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Abstract

We study a firm that is exposed to random supply chain disruptions while producing a single product. During

a disruption, the firm may use reserve inventory and/or reserve capacity to serve customer demand. As supply

in the form of reserve inventory and reserve capacity is often lower than demand during a disruption, the

firm may choose to increase the price of the product during the disruption. An increase in price reduces

demand during the disruption, which may help better match supply and demand during the disruption. We

find that pricing flexibility (i.e., the ability to increase the price during a disruption) may complement or

substitute the operational mitigation levers of holding reserve inventory or reserve capacity. Specifically,

when a firm has pricing flexibility, it may be economical to increase the use of reserve inventory or reserve

capacity relative to a setting without pricing flexibility.
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1. Introduction and Motivation

When supply chain disruptions occur, customer demand often exceeds the available supply. Some firms opt

to increase the price when supply is limited. Consider the 2011 earthquake in Japan. The disaster affected

production at Honda and Nissan and resulted in a reduction of inventory of cars from both companies.

Nissan Rogue’s price rose by 3% after the earthquake (while the average industry price increase was 0.3%).

Honda Fit’s price rose by nearly 6% (while the average increase in the prices of compact cars was 2.3%).

Price increases when demand exceeds supply are not limited to the automotive industry. Coffee prices soared

44% from June to September 2010 due to bad weather in South America threatening crops. Further, U.S.

egg prices hit record high due to bird flu in 2015.

In this research, we want to better understand the role of pricing flexibility, i.e., the flexibility to increase

prices when demand exceeds supply during a disruption, in reducing profit losses during a disruption. Our

goal is to understand how pricing affects risk mitigation levers that have been widely studied in the literature

such as holding additional inventory or reserve capacity (Tomlin 2006, Chopra et al. 2007, Qi 2013, Qi and

Lee 2015).

We consider a firm producing a single product that is exposed to random supply disruptions resulting

in a production stop for a random time length. We model a two-stage problem where in the first stage the

firm decides on the optimal amount of reserve inventory and/or reserve capacity to carry as a protection

from profit losses during a disruption. When a disruption occurs, the firm decides, in the second stage,

on the optimal price, given the available reserve inventory and/or reserve capacity amount. Clearly, both

decisions (first and second stage) are interrelated. If the firm has significant pricing flexibility to manage

demand during a disruption, a price increase typically results in a reduction of demand, which then affects

the optimal amount of reserve inventory and/or reserve capacity to carry in the first place.

We find that pricing flexibility may complement or substitute the use of reserve inventory. While without

pricing flexibility it may be optimal not to hold any reserve inventory [or little reserve inventory], once there

is sufficient pricing flexibility, it may be economical to use reserve inventory [increase the use of reserve

inventory]. Similarly, we find that the reserve capacity may complement or substitute the use of pricing

flexibility.

Pricing flexibility has been studied in the operations literature. Van Mieghem and Dada (1999) study the

value of pricing flexibility when a firm takes capacity and inventory decisions while facing uncertain demand.

The authors consider a two-stage problem where in the first stage inventory is decided and in the second stage

the price is set when the uncertainty is resolved. Tang and Yin (2007) extend this work to include supply

yield uncertainty. In their model, a retailer faces uncertain supply yield. Once this uncertainty is resolved,

the retailer sets the optimal price to maximize the profit during the selling season. While the model is very

similar to our setup, we focus on the inventory and reserve capacity decisions that have to be committed to
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before a disruption takes place. Our goal is to understand how the optimal inventory and capacity decisions

change with the pricing flexibility. Further literature considers the interplay between pricing flexibility and

supplier diversification when some supply is uncertain (Dong et al. n.d., Li et al. 2017, 2013), or the role of

risk aversion under pricing flexibility and supply yield uncertainty (Kouvelis et al. 2021).

2. Model

2.1 Model Preliminaries

We consider a firm that produces a single product and that employs reserve inventory and/or reserve capacity

to mitigate the effects of random disruptions. The firm also possesses some pricing flexibility to increase its

price during a disruption to better align demand with its limited supply. Our main objective in this study is

to provide insights on the impact of pricing flexibility during a disruption on a firm’s reserve inventory and

capacity decisions in anticipation of disruptions.

The reserve inventory is a fixed quantity of I units that the firm decides to hold during the non-disrupted

time periods with a holding cost rate of h per unit and per unit time. The firm can then sell from the reserve

inventory to partially or fully meet the demand during a disruption. We let u denote the replacement

cost per unit for the reserve inventory, i.e., the production (replenishment) cost per unit is u. The reserve

capacity, on the other hand, is the level of ancillary production (replenishment) capability that the firm has

obtained access to during a disruption and can provide a steady production of a units per unit time during

the disruption at a cost of ca > u per unit. We note that as the replacement cost for reserve inventory is

lower than the unit cost of producing through reserve capacity, the firm first utilizes its reserve inventory

before resorting to the reserve capacity during a disruption.

To model the firm’s pricing decisions, we assume a linear price-demand relationship with a demand rate

of d(p) = b0 − b1p, where p is the price the firm charges, b0 is the demand intercept, and b1 is the price

sensitivity coefficient. (We assume b0, b1 > 0.) For future reference, the profit maximizing price for the

non-disrupted period, po := argmaxp(p− u) (b0 − b1p), can be found as po = bo
2b1

+ u
2 , which we will refer to

as the base price. We also let r(po) := (po − u) d(po) denote the base profit rate per unit time.

The timeline of the firm’s decisions is as follows: First, the firm decides on the level of reserve inventory,

I, and/or reserve capacity, a, to invest in before experiencing the disruption. When a disruption occurs, the

firm may adjust its price taking into account its reserve inventory and/or capacity level as well as the length

of the disruption, k. For the remainder of this chapter, we assume that once a disruption occurs, the firm is

able to foresee the length of the disruption.

We will first describe the firm’s optimal pricing problem during a disruption given reserve inventory and

reserve capacity levels and then formulate the initial problem of setting these optimal reserve inventory and
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capacity levels taking into account the optimal pricing decisions that the firm will apply during a subsequent

disruption.

2.2 Pricing During Disruption

Suppose the firm enters a disruption period of length k with a reserve inventory of I units and a reserve

capacity of a units per unit time.

The firm’s optimal price setting problem can be stated as:

Π̃d(I, a, k) = max
p

(
(p− u)min{I, (b0 − b1p) k} (1)

+ (p− ca)min{a k,max{(b0 − b1p) k − I, 0}}

)

where Π̃d(I, a, k) denotes the optimal disruption profit. As the formulation given in (1) indicates, the

objective function is piecewise in disruption price. Specifically, we have the following three cases:

(i) (b0 − b1p) k < I. In this case, the reserve inventory exceeds disruption demand at price p. Therefore,

a partial use of the reserve inventory without employing any of the reserve capacity is sufficient to meet the

disruption period demand. The firm’s disruption profit function becomes: (p− u) (b0 − b1p) k.

(ii) (b0 − b1p) k − a k < I ≤ (b0 − b1p) k. In this case, the reserve inventory is not sufficient to cover all

disruption demand by itself, but a simultaneous utilization of the entire reserve inventory along with a partial

use of reserve capacity is sufficient to meet disruption period demand at price p. The firm’s corresponding

disruption profit function is given by (p− u) I + (p− ca) ((b0 − b1p)k− I), where the first term refers to the

profit obtained through selling the entire reserve inventory of I units and the second term refers to the profit

obtained from meeting the remaining demand through utilizing the reserve capacity.

(iii) I ≤ (b0 − b1p) k − a k. In this case, both the reserve inventory and reserve capacity are used fully.

The profit function thus becomes (p− u) I + (p− ca) a k, where the first term is the profit obtained through

selling the entire reserve inventory and the second term is the profit obtained through utilizing the entire

reserve capacity.

2.3 Reserve Inventory and Capacity Decisions

Next, we describe the initial problem of setting reserve inventory and capacity levels. During the non-

disrupted stage, and in anticipation of a future disruption, the firm sets a reserve inventory and/or reserve

capacity level that it may utilize during a subsequent disruption. We aim to maximize long-run expected

profit per unit time. We assume that after every disruption, the supply chain returns to the undisrupted

stage before the next disruption occurs. This allows us to define a renewal cycle as a period of no disruption

4



followed by a period with one disruption. The duration of a renewal cycle is then defined as the expected

time duration of not being disrupted plus the expected time duration of one disruption. Specifically, let α

and β denote, respectively, the disruption rate and the recovery rate. Hence, the expected time of not being

disrupted is 1
α while the expected time duration of one disruption is 1

β . Thus, the expected renewal cycle

length is given by 1
α + 1

β . Based on this definition of the renewal cycle we use the well-known renewal-reward

theorem to calculate the long-run expected profit per unit time. The long-run expected profit E[Π(I, a)] is

the ratio of the expected profit per cycle and the expected renewal cycle length. In order to determine the

expected profit per cycle, we first introduce the expected profit when there is no disruption, E[Π0(I, a)], and

the expected profit during a disruption, E[Πd(I, a)].

The expected profit when there is no disruption, E[Π0(I, a)], includes the base profit rate r(po) minus

the costs associated with holding the reserve inventory and reserve capacity. Specifically, if the firm holds I

units of reserve inventory at a cost of h per unit per unit time, and has access to a reserve capacity with a

production rate of a units per unit time at a capacity reservation cost of c per reserve capacity production

rate, the expected profit when there is no disruption can be stated as:

E[Π0(I, a)] =
r(po)− h I − c a

α
. (2)

The expected profit when there is a disruption, E[Πd(I, a)], takes into account the optimal pricing decision

corresponding to (1). In addition, in order to present a simple framework to incorporate uncertainty around

the disruption length when making the initial stage decisions, we assume that the the disruption will have

a length of ks with probability q or a length of kl ≥ ks with probability 1 − q. (Therefore, we have

1/β = q ks + (1− q) kl). Consequently, the expected profit when there is a disruption is given by

E[Πd(I, a)] = q Π̃d(I, a, ks) + (1− q) Π̃d(I, a, kl) (3)

The long-run expected profit is thus given by

E[Π(I, a)] =
E[Π0(I, a)] + E[Πd(I, a)]

1
α + 1

β

(4)

and the firm’s first stage reserve inventory and reserve capacity problem can be stated as maxI,a E[Π(I, a)].
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3. Results and Insights

3.1 Optimal Pricing During Disruption

We first provide the characterization of the optimal disruption period price p∗(I, a, k) for a given reserve

inventory level I, a reserve capacity of a units per unit time, and a disruption of length k. (We omit the

proof for brevity.)

Proposition 1 For a given reserve inventory level I, reserve capacity level of a, and disruption length of

k, the optimal disruption price, p∗(I, a, k) is as follows:

p∗(I, a, k) =



bo
2b1

+ u
2 , if k < 2I

b0−ub1

b0−I/k
b1

, if 2I
b0−ub1

≤ k < 2I
b0−cab1

bo
2b1

+ ca
2 , if 2I

b0−cab1
≤ k < 2I

b0−cab1−2a

b0−(I/k+a)
b1

, if k ≥ 2I
b0−cab1−2a

(5)

The result summarized in (5) indicates that the optimal disruption price may take four different forms

depending on the disruption length.

For short disruptions, i.e., if k < 2I
b0−ub1

, it is optimal for the firm to charge p∗(I, a, k) = bo
2b1

+ u
2 , i.e., to

continue applying the list price po. In this case, the disruption price is independent of the disruption length.

If the disruption length k is slightly longer, satisfying 2I
b0−ub1

≤ k < 2I
b0−cab1

, then it is optimal for the firm

to charge p∗(I, a, k) = b0−I/k
b1

, which is the price that will suppress demand such that the reserve inventory

will be depleted just at the end of the disruption period. In this case, the disruption price is increasing in

the disruption length.

For a longer disruption such that 2I
b0−cab1

≤ k < 2I
b0−cab1−2a , the firm increases its price to p∗(I, a, k) =

bo
2b1

+ ca
2 , which is in a similar form as the base price except for taking into account the higher production

cost associated with the reserve capacity. Consequently, it is once again a constant price level independent

of the disruption length.

Lastly, for disruptions of further length, the firm sets the price to p∗(I, a, k) = b0−(I/k+a)
b1

. The price in

this region is again decreasing in the disruption length and suppresses demand to a level that will be met by

the full extent of reserve inventory and reserve capacity throughout the disruption.

We also note the following sensitivity results regarding the optimal price during a disruption. (We use

the terms increasing and decreasing in the weak sense.)

Proposition 2 The optimal price, p∗(I, a, k), is decreasing in the reserve inventory level I, decreasing in
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reserve capacity production rate a, and increasing in the disruption length k. In addition, the optimal price

is increasing in the demand intercept bo, decreasing in the price sensitivity coefficient b1, increasing in the

reserve inventory usage (replacement) cost u, and increasing in the reserve capacity production cost ca.

Next, we study how the level of pricing flexibility a firm has during a disruption impacts its reserve

inventory and reserve capacity decisions. To do so, we first introduce an exogenous upper bound on the

price that a firm can charge during the disruption denoted by p̄ such that po ≤ p̄ ≤ b0/b1. That is, the

firms optimal price selection for the disruption period is min{p∗(I, a, k), p̄}. We then investigate how an

increase in this price upper bound impacts the firm’s reserve inventory and reserve capacity decisions. For

the remainder of this work, we limit our attention to a firm’s reserve inventory and reserve capacity decisions

separately.

3.2 Reserve Inventory and Pricing Flexibility

In this section, we study how the level of pricing flexibility a firm has during a disruption impacts its reserve

inventory decisions.

Recall from Proposition 1 that when the firm enters a disruption period of length k with a reserve in-

ventory level of I and with no reserve capacity (i.e., a = 0), it will continue to apply the base price po if

k < 2I
b0−ub1

. For longer disruptions, i.e., for k ≥ 2I
b0−ub1

, and in the presence of a price bound p̄, it will charge

min{ b0−I/k
b1

, p̄}. Intuitively, as the firm increases its inventory level, it may shift its pricing policy from charg-

ing p̄ to b0−I/k
b1

, and finally to po. As the disruption length can be either short or long, a particular reserve

inventory position may lead the firm to charge different prices for different disruption lengths. Therefore,

depending on the disruption length, these price transitions can occur at different inventory levels. While we

omit the details of arising cases for brevity, we find that the firms objective function of expected profit per

unit time results in a piecewise unimodal function with respect to the reserve inventory. We provide the

main findings below.

We omit the derivation details for brevity and provide the main findings below.

Proposition 3 (a) If p̄ < h
α + u, the firm does not invest in reserve inventory, i.e., I∗ = 0. If p̄ ≥ h

α + u,

the firm selects a reserve inventory level of I∗ ≥ ks(b0 − b1 p̄), i.e., at least to cover demand during a short

disruption at the price bound.

(b) The firm’s optimal reserve inventory level may increase or decrease with or be independent of the price

bound p̄.

There are two main implications of Proposition 3. First, part (a) indicates that the price bound the firm

is allowed to charge up to (p̄) must be at least at some sufficiently high level for it to justify the firm to hold

reserve inventories. In other words, this implies that there may need to be at least some pricing flexibility
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for the firm to hold reserve inventories. As can be intuitively expected, the required minimum price bound

is increasing in the inventory holding cost (h), the length of the non-disrupted stage the firm will be holding

this inventory for (i.e., 1/α), and the production cost of the item (u). We also find that the inventory level

the firm selects will at the minimum fully meet the demand at the price bound for a short disruption length.

Second, part (b) of Proposition 3 indicates that the optimal inventory level may be increasing or decreas-

ing with the price bound or be independent of the price bound. The explanation is as follows: In instances

where the firm’s optimal inventory selection is such that it charges b0−I/k
b1

if the disruption is short and p̄

if the disruption is long, a marginal increase in p̄ prompts the firm to increase the inventory level as the

disruption period profit it gains from this additional inventory outweighs the additional holding cost. As

a side note, in this case, the firm’s disruption profit is linearly increasing in inventory for long disruptions

(as each additional inventory can be sold at p̄) and concavely increasing in inventory (i.e., with diminishing

returns) for short disruptions (as each additional inventory will now result in a slightly lower price to be

sold throughout the short disruption duration). In other instances, the firm’s optimal inventory selection

may be such that it targets to fully meet either the short disruption demand at the price bound or the

long disruption demand at the price bound. For these instances, the firms optimal inventory level decreases

with the price bound. Lastly, the optimal inventory decisions may be such that the firm applies po during a

short disruption and either b0−I/k
b1

or po in a long disruption, for which the firm’s reserve inventory decisions

are independent of the price bound. Overall, Proposition 3 indicates that pricing flexibility and reserve

inventories may be complements or substitutes.

3.3 Reserve Capacity and Pricing Flexibility

Next, we study how the level of pricing flexibility a firm has during a disruption impacts its optimal reserve

capacity level. We note that in this section, our focus will now be limited to a firm which invests only in

reserve capacity and not in reserve inventory. Similar to the previous section, we investigate how an increase

in the upper price bound p̄ impacts the firm’s reserve capacity decisions.

Recalling again the optimal pricing decisions outlined in Proposition 1, we observe that if the firm enters

a disruption with a reserve capacity level of a and with no reserve inventory (i.e., I = 0), then, it will

charge min{ b0−a
b1

, p̄}. That is, the firm will charge the price bound p̄ for low levels of reserve capacity (i.e.,

a < b0 − b1 p̄) and charge b0−a
b1

for higher reserve capacity levels (i.e., a ≥ b0 − b1 p̄). Note that in this case,

the firm’s optimal price selection does not depend on the length of the disruption. We again find that the

firm’s expected profit is piecewise in its reserve capacity level. We provide our main findings below (we again

omit the proof for brevity).

Proposition 4 (a) If p̄ < cβ
α + ca, the firm does not invest in reserve capacity, i.e., a∗ = 0. If p̄ ≥ cβ

α + ca,

the firm selects a reserve capacity level a∗ ≥ b0 − b1 p̄, i.e., at least to cover demand rate at the price bound.
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(b) Once it is optimal for a firm to invest in reserve capacity, the optimal reserve capacity level may decrease

with or be independent of the price bound p̄.

Part (a) of Proposition 4 indicates that, similar to our previous finding regarding the reserve inventory

decisions, we find that the firm will invest in reserve capacity only if there is sufficient pricing flexibility,

i.e., if p̄ ≥ cβ
α + ca. Specifically, the firm may not find it economical to invest in reserve capacity if the

price bound is relatively low, cost of reserving the reserve capacity, c, is high, the emergency production fee

through this capacity, ca > u, is high, the expected non-disrupted stage is long, or the expected disruption is

short. Further, if the firm decides to invest in reserve capacity, it does so to be able to at least cover demand

during disruption at a demand rate corresponding to the price bound p̄.

Proposition 4 part (b) shows that the optimal capacity investment may decrease with the price bound or

may be independent of the price bound. Specifically, if the optimal reserve capacity decision exactly targets

to cover demand during disruption at a demand rate corresponding to the price bound p̄, then the required

capacity decreases as p̄ increases. If, on the other hand, the firm’s optimal capacity selection exceeds this

rate, then the optimal capacity selection is found to be independent of the price bound.

In summary, Proposition 4 indicates that the firm may require some pricing flexibility to justify investing

in reserve capacity and would then select a (weakly) lower capacity level as it has further pricing flexibility.

Therefore, similar to our results regarding the reserve inventory in the preceding section, we find that reserve

capacity and disruption period pricing flexibility may again be either complements or substitutes. The main

difference between the relationship between the optimal reserve capacity and the price bound as compared

to the relationship between the optimal reserve inventory and the price bound is that once a firm decides to

invest in reserve capacity, any increase in pricing flexibility may only decrease the optimal reserve capacity

level whereas an increase in pricing flexibility may first increase and then decrease the optimal reserve

inventory levels.

4. Conclusion and future research

We study a firm that is exposed to random supply chain disruptions while producing a single product.

During a disruption, the firm may use reserve inventory and/or reserve capacity to serve customer demand.

Pricing flexibility is used to manage demand during a disruption.

We find that pricing flexibility may complement or substitute the use of reserve inventory or capac-

ity. Specifically, when a firm has pricing flexibility, it may be economical to increase the use of reserve

inventory/capacity.

In this research, we assume that the disruption length is known when the disruption starts. However,

in practice, it is often difficult to estimate the disruption length. It might be interesting to explore how

uncertainty in the estimation of the disruption time affects the insights.
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Further, we analyzed the following two cases under pricing flexibility independently: 1) holding reserve

inventory only (no reserve capacity used) and 2) holding reserve capacity only (no reserve inventory used).

It would be interesting to investigate how the joint dynamic plays out.
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