or database values. The scenes were filmed using a 
static camcorder and the recorded video sequence was later digitised to disc 
at approximately 10 frames a second for about 40 seconds, giving each 
sequence a length of 400 frames. The two sequences were chosen such that 
they are distinctly different from the image sequence used in the 
development of the image processing system.

7.3.1 Scene 1 Discussion and Results.

Scene one depicts a road traffic junction where the vehicles in the scene are 
approximately 100 meters from the camera. These vehicles were moving at 
relatively high speeds up and down the main road (50 mph+) and to add to 
this, two areas of the junction were partially obscured by trees. While the 
image sequence was being filmed the camera was placed such that it was 
undergoing motion due to wind disturbances which would result in random 
motion cues being generated. Figures 7.2(a) to 7.2(j) show the input 
sequence at various frames, where vehicles have been identified and 
tracked, and from the extracted track trajectories the construction of the 
scene map at those instances.

Figure 7.2(a) Frame 6 
Tracking Data.

Figure 7.2(b) Frame 6 
Scene Map.
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Figures 7.2(a and b) show the entry of a coach into the scene and the start 
of the map construction. The coach was moving at speed (50 mph+) and at 
one instant a large segment of the image was in motion (nearly 800 image 
tiles) at one time. Figure 7.2(c) shows that the coach was successfully 
tracked as it crossed the image sequence. From the extracted trajectory data 
a road section was identified and inserted into the scene map, which is 
shown by figure 7.2(d).

Figure 7.2(c) Frame 28 
Tracking Data.

Figure 7.2(d) Frame 28 
Scene Map.

Figure 7.2(e) Frame 91 Figure 7.2(f) Frame 91
Tracking Data. Scene Map.

Between frames 52 and 108 two motor-cyclists entered the scene from the 
minor road (lower left hand side of the image). The two motor-cyclists 
became partially occluded behind the branches of the tree as they entered 
the main road. Figures 7.2(e and f) show frame 91 from this part of the 
image sequence, figure 7.2(e) is the results obtained by the system tracker
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showing that both motor-cyclists have been identified as targets and 
tracked. Figure 7.2(f) shows that the system has successfully extracted the 
trajectory data for the two motor-cyclists and constructed the corresponding 
road segment. Figure 7.2(g) below shows part of the image sequence with 
four vehicles being identified and tracked. Two are moving left to right on 
the main road, one is moving right to left and the fourth is moving up the 
side road to join the main road. In the background the coaches in the car 
park are loading passengers and getting ready to depart the car park. The 
resulting tracks have been added to the scene map shown in figure 7.2(h).

Figure 7.2(g) Frame 265 
Tracking Data.

Figure 7.2(h) Frame 265 
Scene Map.

Figure 7.2(i) Frame 377 Figure 7.2(j) Frame 377
Tracking Data. Scene Map.

Figure 7.2(i) shows frame 377, which is towards the end of the input image 
sequence. A vehicle has turned right from the main road into the side road 
and moved down the side road becoming fully occluded behind a tree next
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to the road, the vehicle became visible (partially) in frame 377, which 
shows the system re-acquiring the target. Figure 7.2(j) shows the extracted 
trajectory for this vehicle added to the scene map, an occluding path has 
been identified by the system in between the last known trajectory point 
and the cars new trajectory point. Further occluding points were identified 
by the system across the road, these points although not actual occlusions 
indicate that no target trajectories have been extracted for this specific 
region of the scene. The vehicle eventually exited the scene in the lower 
left hand corner of the image, which the system tracked until the vehicle 
actually left the image.

Figure 7.3(a) Un-matched motion 
cue windows generated between 

frames 3 and 400.

Figure 7.3(b) Tracking windows 
for matched motion cues between 

frames 3 to 400.

Figure 7.3(c) Constructed scene map 
for frames 3 to 400.
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Figure 7.3(a) shows the un-matched motion cues found across the input 
image frame sequence. The cues along the sides of both the main and minor 
roads are due to the camera motion caused by the wind disturbances. This 
camera motion principally affects regions in the image that have vertical or 
horizontal edges. However the system has not tracked these points and no 
false map segments were generated for these regions. Cues generated due to 
trees and bushes moving in the wind have only been identified and tracked 
in the background of the image (vertical straight edges of the coaches). 
Figure 7.3(b) shows the accumulated tracking windows for identified and 
tracked targets across the image sequence.

Figure 7.3(c) shows the scene map constructed for this 400 frame image 
sequence, the system came back with an assessment that the scene map 
construction was incomplete. This is a result of the car that left the image at 
the bottom of the scene. This vehicle provided new target data as no 
vehicles had been observed in that region before the end of the frame 
sequence. Of the identified map segments, 82% were correctly identified as 
road and 18% were incorrectly identified as ground. Areas identified by the 
system as potential static occluding objects were on the road. However 
given more frames with more vehicle motion, then these areas would have 
been overwritten as road segments. More importantly the actual area of the 
image where vehicles could undergo total occlusion ( e.g. the tree in the 
bottom centre of the image) was identified as a static object.

The map segments generated by this scene could now be used to directly 
focus the attention of an image processing system to those areas of the 
image expected to contain vehicle motion. This would focus the more 
computationally intensive image processing algorithms required for target 
identification and tracking to smaller regions of the image, reducing the 
processing time required to identify and track a vehicle. A second feature of 
the map is that having identified static objects in the field of view that can 
occlude vehicles, this feature could enable vehicles to be tracked that 
although not visible to the camera are still in the field of view.

7.3.2 Scene 2 Discussion and Results.

Scene two depicts a wide open scene with a main road winding uphill into a 
town. Vehicles moving on the road are travelling at approximately 40 mph 
and at the top of the hill, just before the road enters the town the vehicles 
are nearly 1000 meters from the camera. To add to the problem of target 
range there are a number of trees overhanging the road that either partially 
or fully occlude vehicles travelling up and down the road.
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While filming this image sequence, the camera was placed such that it was 
not (a far as possible) undergoing motion due to wind disturbances, 
however being a windy day the trees and bushes in this scene are 
undergoing motion.

Figure 7.4(a) Frame 7 
Tracking Data.

Figure 7.4(b) Frame 7 
Scene Map.

Figure 7.4(c) Frame 50 
Tracking Data.

Figure 7.4(d) Frame 50 
Scene Map.

Figures 7.4(a and c) above show the entry of a car into the scene, followed 
by a second car; both vehicles proceeded up the road towards the town. The 
system has successfully tracked both vehicles as they moved up the road 
and from the extracted target trajectory data for these vehicles has correctly 
constructed a road segment for that region of the image (figures 7.4 (b and 
d)).
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However the number of motion cues generated by the scene had slowly 
risen (see figure 7.6) as the image sequence progressed, with the result that 
false motion cues were being identified (trees moving next to the house, off 
centre right in the image) and map segments plotted for them. At frame 123 
a new reference set of images was generated by the system.

Figure 7.4(e) below shows frame 160, where there were multiple targets in 
the scene moving up and down the road. The number of false motion cues 
has reduced and of the six identified targets only one is a false motion cue 
(third one up from the bottom of the image). Figure 7.4(f) shows the scene 
map constructed at this point, and despite the update image references, 
there are now thirty-live incorrect map segments in the scene map, though 
only three have a medium node activity value, the remaining thirty-two 
have low node activity values. The identified road segments all have a high 
node activity value associated with them.

Figure 7.4(e) Frame 160 Figure 7.4(f) Frame 160
Tracking Data. Scene Map.

The number of false motion cues continued to rise as the image sequence 
was processed, despite the reference update at frame 123, such that the 
system reference was again updated at frame 240. Figures 7.4(g and h) on 
the next page show frame 251, where the system has re-acquired two 
vehicles that had become occluded by the tree covering the road.

The target at the top of the image was moving towards the town, the other 
was moving down the road away from the town. The scene map at this time 
now had forty-seven incorrectly labelled map segments though only five 
have a medium node activity value, again all correctly identified road 
segments still have a high node activity value.
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Figure 7.4(g) Frame 251 
Tracking Data.

Figure 7.4(h) Frame 251 
Scene Map.

Figure 7.4(i) Frame 367 
Tracking Data.

Figure 7.4(j) Frame 367 
Scene Map.

The system had at frame 240 generated three sets of image reference data 
and at frame 345 generated a fourth set of reference data as the number of 
motion cues generated by the input image sequence had again risen sharply.

Figure 7.4(i) shows frame 367 of the image sequence where a vehicle 
moving down the road having been occluded by the trees on that side of the 
road had been re-acquired and tracked. The number of false map segments 
having risen to fifty one (figure 7.4(j)). The final scene map generated by 
the system is shown on the next page by figure 7.5.
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Figure 7.5 Final scene map constructed 
by the system for image scene 2.

Labels Generated 
100

Objects
Targets

1111111 n n rn

1 7 13 19 25 31 37 43 49 55 61 67 73 79 F ram e N o  x5

Figure 7.6 Plot showing Object and Target labels 
generated every fifth frame for image scene 2.
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The system has clearly failed to build an accurate map of the scene based 
on the motion of the man made vehicles moving within that scene. 
However the map constructed has accurately identified the road regions and 
assigned a high node activity value to those regions.

It has also correctly identified the occluding trees in the centre of the image 
that occludes target motion both up and down the road. Of the map 
segments identified, 57% are correctly labelled, with 43% being incorrectly 
labelled. The incorrectly labelled regions are all due to false motion cues 
being generated by the input image sequence. From figure 7.6, it is 
apparent that the scene is generating a large number of false motion cues, 
which are only temporally reduced each time a new reference image is 
generated.

These false motion cues appear to be due to the fact that with this image 
sequence, approximately 70% of the scene is either trees or bushes which 
are moving in the wind. These are being interpreted by the system as object 
motion, the consequence of this, is that the system matches these false 
motion cues across a number of consecutive frames and extracts 
corresponding map segments for them.

Having extracted a number of false motion segments when the spatial- 
temporal reasoning process applies its between premise, static objects are 
also generated and inserted into the map. Further investigation of the input 
image sequence revealed that there were in fact bursts of image sequences 
which had very poor image definition, possibly due to digitisation and 
JPEG compression effects. The goal processor at the end of the 400th frame 
reported that the scene map was incomplete, this result is again due to new 
target data (and false target data) being extracted towards the end of the 
sequence.

7.4 Discussion and Summary.

It has already been identified (Howarth, [94]) that when interpreting a 
dynamic and uncertain world, it is important to have a high-level vision 
system guiding the reasoning processes of your image processing system. 
The image processing system developed by my research uses low-level 
image features, in this case motion cues derived from the motion of man 
made vehicles moving in the scene, to drive high-level vision processes that 
reason about the structural features within the scene based on this detected 
motion. The algorithms developed use a hierarchical approach to the target 
tracking and scene map construction, as it has been found (Jones, [95]) that 
such methods tend to provide a better temporal stability for moving regions
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in an image sequence. Chapters four, five and six of this thesis have seen 
development of an image processing system designed to extract motion 
data from consecutive frames of image data, identify and track the extracted 
motion and finally construct a structural representation of a scene based on 
that motion, (final aim of my research). The goal processor has the task of 
guiding and controlling the image processing system, checking for errors 
and reasoning about the state of the structural interpretation of the scene 
being produced by the system. However all the image processing 
development work used a single input image sequence.

This image sequence was complex in nature (multiple moving vehicles 
being either partially, fully occluded), the system was trained on this 
sequence. To ensure that the system is not scene dependant, then it must be 
able to construct a structural map of any open world form of traffic image 
sequence with no a priori knowledge of the structure of that scene. 
Therefore to fully test my system, two further and distinctly different 
complex open world traffic image sequences were applied.

In scene one the vehicles to be tracked were considerably closer to the 
camera (approximately 100 meters) and consequently larger areas of the 
image would be in motion. However the camera was undergoing horizontal 
motion due to wind disturbances. The system successfully identified and 
tracked vehicles moving in this scene, from which a structural 
representation of the scene was constructed. 82% of the extracted map 
segments were correctly labelled as road, with only 18% of the extracted 
map segments being due to false motion cues. These false motion cues 
were generated by undesirable camera motion (environmental 
disturbances).

Figure 7.3(c) however clearly shows that the system has constructed a map 
on a frame by frame basis, that identifies the major structural features 
within that scene. These structural features had either a medium or high 
node activity value. The false map segments however all had low node 
activity values.

Scene 2 did not give such good results. However in this scene vehicles 
were still being tracked despite the fact that some vehicles in the image, 
(middle left hand side) only occupied an area of 64 pixels (4 tiles). Only 
the extracted road segments had a high node activity value and only 11% of 
the false map segments had a medium node activity value, the rest were all 
low node activity. Considering the poor quality of the input image 
sequence, the hierarchical method used for motion detection and tracking 
shows that the key structural feature in the image (the main road) was 
identified.
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The three open world scenes used to test the goal achievement processor 
were not only complex but together exercised the system across a range of 
distances that objects were expected to be identified and tracked. They 
incorporated false motion cues due to both environmental effects 
(intentional) and digitisation effects (unintentional) and on average 
depending on the number of false motion cues the system had to process 
took a little over 2 minutes running on a lOOMhz 486 PC.

Systems have been developed that use multi-resolution motion estimation 
techniques to segment regions in an image (James, [81]). However 
although they apply their algorithms to open world scenes with real world 
noise (Haralick, [103]), they tend to be very scene dependent. I have 
developed (Teal, [96]) an image processing system that unlike (Cornish, 
[97]) can construct a scene map of an open world scene without any a 
priori knowledge on the structure of that scene.
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Chapter 8 
Discussion and 
Conclusions.
8.1 Discussion.

This research has investigated the complex problem of tracking man made 
objects moving in open world scenes and based on this motion construction 
of a representation of the structural features within that scene on a frame by 
frame basis. The developed system has learned where vehicle motion can 
be expected without any a priori knowledge of the scene. This task has 
already been identified as an essential component for traffic control 
algorithms (Kan, [100]).

Two particular features were required of the system, the first was that the 
tracking should be able to track objects that were a large distance from the 
camera (over 400 meters) irrespective of the viewing angle. The second 
feature was that the scene map would identify regions in the image where 
vehicles could become occluded from the camera but still be in the field of 
view, (an important feature in a security application, Daniels, [90]).

Analysis of the problem broke the task down into three distinct areas, the 
first of which was the acquisition of images and the detection of object 
motion within those images. Due to the long range at which the system was 
expected to detect object motion, a hierarchical frame differencing 
technique was employed. Frame differencing has been found (Rosin, [3]) to 
be a robust method for motion detection when the objects to be detected are 
a large distance form the camera, however frame differencing techniques 
require a reference image frame.

Open world scenes tend to produce large numbers of motion cues due to 
illumination and natural disturbances occurring in the scene. The 
hierarchical method employed calculates statistical values of fixed four by 
four pixel regions of the image. This effectively spatially smoothes those
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areas, reducing the motion generated by small pixel variations. The motion 
detection was based on the statistical differences between a reference frame 
(initially the first frame) and the current frame in the image sequence. The 
decision to update the reference was based on the perceived motion in the 
image, i.e. the number of identified objects and targets moving. Statistical 
analysis of the perceived motion across a five frame window was used in 
conjunction with a decision strategy to update the reference if the perceived 
motion exceeded pre-set thresholds.

The method has been shown to produce accurate and robust results and can 
even be modified without degrading system performance to compensate for 
poor quality image sequences. Having developed a method that can detect 
object motion in the image, it was necessary to discern which motion is due 
to objects of interest (targets) and which motion is from other sources 
(trees, bushes moving etc). The second task was to develop an algorithm 
that could use some form of metric that would distinguish between the two 
types of motion.

Due to the large range that targets were expected to be from the camera, 
model matching methods such as Tan [1] or Koller [17] and more recently 
Ferryman, [67] would tend to fail as there is insufficient object information 
in the image to match against a model. It has been found that the matching 
of crude object descriptors (Teal, [4], Rosin, [3]) provide a more robust 
form of tracking.

Here a new algorithm has been developed that uses a measure of the change 
in ‘edginess’ of a region to perform an initial identification of the region. 
This is used with a correspondence process that matches these regions 
across a number of frames to identify a target. When the reference image 
statistics are generated, a reference edge image is also created from the 
same intensity image. The motion cues extracted are used to create 
windows into the reference edge image where the amount of edge structure 
within that region is determined, thus effectively focusing the attention of 
the image processing system on that region (Meier, [101]).

The window is then placed on the current image and the edge structure 
within that window is also determined. The initial target identification 
performed checks to see if there are any differences between the two edge 
structures. As edge operators are fairly invariant to changes in intensity and 
changes due to trees and bushes moving would be fairly constant (the bush 
is still a bush), if a vehicle has moved into that region then we can expect to 
see a change in the edge structure. Matching these features across frames 
within certain constraints supports the identification of a motion cue as a 
target.
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The developed algorithm correctly identified and tracked targets to an 
accuracy of less than 1.5% between the trackers estimated centre of the 
object and a manually derived centre of the object. The final task developed 
here was to analyse the target motion and based on that motion construct a 
structural map of the scene identifying roads and potential objects that 
could occlude targets as they moved in the image.

A spatial-temporal reasoning algorithm has been developed that extracts the 
trajectory data based on the target motion and calculates structural features 
for each of these extracted trajectories. These features form a map segment 
which is passed to a high-level vision process that reasons (infers) a likely 
structural interpretation for that map segment.

A semantic network is used to structure the knowledge, and the inference 
process is implemented using a rule-based approach with the database, 
rules and the interpreter being embedded into the network arc’s and nodes. 
The possible structural objects permitted in the scene was limited to objects 
that can contain target motion (roads, ground) and a static object, which is 
deemed to be anything that can occlude vehicle motion.

The spatial-temporal reasoning algorithm uses the edge structure found in 
the trajectory of the target together with consistent motion observed to 
determine if a map segment is either road or ground. It is argued that roads 
being man made tend to be smooth and as such do not give rise to large 
numbers of edge pixels unlike a grass surface. It may well be that analysis 
of straight line segments found within the map segment using a Hough 
Transform technique (Princen, [98]) may provide a more robust method for 
identifying the road.

However the algorithm developed here did correctly identify most road 
surfaces in the image and as already outlined the only time the algorithm 
actually gave poor results was when the input image sequence had poor 
quality and even then the major road feature in the scene was correctly 
identified. The image sequences applied to the system tested the image 
processing algorithms.

The three image sequences used can have their vehicle motion categorised 
as ‘near’, (e.g. scene 1, vehicles 100 meters from the camera); ‘medium’ 
(test sequence, vehicles 400 meters from the camera) and ‘far’ (e.g. scene 2, 
vehicles up to 1000 meters from the camera). The results obtained by the 
system showed that even over such a large range of vehicle distances, 
vehicles could be detected, tracked and a scene map constructed based on 
the tracking data. The map gives an indication of the likelihood of a 
segment being correctly labelled, as well as an indication as to the amount
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of activity that is associated with that region. At present there are three 
main area’s in the system which could be improved upon. The first is the 
initial target identification. The initial identification uses a measure of the 
change in edginess of a motion cue region to determine if that cue could be 
a target. Statistical analysis of the edge magnitudes within the motion cue 
window in both the current and reference frames may provide a more 
robust mechanism than simple difference mechanism currently being used.

The second area is the tracking. The tracking algorithm needs to reject most 
of the false motion cues. This could be addressed by solving the frame to 
frame correspondence problem across a larger temporal window, i.e. the 
target must be identified and tracked for say five frames rather than two. 
Vehicles should exhibit a consistent uniform motion as they move in the 
image, (this is unlikely to be true for false motion cues).

Finally the analysis of the road and ground segments again uses a measure 
of edginess of a region to determine its most likely structure. However it 
was noted that with road traffic scene 1 (chapter 7, section 7.3.1) where the 
vehicles were closer to the camera, that the edginess for the road 
approaches values that were found for grass regions in the test sequence. 
This is due to the fact that the road now occupied a significant part of the 
image, and the edge detector found large numbers of edges for the road. 
However it was noted that the road now produced straight line segments 
which could be used by a Hough transform to determine the presence in the 
image of a road surface.

8.2 Conclusion.

The aim of my research was to be able to detect, identify and track vehicles 
moving in an open world scene and based on this motion identify structural 
features in that scene. This already complex problem was further 
complicated by the fact that the vehicles to be identified and tracked would 
likely be a large distance from the camera, and as such there would be very 
little image information available.

I have found that model based techniques currently being used to identify 
and track vehicles in open world scenes are robust and can process image 
sequences at or near real-time. However they would probably fail when the 
vehicle is a large distance from the camera. I have found that relatively 
straight forward image processing techniques together with a general 
knowledge about how vehicles move in their environment can be used to 
identify and track a vehicle.
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I have used the identified motion to reason about the structural 
representation of the scene. Based on this reasoning process a map has been 
constructed which identifies areas of the image where vehicle motion can 
be expected to be observed and perhaps more importantly areas in the scene 
where vehicles can become occluded from the camera but are still in the 
filed of view.

The image test sequence used to develop the image processing algorithms 
was based on an open world scene. The vehicles moving in the scene 
occupied areas in the image of between 200 and 600 pixels. However I 
found that my developed algorithms would without modification track 
vehicles that occupied areas in excess of 16000 pixels down to vehicles that 
only occupied an area of 64 pixels and still construct a map of the scene 
based on that motion.

8.3 Future Work.

This research has concentrated on building the scene map. Future work is 
aimed in two directions. The first is to improve the system performance in 
target identification and tracking. These improvements have already been 
highlighted, however tracking may be further improved by using the 
extracted vehicle trajectory data to resolve loss of target tracking when 
vehicles occlude one another.

The second is to extend the map construction and use the map to predict 
when a vehicle could become occluded by static objects in the scene. The 
results of my work tend to indicate that unless the scene was viewed such 
that the occluding objects and vehicles were approximately the same 
distance from the camera (this is in fact pretty well much the case with the 
three image sequences used here) it would be possible for objects in the 
scene that are closer to the camera to be observed moving and create 
(correctly) an area in the map where vehicle motion can be expected. This 
detected motion could overwrite (incorrectly) a static object that does 
occlude vehicles moving in the scene that are at a greater distance from the 
camera.

This problem could be addressed by building not one scene map, but a 
number of scene maps. Each scene map would be based on the detected 
target motion area. This would mean that each map effectively represents 
the scene at a certain range from the camera (assuming that the targets are 
approximately the same size). The maps would form a 3-D scene 
description rather than a 2-D one. The maps would be stacked on top of 
one another (forming a ‘stack’) and as already outlined each map in the
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stack would be constructed from object motion of different sizes. The size 
of the object motion would provide a crude measure as to the range of the 
object from the camera. However rather than using the area of the target as 
a crude distance measure a second fixed camera could be incorporated. 
Stereo data could be used in a similar manner to Hanna [99], which would 
give more accurate target range data for building up a particular level in the 
map. In either case it is envisaged that extra processing will be needed to 
solve these problems and incorporate environmental conditions (Gaynor, 
[102]) that occur in the open world scenes.
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Appendix A 
YOURDON 
Structured 
Analysis and 
Design
Methodology.
Al: YOURDON structured analysis and design methodology.

The YOURDON structured analysis and design methodology addresses 
both structured analysis and structured design, though each of these 
processes is dealt with independently. Structured analysis is addressed by 
the 'essential model' and structured design by the 'implementation model', 
each model attempts to describe several aspects of the system.

A2: Essential Model.

The essential model is built up from two other models, namely, the 
environmental model and the behavioural model.

1 Environmental Model, this model is used to describe the external 
systems which will interface to the system being developed.

2:- Behavioural Model, this model is used to describe how the system will 
behave in response to events from its environment.
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A3: Implementation Model.

The implementation model consists of three other models, namely, the 
processor model, the task model and the module model.

1 Processor Model, this model allocates functions from the requirements 
to real processors within the system.
2:- Task Model, this model describes the allocation of the functions to the 
tasks on each processor.
3:- Module Model, this model is used to describe the internal structure of 
each task. It can also define the processing and control aspects of the 
module, which is known as the 'program implementation model'.

It is important to note that there is no rule which forces you to use both the 
essential model and the implementation model. Each individual system has 
its own level of complexities and restrictions, therefore each project will 
have to identify the optimum set of models to use. However several of the 
tools which are used to create both the essential model and implementation 
model make use of the same technique, and it may be that in small projects 
the essential model may well be developed into the implementation model. 
To implement the YOURDON structured analysis and design methodology 
a number of tools are used to create the models.

A4: Data Flow Diagrams.

As information moves through the system, it is modified by a series of 
transformations. A Data Flow Diagram (DFD) is a graphical technique that 
depicts information flows and transformations to those flows as data moves 
from input to output; DFD’s can also be known as a data flow graphs, or 
bubble charts. Data Flow Diagrams may be used to represent systems or 
software at any level of abstraction. The highest level, level 0 is called a 
'fundamental system model' or a 'context diagram'. DFD’s are organised 
into levels 1, 2, 3 .... etc where these levels are derived from a data 
transformation of the previous level, i.e. level 1 is derived from level 0, 
(there will only be one level 1, but there may be several level 2 diagrams 
derived from level 1).

Each of these diagrams expands further the data and processing 
requirements of the transform from which they have been derived (function 
de-composition). The basic principles used to draw any data flow diagram 
rely on defining the scope of the system by naming the flows that enter and 
leave the system highlighting the interfaces between the system and the 
outside world. Terminators are used at the highest level to represent the
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outside world; they produce the flows that the system will process and 
accept flows that the system has produced in response to the input flows. 
However DFD's do not illuminate:

1. The organisation of data, though data is shown.
2. The dynamics of the system.
3. The processing carried by the data transform.

To address these problems several other tools are used, namely:

1 : Data Dictionary.
2: State Transition Diagram
3: Process Specification.

A5: Data Dictionary.

A DFD shows the flow of data in the system and the transformations that 
can occur to that data, but a data item may be made up from a collection of 
individual data items which the DFD does not show. The data dictionary 
sometimes called a requirements dictionary, is an organised listing of all 
data elements that are pertinent to the system together with a textural 
description of structure and organisation of each data item.

A6: State Transition Diagram.

As already mentioned the DFD does not model the behaviour (dynamics) 
of a system; to do this we use a State Transition Diagram. STD’s model the 
dynamics of a system as a network of states connected by transitions. The 
main task of an STD is to highlight the time-dependent behaviour of the 
system; accordingly this model is important for the development of real 
time systems. State Transition Diagrams are described using four types of 
component:

(i) States.
(ii) Transitions.
(iii) Conditions.
(iv) Actions.

(i) States are the foundation of the diagrams, but unfortunately the most 
difficult components to work out. Formally a state is an abstract concept 
which contains enough information to determine the future behaviour of the 
system.
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(ii) Transitions represent movement (sequence) from one state in the 
system to another and have two consequences, namely:

(1) They cause the actions to happen.
(2) They may change the state of the machine.

In the implementation model, a transition should represent an 
uninterruptable sequence.

(iii) Conditions are events which happen to the system to cause a transition 
from one state to another. YOURDON uses different words to help 
distinguish the external events of the system with the internal control 
signals passing around the state transition diagram.

(iv) Actions are the results of a condition, that is when the system is subject 
to a condition, the system will “do” those actions.

Conditions may come from terminators on the context diagram, in this case 
they may not be word perfect copies as they are often grouped together into 
events and used to form an event list. Other conditions are those which are 
generated internally in the system and come from control processes or data 
transformations. Likewise actions go to other parts of the system (control 
processes or data transformations), or will appear in an outgoing event flow 
column of the event list, that is, they may go to :

(a) Terminators.
(b) Data transformations.
(c) Other control processes.
(d) Timers.

A7: Process Specification.

The purpose of a process specification is to define what processing must be 
done by a transform on the input data flows to generate the output data 
flows. Several tools could be used to perform the task of describing a 
process. The main method used for process specification is structured 
English, but any method can be used so long as it satisfies two crucial 
requirements, namely:

(i) The process specification must be expressed in a form that can be 
verified by the user and the systems analyst.
(ii) The process specification must be expressed in a form that can be 
effectively communicated to the various audiences involved.
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Pseudo-Code satisfies these two conditions and is frequently used to 
implement the process specification. Tables A.l and A.2 show the models 
used in YOURDON's structured analysis and design methodology and the 
individual tools used to construct the YOURDON models.

Stage Model Sub-model Comprising
Analysis Essential model Environmental

model
Data context diagram

Control context diagram
Requirements dictionary

External timing 
specification

Event list

Behavioural
model

Data flow diagrams

Control flow diagrams
Entity relationship 

diagrams
Requirements dictionary

Design Implementation
model

Processor
model

Context diagram

Data flow diagrams
Control flow diagrams

Entity relationship 
diagrams

Task resource 
specification

Design dictionary

Task model Data flow diagrams
Control flow diagrams

Entity relationship 
diagrams

Module resource 
specification

Design dictionary

Module model Structure charts

Table A.l The Models used in the YOURDON analysis 
and design methodology.
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Document Description
Dictionary A textual description with a formal syntax, but 

using extensive comments.
Event list A table relating events and their consequences.

Data flow diagram A diagram showing the movement of information 
through a process. Probably the document most 
identified with YOURDON.

State transition 
diagram

A diagram showing, in an abstract way, how a 
process is controlled.

Entity relationship 
diagram

A diagram showing logical connections between 
data items.

Structure charts A diagram showing how software units are 
composed.

Table A.2 Major tools used to build the YOURDON models.
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Appendix B
Environmental
Model.

Bl: Data Context Diagram.

Event Response Classification
Quit Terminates all processing and hand control 

back to the operating system
C

Step Process a single frame of image data and then 
return control back to user

C

Run
#1

Provide a user menu for inputting the number 
of image frames that are to be processed

D

Run
#2

Process all frames of frames of image data 
and then hand control back to user

C

Display Provide a user menu for inputting the 
processed image data for displaying, display 
image data and / or return control to the user.

C/D

B2: External Event List.
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Name frame request
Composition frame request = {frame request} 100
Meaning controls the rate at which frames of image data are input 

to the system
Name intensity image
Composition intensity image = {image pixels} 262144 {512 by 512}
Meaning frame of image data made up of 512 rows by 512 

columns of image pixels
Name processed image data
Composition processed image data = {processed image pixels} 262144 

{512 by 512}+ {image tiles} 16384 {128 by 128)
Meaning processed image data in pixel format OR processed 

image data in tile format
Name scene map
Composition scene map = {image tiles} 16384 {128 by 128} + {scene 

pixels} 262144 {512 by 512}
Meaning areas of the image that have been identified to exhibit 

motion or where objects may become occluded
Name tracking plot
Composition tracking = {window co-ordinates}256 max {range 

between 512 by 512} +
Meaning provides information on the position in tile co-ordinates 

of objects that have become occluded
Name processed image data
Composition processed image data = edge image + filtered intensity 

image + motion cues + un-matched target tracks + map 
segments

Meaning provides visual information produced by the image 
processing sub-functions.

Name system status information
Composition system status information = acquisition status + tracking 

status + reasoning status
Meaning provides visual information on the system status.
Name user commands
Composition user commands = step + display + run + quit
Meaning controls the target tracking and image interpretation that 

will be carried out by the system

B3: Requirements Dictionary.
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Appendix C 
Behavioural 
Model.

Cl: Target tracking and image interpretation level 1 DFD.
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C2: Acquisition and motion detection Level 2 DFD.

frame count

C3: Target identification and tracking level 2 DFD.
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C4: Spatial-Temporal reasoning level 2 DFD.

BEGIN
Initialise System;
WHILE user requests <> Quit DO 

BEGIN
Evaluate User Request(user requests);
WHILE frame to be processed DO 

BEGIN
Main Processing Task(frame count, sigma);
System Assessment(system status,scene map,target data, 

frame count);
Display(system assessment);

END;
ENDDO;
END;

ENDDO;
END.

Main Processing Task(frame count, sigma);
BEGIN

frame request = TRUE;
ENABLE Acquisition And Motion Detection(frame count, sigma); 
IF acquisition status = FALSE 

BEGIN
system status = Acquisition Error;
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Display(system status);
END;

ELSE
BEGIN

Display(image acquisition and motion data);
DISABLE Acquisition And Motion Detection(frame count,sigma); 
ENABLE Target Identification And Tracking(frame count,sigma); 
IF tracking status = FALSE 

BEGIN
system status = Tracking Error;
Display(system status);

END;
ELSE

BEGIN
Display (target data);
DISABLE Target Identification And Tracking(frame count,

sigma);
ENABLE Spatial-Temporal Reasoning();
IF reasoning status = FALSE 

BEGIN
system status = Reasoning Error;
Display(system status);

END;
ELSE

BEGIN
Display(scene data);
DISABLE Spatial-Temporal Reasoning();

END;
ENDIF;

END;
ENDIF;

END;
ENDIF;

frame request := FALSE;
END;

System Assessment(system status, scene map, target data, frame count); 
BEGIN

IF system status = FALSE;
BEGIN

Display(user requests);
Evaluate User Request(user requests);

END;
ELSE
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BEGIN
IF scene map AND new target data AND still frame count 

system assessment := still building map;
ELSE IF scene map AND old target data AND still frame count 

system assessment := still building map;
ELSE IF scene map AND old target data AND end frame count 

system assessment := map construction complete;
ELSE IF scene map AND new target data AND end frame count 

system assessment := map construction incomplete;
ELSE

system assessment := still building map;
ENDIF ;

END;
ENDIF;

END;

C5 : Goal achievement Control Specification.

e n a b l e

T: " I m a g e  F i l t e r i n g "  
" f r a m e  r e q u e s t "

" f i l t e r  s t a t u s "  
" M o t i o n  D e t e c t

" r e f e r e n c e  s t a t u s " " u p d a t e r e f e r e n c e"
" a c q u i s i t i o n  s t a t u s "  " a c q u i s i t i o n  s t a t u s "
D: " I m a g e  R e f e r e n c e :  " U p d a t e  I m a g e  R e f e r e n c e "  

G e n e r a t o r "

"m o t i o n  s t a t u s "  
E: " U p d a t e  I m a g e  R e

" u p d a t e  r e f e r e n c e ^
E: " I m a g e  R e f e r e n c e  

G e n e r a t o r "

D: " U p d a t e  I m a g e  R e f e r e n c e "

C6: Acquisition and motion detection STD.
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frame count

C7 : Motion detection level 3 DFD.

u p d a te
r e f e r e n c e

fra m e  c o u n t- U p d a te  Im age 
R e f e re n c e  

C o n t r o l

1

m o t io n  a n a l y s i ^
c l a s s i f i c a t i o n

s t a t u s

s t a t i s t i c s

C8: Update reference level 3 DFD.
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C9: Image reference generator level 3 DFD.

" t r a c k i n g  status" An a l y s i s "  
" s i g m a "

T a r g e t
T r a c k i n g

<1----
"initial target 
ana l y s i s  status"

Initial
Targ e t

A n a l y s i s
D: "Initial Tar g e t

A n a lysis"
E: "Target T r a cking"

CIO: Target Identification and Tracking STD.
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C ll: Initial target analysis level 3 DFD.
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Appendix D 
CD-ROM.
Dl: CD-ROM Directory and file structure.

Research\Movies.

RoadMoviel.fli
RoadMovie2.fli

ResearchYWaaplayer.

Aaplay.dll
Aaplay.h.
Aaplay.lib
Aapldev
Aavga.dll
Aawin.exe
Aawin.gid
Aawin.hlp
Aawin.ico
Martinsh.tif
Mciaap.drv
Mplayer.ini

Research\Thesis.

frontsht.doc
contents.doc
Chapterl.doc
Chapt2a.doc
Chapt2b.doc
Chapter3.doc
Chapter4.doc
Chapter5.doc
Chapter6.doc
Chapter7.doc
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Appendix D CD-ROM.

Chapter8.doc
refs.doc
biblog.doc
append_a.doc
append_b.doc
append_c.doc
append_d.doc

D2: Installation.

System Requirements.

PC based system with

Pentium processor (preferred).
16 Mbytes of RAM (minimum).
4 speed CD-ROM drive (minimum).
140 Mbytes free disk space (full installation).
Windows 95.
Word 6 or later (thesis only).

The software that accompanies this thesis has been run and tested using 
windows 95. To install the software simply copy all fdes in each directory 
on the CD-ROM to your hard disc (thesis is optional).

D3: Autodesk Animation Player for Windows Version 1.00.

This shareware animation player for windows is simple and easy to use. To 
run the player from windows 95 use the following procedure.

1: Choose the run option from windows 95 and select the Aawin.exe
fde.

2: Select File from the toolbar menu.
3: Select Open Animation from the fde menu and load either

roadmo—l.fli or roadmo~2.fli from your directory.
4: Select Anim Settings from the fde menu.

Set loops:Frames to 1.
Set Pause at End to 20.
Click OK.

5: Click » t o  run.
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