
1

Data Availability Sampling in Ethereum: Analysis
of P2P Networking Requirements

Michał Król‡, Onur Ascigil†, Sergi Rene∗, Etienne Rivière§, Matthieu Pigaglio§

Kaleem Peeroo‡, Vladimir Stankovic‡, Ramin Sadre§, Felix Lange¶

∗ University College London, † Lancaster University
‡ City, University of London, § ICTEAM, UCLouvain, Belgium

¶ Ethereum Foundation

Abstract—Despite their increasing popularity, blockchains still
suffer from severe scalability limitations. Recently, Ethereum
proposed a novel approach to block validation based on Data
Availability Sampling (DAS), that has the potential to improve
its transaction per second rate by more than two orders of
magnitude. DAS should also significantly reduce per-transaction
validation costs. At the same time, DAS introduces new commu-
nication patterns in the Ethereum peer-to-peer (P2P) network.
These drastically increase the amount of exchanged data and
impose stringent latency objectives. In this paper, we review
the new requirements for P2P networking associated with DAS,
discuss open challenges, and identify new research directions.

Index Terms—Ethereum, Scalability, Data Availability Sam-
pling, Peer-to-peer, Networking.

I. INTRODUCTION

Ethereum is the second-largest blockchain currently in op-
eration. Thanks to its support of smart contracts, it enables a
wide range of applications from financial services and sharing-
economy systems to Internet-of-Things, supply chains, and
digital health [15].

While the popularity of the Ethereum platform increases
rapidly, its processing throughput remains very low, oscillating
around 14 transactions per second (TPS). This low throughput
is mainly a consequence of the consensus protocol [10] that
validators (i.e., platform maintainers) must run to agree on
a common state. In each round of the consensus protocol,
a chosen validator extends the blockchain by: (i) creating a
block containing the most profitable transactions; (ii) linking
the block to the previous one using a hash function, and
(iii) disseminating the block to other validators using a peer-
to-peer (P2P) gossip protocol [13]. Every block must be
delivered and verified (i.e., checked for correctness) by all the
validators in a timely manner. Having more honest validators
in the system increases security but also causes additional
communication and lowers performance, leading to a dilemma
between throughput and decentralization.

An emerging solution to increase the scalability and
throughput of Ethereum is the use of rollups [11]. Rollups
process their transactions off-chain and only periodically post
small commitments of their current state on-chain, where
consensus is reached. This hybrid approach enables smaller,
rollup-specific communities to process transactions at high
speed while being eventually secured by the validators of the
blockchain.

In contrast with transactions and smart contract executions
registered on chain, commitment data posted by the rollups
does not have to be verified by Ethereum validators; it is
sufficient to simply include this data in new blocks. Rollup par-
ticipants can then verify commitment data using application-
specific logic. If this data is incorrect, rollup participants
simply withdraw their funds and quit the application [11].

In a rollup implementation over the current, unmodified
Ethereum deployment, commitment data is included in an
opaque data blob that is an integral part of a block and com-
petes for on-chain space with regular Ethereum transactions.
To limit the propagation time between the validator generating
a new block and validators receiving and validating it, the size
of a block is limited, and so is the size of this opaque data
blob. Thus, while rollups can significantly improve Ethereum
throughput, this improvement is capped at a few thousand TPS
due to block size limitations.

The inclusion of commitment data from rollups in blocks
disseminated for validation is, in fact, a hindrance to reaching
order-of-magnitude higher throughputs (e.g., 100,000 TPS).
Observing that commitment data must be available but is
not checked for correctness by Ethereum validators, a new
approach to block generation and validation emerged based
on Data Availability Sampling (DAS). Unlike the previous
approach, with DAS a validator only downloads in full the
part of the block containing regular transactions, but not
the opaque blob. Instead, each validator collects sufficiently
strong evidence that the opaque blob was indeed produced
and made available by its producer. The collection of this
evidence is based on random sampling, a process that becomes
an integral part of the consensus: if the sampling process
succeeds, validators consider the block correct.

DAS has the potential to maintain the high decentraliza-
tion and security of Ethereum while massively increasing
throughput. However, its implementation presents significant
challenges for the P2P network supporting the blockchain.
Currently, Ethereum uses simple gossiping techniques which
are unsuitable for DAS data flows. Indeed, the total amount
of data generated per block increases from the current average
of 90 KB up to 140 MB. Even a resourceful block producer
might not be able to directly deliver the required samples
to all network participants. At the same time, relying on
indirect data dissemination is difficult. First, each validator
requests different samples, making gossip inefficient. Second,
relying on anonymous network participants opens a new range

ar
X

iv
:2

30
6.

11
45

6v
1

 [
cs

.N
I]

 2
0

Ju
n

20
23

2

4 sec 12 sec

Regular nodes
deadline

Validators
deadline

Rollup
commitments

Extended
block
produced

Producer Validator Regular node

Bl
oc

k
n+

1
pr

od
uc

tio
n

tim
e

Producer

Original sample Extended sample Downloaded sample

Rollup
commitments

Block n

Bl
oc

k
n

pr
od

uc
tio

n
tim

e

10 sec
Time
0 sec

Fig. 1. Block data sampling. The producer gathers rollup commitments from the clients and creates an extended block. The block must be sampled by
validators within 4 s from the block production by requesting 2 random rows and 2 random columns. Non-validator nodes sample the block within 10 s by
requesting 75 random cells. After 12 s from the initial block production, the next block is created by a new block producer.

of network-level attacks, threatening the correctness of the
consensus protocol. Finally, the sampling process must be
completed quickly (within 4 s for validators) as it determines
whether the block is considered correct and can be referenced
by future blocks in the chain; larger latencies significantly
hinder progress.

In this paper, we discuss design options for next-generation
P2P networks that will be able to support Ethereum’s rollup-
centric DAS architecture at scale. We note that at the moment
of writing, many details of the future DAS network are still
under discussion. We base our analysis on emerging choices
in the Ethereum development community, as they already give
us a good sense of scale for this problem [8]. In Section II, we
provide background on the new DAS approach. In Section III,
we determine concrete P2P network properties required to
support the new model. Section IV critically analyzes clas-
sical networking solutions and points out their shortcomings,
Section V lists new open challenges and research directions
for the ecosystem, and Section VI concludes the paper.

II. DATA AVAILABILITY SAMPLING

Ethereum joins users that hold accounts and submit trans-
actions, and validators that include transactions in blocks and
maintain a full copy of the blockchain. Ethereum recently
migrated to a Proof-of-Stake (PoS) consensus protocol [1].
Any node can now become a validator by staking at least
32 ETH, the Ethereum cryptocurrency. Time is divided into
slots of 12 seconds and epochs of 32 slots. One validator
is selected pseudo-randomly and based on stake to be a
block producer in every slot1. This validator is responsible for
creating a new block and sending it out to other nodes. Also
in every slot, a committee of validators is chosen randomly,
whose votes are used to determine the validity of the block
being proposed. The Ethereum design assumes that honest

1The Ethereum community recently proposed a Proposer-Builder Separa-
tion mechanism (PBS) that delegates block production to dedicated builder
nodes. However, it does not change the requirements for the P2P network.
Our discussion applies to both the current approach and this proposal.

validators control a majority of the stake in the system and
the majority of the voting power in each committee.

The Data Availability Sampling (DAS) principle assumes
that to every block is attached an opaque, binary blob (of up to
32 MB) holding rollup data. Such a blob can be represented as
a 256×256 matrix of 512 B cells. Both validators and regular
Ethereum nodes (e.g., nodes that did not stake at least 32
ETH) do not verify the correctness of the blob (an operation
that is specific to the different rollups) but only ensure that
the blob was indeed released in full by the block producer.
To avoid downloading the entire blob for this purpose, the
network relies on DAS (i.e., requesting a random subset of
the data) [8]. Theoretically, a malicious block producer could
release all but a small part of the blob hoping that this will not
be noticed by DAS. Such behavior, called a data withholding
attack, threatens the security of rollups. To prevent it, and
as depicted in Figure 1, the block is extended using a two-
dimensional Reed-Solomon erasure code [14]. Each row and
column doubles in size but can be reconstructed from any 50%
of its cells. The extended block takes, therefore, the form of
a 512 × 512 matrix, where each cell contains 512 B of data.
Furthermore, each cell includes a 48 B cryptographic Kate-
Zaverucha-Goldberg commitment (KZGC) [5], enabling the
downloading node to make sure that the cell is a valid part
of the extended blob. In total, the extended blob uses a total
of 140 MB of data including 12 MB of KZGCs. The original
blob can now be reconstructed by acquiring at least 25% of the
extended blob cells, making a withholding attack much easier
to detect. Furthermore, KZGCs prevent a block producer from
returning random data to sampling requests.

Depending on their role, nodes perform two types of data
sampling:

• Validators randomly choose and attempt to download 2
rows and 2 columns of the extended blob (2044 cells in
total). This validator sampling is considered successful
when at least 50% (256 cells) of each column/row could
be downloaded. The remaining parts of the selected
row/columns can be reconstructed using the erasure code.

3

Each validator downloads at least 2046×560B = 1.1 MB
of data per slot.

• Regular nodes randomly select and attempt to download
75 cells. This regular sampling is considered successful
when all the selected cells can be downloaded. Each
regular node downloads at least 75 × 560B = 42 KB
of data per slot. Note that validators perform regular
sampling in addition to validator sampling.

If the sampling process fails, nodes consider the sampled
block (and all the blocks that would later build upon it) invalid.
A malicious block producer may attempt to split the network
by correctly responding to sampling requests from certain
nodes while ignoring requests from others. Such a behavior,
called a network split attack, results in honest nodes having a
different view on the most recent valid block in the blockchain.
As future blocks are built on top of the most recent block, the
attack creates long-lasting forks, reducing both the efficiency
and the security of the entire blockchain. The attack can be
prevented by hiding the origin of sampling requests from block
producers.

III. WHAT DOES DAS MEAN FOR THE NETWORK?
Currently, the Ethereum network is formed of 500,000

validators and 2,000 regular nodes. The target is, however,
to support up to one million regular nodes participating in
rollups. All nodes first join a Distributed Hash Table (DHT)
to discover other blockchain participants with whom they
form an unstructured, mesh peer-to-peer (P2P) network for
block dissemination [6], [13]. In the unmodified version of
Ethereum, once a new block is created, its producer sends
it to its direct peers that propagate the block further using
epidemic dissemination. Eventually, the block is delivered to
all network participants.

However, such a solution cannot be adopted in the rollup-
centric approach. Extended blobs are simply too big to be
disseminated in full to the entire network during every 12 s
slot. Furthermore, DAS assumes that each node downloads a
small randomized subset of samples. Peers that are directly
connected in the unstructured mesh are unlikely to request the
same random samples, making the current epidemic dissemi-
nation intrinsically unsuitable.

A. Objectives

A P2P architecture supporting DAS should have the follow-
ing functional and non-functional characteristics.

Functional requirements are threefold:
• Support two retrieval modes: For the long-term secu-

rity of the ecosystem, the solution should support both
validator (rows and columns) and regular (random cells)
sampling.

• Openness: Ethereum is an permissionless blockchain.
The P2P network should remain open for anyone to join.

• Request unlinkability: To protect against network split
attacks, for any two sampling requests, the block producer
should not be able to tell whether they originate from the
same sampling node.

In terms of non-functional requirements, we identify:

• Efficiency: The network must be efficient in terms of
the total amount of exchanged data by all its nodes.
Higher overheads incur a higher monetary cost for the
participants, threatening economic viability. They in-
crease hardware requirements, hindering the decentraliza-
tion of the network. An optimal solution transfers each
requested sample exactly once. For the current network
size, it means exchanging 500, 000 validators×1.1 MB+
1, 200 nodes × 42 KB = 489 GB of data per slot.

• Low dissemination latency: The validators must have
enough time to reach a consensus on the sampled block
and start constructing the next block. Within a 12 s slot,
the current consensus protocol requires that all requested
samples be delivered within 4 s to the validators. Fur-
thermore, to enable blockchain replication and reliable
fork resolution the Ethereum community also suggests
delivering samples to the regular nodes within 10 s [8].

• Low cost for the producer: The block producer is
incentivized to keep creating blocks only if the process
generates a profit. The sampling procedure, being part of
the block creation, should incur low monetary costs for
the block producer and ensure that they do not exceed
rewards from block creation.

• Sybil attack resistance: DAS is an internal part of the
consensus protocol and must be secure. As the network is
open for anyone to join, the solution should be resistant
to malicious actors using Sybil identities (i.e., a large
number of pseudonymous identities controlled by a single
actor).

IV. CLASSIC NETWORKING APPROACHES

We now review classical approaches to data distribution
and distributed architectures, in light of the DAS network
requirements.

A. Centralized Approach

The first approach would be for all nodes to retrieve samples
directly from the block producer. Joining the sampling process
requires simply connecting to one of the producer’s servers. As
each block might have a different producer, the IP address/the
DNS domain must first reliably be advertised to the network.

This approach would require significant resources from
block producers to deliver the large amount of sampling data
requested by validators and regular nodes. Using a well-
provisioned cloud infrastructure, the cost for serving sampling
requests for a single block would amount to roughly 25 USD2,
or a monthly cost of around 5.75M USD shared among all
block producers. This should account for the fact, however,
that the block producers are chosen on a per-slot basis. To
be able to respond to such bandwidth demands in such a
limited time, all potential block producers would have to set
up permanent infrastructures that would need to be vastly
over-provisioned, making cost figures significantly higher and
severely impacting decentralization. An alternative would be to

2Taking as a reference the outbound data transfer cost for the Amazon
AWS cloud https://aws.amazon.com/ec2/pricing/on-demand/, using a US-
based datacenter

https://aws.amazon.com/ec2/pricing/on-demand/

4

rely on cloud-based Content Delivery Networks, but this would
unacceptably put the progress of the chain in the hands of a
few providers. Another challenge would finally be to prevent
Denial-of-Service (DoS) attacks targeting well-identified block
producers.

Centralized sample delivery is conceptually simple and does
not introduce intermediaries that may pose a security chal-
lenge. It makes, however, the provision of request unlinkability
a challenge as requests are sent to the same location. While
validator sampling queries could be issued from 4 IP addresses
(i.e., for 2 columns and 2 rows), regular sampling also requires
that the 75 connections be indistinguishable from each other.
Using an anonymization network (e.g., Tor) may answer this
problem but lead to a number of additional challenges re-
garding efficiency, robustness, and reliability. While dedicated
proxies may help, they would also become a critical part of the
infrastructure and an easy target for attacks–simply magnifying
the problem.

As a result, centralized approaches clearly go against the
objectives of Ethereum in general, and DAS in particular, and
should not further be considered.

B. Unstructured P2P Network
A peer-to-peer (P2P) network can assist in reducing the

load on the block producer and increase decentralization. The
block producer can push samples to a few network participants
that will propagate them further. P2P networks establish an
overlay over the regular network, where nodes connect to a
few (relatively to the size of the complete network) direct
neighbors, or peers.

Unstructured P2P networks do not impose a particular, rigid
structure on the P2P overlay network. Nodes establish connec-
tions to each other either arbitrarily or following probabilistic
choices leading to a globally random network [4], [13].

Data dissemination in unstructured P2P systems is typically
achieved using gossip. Gossip is efficient and robust for
broadcast (i.e., sending the same message to everyone in the
network) but requires additional measures for multicast (i.e.,
sending a message only to a specific subset).

Multicast is typical of publish/subscribe systems where
nodes register to receive content posted to specific multicast
groups, or topics. Possible implementations of multicast in-
clude discovering the group during the dissemination, possibly
leading to high overheads and the participation of many non-
interested nodes in the dissemination. Another approach is to
pre-establish sub-networks linking only nodes from the same
group [2]. This approach is, however, only beneficial when
groups are stable and re-used multiple times.

While blockchain systems and Ethereum benefitted from the
simplicity and effectiveness of gossip-based broadcast, DAS
introduces specific, novel needs for multicast. In a simple gos-
sip scenario, if each node downloads and distributes only the
samples it requires, the dissemination process never completes.
On the other hand, making nodes participate in the distribution
of additional samples (potentially up to a point where everyone
downloads/distributes everything) is increasingly inefficient
and requires additional resources when scaling up, reducing
decentralization.

Pre-establishing dissemination structures is appealing but
challenging due to the non-predictability of multicast groups.
Indeed, while supporting the validator sampling mode requires
establishing 512 + 512 = 1, 024 dissemination structures, one
for each column or row, the regular node mode increases
this number by an additional 512 × 512 = 262, 144, one per
sample. Additionally, each node randomly selects a different
set of samples to download per slot, which means that the
whole set of dissemination structures may need to be reconfig-
ured every 12 s. With frequent reconfigurations, the signaling
overhead can bypass the volume of data being exchanged and
the network might never reach a stable state.

An alternative design could be for the producer to push sam-
ples to a subset of nodes only. Other participants would issue
search queries to locate their content of interest. However,
this solution also introduces significant signaling overhead in
terms of search queries. Finding and downloading the relevant
sample is unlikely to complete within the required 4 or 10
seconds.

On the positive side, unstructured P2P solutions signifi-
cantly reduce operational costs for the producer. When each
sample is delivered to a single node, the sampling process
reduces the cost to 0,03$ per block or 6,000$ per month.
However, delivering each sample to a single node threatens the
security of the approach as those nodes may turn malicious
and simply refuse to propagate the sample further. On the other
hand, increasing the number of initial nodes also increases
the monetary cost for the producer. This security risk can be
reduced by a peer reputation mechanism [13]. It involves each
node individually assessing the behavior of its direct neighbors
and gradually replacing low-score peers. As a result, malicious
nodes become isolated in the network and their impact is
more limited. Unfortunately, such a technique offers limited
protection against scenarios where attackers behave correctly,
increase their scores, and suddenly act maliciously.

To join the network, newcomers have to either already know
some participants or use dedicated bootstrap nodes. The latter,
while used by almost all current P2P networks, is expensive
for the bootstrap node operator and represents a single point
of failure for the entire system. Unstructured P2P networks
significantly reduce the possibility of data withholding attacks
once the dissemination is underway. The producer does not
have a direct connection with all the nodes and cannot decide
to ignore requests on a per-sample basis. The producer can try
to include its own Sybil nodes in the P2P network attempting
to block certain nodes from accessing their samples. However,
due to the lack of structure and pseudorandom nature of
data propagation such actions are not efficient and require a
significant amount of resources increasing with the network
size.

C. Distributed Hash Table (DHT)

A DHT is a structured overlay network where nodes
and data objects (stored in the network) are both identified
with unique keys (i.e., hash digests) drawn from a common
hash space. DHTs allow efficient lookup operations to locate
node(s) in charge of a given key, i.e., nodes whose identifiers

5

are the “closest” to a key are responsible for storing the data
object corresponding to that key. DHTs use a distance metric
to measure the closeness of keys.

A DHT node s maintains a routing table to store infor-
mation, i.e., node ID and reachability (IP address and port
number), on O(log(n)) peers arranged by their distance to s,
where n is the number of nodes in the DHT. Typically, a node’s
routing table provides a more detailed (i.e., fine-grained) view
of the subset of the network with closer node IDs and a less
detailed view of nodes with distant IDs. This property leads
to efficient lookup operations that take a logarithmic number
of steps (i.e., queried hops) in the number of nodes in the
network. Building on these efficient lookup operations, DHTs
support a put and get API to store and retrieve data objects.
There exist several DHT implementations [7], [12] that mostly
differ in terms of distance metric, lookup procedure, routing
table structure, and so on. Kademlia [7] is nowadays the most
commonly deployed DHT protocol, including by Ethereum.

DAS using a DHT: Because of its efficient data storage and
retrieval operations, using a DHT as a cache network, where
nodes collectively store and serve samples, is a natural choice
for DAS. A DHT is a scalable network that can provide good
load-balancing properties by assigning data objects uniformly
to nodes. Ideally, a producer would only propagate a few
copies of each cell of the block matrix to the DHT nodes
responsible for storing them—e.g., using the hash of the meta-
data of a cell (e.g., row, column numbers) as its key. The
efficiency of DHT lookup ensures that the producer can store
(i.e., put) samples in the DHT and that nodes retrieve (i.e.,
get) samples efficiently.

An important threat to the operation of a DHT are Sybil
identities. Because DHT nodes use self-generated identifiers
(i.e., the hash of a public key), malicious actors can spawn
multiple identities (even within one physical machine) to
operate many DHT nodes. Sybils can then attempt to disrupt
lookups and even launch various attacks as we discuss below.
The impact of Sybils on the lookup procedure is rather
different for iterative and recursive lookups.

With iterative lookups (as used by Kademlia) the querying
node contacts in turn each intermediate node on the route to the
destination. Recursive lookups (as used by earlier DHTs [12])
let each initially contacted node continue the query on behalf
of the querier. While iterative lookups increase the number of
messages, they allow queries to better control the lookup and
detect in particular if malicious nodes attempt to drop ongoing
queries. At the same time, iterative lookups are more difficult
to anonymize as the querier directly communicates with all
the nodes contacted during the operation.

Another notable attack on DHTs is the eclipse attack, where
Sybils trick other nodes to populate their routing tables with
only Sybils, thereby isolating those nodes and partitioning
the network. Initially, each node populates its routing table
through trusted bootstrap nodes that are discovered out-of-
band. Over time, nodes discover new peers (e.g., ones who
contact them) and store them in the routing tables subject to
an admission policy: the Kademlia implementation used both
by Ethereum and by prominent web3 protocols, such as the
decentralized storage system IPFS, limits the number of nodes

from the same /24 subnet in the same bucket or routing table,
making eclipsing more difficult—i.e., an adversary now has to
deploy Sybils at multiple machines with diverse IP addresses
to implement an attack.

S/Kademlia [9] proposes a Proof-of-Work (PoW)-based
node ID generation to make Sybil generation more resource-
intensive. The main idea is to require at least a configurable
number of 0’s at the end of the node IDs, which requires
brute-force generation of potentially many public-private key
pairs until an appropriate one is found. Another improvement
by S/Kademlia is parallel iterative lookups that allow nodes
to explore disjoint paths to obtain a higher probability of
successful search results in the presence of Sybils.

DHT lookup overhead scales well with the number of par-
ticipants but a single operation requires contacting a significant
number of nodes (e.g., ∼50 for a 20,000-node network).
Combined with a large number of samples in DAS and
frequent slots in Ethereum, this can put a significant load
on the network. The high bandwidth consumption may be
problematic, especially for constrained, non-validator devices
that are essential for the decentralization of the platform.
Fortunately, the random nature of the sampling process allows
us to distribute the load across the network and avoid hotspots
that handle a disproportionate number of queries.

DHT lookups can potentially take a long time to complete
with each contacted node by the querier being possibly far
away in terms of geographical distance. Slow lookups can be
problematic for DAS, which has stringent timing requirements
for the completion of sampling operations. Recursive lookups
can improve the latency (i.e., they require fewer round-trips),
but they are also more difficult to secure, as discussed above.

V. RESEARCH DIRECTIONS

A straightforward application of existing P2P (i.e., gossip
and DHT) approaches fall short of satisfying the requirements
of DAS in several aspects including security and delivery
efficiency, while centralized approaches are unsuitable. In
this section, we discuss possible directions to improve P2P
approaches and make them suitable for DAS.

In terms of building a secure, Sybil-resistant P2P layer,
one promising approach is to leverage the honest majority
assumption of the consensus layer. In particular, the majority
of the stake in the system is controlled by the honest parties
as a security assumption of PoS. Therefore, an emerging ap-
proach is to use the honest majority assumption to build more
robust P2P networks. Coretti et al. [3] propose a peer sampling
approach to choose neighbors in which nodes prefer staking
nodes to build Sybil-resistant gossip networks. The resulting
network has a highly connected backbone that Sybil nodes
cannot partition as long as the honest majority assumption is
not violated.

Currently, regular sampling fails when a single cell cannot
be downloaded. It imposes high robustness requirements on
the P2P networks that, due to its open and decentralized
nature, might be challenging to fulfill. Designing k out of n
sampling schemes might reduce those requirements and make
P2P network deployments more practical. In such a scheme,

6

regular nodes request n > 75 samples but still consider them
successful when k < n samples are downloaded within the
time limit. Careful tuning k and n parameters can yield similar
security guarantees to the current scheme while allowing the
P2P network to tolerate sporadic node failures and malicious
behavior. The scheme can be easily extended to improve the
robustness of validator sampling.

The ultimate weakness points of DHTs is the inability to
protect specific places in the hash space. An attacker can
ultimately generate thousands of peer IDs to strategically place
themselves close to a specific key and hijack all the key-
specific traffic. Storing/retrieving data from specific regions
rather than from nodes closer to a specific key has the potential
to remove this weakness. During an attack, while the data will
be stored on/retrieved from malicious nodes, honest nodes are
also guaranteed to fall within the region due to the uniform
distribution of pseudorandom, legitimate peer IDs. As samples
contain KZGC integrity proofs, sampling nodes can also easily
filter out incorrect data. However, such an approach requires
developing new, region-specific routing procedures in the DHT
and redesigning the structure of its routing table.

When traversing the DHT, nodes ask their peers for infor-
mation on how to access a specific part of the network. An
attacker can attempt to hijack this process by returning only
malicious nodes as a way for the node to progress. Currently,
there are no constraints on the information returned by each
participant that can be verified by the querying node. Carefully
setting additional rules on the peers each node can return
might significantly increase the security of DHT routing while
maintaining its high efficiency.

One of the main problems of multicast DAS data dissem-
ination is the necessity of frequent reconfiguration of a large
number of pre-established groups that cause high signaling
overhead. Making group membership more stable (e.g., across
multiple slots) has the potential to make the multicast approach
viable and much more efficient than broadcast-based dissem-
ination. Alternatively, only a small number of nodes could
migrate between fixed dissemination groups in every slot.
However, such approaches require careful design to preserve
the unpredictable nature of the samples requested by each
node.

The majority of P2P networks currently in use were de-
veloped about 20 years ago using hardware specifications
that are no longer relevant. Current hardware is much more
powerful in terms of memory and computational power and
can support much higher bandwidths. For instance, storing
routing information about 20,000 peers in a in Kademlia
requires only ∼300 MB of memory. Adjusting P2P network
parameters (e.g., DHT bucket sizes) can also significantly
improve the performance of P2P networks to meet DAS
requirements.

VI. CONCLUSION

We revised the networking requirements for the next gener-
ation, rollup-centric Ethereum blockchain. While the current,
classical approaches fall short of providing scalable network
support for the new architecture, solving open research chal-
lenges has the potential to realize this vision. Supporting

100,000 transactions per second may push blockchains into
mainstream use and fully realize their potential.

REFERENCES

[1] The merge: Ethereum switch to proof-of-stake. https://ethereum.org/en/
upgrades/merge/. Accessed on February 14, 2023.

[2] Roberto Baldoni, Roberto Beraldi, Vivien Quema, Leonardo Querzoni,
and Sara Tucci-Piergiovanni. TERA: topic-based event routing for
peer-to-peer architectures. In Inaugural international conference on
Distributed event-based systems, DEBS, 2007.

[3] Sandro Coretti, Aggelos Kiayias, Alexander Russell, and Cristopher
Moore. The generals’ scuttlebutt: Byzantine-resilient gossip protocols.
In 29th ACM SIGSAC Conference on Computer and Communications
Security, CCS, page 595–608, 2022.

[4] Márk Jelasity, Spyros Voulgaris, Rachid Guerraoui, Anne-Marie Ker-
marrec, and Maarten Van Steen. Gossip-based peer sampling. ACM
Transactions on Computer Systems (TOCS), 25(3):8–es, 2007.

[5] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. Constant-size
commitments to polynomials and their applications. In International
conference on the theory and application of cryptology and information
security, ASIACRYPT, pages 177–194. Springer, 2010.

[6] Lucianna Kiffer, Asad Salman, Dave Levin, Alan Mislove, and Cristina
Nita-Rotaru. Under the hood of the ethereum gossip protocol. In
Nikita Borisov and Claudia Diaz, editors, Financial Cryptography and
Data Security, pages 437–456, Berlin, Heidelberg, 2021. Springer Berlin
Heidelberg.

[7] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer
information system based on the XOR metric. In International Workshop
on Peer-to-Peer Systems, IPTPS, pages 53–65. Springer, 2002.

[8] Joachim Neu. Data availability sampling: From basics to open problems.
Technical report, Paradigm, 2022. Accessed on February 17, 2023.

[9] Riccardo Pecori. S-Kademlia: A trust and reputation method to mitigate
a Sybil attack in Kademlia. Computer Networks, 94:205–218, 2016.

[10] Sara Rouhani and Ralph Deters. Performance analysis of ethereum
transactions in private blockchain. In 8th International Conference on
Software Engineering and Service Science, ICSESS, pages 70–74. IEEE,
2017.

[11] Cosimo Sguanci, Roberto Spatafora, and Andrea Mario Vergani. Layer
2 blockchain scaling: A survey. arXiv preprint arXiv:2107.10881, 2021.

[12] Ion Stoica, Robert Morris, David Liben-Nowell, David R Karger,
M Frans Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord: a scal-
able peer-to-peer lookup protocol for internet applications. IEEE/ACM
Transactions on networking, 11(1):17–32, 2003.

[13] Dimitris Vyzovitis, Yusef Napora, Dirk McCormick, David Dias, and
Yiannis Psaras. Gossipsub: Attack-resilient message propagation in the
filecoin and eth2. 0 networks. arXiv preprint arXiv:2007.02754, 2020.

[14] Stephen B Wicker and Vijay K Bhargava. Reed-Solomon codes and
their applications. John Wiley & Sons, 1999.

[15] Kaspars Zı̄le and Renāte Strazdiņa. Blockchain use cases and their
feasibility. Applied Computer Systems, 23(1):12–20, 2018.

https://ethereum.org/en/upgrades/merge/
https://ethereum.org/en/upgrades/merge/

	Introduction
	Data Availability Sampling
	What does DAS mean for the network?
	Objectives

	Classic Networking Approaches
	Centralized Approach
	Unstructured P2P Network
	Distributed Hash Table (DHT)

	Research Directions
	Conclusion
	References

