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ABSTRACT

In this research two kinds of stochastic model were studied to describe the decay of a 

glucose tracer in the blood plasma of a group of female subjects. The group was divided 

into two subgroups, normal (non-obese) and obese subjects, to study the effect of 

obesity on the stochastic models. The data were acquired as part of a study at St. 

Thomas' Hospital, London (Bowes et al., 1996). A known mass of glucose and glucose 

tracer was injected intravenously in each subject and blood samples were taken at 

various times. To build a stochastic model of the decay of plasma glucose tracer 

concentration, a two-compartmental system was considered. Two different stochastic 

models were discussed.

In model A Soong's approach (Soong, 1971) was applied. The model consists of two 

differential equations for the concentration of tracer in each compartment. The four 

parameters of the model were estimated using blood sample data for each subject. The 

variability in the set of glucose tracer curves was assumed to be due to variability of the 

parameters and each parameter was assumed to have a quadravariate lognormal 

frequency distribution. The mean plasma glucose tracer concentration was calculated 

using a four dimensional integration at times between 0 and 180 minutes.

A comparison was made between the stochastic and deterministic models for the mean 

concentration of glucose tracer in total group of subjects and in both subgroups. A small 

difference was found between the two models in the total group of subjects and the two 

subgroups. Also, the differences between deterministic and stochastic curves in the non- 

obese group was larger than in the total group of subjects and the obese subgroup. In all 

groups choosing the deterministic values as the mean concentration of glucose tracer 

yields a small overestimate error in the mean concentration.

The S. E. of the stochastic and deterministic models for the concentration of the glucose 

tracer was also calculated together with the S. E. for the original data and for all groups.

IX



There were some large differences between the deterministic and stochastic values 

particularly for times between 20 minutes to 100 minutes. The differences are quite 

large in the total group of subjects but small in the non-obese and obese subgroups. The 

S. E. for the original data are larger than the stochastic models in total and obese 

subjects and also at large times in non-obese subject. Therefore, using the simple S. E. 

o f the original data at each time point overestimates of the S. E. as predicted by the 

stochastic model.

For the stochastic model B Limic's approach (Limic, 1989) was used. In this approach 

the uncertainty in the parameters of the model is incorporated into a compartmental 

matrix where all elements of the matrix fluctuate randomly under a normal distribution. 

The mathematical calculation for the mean concentration of glucose tracer is complex. 

To simplify the model, it was assumed that the fluctuations are the same (ie. non- 

independent) for all of the elements of the compartmental matrix.

A comparison was made between the deterministic and stochastic models for the mean 

concentration. It was found that the differences between the deterministic and the 

stochastic curve for the first compartment were small as in the case of model A. This 

similarity may be due to the small sample size and/or the dependent random processes 

for every element of the matrix. Therefore, model B is not recommended since all the 

elements of the compartmental matrix fluctuate together and this simplification does not 

represent actual physiological processes which are very likely to have independent 

fluctuations.

In conclusion, although both methods have a similar mean for the concentration of 

glucose tracer, the large difference between the S. E. of stochastic and deterministic 

models is probably due to the small number of measurement or the small sample size. 

The error should decrease with a greater number of measurements and increasing the 

sample size. In building the stochastic models this problem does not arise since the data 

are considered as a distribution, but taking a larger sample should produce a more 

accurate result.
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The above results mean that in building a stochastic model in future studies, we need to 

consider a larger sample size, a larger number of measurements and restrict the number 

o f the compartments to less than three (model A) to overcome the complexity of the 

calculation. The compartmental matrix should have elements which fluctuate 

independently.
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Chapter 1

Introduction

1.1: introduction to the thesis

One of the most important activities in clinical medicine, physiology and pharmacology 

is the screening of subjects into two groups of normal and abnormal subjects. The usual 

practice is to design a test and use the data for each subject to classify them as normal 

or abnormal according to appropriate statistical criteria. To follow this approach it is 

necessary to apply a basic model of the features of the test. Clinicians usually prefer to 

use very simple test (hence simple models) to classify subjects. For example persons 

are considered to have frank non-insulin dependent diabetes if the random and fasting 

blood glucose values are > 11.1 and 7.8 mmol/1 respectively, and the 2-hour blood 

glucose following an ingested 75 g glucose load is > 11.1 mmol/1 (WHO, 1985). This 

is a relatively coarse classification over a population and a more sophisticated model of 

the time-varying blood glucose of each subject would allow a more precise classification 

to be made.

In this study therefore, we will focus on the kinetics of a specific tracer in the body to 

build a mathematical model of its kinetics . Obviously the model will vary for each 

subject and we aim to investigate the effects of different subjects on the model. The aim 

is to develop a stochastic model which can account for the variability of the subjects’ 

different parameters and / or time course in the experiment. Two different stochastic 

models are studied in this research. The models predict the mean and variance of the 

decay of a glucose tracer from the blood plasma into the extravascular tissues in a group 

of female subjects. Also, the subjects are divided into two subgroups according to their 

weights (obese and non-obese) to study the effects of obesity in the models. 

Furthermore, the more conventional deterministic model (to be defined later) and the 

stochastic models will be compared for the various groups of subjects. The objective 

of this study is to replace the deterministic modelling approach of analysing the tracer

1



kinetic by a stochastic modelling approach which can account for the observed 

variability in the subjects.

The definition o f mathematical models and application of mathematical modelling in 

different branches of medicine, especially in metabolic medicine and endocrinology is 

introduced below. Some useful definitions in model building are also presented. The 

different types o f models, their definitions and applications are introduced in Chapter 

2, and stochastic models and their application are described in Chapter 3. In Chapter 

4 the design of the experiment, data collection and the software which was used in 

parameter estimation are introduced. The two stochastic models, their methods of model 

building and stochastic and deterministic models for the total group of subjects and the 

subgroup are discussed in Chapters 5 and 6. The deterministic and stochastic models 

are compared in Chapter 7. The results are discussed in Chapter 8 and concluding 

remarks are given in Chapter 9.

1.2: Mathematical modelling in clinical medicine

The application of quantitative methods has increased considerably during the past few 

decades, especially in the field of metabolic medicine and endocrinology. In most of 

these studies the research trend has been towards the development and application of 

measurement techniques and the analysis of such experimental data. These 

improvements have encouraged the replacement of traditional instrument technology 

and biochemical laboratory methods are replaced with new techniques using tracers and 

radio-immunoassay.

Application of these methods along with substantial developments in control and system 

theory have resulted in widespread improvement in the use of mathematical models and 

their identification and validation. Such techniques have been applied to a wide range 

of data arising in physiology and medicine, but have been especially significant in 

endocrinology and metabolism.
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The appropriate use of mathematical modelling and identification techniques enable us 

to describe complex processes, to find ways for improvement of experimental design 

and allow us to test hypotheses which are related to physiological and biochemical 

structures. Besides the above applications, it is possible to estimate unknown 

parameters which are not directly accessible to measurement. Although modelling 

applications are found in all areas of medical research, they are now increasingly being 

used in diagnosis and treatment o f disease.

A mathematical model is simply a mathematical equation which specifies the relation 

between one or more independent variable(s) and a dependent (response) variable. When 

the independent variable(s) changes, the response variable changes according to this 

equation. If the equation contains only one independent variable, it is described as 

‘simple’. In the application of mathematical models in medicine we normally deal with 

simple equations and there is rarely a need to use a complex one. These models 

normally have only a few unknown parameters to be estimated from the data and these 

are estimated using a curve-fitting computer program. To build a good model we need 

to test it against various criteria to obtain a good fit. Using these criteria to test the 

model, the best model of several candidates can be chosen. After selecting the model 

we can estimate its unknown parameters. Parameter estimation is the last stage of model 

building.

To enhance the benefits of modelling in clinical applications, there is clearly a need for 

improved understanding of the merits and limitations of modelling, identification and 

validation techniques, and their relevance to the particular physiological system under 

investigation. This is a large topic and will not be discussed here. Some specific 

modelling topics used in the thesis are introduced in the following sections.

3



1.3: Modelling aspects

1.3.1: Background

The application of mathematical modelling has been established in many o f the natural 

and medical sciences for many years. Its origin lies in drug kinetics and continued with 

widespread application in physiology, pharmacology, biochemistry and related 

biomedical science (see for example Rescigno and Segre, 1966; and Gibaldi and Perrier, 

1975). Most of the practical applications of compartmental theory to these (and other) 

fields have used deterministic theory, but many recent applications have also attempted 

to account for a stochastic behaviour in the kinetics. We will introduce these new topics 

(compartmental, deterministic and stochastic models) later.

Mathematical modelling techniques have been applied to physiological systems, 

particulary metabolism and endocrinology, by Carson, Cobelli and Finkelstein (1983). 

They discuss different types of models and the stages of model building in metabolic 

systems, especially endocrine systems, and describe in detail the aims and purposes of 

model building. Some useful sections relating to model formulation, identification and 

validation are given, together with a few case studies.

1.3.2: Some useful definitions

The following definitions are some of the most important terms in compartmental 

modelling literature and some of them are used in this research.

1.3.3: Compartment or pool

If a substance exists in a biological system in several forms and locations, then all of this 

substance in a particular form, or in a particular location, is called a compartment or 

pool. A compartment is an idealised store of some substance in a biological system. 

Compartments may not occupy an anatomical space in the body. In physiology, plasma
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or different substances in plasma such as plasma glucose, lactate and alanine are some 

examples of compartments. Zinc in bone and thyroxine in the thyroid are two further 

examples of compartments.

1.3.4: Compartmental system

Two or more interconnected compartments with fluxes of substances between them are 

described as a compartmental system.

1.3.5: Parameter

A parameter is a specific fixed constant in a mathematical model and in many cases (but 

usually measurable) may represent an actual physical property of a physiological 

system. It is neither a dependent variable, an independent variable, or an input. The 

parameters are usually unknown in a model, and have to be estimated in the model 

fitting process. We usually attribute a physical meaning to the parameters and can 

therefore talk of the existence of parameters and their values in the same way as talking 

of the existence of a compartmental system.

1.4: Different types of models

Various types of models are introduced briefly in the next few sections:

1.4.1: Lumped deterministic models

If the distributed effects in the body have lumped together and treated as a homogeneous 

entity, we call them lumped deterministic models. In this case the concentration of blood 

glucose is assumed to be the same in different parts of the blood compartment (Carson 

et al., 1983).
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1.4.2: Linear models

If, in a compartmental system, the outward fluxes of substance are proportional to the 

mass or concentration of the respective compartments, then the model is called a linear 

model. Also, in any model there is usually an input rate. These types of models are 

adequate where (Carson et al., 1983):

(i) The intrinsic dynamics of the system are essentially linear. This type of system is 

rarely applied in metabolic control systems but may be applicable to the kinetics of 

individual substances (e.g. unconjugated bilirubin).

(ii) Linearisation has been carried out. If a tracer quantity is applied to a compartmental 

system, then the dynamical equations which describe the resulting experimental tracer 

perturbations are linear even though the intrinsic nature of the system may be non-linear. 

Also, many intrinsic data from the metabolic system can be obtained by applying such 

a test signal.

1.4.3: Nonlinear models

Research in drug metabolism over the past few years has resulted in the development 

of many nonlinear models. The objectives, estimation and prediction, of data analysis 

using nonlinear models are the same as that for linear models. The main difference 

between linear and nonlinear models is that the computation required for the analysis of 

the latter is considerably more complex.

1.4.4: Distributed models

As mentioned earlier, in many cases it is possible to represent the metabolic system by 

a lumped model where the substance is assumed to be distributed homogeneously in the 

distribution space. Neglecting the effect of blood flow and peripheral circulation on 

mixing, representation of the metabolic system by a compartmental model is usually
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adequate in many cases. In distributed models no such assumption of homogeneity is 

made. This usually leads to a mathematical formulation in terms of partial differential 

equations (Carson et al., 1983).

1.4.5: Stochastic models

In many experiments, especially at cellular level, stochastic (random) effects need to be 

incorporated into the compartmental model, so that a purely deterministic model is 

likely to be inadequate, since it takes no account of random effects. Probabilistic effects 

are one o f the most important aspect of the modelling of metabolic systems where 

parameters undergo random temporal fluctuations. This is called a stochastic process 

and its use in deterministic models and input/output identification experiments can 

provide a quantitative description of many metabolic systems. This type of model is 

very important and its application will be discussed in more detail in Chapter 3.

1.4.6: Compartmental models

A compartmental model depends on a compartmental system which consists of a finite 

number of homogeneous, well-mixed, lumped subsystems. These types of models are 

relevant in the study o f metabolic systems and represent metabolic processes that 

achieve regulation through the interaction of chemical reaction, storage and transport 

only and do not involve hormonal control. The compartmental system exchanges 

material with other compartments and with the environment, so the mass or 

concentration of substance within each compartment may be described by a first order 

mass balance differential equation. A compartmental system may be used to model 

either the kinetics of one, two or more substances. In the first case, compartments 

occupy different spaces and the inter-compartmental transfer represents the flow of 

material between compartments. In the second case different compartments may occupy 

the same space and some of the inter-compartmental transfers represent transformation 

between substances (Godfrey, 1983). We discuss these types of models in more detail
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in Chapter 2.

1.4.7: Time varying models

In time varying models, the rate coefficients (ky , to be defined later) are functions of 

time i.e. klj=kij(t), but they are not a function of the state variables, ¡x. Therefore, the 

estimation of the ky are different from each other over a period of time. In theory, they 

may be time varying coefficients varying between and °°, but, in practice they are 

non-negative. One of the most important forms of time variation is that in which the rate 

constants oscillate with time with period T :

kij(t)=kij(t+T).

In the body, many functions vary with a period of approximately 24 hours, and there is 

a similar periodicity in many ecosystems due to variation in light and temperature.

1.4.8: Time invariant models

In a time invariant model the rate coefficients are constant and independent of time so 

the kyS are the same over any epoch.

1.5: Summary

In this chapter the motivation for the work with its aims and objectives was introduced 

together with the organisation of the thesis. Also, various mathematical models, their 

applications and background were discussed . Some of the most important terms used 

in the compartmental modelling literature were defined. In the next chapter some types 

of compartmental models and their mathematical representation will be discussed. The 

general solution of a compartmental model with some numerical examples will be also 

presented together with the so-called non-compartmental approach.
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Chapter 2
Compartmental models

2.1: Introduction

Compartmental systems and compartmental models were defined in section 1.4. and 1.5. 

These systems exchange with each other and with the environment, so that the quantity 

or concentration of material within each compartment may be described by a first order 

differential equation. A compartmental system may be used to model either the kinetics 

of one substance, in which case the compartments occupy different spaces and the 

inter-compartment transfers represent flow of material from one location to another, 

or the kinetics of two or more substances (such as a drug and its metabolites) in which 

case different compartments may occupy the same space and some inter-compartment 

transfers represent transformation from one substance to another (Godfrey, 1983).

2.2: Origins and background

The term compartment was first introduced by Sheppard in 1948. A further significant 

early paper was that of Sheppard and Householder discussing the mathematical basis for 

interpreting tracer experiments. The origins of pharmacokinetics can be attributed to 

Teorell (1937) who used four differential equations representing the transfer of material 

in the body. O’Neill (1979) introduced compartmental analysis in ecosystem modelling 

using linear, time-invariant models. This type of model has played an important role in 

the development of system ecology.

Norwich (1977) thought that all previous work which had been done in studying the 

kinetics of biological substances (biokinetics) was based on physics and chemistry, and 

he considered that it was now the time to interrupt the physicochemical development to
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introduce the theory of compartment and non-compartment systems. He said that 

compartments were more mathematical than physical and as such were a simpler 

approach rather than using physics and chemistry. Perhaps, therefore, it has become 

necessary for all texts of compartmental analysis to include a description of 

compartmental approaches to biokinetics, especially as there have been so many papers 

published in this field.

Jacquez (1985) has described the compartmental system as a most useful tool in 

analysing physiological and pharmacological data. From an aesthetic viewpoint, the 

analytic theory o f linear compartmental systems is relatively complete. On the other 

hand, there are many unsolved problems in compartmental modelling, such as the 

‘inverse problem’, system identification and parameter estimation. Finally there are 

many unsolved problems in non-linear compartmental systems, especially systems with 

random perturbations of the exchange processes operating between the compartments. 

Jacquez has divided the main applications of the compartmental system into the 

following groups:

(i) Development of a model for any particular (biological) system,

(ii) Development o f the analytic theory for a given compartmental system,

(iii) Inverse problem.

He has also reviewed some concepts and properties of ‘stochastic processes’ together 

with the definitions of probability, density functions and distribution functions and 

sample and sample moments and Markov sequences.

Cobelli and Saccomani (1995) give some definitions on compartments and 

compartmental modelling along with some examples on different types of 

compartments, especially in the body. The concepts of accessible and non-accessible 

compartments and physical spaces and the meaning of the terms ‘well-mixed’ and 

‘homogeneity’ are also introduced in their review. Finally, a discussion of the utility of 

compartments in reducing a complex physiological system into a finite number of 

compartments was given along with definitions and uniqueness criteria of the
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compartmental model for each system. In the field of modelling metabolism and 

endocrinology, many research papers and text books have appeared since 1948. These 

works describe the analyses of kinetic data obtained following the administration of 

radioactively-labelled tracer material and drugs, using compartmental or non- 

compartmental approaches. The majority of these surveys have focused on limited 

aspects of the dynamics of metabolic processes, and more general problems have 

received little attention. A review of compartmental modelling is also discussed in 

Carson et al., 1983.

2.3: The role of compartmental modelling

The most common description of chemical and quantity transfer processes in biological 

systems is based on the concept of a compartment which we defined above. The use of 

compartments for model building is increasing, especially in biomedicine and metabolic 

processes, and researchers apply it commonly in their work. In using compartmental 

methods in metabolic processes, experimenters should ask themselves whether the 

concept of a homogeneous, well-stirred (mixed) ‘tank’ is appropriate for their particular 

application. There are also many reviews in this field and for details see for example 

Carson et al., 1983.

Compartmental models have many applications, for example, in modelling gas exchange 

in the lungs, where, with modern measuring devices, it is now possible to verify such 

compartmental models by externally scanning radioactivity content in the lungs.

2.4: Types of compartmental models

Compartmental models may be classified into several types which are presented in the 

next few sections.
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2.4.1: Linear and nonlinear models

Linear systems are the most simple multi-compartmental systems. In these systems the 

fluxes of drugs or substances leaving a compartment is assumed to be proportional to 

the mass or concentration of that same compartment.

2.4.2: Open and closed models

If we have irreversible removal from one of the compartments in a system then we call 

the system an ‘open system’. Alternatively, if there is no irreversible removal, the 

system is a ‘closed system’. Figure 2.1 illustrates the general form of an open system, 

when modelled using multi-compartments.

Dose D

FIGURE 2.1: Open compartmental model.

2.4.3: Time varying models

As stated in section 1.5.7, time varying compartmental models have rate coefficients 

which are functions of time. The mass balance equation for each compartment is:

dy iT = E  (kij(‘)y j -k ji(t)yi) - k 0(t)y + 11,(0,
dt " " "  u<'" '  (2.1)

where y; is the quantity of material (mass) in compartment i, and the k  ̂are time varying

12



random transfer rate coefficients. In theory, the kyS can take any values, but, in practice, 

they are non-negative.

2.4.4: Time invariant models

As mentioned in section 1.5.8, time invariant compartmental models have fixed transfer 

rate coefficients, i.e the küs are independent of time.

2.5: Some useful definitions

The following sections present some useful definitions which may be applicable in most 

of the compartmental modelling to follow.

2.5.1: Transfer rate or turnover coefficient

The transfer rate is a non-negative constant that denotes the rate of exchange of drugs 

between compartments at time t. The k(Js are the transfer rates of drugs from 

compartment j to i. Since:

„  . . dO/dt  (mass/time)
Iransjer  r a t e - k - ------------ =------------------,

X(mass) mass

per unit o f volume o f compartment, where dQ/dt is the rate of change of mass in any 

compartment, then the kyS have dimensions of time .The transfer rate which has an 

index starting with 0 indicates transfer to the system exterior or an irreversible removal.

2.5.2: Clearance rate

The rate of removal of drug from one or two compartments is known as the ‘clearance 

rate’ which can be defined as:
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, dOldt (massltime)clearance =------------------------ =----------------------- .
c(concentration) (mass/volume)

The dimension of the clearance rate is volume.time"1.

2.5.3: Initial compartment

In a compartmental model, the compartment in which the drug has been introduced at 

time t=0 is called the ‘initial compartment’ and is numbered as compartment (1), 

(Rescigno et ah, 1966).

2.5.4: Connected compartment

A system is ‘connected’ if  it is possible to reach all the other compartments from the 

initial compartment (Rescigno et al., 1966).

2.6: Formulation (mathematical representation) of compartmental models

To develop the mathematical realisation of the compartmental model, we need to write 

the mass balance equation for each compartment in terms of the flux of substance 

between compartments. The general form of the equations is as follows:

dQt{t)

dt

n n
ff,»+ E  « „ c e p -  E  v e ,

j=V*i j=\j*t
(2 .2)

where:

Qi= quantity of material in compartment i.

Rjj= flux o f material into compartment i from compartment j, depending on Q, only. 

Rjj= flux o f material from compartment i to compartment j, depending on Q, only. 

Ri0 = flux of material into compartment i from the external environment.
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Roi = flux of material from compartment i into the external environment. 

Obviously, all fluxes are essentially non-negative.

2.7: Matrix representation of compartmental models

To represent the mathematical formulation of the compartmental model, especially in 

a multi-compartmental system, we have to use matrix representation of compartmental 

models. For this representation consider Figure 2.1 above. In the Figure y{ (t) is the 

amount of drug (per unit volume) in compartment i at the time t. Using equation 2.2 we 

have:

dyi( t) /dt-~k2i y x(t)+kny 2(t) (2.3)

dy2(t)/dt=kny l(t)~kn y 2{t)~k32 y 2(t)+k23 y 3(t) (2.4)

dyk(t)/dt=kk(k V)y k x(t)-k(k Y)k y k(t)~k0k y k(t). (2.5)

Therefore:

dY(t)/dt -AY(t)  (2.6)

where:

/

dY(t)/dt =
V

dyx{t)tdt

dyk(t)!dt/

/

7(0 =
V

7j(0 '

7*(oJ’
(2.7)

and:
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/ 0

A =

~k2\ kn

1̂2 1̂2 3̂2

0 0

0

- J r  —  Jr(fc- \)k *0k)

(2 .8)

is the matrix o f the coefficients (Shah, 1972)

2.8: General solution of the compartmental model

The general solution of a compartmental model is a set of equations which satisfies the 

mass balance equations. To illustrate the general solution of any compartmental model 

consider the following two compartment model as shown in Figure 2.2:

To find the general solution of the model we require the following definitions:

1. Let Xy (t), with i , j = 1, 2 , denote the amount of drug that originated in 

compartment i at time 0 and that is in compartment j at time t.

2. Let k(j , with j= l, 2, i= 0, 1, 2, i*j denote the constant transfer rate from j to i, 

where 0 denotes the system exterior.

The following set of linear differential equations describes the deterministic
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compartmental model illustrated in Figure 2.2:

d x u(t)idt  = - ( * 0I + * 21)jr„ (o +*12 x t2(f)

dXj2(f)/dt= k2lX u(t) - (k02 + kn )X i2(t). 

These equations are of the form:

(2.9)

d m
dt

- KX(J)+fit), (2.10)

where X(t) is mass, K is the relative rate of elimination (transfer rate) and f(t) is the rate 

of entry into the compartment.

4. Let

m
' x n {t) X12(0 n 

X22(t)j
(2 .11)

denote the matrix of amount.

5. Let

K =
(F0i + F2i)

12

21

(F02 + ̂ i2)
(2.12)

be the coefficient matrix.

6. Let

A =
' K 0 N

0V L
(2.13)
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and T= [T,, T2] be the matrices of eigenvalues A, and corresponding eigenvectors T; of 

K. We can then rewrite equation 2.10 in matrix form as:

m  =x(t)K. (2.14)

The general matrix solution is

X( t )=X( 0) e Kt, (2.15)

which for distinct eigenvalues can be written as

X(t) =X (0 )Te (A,)r _1, (2.16)

where eAt is a diagonal matrix with elements eXlt.

Equation 2.16 implies that solution for Xy(t) is a sum of exponentials.

The above equations can be solved easily in terms of the ky parameters for two and three 

compartment models (Matis et al., 1985).

2.9: A numerical example

In Figure 2.3 we have three possible structures for a two-compartmental model. To 

simplify equation 2.16 we assume a unit initial dose into compartment 1, i.e., X,, (0)=1. 

The numerical solutions for X u (t) and X12 (t), for each of these models, are given by 

Rescigno et al (1966) and are shown in Table 2.1.
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FIGURE 2.3: A specific illustration of three two-compartmental 

model structures based on different sources of elimination.

Elimination from: A, central; B, peripheral; C, both central and 

peripheral compartments.

The intermediate matrix results are also given in Table 2.1. If we substitute these results 

into equation 2.16 we obtain the numerical solutions for the three models. Solutions for 

X 21(t) and X 22 (t) are easy to find from equation 2.16 for any initial amount X 22 (0), 

(Godfrey, 1983).
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Model A: Central elimination, with k01=2, k21= l, k 12=2 

X 11(t)-(e-‘+2e-4t )/3 ,X12(t)=(e-'-e-4t )/3

' - 3  r 0 ' ( \ ( , \
, A' =

1 1 1/3 1/3
K =

, 2 -2, , o e
T=

k 2 -1 ,
T l =

k 2/3 1/3,

Model B: Peripheral elimination, with k2]=2, k02=2, k 12=l 

X, 1(t)=(2e-‘+e-4t)/3 ,Xl2(t)=2(e't-e-4t)/3

/
K =

\

-2

1 V
o

\

e -4/
/

T=
'  1

1/2 -1

2/3

1/3

Model C: Central and peripheral elimination, with k0]=k02=2, and k 12=k21=l 

X, 1(t)=(e-2t+e-4t)/2 ,X12(t)=(e-2t-e-4t)/3

K =
(

\

-3

1
. A t _

-21

„ -4< e )

/
1 r

T l =
' 1/2 1/2 '

kl - i , k 1 / 2 -1/2,

Table 2.1- Solution for drug distribution over time for selected two-compartment 

models.

X n(0)=l and A,, and X2 are eigenvalues satisfying det|K- Al|=0.

2.10: Non-compartmental approaches

Compartmental models, which in many cases are theoretical models, can be used to 

estimate physical or chemical quantities which are not accessible to measurement. 

When successfully developed, they are powerful tools in basic physiological studies and 

clinical investigations. In most cases the compartments have a precise physiological 

meaning, the constant rate defining transfer of material between compartments involves 

the aggregation of several complex physiological processes. Sometimes the theoretical 

knowledge of the system is inadequate; for example, the compartmental structure may 

not be well defined. In this case, even if a definition is possible, experimental test data
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may not be sufficient for identification of the model. To solve this problem, it is 

necessary to adopt a purely empirical or empirico-theoretical approach, focusing on 

overall input-output relationships, especially, at the level of the whole organism. This 

approach is generally called a non-compartmental approach.

In this approach one or two compartments are usually considered, explicitly or 

implicitly, which are accessible to measurement. The approach enables us to estimate 

many important physiological quantities (clearance rate, residence time, etc.) without 

recourse to structural models (Carson et al., 1983).

2.11: The integral equation (convolution) approach

The convolution approach is an important aspects of compartmental modelling. It has 

not been used in this research but it is given here for completeness.

To determine the amount of a quantity in an accessible compartment, we apply a 

convolution integral in the non-compartmental approach. In this method we need the 

rate of appearance in the compartment and the impulse response of the system. These 

processes are described in the following paragraphs.

In the non-compartmental approach, the well-known convolution integral method of 

linear system theory is applied (e.g., Finkelstein and Carson, 1985; DiStefano et al., 

1976b). There are many applications of this integral, especially in the field of metabolic 

studies, when the approach involves tracer test methods.

To apply the convolution integral, we need a system which is assumed to have a simple 

accessible compartment (usually the plasma), containing a quantity of material Q. The 

impulse response of this system is denoted by h(t). Ra(t) and Rd (t) are the rates of 

appearance and disappearance of material in the compartment Q, respectively. The 

mass Q(t) can then be described using the convolution integral
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f i ( 0  = [ ' R a(x)h(t-x)dx  
Jo

(2.17)

If any two of Q, Ra and h(t) are known, the third unknown quantity can be determined. 

If the unknown quantity is Q, then the approach simply involves the evaluation of the 

convolution integral. If the unknown is Ra, it leads the inverse process of 

deconvolution. In this case, Q and h should be expressed in analytical form, otherwise 

it requires the use of numerical methods (Carson, et al., 1983).

2.12: Summary

In this chapter the introduction and origin of compartmental models along with its role 

in model building was introduced. The types of compartmental model were also 

introduced using some diagrams of possible compartmental systems. Furthermore, some 

useful definitions were presented which are being used in compartmental modelling. The 

mathematical representation of compartmental models and also the matrix form of the 

mathematical representation were also discussed along with the method of obtaining the 

general solution of the compartmental model. Also, the solution of a compartmental 

model was discussed using a numerical example. Finally, the non-compartmental 

approach was discussed in detail at the end of the chapter.
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Chapter 3

Stochastic compartmental models

3.1: Introduction

In some applications of deterministic compartmental models, stochasticity (randomness, 

variability) is incorporated within the model. These applications can be in biological 

experiments, pharmacokinetics, ecology etc. In this situation it is not useful to analyse the 

deterministic formulation of compartmental models due to obvious intra- and inter-subject 

variability and we should use an alternative formulation. There are many papers about 

linearity and non-linearity of compartmental models, but less about the stochastic nature of 

the models' parameters (Limic, 1992). Most of the previous modelling theory and virtually 

all o f the previous applications have been based on a deterministic formulation of a 

compartmental system. Unfortunately, the rigorous and detailed stochastic formulation of 

such variability is not presented in any recent papers. In this chapter we will introduce and 

review the stochastic formulation of a compartmental model and its applications.

3.2: Different sources of stochasticity

Besides the diurnal and circadian variations, there are other irregular stochastic sources of 

variation. In this study we consider stochasticity due to an assumed random nature of the 

compartmental parameters of models relevant to the kinetics of glucose tracer in metabolic 

medicine. These variations normally take place over several hours after tracer injection. So 

measurements should be made over a long period of time in order to observe the 

fluctuations. Therefore, to determine of the role of the randomness and also for description 

and classification of the biological system, it is necessary to use a long time period for the 

stochastic compartmental model ( Limic, 1989).

In stochastic compartmental models we have two major sources of stochasticity (Godfrey,
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(i) Stochasticity incorporated into the rate coefficients;

(ii) Stochasticity incorporated into the state variables, with the assumption of 

deterministic rate coefficients.

For systems with stochastic rate coefficients there are many papers which deal with the 

variability in response, usually inter-subject, but occasionally intra-subject variability. 

Matis and Wehrly (1979) have divided the major source of stochasticity into the following 

classes:

1. The stochasticity associated with individual units or particles. This is further divided 

into the following sub-classes:

(i) Stochasticity arising from sampling from the random process;

(ii) Stochasticity due to random rate coefficients.

2. The stochasticity associated with replication of the whole experiment. This is further 

divided into random initial amount and random rate coefficients (time-varying or constant).

If the combination of the above sources of stochasticity is considered, there are many 

possible types of stochastic models.

The stochasticity in rate coefficients has been the subjects of considerable research within 

the last two decades. We will define and describe this type of stochasticity in section 3.4, 

but some recent papers are introduced here briefly. Cobelli and Morato (1978) introduced 

a biological compartmental model where the rate coefficients were random and possibly 

varying with time. In the field of pharmacokinetics Soong (1972) presented a 

compartmental model with random rate coefficients in the study of optimal drug dosage 

control. Also, the identification of a random compartmental model with random rate 

coefficients from kinetic data in pharmacokinetics was considered by Soong and Dowdee 

(1974).

1983)
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Campello and Cobelli (1978) considered a linear time-invariant biological compartmental 

model with random rate coefficients. They proposed a procedure for the estimation of the 

properties of the stochastic rate coefficients of a n-compartmental model from an input- 

output tracer experiment.

There are also some papers on the estimation of compartmental parameters which is one 

of the most important tasks in this field. Some of these papers are introduced here briefly. 

Matis and Hartley (1971) introduced a compartmental system with a discrete population of 

particles in a steady state. The system is considered to have n compartments and the 

transition rates are stochastic in nature. The paper is concerned with the estimation of the 

transition rate parameters and this requires the associated theory of distributions. Landaw 

and DiStefano (1984) presented a multi-exponential and multi-compartmental model and 

used a new curve fitting procedure for estimation of the parameters. Allen (1983) 

introduced a computational technique for the estimation of the parameters in non-linear 

stochastic compartmental models which was shown to reduce programming effort, facilitate 

inference about implicit functions of parameters, and allow a more general variance- 

covariance structure.

The main factors which cause the uncertainties in the rate constant (Soong, 1971) are:

(i) Scatter of experimental kinetic data,

(ii) Environmental effects,

(iii) Variation of patient's parameters over time,

(iv) Effect due to drugs.

There are many factors which cause uncertainties in the rates constant, some of which are:

(i) Individual variability,

(ii) Variation of system parameters with time,

(iii) Interaction with other drugs,
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(iv) Variation in volume/area ratio,

(v) Variation in cell membrane dimensions,

(vi) Measurement error,

(vii) Sampling error.

Matis and Tolley (1979) introduced a categorisation for different sources of stochasticity 

in compartmental models. In their categorisation, they introduced ‘probabilistic transfer 

mechanisms’ as a new source of stochasticity which is a general form for the above (ii) 

division. Also, the ‘individual variability’ was divided into two different subdivision of 

intra- and inter-individual variability where in inter-individual for any single experiment the 

common rate for each unit is a random variable (either time varying or constant). 

Furthermore, they presented ‘random distribution volume’ which is exactly the same as (iv) 

above and fixed in time. Finally, they introduced a new type of stochasticity which can 

arise from the mixture of the above stochasticity.

3.3: Stochasticity (randomness) in glucose tracer experiments

In glucose tracer experiments a tracer of glucose is injected into the blood and its decay 

as it diffuses from blood to muscle tissues and cells is measured over a period of time. 

Normally, a deterministic compartmental model (which assumes fixed compartmental 

parameters) is used to analyse the data. However, due to the random nature of the 

parameters, this kind of model is not always appropriate. This is because of the obvious 

variability in the parameters of the models due to inter-and intra-subject variability. Recent 

work in this area suggests that the best method to describe the kinetics of substances is to 

use a stochastic compartmental model which considers the parameters (transfer rate between 

compartments, losses from compartments and the initial concentration of glucose tracer in 

blood plasma) as random variables and not fixed constants. This stochasticity (randomness) 

is assumed to fall into two main categories:

(i) parameters are constant in a specific experiment, but they vary from one 

experiment to another if  we repeat it in the same subject or from one subject to
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another,

(ii). the parameters vary randomly with time during the course of a single experiment 

and they vary from one subject to another but this intra subject variance does not 

vary with time.

3.4: Stochasticity in transfer rate coefficients

The ‘transfer rate coefficient’ is a non-negative constant which denotes the rate of exchange 

between compartments during time. One of the most important types of stochasticity which 

is incorporated into compartmental systems, is the stochasticity in rate coefficients. In this 

type of variability, randomness is associated with transfer rate between compartments and 

also with losses from compartments. Therefore, the transfer rate and, the losses and hence 

the whole compartmental system have a random nature. This variability is due to variability 

between subjects when a single experiment is repeated in different subjects, or a single 

subject takes part in different experiments. In both cases the compartmental parameters 

have a random nature and therefore random distributions (the parameters are constant in a 

course of a single experiment). Also, the parameters vary randomly with time during a 

single experiment and hence between subjects. Thus, the estimation of compartmental 

parameters leads to different values in different subjects and experiments. This type of 

variability is considered in this research and will be discussed in more detail in Chapters 5 

and 6.

3.5: Stochasticitv in initial concentration of glucose tracer

The initial concentration of glucose tracer in compartment 1 is usually produced by an 

intravenous injection and, due to the above discussion and due to inter- and intra- individual 

variability, this initial concentration of glucose tracer is considered as a random variable. 

Therefore, this new source of variability causes an additional degree of randomness in the 

whole (compartmental) system which must be considered in data analysis. This new type 

o f stochasticity has also been considered in this research because different subjects have
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different initial concentrations. Also, the initial concentration of glucose tracer in a single 

subject varies when different experiments are applied.

3.6: The use of residence time moment in stochastic compartmental models

One recent method in analysing a compartmental model is the use of ‘residence time 

moments’, particularly mean and variance residence times. This method can be very useful 

in modelling and kinetic analysis of a physiological system. There are many papers in this 

field and some of them will be introduced here. Matis and Wehrly (1985) have introduced 

a stochastic compartmental model and presented its general solution in matrix form. Then 

mathematics and statistics were applied to calculate the ‘residence time’, ‘number of 

visitation’ and ‘total residence time’ of the particles in the (compartmental) system. 

Kapadia and Mclnnis (1976) introduced a compartmental system with continuous time- 

dependent infusions into all compartments and reversible time-independent flow between 

any two compartments. The first two moments of the distribution of the number of units 

in the different compartment were also presented, and the method was applied for analysis 

of the kidney transplant system. Kapur (1980) presented a stochastic compartmental model 

with continuous infusion, and moments of all orders for the probability distribution of the 

number of particle in all compartments were discussed.

Besides the above application of statistical moments, there are many applications of 

moments in pharmacokinetics. Beal (1987) applied the formula of a linear kinetic model 

in order to introduce some new concepts and role of residence time moments. Yamaoka and 

Nakagawa (1978) used statistical moments as the parameters which describe the 

characteristics of the time courses of plasma concentration (area under the curve, mean 

residence time, and variance of residence time) and of the urinary excretion rate that follows 

administration of a single dose o f drug. Matis, Wehrly and Metzler (1983) presented 

deterministic and stochastic models for a linear compartmental system with constant 

coefficients, and they developed expressions for the mean residence time (MRT) and the 

variance of residence time (VRT) for the stochastic model. The MRT and VRT provide a 

set of new meaningful response measures for pharmacokinetics analysis and they give added
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insight into the system kinetics. Finally, Matis, Wehrly and Gerald (1985) used residence 

time moments in compartmental analysis. They verified that the formula for time moment 

formulation has several advantages as follows:

(i) A smaller number of parameters are usually needed to describe a biological system;

(ii) These parameters have a clear physical interpretation;

(iii) Their statistical ‘power’ to detect certain treatment differences is greater;

(iv) They are computationally simple in many situations.

We shall now introduce, illustrate and show their practical utility following Matis et al, 

1985. It is necessary to say that the following definition and methods have not been used 

in the body of the thesis because they relate to the transition or movement of individual 

particles in compartmental models. We do not consider individual particles in our models 

and only glucose tracer is considered. Although these ‘residence time moments’ have not 

been used in this research, due to their importance, especially in recent papers they are 

discussed here for completeness. On the other hand, in section 3.9 there is a numerical 

example on the applications of the above residence time moments in stochastic 

compartmental models which clearly show their importance and application in stochastic 

compartmental models.

3.7: Types of residence time moments

In the next few sections we shall introduce some new types of residence time moments. 

3.7.1: Mean and variance of transit times

Let R„ with i= l, 2,...,n, denote the random retention time (also called transit time) during 

the current visit of a particle in compartment i prior to its next transfer out of compartment 

i (to any other compartment or the exterior) . We use mean and variance of random 

retention time later (Matis et al., 1985).
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3.7.2: Mean and variance of number of visits

Let Vy, with i, j= l, 2,..., n, denote the random number of visitations that a particle 

originating in compartment i, say at t=0, will make to compartment j prior to its departure 

from the system. We denote the mean and variance of random number of visitation with fy, 

and y'ij respectively. We will also discuss these later (Matis et al., 1985).

3.7.3: Mean and variance of residence times

Mean and variance of residence times (MRT and VRT) denote the total residence times that 

a particle originating in compartment i will accumulate in compartment j during its various 

visits. So, the residence time is the sum of the random number of visitations. Thus, if we 

denote the random number of visitations by Vy (i, j=  1,2,...,n), and the total residence time 

by Sy (i,j=l,2,...,n), we have (Matis et al., 1985):

s , = Y  v .. .ij ij
i, j

3.7.4: Mean and variance of system residence times

Mean and variance of the system residence time are defined by the total residence time that 

a particle originating in compartment i will accumulate in the system prior to its departure. 

So, if  we illustrate the system residence time by SL we have (Matis et al., 1985):

s  = T s  .i. ¡j.
j

3.8: Residence time moment of non-compartmental models

Recently, a new method o f finding statistical moments has become widely used in 

pharmacokinetic data analysis. This method, called the non-compartmental approach, is 

used to calculate the moments from concentration time curves. Also, this approach has 

many applications in other sciences, particularly in chemical engineering. Since the theory
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is ‘non-compartmental’ we have the following

(i) . These statistical moments methods do not require the assumption of a specific

compartmental model;

(ii) . There is (now) very much less interest in characterising the pharmacokinetics of a

drug in terms of model-dependent constants.

This new approach is very useful where is has been correctly applied, otherwise, it has led 

to considerable confusion in its implementation. Consider Figure 2.3; if  a particle is 

introduced into compartment 1, and it can leave the system via compartment 1, then the 

non-compartmental approach may be very useful in finding certain moments. From the 

three models of Figure 2.3 only model (A) satisfies the necessary assumption for the use of 

a non-compartmental approach.

The basic non-compartmental result relating to residence time are:

(0 Area Under Curve=AUC = dt

{ii) M R T = j tX u (t)dt/AUC
ft

(Hi) VRT-J{t~MRT )2 X n {t)dt/AUC. 
0

also , it is possible to develop other measures, such as:

0'v) Tn = AUC/Xn{0),
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where X u (0) is the amount of substance that originated in the first compartment and is still 

in the same compartment at time t=0 and xu is the mean residence time. Note that all of 

these results are calculated directly from X u(t), which is often interpreted as the drug level 

in the plasma and hence is usually observable. So, we can estimate all of these by numerical 

integration of X n(t) and we do not need any specific compartmental structure. Also, in 

estimating these moments we do not require to estimate the ky rate coefficients, although 

estimation o f k y was necessary in the previous method. It is important to use this approach 

correctly, for otherwise serious errors in estimation of the moments may occur (Matis et 

al., 1985).

3.9: A numerical example

Let R¡, Vy, S y , and S¡ denote respectively the random transit time, random number of 

visitations, total residence time and system total residence time.

(i) Let Ty and y,, denote the mean and variance of the residence times Sy;

(ii) Let T y and y y denote the mean and variance of the number of visitations V y;

(iii) Let x¡ and y¡ denote the mean and variance of the total system residence times S¡;

(iv) Let T=(Ty), T -(x 'y ) , y=(yy) and y-(y 'y) be matrices of the means and variances. 

The following result are easy to prove (Matis et al., 1985):

(i) x=-K-',

where K is the relative rate of elimination from the compartment;

(ii) y=2xxD- x(2),

where xD is the diagonal matrix(T11,T22,...) and x(2) is the matrix of squared elements of x;
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(iii) t - ( ì -K)"1,

where K is the normalised K matrix, and thus ht ,¡=0 and =-KHj/KLji for i*j, and i is the 

identity matrix;

(iv) y - 2 t 't 'd-t '(2) where x'Dand t '(2) are defined like above (Matis et al., 1985)

(v) COVfSjj, Sik]=T,j Tjk+TikTkj- Tjj Tik .

Now consider Figure 2.3 in Chapter Two. Table 3.1 contains the results when the previous 

formulae based on the compartmental approach are implemented for the three models given 

previously.

For model (A) we have:

E(R,) = expected transition time in compartment 1=1/3.

E(R2) = expected transition time in compartment 2=1/2.

The mean and variance of visitations of the particle which is introduced to compartment 1 

is:

t 'u  = 3/2 which is the mean number visits to compartment 1; 

t '12 = Vi which is the mean number visits to compartment 2.

The expected residence times of a particle are:

xn = Vi in compartment 1 ; 

t 12= 1/4 in compartment 2.

The total expected residence time, i.e. the mean residence time o f the system, is the sum of 

the residence times in the individual compartments. So for the present particle one has: 

MRT = T, = Tu + t 12= 3/4.

The VRT is the sum of the individual variances in the two compartments plus twice the 

covariance. From (v) above we can calculate the covariance between Sn and S12, which is
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1/8. So for the present particle we have:

VRT = Yi =Yh +Yi2+2c o v  [s „, s 12] = 13/16.

It is possible to calculate many other moments that are useful for describing the kinetics of 

particles in model (A). For example, a particle initially in compartment 2 has an MRT of 

x2 = 5/4 and a VRT of y  2 . = 17/16. Also, a particle originating in 1 is expected to visit a 

compartment x', =2 times on average.

These moments and other higher order moments, e.g. for skewness, kurtosis, and cross-

moments, are useful in developing monitoring tests for the basic assumptions, e.g. of 

constant rates. Such tests are under current investigation.

The particle kinetics of models, B and C are similar to model A and are presented in Table 

3.1. To summarise, we present only two moments of great interest in the subsequent 

development, namely, for model B one has:

MRT = x, = 5/4 and VRT = y, = 17/16

and for model C one has:

MRT = x, = V2 and VRT -  Yi. = 1/4.
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Model (A): Elimination from central compartment, with kgj = 2, k2l = 1, k i2 = 2 

E(R,) = 1/3 E(R2) = '/2

' -3 1

, 2 -2

' 0 1/3N

,1 o ,

' 1/2 I/4' ' 1/4 5/16
T =

, 1/2 3/4) Y = , 1/4 9/16

'3/2 1/2 '9/4 5/4'
t  =

,3/2 3/2 f ? =
,9/4 9/4,

Model (B): Elimination from peripheral compartment, with k21 = 2, ko2= 2, k12= 1 

E(R,) =1/2 E(R2) = 1/3

K=  

K =

-2 2
X  —

'3 /4 1/2'
Y =

9/16 1/4

1 -3 ,1/4 1/2/ ,5/16 1/4

0 r
t  =

3/2 1/2N
Y  =

" 9/4 9/4'

1/3 0 , ,1/4 3/3, ,5/4 9/4,

Model (C): Elimination from central and peripheral compartments with lq,, = ko2= 2 and 

ki2= k2i = 1

E(Rt) = 1/3 E(R2) = 1/3

-3 r f 3/8 1/8" 9/64 5/64^
K =

1 -3/
X  =

k 1/8 3/8,
Y =

,5/64 9/64,
/

0 1/3' SO 00 3/8N " 81/64 45/64 1̂
K = t  - t  =

,1/3 0 )

00m

9/8, V 45/64 81/64y

Table 3.1: Solution for statistical moments based on a compartmental approach for selected 

two compartment models.

To calculate the residence time moments in the non-compartmental approach, suppose for 

model A o f Figure 2.3 Chapter 2 we have X,,(t) = (e'*+2e'4t )/3 and we are going to 

calculate the above moments. From equations, (i) to (iii) Section 3.8 we have:
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AUC = ‘/2  , MRT = 3/4 , and V RT= 13/16.

Since X U(0)=1 from (iv) in section 3.8 we have xu=M2. As can be seen, all of these results 

agree with the earlier results for the compartmental approach.

As mentioned earlier, the assumption cannot be satisfied in models B and C, so improper 

use of equations (i) to (iv), in Section 3.8, with this method yields incorrect results. To 

illustrate this point, we apply the above equations in model B. We have:

AUC=3/4, MRT=11/12 , VRT=137/144 and t „=3/4.

It is easy to see that MRT and VRT do not agree with the compartmental results and they 

are incorrect. Similarly for model C, we can find:

AUC=3/8, MRT=5/12, VRT=29/144 and t „=3/8.

Also, we see here a difference between the MRTs and VRTs result in the two methods 

(see Section 3.8), so the non-compartmental results for MRT and VRT are incorrect (Matis 

etal., 1985)

3.10: Population modelling in pharmacokinetics

In this section population modelling in pharmacokinetics and its usefulness in 

pharmacokinetics studies is briefly introduced. Normally, this topic is applied in 

professional studies in pharmacology and pharmacokinetics, but due to its explicit 

application in this study, especially in Chapters 5 and 6, it is discussed here for 

completeness.

Pharmacokinetics (PK) is the study of various biological processes affecting a drug: 

dissolution, absorption, distribution, metabolism and elimination. Population 

pharmacokinetics (PPK) is the study of the variability in plasma drug concentration between
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subjects when standard dosages are administered (Aarons, 1993). Population models were 

developed to analyse processes that can be described normally by parametric models using 

measurements obtained in a sample of subjects. These measurements are often analysed 

using linear or non-linear regression. The individual data are usually sparse and noisy in 

comparison with traditional pharmacokinetic studies.

The traditional PK analysis involves the study of individual PK parameters. The population 

modelling method considers the time-concentration data pooled from more than one 

subject to estimate the PK parameters in a target population.

There are some statistical methods which assume that the inter-subject variabilities of 

parameters are random variables. Covariates, such as demographic data (age, body weight 

etc.), or the disease stage are not controlled in the study but are, nevertheless, considered. 

These variables are the best tools for analysing the source of inter-subject variability in the 

PPK approach. The covariates are usually easy to measure and may be related to 

absorption, distribution or elimination processes of drug. The goal is to find a relationship 

between some of the PK parameters and some of the covariates to estimate the residual 

variability in order to identify meaningful covariates. These covariates are used as 

additional prior information in dosage optimization or used to find high risk subgroups.

To analyse PK data that are pooled over all sampled individuals, a non-linear mixed effect 

regression model is often used. These models (mixed effect models) contain variance 

components for both random (for example, measurement error) and fixed effects (for 

example, gender). The fixed effects relate PK parameters to covariates (uncontrolled 

factors) and normally account for the large inter-subject PK variability. The inter-subject 

random effects (type one) quantify the residual unexplained variability and an additional 

random effect (type two) quantifies intra-subject and measurement variability. There are 

many papers in this area and a brief summary of some of them is given below.

Beal and Sheiner (1982) developed a method for analysing the data arising from a 

population PK study. They considered the variabilities between the PK / PD parameters
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across the subjects, which are related to the variabilities between the factors such as age, 

gender etc. They applied different models and statistical analysis (maximum likelihood, 

least squares approach etc.) and introduced a new approach to fit the models to the above 

data to estimate the PK parameters. All the above models and approaches, and their 

advantages and disadvantages in facilitating the accurate parameter estimation, were 

compared. They also introduced so-called two-stage method for considering the variability 

of the model parameters (in a single subject or in the population) and estimation of the 

parameters.

Aarons (1993) applied an estimation-maximization (EM) algorithm to analyse the data 

from a non-linear mixed-effect model. In this approach the fixed parameters were 

determined by the maximum likelihood method using a simplex minimization program 

(NAG routine E04CCF, NAG Workstation Library (1989)), and the random effects were 

estimated by the EM algorithm. The application of a simple linear model and population 

PK were also described together with the use of posterior parameter estimates for 

investigation of covariate relationship (Racine-Poon, et al., 1990). A comparison of the 

EM algorithm and other minimization algorithms was made and their advantages were 

discussed. Yue et al. (1994) reviewed the methodology and applications of population PK 

together with obtaining measurements from sampled individuals after administration of the 

drug. The method of building a non-linear regression PK model using the data together 

with the definition of PK parameters was also presented. The traditional and more recent 

methods to design experiments were also discussed with the description of a traditional 

‘standard two-stage method’ used to analyse the data. In this method, the individuals' 

parameters are obtained using non-linear regression in stage I. At stage II, a central value 

and a measure of variability is obtained for each parameter from the empirical distribution 

of the stage I parameter estimates. The method of considering the variability between and 

within subjects and a brief discussion of non-linear mixed effect regression models were 

also described. Finally, a brief bibliography on linear mixed effects models, non-linear 

models and the application of PK / pharmacodynamics (PD)were presented. Mentre et al. 

(1994) described the application of PK to measure the inter-subject variability. The 

parametric and non-parametric approaches to investigate effect of covariates on gentamicine
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data were compared. The advantages and limitations of each approach regarding handling 

of covariates are illustrated and compared using the same data.

Vozeh et al. (1996) and colleagues used the non-linear mixed effect model program, 

NONMEM, to analyse variability in the PK data. They also divided the different stages of 

study and considered four different phases. Phase 1 described the administration of drug to 

groups of subjects under well-defined and controlled experimental conditions and taking 

blood samples from all subjects. Phase 2 defined whether a compound had the expected 

clinical effect and also defined the possible clinical dose range in the subjects. In phases 

2b and 3 the design strategy for the clinical trial was considered using data collected in the 

previous phases. In late phase 3 and phase 4, clinical trials were performed to assess the 

tolerability of a drug that had been shown to be effective. Finally, the design of population 

studies, practical considerations, software for the population approach were reviewed in 

detail with many references. Mandema et al. (1992) applied NONMEM to find the 

relationship between patients' PK and PD parameters, and other specific covariates. They 

used a three stage strategy. In the first stage, the patient's PK/ PD parameters were used as 

empirical Bayes estimates, based on a prior NONMEM fit using no covariates. In the 

second stage, the PK/ PD parameters were regressed on the covariates using a generalized 

additive model. In the final step, NONMEM was used to optimize and finalize the 

population model. To test the effectiveness of the above approach, four real data sets were 

used and it was found that the generalized additive model for the estimated parameters is 

the best initial guess for NONMEM. It was also shown that the approach successfully 

selects the most important covariates and their functional representation. Finally, it was 

shown that this numerical approach is fast and the number of necessary NONMEM runs is 

reduced, so less time is required to derive a population model.

Power (1993) divided pharmacokinetic studies into 3 different categories as follows:

(i) Population based investigations;

(ii) Individual based compartmental;

(iii) Individual based non-compartmental research projects.
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The methods of study in all categories were discussed in detail using relevant mathematical 

formalisms. There is also an overview about basic statistical considerations underlying any 

experimental design. The history of population PK, the traditional and recent approaches 

in PK and the statistical analysis to consider the variability between subjects were also 

discussed together with the definition of random and fixed effects. The application of 

NONMEM software in data analysis was also briefly introduced. Finally, suitable statistical 

analysis for individual-based PK was described together with some statistical tests. Best 

et al. (1995) described a Bayesian approach to population PK analysis which used a 

technique known as Gibbs sampling to simulate values for each model parameters. This 

method was demonstrated via an application to gentamicine population in neonates. For the 

population PK estimation NONMEM software was used. Dursano (1991) applied an 

optimal sampling approach which determines the most information-rich sampling schedule 

to allow robust parameters estimate to be determined from minimal number of sampling in 

a spacecraft environment. NONMEM software was used to allow the patients’ data sets to 

contribute to the population parameter estimates. The determination of the influence of 

microgravity environment on drug distribution and elimination was also discussed using 

some examples. These examples showed the validity of these techniques and their 

usefulness.

There are many population PK software packages which are used in population PK/ PD 

studies. Some of the more well-known packages are introduced below.

(1). NONMEM (Non-linear Mixed Effect Modelling based on work by Beal and Sheiner 

(1982)): This is a widely used and well-supported program for PK / PD population analysis. 

It is an approach where the population is taken as the unit of analysis, allowing generation 

of estimates of PK parameter values in a single step. Fragmentary data from different 

subjects can contribute to the estimation of parameter values. The program also partitions 

the observed variance into that attributable to the PK model as well as the difference 

between subjects (inter-subject variance) and within-subject (intra-subject variance / 

residual error) (Drusano, 1991). NONMEM uses a first-order Taylor series expansion to 

produce a linear random- effect model. Estimation of the population parameters is achieved
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through maximization of the associated likelihood objective function. NONMEM also 

estimates the first two moments of the population distribution of PK parameters of interest. 

While these estimates fully specify the probability density function of parameters when the 

underlying distribution is normal or lognormal, they provide incomplete information in 

situations where the density is non-symmetric (Best et al., 1995). Some of the applications 

of NONMEM were introduced in the above literature review.

(2) . ADAPT II: This is a software package which is used for PK studies. It has two main 

programs ID (parameter estimation) and SIM (simulation). In this section we will discuss 

the SIM program very briefly as more details are given in Chapter 4. SIM has 4 options 

which the third (population simulation) and fourth (population simulation with output noise) 

of which the options are related to population modelling. In the population simulation 

option, SIM performs a specific number of simulations of the model, with values of the 

model parameters (say a) randomly selected from a normal and lognormal distribution. 

Also, a can be partitioned into a normal or lognormal component, a ,, and a component a 2 

which comes from an independent uniform distribution. In population simulation with 

output noise option, the program allows for a population simulation with output error. The 

output of the program in the above cases (both options) is a table containing the mean, SD 

and minimum and maximum values for each output at each observation time. A summary 

of parameters is also provided with the same statistical analysis. Furthermore, there are 

plots displayed at each observation time containing the average output with SD bars. A 

continuous curve is displayed for each model output, that is obtained using the population 

mean parameters values.

(3) . POPKAN: This is a population PK modelling and analysis PC software tool. It offers 

clinical and PK researchers a menu driven application tool for population modelling and 

analysis. The software also supports the analysis of the most important kinetics and 

dynamic models. It provides extensive tools for model and outlier diagnostics and offer 

prediction features. It also presents the summaries and results in graphical and numerical 

forms.
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(4). P-PHARM: This is a population PK / PD data modelling computer program designed 

for fitting a general nonlinear regression model to the data. The data for analysis are 

collected from preclinical studies, especially the administration of a drug to different 

individuals and obtaining the output measurements in different biological fluids. To build 

a model using the above data, one needs to account for both unexplained inter-subject 

effects (random effects) along with the measurement covariate effects (fixed effects). P- 

PHARM has been designed to allow the user to define such mixed effect modelling. The 

approach is useful when only a few measurements are available for each individual sampled 

within population. The software uses a two-stage procedure and / or an EM- type algorithm 

(for sparse data). This is an iterative process suitable for computing the maximum 

likelihood in complex problems. The software supplies a multi-dimensional search 

(stepwise multiple regression) option to identify the possible optimal linear relationship 

between the model parameters and the available covariates. P-PHARM also has a procedure 

to validate the PK model and the estimation population parameters together with a 

procedure to identify the outlier subjects and / or measurements.

Some of the methodology used above is relevant to the work that is discussed in Chapters 

5-6. However, most of the methodology is more appropriate to advanced pharmacokinetic 

studies. To study the pharmacokinetic response obtained from a subject after the 

administration of a drug the output was obtained at different time points and in different 

subjects. To find the parameter estimates, a model is fitted to the response to predict the 

concentration of drug at times other than observation times and potentially more than one 

site (and with drug dosage other than the administrated dosage in more complicated 

pharmacokinetic studies). In this thesis two double-compartment models for the 

concentration of drug in blood plasma are proposed and the method of model building is 

discussed in detail in Chapter 5 and 6.

3.11: Summary and discussion

In this chapter stochastic compartmental models were introduced and some different 

sources of stochasticity, especially stochasticity in the rate coefficients and in the initial
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concentration of glucose tracer, were also discussed. The stochastic model in tracer 

experiments was also introduced in detail. The definition, application and types of residence 

moments for the particles which are being introduced to the system were also introduced. 

The method of calculation of residence time moments was discussed using a numerical 

example. Furthermore, the method of calculation of residence time moments in the non- 

compartmental approach was also introduced and it was shown that this approach is useful 

for calculation of residence time moments of a particle. Finally, the population modelling 

in pharmacokinetics and its usefulness in pharmacokinetics studies is briefly introduced and 

a brief review of the literature and a description of some software packages is given.
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Chapter 4

Method and data analysis

4.1:Introduction

The data were obtained from a sample of seventeen women from St. Thomas' Hospital in 

London (Bowes et ah, 1996). All the women were in their post-partum periods and some 

of them had gestational diabetes mellitus (GDM) during pregnancy. To study the effect of 

obesity, the sample was divided into two groups of obese and normal subjects; each group 

also contains normal and GDM subjects. The subject whose mass is at least 30% more than 

her ideal body mass (Diem, et al., 1971), which is a function of height and age, is 

considered as an obese subject. Table 4.1 gives details of the sample. As can be seen there 

is a large difference between the two groups of subjects. Using the t-test, a significant 

difference was found between the mass of the two groups and (p<0.0033), but there was no 

significant differences between ages and heights of the groups.

An intravenous glucose tolerance test (IVGTT) (Nattras, 1986) was administered to each 

subject. A bolus of glucose and glucose tracer (20 mg/kg body mass) was injected into an 

arm vein of over one minute and blood samples were drawn from the contralateral vein at 

2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 19, 22, 25, 30,40, 50, 60, 70, 80, 90, 100, 110, 120, 140, 160 

and 180 minutes after injection. Table C, in Appendix C shows the glucose tracer 

concentration in the blood plasma of subjects at each sample time after injection. Figure 

4.1 shows the mean blood plasma glucose tracer concentration for the obese and non-obese 

groups. The curves for the total group of subjects have been omitted for clarity.
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No GDM

Status

Obese

(YIN)

Age

yr

Height

cm

Body Weight 

kg

1 GDM Y 35 159 79.8

2 GDM N 34 169 69.3

3 GDM N 38 154 54.6

4 GDM N 34 161 72.3

5 normal N 29 163 69.3

6 normal Y 39 160 77.9

7 normal Y 20 164 98.5

8 normal Y 30 167 109.8

9 normal Y 27 177 101.4

10 normal N 25 161 64.6

11 normal N 38 175 78.1

12 normal Y 30 148 68.0

13 normal N 30 157 61.0

14 GDM N 32 156 67.5

15 normal Y 33 157 86.5

16 normal Y 30 151 80.0

17 normal N 31 169 63.6

Table 4.1: The distribution of women according to age, height and weight.

45



0.8

S3
O 0.7

Obese

Non-obese

o
0 20 40 60 80 100 120 140 160 180

lime (nin)

Figure 4.1: Mean blood plasma glucose tracer concentration for obese and non-obese 

groups.

4.2: Gas chromatograph-mass spectrometer tGCMSl

Each blood sample was analysed at St. Thomas' Hospital using a GCMS. To obtain the mass 

spectrum of a single compound, a mixture of compounds is separated in the gas 

chromatograph into single components before entering the mass spectrometer. The gas 

chromatograph is widely used to separate mixtures in the gas or vapour phase and was first 

coupled to the mass spectrometer in the 1960s.

The GCMS is the most widely used instrument for quantitative mass spectrometry analysis. 

The GC provides an on line separation step, concentraining the analytes into defined peaks 

for sequential admission to the mass spectrometer (Markey, 1981). The Selected Ion 

Monitoring GCMS in which the mass spectrometer monitors a small number of selected 

Ions, represents the major use of stable isotopes (Haskins, 1982).
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4.3. Estimation of unknown data

The data for some of the above time points were not available. The unknown glucose tracer 

concentration was estimated at these points to obtain the data at all the time points. To 

estimate the missing values, the parameters of a simple double exponential model were 

estimated in each subject using the original data and the ADAPT program ID (D'Argenio 

et al., 1992) (see below). These model parameters were then inserted into the model and 

the ADAPT program SIM was used to estimate the missing values at the relevant time 

points. A double exponential model was considered to be appropriate in view of the two 

compartmental nature of the curves. The procedures of parameters estimation will be 

discussed later. Table C2 in Appendix C shows the original data and the estimated data.

4.4:ADAPT Software . simulation (SIM) and parameter estimation (ID) program

One of the more powerful tools in parameter estimation and simulation, especially in 

compartmental modelling and pharmacokinetics, is the ADAPT software. There are two 

main tasks in this software which are introduced here.

(i). Parameter estimation (ID)

In this program, the mass balance (differential) equations or the analytic solution of the 

model are entered into the program along with the number of parameters to be estimated. 

In the next stage the program requires some further details such as the number of rate and 

bolus inputs, dose events and the number of outputs together with observation information 

(time units and measured values for each output). There are four parameter estimation 

options one o f which is the weighted least squares (WLS). The WLS was used with the 

weights set equal to the inverse of the variance of the measurement error at each time point. 

In this case, the above variance is approximated as a linear function of the observed glucose 

data. To define this function, the program requires two points on this standard deviation- 

observation line. The final stage of the program is the selection of the initial estimations 

of the parameters. The different options of parameter estimation and the output of (ID) will
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be discussed in Chapter 5.

(ii). Simulation (SIM)

The simulation program requires that the number of rate and bolus inputs and the number 

of dose events together with the mass balance equations or the analytical solution of the 

model be specified. For simulation there are four options

(i) Individual simulation;

(ii) Individual simulation with output noise;

(iii) Population simulation;

(iv) Population simulation with output noise.

In our case we chose the first option. For the next stage the program requires the number 

of outputs and observations together with the observation information (time) and the values 

for indicated parameters. The output of the SIM program are the estimated values for each 

selected time and the fitted curves.

4.5: Summary

In this chapter the details of the subjects were discussed. There are 17 females in the 

sample, 8 obese and 9 non-obese. The obese subjects are those who have at least 30% more 

mass than their ideal body mass. To build the stochastic model for the subjects, a bolus 

of glucose and glucose tracer was injected intravenously and blood samples were obtained 

over a period of 3 hours for all the patients. The tracer content of the blood sample was 

determined by GCMS. To focus the data analysis on some fixed times, 26 time points 

which have the largest frequencies were chosen and missing data were estimated using the 

ADAPT program ID and SIM. Finally, some details of ADAPT software and its 

applications in simulation, parameter estimation etc. were described.
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Chapter 5

Stochastic compartmental model A

5.1: Review of Soong's approach

In 1971 Soong (Soong, 1971) presented a stochastic two-compartmental model in which 

the stochasticity was incorporated into the transfer fluxes, ky, between the compartments 

(see Figure 5.1). He assumed that the compartmental parameters are constant during a 

particular experiment but vary from one experiment to another if repeated in the same 

subject and from one subject to another.

Figure 5.1: Two compartmental stochastic model (Soong,1971)

According to his assumptions the two parameters k2l and k 12 are assumed to have 

known statistical distributions. To build a stochastic model for the above 

compartmental model, he started by writing the mass balance equations as follows:

d U p )

( - k  k ) 21 12d U (t )  _ d t

d t d U p )

d t

l*21 - * J w

where U(t) is a 2 by 1 matrix of U,(t) and U 2 (t) and U , (t) and U 2 (t) are the 

concentration of substances in the first and second compartment. In the above equation 

the initial condition is:
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(5.2)

where C, and C2 are the concentrations of glucose in the first and second compartment 

respectively at the time of t=0.

It is easy to show that the solution for the above equations is given by:

U(t)
{ \ 2 + k21e ' (*21+*,2)' it12(l - e  ~{k̂ )t)

kn +k2i Jc2l( l - e ~ {k2'+kn)t k2l + kn e~ikn+kll)‘
(5.3)

where C, and C2 are defined above.

Soong assumed (for simplicity) that Prob(C1= l, C> =0) =1 and k 12 and k21 have a 

truncated bivariate normal distribution and also k21 and k12 have normal distributions 

with the means of 1 and 0.5 and the variances of 0.1 and 0.04 respectively, i.e. 

k21~N(l, 0.1) and k 12~N(.5,0.04). Therefore, by substituting equation 5.2 into 5.3 and 

considering C ,=1 C2=0 we can write:

Ux{t)
(£12+V ' (*12+t2l)<)

(kn +kn )
(5.4)

Hence we can find the probability distribution function (PDF) o f U,(t) using the 

cumulative distribution function method. The cumulative distribution function of a 

random variable x, denoted by Fx (.), is defined to be that function with its domain on 

the real line in the interval [0,1] which satisfies:

Fx (x) -  P[X<x ]=P[{q  : X(co)<x}]

for every real number x (Mood et al., 1974). Therefore, for building the cumulative 

distribution function of U, (t) we have (v is a arbitrary variable):
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(5.5)
p r o b { U x{t)<v |Cj = l,C 2 =0) =

prob(k[2+k2le (*21 kn)‘<(k2l+kn )

and after some manipulation (see Appendix D) we obtain the density function of U,(t) 

in the form:

fu fy  ; c i =1> c 2=°)=/ ° (1 -e " ')

i ( l  -v) s(l -v)

1 -e 1 ~e
]ds,

(5.6)

where x=logv/t and d>0 is the joint density function of k ]2 and k21 given by:

»̂ 21̂

i  ( h 2 i*i) ^ n i) (*zi P2) + (*21 P2) j

2(1 -P2) oj 01°2 0*

27t\/(l -p 2)a ja2 (5.7)

Also, p b p2, a, and o2 are the means and standard deviations of k12 and k21 respectively 

and p is the coefficient of correlation. We need a truncated joint normal distribution 

similar to <E>0 such that its integration over the range (0, °°) is 1.00 and that it predicts the 

sample values k 12, k 2], skl2, sk21 and r. We define a PDF as

1 (^12  Pi) P(^12 n 1) Ĉ 21 P2) (^21 P2)-[
2(1 -P2)

2 t z\J(\-p  1)o lo2k
(5.8)

such that the following six equations (for six unknown) are satisfied.
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oo

f f k12®'odk12dk2 r k 12
0 0

f f k2i®'odkn dk2i= k2\
0 0

*,2>2<I,'o‘» , A 1 =
0 0

f f ( k21“ k2l)2®'odk12dk2 r  S \ n
(5.9)

0 0

/ / ( * 2 l"  *2l)(*12" kU ^ ' o dkUdk2l
0 0

0 0

where k 12 and k 21 are the sample means of k12 and k21 respectively, s2kl2 and s \ 21 are the 

sample variances, skl2, s k2l are the standard deviations of k12 and k21 and r is the estimate 

of p, the correlation coefficient. However, the solution of these non-linear equations is 

relatively difficult and by using k 12, k 21, skl2, sk2, and r in place of p,, p 2, Oj, a 2 and 

p it was found that k = 0.999. Hence a good approximation is to define <h'0 as above and 

avoid having to solve the above 6 non-linear equations.

Presumably this is the approach taken by Soong in using the truncated distribution, 

although he did not mention it in his paper. To build the stochastic model, we have to 

calculate the expectation of U, (t) which is given by

For a deterministic model it is sufficient to insert the following values in the density 

function o f U,(t), where f(k12) and f(k21) are PDF of k12 and k21 respectively:

(5.10)
0
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E(kn) = f k n/ ( k l2)dk l2 £(ÂT2i) ■ (5.11)

Figure 5.2 shows the stochastic curve for the above model when p=0 together with the 

deterministic curve.

Figure 5.2: Stochastic and deterministic curves for the mean of u, (t) when p=0.

5.2: Data analysis

The following model (Figure 5.3) was considered.

Xl

JV21

x2

— ^

k 12

1r▼

Figure 5.3: Two-compartmental stochastic model with a 

loss from the second (extravascular) compartment.
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The glucose concentration in blood plasma decays as it is consumed mostly by the 

muscles. Eventually the glucose concentration falls to the basal value . Also, it has a loss 

from the second compartment and the initial concentration of glucose tracer at the first 

compartment was taken to be a random variable in different individuals (X^O^Cj). The 

variables x, and x 2 are the concentrations in the first (blood plasma) and second 

(extravascular tissue) compartments respectively. The mass balance equations (Carson 

et al., 1983) are as follows:

dXx{t)
- k 2lX x(t) + kn X2{t), (5.12)

dX2(t)
= k2Xx l( t ) - ( k n + k 02) x 2(t). (5.13)

It can be shown that the model output is given by

(5.14)

where:

A, = -  (1 /2)[(*21 + *„ + *„) - ^ k 2X + kn + k02)2 -  4k2lkQ2] (5.15)

K = ~ ( 1/2)[(A:21 + kn  + k02) +yj(k2l + kn + kQ2)2-  4k2lkQ2] (5.16)

( X ^ k ^ k J X ^ O )

(5.17)
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and

A 2
(*12+ *02+*2>*l(°>

K ~ K (5.18)

5.2.1: Curve fitting

There are four unknown parameters in the model (Equation 5.14) and these are estimated 

using the ADAPT package (D'Argenio and Schumitzky, 1992). The package offers a 

choice of several minimisation functions such as weighted least square (WLS), 

maximum likelihood (ME), generalised least square (GLS) and maximum a posteriori 

probability (Bayesian). Following other workers the WLS function was chosen since 

we need to give different weights to the measurements according to their variances. This 

requires the minimisation of

where the a are the parameters to be estimated; 

w^s are the weights;

1 is the number of the outputs (which in our case is one); 

m is the number of the data points;

Zj(tj) are the measured data at the time of tj and 

yi(a ,tj) are computed (estimated) data at the time of tr

The weights are set equal to the inverse of the variance of the measurement error 

(w'y=l/Oij) at each time point. Since the error is proportional to the variance, using this 

weighting enables us to give less weight to measurements with high error and high 

weight to those who have less error. In this case Oy is approximated as a linear function 

of the observed glucose data i.e. ay=a z, (t|)+b, where Zj (t, )are the measured data at the 

time of tj. To define this function, we have to enter two points on this standard 

deviation-observation line.

m
E %(*,<>,) ~k,( a ’tj))2’ (5.19)
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In the output of the parameter estimation program, in the section with (weighting 

information) headings, there are two points which specify the above regression line. 

These are two points with arbitrary measurement (zftj )) which we enter as a low 

measurement for glucose and its standard deviation (1, 0.0236) and also a high 

measurement for the above values (10, 0.236). The program calculates the above 

regression line using these points. Furthermore, there is a matrix at the bottom of the 

first page of the output which shows the correlation between the estimated parameters. 

Therefore, the correlation between k12 and k21 is equal to 0.91 and so on.

Figures 5.4 and 5.5 show the typical output of ADAPT (for subject 1). The complete 

output of ADAPT together with the program for all samples is given in Appendix A.
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— C. WLS Estimation Summary—

Model file description: Insert Model File description 

Weighting Information

Option for Y( 1): 2w ith(1.000 ,.2360E-01) and (10.00 ,.2360 ) 

Convergence achieved 

Number of iterations: 44

Number of function calls: 199 

Estimator criterion value: 150.996

Weighted

Output R-squared Sum of Squares Sum of Squares

Y( 1) .991 150.996 108340E-01

Initial Final

Parameter Value Estimate CV(%) Confidence interval (95%)

K21 .1000 .7267E-01 9.349 [ .5858E-01, .8676E-01 ]

K12 .1000 .6485E-01 9.842 [ .5161E-01, .7809E-01 ]

K02 .1000 .2350E-01 3.180 [ .2195E-01, .2505E-01 ]

ice  i) .5000 .8638 2.640 [ .8165 , .9111 ]

IC( 2) .0000 Fixed

K21 K12 K02 IC( 1)

K21 1.00

K12 .91 1.00

K02 -.13 .27 1.00

ice  i) .92 .72 -.37 1.00

FIGURE 5.4: Typical output of the parameters estimation program ID in ADAPT along 

with the values of estimated parameters and their CVs, R2, SS and WLS (for subject 1).
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... D. Estimated Model Prediction and Data Summary —

Y (l)

Obs.Num. Time Data Model Est. Residual Weight

1 2.000 .7800 .7540 .2605E-01 2951.

2 3.000 .7600 .7092 .5083E-01 3108.

3 4.000 .6700 .6699 .6627E-04 4000.

4 5.000 .6000 .6355 -.3547E-01 4987.

5 6.000 .5800 .6051 -.2514E-01 5337.

6 8.000 .5500 .5546 -.4648E-02 5935.

7 10.00 .4900 .5148 -.2482E-01 7478.

8 12.00 .4700 .4830 -.1296E-01 8128.

9 14.00 .4600 .4570 .2952E-02 8485.

10 16.00 .4400 .4356 .4396E-02 9274.

11 19.00 .4400 .4095 .3053E-01 9274.

12 22.00 .4200 .3884 .3163E-01 .1018E+05

13 25.00 .4000 .3706 .2938E-01 .1122E+05

14 30.00 .3700 .3458 .2422E-01 .1312E+05

15 40.00 .3300 .3056 .2440E-01 . 1649E+05

16 50.00 .2700 .2720 -.1983E-02 .2463E+05

17 60.00 .2400 .2425 -.2496E-02 .3117E+05

18 70.00 .2000 .2163 -.1630E-01 .4489E+05

19 80.00 .1800 .1930 -.1296E-01 .5542E+05

20 90.00 .1600 .1721 -.1214E-01 .7014E+05

21 100.0 .1400 .1536 -.1357E-01 .9161E+05

22 113.0 .1300 .1324 -.2390E-02 .1062E+06

23 120.0 .1200 .1222 -.2223E-02 . 1247E+06

24 140.0 .1000 .9727E-01 .2727E-02 .1795E+06

25 160.0 .8000E-01 .7742E-01 .2584E-02 .2805E+06

26 180.0 .7000E-01 .6161E-01 .8386E-02 .3664E+06

FIGURE 5.5: Typical output of the parameter estimation program ID in ADAPT 

along with the original data, estimated data, residuals and the weight (for subject 1).
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A summary of the estimated parameters along with the values of the parameters' CVs 

(coefficient of variation) in each unit and the CV for the curve fitting are given in Table 

5.1. Since the values of the coefficient of determination (R2), (Draper & Smith, 1966) 

were almost the same in all the parameter estimations (between 0.966 and 0.997) they 

were not presented in the table. Furthermore, the parameters' CVs calculation and the 

method for calculation of the CV for the curve fitting are given as follows.

A) The CV of the parameters:

The asymptotic covariance matrix of the estimated parameters is given by

where the superscripts T and -1 denotes, respectively, the matrix transpose and the 

matrix inverse, P is the m.l x p (the number of the system parameter) Jacobean matrix 

obtained from

y, (tj )s are the i th output at the time t , , and W is the m.l x m.l matrix of weights used in 

equation 5.19,

For a weighted least squares (WLS), the m.lx m.l matrix R contains estimates of the 

error variance for each output:

c 0 v ( 6 l ) = ( P  TW P ) \ P  t W R W P )(P  TW P )~ l (5.20)

(5.21)

W = d i a g [ w n w n .. .w lm\.n ,y 12" (5.22)

(5.23)

where
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(5.24)1 m°i=— E w (Zi( t ) - yi(&,t))2,
dft J-1

and dfj are the number of degrees of freedom given by

d f= m .- (p / l ) , i  = \,...,l. (5.25)

In this last equation the number of degrees of freedom for the ith output, mi is the 

number of non-missing, non-zero weight observation for the ith output. Using the above 

procedure it is possible to estimate the coefficients of variation of the parameter 

estimates.

B) The CV for curve fitting:

The CV for curve fitting is a criterion for evaluation of the curve fitting. It is calculated 

from

CV(%)
\

1 "
- 2 > t

.2 100
- v  . ) X---------

" - 1- '  ' ' VyobSi
(5.26)

where pyobsi = l/nSy obsi *

The term inside the square root is the variance of residuals (using a zero sample mean). 

This is not the only definition of CV and also this definition is not analogous to that of 

the CV for a series of repeated measurements of a single sample that has been divided 

in to alquots but it is convenient to use.

A small CV means that the variance of the residuals per unit mean ordinate (pyobsi )is 

small so we have a good fit. Thus the larger ordinate for a given variance the smaller 

the CV.
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Subjects k21 ki2 ko2 Cl CV

No min"1 min"' m in 1 min"1

1 0.072670 (09) 0.064850 (10) 0.023500 (03) 0.86 (3) 5.7

2 0.059040 (22) 0.105300 (23) 0.036540 (06) 0.59 (4) 2.6

3 0.054770 (03) 0.012350 (05) 0.015110 (03) 0.73 (1) 10

4 0.017190 (06) 0.005538 (38) 0.015730 (24) 0.55 (1) 11

5 0.050700 (02) 0.008911 (05) 0.009436 (04) 0.79 (1) 8.4

6 0.023920 (04) 0.007911 (17) 0.014620 (10) 0.61 (1) 7.3

7 0.025150 (08) 0.015560 (20) 0.018000 (09) 0.63 (2) 6.6

8 0.036930 (05) 0.018930 (09) 0.013300 (05) 0.62 (1) 6.7

9 0.038290 (03) 0.010920 (07) 0.010750 (05) 0.67 (1) 6.9

10 0.045030 (04) 0.017160 (08) 0.017330 (03) 0.76 (1) 6.9

11 0.044600 (03) 0.012250 (07) 0.013490 (04) 0.73 (1) 5.2

12 0.044730 (03) 0.013420 (07) 0.014390 (04) 0.76 (1) 10

13 0.035460 (05) 0.015130 (15) 0.026590 (05) 0.78 (2) 8.6

14 0.037250 (04) 0.014270 (08) 0.012820 (05) 0.8 (1) 9.1

15 0.017370 (07) 0.005103 (35) 0.011740 (27) 0.55 (2) 9.1

16 0.042110 (12) 0.054520 (17) 0.025170 (05) 0.89 (2) 9.4

17 0.030420 (04) 0.010080 (12) 0.014750 (07) 0.5 (1) 3.9

mean 0.039743 0.023071 0.017251 0.69

SD 0.0147 0.026740 0.006950 0.116

Table 5.1: Distribution of k21, k12, k^ and c, together with the values o f CV of the fitted 

curves. The numbers in the brackets show the CVs of the parameters which are rounded 

to nearest integers.
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5.3: Finding the quadravariate normal distribution of the parameters

To develop a stochastic model first we need the probability distribution function (PDF) 

of the parameters( k,2, k21, ko2 , c ,=X,(0)) where c , is the initial condition in the first 

compartment. We cannot use a quadravariate normal distribution for the above 

parameters, since some of them (especially k12) have a large standard deviations (in 

comparison with their means), so the probability of accepting negative values in the 

parameters is large. It is impossible for the parameters to have negative values since all 

of them are positive fluxes or concentration. Therefore, we have to choose another 

method. We could have considered a quadravariate truncated (at zero) normal 

distribution. For this PDF, we require to find 15 unknown parameters of the model (4 

means, 4 variances, 6 covariances and a scale factor) so we require 15 non-linear 

equations similar to equation 5.9. The numerical solution for these 15 non-linear 

equations is likely to be difficult, and it was decided to use a method which avoids 

negative parameter values. The most obvious method is to use a lognormal 

transformation. Fortunately, it was found that the parameters are well fitted by 

lognormal distributions.

We start with some details of quadravariate normal distribution and the lognormal 

distribution will be discussed later. Consider the following PDF which is normal 

distribution (Mardia et ah, 1979 & Soong,1971):

A k n , k2y k,02 ’ C.)
- \ / 2 ( X m ) T A \ x - m )

(27T)2|A| 1/2
(5.27)

where XT = (k21 , k12 , k02, c , ) with mean values mT =[m, , m 2 , m3 , m 4] and 

A=[p y] is the 4 by 4 covariance matrix of X where:

Pij(t) = E{[Xi-mi][Xj-mj]}.

The superscripts T and -1 denote, respectively, the matrix transpose and the matrix 

inverse. From Table 5.1 we have E(m,) = 0.0397429, E(m2)=0.0230707, E(m 3 ) = 

0.0172509 and E(m4) = 0.6947764. Also from the same Table we have s ,= 0.0147446, 

s2= 0.0267480, s3= 0.0069506 and s 4= 0.1156524 which are the standard deviations of
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the variables.

Since f  in equation 5.27 is a PDF, for the above multivariate distribution the following 

multiple integral should be identically equal to 1.00:

I f f  f ^ 21’ k'2’ k°2’ c^dk2\ dkl2dk02dcv (5.28)

It was decided to confirm this result numerically as a check on the Fortran program and 

the values of the variance-covariance matrix. The variance-covariance matrix , A, was 

calculated using MATLAB (Matlab, Users guide, 1992) and is given by equation 5.29. 

The diagonal elements (An , A22, A 33 and A 44) are the variances of k 21 ,k l2, k 02 and 

c i respectively. The other elements of A (A ¡j, D j) are the covariance of the above 

variables (k21 , k 12, ko2 and c, ) where 

C O V [X  ,Y ]=  E [(X -p x ) (Y -p y )].

.000217403

.000246372

.000040627

.001046521

.000246372

.000715458

.000159395

.000624259

.000040627

.000159395

.000048310

.000120083

.001046521'

.000624259

.000120083

.013375473, (5.29)

The above normal distribution can be more easily manipulated by transforming it to 

standardized variables as follows:

Suppose x,=k21, x2=k,2, x3=k()2 and x4=c,. Consider the following transformation:

x, - u1 ~ x

T f

X2~»x,
y?=-

X3~yx,
y  3='

X4 ~ ^
y  a ~

(5.30)
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where p xl to p x4 are the means and s xl to s x4 are the standard deviation of the above 

four variables respectively. If we apply the above trasformation, the new variables 

become standard normal with zero means and unit variances. Also, the elements of A 

which is a symmetric positive definite matrix (Chatfield and Collins, 1980) changes as 

follows:

cov(y.,y.) =
o . o .  ' 1

(5.31)

where Oj and Oj are the standard deviations of y, and y j respectively. Therefore the 

new variance-covariance matrix is as follows:

/

E =

\

1.000000000

0 . 6 2 4 6 9 1 9 1 9

0 . 3 9 6 4 2 4 2 3 9

0 . 6 1 3 7 0 5 6 9 6

0 . 6 2 4 6 9 1 9 1 9

1.000000000

0 . 8 5 7 3 5 8 9 0 7

0 . 2 0 1 7 9 6 8 7 7

0 . 3 9 6 4 2 4 2 3 9

0 . 8 5 7 3 5 8 9 0 7

1.000000000

0 . 1 4 9 3 8 5 1 2 5

0 . 6 1 3 7 0 5 6 9 6 s 

0 . 2 0 1 7 9 8 6 7 7  

0 . 1 4 9 3 8 5 1 2 5  

1.00000000 ,

(5.32)

The above matrix shows the correlation coefficients of variables. We can test for 

significance of the relationship between the variables using

n -2
\  (5-33>

where r is the sample correlation coefficient and n is the sample size (Altman, 1991). 

Under the null hypothesis that there is no relation between the different variables 

(p = 0) it can be shown that 5.33 has a t distribution with n-2 degree of freedom. Using 

5.33 and the above correlation coefficients (matrix 5.32) r12, r14 and r23 are significant 

(a = 0.05). From a physiological point of view we expect there to be a good correlation 

between flux rate coefficient of glucose tracer leaving the blood (k21 ) compartment and 

the initial concentration of glucose tracer (c,). The significant correlation 0.61 suggests
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that the above interpretation is correct. Also, we expect weaker correlations between the 

initial concentration and the two exit fluxes rate (k!2 and k^ ) coefficients in the more 

remote second compartment and 0.20 and 0.149 which are not significant confirms this. 

Furthermore, there should be a good correlation between ko2 and k 12 and r = 0.857 which 

is significant again suggests the above interpretation is also correct, so the correlation 

matrix confirms all of these meaning.

The inverse of the correlation matrix 5.32 is

S " ‘ =

- 3 . 3 2 5 4 3 7 9 5 8

- 3 . 1 1 5 5 1 5 1 6 4

1 . 5 9 9 4 7 5 9 5 5

- 1 . 6 5 1 0 7 1 2 9 4

- 3 . 1 1 5 5 1 5 1 6 4  

6 . 7 7 4 2 4 0 2 1 3  

- 4 . 7 6 0 5 3 6 5 9 9  

1 . 2 5 6 1 3 0 0 4 3

1 . 5 9 9 4 7 5 9 5 5

- 4 . 7 6 0 5 3 6 5 9 9

4 . 5 5 2 1 3 0 1 2 2

- 0 . 7 0 0 9 5 8 0 4 3

- 1 . 6 5 1 0 7 1 2 9 4 ^  

1 . 2 5 6 1 3 0 0 4 3  

- 0 . 7 0 0 9 5 8 0 4 3  

1 . 8 6 4 4 9 9 1 8 2  ,

(5.34)

Also, (det(S)) -0 5 =0.27614700.

It is easy to show that the quadravariate normal distribution (5.27) transforms to:

j , - V i V )
2 , ,,e ~ e 15 351

( 2 t c ) 2| S | 1/2 ( 4 t i ) 2. 0 . 2 7 6  1 4 7 0 0

Equation 5.28 with f  given by equation 5.35 was integrated using the NAG library 

program D01FCF (see section 5.5) and it was found to be equal to 1.0000.

5.4: Building a quadravariate lognormal distribution for the calculation of the 

concentration of glucose tracer in blood plasma

As was mentioned in 5.3, some of the variables have a large standard deviation in 

comparison with the means, so the contribution to the expectation value of such negative 

values is likely to be a significant proportion. On the other hand, all the variables 

(fluxes and concentration) are essentially positive and cannot accept negative values.
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Therefore, it is not feasible to fit a normal distribution to the data where the proportion 

o f negative values is no longer small. To overcome the problem, a quadravariate 

lognormal distribution was used to calculate the stochastic model for the concentration 

o f glucose tracer in blood plasma. The details of the lognormal distribution are 

described below.

Consider the normal distribution in equation 5.35. We take the log of the parameters in 

Table 5.1 as shown in Table 5.1 A. Figure 5.6 shows the distribution o f the data in 

lognormal scale.

The new lognormal variables have the following means and standard deviations 

respectively:

^,=-3.296389365, pkl2= -4.163966483, p k02=-4.123128262 and p cl= -0.377619552. 

Also sk21= 0.402603383, skl2=0.823363712, sk02= 0.352277693 and scl= 0.170572963. 

The new variance-covariance matrix for the lognormal variables was also computed in 

MATLAB and is given below using equations 5.30.

/

s =

\

1 . 0 0 0 0 0 0 0 0 0  0 . 6 9 8 1 1 0 3 4 9  

0 . 6 9 8 1 1 0 3 4 9  1 . 0 0 0 0 0 0 0 0 0  

0 . 3 0 8 2 0 0 3 2 6  0 . 7 8 3 5 8 8 0 3 2  

0 . 6 5 7 9 1 3 6 1 2  0 . 4 1 3 3 8 7 6 2 1

0 . 3 0 8 2 0 0 3 2 6

0 . 7 8 3 5 8 8 0 3 2

1.000000000

0 . 1 5 5 4 6 5 8 1 9

0 . 6 5 7 9 1 3 6 1 2 '

0 . 4 1 3 3 8 7 6 2 1

0 . 1 5 5 4 6 5 8 1 9

1.000000000,

(5.36)

The inverse of s is as follows:

3 . 6 7 8 3 2 9 6 0 3  

- 3 . 3 7 6 4 8 7 9 0 7  

1 . 7 1 2 7 4 1 3 9 1  

v - 1 . 2 9 0 4 9 7 5 5 3

- 3 . 3 7 6 4 8 7 9 0 7

6 . 4 4 5 3 1 5 5 2 6

- 4 . 0 3 8 5 8 0 7 2 9

0 . 1 8 4 8 8 4 9 6 2

1 . 7 1 2 7 4 1 3 9 1

- 4 . 0 3 8 5 8 0 7 2 9

3 . 6 4 0 3 3 6 0 0 2

- 0 . 0 2 3 2 8 4 4 1 3

- 1 . 2 9 0 4 9 7 5 5 3 '  

0 . 1 8 4 8 8 4 9 6 2  

- 0 . 0 2 3 2 8 4 4 1 2  

1 . 7 7 6 2 2 6 6 8  ,

(5.37)
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Subject

Number

k2i kn ko2 Cl

1 -2.62182663 -2.735678368 -3.750754857 -0.146414018

2 -2.829540098 -2.250941859 -3.309347728 -0.527802247

3 -2.904612680 -4.394099215 -4.192398502 -0.316218730

4 -4.063427459 -5.196121854 -4.152185561 -0.599839003

5 -2.981829368 -4.720468810 -4.663223117 -0.239272933

6 -3.733040349 -4.839501082 -4.224681063 -0.501700715

7 -3.682897382 -4.160484364 -4.017383521 -0.460449416

8 -3.298731050 -3.967007313 -4.319991243 -0.475458479

9 -3.262566513 -4.517159308 -4.532849524 -0.395415772

10 -3.100426344 -4.065174184 -4.055316175 -0.273647683

11 -3.110021419 -4.402229341 -4.305806608 -0.321445702

12 -3.107110861 -4.311009147 -4.241221758 -0.269187489

13 -3.339349978 -4.191075751 -3.627220073 -0.249230886

14 -3.290103334 -4.249595847 -4.356748827 -0.223643676

15 -4.053010698 -5.277926676 -4.444753464 -0.602940912

16 -3.167470036 -2.909187672 -3.682102469 -0.119910296

17 -3.492654992 -4.597202016 -4.216512196 -0.696954418

Mean -3.296389365 -4.163966483 -4.123128262 -0.377619552

SD 0.402603383 0.823363712 0.352277693 0.170572963

Table 5.1 A: Distribution of k21, k12, ko2 and c, in logarithmic scale.
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Figure 5.6: Distribution of k2I, k l2, k02 and c, in lognormal scale.

Also (det(s))-05 =0.28158229.

Therefore the PDF of the lognormal distribution is:
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f i y vy vy vy,) =
(2n)2\s\m

- m ( y rS - ' y ) . 1

( 2 7 1 ) . 0 . 2 8 1 5 8 2 2 9 5

- l /2(yTs ~ly) (5.38)

where y is the lognormal standard variable with zero means and unit variances.

To calculate the stochastic model for the concentration of glucose tracer in blood 

plasma, we need to calculate the following integration after standardizing X,.

E (X , )=[° °  [ “ [ “ f ° X  f i y v  y 2> y3> y4)dyx dy2 dy3 dyA, (5.39)
J —CO J  —CO J  -CO J  —CO

where X, is the concentration of glucose tracer in the first compartment and f  is the 

quadravariate lognormal distribution of k21, k12, k02 and c,. To standardize X! we need 

to use equations 5.30 for x,, x2, x3 and x4 as follows:

*i =J,r \  + ^ 1

* 2 = > V V P
X3^y3-sx3 + ^ h 
x4=y4- \ +^ 4-

(5.40)

where ps and as are the mean and standard deviation of lognormal variables and should 

not be confused with the notation of section 5.3.

For every individual (subject) there is a unique X, which is different from others, so by 

definition the average of these X,s or E(X , ) is the stochastic response for the 

concentration in the first compartment. The stochastic model will be described in more 

detail later.

5.5: Calculation of the multivariate integrals

The above numerical integration is complex (it is not possible to calculate it 

analytically) and an advanced numerical integration program was used. After some
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experimentation with MATHCAD and MATHEMATICA, which were found to be too 

slow, it was decided to apply the NAG (Numerical Algorithms Group) Workstation 

Library. The library contains many advanced programs for mathematical and statistical 

calculations. The program D01FCF was used to calculate the integration. D01FCF 

attempts to evaluate a multi-dimensional integration (up to 15 dimensions), with 

constant and finite limits, to a specified relative accuracy by using an adaptive 

subdivision strategy. The lower and upper limits of the integration is set to be O ' 

(Tolerance/104) where <E>_1 is the inverse univariate normal distribution function, n is the 

dimension of the integral which is four in our case (Numerical Algorithms Group). 

Therefore with tolerance 0.0001 the lower and upper limits are set to be -3.32915 and 

3.32915.

5.6: Calculation of the stochastic model for the mean concentration of glucose 

tracer in blood plasma in total subjects

The following is a short summary of the integrations:

1. The upper and lower limits of the integration are set to be -3.32915 and 3.32915 

(see section 5.5).

2. The minimum number of integrand evaluations was chosen to be 160000.

3. The tolerance o f the integration was Tol=0.0001.

4. The program calculated the result for any time between 0 and 180 minutes. 

The programs are given in Appendix B.

5.6.1: The results for the total group:

After the above procedures were carried out the results of the integral was obtained at 

each time point between 0 to 180 (min). Table C3 in Appendix C shows the results of 

the above integrals at each time points (for simplicity only even times are given).
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5.6.2: Deterministic model:

To obtain the deterministic model for the concentration of glucose tracer in blood 

plasma, we proceed as follows:

In the distribution of X,(t), equation 5.14, we replace the parameters by their 

expectations (i.e. mean values):

£ (*21) =fi*11= /t2i A*21) dk2l, (5.41)

E^ =\ 2=f ki2 M n )dkn , (5.42)

% ) - h Hf o 2#o2) ^^02 > (5.43)

and

E(c^ =̂ Cl=f ci A ci) dcv (5-44)

where f(k21), f(k12), f(ko2) and f(c,) are the probability distribution functions of k2l, k12, 

k02 and c, respectively. Now p k21 =0.0397429, p kl2=0.0230707, p k02 =0.0172509 and 

pc,=0.6947764, thus after substituting the above value in X , we obtain the deterministic 

model at any time t as:

X x (0 = 0.349e~01' + o.346e~07'. (5.45)

5.6.3: Comparison between deterministic and stochastic curves

Table C3 shows the deterministic and stochastic values for the concentration of glucose
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tracer in blood plasma at times between 0 and 180 (minutes) and for the total group of 

subjects. The deterministic values are calculated using the deterministic equation 5.45. 

The table is given in Appendix C.

Figure 5.7 shows the deterministic and stochastic curves together with the original data. 

It can be seen that the deterministic values are greater than the stochastic value for about 

t >20 minutes. Although the difference between the two curves is small, the data are 

closer to the stochastic curves, and the stochastic curve fits the data better than the 

deterministic curve . Also, the CV for curve fitting (see equation 5.26) was calculated 

as 16.95 % indicates a reasonable fit to the data. Figure 5.7 shows that it is less 

appropriate to use the deterministic values (that is the mean concentration of glucose 

tracer in blood plasma) as these are overestimation of the average values. If we consider 

the stochastic curve to be a more realistic estimate of the actual metabolic processes in 

the body then these differences show clearly that the deterministic model is likely to be 

a less satisfactory in general, although it is very much easier approximation to calculate.
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Figure 5.7: Stochastic and deterministic curves for the glucose tracer concentration in 

blood plasma following an intravenous glucose tolerance test (IVGTT) in total group 

o f subjects.
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5.6.4: Estimation of the parameters of the stochastic model

The parameters were estimated using the ADAPT (D'Argenio el al., 1992) program. A 

single and double exponential models were fitted to the above stochastic curves in turn 

and the output of the ADAPT, especially R2, showed that the best fit was achieved with 

the double exponential model as follows

f(X,t)  =Ae Bl + Ce ~c ‘ (5.46)

For parameter estimation, 46 points from the stochastic model were considered so every 

four points were selected (i.e. 0, 4, 8,...). According to the above inputs, the output was 

obtained which has a high coefficient of variation (Draper & Smith, 1966) or R2. The 

correlation coefficient is a non-negative coefficient which is always less than or equal 

to one. When R2 is near to one there is a good fit to the curve, otherwise not. If R2= 0.85 

it means that 85% of the total variation in the value of f(x, t) ,or any response variable, 

is presented by the fitted curves (plane). From the ADAPT (D'Argenio et a l, 1992) 

manual the formula of correlation coefficient is given by

E 0 , ( &T )  ~y£&))(? m  - z )
I

m m

E ( y f a t p - y j L & t f Y w p - i ,)2
i 1 j =1

In our case we have R2 =1. 0 so we have a very good fit.

The estimation of the parameters, their CVs and confidence intervals along with the R2, 

the weighted sum of squares (WSS) and the sum of squares (SS) are given in Appendix 

A. Furthermore, the data at every time point (0, 4, 8,...) and the model estimation at the 

same times are also introduced with the residuals and the weights. Finally, the model 

along with the data are presented. The formula for the stochastic model is as follows
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fix,  t) = 0.3495 e - 0.060051 -0.01023f (5.47)

5.6.5: Calculation of the stochastic values for the S. E. of the concentration of 

glucose tracer in blood plasma in the total group of subjects

In this section, the S. E. of glucose tracer concentration in blood plasma is calculated for 

different times from 0 to 180 minutes. For calculation of the S. E. for the stochastic 

model, the same program with the same upper and lower limits and the same number of 

integrand evaluation were applied but the value of tolerance was changed to 0.00001 due 

to the much smaller values of S. E. at each time points. The variance was evaluated 

from E[(x(t)-p)2] where p=E(x), and substituted in equation 5.39 and the integral 

calculated at different time values. The program and the result are given in Appendix 

B. Figure 5.8 shows the S. E. of the stochastic and deterministic models of the 

concentration of glucose tracer in blood plasma together with the same values obtained 

from the S.E. of the original data at each time point. For calculation of the S. E. of the 

deterministic model, the predicted values for every minute and for each subject were 

used. The S.E. of the original data are shown again in Table 6.1. The S. E. of the 

stochastic models falls rapidly at first then decays to 0.0005 mmol/1 at 180 minutes. The 

stochastic curve fits the S. E. of the original data quite well at small time points (t <20) 

and large time points (t >100), but between 20 to 100 minutes the values are above the 

stochastic curve. On the other hand, the deterministic curve has quite a good fit to the

S. E. of the original data for all the time points. If we consider the stochastic model to 

be a more realistic model then simply taking the S.E. of the deterministic and the 

original data at each time point appears to introduce a bias towards a higher predicted 

S.E. values in the region 20-100 minutes. Obviously, taking the simple average and 

variance o f the data of all the subjects at each fixed time point is inappropriate as the 

time course for each subject is different.

+ 0.3308 e
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FIGURE 5.8: The S. E. of the stochastic and deterministic models and the 

original data for the concentration of glucose tracer in blood plasma following an 

IVGTT in total group of subjects.

5.7: Division of the sample into two subgroups

It was mentioned in Chapter 4 that the sample was divided into the two subgroups:

1. Obese normal and obese GDM (gestational diabetes mellitus)

2. Normal and GDM.

There are eight women in the first group and nine women in the second group. The aim 

of the division is to compare the deterministic and stochastic models in the two groups. 

Before starting the comparison, it is useful to compare the two groups according to some 

of their personal features.

5.7.1: Comparison according to estimated transfer rate

To see if there is any difference between the estimated transfer rates (k21 , k 12, k02 and 

c, ) in the two groups, the t-test was used and no significant difference was found
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between the above transfer rates in the two groups. Therefore differences in body weight 

(see Chapter 4) do not affect to the values of estimated transfer rates.

5.8: Calculation of the stochastic model for the mean concentration of glucose 

tracer in blood plasma in non-obese subjects

To obtain the stochastic model for the non-obese subjects, we followed the same method 

o f model building as in the total subject group with a few changes. The following 

points show the similarities and differences between model building in total subjects and 

obese group:

At SIMILARITIES:

1. We used equation 5.39, so we applied the quadravariate lognormal distribution 

for integration to build the stochastic model for the non-obese group;

2. We applied the same program (D01FCF) for the integration;

3. The upper and lower limits are the same as the integral for the total subjects;

4. We applied the same tolerance and number of integrand evaluation.

The program and the result will be given in Appendix B. Also, the stochastic and 

deterministic values are shown together in Table C4 in Appendix C.

B) DIFFERENCES:

1. The values of mean for the four variables k21 k12, k02 and c, changed.

2. The variance covariance matrix, which is a function of the mean, also changed 

according to the change of the number of the variables (in the total group there 

are 17 subjects so 17 values for the variables, but in the non-obese group there 

are only 9 subjects so 9 values for the variables) . Therefore, its inverse and 

determinant are also changed.
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Figure 5.9 shows the resulting deterministic and stochastic curves together with the 

original data for non-obese subjects. As can be seen, there are larger differences 

between the two curves than in the total group of subjects. The stochastic curve fits the 

non-obese data better than in the case o f the total group of subjects.

Figure 5.9: Stochastic and deterministic curves for the concentration of glucose tracer 

in blood plasma following an IVGTT in non-obese subjects.

5.8.1: Parameter estimation for the stochastic model of non-obese subjects

To estimate the parameter for the non-obese subjects, the same procedure for the total 

subjects was used. In this case the ADAPT software was applied again to estimate the 

parameters of a double exponential model as the stochastic model for non-obese 

subjects. The output of the program is given in Appendix A. The formula for the 

stochastic model is as follows:

f n o n - o t o M A  = 0 . 3 7 4 4 e  ~0 05955' + O. 3 0 2 4 e  '° 01098' (5.48)
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5.8.2: Calculation of the stochastic values for the S. E. of the concentration of

glucose tracer in blood plasma in non-obese subjects

For the calculation of the stochastic values for the S. E. of the concentration of glucose 

tracer in blood plasma for non-obese subjects, the following steps were followed:

1. We used the same program that was used for the calculation of the S. E. of 

concentration of glucose tracer in blood plasma in total subjects. The only 

change was in the values of the mean, variance, matrix of variance-covariance 

and its inverse and determinant according to the new values for the variables.

2. The upper and lower limits, the number of integrand evaluations and the 

tolerance were the same as the program for calculation of the S. E. for the total 

group.

3. The program calculated the stochastic values for the variance of the 

concentration of glucose tracer in blood plasma from 0 to 180 minutes and the 

values of S. E. were obtained using these calculated values.

The program and its result is given in Appendix B.

Figure 5.10 shows the S.E. o f the stochastic and deterministic models for the 

concentration of glucose tracer in blood plasma together with the S. E. of the original 

glucose tracer concentration data at each time point. As can be seen the S.E. of the 

original data for times greater than 20 minutes are an overestimate when compared to 

the S. E. of the stochastic model, whilst the deterministic model of course fits the S. E. 

of the original data quite well for all times, especially for times greater than 40 minutes.
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FIGURE 5.10: The S. E. of the stochastic and deterministic models and the original 

data for the concentration of glucose tracer in blood plasma following an IVGTT in non- 

obese subjects.

5.9: Calculation of the stochastic model for the mean concentration of glucose 

tracer in blood plasma in obese subjects

The model building procedures for the above subjects are exactly the same as for the 

non-obese subjects, i.e. using the same equation for the integration, the same program, 

tolerance and limits. Also, the values of the mean for the four variables (k21 , k l2, k02, 

c, ) along with the variance-covariance matrix were changed due to the change of the 

above variables. Therefore, the inverse and determinant of the matrix changed. The 

program and the results are given in Appendix B. Also, the stochastic and deterministic 

values are shown together in Table C4 in Appendix C. Figure 5.11 shows the results of 

the stochastic and deterministic model for the obese subjects. The values of the 

deterministic curve is still larger than the stochastic curve and the stochastic curve has 

a better fit to the data. The two curves are very close as in the case of the total group.
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Figure 5.11: Stochastic and deterministic curves for the concentration of glucose tracer 

in blood plasma following an IVGTT in obese subjects.

5.9.1: Parameter estimation for the stochastic model of obese subjects

For the parameter estimation of the obese subjects again a best fit (double exponential 

model) was selected. The ADAPT software with 46 data (time=0, 4, 8,...) was used to 

estimate the four parameters of the model. The stochastic model for obese subjects was 

well fitted to the data (R2 =1) and is given by

f obese(X, 0 = 0 . 3 1 4 9  e ~ 0 0611i+ o . 3 6 9 1  e~ 0 009625'. ( 5 . 4 9 )

The software output along with the data, their estimation, the residuals, SS and WSS are 

presented in Appendix A.

5.9.2: Calculation of the stochastic values for the S. E. of the concentration of 

glucose tracer in blood plasma in obese subjects

The calculation of the S. E. of the stochastic model of the concentration of glucose tracer
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in blood plasma for obese group of subjects was done in a similar way to the case of the 

non-obese group of subjects. The program and the results are given in Appendix B. 

Figure 5.12 shows the S. E. of the stochastic and deterministic models of the 

concentration of glucose tracer in blood plasma in obese subjects together with the S. 

E. of the original glucose tracer concentration data. As can be seen there is a large 

difference between the S. E. of the stochastic model and both deterministic model and 

the original data, especially at times between 20 minutes to 100 minutes. The S. E. of 

the deterministic model fits the original data quite well as to be expected. This shows 

that the S. E. o f the deterministic and the original data are biassed even though the mean 

values of the stochastic model and both the deterministic and the original data are very 

close at each time point (see Figure 5.11).

0.05
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Figure 5.12: The S. E. of the stochastic and deterministic models and the original data 

for the concentration of glucose tracer in blood plasma following an IVGTT in obese 

group of subjects.
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5..10: Discussion and Summary

In this Chapter a two-compartmental model of glucose kinetics was considered. The 

first compartment is blood (plasma) and the second compartment is extravascular tissue. 

A bolus o f glucose was injected intravenously and blood samples was collected at 

various times ranging from 2 to 180 minutes after the injection.

The concentration o f glucose tracer in blood (plasma) was collected using a mass 

balance (differential) equation for the system which is a function of four variables (k21, 

k12, ko2and c,= the initial concentration of glucose tracer in the first compartment) and 

time.

To build a stochastic model for the concentration of glucose tracer in blood plasma, at 

first the parameters of the above function were estimated (weighted least square error) 

using the output for all the subjects. Then the mean of glucose tracer concentration in 

blood (plasma), say X, , was calculated using a four dimensional integration. It is 

assumed that the parameters of X, k 21, k 12, k 02 and c ,, have a quadravariate log-

normal distribution.

For calculation of the above huge integration, E(X,), the NAG software library was used 

and the results were obtained at every minute, t=0,l, 2, 3,...,180, so the stochastic model 

which is a double exponential curve was built.

The parameters of the above stochastic model were then estimated. Also, the stochastic 

models for obese and non-obese subjects were built using the same procedures and their 

parameters were estimated.

There are differences between the mean concentration of glucose tracer in the stochastic 

and deterministic curves. These differences are smaller in the total group of subjects than 

in the non-obese group. In all groups choosing the deterministic values as the mean
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concentration of glucose tracer in blood plasma yields small overestimate in the mean 

concentration values of the glucose tracer. Also, the stochastic model for the mean 

concentration of glucose tracer gives a better fit to the data. Furthermore, it seems that 

choosing a large sample size yields a stochastic curve which more closely approaches 

the deterministic curve. Finally, the model A approach does not seem an appropriate 

approach when the number of the compartments is greater than two, due to complexity 

of the integration. We will discuss this result further in Chapter 8 where some new 

aspects of the stochastic models will be introduced.

The S. E. o f the stochastic and deterministic models and of the original data glucose 

tracer concentration in blood plasma were also calculated using a similar program for 

the ordinary definition o f variance and the values were compared.

As it can be seen, although the stochastic and deterministic models for the mean 

concentration of glucose tracer for the total, obese and non-obese subjects are almost the 

same, there are quite large differences in the S. E. of the stochastic model and the 

original data in all groups. These differences are small in total group of subjects and 

quite large in the non-obese and obese subgroups. In all groups the S.E. of the original 

data are larger than that of the stochastic model and this suggests that simply taking the 

S. E. of the original data at each time point introduces an overestimate of the S. E. at 

these times.
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Chapter 6

Stochastic compartmental model B

6.1: Introduction

In Chapter 5, a stochastic model (model A) was presented. In this stochastic modelling 

approach, the compartmental parameters (k21, k)2, k 02, c, =x, (0)) are not fixed and it is 

assumed that they vary in different subjects and also in the same subject if  we repeat the 

experiment on the same subject.

In this chapter we introduce another type of stochastic model, which is a population model, 

for the concentration of glucose tracer in blood plasma. It is still assumed that the 

compartmental parameters vary randomly and also from one subject to another but in 

addition, since we have several measurements at every time point, we will assume that 

measurements at a fixed time have a special frequency distribution, taken to be normal in 

our case. Furthermore, all of the elements of the compartmental matrix fluctuate according 

to this random process. There are some properties and restrictions on this random process 

which will be defined later.

When the elements of the compartmental matrix fluctuate, all o f the compartmental 

parameters which describe the flux of glucose tracer from the first compartment (blood 

plasma) to the second compartment (extravascular tissue) fluctuate. These fluctuations of 

the compartmental parameters cause an uncertainty in the compartmental system. Thus the 

deterministic method introduced in the previous chapter is unable to represent the real 

variations of the system, especially the decay of glucose tracer in the second compartment. 

In 1989 Limic proposed a new stochastic model for concentration of glucose tracer in both 

compartments. The stochasticity in Limic's model involves a random process and its
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statistical moments. We will describe this random process and the details of the modelling 

method in the next section .

6.2: Limic's model

Limic considered a n-compartmental model each containing some amount of a given 

substance. The mass balance equation for the set of compartments is

where A(t)={ajj(t)} is the compartmental matrix and C is the vector of the amounts of 

substance in each compartment. It is assumed that all ajj(t) fluctuate as well as the input and 

the initial state undergo random fluctuations. Thus all the (t)s have their own random 

fluctuations relating to a random process and also the input and the initial state have 

fluctuations, not necessarily the same as the ay(t)s fluctuations. The following is a 

condensed account of Lim ic's analysis:

1 The parameters a^t) are assumed to have a constant mean value of dy=E (a^t)) and 

their fluctuations are of the form

dC(t)
—±l+A(t )c ( t )  = q(t) = 0 (6.1)

fij(t)—dy <J>ij(t)

where i>jj(t) i , j= l , 2 ,..., n are random processes. Therefore, 

A(t)=D+F(t)

where D={d,j} and F={fij(t)}.

2 The Oij(t)s are assumed to have truncated (at zero) normal distributions and the 

same statistical moments, so we have:

(6.2)
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3 The 3>ij(t)s have a small probability of accepting negative values, but if we suppose 

that their standard deviations are small enough, such probabilities are also small. 

Therefore the assumptions are taken as reasonable.

Suppose that

b(t)=eD,C(t), (6.3)

then:

Wp+t)+S(t)b(t)=P(t), (6.4)

where

S(t)=eDlF (t)e 'Dl, P(t)=eD,q(t)=0. (6.5)

The solution of equation 6.4 with the initial condition b(t0)=b0 and vanishing input, can be 

represented by the following series:

* ('> = ¿ « (0 . u0(t)=b0 , (6.6)
j =o

where

I ll ln-1
u / Q = ( - l ) ' f d t lf d t r . . f  d tS ( t l)S(t2)...S(tj)b0 .

It can be shown that

(6.7)

^[£(C (f)] +(D - 0 2D 2)E[C{t)] +h{t)D 2[EC(t)] =0, £[C(f0)] =C0,
(6.8)

where
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a2= lim(_ f  ' n2(f, s) ds,
JO (6.9)

h(t)=02- f  ‘n2(t, s)ds, 
Jo (6.10)

and

s)=E(fat)  <|)(s)). (6.11)

6.3: Evaluation of Limic's model

The structure of the random process is actually more limited than Limic intended (Dr R 

Gerrard , personal communication, 1994). This can be seen as follows:

From equation 6.2 for Oujl (t) and Oi2j2(t) we have

E I®.,/, I®,, = M '.. ',)• (6.12)

Therefore

£ [ $  ( i , ) - ® ,  . ( i2)]2=0.
M J 1 1 l 2 J 2  *

(6.13)

So

V ' . )=® v ,W (6.14)

for all t, and t2. We have the same for all subscripts of i and j, so all the Os are equal and 

each parameter does not vary independently. Since all the Os are equal we call them O(t)
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and thus A(t) may be written as equation 6.15.

¿(O=(1+$(O )0- (6.15)

The effect of this constraint on the model will be discussed later.

We then have

s)=E($(.t)<l>(s)). (6.16)

Also, for |i2(t>s) in equation 6.9 and 6.10, the limits of the integrations must be restricted 

since they could be infinite unless certain assumptions are made. With zero input we have:

4  C(0 = -(l+O(0)Z)C(0, (6.17)

where

- J ( l  +0>(i))di

C(t)=e
(6.18)

With the assumption of normality for <&(t), the variable

J ( 1 +$ (S)) ds (6.19)

is normal and its mean and variance are respectively given by ( t-to) and

\  =J J  \i2(u,v)dudv (6.20)

If we calculate the expectation of C(t) in equation 6.18 and substitute the mean and variance 

of 6.19 as mentioned above, then we obtain

E(C(t))=e
1d 2T f-D(l-/0)

c n (6.21)

Therefore
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(6.22)—E(C(t)) =( -D+D2[n2(t,v)dv) E(C(0).
*  J

*0

The above equation is the mean of the solutions of 6.1 where D=E(A) and A is the 

compartmental matrix. Equation 6.22 (which was introduced by Limic) is the same as 

equation 6.8. Also it was shown earlier that Limic's solution is correct but for a far more 

restricted stochastic model than the author intended. According to the result given by 6.14 

each parameter (fluxes of substances between compartments) fluctuates randomly in a 

pattern which is the same for all the other parameters. So, knowing the fluctuation pattern 

of one parameter determines us to predict the fluctuations of the other parameters. On the 

other hand, one of the most important properties of a stochastic compartmental model is that 

each parameter may fluctuate differently from the others. However, building a stochastic 

model with this property is extremely complex. Hence, despite its limitations, we choose 

Limic's stochastic model as the first attempt to show the difference between stochastic and 

deterministic models.

6.4: Data analysis

To develop model B, it is necessary to calculate the mean of glucose tracer (say G(t)) by 

averaging glucose tracer measurements of a group of subjects at each time point. This 

averaging is necessary because we need to build a model for the mean of the glucose tracer 

at every time point to use in our future stochastic model. We calculate the arithmetic mean 

of glucose tracer,G(tj), at each time point ( (26 time points) over all the subjects (N=17) 

from

17

t / 1=1
(6.23)

The means and the S.E of blood glucose tracer are given in Table 6.1 at every time point 

and Figure 6.1 shows the average curve.
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FIGURE 6.1: Blood plasma glucose tracer concentration averaged over the total group of 
subjects.
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Time

(min)

Mean

(mmol/1)

S.E.

(mmol/1)

Time

(min)

Mean

(mmol/1)

S.E.

(mmol/1)

2 0.702 0.033 30 0.311 0.016

3 0.624 0.022 40 0.257 0.016

4 0.595 0.022 50 0.217 0.014

5 0.563 0.015 60 0.188 0.014

6 0.556 0.019 70 0.167 0.014

8 0.499 0.017 80 0.146 0.012

10 0.476 0.017 90 0.132 0.012

12 0.452 0.015 100 0.120 0.010

14 0.438 0.015 110 0.107 0.008

16 0.416 0.014 120 0.097 0.008

19 0.387 0.016 140 0.080 0.008

22 0.365 0.014 160 0.067 0.006

25 0.338 0.015 180 0.055 0.005

Table 6.1: Mean and S.E. (of the mean) of glucose tracer.

6.5: Parameter estimation of the mean model

A model for the mean o f the glucose tracer at different time points is required in the 

calculation of the statistical moments of the random process. The data in Table 6.1 shows 

that an exponential model has the best fit to the data. We assume different exponential 

models (single, double and more than double exponential) and finally a double exponential 

model which had the best fit was obtained as follows:

Yl(t)=A e Bt+C e Df. (6.24)

To estimate the unknown parameters A, B, C and D, the ADAPT program ID and the data 

in Table 6.1 was used. Due to the initial mixing transient following injection, the data at
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times t=2, 3, 4 and 5 minutes were not included. The ADAPT output is given in Appendix 

A and a short summary of the results follows.

The program estimates the parameters using initial values which are defined by the user. For 

parameter estimation, the weighted least square (WLS) method was used in the development 

of model B above. For the WLS method the program require two points (upper and lower) 

of the regression line of the S.E. of the data set and these points are introduced in the 

section of the output with ‘weighting information’ heading. A 95% confidence interval for 

the estimated parameters along with the values of CVs are also given in the ADAPT output. 

Furthermore, there is a section in the ADAPT output with the title of ‘estimated model 

prediction and data summary’ which gives the original data at each time point along with 

the corresponding model prediction, the residual and weight.

The result for the mean was found to be:

(1(0=0.3438 e ~° O4577i+0.2907 e ~0 009245'. (6.25)

6.6: The model for the S.E. of glucose tracer and estimation of the parameters

As was mentioned above, to calculate the statistical moment of the random process we also 

need a model for the S.E. of the glucose tracer which was obtained from the output data 

(Table C2 in Appendix C). Table 6.1 shows the values for S.E. at each time point. The data 

suggests that a simple linear model will suffice.

A regression line was fitted (Microsoft Excel, Version 5.0, 1994) to the S.E. of glucose 

tracer, p(t), as follows:

a(i) = -0.0000691+0.017206. (6.26)
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As in the model of the glucose tracer mean, we exclude the data at the times=2, 3, 4 and 5 

minutes due to mixing transients after tracer injection. The value of R2 was about 0.94 

showing that a linear model is a good one. Figure 6.2 shows the regression line of the S.E. 

(glucose tracer) vs time in the total group of subjects.

Figure 6.2: The regression line of the S. E. of blood glucose tracer vs time in the total group 

of subjects.

6.7: Calculation of the statistical moments of the random process

Equation 6.11 is used to compute the statistical moments, p2 ( f  s), of the random process 

in a two compartmental model and we will require the above models for the mean and S.E. 

of the glucose tracer.

Since 3>(t) and 3>(s) are random processes with truncated normal (at zero) distributions, their 

probability density functions are given by
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1ckx, o e 2o(i)2

(6.27)

c k r , s ) = e

(r^(»))2 
2o ( i)2

Equation 6.11 gives

g 2(i, s ) = £ ( ( |) ( 0  4H s ) ) = f f m V ( s )  M ( 0 , Y ( s ) )  d xd y , (6.28)
o o

where f(X(t),Y(s)) is the bivariate normal distribution given by

/(X(0,E(s)) =

e

l { x - M ))2 __2p (w-ncoxr-!!^)), 0-nW)2 
2(1 - p 2) o(/)2 o(i)o(i) o(i) (6.29)

2no(s)a(i)\/l -p 2

where p(t), p(s), a(t) and o(s) are given by equations 6.25 and 6.26 and p is the population 

coefficient of correlation between X and Y. This was estimated as r, the sample coefficient 

correlation. So p= r.

The integrals in equation 6.28 were evaluated using the NAG library program D01FCF for 

two dimensions. The program is given in Appendix B.

In equation 6.29 when s = t then we have p = r = 1, and a singularity appears in its 

integrand. To avoid the singularity, the ordinary formula for the expectation of the product 

of two variables (Mood et ah, 1974) was used, as shown below:

R _ {E(XY)-E(X)E(Y})
(6.30)



where ox and Oy are the standard errors of the means. Thus

E{XY)=E{X)E(Y)+o- o -  . (6.31)

Furthermore, for the calculation of the statistical moments of the random processes, when 

s=0 we need the correlation coefficients of the glucose tracer mass in blood plasma 

especially at time zero. These correlations can be used as the estimated values of p in 

equation 6.29. There is no data at time zero and values of the glucose tracer mass in blood 

plasma (X, (0)=q) were estimated from able 5.1. It is now possible to calculate the 

statistical moments of the random processes.

Table 6.2 shows the result of the integration for different time points (t,s) when

t, s— 0, 6, 8, 10, 12, 14, 16, 19, 22, 25, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 140, 160

and 180. Also, we have:

F2O J ) = F2 0 , 0  for any i,j.
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t s (min)

(min) 0 6 8 10 12 14 16 19 22 25

0 0.403

6 0.022 0.288

8 0.323 0.273 0.259

10 0.306 0.000 0.000 0.233

12 0.291 0.000 0.000 0.000 0.211

14 0.007 0.219 0.227 0.000 0.065 0.191

16 0.263 0.061 0.211 0.200 0.135 0.017 0.173

19 0.246 0.194 0.197 0.187 0.174 0.000 0.000 0.151

22 0.054 0.195 0.185 0.175 0.167 0.132 0.000 0.000 0.132

25 0.169 0.182 0.172 0.163 0.156 0.149 0.055 0.000 0.000 0.116

30 0.195 0.159 0.156 0.148 0.141 0.018 0.128 0.022 0.084 0.000

40 0.162 0.137 0.130 0.123 0.118 0.112 0.102 0.079 0.023 0.086

50 0.137 0.116 0.111 0.105 0.099 0.095 0.091 0.085 0.078 0.002

60 0.120 0.101 0.096 0.091 0.087 0.083 0.078 0.071 0.063 0.063

70 0.105 0.089 0.084 0.080 0.076 0.069 0.066 0.053 0.049 0.042

80 0.094 0.079 0.075 0.071 0.068 0.065 0.038 0.057 0.013 0.050

90 0.084 0.070 0.067 0.063 0.061 0.058 0.055 0.049 0.048 0.001

100 0.075 0.063 0.060 0.057 0.055 0.052 0.050 0.045 0.040 0.040

110 0.064 0.058 0.054 0.052 0.046 0.046 0.045 0.042 0.037 0.014

120 0.061 0.052 0.049 0.047 0.045 0.043 0.041 0.038 0.035 0.023

140 0.051 0.043 0.041 0.039 0.037 0.034 0.032 0.030 0.029 0.027

160 0.042 0.036 0.034 0.032 0.031 0.029 0.028 0.024 0.024 0.000

180 0.034 0.030 0.028 0.027 0.025 0.024 0.023 0.021 0.020 0.014

Table 6.2: Distribution of the statistical moment, (i2 (t, s).
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t s (min)

(min) 30 40 50 60 70 80 90 100 110 120

30 0.095

40 0.079 0.066

50 0.066 0.056 0.048

60 0.034 0.044 0.000 0.036

70 0.050 0.043 0.034 0.000 0.028

80 0.045 0.036 0.030 0.011 0.023 0.022

90 0.041 0.032 0.029 0.021 0.000 0.000 0.018

100 0.000 0.030 0.026 0.022 0.000 0.000 0.000 0.014

110 0.031 0.028 0.000 0.008 0.000 0.016 0.000 0.000 0.012

120 0.009 0.000 0.021 0.014 0.001 0.000 0.012 0.000 0.000 0.009

140 0.024 0.021 0.017 0.006 0.000 0.000 0.000 0.000 0.000 0.000

160 0.020 0.017 0.015 0.013 0.010 0.010 0.001 0.000 0.007 0.000

180 0.016 0.014 0.012 0.004 0.005 0.000 0.000 0.000 0.000 0.000

Table 6.2: Continued.

t s (min)

(min) 140 160 180

140 0.006

160 0.000 0.004

180 0.000 0.000 0.003

Table 6.2: Continued.
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6.8: Numerical integration of the statistical moment of the random process

Before we can solve equation 6.8 of model B, we need the values of a 2 and h(t) as defined in 

equations 6.9 and 6.10. Since the largest value of t in our data is 180, this was inserted in the 

upper limit of the integral in equation 6.9. Therefore, the following integral calculated:

The integrand is tabulated at points given in Table 6.2 and program D01GAF from the NAG 

library, which is suitable for tabulated integrands, was used, with the result o2 =1.1715. The 

program is given in Appendix B.

To calculate h(t) in equation 6.10, the second part of the right side o f the equation was 

calculated using DO 1GAF (when the number of points were less than four, the integration was 

calculated manually). When 0 < t < 6, a regression analysis with the times t—0, 6, 8 and 10 was 

used to estimate the unknown values of h(t). Obviously h(0)=o2 from equation 6.10. h(t) is 

tabulated at the original time points in Table 6.3.

180

(6.32)
o
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Time

(min)

h(t) Time

(min)

h(t)

0 1.1715 30 -1.3433

2 0.7349 40 -1.3511

3 0.5625 50 -2.1115

4 0.3902 60 -1.8100

5 0.2178 70 -1.9668

6 0.2405 80 -1.5743

8 -1.1485 90 -1.4537

10 -0.0818 100 -1.0461

12 1.0319 110 -0.9249

14 1.1847 120 -0.5765

16 0.5945 140 -0.4685

19 -1.5815 160 -0.5434

22 -1.5048 180 0.0000

25 -1.6382

Table 6.3: Distribution of h(t).

6.9: Calculation of model B

In equation 6.8 we define C(t) = E(C(t)) where C is the column vector [C, (t), C2 (t)]. Then 

equation 6.8 may be rewritten

( _ \ ( -  \
c t(0

+(D -O2 D 2 +h{t)D 2)
c ,(0

A ® , A ® ,

where the matrix D is given by

c i(to) C.o
C2^o\ y^20)

(6.33)
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s

E(A)=D =
21 12

v ^ 2 1

0.0397429 -0.0230707

-0.0397429 0.0403216

where we have substituted for ky (the mean of ky) from Table 5.1. Also

( 0.00249639 -0.00184714^
D

-0.00318199 0.00254272

o 2D 2 =
0.00292452 -0.00216392

-0.00372770 0.00297880

\

and thus

D ~02D 2
0.03681837 -0.020906775^

-0.03601519 0.03734279 ,

Therefore from equation 6.33 we have:

dCJt)
-----— + (0.03681837 +0.00249639.A(0).C.(0+(-0.02090677-

dt

0.00184714.A(i)).C2(f)=0, CI(i0)=C01 ,

and

dC2(t)
— -— +(-0.03601519 -0.00318199./z(f)).C .(f) + (0.03734279 + 

dt

0.00254272.A(r)).C2(0=0, C2(t0)= C 02 ,

where h(t) was tabulated in Table 6.3.

(6.34)

(6.35)

(6.36)

(6.37)

(6.38)
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The solutions for equations 6.37 and 6.38 are the model B for the mean of the glucose tracer 

concentration in blood plasma and the concentration of glucose tracer in extra-vascular 

tissue respectively.

6.10: Calculation of the stochastic models for the amounts of glucose tracer in blood 

plasma and extravascular tissue

To calculate the concentration of glucose tracer in blood plasma,Y(l), and extravascular 

tissue,Y(2), program D02BBF from the NAG library was used. The program is given in 

Appendix B. This program integrates a set of first order differential equations by the method 

of Hall and Watt (Hall and Watt, 1976). Since the values of h(t) are known at discrete time 

points given in Table 6.3, a subroutine was added to the above program to linearly 

interpolate h(t) for times between each tabulated time point. The program output is given 

in Appendix B. Figure 6.3 shows the stochastic and deterministic curves for the 

concentration o f glucose tracer in blood plasma.

Time (rrin)

Figure 6.3: Stochastic and deterministic curves for the concentration of glucose tracer in 

blood plasma.
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6.11: Summary and discussion

In this chapter a brief summary of model B approach for model building is presented. We 

are dealing with a matrix form of mass balance equations for a 2-compartmental system. 

Also, there is a random process where all the elements of the compartmental matrix 

fluctuate according to the above distribution. Despite the nature of the random process, 

there are two possible patterns of fluctuations as follows:

a) The elements have the same frequencies of fluctuation at the same time points, although 

they may have different amplitudes.

b) The elements have different frequencies of fluctuation and possibly different amplitudes.

In both cases the elements can have another fluctuation superimposed on the primary 

fluctuation which may have different variances for each element and at each time point. In 

this approach, which is perhaps the simplest case, it is assumed that all the elements of the 

compartmental matrix have the same frequency of fluctuation. In the more complex cases 

all the above elements would fluctuate independently and this is one of the defects of model 

B. However, solution of such a system would be considerably more complex.

Each element of the compartmental matrix is the sum of the fluctuation and the expectation 

of the elements of the matrix. The solution of the 2-compartmental matrix was also 

calculated using the above mass balance equations which are a function of the 

compartmental matrix and the moments of the random process (for a two compartmental 

model only the second moments were considered).

To build model B, the average and variance of the concentration of glucose tracer in blood 

plasma for all the subjects (17 subjects) at every time point (26 time points) was calculated 

and two models were built using the above means and variance. The model for variance is 

a linear model where its two parameters were estimated using regression analysis. The 

model for the mean of the glucose tracer in blood plasma at every time point was a double
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exponential model and its four parameters were estimated.

In the next stage we dealt with a new distribution. According to the model B method, all 

the data at a specific time point are assumed to have a normal distribution, so there are 26 

normal distributions each with 17 data points. To calculate the statistical moments of the 

random process, the expectation of the product of the distributions was used. Therefore, for 

all of the distributions the above expectation was calculated using a suitable double 

integration program from the NAG library. For equal times, the values of the coefficient 

correlation are unity and there is a singularity in the denominator of the integrand of the 

integration. This was avoided by applying the ordinary formulation for the expectation of 

the multiplication of two variables.

All the unknown functions of the solution of the differential equations were calculated and 

were inserted into the solution. Then the solution of the above differential equations (for the 

two compartmental system) was integrated numerically. The values of the concentration of 

glucose tracer were interpolated between the discrete time points. Finally, the stochastic 

model for concentration of glucose tracer in blood plasma and was obtained using the above 

program.

The shape o f stochastic and deterministic curves for blood plasma are almost identical. 

Their only difference is in the values of glucose tracer in blood plasma between 10 and 60 

minutes. From Figure 6.3, the stochastic values for concentration of glucose tracer in blood 

plasma for times less than 10 minutes are identical and at greater times the stochastic values 

are greater than the corresponding deterministic values. This difference increases from 

about 10 minutes up to almost 30 minutes and then starts decreasing to almost 60 minutes. 

Although the stochastic values for the concentration of glucose tracer in blood plasma are 

greater than the corresponding deterministic values at times greater than 60 minutes, they 

are almost the same elsewhere. Also, it is possible to apply the model B approach for more 

than two compartments and it is a much simpler method than that of model A. On the other 

hand, in the model B approach we can obtain the stochastic model for concentration of 

substances in all of the compartments at the same time, but in model A to calculate the
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concentration of the substances in any compartment, we need to solve its concentration 

equation. One of the greatest defects of the model B approach, however, is the similarity of 

the fluctuations in all the elements of compartmental matrix. A random process where all 

the points have the same fluctuations is unrealistic in a physiological sense. We expect that 

the physiological parameters of the body will fluctuate in a normal population. However the 

calculation of concentration in such a system is too complex. As was mentioned above, we 

consider this simple case as a first attempt before introducing the more complex case where 

all the points have a different fluctuation.
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Chapter 7

A comparison between stochastic and 
deterministic models

7.1; Introduction

There are several differences between the stochastic and deterministic models, especially 

in model building and the predicted shape of the curves in the total, obese and non-obese 

groups of subjects. These aspects are discussed below.

7.2; Differences in model building

In the next few sections there are short discussions on the methods of building 

deterministic and stochastic models and their advantages and disadvantages are 

compared.

7.2.1; Deterministic models

The method of building a deterministic model was discussed in the previous chapters 

and we will discuss it again here briefly. As was mentioned, we build up mass balance 

differential equations according to the present compartmental system, its fluxes, its 

losses and its output. Then the solution of the differential equations is calculated and 

the parameters of the fitted curve are estimated. Normally we are interested in the 

solution of concentration or mass in the compartment from which samples are taken, but 

it is, o f course, possible to calculate the solution in any compartment within the 

compartmental system.

The above parameters are estimated using the output data for each individual and the
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mean is found for each parameter over the group of individuals. If the mean of each 

parameter is inserted into the compartmental system, then there is a unique solution for 

the differential equations. This unique solution is called the deterministic model for that 

compartmental system.

It should be mentioned that, if the number of individuals is large enough, say about 30, 

(Bland, 1995), then blood sample data will have a normal distribution. In this case, to 

calculate the mean of the parameters (to insert into the solution) we use the following 

equation:

where X; is the concentration of substances in ith compartment and f(X ¡) is the PDF of 

Xj which is a normal distribution.

However, when the number of individuals is less than 30 we need to find the distribution 

of each variable (and hence the distribution of X( which is a function of the variables) 

and then use equation 7.1. If it is difficult finding the distribution of the variables and 

there is no other information about their distributions then the ordinary mean of each 

parameter can be inserted into the solution of the compartmental system (equation 5.3) 

to build the deterministic model. However, a small error will be made which should be 

considered in any future work.

7.2.2: Stochastic models A and B

In stochastic model building, we allow the parameters to fluctuate. Since we develop 

two stochastic models we discuss them individually.

+  oo

(7.1)
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Model A

We applied all the different stages of the deterministic model building like writing the 

mass balance equations, calculation of the concentration of glucose tracer in blood 

plasma and estimation of the parameters of the model from blood samples data. If we 

estimate the unknown parameters using the data for each individual, we obtain k values 

for each variable (k is the number of individuals). There are two methods for building 

the stochastic model as follows:

A) Method of multivariate distribution

In this method, after estimation of k values for each variable, we find the multivariate 

distribution for all the variables. To build up the stochastic model, suppose we have n 

different parameters, p, p2,...,pn, with a multivariate distribution f(Xb X2,..., Xn). Also, 

let the following function be the solution (concentration o f substances in ith 

compartment) of the compartmental system:

X.(t)=g(Xv X 2,...,Xn ,t) (7.2)

Therefore, the stochastic model can be built using model A approach as follows

E(Xi)= f...Jg(X l,X2,...,Xn, t) f  (Xv X v ...,Xn)dXxdX2...dXn .

Advantages and disadvantages of the method

(7.3)

There are some advantages and disadvantages in applying the model A approach as 

follows:

Advantages

1. If k^ 30, then f(X, , X2 ,..., X  ̂ ) has a multivariate normal distribution with a 

known PDF. Therefore it is possible to integrate 7.3 especially when n is small

(say n=2).
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2. There are many numerical integration programs to calculate the above integral.

Disadvantages

There are some disadvantages in applying the multivariate distribution method. One of 

the most important disadvantages is the determination of the multivariate distribution 

o f the parameters, especially when there are more than two variables. In multivariate 

analysis the calculation of the above distribution is too complex, especially when the 

parameters do not have normal distributions. Another disadvantage of the method is the 

complex mathematical procedure to build the model, especially when we have more than 

two parameters. This will restrict the application of the method to a complex and 

mathematical and statistical problem which may not be interesting in medical research. 

Also, there are some numerical disadvantages for the method as follows:

1. If k<30 we need to find the PDF of the variables which is difficult, especially 

when the number of parameter, n>2.

2. If  n>2 then it is preferable that the parameters should have a normal 

distribution, for otherwise it is too complex to determine their multivariate 

distribution.

3. When the number of the variables are equal or greater than two, it is not possible 

to calculate the above integration manually.

B) Method of Probability Density Function

In this method, at first we try to calculate the PDF of the in Xj (t) in equation 7.2 (the 

concentration or mass of glucose tracer in ith compartment) using the distribution method 

as follows:

Prob(X.(t)<v) = Prob(g(Xv X 2,...,Xn,t) <v) , (7.4)

where v is a arbitrary variable. Suppose after using the above method we obtain the PDF 

of Xj(t) as
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f x(t) = h(yj, j/2, yn, t) , (7.5)

then it is easy to build the stochastic model as

+  CO

E (X'(t)) = f  Xf f )  f x (t)dXt . (7.6)

The calculation of the expectation for the concentration or the mass of the compartment 

is relatively difficult on a PC, especially when there are three or more variables in the 

integral. This is one of the most serious disadvantages of this method.

Model B

In model B we use Limic's approach to build a stochastic model. In this model we 

consider a n-compartmental model with the mass of C and the mass balance equations 

given by

^-C(f)+A(t)C(t)=q(t) , (7.7)
at

where A(t) and q(t) were defined in Chapter 6. All the elements of A(t) have a 

fluctuation according to a random generator (process), say 0,j (t). Thus for every a,, (t) 

we have:

f , f f ) =d,j $</(') • (7.8)

where fÿ (t) and d y were defined in Chapter 6. We find the solution of 7.7 considering 

the fluctuations in equation 7.8 and its properties.

7.3: Summary of the differences in model building

The most important difference between a deterministic and a stochastic model is in the 

application of probabilistic effects. In situations where the compartmental parameters
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vary in different subjects and times, stochastic models are the best models to use. In 

stochastic models we apply probabilistic effects where all the elements of the 

compartmental matrix can fluctuate. In the special case that was applied in this research, 

all the points have the same fluctuations, so having the fluctuation at one o f the points 

enables us to estimate the fluctuation for all the other points. In the more general case 

where all the elements of the compartmental matrix fluctuate independently building a 

stochastic model is likely to be too complex.

7.4: Differences in the shapes of the models

Besides the differences in model building, there are some differences in the shape of the 

curves in deterministic and stochastic models for mean and S.E. of concentration of 

glucose tracer. In this section the differences are shown in detail using the stochastic 

curves which were obtained by the model A and B approaches.

7.4.1: Differences in deterministic models for the mean concentration of glucose 

tracer

There are only small differences in the deterministic model for the total, obese and non- 

obese groups. So dividing the subjects into two subgroups does not produce a large 

difference in the shape of the deterministic models. In the deterministic curves shown 

in Figure 7.1, the obese subjects have the largest values for the mean concentration of 

glucose tracer, and the non-obese subjects have the smallest at various time points 

between 0 to 180 minutes. The curve for the total group lies between these two as would 

be expected for a deterministic approach where the effects of averaging should be 

apparent.
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Figure 7.1: Deterministic curves for the mean concentration of glucose tracer in blood 

plasma in total, obese and non-obese subjects following an IVGTT.

7.4.2: Differences in stochastic models for the mean concentration of glucose tracer

There are only small differences in the stochastic model in model A for the total, obese 

and non-obese groups. Therefore, dividing subjects into two subgroups does not produce 

a large difference in their stochastic values of the concentration of glucose tracer.

The stochastic model curve for the obese subjects has the largest values at all times. The 

stochastic models for total and non-obese subjects have the next smaller values 

respectively for the same times which are in the same ordering of the deterministic 

curves for these groups. Therefore, due to the similarity in the shapes of the stochastic 

curves for the three groups (all have a double exponential curve) if we shift down the 

stochastic curve for the obese subjects, we obtain the stochastic curve for total and non- 

obese subjects respectively. Also, the differences between the stochastic model values 

at small times is less than the differences for large times. Figure 7.2 shows the
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stochastic curves for the three groups.

0 2D 40 60 80 100 120 140 160 180

Time (mill)

Figure 7.2: Stochastic curves for glucose tracer concentration in blood plasma in total, 

obese and non-obese subjects following an IVGTT.

Since the model B approach was applied only to the total group of subjects, we do not 

have any curves to compare. The only difference between the shape o f the stochastic 

model A and B in the total group of subjects is in the location of the curves. The 

stochastic curve for the total subjects lies slightly above the deterministic curve in model 

B, but slightly below it in model A, with a similar shape to the deterministic curve. This 

is due to the different stochastic modelling approaches.

7.4.3: The comparison of deterministic and stochastic models for the mean 

concentration of glucose tracer

Table C4 in Appendix C shows the stochastic values and the differences between 

deterministic and stochastic models in the obese, non-obese and total group of subjects, 

using the model A approach.
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As was mentioned earlier, the difference between the stochastic and deterministic curves 

for the mean concentration of glucose tracer and for all groups is very small. To compare 

the above differences in all groups, the difference between the two curves was calculated 

at every time point and their mean was also calculated.

The standard deviations of the above differences at any time point show that the obese 

group has the largest variability and the total group has the smallest (the standard 

deviation of the differences for obese, non-obese and total subjects are 0.0051, 0.0049 

and 0.0041 mmol/1 respectively), but the standard deviation of all stochastic values (total 

model A, total model B, obese and non-obese) are exactly the same correct to two 

decimal places.

Also, comparing the median (the element which is at the middle of the distribution, i.e. 

the element which is at 90 minutes) of the distribution of the differences in the three 

groups shows that the largest one is in the non-obese group (0.0132 mmol/1) and the 

smallest one is in the obese group (0.0069 mmol/1).

In model B the difference between the deterministic and stochastic curves and for the 

total group is also very small . There are some new aspects between the differences 

between the stochastic and deterministic curves (in total group of subjects) in model A 

and model B approaches as follows:

1. In model B, the stochastic curve lies above the deterministic curve for all time 

points except t=0, but in model A the stochastic curve lies below the 

deterministic curve.

2. The difference between the stochastic and deterministic curves at different times 

in the model B approach is less then the same differences in model A, and we 

find that the mean of the differences in model B is 0.0053 whereas the same 

mean for model A is 0.0088.
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3. The variability of the differences between the stochastic and deterministic curves

in model B is less than the same variability in model A (the standard deviation 

of the differences in model B is 0.0032 whereas the corresponding standard 

deviation for model A is 0.0041.

7.4.4: The comparison between the stochastic and deterministic values for the 

S. E. of glucose concentration

The comparison between the deterministic and stochastic values for the S. E. of the 

concentration o f glucose tracer in blood plasma (model A approach) shows a small 

difference in the total group of subjects and a large difference in the non-obese and 

obese group of subjects, especially in the later group. In the total group of subjects the 

deterministic values are close to the stochastic values especially at large times ( > 1 0 0  

minutes) and small times ( < 20 minutes). In the non-obese and obese groups the data 

are not as close to the stochastic values, but the deterministic values in non-obese 

subjects are closer to the stochastic values (especially at small time points) in 

comparison with obese subjects. In all cases, the stochastic values are a poor fit to the 

deterministic values in the middle of the time range and the deterministic values at small 

and large times are closer to the stochastic values. It seems likely that by increasing the 

sample size the stochastic curve will approach the deterministic values.

7.5: Summary and discussion

In this chapter a comparison between the models is considered as follows:

til. Differences in model building

The methods and procedures of building the deterministic and stochastic models 

(Model A and B approaches) were presented in this chapter. For the model A approach, 

two methods were introduced and their differences and similarities and advantages and
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disadvantages were also discussed. The difference between the two curves is small 

although the two approaches are very different. In the model A approach, the stochastic 

model was built using 'multivariate distribution' or 'PDF' methods and the advantages 

and disadvantages of both methods were presented. In the model B approach, the 

ordinary mass balance differential equations were used for model building.

(ii). Differences in the shape of the models

The differences between the shapes of the deterministic and stochastic curves in model 

A for the total, obese and non-obese groups were presented using some figures to clarify 

the above differences. As can be seen the three corresponding stochastic and 

deterministic curves are almost the same. It was found that the stochastic model for the 

obese group had the larger values.

In the stochastic model B the deterministic and the stochastic curves (for the total 

subjects) are also the same, but there is only a small difference between the stochastic 

model A and B.
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Chapter 8

Discussion

8.1: Introduction

The study of the kinetics of drugs in the body has been one of the most important 

research activities in the past few decades, with applications in pharmacology and other 

related disciplines such as biochemistry, physiology and metabolic medicine.

Usually a known mass of tracer is injected intravenously, subcutaneously or ingested 

orally. In the present research a glucose tracer was injected intravenously. The 

concentration of the tracer in blood plasma is measured at several time points after 

injection. This tracer species is sufficiently different from the endogenous species to 

enable it to be distinguished. The concentration of the plasma glucose tracer decreases 

monotonically with time as it is consumed mostly by the muscles.

In this research we studied two different stochastic models to describe the decay of the 

plasma glucose tracer in a group of female subjects. The subjects were divided into two 

subgroups, non-obese and obese subjects, to study the effects of obesity on the stochastic 

models. A known mass of glucose and glucose tracer (proportional to body mass) was 

injected intravenously and blood samples were taken at various times over a period of 

3 hours after the injection. To build a stochastic model and compare it with a 

deterministic one, a two-compartmental system was considered. The compartments are 

the effective blood plasma and the effective extravascular tissue spaces.

The above data were used to build a model for the kinetics and decay of glucose tracer 

in these two compartments. Normally a deterministic model would be used to analyse 

the data without considering the obvious inter-subject and intra-subject variability. The
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deterministic model was presented in Chapter 5 and is the solution of a differential 

equation which describes the flow of glucose tracer between the compartments. A new 

method for obtaining mass (concentration) of glucose in blood plasma was presented. 

A brief summary of this type of model will be given later.

8.2: Why a stochastic model instead of a deterministic model?

As mentioned above, the deterministic model is a theoretical solution for the mass 

balance differential equations. In this kind of model, the probabilistic (stochastic) 

effects are not taken into account, and it is assumed that there are no probabilistic effects 

or random variability in the differential equations.

In this study it is assumed that the compartmental parameters describing the flow of 

glucose tracer from the blood to the cells vary randomly. It is obvious that output data 

will vary for each subject in a particular experiment (inter-subject variability) and from 

one experiment to another if it is repeated in the same subject (intra-subject variability). 

This variability is assumed to be due to a variability in the transfer rates between 

compartments. Thus all the transfer rates are assumed to be random variables having 

special distributions. Also, it is assumed that the initial concentration of glucose tracer 

in blood plasma is a random variable. This variability produces an uncertainty in the 

whole compartmental system which the deterministic model is not able to deal with. 

Since the solution of the compartmental model is a function of the above variables, so 

the solution is not the same in different subjects at any fixed time point.

If the parameters of the above model are estimated using the output data and are inserted 

into the equations of the compartmental system, we obtain different curves for different 

sets of parameters. In this case we have many different models which also differ from 

the deterministic model which has already been obtained (the number of the curves is 

obviously equal to the number of subjects). The use of the deterministic approach in a 

compartmental system, which is evidently stochastic may cause a large error in the 

resulting parameters . Furthermore, there is another type of variability which has not yet
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been mentioned so far. This is the variation of the parameters with time during the 

course of a single experiment and also their variation from one subject to another (the 

intra-subject variance is assumed to be constant over the group of subjects). This type 

of variation will be discussed later. Finally, the aim of this study is to replace the 

deterministic modelling approach of analysing the glucose tracer kinetics by a stochastic 

modelling approach which can account for the observed variability in subjects.

8.3: Types of stochastic modelling

We applied two different stochastic approaches according to two different types of 

variability, as follows:

(i). The parameters of the compartmental system are constant during a particular 

experiment, but vary from one experiment to another if repeated in the same subject and 

from one subject to another:

For this type of variation, the Model A modelling approach was applied. The 

concentration of glucose tracer in blood plasma was computed as a function of four 

variables. The four unknown parameters are the two fluxes of glucose tracer between 

the compartments, the loss from second compartment and the initial concentration of 

glucose tracer in blood plasma. A set of two mass balance differential equations was 

proposed and its parameters were estimated using blood sample data for each subject. 

It is assumed that the above four variables have a quadravariate normal distribution. 

Thus to build a stochastic model, the expectation of the concentration of glucose tracer 

in blood plasma was used together with the probability distribution function of the 

parameters. The expectation value o f the resulting glucose tracer concentration in blood 

plasma is the primary variable of interest. This is a four dimensional integration because 

of the assumed quadravariate normal distribution of the parameters. The calculation of 

the integration was one of the most complex tasks in this study. The details of the 

results will be presented later.
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(ii). The parameters vary with time during the course of a single experiment and also 

from one subject to another (with fixed intra-subject variance):

In this type o f variability, the stochastic Model B approach was applied. The 

concentration of glucose tracer in blood plasma at each time point in all the subjects is 

assumed to have a special distribution. At every time point the glucose tracer 

concentration is assumed to have a normal distribution which varies over time. Also, 

it is assumed that there is a bivariate normal distribution between any pair of values of 

the concentration of glucose tracer at respective blood sampling times. The resulting 

uncertainty is incorporated into a compartmental matrix where all the elements of the 

matrix fluctuate randomly. The random process is assumed to have a truncated normal 

distribution and its statistical moments are assumed to be identical, i.e. for example 

p2 (t, s) is a function of t and s only. It is assumed that all the elements of the 

compartmental matrix have identical fluctuations. The differential equations are 

functions o f the compartmental matrix and the second moment of the random process 

and were integrated numerically using the NAG FORTRAN Library. The Model B 

approach was presented in Chapter 6 and only a brief discussion o f the results will be 

given.

8.4: Discussion on Model A and Model B approaches

There are some important differences between the two stochastic models and also in 

their applications.

In Model A we had to deal with a complex integration to construct the mean 

concentration of glucose tracer in the sampled compartment model and there were many 

problems such as finding the distribution of the variables and also using standard 

multivariate lognormal distribution to prevent negative parameter values. The 

integration was computed from time 0 to 180 minutes using the NAG FORTRAN 

Library to obtain the stochastic model. A comparison between the deterministic and 

stochastic curves for the mean concentration of glucose tracer in total, obese and non-
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obese groups shows small differences between the models. The differences are smaller 

at small and large times but larger at the middle time points (between 20 to 100 minutes) 

and the largest difference is for the non-obese group. Therefore, if  the deterministic 

values are used as the actual values then a small error will be made. Furthermore, the 

mean difference between the deterministic and stochastic curves at all time points is 

significant in the obese and non-obese group of subjects.

In the model A approach we also calculated the S. E. for the concentration of glucose 

tracer in blood plasma and for all groups. As was mentioned in Chapter 5, the S.E. of 

deterministic model is near to the S. E. of stochastic values in the total group of subjects. 

The S.E. of the stochastic values are a poor fit to the S.E. of the deterministic values in 

both obese and non-obese subjects, but the difference between the S. E. of stochastic and 

deterministic values in the non-obese group are closer than the same values in the obese 

subgroup.

The Model A method is likely to be too complex for a compartmental system with three 

or more compartments since the integrand where there are more than four variables will 

be very complex. Therefore, the Model A approach is appropriate when there are only 

a few stochastic transfer or elimination rates.

In the Model B approach, although there are also some complex equations, the approach 

is in a matrix form which is more manageable. Using NAG Library software to 

integrate the differential equations enabled us to compute the solutions for every 

compartment at every time point. The possibility of calculating the concentration of any 

substance in a n-compartmental system (n>2) and for every compartment is one of the 

most important advantages of Model B over Model A.

It is interesting to note that in Model B the location of the stochastic curve lies above the 

stochastic curve, but in model A and for all groups the stochastic curves are below the 

deterministic curves. Also, in the Model B approach we deal with a random process 

which is assumed to be the same for all the elements of the compartmental matrix. This
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is rather abnormal and is not likely to be useful for building a stochastic model in 

general. Therefore, Model B approach will be useful only if there are different random 

processes present at every point. Furthermore, it is possible that the similarity between 

the stochastic and deterministic models may be due to the particular random process 

chosen, or to the number of the compartments , although no direct evidence was found 

to confirm this.

8.5: Future implications

The results of this research should encourage those working in the same field to continue 

to explore the above modelling approaches. As was mentioned, some of the results 

seem to vary according to new constraints and conditions (number of the compartments, 

sample and using different random processes for each parameter). In this section we 

will discuss these conditions and new results which are different from the previous cases 

will be given. We consider these conditions separately in the two types of models.

8.5.1: Model A approach

The differences between the stochastic and the deterministic curves for the total subjects 

and the subgroups were discussed above. There are no large differences between the 

stochastic and deterministic curves for all groups. Furthermore, the changes in the 

stochastic curves are not known if we change the sample (member, size, method of the 

sampling,...), especially if the experiment is repeated in the same subjects. Therefore, 

the stochastic curves may probably change if the sample changes, so it is possible to 

have larger or smaller differences between the stochastic and deterministic curves 

according to different samples. Also, it is obvious that if  we choose a large enough 

sample (say more than 30) then it is possible to assume that the distribution of all 

parameters is normal, otherwise we will be facing an complex problem in finding the 

distribution o f the parameters. The method of sampling is one of the most important 

parts of the work. A poorly chosen sample may produce bias in the result. Choosing 

samples according to standard sampling rules can help researchers to get more
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reasonable results. Therefore, working with a compartmental system with a large 

enough sample size can possibly overcome the above problem.

The next important thing which may affect the stochastic curve is the number of 

compartments. When the number of compartments is two, we have two fluxes between 

compartments, a loss and the initial concentration of glucose tracer in blood plasma, that 

is, four unknown parameters. If we increase the number of the compartments to three 

and suppose there are two fluxes between compartments and only one loss then there are 

six parameters. If we have an extra loss or output, the parameters will be doubled in 

comparison with a two-compartmental model. The calculation of glucose concentration 

in this case is very complex and will involve a six, seven or even eight dimensional 

integration, all of which are likely to be difficult to evaluate. Therefore, we need to try 

a system with fewer parameters and the results need to be compared with the 

compartmental system.

8.5.2: Model B approach

In this approach the deterministic and stochastic curves are almost the same at most 

time points, which is the same as the Model A approach. This difference is smaller than 

the model A approach, especially at small time points. There are some possible reasons 

for this situation which are given below:

1) Same fluctuation at every point:

As was mentioned earlier, all the elements of the compartmental matrix have a particular 

fluctuation which is assumed to be the same for all parameters. In fact, in general the 

parameters are more likely to have independent fluctuations, for otherwise they are 

unlikely to represent actual physiological processes. This can be one o f the most 

important reasons for the similarity of the stochastic and deterministic curves and this 

needs to be considered in any future work. The kinetics of glucose will probably have 

independent fluctuations in its parameters and constraining them to have the same
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fluctuations may not generate a useful and convincing result.

2) Sample size:

We are still uncertain about the role of the sample size in this part of the research. A 

large enough sample size and collecting the sample according to the statistical rules 

(sampling techniques) can help researchers to be sure about the final results. A large 

sample of 30 or more using the sampling techniques generally accepted by statisticians 

may probably change the results.

3) The number of compartments:

There is no information about the role of the number of the compartments in the final 

results. If the number of the compartments increases to three or more and the shape of 

the curves are still similar, then the result is probably independent of the number of the 

compartments.

This requires a new study of the n-compartmental model with a larger sample size and 

also employing independent random processes to investigate the shape of the 

deterministic and stochastic curves.
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Chapter 9

Conclusions

9.1: Introduction

The methods of model building were discussed in Chapters 5 and 6. A comparison 

between models, discussion about the main findings and suggestions for research work 

in the same field in the future were given in Chapters 7 and 8. In this chapter final 

remarks about the two methods of model building are made.

9.2: Model A and Model B approaches in stochastic model building

Model A approach

The model A approach is a special type of model where the stochasticity is incorporated 

into the compartmental parameters (transfer rates, elimination rates). In this approach 

the mean concentration of glucose tracer in blood plasma is computed from a set of 

differential equations. The solution is a function of some unknown parameters which are 

estimated using the output data for each subject. Therefore, there are some estimated 

parameters (four in our study) where every parameter has several values equal in number 

to the sample size (N=17). Each set of estimated parameters has its own distribution 

and the four parameters overall are assumed to have a quadravariate lognormal 

distribution. The estimated parameters in every subject predict N different curves for 

the tracer concentration. This variability is assumed to be due to the variability of the 

above four estimated parameters which causes an uncertainty in the solution. The 

expectation of the solution is the mean stochastic model when the above four parameters 

are considered as a quadravariate lognormal distribution.

For model building, the expectation of concentration of glucose tracer in blood plasma
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was calculated as the average of all the output curves for each subject. The details of the 

method was discussed in Chapter 5, but we summarise some of the most important 

conclusions here.

Looking at the values of mean concentration of glucose tracer in the blood plasma in all 

groups, there are small differences between the stochastic and deterministic curves for 

the mean concentration o f glucose tracer. These differences are very small at small 

times and small at intermediate times (between 20 to 100 minutes). The stochastic and 

deterministic curves for the mean concentration of glucose tracer in blood plasma for the 

obese subjects have the largest values . The stochastic and deterministic curves for the 

total group of subjects lie between the two corresponding curves of the subgroups as to 

be expected. The small differences between the curves are perhaps due to the small 

sample size or the small number of compartments and this needs to be further 

investigated with a large enough sample size and a multi-compartmental system.

Although the differences between the stochastic and deterministic values are not large, 

it is still necessary to choose a stochastic model to predict the values for the mean 

concentration of glucose tracer in blood plasma because the stochasticity between 

individuals' parameters are considered in stochastic model building. If the deterministic 

values are used as the real values, there will be an error which, although not large for 

the data studied, may be large in general.

The next important point is the nature of the Model A approach. For a two 

compartmental model the Model A approach is suitable and efficient, but the approach 

becomes very complex when the numbers of the compartments (n > 2) and hence the 

number o f the parameters increases.

There are large differences between the stochastic and deterministic models for the 

S. E. of glucose tracer, especially between 20 minutes to 100 minutes. This difference 

is the largest in the total group of subjects and the smallest in the non-obese subjects.
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Model B approach

The Model B approach is a method of model building where it is assumed that the 

values of concentration of glucose tracer in blood plasma at each time point are 

normally distributed. Also, a bivariate normal distribution is assumed to exist between 

the concentration of glucose tracer at every pair of time points t, and t2.

In this method of stochastic model building the mass balance equations are written first. 

These are a function of the concentration of glucose tracer in blood plasma and also a 

function of the compartmental matrix. The stochasticities are incorporated with the 

compartmental matrix, so that every element of the compartmental matrix fluctuates 

randomly according to a random process. It is assumed that each element of the 

compartmental matrix is the sum of the above random process and the expectation of the 

matrix elements. The solution of the above mass balance equations is a function of the 

compartmental matrix and the second statistical moments of the random process. The 

calculation of the solution (discussed in Chapter 6) is very complex.

If we look at the shape of the mean concentration predicted by Model B, the difference 

between it and the deterministic curve is still small as in the case of model A. The 

possible reasons about the similarities of the deterministic and stochastic curves in the 

Model B approach are summarized as follows:

1. Small sample size;

2. Common random process at each true point;

3. A combination o f both of the above.

The above features should be checked using a large enough sample size and also with 

a random process which is different at each time point.

Another important point in the Model B approach is its possible application for more 

than two compartments. Since the mass balance equations are in matrix form the
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solution is also in matrix form. This should enable us to generalise the two 

compartmental system to a n-compartmental system and at the same time obtain the 

concentration solution for every compartment. As was mentioned above the Model A 

approach is not suitable for more than two compartments and especially when there are 

many transfer/elimination rates in a multi-compartmental system. Therefore, for the 

multi-compartmental system, the Model B approach is the best choice. If the stochastic 

model in the above two-compartmental system is independent of the sample size or 

random processes, then the approach is obviously inefficient since the difference 

between the stochastic and deterministic models is small.

The Model B approach was not applied for more than two compartments and there is no 

information about the shape of the stochastic model. Therefore, using the approach for 

more than two compartments, with a large enough sample size and a different random 

process may yield a new stochastic model which will be probably different from the 

deterministic model and also from Model A concentration curve.

9.3: Suggestions for screening and future work

In this section there are some suggestions and recommendations for screening 

procedures arising from the results of this study which clinicians may consider following 

up. Consider the difference in the mean and S. E. between the stochastic and 

deterministic curves of the obese and normal groups. We can generalise this approach 

in classifying two different groups, normal and abnormal, regardless of the nature of the 

abnormality.

It is usual to divide a group of subjects into two groups, normal and abnormal, using 

some agreed criterion of abnormality. The data produced by a clinical test on each 

subject is then analysed using some plausible deterministic model. The resulting sets 

of individual parameters of each group are then compared using a suitable statistical test 

(an unpaired t-test if the parameter distributions of each group are found to be normal). 

If the difference between the two sets is found to be significant then this model and the
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associated criterion will become a method of screening an individual according to some 

agreed level of probability of being in the abnormal group.

Obviously, this process depends on what criterion is used to subdivide the subjects in 

the first place. The method of subdivision, based on a particular kinetic response to 

some challenge, is often not at all precise or is too simplistic, given the complexity of 

the response and its day-to-day and subject-to-subject variability. For example, subjects 

are screened for non-insulin dependent diabetes by administering an oral glucose 

challenge and estimating the slope of the resulting plasma glucose curve between two 

arbitrary times when plotted on log-linear graph paper. Consider now the situation where 

a plausible stochastic model is used instead. The distributions of the set of individuals’ 

model parameters o f each group will be used to build a reference stochastic model for 

each group. If these two stochastic models are also significantly different from each 

other and also from the associated deterministic models then we can screen any new 

subjects more easily. When screening an unknown subject, the set of subject’s 

parameters will be compared with the reference parameters of the two stochastic models 

as well as those of the deterministic models. In view of the potentially large difference 

between the S. E. o f the stochastic and deterministic models as compared to the 

difference between their means (as found in Chapter 5) , it is very likely that a 

significant proportion of subjects will be diagnosed as abnormal by the stochastic model 

but not by the deterministic model, or vice versa. If the two stochastic models are not 

significantly different from each other and hence are not different from the above 

deterministic models (suppose in each group the deterministic and stochastic models are 

similar) then for screening of an unknown subjects, we need to compare the confidence 

intervals for the mean stochastic models in both groups. The confidence intervals can 

be large when the S. E. is large or a large error (a > 0.05) for confidence interval is 

chosen. When screening a new subject, its mean will be compared with both stochastic 

models. If the mean curve for the new subject is between the upper and lower limits of 

the confidence intervals of the mean for the stochastic model for any groups, then it can 

be screened using the associated stochastic model. If there is an intersection between 

the confidence intervals, the differences between the parameters of the new subjects and
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the stochastic model can be used as a method for the screening in this special case. The 

above method is very likely to choose a significant proportion of subjects as abnormal 

using the stochastic models but not by the deterministic models, or vice versa. With the 

passage of time the true proportion of abnormals will become apparent and it should 

possible to compare the sensitivities and specificities of the two screening approaches.

Thus, the most important extension of this research would be to study candidate methods 

of subdivision into normal and abnormal group based on the statistical properties of the 

individual parameter sets and the associated stochastic models, and to move away from 

a purely deterministic modelling approach in which the effects of intra-subject and 

inter-subject variability are not properly accounted for. Perhaps this may become a new 

development in the methods of screening patients in the remaining years of the 20th 

century.
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Appendix A 

The output of ADAPT

I. The following is a Fortran program (in ADAPT) to estimate the parameters of the

fitted curve for each subjects.

C ADAPT II

C Release 3

C MODEL *

C *

C This file contains the Fortran subroutines listed below in *

C which the user must enter the relevant equations and constants. *

C Consult the user's manual for details concerning the format for *

C entered equations and definition of symbols. *

C *

C 1. DiffEq- System differential equations. *

C 2. Amat - System state matrix. *

C 3. Output-System output equations. *

C 4. Symbol- Parameter symbols and model constants. *

C 5. Varmod- Error variance model equations. *

C 6. Prior - Parameter mean and covariance values *

Hi*********************************************************************

Subroutine DIFFEQ(T,X,XP)

Implicit None

Include '\adapt\globals.inc' 

Include '\adapt\model.inc'
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Real*8 T,X(MaxNDE),XP(MaxNDE)

C---------------------------------------------------------------------------------------- ----- ----------------

C l .  Enter Differential Equations Below {e.g. XP(1) = -P(1)*X(1)} C

C--------------------------------------------------------------------------------------------------------------

c
XP(l)=-p(l)*X(l)+P(2)*X(2)

XP(2)=P(1)*X(1)-(P(2)+P(3))*X(2)

C------------------------------------ -------------------------------------------------------------------------

c
c-------------------------------------
c
c

Return

End

C##################################################################### 

Subroutine AMAT(A)

Implicit None

Include '\adapt\globals.inc'

Include '\adapt\model.inc'

Integer I,J

Real*8 A(MaxNDE,MaxNDE)

DO I=l,Ndeqs 

Do J=l,Ndeqs 

A(I,J)=0.0D0 

End Do 

End Do

C.................................... ..........................................................................................................C

2. Enter non zero elements of state matrix {e.g. A (l,l)  = - P ( l ) }
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C------------------ -----------------------------------------------------------------------------------------c

C...................... -........................ .............................. -................ -................................ — c-
c------------------------------------ c
c

Return

End

C####################################################################C

Subroutine OUTPUT(Y,T,X)

Implicit None

Include '\adapt\globals.inc'

Include '\adapt\model.inc'

Real*8 Y(MaxNOE),T,X(MaxNDE)

C ----------------------------------------------  C

C 3. Enter Output Equations Below {e.g. Y (l) = X (l)/P (2 )} C

C C

Y(1)=X(1)

C

C

c

c
c

Return

End

Subroutine SYMBOL
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Implicit None

Include '\adapt\globals.inc'

Include '\adapt\model.inc'

IntegerIeqsol 

character* 60 descr 

common /eqsol/ Ieqsol 

common /descr/ Descr

C------------------------------------------------------------------------------------------------------------C

C 4. Enter as Indicated C

C--------------------------------------------------------------------------------------------------------- - C

NDEqs = 2 ! Enter # of Diff. Eqs.

NSParam = 3 ! Enter # of System Parameters.

NVparam = 0 ! Enter # of Variance Parameters.

Ieqsol = 1 ! Model type: 1 - DIFFEQ, 2 - AMAT, 3 - OUTPUT only.

Descr = ' Insert Model File description '

C------------------------    C

c   c
c
C C

C 4. Enter Symbol for Each System Parameter (eg. Psym (l)-K el') C

C ------------------- C
PSYM (1)-K21'

PSYM (2)-K12'

PSYM(3)='K02'

C------------------------------------------------------------------------------------------------------------ C

c----     C
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c------------------------------------ c
C 4. Enter Symbol for Each Variance Parameter {eg: PVsym(l)='Sigma'} C

C-------------------------  C

c------------------------------------ c
c------------------------------------ c
c

Return

End

Subroutine VARMOD(V,T,X,Y) 

Implicit None

Include '\adapt\globals.inc' 

Include '\adapt\model.inc'

Real * 8 V(MaxNOE),T,X(MaxNDE), Y(MaxNOE)

C---------------------------------------------------------------------   C

C 5. Enter Variance Model Equations Below C

C {e.g. V (l) = PV(1)**2 * Y(1)**PV(2)} C

C C

C C

c------------------------------------ C
c

Return

End

C####################################################################C

Subroutine Prior(Pmean,Pcov) 

Implicit None
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Include '\adapt\globals.inc'

Include '\adapt\model.inc'

Integer I,J

Real* 8 Pmean(MaxNSP+MaxNDE)

Real*8 Pcov(MaxNSP+MaxNDE, MaxNSP+MaxNDE) 

Do I=l,NSparam

Pmean(I) = 0.0D0 

Do J=l,NSparam

Pcov(J,I) = 0.0D0 

End Do 

End Do

C--------------------------------------------------------------     C

C 6. Enter Nonzero Elements of Prior Mean Vector C

C { e.g. Pmean(2)= 10.0 } C

C-------------------------------------------------    -C

c-------------------------     c
c---------------------     c

c-----------------------------  c
C 6. Enter Nonzero Elements of Covariance Matrix (Lower Triang.) C

C { e.g. Pcov(2,l) = 0.25 } C

C-------------------------------------------------------------------      c

c.....................   c
c------------------------    c

Return

End
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II. The following outputs show the estimated parameters, the original and model 

estimated data in different time points together with curve fitting in the all subjects.

— C. WLS Estimation Summary (subject 1)

Model file description: Insert Model File description

Weighting Information

Option for Y( 1): 2 with (1.000 ,.2360E-01) and (10.00 ,.2360 )

Convergence achieved 

Number of iterations: 44

Number o f function calls: 199 

Estimator criterion value: 150.996

Weighted

Output R-squared Sum of Squares Sum of Squares

Y( 1) .991 150.996 108340E-01

Initial Final

Parameter Value Estimate CV(%) Confidence interval (95%)

K21 .1000 .7267E-01 9.349 [ .5858E-01, .8676E-01 ]

K12 .1000 .6485E-01 9.842 [ .5161E-01, .7809E-01 ]

K02 .1000 .2350E-01 3.180 [ .2195E-01, .2505E-01 ]

IC (1) .5000 .8638 2.640 [ .8165 , .9111 ]

IC( 2) .0000 Fixed
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— D. Estimated Model Prediction and Data Summary (Subject 1)

Y( 1)

Obs.Num. Time Data Model Est. Residual Weight

1 2.000 .7800 .7540 .2605E-01 2951.

2 3.000 .7600 .7092 .5083E-01 3108.

3 4.000 .6700 .6699 .6627E-04 4000.

4 5.000 .6000 .6355 -.3547E-01 4987.

5 6.000 .5800 .6051 -.2514E-01 5337.

6 8.000 .5500 .5546 -.4648E-02 5935.

7 10.00 .4900 .5148 -.2482E-01 7478.

8 12.00 .4700 .4830 -.1296E-01 8128.

9 14.00 .4600 .4570 .2952E-02 8485.

10 16.00 .4400 .4356 .4396E-02 9274.

11 19.00 .4400 .4095 .3053E-01 9274.

12 22.00 .4200 .3884 .3163E-01 .1018E+05

13 25.00 .4000 .3706 .2938E-01 .1122E+05

14 30.00 .3700 .3458 .2422E-01 .1312E+05

15 40.00 .3300 .3056 .2440E-01 . 1649E+05

16 50.00 .2700 .2720 -.1983E-02 .2463E+05

17 60.00 .2400 .2425 -.2496E-02 .3117E+05

18 70.00 .2000 .2163 -.1630E-01 .4489E+05

19 80.00 .1800 .1930 -.1296E-01 .5542E+05

20 90.00 .1600 .1721 -.1214E-01 .7014E+05

21 100.0 .1400 .1536 1357E-01 .9161E+05

22 113.0 .1300 .1324 -.2390E-02 .1062E+06

23 120.0 .1200 .1222 -.2223E-02 .1247E+06

24 140.0 .1000 .9727E-01 .2727E-02 .1795E+06

25 160.0 .8000E-01 .7742E-01 .2584E-02 .2805E+06

26 180.0 .7000E-01 .6161E-01 .8386E-02 .3664E+06
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— C. WLS Estimation Summary (Subject 2)

Model file description: Insert Model File description 

Weighting Information

Option for Y( 1): 2 with (1.000 ,.2360E-01) and (10.00 ,.2360 )

Convergence achieved 

Number of iterations: 75

Number of function calls: 248 

Estimator criterion value: 48.4865

Weighted

Output R-squared Sum of Squares Sum of Squares 

Y( 1) .997 48.4865 .150810E-02

Initial Final

Parameter Value Estimate CV(%) Confidence interval (95%)

K12 .7000E-01 .5904E-01 21.95 [ .3209E-01, .8599E-01 ]

K21 .6000E-01 .1053 22.91 [ .5514E-01, .1555 ]

K02 .2000E-01 .3654E-01 6.286 [ .3176E-01, .4132E-01 ]

IC (1) .8600 .5899 3.634 [ .5453 , .6345 ]

IC( 2) .0000 Fixed
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— D. Estimated Model Prediction and Data Summary (Subject 2)

Y( 1)

Obs.Num. Time Data Model Est. Residual Weight

1 2.000 .5400 .5304 .9575E-02 6157.

2 3.000 .5000 .5070 -.6991E-02 7182.

3 4.000 .4800 .4868 -.6833E-02 7793.

4 5.000 .4900 .4694 .2061E-01 7478.

5 6.000 .4400 .4542 1421E-01 9274.

6 8.000 .4200 .4292 -.9155E-02 .1018E+05

7 10.00 .4100 .4093 .6560E-03 .1068E+05

8 12.00 .4000 .3932 .6818E-02 .1122E+05

9 14.00 .3900 .3796 .1042E-01 .1180E+05

10 16.00 .3600 .3678 -.7775E-02 .1385E+05

11 19.00 .3600 .3524 .7615E-02 .1385E+05

12 22.00 .3400 .3388 .1169E-02 .1553E+05

13 25.00 .3300 .3265 .3520E-02 .1649E+05

14 30.00 .3100 .3076 .2353E-02 .1868E+05

15 40.00 .2800 .2741 .5850E-02 .2290E+05

16 50.00 .2500 .2446 .5406E-02 .2873E+05

17 60.00 .2100 .2183 -.8270E-02 .4071E+05

18 70.00 .2000 .1948 .5215E-02 .4489E+05

19 80.00 .1700 .1738 -.3828E-02 .6213E+05

20 100.0 .1400 .1384 .1565E-02 .9161E+05

21 110.0 .1200 .1235 -.3540E-02 .1247E+06

22 120.0 .1000 .1102 1025E-01 .1795E+06

23 140.0 .9000E-01 .8780E-01 .2198E-02 .2217E+06

24 160.0 .7000E-01 .6992E-01 .7519E-04 .3664E+06

25 180.0 .6000E-01 .5569E-01 .431 IE-02 .4987E+06
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— C. WLS Estimation Summary (Subject 3)

Model file description: Insert Model File description 

Weighting Information

Option for Y( 1): 2 with (1.000 „2360E-01) and (10.00 ,.2360 )

Convergence achieved 

Number of iterations: 57

Number o f function calls: 209 

Estimator criterion value : 441.619

Weighted

Output R-squared Sum of Squares Sum of Squares

Y( 1) .984 441.619 .203961E-01

Initial Final

Parameter Value Estimate CV(%) Confidence interval (95%)

K12 .6000E-01 .5477E-01 2.694 [ .5171E-01, .5782E-01 ]

K21 .1000 .1235E-01 5.056 [ .1105E-01, .1364E-01 ]

K02 .2000E-01 .151 IE-01 2.602 [ .1430E-01, . 1593E-01 ]

IC (1) .6000 .7289 1.397 [ .7078 , .7501 ]

IC( 2) .0000 Fixed
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— D. Estimated Model Prediction and Data Summary (Subject 3)

Y( 1)

Obs.Num. Time Data Model Est. Residual Weight

1 2.000 .7700 .6542 .1158 3028.

2 3.000 .6000 .6204 -.2044E-01 4987.

3 4.000 .6100 .5888 .2117E-01 4825.

4 5.000 .6000 .5592 .4075E-01 4987.

5 6.000 .5000 .5316 -.3156E-01 7182.

6 8.000 .4500 .4813 -.3135E-01 8866.

7 10.00 .4200 .4373 1728E-01 .1018E+05

8 12.00 .3800 .3986 1857E-01 .1243E+05

9 14.00 .3500 .3645 -.1450E-01 .1466E+05

10 16.00 .3300 .3345 -.4494E-02 .1649E+05

11 19.00 .2800 .2960 -.1596E-01 .2290E+05

12 22.00 .2800 .2639 .161 IE-01 .2290E+05

13 25.00 .2500 .2371 .1291E-01 .2873E+05

14 30.00 .2200 .2016 .1843E-01 .3710E+05

15 40.00 .1600 .1538 .6218E-02 .7014E+05

16 50.00 .1300 .1242 .5836E-02 .1062E+06

17 60.00 .1100 .1042 .5809E-02 .1484E+06

18 70.00 .8000E-01 .8958E-01 -.9575E-02 .2805E+06

19 80.00 .7000E-01 .7813E-01 -.8133E-02 .3664E+06

20 90.00 .6000E-01 .6873E-01 -.8727E-02 .4987E+06

21 100.0 .7000E-01 .6074E-01 .9258E-02 .3664E+06

22 110.0 .6000E-01 .5383E-01 .6171E-02 .4987E+06

23 120.0 .5000E-01 .4778E-01 .2225E-02 .7182E+06

24 140.0 .4000E-01 .3771E-01 .2286E-02 .1122E+07

25 160.0 .4000E-01 .2981E-01 .1019E-01 .1122E+07

26 180.0 .2000E-01 .2356E-01 -.3564E-02 .4489E+07
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Weighting Information

Option for Y( 1): 2 with (1.000 ,.2360E-01) and (10.00 ,.2360 )

Convergence achieved 

Number of iterations: 62

Number of function calls: 241 

Estimator criterion value: 326.477

— C. WLS Estimation Summary (Subject 4)

Model file description: Insert Model File description

Weighted

Output R-squared Sum of Squares Sum of Squares

Y( 1) .955 326.477 .330798E-01

Initial Final

Parameter Value Estimate CV(%) Confidence interval (95%)

K12 .5000E-01 .1719E-01 6.249 [ .1496E-01, .1941E-01 ]

K21 .lOOOE-Ol .5538E-02 37.67 [ .1212E-02, .9865E-02 ]

K02 .2000E-01 . 1573E-01 23.90 [ .7931E-02, .2353E-01 ]

IC (1) .7300 .5489 1.192 [ .5354 , .5625 ]
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— D. Estimated Model Prediction and Data Summary (Subject 4)

Y( 1)

Obs.Num. Time Data Model Est. Residual Weight

1 2.000 .4800 .5305 -.5048E-01 7793.

2 3.000 .5700 .5216 .4844E-01 5526.

3 4.000 .5400 .5128 .2715E-01 6157.

4 5.000 .5200 .5043 .1568E-01 6640.

5 6.000 .5900 .4960 .9401E-01 5158.

6 8.000 .4200 .4799 -.5986E-01 .1018E+05

7 10.00 .4100 .4644 -.5442E-01 1068E+05

8 12.00 .4000 .4496 -.4965E-01 .1122E+05

9 14.00 .4800 .4355 .4450E-01 7793.

10 16.00 .4500 .4219 .2806E-01 8866.

11 19.00 .4200 .4027 .1734E-01 .1018E+05

12 22.00 .4200 .3846 .3545E-01 .1018E+05

13 25.00 .4300 .3675 .6247E-01 9710.

14 30.00 .3500 .3414 .8621E-02 .1466E+05

15 40.00 .2900 .2962 -.6212E-02 .2135E+05

16 50.00 .2500 .2588 -.8833E-02 .2873E+05

17 60.00 .2100 .2276 -.1759E-01 .4071E+05

18 70.00 .2100 .2012 .8776E-02 .4071E+05

19 80.00 .1600 .1788 -.1877E-01 .7014E+05

20 90.00 .1700 .1595 .1052E-01 .6213E+05

21 100.0 .1400 .1428 -.2780E-02 .9161E+05

22 110.0 .1300 .1282 .1787E-02 .1062E+06

23 120.0 .1200 .1154 .4575E-02 .1247E+06

24 140.0 .1000 .9412E-01 .5882E-02 .1795E+06

25 160.0 .8000E-01 .7721E-01 .2793E-02 .2805E+06

26 180.0 .6000E-01 .6360E-01 -.3597E-02 .4987E+06
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— C. WLS Estimation Summary (Subject 5)

Model file description: Insert Model File description 

Weighting Information

Option for Y( 1): 2 with (1.000 ,.2360E-01) and (10.00 ,.2360 )

Convergence achieved 

Number of iterations : 5 8

Number of function calls: 257 

Estimator criterion value: 222.565

Weighted

Output R-squared Sum of Squares Sum of Squares

Y( 1) .988 222.565 . 154319E-01

Initial Final

Parameter Value Estimate CV(%) Confidence interval (95%)

K12 .1700E-01 .5070E-01 2.209 [ .4838E-01, .5302E-01 ]

K21 .5500E-02 .891 IE-02 4.722 [ .8038E-02, .9784E-02 ]

K02 .1500E-01 .9436E-02 3.953 [ .8663E-02, .1021E-01 ]

IC (1) .5500 .7872 1.216 [ .7673 , .8070 ]

IC( 2) .0000 Fixed
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— D. Estimated Model Prediction and Data Summary (Subject 5)

Y( 1)

Obs.Num. Time Data Model Est. Residual Weight

1 2.000 .7300 .7119 .1809E-01 3369.

2 3.000 .6300 .6775 -.4751E-01 4524.

3 4.000 .6100 .6451 -.3510E-01 4825.

4 5.000 .5800 .6145 -.3455E-01 5337.

5 6.000 .5500 .5857 -.3575E-01 5935.

6 8.000 .5800 .5330 .4699E-01 5337.

7 10.00 .5400 .4861 .5388E-01 6157.

8 12.00 .4700 .4444 .2559E-01 8128.

9 14.00 .4400 .4073 .3272E-01 9274.

10 16.00 .4100 .3742 .3578E-01 .1068E+05

11 19.00 .3400 .3312 .8763E-02 .1553E+05

12 22.00 .2900 .2950 -.5008E-02 .2135E+05

13 25.00 .2700 .2644 .5591E-02 .2463E+05

14 30.00 .2000 .2235 -.2346E-01 .4489E+05

15 40.00 .1600 .1681 -.8135E-02 .7014E+05

16 50.00 .1400 .1346 .5388E-02 .9161E+05

17 60.00 .1100 .1132 -.3173E-02 .1484E+06

18 70.00 .1000 .9853E-01 .1470E-02 .1795E+06

19 80.00 .8000E-01 .8780E-01 -.7798E-02 .2805E+06

20 90.00 .8000E-01 .7940E-01 .6042E-03 .2805E+06

21 100.0 .8000E-01 .7245E-01 .7549E-02 .2805E+06

22 110.0 .7000E-01 .6648E-01 .3524E-02 .3664E+06

23 120.0 .7000E-01 .6119E-01 .8807E-02 .3664E+06

24 140.0 .5000E-01 .521 IE-01 -.2112E-02 .7182E+06

25 160.0 .4000E-01 .4451E-01 -.4507E-02 .1122E+07

26 180.0 .4000E-01 .3805E-01 .1951E-02 .1122E+07
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Weighting Information

Option for Y( 1): 2 with (1.000 ,.2360E-01) and (10.00 ,.2360 )

Convergence achieved 

Number of iterations: 70

Number of function calls: 251

Estimator criterion value : 176.322

— C. WLS Estimation Summary (Subject 6)

model file description: Insert Model File description

Weighted

Output R-squared Sum of Squares Sum of Squares

Y( 1) .979 176.322 .200695E-01

Initial Final

Parameter Value Estimate CV(%) Confidence interval (95%)

K12 .5000E-01 .2392E-01 4.404 [ .2174E-01, .2610E-01 ]

K21 .9000E-02 .791 IE-02 17.06 [ .5118E-02, .1070E-01 ]

K02 .9000E-02 .1462E-01 10.44 [ .1146E-01, .1777E-01 ]

IC (1) .7900 .6055 1.101 [ .5917 , .6193 ]
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D. Estimated Model Prediction and Data Summary (Subject 6) 

Y( 1)

Obs.Num. Time Data Model Est. Residual Weight

1 1.000 .6300 .5913 .3873E-01 4524.

2 2.000 .6800 .5775 .1025 3883.

3 3.000 .5200 .5641 -.4407E-01 6640.

4 4.000 .5000 .5511 -.5110E-01 7182.

5 5.000 .5100 .5385 -.2854E-01 6903.

6 6.000 .5300 .5264 .3644E-02 6392.

7 8.000 .4900 .5031 -.1310E-01 7478.

8 10.00 .4700 .4812 -.1123E-01 8128.

9 12.00 .4700 .4607 .9334E-02 8128.

10 14.00 .4600 .4413 .1869E-01 8485.

11 16.00 .4400 .4231 .1692E-01 9274.

12 19.00 .4000 .3977 .2318E-02 .1122E+05

13 22.00 .3800 .3744 .5577E-02 .1243E+05

14 25.00 .3600 .3531 .691 IE-02 .1385E+05

15 30.00 .3500 .3213 .2869E-01 .1466E+05

16 40.00 .2700 .2694 .6276E-03 .2463E+05

17 50.00 .2200 .2292 -.9218E-02 .3710E+05

18 60.00 .1800 .1976 -.1759E-01 .5542E+05

19 70.00 .1700 .1722 -.2205E-02 .6213E+05

20 80.00 .1500 .1514 -.1449E-02 .7980E+05

21 90.00 .1500 .1342 .1582E-01 .7980E+05

22 100.0 .1200 .1196 .4123E-03 .1247E+06

23 110.0 .1100 .1071 .2919E-02 .1484E+06

24 120.0 .9000E-01 .9624E-01 -.6236E-02 .2217E+06

25 140.0 .8000E-01 .7835E-01 .1653E-02 .2805E+06

26 160.0 .7000E-01 .6423E-01 .5773E-02 .3664E+06

27 180.0 .5000E-01 .5287E-01 -.2867E-02 .7182E+0
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— C. WLS Estimation Summary (Subject 7)

Model file description: Insert Model File description 

Weighting Information

Option for Y( 1): 2 with (1.000 ,.2360E-01) and (10.00 ,.2360 )

Convergence achieved 

Number of iterations: 54

Number of function calls: 211

Estimator criterion value : 184.841

Weighted

Output R-squared Sum of Squares Sum of Squares

Y( 1) .986 184.841 .975899E-02

Initial Final

Parameter Value Estimate CV(%) Confidence interval (95%)

K12 .2300E-01 .2515E-01 8.284 [ .2074E-01, .2957E-01 ]

K21 .8000E-02 .1556E-01 20.34 [ .8854E-02, .2227E-01 ]

K02 .1500E-01 .1800E-01 8.595 [ .1472E-01, .2129E-01 ]

IC(1) .6055 .6310 1.569 [ .6100 , .6520 ]

IC( 2) .0000 Fixed
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— D. Estimated Model Prediction and Data Summary (Subject 7)

Y( 1)

Obs.Num. Time Data Model Est. Residual Weight

1 2.000 .5900 .6005 -.1052E-01 5158.

2 3.000 .6200 .5862 .3383E-01 4671.

3 4.000 .5600 .5724 1238E-01 5725.

4 5.000 .5400 .5591 -.1913E-01 6157.

5 6.000 .6000 .5464 .5362E-01 4987.

6 10.00 .5000 .5001 -.5026E-04 7182.

7 12.00 .4600 .4794 -.1939E-01 8485.

8 14.00 .4600 .4602 -.1910E-03 8485.

9 16.00 .4300 .4423 -.1234E-01 9710.

10 22.00 .3900 .3957 -.5692E-02 .1180E+05

11 50.00 .2700 .2624 .7646E-02 .2463E+05

12 60.00 .2300 .2331 -.3098E-02 .3394E+05

13 71.00 .2700 .2067 .6332E-01 .2463E+05

14 80.00 .1800 .1883 -.8292E-02 .5542E+05

15 90.00 .1600 .1704 -.1042E-01 .7014E+05

16 100.0 .1500 .1547 -.4673E-02 .7980E+05

17 110.0 .1300 .1406 -.1064E-01 .1062E+06

18 140.0 .1100 .1064 .3635E-02 .1484E+06

19 160.0 .1000 .8850E-01 .1150E-01 .1795E+06

20 180.0 .7000E-01 .7368E-01 -.3682E-02: .3664E+06
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— C. WLS Estimation Summary (Subject 8)

Model file description: Insert Model File description 

Weighting Information

Option for Y( 1): 2 with (1.000 „2360E-01) and (10.00 ,.2360 )

Convergence achieved 

Number of iterations: 63

Number of function calls: 203 

Estimator criterion value: 109.467

Weighted

Output R-squared Sum of Squares Sum of Squares

Y( 1) .986 109.467 .113058E-01

Initial Final

Parameter Value Estimate CV(%) Confidence interval (95%)

K12 .2500E-01 .3693E-01 4.917 [ .3318E-01, .4069E-01 ]

K21 .1500E-01 . 1893E-01 8.730 [ .155IE-01, .2235E-01 ]

K02 .1800E-01 .1330E-01 4.945 [ .1194E-01, .1467E-01 ]

IC (1) .6310 .6216 1.468 [ .6028 , .6405 ]

IC( 2) .0000 Fixed
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D. Estimated Model Prediction and Data Summary (Subject 8) 

Y( 1)

Obs.Num. Time Data Model Est. Residual Weight

1 2.000 .6400 .5782 .618 IE-01 4383.

2 3.000 .6200 .5582 .6180E-01 4671.

3 4.000 .5400 .5393 .7140E-03 6157.

4 5.000 .5200 .5214 -.1379E-02 6640.

5 6.000 .5000 .5044 -.4422E-02 7182.

6 7.000 .4700 .4884 -.1836E-01 8128.

7 8.000 .4400 .4731 -.3314E-01 9274.

8 10.00 .4200 .4450 -.2502E-01 .1018E+05

9 12.00 .4100 .4197 -.9725E-02 .1068E+05

10 14.00 .3800 .3969 -. 1693E-01 .1243E+05

11 16.00 .3700 .3763 -.6343E-02 .1312E+05

12 19.00 .3400 .3491 -.9089E-02 .1553E+05

13 22.00 .3300 .3256 .4448E-02 .1649E+05

14 25.00 .3200 .3051 . 1488E-01 .1753E+05

15 30.00 .2900 .2767 . 1333E-01 .2135E+05

16 40.00 .2500 .2347 .1525E-01 .2873E+05

17 50.00 .2200 .2055 .1454E-01 .3710E+05

18 60.00 .1900 .1835 .6460E-02 .4974E+05

19 70.00 .1600 .1661 -.6080E-02 .7014E+05

20 80.00 .1500 .1515 -.1469E-02 .7980E+05

21 90.00 .1400 .1388 .1197E-02 .9161E+05

22 100.0 .1200 .1276 -.7557E-02 .1247E+06

23 110.0 .1100 .1174 -.7419E-02 .1484E+06

24 120.0 .1100 .1082 .1805E-02 .1484E+06

25 140.0 .9000E-01 .9200E-01 -.2004E-02 .2217E+06

26 160.0 .8000E-01 .7830E-01 .1696E-02 .2805E+06

27 180.0 .7000E-01 .6666E-01 .3336E-02 .3664E+06
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— C. WLS Estimation Summary (Subject 9)

Model file description: Insert Model File description 

Weighting Information

Option for Y( 1): 2 with (1.000 „2360E-01) and (10.00 ,.2360 )

Convergence achieved 

Number of iterations: 37

Number o f function calls: 162 

Estimator criterion value : 98.3367

Weighted

Output R-squared Sum of Squares Sum of Squares

Y( 1) .989 98.3367 119945E-01

Initial Final

Parameter Value Estimate CV(%) Confidence interval (95%)

K12 .3700E-01 .3829E-01 3.031 [ .3589E-01, .4069E-01 ]

K21 .1900E-01 .1092E-01 6.957 [ .9349E-02, .1249E-01 ]

K02 .1300E-01 .1075E-01 5.080 [ .9625E-02, .1189E-01 ]

IC (1) .6216 .6734 1.145 [ .6574 , .6893 ]

IC( 2) .0000 Fixed
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- D. Estimated Model Prediction and Data Summary (Subject 9)

Y( 1)

)S.Num. Time Data Model Est. Residual Weight

1 1.000 .7200 .6482 .7179E-01 3463.

2 2.000 .6500 .6243 .2574E-01 4250.

3 3.000 .5800 .6015 -.2145E-01 5337.

4 4.000 .5400 .5797 -.3973E-01 6157.

5 5.000 .5500 .5590 -.9042E-02 5935.

6 6.000 .5300 .5393 -.9334E-02 6392.

7 8.000 .4600 .5027 -.4267E-01 8485.

8 10.00 .4800 .4694 .1064E-01 7793.

9 12.00 .4600 .4391 .2091E-01 8485.

10 14.00 .4100 .4116 -.1562E-02 .1068E+05

11 16.00 .4100 .3865 .2350E-01 .1068E+05

12 19.00 .3500 .3530 -.3035E-02 .1466E+05

13 22.00 .3400 .3239 .1612E-01 .1553E+05

14 25.00 .3000 .2984 .1573E-02 .1995E+05

15 30.00 .2800 .2628 .1716E-01 .2290E+05

16 40.00 .1900 .2108 - .2079E-01 .4974E+05

17 50.00 .1800 .1757 .4287E-02 .5542E+05

18 60.00 .1500 .1510 -.1029E-02 .7980E+05

19 70.00 .1300 .1328 - .2816E-02 .1062E+06

20 80.00 .1200 .1187 .1282E-02 .1247E+06

21 90.00 .1100 .1073 .2687E-02 .1484E+06

22 100.0 .1000 .9774E-01 .2260E-02 .1795E+06

23 110.0 .9000E-01 .8947E-01 .5331E-03 .2217E+06

24 120.0 .8000E-01 .8216E-01 -.2164E-02 .2805E+06

25 140.0 .7000E-01 .6969E-01 .3092E-03 .3664E+06

26 160.0 .6000E-01 .5933E-01 .6662E-03 .4987E+06

27 180.0 .5000E-01 .5060E-01 -.5951E-03 .7182E+06
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— C. WLS Estimation Summary (Subject 10)

Model file description: Insert Model File description

Weighting Information

Option for Y( 1): 2 with (1.000 ,.2360E-01) and (10.00 ,.2360 )

Convergence achieved 

Number of iterations: 45

Number of function calls: 184 

Estimator criterion value: 84.5219

Weighted

Output R-squared Sum of Squares Sum of Squares

Y( 1) .990 84.5219 121146E-01

Initial Final

Parameter Value Estimate CV(%) Confidence interval (95%)

K12 .3800E-01 .4503E-01 3.961 [ .4133E-01, .4873E-01 ]

K21 .1100E-01 .1716E-01 7.580 [ .1446E-01, . 1985E-01 ]

K02 .1100E-01 . 1733E-01 3.463 [ .1608E-01, . 1857E-01 ]

IC (1) .6734 .7606 1.475 [ .7373 , .7838 ]

IC( 2) .0000 Fixed
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D. Estimated Model Prediction and Data Summary (Subject 10) 

Y( 1)

Obs.Num. Time Data Model Est. Residual Weight

1 2.000 .7900 .6961 .9386E-01 2877.

2 3.000 .6700 .6668 .3215E-02 4000.

3 4.000 .6500 .6392 .1082E-01 4250.

4 5.000 .5800 .6132 -.3320E-01 5337.

5 6.000 .5600 .5887 -.2875E-01 5725.

6 8.000 .5200 .5440 -.2403E-01 6640.

7 10.00 .5000 .5043 -.4323E-02 7182.

8 12.00 .4700 .4690 . 1002E-02 8128.

9 14.00 .4400 .4375 .2486E-02 9274.

10 16.00 .4100 .4094 .6038E-03 .1068E+05

11 19.00 .3800 .3726 .7355E-02 .1243E+05

12 22.00 .3500 .3414 .8636E-02 .1466E+05

13 25.00 .3100 .3146 -.4591E-02 .1868E+05

14 30.00 .2700 .2779 -.7907E-02 .2463E+05

15 40.00 .2400 .2252 .1477E-01 .3117E+05

16 50.00 .1900 .1894 .5997E-03 .4974E+05

17 60.00 .1700 .1631 .6906E-02 .6213E+05

18 70.00 .1400 .1425 -.2494E-02 .9161E+05

19 80.00 .1300 .1256 .4428E-02 .1062E+06

20 90.00 .1000 .1112 -.1122E-01 .1795E+06

21 100.0 .1000 .9879E-01 .1214E-02 .1795E+06

22 110.0 .9000E-01 .8789E-01 .2109E-02 .2217E+06

23 120.0 .8000E-01 .7827E-01 .1729E-02 .2805E+06

24 140.0 .6000E-01 .6216E-01 -.2161E-02 .4987E+06

25 160.0 .5000E-01 .4940E-01 .5963E-03 .7182E+06

26 180.0 .4000E-01 .3927E-01 .7259E-03 .1122E+07

155



— C. WLS Estimation Summary (Subject 11)

Model file description: Insert Model File description 

Weighting Information

Option for Y( 1): 2 with (1.000 ,.2360E-01) and (10.00 ,.2360 )

Convergence achieved 

Number of iterations: 62

Number of function calls: 229 

Estimator criterion value : 126.003

Weighted

Output R-squared Sum of Squares Sum of Squares

Y( 1) .995 126.003 .599103E-02

Initial Final

Parameter Value Estimate CV(%) Confidence interval (95%)

K12 .4500E-01 .4460E-01 3.145 [ .4169E-01, .4751E-01 ]

K21 .1700E-01 .1225E-01 6.532 [ . 1059E-01, .1391E-01 ]

K02 .1700E-01 .1349E-01 3.844 [ .1242E-01, .1457E-01 ]

IC (1) .7606 7251 1.358 [ .7047 , .7455 ]

IC( 2) .0000 Fixed
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— D. Estimated Model Prediction and Data Summary (Subject 11)

Y( 1)

Obs.Num. Time Data Model Est. Residual Weight

1 2.000 .7100 .6639 .4607E-01 3562.

2 3.000 .6700 .6359 .3414E-01 4000.

3 4.000 .6200 .6093 .1067E-01 4671.

4 5.000 .5800 .5842 -.4239E-02 5337.

5 6.000 .5600 .5605 -.5171E-03 5725.

6 8.000 .5000 .5169 -.1686E-01 7182.

7 10.00 .4600 .4778 -.1777E-01 8485.

8 12.00 .4300 .4427 -.1273E-01 9710.

9 14.00 .3800 .4113 -.3130E-01 .1243E+05

10 16.00 .3700 .3831 -.1308E-01 .1312E+05

11 19.00 .3500 .3460 .4032E-02 .1466E+05

12 22.00 .3300 .3142 .1577E-01 .1649E+05

13 25.00 .2900 .2870 .2998E-02 .2135E+05

14 30.00 .2600 .2497 .1029E-01 .2656E+05

15 40.00 .2000 .1969 .3148E-02 .4489E+05

16 50.00 .1600 .1622 -.2229E-02 .7014E+05

17 60.00 .1400 .1381 .1880E-02 .9161E+05

18 70.00 .1300 .1203 9748E-02 . 1062E+06

19 80.00 .1100 .1062 .3761E-02 .1484E+06

20 90.00 .9000E-01 .9474E-01 -.4737E-02 .2217E+06

21 100.0 .9000E-01 .8497E-01 .5028E-02 .2217E+06

22 110.0 .7000E-01 .7649E-01 -.6486E-02 .3664E+06

23 120.0 .7000E-01 .6900E-01 .1002E-02 .3664E+06

24 140.0 .5000E-01 .5634E-01 -.6345E-02 .7182E+06

25 160.0 .5000E-01 .461 IE-01 .3892E-02 .7182E+06

26 180.0 .4000E-01 .3776E-01 .2240E-02 .1122E+07
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— C. WLS Estimation Summary (Subject 12)

Model file description: Insert Model File description 

Weighting Information

Option for Y( 1): 2 with (1.000 ,.2360E-01) and (10.00 ,.2360 )

Convergence achieved 

Number o f iterations: 40

Number of function calls: 151

Estimator criterion value : 155.016

Weighted

Output R-squared Sum of Squares Sum of Squares

Y( 1) .981 155.016 .266770E-01

Initial Final

Parameter Value Estimate CV(%) Confidence interval (95%)

K12 .4500E-01 .4473E-01 3.332 [ .4164E-01, .4782E-01 ]

K21 .1200E-01 .1342E-01 6.688 [ .1156E-01, . 1528E-01 ]

K02 .1300E-01 .1439E-01 3.623 [ .1331E-01, .1547E-01 ]

IC (1) .7251 .7640 1.391 [ .7419 , .7860 ]

IC( 2) .0000 Fixed
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D. Estimated Model Prediction and Data Summary (Subject 12)

Y( 1)

Obs.Num. Time Data Model Est. Residual Weight

1 2.000 .8300 .6995 .1305 2606.

2 3.000 .7300 .6699 .601 IE-01 3369.

3 4.000 .6300 .6420 -.1197E-01 4524.

4 5.000 .5700 .6156 -.4561E-01 5526.

5 6.000 .5400 .5907 -.5071E-01 6157.

6 8.000 .5300 .5450 -.1495E-01 6392.

7 10.00 .5000 .5041 -.4072E-02 7182.

8 12.00 .4600 .4675 -.7503E-02 8485.

9 14.00 .4300 .4348 -.4753E-02 9710.

10 18.00 .3800 .3790 .9914E-03 .1243E+05

11 19.00 .3700 .3668 .3163E-02 .1312E+05

12 22.00 .3400 .3339 .6076E-02 .1553E+05

13 25.00 .3000 .3057 -.5706E-02 .1995E+05

14 30.00 .2800 .2671 .1292E-01 .2290E+05

15 40.00 .2300 .2122 .1778E-01 .3394E+05

16 50.00 .1800 .1760 .4001E-02 .5542E+05

17 60.00 .1400 .1505 -.1045E-01 .9161E+05

18 70.00 .1300 .1312 -.1233E-02 .1062E+06

19 80.00 .1100 .1160 -.5954E-02 .1484E+06

20 93.00 .1100 .9986E-01 .1014E-01 .1484E+06

21 100.0 .9000E-01 .9244E-01 -.2441E-02 .2217E+06

22 110.0 .9000E-01 .8299E-01 .7014E-02 .2217E+06

23 120.0 .7000E-01 .7463E-01 -.4631E-02 .3664E+06

24 140.0 .6000E-01 .6053E-01 -.5273E-03 .4987E+06

25 160.0 .5000E-01 .4917E-01 .8315E-03 .7182E+06

26 180.0 .4000E-01 .3996E-01 .3533E-04 .1122E+07
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— C. WLS Estimation Summary (Subject 13)

Model file description: Insert Model File description 

Weighting Information

Option for Y( 1): 2 with (1.000 ,.2360E-01) and (10.00 ,.2360 )

Convergence achieved 

Number of iterations: 45

Number of function calls: 201 

Estimator criterion value : 170.275

Weighted

Output R-squared Sum of Squares Sum of Squares

Y( 1) .986 170.275 .225610E-01

Initial Final

Parameter Value Estimate CV(%) Confidence interval (95%)

K12 .4500E-01 .3546E-01 5.238 [ .3161E-01, .3931E-01 ]

K21 .1300E-01 .1513E-01 14.68 [ .1052E-01, .1974E-01 ]

K02 .1400E-01 .2659E-01 5.196 [ .2373E-01, .2946E-01 ]

IC (1) .7640 .7794 1.508 [ .7550 , .8038 ]

IC( 2) .0000 Fixed
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— D. Estimated Model Prediction and Data Summary (Subject 13)

Y( 1)

Obs.Num. Time Data Model Est. Residual Weight

1 2.000 .8100 .7268 .8318E-01 2737.

2 3.000 .7700 .7024 .6757E-01 3028.

3 4.000 .6800 .6792 .7839E-03 3883.

4 5.000 .6500 .6571 -.711 IE-02 4250.

5 6.000 .6300 .6361 -.6052E-02 4524.

6 8.000 .5900 .5968 -.6838E-02 5158.

7 10.00 .5400 .5611 -.2115E-01 6157.

8 12.00 .4400 .5286 -.8860E-01 9274.

9 14.00 .5100 .4989 .1113E-01 6903.

10 16.00 .4600 .4716 -.1164E-01 8485.

11 21.50 .4000 .4077 -.7664E-02 .1122E+05

12 23.50 .3900 .3877 .2268E-02 .1180E+05

13 29.00 .3700 .3402 .2980E-01 .1312E+05

14 30.00 .3600 .3325 .2746E-01 .1385E+05

15 40.00 .2900 .2687 .2127E-01 .2135E+05

16 50.50 .2300 .2197 .1031E-01 .3394E+05

17 60.00 .1900 .1855 .4464E-02 .4974E+05

18 70.00 .1500 .1567 -.6716E-02 .7980E+05

19 80.00 .1300 .1332 -.3179E-02 .1062E+06

20 90.00 .1100 .1136 -.3618E-02 .1484E+06

21 100.0 .1000 .9717E-01 .2830E-02 .1795E+06

22 110.0 .8000E-01 .8323E-01 -.3233E-02 .2805E+06

23 120.0 .7000E-01 .7136E-01 -.1365E-02 .3664E+06

24 140.0 .5000E-01 .5255E-01 -.2550E-02 .7182E+06

25 160.0 .4000E-01 .3874E-01 .1265E-02 .1122E+07

26 180.0 .3000E-01 .2856E-01 .1436E-02 .1995E+07
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— C. WLS Estimation Summary (Subject 14)

Model file description: Insert Model File description 

Weighting Information

Option for Y( 1): 2 with (1.000 „2360E-01) and (10.00 „2360 )

Convergence achieved 

Number of iterations: 42

Number o f function calls: 176 

Estimator criterion value : 163.5 04

Weighted

Output R-squared Sum of Squares Sum of Squares

Y( 1) .980 163.504 .277426E-01

Initial Final

Parameter Value Estimate CV(%) Confidence interval (95%)

K12 .3500E-01 .3725E-01 4.063 [ .3410E-01, .4040E-01 ]

K21 .1500E-01 .1427E-01 8.351 [ .1179E-01, .1675E-01 ]

K02 .2660E-01 .1282E-01 5.096 [ .1146E-01, .1418E-01 ]

IC (1) .7800 .7996 1.388 [ .7765 , .8227 ]
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.... D. Estimated Model Prediction and Data Summary (Subject 14)

Y( 1)

Obs.Num. Time Data Model Est. Residual Weight

1 2.000 .8800 .7430 .1370 2319.

2 3.000 .7300 .7168 . 1323E-01 3369.

3 4.000 .6900 .6919 -.1866E-02 3771.

4 5.000 .6400 .6682 -.2820E-01 4383.

5 6.000 .6000 .6457 -.4569E-01 4987.

6 8.000 .5700 .6039 -.3394E-01 5526.

7 10.00 .5500 .5661 -.1614E-01 5935.

8 12.00 .5300 .5319 -.1899E-02 6392.

9 14.00 .5100 .5008 .9164E-02 6903.

10 16.00 .4700 .4726 -.2625E-02 8128.

11 19.00 .4500 .4350 .1498E-01 8866.

12 22.00 .4200 .4023 .1767E-01 .1018E+05

13 25.00 .3500 .3738 -.2380E-01 .1466E+05

14 30.00 .3800 .3339 .4613E-01 .1243E+05

15 40.00 .2900 .2750 .1501E-01 .2135E+05

16 50.00 .2100 .2344 -.2440E-01 .4071E+05

17 70.00 .1800 .1821 -.2135E-02 .5542E+05

18 80.00 .1800 .1638 .1619E-01 .5542E+05

19 90.00 .1500 .1484 .1569E-02 .7980E+05

20 100.0 .1400 .1351 .4858E-02 .9161E+05

21 110.0 .1200 .1234 -.3418E-02 .1247E+06

22 120.0 .1100 .1129 -.2928E-02 .1484E+06

23 140.0 .9000E-01 .9484E-01 -.4845E-02 .2217E+06

24 160.0 .8000E-01 .7982E-01 .1843E-03 .2805E+06

25 180.0 .7000E-01 .6722E-01 .2779E-02 .3664E+06
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— C. WLS Estimation Summary (Subject 15)

Model file description: Insert Model File description

Weighting Information

Option for Y( 1): 2 with (1.000 ,.2360E-01) and (10.00 ,.2360 )

Convergence achieved 

Number of iterations: 110

Number of function calls: 431

Estimator criterion value: 137.081

Weighted

Output R-squared Sum of Squares Sum of Squares

Y( 1) .970 137.081 159240E-01

Initial Final

Parameter Value Estimate CV(%) Confidence interval (95%)

K12 .3700E-01 . 1737E-01 6.576 [ .1497E-01, . 1977E-01 ]

K21 .1400E-01 .5103E-02 35.02 [ .1349E-02, .8857E-02 ]

K02 .1200E-01 .1174E-01 26.82 [ .5126E-02, .1836E-01 ]

IC (1) .8000 .5472 1.542 [ .5295 , .5649 ]

IC( 2) .0000 Fixed

164



D. Estimated Model Prediction and Data Summary (Subject 15)

Y( 1)

Obs.Num. Time Data Model Est. Residual Weight

1 2.000 .6000 .5286 .7140E-01 4987.

2 6.000 .5500 .4938 .5618E-01 5935.

3 8.000 .4200 .4776 -.5755E-01 .1018E+05

4 10.00 .4100 .4620 -.5198E-01 .1068E+05

5 12.00 .4600 .4471 .1292E-01 8485.

6 14.00 .4200 .4328 - . 1281E-01 .1018E+05

7 16.00 .4400 .4191 .2086E-01 9274.

8 19.00 .4100 .3997 .1029E-01 .1068E+05

9 22.00 .4000 .3815 . 1853E-01 .1122E+05

10 25.00 .3600 .3644 -.4353E-02 .1385E+05

11 30.00 .3300 .3381 -.8079E-02 .1649E+05

12 40.00 .2900 .2929 -.2885E-02 .2135E+05

13 50.00 .2700 .2557 .1426E-01 .2463E+05

14 60.00 .2300 .2249 .5057E-02 .3394E+05

15 70.00 .2000 .1992 .8071E-03 .4489E+05

16 80.00 .1800 .1775 .2531E-02 .5542E+05

17 90.00 .1500 .1590 -.8980E-02 .7980E+05

18 100.0 .1400 .1431 -.3107E-02 .9161E+05

19 112.0 .1300 .1268 .3162E-02 .1062E+06

20 120.0 .1200 .1174 .2625E-02 .1247E+06

21 160.0 .8000E-01 .8176E-01 -.1764E-02 .2805E+06

22 180.0 .7000E-01 .6902E-01 .9764E-03 .3664E+06
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— C. WLS Estimation Summary (Subject 16)

Model file description: Insert Model File description 

Weighting Information

Option for Y( 1): 2 with (1.000 „2360E-01) and (10.00 ,.2360 )

Convergence achieved 

Number of iterations: 90

Number of function calls: 361 

Estimator criterion value : 157.671

Weighted

Output R-squared Sum of Squares Sum of Squares

Y( 1) .966 157.671 .477340E-01

Initial Final

Parameter Value Estimate CV(%) Confidence interval (95%)

K12 .1700E-01 .421 IE-01 12.44 [ .3125E-01, .5297E-01 ]

K21 .5000E-02 .5452E-01 16.68 [ .3566E-01, .7338E-01]

K02 .1170E-01 .2517E-01 5.071 [ .2252E-01, .2781E-01 ]

IC (1) .5470 .8870 2.282 [ .8450 , .9290 ]

IC( 2) .0000 Fixed
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— D. Estimated Model Prediction and Data Summary (Subject 16)

Y( 1)

Obs.Num. Time Data Model Est. Residual Weight

1 2.000 .9700 .8190 .1510 1908.

2 3.000 .6700 .7895 -.1195 4000.

3 4.000 .8200 .7626 .5737E-01 2670.

4 5.000 .6900 .7381 -.4807E-01 3771.

5 6.000 .7700 .7156 .5442E-01 3028.

6 8.000 .6900 .6760 . 1399E-01 3771.

7 10.00 .6400 .6425 -.2456E-02 4383.

8 12.00 .6300 .6137 .1626E-01 4524.

9 14.00 .5900 .5889 .1077E-02 5158.

10 16.00 .5700 .5673 .2744E-02 5526.

11 19.00 .5500 .5394 .1062E-01 5935.

12 22.00 .5000 .5157 -.1574E-01 7182.

13 25.00 .4900 .4952 -.521 IE-02 7478.

14 30.00 .4600 .4659 -.5889E-02 8485.

15 40.00 .4100 .4183 -.8300E-02 .1068E+05

16 50.00 .3700 .3788 -.8813E-02 .1312E+05

17 60.00 .3400 .3441 -.4122E-02 .1553E+05

18 70.00 .3400 .3130 .2704E-01 .1553E+05

19 80.00 .2800 .2847 -.4727E-02 .2290E+05

20 90.00 .2700 .2591 .1092E-01 .2463E+05

21 100.0 .2400 .2358 .4244E-02 .3117E+05

22 110.0 .2100 .2145 -.4536E-02 .4071E+05

23 120.0 .1900 .1952 -.5227E-02 .4974E+05

24 140.0 .1700 .1617 .8333E-02 .6213E+05

25 160.0 .1300 .1339 -.3876E-02 .1062E+06

26 180.0 .1100 .1109 -.8626E-03 .1484E+06
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— C. WLS Estimation Summary (Subject 17)

Model file description: Insert Model File description 

Weighting Information

Option for Y( 1): 2 with (1.000 „2360E-01) and (10.00 ,.2360 )

Convergence achieved 

Number o f iterations : 61

Number of function calls: 250 

Estimator criterion value: 96.0671

Weighted

Output R-squared Sum of Squares Sum of Squares

Y( 1) .996 96.0671 .212993E-02

Parameter

Initial

Value

Final

Estimate CV(%) Confidence interval (95%)

K12 .4200E-01 .3042E-01 4.066 [ .2786E-01, .3299E-01 ]

K21 .5450E-01 .1008E-01 11.67 [ .7640E-02, .1252E-01 ]

K02 .2500E-01 .1475E-01 6.666 [ .1271E-01, .1679E-01 ]

IC (1) .8870 .4981 1.283 [ .4848 , .5113 ]

IC( 2) .0000 Fixed
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— D. Estimated Model Prediction and Data Summary (Subject 17)

Y( 1)

Obs.Num. Time Data Model Est. Residual Weight

1 2.000 .4800 .4690 .1104E-01 7793.

2 3.000 .4500 .4553 -.5262E-02 8866.

3 4.000 .4600 .4421 .1790E-01 8485.

4 5.000 .4500 .4295 .2055E-01 8866.

5 6.000 .4300 .4173 .1270E-01 9710.

6 8.000 .3900 .3944 -.4378E-02 .1180E+05

7 10.00 .3500 .3732 -.2319E-01 .1466E+05

8 12.00 .3500 .3536 -.3579E-02 .1466E+05

9 14.00 .3300 .3354 -.5422E-02 .1649E+05

10 16.00 .3100 .3186 -.8594E-02 .1868E+05

11 19.00 .2900 .2956 -.5607E-02 .2135E+05

12 23.00 .2700 .2687 .1344E-02 .2463E+05

13 25.00 .2500 .2566 -.6574E-02 .2873E+05

14 30.00 .2300 .2298 .1522E-03 .3394E+05

15 40.00 .1900 .1882 .1800E-02 .4974E+05

16 50.00 .1600 .1578 .2233E-02 .7014E+05

17 60.00 .1500 .1348 .1517E-01 .7980E+05

18 70.00 .1200 .1170 .2996E-02 .1247E+06

19 80.00 .1000 .1027 -.2724E-02 .1795E+06

20 90.00 .9000E-01 .9098E-01 -.9772E-03 .2217E+06

21 100.0 .8000E-01 .8109E-01 -.1092E-02 .2805E+06

22 110.0 .7000E-01 .7262E-01 -.2617E-02 .3664E+06

23 120.0 .7000E-01 .6525E-01 .4754E-02 .3664E+06

24 140.0 .5000E-01 .5301E-01 -.3013E-02 .7182E+06

25 160.0 .4000E-01 .4329E-01 -.3285E-02 .1122E+07

26 180.0 .4000E-01 .3543E-01 .4570E-02 .1122E+07
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— C. WLS Estimation Summary—

Data file name: aifin.dat

Model file description: Insert Model File description 

Weighting Information

Option for Y( 1): 2 with (1.000 ,.2360E-01) and (10.00 ,.2360 )

Convergence achieved 

Number of iterations: 80

Number of function calls: 318 

Estimator criterion value: 3.07989

III. The following output are the parameter estimation and the original and model

estimated data in stochastic model for the concentration of glucose tracer in blood

plasma in total subjects.

Weighted

Output R-squared Sum of Squares Sum of Squares

Y( 1) 1.00 3.07989 .265534E-03

Initial Final

Parameter Value Estimate CV(%) Confidence interval (95%)

A .1000 .3495 3.202 [ .3271 , .3718 ]

B .1000 .6005E-01 5.285 [ .5370E-01, .6639E-01 ]

C .1000 .3308 2.182 [ .3163 , .3452 ]

D .1000 .1023E-01 1.564 [ .9909E-02, .1055E-01 ]

A B C D

A 1.00

B .15 1.00

C -.29 .82 1.00

D -.31 .76 .98 1.00
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— D. Estimated Model Prediction and Data Summary —

Y( 1)

Obs.Num. Time Data Model Est. Residual Weight

1 .0000 .6932 .6802 .1298E-01 3736.

2 4.000 .5929 .5923 .5523E-03 5108.

3 8.000 .5167 .5209 -.4235E-02 6725.

4 12.00 .4575 .4626 -.5062E-02 8578.

5 16.00 .4102 .4145 -.4334E-02 .1067E+05

6 20.00 .3717 .3747 -.3027E-02 .1300E+05

7 24.00 .3399 .3415 -.1566E-02 .1554E+05

8 28.00 .3131 .3134 -.3329E-03 .1832E+05

9 32.00 .2901 .2896 .5138E-03 .2133E+05

10 36.00 .2703 .2691 .1196E-02 .2457E+05

11 40.00 .2529 .2513 .1563E-02 .2807E+05

12 44.00 .2375 .2358 .1727E-02 .3183E+05

13 48.00 .2238 .2220 .1796E-02 .3585E+05

14 52.00 .2113 .2097 .1591E-02 .4021E+05

15 56.00 .2001 .1986 .1468E-02 .4484E+05

16 60.00 .1898 .1886 .1231E-02 .4984E+05

17 64.00 .1804 .1794 .1043E-02 .5517E+05

18 68.00 .1716 .1709 .7324E-03 .6097E+05

19 72.00 .1635 .1630 .5043E-03 .6716E+05

20 76.00 .1559 .1557 .2425E-03 .7387E+05

21 80.00 .1488 .1488 .1489E-04 .8109E+05

22 84.00 .1422 .1423 123 IE-03 .8879E+05

23 88.00 .1360 .1362 -.2263E-03 .9707E+05

24 92.00 .1301 .1305 -.3574E-03 .1061E+06

25 96.00 .1245 .1250 -.4853E-03 .1158E+06

26 100.0 .1192 .1198 -.5843E-03 .1264E+06
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27 104.0 .1142 .1148 -.6324E-03 • 1377E+06

28 108.0 .1095 .1101 -.61 lOE-03 • 1497E+06

29 112.0 .1050 .1056 -.6039E-03 ■ 1629E+06

30 116.0 .1007 .1013 -.5973E-03 • 1771E+06

31 120.0 .9660E-01 •9718E-01 -.5789E-03 .1924E+06

32 124.0 •9270E-01 •9324E-01 -.5379E-03 •2089E+06

33 128.0 .8900E-01 •8946E-01 -.4644E-03 ■2267E+06

34 132.0 .8540E-01 ■8585E-01 -.4498E-03 ■2462E+06

35 136.0 •8200E-01 •8239E-01 -.3860E-03 ■2670E+06

36 140.0 •7880E-01 •7907E-01 -.2658E-03 •2892E+06

37 144.0 •7570E-01 •7588E-01 -.1824E-03 •3133E+06

38 148.0 •7270E-01 •7283E-01 -.1295E-03 .3397E+06

39 152.0 ■6990E-01 •6990E-01 -.1222E-05 ■3675E+06

40 156.0 •6710E-01 •6709E-01 .7834E-05 •3988E+06

41 160.0 .6450E-01 •6440E-01 • 1029E-03 ■4316E+06

42 164.0 •6200E-01 .618 IE-01 • 1887E-03 ■4671E+06

43 168.0 ■5960E-01 •5933E-01 ■2701E-03 .5055E+06

44 172.0 •5730E-01 •5695E-01 •3512E-03 ■5468E+06

45 176.0 •5510E-01 .5466E-01 •4364E-03 .5914E+06

46 180.0 ■5300E-01 .5247E-01 •5295E-03 ■6392E+06
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IV . The following output are the parameter estimation and the original and model

estimated data in stochastic model for the concentration of glucose tracer in blood

plasma in nonobese subjects.

— C. WLS Estimation Summary—

Data file name: c:\rod\fin.dat

Model file description: Insert Model File description 

Weighting Information

Option for Y( 1): 2 with (1.000 ,.2360E-01) and (10.00 ,.2360 ) 

Convergence achieved 

Number o f iterations: 148

Number of function calls: 572 

Estimator criterion value: 3.47977

Weighted

Output R-squared Sum of Squares Sum of Squares

Y( 1) 1.00 3.47977 .271216E-03

Initial Final

Parameter Value Estimate CV(%) Confidence interval (95%)

A .1000 .3744 2.890 [ .3527 , .3960 ]

B .1000 .5955E-01 4.644 [ .5402E-01, .6508E-01]

C .1000 .3024 2.285 [ .2886 , .3163 ]

D .1000 .1098E-01 1.513 [ .1065E-01, .1131E-01 ]

A B C D

A 1.00

B .16 1.00

C -.27 .82 1.00

D -.29 .77 .98 1.00
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— D. Estimated Model Prediction and Data Summary —

Y( 1) 

Obs.Num. Time Data Model Est. Residual Weight

1 .0000 .6902 .6768 .1340E-01 3769.

2 4.000 .5856 .5845 . 1144E-02 5236.

3 8.000 .5058 .5095 -.3691E-02 7018.

4 12.00 .4433 .4483 -.5014E-02 9137.

5 16.00 .3938 .3981 -.4293E-02 .1158E+05

6 20.00 .3534 .3566 -.3192E-02 .1438E+05

7 24.00 .3202 .3220 -.1846E-02 .1751E+05

8 28.00 .2924 .2931 -.6590E-03 .2100E+05

9 32.00 .2688 .2685 .2707E-03 .2485E+05

10 36.00 .2484 .2476 .8158E-03 .2910E+05

11 40.00 .2308 .2295 .1267E-02 .3371E+05

12 44.00 .2153 .2138 .1470E-02 .3873E+05

13 48.00 .2016 .2000 .1561E-02 .4418E+05

14 52.00 .1893 .1878 .1483E-02 .5010E+05

15 56.00 .1783 .1769 .141 IE-02 .5648E+05

16 60.00 .1686 .1670 .1563E-02 .6316E+05

17 64.00 .1591 .1581 .1015E-02 .7093E+05

18 68.00 .1507 .1499 .8052E-03 .7906E+05

19 72.00 .1429 .1424 .5472E-03 .8792E+05

20 76.00 .1357 .1354 .3315E-03 .9750E+05

21 80.00 .1290 .1289 .1315E-03 .1079E+06

22 84.00 .1227 .1228 -.9278E-04 .1193E+06

23 88.00 .1169 .1171 -.1925E-03 .1314E+06

24 92.00 .1114 .1117 -.3272E-03 .1447E+06

25 96.00 .1063 .1067 -.3635E-03 .1589E+06

26 100.0 .1014 .1019 -.4733E-03 .1746E+06

27 104.0 .9680E-01 .9733E-01 -.5330E-03 .1916E+06

28 108.0 .9250E-01 .9302E-01 -.5224E-03 .2098E+06
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29 112.0 ■ 8830E-01 .8892E-01 -.6245E-03 •2303E+06

30 116.0 .8440E-01 .8502E-01 -.6242E-03 ■2521E+06

31 120.0 ■ 8080E-01 .8131E-01 -.5084E-03 .2750E+06

32 124.0 .7730E-01 .7777E-01 -.4657E-03 •3005E+06

33 128.0 ■7390E-01 .7439E-01 -.4857E-03 .3288E+06

34 132.0 •7090E-01 .7116E-01 -.2592E-03 .3572E+06

35 136.0 •6770E-01 .6808E-01 -.3780E-03 .3917E+06

36 140.0 ■6490E-01 .6513E-01 -.2342E-03 •4263E+06

37 144.0 .6210E-01 .6232E-01 -.2210E-03 .4656E+06

38 148.0 .5950E-01 •5963E-01 -.1318E-03 •5072E+06

39 152.0 .5700E-01 •5706E-01 -.6073E-04 •5526E+06

40 156.0 ■5460E-01 .5460E-01 -.2074E-05 •6023E+06

41 160.0 •5230E-01 .5225E-01 .4939E-04 •6564E+06

42 164.0 ■5020E-01 •5000E-01 • 1986E-03 ■7125E+06

43 168.0 .48 lOE-01 .4785E-01 •2502E-03 ■7760E+06

44 172.0 •4610E-01 •4579E-01 .3086E-03 .8448E+06

45 176.0 •4420E-01 •4382E-01 •3780E-03 .9190E+06

46 180.0 .4240E-01 ■4194E-01 .4623E-03 •9987E+06
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— C. WLS Estimation Summary—

Data file name: a:finobs.dat

Model file description: Insert Model File description 

Weighting Information

Option for Y( 1): 2 with (1.000 „2360E-01) and (10.00 „2360 )

Convergence achieved 

Number of iterations: 135

Number of function calls: 519

Estimator criterion value: 4.37465

V. The following output are the parameter estimation and the original and model

estimated data in stochastic model for the concentration of glucose tracer in blood

plasma in obese subjects.

Weighted

Output R-squared Sum of Squares Sum of Squares

Y( 1) 1.00 4.37465 .363254E-03

Initial Final

Parameter Value Estimate CV(%) Confidence interval (95%)

A .1000 .3149 3.708 [ .2915 , .3383 ]

B .1000 .6110E-01 6.293 [ .5341E-01, .6879E-01 ]

C .1000 .3691 2.063 [ .3539 , .3844 ]

D .1000 .9625E-02 1.590 [ .9319E-02, .9931E-02 ]

A B C D

A 1.00

B .13 1.00

C -.32 .81 1.00

D -.33 .75 .97 1.00
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— D. Estimated Model Prediction and Data Summary —

Y( 1)

Obs.Num. Time Data Model Est. Residual Weight

1 .0000 .6988 .6840 .1477E-01 3677.

2 4.000 .6004 .6018 -.1405E-02 4981.

3 8.000 .5295 .5349 -.5416E-02 6404.

4 12.00 .4741 .4801 -.6028E-02 7988.

5 16.00 .4299 .4349 -.5009E-02 9715.

6 20.00 .3939 .3973 -.3371E-02 .1157E+05

7 24.00 .3679 .3657 .2246E-02 .1327E+05

8 28.00 .3384 .3388 -.4336E-03 .1568E+-05

9 32.00 .3163 .3158 .4529E-03 .1795E+05

10 36.00 .2973 .2959 .1362E-02 .2031E+05

11 40.00 .2801 .2785 .1588E-02 .2288E+05

12 44.00 .2650 .2631 .1902E-02 .2557E+05

13 48.00 .2513 .2493 .1972E-02 .2843E+05

14 52.00 .2387 .2369 .1790E-02 .3151E+05

15 56.00 .2271 .2256 .1489E-02 .3481E+05

16 60.00 .2165 .2152 .1251E-02 .3831E+05

17 64.00 .2067 .2057 . 1022E-02 .4202E+05

18 68.00 .1975 .1968 .7197E-03 .4603E+05

19 72.00 .1890 .1885 .5361E-03 .5026E+05

20 76.00 .1810 .1807 .3466E-03 .5480E+05

21 80.00 .1734 .1733 .1119E-03 .5971E+05

22 84.00 .1662 .1663 -.1186E-03 .6500E+05

23 88.00 .1595 .1597 -.2044E-03 .7058E+05

24 92.00 .1531 .1534 -.3122E-03 .7660E+05

25 96.00 .1470 .1474 -.4142E-03 .8309E+05

26 100.0 .1412 .1417 -.4869E-03 .9005E+05
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27 104.0 .1357 .1362 -.5106E-03 .9750E+05

28 108.0 .1305 .1310 -.4682E-03 .1054E+06

29 112.0 .1226 .1259 -.3395E-02 .1195E+06

30 116.0 .1206 .1211 -.5284E-03 .1234E+06

31 120.0 .1160 .1165 -.5066E-03 .1334E+06

32 124.0 .1116 .1121 -.4696E-03 .1442E+06

33 128.0 .1075 .1078 -.3081E-03 .1554E+06

34 132.0 .1035 .1037 -.2139E-03 .1676E+06

35 136.0 •9960E-01 •9978E-01 -.1792E-03 .1810E+06

36 140.0 .9590E-01 •9600E-01 -.9691E-04 .1952E+06

37 144.0 ■9220E-01 .9236E-01 -.1605E-03 .2112E+06

38 148.0 .8880E-01 •8886E-01 -.6378E-04 .2277E+06

39 152.0 •8540E-01 .8550E-01 -.lOlOE-03 .2462E+06

40 156.0 .8220E-01 .8227E-01 -.6661E-04 .2657E+06

41 160.0 ■7930E-01 .7916E-01 .1445E-03 .2855E+06

42 164.0 ■7640E-01 .7616E-01 .2372E-03 •3076E+06

43 168.0 .7350E-01 •7328E-01 ■2161E-03 .3324E+06

44 172.0 .71OOE-01 .7051E-01 .4858E-03 .3562E+06

45 176.0 .6840E-01 •6785E-01 .5505E-03 .3838E+06

46 180.0 •6590E-01 .6529E-01 .6142E-03 •4134E+06
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V I The following output are the parameter estimation and the original and model 

estimated data in mean model for the concentration of glucose tracer in blood plasma 

for total subjects. This model was used for calculation of the statistical moments for 

the random processes (Chapter 6).

— C. WLS Estimation Summary— 

weighting Information

Option for Y( 1): 2 with (1.000 ,.2360E-01) and (10.00 ,.2360 )

Convergence achieved 

Number o f iterations: 52

Number of function calls: 191

Estimator criterion value: 4.92188

Weighted

Output R-squared Sum of Squares Sum of Squares

Y( 1) .999 4.92188 .599067E-03

Initial Final

Parameter Value ]Estimate CV(%) Confidence interval (95%)

A .3000 .3438 4.113 [ .3140 , .3735 ]

B T000E-01 .4577E-01 8.846 [ .3726E-01, .5428E-01]

C .3000 .2907 5.740 [ .2556 , .3257 ]

D TOOOE-Ol .9245E-02 4.200 [ .8430E-02, .1006E-01]

A B C D

A 1.00

B -.24 1.00

C -.60 .90 1.00

D -.63 .84 .98 1.00
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— D. Estimated Model Prediction and Data Summary —

Y( 1)

Obs.Num. Time Data Model Est. Residual Weight

1 6.000

2 8.000

3 10.00

4 12.00

5 14.00

6 16.00

7 19.00

8 22.00

9 25.00

10 30.00

11 40.00

12 50.00

13 60.00

.5560 .5362

.4990 .5083

.4760 .4825

.4520 .4586

.4380 .4365

.4160 .4160

.3870 .3879

.3650 .3628

.3390 .3402

.3110 .3073

.2570 .2559

.2170 .2179

.1880 .1890

.1981E-01 5808.

-.9303E-02 7211.

-.6507E-02 7924.

-.6626E-02 8788.

.1502E-02 9359.

.2404E-04 .1038E+05 

- .9135E-03 .1199E+05 

.2241E-02 .1348E+05 

-.1159E-02 .1562E+05 

.3655E-02 .1856E+05 

.1087E-02 .2718E+05 

-.9434E-03 .3813E+05 

-.9720E-03 .5080E+05
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14 70.00

15 80.00

16 90.00

17 100.0

18 110.0

19 120.0

20 140.0

21 160.0

22 180.0

.1680 .1661

.1460 .1476

.1320 .1321

.1200 .1188

.1070 .1074

.9700E-01 .9726E-01

.7980E-01 .8023E-01

•6700E-01 .6644E-01

•5500E-01 .5513E-01

.1869E-02 .6361E+05 

-.1566E-02 .8423E+05 

-.7141E-04 .1030E+06 

.1150E-02 .1247E+06 

-.3678E-03 .1568E+06 

-.2622E-03 .1908E+06

-.4327E-03 .2819E+06 

•5563E-03 .4000E+06 

-.1290E-03 .5935E+06
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Appendix B

The NAG library programs and output
I. The following is the program which was used to calculate the integrations for the 

mean concentration of glucose tracer in blood plasma in total subjects (section 5.6).

* Program D01FCF

* NAG Mark 14 Revised. 1989.

* .. Parameters ..

INTEGER NDIM, MAXPTS, LENWRK

PARAMETER (NDIM=4,MAXPTS=40000*NDIM,LENWRK=(NDIM+2)

+ *(1+MAXPTS/(2**NDIM+2*NDIM*NDIM+2*NDIM+1)))

INTEGER NIN, NOUT

PARAMETER (NIN=5,NOUT=6)

* .. Local Scalars ..

DOUBLE PRECISION ACC, EPS, FINVAL 

INTEGER IF AIL, MINPTSJI

* .. Local Arrays ..

DOUBLE PRECISION A (NDIM), B(NDIM),

WRKSTR(LENWRK),A 1 (NDIM,NDIM),

+ TT(180),PI1,PI,SDET, MU(NDIM), T, SIGMA(NDIM), FAC,

+ INFP, INFM

* .. External Functions ..

DOUBLE PRECISION FUNCTN 

EXTERNAL FUNCTN

* .. External Subroutines ..

EXTERNAL D01FCF

COMMON A l, MU, SIGMA, T, FAC

* .. Executable Statements ..

WRITE (NOUT,*) 'D01FCF Example Program Results'
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INFP=3.32915D0 

INFM=-3.32915D0 

PI=3.141592653579D0 

PIl=(2.0D0*PI)**(-2)

SDET=0.281582295285140D0 

FAC=PI1/SDET

MU( 1 )=-3.2963 893649113120D0 

MU(2)=-4.163 966483 092740D0 

MU(3)=-4.123128262102940D0 

MU(4)=-0.377619552052800D0 

SIGMA(1)=0.40260338296610D0 

SIGMA(2)=0.823363712571080D0 

SIGMA(3)=0.352277693854120D0 

SIGMA(4)=0.170572963140060D0 

DO 4 i=l,NDIM

4 B(i)=INFP

DO 5 i=l,NDIM

5 A(i)=INFM

A1(1,1)=3.678329602866370D0 

A1(1,2)=-3.376487907477970D0 

A l (1,3)=1.712741391306840D0 

A1(1,4)=-1.290497553369580D0 

A1(2,1)=A1(1,2)

Al(2,2)=6.445315525926440D0 

Al(2,3)=-4.038580729185090D0 

A1(2,4)=0.184884962273850D0 

A1(3,1)=A1(1,3)

A1(3,2)=A1(2,3)

A l (3,3)=3.640336002419940D0 

A1(3,4)=-0.023284412621930D0
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A1(4,1)=A1(1,4)

A1(4,2)=A1(2,4)

A1(4,3)=A1(3,4)

A l(4,4)=l .776226681738680D0 

DO 3 11=1,181,2 

T=DFLOAT(II-l)

EPS=0.0001D0

MINPTS=0

IFAIL=1

CALL DO 1 FCF(NDIM,A,B,MINPTS,MAXPTS,FUNCTN,EPS,ACC,LENWRK,

+ WRKSTR, FINVALJFAIL)
*

TT (II)-F IN V AL

IF (IFAIL.EQ.O.OR.IFAIL.EQ.2) THEN 

WRITE (NOUT,99996) T,TT(II)

ELSE

WRITE (NOUT,99999) 'IFAIL =', IFAIL 

WRITE (NOUT,*)

END IF 

3 CONTINUE
*

99999 FORMAT (IX,A,15)

99996 FORMAT (F3.0,2X,F8.4)
*

END

DOUBLE PRECISION FUNCTION FUNCTN(NDIM,Z)

* .. Scalar Arguments ..

INTEGER NDIM

* .. Array Arguments ..

DOUBLE PRECISION Z(NDIM),X(4), Y(4), X I, SUM, A 1(4,4),
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+ A,B,P,Q, LAMDAl, LAMDA2, MU(4),SIGMA(4),T, FAC 

COMMON A l, MU, SIGMA, T, FAC 

.. Intrinsic Functions ..

INTRINSIC DEXP, DSQRT 

.. Executable Statements ..

DO 2 I=1,NDIM

2 Y(I)=Z(I)* SIGMA(I)+MU(I)

DO 3 I=1,NDIM

3 X(I)=DEXP(Y(I))

P=X( 1 )+X(2)+X(3)

Q=DSQRT(P*P-4.0D0*X(1)*X(3))

LAMDAl =0.5D0*(P-Q)

L AMD A2=0.5 DO * (P+Q)

A=0.5D0+0.5D0*(-X(1)+X(2)+X(3))/Q

B=1.0D0-A

X 1 =( A* DEXP(-L AMD A 1 * T)+B * DEXP(-L AMD A2 * T)) * X(4) 

SUM=0.0D0 

DO 1 I=1,NDIM 

DO 1 J=1,NDIM 

1 SUM=SUM+Z(I)*Z(J)*A1(I,J)

FUNCTN=FAC*X1 *DEXP(-0.5D0*SUM)

RETURN

END
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II. The following is the program for the calculation of the S. E. of the concentration of 

glucose tracer in blood plasma in total subjects (section 5.6.5).

* Program DO 1FCF

* NAG Mark 14 Revised. 1989.

* .. Parameters ..

INTEGER NDIM, MAXPTS, LENWRK

PARAMETER (NDIM=4,MAXPTS=40000*NDIM,LENWRK=(NDIM+2)

+ *(1+MAXPTS/(2**NDIM+2*NDIM*NDIM+2*NDIM+1)))

INTEGER NIN, NOUT

PARAMETER (NIN=5,NOUT=6)

* .. Local Scalars ..

DOUBLE PRECISION ACC, EPS, FINVAL 

INTEGER IFAIL, MINPTS,II

DIMENSION AX 1(91)

* .. Local Arrays ..

DOUBLE PRECISION A (NDIM), B(NDIM),

WRKSTR(LENWRK),A1 (NDIM,NDIM),

+ TT( 180),PI 1 ,PI,SDET, MU(NDIM), T, SIGMA(NDIM), FAC, INFP, INFM,

+ AX1 ,TX1

* .. External Functions ..

DOUBLE PRECISION FUNCTN 

EXTERNAL FUNCTN

* .. External Subroutines ..

EXTERNAL D01FCF

COMMON A l, MU, SIGMA, T, FAC , TX1

* .. Executable Statements ..

WRITE (NOUT,*) 'D01FCF Example Program Results'

INFP=3.32915D0

INFM=-3.32915D0

PI=3.141592653579D0
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PI1=(2.0D0*PI)**(-2)

SDET=0.281582295285140D0 

FAC=PI1/SDET

M U(l)=-3.2963893649113120D0 

MU(2)=-4.163966483092740D0 

MU(3)=-4.123128262102940D0 

MU(4)=-0.377619552052800D0 

SIGMA(1)=0.40260338296610D0 

SIGMA(2)=0.823363712571080D0 

SIGMA(3)=0.3 52277693 854120D0 

SIGMA(4)=0.170572963140060D0 

DO 4 I=1,NDIM

4 B (IH N FP

DO 5 I=1,NDIM

5 A(I)=INFM

A1(1,1)=3.678329602866370D0

A1(1,2)=-3.376487907477970D0

A l (1,3)=1.712741391306840D0

A1(1,4)=-1.290497553369580D0

A1(2,1)=A1(1,2)

A1(2,2)=6.445315525926440D0

Al(2,3)=-4.038580729185090D0

A1(2,4)=0.184884962273850D0

A1(3,1)=A1(1,3)

A1(3,2)=A1(2,3)

A l (3,3)=3.640336002419940D0 

A 1 (3,4)=-0.023284412621930D0 

A1(4,1)=A1(1,4)

A1(4,2)=A1(2,4)

A1(4,3)=A1(3,4)
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A l(4,4)=l .776226681738680D0 

READ (*,*) (AX1(I),I=1,91)

DO 3 11=1,181,2 

TX 1 =AX 1 ((11+1 )/2)

T=DFLOAT(II-l)

EPS=0.0001D0

MINPTS=0

IFAIL=1

CALL D01FCF(NDIM,A,B,MINPTS,MAXPTS,FUNCTN,EPS,ACC,LENWRK,

+ WRKSTR, FINVAL,IFAIL)
*

TT (II)=FINV AL

IF (IFAIL.EQ.O.OR.IFAIL.EQ.2) THEN 

WRITE (NOUT,99996) T,TT(II),(II+l)/2, TX1 

ELSE

WRITE (NOUT,99999) 'IFAIL =', IFAIL 

WRITE (NOUT,*)

END IF 

3 CONTINUE
*

99999 FORMAT (IX,A,15)

99996 FORMAT (F8.2,2x,F8.6,I3.1,F6.4)
*

END

DOUBLE PRECISION FUNCTION FUNCTN(NDIM,Z)

* .. Scalar Arguments ..

INTEGER NDIM

* .. Array Arguments ..

DOUBLE PRECISION Z(NDIM),X(4), Y(4), X I, SUM, A 1(4,4),
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+ A,B,P,Q, LAMDAl, LAMDA2, MU(4),SIGMA(4),T, FAC, TX1 

COMMON A l, MU, SIGMA, T, FAC ,TX1 

.. Intrinsic Functions ..

INTRINSIC DEXP, DSQRT 

.. Executable Statements ..

DO 2 I=1,NDIM

2 Y(I)=Z(I)* SIGMA(I)+MU(I)

DO 3 I=1,NDIM

3 X(I)=DEXP(Y(I))

P=X( 1 )+X(2)+X(3)

Q=DSQRT(P*P-4.0D0*X(1)*X(3))

L AMD A 1 =0.5 DO * (P-Q)

L AMD A2=0. 5 DO * (P+Q)

A=0.5D0+0.5D0*(-X(1)+X(2)+X(3))/Q

B=1.0D0-A

X 1 =( A* DEXP(-L AMD A 1 * T)+B * DEXP(-L AMD A2 * T)) * X(4) 

SUM=0.0D0 

DO 1 I=1,NDIM 

DO 1 J=1,NDIM 

1 SUM=SUM+Z(I)*Z(J)*A1(I,J) 

FUNCTN=FAC*((X1-TX1)**2)*DEXP(-0.5D0*SUM)

RETURN

END
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III. The following shows the output of the above program (II) for the even time points. 

T TT(II) (II+l)/2 TX1

0.00 .013999 1 .6932

2.00 .009444 2 .6394

4.00 .006895 3 .5929

6.00 .005440 4 .5522

8.00 .004598 5 .5167

10.00 .004104 6 .4853

12.00 .003812 7 .4575

14.00 .003634 8 .4325

16.00 .003527 9 .4102

18.00 .003455 10 .3900

20.00 .003407 11 .3717

22.00 .003370 12 .3551

24.00 .003326 13 .3399

26.00 .003304 14 .3259

28.00 .003269 15 .3131

30.00 .003234 16 .3012

32.00 .003193 17 .2901

34.00 .003151 18 .2799

36.00 .003104 19 .2703

38.00 .003056 20 .2613

40.00 .003004 21 .2529

42.00 .002950 22 .2450

44.00 .002894 23 .2375

46.00 .002836 24 .2305

48.00 .002777 25 .2238

50.00 .002715 26 .2174

52.00 .002655 27 .2113

54.00 .002593 28 .2056

56.00 .002530 29 .2001
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58.00 .002433 30 .1949

60.00 .002407 31 .1898

62.00 .002342 32 .1850

64.00 .002282 33 .1804

66.00 .002220 34 .1759

68.00 .002160 35 .1716

70.00 .002103 36 .1675

72.00 .002043 37 .1635

74.00 .001985 38 .1596

76.00 .001928 39 .1559

78.00 .001877 40 .1523

80.00 .001818 41 .1488

82.00 .001765 42 .1454

84.00 .001712 43 .1422

86.00 .001662 44 .1390

88.00 .001612 45 .1360

90.00 .001564 46 .1330

92.00 .001518 47 .1301

94.00 .001473 48 .1273

96.00 .001429 49 .1245

98.00 .001386 50 .1218

100.00 .001345 51 .1192

102.00 .001304 52 .1167

104.00 .001264 53 .1142

106.00 .001226 54 .1118

108.00 .001189 55 .1095

110.00 .001153 56 .1072

112.00 .001118 57 .1050

114.00 .001084 58 .1028

116.00 .001052 59 .1007

118.00 .001020 60 .0986



120.00 .000990 61 .0966

122.00 .000960 62 .0946

124.00 .000931 63 .0927

126.00 .000903 64 .0908

128.00 .000873 65 .0890

130.00 .000851 66 .0872

132.00 .000824 67 .0854

134.00 .000800 68 .0837

136.00 .000776 69 .0820

138.00 .000755 70 .0804

140.00 .000731 71 .0788

142.00 .000710 72 .0772

144.00 .000690 73 .0757

146.00 .000669 74 .0742

148.00 .000649 75 .0727

150.00 .000630 76 .0713

152.00 .000612 77 .0699

154.00 .000594 78 .0685

156.00 .000577 79 .0671

158.00 .000560 80 .0658

160.00 .000544 81 .0645

162.00 .000528 82 .0633

164.00 .000513 83 .0620

166.00 .000498 84 .0608

168.00 .000484 85 .0596

170.00 .000471 86 .0585

172.00 .000457 87 .0573

174.00 .000444 88 .0562

176.00 .000432 89 .0551

178.00 .000420 90 .0541

180.00 .000408 91 .0530



IV. The following shows the program for the calculation of the mean concentration of 

glucose tracer in blood plasma in non-obese subjects (section 5.8).

* Program DO 1FCF 3/10/96

* NAG Mark 14 Revised. 1989.

* .. Parameters ..

INTEGER NDIM, MAXPTS, LENWRK

PARAMETER (NDIM=4,MAXPTS=20000*NDIM,LENWRK=(NDIM+2)

+ *( 1 +MAXPTS/(2**NDIM+2*NDIM*NDIM+2*NDIM+1)))

INTEGER NIN, NOUT

PARAMETER (NIN=5,NOUT=6)

* .. Local Scalars ..

DOUBLE PRECISION ACC, EPS, FINVAL 

INTEGER IFAIL, MINPTS,II

* .. Local Arrays ..

DOUBLE PRECISION A(NDIM), B(NDIM), 

WRKSTR(LENWRK),A 1 (NDIM,NDIM),

+ TT(180),PI 1 ,PI,SDET, MU(NDIM), T, SIGMA(NDIM), FAC,

+ INFP, INFM

* .. External Functions ..

DOUBLE PRECISION FUNCTN 

EXTERNAL FUNCTN

* .. External Subroutines ..

EXTERNAL D01FCF

COMMON A l, MU, SIGMA, T, FAC

* .. Executable Statements ..

WRITE (NOUT,*) 'D01FCF Example Program Results'

INFP=3.32915D0

INFM=-INFP

PI=3.141592653579D0

PIl=(2.0D0*PI)**(-2)
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SDET=0.28566290943791950D0

FAC=PI1/SDET

MU( 1 )=-3.2346628529019120D0 

MU(2)=-4.2296565424736860D0 

MU(3)=-4.0976398657231830D0 

MU(4)=-0.38311725362959460D0 

SIGMA(1)=0.37715729787689840D0 

SIGMA(2)=0.8147941929577250D0 

SIGMA(3)=0.4032571906708360D0 

SIGMA(4)=0.17702640335519240D0 

DO 4 I=1,NDIM

4 B(I)=INFP

DO 5 I=1,NDIM

5 A(I)=INFM 
*

A l ( 1,1 )=4.4447873714862840D0 

A 1 ( 1,2)=-4.90261643 83340780D0 

A l(l,3 )= 2 .7552011527496260D0 

A l(l,4)=-1 .6350184796303270D0 

A1(2,1)=A1(1,2)

A 1 (2,2)=8.000921427515181 ODO 

Al(2,3)=-5.1334443396841550D0 

A l (2,4)=1.3688849071546260D0 

A1(3,1)=A1(1,3)

A1(3,2)=A1(2,3) 

A1(3,3)=4.462544944432160D0 

A l (3,4)=-0.40348717985764560D0 

A1(4,1)=A1(1,4)

A1(4,2)=A1(2,4)

A1(4,3)=A1(3,4)

A l(4,4)=l .7373850488447230D0
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DO 3 11=1,181,2 

T=DFLOAT(II-l)

EPS=0.0001D0

MINPTS=0

IFAIL=1

CALL D01FCF(NDIM,A,B,MINPTS,MAXPTS,FUNCTN,EPS,ACC,LENWRK, 

+ WRKSTR, FINVALJFAIL)
*

TT(II)=FINVAL

IF (IFAIL.EQ.O.OR.IFAIL.EQ.2) THEN 

WRITE (NOUT,99996) T, TT(II)

ELSE

WRITE (NOUT,99999) 'IFAIL =', IF AIL 

WRITE (NOUT,*)

END IF 

3 CONTINUE
*

99999 FORMAT (IX,A,15)

99996 FORMAT (F6.0,2X, F6.4)
*

END

DOUBLE PRECISION FUNCTION FUNCTN(NDIM,Z)

* .. Scalar Arguments ..

INTEGER NDIM

* .. Array Arguments ..

DOUBLE PRECISION Z(NDIM),X(4), Y(4), X I, SUM, Al(4,4),

+ A,B,P,Q, LAMDA1, LAMDA2, MU(4),SIGMA(4),T, FAC 

COMMON A l, MU, SIGMA, T, FAC

* .. Intrinsic Functions ..

INTRINSIC DEXP, DSQRT
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.. Executable Statements ..

DO 2 I=1,NDIM

2 Y(I)=Z(I)*SIGMA(I)+MU(I)

DO 3 I=1,NDIM

3 X(I)=DEXP(Y(I))

P=X( 1 )+X(2)+X(3)

Q=DSQRT(P * P-4.0D0 * X( 1) * X(3))

LAMDA1=0.5D0*(P-Q)

LAMDA2=0.5D0*(P+Q)

A=0.5D0+0.5D0*(-X( 1 )+X(2)+X(3))/Q 

B=1.0D0-A

X 1 =( A * DEXP (-L AMD A 1 * T)+B * DEXP(-L AMD A2 * T)) * X(4) 

SUM=0.0D0 

DO 1 I=1,NDIM 

DO 1 J=1,NDIM 

1 SUM=SUM+Z(I) * Z( J)* A 1 (I, J)

FUNCTN=FAC*X1 *DEXP(-0.5D0*SUM)

RETURN

END
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V. The following shows the output of the above program (IV) for the even time points.

D01FCF Example Program Results

0.0 .6902

2.0 .6342

4.0 .5856

6.0 .5431

8.0 .5058

10.0 .4728

12.0 .4433

14.0 .4172

16.0 .3938

18.0 .3726

20.0 .3534

22.0 .3361

24.0 .3202

26.0 .3058

28.0 .2924

30.0 .2798

32.0 .2688

34.0 .2583

36.0 .2484

38.0 .2392

40.0 .2308

42.0 .2228

44.0 .2153

46.0 .2083

48.0 .2016

50.0 .1953

52.0 .1893
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54.0 .1837

56.0 .1783

58.0 .1732

60.0 .1686

62.0 .1636

64.0 .1591

66.0 .1548

68.0 .1507

70.0 .1467

72.0 .1429

74.0 .1392

76.0 .1357

78.0 .1323

80.0 .1290

82.0 .1258

84.0 .1227

86.0 .1198

88.0 .1169

90.0 .1141

92.0 .1114

94.0 .1088

96.0 .1063

98.0 .1038

100.0 .1014

102.0 .0991

104.0 .0968

106.0 .0946

108.0 .0925

110.0 .0904

112.0 .0883

114.0 .0864
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116.0 .0844

118.0 .0826

120.0 .0808

122.0 .0790

124.0 .0773

126.0 .0756

128.0 .0739

130.0 .0723

132.0 .0709

134.0 .0692

136.0 .0677

138.0 .0663

140.0 .0649

142.0 .0635

144.0 .0621

146.0 .0608

148.0 .0595

150.0 .0582

152.0 .0570

154.0 .0558

156.0 .0546

158.0 .0535

160.0 .0523

162.0 .0513

164.0 .0502

166.0 .0491

168.0 .0481

170.0 .0471

172.0 .0461

174.0 .0452

176.0 .0442
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178.0 .0433

180.0 .0424

182.0 .0415

2 0 0



VI. The following is the program for the calculation of the S. E. of the concentration of 

glucose tracer in blood plasma in non-obese subjects (section 5.8.2).

* Program DO 1FCF 3/10/96

* NAG Mark 14 Revised. 1989.

* .. Parameters ..

INTEGER NDIM, MAXPTS, LENWRK

PARAMETER (NDIM=4,MAXPTS=40000*NDIM,LENWRK=(NDIM+2)

+ *( 1 +MAXPTS/(2**NDIM+2*NDIM*NDIM+2*NDIM+1)))

INTEGER NIN, NOUT

PARAMETER (NIN=5,NOUT=6)

* .. Local Scalars ..

DOUBLE PRECISION ACC, EPS, FINVAL 

INTEGER IFAIL, MINPTSJI

DIMENSION AX 1(91)

* .. Local Arrays ..

DOUBLE PRECISION A(NDIM), B(NDIM), 

WRKSTR(LEN WRK), A 1 (NDIM,NDIM),

+ TT( 180),PI 1 ,PI,SDET, MU(NDIM), T, SIGMA(NDIM), FAC,

+ INFP, INFM, AX1,TX1

* .. External Functions ..

DOUBLE PRECISION FUNCTN 

EXTERNAL FUNCTN

* .. External Subroutines ..

EXTERNAL D01FCF

COMMON A l, MU, SIGMA, T, FAC ,TX1

* .. Executable Statements ..

WRITE (NOUT,*) 'D01FCF Example Program Results'

INFP=3.32915D0

INFM=-INFP

PI=3.141592653579D0
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PI 1 =(2.ODO*PI)* *(-2) 

SDET=0.28566290943791950D0 

FAC=PI1/SDET

M U(l)=-3.2346628529019120D0 

MU(2)=-4.2296565424736860D0 

MU(3)=-4.0976398657231830D0 

MU(4)=-0.38311725362959460D0 

SIGMA(1)=0.37715729787689840D0 

SIGMA(2)=0.8147941929577250D0 

SIGMA(3)=0.4032571906708360D0 

SIGMA(4)=0.17702640335519240D0 

DO 4 I=1,NDIM

4 B(I)=INFP

DO 5 I=1,NDIM

5 A(I)=INFM
*

A l (1,1)=4.4447873714862840D0 

A l (1,2)=-4.9026164383340780D0 

A l(l,3 )= 2 .7552011527496260D0 

A1(1,4)=-1.6350184796303270D0 

A1(2,1)=A1(1,2)

A 1 (2,2)=8.000921427515181 ODO 

A l (2,3)=-5.1334443396841550D0 

A l (2,4)=1.3688849071546260D0 

A1(3,1)=A1(1,3)

A1(3,2)=A1(2,3)

A l (3,3)=4.462544944432160D0

A1(3,4)=-0.40348717985764560D0

A1(4,1)=A1(1,4)

A1(4,2)=A1(2,4)

A1(4,3)=A1(3,4)
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A 1(4,4)= 1.7373 850488447230D0 

READ (*,*) (AX1(I),I=1,91)

DO 3 11=1,181,2 

TX 1 = AX 1 ((11+1 )/2)

T=DFLO AT (II-1)

EPS=0.00001D0

MINPTS=0

IFAIL=1

CALL DO 1 FCF(NDIM,A,B,MINPTS,MAXPTS,FUNCTN,EPS,ACC,LENWRK,

+ WRKSTR, FINVAL,IFAIL)
*

TT(II)=FINVAL

IF (IFAIL.EQ.O.OR.IFAIL.EQ.2) THEN 

WRITE (NOUT,99996) T,TT(II),(II+1)/2,TX1 

ELSE

WRITE (NOUT,99999) 'IF AIL =', I FAIL 

WRITE (NOUT,*)

END IF 

3 CONTINUE
*

99999 FORMAT (IX,A,15)

99996 FORMAT (F8.2,2X,F6.6,I3.1,F6.4)
*

END

DOUBLE PRECISION FUNCTION FUNCTN(NDIM,Z)

* .. Scalar Arguments ..

INTEGER NDIM

* .. Array Arguments ..

DOUBLE PRECISION Z(NDIM),X(4), Y(4), X I, SUM, Al(4,4),

+ A,B,P,Q, LAMDA1, LAMDA2, MU(4),SIGMA(4),T, FAC ,TX1
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COMMON A l, MU, SIGMA, T, FAC ,TX1 

.. Intrinsic Functions ..

INTRINSIC DEXP, DSQRT 

.. Executable Statements ..

DO 2 I=1,NDIM

2 Y(I)=Z(I) * SIGMA(I)+MU(I)

DO 3 I=1,NDIM

3 X(I)=DEXP(Y(I))

P=X( 1 )+X(2)+X(3)

Q=DSQRT(P*P-4.0D0*X(1)*X(3))

LAMDA1=0.5D0*(P-Q)

LAMDA2=0.5D0*(P+Q)

A=0. 5D0+0.5 DO * (-X( 1 )+X(2)+X(3))/Q 

B=1.0D0-A

X1=(A*DEXP(-LAMDA1*T)+B*DEXP(-LAMDA2*T))*X(4) 

SUM=0.0D0 

DO 1 I=1,NDIM 

DO 1 J=1,NDIM 

1 SUM=SUM+Z(I) * Z( J) * A 1 (I, J) 

FUNCTN=FAC*((X1-TX1)**2)*DEXP(-0.5D0*SUM) 

RETURN 

END
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VII. The following shows the output of the above program (VI) for even time points.

D01FCF Example Program Results

T Variance (II+l)/2 data

0.00 0.014989 1 0.6902

2.00 0.010768 2 0.6342

4.00 0.008349 3 0.5856

6.00 0.006809 4 0.5431

8.00 0.005808 5 0.5058

10.00 0.005139 6 0.4728

12.00 0.004657 7 0.4433

14.00 0.004297 8 0.4172

16.00 0.00402 9 0.3938

18.00 0.003792 10 0.3726

20.00 0.0036 11 0.3534

22.00 0.003437 12 0.3361

24.00 0.003284 13 0.3202

26.00 0.003145 14 0.3058

28.00 0.003016 15 0.2924

30.00 0.002899 16 0.2798

32.00 0.002787 17 0.2688

34.00 0.00268 18 0.2583

36.00 0.00258 19 0.2484

38.00 0.002489 20 0.2392

40.00 0.002395 21 0.2308

42.00 0.002303 22 0.2228

44.00 0.002218 23 0.2153

46.00 0.002136 24 0.2083

48.00 0.002054 25 0.2016

50.00 0.001979 26 0.1953

52.00 0.001905 27 0.1893
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54.00 0.001836 28 0.1837

56.00 0.001767 29 0.1783

58.00 0.001701 30 0.1732

60.00 0.001637 31 0.1686

62.00 0.001576 32 0.1636

64.00 0.001516 33 0.1591

66.00 0.001459 34 0.1548

68.00 0.001405 35 0.1507

70.00 0.001352 36 0.1467

72.00 0.001303 37 0.1429

74.00 0.001254 38 0.1392

76.00 0.001206 39 0.1357

78.00 0.001160 40 0.1323

80.00 0.001117 41 0.1290

82.00 0.001075 42 0.1258

84.00 0.001033 43 0.1227

86.00 0.000995 44 0.1198

88.00 0.000958 45 0.1169

90.00 0.000923 46 0.1141

92.00 0.000888 47 0.1114

94.00 0.000855 48 0.1088

96.00 0.000824 49 0.1063

98.00 0.000793 50 0.1038

100.00 0 .000764 51 0.1014

102.00 0.000736 52 0.0991

104.00 0.000709 53 0.0968

106.00 0.000684 54 0.0946

108.00 0.000659 55 0.0925

110.00 0.000635 56 0.0904

112.00 0.000612 57 0.0883

114.00 0.000591 58 0.0864
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116.00 0.000568 59 0.0844

118.00 0.000550 60 0.0826

120.00 0.000530 61 0.0808

122.00 0.000512 62 0.0790

124.00 0.000495 63 0.0773

126.00 0.000477 64 0.0756

128.00 0.000461 65 0.0739

130.00 0.000445 66 0.0723

132.00 0.000430 67 0.0709

134.00 0.000415 68 0.0692

136.00 0.000402 69 0.0677

138.00 0.000387 70 0.0663

140.00 0.000374 71 0.0649

142.00 0.000363 72 0.0635

144.00 0.000351 73 0.0621

146.00 0.000339 74 0.0608

148.00 0.000328 75 0.0595

150.00 0.000318 76 0.0582

152.00 0.000308 77 0.0570

154.00 0.000299 78 0.0558

156.00 0.000289 79 0.0546

158.00 0.000279 80 0.0535

160.00 0.000271 81 0.0523

162.00 0.000262 82 0.0513

164.00 0.000254 83 0.0502

166.00 0.000246 84 0.0491

168.00 0.000238 85 0.0481

170.00 0.000231 86 0.0471

172.00 0.000224 87 0.0461

174.00 0.000218 88 0.0452

176.00 0.000211 89 0.0442
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178.00 0.000205 90 0.0433

180.00 0.000198 91 0.0424
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VIII. The following is the program for the calculation of the mean concentration of

glucose tracer in blood plasma in obese subgroup (section 5.9).

* Program DO 1FCF 3/10/96

* NAG Mark 14 Revised. 1989.

* .. Parameters ..

INTEGER NDIM, MAXPTS, LENWRK

PARAMETER (NDIM=4,MAXPTS=20000*NDIM,LENWRK=(NDIM+2)

+ *(1+MAXPTS/(2**NDIM+2*NDIM*NDIM+2*NDIM+1)))

INTEGER NIN, NOUT

PARAMETER (NIN=5,NOUT=6)

* .. Local Scalars ..

DOUBLE PRECISION ACC, EPS, FINVAL 

INTEGER IFAIL, MINPTS,II

* .. Local Arrays ..

DOUBLE PRECISION A(NDIM), B(NDIM), 

WRKSTR(LENWRK),A1 (NDIM,NDIM),

+ TT( 180),PI 1 ,PI,SDET, MU(NDIM), T, SIGMA(NDIM), FAC,

+ INFP, INFM

* .. External Functions ..

DOUBLE PRECISION FUNCTN 

EXTERNAL FUNCTN

* .. External Subroutines ..

EXTERNAL D01FCF

COMMON A l, MU, SIGMA, T, FAC

* .. Executable Statements ..

WRITE (NOUT,*) 'D01FCF Example Program Results'

INFP=3.32915D0

INFM=-INFP

PI=3.141592653579D0

PIl=(2.0D0*PI)**(-2)
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SDET= 0.072237851335872560D0

FAC=PI1/SDET 

MU(1 )=-3.365831690921886D0 

MU(2)=-4.0897442418510250D0 

MU(3)=-4.151717237941370D0 

MU(4)=-0.37143463777891040D0 

SIGMA( 1 )=0.44442279920618740D0 

SIGMA(2)=0.8825961170156720D0 

SIGMA(3)=0.30987033651105220D0 

SIGMA(4)=0.1749438050064110D0 

DO 4 I=1,NDIM

4 B(I)=INFP

DO 5 I=1,NDIM

5 A(I)=INFM
*

A l(l,l)= 1 0 .656851970040990d0 

A1(1,2)=-9.80235845777752D0 

A1(1,3)=8.0370642629545820D0 

A l (l,4)=-6.6944719145092830D0 

A1(2,1)=A1(1,2)

A 1(2,2)= 16.407386247151220D0 

A1(2,3)=-10.716551712837650D0 

A l (2,4)=2.1745082771824880D0 

A1(3,1)=A1(1,3)

A1(3,2)=A1(2,3) 

A1(3,3)=9.9891282998062720D0 

A l (3,4)=-5.1246137976021630D0 

A1(4,1)=A1(1,4)

A1(4,2)=A1(2,4)

A1(4,3)=A1(3,4)
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Al(4,4)=8.7849713201665160D0 

DO 3 11=1,1 

T=DFLO AT (II-1)

EPS=0.0001D0

MINPTS=0

IFAIL=1

CALL D01FCF(NDIM,A,B,MINPTS,MAXPTS,FUNCTN,EPS,ACC,LENWRK,

+ WRKSTR, FINVAL,IFAIL)
*

TT(II)=FINVAL

IF (IFAIL.EQ.O.OR.IFAIL.EQ.2) THEN 

WRITE (NOUT,99996) T, TT(II)

ELSE

WRITE (NOUT,99999) 'IFAIL =’, IF AIL 

WRITE (NOUT,*)

END IF 

3 CONTINUE
*

99999 FORMAT (IX,A,15)

99996 FORMAT (F3.1,2X,F6.4)
*

END

DOUBLE PRECISION FUNCTION FUNCTN(NDIM,Z)

* .. Scalar Arguments ..

INTEGER NDIM

* .. Array Arguments ..

DOUBLE PRECISION Z(NDIM),X(4), Y(4), X I, SUM, Al(4,4),

+ A,B,P,Q, LAMDA1, LAMDA2, MU(4),SIGMA(4),T, FAC 

COMMON A l, MU, SIGMA, T, FAC

* .. Intrinsic Functions ..

INTRINSIC DEXP, DSQRT
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.. Executable Statements ..

DO 2 I=1,NDIM

2 Y(I)=Z(I)*SIGMA(I)+MU(I)

DO 3 I=1,NDIM

3 X(I)=DEXP(Y(I))

P=X( 1 )+X(2)+X(3)

Q=DSQRT(P*P-4.0D0*X(1)*X(3))

LAMDA1=0.5D0*(P-Q)

L AMD A2=0.5 DO * (P+Q)

A=0.5D0+0.5D0*(-X(1)+X(2)+X(3))/Q

B=1.0D0-A

X 1 =(A* DEXP(-L AMD A 1 * T)+B * DEXP(-L AMD A2 * T)) * X(4) 

SUM=0.0D0 

DO 1 I=1,NDIM 

DO 1 J=1,NDIM 

1 SUM=SUM+Z(I)*Z(J)*A1(I,J) 

FUNCTN=FAC*X1*DEXP(-0.5D0*SUM)

RETURN

END

2 1 2



IX. The following shows the output of the above program (VIII) for even time points.

D01FCF Example Program Results

Time Mean

0.0 .6988

2.0 .6459

4.0 .6004

6.0 .5626

8.0 .5295

10.0 .5001

12.0 .4741

14.0 .4508

16.0 .4299

18.0 .4110

20.0 .3939

22.0 .3783

24.0 .3679

26.0 .3500

28.0 .3384

30.0 .3270

32.0 .3163

34.0 .3086

36.0 .2973

38.0 .2882

40.0 .2801

42.0 .2723

44.0 .2650

46.0 .2580

48.0 .2513

50.0 .2449

52.0 .2387
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54.0 .2327

56.0 .2271

58.0 .2217

60.0 .2165

62.0 .2115

64.0 .2067

66.0 .2020

68.0 .1975

70.0 .1932

72.0 .1890

74.0 .1849

76.0 .1810

78.0 .1771

80.0 .1734

82.0 .1698

84.0 .1662

86.0 .1628

88.0 .1595

90.0 .1563

92.0 .1531

94.0 .1500

96.0 .1470

98.0 .1441

100.0 .1412

102.0 .1384

104.0 .1357

106.0 .1330

108.0 .1305

110.0 .1279

112.0 .1255

114.0 .1230
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116.0 .1206

118.0 .1182

120.0 .1160

122.00 .1138

124.00 .1116

126.00 .1095

128.00 .1075

130.00 .1055

132.00 .1035

134.00 .1015

136.00 .0996

138.00 .0977

140.00 .0959

142.00 .0940

144.00 .0922

146.00 .0905

148.00 .0888

150.00 .0870

152.00 .0854

154.00 .0838

156.00 .0822

158.00 .0807

160.00 .0793

162.00 .0779

164.00 .0764

166.00 .0748

168.00 .0735

170.00 .0721

172.00 .0710

174.00 .0697

176.00 .0684
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178.00 .0671

180.00 .0659
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X. The following shows the program for the calculation of the S.E. of concentration of 

glucose tracer in blood plasma in obese sub-group (section 5.9.2).

* Program DO 1FCF 3/10/96

* NAG Mark 14 Revised. 1989.

* .. Parameters ..

INTEGER NDIM, MAXPTS, LENWRK

PARAMETER (NDIM=4,MAXPTS=40000*NDIM,LENWRK=(NDIM+2)

+ *(1+MAXPTS/(2**NDIM+2*NDIM*NDIM+2*NDIM+1)))

INTEGER NIN, NOUT

PARAMETER (NIN=5,NOUT=6)

* .. Local Scalars ..

DOUBLE PRECISION ACC, EPS, FINVAL 

INTEGER IFAIL, MINPTSJI

DIMENSION AX 1(91)

* .. Local Arrays ..

DOUBLE PRECISION A (NDIM), B(NDIM),

WRKSTR(LENWRK), A1 (NDIM, NDIM),

+ TT(180),PI 1 ,PI,SDET, MU(NDIM), T, SIGMA(NDIM), FAC,

+ INFP, INFM,AX1,TX1

* .. External Functions ..

DOUBLE PRECISION FUNCTN 

EXTERNAL FUNCTN

* .. External Subroutines ..

EXTERNAL D01FCF

COMMON A l, MU, SIGMA, T, FAC ,TX1

* .. Executable Statements ..

WRITE (NOUT,*) 'D01FCF Example Program Results'

INFP=3.32915D0

INFM=-INFP

PI=3.141592653579D0
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PI1=(2.0D0*PI)**(-2)

SDET= 0.07223785133 5872560D0

FAC=PI1/SDET 

MU( 1 )=-3.3 65 8316909218 8 6D0 

MU(2)=-4.0897442418510250D0 

MU(3)=-4.151717237941370D0 

MU(4)=-0.37143463777891040D0 

SIGMA( 1 )=0.44442279920618740D0 

SIGMA(2)=0.8825961170156720D0 

SIGMA(3)=0.30987033651105220D0 

SIGMA(4)=0.174943 805006411 ODO 

DO 4 I=1,NDIM

4 B(I)=INFP

DO 5 I=1,NDIM

5 A(I)=INFM 
*

A 1 (E l )=10.656851970040990d0 

A1(1,2)=-9.80235845777752D0 

A1(1,3)=8.0370642629545820D0 

A l (l,4)=-6.6944719145092830D0 

A1(2,1)=A1(1,2)

A 1(2,2)= 16.4073 86247151220D0 

A1(2,3)=-10.716551712837650D0 

A 1 (2,4)=2.1745082771824880D0 

A1(3,1)=A1(1,3)

A1(3,2)=A1(2,3)

A1(3,3)=9.9891282998062720D0 

A 1 (3,4)=-5.124613 797602163 ODO 

A1(4,1)=A1(1,4)

A1(4,2)=A1(2,4)
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A1(4,3)=A1(3,4)

Al(4,4)=8.7849713201665160D0 

READ (*,*) (AX 1(1), 1=1,91)

DO 3 11=1,181,2 

TX1 = AX 1 ((11+1 )/2)

T=DFLO AT (II-1)

EPS=0.00001D0

MINPTS=0

IFAIL=1

CALL D01FCF(NDIM,A,B,MINPTS,MAXPTS,FUNCTN,EPS,ACC,LENWRK,

+ WRKSTR, FINVAL,IFAIL)
*

TT (II)=FIN V AL

IF (IFAIL.EQ.O.OR.IFAIL.EQ.2) THEN 

WRITE (NOUT,99996) T, TT(II), (II+1)/2,TX1 

ELSE

WRITE (NOUT,99999) 'IFAIL =', IF AIL 

WRITE (NOUT,*)

END IF 

3 CONTINUE
*

99999 FORMAT (IX,A,15)

99996 FORMAT (F8.2,2X,F8.6,I3.1,F6.4)
*

END

DOUBLE PRECISION FUNCTION FUNCTN(NDIM,Z)

* .. Scalar Arguments ..

INTEGER NDIM

* .. Array Arguments ..

DOUBLE PRECISION Z(NDIM),X(4), Y(4), X I, SUM, A 1(4,4),
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+ A,B,P,Q, LAMDA1, LAMDA2, MU(4),SIGMA(4),T, FAC,TX1 

COMMON A l, MU, SIGMA, T, FAC ,TX1 

.. Intrinsic Functions ..

INTRINSIC DEXP, DSQRT 

.. Executable Statements ..

DO 2 I=1,NDIM

2 Y(I)=Z(I) * SIGMA(I)+MU(I)

DO 3 I=1,NDIM

3 X(I)=DEXP(Y(I))

P=X( 1 )+X(2)+X(3 )

Q=DSQRT(P*P-4.0D0*X(1)*X(3))

LAMDA1=0.5D0*(P-Q)

L AMD A2=0.5D0 * (P+Q)

A=0. 5 D0+0.5 DO * (-X( 1 )+X(2)+X(3 ))/Q 

B=1.0D0-A

X1=(A*DEXP(-LAMDA1*T)+B*DEXP(-LAMDA2*T))*X(4) 

SUM=0.0D0 

DO 1 I=1,NDIM 

DO 1 J=1,NDIM 

1 SUM=SUM+Z(I)*Z(J)*A1(I,J) 

FUNCTN=FAC*((X1-TX1)**2)*DEXP(-0.5D0*SUM)

RETURN

END

2 2 0



XI. The following shows the output for the above (X) program for even time points.

D01FCF Example Program Results 

Time Variance (II+l)/2 data

0.00 .014743 1 .6988

2.00 .008860 2 .6459

4.00 .006123 3 .6004

6.00 .004551 4 .5626

8.00 .003774 5 .5295

10.00 .003304 6 .5001

12.00 .003120 7 .4741

14.00 .003062 8 .4508

16.00 .003058 9 .4299

18.00 .003116 10 .4110

20.00 .003191 11 .3939

22.00 .003261 12 .3783

24.00 .003338 13 .3679

26.00 .003388 14 .3500

28.00 .003416 15 .3384

30.00 .003445 16 .3270

32.00 .003461 17 .3163

34.00 .003484 18 .3086

36.00 .003463 19 .2973

38.00 .003452 20 .2882

40.00 .003436 21 .2801

42.00 .003401 22 .2723

44.00 .003363 23 .2650

46.00 .003326 24 .2580

48.00 .003279 25 .2513

50.00 .003231 26 .2449

52.00 .003171 27 .2387
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54.00 .003103 28 .2327

56.00 .003045 29 .2271

58.00 .002973 30 .2217

60.00 .002905 31 .2165

62.00 .002835 32 .2115

64.00 .002742 33 .2067

66.00 .002673 34 .2020

68.00 .002610 35 .1975

70.00 .002550 36 .1932

72.00 .002487 37 .1890

74.00 .002423 38 .1849

76.00 .002352 39 .1810

78.00 .002270 40 .1771

80.00 .002204 41 .1734

82.00 .002142 42 .1698

84.00 .002087 43 .1662

86.00 .002028 44 .1628

88.00 .001964 45 .1595

90.00 .001909 46 .1563

92.00 .001848 47 .1531

94.00 .001792 48 .1500

96.00 .001730 49 .1470

98.00 .001672 50 .1441

100.00 .001619 51 .1412

102.00 .001569 52 .1384

104.00 .001519 53 .1357

106.00 .001469 54 .1330

108.00 .001418 55 .1305

110.00 .001373 56 .1279

112.00 .001330 57 .1255

114.00 .001285 58 .1230



116.00 .001243 59 .1206

118.00 .001201 60 .1182

120.00 .001162 61 .1160

122.00 .001126 62 .1138

124.00 .001088 63 .1116

126.00 .001053 64 .1095

128.00 .001018 65 .1075

130.00 .000984 66 .1055

132.00 .000951 67 .1035

134.00 .000919 68 .1015

136.00 .000887 69 .0996

138.00 .000857 70 .0977

140.00 .000830 71 .0959

142.00 .000802 72 .0940

144.00 .000776 73 .0922

146.00 .000757 74 .0905

148.00 .000730 75 .0888

150.00 .000701 76 .0870

152.00 .000678 77 .0854

154.00 .000655 78 .0838

156.00 .000634 79 .0822

158.00 .000613 80 .0807

160.00 .000595 81 .0793

162.00 .000575 82 .0779

164.00 .000556 83 .0764

166.00 .000538 84 .0748

168.00 .000522 85 .0735

170.00 .000506 86 .0721

172.00 .000488 87 .0710

174.00 .000472 88 .0697

176.00 .000461 89 .0684



178.00 .000446 90 .0671

180.00 .000432 91 .0659



XII. The following program is for the calculation of a two dimensional definite 

integration of the statistical moments o f the random process, (section 6.7).

* DO 1FCF Example Program Text

* Mark 14 Revised. NAG Copyright 1989.

* .. Parameters ..

INTEGER NDIM, MAXPTS, LENWRK

PARAMETER (NDIM=2,MAXPTS=1000*NDIM,LENWRK=(NDIM+2) 

+ *(1+MAXPTS/(2**NDIM+2*NDIM*NDIM+2*NDIM+1)))

INTEGER NOUT

PARAMETER (NOUT=6)

* .. Local Scalars ..

DOUBLE PRECISION ACC, EPS, FINVAL 

INTEGER IF AIL, MINPTS

* .. Local Arrays ..

DOUBLE PRECISION A(NDIM),B(NDIM),WRKSTR(LENWRK)

* .. External Functions ..

DOUBLE PRECISION FUNCTN 

EXTERNAL FUNCTN

* .. External Subroutines ..

EXTERNAL D01FCF

* .. Executable Statements ..

WRITE (NOUT,*) 'D01FCF Example Program Results'

A(1)=0.0D0

B(1)=3.0D0

A(2)=0.0d0

B(2)=3.0d0

EPS = 0.0001D0 

MINPTS = 0
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IF AIL =1

CALL

D01FCF(NDIM,A,B,MINPTS,MAXPTS,FUNCTN,EPS,ACC,LENWRK,WRKSTR, 

+ FINVALJFAIL)
*

WRITE (NOUT,*)

IF (IFAIL.NE.O) THEN 

WRITE (NOUT,99999) 'IFAIL =', IFAIL 

WRITE (NOUT,*)

END IF

IF (IFAIL.EQ.0 .OR. IFAIL.GE.2) THEN 

WRITE (NOUT,99998) 'Requested accuracy = ', EPS 

WRITE (NOUT,99997) 'Estimated value = ', FINVAL 

WRITE (NOUT,99998) 'Estimated accuracy = ', ACC 

END IF

99999 FORMAT (IX,A,15)

99998 FORMAT (1X,A,D12.2)

99997 FORMAT (1X,A,F22.20)

END

DOUBLE PRECISION FUNCTION FUNCTN(NDIM,Z)

* .. Scalar Arguments ..

INTEGER NDIM

* .. Array Arguments ..

DOUBLE PRECISION Z(NDIM),t,s,r,PI,A,B,C,D,Ml,M2,SIG1 ,SIG2

* .. Intrinsic Functions ..

INTRINSIC DEXP,DSQRT

.. Executable Statements ..
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T=100.0d0

S=70.d0

r=0.988738d0

PI=3.141592654D0

SIGI =-.000069*T+.017206

SIG2=-.000069*S+.017206

M1=.3438*DEXP(-.04577*T)+0.2907*DEXP(-0.009245*T)

M2=.3438*DEXP(-.04577*S)+0.2907*DEXP(-0.009245*S)

A=1/(2*PI*SIG1*SIG2*DSQRT(1-R**2))

B=(Z( 1 )-M 1 )/SIG 1 

C=(Z(2)-M2)/SIG2 

D=l/(2*(1-R**2))

FUNCTN =A*Z(1)*Z(2)*DEXP(-D*(B**2-2*R*B*C+C**2))

RETURN

END
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XIII. The following is a program for a discrete integration for calculation of hit) and o2 

(section 6.8).

* DO 1GAF Example Program Text

* Mark 14 Revised. NAG Copyright 1989.

* .. Parameters ..

INTEGER NMAX

PARAMETER (NMAX=25)

INTEGER NIN, NOUT

PARAMETER (NIN=5,NOUT=6)

* .. Local Scalars ..

DOUBLE PRECISION ANS, ERROR 

INTEGER I, IF AIL, N

* .. Local Arrays ..

DOUBLE PRECISION X(NMAX), Y(NMAX)

* .. External Subroutines ..

EXTERNAL DO 1 GAF

* .. Executable Statements ..

WRITE (NOUT,*) 'DO 1 GAF Example Program Results'

* Skip heading in data file 

READ (NIN,*)

READ (NIN,*) N 

WRITE (NOUT,*)

IF (N.LE.NMAX) THEN 

READ (NIN,*) (X(I),Y(I),I=1,N)

IF AIL = 0
*

CALL DO 1 GAF(X,Y,N, ANS,ERROR,IF AIL)
*

IF (IFAIL.EQ.O) THEN

WRITE (NOUT,99999) 'Integral = ', ANS, + ' Estimated error = ', ERROR

228



ELSE IF (IFAIL.EQ.l) THEN 

WRITE (NOUT,*) 'Less than 4 points supplied' 

ELSE IF (IFAIL.EQ.2) THEN 

WRITE (NOUT,*)

+ 'Points not in increasing or decreasing order' 

ELSE IF (IFAIL.EQ.3) THEN 

WRITE (NOUT,*) 'Points not all distinct'

END IF 

ELSE

WRITE (NOUT,*) 'More than NMAX data points' 

END IF 

STOP
*

99999 FORMAT (1X,A,F7.4,A,F7.4)

END
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XIV. This program integrates a set of first order differential equations by the method 

of Hall and Watt to calculate the concentration of glucose tracer in blood plasma and 

extravascular tissues (section 6.10).

* D02BBF Example Program Text

* Mark 14 Revised. NAG Copyright 1989.

* .. Parameters ..

INTEGER NOUT

PARAMETER (NOUT=6)

INTEGER N

PARAMETER (N=2)

* .. Scalars in Common ..

DOUBLE PRECISION H, XEND,TIME(27),G1(27) 

INTEGER I

* .. Local Scalars ..

DOUBLE PRECISION TOL, X 

INTEGER IF AIL, IR,J

* .. Local Arrays ..

DOUBLE PRECISION W(N,7), Y(N)

* .. External Functions ..

DOUBLE PRECISION X01AAF 

EXTERNAL X01AAF

* .. External Subroutines ..

EXTERNAL D02BBF, FCN, OUT,INTPOL

* .. Intrinsic Functions ..

INTRINSIC DBLE

* .. Common blocks ..

COMMON XEND, H, I,TIME,G1

* .. Executable Statem ents..

TIME(1)=0.0D0

TIME(2)=2.0D0
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TIME(3)=3.0D0

TIME(4)=4.0D0

TIME(5)=5.0D0

TIME(6)=6.0D0

TIME(7)=8.0D0

TIME(8)=10.0D0

TIME(9)=12.0D0

TIME( 10)= 14.ODO

TIME(11)=16.0D0

TIME(12)=19.0D0

TIME(13)=22.0d0

TIME(14)=25.0D0

TIME(15)=30.0D0

TIME(16)=40.0D0

TIME(17)=50.0D0

TIME(18)=60.0D0

TIME(19)=70.0D0

TIME(20)=80.0D0

TIME(21)=90.0D0

TIME(22)=100.0D0

TIME(23)=1 lO.ODO

TIME(24)= 120.ODO

TIME(25)=140.0D0

TIME(26)=160.0D0

TIME(27)=180.0D0

G1(1)=L1715D0

G1(2)=0.7349D0

G1(3)=0.5625D0

G1(4)=0.3902D0

G1(5)=0.2178D0

G1(6)=.2405D0



G1(7)=-1.1485D0

G1(8)=-0.0818D0

G1(9)=1.0319D0

G1(10)=1.1847D0

G l(l 1)=0.5945D0

G1(12)=-1.5815D0

G1(13)=-1.5048D0

G1(14)=-1.6382D0

G1(15)=-1.3433D0

Gl(16)=-1.351 IDO

Gl(17)=-2.1115DO

G1(18)=-1.81D0

G1(19)=-1.9668D0

G1(20)=-1.5743D0

G1(21)=-1.4537D0

G1(22)=-1.0461D0

G1(23)=-0.9249D0

G1(24)=-0.5765D0

G1(25)=-0.4685D0

G1(26)=-0.5434D0

G1(27)=0.0D0

WRITE (NOUT,*) 'D02BBF Example Program Results' 

IR = 0

XEND = 180.0D0 

DO 20 J = 4,4 

TOL = 10.0D0**(-J)

WRITE (NOUT,*)

WRITE (NOUT,99999) 'Calculation with TOL -  , TOL 

WRITE (NOUT,*) ' T Y (l) Y(2)'

X =0.0D0 

Y (l) =0.694756D0
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Y(2) =0.0D0 

1=179

H = (XEND-X)/DBLE(I+1)

IF AIL =0

CALL D02BBF(X,XEND,N,Y,TOL,IR,FCN,OUT,W,IFAIL)
*

IF (TOL.LT.O.ODO) WRITE (NOUT,*)' Range too short for TOL' 

20 CONTINUE 

STOP
*

99999 FORMAT (1X,A,D8.1)

END
*

SUBROUTINE FCN(X,Y,F)

* .. Parameters ..

INTEGER N 

PARAMETER (N=2)

* .. Scalar Arguments ..

DOUBLE PRECISION X,TIME(27),G1(27),G

* .. Array Arguments ..

DOUBLE PRECISION F(N), Y(N)

COMMON TIME,G1

* .. Executable Statements ..

CALL INTPOL (G,X)

F(l)=-(0.0368183736986+0.0024963946*0)* Y(l)+(0.02090677+

+ 0.00184714*G)*Y(2)

F(2)=(0.03601519236893+0.0031819954*G)*Y(l)-(0.03734279+

+ 0.00254272*G)*Y(2)

RETURN

END
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SUBROUTINE OUT(X,Y)

* .. Parameters ..

INTEGER NOUT 

PARAMETER (NOUT=6)

INTEGER N 

PARAMETER (N=2)

* .. Scalar Arguments ..

DOUBLE PRECISION X

* .. Array Arguments ..

DOUBLE PRECISION Y(N)

* .. Scalars in Common ..

DOUBLE PRECISION H, XEND,TIME(27),G1(27)

INTEGER I

* .. Local Scalars ..

INTEGER J

* .. Intrinsic Functions ..

INTRINSIC DBLE

* .. Common blocks ..

COMMON XEND, H, I,TIME,G1

* .. Executable Statements ..

WRITE (NOUT,99999) X, (Y(J),J=1,2)

X = XEND - DBLE(I)*H

1 = 1- 1

RETURN
*

99999 FORMAT (1X,F7.2,2F13.5)

END

*

SUBROUTINE INTPOL(G,T)

DOUBLE PRECISION TIME(27),G1(27),T,G,GG1,GG2,T1,T2 

COMMON XEND,H,I,TIME,G1
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DO 1 1-1,26 

T l-TIM E(I)

T2=TIME(I+1)

G G l-G l(I)

GG2-G 1(1+1)

IF(T.GT.T1 .AND.T.LT.T2) THEN 

G=(T-T 1 ) * (GG2-GG1 )/(T2-T 1 )+GG 1 

GO TO 2 

END IF

1 CONTINUE

2 RETURN 

END
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XV. The following is the result of the above set of first order differential equations for 

the calculation of glucose tracer in blood plasma and extravascular tissues. For 

simplicity only even times were considered (section 6.10).

D02BBF Example Program Results

T Y (l) Y(2)

0 0.69476 0.0000

2 0.64352 0.05015

3 0.62058 0.07183

4 0.59919 0.09156

5 0.57921 0.10952

6 0.5604 0.12601

8 0.5271 0.15361

10 0.49759 0.17655

12 0.4691 0.19827

14 0.44257 0.2176

16 0.41912 0.23319

18 0.39911 0.24466

19 0.39036 0.24892

20 0.38217 0.25253

22 0.36675 0.2587

24 0.35244 0.26365

25 0.34574 0.26564

26 0.33928 0.26736

28 0.32702 0.27012

30 0.31554 0.27208

32 0.30482 0.27328

34 0.29484 0.27375

36 0.28552 0.27357

38 0.27678 0.27287

236



40 0.

42 0.

44 0.

46 0.

48 0.

50 0.

52 0.

54 0.

56 0.

58 0.

60 0.

62 0.

64 0.

66 0.

68 0.

70 0.

72 0.

74 0.

76 0.

78 0.

80 0.

82 0.

84 0.

86 0.

88 0.

90 0.

92 0.

94 0.

96 0.

98 0.

100 0.

0.27168

0.27007

0.26809

0.26577

0.26318

0.26037

0.25737

0.25425

0.25102

0.24769

0.24429

0.24083

0.23731

0.23375

0.23016

0.22655

0.22294

0.21933

0.21573

0.21215

0.20858

0.20503

0.20152

0.19803

0.19457

0.19115

0.18777

0.18442

0.18112

0.17786

0.17464

26859

.26089

,25365

,24683

,2404

,23431

,22851

,22295

,21762

,2125

,20758

.20284

,19829

.1939

.18967

,18559

18164

.1778

17408

17047

16695

16353

16019

15694

15377

1507

1477

14477

14191

13912

13639



102 0.

104 0.

106 0.

108 0.

110 0.

112 0.

114 0.

116 0.

118 0.

120 0.

122 0.

124 0.

126 0.

128 0.

130 0.

132 0.

134 0.

136 0.

138 0.

140 0.

142 0.

144 0.

146 0.

148 0.

150 0.

152 0.

154 0.

156 0.

158 0.

160 0.

162 0.

0.17146

0.16833

0.16525

0.16221

0.15922

0.15627

0.15337

0.15052

0.14772

0.14496

0.14225

0.13958

0.13696

0.13439

0.13186

0.12938

0.12694

0.12454

0.12219

0.11988

0.11761

0.11539

0.1132

0.11106

0.10895

0.10689

0.10486

0.10288

0.10093

0.09901

0.09714

13372

1311

12854

12604

12359

12119

11885

11656

11431

,11211

10996

10784

10577

,10375

10176

0998

09789

09602

09418

09238

09062

08889

08719

08553

0839

0823

08073

0792

07769

07621

07476



164 0.07334 0.0953

166 0.07194 0.09349

168 0.07057 0.09172

170 0.06923 0.08998

172 0.06792 0.08827

174 0.06663 0.0866

176 0.06536 0.08495

178 0.06412 0.08334

180 0.0629 0.08176

Stop - Program terminated.
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Appendix C: Tables of the data and results

Time

(min) 1 2 3 4

Subject

5 6 7 8 9

2 0.78 0.54 0.77 0.48 0.73 0.68 0.59 0.64 0.65

3 0.76 0.50 0.60 0.57 0.63 0.52 0.62 0.62 0.58

4 0.67 0.48 0.61 0.54 0.61 0.50 0.56 0.54 0.54

5 0.60 0.49 0.60 0.52 0.58 0.51 0.54 0.52 0.55

6 0.58 0.44 0.50 0.59 0.55 0.53 0.60 0.50 0.53

8 0.55 0.42 0.45 0.42 0.58 0.49 * 0.44 0.46

10 0.49 0.41 0.42 0.41 0.54 0.47 0.50 0.42 0.48

12 0.47 0.40 0.38 0.40 0.47 0.47 0.46 0.41 0.46

14 0.46 0.39 0.35 0.48 0.44 0.46 0.46 0.38 0.41

16 0.44 0.36 0.33 0.45 0.41 0.44 0.43 0.37 0.41

19 0.44 0.36 0.28 0.42 0.34 0.40 * 0.34 0.35

22 0.42 0.34 0.28 0.42 0.29 0.38 0.39 0.33 0.34

25 0.40 0.33 0.25 0.43 0.27 0.36 * 0.32 0.30

30 0.37 0.31 0.22 0.35 0.20 0.35 * 0.29 0.28

40 0.33 0.28 0.16 0.29 0.16 0.27 * 0.25 0.19

50 0.27 0.25 0.13 0.25 0.14 0.22 0.27 0.22 0.18

60 0.24 0.21 0.11 0.21 0.11 0.18 0.23 0.19 0.15

70 0.20 0.20 0.08 0.21 0.10 0.17 * 0.16 0.13

80 0.18 0.17 0.07 0.16 0.08 0.15 0.18 0.15 0.12

90 0.16 * 0.06 0.17 0.08 0.15 0.16 0.14 0.11

100 0.14 0.14 0.07 0.14 0.08 0.12 0.15 0.12 0.10

110 0.13 0.12 0.06 0.13 0.07 0.11 0.13 0.11 0.09

120 0.12 0.10 0.05 0.12 0.07 0.09 * 0.11 0.08

140 0.10 0.09 0.04 0.10 0.05 0.08 0.11 0.09 0.07

160 0.08 0.07 0.04 0.08 0.04 0.07 0.10 0.08 0.06

180 0.07 0.06 0.02 0.06 0.04 0.05 0.07 0.07 0.05

Table C, : Distribution of blood glucose tracer (mmol/1) following an IVGTT. The symbol * 

demonstrates missing data.
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Time

(min) 10 11 12 13

Subject

14 15 16 17

2 0.79 0.71 0.83 0.81 0.88 0.60 0.97 0.48

3 0.67 0.67 0.73 0.77 0.73 * 0.67 0.45

4 0.65 0.62 0.63 0.68 0.69 * 0.82 0.46

5 0.58 0.58 0.57 0.65 0.64 * 0.69 0.45

6 0.56 0.56 0.54 0.63 0.60 0.55 0.77 0.43

8 0.52 0.50 0.53 0.59 0.57 0.42 0.69 0.39

10 0.50 0.46 0.50 0.54 0.55 0.41 0.64 0.35

12 0.47 0.43 0.46 0.44 0.53 0.46 0.63 0.35

14 0.44 0.38 0.43 0.51 0.51 0.42 0.59 0.33

16 0.41 0.37 * 0.46 0.47 0.44 0.57 0.31

19 0.38 0.35 0.37 * 0.45 0.41 0.55 0.29

22 0.35 0.33 0.34 * 0.42 0.40 0.50 *

25 0.31 0.29 0.30 * 0.35 0.36 0.49 0.25

30 0.27 0.26 0.28 0.36 0.38 0.33 0.46 0.23

40 0.24 0.20 0.23 0.29 0.29 0.29 0.41 0.19

50 0.19 0.16 0.18 * 0.21 0.27 0.37 0.16

60 0.17 0.14 0.14 0.19 * 0.23 0.34 0.15

70 0.14 0.13 0.13 0.15 0.18 0.20 0.34 0.12

80 0.13 0.11 0.11 0.13 0.18 0.18 0.28 0.10

90 0.10 0.09 * 0.11 0.15 0.15 0.27 0.09

100 0.10 0.09 0.09 0.10 0.14 0.14 0.24 0.08

110 0.09 0.07 0.09 0.08 0.12 * 0.21 0.07

120 0.08 0.07 0.07 0.07 0.11 0.12 0.19 0.07

140 0.06 0.05 0.06 0.05 0.09 * 0.17 0.05

160 0.05 0.05 0.05 0.04 0.08 0.08 0.13 0.04

180 0.04 0.04 0.04 0.03 0.07 0.07 0.11 0.04

Table C, : Continued.
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Subject 

No 2 3 4

Time (min) 

5 6 8 10 12 14

1 0.78 0.76 0.67 0.60 0.58 0.55 0.49 0.47 0.46

2 0.54 0.50 0.48 0.49 0.44 0.42 0.41 0.40 0.39

3 0.77 0.60 0.61 0.60 0.50 0.45 0.42 0.38 0.35

4 0.48 0.57 0.54 0.52 0.59 0.42 0.41 0.40 0.48

5 0.73 0.63 0.61 0.58 0.55 0.58 0.54 0.47 0.44

6 0.68 0.52 0.50 0.51 0.53 0.49 0.47 0.47 0.46

7 0.59 0.62 0.56 0.54 0.60 0.52 0.50 0.46 0.46

8 0.64 0.62 0.54 0.52 0.50 0.44 0.42 0.41 0.38

9 0.65 0.58 0.54 0.55 0.53 0.46 0.48 0.46 0.41

10 0.79 0.67 0.65 0.58 0.56 0.52 0.50 0.47 0.44

11 0.71 0.67 0.62 0.58 0.56 0.50 0.46 0.43 0.38

12 0.83 0.73 0.63 0.57 0.54 0.53 0.50 0.46 0.43

13 0.81 0.77 0.68 0.65 0.63 0.59 0.54 0.44 0.51

14 0.88 0.73 0.69 0.64 0.60 0.57 0.55 0.53 0.51

15 0.60 0.52 0.51 0.50 0.55 0.42 0.41 0.46 0.42

16 0.97 0.67 0.82 0.69 0.77 0.69 0.64 0.63 0.59

17 0.48 0.45 0.46 0.45 0.43 0.39 0.35 0.35 0.33

9 0.70 0.62 0.59 0.53 0.56 0.50 0.48 0.45 0.44

Table C2 : Distribution of glucose tracer concentration in blood plasma following an IVGTT.
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Subject

No 16 19 22 25

Time (min) 

30 40 50 60 70

1 0.44 0.44 0.42 0.40 0.37 0.33 0.27 0.24 0.20

2 0.36 0.36 0.34 0.33 0.31 0.28 0.25 0.21 0.20

3 0.33 0.28 0.28 0.25 0.22 0.16 0.13 0.11 0.08

4 0.45 0.42 0.42 0.43 0.35 0.29 0.25 0.21 0.21

5 0.41 0.34 0.29 0.27 0.20 0.16 0.14 0.11 0.10

6 0.44 0.40 0.38 0.36 0.35 0.27 0.22 0.18 0.17

7 0.43 0.42 0.39 0.38 0.35 0.30 0.27 0.23 0.21

8 0.37 0.34 0.33 0.32 0.29 0.25 0.22 0.19 0.16

9 0.41 0.35 0.34 0.30 0.28 0.19 0.18 0.15 0.13

10 0.41 0.38 0.35 0.31 0.27 0.24 0.19 0.17 0.14

11 0.37 0.35 0.33 0.29 0.26 0.20 0.16 0.14 0.13

12 0.40 0.37 0.34 0.30 0.28 0.23 0.18 0.14 0.13

13 0.46 0.43 0.40 0.37 0.36 0.29 0.22 0.19 0.15

14 0.47 0.45 0.42 0.35 0.38 0.29 0.21 0.20 0.18

15 0.44 0.41 0.40 0.36 0.33 0.29 0.27 0.23 0.20

16 0.57 0.55 0.50 0.49 0.46 0.41 0.37 0.34 0.34

17 0.31 0.29 0.27 0.25 0.23 0.19 0.16 0.15 0.12

b 0.42 0.39 0.36 0.34 0.31 0.25 0.22 0.19 0.17

Table C2 : Continued.
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Subject

No 80 90 100

Time (min) 

110 120 140 160 180

1 0.18 0.16 0.14 0.14 0.12 0.10 0.08 0.07

2 0.17 0.16 0.14 0.12 0.10 0.09 0.07 0.06

3 0.07 0.06 0.07 0.06 0.05 0.04 0.04 0.02

4 0.16 0.17 0.14 0.13 0.12 0.10 0.08 0.06

5 0.08 0.08 0.08 0.07 0.07 0.05 0.04 0.04

6 0.15 0.15 0.12 0.11 0.09 0.08 0.07 0.05

7 0.18 0.16 0.15 0.13 0.13 0.11 0.10 0.07

8 0.15 0.14 0.12 0.11 0.11 0.09 0.08 0.07

9 0.12 0.11 0.10 0.09 0.08 0.07 0.06 0.05

10 0.13 0.10 0.10 0.09 0.08 0.06 0.05 0.04

11 0.11 0.09 0.09 0.07 0.07 0.05 0.05 0.04

12 0.11 0.10 0.09 0.09 0.07 0.06 0.05 0.04

13 0.13 0.11 0.10 0.08 0.07 0.05 0.04 0.03

14 0.18 0.15 0.14 0.12 0.11 0.09 0.08 0.07

15 0.18 0.15 0.14 0.13 0.12 0.10 0.08 0.07

16 0.28 0.27 0.24 0.21 0.19 0.17 0.13 0.11

17 0.10 0.09 0.08 0.07 0.07 0.05 0.04 0.04

b 0.14 0.13 0.12 0.11 0.10 0.08 0.07 0.05

Table C2 : Continued.
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Time
Min

Det
mmol/1

Stoch
mmol/

Time
Min

Det
mmol/1

Stoch
mmol/1

Time
Min

Det
mmol/1

Stoch
mmol/1

0 0.6948 0.6932 62 0.196 0.185 124 0.1047 0.0927

2 0.6429 0.6394 64 0.1917 0.1804 126 0.1027 0.0908

4 0.597 0.5929 66 0.1876 0.1759 128 0.1007 0.089

6 0.5564 0.5522 68 0.1836 0.1716 130 0.0988 0.0872

8 0.5204 0.5167 70 0.1797 0.1675 132 0.0969 0.0854

10 0.4884 0.4853 72 0.176 0.1635 134 0.095 0.0837

12 0.46 0.4575 74 0.1723 0.1596 136 0.0931 0.082

14 0.4345 0.4325 76 0.1688 0.1559 138 0.0913 0.0804

16 0.4117 0.4102 78 0.1654 0.1523 140 0.0896 0.0788

18 0.3913 0.39 80 0.162 0.1488 142 0.0878 0.0772

20 0.3729 0.3717 82 0.1587 0.1454 144 0.0861 0.0757

22 0.3563 0.3551 84 0.1555 0.1422 146 0.0845 0.0742

24 0.3412 0.3399 86 0.1524 0.139 148 0.0828 0.0727

26 0.3275 0.3259 88 0.1494 0.132 150 0.0812 0.0713

28 0.315 0.3131 90 0.1464 0.133 152 0.0797 0.0699

30 0.3035 0.3012 92 0.1435 0.1301 154 0.0781 0.0685

32 0.293 0.2901 94 0.1407 0.1273 156 0.0766 0.0671

34 0.2833 0.2799 96 0.1379 0.1245 158 0.0751 0.0658

36 0.2743 0.2703 98 0.1352 0.1218 160 0.0737 0.0645

38 0.2659 0.2613 100 0.1326 0.1192 162 0.0723 0.0633

40 0.2581 0.2529 102 0.13 0.1167 164 0.0709 0.062

42 0.2508 0.245 104 0.1274 0.1142 166 0.0695 0.0608

44 0.244 0.2375 106 0.125 0.1118 168 0.0682 0.0608

46 0.244 0.2305 108 0.1225 0.1095 170 0.0668 0.0585

48 0.2314 0.2238 110 0.1201 0.1072 172 0.0656 0.0573

50 0.2256 0.2174 112 0.1178 0.105 174 0.0643 0.0562

52 0.2201 0.2113 114 0.1155 0.1028 176 0.063 0.0551

54 0.2149 0.2056 116 0.1133 0.1007 178 0.0618 0.0541

56 0.2099 0.2001 118 0.1111 0.0986 180 0.0606 0.053

58 0.205 0.1949 120 0.1089 0.0966

_£Q____ 0.2004 0.1898 J 2 2 ___ 0.1068 0.0946

Table C3: The stochastic (Stoch) and deterministic (Det) values for the mean concentration of 

glucose tracer in blood plasma at times between 0 and 180 minutes (total subjects).
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Time

(min)

SI S2 Dl D2 Time

(min)

SI S2 Dl D2

0 0 .6 9 0 2 0 .6 9 8 8 0 .6 9 0 9 0 .6 9 9 2 92 0 .1 1 1 4 0 .1 5 3 1 0 .1 2 9 5 0 .1 6 0 7

4 0 .5 8 5 6 0 .6 0 0 4 0 .5 8 9 3 0 .6 0 5 8 96 0 .1 0 6 3 0 .1 4 7 0 .1241 0 .1 5 4 9

8 0 .5 0 5 8 0 .5 2 9 5 0 .5 1 0 1 0 .5 3 2 2 100 0 .1 0 1 4 0 .1 4 1 2 0 .1 1 9 0 .1 4 9 4

1 2 0 .4 4 3 3 0 .4 7 4 1 0 .4 4 7 8 0 .4 7 3 9 104 0 .0 9 6 8 0 .1 3 5 7 0 .1 1 4 0 .1 4 4

16 0 .3 9 3 8 0 .4 2 9 9 0 .3 9 8 4 0 .4271 108 0 .0 9 2 5 0 .1 3 0 5 0 .1 0 9 3 0 .1 3 8 9

20 0 .3 5 3 4 0 .3 9 3 9 0 .3 5 8 7 0 .3 8 9 3 112 0 .0 8 8 3 0 .1 2 5 5 0 .1 0 4 8 0 .1 3 4

24 0 .3 2 0 2 0 .3 6 7 9 0 .3 2 6 5 0 .3 5 8 3 116 0 .0 8 4 4 0 .1 2 0 6 0 .1 0 0 5 0 .1 2 9 2

28 0 .2 9 2 4 0 .3 3 8 4 0 .2 9 9 9 0 .3 3 2 5 120 0 .0 8 0 8 0 .1 1 6 0 .0 9 6 3 0 .1 2 4 7

32 0 .2 6 8 8 0 .3 1 6 3 0 .2 7 7 7 0 .3 1 0 9 124 0 .0 7 7 3 0 .1 1 1 6 0 .0 9 2 4 0 .1 2 0 3

36 0 .2 4 8 4 0 .2 9 7 3 0 .2 5 8 9 0 .2 9 2 3 128 0 .0 7 3 9 0 .1 0 7 5 0 .0 8 8 6 0 .1 1 6

40 0 .2 3 0 8 0 .2 8 0 1 0 .2 4 2 7 0 .2 7 6 3 132 0 .0 7 0 9 0 .1 0 5 5 0 .0 8 1 4 0 .1 1 1 9

44 0 .2 1 5 3 0 .2 6 5 0 .2 2 8 5 0 .2 6 2 2 136 0 .0 6 7 7 0 .0 9 9 6 0 .0781 0 .1 0 8

48 0 .2 0 1 6 0 .2 5 1 3 0 .2 1 6 0 .2 4 9 7 140 0 .0 6 4 9 0 .0 9 5 9 0 .0 7 4 9 0 .1 0 4 2

52 0 .1 8 9 3 0 .2 3 8 7 0 .2 0 4 7 0 .2 4 9 7 144 0 .0621 0 .0 9 2 2 0 .0 7 1 8 0 .1 0 0 5

56 0 .1 7 8 3 0 .2271 0 .1 9 4 6 0 .2281 148 0 .0 5 9 5 0 .0 8 8 8 0 .0 7 1 8 0 .0 9 6 9

60 0 .1 6 8 6 0 .2 1 6 5 0 .1 8 5 2 0 .2 1 8 6 152 0 .0 5 7 0 .0 8 5 4 0 .0 6 8 9 0 .0 9 3 5

64 0 .1 5 9 1 0 .2 0 6 7 0 .1 7 6 6 0 .2 0 9 8 156 0 .0 5 4 6 0 .0 8 2 2 0 .0 6 6 0 .0 9 0 2

68 0 .1 5 0 7 0 .1 9 7 5 0 .1 6 8 6 0 .2 0 1 6 160 0 .0 5 2 3 0 .0 7 9 3 0 .0 6 3 3 0 .0 8 7

72 0 .1 4 2 9 0 .1 8 9 0 .1 6 8 6 0 .1 9 3 9 164 0 .0 5 0 2 0 .0 7 6 4 0 .0 6 0 7 0 .0 8 4

76 0 .1 3 5 7 0.181 0 .1541 0 .1 8 6 6 168 0 .0481 0 .0 7 3 5 0 .0 5 8 2 0.081

80 0 .1 2 9 0 .1 7 3 4 0 .1 4 7 5 0 .1 7 9 6 172 0 .0461 0 .071 0 .0 5 5 8 0 .0 7 8 2

84 0 .1 2 2 7 0 .1 6 6 2 0 .1 4 1 2 0 .1 7 3 176 0 .0 4 4 2 0 .0 6 8 4 0 .0 5 3 6 0 .0 7 5 4

88 0 .1 1 6 9 0 .1 5 9 5 0 .1 3 5 2 0 .1 6 6 7 180 0 .0 4 2 4 0 .0 6 5 9 0 .0 5 1 4 0 .0 7 2 8

Table C4: The stochastic values in non-obese (SI) and obese (S2) subjects along with the 

deterministic values in non-obese (D l) and obese (D2) subjects for the concentration of 

glucose tracer in blood plasma at times between time 0 to 180 minutes.

N.B. The units for SI, S2, Dl and D2 are mmo/1.
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APPENDIX D:The calculation of the PDF

for the concentration of the first 

com partm ent in Soong's two- 

compartmental model.

The following is the calculation of the PDF of the concentration in the first compartment 

in a two- compartmental model which stochasticity was incorporated into the transfer rates 

of k12 and k2| between compartments. The author would like to acknowledge to Dr. Tom 

Hennessy for his co-operation in finding the results.

We can write from equations 5.3 and 5.4:

We require E(U,(t)) when k2l, k12 have a truncated bivariate normal distribution of <J>0 (k12, 

k2,) where

(1)

®0(*12’*2l) = e

1  t  C * 1 2 - t * i ) 2  2 p ( * u - n , ) ( * 2 r n 2 )  ( t 2 1 - n 2 ) 2 ^
2(1-p2) O, °l°2 °2 (2)

2 7 1 ^ ( 1 - P 2)O i 0 2

To find the distribution function for U,(t), FtJ1(t), we write:
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V M1 - V ) = p (
ku +kn e

^ 2 +A:21
-<v).

(3)

Let k21 = x and k 12 = y for convenience, so:

F v (Mj <V)~P{y+xe ^ y)t<\(x+y)) (4)

Let v = constant>0 and suppose we plot the following curve for the fixed v and t

y+xe (x+y)i-V(x +y) (5)

i.e. y = f(x), f(x0)=0, and therefore x0= -l/t logv .

Y

Consider the following regions:

Region A: y+x.e'(x+y)t > v(x+y) Region B: y+x.e‘(x+y)t<v(x+y)

Therefore
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Fu (ux<\ )  =prob (region B ) = f ° ° [ y' /W (j> (x,y)dydx. (6)

We require dFul/ 5v, but this is difficult to obtain because the limits of the integrand are 

functions of v. By transforming to new variables it should be possible to change the limits, 

so that the function can be more easily differentiated. The following transformation of the 

variables is the obvious one to choose:

x+y - s s ( l - V )
X  =  — -------------- -

\ - e st

y  +xe - ( x + y ) t

-=v
x +y

y = s ~ s ( l - v )

\ ~ e st

(7)

Then

1-7 \% [ J(1 -V)
\ - e ~ sl

, s - ^ l
\ - e ~ st

]dsdv

where J is the Jacobean matrix is given by

dx dy
ds ds

dx dy_
dv 5v

(8)

(9)

To calculate the limits o f integrals, we consider the following curve:
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The original area is mapped onto the area shown on the s,v plane. The axis y = 0 maps to

V

V„

s

Xo

s = x, v = e 'xt or v = e 'st, i.e. the lowers limit is s=-l/t logv. The boundary y=f(x) maps onto 

v=v0 =constant where x0= -1/t logv0. Therefore the limits of v are [0,v0] andwe have:

V v.> = /v' v' [ /1 j \ = 0  j (v=0 •> (-l/f)logv J - g
} d s ] d \

1 ~e 1 ~e
(10)

The inner integral, h(v), is not a function of v0 so differentiation is easy. To differentiate 

Fui(v0) we have:

^ i = ~ ( f V" 0m d v ) - h ( v 0) = f ‘
ovQ dvQ Jv=o J( - l/i)logv0 l  - e

i ,o (i( lZV))S_£( lZ V)

1 - e  ~s‘ 1 - e  si
)d s  (11 )

which is the probability density function of U,(t).
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SYMBOLS AND ABBREVIATIONS

The following is a list of symbols and abbreviations that were used in the thesis. Symbols 

were defined in the text but since some of them are repeated in following sections they are 

summarised here.

A. Symbol

1. Roman

Cov(x,y) The covariance of variables x and y.

D={dij } The matrix D with elements of dy

E(X) The expectation of variable X.

Fx(x) Cumulative distribution function for X.

G The mean of G.

koi (1) The flux of substance from compartment i to the outside of the system.

kÿ(t), Ry(t) The flux of substance from the compartment j to the compartment i.

R2 The coefficient of determination.

Rd (t) Rate of disappearance of material from the compartment.

Ra (0

R,

Rate of appearance of material in the compartment 

Random retention time.

r The coefficient of correlation in the sample.

s (J The total residence time.

Si. The system total residence time.

S2x, S2y The sample variance for the variables of X and Y.
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Vij Random number of visitation that a particle originating in 

compartment i will make to j prior to its departure from the system

Wy The weights in the WLS method.

Xi (0) Concentration of substance in the first compartment.

xij The element in the ith row and j th of matrix x.

XT The transpose of matrix X .

X-1 The inverse of matrix X.

|X| The determinant of the matrix X.

X~N(p,o2) X has a normal distribution with mean and variance o f p and o2

Yi (a, t j ) Computed data at the time of ty

Z, (tj) The measured data at the time of tj.
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2. Greek

P 2 (t,s)

p

p

°ij

o 2

p

X

T (2)

t d

x'

Y

Y -tY ’ij ]

Yij

The statistical moment of the random process.

The coefficient of correlation in the population.

The estimated coefficient of correlation.

The variance of the measurement error for ith outputs at the time of tj. 

The population variance.

The population mean.

The matrix of the mean of the total residence time.

The matrix of squared elements of x.

Diagonal matrix.

The matrix of the mean of the random number of visitation of a particle 

originating in compartment i will make to j prior to its departure from 

the system.

The mean of the residence time that a particle originating in 

compartment i will accumulate in compartment j during its number of 

visit.

The matrix of the variance of the total residence time.

The matrix of the variance of the random number of visitation of a 

particle originating in compartment i will make to j prior to its departure 

from the system.

The variance of the residence time that a particle originating in 

compartment i will accumulate in compartment j during its number of 

visit.
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Ti. The mean of the system residence time that a particle originating in 

compartment i will accumulate in the system prior to its departure from 

the system.

Yi. The variance of the system residence time that a particle originating in 

compartment i will accumulate in the system prior to its departure from 

the system.

T'ü The mean of the random number of visitation of a particle originating in 

compartment i will make to j prior to its departure from the system.

Vu The variance of the random number of visitation of a particle originating 

in compartment i will make to j prior to its departure from the system

A

$o (x, y)

Variance-covariance matrix of compartmental parameters. 

Joint distribution function of x and y.

B. Abbreviations

BSA Body surface area

CV Coefficient of variation

Df Degrees of freedom

ID Parameter estimation program in ADAPT

IVGTT Intraveneous glucose tolerance test

GCMS Gas chromatography mass spectrometer
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GDM Gestational diabetes mellitus

GLS

MAP

ML

MRT

PDF

SIM

SS

VRT

WLS

w s s

Generalised least squares 

Maximum a posteriori probability 

Maximum likelihood

Mean of the total residence time of a particle in a compartmental system

Probability distribution function 

Simulation program in ADAPT 

Sum of squares of residuals

Variance of the total residence time of a particle in a compartmental 

system

Weighted least squares of residuals 

Weighted sum of squares of residuals
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