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Abstract
Trustworthy machine learning requires a high level of interpretability of machine learning models, yet many models are
inherently black-boxes. Training interpretable models instead—or using them to mimic the black-box model—seems like a
viable solution. In practice, however, these interpretable models are still unintelligible due to their size and complexity. In this
paper, we present an approach to explain the logic of large interpretable models that can be represented as sets of logical rules
by a simple, and thus intelligible, descriptive model. The coarseness of this descriptive model and its fidelity to the original
model can be controlled, so that a user can understand the original model in varying levels of depth. We showcase and discuss
this approach on three real-world problems from healthcare, material science, and finance.

Keywords Interpretability · Descriptive model · Global explanation · Generalization

1 Introduction

One of the key challenges for machine learning (ML) mod-
els to be adopted in critical applications, such as autonomous
driving and healthcare, is that the model must be explainable
[1]. The explainability is not only demanded by practitioners,
but is in fact required by law in the EU with the European
Parliament’s General Data Protection Regulation (GDPR)
introducing the right to receive explanations of decisions
made by AI systems. There are two different types of expla-
nations: (i) local explanations, i.e., a justification for an
individual decision, also termed post hoc explanation [1], and
(ii) a global explanation of the overall logic and behaviour
of a model. The latter one is often a generalization of the
former, since from such an understanding of the model indi-
vidual decisions can be justified as well.

The usual way to have a global explanation is to use a
model that inherently allows such an understanding. Typical
examples are decision trees, or rule ensembles. Studying the
rules, or equivalently the paths in the decision tree, allows a
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user to understand the logic of the model, as well as to justify
individual predictions. If instead an existingmodel that is not
inherently explainable (i.e., a deep neural network) needs a
global explanation, then it can be obtained by training an
explainable mimic-model [2] that approximates the black-
box model’s behaviour.

For explainable models to achieve high predictive quality
often requires them to be very large in terms of their num-
ber of rules. This also holds for mimic models that aspire
to achieve high fidelity to the original black-box model. For
example, a tree may have hundreds of nodes and tens of lev-
els, and a rule ensemble may consist of hundreds of rules
with complex conditions. Therefore, models that are inter-
pretable in principle often remain beyond human perceptual
and cognitive capabilities due to their size [3].

The level of understanding of an interpretable model can
be enhanced by reducing its size. To achieve this goal, tech-
niques such as special tuning or post-processing have been
investigated in research [4]. However, the achievable degree
of reduction is significantly constrained by the striving to pre-
serve the prediction accuracy. Even more importantly, when
a mimic model is used for explaining, it has a different logic
than the original model, and its relationship to the original
model may be unclear. Hence, instead of explaining how the
original model comes to its predictions, the mimic model
demonstrates alternative ways to come to the same or similar
predictions. While this is, perhaps, the only viable possi-
bility when the original model is a true black box, it may
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be less desirable when the model logic can, in principle,
be understood by a human. In the latter case, a preferable
approach would be to facilitate the comprehension of the
original model logic rather than to substitute it by another
logic.

In this paper, we present an approach to facilitating com-
prehension of an existing model, representable as a set of
conjunction rules (e.g., rule ensembles themselves, decision
trees, random forests, tree ensembles), that is explainable in
principle but not in practice due to its size. Note that we treat
decision trees as equivalent to rule sets since they can always
be transformed into one [5, 6]. The idea is to extract the gen-
eral logic from the model by uniting its rules based on their
similarity. A union rule not only substitutes multiple original
rules, but also typically consists of fewer logical conditions
than each of the original rules. Thus, the resulting set of union
rules, even with additionally possible exceptions from them,
becomes more comprehensible.

Unlike the existingmethods that aimat reducing the size of
amodelwhile preserving its accuracy on the data, ourmethod
creates a newmodel that describes the originalmodel at hand.
The original model serves as an input for the algorithm and
the output is a descriptive model of the original model, hav-
ing also the form of the set of conjunctive rules. The purpose
of this descriptive model is not to make predictions for data
instances but to tell how the original model works. There-
fore, the descriptive model is not evaluated in terms of the
accuracy of its predictions but in terms of its correspondence
to the original model. For this purpose, we introduce a novel
measure called Coherence Coefficient showing how consis-
tent the descriptive rules are with the rules they are intended
to describe. This measure allows for a user to regulate the
degree of inconsistency of the descriptive model with the
model at hand.

Hence, the very idea of our approach is principally dif-
ferent from the ideas behind the existing methods for model
simplification that strive to preserve and improve the perfor-
mance. Our contributions thus are:

• Introduction of an approach that produces a descriptive
model of a model that is explainable in principle but too
large for comprehension for the purpose of facilitating
the understanding of the model logic.

• The achievable degree of simplification is not restricted
by the requirement to preserve the prediction quality of
the original model, different from themultitude of known
approaches for trainingmore compact rule-basedmodels.

• Union rules of the descriptive model can be explored in
detail by tracing the hierarchy of more specific rules that
were involved in the derivation of the union rules.

• The construction of the descriptive model is fully trans-
parent, and its relationship to the original model is
absolutely clear.

The remainder of this paper is organized as follows: We
first discuss the relation of the proposed approach to train-
ing compact (mimic) models in Sect. 2. We then present our
approach in Sect. 3, followed by exploring the algorithm via
visualizations on a typical application in Sect. 4. We empir-
ically evaluate the approach in Sect. 5 and conclude by a
discussion of the contribution and its limitations, as well as
future work in Sect. 6.

2 Related work discussion

In ML, certain types of models, namely decision trees,
decision tables, and rules, are considered to be inherently
interpretable [2], as they can be represented in a human-
readable form.However, the actual comprehensibility of such
a model greatly depends on its complexity [7, 8], which is
typically roughly estimated in terms of the model size [2].
Therefore, the existing ML algorithms that generate deci-
sion trees or rules usually strive to reduce the model size
by pruning the tree or compressing the set of rules (e.g.,
RuleFit [9]) so that the smaller model is still as accurate as
the big one. Making models more compact is a vast area of
research mainly due to the expected improvements in gen-
eralization and stability properties of the obtained solutions.
Al-Akhras et al. [10] discuss a popular approach to avoiding
overfitting in decision trees in which a more compact tree is
produced via reducing the amount of instances used to build
the model. The approaches directed to reducing the amount
of instances were surveyed by Wilson and Martinez [11].
Pruning of decision trees is another popular way to achieve
higher stability [12]. Helmbold and Schapire [13] propose
an alternative algorithm that avoids pruning. Compactness
of sets of rules is also a matter of concern. Dash et al. [14]
propose an algorithm for creating compact whilst sufficiently
accurate sets of rules using integer programming. In general,
enforcing sparseness (i.e., excluding features from consider-
ation in the rules) of the learned rules is a popular problem
addressed by, e.g., Su et al. [15]. Alternative approaches pro-
pose a different interpretable class of models that is trained
in a way to be sparse [16, 17].

The research on compressing intelligiblemodels is mostly
based on the regularization techniques applied while train-
ing. Thus, Joly et al. [18] propose to use L1 compression for
random forests in order to decrease the prohibitively long
computation time for the big forests. Alternatively, Painsky
and Rosset [19] propose to encode a random forest in a loss-
less or lossy with guarantees way, which allows not to store
the full models—motivated by the limitations of the stor-
age space. Sometimes an interpretable by design model is
even compressed into a black-box model, like a neural net-
work [20], in order to sustain the small storage space and
high performance. In general, aforementioned works aim at
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achieving more stable, smaller and better generalizing intel-
ligible models while training. A big restriction to the degree
of the compactness is always final performance of the model
[21].

On the other hand, while the creation of rule-based mimic
models is a typical approach to explaining the behaviour of
black-box models, such as neural networks [2], the research
on improving the thereby obtained explanations is ongoing.
It is clear that applying pruning or other compression training
techniques when trying tomimic a complex black-boxmodel
will lead to a loss in fidelity. To achieve both goals, Qiao
et al. [22] recently proposed a novel approach in which a
set of decision rules is generated by a neural network with
a special two-layer architecture. The authors also proposed
a sparsity-based regularization approach to balance between
classification accuracy and the simplicity of the derived rules.
For now this is a limited approach, that does not allow towork
with any black-box model at hand.

Freitas [23] discusses that decision trees and rules have
different properties in terms of interpretability and that deci-
sion trees are usually perceived better when transformed
to rule sets. This is also confirmed by Quinlan [24], who
considers multiple approaches to pruning decision trees and
finalizes with the transformation to rules as a help for under-
standing. A random forest model consisting of multiple trees
can also be transformed to a set of rules, for example, using
a novel approach from Bénard et al. [25], which is close
to the RuleFit [9]. Furthermore, it is argued that a repre-
sentation in the form of rules can be more compact than
a decision tree, because rules can include only significant
clauses and have no repeated occurrences of the same vari-
able [2]. Another work [26] discusses high redundancy in
decision trees and proposes a method for extracting non-
redundant rule-like explanations from a decision tree. The
arguments about advantages of rules over trees substantiate
the focus of our research on sets of rules.

Since our approach involves unions of rules, it is partly
related to the works where rules or decision trees are merged
for various purposes. Hierarchical merging of several trees
was addressed in the context of the problem of learning
decision trees frommultiple sources of the data—so the chal-
lenge is to produce one tree that will cover the decisions of
others [27]. Another problem that is addressed is construc-
tion of consensus trees from different ones with the goal
of producing a more stable model [28]. A framework for
combining multiple rule-based models that have been cre-
ated for different subproblems is proposed by Strecht et al.
[29]. Rules from different models are combined by comput-
ing their intersections. After resolving conflicts, the resulting
rule set is minimized by uniting nearly identical rules. A sim-
ilar approach to joining rules is taken byAndrzejak et al. [30].
Our approach also involves an operation of rule union, but,

unlike others, it allows controlled decrease of rule accuracy
for achieving a higher degree of simplification.

Our research involves not only the development of an algo-
rithmic method to obtain a descriptive model, but also the
creation of interactive visual techniques for exploring sets
of rules and investigating the behaviour and results of the
algorithm. Combining computational methods with interac-
tive visual interfaces is at the core of Visual Analytics (VA)
[31]. In particular, VA techniques allow human experts to
be involved in the creation of ML models [32]. This way,
humans can contribute not only their background knowledge,
but also new knowledge gained in the process of interac-
tive data analysis [33] through discovery and abstraction
of patterns existing in data [34]. Currently, the problem of
explaining ML/AI models is receiving much attention in VA
[35]; however, the techniques proposed so far address mostly
the need of model developers rather than domain experts.
As an exception, RuleMatrix [36] visualizes rule sets for
users with little machine learning experience, but it does not
address the problem of model simplification and is severely
limited by the size of the rule set.

In the area of visualization research, a comparative evalua-
tion of four basic techniques for visual representation of rules
sets, namely symbolic and graphical encoding of conditions
with and without vertical alignment of conditions referring
to the same features, has been conducted recently [37]. The
experiments showed the superiority of the representations
that use feature alignment, which is valid for our table view.
Graphical display is advantageous to textual representation,
although the effect is less pronounced compared to that of
feature alignment.However, the experimentswere conducted
using small sets of rules, whereas effective visualization of
large models is still a challenging task.

So, the current research, on the one hand, acknowledges
the problem of comprehending large rule sets or decision
trees, on the other hand, does not consider the possibility
of creating approximate simpler descriptive models instead
of directly training more compact ones. Note that creating a
descriptive model that helps to interpret the original model is
fundamentally different from training amore compact model
with similar accuracy. The descriptivemodel seeks to explain
a given model at hand, while training a different, more com-
pact model seeks to replace it and makes it much harder to
connect functionality of the initial black-box with the inter-
pretable and compact mimic model.

The techniques proposed in this paper differ from exist-
ing methods in their goals. Instead of replacing a model
with a more compact one, we aim to create concise descrip-
tions. Therefore, comparing our approach to others in terms
of accuracy or compression would be inappropriate. In the
following,weproceedwith describingour approach andeval-
uate it on various tasks without explicit comparison to other
techniques.
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3 Rule set simplification

3.1 Main concepts

In the following, we define the terms that we will be using
throughout the paper. We assume that one wants to interpret
a predictive model h : X → Y at hand with input and output
spacesX , resp.Y that can be rewritten as a collection of rules,
i.e., h = R, where each rule R ∈ R consists of an antecedent
which is a conjunction of conditions and consequent which
is a prediction r of the rule. The input space X consists of
instances with d features fi , i = [d], which can be numerical
or categorical. The output space Y can be either categorical
for classification or numerical for regression tasks.

A condition c is a logical expression of the form fi ∈ V ,
where V can be a set of values (for a categorical fi ) or an
interval (for a numeric fi ) that is restricting the values that fi
can get. Such c can be a splitting condition from a decision
tree node or a part of a conjunctive logical rule.

For the following definitions, we will use a running exam-
ple of a rule set defining whether one goes for a walk or not:

• RW
1 “If precipitation ∈ {rain, snow} then walk = false”

• RW
2 “If precipitation = rain and wind speed ≥ 20 km/h

then walk = false”
• RWT

1 “If precipitation = none then walk time = 40 min-
utes”

• RWT
2 “If precipitation =mist then walk time = 30 min-

utes”
• RWT

3 “If wind speed ≤ 5 km/h then walk time∈ [35, 40]
minutes”

• RWT
4 “If wind speed ∈ [5, 10] km/h then walk time ∈

[30, 35] minutes”
• RWT

5 “If wind speed ≤ 10 km/h then walk time ∈
[30, 40] minutes”

• RWT
6 “If wind speed ∈ [8, 10] km/h then walk time ∈

[25, 30] minutes”

Definition 1 A condition c1 = ( fi ∈ V1) subsumes another
condition c2 = ( f j ∈ V2) iff i = j and V2 ⊆ V1. A rule R1

subsumes or covers rule R2 R1 ⊇ R2, if every condition of
rule R1 subsumes some condition of rule R2.

By definition, any rule covers itself. When R1 ⊇ R2 and
R1 �= R2, then R1 is more general and R2 is more specific.

Rule RW
1 covers rule RW

2 because every condition of
RW
1 covers some condition of RW

2 (namely, the first
condition).
R2 may include conditions involving features that do not

appear in conditions of R1, i.e., R1 mayhave fewer conditions
than R2.

For each rule R ∈ R, where R is the set of all rules in
the model, we can identify set of rules R⊇ that are covered

by it. When the set of rules R is optimal in the sense of our
approach, such sets are trivialR⊇ = {R}.
Definition 2 Predictions of two rules R1 and R2, denoted by
r1 and r2, are congruent r1 ∼= r2 if one of the following
conditions holds:

• r1 = r2;
• |r1 − r2| ≤ ε when r1 and r2 are numbers;
• max(rup1 , rup2 ) − min(r low1 , r low2 ) ≤ ε when r1 and r2 are
numeric intervals, r1 = [rlow1 , rup1 ], r2 = [rlow2 , rup2 ],

where ε is a tolerance threshold used during the run of the
algorithm.

The rules RW
1 and RW

2 are congruent because they
have equal predictions walk = false. Rule with
numeric predictions RWT

1 and RWT
2 are congruent

when ε = 10 min. Rule RWT
3 and RWT

4 are also con-
gruent given the same ε.

Note that the case of interval predictions is needed for the
work of the algorithm with union rules (defined in the fol-
lowing).

Definition 3 We say that R1 ⊇ R2 correctly, if r1 ∼= r2. In
this case, the coverage of R2 by R1 is correct; otherwise,
the coverage is wrong. If R1 ⊇ R2 wrongly, then R2 is an
exception of the covering rule R1.

RW
1 correctly covers RW

2 . Rule RWT
5 correctly cov-

ers both rules RWT
3 and RWT

4 , whereas rule RWT
6 is

wrongly covered by RWT
5 , as well as by RWT

4 ; hence,
RWT
6 is an exception of both RWT

5 and RWT
4 .

Definition 4 The coherence coefficient (CC) of a rule is the
ratio of the number of correctly covered rules to the total
number of covered rules:

CC(R) = |R⊇correct |
|R⊇|

Definition 5 A rule whose CC< 1, i.e., a rule having at least
one exception, is called a rough rule.

In our example rule base, rule RWT
5 covers three rules

(including itself) correctly and one rule wrongly; so,
this is a rough rule with CC = 3/4 = 0.75. Rule RWT

4
covering one rule wrongly and one (itself) correctly
has CC = 1/2 = 0.5.

Definition 6 A roughness threshold ρ ∈ [0, 1] defines the
minimal acceptable value of CC of a rule included in a
descriptive model during the run of the algorithm.
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So, specifying ρ = 1 means that no rough rules are allowed,
and the smaller ρ gets, the more exceptions rough rules are
allowed to have.

For a better understanding of the concept of rule cov-
erage, imagine the multi-dimensional space of the features
(assuming, for simplicity, that all features are numeric). Con-
ditions of a rule antecedent define a multi-dimensional shape
(namely, a rectangular hyper-parallelepiped) in this space.
When some feature fi is not used in a rule explicitly, it can
be treated as being involved in an implicit condition fi ∈ V
where V is the whole range of possible feature values. A rule
R1 covers rule R2 (Definition 1) when the shape p1 defined
by R1 includes the shape p2 defined by R2. Please note that
any rectangular parallelepiped p in this space corresponds
to some conjunction of conditions, even if there is no rule
with such an antecedent. For two or more shapes, it is pos-
sible to create a rectangular parallelepiped that encloses all
these shapes. The smallest parallelepiped p∪ enclosing the
shapes p1 and p2 defined by the conditions of rules R1 and
R2 represents the union of the antecedents of R1 and R2.

When we apply the union operation also to the predictions
r1 and r2 of the rules R1 and R2, we obtain a new rule R∪,
which is the union of the rules R1 and R2. The rule R∪ is
meaningful onlywhen the predictions r1 and r2 are congruent
(Definition 2), so our algorithmmakes unions only from rules
with congruent predictions.

RWT
5 = RWT

3 ∪ RWT
4

Accidentally, p∪, apart from p1 and p2, may also include
parallelepipeds corresponding to antecedents of some other
rules; hence, a union R∪ of two rules R1 and R2 may addition-
ally cover other rules. Some of those other rules may have
predictions incongruent to the prediction of R∪. In such a
case, R∪ is a rough rule (Definition 4), and the rules with
incongruent predictions are its exceptions (Definition 3).

An example is rule RWT
5 : being the union of rules

RWT
3 and RWT

4 , it wrongly covers rule RWT
6 , which

makes RWT
5 a rough rule.

Let us now define the union of two rules more formally.

Definition 7 A union of two conditions c1 = ( fi ∈ V1) and
c2 = ( fi ∈ V2) involving the same feature fi is the condition
c∪ = ( fi ∈ V ∪), where

• V∪ = (V1 ∪ V2) if V1 and V2 are sets of discrete values;
• V∪ = [min(vlow1 , vlow2 ),max(vup1 , v

up
2 )] if V1 = [vlow1 ,

v
up
1 ] and V2 = [vlow2 , v

up
2 ] are intervals.

The union of conditions precipi tation =
none and precipi tation = mist is condition
precipi tation ∈ {none,mist}. The union of con-
ditions windspeed ≤ 5 km/h and windspeed ∈
[8, 10] km/h is windspeed ≤ 10 km/h.

Definition 8 A union of two predictions r1 and r2, denoted
r∪, is defined as

• r∪ = r1 = r2 when r1 = r2,
• r∪ = r1 ∪ r2 when r1 and r2 are distinct sets of discrete
values,

• r∪ = [min(rlow1 , rlow2 ),max(rup1 , rup2 )] when r1 and r2
are numeric intervals, r1 = [rlow1 , rup1 ], r2 = [rlow2 , rup2 ].

Definition 9 A union of two rules R1 and R2 with congruent
predictions r1 and r2 is a rule R∪ where each condition is a
union of conditions from R1 and R2 according to Definition
7, and the prediction r∪ is the union of r1 and r2 according
to Definition 8. Since union is defined for congruent rules, it
follows that R∪ ⊇ R1 and R∪ ⊇ R2 correctly.

In the union rule RWT
5 = RWT

3 ∪ RWT
4 , the con-

dition wind speed ≤ 10 km/h is the union of the
conditions windspeed ≤ 5 km/h from RWT

3 and
windspeed ∈ [5, 10] km/h from RWT

4 , and the pre-
diction walk time ∈ [30, 40] min is the union of
the respective predictions walktime ∈ [35, 40] and
walk time ∈ [30, 35]. The union of rule RW

2 and rule
RW
3 is rule RW

1 , where the condition precipitation
∈ {rain, snow} is the union of precipitation = rain
from RW

2 and precipitation = snow from RW
3 , and

the prediction coincides with the predictions of RW
2

and RW
3 . Please note that the union rule RW

1 does not
include any condition involving feature wind speed
because RW

3 has no condition for wind speed.

As mentioned earlier, an absence of a condition for some
feature in a rule means that the feature may take any value
from its full range of values.

3.2 Distance function

In order to perform the hierarchical merging of rules, we
define a distance function on the space of rule antecedents.
We set the distance between two rule antecedents to be the
sum of the distances between the value intervals V of the
same feature fi in the conditions of the rules. So if c1 =
fi ∈ [vlow1 , v

up
1 ] and c2 = fi ∈ [vlow2 , v

up
2 ], then distance

between c1 and c2 is

d fi = |vlow1 − vlow2 | + |vup1 − v
up
2 |

2 (vmax − vmin)

where vmax and vmin are the absolute maximal and minimal,
respectively, values of the feature fi that may occur in prac-
tice. This distance metric is, in fact, a specific formulation of
the Hausdorff distance [38] for numeric intervals. The divi-
sionby (vmax−vmin) is done for normalization of all distances
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between conditions to the interval [0, 1]. For instance, the dis-
tance between intervals [0, 5] and [5, 10] of feature with the
value range [0, 200] is (|0−5|+|5−10|)/2(200−0) = (5+
5)/400 = 0.025, whereas the distance between [5, 10] and
[8, 10] is (|5−8|+|10−10|)/400 = (3+0)/400 = 0.0075.

For categorical features, rule conditions contain discrete
sets of categorical values instead of numeric intervals. In this
case, the distance between two conditions can be defined as
the Jaccard similarity index [39] subtracted from 1, i.e., if
c1 = fi ∈ A and c1 = fi ∈ B, where A and B are sets,
then d fi = 1−|A∩ B|/|A∪ B|. The distance equals 0 when
A and B are identical and 1 when the sets have no common
elements. Thus, the distance between the sets {rain, snow}
and {rain,mist} is 1 − 1/3 = 0.667, where 1 is the size of
the set intersection {rain} and 3 is the size of the set union
{rain, snow,mist}.

Based on the distances between corresponding conditions,
the distance between the rules R1 and R2 is

∑
fi d fi , where

fi ∈ {features used in R1 and R2}. It corresponds to the def-
inition of the Manhattan distance. The interval endpoints are
normalized to values between 0 and 1: When some feature
is absent in the conditions of one of the rules, it is assumed
to have an interval from 0 to 1. Note that since we are not
aiming at creating a new compact model that will be used on
novel data, this assumption makes sense.

Note that the distance metric is defined solely for the rule
antecedents and does not take into account the rule pre-
dictions. Since merging is applied only to the rules with
congruent predictions, there is no need to include the pre-
dictions in the calculation of the rule similarity. Besides, the
distance metric defined in this way can be used for detection
of similar rules with incongruent predictions, which may be
useful in examining the quality of a rule set.

3.3 Basic algorithm for rule set generalization

Input

• A classification or regression model in the form of a set
of rules or a decision tree. In the latter case, the tree is
transformed to an equivalent set of rules byoneof existing
methods (e.g., [6]).

• A roughness threshold ρ (Definition 6).
• Optional: For a regression model, a tolerance threshold

ε (Definition 2).

Output

• A set of rules such that:

1. Each original rule is correctly covered by some result-
ing rule (Definitions 1, 3);

2. The resulting set of rules has smaller cardinality than
the original one. In case when the resulting set of
rules has the same cardinality as the original one, we
say that the algorithm failed;

3. The coherence coefficient (Definition 4) of any union
rule in the resulting set is not less than the roughness
threshold, i.e., CC ≥ ρ (Definition 6).

The pseudocode of the rule set generalization algorithm is
given below (Algorithm 1).

The algorithm repeatedly finds the closest (according to
the defined distance metric) pair of rules whose predictions
are congruent by Definition 2 and applies the operation of
rule union (Definition 9). If the united rule has CC ≥ ρ

(Definitions 4, 6), it substitutes the two rules it was produced
from; otherwise, it is discarded. After accepting a new rule,
the algorithm searches for the other rules that are correctly
covered by this rule (Definitions 1–3) and, if found, removes
them from the resulting set. The algorithm terminates when
no new union rule was accepted during an iteration.

3.4 Checking fidelity in terms of data predictions

Since a union rule is more general than the rules it has
been derived from, it may be applicable to additional data
instances not described by the original rules. For some of
these additional instances, the prediction of the union rule
may be incongruent with the predictions of corresponding
rules from the original model. If we consider some reference
dataset, that we have at hand (not necessarily the training
dataset used for the original black-box model), we can define
the following notion of fidelity with respect to the original
rule set.

Definition 10 The fidelity of a union rule is the ratio of the
number of data instances in some reference dataset for which
the union rule gives predictions congruent to the predictions
of the original model to the total number of data instances
this rule is applicable to.

A reference dataset can be, for example, the set fromwhich
themodel was derived. In the following, we define the overall
fidelity of a descriptivemodel, i.e., a generalized rule set,with
respect to the original model.

Definition 11 The fidelity of a descriptivemodel is the ratio
of the number of data instances in the reference dataset for
which the descriptive model gives predictions congruent to
the predictions of the original model to the total number of
data instances both models are applicable to.

When some set of data instances described by the original
rule set is available, the fidelity of the derived union rules to
the original predictions can be additionally checked. A rea-
sonable requirement is that the fidelity must not be less than
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Algorithm 1 generalization of the set of rules
Input R
Output RG

1: RG ← R
2: changed ← True
3: while changed do
4: PD ← ∅  find distances between all congruent rules in the set
5: for each (Ri , R j ) : Ri ∈ RG, R j ∈ RG, i �= j do  apply Definition 2
6: if congruent(ri , r j ) then
7: di j ← distance(Ri , R j )

8: PD ← PD ∪ {(Ri , R j , di j )}
9: end if
10: end for
11: changed ← False
12: while PD �= ∅ ∧ ¬changed do
13: (i, j) ← argmindi, j PD  find the minimal distance pair
14: PD ← PD \ {(Ri , R j , di j )}
15: R∪ ← Ri ∪ R j  unite the closest rules according to Definition 9
16: if CC(R∪) ≥ ρ then  check if the union is acceptable according to Definition 6
17: RG ← RG \ {Ri , R j }
18: for each Rk ∈ RG do  remove all correctly covered rules (Definitions 1–3)
19: if congruent(rk , r∪) ∧ R∪ ⊇ Rk then
20: RG ← RG \ {Rk}
21: end if
22: end for
23: RG ← RG ∪ {R∪}
24: changed ← True
25: end if
26: end while
27: end while

ρ. A condition for checking the fidelity should be added in
the “if” statement on line 16 ofAlgorithm1, i.e., the extended
condition is CC(R∪) ≥ ρ ∧ fidelity(R∪) ≥ ρ.

3.5 Iterative lowering of the roughness threshold

There is a possibility to applyAlgorithm1 in an iterativeman-
ner. For this purpose, the user specifies an interval [ρlow, ρup]
and a step �(ρ), where �(ρ) < ρup − ρlow. Algorithm 1 is
executed several times with consecutively setting the rough-
ness threshold ρ to ρup, ρup − �(ρ),..., ρlow, i.e., starting
from ρup and decreasing the threshold in each following run
by�(ρ). The output of run i is used as the input of run i +1.

This extension of the method prioritizes more coherent
rules, i.e., it will strive to produce united rules with higher
CC before attempting to achieve higher compression at the
cost of reducing the coherence.

To demonstrate possible differences between the results of
the basic algorithm and its multi-step variant, Fig. 1 shows
two projection displays where rules are represented by dots.
The dots are arranged on a plane based on the distances
between the rules. The projections have been obtained using
the method t-SNE [40]. The dot colours encode the predic-
tions, and the sizes are proportional to the number of the data
instances the rule applies to. The lines connect dots represent-
ing rules that were united by the generalization algorithm.

The display on the left corresponds to the base algorithm and
the one on the right to themulti-step variant. The dotsmarked
in black represent a group of original rules that were united
in a single rule by the multi-step variant and included in three
different unions by the base variant.

The illustrations refer to an example classification model
consisting of 109 rules including in total 818 conditions.With
the roughness threshold of 0.6, the base variant reduces the
original set to 54 rules with 342 conditions. Out of which 33
rules are the same as in the original set (i.e., the algorithm
cannot generalize them) and 21 rules are unions obtained
from 76 original rules. The coherence coefficient of the union
rules ranges from 0.6 to 1. However, only one union has CC
= 1, three rules have CC from 0.71 to 0.78, and the remaining
17 rules have CC ≤ 0.67.

The multi-step variant that iteratively lowers the rough-
ness threshold from 1 to 0.6 in steps of 0.05 reduces the
original set to 62 rules with 399 conditions. 43 rules remain
the same as in the original set and 19 rules are unions. The
coherence coefficient of the union rules ranges from 0.67 to
1. 5 rules have CC = 1, 6 rules have CC from 0.7 to 0.8,
and the remaining 8 rules have CC = 0.67. Hence, the multi-
step variant produces more accurate union rules but achieves
a lower degree of generalization and compression than the
base algorithm.
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Fig. 1 Twodisplays demonstrate differences between results of the base
algorithm (left) and themulti-step variant (right). The lines connect dots
corresponding to rules that were united by the respective variants of the
algorithm. The dots marked in black in both displays represent the same

selected group of original rules that were united into a single rule by
the multi-step variant and included in three different unions by the base
algorithm (colour figure online)

4 Visualizations

We have designed and implemented several visualizations1

that enable researchers to explore rule sets and gain insights
into the functionality of our algorithm. It is important to note
that these visualizations are not an integral part of the rule
generalizationmethod. Instead, they serve as supportive tools
to demonstrate how the method works, rather than being the
central focus of the paper. Furthermore, our software imple-
mentation is a proof of concept, demonstrating the feasibility
and potential of our approach. In its current state, it is limited
to handling rules with numeric feature conditions; however,
it is important to emphasize that this limitation is specific to
our implementation and does not restrict the broader appli-
cability of the approach itself.

We display a set of rules in the form of a table, as shown
in Fig. 2. Each table row corresponds to one rule; each table
column corresponds to one feature. Value intervals of the
conditions are represented by horizontal bars, which show
the relative position of the interval between the minimal and
maximal feature values. If a feature is not used in a rule,

1 While visualizations like these can be used for explaining models to
users, there is plenty of room for improvement. User-centred design
and user evaluation are necessary for ensuring that visualizations are
effective, well understood, and easy to use. This kind of work is beyond
the scope of this paper.

the corresponding cell is empty. Besides, there in a column
entitled “Rule”, where each rule is represented as a whole
by a glyph with vertical axes corresponding to all available
features and vertical bars corresponding to the features used
in the rule.

A table showing the results of the rule generalization algo-
rithm (Fig. 3) includes additional columns containing (1)
counts of correct and wrong applications of the rule to data
instances, (2) counts of correctly and wrongly covered orig-
inal rules, (3) fidelity, (4) coherence coefficient, (5) number
of rules in the derivation hierarchy, and (6) depth of the hier-
archy.

Detailed information about a rule is provided in a popup
window (Fig. 4) appearing when the user points on a table
row. The window shows all conditions of the rule as well as
the minimal and maximal values of all features involved in
the rule. Besides, it includes a graphical representation of the
rule in a form of a glyph. A glyph representing a rule includes
as many vertical axes as there are features used in the whole
set of rules (as well as in the ”Rule“ column of the table). For
each feature that is used in the given rule, there is a vertical bar
drawn on top of the corresponding axis. The bar represents
the interval of the feature values that is specified in the rule
condition involving this feature. While the whole length of
the axis represents the full range of the feature values (i.e.,
from the minimal to the maximal values that occur in the
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Fig. 2 A fragment of a table representing rules in a graphical form. The rows are ordered by rule similarity using the algorithm OPTICS [41]
applying the distance function introduced in Sect. 3

Fig. 3 A fragment of a table representing results of rule generalization

Fig. 4 Examples of popup windows with detailed information about
individual rules

dataset), the vertical positions of the lower and upper sides
of the bar correspond to the lower and upper ends of the value
interval specified in the rule condition. The representation is
explained in the upper part of Fig. 5.

Ver�cal axes represent features

Ver�cal bars represent intervals of feature values

Frame colour 
encodes 
predic�on (class)

Black frame 
marks selected 
rule

Cyan-filled bars represent intervals of feature values from selected rule(s)

Another rule 
compared with 
selected rule(s)

Fig. 5 Explanation of the visual representation of rules by glyphs
(colour figure online)

Another type of display we use is a panel with multiple
rules represented by glyphs, as shown in Fig. 6. A popupwin-
dowwith rule details, as in Fig. 4, can be obtained by pointing
on a glyph. Comparison of the rules is supported by amode of
glyphdrawing inwhich conditions of one rule are represented
by hollow bars with black frames and conditions of one or
more previously selected rules are represented by cyan-filled
semi-transparent bars without frames, as explained in the
lower part of Fig. 5. The bar shading is darker where fea-
ture value intervals from two or more selected rules overlap.
For example, in Fig. 6, the conditions of three selected rules
(their glyphs have black frames around them) are represented
within all glyphs in the display. Rules are selected by clicking
on their glyphs or rows in a table view.
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Fig. 6 A display with multiple rules represented by glyphs. The
numeric labels are rule identifiers. The colours of the glyph frames
encode the predictions made by the rules. Three selected rules are

marked by additional black frames. The conditions from the selected
rules are represented in all glyphs by semi-transparent vertical bars
shaded in cyan (colour figure online)

Fig. 7 An illustration of the concept of rule coverage. The colours of
the glyph frames represent the predicted classes of the rules. The rule
shown on the top left covers the remaining 9 rules, of which 6 are cov-
ered correctly (they predict the same class as the first rule, indicated by

the green colour of the frames) and 3 wrongly (they predict a differ-
ent class, indicated by the blue colour of the frames). The first rule is
selected for comparison with the others; its conditions are represented
by cyan-filled bars in all glyphs (colour figure online)

Fig. 8 An illustration of rule union. The glyphs on the right represent
two original rules and the glyph on the left their union. The two original
rules are selected for comparison, as indicated by the black frames of
their glyphs. The conditions from these rules are represented in all three
glyphs by bars shaded in cyan (colour figure online)

Figure 7 illustrates the concept of rule coverage. Here, the
rule shown on the top left (it is selected, so that the glyph is
marked with a black frame) covers the remaining rules rep-
resented in the image. The conditions of the covering rule are
represented in all glyphs by cyan-shaded bars. The colours
of the glyph frames encode the predicted classes of the rules.
Five of the nine covered rules have the same prediction as
the covering rule and three rules have a different one. Hence,
five rules are covered correctly and three rules incorrectly.

Figure 8 illustrates the operation of rule union. Two orig-
inal rules are shown on the right and their union on the left.
The original rules are selected, and their conditions are rep-
resented by cyan-shaded bars in all three glyphs. Darker bar
shading signifies overlapping conditions. The first four con-
ditions and the seventh condition are identical in the two
original rules; so, the same conditions are included in the
union rule. In the fifth and eighths conditions, the value inter-
val of one rule includes the value interval of the other rule; so,

the union rule includes the larger intervals. In the sixth and
ninth conditions, the value intervals do not overlap; so, the
union contains the interval from the lower end of the lower
interval to the upper end of the higher interval. There are two
conditions with features appearing only in one of the original
rules. For these features, the union has no conditions.

The numbers 0.80 and 0.99 above and below the glyph
of the union rule represent the coherence coefficient and the
fidelity of the union rule, respectively. In this example, the
union rule covers four original rules correctly and one origi-
nal rule incorrectly; so, it is a rough rule with CC = 4/(4+1) =
0.8. This union rule gives the same predictions as the original
model for 963 data instances and different predictions for 8
data instances; hence, its fidelity is 963/(963 + 8) = 0.99.

Figure 9 illustrates the work of the algorithm by example
of deriving one generalized rule. Original and derived rules
are represented by glyphs. The lines represent inclusions of
rules into more general rules covering them. In one of the
iteration steps, the algorithm unites original rules labelled 25
and 51 (on the upper right of the image) into a union rule
shown in the centre of the upper row of glyphs. In another
step, the algorithm unites original rules 91 and 99, which
are shown in the lower right corner of the display. In one of
the following steps, the algorithm unites the earlier produced
union of the rules 25 and 51 (top middle) with an original
rule labelled 5 (its glyph is in the middle of the figure). The
resulting union rule is shown on the top left. The algorithm
finds out that this rule also covers two other rules, an original
rule labelled 35 and the earlier obtained union of the rules
91 and 99. The glyphs of these rules are drawn in the central
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Fig. 9 A visual display of the derivation hierarchy of a rule. Only coherence and fidelity coefficients that are lower than 1 are represented by text
labels. The absence of a text label indicates that the coefficient value is 1

part of the display below the glyphs of the two rules that have
been united. Hence, the final union rule generalizes 6 origi-
nal rules. In deriving it, two intermediate unions have been
made. The coherence coefficient of the final rule is 0.75. The
rules correctly and wrongly covered by this rule are shown
in Fig. 7.

5 Experiments

We describe our investigation of 4 models from three
real-world tasks. For each rule set, we ran the basic rule
generalization algorithm 9 times setting the parameter ρ to
1.00, 0.95, 0.90, 0.85, ..., 0.60. Each run was applied to the
original rule set. For each run we are analysing the statistics
that describe the comprehensibility of the compressed model
(the number of the resulting rules, the total number of con-
ditions in all the rules, the mean number of conditions per
rule, the number and percentage of the rules including more
than 5 conditions, considered as complex), the roughness
of the descriptive model (the minimal CC that was actually
achieved, theminimal fidelity of a rule, the total fidelity of the
whole rule set, and the number of rough rules), and the char-
acteristics of the algorithm work (the number of generated
union rules and the maximal depth of a rule derivation hier-
archy). While the first group of the results allows to access
the interpretability, the second and third ones give a deeper
understanding of the mechanics that allows to achieve such
compressed descriptive model. It is important to note once

again, that our aim is to interpret the global logic of a model
at hand, not to understand the data. So we achieve our goal
if we can explain the main rules learned by the model, the
main features that affect its decisions, the possible outliers
that require highly specific rules, etc.

5.1 Cardiocartography dataset

Since medical domain is of high interest for interpretability
opportunities, as a primal experiment we looked at a medical
dataset. It is anUCI [42] dataset of cardiocartography records
[43]. It contains 2126 foetal cardiotocograms for which vari-
ous diagnostic features were measured. They were classified
with respect to a morphologic pattern into 10 classes and to a
foetal state into 3 classes. For both cases, we directly learned
a decision tree and analysed them using our algorithm.

Three classes task

The 3 classes model consists of 109 rules describing 1700
data instances of the training dataset. The statistical char-
acteristics of the generalized rule sets obtained for different
settings of the parameter ρ are presented in Fig. 10.

It can be noticed that decreasing the roughness threshold
ρ from 1 to 0.85 does not lead to generation of any rough
rule, i.e., none of the resulting rules has exceptions. However,
the union rules, even when their CC = 1, are more general
than the original rules and applicable to larger subsets of the
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rho N rules
Total N 

condi�ons
Mean N 

condi�ons
N rules >5 
condi�ons

% rules >5 
condi�ons min CC

min 
fidelity

Total 
fidelity

N rough 
rules

N union 
rules

Max 
depth

109 818 7.50 75 68.81 1.00 1.00 1.00 0 0 1
1.00 103 762 7.40 68 66.02 1.00 1.00 1.00 0 6 2
0.95 98 708 7.22 63 64.29 1.00 0.95 0.99 0 10 2
0.90 95 678 7.14 61 64.21 1.00 0.91 0.98 0 10 3
0.85 94 678 7.21 62 65.96 1.00 0.85 0.98 0 10 3
0.80 87 609 7.00 54 62.07 0.80 0.81 0.98 3 12 5
0.75 84 594 7.07 52 61.90 0.75 0.75 0.97 5 12 5
0.70 78 542 6.95 47 60.26 0.75 0.71 0.97 7 13 6
0.65 64 415 6.48 35 54.69 0.67 0.67 0.96 17 20 5
0.60 54 342 6.33 28 51.85 0.60 0.62 0.90 20 21 6

Fig. 10 Results of experimenting with the 3-classes classification model trained on the cardiocartography dataset

data instances,whichmay include instanceswith incongruent
predictions. Hence, union rules may be fully coherent with
regard to the covered original rules, but at the same moment
their fidelity may be less than 1.

Another observation is that there are many original rules
that cannot be united with others and remain standalone even
when the roughness threshold is low. Thus, for ρ = 0.60,
only 21 out of 54 rules in the resulting model are union rules.
Nevertheless, the achievable degree of simplification can be
judged as quite high, especially in termsof the number of con-
ditions and the proportion of complex rules with more than
5 conditions. Moreover, such rules help to identify outlier
instances that require different logic than most of the other
ones. For example, the rule at the bottom of Fig. 4 describes
only one data instance, and it could not be united with any
other rule.

An important property of the generalized rule set is that
simpler rules (i.e., including fewer conditions) describe a
much larger proportion of the data instances than in the
original model. So, the minimal number of conditions in
one rule is 3 in the original model and 1 in the simplified
versions obtained with ρ = 0.65 and ρ = 0.60 (the maxi-
mal number of conditions per rule is 12 in all models). The
original model contains 4 rules with 3 conditions describ-
ing 47 data instances, 7 rules with 4 conditions describing
62 instances, and 23 rules with 5 conditions describing 163
instances. Taken together, the 34 simpler rules describe 272
data instances out of 1700, i.e., only 16%. In the model
obtained with ρ = 0.65, the numbers of the rules includ-
ing from 1 to 5 conditions are, respectively, 2, 1, 6, 9, and
11, and these 29 rules describe 1009, 36, 201, 200, and 48
data instances, respectively, i.e., 1494 instances in total. As
two or more rules from a generalized model may be applica-
ble to the same data instances, the cumulative number of the
data instances correctly (i.e., in congruence with the origi-
nal model) described by the model with ρ = 0.65 is 2709,
and thus the simplest rules make 55% (1494/2709 ∗ 100)
of the correct descriptions. However, these rules describe 96

data instances incorrectly, i.e., their joint fidelity is 0.94 =
1494/(1494 + 96).

Hence, there are multiple aspects of simplification: the
number of rules, the number of conditions, the proportion
of simple rules, and the proportion of the data described by
these simple rules. Moreover, the conditions of the simplest
rules applicable to large number of instances indicate which
features have higher importance than others. For example,
the model with ρ = 0.65 contains a rule with a single condi-
tion “If histogram mode < 148.5 then class = 1” correctly
describing 881 data instances and having fidelity 0.97. This
rule reveals the importance of the feature “histogrammode”.
Another example is that percentage of time with abnormal
short term variability is rather low for class 1 (healthy), but
gets higher for 2 and 3 (suspect and pathology), at the same
moment the histogrammean is lower for the pathology class,
compared to other two.

Additionally we investigated the effects of model pruning
on the performance of our algorithm and presented the results
in Sect. 5.4.

Ten classes task

This dataset allows us to see the difference between inter-
pretability for simpler and more complex task on the same
data features. Decision tree for 10 classes consists of 202
rules describing the same 1700 data instances of the training
dataset. The descriptive statistics of the results of the exper-
iments are shown in Fig. 11. As it could be expected, the
potential for compression and generalization is lower when
the number of classes is higher due to the congruence require-
ment. Compared to the 3-classmodel, the 10-classmodel also
consists of more complex rules, i.e., ones that have more
conditions. The generalization increases the proportion of
simpler rules having up to 5 conditions, which contributes
to better comprehensibility, along with the decrease of the
number of the rules. The fact that with ρ = 0.60 we see
many more union rules that are not rough, compared to the
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fidelity

N rough 
rules

N union 
rules

Max 
depth

202 1739 8.61 185 91.58 1.00 1.00 1.00 0 0 1
1.00 197 1682 8.54 177 89.85 1.00 1.00 1.00 0 5 2
0.95 188 1567 8.34 166 88.30 1.00 0.95 0.99 0 14 2
0.90 185 1536 8.30 163 88.11 1.00 0.90 0.98 0 17 2
0.85 183 1518 8.30 161 87.98 1.00 0.88 0.98 0 19 2
0.80 177 1472 8.32 157 88.70 0.83 0.80 0.98 3 19 3
0.75 167 1357 8.13 145 86.83 0.75 0.77 0.95 9 25 4
0.70 163 1326 8.13 139 85.28 0.75 0.70 0.92 10 23 5
0.65 149 1172 7.87 121 81.21 0.67 0.67 0.90 26 36 5
0.60 139 1062 7.64 106 76.26 0.60 0.63 0.85 25 34 5

Fig. 11 Results of experimenting with the 10-classes classification model derived from the cardio dataset

3-classmodel also confirms that the global logic of themodel
is more complex.

5.2 Home equity line of credit (HELOC), 2 classes

This example application is based on the Explainable
Machine Learning Challenge organized by a group of
commercial and academic organisations.2 Based on an
anonymized dataset of applications made by homeowners,
the challenge requires creation of a readily explainablemodel
predicting the value of the variable Risk Performance, which
may be either “bad” or “good”. In order to allow a cor-
rect decision tree creation, we excluded records with special
values and two categorical features. We first created an obvi-
ously incomprehensible random forest model with 50 trees
without depth restriction, that achieves perfect accuracy, and
then generated a mimic model approximating the behaviour
of the random forestmodel. Themimicmodel consists of 384
rules containing in total 3019 conditions which involve 21
features with numeric value domains. The statistics describ-
ing the results of the generalization are presented in Fig. 12.

It can be seen that the mimic model can be slightly sim-
plified even with ρ = 1. It means that the model has some
redundancies. While increasing the degree of simplification,
the total fidelity of the simplified model to the original one
decreases gradually butmore substantially than itwas in other
experiments. A probable reason is high similarities between
rules giving opposite predictions: when a rule gets more gen-
eral, it may become applicable to additional data instances
that are described by other rules, even if it does not cover
those other rules (i.e., the conditions of the rules partly over-
lap). The projection plot on the left of Fig. 13 supports this
guess: blue and red dots representing rules with negative and
positive outcomes, respectively, tend to be very close in the
plot. An interesting side effect of the simplification is that
it increases the separation, i.e., the dissimilarity between the

2 See https://community.fico.com/s/explainable-machine-learning-
challenge.

rules with the positive and negative outcomes. This can be
seen from comparing the projection of the original rule set on
the left of Fig. 13 to the projections of the simplified rule sets
obtained with ρ = 0.85 (Fig. 13, centre) and with ρ = 0.60
(Fig. 13, right).

The similarities between rules are demonstrated in Fig. 14,
where a table displays a group of rules represented by a clus-
ter of closely positioned dots in the projection plot shown in
Fig. 13, left. The cluster has been interactively selected by
dragging a frame around it. The table shows that the rules
with negative results (Action = 0) differ from the closest
rules with positive results (Action = 1) by just one condi-
tion.

Using this example, we can demonstrate how our tech-
niques can be used to answer the question of the challenge
organizers: if an applicant who has got a negative result
(“bad”), can themodel easily explainwhat should be changed
to turn the result to positive (“good”)? For this purpose, the
rule R0 that gave the negative result needs to be identified
in the projection plot (the localization of rules is supported
by highlighting) and the rules with positive results having
close positions in the plot need to be selected, for example,
as shown in Fig. 13, left. The rule R0 can be conveniently
comparedwith the other selected rules using the table display
shown in Fig. 14 or a glyph representation, as in Fig. 15. In
this figure, the rule no. 41 is selected as a reference for com-
parison. Its conditions are represented by cyan-filled bars in
all glyphs. It is easy to see that a small increase of the value
of the third feature (Percent Installment Trades) will make
rule no. 271 with a positive outcome applicable to this case
instead of the rule no. 41. Other possibilities are to make
rule no. 241 applicable by increasing the value of the 7th
feature (Net Fraction Installment Burden), or rule no. 340 by
increasing the value of the 8th feature (Percent Trades Never
Delinquent), or rule no. 254 by increasing the value of the
second feature (Consolidated Version of Risk Markers), or
rule no. 79 by decreasing the value of the 5th feature (Number
Trades 60+ ever).
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N rough 
rules

N union 
rules

Max 
depth

384 3019 7.86 343 89.32 1.00 1.00 1.00 0 0 1
1.00 351 2603 7.42 287 81.77 1.00 1.00 1.00 0 33 2
0.95 339 2463 7.27 269 79.35 1.00 0.95 0.99 0 42 3
0.90 323 2291 7.09 242 74.92 1.00 0.90 0.97 0 57 3
0.85 313 2195 7.01 231 73.80 1.00 0.86 0.95 0 62 4
0.80 293 2008 6.85 206 70.31 0.80 0.80 0.91 9 65 4
0.75 257 1693 6.59 171 66.54 0.75 0.75 0.85 37 71 5
0.70 234 1497 6.40 146 62.39 0.70 0.70 0.83 38 75 5
0.65 201 1232 6.13 113 56.22 0.67 0.65 0.78 70 86 6
0.60 158 941 5.96 84 53.16 0.60 0.60 0.73 53 67 7

Fig. 12 Results of experimenting with the 2-classes classification model derived from the HELOC dataset

Fig. 13 Similarity-based t-SNE projections of the original HELOC rule set (left) and the simplified versions obtained with ρ = 0.85 (centre) and
with ρ = 0.60 (right). Blue dots correspond to rules predicting negative outcome and red to rules with positive predictions (colour figure online)

Fig. 14 A group of rules represented by closely positioned dots in the projection plot in Fig. 13, left (enclosed in a dark grey rectangle) is shown
in a table view (colour figure online)

Fig. 15 The same rules as in Fig. 14 are represented by glyphs. The first rule (no. 41) is selected for comparison with the others. One can see how
the negative result may be turned to positive by changing the value of just one feature
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Fig. 16 Finding possibilities of transforming a negative outcome to a
positive one using a generalized model obtained with ρ = 0.60. Top:
The table view displays two selected rules, which are shown as circles
with black outline in the projection on the right in Fig. 13. Middle: The
table shows the original rules covered by rule 384, which predicts a pos-

itive outcome. Rule 384 itself is presented in the top row of the table. It
has one exception (Action = 0) presented in the last row. Bottom: The
glyphs represent the original rules covered by the generalized rule 384.
The exception rule is selected for comparison with the rules predicting
positive results (colour figure online)

In a similar way, one can use more general rules of a sim-
plifiedmodel version, in which critical features like these can
be easily identified. An example is demonstrated in Fig. 16,
where the descriptive model is obtained with ρ = 0.6. Let a
specific case with a negative outcome be described by the
generalized rule 218. The closest generalized rule with a
positive outcome is 384. These two rules are represented
by the circles with black outline in the projection on the
right of Fig. 13 and shown in the table view at the top of
Fig. 16. According to rule 384, achieving a positive result
requires increasing the value of the feature “Consolidated
Version of Risk Markers” (CVRM). However, rule 384 has
one exception in addition to correctly covering three original
rules. Using interactive visualization, all covered rules can
be extracted from the original model for examination and
comparison. These rules, along with rule 384, are displayed
in the table view in the middle of Fig. 16. It becomes evident
that simply increasing the value of CVRM will not be suf-
ficient, as the exception rule (255) shown in the last row of
the table has a condition with a high value of this feature.
To understand the difference between all conditions in the
exception rule and the positive rules, the glyph representa-
tion in the lower part of Fig. 16 can be utilized. The user can
observe that, in addition to increasing CVRM, achieving a
positive outcome is possible by having a lower value of fea-
ture 2 (Average Months in File) according to rule 299 (row
5 in the table), or a higher value of feature 7 (Net Fraction
Installment Burden) according to rule 26 (row 2). However,
rule 67 (row 3) is more challenging to fulfil as it requires
meeting multiple specific conditions.

This example highlights an important aspect. With inter-
active visual tools, it is possible to extract, examine, and
compare all the original rules that are correctly and wrongly
covered by a generalized rule. This capability enables the
user to identify any conditions that might have been omitted
during the generalization process. As a result, the user can

gain comprehensive insights into the various possibilities for
achieving the desired outcome. By considering the complete
information, users can make more informed decisions and
better understand the potential trade-offs.

5.3 Material science, regression

This example is taken from the NOMAD 2018 Kaggle chal-
lenge to predict the formation energies and bandgap energies
of alloys from transparent conductors.3 In contrast to the pre-
vious examples, this is a regression task.

In material science, a state-of-the-art prediction method is
RuleFit [9], a rule ensemble for regression that learns a sparse
linear model over a large number of candidate rules together
with the original features. Note that the winning methods of
the Kaggle challenge (n-gram [44], SOAG [45],MBTR [46])
do not substantially outperform RuleFit on the entirety of the
dataset ( [47] have shown that they do, however, performwell
on well-defined subsets of the data). A prediction is obtained
using a weighted sum of rule outputs and feature values.
We used RuleFit to train a rule ensemble on the 402 data
instances using formation energy as target. The resulting rule
ensemble consists of 396 rules.Analysing these rules,wefind
that most of them describe single data instances which is not
surprising given that the number of rules is nearly equal to
the number of data instances. This indicates some potential
for compression.

The target values range from 0 to 0.7676. We have set the
tolerance threshold ε to 0.010, 0.020 and 0.050, correspond-
ing to the 2%, 5%, and 10% percentiles of target values. The
collected statistics are presented in Fig. 17.

The second rows in all three tables demonstrate that the
largest part of the simplification is achieved at the cost of

3 See https://www.kaggle.com/c/nomad2018-predict-transparent-
conductors.
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rho N rules
Total N 

condi�ons
Mean N 

condi�ons
N rules >5 
condi�ons

% rules >5 
condi�ons min CC

min 
fidelity

Total 
fidelity

N rough 
rules

N union 
rules

Max 
depth

396 3099 7.83 359 90.66 1.00 1.00 1.00 0 0 1
1.00 240 1760 7.33 204 85.00 1.00 1.00 1.00 0 96 6
0.95 240 1760 7.33 204 85.00 1.00 1.00 1.00 0 96 6
0.90 240 1760 7.33 204 85.00 1.00 1.00 1.00 0 96 6
0.85 238 1738 7.30 202 84.87 0.86 0.86 0.99 2 96 6
0.80 237 1726 7.28 201 84.81 0.80 0.80 0.99 3 96 6
0.75 234 1701 7.27 198 84.62 0.75 0.75 0.99 5 96 6
0.70 231 1669 7.23 195 84.42 0.71 0.71 0.97 8 95 6
0.65 230 1659 7.21 194 84.35 0.67 0.67 0.97 9 95 6
0.60 225 1603 7.12 188 83.56 0.60 0.60 0.94 12 93 6

rho N rules
Total N 

condi�ons
Mean N 

condi�ons
N rules >5 
condi�ons

% rules >5 
condi�ons min CC

min 
fidelity

Total 
fidelity

N rough 
rules

N union 
rules

Max 
depth

396 3099 7.83 359 90.66 1.00 1.00 1.00 0 0 1
1.00 185 1309 7.08 149 80.54 1.00 1.00 1.00 0 97 8
0.95 185 1309 7.08 149 80.54 1.00 1.00 1.00 0 97 8
0.90 185 1309 7.08 149 80.54 1.00 1.00 1.00 0 97 8
0.85 184 1301 7.07 148 80.43 0.86 0.86 1.00 1 96 8
0.80 182 1282 7.04 146 80.22 0.80 0.80 0.99 3 96 9
0.75 180 1266 7.03 144 80.00 0.80 0.75 0.98 3 96 9
0.70 177 1247 7.05 143 80.79 0.71 0.71 0.96 6 92 9
0.65 175 1224 6.99 140 80.00 0.71 0.65 0.94 7 91 9
0.60 166 1138 6.86 129 77.71 0.60 0.60 0.88 14 87 9

rho N rules
Total N 

condi�ons
Mean N 

condi�ons
N rules >5 
condi�ons

% rules >5 
condi�ons min CC

min 
fidelity

Total 
fidelity

N rough 
rules

N union 
rules

Max 
depth

396 3099 7.83 359 90.66 1.00 1.00 1.00 0 0 1
1.00 104 677 6.51 78 75.00 1.00 1.00 1.00 0 70 10
0.95 104 677 6.51 78 75.00 1.00 1.00 1.00 0 70 10
0.90 104 677 6.51 78 75.00 1.00 1.00 1.00 0 70 10
0.85 102 654 6.41 75 73.53 0.86 0.88 1.00 0 70 10
0.80 99 631 6.37 73 73.74 0.80 0.80 0.97 3 67 10
0.75 98 622 6.35 71 72.45 0.80 0.75 0.97 3 67 10
0.70 97 612 6.31 70 72.16 0.74 0.71 0.95 4 66 10
0.65 96 603 6.28 68 70.83 0.68 0.68 0.92 6 65 10
0.60 89 542 6.09 60 67.42 0.60 0.60 0.86 9 61 10

Fig. 17 Results of experimenting with the regression model derived from the material science dataset. The tables, from top to bottom, correspond
to ε = 0.010, ε = 0.020, and ε = 0.050, respectively

decreasing theprecisionof the predictions fromspecificnum-
bers to intervals. For example, a union rule predicts that the
result will be from 0.2179 to 0.2214 instead of predicting
a fixed number like 0.22. Hence, the chosen value of the
tolerance threshold ε has the highest impact on the result-
ing degree of simplification and generalization, whereas the
impact of the roughness threshold ρ is quite small: the
decrease in the number of rules due to decreasing ρ from
1 to 0.6 ranges from only 6% for ε = 0.010 to 14% for
ε = 0.050, and the decrease in the number of conditions
ranges from 9% for ε = 0.010 to 20% for ε = 0.050.

Nevertheless, the potential of our method for simplifying
the explanation of regression models can be considered as
high. It is quite reasonable to posit that a user rarely needs an
exact explanation for each individual numeric value that can
be predicted by amodel. Rather, the user can be satisfiedwith
a model description telling what combinations of conditions
lead tomodel results fitting in different ranges of values (e.g.,
high and low). The user-controlled value of ε determines how
narrow or wide these intervals will be. Thus, by choosing a
larger value, a user can obtain a compact description ofmodel
behaviour even without decreasing the coherence coefficient
of the rules. For example, the same material science model
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Fig. 18 Hierarchical exploration of the material science rule set. Top:
The original set of 396 regression rules has been reduced to 11 gen-
eralized rules with ρ = 1 and ε = 0.35. Middle: The subset of 133
original rules covered by the first rule from the upper table has been
generalized to 9 rules with ρ = 1 and ε = 0.15. Bottom: The subset of
77 original rules predicting values less than 0.115 has been generalized

to 9 rules with ρ = 1 and ε = 0.07. The t-SNE projections on the right
show groups of original rules covered by common generalized rules.
The colours from deep blue through green and yellow to red represent
the rule outcomes (i.e., predicted values) from the lowest to the highest
(colour figure online)

generalized with ε = 0.075 is described by 80 rules with
494 conditions, and ε = 0.25 gives only 22 rules with 94
conditions in total and from 2 to maximum 6 conditions in
each individual rule. Like in the other cases, such combina-
tions of conditions, as well as the features they involve, can
be considered the most influential for the model result.

This example suggests an interestingpossiblewayof using
the generalization method for regression tasks. First, a high-
level overview of the behaviour of a model is gained by
obtaining a very rough (large ε) generalized representation of
it. Then, subsets of the original rules that have been unified
in the result of the generalization are investigated in more
detail by applying the generalization method with a smaller
ε separately to these subsets.

The idea is demonstrated in Fig. 18. Here, the user has
generalized the rule set with ρ = 1 and ε = 0.35. The
resulting descriptivemodel consists of 11 rules (Fig. 18, top).
The table displays the rules, with the first column titled ‘Q
min.max’ indicating the intervals of predicted values. The

rule in the top row of the table, which has only one condition,
states that when ‘percent_atom_in’ has a low value (less than
0.1771), the predicted result is below0.322. It isworth noting
that ‘percent_atom_in’ has values above 0.1771 in all other
generalized rules. This upper rule covers 133 original rules.
Next, the user selects these rules and applies generalization
with ρ = 1 and ε = 0.15, resulting in 9 generalized rules
(Fig. 18, middle). By examining these rules, the user can
identify additional features contributing to lower or higher
predicted values within the interval from 0 to 0.322. Having
noticed that the upper two generalized rules have very similar
intervals of predicted values, the user selects the subset of
the original rules whose predictions fall within the union of
these intervals. To obtain a refined description of this subset,
the user applies generalization with ρ = 1 and ε = 0.075,
resulting in 9 descriptive rules (Fig. 18, bottom). The number
of features involved in the rules has increased from 8 to 13.
This refined description allows the user to investigate the
impact of different combinations of feature values on the
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Pruning 
degree rho N rules

Total N 
condi�ons

Mean N 
condi�ons

N rules >5 
condi�ons

% rules >5 
condi�ons min CC

min 
fidelity

Total 
fidelity

N rough 
rules

N union 
rules

Max 
depth

1 107 807 7.54 78 72.90 1.00 1.00 1.00 0 0 1
1 1.00 104 779 7.49 74 71.15 1.00 1.00 1.00 0 3 2
1 0.90 93 666 7.16 63 67.74 1.00 0.92 0.98 0 10 3
1 0.80 79 533 6.75 48 60.76 0.86 0.80 0.96 4 12 4
1 0.70 77 528 6.86 48 62.34 0.75 0.71 0.96 7 11 5
1 0.60 58 380 6.55 31 53.45 0.60 0.60 0.94 15 17 5

2 48 285 5.94 22 45.83 1.00 1.00 1.00 0 0 1
2 0.90 47 274 5.83 20 42.55 1.00 0.92 0.99 0 1 2
2 0.80 47 274 5.83 20 42.55 1.00 0.92 0.99 0 1 2
2 0.70 43 240 5.58 17 39.53 0.75 0.82 0.99 3 3 2
2 0.60 32 161 5.03 11 34.38 0.60 0.60 0.95 11 12 3

3 26 131 5.04 9 34.62 1.00 1.00 1.00 0 0 1
3 1.00 24 113 4.71 7 29.17 1.00 1.00 1.00 0 2 2
3 0.90 23 103 4.48 5 21.74 1.00 0.99 0.99 0 3 2
3 0.80 23 103 4.48 5 21.74 1.00 0.99 0.99 0 3 2
3 0.70 23 103 4.48 5 21.74 1.00 0.99 0.99 0 3 2
3 0.60 21 96 4.57 5 23.81 0.60 0.80 0.97 2 3 3

Fig. 19 Results of experimenting with the pruned versions of the 3-classes classification model trained on the cardiocartography dataset

predicted outcome in more detail. It’s important to note that
all generalizations were performed with ρ = 1, indicating
that none of the generalized rules have exceptions.

5.4 Experiments with prunedmodels

In order to investigate the effect of pruning of the original
model on the compression that can be achievedwith our algo-
rithm, we created decision trees with different levels of cost
complexity pruning. In Fig. 19, pruning degree 1 denotes the
least compressed model and pruning degree 3—most com-
pressed model. An immediate observation that can be made
is that the result of our algorithm is highly dependent on the
pruningperformed.Thus, the stronglyprunedmodel is highly
resistant to generalization. This means that our method can
be useful also for practitioners in order to understand if the
model is compact enough and does not contain redundan-
cies. Another interesting observation is that the model 2 can
be compressed only with significant roughness: the models
obtained with ρ = 0.90 and ρ = 0.80 are identical, while
the simplification attempt with ρ = 1 fails (no union rules
could be produced). This is even more pronounced for the
strongest pruning.

It should be noted that each of these pruned models has
progressively declining accuracy when trained, which show-
cases the difference of our approach compared to pruning:
while keeping a required degree of coherence and fidelity to
the original model, our method gives a simplified description
without any effect on the accuracy of the original model.

6 Discussion

We proposed an approach to facilitating comprehension of
models that are interpretable by design, but too large to be
actually intelligible by a human due to cognitive limitations.
For this, we explain the logic of a large (in principle) inter-
pretable model by a simplified descriptive model that suits
human cognitive properties: while averse to large volumes
of information, humans are good in dealing with vague con-
cepts, approximate statements, and fuzzy reasoning. One can
think of a data mart4 as an example of widely used descrip-
tive models in real world: instead of giving a human full data
from business, a special high level view is formed in order to
understand the processes happening in it.

Our approach differs from the approaches of regulariza-
tion or compression techniques for obtaining simpler yet
accurate enough predictive models, since our goal is not to
retrain or improve amodel, but to explain it. That is, our aim is
to represent the logic of a complicated pseudo-interpretable
model at hand. This is independent of whether the model was
derived from data or is an interpretable model mimicking the
behaviour of some black-box model. A descriptive model is
not meant to be used as a substitute for the model at hand
(i.e., it is not used for making predictions), but its purpose is
to provide an explanation for the global logic of that model.
The cost of high simplification is loss of predictive accuracy.
Themore complex the global logic of amodel, the harder it is
to generalize and represent it by a simple descriptive model
of sufficient fidelity. Our algorithm for rule generalization

4 https://en.wikipedia.org/wiki/Data_mart
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allows users to control how similar to the original model the
descriptive model must be in terms of predictions. Besides,
the possibility to see the exceptions and the hierarchy of rule
generalization allows a human to increase the fidelity (and,
hence, the complexity) of the description as desired. In addi-
tion to model description, our approach also supports model
exploration in terms of important features, their impact on
predictions, and which feature combinations would create
outliers.

Similar to a mimic model [2], there is a trade-off between
interpretability, i.e., size of the descriptive model, and accu-
racy of the description, i.e., similarity of the descriptive
model to the original one. The goal typically is to have the
most concise descriptive model that is still sufficiently sim-
ilar. The similarity, however, is in general hard to assess:
A meaningful similarity measure not only depends on the
functional similarity, e.g., as measured by a suitable norm
on the function space, but also on the expected difference
given the data distribution. We use two measures as a sur-
rogate: fidelity to measure difference in predictions and the
coherence coefficient to measure structural similarity.

Fidelity is widely used in explainable AI [2] andmeasures
the number of data instances in a reference dataset for which
the predictions of the original and descriptive differ by more
than ε. Fidelity can be inaccurate for two reasons: (i) using a
reference dataset as an empirical sample of the data distribu-
tion is only an approximation, and (ii) the difference of the
two models on those data samples where they do not agree
is unbounded.

We introduced the coherence coefficient to measure the
number of rules subsumed coherently by a generalization in
the description. Rules not covered coherently are kept in the
description as exception rules so that no structural parts of
the original model are discarded. This guarantees that for all
data instances where at least one rule in the original model
is satisfied, at least one rule in the descriptive model will be
satisfied and their predictions do not differ by more than ε.
Therefore, the set of points for which at least one rule in the
descriptive model is satisfied is a superset of the points for
which at least one rule in the original model is satisfied. This
measure can still be inaccurate on the points for which a rule
in the descriptive model is satisfied but no rule in the original
model is. For those points, the difference in prediction is in
general unbounded.

For exploring the properties of the algorithm, we created
a visualization interface and performed a series of exper-
iments applying the rules generalization to four different
models. Our case studies showed that the human interaction
for setting the acceptable level of description roughness is
very helpful—while significant roughness makes the result
easier to comprehend, obtaining several descriptive models
with different degrees of roughness can help to refine the
understanding of the predictions logic. Interesting enough,

the experiment with a regression model showcased that in
this case imprecision of predictions allows to achieve higher
simplification than rules roughness control. Based on this
observation, we propose a method for focused exploration of
selected parts of a regression model at hand: starting from
a very simple but very imprecise descriptive model, a user
selects one of the generalized rules, extracts the subset of the
original rules it covers, and obtains a more precise descrip-
tive model for this subset. In this way, the understanding of
the model logic can be gradually refined and deepened.

We also found out that the distance metric we introduced
can be used for answering the prediction justification ques-
tions, i.e., determining what features should be changed and
how to make a model change its prediction. Knowing the
rule by which the current prediction was made, one uses the
distance metric to select the closest rules giving the desired
outcome and inspects how their conditions differ from the
conditions of the rule that was applied.

Our algorithm allows two variants of use (see Sect. 3) and
is open to further extensions. For example, it can take into
account possible overlaps (partial coverage) between a gen-
eralized rule and the original rules. Currently, the coherence
coefficient of a general rule is calculated only from the rules
fully covered by it. This definition can be extended in an obvi-
ous way to including also partial coverage by an appropriate
change in the computation of CC.

An interesting direction for futurework is to combine gen-
eralization of the ruleswithmerging and generalization of the
features involved in the rule conditions, which is expected to
enable much higher degrees of model logic simplification.
Examples of feature merging can be seen in the award-
winning solution of the HELOC Challenge5 [48], where 6
groups of semantically related original features were inte-
grated into composite features thereby reducing the original
23 features to 10 features. Such feature merging is usually
hard to perform in the interpretable manner without domain
knowledge and human reasoning. However, it may be pos-
sible to detect automatically (by analysing a rule set) which
features are likely to be related and propose groups of such
features to a human expert for considering and controlling
integration. This can significantly strengthen the comprehen-
sibility of a descriptive model.
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