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ABSTRACT

The objectives of this thesis are to investigate, experimentally and numerically, vortex 
shedding from cylinders submerged in laminar and turbulent flows and various means 
for its control.

The numerical model used is based on the finite-volume method for the discretisation 
of the governing transport equations. The k-e turbulence model with the SMART 
discretisation scheme are used throughout. In order to validate the methods, 
predictions were obtained for a number of flows for which extensive experimental 
results exist. These include single square and circular cylinders, as well as two circular 
cylinders in tandem. The code was also used in the prediction of very high Reynolds 
number flows (i.e. Re>9xl06), for which no experimental results exist.

The predicted values of the mean drag, the fluctuations of drag and lift and the 
Strouhal number were satisfactory for the laminar flow cases. For the turbulent cases, 
however, predictions for the circular cylinder slightly underestimated the mean drag 
while the fluctuating lift and the Strouhal number were slightly overestimated. The 
square cylinder results were satisfactory for all regimes.

The flow field that develops around two circular cylinders in tandem was investigated 
numerically in laminar and turbulent flow conditions. The wide range of well 
established flow phenomena observed experimentally were reproduced.

The techniques considered for the control of vortex shedding consist of the use of 
control cylinders, injection into both the approach flow and the wake. It must be 
noted that injection into the flow is a novel method for which no previous research is 
reported. Experiments were carried out for forward injection to maximise its 
efficiency for a circular cylinder.

All the control techniques used, showed a complete suppression of vortex shedding 
behind a circular and square cylinder in laminar flow and a square cylinder in turbulent 
flow conditions. However, levels of suppression were not as high for the circular 
cylinder in turbulent flow.

It is hoped that the work reported herein will contribute to the understanding of the 
physics involved in the control of vortex shedding, and the instabilities it causes.
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NOMENCLATURE

English
A
A
A
A

C

E. W, N. S. P

nb

inj

D

c D
c D
Cdî
c n_

c,

CL
C,,

Cp
c£l.cE2.cM.ct
d
dhole

f

f.p
f*
fs

Fd. Fl  
G

G,
G2
h c - c

H

ij
I
k
£

Definition
Area
Coefficients containing convective and diffusive fluxes 
Coefficients in discretised equation 
Injection area

Fd
Drag coefficient = - --------

2 pU°A
Mean drag 
Rms drag 

Interference drag
Ratio of rms drag after control to before control 

Fl
Lift coefficient = ---------

2 pU”A
Rms lift
Ratio of rms drag after control to before control

Distributions of the time averaged surface pressure 
Empirical constants

Control cylinder diameter/height 
Diameter of injection hole 
Frequency (Hz)
Interpolation factor
Non-dimensional frequency scale =fD/U
Vortex shedding frequency
Pressure and viscous forces in the x,y directions
Distance (m) from centre to centre of main cylinder to centre of
control cylinder
Injection hole geometry number (1) = dhoie/D
Injection hole geometry number (2) = Ivc/L
Distance from centre to centre of injection holes
Height of cylinder
Unit vectors in x,y directions
Total flux
Turbulent kinetic energy 
Turbulence length scale
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L Immersion depth
rh Injection mass flow rate =p Amj(Uhoi)2
M Total number of control volumes
N Number of sample points

P Pressure
P Distance (m) from centre to centre of two cylinders in tandem

Pk Rate of production of k

Pf Rate of production of £

q Total kinetic energy = k + —( U2 + V2 )

Re Reynolds number = UoD / v

Rr Reaction force = mUhol

s* Source term of term 0,
s Streamwise distance from the upstream corner of square 

cylinder
St Strouhal number =fsD/U0
t Time (s)
t* Non-dimensional time scale =tU/D
T Period of oscillation, and Lateral distance from the top side of 

square cylinder
Tu Turbulence intensity at inlet
U, V, w Fluctuating velocity components x,y,z directions
U, V, W Mean velocity in components the x,y,z directions

Uhol Injection velocity
u inj Forward injection velocity
u 0 Approach velocity

Up Wall shear stress
u r Injection ratio =Uinj/U0

Usj Stagnation jet velocity
UT Friction velocity= ̂ /xw / p

V Volume
Vr Change in rms voltage
w Square cylinder height
x, y, z Orthogonal coordinates

y+ Dimensionless normal distance of the first grid point above 
surface
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Greek Definitions
a Angle from centre plane of main cylinder to control cylinder

P Empirical coefficient

r* Exchange coefficient for variable <})

«U Kronecker’s delta
8n Distance from cylinder
An Size of small cell next to cylinder
At Time-step (s)
At* Non-dimensionalised time-step=U()At/El
e Angle
K Von Karman’s constant

A-w Coefficient to evaluate wall shear stress

M- Dynamic viscosity
V Kinematic viscosity

k2
V, Turbulent (eddy) viscosity = —

p Density of fluid
k3/2

e Kinetic-energy dissipation rate ~

Oe Empirical coefficients

Tw Wall shear stress
Viscous stress tensor

<l> General dependent variable 
dU dV

CO V orticity = -r— -  -7- 
dy dx

Q Rotation paramater

Other Definition
Mean value

A Instantaneous values
rms Root mean square
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CHAPTER ONE: INTRODUCTION

1.1 Introductory Remarks

The flow of a fluid around a structure is often accompanied by periodic shedding of 
vortices that alter the surrounding pressure field and induce forces that can cause 
destructive vibrations. The study of the suppression of vortex shedding from a circular 
cylinder has received much attention, since practical application is expected in various 
areas of engineering. The complexity of the phenomenon arises from its sensitivity to 
Reynolds number, turbulence intensity levels, surface roughness, three dimensionality, 
and elastic response. As such, a wide variety of aerodynamic and hydrodynamic 
means for suppressing the shedding of vortices have been developed.

This chapter presents a review of the phenomenon of vortex shedding from circular 
and square cylinders and of methods to suppress them.

The cylinder is a bluff body, i.e. one from which the flow separates over a large 
portion of the surface. Most civil engineering structures, such as bridge piers, offshore 
platform legs and chimneys are bluff bodies. The primary purpose of these structures 
is not to utilise the resulting lift and drag forces (as it is with aircraft structures), but 
rather to bear loads. These structures tend not to be aero dynamic ally optimised and 
flow-induced vibrations are usually regarded as a secondary design consideration, at 
least until a failure occurs.

When the response to vortex shedding produces unacceptable stresses, consideration 
must be given to reducing the amplitude of this response by suppressing the formation 
and subsequent shedding of vortices. This suppression can be achieved by using either 
mechanical or fluid dynamic means.

The mechanical means of suppression involves changes in either the member physical 
properties or the structural detailing. Thus, increases in natural frequency, stiffness or 
damping will generally reduce the oscillation amplitude. Generally, these alterations 
would be considered at the design stage.

The fluid dynamic approach to suppression involves the use of aerodynamic spoilers 
which reduce the amplitude of response to the fluid processes involved in vortex 
shedding. Add-on devices such as helical strakes, shrouds, and splitter plates and
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control cylinders, are examples of aerodynamic spoilers. The fluid dynamic approach 
would be considered if in-situ problems were encountered.

1.2 Basic Definitions

It is often the case that structures shed vortices in fluid flows. The resulting vortex 
street tends to be very similar regardless of the geometry of the structure. As the 
vortices are shed from one side and then the other, periodic surface pressures are 
imposed on the structure.

Vortex shedding from a smooth, circular cylinder in steady flow is a function of 
Reynolds number; defined as:

Re = U0D / v (1.1)

Where v is the kinematic viscosity of the fluid, U0 is the free stream velocity and D is 
the cylinder diameter.

The major Reynolds number regimes of vortex shedding from a smooth cylinder are 
shown in Figure 1.1 (Douglas et al., 1985). At very low values of Re, i.e. below 0.5, 
the inertia effects are negligible and the flow pattern is very similar to that for an ideal 
flow. The flow remains symmetric downstream of the cylinder and the pressure 
recovery is nearly complete. Thus, pressure drag is negligible and the profile drag is 
nearly all due to skin friction. Figure 1.1a shows the flow pattern and the associated 
pressure distribution. At increased Re, between around 2 and 30, separation of the 
boundary layer occurs at point S as indicated in Fig 1.1b. Two symmetrical eddies, 
rotating in opposition to one another, are found. Further increase of Re tends to 
elongate the fixed eddies, which then begin to oscillate at about Re~90. Depending 
upon the free stream turbulence level, they break away from the cylinder as shown in 
Fig 1.1c. This occurs alternately from either side of the cylinder, the eddies being 
washed away by the main stream. This process is known as vortex shedding. It is 
intensified by a further increase of Re, whereby the shedding of vortices from alternate 
sides of the cylinder is continuous, thus forming in the wake two discrete rows of 
vortices (Fig 1. Id). This is known as the vortex street or von Karman vortex street. 
Regular vortex shedding is a dominant feature of two dimensional bluff body wakes 
and is present irrespective of whether the separating boundary layers is laminar or 
turbulent (Fig Lie).
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Figure 1.1: Flow past a circular cylinder.
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Due to the shedding vortices, a cylinder in cross flow will be acted upon by a 
fluctuating lift and fluctuating drag force. The dominant frequency of the former will 
be one half that of the latter. This is because it takes two of the alternating vortices to 
produce a full cycle of the lift fluctuations, and only one for a full cycle of the drag 
fluctuations.

If Fd is the force in the flow direction and FL is the force in the direction normal to it, 
then the dimensionless lift and drag coefficients can be defined thus:

Where p is the density of fluid; U0 is the incident velocity, and A is the projected 

area, which in 2-D flow is the same as the cylinder diameter. Figure 1.2 shows the 
time history of CD and CL and defines T as one lift period of oscillations for a bluff 
body.

( 1.2)

(1.3)

T

0

Figure 1.2: Typical time history for drag and lift coefficients over time t.
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A measure of the strength of the lift and drag fluctuations is given in terms of the root 
mean square, where:

n =  l

(1.4)

CL = ^(Cl - C l )2 
:1

(1.5)

Where: N= Number of sample points, Cd = Mean CD, and Cl  = Mean CL.

Figure 1.3 shows the relationship between Reynolds number and the time averaged 
coefficient of drag (CD). This figure is explained in more detail in Chapter Three.

Experiments show that the frequency of shedding (fs) is given in terms of the Strouhal 
number (St), named after Vincent Strouhal (1850-1922). The Strouhal number is an 
appropriate combination of flow and geometry parameters to render fs dimensionless. 
It is defined as follows:

Where fs is the vortex shedding frequency; St is the Strouhal Number

Figure 1.4 shows the relationship between Strouhal number and Reynolds number for 
a circular cylinder. This figure is explained in more detail in Chapter Three.

Vortex shedding from a stationary cylinder at very high Reynolds numbers does not 
occur at a single distinct frequency, but rather it wanders over a narrow band of 
frequencies with a range of amplitudes. Furthermore, it is not uniform along the span.
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Figure 1.3: Drag coefficient for a sphere and a cylinder.

Figure 1.4: Reynolds number versus Strouhal number for circular cylinders (Shin 
and Wambsganss, 1977) and (Jendrzejczyk and' Chen, 1985).
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Flows at high Reynolds numbers occur quite frequently in nature, as can be seen from 
Table 1.1 (Griffin, 1982). Vibrations at these Re numbers are of particular interest 
with respect to the vibration of the structural components.

Type Of Flow Location Reynolds No. Tracer

Wind past an ocean island Jan Mayen 10" Clouds

Guadeloupe 1010 Clouds

Water past a ship aground Nantucket Island 107-108 Oil

Water past a marine pile English Coast 108 None

Water past a drill casing pipe North Sea 105 None

Water past a model pile Laboratory
channel

104 Dye

Wake of a sphere towed in 
water

Towing channel 3xl03 Dye

Wake of an inclined plate Water channel 103 Aluminium
particles

Air past a circular cylinder Wind tunnel 2xl02 Aerosol

Table 1.1: Visualisation of vortex trails and Karman Vortex Streets.
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1.3 Suppression Techniques

Numerous methods have been devised to suppress the conditions leading to the flow- 
induced vibrations of cylinders. These techniques rely on modifying either the 
geometry or the flow conditions. Below is a brief summary of some of these 
techniques.

a) Streamlining the Cross Section
According to Blevins (1990), vortex shedding can be suppressed if separation from 
the structure is minimised. This also reduces the mean drag. For streamlining the 
downstream side to be effective, an aspect ratio of about 6 would be required, or an 
included angle of the taper no bigger than 8 to 10 degrees. Flanko (1967) discusses 
the reduction of vortex-induced vibration of a pier by tapering. Streamlining is most 
effective when the direction of flow is fixed relative to the structure and the structure 
has sufficient stiffness to avoid flutter.

b) Add-On Vortex Suppression Device
Zdravkovich (1981), Wong and Kokkalis (1982), Every et al. (1982), Hafen and 
Meggit (1971), and Rogers (1983) review add-on devices for the suppression of 
vortex-induced vibration of cylindrical structures in wind and marine applications. 
Zdravkovich classifies these structures into three categories:

• Surface Protrusions:
i) Turbulence Promotion

Prandtl (1914) demonstrated that the developing boundary layer can be 'tripped' 
(i.e. forced to be turbulent) by a wire fixed on the surface around a sphere. Small 
drag coefficients typical of critical Reynolds numbers are then obtained with fairly 
low Reynolds numbers. Fage and Warsap (1929) made a detailed study of the 
effect of a tripping wire attached to a circular cylinder on prematurely promoting 
the critical regime. Price (1956) concluded that neither straight tripping wires nor 
the most effective helical ones were effective in suppressing large-amplitude 
vibrations.

ii) Helical Strakes
Scruton and Walshe (1957) developed efficient surface protrusions for avoiding 
wind-excited oscillations of cylindrical structures. Three plates of sharp edged 
rectangular section were wound as helical strakes around the surface of the 
cylinder, with a pitch of 15D. It was found that the attachment of strakes was
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effective in reducing the aerodynamic excitation. Woodgate and Maybrey (1959) 
determined an optimum pitch of 5D, whilst the height of the strakes remained at
0.09D.

• Shrouds:
i) Perforated shrouds with circular holes

Price (1956) carried out an extensive study of the effect of various surface 
modifications on reducing oscillations of a circular cylinder submerged in water. 
Price also tried to change the cross-sectional area of the model locally by fitting 
concentric bushings 1.25D in diameter and 1.5D apart. He subsequently detached 
them from the surface and thus formed a perforated shroud. According to Price, 
the “shroud would break up the flow into a large number of small vortices with the 
result of minimising the periodic asymmetry of the flow about the cylinder.” The 
shroud proved to be an effective means for vortex suppression, irrespective of the 
stiffness of the tested cylinder.

ii) Shrouds with square holes
Walshe and Wootton (1970) found that square holes are more effective than 
circular ones. Wootton and Yates (1970) carried out drag measurements to 
separate the drag exerted on the shroud from that experienced by the cylinder. 
They found that the drag coefficient of the shroud was 0.7 and for the enclosed 
cylinder 0.2 (both based on the cylinder diameter).

• Near wake Stabilisers:
i) Splitter Plates

Appelt et al. (1973) carried out tests with long and short splitter plates, attached or 
detached, behind a circular cylinder. Short splitter plates attached to the circular 
cylinder significantly modified the flow around them. The drag coefficient was 
reduced below the original value, even by a very short splitter plate. Reductions by 
as much as 31 % were obtained when the length of the splitter plate was equal to 
the cylinder diameter.

ii) Guide Vanes
Grimminger (1945) tried to stabilise the near wake behind a circular cylinder by 
placing guide vanes along its boundary, consisting of two flat plates (being -ID  
long) fitted along the sides of the cylinder and parallel to each other and the 
cylinder axis. The guide vanes reduced the drag coefficient from 1.06 measured on 
the original cylinder to 0.83. Oscillations were reduced to low amplitudes.
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c) Active Control
Rockwell (1990) discussed the possibility of controlling instabilities in bluff body 
flows by subjecting the entire body to a prescribed motion. He also discussed the 
concept of local control, involving localised application of unsteady blowing/suction 
or heating at specified positions on the surface. Some of these methods are presented 
here:

• Minimisation of cross-stream spacing of vortex street:
Tokumara and Dimotakis (1989) showed that substantial reduction in both transverse 
and in-line oscillations can be attained by purely rotational motion of the cylinder. 
Mean CD at Re=1.5xl04 was reduced by a factor of six. Griffin and Ramberg (1976) 
demonstrated that streamwise oscillations of a cylinder could produce a street of 
vortices having essentially zero cross-stream spacing. Griffin and Ramberg (1974) 
showed that with cross-stream oscillations, much higher displacement amplitudes are 
required to approach a zero value of transverse spacing of the vortex street.

• Oscillations in the streamwise direction:
This method subsequently produces small scale symmetrical vortices (Couder and 
Basdevant, 1989). By applying small amplitude oscillations at a frequency slightly less 
than twice the Karman frequency, Berger and Schumm (1988) were able to suppress 
the large-scale Karman mode in low values of Reynolds number.

• Generation of complex modal structure of vortex street:
Williamson and Roshko (1988), provide an overview of the possible modes of 
response due to cross-stream oscillation of a cylinder over a wide range of excitation 
frequency and amplitude. A variety of vortex patterns can be generated in the near-
wake, which substantially alter the fluctuating lift and drag, as well as the spectral 
content and coherence of the downstream wake.

• Mode competition of near-wake vortices:
There are ranges of excitation parameters for which phase-locked response is not 
attainable. These ranges correspond to cylinder oscillations in the cross-stream 
direction. Mode competition, whereby the wake vortex pattern alternates between 
symmetrical and asymmetrical patterns are described by Ongoren and Rockwell 
(1988). By switching between these symmetric and anti-symmetric modes of vibration 
with appropriate excitation, it is possible to disrupt phase-locked patterns in the near 
wake.

29



d) Base Bleed
Wood (1964) studied the effect of 'base bleed' on an airfoil section with a blunt 
trailing edge. This method reduces drag by shifting the vortex formation region 
further downstream. Igarashi (1978) modified a circular cylinder by introducing a slit 
cut along the whole span. Thus self-bleed of fluid into the near wake was achieved by 
high pressure around the stagnation region and low pressure around the base. The 
self-bleed rate can be altered by rotating the cylinder with the slit so that the slit axis 
becomes inclined to the free stream velocity up to 30°. Igarashi measured the drag 
coefficient and Strouhal number for two widths of the slit, 0.08D and 0.185D, at 
Re=4.5xl04. The drag coefficients were 0.9 and 0.75 and Strouhal numbers 0.26 and 
0.32, respectively.

e) Control Cylinder
Kovaszany (1949) indicated that a hot wire probe positioned with supports aligned 
parallel to the flow caused an upstream propagating instability. Subsequently, 
Strykowski and Sreenivasan (1990) investigated the control of vortex shedding behind 
a cylinder by the placement of a second, much smaller cylinder in the near wake of the 
main cylinder. This effect will be discussed in much more detail in Chapter Five.

f) Injection Into The Free Stream
The possibility of the suppression of vortex induced vibrations by injection into the 
free stream was postulated by Dr B.A.Younis who suspected its existence from some 
flow visualisation pictures. A number of experiments were carried out (Razavi, 1992 
and Younis & Razavi, 1996) to quantify the extent to which suppression can be 
achieved. This method will be discussed in more detail in Chapters Six (experimental 
work), and Seven (computational results).

g) Rear Stagnation Jet
Mo and Duke (1993) investigated the numerical simulation of cylinder wake flow with 
a rear stagnation jet. Their main finding was that a rear stagnation jet forces a 
symmetrical wake flow pattern, thus eliminating the lateral force. They also observed 
that the pressure on the cylinder surface drops significantly, more so on the 
downstream side of the cylinder. This effect will be discussed in more detail in 
Chapter Eight.
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1.4 Computational Fluid Dynamics

The steady increase in the speed of computers and in the memory size has made the 
use of computational fluid dynamics (CFD) more practicable. This branch of fluid 
dynamics complements experimental and theoretical fluid dynamics by providing an 
alternative cost-effective means of simulating real flows. CFD provides three main 
advantages compared with physical model tests:

(i) Design and development times are significantly reduced.

(ii) Flow conditions not reproducible in experimental model tests can be simulated.

(iii) CFD provides more detailed and comprehensive information.

The governing equations (Chapter Two) for flows of practical interest cannot be 
solved analytically to obtain an exact solution and so it is necessary to seek an 
approximate, numerical solution. Computational techniques replace the governing 
partial differential equations with a system of algebraic equations, so that a computer 
can be used to obtain the solution.

For local methods, like the finite volume method used in this project, the algebraic 
equations link together values of the dependent variables at adjacent grid points. A 
grid of discrete points is distributed throughout the computational domain, in time and 
space. Consequently, one refers to the process of converting the continuous 
governing equations to a system of algebraic equations as discretisation. The required 
number of grid points for an accurate solution depends on the dimensionality of the 
problem, the geometric complexity and the severity of the gradients of the dependent 
variables. Since the governing equations for most classes of fluid dynamics are non-
linear, the computational solution proceeds iteratively.

The mathematical aspects of the modelling technique used in this project are 
presented in Chapter Two.
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1.5 Motivation and Objectives of Present Study

The previous sections have introduced the concept of vortex shedding, some of the 
techniques used to suppress the vibrations caused by it, and the use of computational 
fluid dynamics to simulate flow problems. The interest in the subject of vortex 
shedding past cylinders stems mainly from its relevance to various practical 
applications, such as dynamics of stacks, piles, chimneys, periscopes, and cables. 
Oscillations excited by vortex shedding can lead to amplitudes as large as two cylinder 
diameters, an occurrence which is not acceptable in most engineering situations.

Control of such oscillations is consequently a worthwhile area of study. Assessment of 
different suppression techniques relies heavily on experiments, but the gathering and 
recording of experimental data is a cumbersome and expensive process. It is with this 
in mind that the use of numerical modelling becomes an effective tool in enhancing 
experimental data, and thus aiding in the understanding of this important 
phenomenon.

The main objective of the present work is to investigate, experimentally and 
numerically, vortex shedding from cylinders submerged in laminar and turbulent flows 
and various means for its control.

This will be achieved by the following tasks:

1. The capability of the k-e method in modelling the range of vortex shedding regimes 
for a single cylinder, both square and circular will be assessed through comparisons 
with available experimental data and with other numerical techniques in terms of 
accuracy of computed results. This is presented in Chapter Three. Dependence of 
the computed results on grid and choice of scheme are discussed and evaluated. To 
determine the limits of the model, very high mean-flow Reynolds numbers of the 
order >107 are simulated, for the first time to our knowledge.

2. The flow field around a pair of rigid circular cylinders is very complex and depends 
on the spacing and the Reynolds number. The interference on the downstream 
cylinder is of importance when considering suppression techniques, as the drag 
may be reduced, depending on the spacing between cylinders. Predictions of this 
phenomenon in the laminar and turbulent flow regimes are presented in Chapter 
Four.
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3. Three methods of vortex suppression were selected for detailed study. The first 
one is the use of control cylinders. A small control cylinder is placed near the main 
cylinder to reduce or eliminate oscillations caused by vortex shedding on the main 
cylinder. Results for square and circular cylinders with control cylinders placed at 
different points in the flow are discussed in Chapter Five.

4. The second method of suppression is a novel one and consists of the injection of 
fluid into the approach flow. Experimental results are reported in Chapter Six. 
Consequently, this phenomenon is investigated numerically in Chapter Seven over 
a range of Reynolds numbers, and injection rates, which were not possible in the 
experimental set-up.

5. The third method of suppression to be investigated is the introduction of a rear 
stagnation jet, acting in a similar way to a splitter plate behind the cylinder. This 
phenomenon has not been investigated extensively in the past. A study of this 
technique by modelling it numerically for a circular and square cylinder and thus 
showing its effectiveness over a range of Reynolds numbers and jet flow rates is 
presented in Chapter Eight.

It is expected that the results obtained from this work will improve the current state of 
knowledge in the area of the prediction of vortex shedding and its suppression. By 
understanding the physics of suppression, engineers and designers can find the best 
solutions to their problems.
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CHAPTER TWO: MATHEMATICAL 
FORMULATION

2.1 Introductory Remarks

This chapter briefly describes the basis of the computational code used in the present 
study. The governing equations are first presented followed, by the averaged 
equations. Section 2.4 describes Boussinesq’s eddy viscosity concept used to close 
the time-averaged equations. Section 2.5 provides the basis of the k-e turbulence 
model and the modification necessary to handle vortex shedding.

The code used throughout the present work is based on the finite-volume method for 
the discretisation of the transport equations governing laminar or turbulent flows, 
which was originally advanced by Peric (1985). This method is described in Section
2.6. The algebraic form of the discretised transport equation is presented in Section
2.7. An interpolation scheme is required to obtain the value of a dependent variable on 
the cell faces from knowledge of the value at surrounding nodes. The choice of 
interpolation schemes is presented in Section 2.8.

The iterative SIMPLE algorithm of Patankar and Spalding (1972), used to couple the 
pressure and velocity calculations, is introduced in Section 2.9. The boundary 
conditions are treated in Section 2.10 and details of the solution algorithm and 
convergence criterion provided in Section 2.11.

2.2 Governing Equations

The laminar or turbulent motion of a fluid can be described by the conservation 
equations for momentum (the Navier-Stokes equations) and mass (continuity 
equation). Using Cartesian tensor notation, these equations are:

Continuity:

( 2 . 1)

Momentum:

(2 .2)
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Where p is the fluid density; Uj represents the components of the velocity vector in 
the Cartesian coordinate directions x,; p is the pressure; and:

(

3Xj dxt ^
(2.3)

v

are the components of the viscous stress tensor, expressed through the velocity 
gradients and dynamic viscosity |i. In the above equations A indicates instantaneous 
values of the flow quantities. Equations 2.1 to 2.3 are valid for all types of flow but 
are often solved in a simplified form arrived at by recognising a special feature of the 
flow. For incompressible flows, for example, the density (p) is constant and therefore 
it can be taken out of the derivatives.

For the purpose of modelling separated flows, it is noted that the influence at a point 
in the flow spreads in all directions. Therefore two-way coordinates apply throughout 
i.e. the conditions at a given location in that coordinate are influenced by changes in 
conditions on either side of that location (Patankar, 1980). The simulation of elliptic 
flows requires an iterative, whole field approach. Thus, the governing equations are 
solved, simultaneously, over the whole flow field since the direction of influence at a 
particular point is not known a priori. Moreover, because of the non-linearity of the 
governing equations, an iterative solution is necessary, based on repeated guess-and- 
correct cycles.

2.3 Averaged Equations

In practice, turbulent flows can be simulated directly by solving the full 3-D Navier- 
Stokes equations for the full range of the turbulent motions from the smallest 
dissipation scales to the largest, corresponding to the physical dimensions of the flow. 
Unfortunately, the present-day computing resources only enable such Direct 
Numerical Simulation (DNS) for the simplest geometries and then only for low 
Reynolds Numbers. It is thus necessary to use some sort of averaging to render the 
equations soluble.

Reynolds (1883) proposed a decomposition of the instantaneous variables (e.g. 
pressure, velocity, density) into mean and fluctuating components:
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Û = U + u 

V = V + v
(2.4)

The mean component is simply the long-time average of the instantaneous value, 
defined thus:

1 f t + At  -
IT = Lim— f U.(t).dtt->~ Jt (2.5)

The above averaging is only applicable to statistically stationary flows. For the present 
applications, we interpret the Reynolds-averaging process to mean:

IT
1 r t + A t  -

= — J Uj(t).dtAt
(2.6)

where At, the time interval, is greater than the time-scale of the turbulent fluctuations 
but is much smaller than the period of the vortex shedding (T). Typically, in this 
work, At is taken as T/2000 seconds.

By introducing the above definitions into the instantaneous Navier-Stokes equations 
and averaging the results:

3pU,
3t + £ ; w w = £ ; ^ - t

(2.7)

Where ul u | is the Reynolds-stress tensor, defined as:

( 1 IT uv uw
u u =1 J vu v2 vw (2.8)

wu wv w27

Because of the non-linearity of the convection terms in the Navier-Stokes equations, 
the averaging process introduces some unknown turbulence correlations. These are 
known as the Reynolds stresses. Physically, they represent the rate at which 
momentum is transported by turbulent fluctuations. Their magnitude is many times 
greater than their molecular (laminar) counterparts which explains mixing associated 
with turbulent flows and the absence of molecular diffusion in Equation 2.7.
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The original Navier-Stokes equations form a closed set of equations but the unknown 
Reynolds stresses, introduced by the averaging process, render the equations 
insoluble. There are more unknowns than there are equations. This is what is known 
as the closure problem.

2.4 Boussinesq’s Eddy Viscosity Concept

A solution to the closure problem is to use a turbulence model, which consists of a set 
of differential equations and/or algebraic formulae, which allow the determination of 
the Reynolds stresses and thus close the time-averaged equations.

Boussinesq (1887) proposed that the Reynolds stresses may be modelled as being 
proportional to the mean rates of strain; the proportionality coefficient defining the 
turbulent or eddy viscosity, thus:

u,Uj s v t
3U, dU =
5x: + dx.

(2.9)

Where k is the turbulent kinetic energy and 8y is the Kronecker's delta.

Unlike its molecular counterpart, vt is not a function of the fluid but rather of the 
flow. It is zero in laminar flows, while in turbulent flows it varies from point to point 
depending on the local level of turbulence activity.

By dimensional analysis:

vf = Coefficient x Velocity Scale x Length Scale (2.10)

The turbulence model will provide values for the eddy viscosity from Equation 2.10, 
which will then be used to evaluate the turbulent stresses from Boussinesq's 
hypothesis (Equation 2.9). Once the stresses are determined, they will be substituted 
in the time-averaged flow equations (Equation 2.7).
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2.5 The k - 8 Turbulence Model

In the two-equation model, the eddy viscosity is evaluated from the solution of two 
differential equations: one for k and another for its dissipation rate (e) which is related 
to the turbulence length scale (£) as:

e ~ (2 . 11)

The exact equation for e, which is derived from the Navier-Stokes equations 
(Tennekes and Lumley, 1972), is too complex and contains many unknowns. In terms 
of physical processes, the e equations represents a balance between the rate of 
transport of e by the mean flow and the rate of its diffusion by the turbulence 
fluctuations, its generation by vortex stretching and finally, its destruction by the 
action of viscosity.

The diffusion term is modelled via the gradient-transport hypothesis, thus:

Diffusion (e) = a  ̂v, de ^
dXi l ° e  5 x J

(2 . 12)

Where aE is an empirical coefficient. The sources of e (production and dissipation) are 
modelled collectively, thus:

£ £2
Source (e) = C — Pk -C  —  (2.13)

E| k 2 k

Where Ce and CE2 are empirical constants and Pk is the rate of production of k and 

described as:

-----3U,
p‘ = - u‘u ' 3 r

(2.14)

The complete k-£ model equations are as follows:

v t = < v (2.15a)
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(2.15b)
3k
¥+Ui

3k 3
3X; 3X :

v, 3k

■ va k ^ ¡ y
+ Pk - e

3e
¥ + u '

3e 3
3x; 3x,

3e

V°e 5x,y
+ Cc (2.15c)

The model contains five coefficients that are determined both from reference to 
experimental data (e.g. for decay of turbulence behind a grid or for ratio of uv / k in 
equilibrium flows) and from computer optimisation (Launder and Spalding, 1974). 
The most widely accepted set of coefficients are:

Q Ce, Ce2 ak aE
0.09 1.44 1.92 1.0 1.3

The standard k-e model is known not to yield accurate predictions for the unsteady 
turbulent flows dominated by strong organised structures for example when predicting 
vortex shedding flows (Younis, 1987). In order to take explicit account of the 
presence of vortex shedding, Younis (1987) proposed that the e production term be 
redefined as follows:

f 3
e k

C P —
e* k k

1 + C -
e q

V 7

Where q is the total kinetic energy of ensemble mean flow:

q = k + ^ (U 2+ V 2)

(2.16)

(2.17)

A new coefficient C,=0.38 is introduced, its value being obtained by computer 
optimisation. This is discussed in more detail in Section 3.4.4.
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2.6 Finite Volume Discretisation

The basis of the finite volume methodology is the division of the calculation domain 
into a finite number of control volumes and then the integration of these equations 
over each control volume. This procedure enables satisfaction of integral balances of 
quantities like mass, momentum or energy over each cell and, consequently, over the 
entire domain.

A typical control volume in two dimensions, which may be non-orthogonal, is shown 
in Figure 2.1 (Demirdzic and Peric, 1988). The computational nodes (storage 
locations for all variables) are located in the centre of the control volume.

The governing equations can be seen as special cases of the general transport 
equations:

| (P« + ^ - i , = s ,

Where the total flux Ij contains convective and diffusive fluxes as:

ij = f  A “ = (p*u i ) - r * | ^

The variable (j) can be Ui, k, e, etc.; and F  ̂ is the exchange coefficient equal to the 
effective viscosity in momentum equations and to the effective diffusivity of k and £. 
All terms not appearing on the left side of Equation 2.18 are included in the source 
term S0. In the continuity equation (]) takes the value of unity, and there is no diffusion 
and source terms.

Using Gauss' divergence theorem, integration of Equation 2.18 over any control 
volume (with volume V and surface A) in physical space yields the integral 
conservation law:

(2.18)

(2.19)

j | ( p 4 , ) d V  + | AI J d A J = | s , d V  (2.20)

Where dAj is the surface vector normal to the surface A and directed outward. The 
evaluation of three distinct parts of the above equation, namely rate of change, the net 
flux, and the net source of transport variable, will be discussed below.
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2.6.1 Rate of Change - temporal discretisation

It is assumed that the value of the variable <]) at the centre of the control volume (point 
P in Figure 2.1) represents an average over the cell. Thus for a non-moving control 
volume, the rate of change is:

I f  ( p f )d v = f  J > t» dV -  -  ♦") <2-2 l >

where superscripts 'n' and 'o' indicate the new and old time levels over the time 
interval At. A fully implicit temporal discretization is chosen. With this choice, the net 
fluxes and the source term in Equation 2.20 are evaluated at the new time level (the 
superscript 'n' is omitted hereafter).

— » x
Figure 2.1: Two-dimensional control volume.
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2.6.2 Convection and diffusion fluxes

The net flux through the control volume faces ( (e)ast, (w)est, (s)outh and (n)orth) in 
Figure 2.1 can be expressed as:

Since the control volume vertices are connected by straight lines, the integrals can be 
approximated by the scalar product of the flux vector and the surface vector, each 
taken at the cell face centre. Note that the outward flux through 'e'-cell face Ie is the 
inward flux through the 'w'-cell face of the neighbour control volume, so only Ie and In 
are calculated in the code through solving for the convection and diffusion fluxes.

2.6.3 Sources

The source terms on the right side of Equation 2.20 are integrated by assuming that 
the integral is given as the product of the specific source at the control volume centre 
P and the CV volume:

When the volumetric source depends on the variable 0 itself, it is linearised in the 
usual way:

If the source term contains a negative part, but no explicit dependence on <J)P, it is 
useful to introduce this dependence artificially by multiplying and dividing the term by

(j)p.

(2.22)

(2.23)

(2.24)
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2.7 Algebraic Form Of The Discretised Transport Equations

After introducing the fluxes through all CV faces and sources into the integral 
transport Equation 2.20, the discretised transport equation for each CV can be written 
in the conventional algebraic form:

where (j)nbare the neighbour values of <t>P, i.e. nb=E, W, N, and S. The coefficients Anb, 
contains contributions from the implicitly treated parts of convection (F) and diffusion 
(D) fluxes:

By employing the discretised continuity equation, the coefficient Apis given as:

For the whole computational domain, a system of M equations like Equation 2.25 (M 
is the total number of control volumes) can be solved by the Strongly Implicit 
Procedure (SIP) of Stone (1968).

2.8 Choice of Interpolation Scheme

An interpolation scheme is required to obtain the value of a dependent variable on the 
cell face from knowledge of the values at surrounding grid nodes. The choice of 
interpolation scheme has a profound influence on the stability of the numerical 
algorithm and the accuracy of the computed solution. This choice is governed by 
various requirements which include robustness, economy and accuracy for a given 
grid density. Various schemes were tested for the present work (see Section 3.4). 
Below is an outline of their main features:

^Aiihfonh S[t> (2.25)
nb

Ae = De + max(-Fle,0), Aw = Dw +max(-Flw,0) 
A n = Dn + max(-Fln,0), As = Ds +m ax(-Fls,0)

(2.26)

(2.27)
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2.8.1 Central Differencing Scheme

In this scheme, the value of <)) at the east cell face is obtained from the expression:

<t>e = <l>Ef .P +<t>P( l - f , p ) (2.28)

Where f p is an interpolation factor given by:

fip
Pe

Pe + eE
(2.29)

Pe is the distance between the central point P and point e in the centre of the east cell 
face and eE is the distance between e and E at the centre of the east neighbouring 
volume. If this scheme is used to evaluate the convective parts of the coefficients Anb, 
then the result is:

A e = —F,efIP (2.30)
and for the west side:

A £ = F lw( l - f lw) (2.31)

It is clear from the above that the convective parts of the coefficients may become 
large and negative leading to the whole coefficient Anb to become negative with 
undesirable consequences to the stability of the solution process. For this reason, and 
for flows dominated by convection, this scheme is abandoned in favour of the 
following scheme.

2.8.2 Upwind-Differencing Scheme

In this scheme, the cell-face values are obtained from the following expressions:

=  ^ P  i f F l e > 0

= <t>E if Fle < 0
(2.32)

If a new operator is defined by MAX[a,b] to denote the greater of a and b, the 
convective parts of the coefficient Anb can be written as:

Ag = M AX[0,- F le ] (2.33)

44



or, for the west face, as:
Aw -MAX[0,Flw] (2.34)

This scheme is formally only first-order accurate thus requiring relatively fine grids for 
accurate solutions. On the other hand, it is stable, since it does not allow the 
coefficients to become negative.

2.8.3 Linear-Upwind Differencing Scheme

In this scheme, the value at the cell-face is obtained by linear extrapolation of the 
values at the two nodes upwind of it, thus:

(|>e = < t > p  + ( < | ) p - < | > w ) ( l - f , w )  i f F l e > 0  

<i>e =  ^  E +  H>E i f  F le < 0

With this definition, the convective parts of the coefficient A„b may be written for the 
east face as:

Ag = MAX[0,-F,e](1 + fIE) + MAX[0,-Flw ]flp 

A ee = - MAX[0,-Fle ]f1E
(2.36)

and, for the west face as:

A^ = MAX[0, Flw ](2 -  flww ) + MAX[0, Flc ](1 -  fIW ) 

Aww = -MAX[0, F|W ](1 -  f]WW )
(2.37)

In this scheme, therefore, the coefficient Ap now contains additional contributions 
from nodes lying beyond the ones immediately surrounding it, thus:

A p = X Anb nb = E, W, N,S, EE, WW, NN,SS (2.38)

This scheme is second-order accurate but it is also unbounded which means that the 
interpolated values may take on values greater or less than those at the neighbouring 
nodes.

45



2.8.4 The SMART Scheme

Some schemes are non-monotonic. This means that they may give rise to unphysical 
oscillations, typically in the vicinity of steep gradients of the quantity to be resolved. 
In strongly coupled and non-linear situations at high Reynolds numbers these 
numerical oscillations tend to grow in an unbounded manner, which may prevent 
solutions from converging.

It is more convenient to work with the normalised variable, (j), rather than the 

dimensional <)>, used above, where:

Î ^ ~9 = ---------
0 E <i>W

(2.39)

Based on normalised variable analysis, Gaskell and Lau (1988) formulated a 
Convection Bounded Criterion (CBC) for implicit steady-state flow calculations. 
Figure 2.2 shows a Normalised Variable Diagram (NVD) representing the different 
schemes used here. CBC states that for a scheme to have the boundeness property, 
the cell face values 0e should lie within the shaded area in Figure 2.2 in the 
range 0 < <})p < 1, and on the line of (|)e = (j)p.

Figure 2.2: Normalised Variable Diagram for different interpolation schemes
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Of the above mentioned schemes, only the first-order Upwind Differencing Scheme 
satisfies boundeness. A number of schemes satisfying CBS have been proposed. 
Gaskell and Lau (1988) proposed the SMART Scheme (Sharp and Monotonic 
Algorithm for Realistic Transport) which is expressed in terms of the normalised 
variable and through flux limiters, which determine the path taken on the NVD

diagram. The SMART scheme removes unphysical numerical oscillations by switching 
from one scheme to another. Further details may be found in the original reference.

2.9 Pressure - Velocity Coupling

The numerical methods for compressible flows traditionally employ the continuity 
equation as a conservation equation for density. Pressure is then linked to the density 
via an equation of state. Flowever, in the case of incompressible flows, the pressure- 
density coupling is negligible because of very small density changes. In these 
situations, the continuity equation has no explicit link to the pressure and it acts as a 
constraint on the velocity field. Since the unknown pressure gradients appear in the 
momentum equations, there is no obvious equation for the pressure. Mathematically 
speaking the pressure field should be determined in such a way that the velocities 
satisfy the continuity and momentum equations simultaneously. In the present 
approach, pressure is a primary variable and the above requirement is achieved using 
the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm 
devised by Patankar and Spalding (1972).

In the SIMPLE algorithm, a pressure-correction equation is derived from the 
discretized equations of momentum and continuity. This technique was adapted by 
Rhie and Chow (1983) for co-located grid storage used here, whereby all the 
dependent variables are stored at the same location.

2.10 Treatment Of Boundary Conditions

Boundaries of the computational domain can be generally identified as inlet, outlet, 
symmetry axis or planes and solid walls. Two types of boundary conditions may be 
specified; known values (Dirichlet type), and unknown boundary fluxes (von 
Neumann type). The first type typically applies to the inlet boundaries and the solid 
walls.
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2.10.1 Inlet Boundaries:

Profiles of all the variables are prescribed at the inlet to the solution domain. Here, the 
U-velocity component is set to the value appropriate to the Reynolds number of 
interest. The V-velocity component at the inlet is set to zero. The turbulent quantities 
can be calculated using the relative turbulence level and turbulence viscosity.

k,n = 1.5(TuU0)2

=' v,

(2.40)

Where Tu is the relative turbulence intensity at inlet, usually taken as 3%. U0 is the 
inlet velocity, is set to 0.09 and vt is the eddy viscosity, which is prescribed as:

Vt =100v (2.41)

Where v is the kinematic viscosity of the fluid.

2.10.2 Outlet Boundaries

A zero streamwise gradient condition (3(|)/3x = 0) is valid if the flow is fully 

developed. It is also appropriate for outlet boundaries located sufficiently far 
downstream from the region of interest.

2.10.3 Planes or Axes of Symmetry

Along the symmetry plane or axis, the normal velocity component is equal to zero, 
while the gradients of other variables normal to it are set to equal zero.
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2.10.4 Solid Walls

In laminar flows, the boundary conditions used at the wall are simply that the 
velocities there are zero. In turbulent flows, the computational grid does not normally 
extend into the viscous sub-layer but only to a point outside it, in the fully-turbulent 
region of the flow. For the velocity component parallel to the wall, a flux boundary 
condition is used. The momentum flux at the wall, the wall shear stress, is obtained 
from the log-law:

Up = ^ M n ( E y p  (2.42)
1C

where E is a constant whose value depends on the wall roughness (for smooth walls, 
E is taken to be equal to 9) and von Karman’s constant k  is equal to 0.41. UT is the 
friction velocity (=^Jxw / p ). Up is the velocity component parallel to the wall at point

P, lying at distance 5n from the wall. y+ is the normal distance in wall coordinates, 
defined as:

y =
pUt5n

The wall shear stress may be expressed as:

x = —X U„w w P

(2.43)

(2.44)

where Xw is a coefficient evaluated differently depending on whether the 
computational point lies in the laminar or fully-turbulent parts of the flow, thus:

Xw = 7 -  if y+ < 11.63 (laminar sublayer)
" on

(2.45)

X = if y+ >11.63 (turbulent layer)
w ln(Ey+ ) J

The flux of k, the turbulence kinetic energy, at the wall is taken to be zero and its 
value at the wall-adjacent node is obtained from the solution of its equation with the 
production rate evaluated from:

Pk
(2.46)
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2.11 Time-Step Size

The time-step size depends on the grid spacing, which should be small enough to 
resolve accurately the velocity gradients, particularly for the near-wall cells. The time- 
step size At should be smaller than the local convective time scale Tcon and viscous 
time scale TVjS:

At = min(Tcon ,Tvjs )

Ax Ay
T“" = min(TU| ' M  '

1 Ax2Ay2 
Tv,s ~ 2 v(Ax2 + Ay2 )

(2.47)

Replacing Ax and Ay with the smallest grid spacing An, and U and V by the reference 
velocity U0, the Courant-Friedrichs-Lewy conditions can be arrived at:

At*
An
H

(2.48)

and Fourier-number condition:

At < -  
4

 ̂An ̂ 2
V H )

Re (2.49)

where
A *At = -

AtU,
H

(2.50)

is the non-dimensionalised time step and FI is the dimensions of the bluff body. By 
reducing the time-step size below the Courant-Friedrichs-Lewy or Fourier-number 
conditions there was no need to use underrrelaxation factors. For the computations in 
this work, At* was kept below 0.6. This required at least 1000 time-steps to cover 
one vortex shedding cycle. The number of time-steps per vortex shedding cycle is 
given by: 1 / At*S,. Typically, 3 to 5 outer iterations per time-step were required once 
a periodic solution was achieved.
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2.12 Flow-Solver Outline

The overall solution procedure can be summarised as follows:

1. Provide the numerical grid (see Chapter Three) and the initial field values of the 
dependent variables.

2. In the case of unsteady flow store the current variable values for the time t=t0 as 
old ones.

3. Assemble and solve the momentum equations to get U, using the latest available 
values for the pressure p and mass fluxes F j .

4. Calculate the cell face velocities by the momentum interpolation practice, and 
determine the mass imbalance.

5. Assemble and solve the pressure correction equation.

6. Update the pressure field and correct the velocities and mass fluxes.

7. In case of turbulent flow assemble and solve the transport equations for k and £ 
and update the turbulent viscosity.

8. Repeat steps 3 to 7 until the converged solution for the current time level is 
reached. The convergence criterion adopted here is that the sum of the absolute 
values of the residuals for all variables, normalised by the appropriate inlet flux, 
should drop below a pre-specified level (set to 5xl0"4 here).

9. Advance the time step At and return to step 2; continue until the prescribed number 
of time steps is performed.
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2.13 Overall Flow Chart

The computations throughout this work were conducted on a SUNSPARC10 
Workstation. The programmes used were written in the FORTRAN language, with 
GINO extensions for pre- and post-processing purposes. Figure 2.3 shows a flow 
chart of the three main stages, described below with the FORTRAN program and data 
file names:

1. Pre-processing: A grid generation code (grid.f) is used to set up a grid with control 
over shape, size, and density, detailed in a grid input file (circ-in.dat or sq-in.dat). 
The resulting grid is output into a grid file (grid.dat).

2. Flow solver: The flow solver code used iflow.f), reads data created by the grid 
generator, and uses the input data from file (fs-in.dat), to set up boundary 
conditions, time step limits, and other criteria, in order to solve the problem.

3. Post-processing: Several output files are created by the flow solver. These are used 
to assess the cyclic features of important parameters such as drag, lift, pressure, 
velocity, turbulence intensity, and others in the flow field.
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Figure 2.3: Flow chart of programmes and dataflow in the project with FORTRAN
names.
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CHAPTER THREE: APPLICATION TO SINGLE 
CYLINDERS

3.1 Introductory Remarks

The ability of the k-e model to capture the main features of vortex shedding from a 
single cylinder, either square or circular in shape is checked in this chapter. 
Comparisons are made with measured data on the mean drag, lift and Strouhal number 
at different Reynolds numbers. The sensitivity of the computed results to the choice of 
interpolation scheme and the size of the computational grid is determined.

A review of experimental results and previous predictions are presented in Sections 3.2 
and 3.3. The computational details are presented in Section 3.4 with an outline of the 
grid generation process. Grid and time-step dependence tests for a square and circular 
cylinder are presented in Section 3.5. A variety of interpolation schemes are evaluated 
for a square and circular cylinder in laminar flow in Section 3.6. The choice of 
turbulence model and the sensitivity of the results to the choice of an empirical 
coefficient are investigated in Section 3.7. The dependence of the predicted vortex 
shedding parameters on Reynolds number is presented in Section 3.8 with emphasis on 
application to very high Reynolds number (i.e. Re>9xl06) cases, for which no 
experimental results exist.

3.2 Review of Experimental Findings

A large number of experimental studies have been carried out on vortex shedding from 
single cylinders (Bearman, 1984), but detailed knowledge of the unsteady flow field is 
rather limited owing to the considerable effort involved in taking unsteady 
measurements in such flows. This is why vortex shedding has attracted the attention of 
numerical analysts. In the following a summary of some of these experimental studies 
for circular and square cylinders is presented.
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3.2.1 Circular Cylinders

The flow parameters (e.g. drag, lift, and Strouhal number) are dependent on the 
Reynolds number. Figure 3.1(a) shows the relationship between measured mean drag 
coefficient ( CD ), and Re for a smooth circular cylinder. The major identifiable regions 
are shown (labelled A,B,C and D). As pointed out by Farell (1981), defining different 
flow-regime terminology can be “very confusing”. Most investigators appear to prefer 
their own terminology. In this project, we adopt the terminology of Roshko (1961) 
which is (ref. Figure 3.1(a)):

Range Terminology

A Subcritical
B Transition Range
C Supercritical
D Transcritical

Table 3.1: Terminology according to Roshko (1961) for flow regimes

defined in Fig 3.1(a).

The many experimental measurements of vortex shedding at subcritical Reynolds 
numbers are in fairly good agreement. At higher Reynolds numbers however, there is 
little agreement (Chen, 1987). One reason is the sensitivity of the flow to small 
perturbations arising from, for example, small changes in the flow velocity or 
turbulence intensity.

At small Re (say <5), inertia forces are negligible compared with viscous forces and the 
drag is almost directly proportional to the incident velocity. When separation of the 
boundary layer occurs, pressure drag becomes a larger contributor, and the slope of the 
curve becomes less steep. By Re=200, the von Karman vortex street is well established 
and the pressure drag accounts for nearly 90% of the total drag. With increasing Re, 
the drag coefficient decreases to a minimum of 0.9 at Re=2000 and then rises slightly to
1.2 at Re=3xl04. The subcritical regime (A) is defined by the range 2000<Re<lxl0\ 
The main feature of this regime is the upstream movement of the point of transition, 
from laminar to turbulent flow, with increasing Reynolds number. Laminar separation 
on the surface of the cylinder occurs at a maximum of 80° from the stagnation point. At 
about Re=104, this point of transition is close to the point of separation, and the major 
portion of the free shear layer is turbulent. For 104<Re<lxl05 there is minimal
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movement of the transition point and the flow field is essentially unchanged. 
Consequently, CD is reasonably independent of Re in the subcritical regime above 
about 104.

The transition (B) from subcritical to supercritical behaviour takes place in the range 
lxl03<Re<2xl05. In this range the value of CD drops suddenly. This effect is usually 
called the drag crisis. The explanation of this behaviour is found to be in the 
appearance of turbulent flow in the downstream areas of the boundary layer, and a 
consequential readjustment of the wake. The wake contracts and this leads to a 
temporary reduction in drag.

As Re is increased beyond 2xl05' the supercritical regime (C) is entered. As Re is 
increased in this regime the point of transition, from laminar to turbulent flow moves 
upstream until it reaches the point of separation. CD attains its minimum in this range. 
Once transition precedes separation, the transcritical regime (D) is entered. Further 
increase in Reynolds number leaves the wake relatively unaffected so that the drag

7 —
force changes little from this point onwards. At Re>10 the value of CD appears to be 
independent of Re.

A summary of some of the measurements of Strouhal numbers (St) for smooth circular 
cylinders are shown in Figure 3.1(b). Strouhal number is obtained from the power 
spectra of the lift fluctuations. Numerous measurements have been made of St in the 
subcritical regime. The shaded area encompasses measurements from many sources 
compiled by Lienhard (1966). In common withCD in this regime, the Strouhal number 
displays relatively little scatter. The Strouhal number remains nearly constant at about 
0.2 within the range of Reynolds number from 300 to 2xl05.

The large increase in the value of St that occurs at the transition from subcritical to 
supercritical is related to the position of the final separation. This is the farthest 
downstream that final separation takes place and is usually preceded by laminar 
separation and reattachment. As the Reynolds number is further increased to about 
3.5x10s, the Strouhal number seems to increase depending on the turbulence intensity 
of the incoming flow. However, vortex shedding in this region is much weaker and 
defining an accurate shedding frequency is often difficult. The transcritical regime 
measurements show an increasing St value with increasing Re.

Compared with the mean drag coefficient and Strouhal number, the root mean square 
(rms) of the lift coefficient CL is not well established. Measurements of CL display
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scatter. Part of the scatter can be attributed to the fact that more sophisticated 
instrumentation techniques are required for measuring CL (Basu, 1985). Figure 3.1(c) 
summarises some available experimental measurements of CL as a function of Re for 
smooth circular cylinders. According to West and Appelt (1993), the large variation in 
the magnitude of CL illustrates their sensitivity to aspect ratio, blockage, turbulence 
intensity and end conditions. Very small-scale turbulence can apparently amplify CL 
dramatically.

3.2.2 Square Cylinders

In the case of a sharp edged body like a square cylinder, where the separation points are 
fixed at the corners, the aerodynamic characteristics are said to be relatively insensitive 
to Reynolds number (Okajima, 1982). At extremely low Reynolds numbers, the flow is 
known to separate at the trailing edges rather than the leading edges where the 
separation, if it occurs, is indiscernible owing to immediate reattachment. With an 
increase of Reynolds number, the flow separation at the leading edge becomes more 
established, and the steady reattachment becomes impossible. On the other hand, the 
phenomenon of transition from laminar to turbulent flow, which occurs in the flow near 
the cylinder at certain values of the Reynolds number, should be taken into 
consideration.

Consequently, there exists a certain range of Reynolds numbers where the flow 
characteristics, the Strouhal number in particular, of a square cylinder change rapidly. 
This occurs in the range of Re ~ 500 and 1000. In consequence, the Strouhal number 
sharply decreases at these Reynolds numbers. Beyond Re = 104, CD and Strouhal 
number for the square cylinder have nearly constant values. These trends can be seen 
from the experimental measurements for a smooth square cylinder as plotted in Figure 
3.2.

Compared with the circular cylinder, there are only a few experimental studies reported 
for the square cylinder. The relatively large discrepancies between the various tests 
point to experimental uncertainties. In particular, the sharpness of the cylinder corners 
can influence the shedding frequency.
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Figure 3.1: Experimental data for a smooth circular cylinder for a) Mean Drag 
Coefficient; b) Strouhal number; c) RMS Lift Coefficient.
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Figure 3.2: Experimental and numerical data for a square cylinder for a) Mean Drag 
Coefficient; b) Strouhal number.
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3.3 Review Of Previous Predictions

Before presenting some past work on predicting vortex shedding, it is worth first 
mentioning some of the features that should characterise these predictions. The 
computations should exhibit a clear periodic behaviour in the lift and drag coefficients, 
with a drag frequency twice that of the lift. Moreover, and for all Reynolds numbers, 
the maximum and minimum values of lift and drag should show no cycle-to-cycle 
variation while the long-time average of CL must be zero.

The accuracy of the numerical results depends strongly on the resolution of the 
boundary layer near the cylinder walls. According to Franke et al. (1990), one of the 
most common problems with the numerical study of vortex shedding flow past 
cylinders is the presence of numerical diffusion, which effectively reduces the Reynolds 
number and may even inhibit the self-excitation of vortex shedding.

Many basic but important features of turbulent separated flows are not captured fully 
by current turbulence models. For example, the size of the recirculation region behind a 
backward-facing step is typically unpredicted by up to 20%, or the point of flow 
separation from a circular cylinder is delayed by up to 25 degrees (Basara and Younis, 
1995). The use of a non-linear stress-strain relationship, such as that proposed by 
Speziale (1987), in place of Boussinesq's original linear relationship leads to much 
improved predictions (Basara and Younis, 1992 and 1993). Nevertheless, some 
differences remain in the recovery zone further downstream.

Younis (1987) found that vortex shedding from a square cylinder can be predicted 
using the k-e model of turbulence with log-law assumptions. In sharp contrast, Franke 
and Rodi (1991) reported that 'the calculations with the k-e model using wall functions 
yielded a steady solution and no vortex shedding'.

Song and Yuan (1990) modelled vortex shedding over a circular cylinder, based on the 
weakly compressible flow equations with a simple subgrid scale turbulence model. An 
explicit finite volume method was used. A subcritical and a supercritical case were 
computed. They showed that the large-scale vortex-shedding phenomenon, the primary 
vortices, and the related oscillatory lift and drag can be calculated fairly well with a grid 
system coarser than the boundary layer thickness. The secondary vortices and the 
related higher frequency oscillations were also calculated using a somewhat finer grid.
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Celik et al. (1985) proposed a two-parameter irrotational flow model for the calculation 
of mean flow past smooth circular cylinders. This method takes into account the 
displacement thickness of the boundary layer, by which the location of separation is 
predicted. The boundary layer effect was shown to be important in the supercritical 
flow regime. This is presumably due to the rapid thickening of the boundary layer in the 
extensive pressure-rise region in this regime.

There are two alternative approaches to conventional turbulence modelling: Large 
Eddy Simulations (LES), and Direct Numerical Simulation (DNS). Neither is viable for 
the practical simulation of vortex shedding flows. In LES, a sub-grid approach is used 
to model the dissipation that occurs through the unresolved small-scale motions, but 
the computed results are known to be sensitive to the choice of such model while the 
computational efforts involved are quite prohibitive, particularly for the high Reynolds 
number conditions encountered in engineering practice. The DNS method requires 
excessive computing resources to capture the viscous dissipation associated with the 
small-scale motions without which turbulence would grow without bounds.

In the following sections, results obtained from present predictions are compared with 
some of the above methods.
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3.4 Grid Generation

For the purposes of this project, a two-dimensional non-orthogonal structured mesh, 
consisting of quadrilaterals is used. The computational mesh, subdivides the solution 
domain into a finite number of discrete volumes - control volumes (CV). Each CV is 
defined by its four vertices. These are connected by straight-line segments. In the 
present flow solver, all variables (U,V, p, k, and e) are stored at the geometric centre of 
the CV. Transport equations are solved only for interior computational points (nodes), 
i.e. for the nodes which do not coincide with the boundary of the solution domain. The 
boundary nodes are thus used for the implementation of boundary conditions.

A pair of two indices (i and j) indicates the position of a CV on the numerical mesh. A 
simplified version of the discrete transfinite mapping method has been used in the grid 
generation code. The method is algebraic and is based on a simple idea of similar 
distribution of control-volume vertices along straight lines connecting two opposite 
boundaries. In addition, a function that gives the distribution of points along the 
straight lines is prescribed.

In the case of complex geometries, for example when a cylinder is present within the 
solution domain, the above practice can be applied to regions obtained by subdividing 
the solution domain into several subdomains. Thus, the grid for the whole solution 
domain is the result of merging corresponding subgrids. In the case of a circular 
cylinder, it is also necessary to define the grid splitting lines. Grid line smoothing is also 
applied. Figure 3.3(a) shows a 148x102 grid used for a single circular cylinder, with a 
close-up of the cylinder region in Figure 3.4. Table 3.2 shows a typical list of 
parameters which are used in the grid generation program to control the shape and size 
of the grid.

For the square cylinder, there is no need for subdomains. A geometric expansion series 
is used to calculate the distribution of cell vertices along the boundaries. Figure 3.3(b) 
shows a 121x110 grid used for a square cylinder, with a close-up of the cylinder region 
in Figure 3.5. Table 3.3 shows a typical list of parameters which are used in the grid 
generation program to control the shape and size of the grid.
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Figure 3.4: Close up of circular cylinder with important parameters highlighted.

Parameter Value
/ \

Meaning v j

ALO 1 Diameter of cylinder.

XSOB 14 Distance from inlet of the computational domain to cylinder 
face.

XEND 48 Total length of the computation domain (in x-direction).

YEND 12 Total width of the computation domain (in y-direction).

OBSMIN 0.02 Smallest cell size next to cylinder.

FXE 1.2 Expansion factor in x-direction.

FYE 1.2 Expansion factor in y-direction.

FTX 1.2 Expansion factor for the region between grid splitting lines 
(above cylinder).

FTXK 1.2 Similar to FTX but for subdomains downstream of cylinder.

FEH 1.2 Expansion factor along cylinder wall.

NSUB 4 Number of subdomain.

TET1 18 Angle that determines beginning of the grid splitting lines at the 
cylinder face.

Table 3.2: Geometric data used in the grid code to generate a grid for a circular 
cylinder (all measurements are in metres).
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XOBMIN

Figure 3.5: Close up of square cylinder with important parameters highlighted.

Parameter Value Meaning

ALO 1 Width of cylinder.

BLO 1 Height of cylinder.

XSO 10 Distance from inlet of the computational domain to cylinder face.

YSO 11.5 Distance from the bottom boundary to the cylinder base.

XESD 1 Total length of the computation domain (in x-direction).

YESD 40 Total width of the computation domain (in y-direction).

XOBMIN 24 Smallest cell size (in x-direction) adjacent to cylinder.

YOBMIN 0.03 Smallest cell size (in y-direction) adjacent to cylinder.

FXS 0.03 Expansion factor in x-direction.

FYS 1.1 Expansion factor in y-direction.

FXSQ 1.1 Expansion factor (in both x- and y-direction) for cells on the 
cylinder wall.

Table 3.3: Geometric data used in the grid code to generate a grid for a square 
cylinder (all measurements are in metres).
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3.5 Grid and Time-step Dependence

Grid and time-step dependence test are necessary in order to separate numerical errors 
from turbulence-model defects. The usual way to achieve this is to repeat a 
computation on a grid with a finer concentration of nodes and again on a grid with 
coarser concentration, and repeat for larger and smaller time-steps.

This is done for both the circular and square cylinders in laminar and turbulent flows:

3.5.1 Circular Cylinder

The outcome of the grid and time-step size dependence checks for a circular cylinder at 
Re=100 are summarised in Table 3.4. Experimental data and other CFD results are also 
shown there for reference. The present predictions are in good accord with the 
experimental data. Mean drag and Strouhal number are well within the experimental 
range. The results show that for the number of nodes used, there is very little effect on 
the mean drag or Strouhal number, even with a 40% reduction in the number of grid 
nodes (as for RUN 1 and RUN 3). The same is true for the time step value. It does not 
have any effect on the value of mean drag or Strouhal number when reduced to 40% its 
original value (as for RUN 1 and RUN 5).

The results show that with the number of nodes used, the present predictions are fairly 
insensitive to the choice of grid density and time-step. Refining the grid will very often 
produce a better accuracy. However, the execution time must be taken into 
consideration when making choices for the grid density.

Table 3.5 shows the number of time-steps and CPU time on a SUNSPARC10 
Workstation (in minutes) needed to obtain data for one cycle of the lift coefficient for 
the RUNs in Table 3.4.

The results show that RUN 1 represents a reasonable balance between accuracy and 
computational efficiency. For this reason, all consequent computations for a single 
circular cylinder in laminar flow will be conducted with this grid. Figure 3.8 shows 
thirteen cycles for the lift coefficient of RUN 1. This was obtained in 910 minutes, 
although more time was needed in the preliminary stage to achieve a periodic solution. 
Table 3.6 shows grid and time-step dependence checks for turbulent calculations for a 
circular cylinder at Re=65000, obtained with the modified k-e model and the SMART
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scheme. Note that the experimental results of Schewe (1983) are for Re=62438. RUN 
1, which had the same grid density as for the laminar flow case, showed an inadequacy 
in predicting the mean drag, which is well below the experimental data. In RUN 2, the 
grid density was increased by 1.2 times that in RUN 1. The results show a better 
prediction of mean drag, although Strouhal number increased further. No 
improvements were observed by halving the time step from RUN 2 to RUN 3. Mean 
drag dropped slightly when halving the time step again in RUN 4.

It is shown here that grid resolution is of crucial importance, since there is a need for 
more resolution around the cylinder. The results show that RUN 2 represents a 
reasonable balance between accuracy and computational efficiency. For this reason, all 
consequent computations for a single circular cylinder in turbulent flow will be 
conducted with this grid.

For the turbulent flow calculations, the computational time is increased due to the need 
to perform extra calculations to solve for the k and £ equations. The twelve lift cycles 
shown in Figure 3.12 for Re=65000 took 1440 CPU minutes to obtain.

There is another grid-related factor affecting solution accuracy. The viscous sublayer of 
a boundary layer is so thin that it is difficult to use enough grid points to resolve it. This 
problem is avoided by using wall functions, which rely on the existence of a logarithmic 
region in the velocity profile. The validity of the wall function depends on the value of 
y+ (dimensionless normal distance of the first grid point above surface). Grid-insensitive 
computations can be obtained provided 30 < y+ < 1000. If the value of y+ drops out of 
this range, then the flow departs from the assumed logarithmic distribution. This 
criterion can be achieved by monitoring the value of y+ when calculations are made and 
then by increasing or decreasing the smallest cell size next to the cylinder in the grid as 
appropriate.

For both the laminar and turbulent flow calculations, the results are not time step 
dependent as long as the conditions set out in Section 2.11 are met, and thus will be set 
according to the Reynolds number.
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Runs St CD Grid Nodes At*

1 0.173 1.451 148x102=15096 0.054

2 0.1745 1.449 124x104=12648 0.054

3 0.174 1.448 97x62=6014 0.054

4 0.174 1.449 148x102=15096 0.041

5 0.1744 1.451 148x102=15096 0.021

Experiment:

Lienhard (1966) 0.155-0.173 1.35-1.49 - -

Other Predictions:

Gresho et al. (1984) 0.180 1.76 1852 0.05

Braza et al. (1986) 0.160 1.28 13530 0.02

Engleman (1990) 0.173 1.41 14000 N/A

Li et al. (1991) 0.163 1.35 826 0.5

Behr et al. (1991) 0.170 1.41 4749 0.007

Table 3.4: Grid and time step dependence for a circular cylinder in laminar flow 
(Re-100).

RUN Number of 
time-steps

CPU time required 
in minutes

1 1010 70
2 850 60
3 700 50
4 1330 95
5 2600 183

Table 3.5: Number of time-steps and CPU time required per cycle for RUNs 1 to 5.
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RUNs St CD Grid Nodes At*

1 0.288 0.675 148x102=15096 0.001
2 0.292 1.025 195x98=19110 0.001
3 0.292 1.025 195x98=19110 0.0005
4 0.292 1.008 195x98=19110 0.00025

Experiments:
Schewe (1983) 0.2004 1.222 - -

Sakamoto & Haniu (1994) 0.209 1.24 - -

Table 3.6: Grid and time step dependence for a circular cylinder in turbulent flow 
(Re=65,000).

3.5.2 Square Cylinder

The outcome of the grid and time-step size dependence checks for a square cylinder at 
Re=100 are summarised in Table 3.7. Experimental and other CFD results are shown 
there for reference. The predicted Strouhal number is well within the experimental 
range. The present results are in good comparison to previous predictions (there are no 
experimental results for the mean drag coefficient). The results show that grid density 
does not have a significant effect on the value of mean drag or Strouhal number, even if 
the number of grid nodes are increased to 1.2 times their original value (as for RUN 1 
and RUN 3), or decreased to 70% of their original value (as for RUN 1 and RUN 4). 
The same is true for the time step value. It does not have any effect on the value of 
mean drag or Strouhal number when reduced to 50% its original value (as for RUN 1 
and RUN 2).

Table 3.8 shows the number of time-steps and CPU time on a SUNSPARC10 
Workstation (in minutes) needed to obtain data for one cycle of the lift coefficient for 
the RUNs in Table 3.7.

The results show that RUN 1 represents a reasonable balance between accuracy and 
computational efficiency. For this reason all consequent computations for a single 
square cylinder in laminar flow will be conducted with this grid. Figure 3.10 shows 
eleven cycles for the lift coefficient of RUN 1. This was obtained in 880 minutes, 
although more time was needed in the preliminary stage to achieve a periodic solution.
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Table 3.9 shows grid and time-step dependence checks for turbulent calculations for a 
square cylinder at Re=20000, obtained with the modified k-e model and the SMART 
scheme. RUN 1, which had the same grid density as for the laminar flow case, showed 
an inadequacy in predicting the mean drag, which is below the experimental data. In 
RUN 2 the grid density was increased by 1.2 times that in RUN 1. The results show a 
better prediction of mean drag and Strouhal number. No improvements were observed 
by halving the time step from RUN 2 to RUN 3, and again in RUN 4.

It is shown here, as in the case of the circular cylinder, that grid resolution is of crucial 
importance, since there is a need for more resolution around the cylinder. The results 
are not time-step dependent though. The results show that RUN 2 represents a 
reasonable balance between accuracy and computational efficiency. For this reason all 
consequent computations for a single square cylinder in turbulent flow will be 
conducted with this grid.

For the turbulent flow calculations, the computational time is increased due to the need 
to perform extra calculations to solve for the k and e equations. Eight lift cycles of 
RUN 2, took 1536 CPU minutes to obtain.

As in the case of the circular cylinder, both the laminar and turbulent flow predictions, 
gave results which were not time step dependent as long as the conditions set out in 
Section 2.11 are met, and thus will be set according to the Reynolds number. The 
number of grid nodes, however need to be larger in order to capture the flow 
characteristics, depending on the Reynolds number. It is important to note that the 
value of y+ was kept within the range 30 < y+ < 1000 for the square cylinder 
calculations.
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RUNs St CD Grid Nodes At*

1 0.150 1.476 121x110=13310 0.01
2 0.145 1.472 121x110=13310 0.005
3 0.145 1.470 136x118=16048 0.005
4 0.141 1.517 93x98=9114 0.01

Experiments:
Davis & Moore (1982) 0.155 - - -

Okajima (1982) 0.146 - - -

Other Predictions:
Davis & Moore (1982) 0.165 1.770 3162 0.05
Franke et al. (1990) 0.154 1.610 6688 0.025
Kelkar & Patankar (1992) 0.126 1.820 6400 0.12

Table 3.7: Grid and time-step dependence for a square cylinder in laminar flow
(Re=100).

RUN Number of 
time-steps

CPU time required 
in minutes

1 1060 80
2 2350 163
3 2530 180
4 980 70

Table 3.8: Number of time-steps and CPU time required per cycle for RUNs 1 to 5.
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Runs St C„ Grid Nodes At*

1 0.150 1.850 121x110=13310 2.28xl0_1

2 0.132 2.104 136x118=16048 2.28xl0"3

3 0.132 2.100 136x118=16048 1.14x103

4 0.132 2.100 136x118=16048 5.7xl0'4

Experiments:

Bearman & Trueman (1972) 0.123 2.190 - -

Sarpakaya & Ihrig (1986) 0.125 2.150 - -

Lee(1975) 0.126 2.050 - -

Bearman & Obasaju (1982) 0.130 - - -

Lyn (1989) 0.135 - - -

Durao et al. (1988) 0.138 - - -

Previous Predictions:
Kato & Launder (1993)’’’ 0.145 2.050 104x70=7280 N/A

Bosch & Rodi (1996) * 0.146 2.108 106x75=7950 0.02

Franke & Rodi (1991) 0.136 2.150 N/A N/A

Deng et al. (1994) 0.115 1.978 121x94=11374 0.05*

Table 3.9: Grid and time step dependence for a square cylinder in turbulent flow at 
Re=20,000.

Note: ' Reynolds number modelled at 22,000.
' Time step in the form of At*.
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3.6 Laminar Flow Results

The present results for a single cylinder are divided into laminar and turbulent flows, 
depending on the Reynolds number. According to Braza et al. (1986), and Bloor 
(1964), turbulent fluctuations start to influence the flow in the wake of a circular 
cylinder in the Reynolds number range 400-1400. In order to account for these effects, 
a turbulence model has to be introduced. In this work, flows with Reynolds numbers 
above 1400 are treated as turbulent.

3.6.1 Circular Cylinder

Figure 3.6 shows a typical vortex street, formed behind a circular cylinder at Re=140, 
taken from van Dyke (1982). It is possible to predict such a figure by releasing massless 
particles in the flow, and performing numerical integration of the local velocity vectors 
over time, and thus plotting the streaklines. The predictions reported below were 
obtained on a grid of 148x102 (see Figure 3.3(a)) and a Reynolds number of 100. The 
non-dimensional time step (At*) used in these simulations was 0.054.

Figure 3.7 shows the computed streaklines for three different interpolation schemes. 
The upwind scheme, which is only first order accurate, is extremely diffusive, leading to 
serious numerical errors in the computed field. This is evidenced here by the dispersion 
of the released particles and the distortion of the resulting vortices. The Linear Upwind 
scheme is formally second-order accurate and is seen here to produce a von Karman 
vortex street with regions of concentrated vorticity preserved well downstream of the 
shedding points. The centres of vorticity are displaced from the centre plane, which is in 
accord with flow visualisation (see Figure 3.6). The SMART scheme is formulated to 
be of third-order accuracy, dropping to second-order if necessary to preserve 
boundness.

Figure 3.8 shows the time histories of CD and CL obtained when using the SMART 
scheme. Several cycles are plotted (t* is non-dimensional time scale =tU/D). The vortex 
shedding frequency (f,) is evaluated by analysing the time histories of CD and CL with a 
standard Fast Fourier Transform (FFT) routine. The frequency f s is that which 
corresponds to the highest amplitude. It is of importance to note that the frequency of 
CL is half the frequency of CD, as expected. Also shown in Figure 3.8, is the power 
spectra of the drag and lift coefficients, over a non-dimensional frequency spectrum (f* 
=fD/U).
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Overall evaluation of the flow solver can only be made by comparing predicted and 
measured values of the important parameters characterising vortex shedding presents 
this data for a circular cylinder at Re=100. Table 3.10 presents the results obtained with 
the three schemes, experimental data and other predictions. The results show that the 
choice of scheme does affect the value of mean drag, and Strouhal number. The upwind 
and linear-upwind schemes underpredict both the mean drag and Strouhal number The 
SMART scheme, however achieves the closest value of mean drag and Strouhal 
number to those obtained experimentally.

That the computed solutions obtained with these schemes and other numerical results 
are different is not surprising since some may still be grid-dependent. The effect of 
numerical (rather than physical) parameters such as accuracy and boundness are quite 
obvious and suggest that the bounded, third-order accurate, SMART scheme is the 
most appropriate for the present applications.

Figure 3.6: Flow visualisation of vortex shedding from a circular cylinder at Reynolds
number of 140.
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Figure 3.7: Streaklines behind a circular cylinder at Re=100 as obtained with the 
SMART scheme.
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Figure 3.8: Time histories of drag and lift for a circular cylinder at Re-100; showing 
also the power spectra.

St c D Grid Nodes At*

Experiments:

Lienhard (1966) 0.155-0.173 1.35-1.49 - -

Predictions:

Present (Upwind) 0.120 1.231 148x102 0.054

Present (Lin-Upwind) 0.145 1.289 148x102 0.054

Present (Smart) 0.173 1.451 148x102 0.054

Gresho et al. (1984) 0.180 1.76 1852 0.05

Braza et al. (1986) 0.160 1.28 13530 0.02

Engleman (1990) 0.173 1.41 14000 N/A

Li et al. (1991) 0.163 1.35 826 0.5

Behr et al. (1991) 0.170 1.41 4749 0.007

Table 3.10: Results for a circular cylinder at R e -100.
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3.6.2 Square Cylinder

A grid of 121x110 was used (see Figure 3.3(b)). The Reynolds number was set to 100, 
with a At* of 0.01. Figure 3.9 shows the computed streaklines for three different 
interpolation schemes. As in the case of the circular cylinder, the SMART scheme 
predictions show the centres of vorticity displaced from the centre plane, which is in 
accord with a typical von Karman vortex streets (Figure 3.6).

Figure 3.10 shows the time histories of CD and CL obtained when using the SMART 
scheme. Several cycles are presented over a non-dimensional time scale (t*). Also 
shown, is the power spectra of the drag and hit coefficients, over a non-dimensional 
frequency spectrum (f*). It is of importance to note that the frequency of CL is half the 
frequency of CD, as expected.

Overall evaluation of the flow solver can only be made by comparing predicted and 
measured values of the important parameters characterising vortex shedding. Table 
3.11 presents this data for a square cylinder at Re=100. It is evident that the Strouhal 
number results are in good agreement with the experimental results. No such 
comparison can be made for CD as there are no experimental results for this Reynolds 
number.

The table also shows that the choice of scheme does not affect CD, but has a 
substantial influence on the predicted Strouhal number. The SMART scheme achieves 
the closest value of St to those of experiments and other numerical results.

Again, as in the case of the circular cylinder, the effect of numerical (rather than 
physical) parameters such as accuracy and boundness are quite obvious and suggest 
that the bounded, third-order accurate, SMART scheme is the most appropriate for the 
present applications.
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Figure 3.9: Streaklines behind a square cylinder at Re-100 as obtained with 
alternative interpolation schemes.
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Figure 3.10: Time histories of drag and lift for a square cylinder at Re=100; showing 
also the power spectra.

St CD Grid At*

Experiments:
Davis & Moore (1982) 0.155 - - -

Okajima (1982) 0.146 - - -

Predictions:
Present (Upwind) 0.110 1.478 121x110 0.01
Present (Lin-Upwind) 0.132 1.478 121x110 0.01
Present (SMART) 0.150 1.476 121x110 0.01
Davis & Moore (1982) 0.165 1.770 51x62 0.05
Franke et al. (1990) 0.154 1.610 88x76 0.025
Kelkar & Patankar (1992) 0.126 1.820 80x80 0.12

Table 3.11: Results for a square cylinder at Re-100.
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3.7 Turbulent Flow

Turbulence models are mainly developed with reference to steady flows, whereas the 
flows associated with vortex shedding cause organised mean-flow periodicity to be 
superimposed on the random turbulent fluctuations. This is shown by experiments; e.g. 
by Durao et al. (1988) who measured the turbulence energy spectrum in the unsteady 
wake of a square cylinder, and found discrete peaks of energy input occurring at the 
vortex shedding frequency. The presence of those peaks invalidates a fundamental 
assumption in turbulence modelling; namely that of spectral equilibrium which implies 
that the rate of energy dissipation by the small scales (ie e) is equal to the rate of energy 
input at the large scales. While adequate for steady flows, this assumption becomes 
inappropriate in the presence of the discrete energy peaks and this suggests that the e 
equation may not be sufficiently sensitive to the imposed oscillations.

A proposal made by Younis (1987) and Przulj & Younis (1993) for accounting for the 
effects of periodicity on the energy-transfer process is to redefine the ‘production of 
dissipation’ term in the £ equation to include an additional term to represent the extra 
energy input into the turbulent motions. Various corrections were considered and the 
best improvement was obtained by redefining the 8 production term thus:

A new coefficient (Ct=0.38) is introduced; its value is obtained by computer 
optimisation.

(3.1)

V

where q is the total (i.e. mean plus turbulent) kinetic energy defined as:

q = k + - ( U 2+ V 2) (3.2)
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3.7.1 Square Cylinder

Results of the simulations at Re=20,000 for a square cylinder, using the modified k-e 
model, are presented in Table 3.12. Here, the parameter CD is also presented. This is 
the root mean square value of CD, which shows the extent of the fluctuation of the 
Drag coefficient. The experiments were conducted at different Reynolds numbers, and 
thus some of the discrepancies in the results may be due to Reynolds number effects.

There is good correlation with the experimental results: Strouhal number, mean drag, 
and rms lift are well within the measured range, while rms drag is overpredicted.

The consequences of the use of the modified k-e model on both the average and the 
peak-to-peak levels of lift and drag coefficient are clear from Figure 3.11. The figure 
shows the effect of switching off the modification from t*=l 1, for a square cylinder. It 
is clear that vortex shedding is drastically suppressed. The results presented in Table 
3.12 also confirm this, where all the coefficients are reduced, except for the Strouhal 
number, which is unaffected.

An alternative to the Younis (1987) and Przulj & Younis (1993) k-e modification is one 
introduced by Kato & Launder (1993). To reduce the excessive production of k in the 
stagnation regions in front of a cylinder, due to an unrealistic representation of the 
normal stresses in eddy-viscosity models, they proposed to replace the production term 
by:

3U 3U
12

+ -
dx. dx.

I ' a u , a u , l

to
 1

i QJ X dx, _
(3-3)

The quantity Q is a rotation parameter. In simple shear flows, S and Q are equal, but in 
stagnation flows, Q=0 and S>0, resulting in the reduction of the k-production. 
Predictions were performed using this modification to compare with the k-e 
modification and the results obtained by Kato & Launder (1993) and Bosch & Rodi 
(1996). Table 3.13 shows the grid and time-step sizes used in this comparison. There is 
a discrepancy between the present results obtained with the Kato & Launder 
modification and those of Kato & Launder (1993) themselves, especially in the rms 
value of lift. This can be attributed to the finer grid used here. The time-step from Kato 
& Launder (1993) is not known. There is better agreement between the present results 
and those carried out by Bosch & Rodi (1996) using the Kato & Launder modification. 
It shows that the present grid is more refined and the time-steps smaller, therefore the

81



field is resolved more accurately. Comparing the present k-£ modification of Younis 
(1987) and Przulj & Younis (1993) with the different reproductions of the Kato & 
Launder model, it is apparent that the Strouhal number, mean drag and rms lift show 
reasonable results, while rms drag is overpredicted. Therefore, the present k-£ 
modification is preferred.

The Kato & Launder modification failed to converge for the case of a circular cylinder. 
Periodic vortex shedding could not be achieved using any of the differencing schemes 
available.

Therefore, considering the square cylinder results and the failure of the Kato & Launder 
modification to model the case of the circular cylinder, the Younis (1987) and Przulj & 
Younis (1993) modification to the k-£ model is appropriate for use throughout this 
work.

The predictions of Franke and Rodi (1991) [Table 3.12] were obtained using the 
Reynolds Stress Model (RSM) and are seen to give good results. Deng et al. (1994) 
used the Baldwin-Lomax model, which is a version of the eddy-viscosity model, and 
also reported good results with a fine grid.

Overall, the results obtained for the square cylinder were in satisfactory agreement with 
the experimental data. This is because the separation points (which are normally 
difficult to predict) are fixed in this flow.

3.7.2 Circular Cylinder

The flow over a circular cylinder is more difficult to predict in the subcritical regime, 
since the flow is not fully turbulent. Results for Re=65,000, using the modified k-£ 
model are presented in Table 3.14. It is clear that the Strouhal number and CL are 
overestimated compared to the data, while CD is underestimated. The main reason for 
this is that the separation angle which should not be far greater than 90°, is obtained 
here at around 130°. It then follows that the separated wake is narrower, and thus CD 
is lower than the measured value.

Figure 3.12 shows time histories of CD and CL, with the k-£ modification up to t*=15.5 
and without the modification, thereafter. It is again apparent that vortex shedding is 
drastically suppressed when the standard k-£ model is used.
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The results in Table 3.14 quantify this outcome, where it is clear that all the coefficients 
are reduced, except for the Strouhal number, which is unaffected. Note that the case of 
C,=0.0 is in effect the standard k-e model.

The coefficient in Equation 3.1 used for the k-e modification is Ct=0.38. This value was 
obtained by Przulj (PhD Thesis in Preparation) by computer optimisation for a square 
cylinder. The prime difference between modelling a square and a circular cylinder is that 
for the square cylinder, the position of separation is fixed. For a circular cylinder, 
however, this position is not fixed, but depends on Reynolds number. It was therefore 
deemed necessary to carry out a parametric study in order to find the optimum value of 
C, for a circular cylinder.

Two values of Reynolds numbers were chosen: 65,000, which is in the subcritical 
range, and 5x106, which is in the transcritical range. A grid of 195x98 was used for 
these calculations. Figure 3.13 and Figure 3.14 show the variation of mean drag with 
different values of Ct, compared to experimental results by Schewe (1983).

Table 3.14 presents the predictions for Re=65,000 and experimental results. Strouhal 
number is overpredicted for all values of Ct. The mean drag shows good results for 
values of Ct above and equal to 0.38. The rms drag is well predicted above C, =0.15, 
while rms lift is overpredicted above Ct =0.15. Above Ct =0.76, all parameters seem to 
be unchanged.

Table 3.15 details the results for Re=5xl06 and experimental results of Schewe (1983) 
which are for Re=5.1xl06. The Strouhal number is again overpredicted for all values of 
Ct. Mean drag is now underpredicted, although the results flatten out for Ct>0.38. No 
comparisons can be made of the predicted value of rms drag and lift, but their values 
seem to be constant above Ct =0.15. This parametric study has shown that the results 
are not significantly improved by adopting a value of Ct different from 0.38, and 
therefore this value will be used throughout. Note the behaviour of the parameters 
when Ct is very small (0.15). This has the effect of suppressing vortex shedding. At 
small values, the unsteady modification is effectively turned off.

Similar results were obtained by Deng et al. (1994) for Reynolds numbers ranging from 
6xl03 to 3.6xl06, using the Baldwin-Fomax model and a (121x115) grid, which is 
coarser than the present grid. Mean drag in the subcritical and transcritical regimes was 
overpredicted, while the drag crisis was not found. Their Strouhal number results seem 
independent of Reynolds number.
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St CD c D c L

Experiments:

Bearman & Trueman (1972) 0.123 2.190

Sarpakaya & Ihrig (1986) 0.125 2.150

L ee(1975) 0.126 2.050 0.180 1.320

Bearman & Obasaju (1982) 0.130 1.200

Lyn (1989) 0.135

Durao et al. (1988) 0.138

Predictions:

Present (Standard k-e) 0.137 1.745 0.194 0.381

Present (Modified k-e) 0.132 2.104 0.291 1.321

Present (Kato & Launder) 0.136 2.098 0.103 1.393

Kato & Launder (1993)* 0.145 2.050 - 0.917

Bosch & Rodi (1996)* 0.146 2.108 - 1.463

Franke(1991) 0.136 2.150 - -

Deng et al. (1994) 0.115 1.978 0.224 1.965

Table 3.12: Predicted and measured parameters for a square cylinder at Re=20,000. 

* Using Kato & Launder modification with wall function at Re-22,000.

Predictions Grid At

Present 136x118 2.28x10'3*

Kato & Launder (1993) 104x70 Not Known

Bosch & Rodi (1996) 106x75 0.02*

Deng et al. (1994) 121x94 0.05

Table 3.13: Grid and time-step arrangements for predictions of square cylinder.
*number is in the form At*
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3.11: Predicted drag and lift coefficients with and without the k-e model 
modification for a square cylinder at Re=20,000.

Figure 3.12: Predicted drag and lift coefficients with and without the k-e model 
modification for a circular cylinder at Re=65,000.
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Re St CD c D c L

Experiments:

Schewe (1983) 62438 0.2004 1.222 0.338

Wieselberger (1923) 66205 1.223

Sakamoto & Haniu (1994) 65000 0.2009 1.240 0.12 0.460

Lienhard (1966) 61094 0.1800-0.2010

West & Apelt (1993) 59034 0.550

Predictions:

Present (k-e, Ct=0.0) 65000 0.294 0.630 0.106 0.104

Present (k-e, C,=0.15) 65000 0.292 0.834 0.118 0.205

Present (k-e, Ct=0.38) 65000 0.292 1.025 0.139 0.995

Present (k-e, Ct=0.76) 65000 0.298 1.083 0.158 1.022

Present (k-e, Ct=1.52) 65000 0.291 1.144 0.151 1.044

Deng et al. (1994) 65000 0.251 1.100 - -

Table 3.14: Predicted and measured parameters for a circular cylinder at Re=65,000.

Re St CD c D c L

Experiment:

Schewe (1983) 5. lxlO6 0.254 0.526 - 0.047

Predictions:

Present (k-e, Ct=0.0) 5xl06 0.371 0.100 1.00x1 O'2 0.200

Present (k-e, Ct=0.15) 5xl06 0.389 0.195 1.75xl0‘2 0.295

Present (k-e, C,=0.38) 5xl06 0.375 0.216 1.5xl0‘2 0.306

Present (k-e, C,=0.76) 5xl06 0.378 0.215 1.65xl0"2 0.317

Present (k-e, Ct=1.52) 5xl06 0.391 0.200 1.82xl0’2 0.387

Deng et al. (1994) 3.6xl06 0.255 0.800 - -

Table 3.15: Predicted and measured parameters for a circular cylinder at Re~5xl06
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3.8 Reynolds Number Dependence

The prediction of the dependence of the vortex shedding parameters on Reynolds 
number is shown in Figure 3.15 and Figure 3.16 where mean drag, and Strouhal 
number are plotted over a range of Reynolds numbers, for a circular and square 
cylinder. Figure 3.15 also shows the values of fluctuating lift over a range of Reynolds 
numbers for the circular cylinder. Also shown on the same figures are experimental 
results and other predictive methods.

For the square cylinder, the present simulations seem to be able to better capture the 
different regimes for the mean drag and the Strouhal number.

For a circular cylinder in the subcritical regime (ReclxlO5), CD and St are well 
predicted. From a Reynolds number of 20000 up to the transition region, mean drag is 
slightly underestimated, and Strouhal number slightly overestimated. Like other 
predictive methods (e.g. Franke and Rodi, 1991), the present method overestimates 
both CD and St at high values of Re presumably because of three-dimensionality effects 
which could not be captured with a two-dimensional code.

Attempts were made to simulate the transition and the supercritical regimes with no 
success. The present simulations failed to capture the drag crisis. Deng et al. (1994) 
also failed to predict these regimes.

Full-scale data on the response of cylinders to transcritical flows are limited due to the 
problems encountered in producing high Reynolds numbers in the laboratory 
environment. On site experiments would not be feasible either due to difficulties in data 
acquisition.

Experimental results show that the mean drag becomes constant in the transcritical 
regime at around 0.5. Figure 3.15 shows that the measurements of Strouhal number are 
scattered in this regime. Predictions were performed for three Reynolds number in the 
transcritical regime. The results are presented in Table 3.16. The results for the first 
two show an underestimation of mean drag. Whilst the Strouhal number and CL are 
constant in predictions and overestimate the measurements of Schewe (1983) as can be 
seen in Figure 3.15. The separation point is estimated at around 145°, which conforms 
to experimental results. It can be seen from Table 3.16 that the time step was altered 
and shown not to affect the results. In addition, the standard k-e model was used for
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the case of Re=9xlOft, where it produces suppression of the mean drag and fluctuating 
lift.

For Re=5xl07 Reynolds number case, a very dense grid of 479x180 was used, with the 
size of smallest cell next to cylinder set to 0.001 of the cylinder diameter, in order to 
keep y+ in the acceptable range. Due to the density of the grid, the results were very 
slow to obtain: approximately two weeks to obtain one cycle. The results show that 
mean drag is kept at 0.165 with the Strouhal number falling to 0.21, therefore vortex 
shedding is predicted to exist at this Reynolds number. Incidentally CL drops

considerably to 0.1, which is on the same level as the transcritical levels shown by 
experiments.

The significance of the Re=5xl07 simulation is that it shows that the model used here 
does predict a constant mean drag between 9x10h and 5xl07 (i.e. in the transcritical 
regime.

Re Grid At* CD c L St

5xl06 195x98 5.7x10‘3 0.216 0.306 0.375

5xl06 195x98 2.85xl0‘3 0.215 0.306 0.375

9xl06 195x98 4.12xl0‘3 0.172 0.260 0.375

9xl06 195x98 2.06x103 0.173 0.262 0.375

9xl06* 195x98 4.12xl0‘3 0.119 7.19xl0~2 0.437

5xl07 479x180 l. lxl  0’4 0.165 0.1 0.21

Table 3.16: Results a circular cylinder in the transcritical regime. 

* Predictions carried out with the standard k-E model
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3.9 Conclusions

In this chapter, predictions were carried out for single circular and square cylinders 
over a range of Reynolds numbers. The results show that by using the modified k-e 
model with the computational details described in this chapter, it is possible to obtain 
acceptable results for the main parameters characterising vortex shedding from single 
cylinders of circular and square shapes.

In all the cases studied, both CD and CL were predicted to vary smoothly with time and 
the frequency of CD was predicted to be twice that of CL, as expected. Streaklines were 
computed and found to present a view of the flow field which is in accord with 
published flow visualisations.

Grid and time-step dependence checks were carried out. It is shown that laminar flow 
calculations are independent of grid effects. The grid does have to be refined in order to 
capture the turbulent aspects of the flow when simulating at higher Reynolds numbers, 
with the cell size next to the cylinder small enough so that y+is in the appropriate range. 
The results showed the insensitivity of the solutions to the time-step size, as long as the 
value of the latter is smaller than that required by the non-dimensionalised time step 
criteria set out in Section 2.11.

Predictions were obtained using the Upwind, Linear Upwind and SMART schemes for 
a square and circular cylinder at Re=100. The results showed that the third order 
bounded SMART scheme provides the most accurate results for a given grid and will 
be used henceforth.

The k-e turbulence model was used when simulating Reynolds numbers higher than 
1400. The Younis (1987) and Przulj & Younis (1993) modification, which accounts for 
the effects of periodicity on the turbulence spectrum was tested against the standard k-e 
model and the Kato & Launder (1993) modification. It was found that the standard k-e 
model underpredicts the strength of the shedding. For the square cylinder, the Younis 
(1987) and Przulj & Younis (1993) modification gave better results than the Kato & 
Launder (1993) model. For the circular cylinder, the Kato & Launder (1993) 
modification did not converge.

The value of the coefficient (C,) in the Younis (1987) and Przulj & Younis (1993) 
modification was investigated for a circular cylinder in subcritical and transcritical
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regimes. A value of C(=0.38 presented the best results and will thus be used throughout 
the present work.

The flow over a circular cylinder goes through four distinct regimes depending on the 
Reynolds number. In the lower end of the subcritical regime, when the flow is fully 
laminar, mean drag and Strouhal number are predicted accurately. At higher values, 
above Re=20000, the present method underestimates the mean drag and overestimates 
the Strouhal number. The present method also fails to capture the drag crisis and the 
supercritical regime. The transcritical regime was investigated. It was found that the 
mean drag is underestimated and the fluctuating lift and Strouhal number overestimated 
with respect to the data of Schewe (1983). The predicted mean drag remains constant 
at Re=5xl07, while the fluctuating lift and Strouhal number fall significantly.
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CHAPTER FOUR: APPLICATION TO TWO 
CIRCULAR CYLINDERS IN TANDEM

4.1 Introductory Remarks

While numerous investigations have been made of the flow past single obstacles of 
various shapes, few studies have been made of the wake interference and the vortex 
shedding processes associated with complex configurations consisting of multiple 
obstacles. When two similar bluff bodies are sufficiently apart, they behave in a similar 
or even identical manner to a single bluff body in isolation. However, when the two 
bodies are at close proximity to each other, the integral parameters such as the drag 
and lift forces, the shedding frequency and the vortex-shedding patterns are 
considerably different from the case of a single body. This is because their wakes 
interfere in a complex manner, depending on the arrangement of the bodies and the 
spacing between them.

There has been some previous experimental and numerical work on the case of two 
cylinders in tandem and a review of that is presented in Sections 4.2 and 4.3.

The changes to the drag caused on the downstream cylinder is of importance when 
considering suppression techniques, as the drag may be increased or reduced, 
depending on the spacing between the cylinders. This chapter presents numerical 
results for this phenomenon in the laminar and turbulent regimes.

The computational details are presented in Section 4.4. The laminar flow simulations 
are given in Section 4.5 and the turbulent flow simulations in Section 4.6.

4.2 Review of Experimental Results

There exist critical values of the spacing between cylinders arranged in tandem, where 
the flow patterns abruptly change over, producing different aerodynamic 
characteristics. These critical spacings are thought to have a close relation with the 
size of the vortex formation region.
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Bierman and Hernstein (1933) measured the drag forces on struts (with circular and 
aerofoil sections) arranged in tandem at Reynolds numbers of 0.6xl05 to 1.6xl05. A 
new parameter was introduced to compare the drag coefficient of the cylinder in 
question with the drag of a single cylinder in isolation. This is called the Interference 
Drag (CDi), defined as:

CDi = C D for cylinder - C D for single cylinder (4.1)

The data for two circular cylinders up to 9 diameters apart are reproduced in Figure 
4.1. The Figure shows that the drag of the downstream cylinder is decreased in the 
presence of the upstream cylinder, while the drag of the upstream cylinder is not 
greatly affected by this interaction. For spacings less than 3 diameters, the 
downstream cylinder experiences a thrust (i.e. negative drag) and the net drag on both 
cylinders is less than that of a single cylinder. For spacings between 3 to 4 diameters, 
the drag of the downstream cylinder rapidly increases with increase in spacing. The 
magnitude of the interference does not change for spacings greater than around 4 
diameters.

The portion of the curve where a dip in the interference drag coefficient (CDi) occurs 
represents the critical spacing. Its value cannot be determined accurately, but seems to 
be about 3 to 3.5 diameters.

Curve C in Figure 4.1 represents the combined interference drag coefficient. This is 
defined as CDi of the upstream cylinder plus CDj of the downstream cylinder. This 
quantity appears to be negative for all spacing which means that the overall drag of 
cylinders in tandem is less than twice the value of the drag for a single cylinder.

Hori (1959) measured the vortex shedding frequency, the surface pressure distribution 
and the wake velocity behind two cylinders in tandem. He observed that the 
interference of the two cylinders was strong and dependent on Reynolds number, even 
at large spacings. Furthermore, he found that a thrust acted on the downstream 
cylinder for small spacing distances.

Thomas and Kraus (1964) observed vortex street eddies shed from two cylinders at 
low Reynolds numbers (Re = 62 to 500) by a smoke visualisation technique.

Strouhal frequencies for two cylinders in tandem were measured by Oka et al. (1972) 
and Jendrzejczyk and Chen (1986). In general, the vortex shedding frequencies behind
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the two cylinders were found to be different. No distinct vortex shedding frequency 
was found behind the upstream cylinders up to P/D = 3.8. For separations greater 
than 3.8, the vortex shedding frequency reached the value for an isolated cylinder. 
Vortex shedding was observed for the whole range of spacings behind the 
downstream cylinder. It decreased with P/D in the range 1 < P/D < 3.8 , then jumped 
to higher values at P/D ~ 3.8, which is the same spacing at which the vortex shedding 
appeared behind the upstream cylinder.

Zdravkovich (1977) compiled drag coefficients for various Reynolds numbers. He 
showed a jump in the drag coefficient for the upstream cylinder at P/D between 3 and
4. Regardless of the Reynolds number, the drag coefficient reached the value for a 
single cylinder once the spacing was larger than the critical P/D. The downstream 
cylinder showed a stronger dependence on the Reynolds number.

Spacing Ratio P /D

Figure 4.1: Interference Drag Coefficient for two cylinders in tandem (data from
Bierman and Hernstein (1933)).

96



The flow around two cylinders in tandem may be characterised by two distinct 
regimes depending on the critical spacing. For spacings up to the critical range of P/D, 
the vortex street is suppressed behind the upstream cylinder. Beyond this critical 
spacing range, vortex streets may be formed from both cylinders. Igarashi (1981) 
examined the flow structure around two cylinders in detail and subdivided the first 
regime into four flow patterns. From his results, Zdravkovich (1985) showed 
schematic flow patterns as shown in Figure 4.2. The subdivisions are as follows:

a) When the spacing is very small, less than 1.1, the two cylinders behave as a single 
slender body with a high Strouhal number. The region between the two cylinders is 
stagnant and the shear layers separated from the upstream cylinder cannot reattach 
on the downstream one and a vortex street is formed only behind the downstream 
one.

b) When the spacing is between 1.1 < P/D < 1.6 an alternate reattachment of the 
shear layers takes place on the front side of the downstream cylinder in the 
frequency of the vortex shedding of the latter.

c) When the spacing is between 1.6 < P/D < 2.4 quasi-steady reattachment of 
separated shear layers is observed on the downstream cylinder.

d) When the spacing is between 2.5 < P/D < 3.4, occasionally one of the reattachment 
points is disrupted, but there is no regular vortex shedding behind the upstream 
cylinder yet.

e) A bistable range exists around the critical spacing where the vortex shedding 
behind the upstream cylinder persists for some time and then is intermittently 
suppressed and replaced by the reattachment flow regime.

f) Beyond P/D = 3.8, which is over the critical spacing, the separated shear layers 
from the upstream cylinder roll up alternately and form vortices behind the 
cylinder. Two vortex streets are synchronistically formed behind the two cylinders. 
Further, for large values of the spacing, over P/D = 5, drag coefficient of only the 
downstream cylinder is affected.
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Figure 4.2: Classification of regimes for two circular cylinders in tandem.

4.3 Review of Previous Predictions

Li et al. (1991) used a Crank-Nicolson finite element method to simulate the flow past 
two circular cylinders in tandem. At Re=100, a perturbation was applied in order to 
make the field asymmetric and hasten the occurrence of vortex shedding. For small 
spacings (P/D<3), the vortex street formed behind the downstream cylinder only. 
Parameters such as the drag, the lift, and the Strouhal number were found to be lower 
than experimental data, mainly because of the use of a coarse grid. Ren and Blachen 
(1993) investigated laminar flow past two cylinders in tandem, again using the finite 
element method. This was done for Re=250 and P/D=2 and 5. Their results show only 
the flow patterns around the cylinders. Values of the drag and lift coefficients, and the 
Strouhal number were not given.

Stansby and Slaouti (1991) applied a random vortex method to two-dimensional 
laminar flow around two cylinders arranged in transverse and in tandem at Re=200. 
Qualitative and quantitative results were obtained and the well known result that, 
below the critical spacing, the combined drag is less than twice the drag on a single 
cylinder, was reproduced. They found the critical spacing between 3.4<P/D<3.8. They 
also found a thrust acting on the downstream cylinder up to P/D=3.0.
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Jing et al. (1992) studied the oscillations of a cylinder in the wake of an upstream 
cylinder using Direct Numerical Simulation (DNS). They found that at small cylinder 
spacings, the shear layers separating from the upstream cylinder reattached to the 
downstream one. As a consequence, the formation of vortex street between the two 
cylinders was inhibited. This is referred to as the ‘vortex suppression’ regime. At large 
spacings, the vortex street behind the upstream cylinder has sufficient room to 
develop. The intensity of the transverse oscillations becomes stronger thus, leading to 
an even stronger vortex street behind the downstream cylinder. This is referred to as 
the ‘vortex formation’ regime.

Sun et al. (1993) applied a finite element method to investigate the flow regimes and 
frequency of vortex shedding of two circular cylinders in tandem. They found the 
critical spacing, where flow changes from the ‘vortex suppression’ regime to the 
‘vortex formation’ regime, to be around P/D=3.7 for Re=80 and P/D-3.0 for Re=100. 
They found the circumferential pressure profiles of the downstream cylinder as well as 
drag and lift coefficient variations on both cylinders with respect to cylinder spacings.

4.4 Computational Details

The same grid generation program used for the single cylinder is used here to 
generate grids with two cylinders in tandem. This is done by introducing a new 
subdomain in the grid and repeating the same process for the downstream cylinder as 
that for the upstream cylinder. A limitation of this method is that the diameter of the 
downstream cylinder has to be the same as that of the upstream cylinder. Two new 
parameters are introduced in the input to the grid generation program to determine 
the position of the downstream cylinder and the grid density between the cylinders:

• XCIL Distance between the centres of the two cylinders.
• XGAP Expansion in the x-direction for the region in between the two cylinders.

Figure 4.3 defines the boundaries and quantities used in generating grids for two 
cylinders. Figure 4.4, 4.5, and 4.5 show examples of grids used in the present work.

The flow solver is modified so that the distances of the near boundary nodes from the 
east and west of the obstacle boundary are stored for the downstream cylinder. The 
north and south boundary node distances are taken from the upstream cylinder. These 
are then used in the flow solver to specify the boundary conditions for the u, v, k and
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e equations for both cylinders. The subroutine that determines the lift and drag 
coefficients is also modified to account for the presence of two cylinders.

The SMART scheme is used throughout the simulations. The non-dimensionalised 
time step (At*) was set at the minimum required to obtain convergence with 3-4 
iterations, with no under-relaxation. No time-step dependence checks were conducted 
as it was shown in Section 3.5 that the solutions are fairly independent of this 
parameter.

K=4

K=3

K=2
K=1
K=0

Figure 4.3: Definitions of quantities involved in generating grids.

F ig u r e  4 .4 :  T he  a r e a  a r o u n d  th e  tw o  c y lin d ers , w ith  a  s e p a ra tio n  o f  th re e  d ia m e te r s .
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Figure 4.5: A grid of 115x78 used for two cylinders in tandem at three diameters
spacing.

Figure 4.6: A grid of 111x66 used for two cylinders in tandem at seven diameters
spacing.
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4.5 Laminar Flow Simulations

Two geometries were investigated in the laminar flow regime for P/D=3 and 7. Two 
values of Reynolds number were used: Re=100 and 300. For the case of P/D=3, a 
grid of 115x78 (Figure 4.5) was used. For the case of P/D=7, a grid of 111x66 
(Figure 4.6) was used. The time step was fixed at a value corresponding to 
At*=3.42xl0 3. The SMART scheme was used throughout the simulations.

Time histories for the drag and lift coefficients are shown in Figure 4.7 and Figure 
4.9, for P/D=3 and 7, respectively. The streaklines for P/D=3 and 7 at Re=300 are 
shown in Figure 4.8 and Figure 4.10, respectively.

It is evident from the streaklines that a separation of P/D=3 (Figure 4.8) confirms the 
existence of the ‘vortex suppression’ regime, where the vortices do not have enough 
room to grow, develop, and shed in between the two cylinders. Since the downstream 
cylinder is in the attached vortex region of the upstream cylinder, its equivalent ‘free- 
stream’ velocity is weaker. This leads to an even weaker wake behind it.

When the spacing between the two cylinders is sufficiently greater than the critical 
value, the ‘vortex formation’ regime appears and vortex streets form behind both 
cylinders. This can be seen from the streaklines of P/D=7 (Figure 4.10).

These findings are in agreement with the computational results of Jing et al. (1992), 
who also found the ‘vortex suppression’ and ‘vortex formation’ regimes.

The mean drag, and the rms of the lift coefficients of the upstream and downstream 
cylinders were calculated and compared with the numerical results of Sun et al. 
(1993) at Re=100. The results for the mean drag are shown in Figure 4.11(a) at 
Re=100. Figure 4 .11(b) shows the results at Re=300, for which no other experimental 
or numerical results were available. Also included there are the present numerical 
results for a single cylinders at these Reynolds numbers.

It can be seen that the present results follow the same trends as those of Sun et al. 
(1993). The mean drag of the upstream cylinder is less influenced by the change of the 
flow regime, since the incoming flow remains unchanged.

The mean drag of the downstream cylinder at P/D=3 is very small, consistent with the 
presence of the ‘vortex suppression’ regime. This quantity can even become negative,
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as in the case of Re=300. This happens on the downstream cylinder when the pressure 
at the base is higher than its value at the stagnation point, so that its drag coefficient 
may be negative. This result was also obtained by Sun et al. (1993) and Stansby and 
Slaouti (1991).

At the larger separation of P/D=7 (Figure 4.11), the mean drag coefficient on the 
upstream cylinder reverts to levels appropriate to an isolated cylinder at the same 
Reynolds number. The effects of the wake interaction on the downstream cylinder, on 
the other hand, are quite profound. From the results it is obvious that the downstream 
cylinder experiences a ‘shielding’ effect evidenced by the marked reduction in the 
mean value of its drag coefficient.

The results for the rms lift coefficient are shown in Figure 4.12(a) for Re=100 and 
Figure 4.12(b) for Re=300. The rms hit coefficients of both cylinders jump from 
almost zero, at P/D<3 to a large value approaching that of a single cylinder. At the 
larger separation of P/D=7, the ‘shielding’ effect does not extend to the rms lift, 
which shows a marked increase for the downstream cylinder.

The vortex shedding frequency of the upstream and downstream cylinders were also 
calculated, thus establishing the Strouhai number of each cylinder. This was then 
compared to the Strouhai number for a single cylinder at the same Reynolds number. 
Figure 4.13 shows the ratio of the Strouhai number of each cylinder to that of a single 
isolated cylinder. Also included in the figure are the numerical results of Li et al. 
(1991) at Re=100. The present results are generally in close agreement with the 
previous numerical results.

At the separation of P/D=3, the Strouhai number of the upstream cylinder is at its 
minimum, since a distinct vortex street does not exist between the cylinders.

At the larger spacing of P/D=7, the occurrence of vortex shedding between the two 
cylinders creates oscillatory oncoming flow in front of the downstream cylinder, and 
in turn this leads to a stronger oscillatory flow behind it. The vortex street between 
the two cylinders develops more freely (and is stronger) than at smaller spacings. The 
value of the Strouhai number approaches that of an isolated cylinder.

It is also clear from Figure 4.11 that the combined drag on the two cylinders is always

less than twice the drag of an isolated cylinder.
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Figure 4.7: Time histories for drag and lift coefficient of two circular cylinders in 
tandem at P/D=3 at Re-100 and 300.

F ig u r e  4 .8 :  S tr e a k lin e s  f o r  tw o  c y lin d e r s  in ta n d e m  a t  P / D - 3  w ith  R e = 3 0 0 .
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Figure 4.9: Time histories for drag and lift coefficient of two circular cylinders in
tandem at P/D=7 at Re 100 and 300.

F ig u r e  4 .1 0 :  S tr e a k lin e s  f o r  tw o  c y lin d e r s  in  ta n d e m  a t  P /D = 7  w ith  R e = 3 0 0 .
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4.6 Turbulent Flow Simulations

Bierman and Hernstein (1933) conducted experiments to determine the critical value 
of spacing in turbulent flow conditions. In this section, their data are used to check 
calculations performed for a Reynolds number of 6.5xl04. This Reynolds number was 
chosen because it coincides with the value appropriate to the investigations of 
Sakamato and Haniu (1994) for the suppression of vortex shedding using a control 
cylinder (see Chapter 5).

There is no need to make further modifications to the code except for introducing the 
boundary conditions for k and e on the downstream cylinder. The grid used was finer 
than for the laminar calculations in order to capture the turbulent boundary layer. 
Figure 4.14 shows a 191x72 grid used in the present simulations of the P/D=3 
conditions.

Figure 4.14: Grid used for turbulent flow simulations of two cylinder in at P/D=3.
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Spacing Ratio 
(P/D)

Grid Size

1.35 178x72
2 178x72

2.5 187x72
3 195x72
4 200x72
5 235x72
6 250x72
7 275x72

Table 4.1: Grid arrangements for two cylinders in tandem in turbulent flow.

Eight values of P/D were investigated, each with a different grid. Table 4.1 shows the 
grid sizes for each spacing ratio. As can be seen, the larger the distance between the 
cylinders, the more grid nodes were used in the x-direction. The number of grid nodes 
in the y-direction was unchanged. The non-dimensionalised time step (At*) was set 
equal to lxlO"3 throughout the computations. The SMART scheme was used.

The computations were carried out with the Younis (1987) and Przulj & Younis 
(1993) k-e turbulence model modification discussed in Chapters 2 and 3. In order to 
investigate its validity for two cylinders in tandem, the RUN with P/D=5 was 
performed with and without the modification. The time histories of the drag and lift 
coefficients are shown in Figure 4.15. The modification was removed at t*= 10.25. 
There is a reduction in mean and fluctuating drag and fluctuating lift associated with 
the use of the standard k-e model. It is obvious that the use of the standard k-e model 
causes the vortex shedding to be drastically suppressed as was the case for single 
cylinder. Therefore, the present modification was used throughout the computations. 
It is important to note that even though the drag coefficient for the downstream 
cylinder is very small, its mean does not equal zero.

The present predictions of the interference drag coefficient and the mean drag are 
compared with the measurements of Biermann and Herrnstein (1933) in Figure 4.16 
(a) and (b).

The jumps in both the interference drag and the mean drag are captured by the present 
predictions. The critical spacing ratio is predicted to be in the range 2.5<P/D<4, 
which is in accordance with the data. Once the spacing ratio is larger than the critical 
value, the drag coefficient increases monotonically to the value for a single cylinder. It
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is worth noting that even at high values of P/D, the sum of the drag on the cylinders 
(about 1.05) is less than twice the predicted value for a single cylinder (about 2.05).

The vortex shedding frequency of the upstream and downstream cylinders were also 
calculated, thus establishing the Strouhal number of each cylinder. This was then 
compared to the Strouhal number for a single cylinder at the same Reynolds number. 
Figure 4.17 shows the ratio of the Strouhal number of each cylinder to that of a single 
isolated cylinder. Also included in the figure are the experimental data of Oka et al. 
(1972) at Re=51,000 and Jendrzejczyk & Chen (1986) at Re=65,000. The present 
results are in good agreement with the experimental data, and show the same 
behaviour of the Strouhal ratio for both upstream and downstream cylinders with 
respect to the P/D value.

The power spectra of the lift for P/D<2.5 show that no distinct vortex shedding 
frequency was found behind the upstream cylinder. When the interval was greater 
than this value, a distinct vortex shedding frequency was attainable behind the 
upstream cylinder and its frequency gradually approached its limiting value 
corresponding to the case of a single cylinder.

Vortex shedding was shown to exist behind the downstream cylinder for the whole 
range of P/D values. Below the critical value, the Strouhal number decreased 
continuously to its minimum level: the two cylinders then behave as a single slender 
body, with a prominent vortex street behind the downstream cylinder. For high values 
of P/D, the Strouhal numbers is seen to asymptote to the single cylinder value.

Three key regimes of the flow around two circular cylinders in tandem are shown in 
Figure 4.18. Plotted there are the velocity vectors around the cylinders at Re=65,000. 
The maximum velocity in the field, represented by the longest arrow, is 1 m/s.

Figure 4.18(a) shows the arrangement for P/D=1.35 which is below the critical 
spacing range. Two vortices are formed behind the upstream cylinder. These are 
almost symmetric and thus do not result in alternate vortex shedding. At this small 
cylinder spacing the shear layers separating from the upstream cylinder reattach on the 
downstream cylinder. As a consequence, the formation of a vortex street between the 
two cylinders is inhibited. The oncoming flow to the downstream cylinder is very 
weak and leads to an equally weak vortex street behind the downstream cylinder. This 
is evident from the small values of mean drag shown in Figure 4.16(b). Note that for 
this spacing, the drag on the downstream cylinder is actually thrust.
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is evident from the small values of mean drag shown in Figure 4.16(b). Note that for 
this spacing, the drag on the downstream cylinder is actually thrust.

Figure 4.18(b) shows the flow field for P/D=2.5. This is at the onset of the critical 
regime. There are alternate vortices behind the upstream cylinder, although it is 
obvious from the figure that they do not constitute an organised vortex street. The 
Strouhal number for the downstream cylinder is at its minimum.

Figure 4 .18(c) shows the flow that exists at a spacing of P/D=5. At this large spacing, 
which is beyond the critical regime, the vortex street behind the upstream cylinder has 
enough room to develop. Both cylinders now form vortex streets. The asymmetry in 
the oncoming flow causes vortex shedding from the downstream cylinder.

The above three findings are in accordance with three of the regimes as described by 
Zdravkovich (1985) (reproduced in Figure 4.2) and namely; b) Alternate 
reattachment, d) Intermittent shedding streets, and f) Two vortex streets.
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a) Upstream Cylinder

Figure 4.15: a) Upstream and b) downstream cylinder time histories of the drag and 
lift coefficients for two cylinder in tandem with a separation of P/D-5 at Re-6.5xl04

with and without the k-e modification.
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P/D

Figure 4.16: Two cylinders in tandem, showing a) interference drag, and h) mean 
drag in turbulent flow. (Experimental ---------and Numerical .............  ).
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Figure 4.18: Velocity vectors for two cylinders in flow of Re=65,000 at different 
separation: a) P/D=1.35, b) P/D=2.5, c) P/D-5.

(Longest vector represents 1 m/s).
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4.7 Conclusions

The present prediction method was used to investigating the flow field that develops 
around two cylinders in tandem in laminar and turbulent flow regimes. The method 
reproduces the wide range of well established flow phenomenon observed 
experimentally.

All previous predictions of these flows, were in the laminar regime. To the author’s 
knowledge, this is the first study of the flows around cylinders in tandem to be 
conducted in the turbulent regime. The present study extended the investigation into 
the turbulent flow regime by modelling at Re=65,000, using the modified k-e method, 
with satisfactory results

In the laminar flow calculations, the experimentally observed ‘vortex suppression’ 
regime at P/D=3 and the ‘vortex formation’ regime at P/D=7 were found at Re=100 
and 300. At a small spacing, there is not enough room between the cylinders for the 
formation of a vortex street, and since the oncoming flow to the downstream cylinder 
is weak, the resulting vortex shedding behind it is also weak. At a larger spacing, the 
occurrence of vortex shedding between the two cylinders creates an oscillatory 
oncoming flow and this leads to a stronger vortex shedding behind the downstream 
cylinder. These observations were correctly reproduced in the present predictions.

A wide range of spacings was investigated in the turbulent flow regime. The results 
were used to show the influence of the downstream cylinder on the flow around the 
upstream cylinder. Also predicted were the different flow regimes that exist around 
the cylinders and how these depend on the cylinders spacing. The critical spacing, 
when the two cylinders stop behaving as one, was predicted to lie in the range 
2.5<P/D<4.

Three key regimes were shown:

a) Below the critical spacing (P/D=1.35), where there is alternate reattachement of 
the shear layers separating from the upstream cylinder on the downstream cylinder.

b) At the critical spacing (P/D=2.5), where the flow shifts between two regimes. 
There are vortices behind the upstream cylinder, but they do not constitute a 
periodic vortex street.
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c) Above the critical spacing (P/D=5), where there is enough room between the 
cylinder for a vortex street, and therefore both cylinders produce vortex street. The 
mean drag of the upstream cylinder is now approaching that of a single cylinder.

The standard k-e model was tested for the case of P/D=5 where it was found to be 
inadequate.

It was observed that the mean drag of the downstream cylinder can become negative 
at small spacings in the vortex suppression regime. This constitutes a thrust in this 
cylinder.

It was also observed that up to the spacing ratios examined (P/D=7), the overall drag 
of the two cylinders in tandem is always less than twice the value of the drag for a 
single cylinder. Further, it was found that the drag on the upstream cylinder never 
reaches the value appropriate to a single cylinder.
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CHAPTER FIVE: PREDICTION OF 
SUPPRESSION BY CONTROL CYLINDER

5.1 Introductory Remarks

A number of methods have been developed with the aim of suppressing vortex 
shedding from square and circular cylinders. These methods generally fall into one of 
the following three categories (Zdravkovich, 1981):

i) The control of the boundary layer on the surface with the use of a tripping wire, 
fin, or blowing nozzle installed on the surface.

ii) The control of the entrainment process that determines the supply of irrotational 
fluid necessary for the growth of vortices. This is typically achieved by enclosing 
the body with a porous flexible plate or multiple rods.

iii) The control of the wake with the use of a splitter plate, guidevane, or by base- 
bleed.

We consider three methods of suppression in this study, namely; the control cylinder, 
forward injection, and rear stagnation jet. In this Chapter, we consider the use of a 
control cylinder, whereby a small cylinder is placed near the main cylinder to reduce 
or eliminate oscillations caused by vortex shedding from it. Experimental and previous 
predictions for this are presented in Section 5.2 and Section 5.3 respectively. The 
computational details and code modifications are presented in Section 5.4. Results 
obtained for circular and square cylinders with control cylinders placed at different 
points in the flow are discussed in Section 5.5 for laminar flow, and Section 5.6 for 
turbulent flow.
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5.2 Experimental Results

Strykowski and Sreenivasan (1985) reported that vortex shedding from circular 
cylinders could be suppressed almost completely by placing a small cylinder in the 
separated shear layer on one side. This was achieved in the range of low Reynolds 
numbers (less than Re=120) where the shear layers separating from the circular 
cylinder are thin, and vortex shedding is well established.

Igarashi and Tsutsui (1989) investigated the reduction of the mean drag on a circular 
cylinder by means of using a small cylinder. They found that the mean drag was 
considerably reduced by about 20-30%, by forcibly reattaching the separated shear 
layer back on to the surface of the circular cylinder. They also noted reductions in the 
fluctuating pressure on the surface.

Sakamoto, Tan and Haniu (1991) investigated the possibility of suppressing vortex 
shedding from a square prism by means of a small circular cylinder placed in the shear 
layer. Their investigations were carried out at Re=4.2xl04. They found that the 
maximum reduction of the mean drag and the fluctuating lift and drag forces occurred 
when the control cylinder was located near the outer boundary of the shear layer.

Strykowski and Sreenivasan (1990) reported on experimental and computational 
results on the suppression of vortex shedding from a circular cylinder at low Reynolds 
numbers, using a control cylinder. They stated that while some aspects of the 
suppression phenomenon might be sensitive to three-dimensionalities, specific end 
conditions, free-stream turbulence levels, etc., the essentials of the phenomenon are 
independent of them. They also found that the effects of a control cylinder are 
negligible except when placed in the near wake region (not further than -3.5 to 4 
diameters downstream of the cylinder).

Sakamoto and Haniu (1994) extended the available results by investigating the 
suppression of fluid forces on a circular cylinder by using a control cylinder at a higher 
Reynolds number (Re=6.5xl04). They found that the suppression can be classified 
into two categories; one is due to the control of the boundary layer along the surface 
of the circular cylinder; the other is due to the control of the shear layer separated 
from its surface. The maximum reduction of the mean drag was 50%, and the 
maximum reduction in the fluctuating lift and drag was 85%. Suppression by this 
technique is possible behind a variety of objects and over a range of Reynolds 
numbers.
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5.3 Previous Predictions

Strykowski and Sreenivasan (1990), applied a finite-difference Galerkin method, 
developed by Stephens et al. (1984), to compute the vortex shedding patterns after 
the introduction of a control cylinder. Numerical simulation were carried out for 
Re=55, with a relatively small physical domain. This prohibited a detailed quantitative 
comparison of numerical data with experimental. Their results showed that the vortex 
street is suppressed soon after inserting the control cylinder, leading to the formation 
of two standing eddies.

Lin and Wu (1994) numerically investigated two kinds of flow control devices: an 
attached or detached splitter plate, and a control cylinder behind a circular cylinder. 
They used an artificial compressibility method, first proposed by Chorin (1967), 
utilising a high-order upwind method for the space discretisation. The investigations 
were carried out at low Reynolds numbers (46 < Re < 200). For the control cylinder 
investigations, they found that in steady conditions, mean drag decreases at Re=20 
and increases at Re=40. In unsteady conditions (Re=80), the mean drag is reduced by 
12%, but mean lift is increased. When the control cylinder is placed further away from 
the main cylinder, the root mean square (rms) of the lift coefficient is reduced by 70%, 
and the oscillation of the drag coefficient becomes double-periodic. The shedding 
frequency is reduced by approximately 52% and the mean of drag is reduced by 7.5%.

5.4 Computational Details

It is not straightforward to generate a grid for a small circular control cylinder, and 
thus an approximation is devised for this study. This involves the use of a quadrilateral 
body in place of the circular one. For this approximation to be valid, a fine grid is 
required. This is discussed further is Sections 5.5 and 5.6.

The grid generation technique for a control cylinder is similar to that used for the case 
of the two cylinders in tandem. The positions of the four vertices of the control 
cylinder are specified manually and the volumes and the distance of near-boundary 
nodes from the east, west, north, and south edges of the control cylinder are stored. 
The sides of the control cylinder quadrilateral are treated as walls and thus the wall 
boundary conditions are calculated.
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The predictions were carried out using the SMART scheme throughout. The modified 
k-e turbulence model was used for the turbulent cases.

The predictions start with the simulation of a circular or square cylinder case without 
a control cylinder. The computed flow field is then stored in a ‘start-up’ file. The 
computations are then re-started in the presence of a control cylinder. It was found 
that the non-dimensionalised time-step At* did not have to be altered when the 
control cylinder was introduced.

5.5 Laminar Flow Simulations

5.5.1 Circular Cylinder

The principal experimental results for the circular cylinder with control cylinder at low 
Reynolds numbers are those collected by Strykowski & Sreenivasan (1990) in the 
range 80 < Re < 120. The numerical results of Lin & Wu (1994) were obtained at 
Re=80. The numerical simulations presented here will be for Re=100.

A control cylinder of height d is introduced, behind and parallel to a main cylinder of 
diameter D (Figure 5.1). The x and y coordinates are measured from the centre of the 
main cylinder.

The same grid (148x102) and the start-up file as for the single circular cylinder at 
Re=100 described in Section 3.5.1 for a circular cylinder were used here. Three 
arrangements for the positioning of a control cylinder were considered. These are 
shown in Figure 5.2 to Figure 5.4. Note that grid arrangement (1) refers to the no 
control cylinder case shown in Figure 3.4. In this work, the control cylinder was 
approximated as a four-sided obstacle. The ratio of the main cylinder diameter to 
control cylinder diameter (D/d) was not constant due to the non-uniformity of the 
grid. Three values of D/d were considered: D/d = 4.12, 5.38, and 7.78. These were 
located at the distances away from the main cylinder as shown in Figure 5.2 to Figure 
5.4. The experiments of Strykowski & Sreenivasan (1990) were for ratios ranging 
from D/d=l to 20, although they mainly used D/d=7.

The SMART differencing scheme was again utilised here. The non-dimensional time- 
step (At*) was kept at 0.054, which is the same as for the single circular cylinder at
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Re=100. It was not deemed necessary to alter the time-step, as satisfactory results 
were obtained with the present one. Time histories of the drag and hit coefficients and 
their power spectra are shown in Figure 5.5 to Figure 5.8. The computed streaklines 
for the four runs before and after inserting the control cylinder are shown Figure 5.9. 
The predicted drag and lift coefficients are presented in Table 5.1, together with the 
results of Lin and Wu (1994) at Re=80. Results for the Strouhal numbers are shown 
in Table 5.2.

The extent of suppression in the fluctuating drag and lift coefficients is defined in 
terms of the parameters CDr and CLr:

CD after introducing control cylinder (ie for RUN 2-3)
CD before introducing control cylinder (ie for RUN 1)

C, after introducing control cylinder (ie for RUN 2-3)
CL before introducing control cylinder (ie for RUN 1)

The results show that the conditions of RUN 2 produce complete suppression. The 
control cylinder is placed one cylinder diameter above and behind the main cylinder. 
Figure 5.6 shows a reduction in mean drag, with its fluctuations at minimal levels 
(CDr=4.82xl0‘3). There is a slight increase in mean lift, but the rms of the lift 
coefficient is very small (CLr=6.21xlO'3). The Strouhal number is negligibly small 
compared to the case of a single circular cylinder. The streaklines show no sign of 
vortex shedding, except very far downstream of the cylinder (Figure 5.9).

In the case of the second control arrangement (RUN 3), the control cylinder was 
placed at half a cylinder diameter behind and one cylinder diameter above the main 
cylinder. Table 5.1 shows that the mean and fluctuation of drag levels are reduced 
relative to the uncontrolled case, but not as dramatically as RUN 2. There is a shift 
into negative mean lift, although fluctuations of lift are still suppressed (CLr=0.118). 
The Strouhal number is smaller than in the standard case, but significantly larger than 
RUN 2. The streaklines in Figure 5.9 show some form of vortex shedding with the 
vortices lengthening in the field.

For RUN 4, the control cylinder was placed above the centre line of the main cylinder 
at a height of 0.64 diameters of the main cylinder. This position was chosen to show 
that the introduction of a control cylinder does not necessarily lead to effective
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suppression. Table 5.1 shows the mean drag level increasing relative to the 
uncontrolled case but that its fluctuations are reduced (CDr=0.4). The mean lift is 
further increased in the negative direction, with the fluctuations enhanced almost three 
times (CLr=2.778). Strouhal number is closer to the case of standard vortex shedding. 
The streaklines in Figure 5.9 show a pattern very similar to natural vortex shedding, 
with the vortex street widening and the entrainment region increasing in size.

The power spectra of the case with no control cylinder are shown in Figure 5.5. A 
distinct sharp peak is apparent depicting vortex shedding. RUN 2 shows a complete 
disappearance of the peak which is an indication that no periodic structures exist. 
RUN 3 shows a wide peak for the hit coefficient, therefore there is some form of 
shedding, while by RUN 4, the peak is sharper, but still not as sharp as RUN 1.

The findings are very similar to those of Strykowski and Sreenivasan (1990). They did 
not show detailed drag, lift or Strouhal number analysis. Their findings were based 
mainly on Hydrogen-bubble visualisations. They found regions of suppression for 
different values of D/d at Re=80. RUN 2 which gave the maximum suppression effect 
here, is placed in the same zone as their findings for D/d=7.5. They found that the 
region of control shrinks essentially to a point with increase in D/d. They found 
suppression up to Re=100, while Re=120 did not show suppression in the vortex 
street at D/d=7. Their findings also show that for Re=80, there is a reduction of 20% 
in the mean of the drag coefficient. Similarly, the maximum reduction in drag shown 
here was 17% for RUN 2.

Strykowski & Sreenivasan (1990) also presented numerical simulations for Re=55. 
The results were largely qualitative and showed the formation of symmetric eddies 
behind the main cylinder in the presence of a control cylinder.

The arrangement adopted by Lin and Wu (1994) in numerically simulating a control 
cylinder was the same as the one shown here. As can be seen in Table 5.1, the control 
cylinder was placed further away from the cylinder. Their simulations carried out at 
Re=80, show a reduction in mean drag and increase in mean lift for RUNs B and C. 
The fluctuating drag drops to CDr=0.583 for RUN B but remains at its original value 
for RUN C. The fluctuating lift is minimum at RUN B (CLr=0.025), but increases 
slightly to CLr=0.075 for RUN C. From their results it is obvious that Lin and Wu 
(1994) did not achieve the same dramatic suppression as in RUN 2 mainly because the 
control cylinder was placed further away from the cylinder.
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Figure 5.1: Schematics of arrangement for control of vortex shedding.

y/D=0.92

D /d=4.12

x/D=l

x=0

F ig u r e  5 .2 :  G r id  a r r a n g e m e n t  (2 )  f o r  a  c ir c u la r  c y l in d e r  w ith  c o n tr o l  c y lin d er .
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x=0

Figure 5.3: Grid arrangement (3) for a circular cylinder with control cylinder.

Figure 5.4: Grid arrangement (4) for a circular cylinder with control cylinder.
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RUN D/d x/D y/D c D c D c Dr CL c L Cu

Present Results Re=100

1 - - - 1.451 0.105 1.000 -5.9xl0"3 0.161 1.000
2 4.12 1.00 0.92 1.201 5.07x1 O'4 4.82x1 O'3 0.063 0.001 6.21xl0‘3
3 5.38 0.5 1.00 1.256 3.73xlO'3 0.036 -0.054 0.019 0.118
4 7.78 0.00 0.64 1.695 0.042 0.400 -0.730 0.447 2.776

Results of Lin and Wu (1994) Re=80

A - - - 1.37 0.012 1.000 0.000 0.189 1.000
B - 2.15 1.47 1.22 7x1 O'3 0.583 0.063 0.025 0.132
C - 2.28 1.25 1.27 0.012 1.000 0.035 0.075 0.397

Table 5.1: Results of the behaviour of the drag and lift coefficients with a control 
cylinder collected by present method at Re=100 and Lin and Wu (1994) at Re-80.

RUN D/d x/D y/D St
1 - - - 0.173
2 4.12 1.00 0.92 0.001
3 5.38 0.5 1.00 0.143
4 7.78 0.00 0.64 0.151

Table 5.2: FFT analysis of the drag and lift coefficients with a control cylinder.
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Figure 5.5: Time histories and power spectra for a circular cylinder at Re=100 with
no control cylinder (RUN 1).
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F ig u r e  5 .6 :  T im e  h is to r ie s  a n d  p o w e r  s p e c tra  f o r  a c ir c u la r  c y l in d e r  a t  R e - 1 0 0  w ith

c o n tr o l  c y l in d e r  (R U N  2: D /d = 4 .1 2 , x / D - 1 ,  y /D - 0 .9 2 ) .
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Figure 5.7: Time histories and power spectra for a circular cylinder at Re-100 with 
control cylinder (RUN 3: D/d=5.38, x/D-0.5, y/D-1).

F ig u r e  5 .8 :  T im e  h is to r ie s  a n d  p o w e r  sp e c tr a  f o r  a c ir c u la r  c y l in d e r  a t  R e - 1 0 0  w ith

c o n tr o l  c y l in d e r  ( R U N  4: D /d = 7 .7 8 , x /D —0 , y /D = 0 .6 4 ) .
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RUN 1

RUN 2

RUN 4

F ig u r e  5 .9 :  S tr e a k lin e s  f o r  th e  fo u r  ru n s  b e fo re  a n d  a f te r  in se r t in g  a  c o n tr o l

cy lin d er .
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5.5.2 Square Cylinder

Simulations were carried out for a Reynolds number of 100. No experimental data are 
available for comparison.

A control cylinder of height d is introduced behind, and parallel to a larger square 
cylinder of height D (Figure 5.10). The x and y coordinates are measured from the 
centre of the main cylinder with reference to x/D and y/D.

The grid (121x110) and the start-up file described in Section 3.5.2 for a square 
cylinder at Re=100 were used here. Three arrangements for the positioning of the 
control cylinder were modelled. These are shown in Figure 5.11 to Figure 5.13. Note 
that grid arrangement 1 refers to the no control cylinder case shown in Figure 3.5. 
The ratio (D/d) varied slightly, because of the non-uniformity of the grid. The 
positions of the three cases of control cylinder are shown in Table 5.3.

The simulations were performed with At*=0.01. Time histories of the drag and lift 
coefficients, and their FFT analysis, are shown in Figure 5.14 to Figure 5.17. Figure 
5.18 shows the computed streaklines for the four different positions. The extent of the 
suppression in the fluctuating drag and lift coefficients is defined in terms of the 
parameters CDr and CLr-

The predicted results are presented in Table 5.3 and Table 5.4. From Table 5.3 it is 
clear that RUN 2 gives the optimum suppression of vortex shedding. In this RUN, the 
control cylinder is placed approximately one main cylinder height above and behind 
the main cylinder. The main parameters, CD, CDr, CLr are at their lowest. The

fluctuating drag is almost zero, as can be seen from Table 5.3 and the drag time 
history in Figure 5.15. This extent of vortex suppression is also clear from the power 
spectrum of the drag; there is no distinct shedding frequency, and the amplitude is 
drastically reduced. The mean lift is finite, but its fluctuations are considerably smaller 
than was the case for RUN 1. The streaklines for RUN 2 (Figure 5.18) show no sign 
of vortex shedding, except well downstream of the cylinder.

When the control cylinder is brought closer to the main cylinder (RUN 3), the mean 
drag increases slightly (Table 5.3), but the fluctuations are increased four fold. The 
mean lift is negative in this case, which means that there is a mean force in the 
downward direction. The lift fluctuations are also increased. The power spectra show
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distinct vortex shedding frequencies at lower values than RUN 1. The streaklines for 
this case show a fully established vortex shedding field (Figure 5.9).

The conditions of RUN 4 are such that the vortex shedding is enhanced relative to the 
previous runs. The control cylinder is placed just downstream of the centre of the 
main cylinder and 0.8D above it. Table 5.3 shows that the mean drag is increased and 
its fluctuation is enhanced six times relative to the no control cylinder case. The mean 
lift is increased considerably in the negative direction, while its fluctuations are also 
higher. The power spectra show a shift in the shedding frequency and thus a 
considerable increase in Strouhal number. The streaklines (Figure 5.9) show that with 
this arrangement, the vortex street is widened.

Figure 5.19 to Figure 5.22 show velocity vectors for RUNs 1-4 at the instant of 
maximum lift. They show that for RUN 2 there are two standing vortices behind the 
cylinder. RUN 3 shows alternating vortices packed near the rear of the cylinder, and 
RUN 4 shows that the control cylinder acts as an extension to the main cylinder and 
thus vortices are shed behind the two as one. This explains the observed widening of 
the vortex street.

By far the most successful arrangement for suppressing vortex shedding is RUN 2 
where the centre of the control cylinder is placed at x/D=1.02 and y/D=0.95 with 
D/d=7.14. For this run, the position of the control cylinder is inside the separated 
shear layer (position of the maximum velocity in the field around the cylinder). For the 
other arrangements studied, the vortex shedding was actually enhanced in some ways 
(mean, and fluctuating drag and lift, and Strouhal number). When the control cylinder 
is placed outside the boundary (RUN 3) of the shear layer and on its border (RUN 4), 
vortex shedding is enhanced.
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RUN D/d x/D y/D c D c D c Dr c L c L c Lr

1 - - - 1.476 4.19x10‘3 1.000 6.41xl0‘3 0.171 1.00
2 7.14 1.02 0.95 1.302 1.15xl0"4 0.027 2.85xlO'2 5.27xl0‘4 3x1 O'3
3 5.5 0.59 1.21 1.480 1.67x102 3.978 -0.178 7.70xl0’2 0.451
4 7.3 0.22 0.76 1.778 2.50xl0‘2 5.959 -0.768 0.356 2.082

Table 5.3: Behaviour of the drag and lift coefficients with a control cylinder.

RUN D/d x/D y/D St

l - - - 0.150
2 7.14 1.02 0.95 0.148
3 5.5 0.59 1.21 0.138
4 7.3 0.22 0.76 0.261

Table 5.4: FFT analysis of the drag and lift coefficients with a control cylinder for a
square cylinder in laminar flow.
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Figure 5.10: Schematics of arrangement for control cylinder.

F ig u r e  5 .1 1 :  G r id  a r r a n g e m e n t  (2 ) f o r  a  s q u a re  c y l in d e r  w ith  c o n tr o l  c y lin d e r .
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Figure 5.12: Grid arrangement (3) for a square cylinder with control cylinder.

x=0 x=0.22D

F ig u r e  5 .1 3 :  G r id  a r r a n g e m e n t  (4 )  f o r  a  sq u a re  c y l in d e r  w ith  c o n tr o l  c y lin d er .
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Figure 5.14: Time histories for the drag and lift coefficients for a square cylinder at 
Re=100 with no control cylinder(RUN 1); showing also the power spectra.
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Figure 5.15: Time histories for the drag and lift coefficients for a square cylinder at 
Re=100 with a control cylinder (RUN 2: D/d=7.14, x/D=l .02, y/D=0.95); showing

also the power spectra.
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Figure 5.16: Time histories for the drag and lift coefficients for a square cylinder at 
Re=100 with a control cylinder (RUN 3: D/d=5.5, x/D-0.59, y/D-1.21); showing

also the power spectra.
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Figure 5.17: Time histories for the drag and lift coefficients for a square cylinder at 
Re=100 with a control cylinder (RUN4: D/d=7.3, x/D-0.22, y/D-0.76); showing

also the power spectra.
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RUN 1

RUN 2

RUN 3

________ • ......

RUN 4

Figure 5.18: Streaklines for the four runs before and after inserting a control 
cylinders.
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Figure 5.19: Velocity vectors around a square cylinder at R e -100, with no control. 
(The largest arrow indicates a velocity o f 1.56x10' m/s)

Figure 5.20: Velocity vectors around a square cylinder at Re-100, with control as in
grid arrangement (2).
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Figure 5.21: Velocity vectors around a square cylinder at Re=100, with control as in
grid arrangement (3).

Figure 5.22: Velocity vectors around a square cylinder at Re=100, with control as in
grid arrangement (4).
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5.6 Turbulent Flow Simulations

No further modifications were necessary in order to simulate a control cylinder in 
turbulent flow conditions: the control cylinder was treated in exactly the same way as 
the second cylinder in Chapter Four. Results were obtained for both circular and 
square cylinders.

5.6.1 Circular Cylinder

Sakamoto and Haniu (1994) investigated the suppression of vortex shedding from a 
circular cylinder by controlling the flow around it using a small-diameter control 
cylinder placed near the main cylinder. Their experiments were carried out at a 
Reynolds number of 6.5xl04. The present investigations were performed for the same 
Reynolds number.

In order to make comparisons with the experimental data, the same notation and 
definitions were used. A control cylinder of length (d) is introduced, at an angle (a) 
from the centre plane and at a distance G away from the main cylinder. The main 
cylinder is of diameter (D). Figure 5.23 shows the definition sketch and coordinate 
system. In the experiments of Sakamoto and Haniu (1994), the position of the control 
cylinder was varied in the region of G=0.2-10mm (i.e. G/D=0.004-020). For the 
present purposes, two values of G/D were studied, namely 0.082 and 0.122. These 
correspond to values of G = 4 and 6mm respectively.
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In the experiments, the diameter of the main cylinder was D=49mm and that of the 
control cylinder was d=3mm, i.e. D/d=17. In the predictions, due to the limitations of 
the grid-generation code, D/d was not constant. Two values were selected: 0.06 and 
0.09. In the experiments, the angle between the main cylinder and control cylinder 
was in the range a=0°-180°. Three values of angles of a  were computed, namely: 60° 
, 90°, and 120°. Six grids were created in total to model the control cylinder. The 
whole grid, and close up of the main cylinder is shown in Figure 5.24. Figure 5.25 (a) 
to (f) show close ups of the main cylinder and the six control cylinder configurations. 
The grid used consisted of 195x98 nodes.
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Figure 5.25: Grid arrangements for the runs with control cylinder.
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The modified k-£ model and the SMART scheme were used, with At*=0.001. These 
are the same condition as in Section 3.7.2. The present predictions of the main 
parameters are presented in Table 5.5.

The time histories of the drag and lift coefficients and their power spectra, with and 
without a control cylinder, are shown in Figure 5.26-Figure 5.31. The figures and the 
table show that the minimum values of CD are obtained when the control cylinder is 
positioned at oc=60° and a=120° (i.e. RUNs 2,4,5, and 7) . The value of CL takes a 
maximum value when CD is at its lowest. This occurs at oc=60° for RUN 2 and at a  
= 120° for RUN 4. At a=60°, the separation point is moved downstream due to the 
accelerated flow in the gap between the main cylinder and the control. At a=120°, the 
reattached shear layer on the main cylinder remains attached until near the rear 
stagnation point. As a result, a large hit force is generated, because the pressure on 
the upper surface is considerably lower than that on the lower surface.

It can be seen from Table 5.5 that maximum reduction of fluctuating drag is achieved 
for RUN 2, where CDl=0.245 and RUN 4, where CDr=0.692. At other positions the 
fluctuating drag remains the same as for an isolated cylinder. The fluctuating lift is 
reduced for all positions, but mostly for RUN 2, where CLr=0.087. When the control 
cylinder is placed at the locations for RUNs 2 and 4, it is possible to suppress the 
vortex shedding completely. This is evident from the disappearance of the peaks in the 
power spectra and the reduction of the Strouhal number to 0.004 and 0.007 
respectively.

Figure 5.33 (a) and (b) show the predicted distributions of the time averaged surface 
pressure coefficient (Cp) for the main cylinder, for different positions of the control 
cylinder. It can be seen from both figures that when a=60°, the separation point is 
displaced downstream, from around 120° where it occurs for the isolated cylinder. 
This confirms the supposition of Sakamoto and Haniu (1994) that the mechanism of 
flow control is associated with the displacement of the separation point.

Sakamoto and Haniu (1994) identified four regions for placing the control cylinder. 
Region I, where 0°<a<70°, is when the mean drag decreases. Region II, where 70°<oc 
<110°, is when the mean drag increases. Region III, where 110°<a<135°, is when the 
mean drag decreases again and region IV, where 135°<a<180°, is when the mean 
drag does not vary. The present predictions were carried out in the first three regions, 
as region IV seems not to affect the flow conditions.
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Figure 5.34 shows the predicted and measured values of mean drag for the two values 
of G/d. As explained in section 3.7.2, the present predictions underestimate the value 
of mean drag for the single isolated cylinder, therefore the predictions of the case 
where a control cylinder is present are also on the low side. However, the predictions 
for each region exhibit similar trends as the experimental data. In region I, the 
effectiveness of the control cylinder is attributed to the control of the boundary layer 
on the main cylinder. In regions II and III, the effectiveness of the control cylinder is 
attributed to the control of the free shear layer. Maximum suppression of mean drag is 
achieved in region I, at a=60°.

In region II , mean drag increases compared with the region I. This is due to the fact 
that the shear layer is forced to bend by the control cylinder. The rolling up of the 
shear layer is intensified and the base pressure increases, as shown in Figure 5.33 (a) 
and (b).

In region III, the shear layer which separated earlier is forcibly reattached and remains 
so until near the rear stagnation point. The base pressure is then decreased relative to 
the isolated cylinder, as shown in Figure 5.33 (a) and (b).

Figure 5.35 shows the computed streaklines for an isolated circular cylinder at 
Re=6.5xl04. Figure 5.36 and Figure 5.37 show computed streaklines for the control 
cylinder cases discussed above. For RUN 2 (Figure 5.36(a)), the separation point is 
moved downstream and a complete breakdown of vortex shedding patterns is evident. 
For RUN 3 (Figure 5.36(b)), vortex shedding is restored. For RUN 4 (Figure 
5.36(c)), an unstable flow pattern is produced with a major reduction in all the 
coefficients. Figure 5.37 (a) to (c) show similar patterns, but since the control cylinder 
is placed further away from the main cylinder (i.e. G/D=0.122), the effects are less 
pronounced as before.
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Grid G/D a CD c D C o r C l c L cLr St

Experiments of Sakamoto and Haniu (1994) 
(no control cylinder)

- - - 1.240 0.120 - 0 0.460 - -

Present Predictions

1 - - 1.025 0.139 1.000 -0.006 0.995 1.000 0.292

2 0.082 CT\ O 0 0.600 0.034 0.245 0.331 0.087 0.087 0.007

3 0.082 90° 0.948 0.142 1.022 -0.022 0.456 0.458 0.195

4 0.082 120° 0.874 0.096 0.691 0.321 0.443 0.445 0.004

5 0.122 60° 0.771 0.150 1.079 0.006 0.544 0.557 0.220

6 0.122

0OON 1.014 0.152 1.094 0.280 0.480 0.482 0.147

7 0.122 120° 0.757 0.154 1.108 0.211 0.470 0.472 0.147

Table 5.5: Results for the circular cylinder with control cylinder at Re=6.5xl04.

f

Figure 5.26: Drag and lift time histories and power spectra for RUN 1 
(the case with no control cylinder).
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Figure 5.27: Drag and lift time histories and power spectra for RUN 2 
(G/D=0.082, D/d=17, a=60c).

f

f
Figure 5.28: Drag and lift time histories and power spectra for RUN 3 

(G/D-0.082, D/d-17, a=90c).
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Figure 5.29: Drag and lift time histories and power spectra for RUN 4 
(G/D=0.082, D/d=17, oc=120c).

Figure 5.30: Drag and lift time histories and power spectra for RUN 5 
(G/D=0.122, D/d=ll, a=60c).
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Figure 5.31: Drag and lift time histories and power spectra for RUN 6 
(G/D=0.122, D /d -ll, a=90c).
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Figure 5.32:Drag and lift time histories and power spectra for RUN 7 

(G/D-0.122, D/d=l 1, a=120c).
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a)

b)

No Control 
oî= 60° 
oi=90° 
a=120°

Figure 5.33: Predicted distribution of the time averaged pressure coefficient (Cp)for
a) G/D=0.082 and b) G/D=0.122
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Figure 5.34: Distribution of mean Cd for different positions of the control cylinder, 
showing comparisons between the results of Sakamoto and Haniu (1994) and the

present predictions.

Figure 5.35: Streaklines with no control cylinder (RUN 1).
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F ig u r e  5 .3 6 :  S tr e a k lin e s  w ith  c o n tr o l  c y l in d e r  f o r  a ) R U N  2 ( G /D - 0 .0 8 2 ,  D /d = 1 7 , a

= 6 0 c); h )  R U N  3 (G /D = 0 .0 8 2 , D /d = 1 7 , a = 9 0 c) a n d  c) R U N  4  (G /D = 0 .0 8 2 ,

D /d = 1 7 , a = 1 2 0 c).
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Figure 5.37: Streaklines with control cylinder for a) RUN 5 (G/D=0.122, D/d= 11, a  
=60c); h) RUN 6 (G/D=0.122, a/d=0.09, a=90c) and c) RUN 7 (G/D=0.122,

D/d-11, a=120c).

153



5.6.2 Square Cylinder

Sakamoto, Tan and Haniu (1991) obtained experimental data on the suppression of 
vortex shedding from a square cylinder by means of a small circular control cylinder at 
Re=4.2xl04. The present investigations were carried out for the same Reynolds 
number.

A control cylinder of height (d) is introduced, above and parallel to a square cylinder 
of height W (see Figure 5.38). The position of the control cylinder is fixed via the 
ratios SAV and TAV, where S is the streamwise distance from the upstream corner 
and T is the lateral distance from the top side. The coordinates are measured from the 
top left hand corner of the main cylinder. In the experiments of Sakamoto, Tan and 
Haniu (1991), a circular control cylinder was used, but in the present simulations a 
square obstacle is used, due to the limitations in the grid-generation method.

The same grid (136x118) described in section 3.5.2 and used to model an isolated 
square cylinder, was used here. The modified k-e model, with the SMART scheme 
was used, with a At* of 0.007. Table 5.6 compares the predicted values of the main 
parameters compared with the ones obtained experimentally by Sakamoto, Tan and 
Haniu (1991) at Re=4.2xl04, without a control cylinder. The results show a good 
comparison for mean drag and Strouhal numbers. The values of rms drag and lift 
however are overestimated in the predictions.

+ s

0

Control cylinder 
height d

U

Vortex shedding cylinder 
height W

Figure 5.38: Definition sketch and coordinate system.
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The ratio of main cylinder to control cylinder heights (W/d) was not kept constant, 
but varied in the range 7-17 depending on the many position where the control 
cylinder was placed in order to arrive at optimum suppression. In the experiments, the 
ratio of W/d ranged between 7 and 14. Twenty nine different positions were explored 
along the top side of the cylinder to determine the optimum position for the control 
cylinder to suppress vortex shedding.

The main effect of a control cylinder on the main cylinder is that it reduces the fluid 
forces acting on the latter by controlling the separated shear layer from it. It is 
therefore necessary to identify the position of this layer. Two experimental methods 
exist for locating it. Fage and Johansen (1927) defined the position of the outer and 
inner boundaries of this layer as the points where the time-averaged velocity becomes 
greatest and least, respectively. Sasaki and Kiya (1984) measured the turbulence 
intensity in the shear layer and indicated that a position with the greatest turbulence 
intensity is the approximate centre of the shear layer.

Figure 5.39 shows the position of the maximum time-averaged velocity as predicted in 
the absence of a control cylinder. The figure also shows (open circles) the positions 
where a control cylinder was placed. Generally the fluid forces on the body are 
dependent on the characteristics of the outer boundary of the shear layer, where the 
maximum velocity occurs, rather than at the centre of the shear layer, where the 
turbulence intensity is largest (Bearman and Trueman, 1972).

Table 5.7 shows the results obtained for all twenty nine control cylinder positions 
modelled. It is evident that the position of the control cylinder suppressing most of the 
fluid forces coincides with the outer boundary of the shear layer representing 
maximum velocity. RUNs 3, 6, 9, 13, 17, 23, and 27 are positioned nearest to the 
outer boundary of the shear layer along each segment of S/W. It can be seen that the 
mean and fluctuating drag and fluctuating lift are most suppressed for these RUNs. 
Mean lift however is negative for most of these RUNs. The Strouhal number is also 
increased for these RUNs. This is because the growth of the shear layer is prevented, 
so that the rolling up of the shear layer weakens. This leads to a decrease in the width 
of the wake, and thus an increase in the Strouhal number. The reverse occurs when 
the control cylinder is placed outside the shear layer. Then the width of the wake 
increases because the rolling-up of the shear layer is intensified, so that the Strouhal 
number decreases.

Thus it is considered most effective to set the control cylinder near the outer boundary 
of the shear layer as shown. This is in complete accord with the results of Sakamato
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Tan and Haniu (1991), who also found it more effective to place the control cylinder 
near the outer boundary of the shear layer, for suppressing the fluid forces.

Figure 5.40(a) shows the predicted mean drag on the main cylinder as a function of 
S/W. The control cylinder was moved along the line of maximum velocity (i.e. the 
outer boundary of the shear layer). The experimental results of Sakamato Tan and 
Haniu (1991) are shown in Figure 5.40(b), for various values of control cylinder 
diameter. The value of mean drag is decreased as S/W increases beyond the leading 
edge, perhaps due to the transition between laminar and turbulence. When the control 
cylinder is placed inside the trailing edge, where the shear layer is supposed to start 
the rolling-up into the vortex formation region, mean drag is reduced. However, as 
the distance S/W increases beyond 1 (ie the trailing edge of the cylinder), the drag 
reduction is not so remarkable.

Figure 5.41 and Figure 5.42 show the rms drag and lift of the main cylinder, as a 
function of S/W. Again, the control cylinder was moved along the line of maximum 
velocity. In the predictions, the values of CD, and CLare overestimated, but the

predicted trends are similar to that observed in the experiments. Again maximum 
reduction in CD and CL occur when the control cylinder is placed inside the two

edges of the main cylinder. Figure 5.43 and Figure 5.44 show the time histories for 
the drag and lift coefficient and the power spectra without and with a control cylinder 
respectively. In the latter case, the control cylinder is placed near the leading edge of 
the main cylinder along the outer boundary of the shear layer (RUN 6). This is the 
position that produced the most suppression in the mean drag and rms drag and lift.

CD c D c L St

Present predictions 2.373 0.324 1.526 0.139

Sakamoto, Tan and Haniu (1991) 2.300 0.168 1.120 0.128

Table 5.6: Predictions and experimental values of the main parameters for a square
cylinder at Re=4.2xl04.
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Figure 5.39: Position of maximum velocity along the cylinder, and positions of 
control cylinder modelled, highlighting the optimum positions.

RUN S/W T/W CD CD Cor CL c L c Lr St
i 0.100 0.535 2.310 0.480 1.481 - 0.300 0.678 0.444 0.128
2 0.100 0.330 2.300 0.450 1.389 - 0.203 0.750 0.491 0.130
3 0.100 0.177 2.210 0.300 0.926 - 0.105 1.310 0.858 0.140
4 0.282 0.535 2.295 0.470 1.451 - 0.295 0.667 0.437 0.120
5 0.282 0.330 2.004 0.250 0.772 - 0.110 0.504 0.330 0.130
6 0.282 0.280 1.859 0.167 0.515 0.017 0.560 0.367 0.150
7 0.282 0.177 2.562 0.329 1.015 - 0.422 1.445 0.947 0.130
8 0.500 0.535 2.292 0.463 1.429 - 0.354 0.664 0.435 0.122
9 0.500 0.330 2.128 0.232 0.716 - 0.210 0.849 0.556 0.140
10 0.500 0.177 2.598 0.275 0.849 - 0.394 1.590 1.042 0.122
11 0.648 0.535 2.232 0.434 1.340 - 0.430 0.570 0.374 0.122
12 0.648 0.392 2.103 0.293 0.904 - 0.142 0.740 0.485 0.138
13 0.648 0.330 2.103 0.243 0.750 - 0.262 0.948 0.621 0.140
14 0.648 0.177 2.554 0.259 0.800 - 0.355 1.553 1.018 0.134
15 0.817 0.535 2.087 0.414 1.278 - 0.157 0.470 0.308 0.122
16 0.817 0.392 2.232 0.264 0.815 - 0.200 1.108 0.726 0.140
17 0.817 0.330 2.087 0.252 0.778 - 0.134 0.819 0.537 0.145
18 0.817 0.177 2.483 0.272 0.840 - 0.255 1.426 0.934 0.128
19 0.911 0.535 2.283 0.361 1.114 0.063 0.502 0.329 0.128
20 0.911 0.330 2.171 0.249 0.769 0.403 1.113 0.729 0.130
21 0.911 0.177 2.457 0.288 0.889 - 0.319 1.349 0.884 0.128
22 1.000 0.535 1.995 0.322 0.994 - 0.236 0.670 0.439 0.122
23 1.000 0.390 1.876 0.184 0.568 0.063 0.589 0.386 0.140
24 1.000 0.330 2.576 0.280 0.865 - 0.105 1.059 0.694 0.122
25 1.100 0.535 2.036 0.307 0.948 - 0.105 0.624 0.409 0.115
26 1.221 0.535 2.122 0.462 1.426 - 0.126 0.793 0.520 0.122
27 1.221 0.390 2.022 0.303 0.935 - 0.120 1.206 0.790 0.135

28 1.221 0.330 2.092 0.343 1.059 - 0.040 1.243 0.815 0.128
29 1.221 0.177 2.233 0.346 1.068 0.004 1.343 0.880 0.130

Table 5.7: Behaviour of drag, lift and Strouhal number with a control cylinder.
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Figure 5.40: a) Predicted and b) Experimental* values of minimum mean drag along 
SAV at the point of maximum velocity.

N o C on tro l CD= 0 .3 2 4

Figure 5.41: a) Predicted and b) Experimental values of minimum fluctuating drag 
along SAV at the point of maximum velocity.

at the point of maximum velocity.

Experimental results presented are from Sakamoto, Tan and Haniu (1991)
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Figure 5.43: Time histories for the drag and lift coefficients for a square cylinder at 
Re=4.2xl04 with no control cylinder; showing also the power spectra.

Figure 5.44: Time histories for the drag and lift coefficients for a square cylinder at 
Re=4.2xl04 with control cylinder at SAV=0.282, T/W-0.280 (RUN 6); showing also

the power spectra.
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Interference with the separated shear layer can cause different flow patterns, 
depending on the position of the control cylinder. Figure 5.45 shows the computed 
streaklines for the case with no control. Figure 5.46 (a) to (c) show the streaklines 
around the main cylinder for different positions of the control cylinder. When the 
control cylinder is placed inside the separated shear layer Figure 5.46(a), it is seen to 
exert no influence on the behaviour of the main cylinder (RUN 10).

Figure 5.46(b) shows the case of maximum suppression (RUN 6). This is when the 
control cylinder is placed inside the leading edge, on the outer boundary of the shear 
layer. The rolling up of the shear layer is forced downwards, so that the width of the 
wake becomes narrower. Figure 5.46(c) shows the case when the shear layer is 
forcibly bent by the control cylinder when it is placed outside the boundary of the 
shear layer (RUN 22). In this case the strength of the rolling up of the shear layer is 
intensified.

Figure 5.45: Streaklines around a square cylinder at Re-4.2xl0 .
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a)

Figure 5.46: Streaklines around a square cylinder at Re—4.2x10 a) without control 
cylinder, and with control cylinder at b) SAV=0.5 TAV=0.177 (RUN 10); c) 
SAV=0.282, T/W=0.280 (RUN 6); and d) SAV=1.0, TAV=0.535 (RUN 22).
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5.7 Conclusions

The results in this Chapter have demonstrated that for the first time, it is possible to 
capture the effects of suppression of vortex shedding from square and circular 
cylinders, in both laminar and turbulent regimes, by using a control cylinder placed in 
the vicinity of the main one.

A circular cylinder in laminar flow was simulated at Re=100, to compare to the 
experimental and numerical results of Strykowski & Sreenivasan (1990) and Lin & 
Wu (1994). It was shown that complete suppression is achieved when a control 
cylinder of size D/d=4.12 is placed at x/D=l and y/D=0.92. Fluctuating drag and lift 
coefficients were reduced to 0.5% and 0.1% of their original values. There were no 
dominant shedding frequencies in the power spectra, and the streaklines showed no 
sign of vortex shedding. This complies with the results of Strykowski & Sreenivasan 
(1990). The mechanism of suppression is by forcibly reattaching the separated shear 
layer. The simulations of Lin & Wu (1994), carried out at Re=80 did not achieve the 
same extent of suppression as the present study.

There are no previous experimental or numerical results for a square cylinder in 
laminar flow with a control cylinder. The present simulations were carried out at 
Re=100. It was shown that it is possible to suppress vortex shedding almost 
completely when a control cylinder of size D/d=7 is placed above and behind the main 
cylinder (at x/D=1.02 and y/D=0.95). In this case, the fluctuating drag is reduced to 
about 3% of its original value, and fluctuating lift is reduced to 0.3% of its original 
value.

The flow over a circular cylinder at Re=6.5xl04 was investigated experimentally by 
Sakamoto and Haniu (1994). Even though the predictions of single circular cylinder in 
turbulent flow underestimate mean drag and overestimate the rms of the drag and lift 
coefficients, the extent of suppression and its mechanism were satisfactorily 
reproduced when a control cylinder was present. Two types of suppression 
mechanism were found; one arises when the boundary layer along the surface of the 
circular cylinder is controlled. This gives the most suppression. The other arises when 
the separated shear layer is controlled. The fluctuating drag and hit are reduced to 
25% and 9% of their original values respectively. The suppression effect is highly 
visible through the wake pattern, as visualised by streaklines.
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A square cylinder at Re=4.2xl04 was investigated experimentally by Sakamoto Tan 
and Haniu (1991). The present simulations, carried out with the modified k-e model, 
confirmed that the best position for the control cylinder is on the outer boundary of 
the shear layer, and inside the leading edge. Vortex shedding was not completely 
suppressed in turbulent flow, as shown by the streaklines in the flow field. Along the 
shear layer, the fluctuating drag and lift coefficients dropped by 50% and 36% of their 
original values respectively.
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CHAPTER SIX: EXPERIMENTATIONS ON 
SUPPRESSION BY FORWARD INJECTION

6.1 Introductory Remarks

The possibility of suppressing vortex-induced vibrations by the injection of fluid into 
the approach stream was postulated by Dr B.A.Younis who suspected its existence 
from flow visualisations. A number of preliminary experiments were carried out 
(Razavi, 1992 and Younis & Razavi, 1996), and are extended in the present study.

The experimental set-up is described in Section 6.2. A number of parameters were 
varied, such as the number of holes, their diameter, and the distance between their 
centres, in order to find the geometric arrangement yielding optimum suppression. A 
data reduction method was devised to minimise the number of experiments. This is 
explained in Section 6.3. The results are presented in Section 6.4. A number of tests 
were carried out in order to maximise the effect and quantify it. The penetration 
length of the injected fluid was also examined, as was the sensitivity of the 
suppression to yaw.

6.2 Experimental Set-up

Figure 6.1 illustrates the experimental set-up. A picture of the laboratories and the 
set-up is shown in Figure 6.2. All the experiments were carried out using copper 
cylinders, 1.3m long with an outer diameter of 12mm. The cylinders were placed in a 
16m long water channel at a distance of 5.7m from the inlet. The immersion depth 
was set to 0.32m. The flow rates in the channel were in the range 18-85 litres per 
second as measured via the pressure drop along the channel. The bottoms of the 
cylinders were capped, and holes were drilled on the cylinders’ side facing the 
incoming flow. Two accelerometers were placed on a perspex mounting, and screwed 
onto the cylinder at a height of 0.5m from the base. This was done in order to 
determine the in-line and transverse accelerations of the cylinder. In order to record 
vibrations caused by vortex shedding, the accelerometers were connected to an 
amplifier, which was then connected via an analogue-digital converter to a computer. 
The cylinder was then rigidly clamped at lm height from the base to a stand, thus 
creating a cantilever. A hosepipe was connected to the top of the cylinder to inject
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water into the cylinder and out of the holes into the free stream. The maximum 
injection flow rate possible was 0.229 i  /s.

A data analysis method was also devised. Vibrations from the cylinder caused the 
accelerometers to register two signals, which were picked up by the amplifier. 
Through the A/D converter, these signals were then converted to voltage readings, 
which were stored on a computer. The data file thus created was then analysed using 
a FORTRAN program, to determine the root mean square and the power spectrum of 
each signal.

Since there are many variables involved in describing the extent of suppression, 
dimensional analysis was used to group the variables and reduced the number of 
experiments necessary to quantify their effect. The following non-dimensional 
groupings were considered as relevant:

a) Reynolds number:
As was shown earlier, vortex shedding from a smooth circular cylinder in steady flow 
is a function of Reynolds number. The flow parameters (e.g. drag, lift, and Strouhal 
number) are dependent on the Reynolds number (see Chapters 1 and 3). Reynolds 
number is also used to quantify the approach flow. The average velocity in the 
channel was deduced from the flow rate in the channel, which in turn was measured 
by pressure tappings in the channel bed.

b) Strouhal number:
The Strouhal number is an appropriate combination of flow and geometry parameters 
to render the vortex shedding frequency dimensionless (see Chapters 1 and 3).

c) Geometry number (GO:
This number was introduced to scale the hole diameter:

where dhoie is the diameter of drilled holes and D is the cylinder diameter.

d) Geometry number (G2):
This number was introduced to scale the spacing between holes:

h,._„
G2 =

L
where hc.c is the distance from centre to centre, and L is the immersion depth.

( 6 .2)
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In order to establish the optimum criterion for suppression, the values of G| and G2 
had to be varied with respect to a range of Reynolds numbers. The outcome of this 
exercise fixes the optimum geometry and allows further experiments to be carried out 
in order to understand the relationship between Strouhal number and Reynolds 
number.

Figure 6.1: The experimental set-up.

Figure 6.2: Picture of the laboratory and experimental set-up.
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6.3 Data Reduction

A method to quantify the extent of reduction in the vortex-induced vibrations is 
needed. Comparisons between the root mean square (rms) of the voltage signal from 
the accelerometer before and after the injection provides a reliable measure of the 
relative reduction. This is quantified by a new parameter (Vr) defined as:

rms after injection
Vr = Change in rms voltage = ----- -— ---—— :—  (6.3)

rms before injection

Obviously, any value of Vr above unity would mean an enhancement of the vibration; 
a value below unity would imply suppression of vortex-induced vibrations.

The objective was to find the smallest value Vr (i.e. the greatest suppression) for a 
large range of Reynolds numbers for a particular combination of G, and G2.

It was not deemed necessary to calibrate the accelerometers in order to obtain 
absolute values of the accelerations, since it is more important to assess the change in 
the strength of the vortex shedding associated with the fluid injection, rather than its 
absolute value. In addition, the equipment to calibrate the accelerometers was not 
readily available. Power spectra and Strouhal number analysis can still be carried out, 
as the frequency does not change with calibration.

The level of accuracy attainable with this data reduction method depends on the 
length of the sampling period and the sampling rate. This is especially the case when a 
clear power spectrum is required. These parameters were experimentally optimised at 
15 seconds of sampling, with 15000 sampling points; i.e. data was collected at a 
sampling rate of 1000/s. Every data file contained seven seconds of pre-injection 
signal and seven seconds after injection, i.e. 7000 data points for each stage, with a 
one second interval in between to allow the effects of the injection to settle.
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6.4 Results

6.4.1 Parametric Study

The parametric study experiments were split into four stages. They are explained in 
Table 6.1. The first stage was to determine the optimum number of holes. 
Experiments were thus carried out with the number of holes varied in the range 1-13. 
This corresponds to 0.0006 < G2 < 0.381). All of the holes were at 10mm apart, with 
a diameter of 2mm. This gives G|=0.167. The results for Stage 1 are shown in Figure
6.3 (a) and (b), for the in-line and transverse directions respectively. The results for 1 
and 3 holes are not shown since these produced excessive enhancement of rms 
voltage. In some cases, Vr attained a value of 23. The results in Figure 6.3 show that 
suppression is obtained in the in-line direction, except for the Reynolds number range 
of 5000 to 6500, where V, is dramatically enhanced. For the transverse direction, 
there is an increase of V, up to Reynolds number of 3500, followed by suppression. 
The maximum suppression was achieved at Re=9300, with Vr=0.248 for the in-line 
vibrations and V,=0.267 for transverse vibrations.

Stage 2 of the experiments involved experiments on a holes of 3mm diameter (i.e. 
Gi=0.25). The distance between the holes was again kept at 10 mm again. The 
number of holes were set at 7 and 13. This gives G2=0.197 and 0.384. The results for 
a range of Reynolds numbers are shown in Figure 6.4 (a) and (b) for the in-line and 
the transverse directions. The change in Vrgoes through several stages, depending on 
the Reynolds number. At low Reynolds numbers up to Re=4000, there is strong 
suppression in the in-line direction but enhancement in the transverse direction. At 
Reynolds numbers in the range 5000-7000, Vr in the in-line direction is enhanced, 
while transverse vibrations are suppressed. For Reynolds numbers of around 7000 
both the in-line and the transverse Vr are reduced to about the same level (Vr=0.3). 
The vibrations are then seen to increase with further increase in Reynolds number.

Stage 3 of the experiments was based on Stage 2, but with an increase in hole 
diameters to 4mm (i.e. G,=0.333). The distance between the holes was kept at 10mm, 
again with 7 and 13 holes. This gives G2=0.2 and 0.388. The results for a range of 
Reynolds numbers are shown in Figure 6.5 (a) and (b) for in-line and transverse 
directions. The variation of Vr with Reynolds number is very similar to that seen for 
Stage 2, with the values of Vr being shifted upwards.
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Stage Diameter of No. of holes Distance between G, g 2
holes (mm) holes (mm)

2 1 - 0.167 0.0006

1 2 3 10 0.167 0.069
2 7 10 0.167 0.194
2 13 10 0.167 0.381

2 3 7 10 0.25 0.197
3 13 10 0.25 0.384

3 4 7 10 0.333 0.2
4 13 10 0.333 0.388

4 3 13 20 0.25 0.759
4 7 20 0.333 0.388

Table 6.1: Experiments performed.

The tests of Stage 4 were conducted in order to experiment further with the effects of 
the distance between the holes. The combinations of G| and G2 that produced the best 
results for Stages 2 and 3 were chosen, and the distance between the holes increased 
to 20mm. Two cylinders were used, one with 3mm diameter holes (with 13 holes, and 
20mm apart i.e. G,=0.25 and G2=0.759), and another with 4mm diameter holes (with 
7 holes, and 20mm apart i.e. Gi=0.333 and G2=0.388. The results for a range of 
Reynolds numbers are shown in Figure 6.6 (a) and (b) for the in-line and transverse 
directions. The results show the same pattern as for Stages 2 and 3.

A decision had to be made as to which geometry combinations gave the best 
suppression results. The 2mm diameter combinations were not satisfactory at all, as 
they enhanced Vr drastically in most cases. They were thus discarded. The remaining 
combinations were plotted on the same figure, in the in-line and transverse directions 
(see Figure 6.7 (a) and (b)). The lines on the graph are smoothed curves obtained by 
polynomial regression analysis of the third order. They show distinct behaviour for the 
in-line and transverse directions. The following combination was chosen as the one 
which maximises the effect over a wide range of Reynolds numbers:

Hole Diameter Number of Holes Distance Between Holes G, g 2

3 mm 13 10 mm 0.250 0.384

Table 6.2: Optimum geometry for vortex suppression by forward injection.
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a) In-line

7H  3m m D  lOmmA 13H  3 n m D  lOmmA
----------7 H  4m m D  lOmmA 13H 4m m D  lOmmA

13H  3 irm D  20rrm A ---------7H  4m m D  2 0 m n A

b) Transverse

7H  3m m D lOmmA —  13H  3m m D lOmmA
---------- 7H  4m m D  lOmmA 13H 4m m D  lOmmA

13H  3m m D  20mmA --------- 7 H  4m m D  20m m A

Figure 6.7: a) In-line b) transverse direction analysis o f sensitivity o f vortex 
shedding suppression to geometry.
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6.4.3 Strouhal Number Analysis

The vortex shedding frequency (f,) for the in-line and transverse vibrations is 
determined by analysing the signals from their respective accelerometers. This is done 
with a standard Fast Fourier Transform (FFT) routine. The frequency f s is deemed to 
be the frequency corresponding to the greatest amplitude. The Strouhal number is 
quoted in terms of the dominant frequency in the transverse direction (i.e. in the hit 
direction).

Figure 6.10 (a) and (b) show the FFT results for the in-line and transverse signals 
before injection in for Re=7517. Figure 6.10 (c) and (d) show the FFT results for the 
same Reynolds number after injection. Note that this is the case where in-line 
vibrations were reduced to 0.278 of their original level, and transverse vibrations were 
reduced to 0.349 of their original level.

With no injection and for values of Re < 3000, no dominant shedding frequency can 
be discerned. The amplitude of vibrations is so low that high frequencies in the 
spectrum become dominant. For Re > 3000, the frequency of the in-line vibrations is 
double that for the transverse vibrations, as shown in Figure 6.11. This is the 
‘frequency doubling’ phenomenon that has been mentioned earlier with respect to the 
predictions.

Figure 6.12 shows the Strouhal number variation for the range 3000 < Re < 9500. 
The results are in good agreement with previous experimental results compiled by 
Lienhard (1966), which shows that Strouhal number decreases from 0.206 to 0.187 in 
the range 3000 < Re < 10000.

There is no coherent vortex shedding frequency after injection. The FFT analysis 
show that the signals become chaotic with dominant frequencies either appearing in 
the high end of the spectrum or at around 7 Hz which is the natural frequency of the 
cylinder. One reason for the chaotic nature of the signal is that the vibrations caused 
by the flow of the injected fluid through the cylinder itself are not negligible. Tests in a 
stagnant channel with maximum injection from the cylinder showed a signal with rms 
value of 0.022 in the in-line and 0.037 in the transverse, with an in-line frequency of 
7.617 Hz and transverse frequency of 29 Hz.
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6.4.4 Penetration Length

A small quantity of dye was introduced into the injected fluid in order to visualise the 
extent to which the injected fluid penetrates into the incoming flow. Figure 6.13 
shows a still photograph of this test. It is clear that the injected fluid envelops the 
cylinder with a penetration length of around 1.5 to 2 times the cylinder diameter. 
Unfortunately, the dye diffuses very quickly after injection with the result that the 
measurements of the penetration length cannot be too accurate.
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6.4.5 Sensitivity To Yaw

The sensitivity of the injection method to yaw (i.e. inclination relative to the incident 
stream) was also investigated. The Reynolds number chosen for this test corresponds 
to that at which maximum suppression was detected (i.e. Re=7517). The cylinder was 
turned on its axis by 10° intervals to 60° from its straight-ahead location. The tests 
were then repeated with the cylinder yawed in 10° intervals in the range 180°-240°. 
(see Figure 6.14). Figure 6.15 (a)-(d) show the effect of the yaw angle (0) on the 
suppression process.

F low

F o rw a rd
In je c tio n

60o

In je c tio n  180°

Figure 6.14: Cylinder orientations in tests for sensitivity to yaw.
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Figure 6.15: Results for sensitivity to yaw.

The results show that maximum suppression is obtained when the injection is placed 
at 60° and 240° to the incoming flow. Injection in the 0°-60° and in the 180°-240° 
ranges give almost similar results, although injection in the latter gives slightly better 
suppression. It was not possible to cover the area between 60° and 90° as the channel 
wall would interfere with the flow.

Back injection at 180° acts in a similar manner to a splitter plate. The suppression 
mechanism is of a completely different nature to that of forward injection.
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6.5 Conclusions

The possibility of suppressing vortex shedding from a circular cylinder by forward 
injection was investigated in this chapter. As there are no previous data on this 
method, experimental test and data analysis methods were devised based on 
dimensionless numbers in order to reduce the number of experiments. Accelerometers 
connected to the cylinder measured accelerations in the in-line and transverse 
directions. The accelerometer voltage output was stored and analysed subsequently. 
The suppression was quantified in terms of the ratio of the root mean square value of 
accelerations before and after injection. The power spectra of the voltage signals were 
also analysed.

By conducting experiments with a variety of geometric parameters, the suppression 
was maximised over the range of Reynolds numbers between 1500 and 10000. The 
geometry giving the best suppression corresponded to a cylinder with 13 holes of 3 
mm diameter, with a centre to centre distance of 10mm (i.e. G|=0.250 and G2=0.384). 
The maximum suppression achieved with this geometry was Vr~0.3 for both in-line 
and transverse directions.

The vibrations were enhanced at low Reynolds numbers (-2000) in the transverse and 
4000 < Re < 6000 in the in-line direction. Both the in-line and transverse vibrations 
were suppressed in the range 6000 < Re < 8000. For Re > 8000 Vr approached unity.

Before injection, the dominant frequencies in the in-line and transverse directions 
showed the classical ‘frequency doubling’ phenomenon associated with an organised 
vortex street. There were no dominant frequencies after injection.

The penetration length of the forward injection was approximated to around 1.5 to 2 
times the cylinder diameter.

The sensitivity of this suppression technique to yaw was investigated. It was shown 
that even stronger suppression was possible when the injection holes were placed at 
60° and 240° relative to the approach flow. It is also of note that injection at 180° 
showed the same level of suppression as forward injection (i.e. at 0°).
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CHAPTER SEVEN: PREDICTION OF 
SUPPRESSION BY FORWARD INJECTION

7.1 Introductory Remarks

A number of techniques have been reported in the literature on the use of a 
‘secondary’ flow in order to suppress the vortex shedding from a bluff body. These 
techniques include:

1) Base Bleed. Wood (1964, 1967) and Bearman (1967) employed base-bleed 
whereby the wake from a two-dimensional body with a blunt trailing edge was 
substantially modified by steady injection of fluid from the base of the body at low 
flow rates.

2) Blowing-Suction. This is a modified form of the base bleed technique. It involves 
the unsteady blowing of fluid and suction through very small, closely spaced holes 
along the base of the cylinder. This technique was introduced by Williams and 
Amato (1989). They showed that it is possible to suppress the near-wake Karman 
vortex formation and reduce the mean momentum deficit.

3) Forward Injection. This method was discussed in Chapter Six. No previous 
research exists on this topic.

4) Rear stagnation jet. This method involves the introduction at the rear of a cylinder 
of a jet with a velocity much greater than that of the incoming flow. Mo and Duke 
(1993) describe its application for a circular cylinder, while Koutmos et al.(1995) 
investigated this technique for a square cylinder. Their main finding was that rear 
stagnation jet forces a symmetrical wake flow pattern, thus eliminating the lift, 
while reducing the pressure on the cylinder surface. This method acts in a similar 
way to a splitter plate behind the cylinder. Present experiments (see Section 6.4.5) 
show that back injection does achieve suppression, but this phenomenon has not 
yet been investigated extensively.

It is not possible to numerically model the base bleed method, as the bleed fluid is 
injected through tiny holes. This would require very fine grids and, consequently, 
extensive computer resources. Blowing and suction is easier to model, but the
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phenomenon is fully three-dimensional, and is thus outside the scope of this work. 
Attention is confined to the last two methods, i.e. forward injection and rear 
stagnation jet.

The possibility of the suppression of vortex shedding by forward injection from a 
circular cylinder was discussed in Chapter Six, where experimental evidence was 
presented. In this chapter, a numerical study of this phenomenon is presented and the 
possible reasons for its occurrence are discussed. Chapter Eight presents the results 
for the rear stagnation jet.

In order to compare the effectiveness of this method to the other suppression methods 
described earlier, it is proposed to simulate a laminar flow (i.e. Re=100) and a fully 
turbulent flow (i.e. Re=6.5xl04). In this way, it would be possible to compare the 
results with the two cylinders in tandem, and the control cylinder.

Certain modifications are necessary to the flow solver code in order to represent fluid 
injection. These modifications are described in Section 7.2. The grid considerations 
are discussed in Section 7.3. Laminar and turbulent flow results are presented in 
Section 7.4 and Section 7.5 respectively. The turbulence level of the injection jet is a 
major factor in the modelling of the injected fluid. The sensitivity of the results to this 
parameter is investigated in Section 7.6.

7.2 Computational Details

Injection from the cylinder means that cells on the cylinder wall which were previously 
treated as a wall, now act as a secondary inlet into the domain. Therefore, the inlet 
and boundary conditions at the cylinder were adapted in order to enable the modelling 
of injection from the front and rear of the cylinder. Below is a summary of the main 
changes.

7.2.1 Boundary Conditions

The initial field values of the variables U, V, k, and 8 are set within the flow solver. 
Injection is first introduced by prescribing a velocity (Uhoi) to the cells just inside the 
obstacle. If forward injection is to be modelled, then Uh0i is assigned a negative value, 
since the injection is in the opposite direction to the incoming velocity (U0) (see 
Figure 7.1a). If a rear stagnation jet is to be modelled then the injection cells have
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positive values of Uhoi (see Figure 7.1b). Note that in both cases the V-component of 
the velocity is set to zero.

Injection introduces excess mass flow rate into the domain. To introduce the injection 
cells, an adjustment has to be made to the array storing cell face mass fluxes through 
the east face so that the ratio of outflow and inflow mass fluxes are balanced.

The coefficients AE and Aw in Equation 2.26 contain contributions from the implicitly 
treated parts of convection and diffusion terms associated with the east and west 
neighbour of the cell just outside the cylinder. Therefore, to remove the boundary 
conditions for forward injection, the AE coefficient of the cell outside the cylinder has 
to be associated with the injection velocity Uhoi and added to the source terms and

S£ when the boundary conditions for the U velocity component and the k and £

values are implemented. The same is done for Aw when a rear stagnation jet is 
modelled, considering that Uh0i is positive.

Similarly, for the V-component of the velocity, AE is recalculated and added to the 
and Sy source terms. Since there is no V-component in the injection velocity, and AE 

is calculated from -Uhoi, AE will become negative. This will cause the V-component of 
the velocity in the cell west of the injection cell to be negative, and therefore wrong. 
Thus the modulus of AE is taken and added to the source terms. Since for forward 
injection, Uhoi is positive, there is no need to take the modulus of Aw, when 
considering the V-component of the velocity.

To account for the k and £ boundary condition, their values are calculated at the 
cylinder wall cells with injection according to the Uhoi velocity in those cells. The 
values of AE (for forward injection) or Aw (for rear stagnation jet) are then calculated 
according to the k and £ values at these cells, and added to the source terms.
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7.2.2 Re-defining the Drag Term

The total drag on a body, often called the profile drag, is made up of two 
contributions, namely the pressure drag and the skin friction drag. The pressure drag 
is calculated from the forces due to the non-uniform pressure distribution on the body. 
The skin friction drag arises from the viscous forces at the surface.

When a secondary flow is introduced, by injection into the approach flow or into the 
wake, a force is applied on the injected fluid in the direction of the secondary flow. By 
applying Newton’s third law, there is an equal reaction force on the cylinder in the 
opposite direction. The results presented in Chapters Seven and Eight take this added 
force into consideration by adding it to the profile drag. The reaction force (Rtj is 
calculated thus:

Rf = niUhol (7.1)

Rf= P Ajnj(Uhol)~

where rh is the secondary mass flow rate and Ainj is the hole area.

In the case of forward injection, Rf is added to the drag force, as the reaction acts in 
the same direction as the profile drag. However, in the case of the rear stagnation jet, 
Ri is subtracted from the profile drag as the reaction acts in the opposite direction to 
the profile drag.
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Figure 7.1: Injection cells on the a) west side of the cylinder for modelling forward 
injection and the b) east side of the cylinder modelling rear stagnation jet.

7.2.3 SIPSOL

Following the adaptations made to the code; further modifications had to be made to 
remove some anomalies in the results. When the program was run with increasing 
injection values, there was a certain bias towards either a non-zero lift coefficient, i.e. 
the lift cycle was not symmetric. This bias grew with increasing Uhoi.

As described in Section 2.7 a system of M equations (M is the total number of control 
volumes) has to be solved for Equation 2.25. To do this, the Strongly Implicit 
Procedure of Stone (1968) (SIPSOL) is used. During the first inner iteration within 
this solver, the sum of absolute values of the initial residuals is stored in an array, 
which is used later to check the convergence of the outer iterations.
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Figure 7.2(a) shows an example of how SIPSOL solves the set of equations for a 
simple grid. The inner iterations scan the field horizontally from the point i=l, j=l (S) 
of the grid sweeping to the East (i= 16, j=l). Then the pointer is set to the West again 
and incremented in the y-direction towards the North (i=l, j=2), and scanning 
eastwards until all residuals are added up when F is reached (i=16, j=6).

This method solves the south side of the obstacle first, thus possibly creating 
asymmetry in the solution. To remedy this problem, several methods were tried out, 
such as solving vertically, or from the east or the west. The method shown in Figure 
7.2(b) was chosen as it produced the best results. This reduced the bias substantially, 
but asymmetry was still present in the flow with very large injection velocities.
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7.3 Grid Generation

The greatest concern when creating grids for modelling injection is that there are 
enough grid nodes near the cylinder, so as to capture the correct behaviour of the 
injected fluid.

Asymmetry in the solutions can also arise if the injection cells coincide with the 
splitting lines (see Figure 7.3). The splitting lines cause a discontinuity in the solution 
domain, but are necessary to model curved obstacles. At first, the angle between the 
centroid of the cylinder and the splitting lines was set to 8°. By increasing this angle to 
18°, it was possible to place the splitting lines outside the column of injection cells on 
the west side of the cylinder and virtually eliminate asymmetry in the flow. Asymmetry 
was still present at very high injection velocities, when the recirculation zone in front 
of the cylinder extended to the splitting lines.

Figure 7.3: Close-up of the region around the cylinder, showing the splitting lines.
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7.4 Laminar Flow

The same grid (148x102) and start-up file for the circular cylinder at Re=100 
described in Section 3.4 (and used to model the control cylinder) was used here. Eight 
cells in the middle of the west wall of the cylinder were selected as the source of the 
secondary flow into the domain. The injection cells cover an area 0.185 the cylinder 
diameter. This is comparable to the experimental results shown in Chapter 6, when the 
ratio of G| (ratio of hole diameter to cylinder diameter) was between 0.167 and 0.25.

Figure 7.4 shows the schematics of the forward injection, where U0 is the incoming 
velocity in the x-direction and Uinj is the injection velocity prescribed. In the flow
solver, Uin¡ is represented by a negative value of Uhoi. The parameter:

U. ■
Ur = - f  (7.2)

^ 0

is introduced and defined as the ratio of the injection velocity to the approach 
velocity.

Two parameters are introduced to measure the extent of suppression. These are the 
ratios of rms drag and lift after injection to before injection:

C
D r c D_no injection

(7.3)

and
CLinj

CL_no injection

(7.4)

Table 7.1 shows the results for Reynolds number of 100 for values of Ur in the range 
1.0-2.0. The simulations are started with a start-up flow field without forward 
injection. The non-dimensionalised time-step At* was set to 0.054, which is the same 
as the single cylinder results of Chapter 3. As Ur was increased, a decrease in At* 
became necessary, as the flow field around the cylinder became more complicated. 
The smallest time-step used at Ur=2.0 was At*=0.034. As before, the SMART scheme 
was used for the simulations.

The results in Table 7.1 compare mean drag, fluctuating drag, fluctuating lift and 
Strouhal number based on the lift cycle. Note that when Ur=0, there is no injection.
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Runs below Ur=1.0 were not analysed, as the injection velocity was not large enough 
to make an impact on the flow behaviour.

Figure 7.5 shows the behaviour of the main parameters, CD, CDr ,C U , and St with

increasing Ur. These results clearly show that the flow experiences three distinct 
phases.

The first phase is for Ur=0.0 to 1.498. In this phase, mean drag is reduced from 1.451 
at Ur=0 to 0.902 at Ur=1.498. The fluctuating drag and lift coefficients are first 
enhanced slightly, up to 1.160 and 1.099 of their respective original values, but then 
reach a minimum at Ur=1.498. The Strouhal number remains essentially constant.

The second phase is for Ur= 1.498 to 1.585. The mean drag is further reduced, but at a 
faster rate. It reaches its minimum value of 0.719, which is half the original mean 
drag. There is a slight rise in fluctuating drag. Fluctuating lift is further reduced (at a 
faster rate) to 0.43 of its original value at Ur= 1.552. The Strouhal number increases in 
this phase, but only slightly, to 0.174.

The third phase is for Ur> 1.585. In this phase, mean drag, and fluctuating drag and lift 
increase dramatically. The mean drag increases towards its original value, although 
not enough runs were made to establish the point where this happens. The fluctuating 
drag shoots up to 10 times its original value, while fluctuating lift achieves 1.571 
times its original value. On the other hand, Strouhal number is decreased to very small 
values, indicating a large phase and small frequencies of vibration.

In order to determine the behaviour of the flow in these three phases, three injection 
velocity ratios are selected for further investigation. These lie within the three phases, 
and are at U,= 1.498, 1.552, and 2.0.
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Figure 7.4: Schematics for forward injection.

RUN u r c D c D CDr c L
C L ,

St

1 0.000 1.451 0.105 1.000 0.161 1.000 0.173

2 1.000 1.179 0.122 1.160 0.177 1.099 0.172

3 1.320 1.119 0.100 0.957 0.168 1.043 0.171

4 1.403 1.069 0.082 0.778 0.157 0.976 0.171

5 1.498 0.902 0.052 0.500 0.117 0.726 0.168

6 1.542 0.768 0.069 0.659 0.069 0.434 0.174

7 1.552 0.758 0.069 0.657 0.069 0.430 0.177

8 1.563 0.744 0.064 0.605 0.072 0.446 0.181

9 1.574 0.719 0.056 0.537 0.077 0.482 0.181

10 1.585 0.786 0.302 2.876 0.123 0.766 0.179

11 1.595 0.681 0.480 4.568 0.118 0.731 0.177

12 1.600 0.778 0.513 4.887 0.134 0.830 0.170

13 1.800 0.971 1.032 9.831 0.253 1.568 0.108

14 2.000 1.140 1.026 9.774 0.253 1.571 0.097

Table 7.1: Results for forward injection, for a circular cylinder at Re=100.
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U r

Figure 7.5: Behaviour of main parameters with Urfor laminar flow with forward
injection.
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Figure 7.7 to Figure 7.10 show the time histories for the drag and lift coefficients and 
their power spectra for the four injection ratios, Ur=0., 1.498, 1.552, and 2.0. The 
patterns of the drag, lift and their spectra do not change much, except for Ur=2.0, 
where the periods of the drag and lift cycles are longer and the drag and lift 
coefficients obtain larger amplitudes. The mean drag is large at this point and is near 
its original value without injection.

Figure 7.11 to Figure 7.14 show the velocity vectors around the cylinder for all the 
values of injection ratio. The largest velocity vector is scaled to the highest injection 
ratio. These figures show that two recirculation zones are formed in front of the 
cylinder, on either side of the injection cells. This means that the stagnation point has 
been moved away from the cylinder, to a position upstream of it. At Ur= 1.498, this 
position is at 0.6 cylinder diameters. It should be mentioned that the penetration 
length measured experimentally (in Section 6.4.4) was 1.5 to 2 cylinder diameters.

At the highest injection ratio investigated (Ur=2.0), these recirculation zones become 
so large that they become unstable. With the lateral movement of the stagnation point, 
they are eventually shed from the front of the cylinder and contribute to a complex 
system of vortices behind the cylinder.

Figure 7.15 (a) to (d) show the streaklines around the cylinder for all the injection 
ratios investigated. The first three figures show that there is no change in the shape 
and dimensions of the vortex street behind the cylinder, although the fluctuating drag 
and hit forces are suppressed to around 0.5 of their original values. The Strouhal 
number however remains constant. Figure 7.15(d) shows the streaklines for Ur=2.0. 
The instability of the recirculation zones in front of the cylinder is evident in this 
figure.

Figure 7.16 and Figure 7.17 show a breakdown of the drag and lift coefficients 
around the cylinder for Ur=0. and Ur= 1.498, when the fluctuating drag reaches its 
minimum value. The figures show five lift cycles for both cases. The cylinder surface 
is split into four quadrants with the drag and lift obtained for each one. These 
quadrants are labelled A to D. The sum of the drag and lift in all the quadrants equals 
the total drag and lift on the cylinder.

195



The drop in mean drag between the two figures is attributed to the two front 
quadrants (A and D). The stagnation point does not act directly on the cylinder 
surface anymore as it has moved upstream. The drag force in these quadrants are as a 
result of the reaction on the cylinder due to the injection force and the recirculation 
zones. However, the fluctuations in drag in the front two quadrants are increased. The 
overall decrease in fluctuations in drag is attributed to the back quadrants (B and C).

The lift cycle does not change significantly in the A and D quadrants while the 
fluctuations in the B and C quadrants are the main cause of the drop in the overall 
fluctuating lift.

Therefore, the main source of suppression in the mean drag is associated with changes 
occurring at the front of the cylinder where the two new recirculation zones are 
located. The suppression in fluctuating drag and lift is due to the weakening of vortex 
shedding behind the cylinder.

Figure 7.18 to Figure 7.21 show contours of vorticity around the cylinder with and 
without forward injection. Vorticity is the measure of rotation of fluid particles and is 
measured at any point in the fluid by:

au av
dy dx

(7.4)

This definition implies that positive vorticity represents the rate of rotation in a 
clockwise direction and negative vorticity represents rotation in an anti-clockwise 
direction. The contours have been scaled and colour coded to represent values of -1 
to 1 for all the figures. Black represents no rotation. The contours were calculated at 
the same point of the lift cycle for all the figures, when the lift is zero.

Vorticity is generated where the flowing fluid meets a solid surface. The boundary 
layer on the cylinder is thus the source of the vorticity which is convected 
downstream in the wake. The way in which the vortical fluid leaves the surface is of 
great importance for it determines the flow over the back of the cylinder and thus the 
drag on the cylinder. Retarded by surface friction, the fluid of the boundary layer is 
ultimately unable to advance along the surface against the rising pressure over the 
back of the cylinder. Separation occurs. Beyond the separation point, the direction of 
the flow at the surface is reversed, so that the fluid moves towards the point from 
both directions. Between the separated vortical layer and the surface lies a
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recirculating flow, which extends into a wider region behind the cylinder. This gives 
rise to vortex shedding.

The above description is evident in all the vorticity contour figures, where there is a 
concentration of vorticity at around 90°. This is the point of separation. This vorticity 
is convected downstream to form alternate vortices behind the cylinder.

There may be many factors involved in the suppression shown by the results.

With increasing injection, the recirculation zones in front of the cylinder extend into 
the incoming flow, and increase in vorticity. This induces a counter-flowing 
recirculation in front of the cylinder, which in turn may decreases the overall drag and 
lift on the cylinder. The reduction in fluctuating drag and lift can be attributed to the 
weakening of the vortices behind the cylinder as shown by the vorticity contours.

The most plausible explanation for the observed suppression is that the cylinder is 
streamlined by the presence of the vortices in front of the cylinder. This is shown in 
Figure 7.6 below, where the incoming flow encounters a tear-drop bluff body. With 
increasing injection velocity, this new body lengthens, until a point is reached when 
the vortices in front break up and are swept along the cylinder, creating a more 
complex flow pattern around the cylinder.

Figure 7.6: Streamlining of bluff body by forward in jection.

197



f

Figure 7.7: Drag and lift time histories with their power spectra for Re-100, with no
forward injection.
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Figure 7.8: Drag and lift time histories with their power spectra for Re-100, with
forward injection of Ur= 1.498.
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Figure 7.9: Drag and lift time histories with their power spectra for Re=100, with
forward injection of Ur- 1.552.
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Figure 7.10: Drag and lift time histories with their power spectra for Re-100, with 
forward injection ofU r=2.0.
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Figure 7.11: Velocity vectors around a circular cylinder at Re=100, with no forward 
injection.

I I  \ %

Figure 7.12: Velocity vectors around a circular cylinder at Re=100, with forward 
injection ratio of Ur= 1.498.
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Figure 7.13: Velocity vectors around a circular cylinder at Re=100, with forward 
injection ratio of Ur= l.552.

Figure 7.14: Velocity vectors around a circular cylinder at Re-100, with forward 
injection ratio ofU r=2.0.
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a)

Figure 7.15: Streaklines for forward injection at Re=100, when a) Ur=0., b) 
Ur- 1.498, c) Ur-1-552, d) Ur=2.0.
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Figure 7.16: Breakdown of the drag and lift coefficient behaviour around a circular 
cylinder at Re-lOO, with no forward injection.
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Figure 7.17: Breakdown of the drag and lift coefficient behaviour around a circular 
cylinder at Re=100, with forward injection ratio of Ur=l .498.
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Figure 7.18: Vorticity contours around a cylinder at Re=100, without forward
injection.

Figure 7.19: Vorticity contours around a circular cylinder at Re-100, with forward
injection ratio o fU r=1.498.
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Figure 7.20: Vorticity contours around a circular cylinder at Re-100, with forward
injection ratio o fU r=1.552.

Figure 7.21: Vorticity contours around a circular cylinder at Re=100, with forward
injection ratio o fU r=2.0.
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7.5 Turbulent Flow

There are no previous experimental or numerical results for a circular cylinder in 
turbulent flow with forward injection. The present study is performed at Reynolds 
number of 6.5xl04, in order to compare the results with those of the control cylinder 
and rear stagnation jet.

The same terminology and definitions are used as in the laminar flow case (see 
Section 7.4). The simulations were carried out with the 195x98 grid used in earlier 
turbulent simulations for an isolated circular cylinder (see Section 3.7.2) and one with 
a control cylinder (see Section 5.6.1).

As in the laminar case, eight cells in the middle of the west wall of the cylinder were 
selected as the secondary inlet into the domain. The injection cells cover an area 0.185 
times the cylinder diameter. This is comparable to the experimental results shown in 
Chapter 6, when the ratio of Gi (ratio of hole diameter to cylinder diameter) was 
between 0.167 and 0.25.

One of the major factors influencing turbulent flow calculations is the level of 
turbulence intensity prescribed at the inlet to the flow domain. The levels of k and e at 
the inlet are defined as follows:

k,„=P(Tu- u oy

£. =
c ,k ;

(7.5)

Where: (3 = 1.5
Tu= Relative turbulence intensity at inlet = 3%
U0 = Inlet velocity 
Q i  =  0 . 0 9  

vt = lOOv

In the case of forward injection and rear stagnation jets, there are two inlets to the 
flow domain; one corresponding to the incoming flow, and one corresponding to the 
injected flow. The injected flow velocity is generally different from that at the main 
inlet. In some cases, it can be much larger. Therefore, the turbulence level should 
accordingly be altered.
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Turbulence sensitivity tests were carried out for the forward injection case with a 
variety of values for ((3) in Equation 7.5 to assess its effect on the main parameters. 
The tests were done for U^0.75 and are shown in Table 7.2. They show that there is 
a breakdown of normal vortex shedding at excessively large values of this factor. High 
values of all the main parameters, except Strouhal number, along with an asymmetric, 
random signal rule out the use of factors above 100. At small values of (3, the 
turbulence model is effectively switched off at the injection cells. A value of (3=100.0 
was chosen to correct the turbulence level at the cylinder inlet. This value was used 
throughout the simulations for forward injection and rear stagnation jet.

The size of At* is of major importance in the turbulent simulations of forward 
injection. With increasing injection ratios, the code failed to perform the inner 
iterations until At* was decreased. The sensitivity of the solutions to the size of At* is 
shown in Table 7.3. The results presented there are for Re=6.5xl04 for a range of Ur 
values between 0.1 and 1.75. The Table lists the values of mean drag, fluctuating 
drag, fluctuating lift and Strouhal number based on the lift cycle. Note that when 
Ur=0, there is no jet present. The modified k-e model with the SMART scheme was 
used throughout.

Figure 7.22 shows the behaviour of the main parameters, CD , CDr ,C L , and St with 

the injection velocity ratios.

The results show that the overall effects of injection on suppression of vortex 
shedding in turbulent flow are not to the same extent as in laminar flow. Mean drag 
and Strouhal number are decreased slightly, but fluctuating drag and lift are enhanced. 
The flow experiences two distinct phases.

The first phase is for 0< Ur<0.75. The mean drag is reduced to 0.65 of its original 
value and Strouhal number is also decreased. The second phase commences from this 
point onwards, when all parameters increase at the same rate. The fluctuating drag 
and lift increase at the same rate throughout the simulations.

The phase when vortices are shed from the front of the cylinder, discussed earlier in 
the laminar flow simulations, is not reached here. This is because of the extensive 
computation times involved. The computation times increased dramatically once Ur 
increased beyond 0.75. A necessary drop in At* caused the flow solver to take up to 
24 hours to compute each cycle. It is expected that once Ur reaches a higher value, 
vortices would shed from the front of the cylinder as in the laminar case.
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In order to study the behaviour of the flow, the velocity ratio of Ur=0.75 was chosen 
for detailed presentation.

Figure 7.23 and Figure 7.24 show the time histories for the drag and lift coefficients 
and their power spectra for two injection ratios of U,=0. and 0.75. They show that 
mean drag was definitely reduced, while the fluctuating drag and hit were increased. 
The power spectra show a narrowing of the peak around the shedding frequency and 
an increase in amplitude of the higher frequencies.

Figure 7.25 and Figure 7.26 show velocity vectors around the cylinder at Ur=0. and 
0.75. Unlike the laminar flow results, the recirculation zones in front of the cylinder 
are not considerable in size. There are is no change to the vortices behind the cylinder.

Figure 7.27 and Figure 7.28 show the streaklines around the cylinder. Again, no 
apparent change is visible in the flow pattern behind the cylinder.

Figure 7.29 and Figure 7.30 show vorticity contours for the same velocity ratios. As 
in the laminar case, the contours are scaled between -1 and 1 for both figures, with 
black representing no rotation. It is obvious that separation occurs further 
downstream in this turbulent case at around 130°. The effect of the injection on the 
vorticity contours is to weaken the strength of the vortices behind the cylinder, and 
create small vortices in front of the cylinder.

p c D Cor <̂L St

0.5 0.848 0.278 2.000 1.446 1.453 0.269

1.5 0.841 0.264 1.893 1.439 1.447 0.267

10.0 0.836 0.250 1.744 1.425 1.432 0.264

100.0 0.797 0.232 1.667 1.282 1.288 0.265

1000.0 0.774 0.424 3.040 1.487 1.494 0.272

10000.0 0.762 0.741 5.326 2.458 2.471 0.275

Table 7.2: Turbulence sensitivity results for forward injection.
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RUN u r c D c D c Dr c L St At*

1 0.000 1.025 0.139 1.000 0.995 1.000 0.292 0.001

2 0.100 0.913 0.146 1.051 1.060 1.065 0.290 0.001

3 0.250 0.873 0.150 1.077 1.074 1.079 0.285 0.001

4 0.500 0.822 0.175 1.256 1.193 1.199 0.277 0.001

5 0.750 0.797 0.232 1.667 1.282 1.288 0.265 0.0005

6 1.000 0.884 0.253 1.821 1.350 1.357 0.272 0.0005

7 1.250 0.929 0.292 2.103 1.391 1.398 0.276 0.0003

8 1.500 1.002 0.339 2.436 1.570 1.578 0.281 0.0002

9 1.750 1.153 0.374 2.692 1.809 1.818 0.287 0.0002

Table 7.3: Results for forward injection, for a circular cylinder at Re-6.5x1 ( f .

Ur

UT

Figure 7.22: Behaviour of main parameters with Urfor turbulent flow with forward 
injection.
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Figure 7.23: Drag and lift time histories with their power spectra for Re=6.5xl04,
with no forward injection.

f

Figure 7.24: Drag and lift time histories with their power spectra for Re=6.5xl0 ,
with forward injection at Ur=0.75.
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Figure 7.25: Velocity vectors around a circular cylinder at Re=6.5xl04, with no 
forward injection.

Figure 7.26: Velocity vectors around a circular cylinder at Re=6.5xl04, with 
forward injection at Ur=0.75.
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Figure 7.27: Streaklines around a circular cylinder at Re=6.5xl04, with no forward
injection.

Figure 7.28: Streaklines around a circular cylinder at Re=6.5xl04, with forward
injection at Ur=0.75.
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Figure 7.29: Vorticity around a circular cylinder at Re=6.5xl04, with no forward
injection.

Figure 7.30: Vorticity contours around a circular cylinder at Re-6.5xl04, with
forward injection at Ur=0.75.
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7.6 Conclusions

Laminar and turbulent simulations were performed to determine whether it is possible 
to predict the suppression of vortex shedding by forward injection. The simulations 
were done with the same hole geometry that gave optimum suppression in the 
experiments. Unfortunately, it was not possible to carry out simulations in 3D due to 
lack of computer resources. It was found that suppression was obtained when the 
How was modelled at Re=100. It was further found that the flow experiences three 
distinct phases with increasing injection velocity. Optimum results were achieved for 
1.498<Ur< 1.585, where the mean drag, and the fluctuating drag and lift were all 
suppressed to around 50% of their original values. This ratio is not as good as the 
maximum suppression of 30% achievable in the experiments. This comparison is not 
necessarily exact, as the simulations are two-dimensional.

The simulations also showed that the vortex street behind the cylinder is not altered 
when forward injection is introduced. The reason for suppression was deduced from 
the vorticity contours. These showed that two vortices were formed in front of the 
cylinder. The effect was to counteract the vortices formed behind the cylinder. The 
strength of the vortices behind the cylinder was also weakened, which contributed to 
overall suppression. The streamlining of the cylinder may be a major cause for the 
suppression.

When the injection velocity was increased further, the two vortices in front of the 
cylinder became unstable. They broke up and shed from the front of the cylinder. This 
introduces excessive forces on the cylinder, signified by a dramatic rise in mean drag 
and fluctuating drag and lift coefficients. In the experiments, optimum suppression 
was achieved with a penetration length of 1.5 to 2 cylinder diameters, while the 
simulations showed a length of 0.6. This may be because the simulations predict the 
break up of the front vortices prematurely.

The turbulent results showed that mean drag can be reduced, but the fluctuating drag 
and lift coefficients remained large. This may be due to the lack of accuracy on the 
part of the flow solver, and the fact that the simulations were not carried out in three- 
dimensions. With increasing velocity ratios, the simulations had to be carried out at a 
fraction of the original At*. This greatly increased the computation times.
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CHAPTER EIGHT: PREDICTION OF 
SUPPRESSION BY A REAR STAGNATION JET

8.1 Introductory Remarks

The possibility of the suppression of vortex shedding by the introduction of a rear 
stagnation jet was introduced in Chapter Seven. In this chapter, a numerical study of 
this phenomenon is presented and the possible reasons for its occurrence are 
discussed.

The rear stagnation jet involves the introduction at the rear of a cylinder of a jet with a 
velocity much greater than that of the incoming flow. Duke and Mo (1993) describe 
its application for a circular cylinder, while Koutmos et al. (1995) investigated this 
technique for a square cylinder. The main finding from both studies was that the rear 
stagnation jet forces a symmetrical wake flow pattern, thus eliminating the lift force. 
This method acts in a similar way to a splitter plate placed behind the cylinder. Present 
experiments (see Section 6.4.5) show that back injection does achieve suppression.

The code modification and grid generation details for the numerical simulation of 
forward injection were presented in Chapter Seven. The procedures are identical to 
forward injection, the only difference being that the injection is on the east side of the 
obstacle.

Results obtained for a circular cylinder in laminar flow are presented in Section 8.2. 
The results for both square and circular cylinder in turbulent flows, are presented in 
Section 8.3.

8.2 Laminar Flow

Experimental evidence for the effects of a rear stagnation jet on the flow around a 
circular cylinder was reported by Duke et al. (1992) for Reynolds numbers in the 
range 600<Re<2500. With a jet velocity to incoming flow velocity ratio of 25, the 
wake behind the cylinder was observed to remain fully attached. Mo and Duke (1993) 
conducted a numerical study on this phenomenon for Re=200. Their results showed 
that the wake became symmetric with a velocity ratio as low as 1. The size of the
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symmetric recirculation regions became smaller as the velocity ratio increased. When 
the flow became symmetric, the lift force was eliminated.

The experiments and numerical simulations carried out by Duke et al. (1992) and Mo 
and Duke (1993) are rather incomplete. It was therefore decided to conduct numerical 
simulations for a circular cylinder at Reynolds number of 200 for a range of jet 
velocity ratios.

By using the 148x102 grid in Figure 3.3(a) there is a fine enough grid arrangement 
behind the cylinder. This grid provided adequate results in modelling a circular 
cylinder in laminar flow (see Section 3.5.1). Two cells in the middle of the east wall of 
the cylinder were selected as the secondary inlet. The jet cells cover an area 0.029 
times the cylinder diameter. This is comparable to the experimental studies of Duke et 
al. (1992), where the jet cells covered an area 0.027 times the cylinder diameter. 
Figure 8.1 shows the schematics of the rear stagnation jet. A At* value of 0.048 was 
used throughout the calculations.

In Figure 8.1, U0 is the incoming velocity in the x-direction and USJ is the prescribed 
jet velocity. The ‘strength’ of the rear stagnation jet is quantified by the parameter Ur, 
defined as:

( 8 . 1)

F ig u r e  8 .1 : S c h e m a tic s  f o r  th e  r e a r  s ta g n a tio n  je t .
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Two further parameters are introduced to quantify the extent of suppression. These 
are the ratios of rms drag and lift after the introduction of the jet to their values with , 
i.e.:

CD = -
Dr c

'D sj

D _no jet

( 8 .2)

and

(8.3)

Table 8.1 shows the results for Reynolds number of 200 for values of Ur in the range 
0.642-10.0. The Table lists the values of the mean drag, the fluctuating drag, the 
fluctuating lift and Strouhal number based on the lift cycle. Note that when Ur=0, 
there is no jet present.

Figure 8.2 shows the variation of, CD, CDr,CL , and St with Ur. The mean drag

becomes zero at around Ur=4.9, suggesting that the reaction and profile drag forces 
are equal. With increasing jet velocity, the mean drag becomes negative suggesting 
that the net force on the cylinder is now ‘thrust’. At higher jet velocities, the thrust on 
the cylinder increases beyond the drag for a cylinder without a jet. Also shown are the 
results of Mo and Duke (1993) for the mean drag. Their results were obtained using a 
grid of 61x61 with At*=0.05. With the means of velocity vectors and pressure 
distributions, they showed that the flow field becomes symmetric. Figure 8.2 shows 
that they predicted the mean drag to increase with increasing jet velocity. A similar 
trend is obtained in this work when the reaction force is excluded from the 
computation of the drag term.

From Figure 8.2, it can be seen that the fluctuating drag and lift are almost completely 
suppressed, although the rms drag does increase at higher jet velocities. The flow 
does generally become more unstable as the jet ratio becomes larger. This is shown by 
the increase in rms drag and lift after Ur>8.565. Mean lift is not affected. The Strouhal 
number values increase rapidly with jet ratios after an initial value of zero at 
U,=0.642.
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RUN u r c D c D c Dr c L c Lr St

1 0.000 1.353 5.32xl0‘2 1.000 0.190 1.000 0.195

2 0.642 1.118 1.36xl0'3 0.256 0.072 0.378 0.0 *

3 3.000 0.680 1.34x1 O'3 0.025 7.98xlO'3 0.042 0.641

4 4.282 0.285 2.1 lxlO'3 0.040 3.04x1 O'3 0.016 1.157

5 8.565 -2.520 3.09xl0"2 0.581 4.94x1 O'3 0.026 4.281

6 10.00 -4.637 1.75xl0"2 0.329 7.22x1 O'3 0.038 6.648

Table 8.1: Results for rear stagnation jet behind a circular cylinder at Re=200. 

* The Strouhal number was too low to be measured

Ur UT

P r e s e n t  P r e d ic t io n s  
P r e d ic t io n s  o f  Mo a n d  D uke  (1993)

F ig u r e  8 .2 :  B e h a v io u r  o f  d r a g  a n d  l i f t  c o e ff ic ie n ts  w ith  U r.
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The two values of U,=3.0 and 10.0 were chosen for more detailed investigations. The 
strongest suppression with the least energy input into the system was obtained at 
U,=3.0. At U^IO.O, the mean drag on the cylinder became too large and the 
fluctuating forces increased.

Figure 8.3 and Figure 8.4 show the time histories of the fluctuating drag and lift 
coefficients before and after the introduction of the rear stagnation jet. A clear 
reduction in the intensity of the oscillations is visible from the figures. In addition, the 
rise in the fluctuations is shown in Figure 8.4 at Ur=10.0. This is more pronounced in 
the drag than in the lift coefficient.

Figure 8.5 and Figure 8.6 show velocity vectors around the cylinder at the two 
velocity ratios. The largest velocity vector is scaled to the largest jet velocity. It is 
interesting to see that at U.—3.0, although there was a larger suppression of the 
fluctuating drag and lift coefficients, vortices are being shed from the cylinder. At 
Ur=10.0 there were no vortices at all. This is more evident from the streaklines 
presented in Figure 8.7 and Figure 8.8. There seems to be some sort of small scale 
shedding at the smaller velocity ratio. These vortices are further away from the 
cylinder than their counterparts when there is no jet present. At the larger velocity 
ratio, there was no shedding at all, but the flow developed a trailing tail, oscillating 
approximately at eight cylinder lengths downstream of the cylinder.

The behaviour of the rear stagnation jet is very similar to that of a splitter plate placed 
behind the cylinder. Kwon & Choi (1996) investigated, numerically, the control of 
laminar vortex shedding behind a circular cylinder using splitter plates. They found 
that the vortex street disappeared when the length of the splitter plate was larger than 
a critical length. This length was proportional to the Reynolds number. The Strouhal 
number however, decreased rapidly with increased plate length until the length of the 
splitter plate was approximately equal to the diameter of the cylinder. They attributed 
this decrease to the plate’s direct interference with the vortex street. The vortices 
generated interact with each other further downstream. Accordingly, the interaction 
period became larger and the Strouhal number decreased rapidly. A similar 
explanation was given by Apelt et al. (1973). The Strouhal number increased as the 
length of the splitter plate was increased beyond the cylinder diameter. A smaller 
secondary vortex was shed from the tip of the plate, but with a higher vorticity level. 
The interaction of the primary and secondary vortices caused an increase in Strouhal 
number.
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The present simulations show very similar trends, with the Strouhal number 
decreasing to a minimal value, and then increasing rapidly (See Figure 8.2). Generally, 
it is shown that the effects of the rear stagnation jet are analogous to that of a splitter 
plate, except that the mean drag increases rapidly at higher velocity ratios. This means 
that a critical velocity ratio (around Ur=4.9) exists when mean drag is zero and the 
fluctuating forces are suppressed.

U r= 0 U r= 3 .0

U r= 0
0 .3 0  

0 .1 8  

0 .06  

- 0 . 0 6  

- 0 . 1 8  

- 0 . 3 0
0 5 10 15 20  0 5 10 15 20

t' ?

Figure 8.3: Time histories of drag & lift before and after rear stagnation jet (U r=3)

U r= 3 .0

U r= 0 U r= 1 0 .0

QO

e e

U r= 0 U r= 1 0 .0

F ig u r e  8 .4 :  T im e  h is to r ie s  o f  d ra g  & l i f t  b e fo r e  a n d  a f te r  r e a r  s ta g n a tio n  j e t  (U r= 1 0 )
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Figure 8.5: Velocity vectors behind cylinder at rear stagnation jet of Ur=3.
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Figure 8.6: Velocity vectors behind cylinder at rear stagnation jet of Ur=10.
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a) No jet <3*3 v $ ■? Q. C
b) Ur=3.0

c) Ur=10.0 O 1 .........
Figure 8.7: Streaklines for rear stagnation jet.

a) No jet

/

b) Ur=3.0

< 3 »

c) U^IO.O

F ig u re  8 .8 :  Z o o m  in  o n  s tr e a k lin e s  f o r  r e a r  s ta g n a tio n  je t .
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8.3 Turbulent Flow

Predictions are obtained for both square and circular cylinders in the turbulent regime 
with a rear stagnation jet.

8.3.1 Square Cylinder

Koutmos et al. (1995) conducted experimental and numerical studies into the effects 
of a rear stagnation jet on square cylinders in turbulent flow. They considered the 
Reynolds numbers range of 8520-14285, with jet ratios up to Ur=2.38. Their power 
spectra of the U-component velocity showed that, at low jet ratios, the dominant 
frequency was very close to the cylinder shedding frequency without a jet. As the jet 
ratio increased, the jet interference with the vortex street amplified, and a broadening 
of the energy peak around the dominant frequency was observed. This continued until 
the shedding process was completely suppressed when the jet eventually reached 
Ur=1.6.

Koutmos et al. (1995) used two numerical methods in their investigations. The LES 
methodology gave good results for a square cylinder with no injection, but when it 
was applied to the injection case, it revealed excessive mesh density requirements for 
an accurate resolution of the jet. The second method they used was based on the k-e 
model with the evaluation of the eddy-viscosity performed by the Smagorinsky model 
from the LES formalism. This hybrid model proved successful in reproducing the 
measured trends. Both the splitting effect of the jet leading to a quasi-periodic 
interruption and the eventual interruption of the shedding process were captured by 
the hybrid k-e method.

The 136x118 grid described in Section 3.5.2, which was also used to model a square 
cylinder with a control cylinder, was used here. The modified k-e model, using the 
SMART scheme, with At*=2.4xl0"3 were used throughout. The Reynolds number 
was fixed at 14285. Four cells in the middle of the east side of the cylinder were 
chosen to introduce the jet. This covers an area 0.120 times the cylinder height, which 
is comparable to the jet area used by Koutmos et al. (1995) which amounted to 0.125 
times the cylinder height.

The experimental and numerical results of various authors for a single square cylinder 
in turbulent flow at Reynolds numbers of 14285 < Re < 22000 are shown in Table 
8.2. The present predictions are clearly in good agreement with the data. In contrast,
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the predictions of Koutmos et al. (1995) using both the LES and hybrid k-e, show 
slight overestimation in the mean drag and Strouhal number. Koutmos et al. (1995) 
used a grid of 201x175 nodes for the hybrid k-e model and a 3-D grid of 95x89x20 
nodes for the LES model.

Table 8.3 shows the results obtained at Re=14285 for values of Ur in the range 0.1- 
3.0. The Table lists the values of the mean drag, fluctuating drag, fluctuating lift and 
Strouhal number based on the lift cycle. Note that when U,~0, there is no jet present.

Figure 8.9 shows the behaviour of the main parameters, CD, CDr,C L , and St with

increasing jet velocity ratios. The trends are similar to those of the laminar simulations 
with a circular cylinder. Vortex shedding was comprehensively suppressed with the 
introduction of the jet. The fluctuating drag and lift were almost completely non-
existent. Again, with increasing jet velocity, the mean drag eventually becomes 
negative. The Strouhal number attained minimal values at U,>1.0.

Two values of Ur were chosen for more detailed investigations. These were for 
Ur=0.1, which was the smallest velocity ratio, and Ur=1.0, which gave the largest 
suppression in terms of the fluctuating drag and lift and Strouhal number.

Figure 8.10 to Figure 8.12 show the time histories for the drag and lift coefficients 
and their power spectra when Ur=0.0, 0.1, and 1.0 respectively.

Even at the low Ur value of 0.1, there is clearly quite significant suppression of the 
drag and lift coefficients relative to the same Ur in the laminar case. What is 
interesting here was the appearance of excessive noise at the higher frequencies in the 
power spectra. Otherwise, the time histories were very similar to the case without a 
jet, with signs of frequency doubling. Streaklines for Ur=0.1 are shown in Figure 
8.13(b). There is a slight widening of the vortex street, and spacing out of the 
vortices. The jet fluid, highlighted by the light coloured streaklines, was not strong 
enough to forge a straight path through the vortices, but mixed as it left the outlet 
from the cylinder. The suppression is caused by this mixing zone. It creates a buffer 
behind the cylinder and causes the vortices to be shed further away from it.

The time histories of the drag and lift coefficients for U ^l.0, shown in Figure 8.12, 
present an even more dramatic suppression of the vortex shedding. There was no 
vortex shedding at all, with no fluctuations in the drag and lift. Figure 8.13(c) shows 
the streaklines at this jet velocity. Unlike the laminar circular cylinder case, when there
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were slight fluctuations at high jet velocities, there are no snake-like effects 
downstream of the cylinder. There was no mixing of the fluids, with the jet fluid 
forging a straight path through the wake. All the parameters were at their lowest 
(almost non-existent) values at this jet ratio. The flow behaved as if there was a 
splitter plate placed behind the cylinder. There was no opportunity for it to develop 
secondary shedding at the tip, as it was too far downstream.

Higher velocity ratios gave a further decrease in the mean drag, as seen case of the 
circular cylinder in laminar flow.

Koutmos et al. (1995) found that the jet ratio at which suppression was most effective 
was U,= 1.6 which is comparable to the present findings. Otherwise their results did 
not show any indication of the impact of the jet on the drag, and lift coefficients.
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Re Grid At c D c D c L St
Experimental 
Koutmos et al (1995)

14285 - - - - - 0.176

Experimental 
L ee(1975)

20000 - - 2.050 0.180 1.320 0.126

LES
Koutmos et al (1995)

14285 95x89x20 lxlO'5 2.367 - - 0.177

Hybrid k-e 
Koutmos et al (1995)

14285 157x121 2x10-5 2.370 - - 0.178

k-e
Launder & Kato (1993)

22000 104x70 - 2.050 - 0.917 0.145

Modified k-e 
Present

14285 136x118 2.4xl0’3* 2.080 0.128 1.200 0.138

Modified k-e 
Present

20000 136x118 2.3x10 2.104 0.291 1.321 0.132

Table 8.2: Experimental and numerical results for Re=14285~22000.

* Denotes that the time-steps were non-dimensionalised

Run u r CD c D c Dr c L c Lr St

1 0.00 2.080 0.128 1.000 1.200 1.000 0.138

2 0.10 1.145 5.79x10‘3 0.045 0.035 2.91xl0'2 0.141

3 0.25 1.005 7.13xl03 0.056 0.030 2.50xl0"2 0.138

4 0.50 0.862 8. lOxlO’3 0.063 2.65xl0'3 2.21xl0'3 0.126

5 0.75 0.500 i.i3 x ia 3 0.009 1.65xl0"3 1.38xl0’3 0.054

6 1.00 0.122 1.00x103 0.008 9.76xia5 8.13xlO"5 0.000

7 1.50 -1.134 6.43xl0"3 0.050 7.65xl0‘5 6.38xl0"5 0.001

8 2.00 -2.432 3.32xl03 0.026 1.34x10‘4 1.12xia4 0.002

9 3.00 -7.656 6.52x103 0.051 1.63xl0'3 1.36xl0‘3 0.002

Table 8.3: Results for rear stagnation jet behind a square cylinder at Re= 14285.
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Figure 8.9: Behaviour of drag, lift, and Strouhal number with Ur

Figure 8.10: Time histories of drag and lift coefficients for a square cylinder at 
Re= 14285; showing also the power spectra.

228



Figure 8.11: Time histories of drag and lift coefficients for a square cylinder at 
R e -14285 with a rear stagnation je to fU r=0.1; showing also the power spectra.

e f
Figure 8.12: Time histories of drag and lift coefficients for a square cylinder at 
Re-14285 with a rear stagnation jet of Ur-1.0; showing also the power spectra.
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a) Ur=0.0

b) Ur=0.1

c) U r= 1 .0 0

Figure 8.13: Streaklines for a square cylinder at Re-14285 without and with rear 
stagnation jet at jet velocities of a) Ur-0.0, b) Ur-0.1 and c) Ur=1.00.
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8.3.2 Circular Cylinder

There are no previous experimental or numerical results for a circular cylinder in 
turbulent flow with a rear stagnation jet. Therefore, the present study is performed at 
a Reynolds number of 6.5xl04 in order to compare the results with those obtained for 
forward injection.

A grid of 195x98 nodes was used, with two cells in the middle of the east side of the 
obstacle designated as the secondary inlets. The jet cells covered an area 0.031 times 
the cylinder diameter, which is comparable to the laminar flow tests of Duke et al. 
(1992), where a ratio of 0.027 was used. A At* value of 0.001 was used throughout 
the simulations.

Table 8.4 shows the results obtained for Re=6.5xl04 for values of Ur in the range 0.1- 
7.0. The Table lists the values of the mean drag, the fluctuating drag, the fluctuating 
lift and Strouhal number based on the lift cycle. Note that when U,—0, there is no jet 
present.

Figure 8.14 shows the behaviour of the main parameters, CD, CDr, CLf, and St with

jet velocity ratios. The trends are comparable to those of the laminar simulations with 
a circular cylinder and the turbulent simulations with the square cylinder and show 
clearly that the flow experiences three distinct phases.

The first phase is for 0.1<Ur<0.5, when the mean drag was reduced at a constant rate. 
The fluctuating drag was reduced to its minimum of 0.504 its original value. The 
fluctuating lift and Strouhal number were also decreased at a constant rate.

The second phase is for 0.5<Ur<3.0, where all the main parameters remained almost 
constant.

The third phase is for Ur>3.0, when the mean drag turns into thrust. The fluctuating 
drag increased and stayed constant at higher jet ratios. The fluctuating lift decreased 
rapidly. Also, the Strouhal number increased rapidly.
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RUN u r c D CD c Dr c L c Lr St

1 0.00 1.025 0.139 1.000 0.995 1.000 0.292

2 0.10 0.829 0.120 0.863 0.811 0.815 0.299

3 0.25 0.697 0.110 0.791 0.614 0.617 0.291

4 0.50 0.549 0.070 0.504 0.393 0.395 0.275

5 0.75 0.524 0.075 0.540 0.379 0.381 0.206

6 1.00 0.520 0.090 0.647 0.351 0.353 0.150

7 1.50 0.515 0.090 0.647 0.351 0.353 0.121

8 3.00 0.439 0.092 0.662 0.348 0.350 0.110

9 5.00 -0.072 0.106 0.763 0.186 0.187 11.523

10 7.00 -0.911 0.103 0.741 0.038 0.038 18.103

Table 8.4: Results for rear stagnation jet behind a circular cylinder at Re=6.5xl04.
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Figure 8.14: Behaviour of drag, lift, and Strouhal number with Ur.
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In order to determine the behaviour of the flow in these three phases, three jet ratios 
were selected for further investigation. These lie within the three phases being at 
Ur=0.5, 1.5, and 5.0.

Figure 8.15 shows the time histories for the drag and lift coefficients and their power 
spectra when there is no rear stagnation jet (i.e. when Ur=0.).

Figure 8.16 shows the same parameters when Ur=0.5, which is in the first phase. The 
lift and drag coefficients do not vary smoothly with time, and many frequencies were 
visible in the power spectra. An organised vortex street does exist, as can be seen 
from the velocity vectors in Figure 8.20 and the streaklines in Figure 8.23(b). The 
velocity vectors show the rear stagnation jet being deflected by the uppermost vortex. 
As this deflection oscillated with the shedding of the vortices, there was strong mixing 
which can be seen in the streaklines.

Figure 8.17 shows the time histories and power spectra for U,—1.5. This is in the 
second phase, when there is no change in the main parameters with increasing jet 
velocity. The time histories of the coefficients are even more chaotic. The velocity 
vectors (Figure 8.21) and streaklines (Figure 8.23(c)) show a longer jet penetration 
length; though it was still being deflected by the separated flow. Vortices were 
attached to the jet and subsequently shed from its tip. This, together with the swaying 
action of the jet, resulted in the unstable nature of the flow. There was less mixing of 
the two fluids.

Figure 8.18 shows the time histories and power spectra for Ur=5.0. This is in the third 
phase, when the mean drag is very small and negative. The time histories of the drag 
and lift coefficients are much more chaotic, with high frequencies visible in both the 
drag and lift spectra. The velocity vectors (Figure 8.22) and streaklines (Figure 
8.23(d)) show that the jet was so powerful that it was not being deflected by the 
separated flow. The jet appeared to act as a solid extension of the cylinder, rather like 
a splitter plate. Vortices were shed from the tip of the jet. There was less mixing.
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Figure 8.15: Drag and lift time histories and power spectra for the case with no rear
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Figure 8.16: Drag and lift time histories and power spectra for the case with rear 
stagnation jet of Ur=0.5 at Re=6.5xl04.
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Figure 8.19: Velocity vectors around a circular cylinder at Re=6.5xl04.

Figure 8.20: Velocity vectors around a circular cylinder at Re=6.5xl04, with rear
stagnation jet of Ur=0.5.
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Figure 8.21: Velocity vectors around a circular cylinder at Re=6.5xl04, with rear
stagnation jet of Ur=1.5.

Figure 8.22: Velocity vectors around a circular cylinder at Re-6.5xl04, with rear
stagnation jet of Ur=5.0.
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a)

Figure 8.23: Streaklines for a circular cylinder at Re-6.5x104 without and with rear 
stagnation jet at jet velocities o f a) Ur=0., b) Ur-0.5, c) Ur=1.5, and d) 5.0.
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8.4 Conclusions

The mechanism of suppression of vortex shedding by means of a rear stagnation jet is 
quite simple. The jet forms a solid barrier behind the cylinder restricting the formation 
of vortices. This works in exactly the same way as a splitter plate, which is a 
traditional means of suppressing vortex shedding. There are however differences 
between the two methods.

At low jet velocities, a great deal of mixing between the jet fluid and the incoming 
flow takes place. This has the effect of infringing on the vortex formation process and 
thus suppressing it.

At slightly higher jet velocities, the mixing is reduced, but the jet is seen to sway from 
side to side. There is added separation and vortex formation at the tip of the jet. This 
created a complex flow structure behind the cylinder, which in turn induced chaotic 
oscillations of the cylinder with higher frequencies. The secondary vortex formation at 
the tip of the jet is also a feature of the splitter plate.

The rear stagnation jet produces a reaction force in the opposite direction to the drag. 
At higher jet velocities, the mean drag was reduced until the net force on the cylinder 
became negative and the cylinder eventually experienced a thrust force acting on it. In 
this instance, there was less mixing, as the jet was so strong that the separated flow 
had very little effect on it.

The fluctuations in the drag and lift coefficients can be suppressed down to 2.5% of 
their original values for a circular cylinder in laminar flow. The suppression for the 
square cylinder in turbulent flow was even stronger, with the drag and lift fluctuations 
being suppressed down to 0.8% and 0.008% of their respective original values. The 
suppression is not as strong for the circular cylinder in turbulent flow, where the 
fluctuations of the drag and lift coefficients were around 50% and 11% their original 
values. These figures show higher reduction in the fluctuating coefficients than the 
forward injection, which showed a suppression of 30% in the experiments and 50% 
for the numerical results.
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CONCLUSIONS AND FURTHER WORK

The main objective of the present work was to investigate, experimentally and 
numerically, vortex shedding from cylinders submerged in laminar and turbulent flows 
and various means for its control.

The numerical model used is based on the finite-volume method for the discretisation 
of the transport equations governing laminar and turbulent flows.

In all the flows considered without the use of control, the time histories of both CD 
and CL were predicted to be fairly smooth and the frequency of CD was predicted to 
be twice that of CL, as expected. Streaklines were computed and found to present a 
view of the flow field which is in accord with published flow visualisations.

Grid and time-step dependence checks were carried out. It was shown that laminar 
flow calculations are independent of grid effects. Finer grids were used at high 
Reynolds numbers to capture the details of the ensuing turbulent flow. The results 
showed the insensitivity of the solutions to the time-step size, as long as the value of 
the latter was smaller than that required by the non-dimensionalised time step criteria.

Predictions were obtained using the Upwind, Linear Upwind and SMART schemes 
for a circular and square cylinder without control. The results showed that the third 
order bounded SMART scheme provides the most accurate results for a given grid.

The k-e turbulence model was used when simulating Reynolds numbers higher than 
1400. The Younis (1987) and Przulj & Younis (1993) modification, which accounts 
for the effects of periodicity on the turbulence spectrum was further tested and proved 
to be adequate for the present flows.

At higher values, above Re=20000, the present method underestimates the values of 
mean drag and overestimates the Strouhal number. The present method also failed to 
capture the drag crisis and the supercritical regime. The transcritical regime was 
investigated. It was found that the mean drag was underestimated and the fluctuating 
lift and Strouhal number overestimated with respect to the experimental data. The 
predicted mean drag remains constant at Re=5xl07, while the fluctuating lift and 
Strouhal number fall significantly.
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The flow field that develops around two circular cylinders in tandem was investigated 
numerically in laminar and turbulent flow regimes. The wide range of well established 
flow phenomena observed experimentally were reproduced.

In the laminar flow calculations, the experimentally observed ‘vortex suppression’ 
regime at small spacings and the ‘vortex formation’ regime at large spacings were 
obtained in the predictions. A wide range of spacings was investigated in the turbulent 
flow regime, for which no previous numerical results exist. The critical spacing, when 
the two cylinders stop behaving as one, was predicted to lie in the range 2.5<P/D<4. 
The key regimes, dependent on the cylinder spacing were found. It was observed that 
the mean drag of the downstream cylinder can become negative at small spacings in 
the vortex suppression regime.

Three methods of vortex suppression were selected for detailed study. The first one 
was the use of control cylinders. A small control cylinder was placed near the main 
cylinder to reduce or eliminate oscillations caused by vortex shedding on the main 
cylinder. The present results for square and circular cylinders with control cylinders 
placed at different points in laminar and turbulent flows were compared with previous 
experimental and numerical results where available.

The vortex shedding from circular and square cylinders in laminar flows was 
suppressed most effectively when the control cylinder was placed above and behind 
the main cylinder (at x/D=l and y/D=l). The fluctuating drag and lift coefficients 
were reduced to around 1% their original values. The vortex street was shown to 
disappear for these predictions.

The vortex shedding from a circular cylinder in turbulent flow was suppressed most 
effectively when the control cylinder controlled the boundary layer along the surface 
of the cylinder or when the separated shear layer was controlled. The fluctuating drag 
and lift coefficients were reduced to 25% and 9% of their original values.

The vortex shedding from a square cylinder in turbulent flow was most effectively 
suppressed when the control cylinder was placed along the outer boundary of the 
separated shear layer. The fluctuating drag and lift coefficients were reduced to 50% 
and 36% of their original values
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The second method of suppression was a novel one and consisted of the injection of 
fluid into the approach flow. As there are no previous data on this method, 
experimental test and data analysis methods were devised in order to reduce the 
number of experiments. By conducting experiments with a variety of geometric 
parameters, the suppression was maximised over a range of Reynolds numbers.

The geometry giving the best suppression corresponded to a cylinder with 13 holes of 
3 mm diameter, with a centre to centre distance of 10mm. The maximum suppression 
achieved with this geometry was 30% for both in-line and transverse vibrations. There 
were no dominant frequencies after injection. The penetration length of the forward 
injection was approximated to around 1.5 to 2 times the cylinder diameter. It was 
shown that even stronger suppression was possible when the injection holes were 
placed at 60° and 240° relative to the approach flow.

Forward injection was investigated numerically for a circular cylinder in laminar and 
turbulent flows. It was found that suppression was obtained for laminar flow. The 
streaklines did not show any sign of change in the vortex street. Fluctuating drag and 
lift were suppressed to 50% their original values. A breakdown of the drag and lift 
coefficients around the cylinder and vorticity contours showed that suppression is 
caused by two vortices formed in front of the cylinder, which in turn weaken the 
vortices shed behind the cylinder. The streamlining of the cylinder is suspected to be 
the major contributor to the suppression.

The third method of suppression was the rear stagnation jet, which acts in a similar 
way to a splitter plate placed behind the cylinder. The fluctuations in the drag and lift 
coefficients can be suppressed down to 2.5% of their original values for a circular 
cylinder in laminar flow. The suppression for the square cylinder in turbulent flow was 
even stronger, with the drag and lift fluctuations being suppressed down to 0.8% and 
0.008% of their respective original values. The suppression is not as strong for the 
circular cylinder in turbulent flow, where the fluctuations of the drag and lift 
coefficients were around 50% and 11% their original values. At high jet velocities, the 
mean drag was reduced until the net force on the cylinder became negative. In this 
instance, there was less mixing, as the jet was so strong that the separated flow had 
very little effect on it.
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The work here is a step forward towards a better understanding of the mechanisms 
involved in vortex shedding and its control. Overall, it was shown that CFD can be 
reliably used to assess the qualitative nature of the vortex shedding and its control. In 
terms of quantitative results, some inaccuracies still exist, but it should be 
remembered that accurate experimental measurements are also difficult to obtain for 
these flows.

Further numerical work could be carried out with three-dimensional grids to obtain 
more accurate results, especially in the case of forward injection. Furthermore, more 
accurate results could be obtained, if improvements were made to the prediction of 
the laminar-turbulent transition on the surface of the cylinder.

Further experimental work could be carried out on the forward injection method, to 
obtain more detailed analysis of the flow field around the cylinder and important 
parameters, such as the drag and lift coefficients.
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