

City, University of London Institutional Repository

Citation: Grashoff, H. (1996). A Rational Scheme for Conflict Detection and Resolution in

Distributed Collaborative Environments for Enterprise Integration. (Unpublished Doctoral
thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/31105/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A Rational Scheme

for

Conflict Detection and Resolution

in

Distributed Collaborative Environments
for Enterprise Integration

Henning Grashoff

A Thesis Submitted in Conformity with
the Requirements of the Degree

of Doctor of Philosophy

Department of Business Computing,
City University,

Northampton Square, London

January 1996

Table of Contents

List of Tables and Illustrations...VIII
Acknowledgement... X
Declaration...XI
Statement of Contribution..XI
Abstract...XII

1. Introduction

1.1 Preface... 1
1.2 Problem Statement... 1
1.3 Research Aim... 1
1.4 Original Contribution...2
1.5 Research Methodology...3
1.6 Structure.. 4

2. Distributed Collaborative Environments for Enterprise Integration

2.1 Introduction...6
2.2 Distributed Databases.. 6
2.3 Distributed Collaborative Environments for Enterprise Integration..................... 8
2.4 Autonomy, Heterogeneity and Integration.. 13
2.5 Conflict Detection and Resolution in Task Assignment.. 16
2.6 Rationality in Conflict Detection and Resolution...19
2.7 Information in Enterprise Integration.. 23
2.8 Evidence, Knowledge and Beliefs of Information Agents

2.8.1 Knowing and Believing...35
2.8.2 Belief and Knowledge Sets.. 37

2.9 Chapter Summary and Conclusion.. 38

3. Related Research on Conflict Detection and Resolution

3.1 Introduction...40

3.2 Conflicts in Enterprise Integration
3.2.1 Propositional Conflicts in Enterprise Integration...41
3.2.2 Other Kinds of Conflicts in Enterprise Integration.......................................45
3.2.3 Completeness of Conflict Detection in Enterprise Integration

Environment.. 47

II

3.3 Conflict Detection and Resolution in Distributed Collaborative Environments
for Enterprise Integration
3.3.1 Master Model and Unified Approaches.. 48

3.3.1.1 The Master Model in CARNOT.. 48
3.3.1.2 The Unified Approach to Model Integration................................. 50
3.3.1.3 Conclusion on Tight Conflict Free Integration.............................. 53
3.3.1.4 Tight Integration with Inconsistencies Assumption.......................56

3.3.2 Enterprise Integration Based on Federated Architectures.......................... 58
3.3.3 Integrating Non Persistent Data in Enterprise Integration Environments ... 62
3.3.4 Mediators in Enterprise Integration Environments..................................... 64
3.3.5 Conflict Management by Modelling Human Decision-Making...................65
3.3.6 Conclusion and Summary of Architectural Assumptions........................... 66

3.4 Conflict Detection and Resolution in Distributed Artificial Intelligence (DAI)
3.4.1 Introduction to DAI and Enterprise Integration...67
3.4.2 Partial Global Planning and Derivatives... 68
3.4.3 Mainstream Distributed Artificial Intelligence..73
3.4.4 Conflict Detection and Resolution in Distributed Planning........................ 76
3.4.5 Task Sharing and Result Sharing..80
3.4.6 Conclusion Conflict Detection and Resolution in DAI............................... 82

3.5 Uncertainty Management in Artificial Intelligence
3.5.1 Introduction.. 83
3.5.2 Quantitative Methods to Uncertainty Management.....................................84
3.5.3 Qualitative Methods to Uncertainty Management

3.5.3.1 Non-monotonic Uncertainty in Truth Maintenance Systems......... 89
3.5.3.2 Belief Revision... 93
3.5.3.3 Uncertainty Management Based on Decision-Making Theories....97
3.5.3.4 Uncertainty Management by Argumentation................................. 99

3.5.4 Conclusion on Uncertainty Management..103

3.6 Conclusion on Related Research.. 104

3.7 Chapter Summary... 105

4. Theoretical Framework for Conflict Detection and Conflict Resolution

4.1 Introduction..107

4.2 A Rational Scheme for Conflict Detection and Resolution..................................108

4.3 Evidence in Law and Information Integration .. 112

4.4 Relevance and Admissibility in Conflict Detection
4.4.1 Relevance and Admissibility..114
4.4.2 Overview Conflict Detection Framework..118

III

4.5 Credibility And Weight Of Evidence In Conflict Resolution
4.5.1 Credibility and Weight.. 119
4.5.2 Domain-Specific Problem-Solving .. 120
4.5.3 Scientific, Domain-Specific Heuristics... 122
4.5.4 Domain-Independent Evaluation.. 124
4.5.5 Overview Conflict Resolution Framework...128

4.6 Conclusion... 129

4.7 Chapter Summary...130

5. A Mechanism for Conflict Detection and Resolution in Enterprise Integration
Environments

5.1 Introduction and Design Methodology
5.1.1 Introduction..131
5.1.2 Design Methodology.. 132

5.2 Conflict Detection - The Gathering Phase... 133
5.2.1 Object Identification

5.2.1.1 The Concept of Object Identification...135
5.2.1.2 Limitations Of System-Generated Surrogate Based Identifiers in

Enterprise Integration Models... 137
5.2.1.3 Deficiencies of Generalised Relations Between Information

Sources.. 139
5.2.1.4 A Novel Object Structure for Enterprise Integration Environments

... 141
5.2.2 Gathering of Candidates...149
5.2.3 Gathering of Evidence.. 150
5.2.4 Classification

5.2.4.1 Introduction to Classification.. 153
5.2.4.2 Classification of Conflict Between Candidates................................ 154
5.2.4.3 Sameness Predicates...158
5.2.4.4 Classification of Sameness of Candidates.. 166
5.2.4.5 Classification of Evidence.. 167

5.2.5 Summary Gathering Phase..169

5.3 Conflict Detection - Syntactic Phase.. 170

5.4 Conflict Detection - Semantic Phase
5.4.1 Object Correspondence and Strengthening Sameness................................... 172
5.4.2 Concept Correspondence..178

5.5 Conflict Detection - Admissibility Phase.. 183

5.6 Summary Syntactic, Semantic and Admissibility Phase.. 185

IV

5.7 Conflict Resolution - Credibility
5.7.1 Gathering Credibility Estimates.. 186
5.7.2 Limitations of Credibility Estimates.. 190

5.8 Conflict Resolution - Domain-Specific Problem-Solving.................................... 192

5.9 Conflict Resolution - Scientific, Domain-Specific Heuristics...............................197

5.10 Conflict Resolution - Domain-Independent Evaluation - Reliability
5.10.1 Ranking.. 200
5.10.2 New Alternatives..206
5.10.3 Reliability - Negotiation...208
5.10.4 No Solution..210

5.11 Summary Conflict Resolution... 212

5.12 Implementation Concept... 213

5.13 Conclusion.. 214

5.14 Chapter Summary.. 215

6. Evaluation and Discussion

6.1 Introduction and Evaluation
6.1.1 Introduction... 217
6.1.2 Evaluation Methodology... 218

6.2 The Enterprise Integration Environment
6.2.1 Overview... 220
6.2.2 Cafeteria Integration Environment Scenario.. 223
6.2.3 Information Agent Model

6.2.3.1 The Agent's View.. 224
6.2.3.2 The Global Agent View...226
6.2.3.3 Agent Knowledge.. 228

6.3 Evaluation of the Integration Environment... 234

6.4 Demonstrator For Conflict Detection and Resolution
6.4.1 Introduction to the Demonstrator..236
6.4.2 Information Retrieval ... 238

6.5 Case Study
6.5.1 Gathering of Candidates.. 240
6.5.2 Gathering of Evidence..243
6.5.3 Classification.. 244
6.5.4 Syntactic Conflict Detection.. 252

v

6.5.5 Semantic Conflict Detection
6.5.5.1 Object Correspondence... 256
6.5.5.2 Concept Correspondence...259

6.5.6 Admissibility Phase...263
6.5.7 Summary Conflict Detection.. 264
6.5.8 Credibility.. 267
6.5.9 Domain-Specific Problem-Solving...271
6.5.10 Scientific, Domain-Specific Heuristics...274
6.5.11 Reliability - Ranking...276
6.5.12 Reliability - New Alternatives..279
6.5.13 Reliability - Negotiation... 281

6.6 Critical Evaluation of Case Study... 283

6.7 Conclusion on Evaluation......... :..286
6.8 Chapter Summary.. 287

7. Concluding Remarks

7.1 Summary.. 288

7.2 Results and Contributions..290

7.3 Limitations...292

7.4 Future W ork..295

VI

Appendix

Appendix A: Distributed Artificial Intelligence

A. 1 Example Approaches in Distributed Artificial Intelligence Research..................298
A. 2 Conflict Detection and Resolution in Distributed Knowledge-Based Systems.... 304

Appendix B: Object Identity

B. l Introduction.. 307
B.2 Identity in Information Systems... 307
B.3 External Identification...315
B.4 Integration of Heterogeneous Independent Notions of Identity........................... 317
B.5 Summary and Conclusion...323

Appendix C: The Lews System of Counterparts... 324

Appendix D: Information Systems in the Integration Environment 'Cafeteria'

D. 1 Object-Oriented Database 'ProductionDB'...326
D.2 Relational Databases ’BookkeepingDB' and 'MaterialDB'..................................... 329
D.3 Expert System 'MarketingEXP'.. 333
D.4 Standard Software System 'ProductionMgmf... 335
D.5 Co-ordination System 'RobotMgmt'... 339
D.6 Enterprise Model.. 342

Appendix E: Overview Implementation Concept.. 345

References.. 347

VII

List of Tables and Illustrations

Tables

Table 1: Implicit Conflicts...41
Table 2: Partial Global Planning and Derivatives...72
Table 3: Conflict Detection in DAI... 73
Table 4: Distributed Planning..76
Table 5: Conflict Detection Framework...118
Table 6: Conflict Resolution Framework.. 128
Table 7: Object Correspondence Example 2 ...270
Table 8: Distributed Knowledge-Based Systems...305
Table 9: Major Notions of Identity in Information Systems.. 307
Table 10: Overview Integration of Heterogeneous Notions of Identity.....................317
Table 11: Local Level Object Identification in CARNOT.. 319

VIII

Illustrations:

Figure 1 : Architecture Distributed Collaborative Environments for Enterprise
Integration ...9

Figure 2: Autonomy and Heterogeneity...14
Figure 3: Information in Enterprise Integration Environments....................................23
Figure 4: Example Conflict Hierarchy...78
Figure 5: Agent Communities within Enterprise Integration.......................................80
Figure 6: Evidence in Integration Environments... 113
Figure 7: Classification of Object Sameness.. 167
Figure 8: Gathering Phase... 169
Figure 9: Ranking of Object Sameness .. 173
Figure 10: Syntactic, Semantic and Admissibility Phases...185
Figure 11: Conflict Resolution... 212
Figure 12: Demonstrator Implementation...221
Figure 13: Agent View.. 224
Figure 14: Global Agent View on the 'Cafeteria' Environment...................................226
Figure 15: Agent Knowledge Managed by the Demons Program.............................. 228
Figure 16: Overview Window in the Agent Knowledge... 232
Figure 17: Demonstrator Windows.. 237
Figure 18: Poet Developer - Class Overview..326
Figure 19: PoetDB Application Interface.. 327
Figure 20: Overview ProductionDB... 328
Figure 21: BookkeepingDB Interface... 329
Figure 22: MaterialDB Interface..330
Figure 23: Table Employee and Address Interface...330
Figure 24: Overview BookkeepingDB and MaterialDB... 332
Figure 25: MarketingEXP Interface.................... 333
Figure 26: Data Flow Diagram Marketing Expert...334
Figure 27: ProductionMgmt Interface... 335
Figure 28: Data Flow Diagram Production Management... 337
Figure 29: Interface RobotMgmt...339
Figure 30: Data Flow Diagram Robot Management..340
Figure 31 : Enterprise Model Interface.. 342
Figure 32: Conflict Detection...345

IX

Acknowledgement

This PhD work was supported by an internal grant of the School of Informatics, City
University. I am grateful for this financial support which has allowed me to undertake
this research.

I would like to thank my supervisor Dr. Allen Long for vigorous assistance in this
research. Furthermore, constructive support from my second supervisor Mr. Ian Neale is
gratefully acknowledged.

I am deeply indebted to Dr. Gordon Rugg for his assistance in writing up the research. I
would further like to thank Paul Collins and Ivor Benjamin for helping with the
grammatical format of this thesis.

Many fruitful discussions with many members of the academic staff within the School of
Informatics have significantly helped me to conduct this research.

X

Declaration

The author grants powers of discretion to the University Library to allow this thesis to
be copied in whole or in part without further reference to the author.

Statement of Contribution

This disclaimer is to state that the research reported in this thesis is primarily the work
of the author and was undertaken as part of his doctoral research.

Abstract

A typical enterprise may have large numbers of information sources such as data stores,
expert systems, knowledge-based systems, or standard software systems. These may
need to be integrated so that, for example, an application program or a decision maker
can access information from all these sources. Such architectures are generally called
'Distributed Collaborative Environments for Enterprise Integration'.

A general problem in these enterprise integration architectures is that information from
heterogeneous, pre-existing sources may be obsolete, incomplete, incorrect or, for many
other reasons, contradictory. Thus, conflicting results may occur when the same
information is requested from semantically related sources. A mechanism is required to
detect and resolve these conflicts in a way that is rational to any potential client of the
integration environment.

This thesis lays open the design of a general mechanism for conflict detection and
resolution that enables intelligent information agents to reason about contradictory
information from pre-existing, heterogeneous and autonomous sources. The mechanism's
theoretical basis is a framework that is drawn from evidence law, which shares some
fundamental commonalities with conflict detection and resolution in enterprise
integration environments.

Conflict detection opens with gathering the results collected by the information retrieval
process. These results may have justifications or certainty assessments attached to them.
Furthermore, it identifies whether and how these results are conflicting.

Most conflicts in enterprise integration assume object correspondence, for example, that
two conflicting candidates are concerned with the same thing. Furthermore, it is
examined if concepts used in both results semantically cohere to the same thing. Hence,
detection further reviews the information integration process in order to detect that
conflicts are a mere syntactic (language and translation), or a semantic mismatch or
misinterpretation of concepts. Finally, the concept of admissibility ensures that the
results, in principle, are worth considering, for example, according to business rules.

The design of a conflict resolution mechanism is based on a rational scheme for judging
the weight of conflicting results. First, the agents assess the reliability or credibility of an
information source. Judgement based on the weight of conflicting results is first
applied to any available, domain-specific, resolution strategies. Second, the agent applies
any 'general scientific' resolution strategies that are not specific to one domain. When no
domain-related expertise can solve the conflict then the agent can only judge on domain-
independent evaluation criteria such as the results' reliability. A scheme is sketched out
for judgement based on the reliability of conflicting results, involving three steps:
Ranking the conflicting results according to their reliability; Ways to redefine conflicting
results; and Heuristic decision-making.

The evaluation includes a computational implementation of an enterprise integration
environment incorporating a model of an information agent. An example is realised in
this environment. The conflict detection and resolution mechanism, and interfaces to
each integrated source, are implemented in Visual C++. A case study is conducted on
this scenario to evaluate each conflict detection and resolution step. Furthermore, this
illustrates both the advantages over existing approaches and the limitations.

XII

1. Introduction

1.1 Preface

This research has been developed from an interest in distributed databases, enterprise
integration architectures, and open information systems.

Within this enormously diverse field one small but key problem is addressed: One that
is also central to enabling the integration of pre-existing, autonomous information
sources.

1.2 Problem Statement

A typical enterprise has large numbers of heterogeneous information systems such as
databases, expert systems, or standard software systems. These may need to be
integrated in order to provide a large information base for decision makers or
application programs. Information agents typically manage the integration of
information sources in a collaborative form. Such systems are generally called
Distributed Collaborative Environments for Enterprise Integration (DCEEI).

However, an epistemic audit in these environments may produce incomplete, obsolete,
incorrect, or otherwise inconsistent results. In other words, information from
heterogeneous, autonomous and pre-existing sources may be conflicting. A mechanism
for information agents is required to detect and resolve these conflicts in a logical and
systematic way that is rational to any potential client of the integration environment.
Existing approaches to enterprise integration fall short in providing such a rational
mechanism for

(i) detecting conflicts, and

(ii) applying all available resolution strategies to a conflict.

1.3 Research Aim

First, a theoretical basis has to be defined on which a rational framework for conflict
detection and resolution can be designed. This framework is then applied to the DCEEI.
In other words, all available means for detecting conflicts and strategies to resolve
conflicts are embedded in this framework. A general mechanism is laid out that enables
intelligent information agents to resolve conflicts about contradicting information from
pre-existing, heterogeneous and autonomous sources.

1.4 Original Contribution

Earlier versions of this research have been discussed on workshops and conference, e.g.
[GRA92] [GRA93] [GRA94a] [GRA94b] [GRA95a] [GRA95b], However, this thesis
presents the definitive treatment of this research approach with the following
contribution:

A master framework for a conflict detection and conflict resolution mechanism for
enterprise integration is elaborated. Within this structure the following elements were
designed:

• The detection framework requires a formal representation that is based on
commonly used, mainstream object structures. However, it includes a novel
object identifier for heterogeneous integration environments. This novel identifier
is the basis for an automatic mechanism to revise assumptions about the
correspondence of objects across heterogeneous information sources.

• Furthermore, a scheme is designed for identifying whether conflicts are merely
syntactically conflicting or semantic mismatch (misinterpretation) conflicts.

• Within the conflict resolution framework a specification of rational judgement
of conflicting results is provided that takes multiple alternative resolution
strategies into account. It is based on the premise that domain-specific resolution
strategies are applied first, followed by more general resolution procedures. This
research shows that this principle, which is used in distributed planning, is also
appropriate in enterprise integration. A global scheme for judgement on the
reliability of information sources is sketched. This framework is composed of
ranking conflicting results with respect to their reliability, redefining the reliability
assessments, and finally proposing a compromise.

The result is a novel design for a mechanism to detect and resolve conflicts in DCEEI.

2

1.5 Research Methodology

The master framework for conflict detection and resolution is based on principal
concepts in evidence law. It is shown that this field provides a good structure for
evaluating evidence, justifications or reasons for potentially conflicting information.

The mechanism to revise assumptions about the correspondence of objects across
systems is based on a novel object identifier that is an extension of object-oriented
structures, for example, as used in most DCEEI. It is more specific about object
sameness than existing approaches because it incorporates the identification that objects
actually have within their sources of origin.

The scheme for detecting syntactic or semantic mismatch (misinterpretation)
conflicts has been designed by reviewing enterprise modelling and schema integration
procedures.

The specification of rational judgement with possibly multiple strategies is based on
experiences with domain-specific resolution mechanisms in distributed planning
systems. Judgement on the reliability of information is grounded on existing research
in enterprise integration and the wider field of distributed artificial intelligence. This is
extended by fundamental observations in social science and value judgement.
Composing these approaches produced a scheme including ranking reliability,
redefining reliability estimates and their ranking heuristics, and negotiating a
compromise.

The design of a conflict detection and resolution mechanism is built on the theoretical
framework and a synthesis of existing research from related fields.

3

1.6 Structure

The overall structure of this thesis is divided into five main sections, which incorporate
all seven chapters:

(1) An introductory part covering the introduction to this thesis (Chapter 1) and an
introduction to Distributed Collaborative Environments for Enterprise Integration
(Chapter 2).

(2) The related research on conflict detection and resolution is provided in Chapter
3).

(3) A theoretical Chapter 4 follows the analysis of existing approaches.

(4) The design of the conflict detection and resolution mechanism (Chapter 5) is
based on the previous chapter’s theory.

(5) The evaluation of the approach in Chapter 6 leads to the conclusion of the
thesis in Chapter 7.

Each chapter is opened by a brief introductory overview. A short summary is provided at
the end of each chapter.

1. Introduction

Chapter 1 is deliberately very brief to provide an immediate overview of the problem
statement, the aim, the contribution, and the methodology of this research.

Chapter 2 covers the basic terminology, introductory architectural issues, and a brief
discussion of autonomy versus heterogeneity in integration environments. This is
followed by a description of the problems resulting from conflicting information in
enterprise integration environments. The concept of rationality is briefly discussed
followed by a systematic analysis of the literature on Distributed Collaborative
Environments for Enterprise Integration (DCEEI). This leads to a brief clarification of
the terms ’agent belief, ’agent knowledge’, and ’evidence of information agents’.

2. Related Research

Chapter 3 presents existing research on conflict detection and resolution. First, conflicts
are defined. This is followed by an analysis of conflict detection and resolution
approaches in existing DCEEI and their predecessors. The wider field of Distributed
Artificial Intelligence (DAI) and the particular area of uncertainty management within
DAI appear to have the potential to contribute to the detection and resolution of

4

conflicting information. The section concludes by summarising the contributions and
shortcomings of existing approaches.

3. Theory

Chapter 4 covers a theoretical basis for the design of a conflict detection and resolution
mechanism. Evidence law is used as a basis for a general framework. This principle
structure incorporates existing information, detection mechanism and resolution
strategies in enterprise integration. In addition, enterprise modelling theory contributes
towards a conflict detection framework. The conflict resolution structure is based on
experiences in distributed planning. A general scheme forjudging the reliability of
conflicting solutions is adopted from existing research in enterprise integration and the
wider field of distributed artificial intelligence, social science and value judgement.

4. Mechanism

This framework is used in Chapter 5 to design a mechanism. The basic design principles
are outlined followed by a description of the mechanism for conflict detection and
conflict resolution. This includes the design of the novel object identifier and sameness
predicates. It is subsequently shown how this mechanism is incorporated by a conceptual
implementation in the form of a tree schema.

5. Evaluation and Conclusion

Chapter 6 opens the research evaluation by specifying the evaluation method. The
evaluation has two phases:

• The implementation of an example DCEEI with multiple heterogeneous
information sources, and a computational implementation of an agent model that
includes the conflict management mechanism and the Agent Knowledge;

• A case study is undertaken to evaluate each step of the conflict detection and
resolution mechanism, the functionality, strength, and weakness of the approach.

This section closes with a critical assessment of the evaluation.

The final chapter 7 briefly summarises this research, its contributions, and limitations in a
comprehensive overview. An important result of this research is the identification of
potential future work.

5

2. Distributed Collaborative Environments for Enterprise Integration

2.1 Introduction

This Chapter will provide a basic introduction to Distributed Collaborative
Environments for Enterprise Integration (DCEEI) to outline the functionality of these
systems, the information agents within these environments, and to clarify some basic
terminological issues.

The next section will demonstrate that distributed databases have contributed to DCEEI.
The latter are introduced in Section 2.3 It is subsequently shown how enterprise
integration depends on the autonomy and heterogeneity of the integrated sources.
Section 2.5 describes the problem of conflict detection and resolution in task assignment
within enterprise integration. In Section 2.6 rationality in DCEEIs is briefly discussed.
This is followed by a systematic summary of the information that is available for such
integration environments. Finally, a short introduction into epistemic attributes of
information agents is produced.

2.2 Distributed Databases

"A distributed database (DDB) can be defined as a logically integrated collection
of shared data which is physically distributed across the nodes of a computer
network. A distributed database management system (DDBMS) is the software
to manage a distributed database in such a way that the distribution aspects are
transparent to the user" [[BEL92]p.44],

DDBs were initially homogeneous in that they integrated database management systems
with the same data model and language (e.g. System R*[WIL82]). Heterogeneous
distributed databases integrate data from databases that, for example, use different data
models and languages. The SIRIUS-DELTA system [LIT82], for example, provides
such an integration that includes a translation mechanism between the different data
models and languages.

Decentralised and loosely coupled distributed database systems were introduced as
Federated Databases [HEI85] and Multidatabases [LIT90]. These systems are not based
on one management system to integrate distributed databases but distributed

6

management systems that interact directly. Federated Database Management Systems
(FDMS) and Multidatabases Systems (MDS) can provide loosely coupled integration
when multiple partial global schemata (also called views) exist at each node instead of
one uniform global schema. They enable management systems of any source in the
distributed system to directly exchange data and conceptual schema information.

Thus, such management systems operate on two levels. Each management system
manages its data source, which is called its local level operation. In addition, database
management systems operate on a global level in that they:

• Exchange conceptual schema information to describe the information that they
are willing to exchange;

• A management system can use this conceptual information from other sources to
identify what and where information can be requested;

• Each management system can request data from other management systems,
which would then request the data from their local source; and

• Return results in response to that data request.

MDS and FDMS research provide a basic structure for DCEEI, in particular the concept
of local and global level management functionality. These management systems are the
predecessors of information agents as will be shown in the next section. For a detailed
discussion of distributed database management systems see Ceri and Pelagatti [CER84]
or Bell and Grimson [BEL92],

7

"Integrating 'structured text' as found in conventional database systems is only
part of the (distributed) information handling picture. Accessing other kinds of
data and 'knowledge' is also required, and this adds an additional dimension to
the problem" [[BEL92]p. 11].

Open distributed ultra concurrent systems [HEW91] are information systems that span
multiple, heterogeneous information sources. These systems are typically integrated by
intelligent agents (also called information agents [BAR94a] and Resource Agents
[BR089]). They have been called actor architectures because they are based on
multidatabase or federated database principles [CAW92b]. One difference from the
latter, however, is that the global operations in these actor architectures are provided by
intelligent agents. These agents take the global level activity of traditional database
management systems in FDMSs or MDSs. In other words, a local management system
is used to manage the local information source. An agent is assigned to one particular
information source, e.g. a database or a knowledge-based system, and its management
system. This agent provides the following services:

• The agent holds and manages meta information or conceptual descriptions of the
information available from the integrated source.

• An agent interacts with its source at least in the form of an information
repository. In other words, the agent interacts with the integrated source in that it
requests information from the information source, and receives results. In
principle, agents may cooperate with an information source much more closely.

• Agents within this architecture may exchange information about the information
they are willing to share with other agents. Each agent builds a 'global view' of
the distributed system consisting of all the information it can access (also called
partial global schema).

• It may be the case that an agent has incomplete information about its own
information source and the capabilities of the other sources integrated in the
distributed system.

• Agents can cooperate with other agents in solving complex tasks,
(communication, exchange of justifications for sub-solutions, the assignment of
sub-tasks from one agent to another, etc.).

2.3 Distributed Collaborative Environments for Enterprise Integration

8

• One information agent manages a complex information-intensive problem as a
'managing' agent. It is appointed to co-ordinate a complex task and decompose it
so that other agents contribute according to their abilities [PAP92a].

A federated or actor architecture is a distributed system that enables flexible integration
of highly heterogeneous sources by homogeneous agents. In other words, the
information sources may be any variety of systems including data stores, expert systems,
or standard software systems. They may have different problem-solving strategies, data
and knowledge representations, languages, goals, etc. The only criterion for their
integration in the sharing environment is that an information agent must be able to
interact with this source. The agents themselves are homogeneous in that they use the
same knowledge representation, and communicate with each other by the same protocol
and in the same language. Actor architectures are particularly applicable when large
numbers of agents cooperate and their expertise is largely distinct [CAW92b], Hence,
the actor architecture is very suitable for enterprise integration environments. An
example of an open information system based on an actor architecture with intelligent
agents is shown in Figure 1 (such a system is a Distributed Collaborative Environment
for Enterprise Integration [PAN91a] [BAR94b] [BAR94a]).

Figure 1: Architecture Distributed Collaborative Environment for Enterprise Integration

First, some differences between distributed databases and open information systems
need to be clarified.

9

"Today corporate computing environments are heterogeneous, containing many
independent information resources of different types, such as a database
management with its database, an expert system with its knowledge-base, an
information repository, or an application program" [[HUH92]p.38],

If the heterogeneous information sources cannot all be replaced by one homogeneous
system, then an environment is required that integrates the heterogeneous sources.
Furthermore, open information systems integrate the 'user' as a requester of information
as well as an information source [BR092] [PAN9Ia] [COE93a] [NOR94], A decision
maker, for example, may be a user who requests information from the integration
environment. The information agent integrating the user is specialised in that it knows
how to interact with that user [PAN91a] [CAW92c], Furthermore, it may be tailored to
the needs of the 'user' or its expertise. The Aide de Camp project, for example, has
shown how the focus of an agent can be tailored to the interests (or expertise) of the
human user [COE93a],

A user of the integration environment may also function as an information source. For
example, in an engineering environment a controller may provide information on the
current stock of a given product A. This user may have an on-line terminal and he may
be able to answer specific queries sent to him. If the environment needs to gather
information on product A then it could request this information from the 'user'. In
simplest terms, the user's expertise may be described by a schema similar to database
schemata.

Furthermore, applications may require information from multiple information sources,
or multiple applications may need to exchange information via the integration
environment [HUH92][BR089]. Any such applications or users of the integration
environment are henceforth called 'clients' of the integration environment.

Two key issues for the practical implementation of the enterprise integration
environments are:

1. Communication (between agents, and between agents and their sources);

2. Meta information on where to find information.

The second issue has been briefly addressed by describing 'global views' that
information agents build and that allow them to identify what information is available
throughout the environment. Section 2.7 will further demonstrate how an information
agent can classify this information. Section 3.3 describes enterprise integration

10

environments including the different ways they manage global views (e.g. in enterprise
models).

In enterprise integration environments the inter-agent, and agent-to-source
communication are typically based on languages such as the Knowledge Query and
Manipulation Language KQLM [CHA92] [FIN94a] [FIN94b] [NEC91] . For example,
each KQLM message is composed of a 'content layer', wrapped by a 'message layer',
which is embedded in a 'communication layer':

Content Layer: Each agent communicates with the local source it integrates by using
the language of this source. These source to agent languages include database
languages, e.g. ANSI SQL, or C++, or any other language supported by the local
source (e.g. Prolog). To communicate with knowledge sources agents may use
languages such as KIF [GIN91], LOOM [MAC91], or CLASSIC [BOR89]. The
latter are also typical examples of languages used for inter-agent communication.
Moreover, homogeneous information agents, in principle, can apply any language
that is rich enough to express the communicated information. Hence, the
propositional calculus introduced in Section 3.2.1 and then developed further
throughout the design of the conflict management mechanism in Chapter 5, could be
used as the inter-agent, and agent-to-source language.

Message Layer: This layer covers the content layer, in that it specifies the language that
is used, the kind of speech act, and the ontology on which the content is based. The
'speech act' can be of the kinds 'Content' or 'Declaration'. Content messages contain
queries, results in return of a particular query, or error messages in result of a query.
Declaration messages are used to register agents, exchange schema objects and their
availability, etc. Multiple agents may use different ontologies. These may, for
example, be specified in different enterprise models.

Communication Layer: This outer wrapper of a KQLM message identifies the sender,
the recipient, and the communication type such as synchronisation or asynchronous.
The communication layer is the lowest level of KQLM and is based on a network
protocol such as TCP/IP [CHA92],

This three-layered protocol facilitates the communication between agents, and between
agents and their sources. The minimum physical link between the communicating
partners (their computer notes) is a TCP/IP protocol. In addition, the sources need to
have a common application language (in the content layer) such as KIF [GIN91] .

11

Further detail on inter-agent communication, and agent-to-source communication, is
also shown alongside the KQLM description in [CHA92].

Agents in the open systems are intelligent in an Artificial Intelligence sense. Artificial
Intelligence (AI) has been proposed, e.g. by Hewitt and Inman [HEW91] or Pan and
Tenenbaum [PAN91a], as a support for the agents in open information systems. Agents
can use intelligent techniques to integrate an information source. Furthermore,
information agents can use intelligence to interact with each other as described in the
field of Distributed Artificial Intelligence (DAI).

"Distributed Artificial Intelligence is the sub-field of AI that has, for over a
decade now, been investigating the knowledge and reasoning techniques that
computational agents might need in order to participate in societies"
[[DUR92]p.858],

One example of how agents may make use of intelligent behaviour is the task of
integrating inconsistent information. This task may include decisions on what
information is believed to be correct or incorrect.

Open information systems are therefore a subset of 'Intelligent and Cooperative
Information Systems' (ICIS).

"Such systems involve information agents - distributed over nodes with a
common communication network- which work together in a synergetic manner
by exchanging information and expertise, coordinating their activities and
negotiation how to solve parts of a common, information-intensive problem"
[[PAP92a]p. 169].

'Information-intensive problems' emphasise the integration of information and not the
problem-solving structure. The information is integrated from multiple sources that may
be semantically related. In other words, there are cases where information can be
obtained from more than one source. Agents therefore have to manage potentially
conflicting and inconsistent data in an ad hoc manner [HEW91]. A conflict detection
and resolution mechanism is required that enables the agent to detect these
inconsistencies and possibly resolve them.

In summary the term 'Distributed Collaborative Environment for Enterprise
Integration' (DCEEI) [BAR94a] will be used for open, distributed information systems,
managed by collaborating, intelligent agents for information-intensive problem-solving.
These systems implement information-sharing and are also called 'information-sharing
environments'. Section 3.3 will present a brief survey of existing DCEEI research, and
their conflict detection and resolution capabilities.

12

2.4 Autonomy, Heterogeneity and Integration

The design of a Distributed Collaborative Environment for Enterprise Integration
(DCEEI) depends on the autonomy and heterogeneity of the integrated information
sources. This will be demonstrated by showing that autonomy and heterogeneity are
interrelated which, as a result, has an impact on the close way in which information
sources may be integrated.

Autonomy in distributed databases is typically defined on the basis of the following four
requirements [SHE90]:

1. 'Association autonomy' is the most basic requirement. It stands for a system's
ability to choose if and by how much to associate with other systems or a
distributed management system.

2. 'Communication autonomy' measures the degree to which a system has to
communicate with other systems or any distributed management system.

3. 'Execution autonomy' enables a system to decide which tasks to execute. This
includes the ability of a system to handle any of its tasks independently of any
interference from a global or distributed management system. For example, the
global system should not influence the command order of the local management
system.

4. 'Design autonomy' is concerned with the ability of any system to change its
design. The design of a database is, for example, its conceptual description or
database schemata. Furthermore, the local design is concerned with any
specification of how to manage the information systems including naming, data
representation, syntactic and semantic interpretation, etc.

These autonomies are closely interrelated. For example, association and execution
autonomy are closely related in that a system that refuses to execute tasks from other
systems, executes its association autonomy. It has been shown by Baker et al. [BAK92]
that the above definition is applicable not only to distributed databases, but also to
distributed agent systems in general.

DCEEIs integrate multiple information sources in a sharing environment which will
inevitably restrict the autonomy of the integrated sources. For example, if a source
agrees to collaborate in any form with its information agent then its association
autonomy is restricted.

13

Local autonomy is much more restricted, for example, by the enforcement of
consistency, concurrency control or transaction management in distributed systems:

"Local autonomy affects the classical requirements for consistency, congruency
control, and transaction management" [[LIT90]p.269].

In distributed databases, for example, distributed updates may involve multiple
databases that need to commit the update concurrently to ensure consistency.

Heterogeneity in distributed databases is typically defined by variations in data models,
data languages, and database systems [HSI92], In Artificial Intelligence heterogeneity is
concerned with "variations in the nature of the data as well as hardware and software
platforms" [[JAG92]p.47]. These variations include different knowledge
representations, problem-solving capabilities, reasoning mechanism, etc.

Restricts and Requires
Heterogeneity , / Autonomy

Subsumes

Figure 2: Autonomy and Heterogeneity

However, the concepts of heterogeneity and autonomy as described above are
interrelated. Baker et al. [BAK92] have outlined that the following relations may occur
in distributed databases and distributed intelligent systems in general (Figure 2):

1. Heterogeneity restricts local autonomy;

2. Heterogeneity requires local autonomy; and

3. Strict autonomy regulations subsume heterogeneity.

The previous paragraph has described how any integration of sources will inevitably
restrict local autonomy. Furthermore, integrating heterogeneous information sources
becomes potentially more restrictive for the local autonomy due to the inherent
differences between the sources. For example, integrating a database and a knowledge-
based system may put harsh restrictions on the local autonomy of the database if cross
system consistency is enforced. Updates to the database may only be possible if they are
consistent with the 'facts' in the knowledge-base.

Depending on how heterogeneous information sources are the more complex and
difficult it is to integrate these into a tight common concept. For example, two sources
with relational data models can be more easily integrated than sources with
heterogeneous data models. In the latter case both models use different ways to express

14

the same concepts. For example, object identity may be implemented differently if based
on different notions of identity. A hierarchical database is not able to implement the
concept of 'user defined keys' as in relational databases. This heterogeneity of data
models requires that their autonomy to implement the identity of the same object must
be respected. More heterogeneous systems, such as expert systems and databases, may
require even greater respect to their design, execution, and communication autonomy.
Hence, system heterogeneity requires a certain degree of autonomy.

In many cases the autonomy requirements of information sources may subsume the
problems raised by their heterogeneity. An example might be found in an engineering
environment where machines on the shop floor produce information that is also used by
other sources. However, such systems will typically not adjust their execution priorities
to the other information systems but simply fulfil their role on the shop floor. This is an
example of a system that will have very harsh autonomy requirements. However, these
requirements may subsume any problems due to the heterogeneity of the sources
[BAK92],

In summary, it has been shown that heterogeneity and autonomy are interrelated
concepts in information systems integration. Furthermore, heterogeneous systems will
always be sensitive to restrictions of their autonomy. The integration of any specific
heterogeneous, autonomous sources may therefore be different to any other. In particular
the integration may have different degrees of tightness. In principle, integration in a
collaborative environment can mean full exploration of the integrated sources with
regard to their problem-solving strategy, data and knowledge representation, etc.
Furthermore, the integrated sources may be able to commit to the strict control of the
global system in respect to execution of tasks at the local sources, changes to the design
of the information sources, etc.

However, typical information systems cannot commit to such a restriction or even
abolition of their autonomy. Therefore, a heterogeneous, autonomous source may only
be integrated as an information repository [HUH93], In this case, information requests
can be sent by the information agent to its source and results may be returned from that
system. At the very least, an information agent needs to know how to communicate with
the integrated sources, how to request information from that sources, and how to receive
results.

15

2.5 Conflict Detection and Resolution in Task Assignment

Section 2.3 noted that for any given information request issued against a Distributed
Collaborative Environment for Enterprise Integration (DCEEI) a manager agent is
specified. This agent has to identify which sources can provide the required information.
If the request cannot be satisfied by a specific source the multiple sources may be able to
provide partial solutions, which together amount to the requested information. In other
words, the manager agent may need to decompose and compose complex requests.

In case of either decomposed partial requests or one request, they need to be assigned to
the according information agents in the environment. In this way the assigned agents can
request the required information from the information sources they integrate. This
procedure is generally called task assignment.

Typically, DCEEIs apply a derivative of the contract net approach [SMI80] [SMI81] for
task decomposition and assignment. This basic mechanism is enriched with more
complex plans such as shown by the Partial Global Planning Algorithm [DUR91a](the
algorithm is discussed in Section 3.4.2). An example of how this is applied to enterprise
integration is discussed in [PAP92a][PAP91]. One major difference between partial
global planning in distributed problem-solving and task assignment in enterprise
integration is that DCEEIs are primarily concerned with 'information-intensive problem-
solving' [PAP92a](Section 2.3). In other words, the emphasis is on integrating
information and not on the problem-solving. The latter is typically a domain-specific
activity (see Section 3.4.5 for Task Sharing and Result Sharing in DCEEI).

However, when multiple agents can perform a given task - that is, they can each request
the required information from their integrated sources - there, in principle, are two ways
to assign this task. Task assignment can be done either by selecting the most adequate
agent or by assigning the job to all possible agents. In the first case, the best agent has to
be evaluated with the help of heuristics that are typically of the following kind:

• Select the agent that is currently idle [DUR91a];

• Assign the task to the agent with the cheapest bid, e.g. in terms of
communication costs [PAN91a].

Such heuristics are typically easy to apply as they provide conflict free task assignment.
In addition, the assignment produces very little overhead as there is only one response
for every request that is issued.

16

The problem with these heuristics is that they assume that the results from different
agents are consistent. In other words, it has to be assumed that the results are mutually
acceptable. For example, agent A and agent B may both be able to provide results on a
given query. Agent A is selected because of lower communication costs. This, however,
assumes that agent B produces the same solution, or that A is at least equally good. It
may, thus, not be the case that one result may be correct and the other incorrect. The
question is therefore, 'Is the information in enterprise integration always consistent, and
are all results correct?'

"The information of different parties can be inconsistent, incomplete, and / or
incorrect. They are subject to independent outcomes in their operations because
of their internal concurrence and the possibility of new information arriving at
any time " [[HEW91]p. 1409],

Alternatively, any tasks or subtask can be assigned to all possible information agents,
that is all agents that can provide the requested information. In this case all possible
sources provide results via their information agents. These results may conflict when
agents have incorrect or incomplete information.

For example, pre-existing systems can have incorrect or obsolete information if data is
inserted incorrectly into a data store. Inconsistencies are also often explained by the
concept of different views on the same query. For example, the question, 'How fat is
Yogi?' may result in answers that have been correct at different times, or that are correct
for different individuals or assumptions.

Furthermore, there are a number of problems that can occur on the integration level. For
example, schemata can be integrated incorrectly, or changes may have been made to the
information sources that are not known by the integrating agent.

In the last section it was noted that heterogeneous sources, such as integrated in
DCEEIs, typically have to be largely autonomous. This means that systems may
concurrently and dynamically change with the potential risk of inconstancies between
these sources. In other words, a DCEEI that integrates truly heterogeneous sources has
to be able to deal with inconsistencies.

It is therefore incorrect to assume consistent information throughout the integration
environment:

This research is built on the assumption that in an enterprise information
system the results of an information request can be inconsistent

17

(incomplete, obsolete, or incorrect) so that one agent may have a correct
solution and another may have an incorrect solution.

Information agents need to investigate all available alternative results in order to
integrate information in a way that is rational to any potential client of the sharing
environment (do all that is possible to avoid incorrect results). They need to assign
requests to all sources (via their agents) that can possibly produce relevant results. A
mechanism is then required that can detect inconsistencies between responses from the
sharing environment. Such conflict detection is naturally a prerequisite for conflict
resolution. Unless a conflict has been detected there cannot be any resolution.

It follows that the terms 'conflict' and 'rationality' need to be defined for information
agents in DCEEI. Agent rationality is, hence, the subject of the following section. Later
in this thesis the concept of a conflict will be further defined. These definitions are
concerned with conflicts between two propositions, results or partial results.

In other words, more than two results to a given query may exist. For example, the query
'How fat is Yogi' may produce the results A: '18 Stone', B: '20 Stone' and C: 'not 17
Stone'. In principle, these multiple results crystallise down to conflicts between A and B,
A and C, and B and C. In other words, an information agent may receive multiple results
to a given request. It then gathers these results in some uniform representation (as shown
in Section 5.2) and classifies these into pairs of results that may be conflicting. (Section
3.2.1 describes a propositional classification of conflicts and Section 5.2.4 shows how
agents can classify multiple results into pairs of conflicting results.). Each pair is then
subject to conflict detection and resolution as outlined in this research.

18

2.6 Rationality in Conflict Detection and Resolution

The opening question to rationality in conflict detection and resolution is: 'Why should
information agents be rational at all?'

A possible definition of rationality is:

• "Endowed with reason, reasonable;

• sensible, sane;

• based on, derived from, reason or reasoning;

• not foolish, absurd, or extravagant" [OXF75].

In addition, rationality is concerned with:

• Coherence (e.g. the coherence of goals [JOK95][POL95]);

• Different levels of rationality, e.g. economic rationality [EDM95] [DUR95], or
higher levels of goals [EPS95],

Rationality in communities is different to individual rationality [SOL95] in that it
concerns itself with the question:

"Is rational behavior behavior that is rational according to the subject in question
or is rational behavior the behavior that is rational according to the observed?"
[[SMI95]p. 131]

Rationality in enterprise integration is the matter of multiple subjects, of which at least
one is an information agent, and at least one is a client. The aspect of rationality in
enterprise integration is based on the client. In other words, it is important that the
information agent acts rationally from the point of view of any potential client of the
integration environment. In the following the concept of Principle and Application
Rationality will therefore be introduced [GRA95],

Multiple irrational ways to evaluate conflicting results exist, for example:

• Ignoring the alternatives and judging first come first served, or at random, e.g.
[PAP92a],

• Manipulating the conflicting results so that a compromise is reached such as
averaging conflicting numerical values, e.g. [SU 91].

• Selecting the solution on another basis such as optimality of the retrieval
process, or the response time, e.g. [JAG92] [PAN91a],

19

Most research in enterprise integration applies similar strategies to avoid the detection
of inconsistencies by assuming consistent information throughout the environment and
thus:

• Apply heuristics to optimise the retrieval process, e.g., cost evaluation
[PAN91a];

• Utilise domain-specific resolution strategies, e.g., credibility of a source of
origin and the cost of denying beliefs that were already shared [BAR94a].

However, a rational person (or agent) would logically and systematically investigate
the results and their evidence. This logical and systematic pursuit produces results that
are rational in that all available information is investigated in an appropriate form and
complete order. For example, the circumstances of the conflict are analysed, the
contributions often need to be concerned with the same thing to be conflicting, results
may need to conform with existing business rules and integrity constraints, etc.

Moreover, multiple clients may have different, dynamically changing points of
emphasis, priorities, and interests in respect to the integrated information. These are
rational in respect to a particular problem or domain. In other words, each client may
have a notion of rationality that is not generally shared but is specific to its purpose or
application (Application Rationality). For example, a sales figure in a business
environment is rational for one decision maker if it is manipulated by less than 5 per
cent, and rational to another decision maker only if the data has not been manipulated at
all.

In contrast, the task of integrating information in enterprise environments has to be
rational, in principle, to every client (Principle Rationality). Information agents
provide a large information base for any potential client. A rational scheme (i.e. a
detection and resolution mechanism) and any steps it involves need to be rational to all
potential clients that receive the integrated information. In other words, any rational
system would come to the same result given the same situation and the same level of
knowledge (information) of the conflict and its circumstances.

"Enterprise integration is concerned with how to improve the performance of
distributed organisations and markets. It focuses on the communication of
information and the coordination and optimisation of enterprise decisions and
processes in order to achieve higher levels of productivity, flexibility and
quality. To achieve integration it is necessary that units of the enterprise, be they
human or machine base, be able to understand each other" [[FOX92]p.310].

20

In other words, enterprise integration includes all processes from information retrieval to
information use. For conflict detection and resolution, however, information agents need
a scheme that is Principle Rational so that it

(i) gathers the results produced by an information retrieval process
[PAN91a][JAG92][BAR94a] and language (e.g. KQLM [CHA92]) in the sharing
environment,

(ii) to provide rational information integration services to client systems, which may,
for example, be concerned with: Human - computer interaction (user interfaces
and intelligent retrieval); Human - work flow and process integration
(cooperative work); Decision support; They may be application programs or
decision makers.

In other words, information retrieval starts with specifying the client's requirements. This
is a back-end problem that is concerned with hypermedia interfaces, accessing
hypermedia information, providing the back-end with knowledge about the human user,
and it is concerned with knowledge about retrieval strategies [CAW92c]. However,
retrieval also includes the physical integration of systems, e.g. by applying schema
integration, inter language translation, inter source communication. These functions have
briefly been mentioned in Section 2.3.

Information retrieval and conflict detection and resolution provide the conceptual
integrated by the DCEEI in a Principle Rational way. Following this integration step the
information (candidates) may be subject to specific Application Rationality. Application
Rationality is implemented not only in software systems or decision makers but is also
implemented in systems concerned with presenting information to human users.
Furthermore, cooperative work is a subject area that deals with the interaction among
humans, their interaction across information systems [COE93a], the interaction between
humans and (intelligent) machines or computers [COE92] [FIN93], or with the
interaction of (intelligent) sources with each other [CHA90],

An example of such a system is the Aide De Camp approach. This "acts as a buffer
between incoming messages and the user"[[FIN93]p. 101], Some routine tasks are
provided by the system automatically such as filtering, or storing messages. More
complex tasks including replying to standard messages are defined with the help of a
language called Task Scripting Language (TSL) [COE92]. It is used to describe tasks
that an agent should perform for the human user. This language can also be used for
multiple agents to describe cooperative tasks [COE93b], A task scripted by TSL is
compiled into the agent, called an Aide de Camp of a specific user. Hence, the user can

21

define its notion of rationality by scripting tasks for the agent in the way this specific
user prefers it (Application Rational).

Moreover, group decision-making and individual decision-making are areas
interdependent of the enterprise integration framework [SHA93] [GOT92] [WON94], In
other words, a decision support system requires information integrated by the sharing
environment. It might need meta information about where this information comes from,
how it relates to each other (independence assumptions), etc. (Section 3.5.4).

Decision support systems and cooperative work are areas that target the human -
computer - process interaction, with emphasis on optimising business goals. Conflict
detection and resolution has a different aim in that it is concerned with the integration of
information sources to provide a large information base.

22

2.7 Information in Enterprise Integration

The previous sections have briefly sketched out rational conflict detection and
resolution in Distributed Collaborative Environments for Enterprise Integration
(DCEEIs). This section will investigate what information is available to agents in
enterprise integration environments to undertake this task. Huhns and Singh [HUH92]
have outlined a basic categorisation of information in DCEEI, such that:

"Not just a structural description of the local schemes is used, but all available
knowledge, including:

1. Schema Knowledge, i.e. the structure of the data, integrity constraints, and
allowed operations;

2. Resource Knowledge, i.e. a description of the supported services such as the data
model and languages, lexical definitions of object names, the data itself,
comments from resource designers and integrators; and

3. Organisational Knowledge, i.e. the corporate rules governing use of the
resources" [[HUH92]p.39],

On the basis of this classification an information agent's 'knowledge' (Agent
Knowledge) is described in the following overview (Figure 3). The term 'knowledge'
may be inappropriate if agents are aware of the possibility of errors in this information.
The term 'belief would be much more appropriate but the term knowledge is used in
order to comply with the general literature.

Schema Knowledge
(Local and Global)

Resource Knowledge
(Local and Global)

Organisational Knowledge

1. Data Structure and its 1 . Environmental 1. Business Rules
• In teg rity C onstra in ts Information A g en t R u les a n d P rocedures

• A llo w ed O pera tions 2 . Services e.g. to In tegra te The L oca l

3. Semantic Matching In fo rm a tion Source

4. Extensional
Information

2. Decision-Making

5. Comments from
Designers, Integrators
and Agents

Knowledge
A g en t R u les a n d P rocedures
e.g. to M anage In terac tion
w ith O th er A g en ts o r to

6 . Retrieved Information M a n a g e the A g en t
K now ledge

Figure 3: Information in Enterprise Integration Environments

23

Schema Knowledge

The ANSI/SPARC three level reference architecture for database systems [ANS75] has
the following layers:

• The internal view holds, for example, physical file descriptions of layouts and
sizes of fields, and manages the file access such as hashing or indexing.

• The conceptual view holds the logical description of the entire database such as
tables and field names in a relational database;

• The external view has a description of the information available to a user of the
database. It describes what information is available to that particular user (or
group of users) in a possibly abstract way suitable for that particular user.

An information agent is at least a 'user' with a specific external view to the sources it
integrates. The external view contains the information that this system is prepared to
share with the information agent and, hence, with the enterprise integration environment.
This is also called a local participation schema, e.g. by Bell and Grimson [BEL92], In
other words, the agent integrates its source as an 'information repository' (Section 2.3).
In principle, however, a system could be integrated more closely if it is prepared to share
its entire database and not just a subset (defined in the external view). Furthermore, the
source may allow the agent insight into its conceptual view, or even on the internal view.
However, the latter internal view on the storage of information is typically of little
interest to sharing data.

Furthermore, information-sharing is concerned, not only with integrating databases, but
with integrating all kinds of information systems throughout an information-sharing
environment. These systems provide their information agents with schemata that are
functionally equivalent to conceptual schemata of integrated databases. This principle is
implemented in many different approaches. For example, Su and Park [SU 91] have
presented information stored in rule-based systems by extending static database schemata
with rules. These rules relate multiple objects and show generalisations about the
transactions within a source.

"To extract only global meaningful information, a general rule can be abstracted
into an antecedent-consequent relationship among data items and optional and
explicit triggering conditions" [[SU 91]p.226].

These generalised rules help to integrate rule-based systems without having to represent
every single fact and rule of the system. These meta rules are included between objects in
object-oriented schemata [SU 90] or are defined as methods for single objects [PAP92b].

24

In summary, information sources present a conceptual description of the information
they are willing to share throughout the enterprise integration system. This description is
here called a conceptual schema, which may include database schemata, schemata with
generalisations, other advanced database schemata, entity relationship diagrams, frame
systems of knowledge-bases, or process models [HUH94],

The data structure, described in the previous paragraphs, may be linked to other,
circumstantial information such as integrity constraints. Traditionally, integrity
constraints are programmed into the software that interacts with data stores or
databases. These are then implemented into database management systems, and today,
integrity constraints are used in distributed database schemata [THO90]. For example, an
attribute Cost in a database schema may have the integrity constraint 'costs must be
negative,' (Cost < 0); or an attribute Price of the schema object Food may be constrained
by 'Prices must be greater than O' (Price > 0).

Seligman and Kerschberg "described a new approach to maintaining consistency between
objects in dynamic, shared databases and copies of those objects which are cached in an
application knowledge-base" [[SEL93]p.l87]. The basic idea is to install different levels
and kinds of integrity constraints on objects when these are exchanged between
databases and applications [SEL93]. For example, an object may become inconsistent if:

"It is deleted completely; It is nil; A particular condition becomes true; It
becomes 'n' minutes older than the original in the database; or When an attribute
varies by more than a particular percentage" [[SEL93]p.l91].

In conclusion, different kinds of integrity constraints can be attached to schema objects in
conceptual schemata.

Typically a schema has some information on the kind of operation that a given user is
allowed to perform on a piece of data, such as 'read only' or 'may be changed.' However,
this information is of little interest for conflict detection and resolution. In other words,
whether an agent is, for example, allowed to change data in the local source is irrelevant
for detecting conflicts between results gathered by the agents throughout the integration
environment.

In Section 2.3 the information-sharing environment was described as a global system that
integrates local information sources. Data structures from the local sources are
represented in conceptual schemata. These have to be integrated in the global system to
provide a global view of the integrated environment. However, this may be achieved in

25

many different ways but most research on DCEEI is based on object-oriented schema
such as described in [OXB90] or [PAN91a]. It is beyond the scope of this research to
describe the different ways of schema integration. Furthermore, this section only needs to
outline the available information, here the data structure, and not the way it is efficiendy
managed. Further information is included in the implementation of an integrated schema
in the computational model of a DCEEIs in Section 6.2.

26

Resource Knowledge

Schema Knowledge is only one kind of information that is modelled in integration
environments. A 'meta model1 is a model about one or multiple information sources. It
should "not only contain a common catalogue encompassing local database [or other]
schemata, but more significantly, it should also specify the intended contexts ... within
which individual systems operate and interact with each other" [[HSU91]p.605],
"Information agents cannot operate autonomously unless they have an understanding of
the environment they are in" [[BAR94a]p.274], In other words, Schema Knowledge is
only one kind of information, which is concerned mainly with the data structure, and, in
addition, Resource Knowledge describes context related information.

Intelligent agents may have knowledge about the integrated source as a whole and its
connections to the surrounding world, which is a kind of Resource Knowledge called
Environmental Information. This includes the communication modalities of a source,
characteristics of the information sources such as the kind of system involved (database,
expert system, neural network, user interface, etc.), its knowledge representation, data
modelling or problem-solving strategies, the size of the information source or its
components (e.g. number of tables in a relational database), key objects in an information
source such as key columns in a database, or the description of the content of a source
[ARE93]. The age of a system, its maintenance procedures, data security aspects may all
be used to described an information source's environment.

Su and Park [SU 91] have proposed that rule-based systems may allow for requesting
data not just once but repeatedly. In other words, "the trend of a series of values derived
by a repetitive processing" [[SU 91]p.234] may produce information about the stability
of the result over time. Hence, this is circumstantial, or environmental information on the
form in which to request information from a specific rule-based system.

Many information systems have an area of expertise such as finance, medicine,
production control, etc. This is not only the case for expert systems or knowledge-based
systems but also for other software systems. A database in the finance department, for
example, may be the central source for payroll information. This can be seen as its
expertise or role. The following presents a basic structure for characteristics of
information systems:

"An enterprise consists of people having relationships between each other like
’subordinate of, 'belong to group', 'work in project'. People also have
characteristics like 'is manager', 'has experience', 'is out of the office'. Machines

27

are not much different. Relationships exist like 'is immediately following," belongs
to group,' and characteristics like 'is fastest', 'is reliable', 'is standalone', 'is cheap',
'is shut down'. Processes (or better servers) also follow structuring rules like
'belongs to group', ’uses’, and 'is reliable', 'during night only' " [[BUB92]p.389].

In other words, heuristics may exist that group objects or sources according to their
characteristics, for example: All systems on the shop floor; or All systems in the
marketing department. In addition, to these groups, individual systems, or schema
objects may have characteristics such as roles they play within an enterprise, or their
expertise.

Another such characteristic is 'authority'. Barbuceanu and Fox define authority as "a kind
of priority agents may have concerning the truth of the information they deliver"
[[BAR94c]p.4], In this case the agents honestly assess their authority for providing
specific information. Another model of authority has been based on the role concept.
"Agents have different authorities depending on the roles they are in" [[BAR94a]p.279].
For example, in a resource planning scenario an agent A may have a higher authority to
specify how a given resource R is spent than another agent B, based on agent A's role to
plan resource R.

In summary, any one or multiple information systems may have roles, expertise, or
authority that is shared by:

1. Abstract objects

2. Schema Objects

3. Sources

4. Groups

(e.g. Peter in source Dl)

(e.g. Employee's Name,)

(e.g. the database Dl)

(e.g. all sources concerned with production, all schema
objects concerned with Employee data, all individual
objects that are called Peter,...)

In addition, Environmental Information not only describes the environment of the whole
information source, but it may also include the circumstances of a particular piece of
information. For example, it may be possible to inquire the last update of a particular
piece of data retrieved from a database. "This kind of information includes information
about constraints, object dependencies, dependencies of object property values (derived
attribute values), statistics about object usage patterns, or object access overheads"
[[PAP91]p.409],

28

Domain-specific information may be included that focuses on particular information from
an information source. For example, in SHARE design, information is attached to
integrated objects including formal and informal design information [TOY94],

In DCEEI, domain-specific information, as described in the previous paragraphs, is often
defined by an enterprise model or a common knowledge-base. The enterprise model
provides the agent with Resource Knowledge like an external reference model without
being part of the Agent Knowledge. These models are discussed in Section 3.3.1 but the
basic concept is briefly introduced below:

An example of a common knowledge-base is CYC [LEN90] which stores large
amounts of 'common knowledge' in the form of rules and facts [COL91]
[HUH92]. Further, this common knowledge can be extended with expert
knowledge where needed. CYC is presenting a model of the world. An enterprise
model typically represents only a subset of this world view that describes the
enterprise, e.g. MIND [JAG94], MKS [PAN91a] or TOVE [FOX93], In
addition, multiple, possibly overlapping models within an organisation may exist
that have different levels of abstraction and different purposes [PET92],

Every object, including data processes, or physical objects, may have a
counterpart in the enterprise model. In order to express an agent's Environmental
Information strong links are necessary between the agent's schema knowledge
and the enterprise model.

Expert domain knowledge may be seen as a Service to information agents. Hence,
enterprise models can function as 'expert knowledge' sources to provide concept
explanation and matching Services. This includes descriptions of results or concepts, and
conflict resolution services. For example, the result 'The Beetle is an Automobile' may be
described by definitions of the concept automobile in the enterprise model. Furthermore,
Collet et al. [COL91] have described ways to check concepts for synonyms, or sub type
and super type relations (these are described in Section 5.4.2). The CYCCESS project
[GUH94] has taken this idea further and provides a Service for checking if concepts, e.g.
results from information sources such as databases or spreadsheets, are consistent with
the common knowledge stored in the CYC knowledge-base [LEN90], In Section 5.8 this
process is described further.

Another way to apply expert knowledge is the integration of a user interface as described
in [PAN91a] (Section 2.7). The integration environment may request information from a

29

human expert via its interface. Hence, a request is sent to the user interface requiring, for
example, the working hours of employee 'Peter'. The human expert, e.g. a production
manager, returns a result that is unrealistic, e.g. the result ' 2 0 0 hours a week' that violates
the integrity constraint 'Employees can at maximum work 50 hours a week'. In such a
case the information agent could simply return the result to the production manager for
verification. This is the simplest from in which an expert can verify its own results and
thus provides this service to the integrating agent.

Not only an enterprise model, or a human user, but also information sources themselves,
may be able to provide a service to information agents. Many sources can describe the
reliability of results received from them. A neural network may be able to produce
information on the statistical probability (confidence level) of results it produces.
Furthermore, knowledge-based systems may give explanations of results they propose.
An inference engine may give a justification based on an internal belief network when this
is requested [DOY79]. Other systems may include information on the degree of
confidence for a belief including probability [PEA93] or the strength of belief for
individual grounds [FOX91].

The problem of semantic matching can be put as:

"Data obtained from remote and autonomous data sources often will not match in
terms of name, scope, granularity of abstractions, temporal units, and domain
definitions" [[WIE92]p.39],

Matching these differences can be done by independent software components [WIE92]
or lists that relate objects in one system to objects in another system, e.g. implemented in
auxiliary schemata in distributed database systems [BEL92] [KIM91a]. Data matching
information is essentially resource bound as it is knowledge about

• which data objects from different sources are equivalent and

• how a piece of information from one source needs to be transformed to gain its
semantic meaning in another specific environment.

These matching rules are also called generalisations [HUH92], They are further
described in Section 3.3.1 including their use in connection with enterprise models.
Problems with generalisations are discussed in the following of Section 3.3 and in
Section 5.2.1.

Information-sharing environments may not have complete enterprise models and thus
gain Extensional Information from analysing schema knowledge. Information about
concepts may be derived from schema information (intentional information) [PAP91],

30

For example, one may know the concept of a 'Good Employee' by analysing a relational
table Employee: A good employee may have to be older than thirty years, have ten years
with the company and earn more than fifty thousand dollar. Given an employee X that is
not in this table, the following extensional information can be derived: Any person X is a
good employee if they fulfil the investigated criteria of the concept (intentional
information), e.g. age, years with the company, and earnings.

Comments from administrators, designers, or integrators may relate to the reliability,
condition and set-up of information systems. Examples of such comments are 'the
database is new,' 'the expert system has been tested,' the 'Knowledge-Based System is
checked and adjusted by an expert daily', or the 'database is very reliable'. Comments can
also include messages of caution such as troubles recently experienced with a given
source. In principle, comments could be any kind of information, advice, or regulation
that an administrator (designer or integrator) may want to make.

In addition, to system managers, information agents themselves could also make
comments that may be based on their past experience. For example, an agent may make a
comment of caution if information from a specific source, e.g. a database, is frequently
incomplete. This requires, however, that the agent has some accepted way to determine a
reason for a specific comment. For example, it may have a statistical confidence level of
ninety per cent that a source produces incomplete results and this may be a good basis to
make the comment s 'frequently incomplete' on this source.

Furthermore, information agents may be able to learn as, for example, implemented by
Vital et al. [VIT91]. These agents give a critique (a vote) on conflicting, alternative
results. The result with the most votes is accepted and then 'learned' by that agent. For
example, agents may learn that information on product design from the marketing
department is often not consistent with other information sources. This learned
information may be stored as comments by information agents. Another form of agent
comment is described in Kim et al. [KIRSlb] where agents can give ratings for the
quality of the output expected from them. These ratings are a kind of comment on the
quality of the information shared via an information agent.

All the information that can be retrieved from information sources, can be regarded as
Resource Knowledge (Retrieved Information). A result statement that an information
agent receives in return for its request is essentially Resource Knowledge. However, a
result statement is external information in that it is never stored as Agent Knowledge.

31

In principle, global Resource Knowledge includes local Resource Knowledge about an
agent's own, local source. In addition, the combination of local Resource Knowledge
from multiple sources provides global Resource Knowledge. In other words, information
agents can share and combine their Resource Knowledge and build global Resource
Knowledge bases just as global views for database schemata [BEL92],

New information may, however, be gained when Resource Knowledge from multiple
information sources is integrated. For example, incomplete concepts may be synthesised
to produce more complex concepts. Thus the concept ’automobile’ may be known to
include cars and vans according to one source. In addition, another source may know
that automobiles include cars, buses and trucks. Synthesising both concepts produces a
new, more complex concept of automobiles including cars, vans, trucks and buses.

32

Organisational Knowledge

Two different types of Organisational Knowledge exist within an information agent:
Procedural Knowledge and Problem-Solving Knowledge. "Procedural Knowledge
contains the well-thought-out, well-organised, well-tested and well-adapted
Organisational Knowledge" [[W0092]p.211], An example of a protocol is the contract
net "in which agents use specific message types for communication, along with
expectations about the impact of a message (that a task announcement will elicit a bid,
for example)" [[DUR92]p.861], Problem-Solving Knowledge "provides assistance
when the procedural knowledge is insufficient to perform an organisational activity"
[[W0092]p.212], No generally accepted terminology of Organisational Knowledge
exists. Thus, it is defined, henceforth, that all Procedural and Problem-Solving
Knowledge (handbook information) is called Organisational Knowledge, which is
subdivided into:

• Business Rules;

• Decision-Making Knowledge.

Information agents need some procedural information about how to interact with their
information sources or other agents in the system. They have to have procedures for
managing their meta information of their integrated sources or about building global
views. Procedures are required to enable an information agent to fulfil its roles, which
has been briefly outlined in the introductory Section 2.3.

Hsu defines business rules along the following lines [HSU91]:

Business rules may concern a particular information system (or a subsystem)
such that these rules embody triggers, processes, and integrity constraints that an
information agent knows about. All conceptual information that is necessary to
integrate the local sources is classified as Business Rules or Procedures.

Conceptual information about a source has already been defined as Resource
Knowledge. Therefore it is pragmatic to define Business Rules as rules or heuristics that
an agent has to integrate information from heterogeneous sources in enterprise
integration environments.

The principle difference between Decision-Making Knowledge and Business Rules is
that the latter are agent specific, and may vary from one agent to another, and the former
are the same for every agent. However, Decision-Making Knowledge also includes
procedures for interaction with other agents and the way an agent manages itself (e.g. its

33

Agent Knowledge). Among other things this covers the conflict detection and resolution
mechanism.

Within the integration environment, authority is an important concept for the
management of multiple agents' knowledge. Agents need to know if they can accept
(believe) information, e.g. Business Rules or integrity constraints from other agents.
Regulations on what information it can believe and from which sources are embodied by
an agent's Business Rules.

For example, it has been mentioned that sources may have roles and that hierarchies
may exist between sources. This information is Environmental Information (Resource
Knowledge) and has, for example, been implemented into enterprise integration
environments by Pan et al. [PAN89] (Section 3.3.1). In principle, comments from other
agents with higher authority may be accepted as binding. However the decision of the
system administrators or integrators on these matters, an agent's Business Rules will tell
it whether or not to accept other agents' knowledge and use it as if it were its own..

34

2.8 Evidence, Knowledge and Beliefs of Information Agents

2.8.1 Knowing and Believing

The outline of Distributed Collaborative Environments for Enterprise Integration
(DCEEI) in Section 2.3 defined the collaborating character of information agents in
these systems [BAR94a], Collaboration in a distributed artificial intelligence sense is
concerned with "knowledge and reasoning techniques that computational agents might
need in order to participate in societies" [[DUR92]p.858]. The intelligent, collaborative
agents are therefore based on a concept for representing their 'knowledge', together with
techniques to reason about or with this knowledge.

In principle, agents can represent the information they have about themselves and the
world in any format, ranging from simple propositional calculus to complex epistemic
models. For example, the symbolic notions of Hintikka [HIN62] include an agent (a)
that may know (K) a proposition (O.R^), which composes to ’K^O.R^)1. Furthermore,
an agent (a) that believes (B) the proposition (O.R^) is expressed as ’B^O.R^)’. In
enterprise integration environments the information that agents exchange is typically
propositional [BAR94a],

"Knowledge representation is immediately concerned with reasoning, because an
Artificial Intelligence system will almost always need to generate explicitly
some of what has been implicitly represented" [[LEV89]p.35].

It follows that a criterion for a suitable knowledge representation for intelligent agents is
that it is rich enough to support the necessary reasoning of these agents. This includes,
for example, that:

• They need to provide the agent with the flexibility, generality and modularity
that is needed to integrate complex information systems and interact within
complex enterprise integration environments.

• Epistemic attitudes need to allow the information agents to express the degree of
'confidence1 they have in a proposition.

In a general epistemic model the 'degree of confidence' can be expressed by an agent. It
may, for example, know a proposition is false, disbelieve a proposition, believe a
proposition, or know a proposition. Furthermore, reasoning may include justifications
for and possibly against a proposition. An agent may have reasons to believe a
proposition and others to disbelieve it.

35

A sophisticated model for epistemic attitudes of agents revolves around finding a good
semantic model of knowledge and belief [HAL85]. Most research applies the definitions
that:

• Knowledge is of true things (facts);

• Believing is based on having evidence pro and contra an entertained proposition
and that such evidence makes one to overcome the doubts about the proposition
[PRI67],

However, many further definitions exist that are nonconvergent, for example:

• Knowledge has to be closed under logical consequence such that "there must not
be anything inconsistent about a state of affairs in which [a proposition] q is true
and in which I know what I say I know" [[HIN62]p.l7] (I know that I know, that
I know...);

• Knowledge is learned and not forgotten information[LEM67];

• Knowledge is a one hundred per cent certain belief [KEY21];

• The concept of knowing is distinct from believing where knowledge implies that
something is true and believing always implies the possibility of the belief not
being true [KNE49];

• Belief could also be based on preferences such as 'feeling sure1 or 'feeling certain'
about a proposition [PRI67] [PRI69].

Furthermore, for the multiple agent case, common and implicit knowledge need to be
defined. For example, it may be said that "a group has common knowledge of a fact p
exactly when everyone knows that everyone knows that everyone knows ... that p is true
.... A group has implicit knowledge of p if, roughly speaking, the agents pool their
knowledge together [so that] they can deduce p"[[HAL85]p.481],

Very briefly knowledge representation of information agents has been revealed. What is
the impact of any knowledge representation on a conflict detection and resolution
mechanism for information agents? Conflict management is part of an agent's reasoning
and, hence, needs to be expressed in its knowledge representation (model). Whatever
the model of the information agent, the reasoning scheme provided by this research
should be the same. In other words, the rational scheme for detecting and resolving
conflicts in enterprise integration, in principle, is independent of the model an agent
uses for its reasoning. Typically, information agents have epistemic models but they
could also have any other, non epistemic model, if this is rich enough. This research, for
example, will use a basic propositional calculus which is introduced in Section 3.2.1.

36

2.8.2 Belief and Knowledge Sets

An important question for conflict detection and resolution is whether agents have
closed belief, or knowledge sets, and if agents are omniscient.

An information agent has Schema Knowledge, Resource Knowledge and Organisational
Knowledge (Agent Knowledge Section 2.7). Resource Knowledge also includes
retrieved information from the integrated sources. These sources are typically
autonomous; They can change their information without having to declare that to the
integrating agent (Section 2.4 Autonomy). Thus, the information agent has an open set
of beliefs, which are retrieved from the integrated source and may change dynamically,
and concurrently.

The Agent Knowledge that is defined for the agent, in principle, may be closed.
However, as Section 2.3 outlined, this is typically not the case in dynamically changing
environments with heterogeneous, autonomous sources. Inconsistencies and
incompleteness of Agent Knowledge may exist, e.g. data structure information (Schema
Knowledge) may be incomplete or out of date [HEW91].

"Logical omniscience means that agents are assumed to be so intelligent that they
must know all valid formulas, and that their knowledge is closed under implication,
so that if an agent knows p, and knows that p implies q, then the agent must also
know q" [[FAG87]p.491],

According to this definition, information agents are not logically omniscient. They lack
a closed belief set (they do not know all valid formulas).

37

2.9 Chapter Summary and Conclusion

Distributed Collaborative Environments for Enterprise Integration (DCEEI) (Section
2.3) are based on information agents that integrate heterogeneous information sources
such as databases, expert systems, standard software systems, or knowledge-bases. Each
information agent integrates one information system into the sharing environment. This
integration may be tight or loose. In the case of loose integration, an agent may treat a
source as an information repository from which it can request information and receive
results. DCEEIs perform 'information-intensive problem-solving1. That means agents are
mainly concerned with the integration of information from diverse sources and not
specifically with problem-solving structures. The latter is addressed by agents in
mainstream Distributed Artificial Intelligence.

A systematic summary of all the information available to agents in enterprise integration
environments has been provided. It is termed Agent Knowledge and is classified into
Schema Knowledge, Resource Knowledge and Organisational Knowledge (Section 2.7).

A given request for information can be issued to any information agent in the sharing
environment, which makes the agent the 'managing agent' for this request. This agent
may be able to request the necessary information from its own local source. However, it
might be necessary to decompose a complex task and assign subtasks to other agents. In
other words, the managing agent can request information from its local sources and also
from other sources via other agents.

Pre-existing, heterogeneous, autonomous information systems potentially hold
conflicting information. In other words, information may be inconsistent where any
result can be incomplete, obsolete or incorrect. Multiple pre-existing sources that have
operated independently are potentially inconsistent. Furthermore, they may contain
information that became obsolete over time, or they may simply contain incorrect
information in the absence of an efficient control mechanism. It has been shown that
heterogeneity is an inherent character of large information-sharing environments
(Section 2.4). Further, the integration of heterogeneous sources requires that these stay
largely autonomous. Hence, information in these sources is independent and may be
inconsistent.

It follows that a given task, that is an information request, is assigned not only to any
single source but rather to all sources (via their agents) that can presumably provide the

38

requested information (Section 2.5). In this way the agent systematically gathers the
information that is available in response to a given request.

Thus, integrating potentially inconsistent information from heterogeneous, autonomous
sources requires a mechanism to allow information agents to detect and resolve
conflicts. This mechanism receives the results from the information retrieval process
and provides information to any potential user of the integration environment. These
users are called clients and may, for example, be decision makers or application
programs. The resolution mechanism needs to be Principle Rational (Section 2.6) in that
any potential client can accept the way this result was produced,

(i) given the same situation, and

(ii) the same level of knowledge of the conflict and its circumstances.

In a case where the resolution is not rational, the result generally would not be
acceptable. In principle, it could not be used by any application and decision maker
independent of their specific application and point of view (Principle Rationality versus
Application Rationality).

Agents in DCEEI typically have epistemic models to represent information they reason
with or about. However, the kind of epistemic or other model is independent of the
design of a rational scheme for conflict detection and resolution. Moreover, it is
important to note that information agents have potentially incomplete Agent Knowledge
and may believe information received from their integrated sources. Hence, they
typically lack a closed belief (knowledge) set. One consequence is that information
agents typically are not omniscient.

It is concluded that conflict detection and resolution is a key issue in integrating
heterogeneous, autonomous sources in Distributed Collaborative Environments for
Enterprise Integration. The following section will investigate the existing approaches.

39

3. Related Research on Conflict Detection and Resolution
3.1 Introduction

In this chapter, existing approaches to detecting and resolving conflicts are analysed. A
precondition for this analysis is a structure of the kinds of conflicts that may occur in
information-sharing environments. Hence, in Section 3.2 different kinds of conflicts and
their detection in information-sharing are briefly surveyed.

Section 3.3 will show existing approaches to conflict detection and resolution in
Distributed Collaborative Environments for Enterprise Integration (DCEEI). These
systems integrate persistent and transient data from any source throughout the
enterprise. They are based on intelligent information agents and are inherently
distributed. This discussion and survey will include distributed information systems that
are closely related to DCEEIs.

An area that potentially may provide a conflict detection and resolution mechanism is
Distributed Artificial Intelligence (DAI) (Section 3.4). Within the field of DAI the
subject of uncertainty management is of particular interest and, hence, observed in
Section 3.5. Conflict detection and resolution can be seen as a special case of
uncertainty management. It will be shown that research in this field provides a
framework for conflict detection that is applicable to enterprise integration (Section
3.5).

Conclusions are drawn in Section 3.6 followed by a chapter summary.

40

3.2 Conflicts in Enterprise Integration
3.2.1 Propositional Conflicts in Enterprise Integration

In Section 2.5 it has been outlined that a retrieval process in enterprise integration
environments may produce multiple results (also called candidates). These need to be
assessed in a uniform representation. Furthermore, a requirement for conflict resolution
is that the results are compared so that it can be determined if, and how the candidates
conflict. Furthermore, in Section 2.5 it has been briefly outlined that multiple results to a
given query essentially produce multiple pairs of possibly conflict results. For example,
three results A, B and C produce the pairs 'A and B', 'A and C', and 'C and B'. The
following of this Section will present a basic propositional structure to classify the
possible ways in which pairs of candidates, in principle, can conflict. Please see Section
5.2.4.2 for a demonstration how multiple results on a query form pairs of possibly
conflict candidates.

A propositional calculus has been adopted to formally represent conflicts in enterprise
integration scenarios. It is composed of an object Oj (out of a range of Object Oj, O2 , ...
Oj) with the attributes Rj, R2 , ... Rk. Furthermore, it may be specified if the attributes
are members of classes of attributes, which range from v j , v2, ... vm.

Two kinds of conflicts, explicit and implicit, in principle, can occur in information
integration. Two results, or candidates such as '0.vm:Rk' and 'not 0 .vm:Rk' conflict
explicitly when it is claimed that both candidates are true at the same time (where the
external negation 'not 0 .vm:Rk' includes the internal negation 'O does not have Rk in the
attribute class vm'). For example, one proposition 'Yogi (Oj) has the weight(vm) 18
stone (Rk)' (0.vm:Rk), and the proposition 'It is not the case that Yogi has the weight 18
stone' (not 0 .vm:Rk), are explicitly conflicting.

Two results conflict implicitly when they are logically inconsistent so that they have one
of the following six forms:

1 . Oj.Vm;Rl andOj.vm:R7 where Oj.vm: Rj logically excludes Oj.vm:R7

2 . Oj.viiRi andOj.vpjRp where Oj.vi: R7 logically excludes Oj.vp^Rp

3. Oj VfRk and Oj.v2:Rk where Oj.Vj: Rk logically excludes Oj.V7 :Rk

4. Oj.vm:Ri and0 2 .vm:R2 where O] .vm: Rj logically excludes 0 7 .vm:R7

5. 0].vi:R] a n d 07 .V 9: R 7 where Oj .v): Rj logically excludes 0 7 .V7 :R7

6 . Oi.vi:Rk and O7 .v7 -.Rir where Oj ,Vj: Rk logically excludes 0 7 .V7 :Rk

Table 1: Implicit Conflicts

41

This means in the first case, for example, that an implicit inconsistency over the attribute
class 'weight of object' (vm), exists when it is known that the proposition 'Yogi weighs
18 stone' (Oi.vm:Rj) and the proposition 'Yogi weighs 20 stone' (O[-Vj^Rp) cannot be
true at the same time. This inconsistency is based on the assumption that is concerned
with the same individual (Oj) in both cases and that the individual can only have one
value (R0 for the attribute class vm. The second case varies in that the same object (0[)
has different attributes for different classes of attributes. For example, 'Yogi weights 18
stone' and 'Yogi eats very little' may be two propositions that are contradicting. The third
case only varies from this in that different attribute classes (v j and V2) of the object (Oj)
have the same attribute (Rp). For example, the propositions 'Yogi has red hair' may be
concerned with the attribute class 'colour of hair of the head' and 'colour of hair of beard'.

The last three cases are concerned with two different objects O] and O2 that have
conflicting attributes. For example, the attribute 'fattest bear' (RjJ may only be true for
either Yogi (Oj) or another bear Peter(0 2). In this example the objects are concerned
wiih the same attribute class, e.g. 'rank in corpulence'. However, in the fifth case an
implicit conflict exists between two different objects over different attribute classes. For
example, it may be conflicting, that Yogi (Oj) is 'the fattest bear' (Rj) and his mother
(O2) has only given birth to slim, little bears. This may be logically conflicting based on a
number of assumptions such as: It is true that Yogi is the son of the bear O2 ; and She
has always had slim, little bears; and Yogi is not slim but fat. The final case describes a
situation where the two different objects have the same attribute for different attribute
classes. This may be conflicting such as 'Yogi has red beard hair' and 'Yogi's father has
red head hair' if it is true that son bears always have different coloured beard hair than
the colour of their father's head hair.

From the examples in the previous paragraph it becomes obvious that a key question in
enterprise integration is 'What kinds of conflicts can practically be detected by
information agents?' Detecting explicit conflicts, once the arguments have been described
in this propositional calculus, is a simple matching operation. In other words, the
proposition and the negation of an identical proposition constitutes an explicit conflict.
However, implicit conflicts are only detected if they are 'known', that is if the information
agent knows when two propositions are 'logically'exclusive'. In other words, it needs to
be specified what is 'known' by an information agent to identify implicit conflicts.

Typically, enough information is available to identify the implicit conflicts of cases 1
(Oi.vm;Ri and Oj.vm:R2) and 4 (Opvm:Ri and 0 2 -vm:R2). For example, the
information agent may know that the object (Oj) 'Peter' has only got one property for the

42

attribute 'address' (vm) which may be either 'Pentonville Rd.' (R]) or 'Roseberry Gardens'
(R2). Other implicit conflicts require information that is typically not available in
enterprise integration environments. In information-sharing there are two reasons for
this:

1. The information agents lack the domain-specific knowledge to identify conflicts
between different attributes of objects. For example, complex circumstantial
information is required to know that the result from one database 'Peter has blue
shoes' is conflicting with the proposition 'Peter has a green shirt' from another
database. Typically, these conflicts are identified within a problem-solving
scenario or by expert reasoning. For example, a scheduling agent as described by
Klein and Lu [KLE89] (Section 3.4.4) may identify implicit conflicts within a
planning scenario based on its domain-specific knowledge. Section 5.2.4.2 will
specifically describe what data is available to information agents to detect implicit
conflicts.

2. A typical query in enterprise integration will request a specific attribute of an
object, for example: 'What is the name of the employee with the national
insurance number 123?' or 'Is it true that the employee Peter has the national
insurance number 123?' This kind of query typically investigates one specific
attribute class (vm). It will not detect inconsistencies between different attributes
of the object employee. Furthermore, these queries will typically be concerned
with the same object, e.g. the employee 'Peter'.

The term 'same objects', however, requires further specification. The last three kinds of
implicit conflicts are concerned with different objects, which may mean that:

• Two objects Oj and O2 are known to be different individuals, e.g. called 'Peter'
and 'Mark;

• It is believed that two objects are concerned with the same individual but no
proof of a common identity is available.

An example of the latter case is an object 'Peter' from one database and an object called
'Peter' from another database may be the same individual but unless this is verified as a
fact, it has to be specified that there are two objects. It might be possible to prove that
the objects are the same individual but until this is done, the conflict is one of 'different'
objects.

In contrast to these conflicts concerned with 'the same object', it may also occur that
attributes of different individuals are conflicting, for example, 'Peter's colour of shoe' and
'Mark's length of hair'. In this case objects are known to be different individuals and the

43

emphasis lies on the semantic problem evaluation and enterprise modelling. For example,
a photographer may identify the conflict based on his opinion that these colours do not
match when Peter and Mark are together in a picture.

In summary, a conflict detection and resolution mechanism for enterprise integration
environments will have to deal with any kind of explicit and implicit conflict. Information
agents will have to identify all explicit conflicts and all known implicit conflicts. These
typically include conflicts between results that are concerned with the same object, and
often the same attribute class.

44

3.2.2 Other Kinds of Conflicts in Enterprise Integration

In information-sharing many other ways exist to structure the possible kinds of conflicts,
other then explicit and implicit conflicts. Conflicts can occur on different levels of the
integration process, which include the physical integration and conceptual integration
levels. For example, on the physical level sources may use the same communication
concept in different, conflicting, ways, or network services may conflict when they
transfer data between notes. This research is primarily concerned with the conceptual
integration of information throughout the environment. Within this field of conceptual
information integration there are at least two classes of conflicts [KIM91b]:

• Schema conflicts; and

• Data conflicts.
Schema conflicts, in principle, are due to inconsistencies in the conceptual descriptions
of the integrated sources. Schema conflicts are therefore also called type-level conflicts
[HAM93]. Such schema conflicts can occur between multiple conceptual (auxiliary or
export) schemata of multiple systems. Alternatively they may occur between a
conceptual schema and its internal, or external schema or the data it represents.

By analysing the cause of schema conflicts these could be classified into semantic,
descriptive, heterogeneity, or structural schema conflicts [SPA92], In the case of
semantic schema conflicts different schemata use different concepts to represent the
same objects. For example, the concepts 'car' and 'vehicle' may describe the same real
world object. Descriptive schema conflicts are based on different naming, or different
property attribution to objects. For example, the concept car can be described by the
properties 'model', 'engine', ’manufacturer1, or by other properties such as ’price'.
Heterogeneity conflicts are due to different data models used in different schemata such
as an object-oriented and a relational data model. In structural schema conflicts the same
real world object can be described by multiple constructs in the schema. In other words,
within one data model such as the relational one, there are multiple ways to model a real
world concept. Schema conflicts are part of schema integration [QUT92] which
typically is performed when distributed systems are installed.

"Data conflicts are due to inconsistent data in the absence of schema conflicts"
[[KIM91b]p.l4],

In other words, data conflicts exist between data items that cannot possibly both be true
at the same time because they are explicitly or implicitly contradicting. In distributed
information systems these conflicts can only be detected when there is no schema

45

conflict. Data has to be 'translated' or 'mapped' correctly between multiple sources
before its inconsistency or consistency can be evaluated. Schema conflicts therefore
need to be resolved first before data conflicts can be detected. Thus, conflict detection in
this research is ultimately directed at evaluating whether a data conflict has occurred
among responses from multiple systems.

In principle, data conflicts can be based on either inconsistent data or different
representations of the same data [KIM91b] The latter may, for example, be due to
incorrect syntactic translation between different representations, semantic mis-
interpretations, or mis-matching. Furthermore, data conflicts may be due to incorrect,
incomplete, obsolete, or, for other reasons, inconsistent data. For example, data may be
obsolete in any source or it may be entered in an incorrect form. Data conflicts can also
be "factual conflicts [which] relate to the difference in viewpoints about the same entity"
[[DU093a]p.282]. Intelligent and other software systems may have these kinds of
conflicts if they produce incorrect or at least inconsistent results. For example, an expert
system may use rules that are inconsistent with other systems [PRE92], Schema and
data conflicts can occur in large, distributed, heterogeneous enterprise integration
systems as will be shown in the following Sections 3.3.

Data conflicts can occur when more than one result to a given problem exists. For
example, for the question 'How fat is Yogi?', the two answers '18 Stone' and '15 Stone'
may exist. This conflict is non-essential if both results are correct and it is a question of
selecting priorities [RES75]. If however, one result (or both) is incorrect then, "a true
conflict ... needs to be resolved, and no mere choosing among mutually acceptable
outcomes" [[ZL091]p.l321], For example, it may be known that Yogi only has one
weight so that either '18 Stone' or '15 Stone', or neither result is correct. This conflict is
called an essential, or true data conflict.

In summary, a conflict detection mechanism in DCEEI should identify different kinds
of conflict:

1. Mere syntactic physical integration or schema conflicts;

2. Data conflicts based on different representations or inconsistent data (syntactic
or semantic integration conflict). Data conflicts can be classified as explicit, or
implicit propositional conflicts.

3. Essential conflicts or non-essential conflicts where the latter is based on
priorities, goals, notions of optimality, etc.

46

3.2.3 Completeness of Conflict Detection in Enterprise Integration Environments

Ideally a complete conflict detection mechanism would detect all explicit and implicit
inconsistencies throughout the distributed system. However, conflict detection depends
on the completeness of a retrieval algorithm in enterprise integration. In other words, the
detection mechanism relies on the selection of all relevant information to the case in
issue. Information retrieval may be incomplete in integration environments (Section 2.3)
that integrate heterogeneous, autonomous sources (Section 2.4). Please note that
'information retrieval' as described in Section 2.3 and 2.6 includes not only the
investigation of what information is needed but also the physical retrieval of the results,
e.g. distributed query processing. Thus, a measure for the completeness of conflict
detection is necessarily limited to those results that are provided by the retrieval process.

Among these results, the mechanism should be complete in respect to explicit conflicts.
A sentence (result) and its negation (in a second result) are easily identified as
conflicting. However, implicit conflicts can only be detected if they are known to be
conflicting [LEV84], For example, truth maintenance systems detect inconsistencies
according to a principle of coherence such as 'valid justification' [HUH90] (Section
3.5.3.2). In general, domain or context information can be used as 'rules' of coherence in
information systems [SU 91] [DU093a] [HUH92], Implicit conflicts (Section 3.2.1)
should be detected in a complete fashion in respect to all notions of coherence known to
the information agent (called 'known implicit conflicts').

Conflict resolution would ideally investigate the truth of information representing real
world notions that lie outside the computational system. In other words, the agent would
investigate the real world and determine which result is incorrect. However, this is an
impossible task for an information system [KEN91]. Agents cannot investigate the truth
of information; rather, they apply some reasoning about what rationally appears to be
most likely from the point of view of the information system. Thus, conflict resolution is
limited to the resolution strategies know to the information agent, which is its only way
to eliminate incorrect results. A rational scheme is designed for solving conflicts with
the available strategies.

In summary, information agents should detect all explicit and all known implicit
conflicts between results provided by the information retrieval process. It should try to
resolve these conflicts with all rational strategies known to it. In the following sections
existing approaches to conflict detection and resolution are investigated against this
background.

47

3.3 Conflict Detection and Resolution in Distributed Collaborative Environments
for Enterprise Integration

3.3.1 Master Model and Unified Approaches

Semantic unification is a central problem of enterprise integration and can be approached
in three different ways [PET92], The master model approach requires that all models of
individual sources be instances of a pre-defined universal model. The unified approach
relaxes this requirement considerably in that the global model is a unification of the local
models. The federated approach seeks to completely relax model conformance by means
of active mechanisms that dynamically relate models as needed.

3.3.1.1 The Master Model in CARNOT

The CARNOT project [HUH93][COL91] integrates all varieties of information systems
via its global schema or master model. This schema is based on a common knowledge-
base CYC [LEN90] which, in principle, represents every possible concept. Information
sources are mapped into CYC. In other words, their schemata are linked to CYC, the
master model, and not directly merged with each other.

Equivalence relations between objects in the local sources and CYC are called
'articulation axioms'. These are similar to accessibility relations in the possible worlds
semantics [KRI63][DU093a]. They are implemented by relations based on the 'ist'
operator and the equivalence sign <=>. It means that an expression \j/ that is true in the
local source Cj is equivalent to an expression <|) that is true in the global context G (ist(G
<|)) <=> ist(Cjvp)). Such mappings are called generalisations. Concepts are further divided
into subgroups in a tree-like schema that leads to a generalisation hierarchy. In other
words, every concept is generalised into the tree schema on the most general, possible
point or the highest subdomain in the hierarchy [[HUH93]p.39]. Thirdly, the information
is not just integrated with its schema description but also with its Resource and
Organisational Knowledge [HUH92]. Resource Knowledge includes all environmental
information about an information source such as its language or its local data model.
Organisational Knowledge embodies corporate rules that govern the use of information
from integrated system. Section 2.7 has outlined the different sources of schema,
organisational and Resource Knowledge.

The master model approach enables the integration of heterogeneous concepts from data
stores, derivation systems, other software systems, etc., into one central model. Schema
conflicts cannot occur as CARNOT presents a "coherent integration of models [based

48

on] its use of the CYC common-sense knowledge-base as a global context and
federating mechanism" [[HUH93]p.34], Furthermore, the builders of the CYC
knowledge-base have assumed that it is extremely rare that information systems collide
and "a statement and its direct negation both get asserted, let alone nearly
simultaneously" [[LEN90]p.34], Whether this assumption is realistic will be discussed
in the following sections but it is clear from this statement and Section 3.2.2, that data
conflict may occur in enterprise integration. Moreover, conflict free model integration
should be very difficult to enforce, for example:

• Integrators may make mistakes when they integrate an information model;

• Information models may be inconsistent internally (the way they describe the
integrated information system), and hence introduce inconsistencies into the
integration model.

It follows that the CARNOT system, as all master model approaches, has to be restricted
to integrate only conflict free, consistent information systems. A general integration
system, without this restricting consistency assumption, requires a mechanism to detect
and resolve these possible conflicts.

49

3.3.1.2 The Unified Approach to Model Integration

The unified approach is based on the merging of existing schemata into one 'all system',
coherent schema that may be called a Universal Conceptual Schema [PAP90]
[PAP92a], a Common or Canonical Schema [SHE93], Examples include distributed
databases [KlM91a] [HSU91], and enterprise integration systems [PAN91a] [PAP92a].

A unified schema involves in the simplest case of homogeneous distributed databases, a
merger of parts or entire local schemata. Local schemata represent the information in a
local source. These are (possibly partially) exported into an external schema that may
also be called a local participation schema [BEL92], This schema can be used by the
global database management system. The global system has an import schema for each
export schema presented from each integrated source. The conceptual schema is the sum
of all import schemata. Global external schemata present, possibly partial, views of the
distributed system to external clients of the distributed database. An early example of
such a heterogeneous distributed database system is Sirius-Delta [LIT82],

However, the global schema of a distributed database typically provides name and data
value binding, the definition of some basic consistency rules (integrity constraints), and
confidentiality restrictions. Enterprise integration environments based on a global
unified schema also integrate circumstantial information as described in Section 2.7. For
example, the unified approach by Hsu et al. [HSU91] not only integrates existing
schemata but also the environments and conditions in which a system operates. Hsu's
system is based on a unified metadata representation and management system.

"[The unified schema] should not only contain a common catalogue
encompassing local database schemata, but more significantly, it should specify
the intended contexts (i.e. the operating knowledge, control knowledge and
decision knowledge....) within which individual systems operate and interact
with each other" [[HSU91]p.605]. Operating knowledge includes business rules,
triggers, integrity constraints and process descriptions. "Control knowledge for
sequential interaction includes data transfer rules and global equivalence
knowledge for all data items pertaining to the same logical object but [are]
implemented differently" [[HSU91]p.604], Decision knowledge includes "global
decision processes and their implementation into information flows, localised
decision rules and control procedures" [[HSU91]p.604],

In other words, this system provides a unification of all the information, including
schemata, that is available from the integrated sources. It is, hence, called a unified
model and not just a unified schema.

50

Enterprise integration systems are typically managed by Intelligent Cooperative
Information System architectures (Section 2.3), which use a canonical schema [PAP90].
An example of such an environment is the integration system by Pan and Tenenbaum
[PAN91a], It is based on the enterprise-wide model called MKS.

"MKS thus serves agents as a repository for shared knowledge, and a centre for
information exchange" [[PAN91a]p.206]. "The core of the MKS is a
comprehensive object-oriented model of the enterprise and how it functions. The
MKS model includes descriptions of personnel, facilities, equipment, inventory,
manufacturing processes, and other corporate assets. It also captures the flow of
information, decisions, and materials through the enterprise ... The model is
wired into the enterprise's information infrastructure ... so that it continuously
reflects the actual state of the enterprise" [[PAN91b]p.224],

This approach shares much with the master model approach discussed above. However,
the processes, schemata, descriptions of facilities, etc. are not pre-existing such as the
CYC common knowledge-base [LEN90] [COL91], but are composed of descriptions of
enterprise entities and their interaction. The approach is therefore a unification of not
only schemata, but all available information. This dynamic unification is facilitated by
special tools.

"MKS consists of a set of tools for modelling a manufacturing environment
(including processes, equipment, facilities, and operational procedures) and a
complementary set of application-specific shells that use the models to perform
common manufacturing tasks such as monitoring, diagnosis, control, simulation,
and scheduling" [[PAN89]p.351.

Conflict management facilities are implemented based on the MKS model and the inter
agent communication. In other words, the MKS model is used by information agents,
which integrate information sources, and users that request information from the
distributed system. The agents have different types of messages and activities that they
perform. One is called 'Inform Message' and is designed to request textual information
from all other agents. If multiple agents respond, then a request is sent to the agent that
is 'the most appropriate' for this task [PAN91a], The appropriateness is decided based on
the context. For example, "Mary, the equipment operator on duty" [[PAN91a]p.209]
may justify appropriateness.

An 'Enquiry Message' requests information from a specific agent and the existence of
other solutions is not examined. Thirdly, a 'Bid Message' may be sent to all agents that

5!

can possibly provide a response. Which agents can possibly contribute to the tasks in
question, is identified through their descriptions in the MKS model. Their responses are
evaluated if they arrive within the time limit for submitting tasks. Each result is a 'bid to
produce the requested information1. The bid with the lowest cost for carrying out the
task is selected. For example, communication costs, or utilisation aspects are used to
determine the cost of carrying out the task.

Other research that uses the unified approach for enterprise or schema integration in a
similar fashion has been mentioned above such as [JAG92], [PAP92a], [DU093b],
[ARE93]. All these systems are:

"Based on the assumption that all data used by a number of related, though
separately developed, information sources should be first uniformed and then
unified into a single conceptual (virtual) accumulation of data" [[MAR91]p.l 1].

The unified, global model provides an integration that is free of schema conflicts.
Furthermore, these distributed information systems are assumed to contain completely
consistent information within each individual source, and among the distributed
systems. No essential conflicts between information sources are assumed possible. In
other words, these systems assume that semantically related information, which can be
retrieved from multiple sources, will always bring identical results. Only non-essential
conflicts between mutually acceptable solutions are assumed possible. These systems
present heuristics such as 'cost evaluation' [PAN91a] which guide the agents in deciding
which sources to select in order to optimise the retrieval process.

"Each component information system (IS) has its own set of desires and goals
and an area of expertise; while conflict, which is not total [not a true conflict],
may exist among the different component ISs, once these are transformed into
information agents compromise is achieved and mutual beneficial activities are
performed....This strategy results in overall solutions which are incrementally
constructed to converge on a set of complete local sub problem solutions that
guarantee global consistency" [[PAP92a]p.l82-183].

In other words, this "model of cooperation implies not only some degree of mutual
predictability but also the lack of information agent conflicts" [[PAP92a]p. 185],

52

3.3.1.3 Conclusion on Tight Conflict Free Integration

In summary, tight integration into a consistent global master or unified model requires at
least the following:

1. The integrated sources are fully explored at the integration phase [QUT92],

2. Sources are fully and consistently described to the global system. Every concept
of the local sources has to be mapped into the global master model such as the
CYC concept [LEN90], In the unified approach all the globally shared
information has to be merged.

3. The concepts need to be consistent internally. For example, the integration of
multiple databases requires that "the databases contain consistent information, so
the choice of database only affects the efficiency of the query and not the
accuracy" [[ARE93]p.l40]

4. The systems have to stay consistent to these definitions in the global system and
therefore lose local autonomy. This consistency requirement will potentially
restrict autonomy of the local source to change its design [BAK92], Furthermore,
the autonomy of the local source to communicate with the global system or to
execute a request from the global system is violated [SHE90] (For a definition of
autonomy please see Section 2.4).

But are these assumptions and requirements realistic for enterprise integration
environments? Full exploitation of an integrated source requires omniscience by the
integrator. It is necessary to explore all explicit and implicit conflicts. Omniscience of
intelligent information systems has been questioned in much research, e.g. [LEV84]
[FAG87], and in Section 2.8.2

Several schema conflicts have been listed above including semantic, descriptive,
heterogeneity and structural conflicts. As one specific example, the notion of identity in
different models may lead to inconsistency that cannot always be overcome. Identity will
be discussed in much more detail below. In the following paragraph it will only briefly be
used as an excellent example of a potential source of inconsistency in schema integration.

For example, 'Yogi the bear' may be identified by its name, its social security
number, its function in comic series, or a system-defined number (surrogate).
More specifically, a relational database would implement a key property of 'Yogi'
such as its name, as an identifier. The latter, value based form of identification
potentially includes the danger of being too weak. For example, other 'Yogis' may
have the same name but different real world identities [PAT88], An object-

53

oriented database would, for example, implement a much stronger notion of
identity based on a system-defined identifier such as a unique number. Different
systems represent the object 'Yogi' in different forms and with different strengths
of identity [KHO90]. This may potentially lead to inconsistencies if the locally
inaccurate concept 'Yogi' is mapped into an exactly defined concept in the global
system. In other words, the 'Yogi' in a relational database and an individual 'Yogi'
in an object-oriented database cannot be mapped on one object - with only one
notion of identity - without having to manipulate the notion of identity of at least
one of these objects. Typically in enterprise integration, an object 'Yogi' from a
relational database will be mapped to an individual that is identified with a strong
surrogate based identifier. However, based on the notion of identity of objects in
relational databases it is impossible to guarantee that this mapping is correct.
Hence, unifying a weaker and a stronger notion of identity in a static, schematic
way will potentially result in information loss, and incompleteness.

"One of the characteristics of engineering data is that the schema does not change
frequently" [[JAG92]p52], In such an environment, consistency can be enforced by, for
example, restricting updates of any schema to times when the sources are not operating.
In principle, this is possible if there are very few updates to the schemata. However, in
cases where large numbers of information sources are integrated and need to be changed
frequently, or where sources cannot be restricted in changing their design, then this
assumption may be difficult to maintain. Enterprise integration environments integrate all
kinds of systems, including those that change over time and, hence, may become
internally inconsistent or inconsistent with other information systems.

"It is absurd to believe that in real organisations contradictions will never occur"
[[BAR94b]p.l53], In other words, data conflicts do occur within one source and so
consequently also between sources. Without considering whether or not it is possible to
construct consistent schemata for one or multiple sources, it seems unavoidable in
practice that data is inconsistent and, therefore, conflicting.

Closely related to the fourth assumption (consistency to definitions in the global model)
is the concept of autonomy. It has been shown in Section 2.4 that heterogeneity
subsumes autonomy [BAK92]. In other words, the more heterogeneous the systems are,
the more important is the autonomy of these systems. Tight integration violates the
autonomy of information sources. For example, an integrated information system may
need to be coherent with production requirements on the shop floor in an engineering
environment. This source will need to be autonomous in order to fulfil its function in the

54

production flow. It may become inconsistent with information stored elsewhere in the
enterprise. However, execution autonomy is crucial for such a source to function
correctly in its environment. Even for distributed databases, which store persistent data,
harshly restricting local autonomy has proved unrealistic:

"Building a global conceptual schema and making all the data behave as one
classical database ... is unrealistic since the local databases must give up their
autonomy" [[LIT90]p.271],

In summary, the assumption of fully locally and globally consistent information systems
is ill founded in enterprise integration environments:

• Tight integration of information systems is not able to guarantee consistency of
the global model and schema conflicts may still occur;

• Essential data conflicts are possible in realistic enterprise integration
environments.

Existing research that uses tight, unified or master model integration without assuming
inconsistencies, as the example systems described in the previous sections, fails to
address essential conflicts. Conflict resolution is limited to proposing resolution
heuristics for non-essential conflicts only.

55

3.3.1.4 Tight Integration with Inconsistencies Assumption

Fox and Barbuceanu [FOX92][BAR94a] propose an approach to enterprise integration
that includes a mechanism for handling inconsistencies that also manages essential
conflicts.

The research is based on a master model called TOVE [FOX93], It is a "computer based
data model which provides a shared and well defined terminology of an enterprise, and
has the capability to deductively answer common sense questions" [[FOX93]p.425]. It
includes a data model with objects, attributes and relations. Furthermore, these
constructs are defined by generic concepts of time, causality, activity and constraints.

"The Information Agent (IA) maintains two kinds of proposition. Premises are
propositions sent to the IA by other agents that consider them true. The IA has
no access to whatever justification the sending agent may have for the
proposition. Derived propositions (or simply propositions) are propositions
inferred by the IA based on the available premises and on the IA's knowledge of
the domain" [[BAR94b]p. 153],

The knowledge of the domain is encoded in the TOVE model. It can be used to
determine which propositions are disjoint and constitute conflicts of the kind 'p&q=>
false' [BAR94c], This means that there may be two beliefs p and q of information agents
in the enterprise integration system that cannot both be true at the same time. These
conflicts are possible because information persistently stored or derived from multiple
source is not necessarily consistent.

The detection in this system includes conflicts based on:

• Terminological inconsistency, which is the conceptual vocabulary employed by an
information agent;

• Assertional inconsistencies of beliefs held by information agents while sharing
information;

• Temporal inconsistency that occurs when information becomes incoherent over
time.

In other words, inconsistencies are assumed possible and may lead to essential or non-
essential conflicts.

Conflict resolution for the first kind of conflict is provided by a description logic (T-Box
service). The other two conflicts are solved with the help of a 'credibility / undeniability

56

model' [BAR94a] [BAR94c], One way to determine credibility is the agent's self
assessment of their authority. Furthermore, all agents are ranked in their credibility or
competence. The credibility of an agent concerning a specific 'belief, results from a
possibly incomplete (partial) order of the agents' roles to accomplish particular goals.
Undeniability is the cost or effort to retract information that has already been distributed
and used by agents. The undeniability is very high if the information has been much
distributed and the effort to change it at a later point is very high. Agents have to self-
asses the deniability costs for their beliefs and their authority.

For example, it is possible that one belief has a high credibility and the other a low
deniability cost so that the second belief is retracted. Furthermore, it may be the case that
one belief has a low authority and the other a high deniability cost. In this case the first
belief is denied. However, there are cases where both beliefs have high authority and / or
high deniability values. In these conflict cases negotiation strategies are necessary. This
negotiation is grounded on two concepts:

• Mediation that tries to find a compromise by redefining conflicting propositions,
similar to Sycara's approach [SYC89](described in Section 3.4.3); and

• Cooperation that evaluates the overall cheapest solution (cost), such as Zlotkin
and Rosenschein's [ZL091] game theoretic approach (Section 3.4.3).

In summary, the mechanism by Fox and Barbuceanu [BAR94a] [BAR94c] [FOX92]
proposes a credibility / deniability model to conflict management. This research accepts
the existence of essential conflicts. However, no general framework for detecting or
resolving conflicts is provided by Fox and Barbuceanu. One consequence from this is
that the approach lacks generality. Furthermore, it falls short in providing comprehensive
conflict detection and resolution for enterprise integration environments because:

• It is limited to three kinds of conflicts including terminological, assertional,
temporal. Other conflicts, e.g. other schema conflicts, are not investigated.

• Conflicts are not formally detected and classified but resolution heuristics are
applied regardless of their suitability for the conflict case. For example, in case a
schema conflict occurs it would falsely be addressed by investigating the
authority of the agent that has shared this belief.

• The conflict resolution mechanism only includes the concept of credibility and the
cost of retracting already shared beliefs. It opens with accepting that essential
conflicts can exist but it does not propose resolution strategies, other than
credibility, that can handle essential conflicts in which one result may be correct
and another may be incorrect.

57

3.3.2 Enterprise Integration based on Federated Architectures

The environments described so far were based on a tight integration. More loosely
coupled enterprise integration environments are Multidatabases.

"[They] aim to permit any kind of pre-existing, heterogeneous, independent
databases, whether on the same computing facility or not, to be interrogated via a
uniform, integrated logical interface" [[BEL92]p. 72],

In other words, the integrated sources can be very heterogeneous and are integrated in
such a way that they stay largely autonomous. For example, an integrated database may
have local users that use only this database without noticing that it also participates in a
distributed database.

"The need for the existence of a global conceptual schema in a multidatabase
system is a controversial issue. There are researchers who define a multidatabase
management system as one which manages several databases without a global
schema" [[OZU90]p. 290],

An example of the former is the Experimental Distributed Database System (EDDS) by
Bell et al. [BEL87] [BEL89]. The EDDS provides each global user with a global view
via its global relational schema. This schema is constructed by the global management
system. It composes local participation schemata of each integrated source, with the
schematic information on the data that this source is willing to share.

"One of the objectives of EDDS is to leave the pre-existing local database
management systems (LDBMS) unaltered, so they can retain their autonomy and
their local database users can ignore the fact that an EDDS distributed database
exists" [[BEL87]p.363],

In order to implement design autonomy (the autonomy of the local source to change its
local schema) a schema manager is installed.

"The schema manager (SM) is intended to automate maintenance of the schema
in the global data dictionary (GDD)" [[BEL87]p.365],

A copy of the GDD is located at each site. It contains a copy of the global relational
schema and all necessary mapping rules, integrity constraints, access rights, etc. that are
necessary to integrate the local source. In other words, schema conflicts can be avoided
by the SM for the shared data, which is the data defined in the participation schema. Data
conflicts, based on inconsistent data stored in multiple databases, may occur. The GDD

58

shares much with the federated dictionary of federated databases. Before these are
discussed other multidatabases will be briefly revised.

Multidatabase without a global schema include Litwin's MRDSM [LIT90] or the
PEGASUS system [AHM91]. These systems emphasis the integration of heterogeneous
information systems while their local autonomy is strictly retained. Instead of a global
schema each integrated source has a dependency schema that contains the mapping and
integrity regulations necessary to integrate information from the local source and remote
systems. In the absence of a global schema the local management system has to fulfil all
the functionalities of the global management system described in the previous sections.
This includes the allocation of relevant information, requesting this information and
integrating it. These systems have, as a result, provided the most loosely coupled
distributed databases. A disadvantage of these distributed databases is the lack of global
management facilities. For example, distributed transaction management for updates has
not been established in the PEGASUS system [AHM91].

Federated architectures originate from fundamental work on federated distributed
databases such as Fleimbinger and McLeod [HEI85], or systems such as the ORION-2
[KIM91a]. The federated database architecture has replaced the global schema as used in
master model or unified approaches by three component schemata:

• A private schema;

• An export schema; and

• An import schema.

The private schema describes the information in the private or local source. The export
schema describes all the information that is made available for other systems. In other
words, elements that are put forward by a local system in the export schema can be
requested from it through the distributed system. The import schema describes the access
and the information that the local source would like to import or share with other
sources. In order to import information the other systems’ export schemata are
investigated and the schematic information is integrated with the existing private schema
to form a global view. In [HEI85] sources "guarantee that they will not modify the
definitions (structure or semantics) of the exported element unless it notifies the
importing systems" [[HEI85]p.262],

A federated system builds a unified schema composed of imported schema information it
has received and its own local schema.

59

"In either approach [federated, master model or unified] one is faced with
schema integration - the process of developing a conceptual schema that
encompasses a collection of local schemata" [[THO90]p. 139],

In other words, federated systems integrate schemata in a similar fashion to tightly
coupled systems. The difference lies in the decentralised and ad hoc form. Every source
develops its own integrated schema and there is no one central or global integrated
schema (model).

In order to provide consistent schema information over time, an integrated source may
have to notify all relevant systems of changes to its export schema. This is called a
notification of change [HEI85] as described in the last paragraph. Another solution
would involve importers repeating the import of schema information in order to
incorporate any changes that may have affected the imported schemata since the last
import.

The federated system described by Heimbinger avoids any schema or data conflicts
based on the following two assumptions.

1. Schema changes are communicated to any importers of that schema using the
above mentioned 'notification of change'.

2. "Objects be given unique names that are unique with respect to an entire
federation. Such unique names must themselves contain some tag indicating the
component that contains the specified object. These unique names are generated
by concatenating the component name with a local object name"
[[HEI85]p.259],

In other words, all objects in the entire federation are consistent in that each real world
object is represented only once and has a unique identifier, which is its name.

The federated architecture allows for a more loose integration than a global schema
architecture in two respects:

• A local system directly manages its shared information, including the
information it is willing to share with others and the information it can import
from other systems;

• The federated schema specifically allows for shared, exported and private, not
shared, data. The global view includes all the information, private and imported,
that is available at a given site. Hence, it enables the integration of sources that
may have inconsistent information privately and only share consistent data.

60

The modularity together with object-oriented data modelling capabilities has provided
the flexibility needed to develop heterogeneous, federated database systems. The
ORION-2 system implements the federated architecture in an object-oriented distributed
database. In other words, this distributed database has an all system spanning naming
convention and assumes that shared data is kept consistent throughout its sharing.
Conflicts can occur when data is transferred from the private to the shared data portion
of the database. A conflict is that already shared data is not coherent with the new data.
However, no conflict resolution but rather a conflict avoidance mechanism is
implemented such that the new data cannot be shared.

Huhns and Bridgeland's [HUH90] [HUH91] have implemented a federated system
based on information agents. This allows agents to exchange partial schemata of the
information they are willing to share. In the same way as the federated system ORION-
2, data can only be shared if it is consistent with the already shared data. In other words,
local sources can have inconsistent data in their local source and schema. If an agent
wants to share a specific piece of data then it has to declare this data from its 'private'
into the 'shared' status. This is done by checking if the information is consistent with all
the shared data with the help of a distributed truth maintenance (DTM) system. This
justification based DTM guarantees that under the notion of coherence all shared data is
consistent. The DTM is described in more detail in Section 3.5.1.2 as a means of non-
monotonic uncertainty management.

In conclusion, conflict management in federated systems can have two forms:

• Traditionally in distributed databases, conflicts are avoided by mechanisms such
as naming conventions and strict consistency rules for shared data. These ensure
that only data is shared that is consistent with the other shared data. Inconsistent
data is kept in the private portions of the local sources and can, hence, not
conflict with data across systems.

• Conflicts may occur and the management system or agent needs a mechanism to
detect and resolve conflicts.

This research will propose such a conflict management mechanism. If a rational scheme
for managing inconsistent data exists then a federated system can be used to
implemented open, ultra concurrent systems as proposed, e.g., by Hewitt and Inman
[HEW91] (Section 2.3).

61

"Logical programming ... and relational database systems have the same
underlying mathematical background, namely first order logic" [[BEL90]p.41],

Hence, deductive databases typically combine relational database management and
querying techniques with logic programming, as used in expert systems. This
combination is very desirable because "deductive databases generally have a very large
number of facts but only a few rules, whereas logic programs generally have more rules
than facts" [[BEL90]p.41], In principle, the relational database is a provider of data, in
the form of facts and rules, to be used by an 'intelligent', inference based, software
component, e.g. an expert system. This inference based system may either form part of a
deductive database, e.g. described by Bell [BEL90], or it could be a stand-alone
component that receives facts from a database.

Enterprise integration environments provide this integration of persistent data stores,
including deductive databases, that may provide information (including especially
’facts') to application programs, including logic programs. It is the core functionality of
enterprise integration environments (Section 2.3) to provide integrated information for
any 'decision makers' and 'application programs'.

In addition, an application program may itself produce information that it may share
across the integration environment. In this way, an expert system may infer 'knowledge'
via its rule-based inference. This information may, for example, be requested by a
decision maker. Such an integration is, however, different from integrating persistent
data from databases. Two approaches are commonly used, the integration as:

• Information Repositories; and

• With the help of functions.

The most pragmatic solution is the integration as 'information repositories' [HUH92]
(Section 2.3 and 2.7 Schema Knowledge). Just as is done with databases, the agent
simply sends a request for information to the integrated system and receives results in
return. This approach ignores the specific dynamics of problem-solving software
systems but it also provides a pragmatic solution to integrating heterogeneous,
autonomous systems [HUH92],

Conners and Lyngbaek [CON88], for example, use functions to integrate transient data
from software systems with persistent data in a database system. The approach is based
on the object-oriented data model IRIS. It is composed of the constructs object, type and

3.3.3 Integrating Non Persistent Data in Enterprise Integration Environments

62

function. Objects are the entities that are modelled in the database, they have identifiers
and can be related hierarchically to other objects. A subtype, supertype structure is
therefore implemented. Functions can be implemnted as attributes of objects to enforce
relations to other objects or to initiate operations on objects. However, functions can
also be used to implement links between the central database and the integrated sources.
Such a 'foreign function' is an independent programme that is implemented in an object in
the central databases and can be evoked when information is requested from this object.
The foreign function can then obtain data from an integrated source as specified in the
program of the function, and present it to the requester.

The approach provides transaction and distribution transparency. In principle, full
autonomy of heterogeneous information sources is implemented and not even a global
schema is necessarily needed. However, the consistency of the 'foreign function' can only
be guaranteed by restricting the autonomy of the local source. The integrated source
could not be changed unless permission is given by the global database or the
administrator.

These approaches are typically used to integrate software system in a uniform way into
the sharing environment [PAP92a] [HUH92]. However, much more emphasis can be put
on a closer integration and coordination (cooperation) of 'problem-solving' software
systems. Enterprise integration environments typically allow a direct interaction of
processing systems that can participate in a common problem-solving scenario based on
Partial Global Planning [DUR91a], This cooperation does not integrate other systems
which are not part of the problem-solving community, e.g. a database. However, this is a
separate area that is discussed in some depth in Section 3.4 on distributed artificial
intelligence, and specifically the PGP (Section 3.4.2).

In conclusion, transient data from software systems can be integrated by the information
agents as information repositories, or by specialised functions (programs). Either local
autonomy needs to be restricted, or schema conflicts may become obsolete over time.
Data conflicts, due to inconsistent data may always occur when software systems not
only receive information from the sharing environment, but also produce new
information that is shared via the environment (i.e. this information may or may not be
inconsistent with the persistently stored data in the sharing environment).

63

3.3.4 Mediators in Enterprise Integration Environments

The most loose integration of information from heterogeneous sources is the ad hoc
search by independent information retrieval software. These 'agents' operate in open
architectures and are, for example, implemented in the envoy system [PAL92] or
mediators [WIE90] [WIE92],

"Envoys carry out missions for users by invoking envoy-aware applications
called operatives and inform users of missions' results via envoy-aware
applications called informers" [[PAL92]p.233],

Envoy aware applications are monitoring a source and/or executing a task at a scheduled
time. An application is integrated when it is enabled to interact with an envoy system.
This 'integration' makes them envoy-aware. The approach is based on an analysis and
combination of standard envoy-applications that perform mining, browsing, and other
information search operations.

The envoy system also implements conflict detection that is not automated but based on
decisions by the user. The system has a front-end that gathers information and presents
it to the user in a 'mission summary' where all results are presented. Completeness of
these results depends upon the user who has initiated the envoy to search all possible
sources. The results are expected to be free of syntactic mismatches. The detection is
therefore incomplete in detecting syntactic conflicts. A semantic conflict within the
results is a problem for detection by the user of the information. The user in an envoy
system is generally a 'human user'. In contrast, enterprise integration is concerned with
clients that may be human users, or applications programs and that need automated
conflict detection. Envoys fail to provide automated conflict management independent
of the conflict detection or resolution capabilities of a 'human user'.

Mediators [WIE92] are independent software modules conceptually similar to envoys.
They support an end-user or decision maker with information retrieved throughout an
information-sharing environment.

In conclusion, the envoy system, or Wiederhold's mediators, are standalone software
utilities that integrate information in an ad hoc manner. They do not try to establish
integration environments. However, these utilities present a rational solution for
detecting and resolving data conflicts. The task is simply shifted to the user that initiates
the information retrieval. The research therefore proposes a rational solution in that it
lets the user, which has to be a human expert, decide. However, no rational scheme is
proposed to examine how a conflict is detected or resolved.

64

Human decision makers in traditional distributed information systems have to integrate
data more or less manually. For example, in an office environment there may be a
database, an expert system, a design system and some data from the shop floor. The
integration of, possibly conflicting, information is therefore based on human decision-
making. This process could theoretically be used to model how information should be
integrated correctly (including conflict management). However, this approach has some
inherent problems in it, including:

1. It is difficult to prove that a human integrator is purely rational and not biased in
supporting his expectations when selecting alternative information. In Wong
[WON94] the short term and long term memory is investigated in respect to its
effects on decision-making by preferences. It was found that humans can only
remember short term preferences, and very long term preferences. This, however,
is not objective or rational but highly subjective.

2. No human expert exists in large integration environments that de facto integrates
information. The task is typically too big to be done completely manually. No
'human information agent' exists that is as representative as, e.g., a medical expert
for diagnosis expert systems, or a financial expert for a financial advisory system.

In conclusion, human decision-making may potentially provide very interesting and
ground breaking solutions to conflict detection and resolution. However, no model of
human decision-making in conflict detection and resolution for enterprise integration is
currently available.

3.3.5 Conflict Management by Modelling Human Decision-Making

65

3.3.6 Conclusion and Summary of Architectural Assumptions

No conflict detection or resolution mechanism exists in Distributed Collaborative
Environments for Enterprise Integration (DCEEI) that is complete and rational. Hence,
the following section will investigate conflict detection and resolution in the wider field
of distributed artificial intelligence

Furthermore, chapter 2 outlined the fundamental architectural issues of DCEEI. Further
analyses of existing distributed databases and enterprise integration environments have
produced the following characteristics:

• Enterprise integration environments typically have some form of global schema
or model. This may be a master model, a unified global schema, or a federated
schema. (In the case of multidatabases without global schemata (e.g. Litwin's
MRDSM [LIT90]) the information typically provided by the global schema has
to be gathered by the local management system.)

• Operational services, such as the construction of global schemata or models,
query language translation, inter agent communication, etc., are implemented in
various ways. All these implementations either have to restrict local autonomy
or allow for schema inconsistencies that may lead to conflicts.

• Non-persistent data (from software systems such as an expert system) is typically
integrated in the form of information repositories or by functions, which are
software utilities that retrieve information from software systems. Specific
dynamics of data retrieved from these sources are typically ignored in order to
provide an integration with persistent data.

66

3.4 Conflict Detection and Resolution in Distributed Artificial Intelligence (DAI)

3.4.1 Introduction to DAI and Enterprise Integration

In Distributed Artificial Intelligence (DAI) agents are intelligent software components,
e.g. a robot that communicates with other robots over achieving a joint goal. The general
field of enterprise integration can be described as:

"Research that have been investigating the use of artificial intelligence and DAI to
support human organisations" [[DUR91b]p. 1303].

In other words, information agents in enterprise integration environments are a special
kind of agent that integrates multiple software systems and / or processing systems
[JEN92]. In this sense an information agent is a cooperation and coordination
component, which integrates information from domain level data stores and processing
systems. The emphasis of conflict management in DAI is that:

"Agents can deal with ... conflicts through negotiation, the process by which the
agents act to resolve inconsistent views and to reach agreement on how they
should work together in order to cooperate effectively" [[LAA92]p.292],

In DAI problem-solving, conflicts play a central role where the detection and
exploitation of conflicts is an essential part of effective agent coordination [McL92]
[GAL90a], However, conflicts in distributed problem-solving are typically non-essential
conflicts, between mutually acceptable solutions. Information agents in enterprise
integration environments typically encounter essential and non-essential conflicts.

The following sections will investigate conflict detection and resolution mechanisms in
DAI. This analysis is directed at identifying a general framework for conflict detection
and resolution. The next section briefly analyses the partial global planning algorithm and
its derivatives. Then a small representative selection of mainstream DAI research is
discussed in an overview (Section 3.4.3). Section 3.4.4 will describe a selection of
distributed planning systems. A brief discussion of task sharing versus result sharing is
included in Section 3.4.5. A conclusion based on all DAI research is presented in Section
3.4.6.

67

3.4.2 Partial Global Planning and Derivatives

This section will begin by briefly introducing the the contract net [SMI80] and the partial
global planning algorithms [LES91] [DUR87]. This research provides the basis for task
decomposition, task assignment and result composition as typically used in many
enterprise integration environments (Section 2.5). Hence, it is a key issue in integration
environments. However, the discussion of other mainstream DAI will be left until the
next section to allow the reader to explore this mainly fundamental section separately.

In a traditional contract net approach [SMI80] for a given task one agent is appointed as
manager. This manager agent may be faced with a task that it may either be able to carry
out itself or it has to employ other agents to help. Furthermore, dividing the task may be
more efficient such that it may make better use of the distributed resources, or it could
improve performance (speed).

First, the manager agent has to decompose and assign subtasks to other agents.
However, this requires that a task can be subdivided into (sub)tasks that can be solved
autonomously and completely by at least one agent. In other words, the manager agent
needs to find subtasks that fit the abilities of each agent. Furthermore, much research
assumes that the subtasks may not require any interaction with other subtasks, but that
there is a perfect fit between each subtask and the resource (agent) undertaking this
subtask.

"However, there are applications that do not fit cleanly into this model of
cooperation: Tasks may be inherently distributed among nodes [agents], and
coordination is not a matter of decomposing and assigning tasks but instead is a
matter of recognising when distributed tasks (or partial results) are part of some
larger overall task (or result) and, when this is the case, how to interact to
achieve the larger task (or result)" [[DEC89]p.506].

An extension to the original contract net approach is the factual accurate / cooperative
paradigm (FA/C). It provides a model in which "agents need not have all the necessary
information locally to solve their sub-problems, and agents interact through the
asynchronous co-routine exchange of partial results" [[LES91]p. 1347], In other words
the FA/C provides asynchronous, concurrent interaction between agents within the co-
ordinated problem-solving. Agents can both have and exchange inconsistent and
incorrect information. By exchanging partial results these inconsistencies will eventually
converge on a correct solution.

68

The partial global planning (PGP) algorithm [DUR91a] is based on agents that build
partial global plans and goal structures. In principle, these plans contain descriptions of
the local action, local goals, and how they are affected by the other agents action and
their goals. Each agent can theoretically have its own set of partial global plans. In
practise, however, exchange of partial global plans between large numbers of agents
proved not feasible [DUR91a]. Hence, some basic hierarchical structures had to be
introduced to guide the problem-solving.

When an agent is activated to solve a given complex task, it first analyses its local plans
and the model of the global interaction. It can then identify which agents cooperatively
work on a common goal. Secondly, the agent makes a partial global plan to achieve its
partial global goal (this agent's part of the overall goal). This plan includes its own plans
and plans received from other agents:

"A PGPlanner forms a plan-activity map from the separate plans by interleaving
the plans' major steps using the predictions about when those steps will take
place. Thus, the plan-activity map represents concurrent node activity. To
improve coordination, a PGPlanner reorders the activities in the plan-activity-
map using expectations or predictions about their cost, results and utilities"
[[DEC89]p.507],

The optimisation strategy includes finding a better solution cheaply. In addition, the
PGPlanner builds a solution-construction-graph which specifies the interactions with
other agents, e.g., when to receive partial results from them.

"To control how they [(the agents)] exchange and reason about their possibly
different partial global plans, nodes [(agents)] rely on a metalevel organisation
that specifies the coordination roles of each node" [[DEC89]p.508],

This metalevel organisation defines domain level cooperative problem-solving. For
example, it specifies what roles agents play such that they are hierarchically organised.
"For limited times, agents can work on partial global plans that are inconsistent since the
same agents views of other agents is out of date" [[LES91]p. 1358], These
inconsistencies are solved when agents exchange partial results.

Potential problems with the partial global planning algorithm are about "how to tolerate
and resolve inconsistent and incorrect information, and about how to control the
formation and propagation of partial solutions to bound the combinatorial complexity of
distributed problem-solving" [[DUR91b]p.l302]. The original paradigm was developed

69

for, and successfully operated in, the Distributed Vehicle Monitoring Testbed [DUR91a],
One improvement of the original mechanism is to make it domain-independent:

"Generalised Partial Global Planning (GPGP) tries to extend the PGP approach
by communicating more abstract and hierarchically organised information,
detecting in a general way the coordination relationships that are needed by the
partial global planning mechanism, and separating the process of coordination
from local scheduling" [[DEC92]p.320], In principle, "the emphasis in this work
is to define the existing goal relationships generically and to add new
relationships so that more complex interactions among the local search spaces
can be captured" [[LES91]p.l360].

Another problem with the original PGP is that it "cannot dynamically reason about the
most important goals for generating a global solution and the best information to satisfy
these goals" [[CAR91]p.l92], Simple heuristics are used such as 'avoid redundant work',
'provide predictive results', or 'shift tasks to idle notes' [DUR91a],

"However, the appropriateness of such heuristics depends on the situation. If
there is a great deal of uncertainty in overlapping solution areas then "redundant"
work could be very useful" [[CAR91]p.l92],

Section 2.5 has outlined that much research in enterprise integration has adopted the
PGP algorithm as a means of task decomposition and assignment. Nevertheless, this
mechanism fails to provide adequate conflict detection. Conflict resolution is based on
heuristics to optimise the problem-solving process ('Shift tasks to idle nodes'), and
retrieval optimisation in information-sharing ('Request the result that is cheapest to be
produced and communicated [PAN91a]). However, these heuristics may not be
appropriate for any specific conflict in DAI or in enterprise integration. The following
two approaches address this problem by enriching the inter-agent collaboration (more
information is exchanged and multi-step cooperation mechanism for the agents are
introduced).

Carver et al. [CAR91] propose an explicit representation of the 'solution convergence
process'. In other words, each agent has a representation of what is necessary to solve
the global goal and problem. The sub-goals and sub-plans that need to be terminated to
achieve the global goal and that are not secure are called uncertain.

"Termination in interpreting problems requires that the systems not only consider
whether existing hypotheses are sufficiently proved or discounted, but must also
consider whether enough of the data has been examined to be sufficiently sure

70

that no additional answers may be found - without having to examine all of the
data" [[CAR91]p.l94],

In principle, this requires very well structured problems, and / or time dependent results.
Therefore, satisfying these uncertainties dictates the problem-solving process. A local
and an extended global model (Model PS) contain the information on the status of the
sub-goals and global goals respectively.

In addition, to holding explicit goals, and status information to reduce inconsistencies,
agents also exchange explicit evidence for a hypothesis. For example, evidence includes
"partial evidence, possible alternative explanations, possible alternative support,
alternative extensions (hypothesis versions), negative evidence, and uncertain
constraints" [[CAR91]p.l94], If this evidence is provided by other agents then it is called
'external evidence'. Please note the difference to the original PGP which was solely
relying on exchanging partial results.

Krin et al. [KIR91a][KIR91b] describe a federated agent system that is based on a
derivative from the contract net approach with similarities to the partial global planning
algorithm. It adopts the coordination mechanism of the PGP and adds negotiation / self
assessment heuristics. Each agent describes its own capabilities and distributes these. For
a given task one agent is appointed 'manager'. It first analyses if it can fulfil the task itself
or if it needs to find other agents to cooperate with it in solving the task. Task analysis
leads to identifying all agents that can possibly do the given sub-task.

"[It then] communicates the subtasks to all agents which then behave as bidders.
They asses their own competence for each of the subtasks and return the results
to the manager ... Finally the manager optimises the allocation table (which has
been defined as a relation: [task_id, agent_id, competence_rating, constraints]) to
find an optimal solution ... Constraints may define time-out points, restricted
capacities of the agents, etc." [[KIR91b]p.l95].

No central control is provided, so the agents need to bid for solving sub-tasks based on a
self assessment. This is specified in the 'competence' variable. The following are
examples for competence assessment:

• Agents could give a rating as a "measure to rate the quality of output expected
from the knowledge evaluation" [[KIR91b]p.l98];

• Given a number of input data that is required for a given task, an agent's
competence may depend on how many of these input data it can evaluate;

• Particular problems (e.g. construction, simulation, diagnosis) may fit particular
problem-solving strategies (e.g. skeleton planning, different search strategies)
better than others;

71

• An agent's physical resource capability to carry out a given task such as memory
size, or processor capabilities.

An overview of the contract net based / PGP related mechanisms is listed in Table 2. For
each mechanism the kind of conflict is specified such as task assignment (task allocation),
or goal coordination. It is then defined if the mechanism is based on a derivative of the
contract net (e.g. the partial global planning algorithm). The type of conflict that occurs
between agents can be described as:

• Agents co-ordinate (coor.) their action, typically in a benevolent fashion in order
to achieve a common overall goal;

• Cooperating (coop.) agents agree to negotiate with each other but they may have
not only common goals but also individual goals so that they may compete for
having their individual goals fulfilled .

The third column in Table 2 indicates the resolution strategy for every paper as described
here. The last column lists the paper references. The structure of the table is uniform for
Tables 2,3,4 and 8.

K in d o f
C o n flic t

C ontract
N et

C onflict
T ype

R eso lu tion S trategy P a p er
R eferen ce

Task
Allocation

Yes coor. Partial global planning; [DUR91a]
[DUR871

Task
Allocation

Yes coor. General partial global planning, domain-
independent with more complex relations
between sources;

[DEC92]

Task
Allocation &
Negotiation

Yes coor. Partial global planning with explicit solution
convergence and explicit evidence, negotiation
to reduce inconsistency;

[CAR91]

Task
Allocation &

Self-
Assessment

Yes coop. Competence rating based on multiple criteria
including self-rating by the agent, best fit of
problem, and applicability of the local
resolution strategy;

[KIR91a]
[KIR91b]

Table 2: Partial Global Planning and Derivatives

In conclusion, most of the PGP research is concerned with solving the decomposition
problem, the task assignment problem, and the composition problem [DUR89]. The
research listed in Table 2 demonstrates how this mechanism provides a method for
information-intensive problem-solving. In other words, it is specifically useful for
information agents that have only limited knowledge of the problem structure. For this
reason enterprise integration environments described in Section 3.3 have been using the
PGP or its derivatives [PAN91a] [PAP92a] [JAG92] [BAR94a]. Extensions to the
original PGP mechanism provide the agent with more complex problem-solving
capabilities (negotiation) and enable it to also investigate other evidence than partial
planes. However, the mechanism does not account for essential and data conflicts
(incomplete, incorrect or obsolete information) that require conflict detection and further
resolution.

72

3.4.3 Mainstream Distributed Artificial Intelligence

Mainstream distributed artificial intelligence (DAI) is concerned specifically with
complex problem-solving structures and negotiation. Negotiation is, in general, "the
process of improving agreement (reducing inconsistency and uncertainty) on common
viewpoints or plans through the structured exchange of relevant information"
[[DUR89]p.230], Table 3 briefly lists a few general negotiation mechanisms for conflict
resolution. Each approach is shortly described in Appendix A. Only some core ideas
from these approaches will be covered in this section.

K in d o f
C on flic t

C on tract
N et

C onflict
T yp e

R eso lu tion S trategy P a p er
R eferen ce

Task
Assignment

Yes coop. Negotiation consists of proposal, critique,
explanation and resolution heuristics;

[LAA92]

Goals in
DPS

No coop. Compromise based on case-based reasoning and
preference analysis, persuasion to change agents
goals;

[SYC89]

Goals in
Design

Systems

No coop. Compromise by alternatives and domain-
dependent heuristic decision-making if
compromise fails;

[WER91]

Goals in
DPS

No coop. Compromise by redefining goals and integrative
negotiation (most important goals o f all parties
are integrated);

[LAN89]

Goals in
DPS

No coop. Fit to the problem and time/cost optimisation of
resolution mechanism, human decision for
essential conflicts;

[STE90]

Goals in
DPS

No coop. Game theory in adverbial situations, including a
rating o f 'worth';

[EPH91]
[ZL0911

Human /
Computer

No coop. Human user makes a decision; [ST 091]

Learning in
Co-

ordination
of Agents

No coop. Manager agent decides with the help of a learning
system which is building in form of a case-base
for use in coordination (similar to SYC89);

[VIT91]

Table 3: Conflict Detection in DAI

The emphasis in DAI lies on the resolution of very specific, well defined problems and /
or conflicts. Very well defined conflicts can be easily detected by domain (problem
specific) heuristics. Resolution strategies are based on some form of optimality,
priorities, strength of goals, urgency of resource requirements, expected utilities of the
alternative solutions, etc. The following are some examples of resolution strategies with
these characteristics:

• Agents in the approach by Laarsri et al. [LAA92] detect conflicts in the
concurrence of action they have already taken. The negation is blackboard based
including the phases proposal, and critique which leads to a new proposal until
the conflict is resolved.

73

• Compromise is proposed by Sycara's managing (persuading) agent that applies
case based reasoning mechanism and preference analysis (Persuador) [SYC89].

• An extension to proposing compromises is domain-dependent heuristic decision-
making as, e.g., described by Werkman [WER91].

• Furthermore, compromise may be achieved by redefining goals. If this fails then
integrative negotiation may be able to integrate the most important goals of all
parties in Lander and Lesser's approach [LAN89].

• The optimisation strategy 'fit to the problem' evaluates which agent can perform a
given task most completely. Steiner et al. [STE90] also propose time and / or
cost optimisation, and for essential conflicts human decision-making.

• Game theory is a very efficient way to resolve non-essential conflicts in adverbial
situations. It requires that all solutions and their pay off are known to the agent
[EPH91] [ZL091], Agents in enterprise integration, for example, typically lack
this omniscience (Section 2.8.1).

These mechanisms have in common that they can only address conflicts where the
alternatives are mutually acceptable and not conflicts in which one alternative may be
correct and the other incorrect. Thus, these resolution strategies can only be applied by a
conflict detection and resolution mechanism as a means to resolve non-essential conflicts.

A proposal to resolve essential conflicts is, for example, presented by Stolze and
Gutknecht [ST091] or Steiner et al. [STE90], who propose conflict resolution by a
human user. However, this is a rational approach to conflict resolution but not one that is
feasible for complex conflicts or non-expert users. It is, hence, unrealistic for large
enterprise integration environments.

Conflict managing agents, e.g. the Persuador by Sycara [SYC89] or Arbitrator by
Werkman [WER91], propose solutions to the other agents involved in a conflict until a
compromise or solution is found. Hence, such mediators architecturally suit the concept
of an information agent that manages a conflict in an enterprise integration environment
(Section 2.5).

Finally, agent learning mechanisms are proposed, for example, by Vittal et al. [VIT91] or
Gasser and Ishida [GAS91], The latter approach also emphases the learning of meta
information, which has been termed Agent Knowledge in Section 2.7. Learning and
adoption are key issues in dynamically changing environments. They are, therefore,
particularly important to information agents in enterprise integration environments.

74

The coupling of traditional rule-based systems has been the focus of much research, for
example, by Carlson and Ram [CARL91] or Su and Park [SU 91]. These approaches are
described in Appendix A. The problem addressed in these approaches is one of merging
multiple rule and facts bases rather than establishing cooperation or co-ordination
mechanism between these systems. For this reason, conflict management is only required
when the global system is installed. Detection is limited to detecting that multiple results
are not identical. Resolution is provided by predefined heuristics or left to the integrator.

Distributed knowledge-bases are concerned with traditional, standalone systems that are
tightly integrated into a global derivation system. Thus they are not 'real-time' in respect
to their conflict resolution such as rule-based agents as the briefly mentioned approaches
by Steiner et al. [STE90] and Kim and Schlageter [KIR91a], Both worlds are merged by
research such as the HOPES approach by Dai et al. [DAI93], It is concerned with real-
time distributed knowledge-bases that apply DAI techniques. In other words, the
knowledge-bases cooperate via a hierarchical implementation of a blackboard
architecture [NII86]. Thus, this conflict management shares much with mainstream DAI
approaches described in the previous Section.

The research by Su and Park [SU 91] elaborated the dynamic behaviour of knowledge in
rule-based systems. In other words, it is shown that single, and specifically multiple rule-
based systems may produce information that needs to be investigated in respect to its
behaviour. For example, results may vary in respect to the time and the frequency that
they are requested. Information agents potentially have to integrate not only persistent
but also dynamically changing, transient data. Integrating the latter may require special
processing, for example, with respect to the time and frequency this information is
requested.

In summary, multiple negotiation strategies exist for resolving non-essential conflicts.
These are typically very domain and conflict dependent. Learning and adoption are
crucial requirements for information agents in dynamically changing integration
environments. Finally, 'knowledge' or information from derivation systems has a dynamic
behaviour that needs to be investigated in order to ensure semantically correct
integration.

75

3.4.4 Conflict Detection and Resolution in Distributed Planning

Distributed planning systems are a sub-field of distributed artificial intelligence that is
particularly concerned with conflict detection and resolution in the area of planning and
designing. Three examples are briefly investigated here: Adler et al. [ADL89], Polat and
Giivenir [POLA92], and Klein and Lu [KLE89] (Table 4).

K in d o f
C o n flic t

C on tract
N et

C on flic t

Type
R esolu tion S trategy P aper

R eferen ce
Goals in
Planning

& Control

No coop. Conflicts are avoided by goal coordination, or
conflicts are resolved at run-time by goal
relaxation or removal;

[ADL89]

Design No coop. Conflict detection is domain-dependent, conflict
resolution has the four stages: Conflict
statement; Resolution proposal; Evaluation;
Critique;

[POLA92]

Goals in
Design

No coop. Conflict classes and according resolution
strategies are matched by a resolution expert;

[KLE89]
1KLE911

Table 4: Distributed Planning
Adler et al. [ADL89] deal with homogeneous agents in telephone network management.
The agents have responsibilities, goals and plans within their own region, which have no
overlaps with other agent's regions.

"Conflicts occur when two or more agents want to use the same resource ... that
cannot handle both their demands simultaneously (a resource level conflict), or
when one agent has goals that cannot be achieved if another agent's goals are to
be realised (a goal level conflict)" [[ADL89]p.l46],

Conflicts can be detected while agents execute their plans, which leads to 'conflict driven
plan merging'. This conflict resolution, therefore, is real-time rather than advanced
planning to avoid conflicts. Resolution involves negotiation by agents that are involved in
a conflict. They successively revise their goals starting with goals that are at the lowest
(least important) level of a goal tree until the conflict is removed.

Polat and Giivenir [POLA92] have developed a conflict resolution mechanism that is
suitable for implementation in systems with varying numbers of agents. It achieves a
degree of openness (as defined in [HEW91] Section 2.3) by giving each agent its own
"conflict resolution expertise separate from its domain-level design expertise, and that
this expertise can be instantiated in the context of particular conflicts into specific advice
for resolving these conflicts" [[POLA92]p.l07].

A conflict can be detected by a design agent that will then become the 'originator' for this
conflict. The originator has to post the conflict centrally on a blackboard. The conflict is

76

described by its 'originator', the goals it needs to accomplish, the constraints it needs to
satisfy, and an initial problem description. All agents are informed of the conflict and can
then post proposals on the blackboard. A proposal includes the originator, the proposed
action, if possible any reasons the agent has for supporting its proposal and a degree of
confidence it has in this proposal. Agents evaluate proposals and critique on them. A
result of an evaluation is either conflicting or non-conflicting. If agents have evaluated
the proposal as conflicting then they continue negotiating for further compromises.
However, it may be that some problems cannot be solved at all.

Agents can 'learn' in two respects: An agent can maintain information on solution
generation and, secondly, it can memorise information on the conflict resolution process.
In other words, the agent can build its own case-base for later problem-solving.

In addition, agents may detect conflicts in planing their future action, which is called
'shared plan development'. This advanced planning results in a network that is optimised
by running conflict free and / or more cost effectively. The resolution is based on a joint
planning activity of the agents. They start with planning their most important, top level
goals. These are then co-ordinated with the other agents. The next, lower, level is
planned and agreed, until the agents have developed conflict free plans.

The previous approach searches for any resolution strategy, which is proposed on the
blackboard, and that is an acceptable compromise for all agents. However, this is only
any solution, and may not be the best resolution for this specific conflict. The conflict
detection and resolution approach of Klein and Lu [KLE89] overcomes this problem in
that it specifies how agents can apply multiple resolution strategies to a given conflict. It
is implemented for cooperative design agents that focus on benevolent cooperation and
not competition such as in [EPH91].

Conflicts are detected by human experts, for example, "by noting two incompatible
design commitments, or when a design agent has a negative critique of another agent's
actions [such that] a description of this conflict is given to a conflict resolution expert"
[[KLE89]p. 172].

The resolution strategy is based on the resolution expert's conflict resolution knowledge.
The latter is composed of explicit resolution strategies that are assigned to conflict
classes.

"When we choose a particular strategy for a conflict, then we are in effect making
the hypothesis that the conflict is one that can be addressed by the given piece of

77

advice, and must be able to respond appropriately if the advice fails"
[[KLE91]p. 1382].

Hence, for every resolution strategy there are specific conflicts that they can solve and
there is a degree of generality attached to them. Consequently, a conflict hierarchy is
developed in which conflicts are organised hierarchically from the least specific, domain-
independent conflicts to increasingly specific domain-dependent conflicts. These conflict
classes are assigned conflict resolution strategies. A less specific conflict resolution
strategy is less efficient. However, a domain-independent, very specific resolution is only
applicable to a very specific conflict or range of conflicts.

"When a conflict occurs, we can find the most specific conflict class that
subsumes that conflict, and try the conflict resolution strategies associated with
that class" [[KLE89]p. 172],

The domain-independent portion of the conflict hierarchy can be designed such that it
can be used for a very wide range of domains. The domain-dependent part has to be
developed for every specific domain. Thus this part of the approach is particularly
domain-dependent and will prove difficult for adoption by other areas. .

An example of how general conflict resolution expertise can be classified is demonstrated
in [KLE91], In this example, cooperative problem-solving is divided into multiple
subsections including cooperative diagnosis or meta planning formalisms. The latter is
further divided into conflict resolution, cooperative schedule maintenance and routine
design. Figure 4 outlines a possible hierarchy for conflict resolution based on the
resolution strategies described in this Section.

C o n flic t

Comm< in Goal Individual Goals

1
Subtasks Exist

1
Only one Task

1
Unknow Outcomes

1
All Outcomes Known

1
Completeness of

Solution

1
Competence

1
Human Decision Game Theory

Figure 4: Example Conflict Hierarchy

Some resolution strategies are applicable when all agents have a common goal, and other
strategies are applicable if agents pursue individual goals. In the first case, the common
task may be divided into subtasks, in which case strategies such as 'best fit to the
problem' [KIR91a] are applicable. If there are no subtasks then the agent that is most
competent for the whole job has to be identified. Game theoretic rating of worth

78

[ZL091] is only applicable if the agents do not share a common goal and if all outcomes
are known. Otherwise decision by a human user [ST091] may be applicable.

One problem with the approach is that resolution of a conflict is a one shot approach
[LAA92], Complex problems may require the consideration of multiple, interrelated
resolution steps

In conclusion, traditional planning systems propose conflict resolution by goal relaxation
[ADL89]. However, the previous two approaches identified conflict classes, either as
goal directed [POLA92] or conflict resolution strategy directed [KLE89]. In the latter
case the appropriate resolution strategies are assigned to hierarchically organised conflict
classes. The principle for systematising these strategies is to:

'Apply domain level strategies first, before more general resolution strategies are
applied.'

Information agents are no domain experts. In other words, they have no knowledge of
local problem-solving goals, such as planning agents described by Polat and Giivenir
[POLA92], However, they have different resolution strategies which they need to apply
to a given conflict (outlined in Section 2.7). Hence, the strategy 'domain level resolution
first', in principle, should be applicable to conflict resolution by information agents. Other
aspects of conflict resolution need to be added to this principle in order to prevent
making this a 'one shot approach' [LÄA92], and to include learning [POLA92],

79

3.4.5 Task Sharing and Result Sharing

"Result sharing concentrates on problem domains where tasks are inherently and
possibly unpredictable distributed" [[DUR91a]p.l 170].

If the systems have related tasks to other systems but not enough information about the
meta level goals and coordination with the other sources, these can only exchange
possibly partial results. In other words, these systems cannot jointly carry out a task
(share a task), but they can exchange results from their isolated problem-solving
activity.

"Result-sharing through iterative exchange of tentative, uncertain information
has been termed functionally accurate, cooperative [(FA/C)]"
[[DUR91a]p.l 170],

The FA/C mechanism has been described in Section 3.4.2 as it is typically used in
enterprise integration environments.

Distributed Collaborative Environments for Enterprise Integration are result sharing
systems. In other words, information agents share information. This exchange is
benevolent, the agents freely exchange information that is requested from them.
However, the integrated source itself may be inherently and unpredictably related to
other sources.

integration Envirnment
Informatic

1 Loc
l _

n Agent Inform;,ition Agent T .Integration

al Source Local
__ Rrohlem SrdvmgXlQmmuiiit]

Source

i--------- -

Figure 5: Agent Communities within Enterprise Integration

In other words, cooperative problem-solving communities may exist within the
enterprise integration framework (Figure 5). These communities share not only results
but typically share a task they jointly resolve. An example may be a community of
agents (systems) that cooperate based on game theoretic negotiation protocols [EPH91].
These communities are closed in respect to their problem-solving activity.

The previous sections have described some example problem-solving systems and
mechanism. A system or agent that participates in a problem-solving community needs
to be aware of the negotiation modalities, goals, it may need to be registered with the
other agents, etc. An information agent is typically not part of this domain level

80

problem-solving (Section 2.3). However, it can integrate this community into the open
enterprise framework. This integration, in principle, can include the following:

1. An information agent may enable sharing results from this community and / or
provide it with information from throughout the enterprise.

2. The agent may integrate a particular system which is also integrated in a
problem-solving community. An information agent typically knows if the source
it integrates is involved in a task sharing commitment with other sources
(Environmental Information - Resource Knowledge in Section 2.7). The agent
can then make assumptions about the stability of results, the interaction with
other sources and take the dynamics of the integrated system into account.

3. The agent may use a problem-solving community as a source for expert conflict
resolution (Services - Resource Knowledge in Section 2.7). In other words, the
community may be able to resolve certain, typically non-essential, conflicts. An
information agent may be able to present a specific kind of a conflict to this
community which resolves the conflict and returns the result to the agent.

In conclusion, multiple levels of integration exist in the enterprise environment. The
information agent based sharing environment is the highest integration level.
Information systems may form integrated communities within the sharing environment.
They may have multiple links to information agents that communicate the results from a
local, possibly distributed problem-solving process on the higher enterprise wide level.

81

3.4.6 Conclusion Conflict Detection and Resolution in DAI

Conflict detection in DAI is typically based on either detecting that 'multiple results are
not identical' or the detection is highly domain-specific. An example of the latter case is
distributed planning where conflicts require a domain expert or the user.

The resolution of non-essential conflicts is the main focus of DAI research. Multiple
strategies are presented that suit specific conflicts. For example, compromise is
specifically suitable for agents that negotiate deals, or otherwise optimise goals. The
research by Klein [KLE91] suggests a way, which is suitable for information agents, to
apply these strategies such that the most domain level strategies are applied first.

However, no general framework for conflict detection and resolution is proposed.
Furthermore, conflict detection is not specifically in the focus of mainstream DAI. It is
clear that uncertainty management is a field that emphasises, typically formal, detection
of conflicts.

82

3.5 Uncertainty Management in Artificial Intelligence
3.5.1 Introduction

The previous section has looked at distributed problem-solving with particular focus on
conflict detection and resolution. In principle, all previously described systems deal with
uncertainty as do most tasks within the field of Artificial Intelligence [CLA90b], Most
research in enterprise integration (Section 3.3) draws heavily from the area of
uncertainty management. For example, Huhn's [HUH90] approach to integrating
information sources is based on non-monotonic truth maintenance systems, and decision
theory is used by Papazoglou et al. [PAP92a] or Pan and Tenenbaum [PAN91a],

Uncertainty is, furthermore, central to this research as resolving conflicts is concerned
with resolving uncertainty about conflicting propositions or results. The field of
uncertainty management may, hence, provide a scheme to assess uncertain propositions
based on evidence and information available to information agents in enterprise
integration environments (Section 2.7). However, such a scheme needs to suit the
circumstances of conflict management in enterprise integration as outlined in Chapter 2.
It includes, for example, the following cornerstones:

1. Results and Descriptive Information (e.g. schemata or environmental
information) may be incomplete, incorrect or obsolete (Section 2.5).

2. Any result typically is not from a single closed body of evidence (Section 2.8.2
and 3.4.5) so that the evidence for and against a proposition may be incomplete.

3. Evidence that warrants or refutes any hypothesis (candidates) may not be ordered
or ranked in a pre-defined way, and typically is not numerical, such as
probability factors to measure trust in a solution. (Section 2.7).

4. A Principle Rational scheme for uncertainty management is required and not
one, e.g., based on subjective preferences (Section 2.6).

Uncertainty management, in principle, can be done by quantitative methods and by
qualitative methods. Quantitative approaches include Bayesian networks, certainty
factors attached to heuristics, belief functions, and possibility theory (Section
3.5.2).How qualitative justifications and assumptions can be assigned to propositions in
information systems will be demonstrated by non-monotonic uncertainty management in
Truth Maintenance Systems (Section 3.5.3.1). Section 3.5.3.2 will look at the closely
related field of belief revision. Decision-making theories are briefly discussed as a
source for modelling conflict detection and resolution (Section 3.5.3.3). Argumentation
is a way to deal with uncertainty by modelling human reasoning in a generic manner
(Section 3.5.3.4). This is followed by conclusions drawn from uncertainty management.

83

3.5.2 Quantitative Methods to Uncertainty Management

Quantitative methods can be defined as "traditional (i.e. probabilistic) approaches to
uncertainty management [which] have tended to focus upon viewing uncertainty either
as a frequentistic measure of randomness or in terms of a subjective measure of
confidence satisfying well-circumscribed propositions" [[KRA93]p.3],

This section will look at Bayesian probability, Dempster-Shafer theory, and possibilistic
methods. These are well-known quantitative methods of uncertainty management that
make it possible to demonstrate the basic notions of the quantitative approach.

Bayesian probability is based on an ideal person's degree of belief in a hypothesis. This
degree is specified as a number between 0 and 1. It is based on a possibly non-
monotonic function of belief defined for an axiomatic system, e.g., as described by
[COX46], The representation and manipulation of probabilistic knowledge in graphical
form is called 'belief networks', 'Bayesian networks' or 'causality networks' [PEA93], In
other words, given a piece of evidence El then this is the cause for someone to believe a
proposition PI. The probability of the proposition PI in the light of the evidence is
evaluated by multiplying the probability of the evidence with the probability of the
proposition PI. This result is then normalised by dividing it by the probability of the
evidence.

The graphical representation of probabilistic knowledge makes explicit cases in which
multiple evidence supports one hypothesis. However, for these cases strong
independence assumptions have to be made. Otherwise the dependencies of multiple
pieces of evidence can be intrinsically incorporated by a single rule [PEA88],

Typically Bayesian probability is numeric. However, there are approaches based on non-
numerical coefficients. For example, Halpern and Fagin [HAL92a] have described a
way to use not only absolute probabilities but to put one proposition in relation to
another.

Dempster-Shafer theory [SHA76] [DEM67] extends the Bayesian model in that:

1. Belief functions are set functions and not point values. Set functions consign a range
of values, a set or a group of things (e.g. a football team) without reference to a
particular instance (e.g. one player).

2. Beliefs may have complete non-commitment (neither believed nor disbelieved).

84

3. Dempster's rule for combining probabilities is similar to weights on a hypothesis.
The rule is based on multiplying the probabilities of two alternative rules (A and B)
and to divide that by one minus that probability ((A*B)/1-(A*B)). The probabilities
lie between one (total belief) and minus one total disbelief. In the case of total
conflict (A=l and B=-l) then the probability is zero (0 = (1*-1)/(1-1)). If there is
partially conflicting evidence such as 'A = 0.9' and 'B = O' then the combined
probability is also zero. If there are multiple pieces of evidence by the parties A and
B, for example, the pairs 'Ai&B^ A2 &B2 , A3 &B3 ' then those pairs that partially
conflict sum up to zero. Furthermore, all conflicting pairs are normalised and the
remaining evidence is taken to determine the case. This means that strong, partially
conflicting evidence may not be considered and very weak evidence for or against a
case may be decisive. For example, very weak but joint support for one solution in
the form of 'A = 0,1' and 'B =0,1' turns the scale.

The Dempster-Shafer theory may be applicable in cases where evidence from experts is
integrated (such as medical diagnosis) or where sensory data is evaluated that has
hierarchical belief structures. In other words, the rule of combination typically follows
hierarchical structures of hypotheses such as a group of hypotheses sums up into one
combined hypotheses (the group). The system is therefore very applicable for
hierarchical problems, e.g. interpretation or diagnosis systems, where the system can
follow down well described trees of probability. Kruse and Schwecke [KRU91] present
an approach to combine knowledge-bases built on the Dempster-Shafer theory.
Uncertainty is assigned to the information according to the faith the expert puts into a
piece of information. However, in a knowledge-based system information is
hierarchically and rule-based. Enterprise integration systems not only combine
information from expert systems or knowledge-bases but from the whole range of
information systems (Section 2.3).

However, the theory allows for incomplete knowledge of the members of a set. In the
Bayesian model the evidence for and against the hypothesis always sums up to one. The
Dempster-Shafer rule also allows for combining the existing evidence without having to
judge on the completeness of evidence for and against the hypothesis.

In the Dempster-Shafer model meta-level reasoning may be required to decide which
value out of a range (set) of values to take. Either the lowest, the highest or the average
could be selected. Furthermore, it requires numerical certainty values and can, for

85

example, not incorporate fuzzy sets. It can deal with probability values for a range such
as '45%' but not with 'very high', 'high' or ’good1.

Probability theory is not suitable for most scenarios in enterprise integration
because of its basic emphasis:

"Probability theory is centred on the notion of uncertainty as it applies to atomic
or conditional propositions. Therefore, concepts such as ambiguity,
inconsistency, incompleteness and irrelevance are not permitted, and are not
formally part of the Bayesian model [or the Dempster-Shafer theory]"
[[KRA93]p.46],

The previous paragraphs have shown that classical Bayesian theory often is inadequate
for uncertainty management processes because of the problem involved with identifying
the numerical estimates (e.g. of human decision makers). This principle finding has
been specifically demonstrated for evidential reasoning by An, Bell and Hughes [AN
93] who demonstrated that:

"It is difficult to justify decisions based on numerical degrees of belief and to
answer questions such as 'How do changes in the numbers affect the
answers'"[[AN 93b] p.231]

In this paper it is then shown how relation-based reasoning can overcome the problem
of defining numerical degrees. Alternative judgements, that support or refute a
hypothesis, can be related by comparing their strength. The approach is based on an
'evidential mapping' that uses mass functions to express uncertainty relationships
between evidence and hypothesis groups that are based on this evidence [GUA92],

In contrast to traditional probability theory, possibilistic logic is used to deal with
uncertainty and / or vagueness.

"Possibilistic logic involves certainty and possibility degrees which are not
compositional for all connectives and which are attached to classical formulae
..." [[DUB91]p.53].

In other words, propositions are combined by first order logic. Each clause can have a
possibility label, giving the maximal probability of the clause being true. In addition,
each clause can have a necessity label attached describing its minimum probability.
When the clauses are combined to prove a consequence then this is

(a) no less certain than the least of its parent clauses, and

(b) at most as possible as the greatest of its parents.

86

The formal definition and the application for combining information sources can, for
example, be found in [DUB92]. However, this approach does not allow for
reinforcement such as the Dempster-Shafer rule of combination. Thus no matter how
many clauses exist to prove a hypothesis, its certainty cannot increase over the certainty
of the strongest single clause.

In principle, uncertainties can be described as probabilities or less precise values such as
'very high', 'low', which are called fuzzy sets. Fuzzy sets consist of a set of values that are
assigned to a particular concept by a membership function. For example, the concept
'poor student' can be defined by the membership function 'have less than 400 pounds per
month'. If, however, the concept is not so clearly defined, then it may be graded where
the degree of poverty increases as the monthly income gets closer to '400 pounds per
month'. If, however, there are also other concepts such as 'normal student' and 'rich
student' then there may be an intersection between these concepts. The membership
functions can be used to define if a given entry (student) is a member of a particular set
or multiple sets. In addition, it may be determined how strong the membership is such as
'400 pounds per month' is a strong member of the set 'poor student', but '600 pounds per
month' is a very weak member of the function 'poor student'. Cut off points can be
defined to limit the membership (called 'a cuts’).

The derivation of what is possible, necessary or what are the correct membership
functions is clearly more difficult than the election of single probabilities.

"The bottom line with respect to elicitation, therefore, is that it is either highly
laborious, as with the direct technique requiring many trials, or it is assumption
ridden" [[KRA93]p.l39].

In the opening section information-sharing environments have been described as
exchanging very poorly structured information that is typically not even ranked or
ordered. In enterprise integration fuzzy approaches to reason about uncertain
information often fail because of a lack of information on membership functions.

In summary, quantitative methods are based on assigning (un)certainty values to rules
or propositions. Syntactic measures are used to combine these uncertainties, which
makes them computationally very efficient. Typically, however, very strict requirements
exist for qualitative approaches concerning:

• The qualitative nature of the evidence (uncertainty values), for example, "the
attachment of numbers to pieces of knowledge according to some experts
valuation of the respective sources" [[KRU91]p.24];

87

The structure of the problem, for example, in Bayesian networks.

Most quantitative approaches are designed for expert systems or knowledge-based
systems which can easily meet these requirements. However, in enterprise integration
conflicts often do not fit these requirements. As indicated in the opening Section 3.5.1
evidence may, for example,

(i) not have certainty values specified for it,

(ii) different systems may use certainty estimates that have different basis and are,
hence, incommensurate, or

(iii) different problem structures exist which may have to be changed generically.

The attachment of numbers to evidence or to mutually exclusive hypotheses which result
from the evidence, is difficult to realise for the information agents themselves. First, they
generally lack the domain expertise. Second, this approach is difficult, for example, for
the integration of knowledge-bases:

"Numeric uncertainty factors ... are downright dangerous in huge knowledge-
bases, as any two numbers can be compared with each other, and the three digit
numbers were often little more than fabricated ways of expressing the fact that
one assertion was a bit 'more likely than' another assertion" [[GUH94]p.l28],

Non-numerical relation-base approaches overcome the problem of numerical certainty
values but they require domain experts. This makes the approach very suitable for
modelling expert knowledge. However, as mentioned in the introduction (Section 3.5.1)
information agents typically lack such domain expertise. It may integrate domain experts
(e.g. in the form of an expert system) but it is no domain expert itself. In other words, an
information agent would never have the domain expertise in order to identify that one
result A, is 'more reliable' than another result B, base on problem (domain) specific facts.

Because a strictly mathematical framework is not very suitable for mainly non-numerical,
qualitative evidence, a semantic (or qualitative) framework is required. A conflict
detection and resolution scheme will need to be based on a semantic framework.
However, such a scheme would take both the qualitative and quantitative, mainly
numerical information, into account (Section 2.7 lists the available information in the
sharing environment.).

88

3.5.3 Qualitative Methods to Uncertainty Management

3.5.3.1 Non-monotonic Uncertainty in Truth Maintenance Systems

Qualitative methods are based on the assumption that "epistemic probability are derived
from an appraisal of arguments and need not necessarily be numerical" [[KRA93]p.241].
Rational schemes for resolving conflicts by means of compromise and deals, or assessing
arguments in enterprise integration, e.g. [BAR94a], are examples of domain or problem
specific qualitative approaches to uncertainty management. Truth maintenance systems
are a very good example of qualitative uncertainty management.

Possibilistic logic can be monotonie and non-monotonic. In the first case, the logic is
contingent in that it represents an ultimate state. New information will not change the
conclusions. Non-monotonic proofs are contingent proofs, which may change. For
uncertainty management the latter case is of particular interest in that it reflects the
uncertainty about new, yet unknown information. The most typical example of non-
monotonic reasoning in information systems are truth maintenance systems.

"The truth maintenance system (TMS) is a problem solver subsystem for
reasoning programs ... to make assumptions and subsequently revise their beliefs
when discoveries contradict these assumptions" [[DOY79]p.231],

In other words, all propositions are formulated as epistemic attitudes of the form
'believed' or 'not believed'. These beliefs are based on reasons in the form of justifications
or assumptions. In the latter case, for example, "for each statement or proposition P just
one of two states obtains: Either

(a) P has at least one currently acceptable (valid) reason, and is thus a member of the
current set of beliefs, or

(b) P has no currently acceptable reason (either no reason at all, or only unacceptable
ones), and is thus not a member of the current set of beliefs" [[DOY79]p,234],

A conflict has occurred if a proposition P is believed and disbelieved at the same time. In
other words, a conflict consists of a reason for believing and another reason for
disbelieving the proposition. The detection of conflicts in truth maintenance systems is
therefore based on observing true, logical conflicts. These conflicts are called 'implicit
conflicts' in Section 3.2.1.

Reasons for believing a proposition P and those for not believing a proposition P can be
attached to that proposition. In a system with multiple propositions or beliefs, and

89

reasons for these beliefs, networks are constructed [PEA93], It is then possible to retrace
the effect of adopting a new belief on the existing network (non-monotonic). For
example, the reason 'If a bear is a comic actor then it is Yogi', may exist and it may
currently be believed that 'The bear is called Yogi'. However, if the bear is believed 'not
to be a comic actor' then this new belief would make the belief 'The bear is called Yogi'
invalid. In other words, the belief 'The bear is called Yogi' only remains believed if it is
also believed that the bear is a comic actor. Otherwise a conflict exists where either the
new belief ('The bear is not a comic actor') is not accepted, or the belief 'The bear is
called Yogi' is dropped.

A TMS is designed to detect conflicts in that it is a "module of a problem-solving
system responsible for maintaining the system's beliefs according to certain
principles of coherence and rationality" [[ZLA92]p.67],

Principles of coherence are typically assumptions or justifications by which a proposition
is believed. In the same way, rules can be specified for enforcing consistency on a system
such as, for example, a database. These rules could form a notion of coherence to
maintain, e.g., the database consistent [ZLA92],

In summary, there are different approaches to enforce coherence and consistency in
information systems. All approaches detect explicit conflicts. Detection of implicit
conflicts is done by analysing the logical consequence of adding new beliefs or changing
existing beliefs within the current set of beliefs. How this is done depends on the ways
coherence is implemented. It has been briefly shown how this can be done by
backtracking reasons for existing beliefs.

Any derivation system is potentially at risk of being inconsistent in two ways:

1. Internal consistency may be in question when, for example, updates or change of
the internal rules and facts are performed outside the control of the standard
TMS.

2. Inconsistency may occur across derivation systems. For example, results from a
knowledge-based system may be inconsistent with other KBSs, other information
systems, or the real world.

Distributed truth maintenance systems were therefore introduced that not only address
internal anomalies within systems (such as standard TMSs) but, in addition, anomalies
among multiple systems.

90

Distributed systems, just like other truth maintenance systems can be assumption based
[MAS89], or justification based [HUH91]. An example of the former is Huhns and
Bridgeland's [HUH90] [HUH91] Distributed Truth-Maintenance System (DTMS). The
distributed system works with the operators 'in' - for believed, and 'out' - for dis-
believed. Beliefs are based on valid justifications. A system that is 'well founded' is one
that has no believed data that lacks a valid justification, and no dis-believed data with a
valid justification. Furthermore, the TMS cooperate in that they can provide
justifications for beliefs held by other systems or agents. In other words, a system can
have an external justification for its beliefs, which it can import from other sources.

If a knowledge-base is consistent, then there is not an element in that base that is
believed and dis-believed at the same time. Any one system can share beliefs with
others at any time and classify these beliefs as 'shared beliefs'. Systems can therefore
have private beliefs and shared beliefs, which implement local and shared consistency.
This means that all shared beliefs are consistent, and all local beliefs are consistent only
within their base. A conflict about a shared belief in [HUH91] is detected if:

• One system A has a reason to believe the proposition, or it has an explicit
statement that the proposition is believed (in); and

• Another system B has either no reason to believe the proposition, or an explicit
statement that the proposition is not believed (out).

If all private beliefs were also shared beliefs then all information would be consistent
and all conflicts due to new beliefs, or changes to existing beliefs could be detected.
However, this would mean a very close, complete integration of the systems. In effect
the integrated systems would operate logically as one system. If only some beliefs are
shared then the integration is less tight. Conflicts are only detected when new beliefs are
shared or already shared beliefs are changed. Inconsistencies between beliefs, that are
not shared are not detected.

Distributed truth maintenance systems (DTMS) implement a particular notion of
coherence such as standalone TMSs. These, in principle, can detect conflicts based on
explicit and some implicit contradictions. Explicit conflicts are detected by observing
that, for example, a proposition is believed and disbelieved at the same time. Implicit
conflicts are detected if a notion of coherence is implemented in such a way that it can
be investigated. Implicit conflicts can be analysed with respect to the notion of
coherence that is maintained. For example, agents may have a set of integrity or

91

dependency rules that relate objects in the distributed system and form a notion of
coherence.

In conclusion, Conflict detection in distributed maintenance systems falls short in
detecting :

• Explicit or implicit conflicts that are not shared propositions / beliefs;

• All implicit conflicts of all notions of coherence in a complete fashion;

• Schema conflicts, or non-essential conflicts. All conflicts are assumed to be true
data conflicts. In addition, maintenance systems just as standard possibilistic
logic both have no grading (only the states 'believed' and 'dis-believed') and,
therefore, lack any classification of different kinds of conflict (Section 3.2.1).

Conflict detection in DTMS is based on close integration of the information systems. As
a concept for enterprise integration environments the DTMS would have to keep all
integrated information permanently consistent within one source and across sources. In
practice the detection is transformed into the initialisation phase of the distributed
system. Information-sharing environments are, however, open and therefore inherently
inconsistent (Section 2.3, 2.4 and 2.5). In other words, a distributed truth maintenance
system can establish conflict free environments provided they are able to initially reach
a consistent state. This, however, seems to be impossible in enterprise integration
because the ultimate notion of coherence for all domains in all aspects is not known, so
that sources in enterprise integration will always be inconsistent to some degree.

92

3.5.3.2 Belief Revision

"Reason maintenance systems are Artificial Intelligence mechanisms for belief
revision. They maintain consistent sets of beliefs in the light of new evidence"
[[GAL92]p.2241.

Any non-monotonic reason or truth maintenance system needs a mechanism to revise its
current state in the light of new evidence. Belief revision, therefore, aims "to perform
conflict resolution in case the set of current beliefs is contradictory" [[WIT93]p.2],

It could be concluded from this definition that belief revision has less to contribute to
conflict detection than to conflict resolution. On the other hand, within the area of belief
revision studies have elaborated, e.g., Galliers, Cawsey et al. [GAL90a] [GAL90b]
[CAW92c], that analysing the nature of a conflict is important, not only for social
conflicts, but also for problem-solving. This means that the detection (analysis) of a
conflict already forms part of, or builds the foundation for, any constructive resolution.

Belief revision is potentially concerned with defeasable and not deductive reasoning,
such that:

"The problem of belief revision is that logical considerations alone do not tell
you which beliefs to give up" [[GAR92]p.l].

Deductive reasoning produces a single line of logically deduced, monotonie arguments.

"Defeasible reasoning deals with incompatible lines of reasoning. More
precisely, defeasable reasoning supports alternative and mutually exclusive
conclusions drawn from incomplete information" [[BES91]p.38], "Default
reasoning is the drawing of plausible inferences from less-than-conclusive
evidence in the absence of information to the contrary [and] Default
reasoning is non-monotonic because, to use a term from philosophy, it is
defeasable: Its conclusions are tentative, so given better information, they may
be withdrawn" [[M0085]p.77],

In principle, belief revision can be conducted by simple heuristics such as strictly
rejecting new beliefs if these are inconsistent with the existing belief network.
Furthermore, the problem could simply be delegated to a human decision maker, who
would be invoked in the case of conflicting beliefs. However, examples of automatic
revision procedures include:

• The definition of hierarchically related evidence spaces that form a consistent set
of beliefs. These spaces have different grades of particularity and therefore

93

strength of belief. Stronger, more specific beliefs are preferred over weaker
beliefs in the case of conflict (Konoligen [KON8 8]).

• Decision theory based on taking the utility of a belief and its consequences into
account while bearing in mind its probability (Doyle [DOY92]).

• A consistent set of beliefs is updated with a new belief if it is more coherent to
accept the belief than to disbelieve it in respect to the derivability of core beliefs
(Galliers [GAL92]).

• Epistemic entrenchment describes the explanatory power and value of a belief.
This is encoded by a complete pre-ordering of the beliefs. The reconstruction of a
consistent set of beliefs is possible by ranking the conflicting beliefs according to
their value and then abandoning the least important belief. Update operations
based on entrenchment are either (a) removing a belief from the set so that the
belief state becomes consistent again (Contraction), or (b) adding a belief to the
set in a way - which may include removing older beliefs - that the belief set is
consistent (Gàrdenfors [GÀR8 8]).

• A typical minimalistic model allows for believing every proposition that is not
explicitly challenged (but may not be justified either) [McC8 6], In the case of
conflicting beliefs a minimal change to the existing belief set is targeted. In
addition, maximal coherence may be a subgoal that is characterised by the ability
of a belief to also support existing beliefs [HAR8 6],

Consistency-based models, in principle, are not applicable to information agents because
of a lack of exactly that 'consistent belief base' in the enterprise as has been discussed in
the previous section on truth maintenance systems and Section 2.8.2. Here, it was
concluded that information agents simply integrate information from their source while
they have no control over the propositions (potential beliefs) in these systems.

In addition, every belief in a consistency-based systems is necessarily based on
deductively closed lines of evidence that are ultimately based on epistemically basic
beliefs.

"The major criticism of foundation [consistency] based theories concerns the
explicit representation of justifications for beliefs, and also then the propagation
of disbelief' [[GAL92]p.230],

Apart from the availability of deductive justifications, the approach

"involves excessive computational expense, [and] it conflicts with observed
psychological behaviour [in the reasoning of humans]" [[DOY92]p.29].

94

Minimalistic models are applicable to enterprise integration in that information agents
believe information they retrieve throughout the sharing environment unless conflicts
are detected.

Along with the approach of accepting all beliefs unless they are challenged comes the
question what to do when equally good reasons for believing and dis-believing a
proposition exist? An agent could

(a) be sceptical, and not believe the proposition,

(b) be credulous, and select either one by random choice,

(c) neither believe nor disbelieve the proposition.

It can be argued that the first choice is adequate for reasoning about propositions
[POL94], In principle, belief has to convince the enquirer. A situation with equally
strong evidence for and against believing a proposition will hardly make one overcome
his doubts about the proposition [PRI67]. On the other hand, the second choice may be
adequate for agents that take the epistemic belief as a basis for action. These agents may
need to undertake some action rather than to do nothing.

The third case cannot occur in systems that have consistent belief sets. In other words, if
the reasoner is omniscient then there is always a right and a wrong, or true and untrue.
Other reasoners, including information agents, can be undecided. Representations of
propositions that are neither believed nor disbelieved but existing are described, for
example, in Levesque's [LEV84] explicit and implicit beliefs in a possible worlds
framework; or Fagin and Halpern's model of awareness [FAG87]. Furthermore, Galliers
supposes that agents may not only lack omniscience but there may also be conflicts in
real world problem-solving that are not or should not be soluble [GAL90b], As
indicated in the opening paragraphs of this section, it is necessary to analyse conflicts
rather than to apply heuristics that solve the immediate problem but are not Principle
Rational (Section 2.6), or may (in complex problem-solving scenarios) lead to other
problems at a later state.

Only a very few belief revision strategies have been mentioned. However, they describe
the basic notions of belief revision so that the following conclusions can be drawn:

1. A typical belief revision systems is based on assessing more information to solve
the problem of conflicting beliefs. For example, decision theory by Doyle
[DOY92] takes the measures utility and probability of the beliefs into account;
Galliers [GAL92] evaluates the relation of existing beliefs in respect to their

95

coherence to core beliefs; Epistemic entrenchment is based on further
investigating the beliefs expressiveness and value [GÀR8 8], Conflict detection
and resolution shares with belief revision systems that both are designed to
resolve a conflict by 'assessing more information to resolve the conflict1.

2. The applicability of traditional belief revision systems (as described in this
Section) to enterprise integration depends on the availability of the information
required by these revision systems. For example, Konolige's hierarchical belief
spaces [KON8 8] are difficult to obtain for information agents unless they are
omniscient (Section 2.8.3). Briefly, belief revision systems are designed to help
the encoding and management of an expert's knowledge in a knowledge-base
that is related to a particular domain. However, integrating information in an
enterprise is a problem that deals with information from various domains in
which the information agent is no expert.

3. Also following from this lack of domain knowledge, information agents cannot
apply consistency-based mechanism (The agents cannot ensure a consistent state
of their integrated sources).

4. Furthermore, the character of non-monotonic logic is to allow for rules to be
changed and every state may, therefore, be based on partial knowledge.
However, "there is no representation of partial conflict; a default theory either
has a consistent extension, or it does not" [[KRA93]p.l92], The previously
described non-monotonic logics lack a grading of certainty / uncertainty.
Propositions are either believed to be true or false. Extensions have been made
to add grading which results in a possibilistic logic (Section 3.5.2) such as in the
Graded Default Logic by Froidevaux and Mengin [FR092],

5. Belief revision systems provide multiple, domain-specific resolution mechanism
that may, in principle, participate in a general scheme for resolving conflicts. In
other words, they may provide problem solving services to information agents
(Section 2.7). For example, a knowledge-base that applies a revision scheme,
e.g. decision theory [DOY92], may resolve conflicts that are specific to its
domain provided the resolution strategy is rational to any potential client of the
integration environment (Principle Rational).

Conceptually conflict resolution is a form of belief revision (i.e. an agent revises its
belief on conflicting believes or evidence). However, existing approaches emphasis on
domain expertise, and / or closed belief sets, and typically are not Principle but
Application Rational (Section 2.6).

96

Some domain-specific decision theories have been used in belief revision, for example,
by Doyle [DOY92] in his classic utility and probability based model for uncertainty
management. Game theory is a decision-making theory that has been used for agent
coordination [EPH91]. Decision theory in a broader meaning includes most reasoning
mechanisms (e.g. probabilistic reasoning by [PEA8 8]) or many agent coordination
mechanisms described in Section 3.4. All these decision theoretic solutions to conflict
resolution are application specific (Application Rational Section 2.6). In other words,
decision theory aims to optimise the decision makers choice in an application, or
domain-specific way. It does not aim to provide a general scheme for conflict detection
or resolution.

A representative example of a decision-making model is Wong's [WON94] preference
based decision-making, which is applied to cooperative knowledge-based systems.
Essentially, the system is a cooperative problem-solving system for design similar to the
planning systems described in Section 3.4.4. It is, however, based on a decision-making
model consisting of the following:

• In an identification step the decision candidates are selected, ordered by their
importance, and checked for inconsistencies among them.

• In a second processing step the preferences of the competing alternatives are
deduced and combined.

• The negotiation step consists of the exchange of information for the purpose of
finding an agreement by bargaining and compromise. The underlying theory' for
this interaction is social choice.

It was claimed above that most research approaches lack generality. In accordance with
this it was found that:

"For many problems, such as building design, there is no a priori logical or
philosophical principle on which to base a resolution strategy - correct resolution
depends on specific domain knowledge as well as the cooperative behaviour of
the participants. The resolution of conflicts in the current scheme is largely
driven by the participants, with preference profiles and collective choice as focal
points" [[WON94]p.433],

Wong proposes a further investigation into human reasoning steps in order to find a
general scheme (called Principle Rationality in Section 2.6).

3.5.3.3 Uncertainty Management Based on Decision-Making Theories

97

The cognitive concepts of human decision-making provide a potentially useful but
unexplored area. There may be solutions to a general framework that is applicable to
conflict management but none has been brought to the attention of the field of Artificial
Intelligence. Hence, it may be concluded that no general scheme for conflict detection
and resolution exists in uncertainty management based on decision theory.

Another approach that takes human decision-making models into account is
Argumentation. It is based on adopting human decision-making capabilities to some
degree, which has lead to a very basic framework that will be described in the following
section.

98

3.5.3.4 Uncertainty Management by Argumentation

Argumentation is a form of reasoning and decision-making in areas where evidence is
not necessarily in form of quantitative parameters and the reasoning process needs to be
flexible to adjust to changing decision procedures. In other words, it can be
characterised as being "(a) able to reason about the structure of the decision itself, and
(b) is not based solely on the evaluation of quantitative parameters" [[KRA93]p.208],
Argumentation is, therefore, based on a model of human reasoning implemented in a
generic uncertain management mechanism.

A semi-quantitative approach has been presented by An, Bell and Hughes [AN 93] [AN
93b] (Section 3.5.2). An Argument in this research is

"the relationships between two judgements expressing that one supports or
refutes the other, ie, evidential supports" [[AN 93a]p.205],

Multiple ways to reason non-monotonically based on argumentation exist, e.g., by
Pollock [POL92], Cohen et al. [COH85][COH87], or the approach by Fox, Krause,
Clark et al. described below. The conceptual design of an argument is further specified
along the following lines [FOX92b]:

A piece of data (also called a candidate or a judgement in the previous
paragraph) may exist, a warrant that leads from the data to a claim, which may
be evaluated by a qualifier.

For example, the data 'Peter's address in the student registrar database is 'Pentonville
Rd" and the warrant ’students live at the address they are registered with’ may lead to the
claim ’Peter lives in Pentonville Rd.'. This argument may be questioned in respect to the
validity of the warrant or the claim. In the first case the warrant may, for example, be
challenged by the 'community charge investigation' questioning the correctness of the
student’s ('Peter's') address. Therefore, a backing of the warrant may exist, e.g. the
student address is used for communication with the student and therefore is proven to be
correct. More often, however, a specific claim is challenged by a rebut leading to the
claim being evaluated by a qualifier. For example, the qualifier 'possibly' may be
attached to 'Peter lives at Pentonville Rd.'. This qualifier could be based on the rebut
'Peter would not have the cash to rent a place in Pentonville Rd.'.

The model developed by Fox, Krause, Clark et al. [CLA90a] [FOX92b] is a good
example of argumentation and is based on the following framework:

1. "Dynamically propose decision candidates.

99

2. Dynamically generate evidence relevant to the decision candidates.

3. Dynamically identify relationships among decision candidates relating to
conjunctivity and exclusivity.

4. Operate in the absence of statistical parameters, but

5. Incorporate these when available.

6 . Be generic and not limited to any particular decision task" [[CLA90a]p.59],
This framework applies 'domain facts', everything an agent knows about the domain,
and Task Specific Knowledge, which includes any problem-solving procedures and
strategies. In addition, the decision-making knowledge generically applies the
procedures and strategies to the argument in the decision stages:

1. Proposal: Decision candidates (or options) are proposed;

2. Argumentation: Generation of argumentation for and against the proposals;

3. Annotation: Classic logical considerations are employed to classify the
evidence by annotating one out of nine states, e.g. possible, eliminated,
supported, or definite.

4. Relation: Analysing the relations between the arguments (evidence) to identify
which need to be evaluated together, which should be analysed separately, etc.
This is based on matching the arguments according to assumptions and
compatibility.

5. Evaluation: The evaluation stage is trying to produce (partial) orders, selections
and other assessments.

In the Proposal step, the mechanism opens with collecting 'decision candidates'. These
candidates are conceptually similar to propositions retrieved by an enterprise integration
environment. For example, the candidates 'Yogi is a bear', 'Yogi is a comic actor', 'Yogi
is a student at City University' may be candidates that have been gathered by the
information agents from multiple information sources. These present decision
candidates when they are alternative, conflicting results to a given query.

The Argumentation step gathers arguments for and against these candidates. These may
include, 'Yogi is known to have played in a comic on Television (TV)' and 'An actor in a
TV comic is a comic actor', 'Peter is a student at City University', 'Peter is fat and
therefore called Yogi', etc.

100

In the Annotation step these arguments are associated with the candidates. Furthermore,
they are evaluated logically. For example, 'Either Yogi is a bear or a student at City
University because there are no bears at City University'. The arguments are classified
according to nine certainty measures including possible, plausible, probable, certain,
believed, likely, suspected, doubted, assumed (for full definitions [[CLA90b]p.l35).
This way the uncertainty is not quantified but described qualitatively. For example, lets
assume that the predicate 'possible' is defined as: "no conditions that are necessary are
violated" [[CLA90b]p.l35] then the four candidates gathered in the second step are all
possible. If the uncertainty factor 'probable' is defined as "P is possible and there is at
least one item of evidence in favour of P" [[CLA90b]p. 135] then 'Yogi is a comic actor'
is probable because there is only one argument that supports the claim:

'Yogi is known to have played in cartoons on TV'

The Relation step then classifies the arguments, for example, in that 'Yogi is a bear' and
'Yogi is a comic actor' can both be possible at the same time. An alternative candidate to
'Yogi is a bear' is 'Yogi is a student at City University'. Furthermore, the argument 'Yogi
is a comic actor' is based on the warrants

'Yogi is known to have played in comics on TV', which subsumes that

'An actor in a TV comic is a comic actor’.

Finally, the evaluation step applies general heuristics called decision knowledge. These
may allow for ranking the alternatives into possibly partial orders, to combine evidence,
or the heuristics may lead to a form of assessment of the conflict situation.

It is reported from applying this approach to real world problems [FOX92b][KRA93]
that the aspects of uncertainty (e.g. possible, probable, assumed, known, etc.) have not
been accepted by the applicants. Further experimental research is suggested.

Argumentation allows for a sensitivity analysis. This includes, for example,
"determining to what extent the proposed decision would change as a result of changes
to the particular context" [[KRA93]p.248], Furthermore, it acknowledges uncertainties
not only in numerical but also in qualitative form. Finally, the solution of the reasoning
process results in an assessment and not in a strict ’believed1, 'not believed' and possibly
'undecided' classification.

In conclusion, argumentation is based on a common notion of uncertainty measures
(strength in believing conflicting arguments). In other words, the notion of uncertainty

101

needs to be commensurate if an information agent would apply this scheme. In enterprise
integration, however, sources typically lack common notions of certainty. Furthermore,
information agents typically are no domain experts that can evaluate the certainty
estimates, e.g. in the form of strength in believing an argument. This makes existing
structures of argumentation not as such applicable to conflict management in enterprise
integration environments.

The described research, however, shares much with conflict management in integration
environments:

• The focus of argumentation and conflict management is that evidence is
compared or evaluated in order to make a decision (if rationally possible), and
not necessarily that evidence is scaled within a given standard (e.g. a probability)
[AN 93a],

• The framework for uncertainty reasoning may provide a basic structure for
conflict detection, for example the first four steps of argumentation (please also
see the following Section 3.5.4).

102

3.5.4 Conclusion on Uncertainty Management

Existing uncertainty management research provides multiple, mainly domain-specific
conflict resolution strategies. However, no strategy exists that would be general enough
to suit all domains. Information agents need such a general strategy, or scheme, to
integrate information from all systems and all domains. Domain-specific resolution
strategies should be included into a conflict resolution scheme.

Argumentation is found to be useful to explore conflicts in order to accommodate users'
preferences. Augmenting conflicts is important for enterprise integration scenarios
(Section 2.5), and for belief revision systems (Section 3.5.3.2). Combing the
contributions from existing uncertainty management systems (e.g. [AN 93a]) and
argumentation produces [CLA90a] [FOX92b] roughly the following conflict detection
steps:

1. Gathering of candidates (or hypotheses, or objects of discourse);

2. Gathering of evidence concerning these candidate, which typically are
uncertainty measures of the candidates but may also be other circumstantial
information;

3. Classification of candidates to identify if and what kind of conflict exists.

This scheme draws mainly from Argumentation (Section 3.5.3.4). The steps (2)
Argumentation, and (3) Annotation are joint into a 'gathering of the evidence' step to
make the framework more general. In other words, the Argumentation step may not
exist in environments that lack a generally accepted uncertainty measure. Furthermore,
the Argumentation step (4) Relation is termed Classification because it will result in
identifying which candidates are conflicting in what way. Further steps are needed to
'evaluated' the candidates applying some form of decision-making [AN 93a].

103

3.6 Conclusion on Related Research

Many forms of rational conflict resolution in enterprise integration (Section 3.3) and
DAI (Section 3.4) have been identified. Furthermore, rational uncertainty management
strategies have been mentioned that are applicable to conflict resolution. All are
potentially useful to information agents provided:

• The agent can acquire the necessary circumstantial information about the
conflict and the conflicting results;

• The strategies are rational to any user of the information (Principle Rational
Section 2.6).

Information agents lack, however, a Principle Rational scheme to systematically co-
ordinate the available, rational methods for detecting and resolving conflicts. No such
scheme exists. Two important contributions from existing research may be applicable to
such a scheme:

• A basic framework for conflict detection, which is basically drawn from
Argumentation;

• A conflict resolution scheme should apply all available strategies. Distributed
planning research suggests that domain-specific strategies are applied first,
before less domain-dependent ones.

Later in this research it will have to be shown that these contributions are applicable to
conflict management in enterprise integration.

The following chapter will be dedicated to identifying a general, rational scheme for
conflict detection.

104

3.7 Chapter Summary

In the opening section conflicts were classified (e.g. into explicit and implicit conflicts)
and a propositional calculus was introduced. A survey of existing research on conflict
detection and resolution in Distributed Collaborative Environments for Enterprise
Integration has been undertaken. It analyses the field, ranging from their predecessors
distributed databases to enterprise integration environments. However, no rational,
complete and automatic framework exists for detecting and resolving the different kinds
of conflicts in information-sharing. No conflict detection or conflict resolution
mechanism exists that is applicable to Distributed Collaborative Environments for
Enterprise Integration.

Most systems in enterprise integration avoid conflicts by making assumptions about
internal and inter-system consistency at the data level as well as at the schema level. It
has been shown that these assumptions are ill founded. Based on this assumption
previous research in enterprise integration avoids the detection of inconsistencies and
thus:

• Applies heuristics to optimise the retrieval process, e.g., cost evaluation
[PAN91a];

• Utilises domain-specific resolution strategies, e.g., credibility of a source of
origin and the cost of denying beliefs which were already shared [BAR94a].

The fields of uncertainty management and distributed artificial intelligence (DAI) have
been analysed for possible contributions to conflict detection and resolution, with the
following results.

Integrating conflicting information in enterprise environments is a form of uncertainty
management. The information agent has to assess the certainty of the conflicting results
in order to assess which results to reject and which to believe. Uncertainty management,
in principle, can be done by both quantitative and qualitative methods. These have been
briefly analysed. They provide solutions for various, specific levels of domain-specific
conflicts (problem structures) and levels of domain expertise (e.g. to relate certainty
estimates). However, a partial framework for conflict detection has been found in the
field of argumentation [FOX92b] [CLA90a] that consists of three stages :

1. Gathering of candidates;

2. Gathering of evidence;

105

3. Classification of the evidence as pro- and contra resulting in some description or
even classification of the uncertainty of the candidates. In a conflict case the
conflict may be classified.

This basic scheme needs to be tailored to enterprise integration environments and the
information available to information agents (Section 2.7).

DAI has produced the partial global planning algorithm [DUR91a] [DUR87] as a basis
for the exchange of information between information agents. However, the partial global
planning algorithm is a task decomposition and assignment algorithm and therefore the
evaluation of conflicts is avoided (heuristics for optimising the retrieval process are
applied to alternative solutions). Mainstream conflict detection and resolution provides
some conflict resolution strategies. However, these are only directed at solving non-
essential conflicts, e.g. goal optimisation. These strategies could potentially be included
by information agents as a means of resolving non-essential conflicts.

Distributed planning systems use multiple resolution strategies. Klein and Lu's [KLE89]
research proposes a way to co-ordinate different resolution strategies with various
conflicts:

A given conflict is best solved by the most domain-specific resolution strategy
available for this conflict.

This principle may be applicable to a conflict resolution scheme of information agents.
For example, it needs to fit with the theory in Section 4.4.

Many approaches organise their problem-solving capabilities similar to that of Fox,
Krause, Clark, et al. [FOX91][KRA93]:

• 'Generic decision knowledge' is used to co-ordinate the resolution procedure;

• Domain level procedures (strategies) and knowledge are applied to the conflict.

Such a framework, in principle, can be flexible enough to incorporate the different kinds
of conflicts. In the mechanism designed and described in the next two chapters generic
decision knowledge is implemented in the form of agent heuristics (Organisational
Knowledge - Section 2.7).

106

4. Theoretical Framework for Conflict Detection and Conflict Resolution

4.1 Introduction

It is difficult to conceive of a non-trivial Distributed Collaborative Environment for
Enterprise Integration (DCEEI) that does not adequately address the problem of
conflicts. However, the previous sections have shown that existing work in this area has
not addressed this problem adequately. A mechanism will be presented that is rational
and complete in detecting and resolving conflicts in DCEEI.

An essential requirement for the design of such a mechanism is an underlying
theoretical framework for conflict detection and resolution. Such a scheme is developed
in Chapter 4 by first presenting the central, theoretical concept for both detection and
resolution (Section 4.2). The basic concept is adopted from evidence law and forms a
new approach to conflict detection and resolution in enterprise integration. A brief
discussion of the concept of evidence follows in Section 4.3. On the basis of this theory,
conflict detection is outlined in Section 4.4, and a resolution structure is developed in
Section 4.5. Sections 4.6 and 4.7 draw conclusions and summarise the chapter. This
theoretical framework will facilitate the design of a rational mechanism for conflict
detection and resolution in enterprise integration environments (Chapter 5).

107

4.2 A Rational Scheme for Conflict Detection and Resolution

Section 2.6 demonstrated that conflict detection and resolution has to be logical and
systematic but also rational to any potential client of the sharing environment (Principle
Rational). Rational schemes to evaluate evidence can be found in such diverse areas as
social science [FAC91], third party intervention, e.g., used in international relations
[BER84], value judgement [TRU87], epistemology [PRI67] [POL74], operations
research and management science [GOT92], and jurisprudence including evidence law
[MUR8 6] [ELL87],

Evidence law has a long professional and academic history in categorising and
stratifying evidence. It provides clearly defined terms that are widely accepted and
present a rich domain for classifying evidence in enterprise integration environments.
All the areas mentioned above with the exception of evidence law, emphasise conflict
resolution rather than detection. Evidence law is particularly concerned with providing a
pragmatic scheme for assessing conflicts. Other areas may be similarly well suited, but
evidence law shares some key characteristics with detecting and resolving conflicts in
enterprise integration, for example:

• Both are human built schemes to compensate for not having an omniscient,
superficial decision maker that would always come to the right conclusion (e.g.
it would identify the truth in a law case, or the true and the untrue results in
enterprise integration);

• They deal with uncertain information, that typically is not quantified, e.g., by
numeric probabilities;

• The approaches need to be applicable to all situations, problems and sources of
evidence;

• The schemes have to be rational in order to produce generally accepted results.

First, a brief excursion into evidence law will provide a basic introduction into the area
and some key definitions. Evidence in legal cases is qualified by satisfying the following
four criteria:

1. Relevance to the fact in issue;

2. Admissibility;

3. Credibility of the source of the evidence;

4. Weight of the evidence.

108

Before examining these criteria the concept of evidence requires a brief explanation:

"Evidence in legal cases may take the form of witness, oral or written, but it may
also take the form of the production of things, including documents (real
evidence)" [[ELL87]p.9]. Further, "evidence is everything that may persuade an
inquirer of the existence or non-existence of some fact or situation which he is
inquiring about" [[ELL87]p.3],

There are multiple ways to structure evidence, such as direct and indirect, primary and
secondary, original and hearsay, etc.

"Direct evidence consists of the witness who perceived the fact to be proved or
the production of the document or thing which constitutes the fact to be proved.
Circumstantial evidence of a fact is the testimony of a witness who perceived,
not the fact to be proved, but another fact from which the existence or non-
existence of the fact can be deducted, or the production of a document or thing
from which the fact to be proved can be deducted" [[ELL87]p. 11].

For example, a witness who has seen person A kill person B can give direct evidence to
prove that 'A has killed B'. If the witness has only seen person A with a knife in his
hand, he can only give indirect evidence because it is for the jury to decide whether it
can be inferred that 'A has killed B'.

In legal cases, evidence has to undergo different stages of evaluation during the course
of a case. 'Relevance' and 'admissibility' are qualities that evidence must have in order
to be considered by the jury [MUR8 6],

"Evidence is relevant if it is logically probative or disprobative of some matter
which requires proof' [[MUR86]p.7].

In other words, the evidence must make any fact more likely or less likely to be true.
The rules regulating relevance are therefore rules of logic and common sense [ELL87],
For example, the evidence in the previous example, where a possible murderer has been
seen with a knife in his hand, may be clearly relevant to the fact at issue. The fact that he
has also got a bread cutting machine at home appears to be irrelevant. A clever lawyer
may, however, take a fact that appears to be irrelevant and show with a chain of
reasoning that it is indeed relevant.

Admissible evidence must be relevant but not all relevant evidence will necessarily be
admissible. Thus, the admissibility of evidence is regulated for the British legal system
by a large number of rules which have been developed over the past two hundred years.
These may, however, be illogical at times [MUR8 6], In order for a fact to be admissible

109

it needs to be relevant according to the rules of logic and common sense. But a relevant
fact may not necessarily be admissible according to the legal rules. The best known
example of admissibility is a rule that makes hearsay inadmissible for criminal cases. 'D
has heard that A has killed B' is hearsay in a case where A is accused of killing B and
would not be admissible in court.

When evidence is relevant and admissible then it is permitted to be considered by the
jury. This is says nothing, however, about the credibility or weight of that evidence:

"The weight of evidence is determined by the jury by considering its cogency or
persuasiveness......Evidence is credible if it is worthy of belief, e.g., if it comes
from a trustworthy source. It does not follow that it is entitled to much weight."
[[ELL87]p. 13],

For example, if a witness is a convict who is known to have perjured himself in the past,
his testimony may not be very credible. A lack of credibility may make evidence less
persuasive, and may make it less convincing then other, possibly contradicting, evidence
from a more credible source.

"The weight of evidence depends on the view taken by the jury of its
truthfulness, reliability and cogency. Depending upon such a view, evidence may
be of virtually no weight at all, or may rest on one of an infinite number of
points on the upwards sliding scale, ending with evidence which is so weighty as
almost to conclude the case in itself" [[MUR90]p.l4],

After the relevance, admissibility and credibility of evidence has been established its
weight will need to be assessed. In general this assessment goes along lines which "any
reasonable tribunal would in any event take into account" [[MUR90]p.l5]. In summary:

• The weight of legal evidence is typically not numerically rated, e.g. in a zero to
one scale.

• The judgement, however, should be rational in that any other tribunal in the
situation would come to the same solution. Furthermore, the verdict that presents
a rational judgement can be accepted by any rational person.

The weight of evidence, in principle, can be used to determine a case. The standard of
proof is the "degree of persuasiveness which a case must attain before a court may
convict a defendant or grant relief [[MUR8 6]p.6]. This standard of proof sets the most
basic lines upon which the weight of evidence can be assessed. In civil cases the
standard is based on a preponderance of probabilities. Here probabilities do not mean a
statistical or mathematical assessment; in order to prove a fact it is necessary to show

110

that the fact is more likely then not to be true. In criminal cases the prosecution must
prove the defendants guilt beyond reasonable doubt. The court is beyond reasonable
doubt when it is sure of the guilt of the defendant. This means that it need not reach
certainty but it must carry a high degree of probability [MUR8 6].

I l l

4.3 Evidence in Law and Information Integration

The question 'How does evidence law relate to conflict detection and resolution?' will be
answered in two steps. First, it needs to be established what ’evidence' represents in
enterprise integration (this section). It will then be demonstrated how the scheme for
conflict management from evidence law applies to conflict detection (Section 4.4) and
conflict resolution (Section 4.5).

Evidence or reasons to believe can be defined as:

• "Data used to support or refute choices from alternative conclusions"
[[BEL93]p.967],

• "When one belief justifies another, then the former is said to be a reason for the
latter, one belief that justifies another" [[POL70]p.63],

• Evidence is everything that may persuade an inquirer of the existence or non-
existence of some fact or situation which he is inquiring about [[ELL87]p.3].

In any general reasoning situation, one has, ideally, evidence that clearly indicates if a
proposition is true or not true. For example, the evidence 'I saw A kill B' may lead me to
know that the proposition 'A has killed B' is true. In enterprise integration environments,
information is not 'directly witnessed by the information agent' but retrieved from
information sources. Typically, the retrieved information is not epistemically evaluated in
any way by the providing sources (e.g. a database). Hence, the information agent has to:

• Gather the evidence, however little, that may be provided by the source of origin
(e.g. statistical proof of the information systems reliability in past retrievals);

• Find ways to investigate the case and provide evidence for the case itself.

Ideally, evidence in enterprise integration would be numerical such as certainty estimates.
However, for a given candidate (result) only augmentative evidence to prove its
correctness may be available. Section 2.7 listed the information that is available to
information agents. For example, it includes comments about the reliability of
information systems. This evidence is similar to indirect evidence in legal cases in that it
is for the information agent to decide:

(a) How this information may refute or warrant a candidate; and

(b) If this evidence is convincing in this particular conflict case.

Later sections will describe a representation for defining evidence (Section 5.2.3 and 5.7)
and how agents can apply domain-specific strategies or services for evaluating this

112

evidence (e.g. Section 5.8). An example scenario and decision procedure for believing
propositions in enterprise integration could be:

An agent can send a query to its database interface, which will respond to this
query. The interface selects information from the database. This result (called a
candidate) may be supported, e.g., by a time stamp that indicates that the
information is not old. However, a typical database does not give any statement
on the information's quality or any justification for it (probative evidence for the
result from the database). In any case, the agent could conclude that the retrieved
result is true simply based on the result from the database interface. This result
may also be called a hypothesis, or a propositional candidate Oj.R^ (object Oj has
the attributes Rq to R 0.

In other words, two kinds of evidence exist: Candidates; and The evidence of the
candidates. These correspond to chains of evidence in evidence law where one
hypothesis is justified by another; or by epistemic justification, e.g. in Pollock [POL70],

Agenda:
O.Rt = Propositional Object
E, = Evidence for the

Proposition O.R„
—► = Submission o f Evidence

to the Information Agent

Figure 6: Evidence in Integration Environments

In other words, one hypothesis (or candidate O.R^) has multiple pieces of evidence (Ej,
Eq, to Em) supporting or refuting it. The evidence forms the basis for estimating the
uncertainty of the candidate. However, in enterprise integration the conflict case occurs
when multiple candidates (O.R|, O.R2 , ... O.RjJ are explicitly or implicitly conflicting.
These hypotheses and their evidence together represent evidence for the information
agent when it integrates results from multiple sources to produce one joint result.

In summary, evidence law is concerned with hypotheses and evidence for these
hypotheses that may themselves incorporate further justifications. Evidence in enterprise
integration consists of candidates and evidence attached to these candidates.

jvcefromso^

E, E^ (E, ^ ~3E
1 O.R;

I Information Agent"]

113

4.4 Relevance and Admissibility in Conflict Detection

4.4.1 Relevance and Admissibility

Information agents in enterprise integration make a typically epistemic audit (Section
2.8) that is very similar to the taking of evidence in legal cases. Agents request
information from one or all relevant sources concerning the fact at issue. For example,
the address of an employee, e.g. 'Yogi the bear', may be required. Information retrieval
identifies which systems can provide this information, and retrieves information from
them. The request may be sent to multiple sources, if these can all provide the
information but the responses may not all be identical, e.g. any result may be incorrect.
The detection starts with receiving the results, also called candidates, from the sources
(Gathering of Candidates). These candidates may also include some form of evidence
for believing or disbelieving the result (Gathering of Evidence).

In Section 3.5.4 the following concept has been identified for this initial information
gathering phase in conflict detection :

1. Gathering of candidates (or hypothesis, or objects of discourse);

2. Gathering of evidence concerning these candidates;

3. Classification of candidates to identify if and what kind of conflict exists .

Steps one and two directly follow the retrieval process in the sharing environment. They
initially stratify the retrieved information. The final step results in specifying that (1) no
conflict exists or (2) which of the explicit and implicit conflicts defined in Section 3.2.1
exists.

Ideally, the candidates are always syntactically and semantically represented correctly
and relevant to the fact at issue. However, in enterprise integration, inconsistencies and
incompleteness exists when autonomous, heterogeneous sources are integrated (Sections
2.3, 2.4 for autonomy and heterogeneity, Section 2.5 on task assignment in enterprise
integration, and Section 3.3 for enterprise integration environments). For example, the
candidates may be misinterpreted, or candidates are proposed even if they are not
relevant to the fact at issue. The inconsistencies in enterprise integration systems could
have theoretically been overcome by constructing tight, consistent distributed systems.
Examples include some homogeneous distributed databases (Section 2.2), integration
environments with consistent, master models (Section 3.3.1.1) or unified schemata
(Section 3.3.1.2), and distributed truth maintenance systems (3.5.3.1). In other words,
these consistent distributed information systems shift the conflict management into the

114

modelling phase. A closer investigation of enterprise modelling in the following
paragraphs will show the principle steps of this management in enterprise modelling.

The process of initially integrating information sources is called enterprise modelling.

"Enterprise modelling is the cooperate activity that produces models of the
information resource, information flows and business operations that occur in an
enterprise" [[HUH92]p.38],

An information system in enterprise integration is typically modelled in terms of
objects, e.g. in the MKS object-oriented methodology [PAN91a]. The way an 'object' is
used, however, originates from distributed databases:

"The basic modelling element is an object, which corresponds to some (real
world) entity or concept (e.g. the person Jane Smith or the number 5). Objects
are divided into two categories: Descriptor Objects and Abstract Objects...."
[[HEI85]p.258],

Schemata are composed of Descriptor Objects, which describe the Abstract objects
stored in, or available from, the information source. Abstract Objects are the data itself
that is available from a source. The descriptors are an utility or 'meta information' that
shows in a condensed form what information is available from the source. The term
schema in this research can mean any number of possibly conceptually related
Descriptor Objects.

Schema integration is concerned with integrating different schemata and overcoming
potential inconstancies between them. This is a syntactic task of matching and
translating abstract objects. However, it requires that no inconsistencies exist on the
data-schema or the data level. Therefore:

"The overall task of schema integration can be divided into two main parts,
schema analysis followed by schema synthesis. This begins by the process of
establishing correspondences and detecting possible conflicts between structural
components or semantic contents of local schemes in the so-called pre-
integration phase, where these conflicts are resolved by conforming the different
schemes so that they can be compared, merged and restructured, before being
integrated to form a global schema" [[QUT92]p.3],

Correspondences across information systems are identified on the level of structural
components, such as schema items (concept correspondence), and on the data level
dealing with data objects (object correspondence). For example, "consolidation begins

115

by identifying the identical constructs (i.e. those having the same primary key) within
and across the [uniformly presented] submodels [of each system]. Each such set of
identical constructs is merged into a single construct. The second step in consolidating
is representing the notion of foreign keys (referential integrity constraints) arising
between constructs in different submodels [or sources]" [[HSU91]p,609],

Schema synthesis is achieved by either merging multiple schemata into one Unified
Model (Section 3.3.1.2), merging it with one central Master Model (Section 3.3.1.1), or
to merge, possibly partial, schemata directly (e.g. Federated Models 3.3.2).

Enterprise integration environments typically lack a pre-integration or consolidation
phase that provides complete internal, and inter source consistency (opening Sections
2.3, 2.4 and 2.5). Hence, the task of detecting these inconsistencies is shifted into the
conflict detection phase. In other words, the detection phase needs to revise the above
schema integration phase to detect if:

The conflict is only a schema integration problem: or

A data conflict is at hand (incorrect, obsolete or incomplete data).

Conflict Detection should therefore include :

1. Detection of syntactic integration conflicts.

2. Detection of semantic mismatch problems between the candidates:

2.1 Lack of object correspondence;

2.2 No concept correspondence (semantic misinterpretation).

The following will now demonstrate all the proposed steps for conflict detection. These
are embedded into a conflict detection scheme structured by the phases Relevance and
Admissibility (evidence law). The detection phase opens with gathering the candidates
(results) and any evidence that may exists to justify or support them. In the gathering
phase a request against the integration environment results in:

1. No candidates;

2. One candidate or identical candidates from multiple sources;

3. Multiple, different candidates.

Information agents apply a minimalistic reasoning (Section 3.5.3.2) in that they accept
the first case as 'no result', and the second as a conclusive valid result. In other words,
the result is not challenged, the change is minimised, and therefore accepted in the face

116

of no contradictory evidence. In principle, such minimalistic reasoning is adequate and
typical of enterprise integration environments that do not have a consistent, e.g.
deductive, belief network but rather an open belief base (Section 2.8.2).

However, in the case of multiple, non-identical candidates, further evaluation is required
to identify if a true conflict exists. Determining the relevance of multiple results starts
with determining if the candidates are syntactically correct (Syntactic Conflict
Detection). Syntactic correctness includes, for example, the translation and
communication of results (Syntactic correctness is a presupposition for a result to
become relevant to the request).

Semantic Conflict Detection is concerned with detecting the 'correspondences' of the
possibly conflicting items. In enterprise integration environments this procedure
includes evaluating the object correspondence of multiple results or candidates. For
example, results from multiple sources can only conflict explicitly or implicitly on the
same attribute class if they are concerned with the same thing (Conflict Classification
Section 3.2.1). In other words, two candidates cannot conflict on a candidate's property,
e.g. the colour of the concept 'car', unless they both

(a) refer to the same car (Object Correspondence) and

(b) understand the same thing under the concepts they uses, e.g. 'car', 'colour1,
'red', 'green' (Concept Correspondence).

Another aspect of concept correspondence is that the results need to be presented in the
form that is semantically intended by the source of origin. For example, expert
knowledge may need to be semantically explained so that the information agent can
ensure that a candidate is inconsistent with other results. Furthermore, concepts need to
be translated or mapped between sources. For example, the concept automobile in one
source may be equivalent to the concept car in another.

The final step for detecting a conflict is to check the admissibility of either evidence in
legal cases, or results in enterprise integration. In enterprise integration the equivalent of
legal ’rules of admissibility' are any guidelines about when to consider a candidate.
Business rules (Section 2.7 Organisational Knowledge), for example, may entail that
information from a particular source is rejected. Such a rejection on principle may, for
example, be justified if a source has had a disk crash.

117

4.4.2 Overview Conflict Detection

In summary, the following steps build a framework for conflict detection :

1 .

2.
3.

Gathering of Candidates
Gathering of Evidence
Classification

1
1 Gathering Phase
1

4. Syntactic Conflict Detection 1 Relevance or
5. Semantic Conflict Detection 1 Syntactic and Semantic

5.1 Object Correspondence 1 Phase
5.2 Concept Correspondence 1

6. Admissibility 1 Admissibility Phase

Table 5: Conflict Detection Framework

This framework enables the agent to detect a data conflict which requires conflict
resolution (Section 3.2.1). This scheme will now be used for the design of a mechanism
for information agents in enterprise integration. This mechanism for conflict detection
will be described in Sections 5.2, 5.3, 5.4 and 5.5.

118

4.5 Credibility And Weight of Evidence In Conflict Resolution

4.5.1 Credibility and Weight

In legal cases, relevant and admissible evidence is subject to investigating the
credibility of the source of origin. The credibility of an information source is described
by its reliability. For example, a database may be very reliable, which means that the
source is very credible. However, reliability may be related to:

• A whole source, e.g. a database is very reliable [BAR94a];

• A specific result from a source, e.g. a statistical package may have a level of
confidence on its results.

• A specific context, where reliability expresses the adequacy of the source to
provide particular information [PAN91a].

• An information agent itself may be able to judge on the reliability of a source, or
results from that source based on its past experience with information from this
system.

This initial resolution will, if possible, value the candidates' reliability or credibility.
This is followed by assessing the weight of the evidence for the conflicting candidates.
In other words, there are multiple candidates with their evidence, including any
reliability estimations. In order for the information agents to judge the conflicting
candidates, the weight of evidence supporting and refuting the candidates is analysed.
The weight of the evidence, including the reliability of the evidence, may provide a
basis for the information agent to make a judgement. Reliability may play an important
role in this judgement but, in evidence law or enterprise integration, a rational
judgement would be based on all the available evidence. In other words, the reliability
of evidence is only one aspect used to determine the weight of evidence.

The next step is, however, to assess the weight of evidence and then to evaluate or judge
on it. Some research in conflict resolution, such as Klein's [KLE91] concept of general
and specific resolution knowledge (Section 3.4.4), provides a partial answer. Multiple
strategies to resolve a conflict are applied based on the following premise:

For a given conflict the most domain-specific resolution strategy is the most
accurate one.

This concept will be applied to conflict resolution in enterprise integration. In terms of
conflict management this means a conflict is best evaluated on the lowest level of the
integration. Each level of integration has its own variety of conflict evaluation or

119

resolution strategies. Hence, three levels of evaluation and resolution exist in enterprise
integration:

• Local evaluation is implemented within an information source or among a group
(community) of sources and is called 'Domain-Specific Problem-Solving';

• Intermediate evaluation is undertaken by the information agent but it applies
scientific resolution heuristics to domain and problem specific information
('Scientific, Domain-Specific Resolution Heuristics');

• Global evaluation is 'Domain-Independent Evaluation' such as domain-
independent evaluation of the reliability of results or their sources of origin.

The minimum requirement for all these resolution strategies is that they all must be
rational. In other words, all strategies have to be Principle Rational to all potential
clients of the integration environment. This is defined in the opening Section 2.6 to be
the mastering goal for the design of a conflict detection and resolution mechanism.
Hence, the strategies that are embodied in this mechanism also have to be rational in
this sense.

4.5.2 Domain-Specific Problem-Solving

The local level of enterprise integration environments is the level of independent
information sources such as a database, an expert system, or a knowledge-based system
(Section 2.3). Furthermore, individual systems may be clustered to Groups that
cooperate to jointly solve conflicts (Section 2.7 Resource Knowledge). For example, a
Group of problem solvers may cooperate in solving complex planning and scheduling
problems (Section 3.4.4). Any resolution that can be provided by one source or among a
group of cooperating sources is domain-dependent. The resolution by domain experts
(local problem solvers) is typically, and has to be explicitly identified as Principle
Rational. In other words, where a domain expert, such as an expert system or a human
expert, can resolve the conflict then this resolution is typically rational to any client of
the integration environment.

Groups of cooperating sources form a distributed problem-solving community. The
strategies they use are tailored to the use of one specific system or a specific group of
systems. Even if these resolution strategies are applicable to other sources, their

120

applicability needs to be defined. For example, a group of agents that cooperate in a
game theoretic cooperation mechanism [EPH91] are a closed group. It is not possible
for any system in the enterprise to join in and participate in the problem-solving without
being integrated into that community. Integration of a new source may include
knowledge of the cooperation protocol, the languages, the rules and goals of problem-
solving, etc.(Section 3.4.5.).

It follows, that while information agents can employ these local problem-solving
communities they cannot participate directly in the domain-specific problem-solving.
For example, Environmental Information (Section 2.7) about the problem-solving
strategies of sources enables the information agent to determine that conflicting
candidates are from sources that cooperate in the same problem-solving community. It
can, in such a case return the results to that community in order to have local problem-
solving procedures resolve the conflict adequately.

In Section 3.2.1 conflicts were classified as essential conflicts or non-essential conflicts.
In the case of an essential conflict, a deal between mutually acceptable alternatives is
not possible, but one result is correct and the other is not correct. It has been outlined in
the introduction (Section 3.2.1) that genuine conflicts between candidates may exist in
which all candidates are correct and the conflict is one of priorities. Such non-essential
conflicts may be based on problems of, for example, optimality or goals. Domain-
specific resolution strategies typically resolve such non essential, e.g. goal and
optimality, conflicts. Distributed problem-solving, for example, focuses on non-
essential conflicts. However, there may be strategies, e.g. outlined by Galliers
[GAL90a], that also deal with essential conflicts. Further examples of domain-specific
resolution strategies are described in Section 3.4.

In many conflict cases no local problem-solving is possible. No domain-specific
resolution strategies are available that can resolve the conflict, that is typically between
mutually acceptable results, e.g. non-essential goal or optimality conflicts. More general
resolution strategies are described in the next section.

121

4.5.3 Scientific, Domain-Specific Resolution Heuristics

An intermediate level for evaluating evidence is called Scientific, Domain-Specific
Resolution Heuristics. In other words, the conflict resolution is concerned with
establishing the weight of evidence and their candidates (Section 5.7) to make a
judgement intended to resolve the conflict.

"Judgements are verbally embodied in statements, sentences that assert that
something is or is not the case and can therefore be true or false." [[TRU87]p.7].

The information agent applies any 'sentences that assert something'. This includes any
'scientific' sentences (rules and heuristics), which can be mathematical, logical, empirical
or metaphysical judgement [TRU87]. The word 'scientific' indicates the agent's aim to
find 'scientific proof for any conflicting candidates. Further, the resolution strategies are
domain-specific because they apply these scientific heuristics to the candidates, their
evidence and environmental information relevant to the candidates. The following of this
section will briefly describe scientific heuristics that can be applied to domain-specific
information (also called 'facts' in many uncertainty reasoning approaches).

An example of a mathematical judgement is the equation '2+3=5'. A logical judgement is
the inference 'If A is bigger than B and B is bigger than C then it follows that A is also
bigger than C. These equations are true based on reason. It is known that mathematical
and logical reasoning produces these results. In Section 3.5.2 some quantitative methods
to uncertainty management have been described, e.g. Bayesian probability, or
possibilistic logic and it has been concluded that:

• This reasoning appears rational to any information source.

• However, the methods are limited in the kinds of conflicts they can solve because
they are bound to the quantitative nature of the evidence and the structure of the
problem.

Qualitative methods, e.g. non-monotonic reasoning and belief revision, or decision-
making theories, provide methods for logical judgement (Section 3.5.3). However, much
research on qualitative methods is either not Principle Rational (e.g. decision theories
based on different notions of optimality), or based on very detailed domain knowledge
(e.g. non-monotonic reasoning in truth maintenance systems). Qualitative or quantitative
methods are applicable as scientific resolution strategies provided they are:

• Rational to any information source:

• Can be supplied with the necessary quantitative and qualitative information;

122

The structure of the conflict suits the methods.

The system administrator defines what strategies are Principle Rational by specifying the
scientific resolution strategies in the information agent's knowledge.

In contrast, empirical judgement is based on observation. For example, 'Yogi is fat' may
be based on the empirical observation by a person X. However, this observation may be
biased because the person X may be short-sighted or weighing only 10 stone he may
define anybody over that weight as 'fat'. An empirical judgement that is rational needs to
be based on universal assent to produce a generally accepted result [TRU87]. For
example, the judgement 'Yogi weights 20 Stone' is based on weighing Yogi on a scale,
and is, therefore, empirical and universally accepted.

The previous two kinds of judgement are commonly considered as objective [TRU87].
Metaphysical and empirical judgements are similar in that it must be based on universal
assent in order to be objective and rational. However, metaphysical beliefs can never be
true or false. They are assertions about the world that cannot be proven. An example of
such a metaphysical judgement is: "Space is indefinitely extended" [[TRU87]p.l3].

Ideally, an information agent would know all scientific knowledge to reach all scientific
judgements. Such an agent would be an 'all domain expert' which has all domain-
independent and domain-dependent scientific knowledge. For example, this expert
knowledge could be incorporated by an expert system similar to a hypothetical
omniscient human. An example of this approach is CYCESS [GUH94] based on the
common knowledge-base CYC [LEN90], which is further described in Section 5.9.
Typically, however, information agents may be able to provide some scientific judgement
and are not omniscient. Hence, they may solve some conflicts with scientific, domain-
specific heuristics.

123

4.5.4 Domain-Independent Evaluation

The third way to evaluate evidence is on a global level, and domain-independent. For this
evaluation the following information is available:

• Candidates;

• Any evidence of these candidates and possibly any certainty assessment
(reliability) of the candidates or their sources of origin.

However, this evidence could not be evaluated by domain-specific solutions as described
previously (local and intermediate levels of resolution).

Judgement can be scientific such as mathematical-logical, empirical and metaphysical, or
otherwise it is value judgement [TRU87]. The evidential, scientific judgement of the
previous sections has not led to conflict resolution. The information agent is left with the
last possible approach to resolve the conflict by a form of value judgement [TRU87],
Reliability is typical of this kind of judgement [BAR94a], which also has general assent
and is ,hence, rational.

Reliability, therefore, is a question of standard. Thus, the reliability of a source may be
evaluated in respect of certain aspects such as consistency over time, past performance,
expected future reliability, etc. Judgement of conflicting candidates based on such a
standard of reliability is generally called value judgement:

"'Value' had always suggested some comparative process of assessing or
measuring" [[ENC92]p.l269]. Examples of values include aesthetic values
(harmonic), values of usefulness (useful, advantageous), religious (holy, pious),
values of justice (just, usurious), values of personality (reliable, lazy), etc.
[ENC92], "The distinctive feature of these judgements is that they are evaluations
against a standard that is acknowledged by the person [agent] making the
judgement; if the judgement is to be taken as an objective judgement, the
standard must command universal assent (as do objective logical and empirical
judgements) or it must command substantial agreement (as do some objective
metaphysical judgements)" [[TRU87]p. 16], In summary, judgement has to be
based on a normative concept (thus also called normative judgement). An
example of such a concept can be reliability.

The problem of judging reliability is the lack of a common standard. Multiple diverse
standards of reliability exist that may be incommensurate or even conflicting. For

124

example, the estimate 'certain' from source A may not be comparable with the estimate
70 per cent confidence' from source B.

Criteria for comparing some certainty estimates may be available in enterprise integration
environments. These are defined as part of an agent's Decision-Making Knowledge or
Business Rules (Section 2.7 Organisational Knowledge). An example of a possible
criterion may be: 'A result that is very unreliable can be neglected'. This heuristic may
single out one candidate that can be believed (and the conflict is resolved). However,
such heuristics often partially rank the results: Very unreliable results are eliminated
while others, which may not be rankable, undergo further investigation.

As stated in Section 4.2 a standard of proof exists in legal cases to determine when a
case is sufficiently persuasive so that a judgement can be made. The concepts of
'preponderance' and 'proof beyond reasonable doubt’ have been mentioned. In enterprise
integration conflicting candidates must persuade a rational information agent sufficiently.
Organisational Knowledge incorporates the standard of proof. For example, it includes
decision criteria on when candidates can be ranked and judgement is possible, or when a
case is undetermined and no (or only partial) ranking is possible.

Conflict resolution based on reliability is grounded in mainstream research for solving
value conflicts as, e.g., described in [FAC91]. It is a general scheme and based mainly on
common sense. Similar approaches have been applied to qualitative uncertainty
management systems such as Argumentation [FOX91] [FOX92b]. The emphasis of this,
and many approaches in social science, lies on the analysis of a conflict. This emphasis
also makes the following synthesis of existing research particularly suitable for conflict
resolution in enterprise integration. In principle, the approach is based on the three steps
of:

1. Ordering the candidates in respect to reliability (Ranking);

2. Finding New Alternatives (New Alternatives);

3. Negotiation of Compromise (Negotiation).

Ranking is the simplest way to the question ’Which candidate should the agent believe?'
The pragmatic answer is: ’The most reliable one'. The easiest way to determine the 'most
reliable' candidate is to rank the alternatives according to the reliability attached to them.

Ranking has been used in may conflict resolution mechanisms in all areas from enterprise
integration to uncertainty management (as has been described in the related research

125

section). Typically, this includes ranking preferences, goals and priorities, e.g. Werkmann
[WER91] or Adler et al. [ADL89]. Uncertainty management systems focus on ranking
the expected reliability, e.g. Argumentation [FOX92b] (Section 3.5.3.4). In the case of
integrating information, the candidates are typically ranked according to their reliability,
e.g. [BAR94a]. The outcome of such a ranking scheme may be that one result may be
more reliable than another and, therefore, a judgement is possible. Please note the fact
that candidates have rankable reliabilities is not sufficient to make a judgement, the agent
also requires heuristics to judge based on this ranking (Decision-Making Knowledge or
Business Rules).

However, the certainty estimates may be incommensurate, or no criteria may be found
that enables a judgement to be made based on ranking. In these cases, the agent would
ideally develop new alternatives [SYC89]. This step enforces flexibility and creativity. In
other words, new alternatives can be found by further investigation of the reliability
conflict. The agent may find that different certainties are directed at different aspects,
circumstances or assumptions. This includes Alternative Ranking Heuristics and
alternative certainty estimations.

In the previous step Ranking Heuristics are used to define the order of certainty
estimates from diverse sources. These heuristics are known to be applicable to the
conflicting candidates and their certainty estimates. For example,

a certainty estimate 'possible' in source A is known to be identical to the estimate
'possible' in another source B.

In situations when such heuristics are not available, the information agent would try to
propose a ranking scheme or heuristics. In other words, the agent may have Alternative
Ranking Heuristics but it may not know if these are applicable to the conflicting
candidates. Thus, these heuristics can only suggest a proposed an alternative ranking.

The agent may be able to investigate the reliability estimations further, and come to a
more diverse description of the certainty estimates (alternative certainty estimates). This
may include descriptions of the circumstances or assumptions under which the certainty
estimates are made. New Alternatives are developed based on new, or extended certainty
estimates. For example, two conflicting candidate may both be 'reliable'. However, the
estimates may be extended when it is derived from the agent's Resource Knowledge that
one source is an expert in one field and the other is an expert in another. In other words,
each result is more reliable in respect to its expertise. However, this new situation
proposes a compromise (i.e. a compromise is the partial satisfaction of the alternatives).
Nevertheless, a decision has to be made if this compromise is to be acceptable.

126

Hence, the Negotiation stage presents to the client of the integration environment the
new alternatives which are based on new heuristics or new estimates. The information
agent presents a compromise to the decision maker, or possibly to the application, that
has requested the information. No actual negotiation between the conflicting parties is
possible but the information agent mediates the resolution result to the client of the
integration environment. The information agent is a manager agent (Section 2.5)
architecturally similar to Persuadors [SYC89] (Section 3.4.3), that seeks a rational
result.

However, compromise is limited to cases where new alternatives have been found.
Otherwise the conflict case cannot be solved rationally in enterprise integration by
information agents. This may be due to:

• The lack of domain level knowledge which would have enabled the agent to
resolve the conflict.

• Different business strategies and goals produce alternatives with different notions
of optimality (e.g. business strategies such as 'save money' and 'improve working
conditions' may conflict).

In the first case there is no Principle Rational solution to resolve the conflict based on the
given level of Agent Knowledge. In the second, however, a solution for the conflict may
be possible in the scope of the client, e.g. a decision maker or an application. Section 2.6
explained that conflict detection and resolution in enterprise integration lies between
information retrieval and information use in applications or by decision makers. Problem
specific views may allow for the resolution of such conflicts only for the purpose, and
under the rationality assumptions, of this specific application.

127

4.5.5 Overview

In summary a framework for conflict resolution has been outlined. It includes the
following steps:

1. Evaluating the Credibility of the Results and Their Sources of Origin;
2. Weighting the Evidence to Make a Judgement:

A. Domain-Specific Problem-Solving (Local Resolution)
B. Scientific, Domain-Specific Resolution Heuristics (Intermediate Resolution)
C. Domain-Independent Evaluation - Reliability (Global Resolution)

- Ranking
- New Alternatives
- Compromise

Table 6: Conflict Resolution Framework

This rational scheme for conflict resolution will be used in Sections 5.7, 5.8, 5.9 and 5.10
to design a mechanism for information agents, in enterprise integration environments.

128

4.6 Conclusion

The previous sections have outlined a theoretical framework for conflict detection and
resolution in enterprise integration environments. An additional construct is, however,
needed in order to design a conflict detection and resolution mechanism based on this
framework:

• The Gathering phase requires a formal specification for object candidates and
their evidence, which is sufficiently expressive that the kind of conflict may be
identified and the object correspondence can be investigated (Semantic Conflict
Detection).

The evaluation of the theoretical underpinning outlined in this chapter will have to prove
that:

• Conflict detection is complete in respect to any known conflicts among multiple
results.

• The resolution which is most domain-specific has the greatest accuracy for
conflicts in enterprise integration.

• All resolution procedures available to information agents in enterprise integration
can potentially be incorporated by the resolution scheme.

• The Principle Rational resolution mechanism is functional in an enterprise
integration environment.

129

4.7 Chapter Summary

The theoretical basis for conflict detection and resolution in enterprise integration has
been outlined by adopting a framework from evidence law. It has been shown how
evidence law can be applied to conflict detection and resolution so that the design of a
detailed multi-step framework is possible. The framework includes the following
phases:

Conflict Detection:
1. Gathering of candidates and their evidence (including a possible

classification of the conflict);

2. Syntactic and semantic relevance of the candidates;

3. Admissibility of candidates;

Conflict Resolution:

4. Evaluating the credibility of the results and their source of origin;

5. Weighting the evidence to make a judgement.

The Gathering phase includes the uniform assessment of the conflicting results and their
evidence and the classification in case of a potential conflict. The semantic and syntactic
conflict detection phase draws on a concept to revise the enterprise integration
modelling. This ensures that a possible conflict is not merely a syntactic or semantic
mismatch. The final step in detecting a conflict is to ensure that the results are
admissible, in that no rules set out by the system administrators or integrators generally
refute them.

Conflict resolution opens with an investigation of the credibility of the sources of origin
and the results derived from these sources. The resolution of the conflict proceeds by
systematically applying existing resolution mechanisms and the agent's own heuristics to
the conflict. If no domain-specific resolution is possible (Domain-Specific Problem-
Solving) then general strategies must be applied. In other words, the information agent
may apply general resolution heuristics that are rational to any potential client of the
integration environment (Scientific, Domain-Specific Resolution). Finally, a judgement
may be based on domain-independent resolution strategies such as the reliability
(credibility) of the conflicting results (Domain-Independent Evaluation). A mechanism
to judge the reliability of conflicting results and their sources is proposed.

The next chapter will apply this theoretical framework to design a mechanism for
conflict detection and resolution in enterprise integration environments.

130

5. A Mechanism for Detection and Resolution In Enterprise Integration
Environments

5.1 Introduction and Design Methodology

5.1.1 Introduction

The previous section introduced a framework for conflict detection and resolution. This
framework will now be systematically applied to design a conflict detection and
resolution mechanism for information agents in enterprise integration. The methodology
for this design approach is introduced in the following section.

Conflict detection requires an adequate formal representation, and this, together with an
outline of the Gathering phase will be covered in Section 5.2. Sections 5.3, 5.4 and 5.5
will then describe the Syntactic, Semantic and Admissibility phases of conflict detection.
Conflict detection is summarised in Section 5.6.

Conflict Resolution begins with evaluating the credibility of the conflicting candidates
(Section 5.7). The resolution steps Domain-Specific Problem-Solving and Scientific,
Domain-Specific Heuristics are outlined in Sections 5.8 and 5.9. Domain-Independent
Evaluation is the final phase in conflict resolution: Its description is based on the
evaluation of the candidates' reliability. A conflict resolution summary is provided in
Section 5.10.

Chapter 5. closes with an overview in the form of a decision tree (Section 5.11). This
graph provides an Implementation Concept for the following Evaluation (Chapter 6.).
Concluding remarks and a chapter summary are covered in Sections 5.13 and 5.14.

131

5.1.2 Design Methodology

The basic methodology is one of synthesising existing research in the wider field of
enterprise integration, uncertainty management and distributed artificial intelligence to
function within the detection and resolution framework outlined in Chapter 4.

A major drawback with existing integration environments is the weak form in which
object identity and sameness is implemented. In other words, the implementation of the
in-depth detection of conflicts, as outlined in Chapter 4, requires a precise formal
representation of the identity and sameness of the potentially conflicting objects
(candidates).

Hence, the propositional calculus introduced in Section 3.2.1, and existing object
structures as typically used in enterprise integration, are extended with a novel object
identifier. On this basis a novel notion of object sameness is introduced. This notion is a
natural extension of existing research in the field. The underlying ontology is based on
counterpart theory in the possible worlds semantics.

132

5.2 Conflict Detection - The Gathering Phase

Information retrieval precedes conflict detection (Section 2.6). In simplest terms this may
involve reading a global schema for the nodes that can provide results and sending
requests to these nodes. Requests may, however, need to be translated or matched.
Combining the results necessitates that the retrieval procedure will allow the agents to
translate the responses into a common language.

Conflict detection and resolution is a rational process for handling inconsistencies
between the communicated information in response to an information request. As part of
the process the information agent is able to stratify and evaluate the information that has
been exchanged through the communication and retrieval processes. It is the follow-up
of extensive information exchange between information agents. In the implementation
described in Chapter 6., the information communication is based on the Knowledge
Query and Manipulation Language (KQML) [CHA92], This protocol is typically used
for inter agent, and agent-to-source, communication in enterprise integration
environments.

Section 3.2.1 introduced a basic propositional calculus which described explicit and
implicit conflicts. The attributes Rj, R2 , to R^ are a set of attributes of an object Oj that
is closed within at least one information source. For example, an object 'Peter' may have
a closed set of all its attributes within an information source D1. In addition, to the basic
propositional calculus, there is a need to specify attribute classes so that the attributes of
different objects can be compared. Attribute classes range from vj, V2 , ... vm. These are
implemented in relational tables in the form of fields, or in object-oriented databases in
the form of tuple objects. For example, an information source may have a set of tuple
objects with the attribute classes Name, Address and Phone Number (All names of
attribute classes, names of tables or fields in relational databases start with a capital first
letter). A particular object within this set may have the Name 'Peter', the Address 'Fridge
Rd.' and the Phone Number '609 6486'. In order to increase the readability of the
calculus, the attribute names are attached to the attribute classes in brackets (e.g.
vm(Name)).

Conflict detection starts with the information from various information sources that has
been communicated through multiple information agents. In propositional calculus a
request in the from O j.v m :? is sent out. For example:

Query: Op(v^(E_Number): 123, V2 (Name):?)

133

'Concerning an object with the employee number (E_Number) 123 what is its
name attribute?

Results: Opv2 (Name): Peter (from BookkeepingDB) or Opv2 (Name): Mark
(from ProductionDB).

Multiple information agents may receive results from their sources and communicate
them to the requesting agent. The framework designed in Chapter 4. provides the basic
structure for starting the information integration with the Gathering phases (Section 4.4):

1. Gathering of Candidates

2. Gathering of Evidence

3. Classification

The information agent needs a formal representation to express the 'zero to many', results
(candidates) to a query. These candidates may or may not be concerned with the same
thing, and / or come to the same conclusion. For example, one agent A may have a result
that the employee with the number '123' has the name 'Peter', and another agent may
claim that the employee with the number '123' is called 'Mark'. Another example of two
conflicting candidates would be an agent A has a result 'Peter is 18 Stone' and agent B
has the result 'Peter is 20 stone'. In both examples, an investigation of whether the same
'Peter' is intended is required in order to determine if there is a conflict.

In summary, results consist of objects which are claimed to have certain properties
(Section 3.2). A notion of identity is required to identify the objects in enterprise
integration environments. It will now be investigated how existing research identifies
objects and it is outlined why these approaches are inappropriate for enterprise
integration. In the following a novel object structure is introduced.

134

5.2.1 Object Identification

5.2.1.1 The Concept of Object Identification

Here are presented some key issues and shortcomings of existing approaches, to
integrating heterogeneous notions of object identity. These form the basis for the object
identifier designed in this Section 5.2.1. Heterogeneous notions of identity in standalone
information systems have been exhaustively described in the literature, for example in
Shave [SHA75], Shave and Bhaskar [SHA82], or Loomis [L0089]. Appendix B
includes a brief overview of existing notions of identity in information systems.

"Identity is that property of an object that distinguishes it from all other objects"
[[KHO90]p.37],

Object identity is implemented in various forms in different information systems. For
example, object-oriented databases implement surrogate based identifiers such as system-
generated, unique numbers. Relational databases implement user defined keys such as
every object in the table Person has a key field Name.

When multiple information sources are pooled in one information-sharing environment,
the requirement for implementing a data model arises. Furthermore, within this model a
notion of identity, which covers all objects in all systems, has to be implemented. A basic
requirement for such a global, or all system spanning model, is uniform access to
heterogeneous information bases. This can be provided by a transparent data model, e.g.
described by Eliassen and Randi [ELI91]. It hides differences, for example, in query
languages, data formats and also notions of identity. Khoshafian and Copeland [KHO90]
have outlined that information systems ideally are implemented with:

• A strong notion of identity (system generated surrogate identifiers) because that
allows for location (and origin), value and structure independence;

• A notion that incorporates a mechanism to integrate not only persistent object
identifiers but also transient identifiers. These will be called session independent
identifiers.

Location independent identifiers enable objects to be stored in different places or
moved through systems. For example, an identifier which is not based on the physical
address of an object can be manipulated by a program and then stored persistently with
the same identifier in a different place. In addition, location independence makes
controlled replication possible such that multiple copies of the same object can be stored
in multiple places. Finally, one object may have multiple versions or temporal variants,

135

which are all stored under the same identifier, independent of the location of the object
or its versions.

Value independence means that the identifier is not based on the value or contents of an
object. For example, a relational table may hold the identifier key Second Name. A
person 'Miss. F' may change her name into 'Mrs G' so that the object's identifier is
changed but, in fact, the object is still the same individual. It is, therefore, important that
identifier keys are not allowed to be changed during the lifetime of an object. User
defined keys in relational databases, however, are typically changeable by a user and,
hence, value dependent.

Identifier keys cannot guarantee one identity for the same object. For example, a table
with the fields Employee and Children may have an employee 'Peter' in the Employee
field with a child 'Mark'. However, the child 'Mark' may become an employee for the
same company, in which case the Employee column would also hold the same object
'Mark'. In this case the object 'Mark' would be stored incorrectly in the table as two
different individuals.

Value based identifiers make it very difficult for the data model designer to define classes
of objects which always have the same, never changing attributes as identifier keys. In a
relational table, for example, all the identifier keys must be valid identifiers for all tuples
within that relation. It is not possible for one tuple to have different or changing key
attributes.

A further problem with the value based identifier is that the object's attributes themselves
are not identifiable. For example, the employee 'Peter' may have the attributes Profession
('Research Assistant') and Name ('Peter'). However, the attributes 'Peter' and 'Research
Assistant' are not identifiable themselves in systems with value based identification.

Structure independence means that the identity of an object is independent of the
structure and any changes to the structure of an information source. For example, in the
relational model, identity can only be implemented, and is only valid, within that one
table. Furthermore, changes to a table's identifier fields change the identifiers of all tuples
within that relation.

On a temporal dimension objects have a strong notion of identity "if they
preserve their representation of identity within a single program or transaction,
between transactions, or between structural reorganisations" [[KHO90]p.38].

136

A global data model that provides such independence of temporal changes to identifiers
provides session independence.

In summary, a strong notion of identity in enterprise integration environments is one
which provides location, value, structure and session independence. Ideally, an
information system, and a sharing environment in particular, should implement a strong,
transparent and uniform notion of identity.

5.2.1.2 Limitations Of System-Generated Surrogate Based Identifiers
in Enterprise Integration

"Surrogates are system-generated, globally unique identifiers, completely
independent of any physical location. They are associated with each object of any
type at the instant the object is created. They cannot be changed; i.e. they
represent the identity of the object throughout the lifetime of the object"
[[UNL90]p. 167].

Most enterprise integration environments use system-generated, surrogate identifiers. In
the approach by Pan and Tenenbaum [PAN91a], for example, every object throughout
the whole enterprise is given a unique number. Every object is identifiable by this system-
generated identifier. The advantages of using such identifiers, rather than other forms of
identification, are that they can provide location, value, structure and session
independence [KHO90], A system generated number is not dependent on the location of
an object, its value, or the structure of the information system. Nor does it change
through processing by any transaction session.

However, there are a number of drawbacks when using surrogate identifiers. First, they
require a central management system or enough commitment between agents to ensure
that object identifiers are unique for all systems and all times. Open enterprise integration
environments, therefore, cannot have system generated surrogate identifiers without
loosing much of their openness (Section 2.3). Tight integration, however, fails to provide
a platform for inconsistent, dynamically changing information-sharing (Section 3.3.1.3).

Second, these identifiers are not very expressive. For example,

"value based matching is a straightforward and transparent technique for
expressing relationships" [[PAT88]p.280], "A system which supports objects
with unique keys is therefore less expressive than one which supports object

137

identification as defined above [by value based matching or value based keys]"
[[PAT88]p.285],

In most applications these drawbacks are more than outweighed by the benefits of the
surrogate based identifiers. However, in enterprise integration there are pre-exiting,
heterogeneous notions of identity that coexist with any artificial notion that may be used
on the global, all system level. Hiding these differences behind one notion of identity
without expressing the different ways in which objects are identified in their source of
origin, may incorporate the following problems :

• Objects with value based identifiers react differently from other identifiers when
changes occur to their properties [ELI91]. For example, value based identifiers
in relational data models may be changed by altering the identifier key attribute.
Persistent notions of identity, e.g., based on surrogates, would not change if any
attribute of the object is changed. The effect of changing the attributes of an
object are hidden by transparent surrogate identifiers. Hence, the effects of
changes to the key attribute are hidden by a stronger notion of identity, such as
surrogates.

• Persistent identifiers, and session based identifiers, react differently over time. For
example session based identifiers, e.g. used for variables in programming
languages, only survive a particular session or transaction. Other session based
identifiers may only survive until another transaction changes the identifier again.
Persistent identifiers, e.g. a surrogate or a tuple identifier as typically used in
databases, hide this characteristic of transient objects. In other words, the object
may be expected to exist permanently because the transient character of the
object is not known.

• The different notions of identity carry different intentions of sameness and
relationships to other objects in the same source. Object sameness is implemented
on the basis of object identity. Different strengths of identity allow different forms
of sameness. In a relational database, an object is defined by its user defined key.
If two objects have the same key then common identity is assumed. However, if
two objects with the same user defined key from different tables are mapped into
a stronger notion of identity, then either they become different individuals with
different identifiers, or they are given the same identifier and become one
individual. This hides the fact that the lack of implicit support for referential
integrity cannot be translated correctly into a stronger notion of identity.

138

The previously outlined limitations of surrogate-based identifiers lead to the following
conclusion:

"A conflicting requirement, however, is that the canonical data model [or any
other integrated model] must provide this [strong] notion of identity based on
component information bases supporting identity varying from the strongest
forms of identity to the weaker forms only... [Further it is argued] that a strong
notion of identity at the federated [or in general at the integrating] level can only
be achieved by weakening strict autonomy requirements of the component
information bases" [[ELI91]p.25],

In other words, the weaker notions of identity are strengthened to support the
representation in a strong, surrogate based notion of identity. This research will show a
different approach that does not require changing the identities of the integrated objects.
It is based on increasing the expressiveness of the global identifiers in respect to the
actual notions of identity of the integrated objects.

5.2.1.3 Deficiencies of Generalised Relations Between Information Sources

In most enterprise integration environments rules exist that link schema objects and
thereby make generalisations about the correspondence of the objects they describe.
String matching with generalised relations (schema objects) has been described in
Section 3.3. A typical example are the equivalence relations based on the 'ist' operator
and equivalence sign <=> introduced by [COL91], 'It means that an expression vjf that is
true in the local source Wx is equivalent to an expression <]) that is true in the global
context G (ist(G(j)) <=> ist(Wx\|/)). Such mappings are called generalisations' (Section
3.3.1.1).

However, a problem is that generalisations are not sufficient for expressing disagreement
over the existence of an individual:

1. Disagreement over the existence of an object (existential misconception) can have
the form of compression, where an agent believes two objects have the same
identity, these objects are compressed into one mental symbol in the
representation of this agent [MAI91]. In the inter-agent relation one agent A can
believe that two objects that are held by another agent B, have the same identity
and are, hence, represented as one by agent A.

2. The alternative problem, is called dispersion [MAI91]. This is where one agent
believes that it has multiple individuals (objects), which have multiple

139

representations, but these actually are one object in the real-world. Such an
object has been 'dispersed' into multiple parts. The problem occurs between
agents when an agent A has two objects which are represented by only one object
in the model of another agent B.

Generalisations may not be applicable when concepts do not match exactly. For example,
there may be cases where the generalised relations hold true except for one, or a few,
objects. Concepts may be incomplete, incorrect, or inconsistent. An extension is required
that allows for defining relations between individual objects in addition to
generalisations. An example of such a generalisation is:

'An object in table Person in source D1 is identified by its Name, and is equivalent
to an object in class People, in source D2 where objects are matched by their
attribute Name'.

It may then be the case that the object called 'Yogi' in D1 is equivalent to 'Yogi' in D2.
However, despite the generalised relation there may be cases such that 'Peter' in D1 is
not equivalent to every 'Peter' in D2. It should be possible to express these exemptions.

Furthermore, the same real world object can be represented in different information
systems where it may be implemented and / or identified differently. Objects can be
related to a model of the real world as in CARNOT's CYC knowledge-base [COL91],
MKS [PAN91a] or MIND [JAG94], In loosely coupled information-sharing
environments some objects may be defined in such enterprise models and others may not
be defined. The latter group of objects start to exist in information systems without
known resemblance to a real world object. Existing research fails to provide mechanisms
to define relations between objects and their real world counterparts and, in addition,
allows for defining relations between objects that exists in information systems without
known real world counterparts.

This research proposes an extension to the generalisations that overcomes these
shortcomings in the previously described object structure.

140

5.2.1.4 A Novel Object Structure for Enterprise Integration Environments

The object structure proposed by Khoshafian and Copeland [KHO90] is grounded on the
concept of an object Oj which has the structure 'Object.(identifier, type, value)' in the
object model.

a. The 'identifier' is one of a set of system-generated identifiers I. The identifier of
an object Oj is denoted Oj.identifier.

b. The 'type' is in {atom, set, tuple}. It provides only single-level typing for
simplicity. This typing system could be more complete. In distributed information
systems, however, the dominate type is that of a tuple and it will also be used in
this research. Every object has, therefore, at least one attribute class and a
proposition for this class. The type variable, however, provides the conceptual
basis for representing objects of any kind including set and atom.

c. The 'value' is one of the following :

1. If the object is of type atom, then the value is a data element which has no
sub-parts. For example, the name 'Peter', the number T234' or a picture of
'Yogi bear'.

2. If the object is a type set, then the value is a set of distinct identifiers from I.
A set is an object that relates a number of objects. This group is, for example,
a class of objects which all have properties for the same attribute classes
[MAS90],

3. If the object is of type tuple, then the value is of the form: [vpRj, V2:R-2, •••
vm;Rk]’ where the vm's are attribute classes for which the object Oj has taken
the value R^.

This object structure by Khoshafian and Copeland [KHO90] requires a management
system, or a tight integration of systems, that provides unique, surrogate identifiers for
every object in the canonical global object model. However, for the research presented
here a formalism is required that can express objects that have:

• Object identifiers that are not from a central global model but that are managed
within the integrated sources; and

141

• These identifiers are of different notions and therefore may not be surrogate
identifiers by nature.

A novel identifier will be described for the above object structure that incorporates these
heterogeneous, independent notions of identity. This novel identifier

[Identifier_Object, Identifier_Class, Wx,]

consists of the following elements :

• The Identifier_Object specifies the externally assigned Identifier such as:
'Employee.Name = Peter' for an object that has a value based identifier in the
table Employee on the attribute Name; or the Identifier_Object 'Surrogate
Identifier = 12345' is a surrogate identifier for an object-oriented surrogate based
system.

• The Identifier_Class contains the information about how objects are identified in
a source. An example Identifier_Class may be 'user defined key for a relational
table, the key field is unique'. This variable can be used to interpret the
Identifier_Object 'Employee.Name = Peter' as: 'Employee.Name' is the unique,
user defined key of a relation data model which has the value 'Peter'.

• The name space or Naming World of an object is specified by the variables Wj,
W2 to Wx which indicate where the object can be identified with the
Identifier_Object and Identifier_Class specifications. In principle, a world Wx can
be one source such as a database, or multiple sources such as a distributed
databases that has got a united identification mechanism, as in [KIM91a],

The concepts of Naming World and Object_Class will be considered in further detail in
the following paragraphs including a brief discussion of the completeness of the object
system.

Naming World

A Naming World is also called a scope and can be defined for a surrogate based systems
as:

"A scope is an arbitrary object such that each token (surrogate) belongs to
exactly one scope. An operation in the computational system is executed within a
scope" [[KEN91]p.36],

142

A scope is, therefore, part of one information system, a whole information system, or a
Group of information systems (Section 2.7. Resource Knowledge), that have a common
notion of identity. However, one kind of identity may include subgroups. For example, a
relational database may have user defined keys that are differently implemented in that
some keys are unique and others are not. Furthermore, standard software systems may
use address based or process based identifiers and, in addition, have a file system that has
no implemented notion of identity. A Naming World therefore has one kind of identity
including a possible subgroup of this notion of identity.

One potential problem with these identifiers is that they contain information about the
Naming World Wx. This makes the identifier location dependent. In other words, if an
object moves from one world into another its identity would change. A very pragmatic
solution, as used in distributed databases [KIM91a], would be the introduction of a
Versioning mechanism that would change the identifier into:

[Identifier_Object, Identifier_Class, Wx,] VER

Thus, if an object moves from one world into another, its identifier would change as the
Wx specification is altered. The old version of the identifier, however, could remain and
the variable VER would indicate the new successive identifier. This makes the identifier
location independent since uniform access to the object via its initial identifier is provided
despite the new location of the object.

This Versioning mechanism will, however, not be used in the reminder of this research
for two reasons:

1. This Versioning mechanism does not exist in enterprise integration environments.
It is novel and proposed here for improving the modelling of object identity in
sharing environments. The conflict detection and resolution mechanism should,
however, be based on mainstream modelling approaches and not make
assumptions about new modelling concepts. In other words, it cannot be assumed
that the VER variable is implemented in existing environments when the
detection mechanism has to be general in that it is generally applicable to existing
environments of all kinds as described in Section 3.3.

2. For the scope of conflict detection the location dependence of the notions of
identity given to an object for the duration of the detection and resolution phase
is practically of no importance. The conflict management requires a more
expressive notion of identity and it, hence, implements for its own purpose this
extended notion of identity. While the location dependence of this identifier may
be important to enterprise modelling, it is not important to the mechanism itself.

143

Another extension to existing object structures is necessary to allow for relations
between objects from different Naming Worlds, including dispersion, compression, one-
to-one relations. Counterpart theory is adopted to overcome the shortcomings of
traditional possible worlds frameworks for integrating environments (Section 5.2.1.3).

Lewis' [LEW68] counterpart theory is an extension of the possible worlds semantics. It
provides an ontological structure for the novel identifier. Counterpart theory is based on
the principle that every object in a world is different from any object in any other world.
An object in one world Wx can have a counterpart in a different world Wy, such that:

"The counterpart relation is our substitute for identity between things in different
worlds....Within any one world, things of every category are individuated just as
they are in the actual world; things in different worlds are never identical"
[[LEW68]p.l 14].

Research based on accessibility relations between worlds such as Hinttika [HIN62],
Halpern and Moses [HAL92b] [HAL91], and most enterprise integration environments
(Section 3.3) "have proposed interpretations of quantified modal logic on which one
thing is allowed to be in several worlds" [[LEW68]p. 115].

This concept corresponds to objects in different Naming Worlds (e.g. information
sources). In one Naming World Wx, which has a common notion of identity and
sameness, objects are either identical or different. Across worlds there is no common
notion of identity so there can be no common identity. Objects in different worlds may
have common real world counterparts, they may resemble each other closely or more
closely than any other objects, but they are artificial objects that are implemented in
information systems with independent notions of identity. The next section, therefore,
defines notions of sameness, not identity, between objects from different worlds, and
identity only for objects from the same world.

"Your counterparts resemble you closely in content and context in important
respects. They resemble you more closely than do the other things in their
worlds. But they are not really you" [[LEW68]p.l 14].

That relation is described by the object identifiers x and y as

Cxy where y resembles x more closely than any other object in y's world.

For the complete definition of counterpart relations please refer to [LEW68] and the
Appendix C.

144

There are at least three advantages to conflict detection and resolution of using
counterpart theory as an extension to existing mappings between information sources:

1. Generalised relations between information sources have been shown to map
every object from one world with exactly one object in another world (Section
3.3.1.1). For example, G (ist(G(j)) <=> ist(Wx\(/)) means that the expression <\> that
is true in the world G is equivalent to an expression \\i that is true in the local
source Wx. This means that <j) is a counterpart of \|/ and vice versa. As an
extension to the original theory such a reflexive counterpart relation will be
described as:

RCxy =cjf (Cxy) & (Cyx) where RC xy = RCyx

This, however, is only one, special relationship in counterpart theory. It is also
possible that:

1. Objects can have more than one counterpart in another world.

2. Multiple objects in one world can have a common counterpart in some
other world.

3. Objects may not have any counterpart in a particular world, or in any
world.

Maida [MAI91] has therefore proposed counterpart theory to overcome the
problem of existential misconception where, e.g., two objects are identical and
both resemble the same object in another source.

2. Exemptions to generalised relations could be defined with the definition: Cxy',
which means that it is not true that x is a counterpart of y. For example, the
generalisation may exist that objects identified by their Person_Name attribute
from source Wx, are equivalent to objects identified by Student_Name from
source Wy where both identifier fields have the same value. Within this
generalisation the definition '~C('Person_Name = ’Yogi", Identifier_Class,
Wx)('Student_Name = ’Yogi", Identifier_Class, Wy)' would define that the object
'Yogi' (Person_Name in Wx) is not a counterpart of the object 'Yogi'
(Student_Name in Wy). This feature is, however, not typically used in enterprise
integration and, thus, a suggestion to improve enterprise modelling. It will not be
demonstrated in the following of this research in order to comply with existing
integration environments.

3. Counterparts in the real world are not defined differently from counterparts in the
other worlds. This allows for defining some objects that may have known

145

counterparts in the real world, while others may not. The real or actual world is
defined in [LEW68] as:

3x (Wx & Vy (Ixy - Ay))

Some world Wx contains (Ixy) all and only actual things (Ay)

Accordingly Lewis specifies the 'actual world' as "some world contains all and
only actual things (P7), ... [and] Something is actual (P8) "[[LEW68]p.l 14], In
enterprise integration environments, models of the enterprise [PAN91a] [JAG94],
or the common knowledge-base CYC [COL91] are used to demonstrate that
objects in information systems have counterparts in the actual world.
Furthermore, hand-crafted lists are used to establish that conceptual objects, for
example in multidatabases [LIT90], resemble the same real world object and are,
hence, counterparts.

Identifier_Classes

The basic idea of Identifier_Classes is that different notions of identity are implemented
in diverse information sources throughout the environment and each notion has its own
particular characteristics defined as Environmental Information (Resource Knowledge in
Section 2.7). These characteristics are part of the identifier. The introduction of the
Identifier_Classes includes an example for a relational database table in which objects are
identified by a unique identifier field. However, there are a number of different ways in
which objects can be identified in information sources. A few examples will be given in
the following based on the summary of existing notions of identity in Appendix B.

An object-oriented data model typically implements system generated, surrogate
identifiers. A management system provides unique identifiers (Identifier_Object) for
every individual. The sum of all surrogate identifiers is a closed set within an information
source, e.g. ranging from 1 to m, because "the important things about symbols [called
surrogates in this paper] is that they constitute a fixed, though infinite set"
[[KEN91]p.29],

Surrogate based identifiers can also cover multiple information sources that must be
closely integrated into one Naming World. The identifier is then composed of a local
surrogate identifier and the specification of the surrogate management system. The
specification of the surrogate management system has been implemented for object-
oriented distributed databases, e.g. in the ORION-2 system [KIM91a], or for integrating
information systems by, e.g., Czejdo and Taylor [CZE92],

146

The ORION-2 system is also a good example of an object-oriented system that
implements Versioning. Objects may have different versions so that they can be opted
out of persistent data stores for long periods of time. The same object may therefore
have different versions at the same time. It follows that an Identifier_Class specification
for such a system would have to make the Versioning mechanism explicit, e.g. 'Surrogate
Based Identifier with Versioning'. This way conflicts between different versions of the
same object can be identified by the information agent.

Notions of identity other than surrogate identifiers or value based identifiers can be found
in mainstream information systems. These include tuple identifiers (INGRES [ST076] or
RM/T [COD79], the 'indirection' of objects via an object table (Smalltalk-80 [KAE83] or
KBZ [OXB88]), or addresses of objects (e.g. hierarchical and network databases
[OLL78]).

In enterprise integration environments many other notions of identity can be found that
are less formally defined as in databases or programming languages. For example, objects
in standard software systems may be identified by their creation time, or processes and
the attributes describing this process may be identified by a process identifier [OHO90],
It is easy to imagine that in a production environment every process is given a number
(process identifier) at initialisation.

Objects may also be identified within definitions in an existential framework [RES75]
similar to identifying objects in a master model of the enterprise [PAN91a], For example,
for a given software system Student objects are defined to have the essential property
Name. Hence, without this notion being defined as a key, e.g. in a relational database, it
functions as an identifier that is based on the designers decision to make this attribute an
essential attribute of all students.

Different notions of identity, which lead to different Identifier_Classes, may also be
defined for the same form of identification. For example, a user defined key in one
system may be less strictly implemented than in another. In one system user defined keys
may always be unique identifier fields and in another this may not be guaranteed.

In conclusion, the object identifier is complete in that it integrates objects of all notions
of identity. In comparison to existing structures it is more expressive and therefore tailor
made for the requirements of enterprise integration frameworks.

147

Consistency of the Object System

"An object system is consistent if

(a) No two distinct objects have the same identifiers (unique identifiers
assumption). In other words, the identifier functionally determines the type
and the value of the object.

(b) For each identifier present in the system there is an object with this identifier
(no dangling identifier assumption)" [[KHO90]p.41],

The system described here may, therefore, be classified as not consistent because it
cannot assure that no identifier may be dangling in the global system. Transient data, for
example, only has a limited lifetime and the identifier of an object that is still existing
globally has actually been changed in the local source. Modelling of the enterprise
integration environment would need to be able to manage object identifiers over time.
However, for the purpose of conflict detection this inadequacy is insignificant. In other
words, the dangling identifier assumption is fulfilled within the results that an information
agent has at any time.

The novel identifier is generic in that it is developed according to the existence and
characteristics of a particular object at the time of investigation. In order to extend the
novel identifier to become a conceptual part, not only of conflict management, but of the
enterprise modelling, a mechanism is needed for dangling identifiers. Hence, the unique
identifier assumption is fulfilled when the identifier is used within the detection
mechanism.

In summary, a sufficiently rich structure has been described that enables information
agents to identify candidates and individuate them. The structure has the typical
advantages of object-oriented models including a strong notion of identity (e.g.
similarities with programming languages, inheritance and encapsulation provide the
necessary flexibility to deal with complex, heterogeneous objects). It is a natural
extension of existing object-oriented structures in existing enterprise integration
environments. In addition, the novel structure is much more expressive, and it is 'generic'
in that it incorporates the actual notions of identity that objects in diverse information
sources actually posses.

148

5.2.2 Gathering of Candidates

In Section 5.1 the example query 'Op(v2 (E_Number): 123, V2 (Name): ?)' (Concerning
an object with the employee number (E_Number) '123' what is its Name attribute?)
produced the results:

0]̂ .V2 (Name): Peter (from BookkeepingDB) and
Oj.V2 (Name): Mark (from ProductionDB)

First, the agent has to identify the sources of origin or Naming Worlds. These are here
called the databases BookkeepingDB and ProductionDB. With the information on the
Naming Worlds the agent can investigate the object type that is communicated. These
are typically of type 'tuple' but they could also be of other types (atom or set) as
described by Khoshafian and Copeland [KHO90],

Based on the Naming World the agent can identify the Identifier_Class which in turn
specifies the Identifier_Object. Unless the latter is already provided by the results this
Identifier_Object is then requested by the information agent from the source of origin of
this result.

For example, the result 'OpV2 (Name): Peter', with the Naming World BookkeepingDB,
has the Identifier_Class: 'User Defined Key from a relational database’. It follows that the
Identifier_Object is called 'User Defined Key'. The agent requests this Identifier_Object
for the object 'Oj ,V2 (Name): Peter' and may receive the result:
'0|.vi(Employee.E_Number): 123' from the BookkeepingDB.

The next step is to gather the evidence for the candidates which will be described in the
next Section.

149

5.2.3 Gathering of Evidence

In Section 4.3 a definition of evidence in information systems was outlined such that
evidence for believing a proposition (Oj.R^) may be based on:

• A result (also called candidate) from any information source:

• Data that supports (warrants) or refutes the proposition or candidate (Em).

Formally, any candidate of an object (OpR^) may have zero to multiple pieces of
evidence (Eg, Ej, E2 , ... Em) which may support or refute the correctness of this
candidate resulting in sets of '(Oj-R^XEg, Ej, E2 , Em)'.

Uncertainty management systems based on argumentation typically uses similar ways to
describe an argument. Section 3.5.3.4 defined that an argument consists of a piece of
data, a warrant that leads from the data to the claim, and a qualifier that may further
evaluate the claim [FOX92b]. The logic LA [FOX92b] has extended this basic concept
by introducing the signs '++' and '+' to describe how strongly the evidence is believed ('--''
and can be used alternatively to '—1+' and '—!++'). The evidence itself, however, may
consist not only of a single proposition but of multiple propositions, which are connected
by the connectives '—1, a , v , — _L'. For example, the proposition

'Yogi weighs 18 stone'

may be supported by the evidence:

'The doctor said that Yogi weighs 18 Stone' —> 'Yogi weighs 18 Stone', ++.

A major advantage of the logic LA is that "one can claim to be able to argue for some
proposition P while also being able to argue against P from some different "point of
view"" [[FOX92b]p.625]. Fox, Krause and Ambler [FOX92b] have outlined that
practical reasoning cannot avoid inconsistencies and that it is necessary to outline these
inconsistencies. Information agents need to be able to gather and embrace the conflicting
evidence that may typically exist in enterprise integration environments (Sections 2.4 and
2.5 have outlined reasons for inconsistencies in open integration environments).

This basic concept has been applied to the structure of evidence in enterprise integration.
Evidence Em may include any number of propositions, which are connected by
connectives, e.g. '—1, a , v , —>, _L', to build Formula. These may have certainty estimates
assigned to them in the Certainty Estimation variable:

Em = {(Formula) (Certainty Estimation)}

150

Any evidence Em may have only one or multiple formulae, or only consist of a certainty
estimate. In the latter case the evidence is a reliability statement, c.g. based on
possibilistic or numeric certainty estimates (see Section 3.5.2).

For example, the candidate 'Yogi weighs 18 Stone' (Oj.R^) may have the evidence

Ej = {('The doctor said that Yogi weighs 18 Stone')(very likely)}

In other words, the proposition 'The doctor has said that Yogi weighs 18 stone' makes
the proposition 'Yogi weighs 18 Stone' very likely. In contrast to the formal structure
used by Fox et al. [FOX92b][FOX91] the candidate is separated from the evidence that
supports this candidate. This is necessary because the information agent differentiates
between results (candidates) and evidence that supports or rejects this candidate.

Another difference to the original approach is to allow any certainty estimates and not
just '++', '+', ' and It has been concluded in Section 3.5 that different certainty
estimates may be used throughout the integration environment and that the information
agent typically is not be able to transform:

Any estimate, based on any notion of certainty, from any information system
throughout the environment,

into one coherent certainty estimate. Hence, any certainty estimates that are used by
different information sources may be used in the evidence’s Certainty Estimate variable.

Sections 2.3, 2.7 and 2.8 outlined which sources of information an information agent has
available. These may be divided into information that:

• An agent has itself (Agent Knowledge);

• Information it can retrieve from its local source;

• Information it can get from other agents.

The Agent Knowledge has been described in Section 2.7. Information retrieved from the
local source are the agents' own results (candidates) and any evidence for these
candidates. The third source of evidence is the other agent's knowledge and information
they have received from their integrated sources. Because the agents are benevolent it is
unnecessary to differentiate between information they retrieved themselves, and
information other agents retrieved and forwarded to them (Section 2.5). It is a modelling
issue how information agents exchange and share their Agent Knowledge. In this
research it has been assumed that agents exchange all the Agent Knowledge they want to
share instantly in a federated mechanism (Section 2.3). In other words, agents exchange

151

federated schemata, and any Schema or Resource Knowledge when they join the sharing
environment, e.g. described by Huhns and Singh [HUH92],

In a retrieval process some of this information would typically be retrieved automatically
by the local sources. For example, a statistical package or justification based expert
systems, may always provide evidence for any results from their sources. However, most
evidence has to be explicitly requested by the agents from the local sources (e.g. Services
- Resource Knowledge Section 2.7). Furthermore, the agent has to explicitly investigate
its Agent Knowledge in order to find relevant information that may be used as evidence
(e.g. Comments, or Integrity Constraints Section 2.7). Out of all the potential sources of
evidence described in the previous paragraph an information agent could:

• Gather all available evidence for every candidate at this stage of the conflict
management;

• It could only gather the evidence that is automatically provided by
information sources and request further evidence when it is needed in later
detection and resolution phases;

• The agent could ignore any evidence.

The latter choice is not rational in that it is not logical and systematic to ignore evidence
(Section 2.6). The first two options are both logical and systematic. However, it is much
more efficient to leave any further requests for evidence until this is needed. Please note,
that the detection phase so far has not even investigated whether or not a conflict is at
hand. This will be done in the following Classification step.

In conclusion, an information agent can use the formalism described above to gather
evidence. This evidence is assigned to particular candidates. The information agent is
most pragmatic if it gathers only the evidence that is automatically provided by the
information sources or their integrating agents. The managing agent would typically
request and gather, in the same way, any further evidence as it is needed in the following
detection and resolution steps.

152

5.2.4 Classification
5.2.4.1 Introduction to Classification

The previous two steps have provided a structure to represent a candidate (Oj.R^) and
its evidence (Em) in the following form:

Oj.([Identifier Object, Identifier_Class, Wx] Type, Yalue^)
(Em={(Formula) (Certainty Estimate)})

For example, the candidate object Oj may be identified by the Identifier_Class
'User Defined Key in a relational database' and the Identifier_Object
'Employee.Name = 'Yogi". It is from the Naming World (Wj) 'BookkeepingDB'
and of type tuple. The Value variable has the attribute classes vj and V2 with
their properties Rj and R2 (vpR^, V2 :R2) such that: 'vi(Name): Yogi,
V2 (Weight of object): 18 Stone'. The agent received evidence (Ej) from a
statistical tool attached to the database BookkeepingDB that specifies the
statistical reliability of data from that source as Ej ={()(99 % confidence)}.

The following step is to classify the retrieval result(s) (candidates) in respect to whether
or not they are explicitly and / or implicitly conflicting. The next section will briefly apply
the prepositional classification introduced in Section 3.2.1. Section 5.2.4.3 will then
outline a novel notion object sameness based on the novel object identifier introduced in
Section 5.2.1. These sameness predicates are then used to classify the candidate's
sameness (Section 5.2.4.4). Section 5.2.4.5 will then present the classification of
evidence step.

153

5.2.4.2 Classification of Conflict Between Candidates

The information agent receives null to multiple results in return for its request. The
candidates (results) include the properties of the objects Oj in respect to the attribute
class vm. In principle, the agent may encounter a situation where :

1. No candidate is found throughout the sharing environment;

2. Exactly one candidate has been produced by the sharing environment;

3. Multiple candidates are produced.

The first two cases do not require any further conflict detection because there cannot be
a conflict in case of less than 2 candidates. In the same way, multiple candidates that are
all identical in that they are all claiming the same thing are not conflicting. For example,
multiple results all claim that 'Yogi is 19 Stone'. In other words, conflict detection is
concerned with identifying different results, or candidates, to a given query.

Multiple results form pairs of possibly conflicting results (Section 2.5 and 3.2.1). In other
words, in case of 'n' multiple results a given query produces '(n“-n) 12)' pairs of results
that may potentially conflict. For example, the three results (n = 3) 'Yogi is 17 stone',
'Yogi is 18 stone', 'Yogi is 20 stone' form the following pairs (((3^-3)/2) = 3) of possibly
conflicting candidates;

1. 'Yogi is 17 stone' and 'Yogi is 18 stone';

2. 'Yogi is 17 stone' and 'Yogi is 20 stone';

3. 'Yogi is 18 stone' and 'Yogi is 20 stone'.

In principle, one result can be internally conflicting. For example, the result ’Yogi weighs
18 stone and is a slim athlete’ may be implicitly conflicting. However, typically this result
would produce two candidates:

'Yogi weighs 18 stone', and 'Yogi is a slim athlete';

This classification is provided by the propositional representation presented in the
Gathering of Candidates phase described in the previous Section 5.2.2.

Section 3.2.1 outlined the different kinds of propositional conflicts and elaborated that in
Enterprise Integration:

'Information agents will have to identify all explicit conflicts and those implicit
conflicts between results that are concerned with the same object. Typically, the
conflict is about the same attribute class of the investigated object'.

154

In the following some described kinds of conflicts will be briefly outlined again. For
example, information agents have to identify explicit conflicts, which have the structure:

'Oj.v^R^' and 'not Oj.v^R^'

Thus, two candidates are explicitly conflicting if one claims that the object Oj has the
property R^ for the attribute class vm, and the other candidates claim that this is not the
case.

Conflicts in enterprise integration environments typically are, however, implicit conflicts
where a query such as 'What is Yogi's (Oj) weight(vm)' (Oi.vm(weight): ?) results in
different properties for the same attribute class vm:

°i-vm:Rl and Oi-vm: R 2

In order to identify this kind of conflict, the information agent needs to know that the
attribute vm can only be either R ̂ or R2 but not both. For example, 'the weight of Yogi'
can only be '18 stone' (Rj) or '20 stone' (R2). Similarly the conflict may be about
different attributes of the object Op

Oj.V2 :R2 and Opv3 :R3

For example, the object 'Yogi' may have a 'weight' (V2) of '18 stone' (R2) and it may be
claimed that this object also has the property 'slim' (R3) for the attribute class h^body
type)'. However, identifying this kind of conflict requires that the information agent has
very detailed knowledge about relations between an object's 'weight' and the 'body type'
(slim, fat,...).

Other kinds of implicit conflicts have been described in Section 3.2.1. However, in order
to identify implicit conflicts the information agent may have the following sources
(described in Section 2.7):

• Integrity Constraints (Resource Knowledge); For example, the integrity constraint
'Bears are only of the body type slim if they weigh less than 10 stone' enables an
agent to identify an implicit conflict between the candidates: 'O^.v^(Name): Yogi,
V2 (weight): 18 stone' and 'O2 .V j(Name): Yogi, V2 (Body Type): slim'.

• Environmental Information may be defined as an agent's Resource Knowledge, in
enterprise integration models [PAN91a], or common knowledge-bases as CYC
[LEN90], For example, an enterprise model may define essential properties of
concepts, such that the concept employee may have the essential property Name
as an identifier (which means that every employee should have a Name). Two
results that claim that the same employee has two different names are, hence,
implicitly conflicting. But also more complex implicit conflicts can be defined with

155

the help of rules. For example the previously defined integrity constraint may be
expressed by a rule in an enterprise model such that: 'The concept Slim is a body
type and defined by a weight of less than 10 stone'. Based on this rule it can be
identified that the results 'Yogi weighs 18 stone' and 'Yogi is of body type slim' are
implicitly conflicting.

• Extensional Information is derived from knowing a concept and applying it to a
result. For example, if an agent knows that the body type 'slim' is defined by a
weight of less than '10 stone' (Environmental Information - Resource Knowledge),
then it can derive the Extensional Information: 'Yogi is not of body type slim',
from the result 'Yogi is 15 stone’. This Extensional Information may then explicitly
conflict with a result 'Yogi is of body type slim'. Existential Information is different
to Environmental Information because the inconsistency is detected not by an
explicit rule, but by inference from environmental facts ('Slim means less than 10
stone’; and ’Yogi is 15 stone').

• Comments (Resource Knowledge) include definitions by the designers, integrators
or system administrators on consistency regulations. For example, a designer my
define that every employee object may only have one E_Number and one Name.

• The agent may assume that all results have to be exclusive unless otherwise
defined. This is typically the way distributed databases, and integration
environments function (Sections 3.3 and 3.5.3.2). Such assumptions are typically
defined implicitly as Organisational Knowledge [HSU91] such that the detection
mechanism identifies such conflicts. For example, unless otherwise defined the
results 'Yogi weighs 18 stone', and 'Yogi weighs 20 stone' are implicitly
conflicting. Thus, unless the agent explicitly knows that someone can have both
weights at the same time a conflict is assumed.

Section 3.2.1 demonstrated that it is very difficult for information agents to
identify implicit conflicts between candidates that are not concerned with the same
object. However, the following two examples based on an enterprise model and
external services demonstrate how this, in principle, may be possible:

• Enterprise integration models (e.g. [PAN91a]) may contain domain-specific
information defining complex relations between objects. For example, a
production rule may define that two products cannot have a daily production of
more than one hundred units per day. Hence, the results 'Product PI has a daily
production of 60 units', and 'Product P2 has a daily production of 70 units' are
implicitly conflicting.

• A domain expert, e.g. a planning system as described by Klein and Lu [KLE89]
(Section 3.4.4), may identify complex implicit conflicts. For example, the

156

information 'Product BigMac has the daily production 50 units', and 'Product
Hamburger has the daily production 40 units' may be implicitly conflicting because
the planning expert knows that:

-'Only 120 Meat Balls are available per day;
-BigMacs require 100 Meat balls;
-Hamburgers require 40 Meat Balls;

-Thus 50 BigMacs and 40 Hamburger can not have been produced in one
entailing that the results can not both be true at the same time'.

Hence, the domain expert (i.e. the planning system) can derive that the results are
implicitly conflicting. This kind of expert knowledge is a service to the information
agent (Resource Knowledge).

One potential limitation of attempting to identify candidates and classify possible
conflicts among them in the field of enterprise integration, is that the only results
considered are those presented to the agent by the retrieval process. Furthermore, the
identification of implicit conflicts depends on the knowledge of the relation between the
candidates (e g. see the previous paragraph). The previous paragraphs have outlined how
the information agent could manage this knowledge. However, acquiring and maintaining
this information in existing systems relies on manual, expert definition Alternatively,
conflict identification can be solely undertaken by human users (e.g. [PAL92] Section
3.3.4). Future research might improve the agent's conflict detection capabilities, together
with methods of maintaining this knowledge, by modelling the way human experts
identify conflicts. However, current environments can detect all explicit and most implicit
conflicts. The impact of limited Agent Knowledge on the detection of implicit conflicts
may be small depending on the complexity of the problem domain.

The final step in classifying the candidates is to describe their correspondence
assumptions. In other words, all explicit conflicts and those implicit conflicts between
candidates that are concerned with the same object assume that the objects correspond to
the same thing and therefore conflict (Section 3.2.1). For example, the following
candidates are implicitly conflicting:

• Of (vm(Name): Yogi, vm(Weight): 18 stone)
• 02 (vm(Name): Yogi, vm(Weight): 12 stone)

If these candidates are derived from different information systems then it has to be
assumed that both candidates are concerned with the same object ('Yogi'). This requires
a definition and analyses of object sameness for heterogeneous enterprise integration
environments as presented in the next section.

157

5.2.4.3 Sameness Predicates

Identity and sameness predicates in homogeneous object models based on Khoshafian
and Copeland's [KHO90] object structures can be described as:

1. Identical [id(0 \ ,0 2) =df. (O \ .identifier = O2 .identifier)],

2. Shallow Equal [se(0 [,0 2) =df. (OpR^ = C>2 .Rk)]>

3. Deep Equal [de(OpC>2) =df
• Atomic objects : ((OpRp = C^.Rk)
• Tuple objects : (Op vm:Rk = ° 2 -vm:Rk)
• Set objects :(Opcardinality & (¡^.cardinality) & (Opvm:Rp 0 2 -vm:Rjc

where Rp entails identifiers of referenced objects)].

In homogeneous distributed systems object identity typically subsumes the question of
object sameness. In other words, in a homogeneous notion of identity every object is, for
example, identified by a surrogate based identifier. Objects are Identical (id(0] ,0 2)) if
they have the same identifier (Oj .identifier = O2 .identifier). For example, Peter from
source D1 with the identifier T23451 and Peter from source D2 with the identifier T2345'
are identical. This is called an Identical predicate in contrast to Shallow Equal objects
(se(0] ,0 2)) which only have the same value 'Peter' but are different objects (Oj.Rp,
Oy.Rkf For example, 'Peter' from source D1 may have the identifier '12345' and 'Peter'
from source D2 may have the identifier '12346'.

"The essential point is that the object equality refers to the sameness of value,
while the object identity (sameness) refers to the sameness of objects themselves"
[[MAS90]p.l86],

Objects are Deep Equal (de(0 p 0 2)) if their structure and their corresponding
components are equal. In the case of atomic objects, deep and shallow equality have the
same meaning. Atomic [KHO90] or primitive [MAS90] objects are character and
number objects which do not change their state. In the case of tuple objects their
corresponding attribute classes need to have identical properties such that Opv^.Rp =
0 2 -vm:Rk- Set objects are those that are composed of references, e.g. identifier
numbers, to other objects. Such set objects are Deep Equal if they have the same
cardinality (O ¡.cardinality = (^.cardinality) and the instances they address are pairwise
deep equal (O] .Vj^iRp 0 2 -vm:Rk where Rp entails identifiers of referenced objects).

These sameness predicates, however, were defined in relation to object-oriented
structures. In other words, they fail to provide sameness predicates for identifiers other

158

than homogeneous, surrogate based identifiers in object-oriented structures. For
example, these predicates do not integrate tuple identifiers, or user defined keys. Hence,
it is proposed to combine:

• The notion of sameness based on identical, shallow equal and deep equal, and

• The novel identifiers [Identifier_Object, Identifier_Class, Wx,] from Section
5.2.1.

This will provide the formal concept for extending the object structure to heterogeneous
notions of sameness. These include the following three categories of equalities between
objects in the conceptual object model:

1. Identical Predicates

A. Purely Identical

P I (0 i ,0 2) =df
Op[Identifier_Object, Identifier_Class,Wx] = 0 2 -[Identifier_0 bject, Identifier_Class, Wx]

B. Derived Identical

0 1 (0 !,0 2) =df
0!-[Identifier_0bject, Identifier_Class] =0 2 .[Identifier_0bject, Identifier_Class]

2. Match Equal

M E (0!,02) =cif (0!.[Identifier_0bject]= O j.v^R ^)
& (O i.v m:Rk = 0 2 .vm:Rk)

3. Aspect Equal

A SE(0!,02) =^f 0!-vm:Rk = 0 2 .vm:Rk

In this approach, as with Khoshafian and Copeland's notion of sameness [KHO90],
identical objects have to be replicated objects from the same Naming World (in [KHO90]
a surrogate management system). Their identifiers Identifier_Object, and
Identifier_Class, are identical and they are implemented in the same Naming World Wx.
Such a Purely Identical predicate is different to traditional models in that it covers any
notion of identity that allows for identical objects, and not just surrogate based notions.

159

Typically, however, information-sharing environments integrate objects from different
sources, or Naming Worlds. Counterpart theory maintains that objects from different
worlds cannot be identical (Counterpart Theory Section 5.2.1.4). In other words, objects
are Derived Identical if their Identifier_Classes and Identifier_Objects are identical. For
example, the objects O] and O2 may both have the Identifier_Object 'Name = 'Peter"
with the Identifier_Class 'Relational User Defined, Unique Key'. In such a case, these
objects are Derived Identical.

Objects from different sources, using different data modelling concepts, often have
different Identifier_Classes. In the case of Match Equality one object's O]
Identifier_Object for the Identifier_Class in the Naming World Wx, is another object's
(O2 in world Wy) attribute such that the Identifier_Object and the attribute Rp are
from the same attribute class vm. The objects are Match Equal (ME) if the attribute
02-vm:Rk and Oi's Identifier_Object of the attribute class vm are identical. For example,
an object Oj in a relational database Wx may be identified by its Identifier_Object ’Name
= ’Peter", and its 'Identifier_Class' 'Unique User Defined Key in a Relational Database'.
The second object O2 may be from another database (and world), identified by the
Identifier_Class 'System Defined Surrogate', and the Identifier_Object 'Surrogate =
T2345". However, if the object O2 has the attribute (Rp) 'Peter' in the attribute class
'Name' then the objects are Match Equal.

In contrast to Match Equality, objects may not even partially share their identifiers. In
such cases the objects may only have a common characteristic (they are equal in respect
to one specific aspect). In other words, Aspect Equal objects have distinct identifiers but
have common attributes for the same attribute class. For example, an object O j from the
database D1 (world Wx) is identified by a surrogate based identifier '12345' and has the
attributes 'Name = Yogi', 'Weight = 18 stone', 'Profession = Comic Actor'. The second
object O2 may be identified by its creation time and date T. Sept. 94 at 00:01:24' in the
backup system 'S2' (world Wy). This object has the attributes 'Name = Yogi’, 'Profession
= Comic Actor' and 'size = 6 feet'. These objects are Aspect Equal in that they both share
the properties 'Yogi' and 'Comic Actor' for the attribute classes Name and Profession.

Shallow and Deep Equality in traditional object structures [KHO90] are special cases of
aspect equality. They describe events where all known attributes of an object match. For
example, Shallow Equal objects with only one value (property Rp) share this value such
that 'OpRp = 0 2 -Rp'.

160

All the predicates described so far are only concerned with objects in the conceptual level
of information-sharing environments. However, they do not allow for expressing
sameness predicates of objects based on common real world counterparts. Real world
counterparts can be specified in the sharing environment, for example:

• Section 5.2.1.4 has outlined an extension to generalisations between schema
objects in different information sources by counterpart relations in the form of
'Cxy' [LEW6 8], In other words, when x is an object in the world Wx and y an
object in another world Wy, then CXy means that x in Wx resembles the object y
in world Wy more closely than any other object in Wx (Semantic Matching -
Resource Knowledge).

• Enterprise models [PAN91a] [JAG94] or models of the real world (CARNOT
[COL91]) provide reference models of the enterprise (or the real world). Objects
that reside in an information source can reference particular object in the
reference model (e.g. global knowledge-base CYC [LEN90] (Section 3.3.1)).
These generalisations (G) are defined by the equation G (ist(Gtj)) o ist(WxV|/))
such that object \\i in world Wx is equivalent to the object (j) in the global context
G ([COL91] and Section 3.3.1.1). Objects that are related by these
generalisations can be tested for counterpart relations as described in the previous
paragraph.

For the scope of this thesis it is defined that real world objects (AO;) may be equal based
on logical equality. In other words, the equations

(AOj = A 03) and (A02 = A 03),

imply that (AO^ = A 02).

Sameness of conceptual objects, which support a strong, surrogate based notion of
identity to real world objects has, for example, been defined by Masunaga [MAS90] as:

1. Trivial Equal (te) objects (Op 0 2) are identical (Opidentifier = 0 2 .identifier) and
have a common real world counterpart ((Cot AO3) & (Co2 AO3) ,

[te (0 p 0 2) =df (Opidentifier = 0 2 .identifier) & ((Coj AO3) & (Co2 AO3))].

2. Referential Equality (re) means that "there may exist two objects Oj and 0 2 in
class C which refer to the same real world object although they are not trivial-equal"
[[MAS90]p. 189]. Class C is the superclass of the minimal common attributes (Rp
R2 , to Rp) of the referential-equal objects (0[and 0 2),

161

[re(0],02) =df. (Oi-Rk = 0 2.Rkl & ((CQi AO3) & (CQ2 A0 3))]-

3. Arbitrary Equality (are) covers any form of equality other then trivial or referential
equality. It covers all cases where conceptual objects have distinct real world
counterparts but these real world counterparts have some common characteristic,
predicate, function etc.

"For example, suppose ... two submarines with the same type. In such a case one
might want to regard the two submarines equal because of the same type. Suppose
that these two submarines are registered as objects si and s2 in class Submarine.
Notice that since the two submarines are different objects in the real world, s 1 and s2
may be neither trivial-equal nor referential-equal" [[MAS90]p. 191].

[are(0i,02) =df. (AOj.Rk = A02.Rk) &
((COi AOi) & (C0 2 A0 2)) &
not (T E (0 !,0 2) or RE(01; 0 2))]

where Rk is an attribute, any characteristic, type, or function of a real world object
AO^

These three classes of sameness based on real world counterparts by Masunaga
[MAS90] are now extended by the heterogeneous notions of identity of the conceptual
objects using the novel identifier [Identifier_Object, Identifier_Class, Wx,].

1. TRIVIAL IDENTICAL PREDICATE:

A. Trivial Purely Identical (Trivial Equal in [MAS90])

T P I(0 ! ,0 2) =df.
(O [.[IdentifierObject, Identifier_Class, Wx] = 0 2 .[Identifier_Object,
Identifier_Class, Wx]) &
((COi AO3) & (Co2 AO3))

B. Trivial Derived Identical

T D I(0 ! ,0 2) =df.
(Oj .[Identifier_Object, Identifier_Class,] = 0 2 .[Identifier_Object, Identifier_Class,])

& ((COi AO3) & (CQ2 AO3))

162

2. REFERENTIAL EQUALITY:

RE(0 ^,0 2) =df. ((COi AO3) & (c 0 2 AO3)) &
not (TDI(0!, 0 2) or TPI(01? 0 2))

Which means that Referential Equal objects can be :

• Match Equal objects with a common real world counterpart;

• Aspect Equal objects with a common real world counterpart;

• Not have any equality between the conceptual objects other than having a
common real world counterpart.

3. ARBITRARY EQUALITY:

[ARE(01 ,0 2) =df. (AOpRk = A 02 .Rk) & ((COi A02) & (COi A 02)) &
not (TPI(Ol5 0 2), TDI(0!, 0 2) or RE(Oi, 0 2))]
where Rk is an attribute, any characteristic, type, or function of a real world object
AOp

Trivial Equality in [MAS90] is the equality of objects that have identical identifiers in the
conceptual level of an information system (Identical Predicate), and additionally have a
common counterpart in the real world. In other words, these objects resemble the same
real world object and, additionally, these objects are identical in the same Naming World.
This case is described as Trivial Purely Identical (TPI), because the objects are Purely
Identical (PI) and also Trivial Equal as defined in [MAS90],

In information-sharing environments, Derived Identical objects are from different
information sources (Naming Worlds) which have the same notions of identity. Such
objects have identical Identifier_Classes and Identifier_Objects. If such objects have a
common real world counterpart then they are Trivial Derived Identical (TDI). They are
Trivial Equal according to [MAS90] but the conceptual objects sameness is only Derived
Identical because they are from different Naming Worlds.

In general, a common real world counterpart is less important for conceptual objects that
are Purely or Derived Identical (PI or DI). But in such cases the degree of sameness is
already very strong. However, objects that are Referential Equal (RE) have a common
real world counterpart but are not purely or derived identical. The conceptual objects

163

themselves can be Match Equal (ME), Aspect Equal (ASE), or have no conceptual
equalities, but they need to refer to the same real world objects.

Objects that are not Trivial Equal or Referential Equal have no common real world
counterpart. However, objects can refer to different real world counterparts but these
counterparts may have common instances, share any attributes or are equal in any other
aspect. This relation is called Arbitrary Equal.

In enterprise integration environments real world relationship of objects may not
necessarily resemble the way this relationship is implemented in the various information
systems. In other words, it is possible that Arbitrary Equal objects are conceptually:

Purely or Derived Identical, Match Equal, Aspect Equal or not equal in any
aspect.

Typically, however, objects are implemented in the various information sources
according to their real world appearance, and, therefore, Arbitrary Equal objects are
conceptually implemented as Match, or Aspect Equal.

Three remarks for classifying the sameness between candidates are necessary:

1. Two objects Oj and O2 in world cannot both be Derived Identical or Trivial
Derived Identical to another object O3 in a different world W2 without that Oj
and O2 are Purely or Trivial Purely Identical themselves. In other words it has to
hold true that:

If (Oi [Identifier_Object, Identifier_Class, Wx] = O3 [Identifier_Object,
Identifier_Class, Wy])

and (O2 [Identifier_Object, Identifier_Class, Wx] = O3 [Identifier_Object,
Identifier_Class, Wy])

Then (O] [Identifier_Object, Identifier_Class, Wx] = O2 [Identifier_Object,
Identifier_Class, Wx])

2. Derived Identical and Trivial Derived Identical objects cannot be identified by,
for example, surrogate, or address based identifiers. In other words, derived
identical objects 0 1 and O2 are related such that:

(Oj.[Identifier_Object, Identifier_Class] = 0 2 -[Identifier_0 bject,
Identifier_Class])

164

If both Identifier_Classes are surrogate identifiers based on alphanumeric signs
and both Identifier_Objects have the value 'Surrogate = 1234' then these could
formally be Derived Identical. However, this is not semantically correct when
these objects are from different Naming Worlds (different surrogate management
systems may, in principle, use the same surrogate for distinct objects). It is,
therefore, necessary to specify which Identifier_Classes can be used to determine
Derived Identical objects such as value based identifiers.

3. Some information systems may be able to identify candidates from their sources
as Purely Identical internally but are unable to provide the information agent with
the evidence (e.g. Identifier_Objects) to enable the agent itself to determine the
degree of sameness. For example, an object-oriented database system may be
unable to provide its surrogate identifiers (e.g. POET database Version 2).
Objects from this source have to be identified in the sharing environment based
on value matching, e.g., the employee Name attribute, to identify a candidate
concerned with employees. However, if two candidates are from this same
database then the object-oriented database management system may provide the
information agent with the information that the candidates have the same
surrogate identifiers. Because they are from the same database and database
management system they share the same Identifier_Class, and are from the same
world Wx. In these specific cases, it is pragmatic for an information agent to infer
that the objects are Purely Identical, based on the statement from the database
management system without investigating the actual surrogates
(Identifier_Objects).

165

5.2AA Classification of Sameness of Candidates

In this section the previously designed notion of sameness for enterprise integration
environments will be bound into the conflict detection process. In other words, the
conflict detection mechanism would first investigate if the potential conflict between the
candidates, represented in a propositional calculus, is based on a correspondence
assumption. In such a case the candidates are assumed to be concerned with the same
object. Hence, it is important to initially investigate whether the object correspondence
can be established.

Investigating the Identifier_Classes and Identifier_Objects may reveal that the
investigated objects actually have the same Identifier_Classes but distinct
Identifier_Obj ects:

(O] .[Identifier Object, Identifier_Class, Wx], 0 2 -[Identifier_0 bject,
Identifier_Class, Wx])
Op Identifier_Class = 0 2 -Identifier_Class

and O i .Identifier_Object ^ 0 2 -Identifier_0 bject.

or, in case of candidates from different Naming Worlds:

(O].[Identifier_Object, Identifier_Class, W x], 0 2 -[Identifier_0 bject,
Identifier_Class, Wy])
Op Identifier_Class = 0 2 -Identifier_Class

and O i .Identifier_Object & 0 2 -Identifier_0 bject.

In these cases it can be positively detected that the objects have no correspondence and
are not concerned with the 'same object'. For example, the objects 'Peter' from source
(and Naming World) Dl, and 'Peter' from source (and Naming World) D2 may both have
the same Identifier_Class 'User Defined Key from a Relational Database'. However, their
Identifier_Objects for the 'User defined Keys' are 'Employee.Number = 123' and
'Employee.Number = 1245'. Therefore, the sameness assumptions for the candidates Oj
and O2 can positively not hold.

In any other case it is necessary to make further investigation of the sameness between
candidates. In order to classify the candidate's sameness into the different categories of
sameness outlined in the previous Section 5.2.4.3, it is necessary to establish if the
objects have any known real world counterparts. As mentioned above, the information
agent may, for example, have information of counterpart relations in its Agent
Knowledge (Semantic Matching - Resource Knowledge). This includes that candidates

166

may have common real world counterparts in an enterprise model (or a common
knowledge-base such as CYC [LEN90]). For example, if the object 'Peter' from source
D1 and 'Peter' from source D2 both have a common counterpart called 'Peter F' in an
enterprise model then it may be inferred that these have a common real world
counterpart.

Figure 7: Classification of Object Sameness

Furthermore, investigating the semantic matching information may, in principle, result in
finding that two candidates are defined as 'not counterparts'. Most existing research does
not account for these exemptions to generalisations. However, in Section 5.2.1 it has
been shown that, in principle, it is advisable to implement Comments in the Agent
Knowledge (Resource Knowledge) or define exemptions in the form ~CXy, or -Cxy

167

(Counterpart theory Section 5.2.1.4). Candidates that are defined to be distinct objects
cannot conflict if their conflict is based on a counterpart assumption.

The classification includes a systematic comparison of the candidates to the different
notions of sameness starting with the 'strongest degree of sameness' (conceptual and then
real world to conceptual notions). Candidates may have multiple kinds of sameness. For
example, two Purely Identical candidates typically share most or all their attributes for
shared attribute classes. These are then not only Purely Identical but also Aspect Equal.
However, Aspect Equality is practically of no importance for object sameness in cases
where a stronger predicate (Purely Identical) has been identified for these objects.

The 'strongest degree of sameness' between two candidates is, hence, identified by the
chart in Figure 7. Thus, if two candidates from the same world share their
Identifier_Class and Identifier_Object then they are Purely Identical (PI). If they
additionally have a common real world counterpart, then they are Trivial Purely Identical
(TPI). However, if the candidates are from different worlds but share the Identifier_Class
and Identifier_Object then they are Derived Identical (DI), unless the candidates also
have a common real world counterpart and, hence, are Trivial Derived Identical (TDI).

After the mechanism has checked for the identical predicates, a possible common real
world counterpart of the candidates indicates that they are Referential Equal (RE).
Match Equal (ME) candidates share at least one attribute that is also the
Identifier_Object of one of the candidates. Very loosely corresponding objects only share
a common attribute and are, hence, Aspect Equal (ASE). If the candidates share no
attributes but only their real world counterparts share at least one property then these are
Arbitrary Equal (ARE). In any other case there is no sameness between the objects.

168

5.2.5 Summary Gathering Phase

The Gathering phase collects all the candidates and their evidence from external sources.
This information is brought into a uniform, precise novel representation that is an
extension of existing object-oriented structures as commonly used in enterprise
integration. Further, the mechanism detects if multiple candidates exist that can conflict.
These form one or multiple pairs of conflicting candidates. These pairs are the subject of
investigation in the succeeding phases. The next step is to investigate if the pairs of
candidates fit any kind of a propositional conflict as outlined in Section 3.2.1. The degree
of sameness is then elaborated for candidates that are assumed to be concerned with the
same object. Figure 8 provides an overview on the gathering phase. The following
Section will check if the candidates are syntactically and semantically correct, admissible
and, thus, conflicting. This includes a judgement by the agent whether the degrees of
sameness between candidates is sufficiently strong to conclude that these are conflicting.

Figure 8 : Gathering Phase

169

5.3 Conflict Detection - Syntactic Phase

Section 5.2 described the Gathering phase which starts with collecting the candidates and
their evidence. The Classification stage identifies whether a conflict exists and if so.
which kind. However, in order to ensure that a conflict has been detected the information
agent needs to ensure that the results are syntactically correct. In other words, in this
phase, conflicts are detected based on syntactic errors, e.g. due to inadequate integration
of the sources in the enterprise integration environment (Section 4.3). Examples of this
syntactic conflict detection include:

1. Explicit error messages may be evoked on the inter-agent, and agent-to-
source communication, e.g., shown for KQML in [CHA92], KQML includes
messages about any failures of the communication process, e.g. messages
may be incomplete in the face of TCP/IP or network problems.

2. Errors may, in principle, occur within the source of origin, e.g., a relational
database management system, which may include error messages in its
results. For example, the request from a relational database may be
interrupted by a memory or disk problem at the source of origin. It may
follow that the result is incomplete. An error message may, however, be
attached to the result by the database management system.

3. Inter-agent and agent-to-source communication may fail on the language
level. For example, all agents may use KIF [GIN91], LOOM [MAC91], or a
basic propositional calculus introduced in Section 3.2.1 and Section 5.2.
Within this interaction level agents may encounter errors while analysing the
messages from other agents.

The previous paragraphs have briefly outlined the extent to which information agents in
existing integration environments can detect syntactic conflicts. Limitations of these
mechanisms and ways to improve them include:

• Syntactic conflict detection requires that the agents apply system, and / or
'language specific' information to investigate the physical integration and inter-
language translation. This is 'specific' because it requires that the agent
understands the error messages, or has knowledge of procedures to assess the
correctness of the communication process. For example, most research on
enterprise integration environments uses the KQML communication protocol

170

[CHA92], In these cases, the agent requires knowledge of the KQML protocol
and error messages. Hence, to improve syntactic conflict detection the
information agent needs more details on the transmission and translation
protocols.

• Existing languages and protocols in enterprise integration such as the KQML
protocol include only the modes:

'Result message' for complete results;
'Success-reply messages' or simply no result which may indicate a failure of
the result transmission.

However, further message types which allow a result transmission and, in
addition, indications of possible transmission errors could be used by the conflict
management scheme. For example, if a result had been transmitted a number of
times by the sending agent before it went through to the managing agent then the
sending agent could attach a message of caution. In the case of conflict, the
managing agent could request the same result again to ensure it has been
transmitted correctly. This kind of message is currently not used in existing
integration systems but could be very useful to the described information agents
in syntactic conflict detection.

• Traditional enterprise integration environments (e.g. described in Section 3.3
[COL91] [PAN91a] [FOX93] [JAG94]) assume that information gathering is
never inadequate or incomplete. This assumption is, however, not realistic in
large sharing environments with autonomous, heterogeneous information sources
that operate concurrently (Section 3.3.6). It follows that existing research has not
placed much emphasis on analysing the completeness of information gathering or
the correctness of, for example, result translation. Future research could be
directed at improving ways in which information agents could evaluate their
information gathering processes (on the inter-agent level). Furthermore,
information systems might be better equipped with ways to detect if their
communicated information has been transmitted correctly (on the agent to source
level, and within the information source). Modelling the integrators management
of translation errors would be a way to develop such schemes.

171

5.4 Conflict Detection - Semantic Phase

"Semantic heterogeneity occurs when there is a disagreement about the meaning,
interpretation, or intended use of the same or related data" [[SHE90]p. 186].

Semantic conflict detection is concerned with:

• Object Correspondence and

• Concept Correspondence.

In other words, the candidates are syntactically correct and their correspondence is
defined in the Classification phase. The semantic phase, however, investigates the
information agents' questions: 'Are we really talking about the same thing?', and 'Do you
really mean that?'

5.4.1 Object Correspondence and Strengthening Sameness

In the Gathering phase a novel object identifier for enterprise integration environments
has been outlined (Section 5.2.2). It is an extension of object structures typically used in
enterprise integration [KHO90], Furthermore, six categories of object sameness have
been defined and used in the Classification phase including, Identical and Trivial Identical
Predicates (Purely and Derived), Match and Aspect Equality, Referential Equality and
Arbitrary Equality. These notions of sameness are used to describe object
correspondence (Section 5.2.4). Semantic conflict detection follows this procedure by
examining whether the degree of sameness is strong enough to assume correspondence
of the candidates. That is, the propositional conflict identified in the Classification phase
may be based on the assumption that the objects are concerned with the same thing, e.g.,
this is the case in all explicit conflicts. This assumption requires a strong degree of
sameness. However, the terminology for 'strong' and 'weak' degrees of sameness requires
clarification and this is now described, followed by the steps to strengthen weak notions
of object sameness.

Identical predicates can be of the kinds Purely Identical, Derived Identical, Trivial Purely
Identical and Trivial Derived Identical. Object sameness in these cases is very strong and
the correspondence assumption can easily be accepted. Thus the information agent is
justified in concluding that the candidates are concerned with the same thing. This
assumption is in convergence with mainstream research on object identity and sameness
including Khoshafian and Copeland [KHO90], Masunaga [MAS90], Maida [MAI91], or
Kent [KEN91],

172

Referential Equality requires that the information agent knows that the two objects have
a common real world counterpart. So despite their weak sameness based on the
conceptual identifiers in their information sources, there is strong evidence that
undermines the correspondence of the candidates. Whether referential equality is
considered strong enough to assume object correspondence can be disputed. The
decision has to be made by the administrator of the integration environment. Mainstream
research in enterprise integration, e.g. MKS [PAN91a], Mind [JAG92] or CARNOT
[COL91], uses enterprise models as the only means of defining object correspondence
and, hence, accept Referential Equality as a sound basis for object correspondence.

Weaker notions of object sameness include Match Equality, Aspect Equality or Arbitrary
Equality. Match Equal candidates have no common real world counterpart, as to the
knowledge of the information agent, and only the identifier of one object matches
attributes of the other object. Whether Match Equality represents a strong enough
degree of sameness to assume object correspondence is a question of policy which must
be decided by system administrators. However, it is here suggested that Match Equality
is too weak to assume object correspondence. This corresponds with much research on
object identity such as the work of Khoshafian and Copeland [KHO90],

A similarly weak notion of sameness exists when two objects share any attributes
(Aspect Equality). The weakest form of equality is Arbitrary Equality because only the
real world counterparts share some attributes. These notions of sameness are generally
not assumed to establish object correspondence [MAS90],

Degree of Sameness
Strong Notion Identical Predicates

.Refemtial Equality
Weak Notion

No Sameness

Match Equality
Aspect Equality
Arbitrary Equality

Figure 9: Ranking of Object Sameness

Thus, these weaker notions of sameness (see Figure 9) are not sufficient to support a
sameness assumption and require further investigation. Hence, the information agent tries
to strengthen these sameness assumptions. In practice, the agent strengthens the
sameness of two object Oj and O2 by justifying the hypothesis: 'Candidates Oj and O2

are concerned with the same object Oj'. This investigation includes the examination of
the following three questions:

173

• 'Which properties are shared by the candidates?'
• 'Are any essential characteristics (Properties) shared?'

• 'Is Oj in world Wx the closest resemblance of O2 in its world Wy and
vice versa?'

Shared Properties

An information agent initially gathers all properties for any shared attribute classes of the
candidates. In other words, two objects Oj and O2 may have a number of attribute
classes of which they share a subset v ,̂V2 , vm. If the properties (R0 of these attribute
classes (v j iR j , V2 :R2 >--- vm:̂ k) are identical for both candidates then they share all
properties of common attribute classes.

Essential Characteristics

In the next step the agent investigates if the candidates share any essential characteristics.
A very brief excursion into essential characteristics will be presented in order to
demonstrate the difficulties of applying essentialistic models to information systems:

In principle, objects can have essential characteristics and accidental
characteristic. "Let it be supposed that an individual x answers to any of a
number of different 'basic' or 'canonical' identifying descriptions of it”
[[RES75]p.23]. These descriptions are essential characteristics. Accordingly, any
other properties of an object are accidental. However, the use of essential
properties is very complex. For example, no ultimate construction of essential
properties is possible for many objects that change in the light of different view
points. For example, the Employee Name may be an essential characteristic on
the shop floor but only the Employee Number may be essential in the book-
keeping department. Furthermore, properties may be essential only in the absence
or presence of other characteristics. For example, the Employee Name may be an
essential character only in the absence of the characteristic Employee Number.

In enterprise integration pragmatic solutions are typically found to define essential
characteristics of concepts. For example, an enterprise model may include definitions of
the essential properties of most concepts. In the same way, an information agent may
have domain-specific information (Environmental Information - Resource Knowledge)
that defines essential characteristics of schema objects. For example, it may define that
the schema object 'Employee' has the essential characteristic 'Employee_Number'.

174

Closest Resemblance

Counterpart relations have been identified between some candidates during the
classification phase (Section 5.2.4.3). However, many candidates lack such explicit
counterpart relations, for example, in the enterprise model or the Agent Knowledge. At
this stage the information agent should investigate the closest resemblance for those
candidates that are not already related by a counterpart relation.

Counterpart relations were defined in Section 5.2.4.3 such that a counterpart "resembles
you more closely than do the other things in their worlds" [[LEW6 8]p.l 14]. Hence, the
information agent should investigate if the candidates resemble each other more closely
than any other objects in their worlds:

• It identifies for each candidate any attributes that are also part of the candidates
Identifier_Object (which means that these identifiers are value based). For
example, the attribute class 'Employee_Name' with the property 'Peter' may be
part of the object O j’s Identifier_Object for the Identifier_Class 'User Defined
Key in a Relational Database'.

• The essential characteristics of the candidates are identified as outlined in the
previous subsection. For example, an object 0 [may be of concept employee
which has the essential characteristics 'Employee_Number' and 'Employee_Name'
in the enterprise model. These characteristics are attributes of the object Oj with
the values 'Peter' and '123' for the classes Employee_Name and
Employee_Number.

For two objects Oj from W x, and O2 from Wy, the information agent requests from:

• Wy any object that matches Oj's essential attributes, and Oj's attribute from
any value based identifier.

• Wx any object that matches 0 2 's essential attributes, and 0 2 's attribute from
any value based identifier.

For example, the agent requests an object where the attribute class 'Employee_Name' is
'Peter' and the attribute class 'Employee_Number' is '123' from the sources of the
potentially conflicting candidates.

In the case of n conflicting results that have no counterpart relations and have a weak
notion of sameness, '(n-l)*n' objects are requested from the sources. For example, three
conflicting results based on weak notions of identity exist and twelve ((4-1)*4 = 12)
requests are necessary to determine if the objects are counterparts of each other.

175

This investigation will, in general, provide one of the following results for every request:

1. The candidate's closest resemblance in the other object's world is the potentially
conflicting candidate (Closest Resemblance);

2. Another object resembles the candidate more closely than the supposedly
conflicting candidate;

3. No object matches the request.

At this point the information agent has information on the candidates' shared properties,
common essential characteristics, and whether they are each other's closest resemblance.
It will now be outlined how this information may be used to enrich the current
classification based on counterparts and degrees of sameness, based on the following
characterisation of counterparts:

"Your counterparts resemble you closely in content and context in important
respects. They resemble you more closely than do the other things in their
worlds. But they are not really you" [[LEW6 8]p.l 14] (and Section 5.2.1.4)

The question 'Are we really talking about the same thing' may now also be answered
for the candidates with weak notions of sameness (ME, ASE, ARE) based on the
analysis undertaken above. In other words, the agent has investigated if the candidates
are each others' 'closest resemblance in their sources'. This resemblance is based on
important respects (see Lewis' definition above) such as the object's identifier, or
essential characteristics. The agent may be able to identify one of the following:

1. Object correspondence can be assumed if the candidates resemble each other
closest, and (a) they share all common properties, or (b) they have the same
property for at least one shared essential characteristic, and no shared essential
characteristics are conflicting. This may lead the agent to conclude that the
candidates are counterparts and, hence, at least Referential Equal.

2. No object correspondence has to be assumed in cases where candidates are not
each others 'closest resemblance' and do not share at least one essential property
and / or all properties for all common attribute classes.

3. No object correspondence exists when the candidates differ in at least one
essential characteristic and are not each others 'closest resemblance'.

In any other case the weak object correspondence cannot be strengthened

In the first case, further conflict detection and possibly resolution is required. There are
no doubts about the object correspondence. In the second and third case, however, the
conflicting candidate can be rejected based on a lack of object correspondence. The

176

retrieval process then has to determine which of the candidates is relevant to the
information request.

In any other case, however, object correspondence cannot be assumed nor definitely be
rejected. The information agent could, for example, do one of the following:

1. It could take the candidates, with such a weak notion of object correspondence,
into account and continue resolving the conflict. Thus, as far as the conflict
detection is concerned it has to detect a conflict that is based on a weak notion of
object correspondence. This weak correspondence is part of the evaluation of the
conflict case. It should, therefore, be enclosed in the solution statement for clients
of the sharing environment that can make use of this complex information (e.g.
human, domain expert decision makers).

2. Alternatively, the enterprise modelling process could include definitions on the
minimum correspondence of candidates from specific sources. For example, a
Business Rule (Organisational Knowledge) could define that candidates from
relational databases and object-oriented databases have to share at least one
essential characteristic to justify at least a weak sameness assumption (i.e.
Correspondence).

3. Conflicts based on object correspondence require that the candidates' degree of
sameness is at least Referential Equal, or Match Equal and the candidates are
each others closest resemblance in their worlds. In all other cases no conflict
exists between these objects because of a lack of object correspondence.

4. Conflicts based on object correspondence require that the candidates degree of
sameness is at least Referential Equal. In all other cases no conflict exists
between these objects because of a lack of object correspondence.

Which strategy is adequate for a given environment must be decided by the system
administration. However, the last three approaches would best fit with existing research
on object identity and sameness in enterprise integration, e.g. Pan and Tenenbaum
[PAN91a] or Khoshafian and Copeland [KHO90]. Option two requires that Business
Rules are defined. If these do not exist the third approach is most realistic.

Existing research on enterprise integration environments, e.g. by Fox and Barbuceanu
[BAR94a], fails to detect cases where no conflict actually exists because of a lack of
correspondence. Furthermore, no existing scheme includes an explicit evaluation of the
correspondence assumption so that weak correspondences are made explicit to evaluate
the integrated information.

177

5.4.2 Concept Correspondence

Object correspondence is concerned with the sameness of candidates or data objects. For
example, the correspondence of the individual 'Peter' in sources (world) Wj and the
'Peter' in source (world) W2 . Concept correspondence is concerned with matching the
semantic meaning of the concept of discourse. For example, two candidates may be
concerned with the same object Peter but one claims that Peter is 'fat' and the other
claims that Peter is not 'fat'. Both candidates deal with the concept 'fat'. It is necessary to
ensure that both propositions are concerned with the semantically same meaning of this
concept, e.g. 'fat', in order to detect that their propositions, including this concept', are
conflicting. In addition, the information agent would want to ensure that any concept
included in any candidate has been retrieved in a way that its semantic meaning is
captured as intended by the source of origin. For example, the concept 'cool' from a
music database may be used to describe 'interesting music'. It has, therefore, a
semantically different meaning than 'cool' used by an expert chemist to describe the
temperature of a product. Integrating both concepts requires that these semantic
meanings are interpreted correctly in order to evaluate a possible conflict between
candidates using these concepts.

Concept correspondence plays various roles in the different kinds of conflicts that can
occur in enterprise integration environments (Section 3.2.1).

1. Concept correspondence of the conflicting attribute (e.g. 'fat')is assumed when
candidates conflict explicitly as described in the previous paragraph in the
example 'Peter is fat' and 'Peter is not fat'.

2. Implicit conflicts in the same attribute class (vm) assume that the concepts (e.g.
'fat' and 'slim') of the conflicting attributes are semantically exclusive (e.g. 'Peter
is fat' and 'Peter is slim').

3. All implicit conflicts (including those in different attribute classes) require that the
semantic meaning of the concepts used in the conflicting attributes (e.g. 'Peter is
fat' and 'Peter has blue shoes') correspond to the concepts in the heuristic(s)
defining the implicit conflict. For example, the heuristic 'It can only be true that
'Peter has blue shoes' or that 'Peter is fat' applies to candidates that use the
semantically same concepts of 'fat' and 'blue shoes'.

Enterprise integration environments typically ensure concept correspondence of the first
two kinds. The latter kind of concept correspondence is less typical and is closely related
to enterprise modelling (e.g. how to define integrity heuristics, or rules).

178

The problem of semantic matching has been defined as (Section 2.7):

"Data obtained from remote and autonomous data sources often will not match in
terms of name, scope, granularity of abstractions, temporal units and domain
definitions" [[WIE92]p.39],

Concept correspondence is traditionally a problem of mapping the semantic differences
between autonomous information systems [PAP92a] [HEI85], For example, the concept
'car' may be mapped onto the concept 'automobile' in another source. Such mapping is,
for example, provided by dependency schemata in multidatabases [AHM91] or
'knowledge transformators' (also called Mediators by Wiedehold [WIE91] Section
3.3.4). The latter are software components that mediate information between sources, or
between information sources and human users [WIE91]. However, this hardwired
mapping has become a rather syntactic task of translating 'car' into 'automobile' and is
falsely called 'semantic matching'. Lenat, for example, argues that it is a "syntax mirrors
semantics" [[LEN90]p.26] approach. Mutation and exportation by dependency tables
does not investigate the semantic meaning of the candidates but simply 'translates' names
of concepts.

Hence, the translation of concepts is part of adequate information retrieval. In the Agent
Knowledge the required matching information is defined as Resource Knowledge -
Semantic Matching in Section 2.7. Section 5.3 on syntactic conflict detection was
concerned with checking the translation including the translation of concepts (also called
matching from a syntactic point of view).

In this section the information agent attempts to evaluate the actual, semantic meaning of
the candidates and their concepts. For example, an information agent may investigate
whether a result from a user interface is 'really' what was meant by simply returning the
result for verification, e.g. by the source of origin. A typical example is the verification
by human users, e.g. implemented in Stolze and Gutknecht [ST091] (Section 3.4.3). In
KQML [CHA92] (Section 2.3), for example, such queries are of the type 'Assign-Truth-
Value' which means that the recipient can answer this query only with 'True' or 'Not
True'.

Furthermore, potential conflicts may arise over concepts that are assumed to be
corresponding but actually mean different things. As a form of local problem-solving
expert knowledge may be used to semantically evaluate concepts. For example, two
medical expert systems may produce a result such as 'Peter has fever' and 'Peter has high

179

temperature' which semantically means the same thing. In other words, the concepts do
not conflict but are subtype supertype related in the form:

Oi vm:̂ k c Oi.vm:Rk:.

The results 'Peter has fever' and 'Peter has high temperature', from the previous example,
may require domain expertise (e.g. by a doctor) to interpret their semantic relation. It
may be the case that fever is a form of high temperature so that the concepts are not
semantically conflicting but the patient's fever includes high temperature.

Expert Knowledge may potentially be available from a human expert, or a software
system. The latter provide the information agent with problem-solving capabilities or
Services (Resource Knowledge Section 2.7). Another source of Expert Knowledge is an
agent's Environmental Knowledge (Resource Knowledge) or an enterprise model
(Section 3.3.1 CARNOT [COL91], MKS [PAN91a], TOVE [FOX93]). Both can
potentially be used to interpret concepts so that their correspondence is evaluated. For
example, the candidate 'Peter has fever' uses the concept 'fever'. This concept may have
other synonyms and may be a supertype or subtype of other expressions as outlined in
the previous paragraph. An enterprise model may outline these relations between objects
and / or have information on synonyms. CARNOT [COL91], for example, has an
automatic procedure for matching concepts. It is based on finding 'the best match' of a
concept in the tree-like enterprise model called 'subgraph matching'. "Subgraph matching
[is based] on simple string matching between names or synonyms" f(COL91]p.60]. As
outlined in Section 3.3.1.1 the highest common subdomain of a concept and its
counterpart in the model is its best match. Different concepts from multiple, possibly
conflicting candidates can be matched to concepts in the enterprise model. The concepts
may be related in the enterprise model as:

1. Synonyms;

2. Subtype or supertype concepts;

3. Different concepts so that the candidates are not conflicting.

However, difficulties with the approach have been reported [COL91] in integrating
queries of all types and formats. In addition, no enterprise model exists that incorporates
all common and domain knowledge so that there are always synonyms and matches that
arc not identified. Thus, concept matching based on enterprise models or agents'
Environmental Information may be incomplete. Despite this incompleteness, a rational
scheme would have to apply all available strategies, including relevant enterprise models
and Services.

180

Finally, the semantic meaning of results may be particularly dependent on the form and
time it is requested. A good example are different versions of an object, e.g. stored in an
object-oriented database. The agent may know about different versions of objects from
its ldentifier_Class or from its Environmental Information - Resource Knowledge.
Different versions of an object may produce different results that are not conflicting but
only correspond to different versions of the same object.

Furthermore, information sources may not be able to produce useful snapshot results but
need to be monitored over time. In Section 3.4.3 the dynamic aspect of knowledge in
rule-based information sources has been mentioned. Results from such dynamic sources
may be inconsistent because they are not derived in the semantically correct form.

For example, "special processing is required for parallel paths [parallel results from one
or multiple sources], which can derive alternative values for the same data item" [[SU
91]p.236]. Schemata may describe generalised rules or relations between objects as
described in Section 2.7 on Schema Knowledge. This is one way in which an information
agent may determine whether parallel processes in one or multiple information sources
may be based on a constant exchange of data between these processes. In other words,
this dynamic interaction may have to be monitored over time in order to obtain a result
that is ’relevant'. For example, an agent may request multiple results from such a source
over a longer period of time and determine if the results have a trend, or if they converge
after multiple iterations [SU 91].

Another source to detect whether 'special processing' is necessary to ensure the retrieval
in the semantically correct form and time is the agent’s Environmental Information
(Resource Knowledge). The agent can ensure that this processing is (or has been)
applied to the retrieval of information from the sources with the potentially conflicting
results. It may follow that no conflict exists but only a retrieval in a semantically
incorrect form or time.

In summary, it has been shown that concept correspondence of potentially conflicting
candidates can be evaluated by:

1. Result Verification;

2. Employing Expert Knowledge to semantically related concepts (subtype,
supertype relations or synonyms);

181

3. Investigating if the form and time in which the concept has been requested is
semantically correct.

These are representative ways in which concept correspondence can be investigated in
current enterprise integration environments. Limitations of these approaches and
possible future improvements are:

• Result verification is typically based on verification by human experts or a human
user that has manually inserted data into a system. Ideally, other information
systems (e g. expert systems) could also 'verify' their results in a similar way to
human users. This would be particularly desirable for complex systems that have
dynamically changing data such as production management or control systems. A
pragmatic implementation of verification could be a repeat of the original query
and a comparison of the new and the original results.

• Much research exists on semantic matching from distributed databases (e.g. 'ISA-
relations' [HUL87]) and enterprise integration (e.g. CARNOT [COL91]).
However, subtype / supertype relations and synonym information is based on
extensive domain knowledge. For example, the CARNOT approach described
above depends heavily on the manually implemented common knowledge-base
CYC [LEN90] (Section 3.3.1.1). Future research should be directed at further
automating the definitions and maintenance of these bases (e.g. learning). In
addition, common knowledge-bases could be used in more than one system. This
would be one approach to reusing the once defined common knowledge in many
applications and systems.

• It is easy to perceive an approach that investigates the form and time of the
retrieved information with the help of heuristics defined by database
administrators or integrators. However, the limitation of this approach is the
manual definition of these heuristics. Some research aims to automate this task
such as an approach by Su and Park [SU 91], As described above and in Section
3.4.3, the approach outlines the dynamic exchange of information between
sources which leads to a cyclic result exchange between these sources. Because
of this interaction, information requests from such sources may have to be of a
specific form or be repeated multiple times. Information agents could potentially
use this mechanism and automatically analyse schemata for cyclic relations.
Where information is retrieved from schema objects that have cyclic relations the
agent could repeat the information request to ensure the result is retrieved
correctly.

182

5.5 Conflict Detection - Admissibility Phase

Admissibility of a candidate is based on the rules of the information agent to consider a
candidate (Section 4.4). An agent may have heuristics that let it reject a result
(candidate) without further investigating its semantic content. These heuristics may be in
the form of:

1. Business Rules and Decision-Making Knowledge;

2. Comments, e.g. from System Administrators;

3. Integrity Constraints.

Business Rules and Decision-Making Knowledge are Organisational Knowledge (Section
2.7) that an information agent has as part of its 'handbook' information. Some
Organisational Knowledge may induce an information agent to reject any information
from a particular source, concerning a particular domain, of a specific format, etc. For
example, the Business Rule 'Any Information From the Database D1 is not admissible'
will let the agent reject any result from this source. Such a heuristic may, for example, be
installed if the source produces unpredictable results after having had a disk crash.

Comments from administrators (Designers or Integrators) are Resource Knowledge
(Section 2.7) that describe an information source, critique its reliability, make statements
concerning particular results, etc. This may include comments that on principle discharge
particular information just like Business Rules.

Integrity constraints are related to schema objects and, thus, are classified as Schema
Knowledge in Section 2.7. For example, the constraint 'Prices must be larger than or
equal to zero may be attached to the attribute Price of a Product object called 'Beer'.
This integrity constraint may direct an information agent to reject a result if it does not
fulfil this basic requirement. For example, the result 'Beer has the Price £-5' may be
inadmissible because of the constraint 'Prices must be larger than or equal to zero'.

The use of integrity constraints for deciding on admissibility is a question of policy.
Comments or Business Rules and Decision-Making Knowledge are explicit rules on the
condition of admissibility. Integrity constraints, however, are not specific conditions of
admissibility. They are a condition for the integrity of results. Schema information in
enterprise integration environments carries some risk of being inconsistent with the data
it describes in autonomous information sources (Section 2.4). It may, hence, be assumed
that integrity constraints are potentially at risk of not being correct for all data items they

183

should constrain at all times. In the previous example, the price of beer may be '£ -1' in a
particular situation, such that beer is tested and the volunteering people are given a one
pound reward per pint. This aspect may not have been considered when the information
agents' integrity constraint was defined. Furthermore, if the agents' constraints are
derived from local schemata then it is possible that the autonomy of the local sources will
permit them to change their local schemata without instantly informing all information
agents.

In conclusion, the use of integrity constraints is limited in distributed systems in that
extra caution has to be taken when applying locally defined constraints (i.e. within one
information system) in a global context (i.e. in the integration environment). However,
within these limitations integrity constraints are successfully used in enterprise
integration environments (e g., [PAP92a]) or database schemata [THO90].

In legal systems the concept of admissibility has been based on rules that may not
necessarily be logical or generally accepted [MUR86] (Section 4.2). It is also a question
of information management policy which rules in enterprise integration environments
determine if results are possible or worth considering. Conservative data policies may not
permit integrity constraints as a reason to reject a result per se, but pragmatic
implementations may do.

184

5.6 Summary Syntactic, Semantic and Admissibility Phases

The following Figure 10 provides a chart of the phases Syntactic Conflict Detection,
Semantic Conflict Detection and Admissibility. These follow the Gathering of the
candidates, their evidence and the propositional classification of the possible conflict.
The admissibility phase is the final step to ensure that a genuine, data conflict (Section
3.2.2) has been detected that requires conflict resolution.

185

In the conflict detection phases described above either no conflict, or a genuine, data
conflict among multiple candidates has been identified. The candidates are gathered in a
uniform, propositional structure. In addition, evidence that warrants or refutes the
correctness of the candidates may be related to them. Evidence has been formally
described in Section 5.2.3 in the form of:

Em = {(Formula)(Certainty Estimation)}.

The Formula variable consists of zero-to-multiple interconnected propositions that
constitute evidence concerning a candidate. This evidence may include an estimate of the
certainty of the candidate (in the Certainty Estimate variable), which is based on any
propositional evidence in the Formula variable. Furthermore, the formula variable may be
empty and the evidence may become a pure certainty estimate, which is included in the
Certainty Estimation variable.

Section 5.2.3 has further outlined that the credibility of a source of origin is based on its
reliability. A reliability estimate can be related to the whole source, a specific object, a
schema object, Groups of objects or sources (Resource Knowledge in Section 2.7).
Finally, it has been shown that it is rational for the information agent to gather only the
evidence that is automatically provided by an information source at the point of the initial
request. In other words, the agent did not collect all evidence, including all available
certainty estimates, in the gathering phase. This complete collection of all information
that can be utilised by the information agent to provide certainty estimates on the
candidate is undertaken in this Credibility phase.

In principle, the credibility can be estimated on the grounds of:

1. Business Rules and Decision-Making Knowledge (Organisational Knowledge)
and Comments (Resource Knowledge) that directly determine the credibility of
sources, or candidates.

2. Business Rules and Decision-Making Knowledge (Organisational Knowledge)
and Comments (Resource Knowledge) that derive the credibility of sources, or
candidates based on Environmental Information (Resource Knowledge).

3. Services that estimate the reliability of a specific candidate (Resource
Knowledge).

5.7 Conflict Resolution - Credibility
5.7.1 Gathering Credibility Estimates

186

Direct Credibility Estimation

All evidence that has been gathered in the conflict detection phases that includes a
certainty estimate, is of the kind 'direct'. In other words, it directly evaluates the
credibility of the candidate to which it has been attached. Examples of direct certainty
estimates include, 'Database D1 is very reliable', or 'Data from Source D2 concerning
Schema Object Employee Name is, based on past experience, very unreliable'.

Furthermore, an agents Organisational Knowledge and Comments may not only be
heuristics on the Admissibility of candidates (previous Section 5.5) but they may also
directly specify the credibility of sources, or candidates. Comments may, for example,
incorporate an agent's own experience with integrating a source. In this case, the agent
may have developed a statistical reliability on results from a specific source.

For example, Sadreddini, Bell and McClean [SAD90] have described ways to implement
statistical analysis into distributed systems. Following these architectural considerations,
the information agent could have a 'Global Statistical Module' (GSM) with which it
undertakes statistical computations and a 'Global Statistical Database' (GSDB) to store
precomputed statistics. The information agent could monitor how often 'local results',
which it has retrieved from its local source, vary from the 'integrated result'. The
'integrated result' is based on multiple, possibly inconsistent, results being retrieved and
integrated by the DCEEI including conflict detection and resolution. The GSM could
determine how often the 'local result' has varied from the 'integrated result' and store this
reliability estimate in the GSDB. This information in the GSDB would be a 'comment' in
the terminology of the Agent Knowledge in Section 2.7 (Resource Knowledge). An
example of such a comment could be:

'Results on the schema object 'Employee.Name' from the local source
BookkeepingDB have been identical to the integrated result in 90 out of 100
cases of a global request in the DCEEI'.

Derived Credibility Estimation

Derived reliability is more complex. In the field of enterprise integration the following
examples of how an information agent can derive reliability estimates based on
Environmental Information have been introduced in Section 2.7 (Resource Knowledge):

187

• Fox and Barbuceanu [BAR94a] [BAR94c] (Section 3.3.1.4) establish the
authority of an information source by its ability to accomplish a particular goal. In
other words, a partial order exists that ranks information sources according to
their importance (roles) in accomplishing a specific goal. This authority rating is
directly related to a source's reliability. For example, a system that supervises the
production may have a higher authority than a system in the sales department in,
for example, determining the daily output. This means that the first system has
more credibility than the latter in providing the daily output figure.

• Another way to specify the reliability of the source of origin is called
'appropriateness' [PAN91a] (Section 3.3.1.2). In this model context information
is used to determine whether the source is qualified to produce a weighty result.
The role that a source plays in a company may be used to determine its
appropriateness to produce an accurate result. Appropriateness in this context is
equivalent to reliability. For example, 'Mary, the equipment operator on duty'
may be an assessment that the source 'Mary' is very adequate to provide weighty
results concerning equipment operations.

A scheme is required to apply known Environmental Information in the Agent
Knowledge (Section 2.7), or in the enterprise model Section 3.3.3.1 CARNOT
[HUH93][COL91], MKS [PAN91a], TOVE [FOX93]) to be used by Organisational
Knowledge and Comments so that these can derive reliability estimates. A pragmatic
approach that implements the existing strategies to evaluate credibility estimates, is the
following scheme:

1. The agent analyses its Environmental Information (Resource Knowledge) to
identify if the candidates are part of any Groups. Example Groups are: Sources
are jointly working on the shop floor, or in the finance department; All Employee
schema objects are of the Group 'employee' (Please see Section 2.7 - Resource
Knowledge on Groups).

2. Environmental Information or Comments may describe the characteristics such
as expertise, roles and authority of the candidate's and their sources, or Groups,
for example: Sources D1 is an expert on finance data; The expert system E2 has a
high authority on production management data; or The software system S2 has
the role 'Calculating the Demand'. Characteristics can, in principle, be of various
kinds but of primary importance in the research described in Sections 2.7 and 3.3,
are the roles, expertise and authority of Groups and sources [BAR94a]
[PAN91a],

188

3. The reliability of the candidates is derived by Organisational Knowledge and
Comments based on the characteristics of the candidates themselves, their
sources, or Groups they belong to. For examples, 'all new sources are very
reliable' may be a Business Rule that allows the agent to derive that because the
database D1 is new it is also 'very reliable’. Another example includes a system
E3 that is an expert scheduling staff. The rule ’expertise in scheduling makes a
system very credible' lets the agent determine (i.e. derive) that E3 is 'very
credible'.

Formally the derived and direct reliability, e.g. 'very reliable', is specified in the variable
Certainty Estimate. The basis of this certainty estimate is specified in the variable
Formula. The heuristics that lead to this estimate are enclosed in the Formula variable,
e.g. 'Expertise of the system E3 is scheduling staff. Both variables can be attached as
evidence of the form 'Em = {(Formula)(Certainty)}' to the candidates (as described in
Section 5.2.3).

Credibility Estimations by Services

A third way to obtain certainty estimates are Services. These have been described in
Section 2.7 such that they are provided by the information sources to evaluate their
results. For example, a statistical package may produce a confidence level for its results.
Section 5.2.3 has described how Services can provide evidence automatically, or on
request from an information source. Services include any certainty estimation that is
provided by the local source. Examples are numerical Bayesian probabilities, possibilistic
and fuzzy certainties, or any qualitative certainty estimates. Some methods of describing
certainties in information systems are discussed in Section 3.5 and example Services are
mentioned, e.g., in Section 2.7 on Resource Knowledge. These are attached as evidence
'Em ={(Formula)(Certainty)}' to the candidates they describe.

189

5.7.2 Limitations of Credibility Estimates

A focal problem with certainty estimates in large, heterogeneous enterprise integration
environments is the lack of a common standard - a set of uniformly defined estimates -
throughout the environment (Section 3.5.2). Each source may have its own kind of
certainty estimates (e.g. Bayesian probability estimates, possibilistic estimates, etc.). In
addition, multiple sources may interpret the same estimates differently (e.g. 'very credible'
may have different semantic meanings in multiple sources). Methods of combining
certainty estimations have been described in Section 3.5 (e.g. Dempster-Shafer [DEM67]
[SHA76]). However, these methods can only be used by information agents in enterprise
integration to combine numerical credibility estimates if:

• The estimates are from the same source;

• Estimates from different sources are jointly defined. For example, two
autonomous sources may be known to use certainty estimates (e.g. probability
estimates) in semantically the same way (seventy per cent in source A is equal to
seventy percent in source B).

Another way to overcome the problem would be domain knowledge. For example, if the
information agent would be a domain expert and could relate the reliability estimates
from multiple sources. An, Bell and Hughes [AN 93] have described a method for
evidential reasoning called RES that uses the relative strength of evidence (e.g. 'evidence
A is more believable than evidence B') rather than absolute measures (e.g. 'A is ninety
per cent reliable and B is seventy per cent reliable') (Section 3.5.2). However,
information agents typically lack the domain expertise necessary for this kind of
evidential reasoning (Section 2.3). They only integrate data from information sources
including human and machine experts. For example, an information agent can integrate
medical advice systems (Section 3.5.3.4) but it is not a medical expert itself. Hence, it
could not identify the relative strength of the medical evidence. The next Section 5.8 will
investigate ways in which the information agent can employ existing domain experts,
which may apply evidential reasoning schemes, to relate the (credibility) estimates of
conflicting candidates.

It may be concluded that information agents require specific heuristics to enable them to
rank credibility estimates from multiple, heterogeneous sources. These ranking heuristics
have been used in existing integration environments and are further described in this
research in Section 5.10.

190

Another question is whether it is desirable that the information agent, which is not a
domain expert, makes a judgement at this point of the conflict management process only
based on credibility estimates.

Following the framework designed in Chapter 4, the resolution step Credibility only
assesses and stratifies the reliability of the conflicting candidates. This is a first step
towards conflict resolution because it provides the most fundamental information on the
weight of the conflicting candidates. Section 4.2 outlined that in legal systems

'A lack of credibility may make evidence less persuasive, and may make it less
convincing then other, possibly contradicting, evidence from a more credible source.'

This principle is also incorporated by the rational conflict resolution scheme introduced
in Section 4.5. Hence, no decision is made solely on the basis of the credibility of the
candidates but a further evaluation of the evidence, provided in the following Sections, is
necessary to rationally attempt to resolve the conflict. The following of this section will
briefly present the main points of this strategy as outlined in Section 4.5.1.

For example, a database may be estimated 'not very reliable' by an information agent
based on its previous experience. However, this result should not be rejected only
because of a low certainty estimation. Reasons to adopt this approach have been
discussed in Section 4.5. These include that

(a) certainty estimations are not compatible throughout the environment, and

(b) there may be good reasons to look again at the candidates and to make a
judgement on the basis of all available evidence.

An example of the latter is that a source may improve its accuracy over time. In other
words, the source may have been recently overhauled and the existing certainty estimate
(e.g. the source is 'Not very Reliable') based on previous experience with this source,
may have become a poor basis for a judgement. Furthermore, good reasons may exist
that warrant a candidate which, from another point of view, is 'very unreliable'. For
example, an old database may be judged as 'unreliable' based on a derived certainty
estimate on 'old databases'. However, this source may be useful on historic (old) data.

In the following steps conflict resolution takes any evidence that warrants, or refutes a
result, into account. This includes the credibility of the candidates. It would, however,
not be Principle Rational (systematic or logical) to reject a result as 'unreliable', without
taking any available, possibly good, evidence for believing the result into account
(Sections 4.5.1 and 2.6). The following Sections will describe this systematic resolution.

191

5.8 Conflict Resolution - Domain-Specific Problem-Solving

In Section 4.5.1 the strategy to solve conflicts on the most domain-specific level, has
been outlined. In the following Section 4.5.2 this has been sketched out for the most
domain level resolution, called Domain-Specific Problem-Solving. In summary, the
following domain-specific problem-solving strategies have been identified:

1. Domain Expert Resolution;

2. Problem-Solving Communities.

Domain Expert Resolution

Existing DCEEI have integrated human experts into the sharing environment (e.g. Pan
and Tennenbaum [PAN91a]). Specific conflict management by human experts in
problem-solving systems has been described in Section 3.4.3, including Stolze and
Gutknecht [ST091] or Steiner et al. [STE90], Single system domain-specific resolution
is concerned with expert resolution systems. A system may exist in the enterprise that
resolves particular conflicts, they are experts on solving special conflicts. For example,
expert resolution strategies by a medical advice system are typically domain-specific such
as Cohen's et al. [COH87] knowledge-based consultant, the application of
Argumentation to medical advice systems [CLA90a] (Section 3.5.3.4), or domain-
specific planning systems as described in Section 3.4.4 (e.g. [KLE91]). These domain
experts may resolve specific conflicts over correct domain level alternatives such as a
diagnosis of a patient's illness.

A domain expert system can internally use any form of problem solving strategy or
knowledge representation. For example, the problem solving system may use a truth
maintenance system and / or belief revision strategies (Section 3.5.3.1. and 3.5.3.2.), it
may be argumentation-based (Section 3.5.3.4), use any quantitative mechanism (e.g.
Bayesian probability (Section 3.5.2)), or evidential reasoning such as RES by An, Bell
and Hughes [AN 93] (Section 5.7.2. and 3.5.2).

Currently only a few examples of domain-specific problem-solving systems exist of
which some have been mentioned in the previous paragraphs. In enterprise integration
these experts are typically human [PAN91a], However, future research and the practical
implementation of expert advice systems in the organisations, may produce more
machine experts that provide problem solving capabilities [BR089]. Thus, the sharing
environment should allow the flexible integration of autonomous, possibly pre-existing

192

domain expert systems as they become available to information agents [HEW91]
[BR089]. This section will sketch such an implementation.

Problem-Solving Communities.

Section 4.5.2 revealed that problem-solving communities, which build closed groups of
cooperating 'agents' (Please note the difference between information agents and these
local, domain-specific problem-solving agents Section 3.4.3), can participate in conflict
resolution in the following ways:

1. One or multiple local agents may produce results that are shared via an
information agent on the enterprise integration level. In such a case, multiple
local agents from the same community may produce conflicting results. The
information agent should then request a conclusive, non conflicting result from
the community as a whole. This would imply that the community has to resolve
any inconsistencies it has internally and, hence, resolve the conflict. In some cases
the community may resolve inconsistencies over time automatically and the
information agent need only repeat its request after that resolution has taken
place.

2. Local agents may be able to resolve conflicts assigned to them by an information
agent, that may not necessarily be based on results originating from this
community. In such a case, agents jointly provide a resolution, e.g. by negotiating
the conflict. For the information agent this kind of community problem-solving is
identical to domain expert resolution systems (e.g., a medical advice system)
because only the problem solving strategy in the community or in a single
problem-solving system is different. From the point of view of the information
agent both systems provide an equally valuable result to the conflict.

Architecturally the implementation of the described problem-solving capabilities into
the information agents might be considered. However, this is not desirable because:

• Information agents typically integrate information sources, but they themselves
lack domain expertise which would be necessary for domain level conflict
resolution (Sections 2.7.2. and 2.3). An example of this domain expertise is a
medical advice system which typically requires extensive knowledge from the
specific medical domain in addition to problem solving strategies.

• The domain experts can be very heterogeneous, e.g., they may internally use any
from of problem solving strategy or knowledge representation.

193

• A domain expert, that is a modular system, can provide domain-specific problem-
solving capabilities to multiple information agents.

• Domain experts can be integrated into the integration environment as they
become available by current research and development. New expert systems or
modifications to existing systems can be made without having to architecturally
redesign the information agent.

It can be concluded that conflict management is proposed by this research to be part of
the fimctionality of information agents. Existing research in DCEEI only integrates
human or machine experts as information sources [PAN91a], In other words, the agent
can request specific information from these sources. However, the previous paragraph
list reasons why 'problem solvers' should architecturally be integrated in the same way.
How this integration can be implemented, in principle, has been described for problem
solving systems [COH87] [CLA90a] [KLE91], Following these approaches the next
paragraphs briefly outline ways to integrate problem-solving experts to support conflict
management in enterprise integration.

One key design question is: How could the information agent identify that domain-
specific resolution procedures exist which are relevant to a specific conflict? Two
ways are described here:

1. An agent's Environmental Information (Resource Knowledge) with explicit
descriptions of domain-specific problem-solving capabilities;

2. Schema Knowledge on data structures may enable the agent to derive
cooperative interaction among local, domain agents in a cooperative problem-
solving community.

Expert conflict resolution capabilities that are provided by any source to assist the
information agent on domain-specific conflicts may be known to the information agent in
its Environmental Information. For example, a distributed planning system as described
in Section 3.4.4 may be a community of domain-specific planning experts (agents). The
Environmental Information on problem-solving capabilities may have the heuristic
'Conflicts on Production Planning may be resolved by the Planning Agent Community'
The query 'What is the Current Production of the Product BigMac' may result in the
conflicting candidates TOO units' and '500 units'. The agent has to know that queries on
the 'Current Production' are concerned with the domain 'Production' (Environmental
Information - Resource Knowledge in Section 2.7, or Enterprise Models such as MKS
by Pan and Tenenbaum (Section 3.3.1.2)). It can then send the original query to the local

194

planning experts. If the result matches with any of the candidates then this candidate is
correct and the case is resolved. If a different result other than the existing candidates is
returned then a new conflict detection and resolution process has to be started with all
three candidates. In any other case no local resolution is possible.

The previous paragraphs have briefly outlined ways in which information agents can
employee domain experts to domain level conflicts resolution. The limitations that
have to be addressed in further improving this integration include:

• It is much less complex to present all information on the conflict to a human
expert than to machine experts. Existing research on DCEEI has, hence, typically
integrated human experts, e.g. by presenting information on the expert's terminal
as demonstrated in the enterprise integration system by Pan and Tenenbaum
[PAN91a], The previous paragraphs have outlined a way to integrate 'human
experts' and 'machine experts' not only as 'information sources' but as 'problem
solvers'. Furthermore, this research has sketched out ways to integrate problem-
solving systems into the conflict management scheme. Only a few examples of
automated problem-solving systems exist (e.g. medical advice in Section 3.5.3.4).
Future developments of expert advice systems can be made available to
information agents in the architecture and conflict management scheme presented
here. In other words, the development of domain expert systems will automate
information integration in the presented architecture (e.g., Brodie [BR089] or
Hewitt and Inman [HEW91]). As described in this section this will include the
conflict management scheme's domain-specific problem solving.

• Furthermore, the evaluation of this resolution step in the next chapter will show
that it is difficult to identify which conflicts a domain expert can resolve without
that the information agent has to become an expert of the field itself. For
example, the domain 'medicine' is very general but multiple medical expert
advisory systems require the agent to be much more specific on the medical area
of the conflict. It might be necessary to provide the information agent with more
sophisticated methods to identify domain experts than presented in this section.
For example, it might be necessary to introduce mediators (e.g. similar to envoys
[PAL92] or mediators [WIE92] as described in Section 3.3.4) that are specialists
on identifying the appropriate advice system for a give conflict.

• Another difficulty is that the information agent, once it has identified an expert,
needs very detailed knowledge of the format in which this expert can handle the
conflict. In summary, current enterprise integration and modelling only facilitates
an information agent in very specific cases to use domain level expertise for

195

conflict resolution. Hence, more standardisation of interfaces between system
would greatly improve the practicality of this approach. For example, the
implementation in Chapter 6 is based on the use of global schema objects and
uniform C++ interfaces to local sources. Furthermore, communication protocols
such as KQML [CHA92] provide uniform access to heterogeneous systems.

Section 6.5.9 presents an implementation and case study that integrate an expert advice
system into a DCEEI such that it can provide domain-specific problem-solving.

In case any relevant domain-specific problem-solving can be identified by the information
agent then this conflict resolution can produce :

• Multiple new results that are sent through the detection phase again in order to
evaluate if these are still conflicting;

• Only one result is returned by the local problem solver(s) and, hence, the conflict
is resolved;

• No solution can be found and the resolution has to be continued into the next
phase.

In case not relevant domain-specific heuristics exist, or these can not resolve the conflict
the agent continues with the next resolution step: Scientific, Domain-Specific Heuristics.

196

5.9 Conflict Resolution - Scientific, Domain-Specific Heuristics

Domain-specific resolution strategies, described in the previous section, resolve a conflict
by the most problem specific resolution strategy. Often, however, no such tailored
resolution strategies exist for a given conflict. For example, candidates from two worlds
(sources) may be in a conflict for which no resolution expert on the domain level exists.
Moreover, these cases include the typical conflict in enterprise integration environments
called 'essential data conflicts' as described in Section 4.5.2. In other words, a data
conflict has arisen that is due to incorrect, incomplete or obsolete information, and not
based just on a question of choosing between mutually acceptable solutions.

In contrast to Domain-Specific Problem-Solving this next step applies general resolution
strategies to the domain-specific candidates and their evidence. Section 4.5.3 described
'scientific' judgements of the form mathematical - logical, empirical or metaphysical
[TRU87],

The CYCCESS approach [GUH94] is a good example of how general heuristics (also
called basic common sense) can be used to evaluate information, e.g. candidates. It is an
application that uses the CYC common knowledge-base [LEN90], that is, facts and
scientific rules to check results for their correctness:

"Data in the Structured Information Source [e.g. a database or a spreadsheet] can
be checked for consistency with basic common sense [which is stored in the CYC
knowledge-base]. For example, it is not reasonable for a person to be employed
before they were born, or for an automobile to be in two countries at the same
time" [[GUH94]p.l40],

The approach is, however, limited to the completeness of the concepts defined in the
global knowledge-base CYC.

An architecturally different way to make resolution heuristics available to information
agents is to adopt the CYCCESS approach for the design of information agents. In other
words, heuristics can be defined in the Agent Knowledge to evaluate if candidates are
consistent with the agent's general heuristics (its common basic knowledge in CYC
terminology). This may evaluate that candidates are incorrect. A conflict can be resolved
if one out of two conflicting candidates is incorrect and the other is correct.

197

The principle limitations of the described and similar approaches are:

• Candidates and concepts throughout the enterprise typically lack a common
structure (Section 2.3). Hence, the CYCCESS approach is currently only applied
to databases or spreadsheets [GUH94],

• The definition of 'general heuristics' for the information agent is a very complex
task. The CYC knowledge-base, if it is as complete as described in the literature
[GUH94], would provide this 'absolute knowledge'. A pragmatic application of
this approach to information agents is the definition of Scientific Heuristics
(Organisational Knowledge). These must, however, be very carefully chosen to
fit the absolute applicability to all facts that may be derived throughout the
environment. In other words, these heuristics would have to be individually
accepted as a 'company policy' (Principle Rational Section 2.6). Examples used in
Section 4.5.3 include:

♦ Arithmetic calculations ('2 + 2 = 4');
♦ Empirical facts such as 'Yogi weights 20 stone', or 'The world is

round',
♦ Metaphysical information such as 'Space is indefinitely extended'.

• In either case of a common knowledge-base such as CYC or scientific heuristics
these definitions would have to be implemented and maintained by human
experts. Research in enterprise integration is currently limited by heavily relying
on human experts or administrators.

In order to improve the way scientific heuristics are specified a systematic definition and
maintenance of the scientific heuristics, such as described by Lenat for the CYC
knowledge base [LEN90], could provide guidelines for

(a) defining and testing heuristics,

(b) a common set of heuristics that can be used in multiple integration environments.

Future research should be directed at making the definition and maintenance of scientific
heuristics less dependent on human experts. Examples could be (semi-) automated agent
learning and reuse of scientific heuristics (Section 5.7.2). Learning could include that the
agent constantly, systematic and autonomously interrogates human experts to improve its
scientific heuristics. Reusing of the CYC knowledge-base is, for example, targeted by the
CARNOT approach [COL91],

The burden of distributing all heuristics among all agents could be reduced by defining
only a specific, incomplete subset for each agent. A potential way to allow for

198

incomplete sets of 'scientific heuristics' is to let the agents share their scientific heuristics.
In other words, each agent could issue an inquiry for scientific heuristics relevant to the
schema object addressed in the query at issue. For example, the query 'What is the
Employee 'Peter's' FirstName' might be concerned with the global schema object
'Employee.FirstName'. The other agents could then contribute relevant heuristics which
could be used by the initiating agent to resolve its conflict. It is beyond the scope of this
research to further outline these concepts. However, they propose ways to improve the
current dependence on human experts.

In conclusion, conflict resolution by information agents is typically not complete in
respect to resolving all conflicts that are solvable by scientific reasoning. However, the
scheme presented here provides a framework within which the agent can apply all the
scientific reasoning available to it. This and the last section have demonstrated how an
information agent can apply reasoning with domain-dependent and general heuristics in
information-sharing environments.

It becomes obvious that, in the light of the weak approaches to apply general scientific
heuristics to conflict resolution, the information agent should make its reasoning as
explicit as possible to the clients of the integrated information. For example, it should
present the rules that have led to a resolution to any client that can make use of such
complex results, e.g., a human decision maker. Such an 'assessment' has also been
proposed by Clark et al. for results from Argumentation [CLA90a] (Section 3.5.3.4).

199

5.10 Conflict Resolution - Domain-Independent Evaluation - Reliability

The first resolution step employed local experts and communities. The previous step has
applied the domain-dependent information, which is candidates, their evidence and
relevant environmental information, to any general, scientific heuristics the information
agent is justified to apply. Section 4.5.1 determined that any further resolution has to be
domain-independent. Information available for this evaluation is typically the credibility
or reliability of the information sources and their candidates. A scheme to resolve a
conflict based on the candidate's reliability has been outlined in Section 4.5.4 that
includes the steps:

1. Ranking the Candidates;

2. Finding New Alternatives;

3. Negotiating a Compromise.

5.10.1 Ranking

In Sections 5.7 and 5.2.3 the reliability, or the certainty of the candidates (and their
evidence) has been identified. The certainty measures may have been taken into account
in the previous two resolution steps. For example, the phase Scientific, Domain-Specific
Heuristics may use certainty estimations attached to candidates to judge conflicting
candidates. However, this final phase of the resolution is concerned with resolving
conflicts based solely on certainty assessments.

In cases where no certainty estimates exist, no ranking is possible. In any other case a
ranking, at least in principle, is possible. In practice, however, most heuristics require
that all candidates have certainty estimates.

A general problem in enterprise integration is that certainty estimations from autonomous
sources are often not comparable (as outlined in Section 5.7). In other words, there is no
rational basis to assume per se that certainty estimations such as 'possible', 'certain', '75
per cent', 'very reliable', are used in the same way, based on the same concepts in any
source throughout the sharing environment. Furthermore, different kinds of certainty
estimates are typically incomparable. For example, a certainty based on high authority
and one based on certainty factors provided by a statistical package (Services) are
typically not comparable as such.

200

In addition, certainty estimates may be directed at overlapping but different things, such
as a specific source, a schema object, Groups of objects or sources (Section 2.7), or only
specific candidates. For example, some estimates are evaluating a whole source, e.g. The
Database is very reliable'. Another estimate may be concerned with a particular result,
e.g. an expert system may rate the reliability of a specific result in a particular situation.

Ideally, all certainty estimates from all sources would be from a uniform set of estimates
(Section 5.7.2). In such a case ranking and evidential reasoning would be easily possible
by methods such as the Dempster-Shafer rule of combing probabilities [DEM67]
(Section 3.5.2), semi-quatitative approaches such as presented by [AN 93] (Sections
3.5.2 and 5.7.2), or the Argumentation-based scheme by [FOX92b] (Section 3.5.3.4).
The latter, for example, is based on a pre-defined set of ranked certainty estimates.
Judgement on conflicting evidence is possible by evaluating the order of the certainty
estimates of the conflicting evidence.

Existing research in DCEEI cannot assume such a set of homogeneous, ordered certainty
estimates. Enterprise integration environments integrate autonomous, pre-existing
information sources with heterogeneous certainty estimates (Section 2.3, 3.3.1 and
3.3.2). It follows that typically in a sharing environment:

• Existing uncertainty management schemes are not assumed possible in all cases
where certainty estimates support conflicting candidates from heterogeneous
information sources;

• Ranking schemes are introduced, e.g. by [BAR94a] and in this research, that may
on principle incorporate the well known uncertainty management methods
(Section 5.7.2), but allow for only partial ranking of some certainty estimates.

The remainder of this section describes a typical way to rank conflicting candidates in
enterprise integration under the assumption of heterogeneous certainty estimates.

In principle, two steps are required to solve conflicts between candidates based on their
certainty estimates:

1. Ranking the certainty estimates; and

2. Judgement based on this ranking.

Hence, heuristics may exist that rank the certainty estimates and also include a judgement
based on these certainty estimates (Ranking and Judgement Heuristics - Organisational
Knowledge), for example:

201

'If one candidate is 'very reliable' and another is 'very unreliable',
then judge in favour of the former and reject the latter candidate'.

Alternatively, Ranking Heuristics (Organisational Knowledge) may only rank certainty
estimates. Judgement Heuristics (Organisational Knowledge) are then required that use
this ranking to derive a judgement of the conflicting candidates. For example, the
Ranking Heuristic:

"Certain' is a higher reliability estimate than '20 per cent confidence"

may exist. Based on this ranking a Judgement Heuristic may specify:

'If one certainty estimate 'has a higher reliability' than any other,
then always judge in favour of the former

Typically, however, these heuristics are more specific. They may also identify that the
judgement heuristic is only valid for specific sources, or specific domains. Thus, ranking
requires that the agents know how to compare which estimates, from which sources.
This can be done in three ways in enterprise integration environments:

A. Specific Certainty Estimations

Ideally, the information agent has heuristics that rank specific certainty estimations from
particular sources with each other. These heuristics are typically Business Rules or
Decision-Making Knowledge (Organisational Knowledge Section 2.7). Such an example
heuristic may be:

If the result A from source D1 is 'certain' and result B from source D2 is
’not certain’,

then judge in favour of result A.

However, this kind of ranking certainties is very unrealistic in large, open information-
sharing environments simply because the number of sources and their number of
uncertainty estimations is vast. Furthermore, it is typically impossible for an information
agent to assess all these estimates in a complete fashion from autonomous sources
(which may change the estimates they use over time).

B. Related Certainty Estimates

A more general way to rank and relate estimates is on the level of 'estimates from
particular sources'. Thus, two or more sources may have been developed under the same

202

modelling premises and have related certainty estimates. For example, two expert
systems may have been developed by the same modelling process and may be known to
use comparable, reliable certainty estimations. In addition, the agent needs to know the
range and order of the estimates. Such information would also be Decision-Making
Knowledge or Business Rules that are related to a whole source. For example, the agent
may know that two sources both have semantically related estimates, which both rank in
the order: 'Certain, Possible, Impossible and Uncertainty'.

Furthermore, the certainty estimates to assess credibility described in Section 5.7 include
those provided by local sources, other information agents, or the assessing information
agent itself. Certainty estimates that originate from the assessing agent itself are typically
based on the same modelling premises and thus of the kind 'related estimates'.

Related certainty estimates can, in principle, be based on uncertainty management
methods. For example, propositional estimates from sources with related certainty
estimates can be combined by the Dempster-Shafer rule [SHA76] [DEM67] (Section
3.5.2). In other words, this rule can be included in a ranking heuristic for such
probabilistic certainty estimates. However, as outlined in Section 5.7.2 more complex
reasoning schemes typically require domain-specific information. For example, complex
reasoning methods such as RES [AN 93] and other qualitative reasoning schemes
described in Section 3.5.3, are applicable to domain specific conflict resolution (Section
5.8). They cannot be applied by information agents, which lack domain-expertise, to rank
related certainty estimates.

C. General Acceptance of Certainty Estimates

A pragmatic solution to assess certainty considerations in information-sharing is to value
the estimates themselves. In other words, the information agent may have further
information on the general acceptance of certainty estimations from particular sources. It
may have Organisational Knowledge or Comments that validate certainty estimations
from a particular source. For example, an agent may know that certainty estimations
from a particular source D1 have 'universal assent'. In other words, the certainty
estimates are of a generally acceptable kind ('universal' is here the community of
information agents, administrators, or the enterprise). The information agent can then
apply heuristics such as

If one results is 'very unreliable' (less than 30 per cent confidence, uncertain,
impossible, unrealistic, etc.),

203

and another is ’very reliable' (more than 90 per cent confidence, highly
possible, very likely, strongly supported, etc.),

then judgement can be made in favour of the second result.

Ranking

The information agent would rationally first try to apply heuristics based on specific
certainty estimates, then those for related certainty estimates, and finally those for
general certainty estimates. This order allows the agent to first apply the most specific
heuristic and then to move to a more general one. In any case three outcomes of ranking
exist:

• Determinate;

• Indeterminate;

• Incommensurate.

Determinate ranking is possible in cases where two certainty estimates are rankable
based on any of the previously described methods. Two certainty estimations are
"incommensurate if it is neither true that one is better [more certain] than the other nor
true that they are of equal value" [[RAZ86]p.322]. For example, two certainty estimates
may exist that cannot be compared by the information agent because no common base
for these estimates exists.

"The ranking of A and B is indeterminate just in case it is reasonable to conclude
that A is better than B, that A is worse than B, and that A and B are of equal
value" [[SEU92]p.802],

In practice, candidates may have multiple heuristics and ways to rank their certainty
estimates which are not consistent, or indeterminate. In other words, indeterminate
ranking describes an unsettled situation in which there are aspects to rank the candidates
when considering one aspect, and different when considering another.

In summary, reliability ranking can conclude with one of the following:

1. Determinate ranking of the candidates is possible which resolves the conflict.

2. Ranking Heuristics exist but no Judgement Heuristics exist for the ranked
estimates.

3. Incommensurate certainty estimates make ranking impossible,

4. Indeterminate ranking of the certainty estimates makes a judgement impossible.

204

In the last two cases no Ranking Heuristics are available to solve the conflict. It may,
however, be possible that new alternatives or certainty estimates can be identified. This
evaluation will be described in the next section.

Ranking conflicting candidates is limited by the judgement and ranking heuristics that
have been defined for the information agent. In other words, Section 5.7.2 outlined that
potentially any kind of certainty estimate can exist in open, heterogeneous environments
that integrate autonomous (Section 2.4) sources. On principle, there may always be a
case when an information agent cannot relate certainty estimates because at least one of
the estimates is unknown to the agent. In addition, from an enterprise modelling point of
view the relation between certainty estimates in large, complex environments might not
be clear to the administrator or integrator at any one time. In such cases it might not be
intended to instruct the agent to rank specific certainty estimates. Hence, the limitation
by incomplete ranking and judgement heuristics is a realistic and pragmatic assumption
for complex enterprise integration environments.

However, a closely related limitation is that the implementation of very specific and
precise heuristics by human experts is very complex and laborious. On the other side,
very general heuristics make the implementation of a ranking and judgement scheme
easier and less dependent on the human implementation. However, the problem with
these heuristics is the assumption that very general heuristics are adequate to rank very
heterogeneous estimates from autonomous, heterogeneous information sources. Section
5.7 has described the heterogeneity of direct estimates (e.g., based on calculating the
statistical reliability) and derived estimates (based on the Role, Expertise and Authority
of information sources). Future work could be directed at ways to specify which
heuristics are adequate for a specific environment. Furthermore, the definition and
maintenance of heuristics could be automated further by modelling how this task is
undertaken by human experts.

205

5.10.2 New Alternatives

The previous step was aimed at ranking the credibility of candidates in order to resolve
the conflict. However, in this section New Alternatives are applied to rank candidates
that have incommensurate or indeterminate certainty estimates. Alternatives are
developed by:

1. Alternative Ranking and / or Judgement Heuristics;
2. Developing a Compromise.

Three kinds of 'Alternative Heuristics' (Organisational Knowledge) are described,
which enable the information agent to make suggestions. They are not Principle Rational,
that is they are not proven to be accepted by all potential clients of the integration
environment (Sections 4.5 and 2.6). However, the information agent believes that they
are rational in this sense (i.e. belief without proof in the form of Ranking and / or
Judgement Heuristics by a system administrator). Thus, the format and functionality of
these heuristics is identical to the heuristics described in the previous section, but the new
Alternative Heuristics represent resolution suggestions.

An information agent may have its own certainty order. These are called Alternative
Ranking Heuristics in Section 4.5.4. This ranking is alternative, or proposed because the
information agent believes that the heuristics are appropriate but their applicability is not
proven, e.g. in the form of rules from a system administrator. However, the alternative
ranking may be applied to Judgement Heuristics described in the previous section so that
a new alternative solution is developed. In the case where no Judgement Heuristics fit
the proposed ranking the agent may have some Alternative Judgement Heuristics. These
may also be applicable to any candidates that have been ranked in the last section but
lack suitable Judgement Heuristics.

In addition, an agent may have Alternative Ranking and Judgement Heuristics that not
only overcome the problem of ranking but provide a judgement on the conflicting
candidates based on their reliability.

A different way to finding alternative heuristics is to further investigate the circumstances
of the certainty estimates in order to redefine them. In other words, the agent
investigates the characteristics of the candidates, which have been identified in the
Credibility Phase (Section 5.7). In particular, the agent investigates those certainty
estimates that have been derived from roles, expertise, or authority characteristics.

206

Certainty estimates may be redefined by including circumstantial information on the
origin of estimates. In this way a compromise is developed similar to Sycara's approach
[SYC89] (Section 3.4.3). For example, the following conflicts may have resulted in an
incommensurate ranking:

Candidate 1 : Yogi lives in Pentonville Rd.,
Evidence: E^ = {('Result form from Source A' a 'Source A's expertise is

student related data')(very reliable)};

Candidate 2: Yogi lives in Rosemary Gds.,
Evidence: E2 = {('Result is from Source B' a 'Source B is an expert on

teaching staff)(very reliable)}.

A New Alternative may be derived such that the candidate from source A is more reliable
in respect to student data and the candidate from source B is more reliable on teaching
staff. In that case the conflict changes to:

Candidate 1: 'Yogi lives in Pentonville Rd.',
Evidence: E^ = {('Result from Source A' a 'Source A's expertise is

student related data')(very reliable on student data')};

Candidate 2: 'Yogi lives in Rosemary Gds.',
Evidence: E2 = {('Result is from Source B' a 'Source B is an expert on

teaching staff)(very reliable on teaching staff)}.

This alternative may, or may not be a solution to the conflict. This is decided in the
following Negotiation Phase.

207

5.10.3 Reliability - Negotiation

Negotiation in distributed artificial intelligence (DAI) is typically concerned with deals
and compromises among competing agents, e.g. described in Section 3.4.2, 3.4.3 and
3.4.4 for some distributed problem-solving systems. A fundamental difference between
enterprise integration and mainstream DAI is that information agents have to evaluate
results in respect to their persuasiveness in a Principle Rational way (Section 2.6). Thus
the negotiation stage aims to summarise the results. Further, New Alternative Heuristics
may have been suggested, or a compromise that allows judgement on conflicting
reliability estimates may have been developed. These are presented to persuade the
client, typically a decision maker. This persuasion and the suggestion of compromises
shares commonalties with negotiation protocols, e g. by Sycara [SYC89],

Not only decision makers but also application programs potentially request information
from the integration environment (Section 2.3 and 2.6). However, compromises can only
be meaningful to applications that can incorporate such complex results. The example in
the previous Section resulted in a compromise where candidate O] is 'very reliable on
student' data and candidate O2 is 'very reliable on teaching staff data. This compromise
may lead a decision maker to believe candidate ('Yogi lives in Pentonville Rd') if it
knows that 'Yogi is a student'. A human decision maker might be able to have this
knowledge and, hence, be able to apply this complex result. Closer integration of
information systems in future integration environments [BR089] may produce more
systems that can make use of complex results. For example, an expert system might
request information from the sharing environment, e g. on Yogi's home address, and may
be able to store not just one value but the following complex result from the integration
environment:

Compromise: 'Yogi lives in Pentonville Rd.' if Yogi is a student;
'Yogi lives in Rosemary Gds.' if Yogi is teaching staff.

A further development of this conflict resolution scheme should include adaptation and
learning. For example, New Alternatives may be suggested to a decision maker. The
decision maker might be able to make suggestions about the resolution of this case which
in turn could improve the agent's Alternative Ranking and / or Judgement Heuristics. It
could learn how efficient its suggestions are, or it could grade its alternative heuristics in
order to use them in a more adequate way (e.g.[VIT91]).

The limitations and future work of this Negotiation phase can be summarized such
that:

208

• The Negotiation phase could be improved by a more detailed scheme for the
interaction between information agents and human or machine 'users' of the
integrated information. A possible concept of how this negotiation could be
established has been outlined by research on distributed problem solving agents
(e g. by Sycara [SYC89])

• Learning should be implemented, e.g., in that New Alternatives are developed
based on the negotiation with expert users of the integrated information. A
compromise developed by these users could become a New Alternative Heuristic
in the Agent Knowledge. Furthermore, the negotiation result could be used by
the agent to make comments on the applicability of specific alternative heuristics
and estimates.

• Systems that use the integrated information should be more qualified to present
feedback to the agent (e.g., what circumstantial information on the conflict
management of a specific result can be used).

The presented integration environment uses homogeneous, benevolent information
agents. However, future research could be directed at integrating heterogeneous agents
(e.g. from different integration environments) that may be less benevolent. These agents
would not all exchange all their meta-knowledge. Thus, a conflict resolution scheme that
has been developed by one agent could be presented to other agents for a critique.
Section 3 .4 and Appendix A present a number of schemes in which agents could critique
their results. For example, Laarsi et a/. [LAA92] have developed a blackboard-based
negotiation protocol including the stages proposal of a result, critique of this result by
the other agents and a number of resolution heuristics to resolve a possible negotiation
conflict.

209

5.10.4 No Solution

The negotiation process may propose a compromise that is acceptable to the client of the

integration environment such as a decision maker. However, as outlined in Section 4.5.4,

resolutions may lie in the scope of the application program, i.e. the only resolution to

some conflicts may be to manipulate the results by application specific, e.g., risk

management procedures. Other conflicts simply lack a rational solution, e.g. if they are

based on preferences. It was, hence, concluded in Section 4.5.4 that a rational scheme

for information agents should not resolve all conflicts (Section 2.6).

However, the case has been evaluated in depth. The agent would try to present the

conflict and its resolution, or in case not resolution was reached the accumulated

information, to sources that can operate with such complex information (e.g.

Argumentation applies a similar Assessment as described in Section 3.5.3.4). This

includes the candidates, their evidence, their relations, any evidential resolution steps

applied to them in the phases Domain-Specific Problem-Solving, Scientific, Domain-

Specific Heuristics, or Domain-Independent Evaluation (reliability estimates). This

information is typically not informative to any client, but it may be important to domain

experts, e.g. specific decision makers.

Section 4.5.4 revealed that 'No Solution' may result from a lack of conflict resolution

information, or it may be due to the nature of a conflict that presents an inherent

inconsistency. Furthermore, research on conflict management has outlined that the

resolution attempt, without a resolution to the conflict, plays a positive role in problem

solving (e.g. Galliers [GAL90b]). For example, some conflicts typically lay outside the

scope of information agent conflict management and may be due to inconsistencies in the

organisation's policy. Such a conflict of policy may be 'High prices are good (more

income)' and 'High prices are bad (for staying in competition)'. In this respect identifying

the conflict and coming to the conclusion 'No Solution' is a meaningful outcome of

serious conflict resolution by information agents.

Furthermore, in the introductory sections of this research (e.g. Section 2.6) and as a

conclusion on existing research in Section 3.3, the fundamental basis to produce

210

meaningful, rational results from Distributed Collaborative Environments for Enterprise
Integration is that:

No solution to conflicting candidates is better

than irrationally manipulated,

but

consistent information.

211

5.11 Summary Conflict Resolution

The previous Sections have described conflict resolution. A general overview is provided
in the following Figure 11 in form of a flowchart. Conflict resolution is based on conflict
detection, hence, resolution begins with a genuine, data conflict that has been analysed
and formalised as described in Figures 8 and 10.

Conflict Detection

Determine Credibility
- Existing Estimates
- Direct Estimates
- Derived Estimates

Business Rules
> Decision Making Knowledge

Comments

| Organisational Knowledge
- Specific Certainty Estimates

| - Related Certainty Estimates
General Certainty Estimates

Business Rules

Figure 11: Conflict Resolution

212

5.12 Implementation Concept

The conflict detection and resolution mechanism described in this Chapter 5 will be
implemented in the following chapter to demonstrate the approach in a prototype. The
concept of the mechanism has been described in form of flowcharts in the figures:

• Figure 8: Gathering Phase

• Figure 10: Syntactic, Semantic Admissibility Phases

• Figure 11: Conflict Resolution Phases

These have been bound together to provide a single view on the whole implementation
concept of the conflict detection and resolution mechanism in Appendix E.

213

5.13 Conclusion

In Chapter 5 a mechanism for conflict detection and resolution has been outlined based
on the framework described in Chapter 4. A formal representation of candidates and
their evidence has been designed, which forms the fundamental basis for the mechanism.
In particular a detailed conflict detection is possible within this expressive, novel
representation.

The conflict detection and resolution mechanism is based on the Agent Knowledge and
information available in enterprise integration as outlined in Section 2.7. The following
evaluation phase will have to demonstrate how the mechanism operates with the
integration environment. Hence, the implementation of a prototype will have to include:

1. The information shared by autonomous information sources within the enterprise
integration environment;

2. The Agent Knowledge that incorporates the information agent's information on
itself, and the environment;

3. A conflict detection and resolution mechanism based on the implementation
concept outlined in Section 5.12.

214

5.14 Chapter Summary

In Chapter 5 a conflict detection and resolution mechanism for information agents in
Distributed Collaborative Environments for Enterprise Integration has been described.
The framework from the previous chapter has been applied for this design.

The Gathering of Candidates phase has introduced a novel notion of object identity
within the objects structures defined by Khoshafian and Copeland [KHO90]. These are
typically used in enterprise integration. The novel identifier is sufficiently expressive to
precisely specify sameness of candidates from heterogeneous systems with
heterogeneous notions of identity. Each candidate may be supported or refuted by
evidence. It is presented in a uniform way in the Gathering of Evidence phase. The
Gathering concludes with a Classification Phase, which determines if a conflict is at hand,
and classifies it according to the conflict classes outlined in Section 3.2.1. Furthermore,
the degree of object sameness is determined in cases when object correspondence is
assumed between conflicting candidates.

Syntactic conflict detection identifies if mere syntactic mismatches, e.g. translation and
communication problems, have been the cause for a conflict. Semantic conflict detection
rehearses the weak objects' correspondence assumption. Conflicts based on the
assumption that the candidates are concerned with the same thing (e.g. explicit conflicts
of the kind 'OpVnpR^' and 'not O p v ^R ^1), cannot be conflicting if the correspondence
of the objects cannot be established. A mechanism, called strengthening object
sameness, has been designed with which the information agent can analyse the
correspondence between the candidates. This analysis may lead it to decide which
candidates have a strong enough degree of sameness so that object correspondence can
be assumed.

Semantic conflict detection is concerned with ensuring that candidates use concepts with
the same semantic meaning (Concept Correspondence). For example, the information
agent can ensure that concepts are not simply subtype, supertype relations of the same
concept, or Synonyms (Semantic Mismatch - Resource Knowledge Section 2.7).

The Admissibility phase is concerned with investigating whether a candidate on principle
can be reliable and rational. In other words, the information agent's Organisational
Knowledge, or Comments (Resource Knowledge) e.g. from system administrators, may
include rules on the admissibility of specific information sources (or parts of these
sources). For example, a database may produce invalid, and, hence, inadmissible results

215

because it has had a disk crash. Should one out of two conflicting candidates be from an
inadmissible source then this result can be neglected, and only one valid result remains
(no conflict). After this phase a genuine data conflict has been detected.

Conflict resolution opens with identification of the credibility or reliability of the
candidates and their sources of origin (Credibility phase). Domain-Specific Resolution
Strategies may be available to resolve domain-specific conflicts for the information agent.
For example, a medical expert system may resolve conflicts over some medical issues.
Scientific, Domain-Specific Heuristics can be used, as e.g. described in the CYCCESS
[GUH94] approach, to apply scientific heuristics to evaluate the candidates (their
evidence and any relevant environmental information).

However, often no domain level resolution strategies, or general (scientific) heuristics are
available for a given conflict. A conflict resolution scheme solely based on the candidates'
reliability estimates is a typical example of a Domain-Independent Evaluation. Such a
resolution scheme is outlined in a three step process. First the information agent attempts
to rank the candidates' certainty estimates. In case this ranking cannot provide a solution,
the agent attempts to develop alternative solutions (New Alternatives). For example, the
agent may develop a compromise by diversifying the candidate's certainty estimates (e.g.
by specifying the expertise of the source of origin of the estimate). The information agent
functions like a 'Persuador' proposing compromises in Sycara's negotiation protocol
[SYC89]. However, the information agent proposes the New Alternative as a suggestion
to resolve the conflict to the client of the integration environment and not, like Sycara's
Persuador, to other agents. This final phase requires that the client is able to operate with
such complex results, e.g. a human decision maker.

It may be the case that a conflict is not soluble by Principle Rational (Section 2.6)
strategies based on the information agent's knowledge. In other words, the information
agent is able to identify that a conflict has no solution under the given circumstances. In
this case, a full report on the resolution steps can be presented to clients of the
integration environment, if these can evaluate such complex information (e.g. specific
decision makers).

216

6.1 Introduction and Evaluation Methodology

6.1.1 Introduction

The last chapter introduced a conflict detection and resolution mechanism for
Distributed Collaborative Environments for Enterprise Integration (DCEEI). This
chapter will now describe the implementation of this mechanism and its evaluation.

The next Section investigates the evaluation methodology (Section 6.1.2). Based on this
concept, a Distributed Collaborative Environment for Enterprise Integration has been
implemented (Section 6.2). First, a description of the implemented integration
environment is provided (Section 6.2.1). This is followed by an example integration
environment based on a fictitious university cafeteria (Section 6.2.2).

The integration environment includes multiple autonomous information sources, and a
model of an information agent (Section 6.2.3). A demonstrator is built that demonstrates
the integration environment from the point of view of an information agent. Section 6.3
evaluates the integration environment.

The conflict detection and resolution mechanism is implemented in a prototype called
the Demonstrator introduced in Section 6.4. The case study in the following Section 6.5
evaluates, step-by-step, the detection mechanism. This case study is critically evaluated
in Section 6.6, and followed by a conclusion and chapter summary.

6. Evaluation and Discussion

217

6.1.2 Evaluation Methodology

The framework of Section 4 demonstrated the necessity to show that

1. 'Conflict detection is complete in respect to any known conflicts among multiple
results.

2. The most domain-specific resolution is the most accurate for conflicts in
enterprise integration.

3. All resolution procedures have the potential to be incorporated by the resolution
scheme.

4. The Principle Rational resolution mechanism is functional in an enterprise
integration environment' (Section 4.6 Conclusion).

Furthermore, a proof of concept requires that the mechanism can be demonstrated to
function with the enterprise integration environment. This means that a prototype should
be implemented that includes:

5. 'The information shared by autonomous information sources within the
enterprise integration environment;

6. The Agent Knowledge that incorporates the information agent's information
about itself, and the environment;

7. A conflict detection and resolution mechanism based on the implementation
concept outlined in Section 5.12' (Section 5.13 Conclusion).

It follows that the evaluation has to be twofold in that it has to incorporate:

• An implementation of integrated sources and an agent model in an enterprise
integration environment;

• A prototype for conflict detection and resolution by an information agent within
this environment.

Thus, the following Sections describe an implementation of an enterprise integration
environment including a representative number of heterogeneous information sources. A
realistic scenario of interrelated information sources is implemented. This is necessary
to show that semantically related data can be inconsistent across heterogeneous sources,
and may also be inconsistent internally. In other words, this environment can show that
data conflicts, and schema conflicts are an inherent property of dynamically changing,
complex integration environments (point 5).

218

A model of an information agent is implemented which shows how the Agent
Knowledge is managed within the agent (point 6). Hence, a demonstrator is built that
allows the observation of the agent and the environment, from 'inside' the information
agent.

Finally, the implementation concept outlined in the previous chapter is realised in a
conflict detection and resolution mechanism within this agent model (point 7). This is
described in Section 6.4.

A case study is carried out within this integration environment. This is based on
information retrieved from the heterogeneous, autonomous sources which allows the
inspection of the origin of possibly conflicting data. The case study shows that:

• The Mechanism detects all known conflicts (point 1);

• It manages domain-specific and other strategies in the correct order (point 2);

• Any rational resolution strategy can be incorporated into the resolution
mechanism (point 3);

• The rational scheme is functional (point 4).

Furthermore, the case study outlines the contributions of this research to improve
existing conflict detection and resolution in enterprise integration environments.

219

6.2 The Enterprise Integration Environment
6.2.1 Overview

The integration environment and the information agents are implemented in a Microsoft
Windows [MSW] environment. This platform was chosen because it facilitates uniform
integration that can be easily observed and monitored. For example, it is easy to switch
between windows in which different information sources operate. The performance
drawbacks of the Microsoft (MS) Windows implementations, for example a lack of
parallelism and processing speed, can be neglected for the scope of demonstrating this
research approach.

It follows that the integrated sources are preferably Windows applications, which
operate smoothly within the Windows environment. Each information source has an
interface programmed in MS Visual C++ [MSV], These are menu driven, uniform
windows, that are conceptually like an agents' view on a local source. In other words,
two levels exist for every information source:

• The uniform Interface in C++;

• A local system such as the object-oriented database POET [POET], the relational
database SQLBASE within the SQLWindows application development tool
[GUP] (based on ANSI Structured Query Language SQL [SQL]), or a number of
application programs implemented in C++.

The local sources show the interaction of multiple relational databases (called BookDB
and MatDB), one object-oriented database (called PoetDB) and some application
programs. The latter are implemented such that they simulate:

• An Expert system (called MaktExp);

• A Standard software system with an internal sequential fde system (Manage);

• A software system that co-ordinates a small agent community of 'intelligent'
robots (RobMgmt);

Furthermore, an enterprise model is used throughout this research as a reference model
of the enterprise. This enterprise model is implemented in a C++ program called
EntMod which stores data in the object-oriented database POET. The model only
includes some example concepts. It is, hence, a reference model as used in federated
integration environments (Section 3.3.2) and not a master model (Section 3.3.1.1), or a
unified model of all systems (Section 3.3.1.2). This implementation corresponds to the
definitions of an open integration environment as outlined in Section 2.3.

220

Local User Local User

*\ I
Local User lineal U ser Local U ser

x \ n
a

Agenda;
► Information Request

-•r Returned Result
DBMS Database Management System

Software System
with Agent

Community in
RobMgmt

Standard
Software System) ^ ^

Manage ^ —-j
FileSystem

Local User Local User

n
I S

Local User

H
Expert System

MktEXP

w
I Agenti

» i—----- 1 Integration
+ I Agent I ^ Environment

Enterprise Automobil
M odel

In C++ and ----l ^L Bl« y trucklkanc*
Poet DBM S

h
SQL-Windows

Relational DBMS
I Agent IZT*.

IAgentin *

\ Agent 1 — POET
Object Oriented

DBMS

BoolcDB

Q
MatDB

PoetDB
// ̂ ^

Local User Local User

Figure 12: Demonstrator Implementation

The central component of the integration environment is the information agent. It is
implemented in a C++ program called Demons. This program implements all the
information available to an information agent and its reasoning capabilities. This makes
the Demons program suitable to evaluate this research. Each step is explicitly shown to
the inspector on the screen, including the reasoning and any data (e.g. the Agent
Knowledge).

However, this implementation can only show one information agent. For all other agents
only their views on the local sources are implemented. This simplification makes:

• The resulting integration procedure much more apparent;

• Draws the focus of attention to the concurrence of heterogeneous, autonomous
information sources that may produce inconsistent results.

The benevolent exchange of results and meta information between homogeneous
information agents can be simulated without corrupting the evaluation. Other research
has described enterprise modelling and schema integration (e.g. Pan and Tenenbaum
[PAN91], Barbuceanu and Fox [BAR94], Papazoglou et al. [PAP92a], Jagannathan et al
[JAG92], Huhns and Singh [HUH92], Section 2.3 and 3.3), or information agent
communication (e.g. KQML [CHA92]) in various ways. This existing research
demonstrates how results are retrieved and how meta information (Agent Knowledge) is

221

exchanged among information agents or to one managing agent (Section 2.5). In other
words, it may be assumed that

the information available through the local views of the information agent in the
Demons program,

is identical to the information it would receive from other information agents
that could integrate these sources, and forward the results to the managing
agent (i.e. in the Demons program).

All integrated sources, their uniform interfaces (Agent Views), and the enterprise model
are described in detail in Appendix D. The model of an information agent as
implemented in the Demons program is described in Section 6.2.3.

222

6.2.2 Cafeteria Integration Environment Scenario

The previous Section has described the software and hardware platform of the
integration environment. This Section will now introduce the scenario described within
this integration environment; a fictitious Cafeteria as might be operating in a University
of the 21 century.

A small number of food products are delivered to the Cafeteria. These are then cooked
and sold to the customers. This 'cooking' is very basic such as frying chips or
assembling hamburgers, and might be described as fast food production.

Two relational databases are available, one contains data on the products (MaterialDB),
and the other stores any general book-keeping information (BookkeepingDB). The latter
database receives frequent sales data (products and the quantity sold) from the cafeteria
staff who work on the cash registers. The products sold in the restaurant are
manufactured by automated robots. The program RobotMgmt manages the kitchen
including these robots. In addition, an object-oriented database (ProductionDB) has
been installed for data concerned with this production related section of the business.

The robots on the shop floor jointly cook all the products according to demand. Hence,
they are a small community of cooperating agents. These bid for the assignment of a
cooking task (a task is the production of a product). The actual task assignment is
decided by the robot management system RobotMgmt.

The automated production allows the company flexibly to produce food according to
changing demand. It is therefore necessary to have a production management system
(ProductionMgmt) that plans the production in accordance with the current demand for
any product. Furthermore, a marketing expert system (MarketingEXP) gives this
production management system some basic guidelines on the overall company
philosophy on production management.

A partial enterprise model is defined for this company as a service for reference by the
information agents. This enterprise model is conceptually similar to the CYC knowledge
base [LEN90], though it is a partial model of the enterprise such as Pan's MKS
[PAN91a] or TOVE [FOX92],

A detailed description of these sources and the data they exchange is provided in
Appendix D. This includes a brief description of the data structure within these sources.

223

6.2.3 Information Agent Model
6.2.3.1 The Agent's View

In the previous sections the integration environment has been described including the
local sources, their local Agent Views on the information available from the source, and
the enterprise model. However, in this section the model of an information agent within
this environment will be outlined.

A G E N T
Abstract Overview o f Processing in the Environment

V I E W PoctDB

Flaoned_Dcaiand_Pef_Hour/
(from Marketing F

PKtttiintianMmnt RobotMgmt

Urgent Request
(Saks Staff)

Calculate
Demand.

Order from
Production/

Data Avaiablc from the Environment

Employee__________
E Number
First Name
Last Name
Pay Per Hour
NI Number
Address

AddressJNo
Street
Town
Zip_Code

Skills
Weight
Type

Robot.
Name
Capability
State
RJWeight
Robot_Repaiis

æ Name
Name

Cost

Agent Head Enterprise Model Local Agent Views

Assign Robot
to Production

Task

MaterialDB

1 BookkeepingDB

Daily_Production

Product
Product Name
ProductiônJSold
DailyJProductiofl
Production lim e
Wwtingjlime
Robot
Ingredroits
Current Sales
Urgent "Request
Demirrâ

Curreat_Denxand
Prod_Quantity
Planned Hourly 1 IrmHiul

yi
Figure 13: Agent View

Figure 13 shows the environment as it might look 'from the agent's point of view' (called
the Agent View), including:

• The Global Agent View which is a description of the integration environment
(systems and their interaction), and the information that is available to the agent
from the environment. The Global Agent View is composed of an agent's own
local view and schema information from other agents' views.

• An agent has it's own 'window' called Agent Head. This includes the 'Demons'
demonstrator which manages the Agent Knowledge and the conflict detection
and resolution mechanism. The Agent Knowledge includes other Schema

224

Knowledge, Resource Knowledge and Organisational Knowledge, as described
in Section 2.7 (Figure 3: 'Information in Enterprise Integration') and in the
description of the conflict detection and resolution mechanism in Chapter 5.

• The enterprise model can be accessed as a reference by the agent through the
program EntMod.

• Six Local Agent Views are installed. These represent the channels with which
the agent can interact with its own Local Source, and other agents that manage
the other information sources. For example, the information agent's local source
could be the system MarketingEXP (MaktExp). The other five views represent
the other sources which could be integrated by other agents. The evaluation
methodology (Section 6.1.2) is to focus this implementation on a pragmatic
demonstration of conflict detection and resolution so that:

• All local views have uniform interfaces implemented in Visual C++; and

• All local views directly address the local sources and no other
information agents.

225

6.2.3.2 The Global Agent View

Section 3.3 described different approaches to enterprise integration. These include tight
integration based on master models, unified models, federated architectures, or
mediators. A federated integration environment facilitates a lose integration of
autonomous information sources and, therefore, provides a realistic platform for
enterprise integration. References to the functionality of federated information systems,
e.g. exchange and integration of schemata in sharing environments, can be found in
Section 3.3.2 (e.g. Huhns et al. [HUH91] [HUH92]). An example of a loosely
integrated, environment could be implemented along the following lines.

Each information agent shares its view on its local source with the other agents. For
example, an agent A exports its schema information on its local source, with a reference
that this information is available through agent A, to all other agents. In addition, each
agent has information about generalisations (Mapping Information - Resource
Knowledge) to integrate information from other sources (Agent Views). An example
generalisation may be that the schema object Robot JName in the RobotMgmt system
may be related to schema object Robot_Name in the ProductionDB. The generalisations
are used to construct a Global Agent View by matching objects in schemata imported
from the other Agent's Views, e.g. described by Heimbinger and McLeod [HEI85], or
Huhns and Singh [HUH92],

Abstract Overview of Processing in the Environment

ProductionMpmtP1 anned_Dcmand_Per_Hour
(from Marketing Expert

U rgentRequest
(Sales Staff)

Calculate
Demand

Data Avaiable from the Environment

/ Order from
Production/

PoetDB

RobotMgmt
Assign Robot
to Production

Task

1

j Daily_Production j

MaterialDB

BookkeepingDB

Employee__________
E_Number
First Name
Last Name
PayPerH our
NINumber
Address

AddressNo
Street
Town
ZipCode

Skills
Weight
TVpe

Robot________________
Name
Capability
State
R_Weight
RobotRepairs

Repair_Name
RobotName
Cost

Product________________
ProductName
Production_Sold
DailyProduction
ProductionTime
WaitingJTime
Robot
Ingredients
Current_Sales
U rgent_Request
Demand

CurrentDemand
ProdQuantity
PlannedHourlyDemand

Figure 14: Global Agent View on 'Cafeteria' Environment

226

A Global Agent View on the 'Cafeteria' environment has been constructed by merging
the local schemata in the Agent Views of the sources ProductionDB (program PoetDB),
BookkeepingDB (program BookDB), MaterialDB (program MatDB), ProductionMgmt
(program Manage), MarketingEXP (program MaktExp) and RobotMgmt (program
RobMgmt).

The schematic integration of the information sources in the sharing environment has two
levels. The top level is the Global Agent View, which shows an integrated view of the
information available throughout the environment. Figure 14 provides a very high level
overview of the processing and information sources in the environment. The
information available throughout the environment is categorised as Employee, Robot
and Product related data. In other words, all information that can be requested by the
information agent that has this example Global Agent View is listed in three redundancy
free lists. It is composed from the redundant information of all sources. This
composition becomes explicit on the second level of the schematic integration. It is
implemented in the Agent Knowledge, embodied in the 'Agent Head'. The Agent
Knowledge has schematic information that represents the lower level of the Global
Agent View. In other words, for each schema item in the Global Agent View all the
local schema items that can provide this information are listed (described as
generalisations, e.g., Section 3.3.1.1). Each local schema item has a reference to the
source of origin that it resides in.

For example, the Global Agent View has the schema item Employee.First_Name. This
global schema item First_Name in the category Employee has the local schema items:

Employee.First Name from Source BookkeepingDB, and

First Name from ProductionDB.

The latter information is available through the Agent Knowledge that resides in the
Agent Head (program Demons).

227

6.2.3.3 Agent Knowledge

All the information that is available to an information agent has been categorised in
Section 2.7 (overview in Figure 3). The information is implemented in the Agent
Knowledge and can be investigated within the Demons program. Figure 15 shows the
opening Window of the Agent Knowledge. The menu driven program can be initiated to
begin the conflict detection and resolution mechanism, or a browser that searches the
Agent Knowledge.

Figure 15: Agent Knowledge Managed by the Demons Program

The conflict detection and resolution mechanism is described and demonstrated in a case
study starting with Section 6.4. In this Section the implementation of the Agent
Knowledge, which is later used by the conflict management, is described. This
description follows the categories outlined in Section 2.7, that is, Schema Knowledge,
Resource Knowledge and Organisational Knowledge. An Overview on the information
that is stored in the Agent Knowledge is provided in Figure 16 at the end of this Section.

Schema Knowledge

The previous Section has outlined the Global Agent View and its lower level schema
objects. Global schema objects, local schema objects, and the references to their source
of origin are all Schema Knowledge.

Integrity constraints may reference schema objects (Integrity Constraints - Schema
Knowledge). They can define the schema objects, e.g. Production_Time, or individual
objects described by that schema object (Product_Name = 'BigMac'). For example, the

228

schema object Production_Time (defined in the Object variable) may be constrained to
only positive time values by a definition in the variable Constraint such as
'Production_Time > 0 Minutes'.

Resource Knowledge

The following information is stored as Resource Knowledge:

• Information on the Identifier_Class is contained in the form of a list with the
Naming Worlds Wx and the description of their according Identifier_Classes. The
description includes the name of the variable that needs to be requested from
world Wx to obtain the Identifier_Object. For example, the description 'User
Defined Key in a relational database' specifies that the variable User Defined Key
needs to be requested from the agent that manages the relational database (Wx)
in order to obtain the Identifier_Object.

• Environmental Information on schema objects includes:

- A specification when the schema objects are an essential property of any
concept. For example, the attribute First_Name of the schema object
Employee may be defined as an essential property of the concept Employee.

- Instructions on how to ensure that the time and form of a certain object
(described by a specific schema object) is correct (e.g. objects may have to be
monitored over time to ensure that results are relevant);

- Information on subtype - supertype relations (includes 'is_a' and 'has_a'), and
synonyms ('is_equivalent_to') may be attached to schema objects. For
example, the synonym definition 'Fat is_equivalent_to Overweight' may define
that these concepts in the results 'Yogi is overweight’ and 'Yogi is fat'
(requested through the global schema object Weight) are synonyms.

• The Expertise variable specifies for any schema object or source one or multiple
areas of expertise, e.g. 'Production', 'Marketing', 'Finance', 'Cooking'.

• The Authority identifies an assessment of any schema object or source's
authority, such as 'High authority on Production planning'.

• Roles of objects or sources within the environment are specified in the variable
Role, e.g. 'Equipment Operator'.

• Information on Problem-Solving Strategies including local problem-solving and
cooperative problem-solving strategies. Information on the existence and use
(accessibility by the information agent) of strategies is stored. For example, an

229

information agent may be able to resolve conflicts concerned with specific
domains by sending the conflicting results to a specific expert system.

• Resource Knowledge also includes local Service. A service is an object that can
be requested from a local source. For example, 'Statistical Reliability of Hourly
Demand' may be a service to provide a statistical estimate on the schema object
HourlyDemand that can be requested from the source ProductionMgmt via its
information agent.

• Counterpart Relations, Generalisations and Mapping Information may reference
schema objects (Semantic Matching). Counterpart relations establish a
correspondence either to objects in other information sources or to objects in the
enterprise model in the variable Counterparts in the format CXy and RCXy

(Section 5.2.1.4). Furthermore, the variable Generalisations stores
generalisations between the local source and other information sources, or
between the local source and the enterprise model in the format (G(ist(GO) <=>
(ist(CjT))) (Section 3.3.1.1). Mapping information, for example to map between
a difference in granularity, or weight measures between sources, may be attached
to these generalisations.

• Comments from designers, system administrators or the agents themselves may
be linked to schema objects. Formally, Comments have three components: An
Originator, e.g., a system administrator; A comment Description, e.g.,
Admissibility; and The comment Value, e.g., 'not admissible' or 'temporary out
of order'.

Organisational Knowledge

A third source of knowledge for an information agent is its Organisational Knowledge.
This includes many procedures and rules that the agent needs as 'handbook information'
to function in the integration environment. Examples include the integration of
schemata, or the communication with the integrated information source and other
agents. It follows that the conflict detection and resolution mechanism also is
Organisational Knowledge. However, in this section only that part of the Organisational
Knowledge required by the conflict detection and resolution mechanism is described.

Section 2.7 demonstrated that Organisational Knowledge is defined either as Business
Rules or Decision-Making Knowledge. The difference between the two is not the type
of Organisational Knowledge but the way in which this knowledge is derived. Business
Rules are agent specific and may vary from agent to agent. Decision-Making

230

Knowledge is defined for all agents alike. Hence, Organisational Knowledge can
typically be both Business Rules or Decision-Making Knowledge of the following kind:

• Scientific Heuristics are domain-independent, and enable the agent to make a
judgement on domain-specific information, e.g., candidates and their evidence.

• Credibility Heuristics:

I. Heuristics specifying the credibility of schema objects, sources, or Groups
directly (Implemented in the variable pairs: Origin and Certainty);

II. Heuristics relating Roles with credibility (Implemented in the variable pairs:
Role and Certainty);

III. Heuristics relating Authority with credibility (Implemented in the variable
pairs: Authority and Certainty);

IV. Heuristics relating Expertise with credibility (Implemented in the variable
pairs: Expertise and Certainty).

• Admissibility Heuristics are referenced to specific objects, sources and Groups.
These heuristics are implemented in the variable pairs Origin (i.e. it specifies the
source, object or Group) and the variable Admissibility. The latter can have the
value 'inadmissible', or it may include a conditional admissibility. For example,
'If today is the 1.1.96 then inadmissible'.

• Ranking and Judgement Heuristics:

(a) Ranking and Judgement Heuristics rank the credibility of sources, Groups, or
specific objects, and include a judgement;

(b) Ranking Heuristics only rank the credibility of sources, Groups, or specific
objects, without including a judgement;

(c) Judgement Heuristics only judge ranked credibility ratings for conflicting
contributions.

Each category of Ranking and Judgement Heuristic is classified into Specific
Certainty Estimates, Related Certainty Estimates and General Certainty
Estimates as outlined in Section 5.10.1.

• Alternative Ranking and Judgement Heuristics are believed by the information
agent to be suitable for sources, Groups, or specific objects to rank and / or judge

231

them. However, they are only alternative, or suggested, heuristics because no
definite insurance (e.g. a Business Rule defined by a system administrator into
the Agent Knowledge) is available for their applicability (Section 5.10.2).

= _______ Agent Knowledge Overview
SCHEMA KNOWLEDGE

Local Name
Local Source
Integrity Constraints

RESOURCE KNOWLEDGE
IdentifierClass
Environmental Information

Essential Properties
Form and Time
Sub-Supertype
Synonyms
Expertise
Authority
Role
Problem Soloing

Local Problem Soloing
Community Problem Soloing

Services
Semantic Matching

Generalisation
Counterpart

Comments
ORGANISATIONAL KNOWLEDGE

Scientific Heuristics
Credibility Heuristics

Direct Credibility
Role Based
Expertise Based
Authority Based

Admissability Heuristics
Ranking & Judgement Heuristics

Specific Heuristics
Related Heuristics
General Heuristics

Alternative Ranking Heuristics

Figure 16: Overview Window in the Agent Knowledge

Figure 16 provides an overview of the information implemented in the Agent
Knowledge. This overview differs from the overview in Figure 3 in that:

• Allowed Operations have not been implemented in this model of the agent
because it is not concerned with distributed updates but specifically with
information relevant to conflict detection and resolution among retrieved results.

• Existential Information (Resource Knowledge) is derived by the information
agent based on its intentional information (e.g. Environmental and Schema
Information). Hence, it is not explicitly defined in the Agent Knowledge.

232

• This overview is more specific than that in Figure 3. Hence, it entails a more
detailed list of the contents of the subcategories than Figure 3, for example,
Essential Properties are listed as a kind of Environmental Information.

233

6.3 Evaluation of the Integration Environment

The implementation of the integration environment 'Cafeteria' has illustrated how the
information described in Section 2.7 can be gathered in Enterprise Integration
Environments. Furthermore, it shows how this information can be explored and managed
in an agent model. The description of available information in enterprise integration in
Section 2.7 is complete. However, some Organisational Knowledge that is the agent's
'handbook information' defined in the Agent Knowledge, may include information
specific to the conflict detection and resolution mechanism (e.g. Credibility Heuristics).

The 'Cafeteria' example demonstrates a fictitious enterprise integration environment.
However, it makes apparent that the integration of local agent views (schemata) of
heterogeneous information sources into a complete global view is, even with this small
example, very complex.

Existing research on enterprise integration and the presented implementation rely heavily
on human experts. For example, current research in enterprise integration assumes that
an 'enterprise model' such as TOVE [FOX93], MKS [PAN91a], or the common
knowledge-base CYC [LEN90], is defined and installed by human experts. In other
words, such a model is man-made and has to be administrated or updated constantly by
human experts. This is a potential limitation of the practicability of current research in the
field of DCEEI. However, for some areas of enterprise integration agent learning can
reduce the dependence on manual installation and maintenance. Some potential ways to
design such learning mechanisms have been briefly mentioned in the previous chapter
(Section 5.4.2, 5.9 and 5.10.3). For example, the information agent could automatically,
and systematically request new meta-knowledge from the integrated sources to update its
Agent Knowledge, Furthermore, agents could improve and update their Agent
Knowledge by autonomously interrogating domain experts.

The implementation shows that the Agent View and the Global Agent View are
independent of the information that is actually stored in the information sources. The
views provide access to the information sources but no control over these autonomous
sources. In other words, in dynamically changing, concurrent environments
inconsistencies between an information source and the agent view is, at least temporally,
unavoidable. Hence, cross system consistency is an unrealistic assumption made by most
research in enterprise integration described in Section 3.3.

234

Matching objects from different information sources and agent views into common
concepts in the global view carries the potential risk of semantic misinterpretation. The
implementation makes it explicit that it is adequate to assume schematic incompleteness,
or incorrectness (The conflict detection and resolution mechanism has therefore been
based on this assumption).

In summary, the implemented environment shows that inconsistencies on the global
level (between an agent's local view and the local source, or across local views) are
inherent in enterprise integration. Semantically related data can be inspected at its origin.
No control mechanism of the information agents can control or exclude these
inconsistencies within and among autonomous sources. It can potentially become
inconsistent across systems.

The implementation of the agent model (Agent Knowledge) shows how the information
agent can manage all the information available to it in enterprise integration environments
(Section 2.7).

It remains to be demonstrated how the conflict detection and resolution mechanism
outlined in the implementation concept can be realised. Furthermore, the functionality of
the mechanism has to be shown, and that it fulfils the conditions set out in the conclusion
of Chapter 4 (Section 4.6 and Evaluation Methodology Section 6.1.2). The next Section
addresses these issues.

The conflict detection and resolution mechanism is implemented as a demonstrator. It is
part of the Agent Knowledge (Organisational Knowledge). In Figure 15 the opening
window of the Demons program is shown. In this window a choice can be made to
investigate the Agent Knowledge (as described in the previous Section 6.2.3) or to run
the conflict management program. The investigation of the Agent Knowledge has been
the subject of the previous Section.

In this section the conflict management program is introduced that strictly realises the
implementation concept outlined in Section 5.12 (in C++ as is the whole agent model).
This is demonstrated in the following case study, which systematically runs through
each step of this conflict management program. Hence, each section in the case study
corresponds to a section in Chapter 5 describing this step (e.g. Section 5.2.2 Gathering
of Candidates provides the design for the Gathering of Candidates in the case study
Section 6.5.1).

The conflict management program (called the Demonstrator) has two sources of data
input:

• Local Information (results and other evidence originating from local sources)

• the Agent Knowledge.

Local information from the local sources is retrieved through the Local Agent Views
(Section 6.2.3.2). The retrieval is a manual, menu driven process that allows the
observer to retrieve results and evidence from the local sources. This manual inspection
follows the premise that the sole purpose of the retrieval in this evaluation is to prove
that (and how) semantically related data and schema information may exist that is
inconsistent in concurrent, dynamically changing environments of heterogeneous,
autonomous sources (Section 6.1.2 Methodology). An example retrieval process is
briefly outlined in Section 6.4.2.

The Demons program automatically searches the Agent Knowledge for the relevant
information for each conflict resolution step. However, this process is not a 'black box'
that simply produces information from the agent model. Each detection or resolution
step is opened by a 'walk through' that automatically selects the Agent Knowledge
relevant for this specific step. The selected information is shown on the screen and can
be inspected at any time by switching to the Agent Knowledge Search window.

6.4 Demonstrator For Conflict Detection and Resolution
6.4.1 Introduction to the Demonstrator

236

The detection and resolution process constantly analyses the conflict (first by assessing if
a conflict exists and then to resolve it). Hence, a Result Window always provides an
overview of the information gathered on this case, and any results that have been
produced about the conflict case that is currently managed.

DEMONS ¡ S B
Elle ; £dit View State)£ß¿ E Ö S Ü 1SH] ■....... . j
«=» Demonstrator EE Agent Knowledge 1111118

Please Insert the Result for the Object: Employee.First_Name
From the Local Source: PoetDB
On the Attribute Class: FirstName
=> Mark

Please Insert the IdentiFier Object Ualue For the :
Surrogate Identifer
=> 789

t oF Inuestigation as in the
ent Uiew is: FirstName

2 LOCAL Objects

Knowledge has the Following
d Identifier Class Informatioi

P l p a s e Incept- t-hp Mocnlf fnr fhp flhiprf"

From the
On the f
=> Pete

Reguest
For the
=> Empi

ni niipp Fi pefr
Result Window

nroi nhiore -Employee.Fit

InFormation Gathered on the Candidates

01. ([(Surrogate IdentiFer = 789)
Surrogate IdentiFer in an object-oriented database) PoetDB]

Tuple
(u1(ENumber): 123, u2(FirstName): Mark);

02. ([(0ser DeFined Key: Employee.ENumber = 123)
User DeFined Key in a Relational Database) BookkeepDB]

Tuple
(u1(E_Number): 123, u2(FirstName): Peter);

For Next Window GATHERING OF EUIDENCE Press Enter........... |

in an objet
rrogate Ich

mployee .Fit
epDB

a Relation
er Defined

Figure 17: Demonstrator with Result Window

Figure 17 shows the Demonstrator with its three windows:

• The Demonstrator window with the conflict management program;

• The Result Window that shows the current state of affairs ('all that is known
about the possibly conflicting candidates'); and

• The Agent Knowledge Search window, which is used to search the Agent
Knowledge for relevant information (it presents the latest search results until a
new search is initiated by the Demonstrator).

The following case study demonstrates example queries that have been managed by the
Demonstrator with the implementation of the 'Cafeteria' environment as described in
Section 6.2.2.

237

6.4.2 Information Retrieval

In this section some example information retrieval processes will be described to
demonstrate the functionality of the integration environment. Furthermore, it will show
how these processes provide the information from the local sources to the Demonstrator.

Any information system in the enterprise may have a number of'local users' (Figure 12).
These may be humans or applications that request information from this source. For
example, a local user of the relational database ProductionDB may request the first
name of an employee with the employee number '123'. This is formulated in the local
database language SQL:

Select First Name from Employee
where E_Number = 123

This query may result in a solution in the form o f :
First Name: Peter

However, it may also be necessary for the user to ensure that this result is consistent
with any other source in the environment. Furthermore, the user may want to request
information that is not stored at the local database ProductionDB but is located in
another database. In these cases it is necessary that the user requests information from
the environment. In principle, two ways exist for a client, which can be a human user or
an application systems, to request information from the Collaborative Distributed
Environment for Enterprise Integration (DCEEI):

1. A client may request information from its local source, e.g., a database
management system. This system may initiate its integrating agent to request
information from the distributed system (DCEEI).

2. A user may have a user interface, as described in Sections 2.3 and 2.6. This is an
expert that mediates between the information agent and the user. For pragmatic
reasons this translation has been reduced by assuming that the user understands
the propositional calculus used by the agents. The interface is therefore identical
to the Global Agent View (Section 6 .2.3.2).

In any case an information agent is initiated and appointed 'managing agent' to receive
the information request. The client on the user interface, or the management system that
acts as a client to the integrating agent, requests information from the agent. This agent
has to then match this request with an object from its global view. This is a value based
schema object matching task based on a specific enterprise modelling strategy. For
example, many enterprise integration environments provide a common ontology
(Section Master Models or Unified Model Section 3.3.1). Otherwise a federated

238

mechanism would let the information agents directly share schema information. This is
conceptually similar to federated databases described by Heimbinger and McLeod
[HEI85], or for an object-oriented database with shared and private sources by Kim et
al. [KIM91a], Any of these schemata may enable the agent to match the requested
object on different, hierarchically related levels of abstraction. The agent would aim to
match the object to the most specific schema object possible (lowest possible level of
abstraction (e.g. implemented in CARNOT [COL91] Section 3.3.1.1).

An example query (Example 1) could be:

'What is the First Name (attribute) of an Employee (object) with the employee
number 123?

That query translates into the propositional calculus introduced in Section 5.2.2 as:

(Opvi(EJNfumber): 123, V2 (First_Name): ?)

Provided the agent can match the request to its schema objects (typically in the global
view) then it can identify which sources can provide this information. For example, the
agent can find the objects Employee and an attribute First Name in its Global View.
The agent would investigate its Schema Knowledge for Local Names corresponding to
the global schema object First Name (please note that the Global Agent View is free of
redundancies Section 6 .2.3.2). In this example, two entries can be found in the agent's
Schema Knowledge (in the variable Local Name):

Local Name: Table Employee First Name Source: BookkeepingDB;
Local Name: Class Employee First_Name ProductionDB.

In other words, generalisations map the global entity Employee to the two Employee
entities in the sources BookkeepingDB and ProductionDB. Further investigation of the
Agent Knowledge also shows that the entities Employee both have the attributes
E Number and First_Name. In principle, the query would be sent to agents that
integrated the two sources BookkeepingDB and ProductionDB. These agents translate
and forward the request to the local management systems (e.g. the POET database and
the SQLBASE relational database management system). In the Demons implementation
this can be done directly via the Agent Views PoetDB and BookkeepingDB. In return
the following results can be retrieved:

FirsfJName: Peter (from BookkeepingDB)
First Name: Mark (from ProductionDB)

The managing agent now has two results provided by the information retrieval process
of the DCEEI. The agent now needs a conflict detection mechanism to ensure that the
results do not conflict. This mechanism is provided by this research and opens with the
Gathering phase in the following Section 6.5.1.

239

The previous Section has described the functionality of a possible information retrieval
process in Cooperative Distributed Environments for Enterprise Integration (DCEEI). It
provides the conflict detection mechanism with the results to a given query. The
example query:

'What is the First_Name (attribute) of an employee (object) with the employee
number 123?'

has been used to show how the environment produces two results 'Peter' and 'Mark'.
These results now need to be uniformly gathered by the detection mechanism. In other
words, the results are specified as:

0|.(v|(E_Number): 123, V2 (First_Name): Peter)

0 2 -(vi (E_Number): 123, V2 (First_Name): Mark)

These results need to be uniformly presented in the object-oriented form of:

[Identifier Object Identifier_Class Wx] Type Value

Some variables are already known to the agent including the Value, and the Naming
World Wx. The Value variable simply contains the object's O] and O2 attribute names
vm (that is, in this example, the attributes E_Number and First_Name) and their data
values (e.g. 'Peter' and 'Mark').

The Naming Worlds are known since the agent has requested the results from specific
sources (or their agents in other DCEEI). In addition, the results returned from
information agents, e.g. of the BookkeepingDB and ProductionDB, would specify their
source of origin in the communication protocols. For example, the Communication
Layer of the KQML communication package lists the source of origin ([CHA92]
[FIN94a] [FIN94b] and Section 2.3). Provided that cases exist where the information
source is not automatically the Naming World, a further mapping would be necessary
that relates each local schema object to a Naming World (Schema Knowledge).

With the information on the source of origin and the Naming Worlds of the results, the
agent can access either its Agent Knowledge, or the agents that integrate these sources
to investigate the Type of the retrieved objects. Typically in enterprise integration,
however, results of the Type 'tuple' are exchanged. In addition, the object-oriented
database POET or the software system ProductionMgmt, which could potentially
present other objects of the type set and atom, would specify that type automatically. In

6.5 Case Study Conflict Detection and Resolution

6.5.1 Gathering of Candidates:

240

other words, an object-oriented database would typically specify the type along with the
result statement. Though not implemented, the Agent Knowledge could hold this
information as a kind of Semantic Matching Information - Resource Knowledge.

The IdentifierClass information is an agent's Resource Knowledge. It is implemented
as a list of Naming Worlds Wx with a formal specification of the Identifier_Class. The
Naming Worlds are BookkeepingDB and ProductionDB. Hence, the list of
Identifier Classes has the following entries that are relevant in this example:

BookkeepingDB (User Defined Key in a relational database)

ProductionDB (Surrogate Based Identifier from an object-oriented database).

Each IdentifierClass requires a specific IdentifierObject. In this example these are
'User Defined Key' and 'Surrogate Based Identifier'. In other words, the information
agent has to identify the key columns of the table Employee in the BookkeepingDB. The
definition of key columns in schemata of relational databases can be defined in an
Agent's Environmental Information (Resource Knowledge) or it could be attached to
schema objects (Schema Knowledge). In this example, it is Schema Knowledge
implemented as part of the agent's view on the BookkeepingDB. In the previous
example the key E_Number of the object with the First Name 'Peter' has already been
provided by the initial retrieval. Otherwise, the agent could request the User Defined
Key E Number for an object with the First_Name 'Peter' in the Table Employee from
the BookkeepingDB, and would receive the following result:

Employ ee. E_Number = 123.

In the same way, the agent can request the Surrogate Based Identifier for an employee
called 'Mark' from the ProductionDB and would receive a result such as

Surrogate Identifier = 0-507#30.

In summary the following candidates are gathered for Example 1 in the structure
([Identifier Object Identifier_Class Wx] Type Value):

Oj.[(Employee.E Number = 123) (User Defined Key in a relational database)
BookkeepingDB] Tuple (vi(E Number): 123, V2 (First_Name): Peter)

0 2 -[(Surrogate Identifier = 0-507#30) (Surrogate Identifier in an object-oriented
database) ProductionDB] Tuple (vi(E_Number):123, v2 (First_Name): Mark)

241

Another example query 'Get me the Demand of the Product called 'BigMac' would
formally translate into :

Op(vj(Product_Name): BigMac, V2 (Demand):?)

In total seven results can be gathered in this Example 2 which are described in the
structure ([Identifier Object Identifier Class] Wx) Type Value as follows:

Oj.[(ProcessID: 229) (Member of a Process with Process Id's) ProductionMgmt] Tuple
(vi(Product_Name): BigMac, v2 (New_Demand): 34)

C>2 .[(ProcessID: 229) (Member of a Process with Process Id's) ProductionMgmt] Tuple
(vi(Product_Name): BigMac, V2 (Hourly_Demand): 44)

0 3 . [(Essential Property Product_Name = BigMac) (.Essential Property is
Product Name) ProductionMgmt] Tuple (v [(ProductName): BigMac,
V2 (Current_Hourly_Demand): 39)

0 4 . [(Essential Characteristic Product Name: BigMac) (Essential Characteristics as in
the Enterprise Model) MarketingEXP] Tuple (v] (ProductName): BigMac,
v2 (Current_Demand): 50)

0 5 . [(Surrogate Identifier = 0-508#789) {Surrogate Identifier in an object-oriented
database) ProductionDB] Tuple (vi(ProductName): BigMac, V2 (Expected
Demand): 45)

06 . [(Essential Characteristic Product_Name: BigMac) {Essential Characteristics as in
the Enterprise Model) MarketingEXP] Tuple (vi(Product_Name): BigMac,
V2 (Planned_Hourly_Demand): 55)

0 7 . [(Position Number 238481) {Position Number address based in Production Table)
RobotMgmt] Tuple (v](Product_Name): BigMac, V2 (Prod_Quantity): 44)

242

6.5.2 Gathering of Evidence

In this next step the information agent gathers any evidence that supports or refutes the
candidates. That is, any evidence available from the source of origin, such as Services
that qualify results (Resource Knowledge), or justifications as they may be provided by
expert systems. In any case, the evidence is specified in the form of Em
={(Formula)(Certainty Estimate)} (Section 5.2.3). Either the Formula, or the Certainty
Estimate variable may be empty in case the evidence is only a formula (description or
verbal justification), or a only a certainty estimate.

In the previous Example 2 the candidate Oj has a formula justifying its NewJDemand
in the form of a reasoning chain (Justification from an expert system):

E] = {(CurrentDemand is more than 5 units larger than Current Sales) ()}

This information is provided by the expert system within the ProductionMgmt system.
The justification is internally derived from the rules in the expert system (as described in
Appendix D Section D.4).

In addition, the ProductionMgmt calculates the statistical reliability of the
New Demand variable. This is done by a small statistical program that calculates how
often the New Demand estimate has varied less than five per cent from the actual sales
(Current Sales)(detailed description Appendix D Section D.4).

F. 2 = {(New Demand) (44 % Reliability)}

This form of evidence is either a Service (Resource Knowledge) that can be requested
from an information agent or it is, as in this case, automatically produced by the source
of origin (ProductionMgmt).

243

6.5.3 Classification

In the previous two steps the candidates and the evidence of these candidates has been
gathered. In case one or no result exists for a given query then a conflict is impossible
and further conflict detection or resolution becomes meaningless. For example, the
query 'What is the address (attribute) of the employee (Object) with the First_Name
(Attribute) George':

Oi.(vi(First_Name): George, v2 (Address.Street): ?)

The result from the BookkeepingDB would be 'Null' because there is no employee with
the First_Name George. If this request would be concerned with, e.g., the employee
called 'Peter' then only one result would be returned from the BookkeepingDB:

First Name = Peter, Address Street: Pentonville Rd., Town: London, ZIP: 123

In order to identify a conflict at least two candidates need to exist and it needs to be
determined that multiple results exist that are not identical. The rare case where one
result is internally inconsistent produces two conflicting candidates as outlined in
Section 5.2.4.2. Thus, if there are multiple candidates then these may be identical in
respect to the investigated attribute. For example, the query:

Oj.(vl(E_Number): 125, V2 (First_Name): ?)

results in the candidates:

Oj .(v|(E_Number): 125, V2 (First_Name): Joe) from BookkeepingDB

0 2 -(vj (E_Number) 125, V2 (First_Name): Joe) from ProductionDB
These are multiple candidates but they are not conflicting. These candidates have
identical properties for the requested attribute First_Name. In any other case a kind of
explicit or implicit conflict may potentially exist that needs to be specified according to
the propositional categorisation introduced in Section 3.2.1.

Explicit Conflicts

An explicit conflict could result from the query: 'Is the employee with the employee
number 123 called Peter?':

Oj.(vi(E_Number): 123, V2 (First_Name): Peter).

Using KQML such queries are called 'Assign Truth Value' [CHA92]. In other words, the
information agent sends the above sentence to the relevant sources. These sources then
identify if the statement is valid in their world. A database typically retrieves this value.

244

Only in cases where a result (match) is found the sentence is assigned a truth value. The
previous query produces the results:

O j. [(Employee.E Number = 123) (User Defined Key in a relational
database)vj(E_Number) BookkeepingDB] Tuple (v|(E_Number) : 123,
v2 (First_Name) Peter)

02-[() (Surrogate Identifier in an object-oriented database) ProductionDB] No type
(v l(E_Number):, v2 (First_Name):)

In other words, an explicit conflict exists. The BookkeepingDB results in a claim that an
employee called Peter with the E Number 123 exists. The result from the ProductionDB
results in a statement claiming that this is not the case (Null).

Implicit Conflicts

Example 1 is a typical case of implicit conflicts in enterprise integration [BAR94b], The
following two results from Example 1 conflict implicitly provided the information agent
assumes that only one First_Name value is correct.

Oj.[(Employee.E_Number = 123) {User Defined Key in a relational database)
BookkeepingDB] Tuple (vj(E_Number): 123, v2 (First_Name): Peter)

02-[(Surrogate Identifier = 0-507#30) {Surrogate Identifier in an object-oriented
database) ProductionDB] Tuple (v] (EJSfumber): 123, v2 (First_Name): Mark)

In other words, all candidates are assumed to be concerned with the same candidate
(Oj), and each candidate has a different property (Rp) for the same attribute class
vm(First_Name).

Another kind of implicit conflict is presented by Example 2. It has seven results
concerning the demand of the product 'BigMac'. Out of these five results provide a
CurrentDemand attribute (i.e. the CurrentDemand schema object in the Global Agent
View described in Section 6 .2.3.2 relates to the following attribute objects in local
Agent Views (schemata): NewDemand, HourlyDemand, Current Hourly Demand,
Current Demand and ExpectedDemand):

0 1 .[(ProcessID: 229) (Member of a Process with Process Id's) ProductionMgmt] Tuple
(vi(Product_Name): BigMac, V2 (NewJDemand): 34)

O2 .[(ProcessID: 229) (Member of a Process with Process Id's) ProductionMgmt] Tuple
(v j(Product_Name): BigMac, V2 (Hourly_Demand): 44)

245

0 3 . [(Essential Property ProductName = BigMac) {Essential Property is
Product Name) ProductionMgmt] Tuple (v](Product Name): BigMac,
V2 (Current_Hourly_Demand): 39)

0 4 . [(Essential Characteristic Product_Name: BigMac) {Essential Characteristics as in
the Enterprise Model) MarketingEXP] Tuple (v] (ProductName): BigMac,
V2 (Current_Demand): 50)

0 5 . [(Surrogate Identifier = 0-508#789) {Surrogate Identifier in an object-oriented
database) ProductionDB] Tuple (vi(ProductName): BigMac,
V2 (Expected JDemand): 45)

All these candidates conflict implicitly. In other words, all candidates are assumed to be
concerned with the same product 'BigMac', but for the attribute N f different
propositions (R 0 exist. This implicit conflict is detected by the information agent based
on its Schema Knowledge, which indicates that all attributes are concerned with the
same thing; the CurrentJDemand (as in the Global Agent View) despite their different
names used in the local Agent Views and local sources (NewJDemand,
Hourly Demand, CurrentHourly JDemand and ExpectedDemand). Hence, these
attributes are conflicting unless they have identical properties (RjJ for the attribute class
’v2 (Current_Demand)'

The detection of implicit conflicts can, however, be much more complex. In Example 2,
the ProdQuantity attribute with the value '44' from the RobotMgmt (candidate O7) may
be conflicting with the candidates Og specifying the Planned_Hourly_Demand. This
implicit conflict can only be detected if the agent knows that:

• The Planned_Hourly_Demand from the MarketingEXP is supposed to be the
actual production at any given time (from the point of view of the Marketing
Department).

• Thus, the attributes for the classes Planned_Hourly_Demand (MarketingEXP)
and Prod Quantity (RobotMgmt) concerned with the same Product, conflict if
they are not identical.

06 . [(Essential Characteristic Product_Name: BigMac) {Essential Characteristics as in
the Enterprise Model) MarketingEXP] Tuple (v| (Product JMame): BigMac,
V2 (Planned_Hourly Demand): 55)

0 7 . [(Position Number 238481) {Position Number address based in Production Table)
RobotMgmt] Tuple (v] (Product Name): BigMac, v2 (Prod_Quantity): 44)

246

More complex implicit conflicts, e.g., based on different individuals (Objects) with
conflicting properties, are typically not detected in enterprise integration environment
(Section 3.2.1). Hence, these are not of particular interest to this evaluation and not
investigated specifically.

Conflict detection is implemented in the mechanism in that it systematically checks all
relevant Agent Knowledge. In other words, the Demonstrator searches for the attribute
class of investigation (e.g. Prod_Quantity and Hourly_Demand in the last example) in the
following Agent Knowledge categories:

• Integrity Constraints (Schema Knowledge) ;

• Essential Properties (Environmental Information - Resource Knowledge);

• Comments (Resource Knowledge).

Furthermore, the enterprise model can be manually investigated on any essential
properties and relations of the attribute class of investigation (Called Concepts in the
Enterprise Model Appendix D Section D.6)

All this information is gathered from the Agent Knowledge and provided in the Agent
Knowledge Search window in the Demonstrator implementation. This, and information
from the enterprise model, facilitate the agent to detect any 'known' conflicts described
above. 'Known' means based on the available Agent Knowledge (Section 3.2.3).
Potentially, conflict detection is limited by the completeness of Agent Knowledge
(Section 5.2.4.2). In this implementation the detection is limited by the completeness of
the Agent Knowledge categories Integrity Constraints, Essential Properties and
Comments (Section 2.7).

However, all the described examples are based on a correspondence assumption. In these
cases the information agent has to be justified to assume that the candidates are
concerned with the same thing, in order to detect a conflict based on this assumption.
Section 5.2.4.3 introduced some sameness predicates. These are used by the information
agent to classify the sameness between the candidates. The aim of analysis is to identify
candidates that are not concerned with the same object. Hence, their correspondence can
definitely not be assumed and no conflict based on this assumption will exist.

In order to classify the object sameness the mechanism has to search for generalisations
and counterpart relations between the candidates. The agents' Semantic Matching -
Resource Knowledge has all the generalisations and counterpart relations for a given
object (Global Schema Objects in the Global Agent View and Local Schema Objects in
the Local Agent Views) (Section 5.2.1.4). Furthermore, Section 5.2.4.3 outlined the

247

format for generalisations G (ist(G(|)) <=> ist(WxV|/)) and counterpart relations (CXy). Real
world counterparts of two objects are either defined by a counterpart relation (or
generalisations) between two objects in information sources, or by a counterpart relation
(or generalisations) to the same object in the enterprise model (Section 5.2.4.3).

It follows that the detection mechanism collects all generalisations and counterpart
relations concerned with the relevant attributes of the candidates. In case of Example 2
the demand of a given product is investigated. Following the description in Section 3.3.1
the mechanism first tries to match the candidates to any Set Concepts in the enterprise
model (Appendix D Section D.6). It then tries to map the concepts (attributes) which is
the next lower in the hierarchically organised enterprise model. The following
generalisation matches each Product entity in the ProductionMgmt to the Set Concept
Product in the enterprise model by its Product_Name:

1. G (ist(Product_Name in ProductionMgmt) <=> (Product Name in Enterprise
Model)

Counterpart relations in the MarketingEXP system for the Product_Name entities
include

2. C (BigMac in Product_Name ProductionMgmt)(BigMac in Product_Name
MarketingEXP).

In other words, the product called BigMac' in the ProductionMgmt system has a
counterpart in the MarketingEXP with the same name. In addition, the following relation
defines that the counterpart relation is also reflexive such that the 'BigMac' in
MarketingEXP also has the 'BigMac' in ProductionMgmt as a counterpart:

3. C (BigMac in Product_Name MarketingEXP)(BigMac in Product_Name
ProductionMgmt)

The information on generalisations and counterpart relation is required by the
information agent in order to determine the sameness predicates. The candidates are
checked for their sameness predicates in the order outlined in Figure 7 Section 5.2.4.4.
The following list includes an example for each degree of sameness (Format:
([Identifier_Object Identifier_Class] Wx) Type Value):

Purely Identical (PI)

From Example 2 the following candidates are Purely Identical:

O4 .[(Essential Characteristic Product_Name: BigMac) (Essential Characteristics as in
the Enterprise Model) MarketingEXP] Tuple (v[(Product_Name): BigMac,
V2 (Current_Demand): 50)

248

0 5 -[(Essential Characteristic Product_Name: BigMac) (Essential Characteristics as in
the Enterprise Model) MarketingEXP] Tuple (v^(Product_Name): BigMac,
V2 (Planned_Hourly_Demand): 55)

Trivial Purely Identical (TPI)

Example 2 has the following candidates that are based on the Generalisation: G
(ist(Product_Name ProductionMgmt) <=> ist (Product.Name Enterprise Model) which
means that all Product_Name attributes in ProductionMgmt can be matched to
Product.Name in the Enterprise Model.

Oj.[(ProcessID: 229) (Member of a Process with Process Id's) ProductionMgmt] Tuple
(v[(Product_Name): BigMac, V2 (New_Demand): 34)

C>2 -[(ProcessID: 229) (Member of a Process with Process Id's) ProductionMgmt] Tuple
(vi(Product_Name): BigMac, V2 (Hourly_Demand): 44)

Derived Identical (DI)

A query on the Ingredients of a given Product (Product_Name) called 'BigMac' with a
Total JProduction of one hundred units may be described as:

Oj.(v|(Product_Name): BigMac, V2 (Total_Production): 100, V3 (Ingredients): ?)

This produces the following Derived Identical Results:

Oj.[(Product.Product_Name = BigMac) (User Defined Key in a relational database)
BookkeepingDB] Tuple (vi(Product_Name): BigMac, V2 (Daily JProduction): 100
pcs.)

(^.[(Product.Product J9ame = BigMac) (User Defined Key in a relational database)
MaterialDB] Tuple (v JProductJMame): BigMac, V2 (Material_Name): Bun,
MeatBall, BigMacSource)

Trivial Derived Identical (TDI)

The following candidates are defined by the reflexive counterpart relation (Section
5.2.1.4) RC (MacChicken in MaterialDB Product.Product_Name) (MacChicken in
BookkeepingDB Product.Product_Name) that makes the following Results Trivial
Derived Identical based:

(Query: Op (vj (Product JName): BigMac, V2 (Total_Production): 100,
V3 (Ingredients): ?))

249

O [.[(Product.Product_Name = MacChicken) (User Defined Key in a relational database)
BookkeepingDB] Tuple (v[(Product_Name): MacChicken, V2 (Total_Production):
1 0 0 pcs.)

0 2 . [(Product.Product_Name = MacChicken) (User Defined Key in a relational database)
MaterialDB] Tuple (v|(Product_Name): MacChicken, V2 (Material_Name): Bun,
Chicken, MacChickenSource)

Referential Equality (RE)

The previous counterpart relation between the 'BigMac' objects in the ProductionMgmt
and the MarketingEXP makes the candidates O3 and O4 from Example 2 Referential
Equal:

0 3 . [(Essential Property Product_Name = BigMac) (Essential Property is
Product_Name) ProductionMgmt] Tuple (vj(Product_Name): BigMac,
V2 (Current_Hourly_Demand): 39)

0 4 . [(Essential Characteristic Product_Name: BigMac) (Essential Characteristics as in
the Enterprise Model) MarketingEXP] Tuple (vj(Product_Name): BigMac,
V2 (Current_Demand): 50)

Match Equal (ME)

The following candidates from Example 1 are Match Equal (on the user defined key
E_Number).

Op [(Employ ee.E_Number = 123) (User Defined Key in a relational database)
BookkeepingDB] Tuple (v^(E_Number): 123, V2 (First_Name): Peter)

O2 .[(Surrogate Identifier = 0-507#30) (Surrogate Identifier in an object-oriented
database) ProductionDB] Tuple (v^(E_Number):123, V2 (First_Name): Mark)

Aspect Equal (ASE)

A query on the First_Name of any employees that live in 'James St.' (Adress_No 11) has
produced two Aspect Equal candidates ('Frank' with E_Number '126' and 'Gary' with
E_Number '136' both live at the same Address 'James St.'):

(Query: Op(v^(Address_No): 11, V2 (E_Number):?))

O].[(Employee.E_Number = 126) (User Defined Key in a relational database)
BookkeepingDB] Tuple (V|(Address_No): 11, V2 (E_Number): 126)

0 2 .[(Employee.E_Number = 136) (User Defined Key in a relational database)
BookkeepingDB] Tuple (vj(Address_No): 11, V2 (E_Number): 136)

250

Arbitrary Equality (ARE)

The following candidates are Arbitrary Equality. Both candidates have no common
attributes, and distinct real world counterparts. The generalisation 'G (ist(Product_Name
ProductionMgmt) <=> (Product Name in Enterprise Model))' and the counterpart relation
'C (MacChicken in MarketingEXP)(MacChicken in Enterprise Model)' exist. Based on
these the following candidates have real world counterparts called 'BigMac' and
'MacChicken' but these are distinct. However, in the enterprise model the products
MacChicken and BigMac both have the same essential property 'Product_Name'. Hence
the following query produces Arbitrary Equal candidates:

(Query: Op(vi(Current_Sales): 22, V2 (Product_Name):?))

Oj.[(ProcessID: 229) (Member of Process with Process Id's) ProductionMgmt] Tuple
(v|(Current_Sales): 22, V2 (Product_Name): BigMac)

CQ.[(Essential Characteristic Product_Name: BigMac) (Essential Characteristics as in
the Enterprise Model) MarketingEXP] Tuple (vj(Current_Sales): 22,
V2 (Product_Name): MacChicken)

No Object Correspondence

Finally, the agent may determine that candidates are definitely not concerned with the
same object. The previous query has actually produced three candidates. The first
candidate Oj is from the same source ProductionMgmt, has the same Identifier_Class
('Member of Process with Process Id') but different Identifier_Objects ('Process Ids 229
and 230') as the third candidate O3 . Hence, the following candidates Oj and O3 are not
concerned with the same object:

Op[(ProcessID: 229) (Member of Process with Process Id's) ProductionMgmt] Tuple
(vj(Current_Sales): 22, V2 (Product_Name): BigMac)

0 3 .[(ProcessID: 230) (Member of Process with Process Id's) ProductionMgmt] Tuple
(vi(Current_Sales): 22, V2 (Product_Name): MacChicken)

At the end of the Gathering phase the Demonstrator presents in the Result Window all
cases in a uniform representation (candidates and their evidence), the classification of the
possible kind of conflict, and in cases where the conflict is based on a correspondence
assumption of the candidates, the sameness between the candidates.

251

6.5.4 Syntactic Conflict Detection

Syntactic conflict detection is concerned with ensuring that the candidates are not
merely syntactically conflicting. In particular, the transmission and translation of
candidates is analysed. The example communication language for inter-agent, and
agent-to-source interaction described in the previous Sections (e.g. Section 2.3) is
KQML [CHA92], Some examples using KQML are described to demonstrate how
information agents can detect mere syntactic conflicts. The following displays a typical
query that an agent (in this example the agent that integrates the ProductionMgmt
system) can issue to request information from another information agent (in this
example the agent that integrates the BookkeepingDB). This query is taken from
Example 1. Comments are attached to each line of this protocol in italics and brackets:

(PACKAGE

:FROM ProductionMgmt-Agent

:TO BookkeepingDB-Agent

:ID A23 (Identifier o f the message generated e.g. by the information agent)

:COMM block (This can be either 'block' or 'nonblock')

:CONTENT (Beginning o f the M essage Layer)

(MSG

:TYPE query (This can, e.g., be query, assert, retract,...)

•.Qualifiers (:number-answers 1) (An agent can request multiple results)

:Content-Language Propositional ('Propositional' is the pseudo

language used in this research)

:Content-Ontology (BookkeepingDB) (Each agents local view is an

ontology as well as the enterprise model)

:Content-Topic (Em ployee) (Terms describing the topic in that ontology)

:Content (Beginning o f the Content Layer which is the actual query)

(Oj.(v](E_Number): 123,V2(First_Name): ?))
))

Typically, the reply from the agent of the BookkeepingDB would look like this:

(PACKAGE

:FROM BookkeepingDB-Agent

:TO ProductionMgmt-Agent

:ID B24

:COMM block

:In-Response-To A23

:CONTENT (MSG

:TYPE content-reply (a reply to a previously sen t query)

252

:REQUEST-ID A23 (The Id o f the query)

: REPLY-NUMBER ! (The num ber o f requested results)

:CONTENT (Oj.(vi(E_Number):123,V2(First_Name): Peter))

))
However, in syntactic conflict detection interest is directed at identifying any possible
errors that may occur. For example, if an information agent has encountered any
communication errors on the KQML level than it expresses these in the following type
of message:

(PACKAGE

:FROM BookkeepingDB-Agent

:TO ProductionMgmt-Agent

:ID B24

:COMM block

:In-Response-To A23

iCONTENT (MSG

:TYPE success-reply

:VALUE failure (This is either success or fa ilure)

:REQUEST-ID A23

:EXPLANATION (Typically an explanation in English)

(The ProductionMgmt is currently not accessible.)

))
A success-reply message is typically used when no content-reply can be sent. For
example, an information source is currently not available. This kind of message is
important to the retrieval process and indicates if the agent has been successful in
collecting all possible results from all sources. For conflict detection, however, the
syntactic correctness of the results is of interest.

A content-reply message may include warnings or error messages that explain any
possible difficulties that have occurred while a result has been issued. This information
will allow the information agent to rehearse the result in that the agent may request the
information again in order to ensure that a result is syntactically correct.

For example, the agent integrating the MarketingEXP may receive a query from the
managing agent A requesting the Product Name of any products that have a
PlannedDemand o f '40':

Oj.(v|(Planned_Demand): 40, V 2 (P ro d u c t Name): ?),

This query may produce the following results from the MarketingEXP:

253

O¡.[(Essential Characteristic Product Name: File-o-Fish) (Essential Characteristics as
in the Enterprise Model) MarketingEXP] Tuple (v] (PlannedDemand): 40,
V2 (Product_Name): File-o-Fish)

O2 .[(Essential Characteristic Product Name: FishMac) (Essential Characteristics as in
the Enterprise Model) MarketingEXP] Tuple (vi(PlannedDemand): 40,
V2 (Product_Name): FishMac)

The two results are returned from the MarketingEXP system to the integrating agent.
This agent also knows that the objects in the MarketingEXP system are matched to
concepts in the enterprise model. It is this agent's 'job' to translate the results with the
help of the enterprise ontology. For example, the name 'FishMac' in result O2 translates
into 'File-o-Fish' with synonym definitions provided by the enterprise model. However,
it may be the case that the enterprise model is currently not accessible to the integrating
agent. Because the agent has two results it will forward these to the requesting
(managing) agent despite the fact that the results may not have been translated correctly.

In other words, the agent would not send a 'success-reply' message of the value 'Failure'
because it has received two results from the MarketingEXP. It would, however, attach a
'warning' to the result forwarded. Hence, the agent would forward a content-reply
message with the results (Oj and O2), and a warning such as 'Not checked against the
enterprise ontology'.

(PACKAGE

:FROM MarketingEXP-Agent

:TO ProductionMgmt-Agent

:ID B24

:COMM block

:In-Response-To A23

:CONTENT (MSG

:TYPE Content-reply

: REQUEST-ID A23

: REPLY-NUMBER 1

:Content
O] .[(Essential Characteristic Product_Name: File-o-Fish) (Essential

Characteristics as in the Enterprise Model) MarketingEXP] Tuple
(v|(Planned_Demand): 40, V2 (Product_Name): File-o-Fish)

O2 .[(Essential Characteristic Product Name: FishMac) (Essential
Characteristics as in the Enterprise Model) MarketingEXP] Tuple
(vj(Planned_Demand): 40, V2 (Product_Name): FishMac)

('Not checked against the enterprise ontology))

))

254

The previous example has illustrated that mere syntactic conflicts within the framework
of KQML may occur. However, it also becomes obvious that the detection of syntactic
conflicts is extremely domain-driven. It has already been outlined in Section 5.3 that this
detection phase is very language, protocol and system specific. In this example, the agent
needs to be able to

(i) analyse the KQML protocol,

(ii) find the error messages in the Content section of the KQML message, and

(iii) also interpret this message correctly.

Only then is the agent able to analyse the results and, in this example, determine that
'File-o-Fish' and 'FishMac' actually translate into the same thing with the definitions of the
enterprise ontology.

The KQML protocol is a typical example of the limited communication in enterprise
integration where messages are only of the kind correct ('Content-reply') or not correct
('success-reply' message with the value 'failure'). Currently, information agents fail to
further assess their own syntactic result manipulation (transmission and translation). The
introduction of a kind of 'warning' or 'caution' message to the KQLM protocol, for
example, would enable the information agent to make a comment on any difficulties
encountered while information was translated or transmitted (Section 5.3).

However, the described scheme is complete in that it contains all means to detect mere
syntactic conflicts based on current research. Future work may facilitate information
agents, and possibly other integrated sources, to assess their own results in respect to
their transmission and translation. The presented conflict management mechanism
enables the information agent to employ such new forms of assessment (e.g., messages of
warning).

255

The Gathering phase has outlined different degrees of sameness for those candidates that
are assumed to be concerned with the same object. However, the degrees Match
Equality, Aspect Equality and Arbitrary Equality are very weak. Hence, this section will
further investigate these degrees of sameness in order to assess the object
correspondence assumption.

Existing Research fails to investigate assumptions about object correspondence when
these are weak. Example 1 includes the two Match Equal candidates:

Op [(Employ ee.E_Number = 123) (User Defined Key in a relational database)
BookkeepingDB] Tuple (vi(E_Number): 123, V2 (First_Name): Peter)

C>2 .[(Surrogate Identifier = 0-507#30) (Surrogate Identifier in an object-oriented
database) ProductionDB] Tuple (v^(E_Number): 123, V2 (First_Name): Mark)

If these candidates were integrated tightly into an object oriented model (Section 3.3.1)
then it would typically be assumed that these candidates are identical. For example, they
would be given the same global identifier such as a system generated surrogate in a
system such as MKS by Pan and Tenenbaum [PAN91a].

Without any further investigation of Example 1 there is equally much justification to
establish the alternative hypothesis about the sameness of the candidates O [and O2 such
that:

These candidates O j and O2 are distinct objects that only share the attributes
employee number (E_Number), which happens to be part of the identifier of one
candidate.

Following this approach these objects could be integrated into a tightly coupled
distributed environment as different objects with distinct surrogate identifiers (e.g.
Ahmed et al. [AHM91]). However, the novel representation of object identity and
sameness developed in this research makes it obvious how weak the basis for the object
correspondence is in cases such as this, and allows for a more distinct (accurate)
classification.

In the first step of analysing weak notions of object sameness, such as Match Equality,
Aspect Equality and Arbitrary Equality, the Demonstrator selects from the Agent
Knowledge any information on essential properties (Resource Knowledge). Furthermore,

6.5.5 Semantic Conflict Detection
6.5.5.1 Object Correspondence

256

where the candidates correspond to any concepts in the enterprise model these concepts
may have information about any essential characteristics (properties).

These essential properties (and any other properties of the candidates) are retrieved from
the local sources. Furthermore, the agent investigates if the candidates are each others
closest resemblance in their sources. Section 5.4.1 described how the agent
systematically investigates the other candidate's world for the closest resemblance. In the
case of Example 1 the attribute First_Name is an essential characteristic according to the
agent's Resource Knowledge. Hence, it requests any employee objects from the
ProductionDB that have the First_Name 'Peter', and any employee objects from the
BookkeepingDB that have the First_Name 'Mark'.

This investigation produces no result, no object called 'Peter1, from the ProductionDB.
However, the BookkeepingDB has an employee called Mark:

O3 .[(Employee.E_Number = 123) (User Defined Key in a relational database)
BookkeepingDB] Tuple (v^(E_Number): 1234, V2 (First_Name): Mark),
v3(NI_Number):24343, v/|.(PayJPer_Hour):6 , vg(Address_No): 12);

The candidates are listed with all their properties:

O^.[(Employee.E_Number = 123) (User Defined Key in a relational database)
BookkeepingDB] Tuple (vj(E_Number): 123, V2 (First_Name): Peter,
V3(NI_Number):4567, V4 (Pay_Per_Hour):6 , vg(Address_No): 12)

O2 .[(Surrogate Identifier = 0-507#30) (Surrogate Identifier in an object-oriented
database) ProductionDB] Tuple (vi(E_Number):123, V2 (First_Name): Mark,
v3(NI_Number):4567, vq.(Body Type): Fat, vg(Weight): 12 stone)

The agent retrieves from the Agent Knowledge that the candidates are of concept
'Employee' and have the essential properties E_Number and First_Name. The enterprise
model defines the essential properties of the concept Employee with E_Number and
NI_Number.

Based on this information the information agent can conclude that:

• The candidates share the two essential properties E_Number and NI_Number,
but not the First_Name;

• The candidates share all common properties except the First_Name;

• Candidate O2 is the counterpart of O j ;

257

• Candidate Oj closer resembles O2 than other objects in the BookkeepingDB
(world). This includes object O3 because the latter only shares 1 (FirsfJName)
essential property with the object O2 , where as O] shares the E Number and the
NI_Number with O2 .

Following the categorisation in Section 5.4.1 the agent is justified in assuming object
correspondence. However, the degree of sameness is no stronger than Match Equality.
In order to become Referential Equal the candidates need to be real world counterparts,
which cannot be established because the candidates conflict on an essential property. In
any case, the agent's evaluation can ensure that the candidates are not a mere semantic
mismatch.

The same procedure has been applied to the Aspect Equal candidates described in the
previous Section:

O].[(Employee.E Number = 126) (User Defined Key in a relational database)
BookkeepingDB] Tuple (v^(Address_No):l 1, V2 (E Number): 126,
V3 (First_Name):Frank, v4(NI_Number):5678, vgfPay Per_Hour):6)

(^■[(Employee.ENumber = 136) {User Defined Key in a relational database)
BookkeepingDB] Tuple (vj(Address_No):l 1, v2 (E_Number): 136, v3 (First_Name):
Gary, V4(NI_Number):45786, V5 (Pay_Per_Hour):3)

Corresponding to the previous example the essential properties are E_Number,
NI Number and First_Name. Hence, the agent can conclude that:

• The candidates share no essential properties;

• The candidates are not counterparts because they are from the same world and
are not identical (Same Identifier Class different Identifier Object).

• All common attribute classes, except the address (Address No), are distinct.

Following the categories outlined in Section 5.4.1, these candidates correspond to
different objects. Provided these candidates are not conflicting in a way that is not based
on this correspondence assumption, the information agent can positively conclude that
these candidates are not conflicting.

Existing research on conflict management in enterprise integration, e.g., by Barbuceanu
and Fox [BAR94b], fails to detect that these cases cannot conflict because of a lack of
object correspondence. For example Barbuceanu and Fox apply conflict resolution
mechanism to any case without detecting a conflict. In this example conflict resolution
is inadequate as it carries the risk of providing a resolution to a conflict that does not
exist.

258

6.5.5.2 Concept Correspondence

Semantic conflict detection is also concerned with investigating the correspondence of
concepts used by the, potentially conflicting candidates. For this step in conflict
detection Section 5.4.2 outlined that the agent requires the following Resource
Knowledge (Section 2.7):

• Environmental Information on Subtype - Supertype relations, Synonyms, or the
correct Form and Time of requests from specific sources;

• Services that may provide relevant expert knowledge.

All this information is gathered in the Demonstrator from the Agent Knowledge. In
addition, the agent may investigate expert knowledge such as a human expert, or the
Enterprise Model for the information on subtype - supertype relations or synonyms. For
example, provided the candidates' propositions of the conflicting attribute class each
have a counterpart in the enterprise model. If these objects in the enterprise model are
related as subtype - supertypes, or synonyms then the agent can conclude that the
candidates are not conflicting but semantically match into the same concept.

An example of how this expert knowledge can detect a semantic mismatch conflict is
provided by the results to the following query on a robot's repairs:

O[.(v \ (Name): Yogi, V2(Repair_Name):?)

(What are the Repairs of the robot called Yogi?)

This query may result in the following two candidates:

Oj.[(Surrogate = 0-1108#1777) (Surrogate Identifier in an object-oriented database)
ProductionDB] Tuple (vi(Name): Yogi, V2 -(Repair_Name): NewWheels)

0 2 .[(Robot.Name = Yogi) (User Defined Key in a relational database) BookkeepingDB]
Tuple (vj(Name): Yogi, V2 (Repair_Name): NewChassis)

The candidates are Match Equal and possibly are implicitly conflicting over the attribute
RepairJName. However, investigating the two concepts 'NewWheels' and 'NewChassis'
in the enterprise model illustrates that these are actually synonyms. In other words, the
agent has gathered the information that a synonym exists:

'NewWheels is_a NewChassis'
which is valid for the attribute class Repair Name of the entity Robot.

With this information the agent can conclude that no conflict exists but that the
candidates' properties 'NewWheels' and 'NewChassis' match into the same thing.

Another example based on the same query but for the Robot 'Tim' produces the results:

259

O] .[(Surrogate = 0-1308#2061) (Surrogate Identifier in an object-oriented database)
ProductionDB] Tuple (vj(Name):Tim, v2 .(Repair_Name): OilChange,
ElectricityCheckup, Battery Check, Cleaning)

0 2 -[(Robot.Name = Tim) (User Defined Key in a relational database) BookkeepingDB]
Tuple (vi(Name):Tim, V2 (RepairjName): Inspection)

These candidates are also Match Equal. However, they are not conflicting because the
repairs 'OilChange', 'ElectricityCheckup', 'BattervCheck' and 'Cleaning' are all covered
by the supertype 'Inspection' (defined in the enterprise model and the Agent
Knowledge). In other words, every inspection includes an 'OilChange',
'ElectricityCheckup', a 'BatteryCheck' and 'Cleaning'.

A typical form of expert knowledge is advice by human experts. An engineer on the
shop floor exists (Service - Resource Knowledge) who has a terminal to which the
conflict could be sent. This expert would be able to clear the conflict and answer the
question "Do these concepts correspond to the same thing?" in the affirmative. In other
words, the candidates semantically express the same thing (concept) which only have
different descriptions (i.e. names).

An example for a validation of the semantically correct interpretation of a result is
provided by the following query on the Current_Sales for the product MacChicken
(Oj.(v] (Product_Name): MacChicken, v2 (Current_Sales):?)). This query may produce
the following Referential Equal results:

Oj .[(ProcessID: 249) (Member of Process with Process Id's) ProductionMgmt] Tuple
(vi(Product_Name): MacChicken, vj(Current_Sales): 300)

O2 .[(Essential Characteristic Product_Name: MacChicken) (.Essential Characteristics as
in the Enterprise Model) MarketingEXP] Tuple (vj(Product_Name): MacChicken
V2 (Current_Sales): 22)

The Current_Sales in the ProductionMgmt system are constantly updated by the shop
floor staff (See Appendix D Section D.4 for a system description). The MarketingEXP
has a file system with some estimated Current_Sales figures. In effect the quantity of
three hundred MacChickens might easily be a typing error. It would be easy to imagine
an employee on the shop floor accidentally adding an extra zero to the thirty
MacChicken he wanted to order ('30' and the digit '0' forms '300'). Thus, the information
agent could verify the result from the human employee (candidate Oj) by sending it
back to the shop floor. The employee that has placed this Current Sales figure is asked
to verify whether this order is what he intended. In KQML such a message is sent as a
'Assign-Truth-Value’ query to the user interface. The employee would verify this query

260

with as 'true' or 'not true' and it would be returned to the sender (information agent). This
procedure ensures that the semantically correct, or intended, quantity is ordered.

This is a typical case where authority, reliability or role based approaches fail (e.g.
Barbuceanu and Fox [BAR94], or role-based approaches by Pan and Tenenbaum
[PAN91a]). In other words, the shop floor staff would be given a higher authority, be
judged more reliable, or have a superior role then the MarketingEXP system. This may
be based on the assumption that the staff are humans, or because they are actually
managing the shop floor sales. Their higher authority would verify the three hundred
MacChicken as a correct Current_Sales and not solve this conflict's semantic
misinterpretation.

The limitation of result verification in present systems is the dependence on human
experts. With respect to the previous example involving a human expert, it is easy to
imagine how future developments of machine experts could provide 'automated
validation'. For example, a machine expert system could be developed that has
knowledge of commonly made errors when data is inputted. One rule in such a system
could be 'It easily happens that a digit (e.g. the zero in figure thirty) is accidentally
inputted twice (e.g. the input is three hundred instead of the intended thirty)'. Such an
expert might then tell the information agent to request the same information again from
the shop floor. Finally, the expert could compare if the initial and the new results are
identical, or if the first result was only inputted incorrectly.

Finally, the form and time of the candidates can be investigated to check if candidates use
corresponding concepts. Example 2 includes the following three candidates:

Oj.[(ProcessID: 229) (Member of a Process with Process Id's) ProductionMgmt] Tuple
(v[(Product_Name): BigMac, V2 (New_Demand): 34)

Oj.tiProcessID: 229) (Member of a Process with Process Id's) ProductionMgmt] Tuple
(vi(Product_Name): BigMac, V2 (Hourly_Demand): 44)

O3 . [(Essential Property Product_Name = BigMac) (Essential Property is
Product_Name) ProductionMgmt] Tuple (v ̂(Product JNiame): BigMac,
V2 (Current_Hourly_Demand): 39)

It may also be determined from the Agent Knowledge that these candidates are produced
by concurrent processes. In other words, the Agent Knowledge contains Environmental
Information (Resource Knowledge) on the Form and Time of how to receive
semantically correct attributes Current_Hourly_Demand from the ProductionMgmt
system, such that:

261

'The Current_Hourly_Demand may need to be monitored over a short time'.

This information may be based on the fact that the Current_Hourly_Demand is updated
by the Hourly_Demand which is actually recalculated periodically. This calculation
includes the old Current_Hourly_Demand and the New_Demand to derive the
Hourly_Demand. The Hourly_Demand then updates the Current_Hourly_Demand in the
ProductionMgmt's internal file system. It follows, that the information agent requests the
Current_Hourly_Demand again to ensure that it is not simply a conflict based on
retrieving the candidates at a time when it was just recalculated. In this example, the
conflict between the candidates O2 and O3 is resolved in that the semantically correct
result for the Current_Hourly_Demand is '44'.

262

6.5.6 Admissibility Phase

The final stage of conflict detection considers the admissibility of the conflicting
candidates. In other words, the Agent Knowledge includes Admissibility Heuristics
which are implemented as Business Rules and Decision-Making Knowledge.
Furthermore, Comments (Resource Knowledge) or Integrity Constraints (Resource
Knowledge) which may exist to regulate the admissibility of results. All this
information is collected by the Demonstrator from the Agent Knowledge.

For example, a new cook in the kitchen may want to check a list of ingredients of the
product FishMac with the query:

(Oj.(v](Product_Name): FishMac, V2 (Ingredients):Bun, Fish, FishMacSource))

The following conflicting results are returned:

Oj.[(Surrogate = 0-1318#2073) (Surrogate Identifier in an object-oriented database)
ProductionDB] Tuple (v^(Product_Name): FishMac, v2 -(Ingredients): Bun, Fish,
FishMacSource)

C>2 .[(Product.Product = Null) (User Defined Key in a relational database) MaterialDB]
Tuple (vj(ProductJName): Null, V2 (Ingredients): Null)

In other words, the MaterialDB claims that the product FishMac does not exist and / or
that the ingredients specified in the query are incorrect. The Demonstrator has collected
the following Admissibility Heuristic from the Agent Knowledge:

'Results with null values from the MaterialDB are inadmissible1

This heuristic may be installed because the MaterialDB is new and still being
completed. Thus, the candidate O2 is rejected as inadmissible so that no conflict is
actually at hand but only one admissible result from the ProductionDB.

263

6.5.7 Summary Conflict Detection

In the previous Sections on conflict detection any explicit, and any known implicit
conflicts between the candidates are detected. The results are investigated in depth. The
Result Window in the Demonstrator implementation provides an overview of all the
information that is known on the conflict case. In the following all this information is
presented for the cases of Example 1 and Example 2.

Example 1:

O].[(Employee.E_Number - 123) (User Defined Key in a relational database)
BookkeepingDB] Tuple (v](E Number): 123, V2 (First_Name): Peter,
v3 (NI_Number): 4567, v4 (Pay_Per_Hour): 6 , V5 (Address_No): 12)

0 2 -[(Surrogate Identifier = 0-507#30) (Surrogate Identifier in an object-oriented
database) ProductionDB] Tuple (v j (E N umber): 123, V2 (First_Name): Mark,
v3 (NI_Number): 4567, v4 (Body Type): Fat, V5 (Weight): 12 stone)

Both candidates are Match Equal and the agent is justified in assuming object
correspondence because each resembles the other closer than any other object in its
world. Thus, the candidates are assumed to conflict implicitly on the properties (R 0 for
the attribute class V2 (First_Name):

Oi-v2 (First_Name): Peter 0 2 -V2 (First_Name): Mark

264

Example 2:

Op[(ProcessID: 229) (Member of a Process with Process Id's) ProductionMgmt] Tuple
(v|(Product_Name): BigMac, V2 (New_Demand): 34)

0 2 . [(ProcessID: 229) (Member of a Process with Process Id's) ProductionMgmt] Tuple
(v^(Product_Name): BigMac, V2 (Hourly_Demand): 44)

0 3 . [(Essential Property Product_Name = BigMac) (Essential Property is
Product_Name) ProductionMgmt] Tuple (v \ (Product_Name): BigMac,
V2 (Current_Hourly_Demand): 44)

0 4 . [(Essential Characteristic Product_Name: BigMac) (Essential Characteristics as in
the Enterprise Model) MarketingEXP] Tuple (v j (Product_Name): BigMac,
V2 (Current_Demand): 50)

0 5 . [(Surrogate Identifier = 0-508#789) (Surrogate Identifier in an object-oriented
database) ProductionDB] Tuple (v}(Product_Name): BigMac, V2 (Expected
Demand): 45)

The following evidence has been gathered for the candidate 0 1 :

E] = {(Current_Hourly_Demand is more than 5 units larger than Current_Sales ()}
E2 = {(New_Demand) (44 % Reliability)}

Semantic Conflict Detection has detected that the candidate O3 actually has a
Current_Hourly_Demand of '44' instead of ’39' such that no conflict exists between the
candidates O3 and O2 .

Object correspondence is assumed between all candidates based on the following degrees
of sameness:

0 1 0 2 °3 0 4 O5

TPI

0 3 RE RE _ _ _

0 4 RE RE RE _ _

ASE / RE ASE / RE M E/RE ME -

Table 7: Object Correspondence in Example 2

The sameness between candidate O5 and the other candidates has been strengthened
because these candidates are each other's closest resemblance in their worlds, and share
the only known essential property. This essential property is the Attribute Product_Name
as defined for the set concept Product in the Enterprise Model (This is also defined in the
Environmental Information - Resource Knowledge).

265

The following Generalisations and Counterpart Relations have been identified:

1. G (ist(Product_Name in ProductionMgmt) <=> (Product Name in Enterprise
Model)

2. C (BigMac in Product_Name ProductionMgmt)(BigMac in Product_Name
MarketingEXP)

3. C (BigMac in Product_Name MarketingEXP)(BigMac in Product_Name
ProductionMgmt)

In conclusion, six implicit conflicts over the value of the attribute for the attribute
class V2 Current_Demand (as specified in the Global Agent View) have been detected:

1 . 0]^.V2:34
2. O4.V2:50
3 . C>5.V2:45
4 . 0 |.V2:34
5 . O j .V2:34

6 . 05.V2:45

(02-V2:44 & C>3.V2:44)
(02-V2:44 & 03.V2:44)
(02-V2'.44 & 03-V2:44)
O4.V2:50
05-v2:45
O4.V2:50

The remaining two candidates of Example 2 are Match Equal:

Og.[(Essential Characteristic Product_Name: BigMac) (Essential Characteristics as in
the Enterprise Model) MarketingEXP] Tuple (vj(Product_Name): BigMac,
V2 (Planned_Hourly_Demand): 55)

O7 .[(Position Number 238481) (Position Number address based in Production Table)
RobotMgmt] Tuple (v[(Product_Name): BigMac, V2 (Prod_Quantity): 44)

Further orders for the product 'BigMac' exist in the production table in the RobotMgmt
system. Hence, no 'closest resemblance' between the objects in their sources could be
established so that their degree of sameness could not be strengthened. The degree of
sameness is very weak. The agent questions the object correspondence assumption of the
candidates. For this implementation, the Business Rule has been established that the
agent can provisionally classify this case as an implicit conflict of the case:

0 6 .v 3(Planned_Hourly_Demand): 55 07-V4(Prod_Quantity): 44 .

This is provisional, because such a conflict assumes that the candidates are concerned
with the same object, here the Product, 'BigMac'. However, this assumption can be
established by the information agent in this case.

266

6.5.8 Credibility

At this opening stage of conflict resolution the information agent needs to investigate the
credibility of the conflicting candidates and their sources. Some evidence that includes
reliability estimations, is already known from the Gathering Phase. However, no
exhaustive search for reliability estimates was undertaken by the agent. Thus, the
Demonstrator searches the Agent Knowledge systematically for any direct reliability
estimates. Furthermore, it investigates any Environmental Information on the candidate's
expertise, roles, or authority that may enable the agent to derive a candidate's reliability.
Finally, the agent investigates any Services (Resource Knowledge) that can potentially
provide reliability estimates for the candidates but have not yet been investigated. The
Demonstrator derives all relevant certainty estimates from this information and illustrates
it, together with the Direct Certainty Estimates, in the Agent Knowledge Search
window. This includes the evidence E^, E2 which has been specified in the Gathering
Phase, and evidence E9 supporting the Hourly_Demand from the ProductionMgmt:

• E9 = {(Hourly_Demand) (90 % confidence level)}.

In the case of Example 2 this collecting and derivation of certainty estimates includes the
following. Environmental Information (Section 2.7) is available from the Agent
Knowledge search:

• Each candidate from the ProductionMgmt has the Role 'Calculating the Demand';
• The schema object Hourly_Demand from the ProductionMgmt system has the

Authority specification: 'High Authority' (because it determines production
supervised by the RobotMgmt)

• Current_Demand from the MarketingEXP system has the Authority specification:
'No Authority'

• The Expertise of the candidates from the MarketingEXP is: ’Planning’

These characteristics are used by the following heuristic available in the agent's
Organisational Knowledge (Credibility Heuristics):

• "Calculating the Demand' is a Role that makes a system 'very credible" (E4).

This heuristic, for example, makes the candidates Oj, O2 , and O3 in Example 2 'very
credible'. The expertise of the MarketingEXP makes it very credible based on the
heuristic:

• 'A system's Expertise (e.g. 'Planning') makes it probable' (E7).

Furthermore, the following heuristic makes the candidate O2 very credible:

• 'A system with a ’High Authority' (Authority) is 'very credible" (E5).

267

In addition, the succeeding heuristic makes the candidate O4 'not credible':

• 'A system with 'No Authority' (Authority) is 'not credible" (Eg).

Finally, the following heuristic on the Group production systems supports candidate Oj:

• 'All production systems are, in principle, 'very reliable" (E3).

These credibility assessments will be related to the candidates as evidence. In other
words the existing evidence, e.g., the services defining the certainty of the first two
candidates (O^ and O2) in Example 1, will be completed by the new evidence on the
candidates credibility. The candidates in Example 2 have, therefore, got the following
evidence (including E \ which has no certanty estimate) in the form of
'Em= {(Formula)(Certainty)}':

0] has Ej = {(Current_Hourly_Demand is more than 5 units larger than
Current_Sales ()};

0 1 has E2 = {(New_Demand) (44 % Reliability)};
0 [has E4 = {('Calculating the Demand' is a Role that makes a system)('very

credible)};
C>i has E3 = {(All Production Systems are) (very reliable)};

0 2 has E9 = {(Hourly_Demand) (90 % confidence level)};
02 has E3 = {(All Production Systems are) (very reliable)};
O2 has E4 = {('Calculating the Demand' is a Role that makes a system)('very

credible)};
0 2 has E5 = {(A system with a High Authority is)(very credible)};

0 3 has E4 = {('Calculating the Demand' is a Role that makes a system)('very
credible)};

0 3 has E3 = {(All Production Systems are) (very reliable)};

0 4 has Eg = {(A system with No Authority is) (not credible)};
0 4 has E7 = {(A system's Expertise (Planning) makes it) (probable)}.

0 5 has Eg = {(An object-oriented database system) (is typically very reliable)}.

Furthermore, candidate 06 has a credibility assessment such that:
Og has E7 = {(A system's Expertise (Planning) makes it) (probable)}.

However, candidate O4 now has evidence that supports (Eg) and another (Eg) that
refutes its credibility. Such conflicts of credibility will be subject to the last three steps of
the conflict resolution phase (Ranking, New Alternatives and Negotiation).

268

Heterogeneity of Credibility Estimates and Evidence:

The previous example provides a good overview of the heterogeneity of credibility
estimates that exist in typical enterprise integration environments, including:

• Numerical (e.g. E2 '44% reliability') and non numerical certainty estimates (e.g.
E3 'very reliable');

• Direct estimates (e.g. E2 '(New_Demand) (44 % reliable)') that are typically
provided by the information sources themselves, and estimates that are derived by
the information agent (E4 '(Calculating the demand is a Role that makes a
system) (very credible)');

• Different kinds of derived estimates exist, e.g., based on the characteristics Role
(E4), Authority (Eg) and Expertise (E7).

It can, in principle, be envisaged that evidence is probabilistic and that the agent is
justified in assuming that these estimates can be combined, e.g., by the Dempster-Shafer
rule of combination [SHA76] [DEM67] (Section 3.5.2 and 5.10.1). However, typically
the information agent also has evidence containing other than probabilistic certainty
estimates, e.g., evidence E2 ('44% reliability1) warrants Oj and E3 (’very reliable')
warrants candidateC^.

For the information agent to rank more heterogeneous estimates such as:

E3 ('very reliable') is more believable than E2 (’44% reliability')

it needs to know that the derived estimate 'very reliable' is more believable than the
estimate '44 % reliable' from source ProductionMgmt. This information is provided by
heuristics such as described in Sections 5.10.1 and 6.5.11.

Finally, evidence such as E | (('Current_Hourly_Demand is more than 5 units larger than
Current_Sales')()) may lack a certainty estimate. A ranking that is also based on this kind
of evidence cannot be based on the pure management of uncertainty estimates but needs
to be based on domain expertise. The approach by An, Bell and Hughes [AN 93], for
example, can be used to combine evidence that is not necessarily numerical (Section
3.5.2). In other words, a domain specialist may identify that evidence Ej
(('Current_Hourly_Demand is more than 5 units larger than Current_Sales')()) is more
believable than E4 (('Calculating the Demand' is a Role that makes a system'X'very
credible')). However, the agent needs to be a domain expert of the ProductionMgmt
system, for example:

269

To interpret Evidence E] such that the Current Hour 1yJDemand is calculated
based on the Current_Sales which means that candidate Oj is a more adequate
estimate of the Current_Demand than O2 which also includes Urgent_Requests
(Section D4).

Thus, these evidential reasoning mechanisms may be applied by domain experts in the
next phase of Domain-Specific Problem-Solving.

For example, a human expert as described in the following section may be able to make a
judgement based on any kind of evidence. Furthermore, a domain expert may also make
a judgement based on the candidates themselves and not just based on the certainty
estimates that support or refute these candidates (Sections 5.8. and 6.5.9).

In conclusion, existing methods of uncertainty management can be incorporated in the
design of ranking heuristics as described in Sections 5.10.1 and 6.5.11. However, the use
of uncertainty management methods is typically limited because of the heterogeneity of
the conflicting certainty estimates.

270

6.5.9 Domain-Specific Problem-Solving

In the second step of conflict resolution the information agent applies domain-specific
strategies, such as provided by domain problem-solving or expert knowledge, to the
conflict. The Demonstrator searches the Agent Knowledge for information on strategies
for Problem-Solving or Services (Resource Knowledge) that are able to resolve the
current conflict of candidates. For example, the query 'What is the waiting time of the
product BigMac?' may translate into the query:

Oj.(vi(Product_Name):BigMac, V2 (Production_Time): ?)

The following two candidates result from this query:

O] .[(Essential Characteristic Product_Name: BigMac) (Essential Characteristics as in
the Enterprise Model) MarketingEXP] Tuple (vj(Product_Name): BigMac,
V2 (Waiting_Time): 4),

0 2 -[(Surrogate Identifier 0-508#789) (Surrogate Identifier in an object-oriented
database) ProductionDB] Tuple (vj(Product_Name): BigMac, V2 (Waiting_Time): 5)

In other words, the MarketingEXP system has a Waiting_Time of five minutes because it
expects that customers will wait that long for the product BigMac. The RobotMgmt
system has a Waiting_Time of four minutes, which could, for example, be based on an
average of the actual production time of the robots that cook the product BigMac. In any
case, this is a genuine implicit conflict between two candidates.

How could the information agent identify domain-specific problem-solving
expertise to resolve this conflict? Existing research is limited in that it integrates expert
advice systems as information sources and not as 'problem solvers', which may be
conducted by the information agent to resolve a conflict. It is relatively easy to imagine
how a human expert would resolve such a conflict. Implementations of such domain-
specific expert resolution by humans is, for example, described by Steiner et al. [STE90],
or Pan and Tenenbaum [PAN91a]. Section 5.8, however, has introduced a possible way
to integrate human and machine advice systems as 'problem solvers'. This concept is
implemented in the Demonstrator.

This implementation shows how a software program, the RobotMgmt, can provide
expert advice to conflict resolution. Appendix D Section D.5 describes how the
RobotMgmt receives orders from the ProductionMgmt system and assigns robots in the
kitchen to process these orders. By doing this the RobotMgmt actually provides local
problem-solving functionality. Conflicts over the correct Waiting_Time for a product can
be answered precisely. In other words, the system's production table lists all the products

271

currently produced, the robots that carry out these tasks, and the time it takes until the
products are produced. This provides the 'actual' Waiting_Time.

The identification of a relevant domain specific-problem solver is implemented in the
Demonstrator such that schema objects in the information agent's view on the integrated
system include information on relevant problem-solving experts. In other words, an agent
A may retrieve information concerning the schema object 'Current Sales' from its local
source ProductionMgmt. Provided a conflict occurs including this result then the
following heuristic indicates a relevant problem-solving expert:

'A conflict including the Current_Sales can be determined by the RobotMgmt'.

In the previous example, the following candidate can be received from the RobotMgmt
system:

Op [(Position Number 238481) {{Position Number address based in Production Table)
RobotMgmt] Tuple (vj(Product_Name): BigMac, vgiProduction Time): 5)

Provided the RobotMgmt system is integrated as a domain expert then it could provide a
resolution in a sentence such as:

The actual Waiting_Time for the product BigMac is currently: 5 Minutes

However, this is only a solution to the conflict if the RobotMgmt system's resolution is
Principle Rational (Section 2.6). In other words, the agent needs to know that resolving
this domain-specific conflict with the decision from the RobotMgmt provides a solution
that is rational to any potential client of the integration environment. Precisely that is
defined implicitly in the Agent Knowledge which provides the agent with the option of
applying this expert knowledge. Hence, the resolution to the conflict over the correct
WaitingTime may be formulated as follows:

Op [(Essential Characteristic Product_Name: BigMac) {Essential Characteristics as in
the Enterprise Model) MarketingEXP] Tuple (vi(Product_Name): BigMac,
V2 (Waiting_Time): 4),

O2 .[(Surrogate Identifier 0-508#789) {Surrogate Identifier in an object-oriented
database) ProductionDB] Tuple (v] (Product_Name): BigMac, V2 (Waiting_Time): 5)

=> The actual Waiting Time for the product BigMac is currently: 5 Minutes

272

Limitations and Future Work on Domain Experts

In this research only one system provides domain expert resolution. In the light of this
case study many more experts would be able to resolve more conflicts. For example,
ideally an expert advice system on 'Current_Demand' Figures would be able to resolve the
conflict in Example 2. Further research on machine advice systems that employ reasoning
methods such as described in Sections 3.5.2 and 3.5.3, and the further development of
advise systems to be integrated into existing sharing environments will provide more
domain-specific conflict resolution [HEW91] [BR089].1

This research presents one possible way how agents could identify domain-specific
problem-solvers. However, a large number of advice systems might require more
sophisticated mechanisms for the information agent to identify the best, available domain
expert for the conflict at hand (Section 5.8).

Existing integration environments, including this research, assume that the Agent
Knowledge on domain-expertise is defined by a system administrator. This is potentially
a complex, laborious task in large integration environments. Furthermore, conflict
resolution is potentially incomplete if the information agent's knowledge of all existing
domain-specific problem-solving capabilities is incomplete. In other words, a lack of
Resource Knowledge (Services and capabilities of Problem-Solving) may prevent the
information agent from detecting all existing resolution mechanisms, and / or associating
them correctly with their domain-dependent conflicts.

The presented implementation has been built with a windows-based tool to define the
Agent Knowledge. This is a first step to making the implementation and maintenance of
Agent Knowledge manageable in large environments. However, future work on ways to
define the Agent Knowledge or ways in which the agents could identify domain-experts
automatically are needed. For example, new advice systems could automatically define
themselves in a standardised form to the agent. The agent could then try to automatically
match the resolution procedure to any schema information it has and place a reference if
appropriate.

The mechanism is, however, still Principle Rational (Section 2.6). It applies all available
rational strategies, that is all strategies 'known' to the agent by its Agent Knowledge, to
the conflict in a way that is systematic, complete and adequate. In case no resolution is
possible with the 'known' domain-specific expertise then the agent has to apply less
specific resolution strategies as described in the next Section.

273

6.5.10 Scientific, Domain-Specific Heuristics

In the previous step of conflict resolution, domain-specific strategies and heuristics were
applied to resolve the conflict. Where the conflict could not be solved (e.g. no suitable
domain-specific strategies exist) general scientific heuristics are applied. Existing
research such as the CYCCESS approach provide tools to check if a candidate is correct
under general scientific rules (Section 5.9 and Guha and Lenat [GUH94]). The
information agent has a conceptually similar approach based on its enterprise model and,
in addition, on Scientific Heuristics collected by the Demonstrator from the Agent
Knowledge.

An example of how the information agent can use its enterprise model to resolve
conflicts is demonstrated by the following example query on the cost of the robot Yogi's
repair called 'NewEnergySystem':

Oj.(vi(Name):Yogi, V2 (Repair_Name): NewEnergySystem, V3 (Repair_Cost):?)

This query may result in the following two candidates:

Oj.[(Surrogate = 0-1416#2209) (Surrogate Identifier in an object-oriented database)
ProductionDB] Tuple (vi(Name): Yogi, V2 (Repair): NewEnergySystem,
V3 (Repair_Cost): 0)

02-[(Repair.Number = 2) (User Defined Key in a relational database) BookkeepingDB]
Tuple (vj(Robot.Name): Yogi, V2 (Repair): NewEnergySystem, V3 (Repair_Cost):
10,000)

In other words, the RobotDB has information about a repair called 'NewEnergySystem'
for the robot called 'Yogi'. However, the price for this repair is zero. The
BookkeepingDB also has information about this repair but it has a price of ten thousand
(pounds). The information agent can find a resolution to this conflict in the enterprise
model. It can identify that the concept Repair_Cost has a Relation that defines that
Repair_Costs must be higher than zero. In the same way, the following Scientific
Heuristic from the Agent Knowledge could let the information agent conclude that a cost
of zero is invalid:

'Repair_Costs must be larger than O'

This example forms a good basis for demonstrating the linitations of scientific or general
heuristics. The previous example seems to be right at first sight. However, if it is
assumed that some repairs might be undertaken within the warranty of a robot it is
possible to imagine the case of a Repair_Cost of 'O'. In conclusion, 'scientific' reasoning is

274

limited to those Scientific Heuristics and definitions in the enterprise model that have
assent throughout the enterprise, for all potential clients of the integration environment.

The following will provide a brief discussion of the question: ’Should the information
agent apply domain specific resolution strategies before less domain specific ones?'

The domain-specific conflict resolution example in the previous Section included two
candidates that conflict over the correct value of the WaitingTime of a product BigMac.
The following resolution was provided:

The actual Waiting Time for the product BigMac is currently: 5 Minutes.'

This solution is provided by an expert that can ensure that its result and resolution is
adequate (Principle Rational as in Section 2.6). In this case, the RobotMgmt system
actually determines the current Waiting_Time for a given product. In comparison to
general scientific heuristics as introduced in this section, more domain-specific resolution
is:

• More difficult to find (only few expert advice systems exist, typically only human
advice for conflict resolution is realised in existing integration environments); but

• It is less problematic to use than less domain-specific, Scientific Heuristics.

It can be concluded that in case multiple resolution strategies are available for a conflict
it is preferable to apply the most domain-specific resolution. The answer to the previous
question is, therefore, affirmative. The information agent should apply domain specific
resolution strategies first, before applying less domain-specific ones.

Furthermore, this section includes a resolution based on general Scientific Heuristics. It
has been elaborated that a potential limitation of this resolution strategy is the
definition of heuristics that can be applied to any domain specific information (candidates
and their evidence). The example presented here is representative for current approaches
in enterprise integration. However, it can also be easily imagined that it is very complex
and typically dependent on human expert definitions. Section 5.9 has proposed solutions
in the form of learning, methods for the definition and maintenance of common
knowledge-bases or scientific-heuristics, and current efforts to make common
knowledge-bases widely available.

275

6.5.11 Reliability - Ranking

Judgement on the reliability of conflicting candidates is concerned with Domain-
Independent Evaluation. It only investigates the reliability or certainty estimations of the
candidates. In other words, at least one candidate needs to have evidence that specifies
its certainty or no resolution based on reliability is possible. Most heuristics, however,
require that more than one conflicting candidate has certainty estimates. Evidence is
formally specified in the Certainty Estimate variable which may be further specified in the
Formula variable:

Em = {(Formula)(Certainty Estimate)}

Section 5.10.1 outlined that Ranking and Judgement Heuristics relate Specific Certainty
Estimates, Related Certainty Estimates and General Certainty Estimates. The
Demonstrator selects all relevant Judgement and Ranking heuristics from the Agent
Knowledge starting with those relating specific estimates, then related estimates, and
finally it searches for general estimates. For pragmatic reasons this agent model only has
Judgement and Ranking Heuristics (no separate Ranking and Judgement Heuristics).

The certainty estimates for the Example 2 are outlined in Section 6.5.8. For example, the
following Ranking and Judgement Heuristic for specific certainty estimates is applicable
to the evidence E9 and Eg from Example 2:

If Evidence 1 (Hourly_Demand of the ProductionMgmt) (Certainty Estimate: 90%
confidence level))

And Evidence2 (Current_Demand from MarketingEXP) (Certainty Estimate: Not
credible based on the candidate's authority)

Then judge in favour of the candidate with the first evidence.

It follows for the evidence E2 and Eg that:

O2 has E9 = {(Hourly_Demand) (90 % confidence level)} ;

O4 has Eg = {(A system with No Authority is) (not credible)} ;
=> refute O4

Based on this heuristic the information agent can evaluate the evidence Eg and Eg and
rank the candidates such that O2 is believed and O4 is refuted. However, in Example 2
further evidence, that is certainty estimates, exist. The following Ranking and Judgement
Heuristic is based on the related certainty estimates from the ProductionMgmt and the
MarketingEXP:

276

1 .
2 .
3.
4.

ProductionMgmt 90 % confidence <=>
ProductionMgmt 70 % confidence <=>
ProductionMgmt 50 % confidence <=>
ProductionMgmt > 50 % confidence <=>

MarketingEXP certain;
MarketingEXP probable;
MarketingEXP possible;
MarketingEXP unreliable

=> Judge in favour of the higher class of certainty (1 to 4). (The certainty estimates
are rankable so that the first level is certain and the next lower level less certain,
etc. Judgement can be made in favour of the candidate with the higher certainty
level.)

It follows for the evidence in Example 2:

C>2 has E9 = {(Hourly_Demand) (90 % confidence level)}
O4 has E7 = ((A system's Expertise (Planning) makes it) (probable)}
=> refute O4

0 | has E2 = {(New_Demand) (44 % Reliability)};
O4 has E7 = {(A system's Expertise (Planning) makes it) (probable)}
=> refute O \

In other words, evidence E9 has a higher level of certainty than E7 according to the
Related Certainty Estimate. The certainty estimate of E9 is from the ProductionMgmt
and matches the highest level of certainty. The certainty estimate ('probable') in E7 is
derived by the information agent, based on the systems expertise, and therefore matches
the second level of certainty. In addition the evidence E2 and E7 can be related in the
same way such that object Oj is not as reliable as O4 . Based on this evidence, the
information agent can reach a judgement in two conflict cases:

• In favour of the candidates O2 to refute O4 ; and
• In favour of candidate O4 and refute O \ .

In contrast to Related Certainty Estimates, General Certainty Estimates are universally
accepted, where 'universal' may mean within the enterprise including all potential clients
of the integration environment (Section 5.10.1). A ranking order is defined for Groups of
certainty estimates. In other words, certainty estimates, such as 'very reliable' from the
ProductionMgmt system, are related to a certainty level in the general certainty table, for
example the following may be included:

Certainty Level 1: 'Very credible' (for results from ProductionMgmt)
Certainty Level 2 :
Certainty Level 3: 'Probable' (for results from MarketingEXP).

This hierarchy is the basis for relating the following evidence:

277

0 \ has E4 = {('Calculating the Demand' is a Role that makes a system)(very
credible)};

O4 has E7 = {(A system's Expertise (Planning) makes it) (probable)}.
=> refute O4

0 2 has E4 = {('Calculating the Demand' is a Role that makes a system)(very
credible)};

O4 has E7 = {(A system's Expertise (Planning) makes it) (probable)}.
=> refute O4

0 3 has E4 = {('Calculating the Demand' is a Role that makes a system)(very
credible)};

0 4 has E7 = {(A system's Expertise (Planning) makes it) (probable)}.
=> refute O4

In other words, E4 matches the first certainty level in that it has the certainty estimate
'very credible' for a result from the ProductionMgmt. E7 includes the certainty 'probable'
for a result from the MarketingEXP. The hierarchical order in this case of Ranking and
Judgement Heuristics enables the agent to conclude that it should make a judgement in
favour of the candidates supported by evidence E4 (Oj, O2 , O3), because E4 is in a
higher certainty level than candidate 0 4 's evidence E7 .

In conclusion, determinate ranking and judgement has been made on the conflicting
candidates of Example 2 such that the candidates O2 and O3 are more reliable than O4

and a judgement is possible to refute O4 in these cases. Section 5.10.1 outlined that
ranking is limited by the heterogeneity of the evidence and their credibility estimates
(Section 5.7.2, 5.10.1 and for this case study in 6.5.8). In addition, Section 5.10.1
sketched that the Ranking and Judgement Heuristics are typically incomplete. Thus, in
this case study a lack of heuristics has produced incommensurate candidates for the
following four conflicts:

1. 0 1 and (O2 and O3);
2. Oi and O5 ,
3. (O2 and O3) and O5 ;
4. O4 and O5 .

An indeterminate ranking situation has occurred between the candidates Oj and O4 .
Evidence E2 (44 % reliable) and E7 (probable) make the agent refute O] where as E7

(probable) and E4 (very credible) make the agent refute O4 (Oj and O4 are
indeterminate). The following Section will describe how these incommensurate and
indeterminate cases may be resolved by a New Alternative.

278

6.5.12 Reliability - New Alternatives

For cases of incommensurate and indeterminate ranking described above, new
alternatives can be proposed by the information agent based on its own Alternative
Ranking and Judgement Heuristics. The form of these heuristics is identical to the
Ranking and Judgement Heuristics for General Certainty Estimates. In other words, the
agent has multiple classes of hierarchically ordered levels of certainty estimates. Each
certainty estimate for results from a specific sources (or Group) relates to a ranking level
in the Alternative Ranking Scheme. The Demonstrator retrieves all relevant Alternative
Rankings based on these new alternatives for all estimates of the conflicting candidates.
This produces a New Alternative solution to the conflict provided the Alternative
Heuristics can meet the estimates of the conflicting candidates.

In Example 2 the New Alternative ranking would propose to rank the candidate O5 and
its evidence Eg, over the candidate Oj and its evidence E2 :

0 1 has E2 = {(New_Demand) (44 % Reliability)};
O5 has Eg = {(An object-oriented database system) (is typically very reliable)}.
=> refute Oj

In contrast to proposing a ranking based on the agent's Alternative Ranking Heuristics
the agent may be able to define a New Alternative (i.e. a compromise) to
incommensurate ranking cases based on the circumstantial information of the candidates.
Circumstantial Information is defined as Environmental Information (Resource
Knowledge) in the Agent Knowledge. The Demonstrator specifically searches the Agent
Knowledge for the relevant information on the candidates roles, expertise and authority.
A compromise can be developed in Example 2 such that incommensurate ranking of the
candidates O \ and O2 can be redefined in the following way:

0 1 has Ej = {(Current_Hourly_Demand is more than 5 units larger than
Current_Sales ()};

0 1 has E2 = {(New_Demand) (44 % Reliability)};
Oj has E4 = {('Calculating the Demand' is a Role that makes a system)(very

credible)};

0 2 has E9 = {(Hourly_Demand) (90 % confidence level)};
02 has E3 = {(All Production Systems are) (very reliable)};
O2 has E4 = {('Calculating the Demand' is a Role that makes a system)(very

credible)};
O2 has E5 = {(A system with a High Authority is)(very credible)};

279

The investigation of the candidates' (Oj and O2) Environmental Information produces
that both candidates are from the ProductionMgmt system and have the same Role
('Calculating the Demand'). However, O2 has a high authority 'because it determines the
production supervised by the RobotMgmt' (Section 6.5.8 introducing Authority to derive
certainty estimates). Hence, evidence E5 can be made more specific such as:

O2 has E5 = {(A system with a High Authority is)(very credible on determining the
Production in the RobotMgmt)} ;

It is then possible to propose this compromise such that 0^ is relevant for
Current_Demand in the ProductionMgmt, and O2 determines the result from the
ProductionMgmt, which is relevant for the Production (in the RobotMgmt system,).

Further compromises can be developed in the same way for the other candidates of
Example 2 and as a result the following compromise would resolve the conflicts between
the candidates:

Candidate O] New_Demand is relevant to calculate the Current_Demand from the
point of view of managing the production (ProductionMgmt).

Candidates O2 Hourly JDemand, and O3 Current_Hourly JDemand determine the
production in the RobotMgmt system.

Candidate O4 Current_Demand is relevant for the Current_Demand in the Marketing
Department.

Candidate O5 Expected Demand is a statistical value for the long term prediction by
the production database ProductionDB.

However, up to this point in the conflict management, the agent has only received a
compromise that is a suggestion, which may lead to a conflict resolution. In other words,
this compromise needs to be negotiated as described in the next section.

280

6.5.13 Reliability - Negotiation

The Negotiation phase presents the alternative solution to the client, typically a decision
maker. This presentation includes all candidates, their evidence, any information gathered
for these candidates, their degrees of sameness, and any resolutions to conflicts among
the candidates. In case no compromise has been developed (e.g., the candidates have no
certainty estimates) the No Solution stage presents all the information gathered on the
conflict case. However, in the previous example a compromise was found and the
Negotiation Phase presents not only all information gathered on the conflict but also the
compromise.

In the case of Example 2, the following information can be listed as an assessment and a
compromise presented to a client of the integration environment:

Conflict Detection: All the information from the conflict detection as described in
Section 6.5.7 (pp. 254-255) and presented in the Demonstrator's Result Window (the
candidates, their evidence, the kind of conflict, possibly the candidates' sameness,
etc.)

Conflict Resolved:
Refuted : O4 .V2 (Current_Demand):50
Supported: 0 2 .V2 (Hourly_Demand) : 4 4 and 0 3 .V2 (Current_Hourly_Demand):4 4)

based on:

C>2 has E4 = (('Calculating the Demand' is a Role that makes a system)(very
credible)};

O4 has E7 = {(A system's Expertise (Planning) makes it) (probable)}.
=> refute O4

0 3 has E4 = {('Calculating the Demand' is a Role that makes a system)(very
credible)};

0 4 has E7 = {(A system's Expertise (Planning) makes it) (probable)}.
=> refute O4

O2 has E9 = {(Hourly_Demand) (90 % confidence level)};

O4 has Eg = {(A system with No Authority is) (not credible)};
=> refute O4

281

The New Alternative
1. New Alternative Ranking and Judgement:

O i has E2 = {(NewDemand) (44 % Reliability)};
O5 has Eg = {(An object-oriented database system) (is typically very reliable)}.
=> refute Oj

2. Compromise:
Candidate O] New Demand is relevant to calculate the CurrentDemand from the

point of view of the production management ProductionMgmt.

Candidate O2 Hourly Demand and
Candidate O3 Current_Hourly_Demand determine the Production in the

RobotMgmt system.

Candidate O4 Current Demand is relevant for the Current Demand in the
Marketing Department.

Candidate O5 Expected Demand is a statistical value for the long term prediction by
the production database ProductionDB.

In Example 2 six implicit conflicts over the value of the attribute R^ for the attribute
class V2 Current Demand (as specified in the Global Agent View) have been detected in
the Conflict Detection Phase (Section 6.5.7 p. 255). The previous paragraphs of this
section have described the resolution of these conflicts. The following will provide an
overview of how these conflicts have been resolved:

1 . Oj.V2.34
2 . O4.V2:50
3. 05-V2:45

4. O j .V2:34

5. Oj.V2.34

6 . 05.V2:45

(02-V2:44 & O3 .V2 A 4)

(02-V2:44 & O 3 .V2 A 4)

(O2.v2.44 & O3.V2A4)
0 4 . V2:50

05. V2:45
O4.V2:50

Compromise
Resolved by refuting O4

Compromise
Compromise
New Alternative: Refute Oj
Compromise

Section 5.10.3 states that a potential limitation of this resolution phase is that the
developed solution is not embedded by a further scheme for learning. In other words, the
alternative solution developed above for Example 2 could be presented to a domain
expert, e g. a decision maker. This expert could then comment on the applicability of this
solution. For example, the usefulness of the compromises developed or the applicability
of the New Alternative Ranking. These comments could be used by the information
agent to rank its Alternative Heuristics. Furthermore, such a domain expert could also
propose new Alternative Ranking heuristics which might then be 'learned' by the
information agent.

282

6.6 Critical Evaluation of Case Study

The case study has demonstrated the functionality of the conflict detection and resolution
mechanism. It has proved that the mechanism detects any 'known' conflict and
demonstrated which implicit conflicts are 'known' by an information agent. Furthermore,
it is clearly shown how difficult and complex it is to detect implicit conflicts.

In particular it has been revealed by example that domain level resolution procedures
provide expert resolution that is

(i) very well suited as a source of Principle Rational (Section 2.6) conflict detection,
but

(ii) it is difficult to identify and to apply to conflict resolution by information agents.

Current integration environments are limited in the way they apply domain expertise.
Furthermore, future enterprise integration environments (e.g. also called 'Future
Intelligent Information Systems' [BR089]) may improve the integration of many more
human and specifically machine domain experts [HEW91], This may ultimately provide
conflict resolution that will be based mainly on domain expert resolution. Less domain
level resolution procedures have been shown to be able to resolve conflicts adequately.
However, domain level resolution, once it is identified and applied to the conflict, is
much less problematic to use as a form of conflict resolution and it has much less chance
of being inadequate. For example, it has been shown that general, scientific heuristics
that can be applied to any domain information appropriately, are extremely difficult to
define. Furthermore, Domain-Independent Evaluation, e g., based on reliability or
certainty estimates, carries much more risk in providing semantically inappropriate
solutions.

The shortcomings of judgement based on credibility assessments of the candidates have
been made explicit. Gathering reliable certainty estimates is a very difficult task for
information agents and deriving them from circumstantial information such as the
expertise, role or authority has been demonstrated. This is a well established way to
determine reliability and to solve conflicts [BAR94], However, heterogeneous certainty
estimates are only comparable if the agent has extensive Organisational Knowledge. The
concepts for reliability measures are very heterogeneous, e.g., derived from the role of an
information system or its essential characteristics. This research has demonstrated how-
difficult it is to define heuristics that relate these certainty estimates. However, previous
research described in Section 3.3 relies solely on credibility as a measure for resolving

283

conflicts. It fails to even investigate domain-specific resolution strategies that are, as
shown in this research, appropriate to resolve these conflicts.

Example 2 of this case study has investigated all steps of the conflict detection and
resolution mechanism. The final resolution is a New Alternative that is, the conflicting
candidates are redefined in order to find a compromise. This redefinition is based on
circumstantial information, such as the roles, or expertise of the sources of origin. For
example, the first two candidates of this example are :

Op[(ProcessID: 229) (Member of a Process with Process Id's) ProductionMgmt] Tuple
(vj(Product_Name): BigMac, V2 (New_Demand): 34)

0 2 -[(ProcessID: 229) (Member of a Process with Process Id's) ProductionMgmt] Tuple
(v i (Product_Name): BigMac, V2 (Hourly_Demand): 44)

They conflict because the two New_Demand and the Hourly_Demand are both
generalised into the concept Current_Demand in the Global Agent View. Common sense
would intuitively suggest to investigate the 'meaning' of the Hourly_Demand and the
New_Demand. This process is included in the Semantic Conflict detection phase as an
investigation into concept correspondence (Section 6 .5.5.2). Hence, thorough conflict
detection, as proposed by this research, will make obsolete most conflict resolution
proposed by existing research in enterprise integration, e.g. Barbuceanu and Fox
[BAR94], However, further effort to improve the information agent's detection
capabilities promises to improve its conflict management capabilities significantly (see
also Future Work in Section 7.4).

The approach shows detailed conflict detection and rational conflict resolution. The
results of conflict detection are explicitly available to a decision maker. It includes the
candidates, their evidence, possibly an evaluation of the candidate's object
correspondence, and the kind of conflict. In addition, conflict resolution provides an
explicit explanation of any judgement based on credibility.

Some pragmatic assumptions in the implementation and demonstration of the
environment have been made in order to focus on conflict detection and resolution. In
particular the Demonstrator assumes consistent Agent Knowledge. Thus, these
assumptions are representative of the potential limitations of current implementations of
information agents. In other words, conflicts could potentially occur, for example,
between Admissibility Heuristics or Reliability Heuristics, and Comments in the Global
Agent View.

284

A potential solution to inconsistent Agent Knowledge could be agent learning and
adaptation. In addition, learning, adaptation and reuse of once defined heuristics could
potentially overcome the strong dependence of current research in enterprise integration
on human, expert definitions of heuristics and other semantic information. Only the
anchor points are briefly mentioned (e.g., Section 5.4.2, 5.9 and 5.10.3). The field is
outside the scope of this research though it is closely related to conflict detection and
resolution. Furthermore, future research could be directed at providing sound guidelines
and methods for the definition and maintenance of the Agent Knowledge and the
Enterprise Model. A step into this direction is, for example presented for the CYC
knowledge-base by Lenat [LEN90],

Future research could be directed at negotiation schemes for information agents to
exchange incomplete, possibly inconsistent Agent Knowledge. Schemes for such
negotiation have been presented in the area of Distributed Artificial Intelligence (Section
3.4 and Appendix A). For example, the scheme by Laarsi et al. [LAA92] is based on the
phases proposal, critique, explanation and possible resolution heuristics. Such a scheme
could be adapted to enable agents to propose Agent Knowledge to other agents. These
might then be able to critique the proposal if they detect that the proposal is inconsistent
to their own Agent Knowledge.

285

6.7 Conclusion on Evaluation

Section 6.1.2 outlined the aim of this evaluation. Accordingly the evaluation has two
parts:

1. The implementation of the integration environment and

2. The case study.

The first part showed how information in heterogeneous information sources can be
inconsistent within an information sources and across systems with a demonstration of
the implementation of the Agent Knowledge. Finally, the Demonstrator showed how the
conflict detection and resolution mechanism, outlined in Chapter 5, could be
implemented. It follows that the case study illustrated that a rational conflict detection
and resolution mechanism is functional in enterprise integration environments.

Furthermore, it was made explicit why domain level resolution should be applied before
the application of a more general mechanism. The implementation demonstrated that any
rational strategy could be incorporated in this general scheme. The case study showed
some example cases that were managed within the conflict detection and resolution
mechanism in a way that is potentially rational to any client of the integration
environment.

It may thus be concluded that the aims of this evaluation outlined in the opening Section
6 .1 . 2 on the methodology of this evaluation, have been met.

286

6.8 Chapter Summary

First the method of evaluation was sketched. It is divided into the two sections (i)
introduction of the integration environment with an example implementation, and (ii) a
case study to demonstrate and evaluate the conflict detection and resolution mechanism.

The integration environment includes an object-oriented database, a relational database, a
rule-based system, and other standard software systems such as a production control
system or a production management system. Furthermore, a small simulation of an
enterprise model is implemented in the environment. Each of these systems is integrated
into the environment via a uniform Agent View. Figure 14 has a brief overview of the
implementation.

The fictitious 'Cafeteria' example is implemented in this environment in order to show its
functionality. It demonstrates the complexity of enterprise integration and modelling.
Furthermore, the environment implements true autonomous sources that are accessed via
an Agent View on these sources. This makes it explicit that inconsistencies and
incompleteness on the schema level as well as on the data level are unavoidable. It also
shows that assuming consistency in enterprise integration is unrealistic.

Moreover, an agent model is implemented in order to show that all the Schema
Knowledge, Resources Knowledge and Organisational Knowledge introduced in Section
2.7 can be accessed and managed by an information agent.

The case study is based on this agent model within the 'Cafeteria' example. It
demonstrates and evaluates the conflict detection and resolution mechanism by example
cases. This is an illustration of the approach as well as a proof of concept. The
shortcomings of previous research are clearly elaborated. Finally, the steps of the conflict
resolution phase are illustrated and critically evaluated. In particular, the inherent
complexity, and in may cases inadequacy, of judgement based on credibility assessments
is outlined. The case study illustrates the importance of making conflict detection
explicit. Much previous research has neglected this stage.

287

7. Concluding Remarks
7.1 Summary

The first two chapters include a brief introduction to Distributed Collaborative
Environments for Enterprise Integration (DCEEI). They cover the basic terminology,
architectural issues, and the problem of integrating inconsistent information from
autonomous, heterogeneous but semantically related information sources. Chapter 2 also
incorporates a survey of all the information that is potentially available to an information
agent in DCEEIs.

Existing research into enterprise integration environments has been surveyed in Chapter
3. Most research fails to provide conflict detection and resolution mechanisms and
assumes internal, and inter (cross) system consistency. However, it is shown that this
assumption is unrealistic for open distributed information systems. Furthermore, those
research approaches that explicitly address conflict management fail to ensure that this is
rational to any user, or client of the integration environment.

In summary, no rational scheme for conflict detection and resolution exists that is
specifically suitable for DCEEI. Only a general structure for gathering candidates in
conflict detection is provided by research in uncertainty management. Information agents
lack domain expertise and, hence, lack domain-specific resolution procedures. However,
no rational framework exists that guides information agents on the selection and
application of existing resolution strategies to conflicts in the integration environment. In
other words, conflict resolution approaches have been analysed in DCEEI, in the wider
field of distributed artificial intelligence, and uncertainty management. It follows from
this analysis that a framework is required with which agents can detect and rationally
resolve conflicts.

A theoretical framework for conflict detection and resolution has been developed in
Chapter 4 based on evidence law. This theory is applied to conflict detection and
resolution in DCEEI. Strategies from the field of distributed planning and enterprise
modelling are intertwined with this scheme.

Chapter 5 describes the mechanism. However, conflict detection requires a novel
structure for object identity suitable for integration environments. It is an extension to
existing object structures as described in Khoshafian and Copeland [KHO90].
Furthermore, a uniform formal representation of results from heterogeneous information
sources (candidates), and evidence that warrants or refutes these candidates, is
introduced. This formal specification enables the information agent to assess, represent

288

and classify, any known conflicts in enterprise integration. Syntactic and semantic
conflict detection is outlined. This includes ways of strengthening the correspondence
assumption made in the case of explicit and most implicit conflicts.

A framework for rational conflict resolution and judgement on conflicting results is thus
designed. This includes a mechanism for identifying:

a. Domain-specific resolution procedures (Domain-Specific Problem-Solving);

b. The application of general resolution heuristics to domain-specific information,
which is in the form of candidates and their evidence (Scientific, Domain-Specific
Heuristics);

c. Judgement on the reliability of conflicting candidates (Domain-Independent
Evaluation).

The latter includes a scheme for ranking the reliability of the candidates. Furthermore,
new alternative rankings and reliability estimates are developed and negotiated.

Chapter 6 evaluates the approach by first describing the implementation of an enterprise
integration environment. This environment integrates autonomous, heterogeneous
information sources including an object-oriented database, two relational databases, rule-
based systems, and various standard software systems such as production management
and control systems. An enterprise model that acts as a reference model for the
information agents is also implemented. Each source is integrated by an information
agent, which acts as a client to the autonomous source. A C++ program called Demons
is the implementation of a model of the information agent. In particular it contains the
Agent Knowledge (all information an agent has about itself, its integrated source, and the
other agents) and the conflict management program. A fictitious example is realised in
this environment. The implementation clearly illustrates the complexity of a DCEEI. This
makes explicit the inappropriateness of assuming consistency of the data, or the schema
level of the distributed environment.

A case study is conducted in this environment. An information agent and its conflict
detection and resolution mechanism are implemented in a Demonstrator program that is
part of the agent model. The case study shows the functionality of the rational (called
Principle Rational) conflict detection and resolution approach. It demonstrates that the
mechanism is complete in respect to all known conflicts, and that it can incorporate all
known resolution strategies. The evaluation illustrates the advantages over existing
approaches, the limitations, the importance of thorough conflict detection in DCEEI, and
proves that domain level resolution should be applied first to any conflict in DCEEI.

289

7.2 Results and Contributions

The following list briefly summarises the main contributions of this research.

• A theoretical framework for conflict detection and resolution in Distributed
Collaborative Environments for Enterprise Integration (DCEEI) has been designed. It
forms the basis for the structure of the conflict detection and resolution mechanism.

• A novel object identifier has been developed, which is an extension to existing object
structures typically used in DCEEI based on Khoshafian and Copeland [KHO90]. It
enables the information agent to assert and represent the identity of objects from
heterogeneous information sources. The identifier incorporates the heterogeneous
notions of identity as they exist in the integrated information sources. On this basis
object correspondence can be defined accurately by the information agent.
Furthermore, the agents can investigate weak notions of identity and object
correspondence. Explicit (and some implicit) conflicts are based on the assumption
that the candidates correspond to same thing (individual). If the information agent
can identify that the objects (candidates) do not correspond to the same thing, there
can be no conflict.

• A concept for syntactic and semantic conflict detection is designed. It is based on
rehearsing enterprise modelling and schema integration phases. This makes conflict
detection suitable for open enterprise integration environments that may not be
modelled and integrated such that all-time consistency can be assumed.

• Admissibility is introduced to DCEEI. Results that are generally not worth
considering are rejected in the Admissibility phase.

• This research has outlined multiple resolution strategies. However, no concept for
information agents exists that enables them to apply these to conflict resolution in
enterprise integration. It has been shown for conflict management in the field of
planning (Section 3.4.4), that domain level resolution should be applied before more
general strategies. A rational scheme for conflict resolution is proposed based on this
premise. The adequacy of this principle has been shown in the evaluation.

• It is shown how information agents can apply general resolution heuristics to
domain-specific information.

290

• Judgement on the reliability of conflicting candidates, with the aim of solving data
conflicts in DCEEI, is briefly introduced. Synthesising existing research, it includes
three steps: Ranking credibility; Defining new alternative solutions; and Negotiating a
compromise.

The presented design of a conflict detection and resolution mechanism overcomes
deficiencies of existing research:

• It provides a rational scheme for conflict detection and resolution, and does not just
assume that enterprise integration environments contain only consistent information.

• Conflict detection is based on a complete scheme to detect conflicts that are merely
syntactic, or a mere semantic mismatch. Existing approaches typically lack a
detection scheme. No existing mechanism investigates the correspondence
assumptions made about conflicting candidates. Furthermore, existing research fails
to address concept correspondence in conflict detection in DCEEI.

• The demonstrator shows the inadequacy of conflict resolution based only on the
reliability of conflicting candidates. Judgement based on the resolution of conflicting
candidates can be one strategy to resolve conflicts, but it does not replace thorough
conflict detection, and may not be as well suited as more domain-specific resolution
strategies.

This research has also produced an outcome that is important to any conflict detection
and resolution mechanism in DCEEI:

• The implementation of the integration environment makes the complexity and
potential risk of inconsistencies obvious. These may occur within the integrated
sources without the knowledge of the integrating agent, across information systems,
and on the schema and integration level (meta information level).

• The notion of rationality was defined for information agents such that it can be
Principle Rational and Application rational (Section 2.6).

• The evaluation illustrated the importance of thorough conflict detection in conflict
management.

One result of this research is the elaboration of the limitations to this approach, and of
conflict detection and resolution in enterprise integration in general. These are listed in
the following section.

291

7.3 Limitations

The completeness of the conflict detection and resolution mechanism is constrained in
two aspects (Section 3.2):

• Conflict detection is limited to conflicts between those results that the information
agent receives from the information retrieval process. In other words, information
retrieval necessarily precedes conflict detection. A detection mechanism can only
detect conflicts among those results that are provided by information retrieval.

• Within the results that are presented to the mechanism, all known explicit and implicit
conflicts can be detected. The information agent is, therefore, limited to those
implicit conflicts that it 'knows'. In other words, the detection is constrained by the
agent's principle of coherence. For example, implicit conflicts between various
objects' different attributes require very specific domain knowledge. Such an implicit
conflict may exist between 'Peter's blue shoes' and 'Mark's blond hair' based on the
notion of coherence: 'Either Peter has blue shoes, or Mark has blond hair'. Typically,
conflict detection is concerned with explicit conflicts or, alternatively, implicit
conflicts of objects that are concerned with the same object (e.g. 'Peter') and the
same attribute (e.g. 'colour of shoes'), but different properties (e.g. 'Colour is 'blue"
and 'colour is ’red") (Section 3.2.1 and 5.2.4.3). These implicit conflicts require that
the agent knows that the properties are exclusive, e.g. 'Peter's shoes only have one
colour'.

All conflict detection and resolution steps are limited to the information that an agent has
about the integration environment and its integrated sources (Agent Knowledge). For
example:

• Syntactic conflict detection is limited to those syntactic conflicts that the agent can
investigate with its Organisational Knowledge. For example, an agent can only
investigate the semantic correctness of the information retrieval, translation, and
matching if it has extensive knowledge of the communication protocol and
modalities.

• The information agent can only systematically apply all available resolution strategies
as guided by the rational scheme demonstrated in this research. It does not provide
all resolution strategies. Not all 'known' resolution strategies can be applied to all
conflicts. For example, if an agent lacks the information on a Domain-Specific

292

Problem-Solving strategy that exists for a given conflict, then it cannot apply this
strategy. However, this is a limitation of the Agent Knowledge, and not of this
scheme itself. It is complete in as far as it can incorporate all resolution strategies that
the information agent knows about, and can apply them to conflict resolution in
enterprise integration.

Judgement based on the reliability of conflicting information sources is very complex and
only possible in those cases where relations between heterogeneous certainty assessments
can be established. It has been established that a potential problem in enterprise
integration, and in uncertainty management, is that the same certainty estimates may have
semantically different meanings in multiple heterogeneous, autonomous sources. In
addition, different certainty estimates, which may be inconsistent, may be used across
information systems.

Furthermore, certainty estimates may be derived from roles, expertise or authority of e.g.
information sources. These certainty measures, therefore, depend very much on a specific
form of certainty or reliability. Comparing these different forms of certainty may not
always be possible and semantically correct. Moreover, the scheme for judgement on
certainty estimates is limited to those cases where judgement is Principle Rational
(Section 2.6) so that meaningful results are produced for any clients of the integration
environment.

A potential limitation of the approach, as described in the mechanism and implementation
in the Demonstrator, are pragmatic assumptions about consistent Agent Knowledge.
However, this limitation can be overcome by providing the agent with heuristics that let
it manage conflicts within its knowledge. For example, it may have heuristics that let it
rank conflicting Admissibility Heuristics, or guide the agent on how to decide when such
conflicts arise (Section 5.5 and 6.5.5). Provided a candidate is declared admissible by one
heuristic, and inadmissible by another, then a resolution that the candidate is
provisionally admissible is possible (i.e. the result of conflict detection and resolution will
have to include this provisional status).

Security issues are not addressed in this research. They are not taken into account in the
description of the mechanism and the functionality of the detection and resolution
mechanism. The scope of this work does not permit the in-depth discussion of these
issues. It is worth noting that they are also not discussed by many fundamental DCEEI
research works, including the KQML language [CHA92], It is difficult to incorporate
security issues when all other components of the DCEEI are not concerned with security.

293

Computational issues of conflict detection and resolution are not discussed and the effort
and time it will take agents to perform the specific steps of the resolution mechanism are
not calculated. However, this mechanism assumes autonomous information sources. It is,
therefore, not necessary to closely integrate in a computationally expensive way. For
example, no tight global schema and management system is required, with which local
sources need to cohere (e.g. Master Model approaches in Section 3.3.1.1). Hence, the
concept of this scheme emphasises modularisation and local autonomy, which potentially
reduces and distributes computational costs.

Many issues in enterprise integration are very closely related to conflict detection and
resolution. These include information retrieval, information exchange between
information agents, communication between information agents, and specifically learning
and adaptation. Future research in these areas should improve conflict detection and
resolution. This future work is described further in the next section.

294

7.4 Future Work

Learning and adaptation are very closely related to conflict detection and resolution. For
example, the Negotiation phase concludes with a resolution proposal to clients of the
integration environment, such as human decision makers. In principle, this proposal can
be accepted or rejected, for example, by a human decision maker, and so provide a good
basis for agent learning. However, the agent could similarly improve its Resource
Knowledge and heuristics (Organisational Knowledge) by direct interrogation of domain
experts. Furthermore, it could install and change Comments (Resource Knowledge), for
example, on the reliability of a source based on the agent's past experience.

Adaptation of the information agent to changes in the integrated information sources is
crucial in autonomous, heterogeneous integration environments. Some research proposes
to monitor integrated information systems, as for example described in Section 3.4.3.
These mechanisms should be extended to support the information agents described in this
research.

Furthermore, this research proposes a number of new concepts for enterprise modelling.
For example, the novel object identifier and the object sameness predicates are concepts
of potential use in the design of integration environments. A concept for Versioning of
object identifiers has been mentioned in Section 5.2.1.4. The agent model described in
this research also provides concepts for the modelling of information agents in enterprise
integration. For example, Section 2.7 and the implementation (Section 6.2.3) provide a
structure for the Agent Knowledge, which includes information about the integration
environment, other agents and the integrated sources. The latter may entail the source's
reasoning, processes, data, problem-solving strategies, etc.

The conflict detection and resolution mechanism is based on the quality and reliability of
the Agent Knowledge. Hence, guidelines on the implementation and gathering of this
Agent Knowledge would improve and guarantee the functionality of the integration
environment, which includes conflict management.

"Enterprise integration is concerned with how to improve the performance of
distributed organisations and markets. It focuses on the communication of
information and the coordination and optimisation of enterprise decisions and
processes in order to achieve higher levels of productivity, flexibility and quality"
[[FOX93]p.425],

295

This integration is, for example, provided by cooperative work and decision support
systems (Section 2.6). The conflict detection and resolution mechanism is one step in
providing information agents with intelligent integration capabilities. The next step is to
facilitate the applications, or decision makers that use information from the DCEEI, to
make best use of all the available information.

Scientific Heuristics are applied in the conflict resolution mechanism to make rational
judgements on the accuracy of results. A concept for these judgements has been adopted
from earlier research, such as the CYCCESS project [GUH94], Research in qualitative
uncertainty management, e.g. Argumentation [CLA90a], provides further means of
judging the correctness of conflicting results. Further research is needed to tailor these
approaches so that they can best provide services to rational conflict resolution in
enterprise integration.

The integration of Domain-Specific Problem-Solving systems and strategies in the
sharing environment is a complex problem. Integrating them into the agents' conflict
management activities is typically limited to human expertise. Only a few examples have
been presented by this research. Future research will further the integration of
(intelligent), non-human expert knowledge such as advisory systems (Section 3.5.3.4)
[BR089] [HEW91], This closer integration will then potentially provide more domain-
specific resolution strategies to conflict management.

Conflict detection and resolution is only one of a number of processes that mediate
between information retrieval and information use (by clients). These processes should
be closely linked. For example, this research can provide concepts useful to information
validation and uncertainty estimation of results provided by the integration environment.

For example, this research has illustrated a mechanism to investigate object
correspondence in enterprise integration environments. This mechanism is used to
compare the correspondence of candidates or results. However, it could potentially be
used to improve information retrieval by comparing the correspondence of the results to
the information actually requested.

The collaboration in the DCEEI demonstrator is limited to the exchange of results.
Nevertheless, Sections 2.3, 2.7, 3.3.1 and 3.3.2 have shown how information agents in
enterprise integration environments exchange Agent Knowledge (Schema Knowledge,
Resources Knowledge and Organisational Knowledge). However, multiple information
agents may incorporate inconsistencies among their Schema, Resource, or Organisational

296

Knowledge. Future work is needed to develop a concept for the sharing of inconsistent
meta knowledge.

Furthermore, information agents could critique their conflict resolution strategies. For
example, an agent could develop a new alternative and then request critiques from the
other information agents. This principle has been well established in the area of
distributed artificial intelligence but needs to be implemented in the conflict resolution
mechanism.

The last point is of particular interest in the case of heterogeneous information agents.
The present research is based on homogeneous information agents. Each agent uses the
same knowledge representation, internal problem-solving strategies, inter agent
communication language, etc. Furthermore, the agents benevolently exchange all their
Agent Knowledge. However, DCEEI should also integrate heterogeneous information
agents that may not necessarily be as benevolent. For example, information agents from
multiple organisations may communicate directly and form an integration environment.
The conflict detection and resolution mechanisms are applicable to heterogeneous agent
environments. It would, however, be necessary to extend the Agent Knowledge and
available resolution strategies for the detection and resolution framework. For example,
syntactic conflict detection becomes more complex in heterogeneous agent worlds.

297

Appendix A: Distributed Artificial Intelligence

A.l Example Approaches in Distributed Artificial Intelligence Research

This appendix provides a brief description of the research projects described in Table 3.
Section 3.4.3 discusses some elements of these approaches that are important to conflict
management by information agents in enterprise integration. The introduction to these
approaches, however, has been placed in an Appendix to keep the relevant research
section as brief as possible.

K in d o f
C on flic t

C ontract
N et

C onflict
T yp e

R eso lu tion S trategy P ap er
R eferen ce

Task
Assignment

Yes coop. Negotiation consists o f proposal, critique,
explanation and resolution heuristics;

[LAA92]

Goals in
DPS

No coop. Compromise based on case-based reasoning and
preference analysis, persuasion to change agents
goals;

[SYC89]

Goals in
Design

Systems

No coop. Compromise by alternatives and domain-
dependent heuristic decision-making if
compromise fails;

[WER91]

Goals in
DPS

No coop. Compromise by redefining goals and integrative
negotiation (most important goals of all parties
are integrated);

[LAN89]

Goals in
DPS

No coop. Fit to the problem and time/cost optimisation of
resolution mechanism, human decision for
essential conflicts;

[STE90]

Goals in
DPS

No coop. Game theory in adverbial situations, including a
rating o f 'worth';

[EPH91]
[ZL091]

Human /
Computer

No coop. Human user makes a decision; [ST 091]

Learning in
Co-

ordination
of Agents

No coop. Manager agent decides with the help of a learning
system which is building in form of a case-base
for use in coordination (similar to SYC89);

[VIT91]

Table 3: Conflict Detection in DAI (also in Section 3.4.3)

Laasri et al. [LAA92] have developed a generic model for cooperative problem-solving.
First, a complex task is decomposed into multiple hierarchically structured tasks and the
goals they need to fulfil. Negotiation can have the two forms of :

1. "Exchange and evaluation of possibly conflicting partial results generated during
local problem-solving....

2. Agents interact to resolve conflicts only after independently completing their
local problem-solving."[[LAA92]p.301].

In the first case agents interact in a similar way to partial global planning [DUR91a]
(Section 3.4.2) where agents exchange partial results to co-ordinate their activities at run

298

time. In the latter case, the agents resolve a conflict that has occurred as a result of the
action they have already taken.

Negotiation is blackboard [NII8 6] based in that an agent makes a proposal, other agents
critique the proposal, and the proposing agent may want to explain its result again. In
addition, agents are given 'meta-information' which is information about how particular
conflicts can be solved fastest. The meta information speeds up the process of conflict
resolution.

Conflict detection is concerned with detecting explicit or implicit conflicts. However,
these terms are differently defined than in this present research in Section 3.2.1. For
Laarsi et al. [LAA92] explicit conflicts occur when an agent critiques another agents
proposal. Implicit conflicts are those that stem from concurrently developed proposals
that are not consistent.

Negotiation systems can be very different from the blackboard based style described
above. For example, the Persuador is a case based negotiation system by Sycara based
on third party mediation.

"The negotiation process consists of three main tasks: Generation of a proposals;
Generation of counterproposals based on feedback from dissenting party and;
Persuasive argumentation"[[SYC89]p.l21],

An initial proposal is generated by the mediator and sent to the parties. The mediator
gets an acceptance or an evaluation from each party's perspective on the proposal. Based
on this the mediator generates an initial compromise. It may then again get an acceptance
from both parties or decide to generate further compromises. If compromise is possible
then the mediator can try to change the conflicting parties' views. This step is called
persuasion.

The mediator has a case-base that is formed from previous experience. "The cases are
organised hierarchically in memory around important domain concepts" [[SYC89]p. 124],
It allows the agent to propose compromises based on the successes and failures
experienced in the past. If no example cases are available then the agent analyses the
preferences of the conflicting parties. This enables the mediator to search for areas where
the parties are willing to make compromises.

Persuasion is based on argumentation by the mediator.

299

"The task of a Persuador can be viewed as finding the most effective argument
that will increase the agent's payoff."[[SYC89]p.l29],

The payoff can be effected by changing the importance or the value a persuadee attached
to the issue in conflict. For example, changing the importance that an persuadee attached
to the goal 'get new resource A', may be achieved by proposing compensation of
'resources A' to be provided by the other conflicting party.

Similar to the previous approach, Werkmann [WER91] presents a negation and
coordination mechanism for multi-agent systems. It is also based on mediation by an
arbitrator (third party) agent. A conflict is detected if agents have common issues, plans
or actions that are explicitly conflicting. If any one agent in the system wants to change
its action then it investigates which other agents have a common issue. These agents are
then asked to comment on this change. If they do not agree then a conflict has arisen.

A multi-step resolution mechanism is initiated by the arbitrator agent in the case of
conflict. It reviews the dialogue between agents that has lead to the conflict and
investigates the relations between the agents. It then proposes viable alternatives and
asks the agents to rank these. If no agreement can be reached by this mediation then the
arbitrator has to make a decision based on domain-specific heuristics.

A problem with the approach by Sycara [SYC89] (which is also true for Werkman's
approach) has been described by Lander and Lesser [LAN89] as:

Mediation is generally useful when the conflicting parties are antagonistic. But
the persuasion by mediator requires that the mediator has access to the goals and
the values which the conflicting parties attach to their goals. If no domain-
specific heuristics are available as in [WER91] then direct negotiation is
necessary.

Lander and Lesser's [LAN89] agents directly negotiate a 'compromise' or try to
'integrate' their goals. In other words, if two agents such as a buyer and a seller have a
conflict over finding a price for a product then they can negotiate a compromise. The
compromise is a price that is acceptable for both parties. An integrative resolution is one
in which both parties crystallise their most important goals. A solution is then sought that
satisfies these most important goals of both parties. In principle, compromise is a sort of
fine-tuning negotiation. Integrative negotiation is applicable when completely new /
alternative solutions are needed.

300

Agents exchange information benevolently among each other in the coordination
environment by Steiner et al. [STE90]. All agents have knowledge about themselves and
other agents capabilities. A request is processed by one managing agent. For any request
there may be either only one or multiple agents or partners that can provide the result.

"If the agent knows about matching partners, requests are send out to these
partners. If more than one partner responds, the initiating agent applies conflict
resolution strategies to chose the best partner. Factors in such strategies are the
degree of match to the problem at hand, the time/load constrains of the partners,
the cost of communication, and other less important factors" [[STE90]p.l 19].

Finally, conflicts that cannot be solved by the system are notified to a human user for
further consideration.

In other words, a conflict is detected if the responses from all sources that can possibly
provide results, are not consistent (matching). In the case of conflict the resolution
strategy aims at finding the sources that can do the task most completely. For example,
two sources A, B and C may be able to solve parts tl, t2, t3 of the task T. If A can solve
tl and t2, B can provide t2, and C can solve t3 then A and C are selected. This is so
because A can solve more of the task T (tl and t2) than B, which can only provide the
sub-task t2. It is not considered if A or B can produce correct solutions t2 - Other factors
are directed at optimising the conflict resolution costs by evaluating the lowest utility of
the agents (time/load constrains), or the cost of communicating to particular nodes.

Negotiation between agents can be based on selfish agents that cooperate under
adversarial situations. Zlotkin and Rosenschein describe a mechanism in which agents
have to define how much a goal is worth to them:

"[Worth] captures the importance of achieving a given goal. A useful way of
redefining utility was to use worth as the baseline of the utility measurement (i.e.
an agent's utility is the worth of his achieved goal minus the cost of his part of the
joint plan)" [[ZF093]p. 175],

Similarly, Ephraty and Rosenschein [EPH91] developed a mechanism for agents in
adverse agent scenarios to define their true preferences. This is done based on a voting
mechanism by agents to specify preferences in respect to all possible outcomes. It
includes an incentive mechanism for truth-telling based on a tax system. Oversimplified,
agents receive compensation (distributed tax) for not having their optimal solution
chosen by the group. Agents are therefore not inclined to overestimate their true costs by
having to accept something other than its optimal solution. Game theory is used to
evaluate the group choice.

301

Game theory is suitable for situations where all possible payoffs of all solutions can be
calculated. It is therefore a typical example of a mathematical rather than a semantic
approach. This, however, is a potential weakness of game theory in complex problem-
solving tasks [LAA92], e.g. enterprise integration. Furthermore, game theoretic decision
situations typically "do not count as group decisions because each agent chooses an
action with the aim of furthering individual goals, not mutual goals"[[WON94]p.409].

Stolze and Gutknecht [ST091] describe a human centred information system called
IKEA. It focuses on a close integration of computer and human agents in one system.

"Problem-solving does not only take place inside the agents but also directly on
the interface where the human and the automated agents cooperate"
[[ST091]p. 106],

This system addresses cooperative problems that can be solved by shifting the detection
and resolution task to a human user. In other words, the system is limited in that the
problem space must be suited to the user's expertise. Furthermore, this approach is
applicable when no automated problem-solving or conflict detection and resolution is
necessary, e.g. in environments with large numbers of agents.

Finally, a learning system in the field of DAI will be introduced. Some of the above
systems, e.g. by [SYC89], have implemented case-based reasoning and, hence, are based
on previous experience (cases). An investigation of learning for conflict resolution in
'intelligent' systems, however, has been undertaken by Vittal et al. [VIT91] [VIT92].

"Learning and adaptation are keys to the intelligent processing of information, be
it distributed or localised" [[VIT92]p.348].

This research group developed the integrated learning system which is based on a central
learning agent that co-ordinates individual learning agents. Each agent may have different
learning mechanisms and storage of the learned facts. In other words, there are numerous
learning mechanisms such as knowledge-based learning, inductive learning, search-based
learning or feature learning to name a few discussed in [VIT92], Each of these
mechanisms has a different way to encode both general and also newly learned
information, e.g., in a knowledge-base, in simple data structures or a domain model.

Cooperative learning starts with collecting recommendations from any agent in the
system. Each recommending agent evaluates its own contribution by a vote in the range
of 1 to 5. In a second stage the agents critique each other's proposals. The information
that is finally learned by all agents is that which has the most votes.

302

Some problems were experienced with learning. For example, newly learned information
is difficult to evaluate if its applied to frequently changing domains. In other words, if an
agent has learned information and applies this latest information then it assumes that any
changes in the environment are due to this new information. This may lead to situations
where agents constantly change / learn without actually improving the system.
Furthermore, it is difficult to "know whether a successful action was the best of all the
suggested actions" [[VIT91]p. 177].

Learning typically depends on the authority of the agent that supposes a fact to be
learned. But "rather than discovering that one agent is generally more reliable than
another, it is more useful to discover the reliability of agent/situation pairs"
[[VIT92]p.359]. In other words, when information is proposed than the reliability of a
particular agent in that particular situation is taken into account in order to judge on its
recommendation.

Multiple agents in the previous system learn about particular problem-solving situations
and about each other's reliability. However, Gasser and Ishida propose further changes to
the agent system including "adjusting inter-agent relationships, the knowledge agents
have about one another, the size of the agent population, and the resources allocated to
each agent" [[GAS91]p. 185],

Learning and adoption are central to any problem-solving mechanism including conflict
detection and resolution. In principle, agents can either change the problem to resolve a
conflict or they have to change themselves to fit the problem.

"A well-known AI [Artificial Intelligence] approach to adoptive problem-solving
systems has been to use a fixed problem-solving architecture which responds to
environmental change by restructuring problems (e.g. by relaxing problem
constrains, abstract search spaces, or changing decision criteria dynamically....)
or by long term adoption of problem-solving knowledge (learning)"
[[GAS91]p. 185].

Thus a fixed conflict detection and resolution mechanism should be based on an agent's
changing heuristics and information about the environment

A conclusion of described research approaches can be found in Section 3.4.3. This
appendix only provides some further descriptions of the approaches.

303

A.2 Conflict Detection and Resolution in Distributed Knowledge-Based Systems

Agents can be rule-based systems. Collaborating systems of such agents have been
termed 'Collaborating Knowledge-Bases' [STE90], 'Federated Expert Systems'
[KIR91a], 'Cooperative Knowledge-Based Systems' [CARL91] or 'Distributed Real-time
Knowledge-Based Systems' [DAI93]. These kinds of systems have been briefly
introduced as mainstream DAI (Section 3.4.3).

Within distributed artificial intelligence some systems are particularly concerned with the
integration of multiple, traditional rule-based systems, such as knowledge-bases or expert
systems. These systems are not agents that cooperate and / or collaborate but merged
rule-based systems. Example include 'Distributed Knowledge-Based Systems'
[CARL89][CARL91], 'Integrated Knowledge Derivation Systems' [SU 91], or
'Cooperating Knowledge-Based Systems' [HUA92],

A typical example is presented by Carlson and Ram [CARL91].

"Distributed Knowledge Based System (DKBS) would consist of several
Knowledge Based Systems (KBS) that are logically and physically distinct from
one another. The KBSs are linked together and managed by a single Distributed
Knowledge Based Management Systems (DKBMS) which coordinates global
inferencing to resolve goals that span multiple KBS sites in the network"
[[CARL91]p.l 1].

In other words, the knowledge-based systems are centrally co-ordinated. A global
knowledge-base is installed and managed for integrating all the component systems. This
typical approach, hence, installs a very tightly coupled distributed system of knowledge-
bases.

"The global knowledge base is responsible for managing conflicting responses or
null responses from queried KBSs and for determining the best reply to the
original query" [[CARL91]pl6].

The 'best reply' can be evaluated, for example, by the degree of match to the problem at
hand, the time/load constraint of the KBS, the cost of communication.

In principle, this system detects conflicts based on domain knowledge such as a truth
maintenance system (Section 3.5.3.1). In other words, the central system is 'responsible
for managing conflicting responses' including detecting them. Conflict resolution,

304

however, assumes only non-essential conflicts where the central systems can choose
between mutually acceptable solutions that are all correct.

However, the previous system does not take into account the explicitly defined reasoning
structure of rule-based systems. Su and Park [SU 91][SU 90], for example, have
developed the following framework:

"It integrates heterogeneous rule-based systems, whose data and knowledge are
in the form of rules and constraints. To embody this approach, a new knowledge
representation scheme was developed to capture the dynamic aspects of
knowledge" [[SU 91]p.243],

In principle, all rules are merged into a distributed model. The model also incorporates
the information interactions between systems, e.g. particular output from one system is
used as input by another. This may lead to cyclic relations of rules from multiple systems
passing around results.

"Special processing is required for parallel paths [parallel results from multiple
sources], which can derive alternative values for the same data item ... Some
special query optimisation is performed to resolve conflicts among such
competing values" [[SU 91]p.236],

Optimisation may be achieved by heuristics such as 'select the highest result', 'select the
average outcome over all results' or 'first come first serve'. Su's 'special processing'
includes that queries are sent many times to the KBSs or expert systems. A result is then,
for example, averaged over the obtained responses, or the responses may automatically
converge to a joint result. In other words, it investigates whether the results change over
time as multiple systems constantly exchange improved results. This approach does not
produce a snapshot result that ignores the dynamic behaviour of information from KBSs
or expert systems.

K ind o f
C on flic t

C ontract
N et

C on flic t
T yp e

R eso lu tion S trategy P ap er
R eferen ce

Integrating
Rule-
Based

Systems

YES coor. Coordination by a central system; Resolution is
based on heuristic selection among mutually
acceptable solutions (e.g. best fit to the problem);

[CARL91]

Integrating
Rule-
Based

Systems

YES coor. Detection includes analysing the dynamics of
knowledge; Resolution based on heuristics e.g.
'highest value', 'average', 'first com e first serve';

[SU 91]

Table 8 : Distributed Knowledge-Based Systems

305

In summary, typical distributed knowledge-bases as described by [CARL91] are tightly
integrated systems that allow conflicts to occur and be detected. However, conflict
detection in these systems is only necessary in the initial integration phase and when new
beliefs are encountered. Thus, the integration requires complete exploration of the
integrated sources, abolishes the autonomy of the integrated systems, and detects only
data-value conflicts. It is not applicable to conflict detection in enterprise integration
environments but only in closed subsets.

The approach by Su establishes consistency among traditional rule-based systems to
some degree an ad hoc (real-time) manner. In other words, conflicts are detected as
multiple results. However, they are resolved by pre-defined heuristics. No investigation
of the kind of conflict or the accuracy of the heuristic resolution is made. However, this
approach has illustrated dynamic behaviour of 'knowledge', or information, from
derivation systems.

306

Appendix B: Object Identity

B.l Introduction

The following Sections present a brief summary of different notions of identity. First,
standalone information systems are analysed. Section B3 will briefly introduce 'external'
notions of identity. Section B4 briefly investigates some ways in which these
heterogeneous notions of identity can be integrated.

B.2 Identity in Information Systems

Different ways exist to implement a notion of identity in information systems. Table 9
provides an overview of the most commonly used notions in information systems as, for
example, outlined by Khoshafian and Copeland [KHO90], The implementation
techniques are classified in respect to their location, data and structure independence.
These concepts have been introduced in Section 5.2.1.1.

N u m b er Id en tity
Im p lem en tation

In d ep en d en ce o f
L o ca tio n D a ta S tru ctu re

E xam ples

l.a address based no yes no PASCAL, C,
l.b address based

according to
identifier keys

no yes no Hierarchical and Network
Databases

2. indirection yes yes no Smalltalk-80, KBZ
[OXB881

3. structured
identifiers

no yes no LOCUS

4. identifier keys yes no no Relational Databases
5. tuple identifiers yes yes no INGRES, RM/T [COD79]
6. surrogates yes yes yes ORION-2, C++, Object-

Oriented Systems based
on e.g. [KHO90]

Table 9: Major Notions of Identity in Information Systems

Surrogate based identification can clearly be proved to be the most adequate form of
object identification in information systems [PAT8 8] [KIM91a] [KEN91] [KHO90].
Object-oriented databases use an object-oriented data model that is not set oriented and
offers the potential for clear logical identifiers among objects. An instance of an object in
an object-oriented database is typically referred to as an individual. Most object-oriented
databases, however, mix the notion of identity with the notion of addressability
[UNL90]. To establish a concept of identity based on physical addresses is to mix the

307

logical identity of an object with its physical location. An objects identity in surrogate
based systems should, however, be independent of its physical address.

"Surrogates are system-generated, globally unique identifiers, completely
independent of any physical location. They are associated with each object of any
type at the instant the object is created. They cannot be changed; i.e. they
represent the identity of the object throughout the lifetime of the object"
[[UNL90]p. 167].

Surrogates or unique identifiers (UID) are typically referred to as 'strong notions of
identity'. Khoshafian and Copeland [KHO90] characterise this 'strong' notion as:

• A notion of identity that has built in identifiers which are provided by the system
or language;

• In this notion identity is preserved between transactions, which makes the identity
of an object consistent in a temporal dimension.

The closest match of surrogate identifiers in relational database management systems are
called 'tuple identifiers' [KHO90], They are system defined keys which are added to
each tuple in a relational table. These identifiers are generated or defined by the system
and integrated into the internal layer of the database management system. Codd
[COD79], for example, has called these 'E-Attributes', which are defined in a central
table called 'E-Domain'. For example, the table with the fields 'Employee, Name,
Address,' may have an additional field which holds the surrogate E-Attribute. If two
tuples share a common identity then they have to be explicitly defined by a 'coalescing'
command. This command will tell the system that two tuples need to have the same
identifier (E-Attribute) because they are concerned with the same object.

System generated identifier keys are data and location independent. In Codd's RM/T,
surrogates are "unique within the entire database" [[COD79]p.410], The attributes
within a relation, however, are not identifiable because only tuples are identifiable. In
other words, the individual attributes, e.g. 'Peter' for the attribute Name, are not
identified by a surrogate as in object-oriented databases. This makes the notion of
identity weaker than surrogate identifiers in object-oriented systems because the
identifier becomes structure dependent.

One problem with surrogates is, however, that they are rather awkward to use:

"Value based matching is a straightforward and transparent technique for
expressing relationships, it provides no implicit support for referential integrity

308

and is a potential source of update anomalies" [[PAT88]p280] "A system which
supports objects with unique keys is therefore less expressive than one which
supports object identification as defined above [by value based matching or keys].
... It is our belief that for most applications, the benefits offered by associating
objects with a key more than compensate for the corresponding loss of
expressiveness" [[PAT88]p.285],

However, surrogate identifiers are expensive to store because they require the surrogate
to be stored alongside each object [PAT88]. In addition, many information systems
cannot provide a system generated identifier so that most database management systems
are based on user defined identifier keys [KHO90]. Hence, a more commonly used
notion of identity is "the concept of the table 'key' [that] is tied to a specific table within a
relational database. There is no formal, or informal for that matter, concept of identity
across tables in the relational model" [[KHO90]p.59]. Such identifier keys are, for
example, implemented in relational databases such as INGRESS [ST076] or System R
[AST76],

Identifiers across tables need to be defined in the retrievals or updates in the form of
'joins' [COD90]. In other words, a query needs to hold the information on how to select
an individual in one table to match with another in another table. There are no fixed path
expressions established between relations that could permanently link objects across
relations.

User defined identifiers are location independent because the location of a tuple is not
important for the identification. They are data dependent as they use the values or
attributes in a tuple to identify an object. Naturally, the identification depends strongly on
the structure of the relational table. In particular value dependence, as described above,
makes user defined keys a much weaker form of identification than system generated
surrogates or tuple identifiers.

Structured identifiers are structured because part of the identifier captures the location
of the object. For example, a file in the MS-DOS hierarchical file system can be identified
based on its hierarchical location such as 'C:\dosY (disk C directory 'dos'). The file name
may, e.g., be 'doskey.com' and the identifier is therefore 'C:\dos\doskey.com'. It is
questionable, however, in how far a notion of identity is implemented. For example, the
same file 'doskey.com' may be replicated in another directory such as 'c:\utilityY (disk C
directory 'utility') and there is no possibility to identify the two files as being the same.
The problem with this weak notion of identification is that it does not provide structure
or full location independence. In other words, the identification allows the same file to be

309

moved within the directory. But if it would be moved between directories it would have
to change its identifier despite the fact that it is actually still the same file.

Identity based on indirection is, e.g., implemented in Smalltalk-80 [KAE83] via object-
oriented pointers [KHO90], Each object is linked to an entry in the object table with a
pointer. The object table holds an entry for every object that exists. If the system
implements indirect addressing so that the address of an object is read via its entry in the
object table then the identifier is fully location independent.

Indirection is a predecessor to surrogate based identification because it shares the idea of
system managed identification. It therefore provides full data independence. However, in
contrast to surrogates, the identification is not structure independent because the key to
object identification is the object table. Any changes to this table can corrupt the whole
identification. The object itself has no identification attached to it but only a pointer to
the object table.

"Perhaps the simplest implementation of the identity of an object is the physical
address of the object" [[KHO90]p.43],

For example PASCAL implements object identification via the address of an object. A
virtual address is composed of one part pointing at an address space and a second part,
which allows identification of the object within this space. However, with physical
addresses as identifiers no location independence is provided. Virtual addresses can
provide location independence only within the address space. This kind of location
dependence automatically means that the identification is not structure independent.
Implementing address based identification, however, provides full data independence.

The most basic way to store data is in sequential files. These can be composed of
records of an equal structure, or records of different structures.

"A record generally contains an identifying field ... The identifying field of a
record is called its key field" [[L0089]p.46],

Typically, a record is regarded as an individual such as a tuple in relational databases
[DAT90], and an object in object-oriented databases [HUH92].

Sequential files that hold records without an identifying field have no notion of identity
implemented in them. Typically, however, sequential files have records with an
identifying field. This can be the address of that record in which case the identification is

310

purely address based. In general, however, the key field is a data value and identification
is therefore identifier-key based.

Sequential files do not allow direct access but only sequential reading. This in general
does not effect identification. But it is inherently more difficult to ensure consistent
identification when there is no direct access to all existing files. For example, often the
creation of a new record writes the record at the end of the file. This assumes that the
record does not already exist. Redundancies are very difficult to detect if there is not
direct access via, e.g., an index. Eliminating redundancies in sequential files would, for
example, mean that the new record is compared with all existing records in that file.

A more effective way to organise a file with direct access to individual records is relative
organisation. It is based on a relation between the key and the physical location of the
object:

"When a record is to be written into a relative file, the mapping function R is used
to translate the record's key value to an address, which indicates where the record
is to be stored. When it is necessary to retrieve the record with a particular key
value, the mapping function R is applied to that key value, translating it to the
address where the record can be found" [[L0089]p.324],

Relative organisation can be implemented as absolute addressing where R points directly
to the address of a record. Relative addressing implements R to map from the key value
to the virtual address, e.g. an order number, within the file which is then linked to an
address. Many more address calculation techniques have been proposed such as those
found in, e.g., [L0089],

Initially relative organisation was used for file organisation on persistent storage media
such as hard disks and floppy disks by IBM. Other examples include COBOL,
FORTRAN and PL/I. In these languages the programmer supplies for the system a
record's relative address when the record is stored and when it is retrieve. "It is the
programmer's responsibility to perform the key-to-address transformation; this mapping
is not done automatically by the system" [[L0089]p.352], These are examples of purely
address-based identification.

Relative organisation can be improved by employing an index to map between the
address and key values. Such an index has to be based on a key identifier of each record.
An index can be implemented into the storage medium and map each key value into an
address-based pointer. Example mechanisms are the B-Tree, or B*Tree. A program that

311

has such a file organisation can implement value based identification based on identifier
keys.

If, however, the storage system itself does not provide key based identification or an
index then the whole COBOL or FORTRAN program may have a key based
identification system programmed into the application. Strictly speaking, the program has
implemented address based identification within the file but provides value based
identification within the program.

"An effective way to organise a collection of records when there is the need both
to access the records sequentially by some key value and also to access the
records individually by that same key is indexed sequential fde organisation"
[[L0089]p.398],

For example, records can be linked sequentially by pointers and, in addition, an index can
be implemented allowing sequential and direct access. Most programming languages
provide utilities to implement index sequential files such as COBOL. Programming
languages that do not provide these mechanisms, such as Pascal, may be used to
manually program an index in addition to the sequential data access into the application.

Multi key file organisation is implemented in most database management systems. It is
an extension of the sequential indexing by allowing the use of not only one primary key
but multiple keys. This access may be implemented by installing multiple indexes.

"A key's inversion index contains all the values that the key presently has in the
records of the data file. Each key-value entry in the inversion index points to all
of the data records that have the corresponding value" [[L0089]p.425],

Many database systems, including most relational databases, are based on inverted
indexes.

Another way of implementing multiple key access is the 'multi-list' approach. The first
key is used as a primary key for identification purposes. This key value in the index
points to the address of the according record. Any further, secondary key can be
determined by pointers between the records with the value in the secondary key field.
The secondary key is therefore implemented as a linked list.

"The multi-list approach ... has been the basis for physical database structures in
many of the commercially available network and hierarchical database

312

management systems, including the CODASYL family of systems, Cincom's
Total and IBM's IMS" [[LOO89]p.430].

Hierarchical databases such as IMS are based on the hierarchical data model. The data
in these systems is structured in trees starting from one initial root. The tree structure can
have multiple subtrees, which in turn can have subtrees, etc. All subtrees are connected
to their parent tree by one root. Every tree can have multiple occurrences. These
occurrences can have values for the number of fields that are part of that tree. For more
detail see, for example, Date [DAT90].

Identification is made by pointers. All the occurrences within one tree are linked by
pointers. Each occurrence has pointers connecting each of its fields. An individual is
referred to as one occurrence record [HUH92], In IMS terminology this is called a
segment [DAT90], An occurrence record is identified by the pointer linking it to its
predecessor record in the next higher tree level called a parent record. A parent record
has zero to many children which are related to it by pointers. When a child record is
created then it is linked to the parent via a key. This concept is similar to the foreign key
in relational databases. However, in contrast to relational databases, the parent child
relation is implemented by a pointer.

Furthermore, the relation from one child to the next with the same name but a different
second key is also implemented by a pointer. The identification in hierarchical databases
is, however, based on identifier keys or key fields. The implementation based on
pointered records is not location independent. In other words, multi key sequential
indexing provides value based identification but no location independence. It is therefore
a weaker notion of identity than location independent identification, e.g., in relational
databases.

The network structure of the CODASYL data model [COD71] as, for example,
implemented in IDMS, consists of a number of record types. Each record has a name
(e.g. variable name and variable identifier), and may take several values or occurrences
[OLL78]. The member items or occurrences of a record are connected by pointers.
Records can be of the type parent or child similar to hierarchical databases. In contrast to
hierarchical data structures, every record can have multiple parent records. The relations
are therefore called owner or member relations.

Records in network databases are typically identified by keys [DAT90]. The key values
can in general be :

1. Stored alongside the record in the database;

313

2. Stored as a separate 'dummy' record type or index; or

3. Held externally in the application program [[OLL78]p.33],

In the first two cases an index is available allowing key based identification. If the key is
located in the application system and is not part of the database then the database itself
has an address based identification mechanism. The key in that case is part of the external
program and the notion of identity within the database consists of the address based
pointers assigned to the records.

In addition, all records are linked by pointers to their owners just as fields of a record are
linked. In principle, the same index sequential organisation can be found as in hierarchical
databases. In the CODASYL type databases several different ways of retrieving any
individual record exist in a database [OLL78], These include index access via the primary
key. In addition, pointer addresses may be used directly. Sequential reading of records of
the same type is typically possible in network databases. Furthermore, rooting through
the database is possible by finding owner or member records. The secondary indexes,
however, are implemented by pointers and not by an external index. The secondary index
is only accessible via address based pointers of the primary key index.

Network databases have a value based notion of identity. The secondary key, however, is
value based but only accessible by pointers. Furthermore, the network structure is not
location independent, pointers can be used to identify objects. Network databases
implement address based identification and value based identification which is not value
nor location independent. Hierarchical and network databases implement a weaker
notion than purely identifier key based relational databases.

314

t

B.3 External Notions of Identity

Many information systems that have only weak notions of identity such as file systems,
or heterogeneous sources in integration environments may refer to external sources for
object identification. For example, a sequential file system may have virtually no notion
of identity. Data from this system may have to be identified by the system, or human
user, that receives this data. For example, the C++ programs in the Demons program
described in the implementation (Chapter 6) stores data in sequential files. The data from
these files is read in by the C++ program sequentially inserted into a data structure. The
Demons program identifies records that have been stored in these sequential files. Hence,
the notion of identity that is implicitly implemented in data of the sequential file is
essentially externally implemented, in the C++ application program.

Enterprise integration environments use another form of external identification. Objects
are matched based on data values to their counterparts in a global model, e.g. a common
knowledge-base such as CYC [LEN90], or enterprise models such as MKS [PAN91a],
TOVE [FOX92], et al. The CYC approach will be further analysed in Section B4.

Closely related to enterprise models is the use of essentialistic concepts.

An essentialistic approach: "enables one to divide the properties which
characterise an individual into those that do so essentially and those that do so
merely de fact, accidental" [[RES75]p.l5],

For example, an employee could have the essential properties 'Name, Address, Employee
Number' and the accidental properties 'Names of Children, Name of Wife/Husband'.
Humans typically use essentialistic models to identify objects. For example, someone
could identify an object as a table based on the essential characteristics:

Object has at least three legs, a table top and no back (which would make it a
chair).

In the same way, an information agent with knowledge of the essential properties of a
concept, could use this knowledge to identify objects.

All approaches to externally identify objects carry a certain risk of error. No ultimate
essentialistic model is possible other then reality (existence) and existence is a
metaphysical questions which lies far out of the scope of distributed information systems
[KEN91].

315

The use of essential characteristics to identify objects is not only shared by enterprise
models, application programs, or humans. Essentialism shares with user defined keys
essential, or key attributes of individuals. In contrast, however, essentialsm is based on
essential properties of one particular object. For example, a table may be said to have the
essential properties '4 legs', and 'a table top'. Identifier keys in relational databases are
defined for a whole relation or set of objects. For example, a relational table on furniture
must have an identifier key that is valid for all the tuples (furniture) that are stored in this
table. Normalising a relational database is concerned with finding a data structure that
conforms with the reality, including identifiers that are suitable for all tuples of a relation
[COD90],

In summary, external object identification is common in information sources, and
enterprise integration environments based on enterprise models. However, external
identification carries some risk of becoming inadequate because of possible divergence
between the underlying model (enterprise or essentialistic model) and the real world.

316

B.4 Integration of Heterogeneous Notions of Identity

In the previous Sections different notions of identity have been described. Enterprise
integration environments integrate heterogeneous information sources that may have
different, heterogeneous notions of identity. The integration of objects with
heterogeneous notions of identity is concerned with object sameness (Are two objects
from heterogeneous sources concerned with the same object?). Section 5.2.4.3 has
introduced some basic sameness predicates. This Section will provide further background
information on existing approaches to integrate heterogeneous notions of identity.

A p p roach N otion o f Id en tity R ela tion sh ip s b etw een
G lob a l O b jects

F orm o f In tegra tion o f
n otion s o f id en tity

[COL91]
CARNOT

Every object
references a concept
in the global base
CYC (value
matching);

Objects have a common
counterpart in CYC, or they
inherit the relations that
their counterparts have in
CYC;

Based on generalisations;

[PAN91a]
MKS

Referencing of every
object to a strong
object structure of the
whole enterprise
called MKS;

Identical based on same
surrogate;

Remodelling of every object
globally;;

[AHM91]
Pegasus

Strong object
structure;

Same surrogate identifier; Integration into 'home system'
based on generalisation;
External objects (results) are
integrated at hoc;

[OXB90]
KBZ

Object table; Same reference to object
table;

Mapping based on
generalisations;

Eliassen
and

Karl sen
[ELI91]

Strong object
structure

Accessibility relations
between a strong, global
notion of identity with three
levels o f identity including
immutable, value based and
session identities;

Hardwired generalisations so
that the local autonomy of a
source is weakened;

Masunaga
[MAS90]

Strong object
structure;

Trivial-equal, Referential-
equal, Arbitrary-equal

Manual real-world to
conceptual level mapping;

Heiler and
Blaustein
[HEI89]

Strong object
structure with
functions for external
objects;

Same identifier same object;
Coercion functions can be
installed for other objects
that are identical;

Integration via coercion
functions;

Table 10: Overview Integration of Heterogeneous Notions of Identity

Existing research on object identity in distributed, heterogeneous information systems
falls into two categories:

• Those that map the different notions of identity into one central notion of identity
and sameness;

• Systems that operate with multiple, coexisting notions of sameness.

317

The first group covers most heterogeneous information systems and only a few
approaches exist that allow objects to keep their heterogeneous notions of sameness in
the global level. Examples of both groups are included in Table 10. Only the last three
approaches belong to the second group. The table describes the approaches (identified by
the project name or first author of the publication) by summarising the notion of identity
they implement, the way relationships between objects in the global level can be defined,
and the form in which information systems are integrated.

The CARNOT [COL91] project is based on the CYC global knowledge-base [LEN90],
which has been described as a master model schema for integrating heterogeneous
information systems in Section 3.3.1.1. It is frame based and therefore implements
identification by names and characteristics. For example, the person with the family name
'Guha' is identified by its name in the following two slot entries in the global knowledge-
base such as :

"SeeUnitFor-Guhae residents Texas
instanceOf:: (SlotEntryDetailTypeOfSeeUnit)
modifies Unit: (Texas)
modifies Slot: (residents)
modifiesEntry: (Guha)
BecameTrueln: (1987)
surpisingTo: (GuhaLenat)
MoreLikelyThan: (SeeUnitFor-PickupTrucke owns A Mary)

and that unit would be pointed to by the Guha entry in the residents slot of the
Texas unit:

Texas
capitol: (Austin)
residents: (Doug Guha Mary)
stateOf: (UnitedStatesOfAmerica)" [[LEN90]p.39].

Information systems with heterogeneous notions of identity are integrated by linking
local data concepts to the common knowledge-base and then generalising these matches
in the formal specification called articulation axioms (described in Section 5.2.1.3).
Objects can be identified in the global knowledge-base provided an object has been
identified locally on the following levels [COL91]:

318

Data Model Individual Object

Object-oriented data model Object instance level,
Relational data model Relational tuple level,
Hierarchical data model Hierarchical record level,
CODAS YL data model CODASYL record level,
Entity-relationship model No individual level

Table 11: Local Level Object Identification in CARNOT

The MKS master model and system by Pan and Tenenbaum [PAN91a] has been briefly
described in Section 3.3.1.2. However, in contrast to the CYC knowledge-base, all
processes, entities, objects, etc., in the enterprise are modelled in an object-oriented data
model, which uses surrogate based identifiers. In other words, every object or process in
the enterprise is given a strong notion of identity, based on a system generated identifier
within the global model.

A third kind of integration is implemented in the Pegasus project by Ahmed et al.
[AHM91] that is based on a homogeneous, object-oriented home system to which
heterogeneous sources are linked via gateways. In other words, the home system has a
common, strong notion of identity. Heterogeneous sources are integrated, similar to the
generalisations described above for the CARNOT system, into the global, or 'home',
system. For example, a relational database may hold a person with the name 'Peter'. This
person may be identified by the user defined key Name in the relational database. To
import the data for this person into the home system, the data on 'Peter' is retrieved from
the local source, and the result is then given a unique identifier (surrogate) by the home
system. This result becomes a member of the 'home' system and can be integrated within
this object-oriented (database) system.

In Table 10 also the KBZ approach by Oxborrow is listed which only varies from Pan
and Tenenbaum's approach in not being based on an enterprise model but simply a table
in which every objects is represented. The KBZ approach is, however, directed at
integrating databases, and not at integrating large numbers of information sources in an
enterprise.

Most distributed information systems use a strong notion of identity (surrogates) on the
global level for the same reasons it has been used on the local level, for example:

• The merging of databases and programming languages (software components)
requires a persistent identification of objects.

319

• Objects with a strong and therefore persistent notion of identity can be shared by
multiple programs, and can be replicated over multiple locations.

• Mechanism to modify the identity of objects can only operate if there is a concise
way of identification, etc.

Section 5.2.1.2 concluded that strong notions that provide location, value, structure and
session independence are best suited to represent objects on the global level of an
enterprise integration environment. It was further demonstrated that a strong notion of
identity on the global level should be implemented by weakening local autonomy. Local
autonomy is weakened by enforcing stronger notions on local sources so that these
cohere with a strong global notion of identity [ELI91]. Hence, a novel structure for
object identification and sameness is introduced in Sections 5.2.1.4 and 5.2.4.3. This
novel structure draws on the following research.

Eliassen and Karlsen [ELI91] have identified the following three support levels for object
identity:

1. Immutable object identifiers;

2. Value based object identifiers;

3. Session based object identifiers.

Immutable identifiers are persistent and do not change during the lifetime of an object
such as surrogate identifiers. Value based identifiers, such as user defined keys in
relational data models, can change during the lifetime of the same object. A person, that
is identified by the Name 'Smith' can have their name changed to 'Horton', which changes
its identifier while the object is still the same. Finally, session based identifiers only
survive a particular transaction or process. These are, for example, found in
programming languages that use variable names or memory addresses (e.g. C++
pointers) for objects which are only valid for a particular process.

Eliassen and Karlsen show how these levels can be mapped into a strong (ID-based)
global notion of identification if the local sources have restricted update-autonomy. A
possible worlds contexts is used to integrate the heterogeneous information systems.
Each information source is a possible world which is linked to other information sources
/ worlds. Mappings from an information source (local world) to the global system (global
world) are generalisations between these worlds.

A formalism is introduced of the form :
(id, T(Tj,ej)(Ti, ei)...)

320

• A global identifier id is of the type immutable, session, or value based;

• T is the generalisation used for the mapping between local and global level for the
particular object j;

• The object j is identified (filtered) by the requirement e. This requirement e can be
an id number, a value for key attributes, or a session identifier. If objects are
replicated then multiple T generalisations can be defined for the same object to
multiple sources.

The approach is essentially based on strengthening the weaker notions of identity in the
integrated sources. For example, by restricting the autonomy of a relational database to
change any user defined keys of objects that are represented in the global system, such
that the value based identification becomes 'stronger' [KHO90] or more persistent.

It has been discussed above (Section 3.3.1.4) that such tight integration is difficult to
implement in large, heterogeneous information systems spanning the whole enterprise. A
'global registration' is not possible for weak notions of identity. Hence, the conflict
detection and resolution mechanism designed in this research could not be built by
assuming this type of tight integration.

A second deficiency is that other types of sameness than the 'identical' predicate exist in
information systems. For example, in Khoshafian and Copeland [KHO90] and Masunaga
[MAS90] different notions of sameness have been described (Section 5.2.4.3).

Less restrictive on the local autonomy is, for example, the approach by Heiler and
Blaustein [HEI89] who have developed "a mechanism for assigning and manipulating
object surrogates and identifiers in an Object Management System [(OMS)] that
integrates heterogeneous systems. The mechanism preserves external-assigned identifiers
for use by clients and application programs and provides a uniform scheme for accessing
objects that make transparent their origins and location, without requiring that each
object be registered with the OMS" [[HEI89]p.236],

The OMS manages the identity of objects in a home system by generating surrogate
identifiers. External objects, from external information systems are integrated in a way
that preserves their identifiers in the original sources. Functions are used to import or
retrieve information from an information source similar to that described by Eliassen and
Karlsen [ELI91], and Kent et a/.[KEN93]. Multiple objects can be imported by one
function. These objects are specified by a common type.

321

"The OID [object identifier] actually consists of the pair <type identifier,
identifier within type>" [[HEI89]p.241],

The type identifier specifies the function that is used to integrate the object. The
'identifier within the type' is the actual, external identifier such as 'Peter1 for a relational
table in which a row is identified by the key ’Name' of the object. The identification is
specific in that it supports type specific type structures. In other words, every 'identifier'
has to be individually specified within the 'type'. Hence, the approach lacks generality and
cannot be conducted automatically by investigation, e.g., of an information agent in
existing enterprise integration environments.

Sameness of objects is based on the same object identifier. For example, two external
objects that have the same 'identifier within the type' are identical. Furthermore, objects
can be defined as identical by a hand-crafted function called 'coercion function'. In other
words, objects are defined as 'identical' by manual mappings (coercion functions) or on
the basis of 'same identifier same object'. No other sameness predicates, e.g. described by
Khoshafian and Copeland [KHO90] and Masunaga [MAS90], are defined.

The approach adopted by Heiler and Blaustein [HEI89] is one of many that apply
functions to integrate objects. All these approaches integrate objects, called foreign
objects, into a home system conceptually similar to Ahmed's approach described above.
A major trade off is the inflexibility of implementing functions. Hence, Section 5.2.1.4
will present a synthesis of the described approaches: It uses concepts similar to functions,
but it is more general similar to the approach described by Eliassen and Karlsen [ELI91].
In other words, the present research designs an identifier that is tailored to the
information available to information agents through the use of Identifier_Classes (Section
5.2.1.4).

322

B.5 Summary and Conclusion

Different notions of identity have been described in Appendix B. Furthermore, external
identification of objects has been outlined. Approaches to integrate these heterogeneous
notions of identity are typically based on weakening local autonomy. However, some
research, e.g. by Eliassen and Karlsen [ELI91], or Heiler and Blaustein [HEI89],
provides ways to integrate heterogeneous notions of object identity in a more flexible
way.

The novel approach described in Section 5.2.1.4 and 5.2.3.4 extends and combines the
last two approaches with Khoshafian and Copeland's object structure [KHO90], In
particular, it automates the functional approach by Heiler and Blaustein by applying the
concept of Identifier_Classes from Eliassen and Karlsen. This allows for the integration
of principally any notion of object identity, e.g. such as those described in Section B2.
Furthermore, the novel approach is embedded in an object structure that is typically used
in enterprise integration [KHO90]. This provides a complete set of sameness predicates
for the global system.

323

Appendix C: The Lewis System of Counterparts

Counterpart theory is based on the following four predicates :

Wx (x is a possible world)
IXy (x is in possible world y)
Ax (x is actual)
CXy (x is a counterpart of y)

The four 'possible worlds' primitives are based on the following eight postulates as in
[[LEW68]p. 114]:

PI: VxVy (Ixy => Wy)
(Nothing is in anything except a world)

P2: VxVyVz (1^ & Ixz . 3 y = z)
(Nothing is in two worlds)

P3: VxVy (Cxy 3 Bzl^)
(Whatever is a counterpart is in a world)

P4: VxVy (CXy 3 Bzl^)
(Whatever has a counterpart is in a world)

P5: VxVyVz (IXy & 1^, & . 3 x = z)
(Nothing is a counterpart of anything else in its world)

P6: VxVy (Ixy 3 C ^)
(Nothing in a world is a counterpart of itself)

P7: 3x(Wx & V y(Ixy^ A y))
(Some world contains all and only actual things)

P8: 3xAx
(Something is actual)

A world in distributed information systems is typically one information source. Section
5.2.1.4 defines a world as a system with a common notion of identity. Hence, a world
may also be part of an information source, or a group of sources. An example of the
latter case are homogeneous distributed databases like ORION-2 by Kim et al.
[KIM91a]. It is necessary, however, to ensure that 'nothing is a counterpart of nothing
else in its world' (P5).

The actual world is equivalent to the real world or a model of the world that is taken for
the real world such as enterprise models. Accordingly Lewis [LEW68] specifies the

324

actual world as 'some world contains all and only actual things' (P7); 'Nothing is in two
Worlds' (P2); and 'Something is actual' (P8).

'Possible worlds' are any other worlds, typically the information sources in the integration
environment. For the definition of the possible worlds framework to model distributed
information systems see, for example, Duong and Hiller [DU093a],

The system described by Lewis [LEW6 8] does not imply the following three constraints
and it is therefore possible that:

1. Objects can have more than one counterpart in another world such that those
objects are identical and both are counterparts;

2. Multiple objects in one world can have a common counterpart in some other
world;

3. Objects may not have any counterpart in a particular world, or in any world,

Cases one and two cover compression and dispersion [MAI91]. Two objects in the real
world can be represented as one in any possible world (compression), and two objects in
any possible world can be equivalent to any one actual object (dispersion).

Counterparts are not transitive so that equivalence or counterpart relations could be
inherited. For example, if Oj is a counterpart of C>2 and O2 is a counterpart of O3 then
that does not imply that Oj is also a counterpart of O3 . Counterpart relations differ in
this respect from accessibility relations between worlds [HIN62], and any centralised
identification mechanism such as object tables in, for example, the KBZ model by
Oxborrow and Ismail [OXB8 8].

325

Appendix D: Information Systems in the Integration Environment 'Cafeteria'
D.l Object-Oriented Database 'ProductionDB'

The 'production database' ('ProductionDB') is implemented in the object-oriented
database management system POET [POET], The production related data is stored in
three major object classes called Production, Employee and Robot.

In addition, a number of classes are installed by the database management system to
provide management functions (e.g. PtCluster, PtRight, PtUser, etc.). An overview of all
the classes in the database is provided by the POET DEVELOPER (Figure 18). This
tool allows browsing of all classes and the inspection of individual objects.

Figure 18: POET Developer - Class Overview

All classes are derived from the class PtObject, which provides every object in the
database with its unique surrogate, specifies the database in which this object is located,
and provides information on the current links to this object. For example, an employee
object called 'Peter' automatically is an instance of PtObject, where it receives its
Surrogate from, and in addition is a member of the class Employee, where the
information on the employee's name (e.g. 'Peter') is stored.

A customised interface has been programmed for the database called PoetDB. It is
implemented in Microsoft (MS) Visual C++ (Quickwin) [MSV], It enables the input of
data to the database, and the retrieval of all the implemented data. The interface runs in a
program called 'PoetDB.exe' and has two windows. The main window contains a menu-

326

driven interface and the other window provides an overview of the classes of this
application (Figure 19). The interface could be an agent's window (or local view) on the
object-oriented database ProductionDB.

POETDB
File Edit View State Window Help

Poet Database BASE Opend

MENU Data Output and Storing

Which Class do you want to store and inspect?
(E)nployee Class ?
(P) roduct Class ?
(R)obot Class?
(I)ngedients Class?
(C)apability Class?
(N)ew Repairs Class?
(Q) uit program?

=> I

PoetDB Object Classes
O U E R U I E W P O E T D B C L A S S E S ♦

PtObject
Employee

FirstName
Last_Name
ENumber
NINumber
Skill
Fat

Midiun

Slim

Weight

Weight

Weight
Product

Name
Demand
ProductionTime
WaitingTime
Prodlngredients

Ingredients
Ingredient

Robot
Name
Weight
Energy
RobCapability
RobRepairs

Capability
Capability

Repairs
RepairName
RepairCost

Running Input pending in Stdin/Stdout/Stderr

Figure 19 PoetDB Application Interface

Figure 20 provides an overview of the implementation of the ProductionDB with the
hierarchical relations between complex objects, and between complex objects and their
attributes. The modelling technique is used in research on mainstream object-oriented
databases such as by Kim [KIM93], For example, the Employee class (complex object)
has the attributes First_Name, Last_Name, an employee number (E_Number), and the
employee's National Insurance Number (NI-Number). In addition, the specific skill that
this employee may have is listed (Skill), such as 'Selling', or 'Cooking'. Finally, every
employee's body weight is stored. The Weight attribute provides the basis to specify the
Type of employee as Fat, Medium, and Slim. This information is important because the
company's marketing department has found out that fat people sell more diet products,
and that moderate (Medium) people sell more hamburgers. In this object-oriented
database the class Employee has three derived classes Fat, Medium, and Slim, which
inherit all properties of the Employee Class (First_Name, Last_Name, etc.) and also
specify the employee's weight in stone.

327

The ProductionDB has information on every Product, including its Name, the expected
Demand of this product per hour, and the foreseen time to produce one unit of this
product (Production_Time). For every product, a company policy has defined a specific
maximum time that a customer has to expect to wait for this product (Waiting_Time).
Each product requires a number of ingredients that are necessary for its production
(Prodlngredients). Because there are multiple ingredients per product, the attribute
Prodlngredients has references to one-to-many instances of the class Ingredients. This
class has only one attribute, which stores the ingredient's name (Ingredient).

Figure 20: Overview ProductionDB

Information on each Robot on the shop floor is stored in the Robot class. This class has
the attributes Name, Weight (for the Weight of the Robot), and the Energy (in kilowatts
per hour) that the robot typically needs when in operation. Furthermore, each Robot can
provide one or many services such as produce a number of products. This information is
stored in the class Capability of which each instance can be a member of the robot's set
RobCapability. The class Capability only has a name of the capability (attribute
Capability). In addition any repairs that have been carried out on this Robot are specified
in the class Repairs with their Name (Repair_Name) and Costs (Repair_Cost). The
robots attribute RobRepairs references one or multiple Repair instances.

328

D.2 Relational Databases 'BookkeepingDB' and 'MaterialDB'

A bookkeeping database (BookkeepingDB) for the finance department, and a small
database for information on product materials (MaterialDB) have been implemented in
the relational database management system SQLBASE and application development
tool SQLWindows (by Gupta [GUP]). An interface to each database includes an
Overview window, which lists all the tables, the names of their columns, and the key of
each table (in curly brackets). A second window provides a menu driven interface to the
BookkeepingDB and one to the MaterialDB. Figures 21 and 22 show the interfaces to
the BookkeepingDB and the MaterialDB.

BOOKDB
File Edit View State Window Help

BookkeepingDB

B O O K K E E P I N G D A T A B A S E

Please Specify Table for Inspection / Update:

(E)nployee
(fl)ddress
(R) obot
R(0)bot_Repairs
(P) roduct

OR

(S) how External Input

(Q) uit to End Program
- >

BookkeepingDB Overview

- OUERUIEW BOOKKEEPING DATABASE

TABLE NAME FIELD NAMES

Employee {ENumber}
[First Name]
[NINumber]
[Pay_Per_Hour]
[AddressNumber]

Address {Address Number}
[Street]
[Town]
[ZIP]

Robot {Name)
[Ualue]
[Depreciation]

Robot_ Repairs {RepairNumber}
[RobotName]
[Repair Name]
[Cost]

Product {Name}
[TotalProduction]
[ProductionSold]

External Input:

RobotMgnt [Daily Production]

User Defined Keys are in {} Brakets

Running Input pending in BookkeepingDB

Figure 21: BookkeepingDB Interface

The SQLWindows application development tool has been used to program graphical,
windows-based interfaces to the SQL databases. In other words, selecting a table from
the main menu in the interface opens a second window with one, or multiple related
tables (e.g. Figure 23 for the tables Employee and Address). 'Select', 'update', 'insert',
and 'delete' operations can then be performed on the selected table via the options in the
menu bar. For example, the results of a 'select' operation are presented in this empty
table. The information can also be printed in a report.

329

Figure 22: MaterialDB Interface

In addition to the graphical interfaces, the database can be accessed directly via the
SQL-Talk utility. This enables a direct view on all the information that is available in
the database, and not just the information presented in the interface. Hence, the latter
presents an agent's view on an autonomous database. SQL-Talk runs with standard
ANSI SQL [SQL],

Figure 23: Table Employee and Address Interface
Figure 21 shows the information available from BookkeepingDB in the overview
window within the interface to the BookkeepingDB. It includes a table Employee with

330

the key employee number (E_Number), and the attributes First_Name, the National
Insurance Number (NI_Number), the hourly rate that an employee earns
(Pay_Per_Hour), and the employee's address (Address_Number). All addresses that are
known to the system are stored in the table Address with the attributes Street, Town, and
Zip (Zip-Code). Each employee may have one address that is linked to the Employee
table via the attribute Address_Number (also the key). Hence, when an employee entity
is manipulated or inserted, its address dependencies are automatically shown in the
interface Employee and Address (Figure 23). For example, the employee 'Peter' may
have the address number '12', and this address number, with its Street, Town, and Zip
specifications, is shown whenever the employee 'Peter' is selected.

The table Robot has the key Name. In addition each Robot has the attributes Value and
Depreciation. The table Robot_Repair with the key attribute Repair Number stores
information on every repair that has been carried out on a robot. In other words, each
repair job has a Robot_Name for the name of the robot that has been repaired. The
RepairName specifies what has been repaired. Furthermore, the Cost of this repair is
specified. In contrast to the repair information in the ProductionDB (Section D.l), the
information in this table is inserted when the bill is being processed in the book-keeping
department (and not when the repairs are actually carried out on the robots).

Finally, the BookkeepingDB has a table Product with the key Name. The column
Total_Production specifies the quantity of this product that has been produced. The
daily production is concurrently updated with the latest production data from the
RobotMgmt (Section D.5). In other words, a report (in the file 'bookdb.a') is produced
by the RobotMgmt whenever any products are produced in the kitchen. This report can
be read in via the main menu of the BookkeepingDB interface. In addition the number
of pieces that have actually been sold is read periodically from the staff on the cash
registrars into table Production attribute field Production Sold. The number of products
sold (Production Sold) is typically lower than the produced goods (Total_Production).
It is easy to imagine for the following reasons:

• High class fast food products can only be stored a few minutes and cannot be re-
heated so that they have to be thrown away after a specific time ;

• Products may be stolen by staff or students.

331

E m ployee Address

BookkeepingDB
Robot Robot_Repair

“ {E N u m b er }
" First_Nam e
- Pay Per Hour
~ NI_Num ber

Address Number

{A d d ressN u m b er}
Street
Town
Z ip C o d e

- {N am e}
- Value
L Depreciation

~ {Repair_Nam e}
Robot_Nam e
Price

MaterialDB Product

Product Materials

h {N am e} h {M aterial_No}
Materials *- M aterial_Name

A g e n d a A u to m a tic In p u t In to th e D a ta b a se

^User D efined K ey >
L in {} J

(Production_Quantity From RobotM gm t)
(Into Daily_Production Table Product J

- {N am e}
- Total_Production
- Production Sold

Figure 24: Overview BookkeepingDB and MaterialDB

The database MaterialDB has only got two tables: Product and Materials. Every Product
has a Name (key), and a Material_ Number. This number is used in the second table
Materials to link via the MaterialNumber to multiple Material_Names (all the materials
that are ingredients of this product). Manipulating and investigating either table (e.g.
Product) shows the dependencies to the other table (the Product's Materials).

332

D.3 Expert System 'MarketingEXP'

The Marketing Expert, called 'MarketingEXP', is a small, one-rule, knowledge-based
system that is implemented in MS Visual C++ [MSV]. The system contains two
windows, an interactive interface to the knowledge based system, and an overview
window that provides a brief description of the systems input and output (Figure 25).

The Marketing Expert system is part of the marketing department, which develops
strategic plans for the production management. A brief data flow diagram provides a
basic overview in Figure 26. The system has a knowledge-base that is stored in a file
called 'Impio.a'. For every product it holds the current sales (Current Sales) and demand
figures (CurrentDemand). The current sales figure is a mean over the actual sales,
which may, for example, be calculated for the marketing department by the shop floor
management. The demand is an estimate within a marketing strategy for the marketing
department. The figures in the knowledge base can be inspected and updated in the
MarketingEXP interface.

M A K TE X P ▼ 1 -A.

F ile E d it V ie w S ta te W in d o w H e lp

= M ark e tin g E xp ert M ark e tin g E x p e rt O v e rv ie w - -

M A R K E T I N G E X P E R T

Please Press
(C) to Calculate the Current Production Plan
(I) to Input new Stategy or Sales Data
(Q) to Quit

-> I

= OUERUIEW MARKETING EXPERT =

The Marketing Expert Stores The:
ProductNane
CurrentDenand
CurrentSales
WaitingTine

It 'Calculates' a Giuen Product's
=> Planned_Hourly_Denand

R u n n in g In p u t p en d in g in M ark e tin g E xp ert

Figure 25: MarketingEXP Interface

The expertise of this system is limited to the following rule, that calculates the current
production plan expressed by the Planned Hourly Demand for every product:

If the Current_Sales are lower than the Current Demand per hour;

333

Then that demand figure (Current_Demand) is still the targeted
Planned_Hourly_Demand.

Else the Current sales are equal or higher than the Current_Demand
(Current_Sales >= Current_Hourly_Demand) and the targeted
Planned_Hourly_Demand is the arithmetic mean between the
Current_S ales and the Current_Hourly_Demand.

uct_Name
Current „Demand >
Cuirent_Sales
Waiting_Time

Current_Demand

Planned_Houly_Demand

Product Name
'Planned_Houriy_Demand y

to
ProductionMgmt

Figure 26: Data Flow Diagram Marketing Expert

The Planned_Hourly_Demand from the Marketing Expert system is proposed as a
guideline to the ProductionMgmt system (Section D.4). The output format is the product
name (Product_Name) and its planned demand (Planned_Hourly_Demand). The file
'mktplan.a' contains a list of each product's planned demand figure.

334

The production in the fictitious cafeteria is managed by a co-ordination software system
called 'ProductionMgmt'. A brief overview is provided in the 'Overview' window of the
ProductionMgmt interface that has been programmed in Visual C++ [MSV] (Figure 27).
The interactive window to the production management system provides an interface to
the system's data files and monitors the calculation of the demand for the management
of the shop floor production (Figure 28).

D.4 Standard Software System 'ProductionMgmt'

For every product, the data file (ProFile.a) within the ProductionMgmt system stores its
name (Product_Name), its demand (Current Hourly Demand), and its current sales
(CurrentSales). The CurrentSales figures are provided to the management system by
the staff working the cash registers. In other words, the staff enter the information in the
form Product_Name and Current_Sales in the ProductionMgmt interface, which then
updates its internal file system accordingly. The Current Demand figure is constantly
updated with the latest demand calculated by the ProductionMgmt system through the
following process.

MANAGE
File Edit View State Window Help

PRODUCTION MANAGEMENT [ProdMgmt]

P R O D U C T I O N M A N A G E M E N T

Please Select
(S) to Update The Current Sales
(U) to Insert a Shop Floor Urgent Request
(I) Initiate a Process Manually
(Q) Quit the Program

-> I

Production Management Overview

OUERUIEW PRODUCTION MANAGEMENT

The System's Internal File:
[ProductName]
[CurrentHourly Demand]
[CurrentSales]

II
which is INPOT to \/

Initialisation of a Process [ProcessID]:

| The Internal Expert Systems 'Derives'|
j a Given Product's => [NewDemand] |

Additional External Input :
* The Marketing Expert's [PlannedDemand]
* Any [UrgentRequests] for a Product

I I
is INPUT to \/

| The Calculation for the RobotHgmt |
| => [HourlyDemand]

The Statistical Reliability of [NewDemand]
■> [StaReliability]

(X of 54 or Less Uariation from Actual Sales

Running Input pending in PRODUCTION MANAGEMENT (ProdMgmt)

Figure 27: ProductionMgmt Interface

335

Within the ProductionMgmt is a very small expert system that calculates the new
demand for a given product. In other words, the ProductionMgmt waits for an update of
the current sales (Current_Sales) figure of a given product X by staff on the cash
registrars. This change in the file systems initiates the ProductionMgmt to select the
CurrentDemand and Current_Sales variables of the product X. This initialisation can
be manually interrupted, and may also be manually initiated (without having to change
the Current_Sales figure).

At the beginning of a process in the ProductionMgmt, a process identification number
(ProcessID) is assigned to these two figures. This process is then inserted into the
internal expert system, which calculates the New_Demand by the following rule:

If the Current Sales are equal or higher than the Current Demand,
then New Demand is set to Current Sales.

If the Current Demand minus five is bigger than Current_Sales,
then NewJDemand is set to Current_Demand minus five.

Else New_Demand is equal to the Current_Demand minus 1.

The result from this calculation is a product X's new demand figure (NewJDemand).
Furthermore, this rule is also the basis for justifying the calculated New_Demand figure
(rule-based justification). Hence, the application of this rule provides evidence (Sections
2.8 and 4.3) for a calculated NewJDemand result.

The next step is to calculate how many pieces of this product are going to be produced
in the kitchen. The kitchen is managed by the RobotMgmt system (Section D.5), which
simply produces the quantity of a product per hour as the ProductionMgmt's demand
figure orders. This order is defined by the Hourly_Demand figure. It is calculated from
the process's NewJDemand, Product_Name and the Planned Demand figure from the
MarketingEXP. In other words, this calculation takes into account the projected or
planned demand for that product from the marketing department. This is the demand
that the marketing department expects for a given product (Section D.3). It can be read
from the file 'Mktplan.a' in the marketing manager's directory.

In addition, the staff on the shop floor can send an urgent request for a particular product

to the ProductionMgmt. For example, a big group o f first degree students may have just

entered the cafeteria, and ordered twenty hamburgers and fries. This would then be send

as an urgent request (Urgent_Request is '20', Product Name is 'Hamburger') to the

ProductionMgmt, which will ensure that this request is satisfied.

336

Update CurrentDemand
with New_Demand

in Internal File System

Figure 28: Data Flow Diagram ProductionMgmt

On the basis of all this information (New_Demand, Planned_Demand, and
Urgent_Request) the ProductionMgmt calculates the Hourly_Demand. In principle, the
New_Demand figure is taken to be the Hourly_Demand (New_Demand =
Hourly_Demand). However, if the New_Demand is more than twenty units smaller than
the Planned_Demand variable from the MarketingEXP, then a further ten units are added
to the Hourly_Demand figure. Furthermore, the figure from the 'Urgent_Requesf
variable is added to the Hourly JDemand.

In the final stage of a process the ProductionMgmt places an order for the RobotMgmt
system. It stores this information in a file called 'Order.a'. For each order the process
identification (ProcessID), the product name (Product_Name), and the hourly demand
(Hourly_Demand) is inserted.

337

In addition, the ProductionMgmt computes the statistical correctness of the
New Demand figure that has been estimated by the internal expert system. In other
words, the ProductionMgmt system takes the old Current_Demand figure and compares
it to the Current Sales. Account is taken whether the variation is less than five per cent.
An average is calculated of the cases that have had less than five per cent variation out
of all recorded cases. The result of this calculation is stored in the file 'Stats.a', which
holds for every product:

• The product's name (Product_Name);

• The number of statistical calculations (Num_Calc), which is increased by one for
every calculation;

• The number of times that the expert system's CurrentJDemand varied less than
five percent from the Current Sales (More_Acc).

At the end of the statistical calculation the old Current Demand variable in the internal
file system is updated with the value of the New Demand as calculated by the process.

The expert system and the rest of the ProductionMgmt are closely connected, so that the
process of calculating a New_Demand has the same identification number in the
ProductionMgmt system as in the expert system. However, multiple concurrent
processes may exist in the ProductionMgmt system. The interface window, therefore,
shows with every result the according process number used within ProductionMgmt.

338

A.5 Co-ordination System 'RobotMgmt'

The RobotMgmt is a software system implemented in Visual C++ [MSV] that co-
ordinates the 'production' in the cafeteria's kitchen. In other words, food sold in the
cafeteria is cooked by a number of robots (Cooking Robots). The interface to the
RobotMgmt (Figure 29) system has an Overview window that provides a basic
description of the data available from the system. The interactive window can be used to
monitor the process within the co-ordination system. The system can be run in a 'step-
by-step' mode where the user can investigate the changing variables after each
processing step.

Figure 29: Interface RobotMgmt

The RobotMgmt system receives an order from the ProductionMgmt system in the form
Hourly Demand, the specification of the product's name (Product Name), and the
process identification (processed) for this order. This information is stored in the file
'Order.a'. The main task of the RobotMgmt is to assign a robot on the shop floor to the

339

task of producing the product according to the demand specification (Data Flow diagram
Figure 30).

The co-ordination system reads orders from the ProductionMgmt system sequentially
row-by-row, so that each row provides one order. For each order, the co-ordinateion
system first reads the Product_Name and identifies, which Robots can produce this
product. The system has an internal file system ('Robot.a'); each row contains a product
name (Product_Name), and a name of a Robot (Robot_Name), which can produce this
product. Furthermore, the time that this Robot will require to produce one unit of the
product is specified (Production_Time). It may be the case that multiple robots can
produce the same product but with different speed.

Figure 30: Data Flow Diagram RobotMgmt

The second step is to assign one robot to this specific task from the list of robots that can
produce the product. It can be imagined that the robots on the shop floor are a problem-
solving community in that they directly interact with each other in order to co-ordinate
their activities. However, these robots are eager to have jobs assigned to them. All
robots that are currently not busy bid for assignment to the job. Hence, the RobotMgmt
system searches the list 'ProductionTable', which lists all the robots (by their
Robot_Name) that are currently busy working on the job specified in ProductionTable in
the Current_State variable. The assignment of a robot to the task at hand has the
following steps (Figure 30):

1. The co-ordination system searches for Robots that have been identified in the
internal file 'Robot.a' as being able to produce the current order.

340

2. If more than one robot can produce the product, then those that are currently not
busy are identified (no entry in the ProductionTable).

3. If multiple robots are 'not busy', or all robots are busy, then the one that can
produce the product fastest (smallest Production Time) is selected. In case
robots are equally fast, then the task is assigned to the robot that is listed first in
the system file 'Robot.a'.

Once a job is assigned to a robot it is put on the ProductionTable automatically. The
table can be updated whenever a new job has been assigned. For example, an update is
necessary when a robot has finished a job. A hard copy of this list is saved in file
'ProdTab.a'. Every job is internally identified by its position in the ProductionTable.
This position is shown for every job in the interface.

The data output of the RobotMgmt system is a 'Production Report' to the database of the
bookkeeping department (BookkeepingDB). When ever the RobotMgmt system has
assigned a job to a robot it stores the product's name (Product_Name) and the quantity
that has been produced (Production Quantity) in the file 'RobOut.a', which can be read
into BookkeepingDB.

341

D.6 Enterprise Model

In Section 3.3.1 it has been briefly outlined that much research in the field of Enterprise
Integration and Modelling has described enterprise models. In the present research
generalisations such as (G(ist(GO) » (ist(CiT')) [HUH93], can be defined between an
information sources and the global context or enterprise model. Counterparts have been
introduced as a more exact extension to generalisations in Section 5.2.1.4. They
facilitate the assignment of individual objects from information sources, e.g. the object
'Peter', as counterparts of global objects in the enterprise model. Generalisations and
counterpart relations to objects in the enterprise model are stored in an information
system's external representation, which is the information agent's local view and Agent
Knowledge (Section 6.2.3).

The enterprise model has been limited to a few schema objects and concepts that form a
partial reference model of the enterprise. The sole purpose of this model is to prove its
functionality in the conflict detection and resolution mechanism. It is not a complete
model that provides useful assistance for enterprise modelling.

ENTMOD
File Edit View State Window Help

Enterprise Model Interface

E N T E R P R I S E M O D E L

Store and Inspect:
(S) et of Concepts ?
(C)oncepts ?
(E)ssential Properties?
(I)s or Has Synonyms?
(R)elations?
(T) extual Description?
(Q)uit program?

-> I

PoetDB Object Classes

Employee

Product

Robot

Icecream

FirstName
LastName
ENumber
NINumber
Skill
Weight
Fat
Medium
Slim

Name
Demand
ProductionTime
WaitingTime
Ingredients

Name
Weight
Energy
Capability
Repairs
RepairName
RepairCost

m
Chocolate McSundae
Strawberry McSundae

Running Input pending in Enterprise Model Interface

Figure 31: Enterprise Model Interface

342

The model is implemented in a POET database (Section D.l) with an interface
programmed in MS Visual C++ [MSV] in the program 'EntMod.exe'. The interface has
an interactive window to investigate the model, and an Overview window that provides
a list of the concepts that are stored in this enterprise model (Figure 31).

The enterprise model includes schema objects as concepts, and concepts that are not
schema objects. In other words, schema objects are descriptor objects for abstract
objects that are stored in the integrated information systems. For example, the schema
object Employee may described the abstract objects 'Peter', 'Mark', 'Fred,' and other
employees that are stored in the relational database BookkeepingDB. Schema objects
from different information sources may be related by generalisations (Sections 3.3.1.1.)
to the schema objects in the enterprise model.

Every schema object is a concept. For example, Employee is a schema object and a
concept for people that work in a company. However, there may be concepts that are not
schema objects. For example, Technician is a concept for an employee that repairs
things but it is not a schema object in any information system. Multiple, sources may
use different names for the same concepts. For example, what is a Technician in one
company (or information source) may be Technical Support Staff in another.
Furthermore, multiple sources may have the same name for different concepts. For
example, a technician may be an electrical engineer for repairing robots in one system,
and a computer specialist in another. The enterprise model therefore has multiple
concepts so that information systems throughout the enterprise can relate their own use
of concepts to these centrally-defined concepts. This allows multiple heterogeneous
systems to relate their concepts via the central enterprise model.

Hierarchical relations between concepts are implemented by sets of concepts and
ordinary concepts. A set of concepts (Set Concept) is a supertype that may have multiple
concepts (Concept) as its subtypes. For example, the Set Ice-cream may have the
subtypes Chocolate McSundae and Strawberry McSundae. The Set Employee, for
example, includes the concepts First Name, LastName, E Number, etc. This
hierarchical relation can be described in the form '(Set of Concepts).Concept', e.g.
'Employee. E_Number'.

Any Set or ordinary Concept may have the following information attached to it:

• Information as to whether the Set or Concept 'Has' or 'Is' an essential property.
For example, the concept employee number (E-Number) 'Is a' essential property
of the set Employee.

343

• Synonyms relating any (set of) concepts in an 'Is a' relation to its synonym, for
example, 'Technician Is_a Technical Support Staff.

• Relations are used to described links between (sets oi) concepts. For example,
the Set Employee has the types 'Fat', 'Medium', and 'Slim'. The concept 'Fat' may
have the relation: 'An Object is a member of the concept Fat if its Concept
'Weight' is lager than 15 stone' (Employe.Weight > 15 stone).

• A textual description is an informal text string that is used by the system
administrators or designers as a description of the concept.

A Concept automatically inherits the characteristics of its supertype. For example, if the
Set of Concepts Employee has the synonym 'Hired hand' then that is inherited by all its
concepts. The concept E Number, hence, inherits the synonym 'Hired hand'. If
information on the concept E_Number of the set Employee is requested, then the
synonym 'Employee Is_a Hired hand' is included.

344

Appendix E: Overview Implementation Concept

345

Conflict Detection

Determine Credibility
- Existing Estimates
- Direct Estimates
- Derived Estimates

------------ ?------------

/
I Business Rules

D ecision Making Knowledge
I Comments
\ Services

346

References

[ADL89]

[ADL92]

[AHM91]

[AN 93a]

[AN 93b]

[ANS75]

[ARE93]

[AST76]

[BAK92]

[BAR94a]

[BAR94b]

[B A R 94c]

Adler, M. R. Davis, A. B. Weihmayer, R. Worrest, R. W. (1989). Conflict-Resolution

Strategies for Nonhierachical Distributed Agents. In: 8th. Workshop on Distributed

Artificial Intelligence, ed. by Gasser, L. Huhns, M. (London, UK: Pitman).

Adler, M. Durfee, E. Huhns, M. Punch, W. Simoudis, E. (1992). AAAI Workshop Notes on

Cooperation Among Heterogeneous Intelligent Agents. A I M agazine 13 (2): 39-42.

Ahmed, R. De Smedt, P. Du, W. Kent, W. Ketabchi, M. A. Litwin, W. A. Rafii, A. Shan,

M.-C. (1991). The Pegasus Heterogeneous Multidatabase System .IE E E Com puter 24 (12):

19-27.

An, Z. Bell, D.A. Hughes, J.G. (1993). RES - A Logic for Relative Evidential Support.

International Journal o f Approxim ate Reasoning 8: 205-230.

An, Z. Bell, D.A. Hughes, J.G. (1993). Relation-based Evidential Reasoning.International

Journal o f Approxim ate Reasoning 5 :231-251.

ANSI/X3/SPARC Study Group on Database Management Systems. (1975). IN TE R IM

Report AC M -SIG M O D 1 (2).

Arens, Y. Chee, C.Y. Hsu, C.-N. Knoblock, C.A. (1993). Retrieving and Integrating

Information From Multiple Information Sources. International Journal o f Intelligent and

Cooperative Inform ation System 2 (2): 127-158.

Astrahan, M.M. Blasgen, M.W. Chamberlin, D.D. Eswaran, K.P. Gray, J.N. Griffiths, P.P.

King, W.F. Lorie, R.A. McJones, P.R. Mehl, W. Putzolu G.R. Traiger I.L. Wade, B.W.

Watson, V. (1976). System R: Relational Approach to Database Management. A C M

Transactions on D atabase System s 1 (2): 97-137.

Baker, K. Evans, M. Anderson, J. (1992). Measuring Autonomy in Heterogeneous

Cooperative Systems. Paper presented at the Annual Conference o f the American

Association for Artificial Intelligence (AAAI), Workshop on Cooperation Among

Heterogeneous Intelligent Systems, San Jose, CA.

Barbuceanu, M. Fox, M. (1994). The Information Agent: An Infrastructure for

Collaboration in the Integrated Enterprise. In: 2. International Working Conference on

C ooperating Knowledge B ased Systems. Proceedings. Keele, UK: DAKE Centre,

University o f Keele, pp. 257 - 294.

Barbuceanu, M. Fox, M. (1994). The Information Agent: An Infrastructure for

Collaboration in the Integrated Enterprise. Paper presented at 2nd. International Working

Conference on C ooperating Knowledge B ased Systems as in the Draft Proceedings, Keele,

UK, pp. 145-159.

Barbuceanu, M. Fox, M.S. (1994). Conflict management with an Authority / Deniability

Model. In: Workshop on Models o f Conflict Management in Cooperative Problem Solving,

347

[BEL89]

[BEL90]

[BEL92]

[BEL93]

[BER84]

[BES91]

[BOR89]

[B R 089]

[BUB92]

[CAR91]

[CARL89]

[CARL91]

[B E L 87]

[C A W 92a]

ed. by Lander, S. (Menlo Park, CA: Am erican Association fo r Artificial Intelligence , AAAI

Technical Report 360).

Bell, D.A. Grimson, J.B. Ling D.H.O. (1987). EDDS - A System to Harmonize A ccess to

Heterogeneous Databases on Distributed Micros and Mainframes. Inform ation and Softw are

Technology 29 (7): 362-370.

Bell, D.A. Grimson, J.B. Ling, D.H.O. (1989). Implementation o f an Integrated

Multidatabase-Prolog System. Information a n d Softw are Technology 31 (1): 29-38.

Bell, D.A. Shao, J. Hull, M.E.C. (1990). Integrated Deductive Database System

Implementation: A Systematic Study. The Com puter Journal 33 (1): 40-48.

Bell, D.A. Grimson, J.B. (1992). Distributed Database Systems. (Wokingham, UK:

Addison-W esley Publishing Company).

Bell, D.A. (1993). From Data Properties to Evidence. IEEE Transactions on K now ledge and

D ata Engineering 5 (6): 965-969.

Bercovitch, J. (1984). Social Conflicts and Third Parties - Strategies o f Conflict Resolution.

(W estview Press, Boulder, Colorado).

Besnard, P. (1991). Default L ogics./«: Lecture N otes in Computer Science Vol. 548, ed. by

Kruse, R. Siegel, P. (Springer Verlag).

Borgida, A. Brachmann, R.J. McGuiness, D.L. Resnick, L.A. (1989). CLASSIC: A

Structural Data Model. In: A C M SIGM OD Conference on the M anagem ent o f Data.

Proceedings. ACM Press, pp. 59-67.

Brodie, M.L. (1989). Future Intelligent Information Systems: AI and Database

Technologies Working Together./«: Readings in Artificial Intelligence and Databases, ed.

by Mylopoulos, J. Brodie, M.L. (Morgan Kaufmann).

Bußler, C. (1992). Capability Based M odelling In: 1st. International Conference on

Enterprise Integration. Proceedings. Cambridge, MA: MIT Press,.pp. 389-398.

Carver, N. Cvetanovic, Z. Lesser, V. (1991). Sophisticated Cooperation in FA/C Distributed

Problem Solving Systems. In: Annual Conference o f the Am erican Association fo r Artificial

Intelligence (AAAI). Proceedings. Menlo Park, CA: AAAI, pp. 191-198.

Carlson, D.A. Ram, S. (1989). An Object-oriented Design for Distributed Knowledge-

Based Systems. In: 22nd. Hawaii International Conference, on Systems Science.

Proceedings. CA, Los Alamitos: IEEE Computer Society Press pp. 55-63.

Carlson, D. Ram, S. (1991). An Architecture for Distributed Knowledge-Based Systems.

Data Base IVinter/Spring: 11-21.

Cawsey, A. Galliers, J. Reece, S. Sparck Jones, K. (1992). Conflict and Cooperation in a

Heterogeneous System. Paper presented at the Annual Conference o f the American

Association for Artificial Intelligence (AAAI), Workshop on Cooperation Among

Heterogeneous Intelligent Systems, San Jose, CA.

348

[CAW 92c]

[CER84]

[CHA90]

[CHA92]

[CLA90a]

[CLA90b]

[COE92]

[COE93a]

[COE93b]

[COD71]

[COD79]

[COD90]

[C A W 92b]

[C O H 85]

Cawsey, A. Galliers, J. Reece, S. Sparck Jones, K. (1992). A Comparison o f Architectures

for Autonomous Multi-Agent Communication. In: IOth International Conference on

Artificial Intelligence (ECAI'92). Proceedings. Vienna: John W iley and Sons, pp. 249-251.

Cawsey, A. Galliers, J. Reece, S. Sparck Jones, K. (1992). Automating the Librarian: Belief

Revision as a Base for System Action and Communication with the User. The Computer

Journal 35 (3): pp. 221-232.

Ceri, S. Pelagatti, G. (1984). Distributed Databases Principals and Systems. (NY: McGraw-

Hill Book Company).

ChaibDraa, B. Millot, P. (1990). A Framework for Cooperative Work: An Approach Based

on the Intetionality. Artificial Intelligence in Engineering 5 (4): 199-205

Chalupsky, H. Finin, T. Fritzson, R. McKay, D. Shapiro, S. Wiederhold, G. (1992). An

Overview o f KQML - DRAFT - DARPA Knowledge Sharing Effort. Available From:

University o f Maryland, Baltimore MD.

Clark, D. Fox, J. Glowinski, A.J. O'Neil, M.J. (1990). Symbolic Reasoning for Decision

Making In: Contemporary Issues in Decision Making, ed. by Borcherding, K. Larichev, O.I.

Messick, D.M. (Holland: Elsevier Science Publ. B.V.).

Clark, D. (1990). Numeric and Symbolic Approaches to Uncertainty Management in AI.

Artificial Intelligence Review 4: 109-146.

Coenen, F.P. Finch, I. Bench-Capon T.J.M. Shave M.J.R. Barlow J.A. (1992). Task

Scripting for an Intelligent Aide de Camp System. In: Expert System s Applications and A I

(EXSYS'92). Proceedings. Goumay sur Marne, France: IITT-Intemational, pp. 191-196.

Coenen, F.P. Finch, I. Bench-Capon T.J.M. Shave M.J.R. Barlow J.A. (1993). Autonomous

Communication Using Aide de Camp. In: Jo in t Fram ework fo r Inform ation Technology

(JFIT) Technical Conference Digest. Proceedings. Great Britain: Department o f Trade and

Industry, Science and Engineering Research Council, pp. 297-305.

Coenen, F.P. Finch, I. Bench-Capon T.J.M. Shave M.J.R. (1993). Cooperating Knowledge

Based Systems in Aide de Camp. In: Expert Systems Applications and A I (EXSYS'93).

Proceedings. Goumay sur Marne, France: IITT-Intemational, pp. 33-38.

Conference on Data Systems Languages (CODASYL), Database Task Group Report

(1971), NY: ACM.

Cod, E.F. (1979). Extending the Database Relational Model. A C M Transactions on

Database Systems 4 (4): 397-434.

Cod. E.F. (1990) The Relational Model For Database Management Version 2. (Addison-

Wesley Publ. Comp. MA.).

Cohen, P. (1985). Heuristic Reasoning About Uncertainty: An Artificial Intelligence

Approach. (London: Otmann).

349

[COL91]

[CON88]

[COX46]

[CZE92]

[DAI93]

[DAT90]

[DEC89]

[DEC92]

[DEE93]

[DEM67]

[DOY79]

[DOY92]

[DUB91]

[C O H 87]

[D U B 92]

Cohen, P.R. Day, D. Lisio, de J. Greenberg, M. Kjeldsen, R. Suthers, D. Berman, P. (1987).

Management o f Uncertainty in Medicine. International Journal o f Approxim ate Reasoning

1: 103-116.

Collet, C. Huhns, M.N. Shen W.-M. (1991). Resource Integration Using a Large

Knowledge Base in Carnot. IEEE Computer 24 (12): 55-62.

Connors, T. Lyngbaek, P. (1988). Providing Uniform Access to Heterogeneous Information

Bases. In: Advances in Object-Oriented Database Systems - Lecture Notes in Computer

Science Voi. 334, ed. by Dittrich, K. (Springer Verlag).

Cox, R. (1946). Probability, Frequency and Reasonable Expectation'.Am erican Journal o f

Physics 14\ 1-13.

Czejdo, B. Taylor, M.C. (1992) Integration o f Information Systems Using an Object-

Oriented Approach. The Computer Journal 35 (5): 501-513.

Dai, H. Hughes, J. G. Bell, D.A. (1993). A Distributed Real-Time Knowledge-Based

System and its Implementation using Object-Oriented Techniques. In: International

Conference on Intelligent and Cooperative Inform ation System s ICICIS'93. Proceedings.

Los Alamitos, CA: IEEE Computer Society Press, pp. 23-30.

Date, C.J. (1990). An Introduction to Database Systems Volume 1. (MA: Addison-W esley

Pubi. Comp. 5th Edition).

Decker, K.S. Durfee, E.H. Lesser, V.R. (1989). Evaluating Research in Cooperative

Distributed Problem Solving. In: 8th. Workshop on Distributed Artificial Intelligence

Volume 2, ed. by Gasser, L. Huhns, M. (London, UK: Pitman).

Decker, K. Lesser, V. (1992). Generalizing The Partial Global Planning Algorithm.

International Journal o f Intelligent and Cooperative Information System s 1 (2): 319-346.

Deen, M.S. (1993). A General Framework for Coherence in a CKBS. Journal o f

Inform ation System 2: 83-107.

Dempster, A.D. (1967). Upper and Lower Level Probabilities Induced by Multivalued

Mapping. Americ. Math. Stat. 38:325-329.

Doyle, J. (1979). Truth Maintenance Systems. Artificial Intelligence 12: 213-272.

Doyle, J. (1992). Reason Maintenance and B elief Revision. In: B elief Revision, ed. by

Gärdenfors, P. (UK: Cambridge University Press.).

Dubois, D. Lang, J. Prade, H. (1991). A Brief Overview o f Possibilistic Logic./«: Symbolic

and Quantitative Approaches to Uncertainty - Lecture Notes in Computer Science 548, ed.

by Kruse, R. Siegel, P. (Springer Verlag).

Dubois, D. Lang, J. Prade, H. (1992). Dealing with Multi-source Information in Possibilistic

Logic. In: European Conference on Artificial Intelligence. Proceedings. Vienna: John

Wiley and Sons, pp. 38-42.

350

[D U 093b]

[DUR87]

[DUR89]

[DUR91a]

[DUR91b]

[DUR92]

[DUR95]

[EDM95]

[ELI91]

[ELL87]

[ENC92]

[D U 0 9 3 a]

[E PH 91]

Duong, T. Hiller, J. (1993). Modelling the Real World by Multi-World Data Model.

International Conference on Intelligent and Cooperative Information System s ICICIS'93.

Proceedings. Los Alamitos, CA.: IEEE Computer Society Press, pp. 279- 290.

Duong, T. Hiller, J. Ngu, A.H.H. (1993). A Framework o f Flexible and Dynamic

Integration for Mulitdatabases. In: International Conference on Intelligent a n d Cooperative

Inform ation System s ICICIS'93. Proceedings. CA, Los Alamitos: IEEE Computer Society

Press, pp. 43-54.

Durfee, E.H. Lesser, V.R. Corkill, D.D. (1987). Cooperation Through Communication in a

Distributed Problem Solving Network. In: Distributed Artificial Intelligence, ed. by Huhns,

M. (London, UK: Pitman).

Durfee, E.H. Lesser, V.R. (1989). Negotiating Task Decomposition and Allocation Using

Partial Global Planning. In: 8th Workshop on Distributed Artificial Intelligence Volume 2,

ed. by Gasser, L. Huhns, M. (London, UK: Pitman).

Durfee, E.H. Lesser, V.R. (1991). Partial Global Planning: A Coordination Framework for

Distributed Hypothesis Formation. IEEE Transactions on Systems, Man, and C ybernetics! 1

(5): 1 167-1183.

Durfee, E. (1991). The Distributed Artificial Intelligence Melting Pot .IE E E Transactions

on Systems, Man, a n d Cybernetics 2 1 (5): 1301-1305.

Durfee, E.H. (1992). What Your Computer Really Needs to Know, You Learned in

Kindergarten. In: A nnual Conference o f the American Association fo r A rtific ia l Intelligence

(AAAI'92). Proceedings. Menlo Park, CA: AAAI, pp. 858-864.

Durfee, E. (1995). Rational Agents, Limited Knowledge, and Nash Equilibria./«: AAAI-95

Fall Sym posium Series Rational Agency: Concepts, Theories, M odels a n d Applications. To

appear as a Technical Report o f the American Association for Artificial Intelligence

(AAAI), Menlo Park, CA, pp. 38-42.

Edmonds, B. Moss, S. (1995). Modelling the Bounded Rationality o f Econom ic Agents by

M odelling Limited Incremental Search. In: AAAI-95 Fall Sym posium Series Rational

Agency: Concepts, Theories, M odels and Applications. To appear as a Technical Report o f

the American Association for Artificial Intelligence (AAAI), Menlo Park, CA, pp. 43-47.

Eliassen, F. Karlsen R. (1991). Interoperability and Object Identity. SIG M O D Record 20

(4): 25-29.

Elliot, D.W. (1987). Elliot and Phipsen Manual o f the Law o f Evidence. (London, UK:

Sweet and Maxwell).

Encyclopaedia o f Ethics Volume I., ed. by Becker, L.C. Becker, C.B., (Chicago and

London: St. James Press).

Ephrati, E. Rosenschein, J. (1991). The Clark Tax as a Consensus Mechanism Among

Automated Agents. In: Annual Conference o f the Am erican Association fo r Artificial

Intelligence (AAAI'91). Proceedings. Menlo Park, CA: AAAI, pp. 173-178.

[E PH 92]

[EPS95]

[FAC91]

[FAG87]

[FIN93]

[FIN94a]

[FIN94b]

[F0X91]

[FOX92]

[FOX92b]

[FOX93]

[F R 0 9 2]

Ephrati, E. Rosenschein, J.S. (1992). Reaching Agreement through Partial Revelation o f

Preferences. In: 1 Oth European Conference on Artificial Intelligence. Proceedings. Vienna:

John Wiley and Sons, pp. 229-233.

Epsetin, S.L. (1995). Collaboration and Interdependence Among Limitedly Rational Agents.

In: AAAI-95 Fall Sym posium Series Rational Agency: Concepts, Theories, M odels and

Applications. To appear as a Technical Report o f the American Association for Artificial

Intelligence (AAAI), Menlo Park, CA, pp. 51-55.

Facione. P.A. Scherer, D. Artig, T. (1991). Ethics in Society. (NJ: Prentice Hall).

Fagin, R. Halpern, J.Y. (1987). Belief, Awareness, and Limited Reasoning: Preliminary

Report. In: International Jo in t Conference on Artificial Intelligence. Proceedings. San

Mateo, CA: Morgan Kaufmann, pp. 491-501.

Finch, I. Coenen, F.P. Bench-Capon T.J.M. Shave M.J.R. Barlow J.A. (1993). Applying

CKBS Techniques to Electronic Mail. In: W orkshop o f the Special Interest Group on

C ooperating Knowledge B ased Systems, Subgroup o f the British C om puter Society.

Proceedings. University o f Keele: DARK Centre, University o f Keele, pp. 101-118.

Finin, T. Fritzson, R. McKay, D. McEntire, R. (1994). KQLM - A Language and Protocol

for Knowledge and Information Exchange./«: 13th. International Workshop on Distributed

Artificial Intelligence, ed. by Klein, M. (Menlo Park, CA: AAAI, Technical Report W S-94-

02) .

Finin, T. Fritzson, R. McKay, D. McEntire, R. (1994). KQLM as an Agent Communication

Language. In: Third International Conference on Information and Knowledge M anagement.

Proceedings. ACM -Press. Available from www@ umbc.edu.

Fox, J. Krause, P. Dohnal, M. (1991). An Extended Logic Language For Representing

Belief. In: Symbolic and Quantitative Approaches to Uncertainty - Lecture Notes in

Computer Science Vol. 548, ed. Kruse, R. Siegel, P. (Springer Verlag).

Fox M.S. (1992). The TOVE Project Towards a Common-Sense Model o f the Enterprise.

In: 1st. International Conference on Enterprise Integration and M odelling. Proceedings.

London, UK: MIT Press, pp. 310-319.

Fox, J. Krause P, Ambler, S. (1992). Arguments, Contradictions and Practical Reasoning.

In: 10th International Conference on Artificial Intelligence (ECAI'92). Proceedings.

Vienna: John Wiley and Sons, pp. 623-627.

Fox, M.S. Chionglo, J.F. Fadel, F. (1993). A Common-Sense Model o f the Enterprise./«:

2nd. Industrial Engineering Research Conference. Proceedings. Norcross, GA: Institute for

Industrial Engineers, pp. 425-429.

Froidevaux, C. Mengin, J. (1992). A Framework for Default L ogics./«: Logics in AI -

Lecture Notes in Computer Science Vol. 633, ed. by Pearce, D. and Eagner, G. (Springer

Verlag).

352

mailto:www@umbc.edu

[GAL90b]

[GAL92]

[GÄR88]

[GÄR92]

[GAS91]

[GIN91]

[GOT92]

[GRA92]

[GRA93]

[GRA94a]

[GRA94b]

[G A L 90a]

[G R A 95a]

Galliers, J.R. (1990). The Positive Role o f Conflict in Cooperative Multiagent System s./«:

Decentralised Artificial Intelligence, ed. by Demazeau, Y. and Müller, Y.-P. (Holland:

Elsevier Science Publishers B.V.).

Galliers, J.R. (1990). Cooperative Interaction as Strategic B elief R evision./«: International

W orking Conference on Cooperative Knowledge Based Systems. Proceedings. London:

Springer Verlag, pp. 148-163.

Galliers, J. (1992). Autonomous B elief Revision and Communication./«: B elief Revisions,

ed. by Gärdenfors, P. (UK: Cambridge University Press).

Gärdenfors, P. (1988). Knowledge in Flux - Modelling the Dynamics o f Epistemic States.

(Cambridge, MA: Bradford Book, MIT P ress.).

Gärdenfors,P. (1992). B elief Revision: An Introduction. In: B elief Revision, ed. by

Gärdenfors, P. (UK: Cambridge University Press).

Gasser, L. Ishida, T. (1991). A Dynamic Organisational Architecture for Adaptive Problem

Solving. In: A nnual C onference o f the Am erican Association fo r Artificial Intelligence

(AAAI'91). Proceedings. Menlo Park, CA: AAAI, pp. 185-190.

Ginsberg, M.L. (1991). Knowledge Interchange Format: The KIF o f D ea th ./!/M agazine 3:

57-63.

Göttinger, H.W. Weimann, P. (1992). Intelligent Decision Support Systems, Decision

Support Systems 8: 317-332.

Grashoff, H. Long, J.A. (1992). Cooperative Intelligent Information Systems: Extending

Global Schemata. In: 3. IEE Colloquium on Distributed Databases (London: Institute o f

Electrical Engineers (IEE), Colloquium Digest).

Grashoff, H. Long, A.J. (1993). Cooperative Intelligent Information Systems Integrating

Knowledge Based Systems. In: 6th. Florida Artificial Intelligence Research Symposium.

Proceedings. Menlo Park, CA: AAAI Press, pp 305-309.

Grashoff, H. Long, A.J. (1993). Conflict Detection and Resolution in Intelligent

Cooperative Information Systems. Paper presented at the 2. International Working

Conference on Cooperating Knowledge Based Systems. Draft Proceedings. Keele, UK:

DAKE Centre, University Keele, pp. 293-312.

Grashoff, H. Long, A.J. (1993). Intelligent Cooperative Information Systems Conflict

Detection and Resolution. In: 13th. International Symposium on Autom otive Technology

and Automation, Conference on Mechatronics. Proceedings. Aachen, Germany and

Croydon, UK: Automotive Automation Ltd., pp. 265-272.

Grashoff, H. Long, A.J. (1995). Object Identity and Sameness in Enterprise Integration

Environments. In: 2nd. International Conference on Concurrent Engineering, Research and

Applications. Proceedings. Washington DCConcurrent Technologies Corporation, pp. 315-

326.

353

[GUH94]

[GUA92]

[GUP]

[HAL85]

[HAL87]

[HAL91]

[HAL92a]

[HAL92b]

[HAM93]

[HAR86]

[HEI85]

[HEI89]

[HEW 9I]

[HIN62]

[HSI92]

[G R A 95b] Grashoff, H. (1995). Rationality and Information Agents In: AAAI-95 Fall Sym posium

Series Rational Agency: Concepts, Theories, M odels and Applications. To appear as a

Technical Report o f the American Association for Artificial Intelligence (AAAI), Menlo

Park, CA, pp. 75-79.

Guha, R.V. Lenat, D.B. (1994) Enabling Agents to Work Together .Com m unications o f the

ACM, Special Issue on Intelligent Agents 37 (7): 127-142.

Guan, J. Bell, D.A. Lesser, V.R. (1992). Evidential Reasoning and Rule Strength in Expert

Systems. In: 3rd. Irish Conference on Artificial Intelligence and Cognitive Science.

Proceedings. NY: Springer Verlag in collaboration with the British Computer Society, pp.

378-390.

Gupta Technologies Inc. Application Development Tool SQL Windows, Version 3.1.

Halpern, J.Y. Moses, Y. (1985). A Guide to the Modal Logics o f Knowledge and Belief:

Preliminary Draft. In: International Joint Conference on Artificial Intelligence (IJCAI'85).

Proceedings. San Mateo, CA: Morgan Kaufmann, pp. 480-490.

Hall, R. King, R. (1987). Semantic Database Modelling: Survey, Applications, and

Research Issues. ACM Computing Surveys 19 (3): 201-260.

Halpem, J.Y. Moses, Y. (1991). Knowledge and Common Knowledge in a Distributed

Environment. Journal o f the A C M 37 (3): 549-587.

Halpem, J.Y. Fagin, R. (1992). Two Views o f Belief: B elief as Generalized Probability and

B elief as Evidence. Artificial Intelligence 54 (3): 275-317.

Halpem, J.Y. Moses, Y. (1992). A Guide to the Modal Logics o f Knowledge and Belief.

A rtific ia l Intelligence 54 (3): 319-379.

Hammer, J. McLeod, D. (1993). An Approach to Resolving Semantic Heterogeneity in a

Federation o f Autonomous, Heterogeneous Databases Systems. International Journal o f

In telligent and C ooperative Information System 2 (1): 51-83.

Harmann, G. (1986). Change in View - Principles in Reasoning. (Cambridge, MA: Bradford

Book, MIT Press).

Heimbinger, D. McLeod, D. (1985). A Federated Architecture for Information

Management. A C M Transaction on Office Information System s 3 (3): 253-278.

Heiler, S. Blaustein, B. (1989). Generating and Manipulating Identifiers for Heterogeneous,

Distributed Objects. In: 3rd. International Workshop on Persistent Object Systems.

Proceedings. Springer Verlag, pp. 235-247.

Hewitt, C. Inman, J. (1991). DAI Betwixt and Between: From Intelligent Agents to Open

Systems Science. IEEE Transactions Systems, M an and Cybernetics 21 (6): 1409-1419.

Hintikka, J. (1962). Knowledge and Belief - An Introduction to the Logic o f the Two

Notions. (Ithaca, NY: Cornell University Press).

Hsiao, D.K. (1992). Federated Databases and Systems: Part I - A tutorial on Their Data

Sharing. VLDB Journal I: 127-179.

354

[HUA92]

[HUH90]

[HUH91]

[HUH92]

[HUH93]

[HUH94]

[JAG92]

[JAG94]

[JEN92]

[JOR95]

[H SU 91] Hsu, C. Bouziane, M. Rattner, L. Yee, L. (1991). Information Resource Management in

Heterogeneous, Distributed Environments: A Metadatabase Approach. IEEE Transactions

on Software Engineering 17 (6): 604-609.

Huang, G.Q. Brandon, J.A. (1992). AGENTS: Object-oriented Prolog Systems for

Cooperating Knowledge-Based Systems. K now ledge-Based System s 5 (2): 125-136.

Huhns, M. Bridgeland, D.M. (1990). Distributed Truth Maintenance. In: International

W orking Conference on Cooperative Know ledge B ased Systems. Proceedings. London:

Springer Verlag, pp. 133-145.

Huhns, M. Bridgeland, D.M. (1991). Multiagent Truth Maintenance.IEEE Transactions on

Systems, M an and Cybernetics 21 (6): 1437-1445.

Huhns, M.N. Singh, M.P. (1992). The Semantic Integration o f Information Models. Paper

presented at the Annual Conference o f the American Association for Artificial Intelligence

(AAAI), Workshop on Cooperation Among Heterogeneous Intelligent Systems, San Jose,

CA.

Huhns, M.N. Jacobs, N. Ksiezyk, T. Shen, W.-M. Singh, M.P. Cannata, P.E. (1993).

Integrating Enterprise Information Models in Carnot. In: International Conference on

Intelligent and Cooperative Inform ation Systems ICICIS'93. Proceedings. CA, Los

Alamitos, CA: IEEE Computer Society Press, pp. 32-42.

Huhns, M.N. Singh, M.P. Ksiezyk, T. Jacobs, N. (1994). Global Information Management

via Local Autonomous Agents. In: 13th. International Workshop on Distributed Artificial

Intelligence, ed. by Klein, M. (Menlo Park, CA: AAAI Press Technical Report W S-94-02).

Jagannathan, V. Karinthi, R. Raman, R. Montan, V. Petro, J. (1992). A System for

Integrating Heterogeneous Information Repositories. Paper presented at the Annual

Conference o f the American Association for Artificial Intelligence (AAAI), Workshop on

Cooperation Among Heterogeneous Intelligent Systems, San Jose, CA.

Jagannathan, V. Karinthi, R. Raman, R. Almasi, G. (1994). Strategies for Wide-area

Information Sharing. In: 1st. International Conference on C oncurrent Engineering:

Research and Applications. Proceedings. PA: Society for Computer-Aided Engeneering,

Concurrent Engeneering Research Center, pp. 15-21.

Jennings, N.R. Wittig, T. (1992) ARCHON: Theory and Practice. In: Distributed Artificial

Intelligence Theory and Praxis, ed. by Avouris, N. and Gasser, L. (Kluwer Academic

Press).

Jorkinen, K. (1995). Rationality in Constructive Dialogue Management. In: AAAI-95 Fall

Sym posium Series Rational Agency: Concepts, Theories, M odels and Applications. To

appear as a Technical Report o f the American Association for Artificial Intelligence

(AAAI), Menlo Park, CA, pp. 89-93.

355

[KEN91]

[KEN93]

[KEY21]

[KHO90]

[KIM90]

[KIM91a]

[KIM91b]

[KIM93]

[KIR91a]

[KIR91b]

[KLE89]

[KLE91]

[KNE49]

[K A E 83]

[K O N 88]

Kaehler, T. Krasner, G. (1983). LOOM-Large Object-Oriented Memory for Smalltalk-80

Systems. In: Smalltalk-80: Bits o f History, Words o f Advice (Reading, MA: Addison-

W esley Publ. Co.).

Kent, W. (1991). A Rigorous Model o f Object Reference, Identity, and Existence. Journal

o f O bject-O riented Program m ing 4 (3): 28-36.

Kent, W. Ahmed, R. Albert, J. Ketabchi, M. Shan, M.-C. (1993). Object Identification in

Multidatabase Systems. Transactions A o f the International Federation fo r Inform ation

Processing IFIP A -25 (Netherlands: Com puter Science Technologyj: 313-30.

Keyns, J.M. (1921). A Treatise on Probability. (London: Macmillan).

Khoshafian, S.N. Copeland, G.P. (1990). Object Identity./«: Readings in Object-Oriented

Database Systems, ed. by Zdonik, S.B. and Maier, D. (Morgan Kaufmann Publishers). And

(1988). In: Object O riented Program m ing Systems, Languages, a n d Applications

(OOPSLA'88). Proceedings. ACM Press, pp. 406-416. .

Kim, W. (1990). Introduction to Object-oriented Database Systems. (Cambridge, MA: MIT

Press).

Kim, W. Ballou, N. Garza, J.F. Woelk, D. (1991). A Distributed Object-oriented Database

System Supporting Shared and Private Databases. A C M Transactions on Inform ation

System s 9 (1): 31-51.

Kim, W. Seo, J. (1991). Classifying Schematic and Data Heterogeneity in Multidatabase

Systems. IEEE Com puter 24 (12): pp. 12-18.

Kim, W. (1993). On Object-Oriented Database Technology. Proceedings. 19th. Conference

on Very Large Databases (VLDB), Morgan-Kaufman, pp. 676-687.

Kim, S. Schlageter, G. (1991). Intelligent Agents in Federative Expert Systems - Concepts

and Implementation. In: International W orking Conference on Cooperative Knowledge

B ased Systems. Proceedings. London: Springer Verlag, pp. 53-75.

Kim, S. Scherer, A. Schlageter, G. (1991). Problem Solving in Federative Environments:

The FRSECO Concept o f Cooperative Agents. In: The Next Generation o f Information

Systems - From Intelligence to Distribution and Cooperation, ed. by Papazoglou, M.P. and

Zeleznikow, J. (Sprinter Verlag).

Klein, M. Lu, S.C.-Y. (1989). Conflict Resolution in Cooperative D esign./!/ in Engineering

4(4): 168-180.

Klein, M. (1991). Supporting Conflict Resolution in Cooperative Design Systems. IEEE

Transactions on Systems, Man, a n d Cybernetics 2 1 (5): 1379-1390.

Kneale, W. (1949). Probability and Induction. (Oxford, UK: Oxford University Press).

Konolige, K. (1988). Hierarchical Autoepistemic Theories for Nonmonotonic Reasoning.

In: 7th Annual Conference o f the Am erican Association fo r Artificial Intelligence.

Proceedings. Menlo Park, CA: AAAI-Press, pp. 439-443.

356

[KRA93]

[KRI63]

[K R U 91]

[LÄA92]

[LAN 89]

[LEM67]

[LEN90]

[LES91]

[LEV84]

[LEV89]

[LEW68]

[LIT82]

[LIT90]

[L 0 0 8 9]

[M A C 91]

Krause, P. Clark, D. (1993). Representing Uncertain Knowledge - An Artificial Intelligence

Approach. (The Netherlands: Kluwer Academic Press).

Kripke, S. (1963). A Semantic Analysis o f Modal Logic I: Normal Modal Propositional

Calculi. Zeitschrift fü r M athematische Logik und G rundlagen der M athem atick 9: 67-96.

Kruse, R. Schwecke, E. (1991). On the Combination o f Information Sources. Lecture Notes

in Computer Science - Vol. 521. ed. by Bouchon-Mequier, B. Yager, R.R. Zadeh, L.A.

(Springer Verlag).

Läasri, B. Läasri, H. Lander, S. Lesser, V. (1992). A Generic Model for Intelligent

Negotiating Agents. International Journal o f Intelligent a n d Cooperative Inform ation

System s 1 (2): 291-317.

Lander, S. Lesser, V. (1989). A Framework for the Integration o f Cooperative Knowledge-

Based Systems. In: 4th International Sym posium on Intelligent Control. Proceedings. Los

Alamitos, CA: IEEE Computer Society Press, pp. 472-477.

Lemmon, E.J. (1967). If I Know, Do I Know that I know 1 In: Epistemology, ed. by Stroll,

A. (NY: Harper and Row).

Lenat, D.B. Guha, R.V. (1990). Building Large Knowledge-Based Systems - Representation

and Inference in the CYC Project. (Reading, MA: Addison-W esley Pub. Comp. Inc.).

Lesser, V. (1991). A Retrospective View o f FA/C Distributed Problem Solving. IEEE

Transactions System s M an a n d Cybernetics 21 (6): 1347-1362.

Levesque, H.J. (1984). A Logic o f Explicit and Implicit Belief. In: A nnual Conference o f

the Am erican Association fo r Artificial Intelligence AAAI'84. Proceedings. Menlo Park, CA:

AAAI, pp. 198-202.

Levesque, H.J. (1989). Knowledge Representation and Reasoning./«: Readings in Artificial

Intelligence and Databases ed. by Mylopoulos, J. Brodie, M. (Morgan Kaufmann).

Lewis, D.K. (1968). Counterpart Theory for Quantified Modal Logic. Journal o f Philosophy

65: 113-126.

Litwin, W. Boudenant, J. Esculier, C. Ferrier, A. Glorieux, A. La Chimia, J. Kabbaj, K.

Moulinoux, C. Rolin, P. Stangret, C. (1982). SIRIUS System for Distributed Data

Management. In: Distributed Data Bases, ed. by Schneider, H.-J. (The Netherlands: North

Holland Publishing).

Litwin, W. Mark, L. Roussopoulos, N. (1990). Interpretability o f Multiple Autonomous

Databases. A C M C om puting Survey 22 (3): 267-293.

Loomis, M.E.S. (1989). Data Management and File Structures. 2nd. Edition. (NJ: Prentice

Hall).

MacGregor, (1991). Using a Description Classifier to Enhance Deductive Inference./«: 7th.

IEEE Conference o f Artificial Intelligence Applications. Proceedings. Los Alamitos, CA:

IEEE Computer Society Press, pp. 141-147.

357

[MAL94]

[M AN87]

[M AN92]

[MAR91]

[M AS89]

[M AS90]

[McC86]

[McL92]

[M 0 0 8 5]

[MUR86]

[MUR90]

[MSV]

[MSW]

[NEC91]

[NII86]

[NOR94]

[M A I91] Maida, A.S. (1991). Maintaining Mental Models o f Agents Who Have Existential

Misconception. Artificial Intelligence 50: 331-383.

Malheiro, B. Jennings, N.R. Oliveira, E. (1994). B elief Revision in Multi-Agent Systems.

In: 11th. European Conference on Artificial Intelligence (ECAI'94). Proceedings. Vienna:

John W iley and Sons, pp. 294-298.

Manola, F. (1987). Applications o f Object-Oriented Database Technology in Knowledge-

Based Integrated Information Systems. In: 2nd. Sym posium Know ledge-Based In tegrated

Inform ation Systems Engineering. Proceedings. Cambridge, MA: MIT Press, pp. 126-134.

Manold, F. Heiler, S. (1992). Distributed Object Management. International Journal o f

Intelligent and Cooperative Information System s I (1): 5-42.

Marinos, L. (1991). A Corporate Architecture and Object Oriented M odelling Substrate for

Distributed Heterogeneous Information Systems. (München: Gesellschaft fur Mathematik

und Datenverarbeitung, Bericht Nr. 191, R. Oldenbourg Verlag).

Mason, C.L. Johnson, R.R. (1989). DATMS: A Framework for Distributed Assumption

Based Reasoning. In: Distributed Artificial Intelligence II, ed. by Gasser, L. Huhns, M.

(London: Pitman).

Masunaga, Y. (1990). Object Identity, Equality and Relational Concept. In: 1st.

International Conference on Deductive and O bject-O riented D atabases (DOOD'89).

Proceedings. The Netherlands: Elsevier Science Publishers B.V., pp. 185-202.

McCarthy, J. (1986). Applications o f Circumscription to Formalising Common-Sense

Knowledge. Artificial Intelligence 28: 89-116.

McLean, D.R. Page, B. Tuchman, A. Kispert, A. Yem, W. Potter, W. (1992). Emphasizing

Conflict Resolution Versus Conflict Avoidance During Schedule Generation. Expert

System s With Applications 5: 441-446.

Moore, R. (1985). Semantical Considerations on Non-monotonic Logic. Artificial

Intelligence 25: 75-94.

Murphy, P. Barnard, D. (1986). Evidence and Advocacy. 2. Edition. (London: Financial

Training Publ.).

Murphy, P. (1990). A Practical Approach to Evidence. 2. Edition. (London: Financial

Training Publ.).

Microsoft Corporation, Microsoft Visual C++, Version 1.5.1.

Microsoft Corporation, Microsocft Windows, Version 3.1.

Neches, R. Fikes, R. Finin, T. Gruber, T. Patil, R. Senator, T. Swartout, W. (1991).

Enabling Technology for Knowledge. A I M agazine 12 (3): 36.56.

Nii, P. (1986). Blackboard Systems: The Blackboard Model o f Problem Solving and the

Evolution o f Blackboard Architecture. AI M agazine 2: 38-53.

Norman, D.A. (1994). How Might People Interact with Agents. Com munications o f the

A C M 37(1): 68-71.

358

[OHO90]

[OLL78]

[OXB88]

[OXB90]

[OXF75]

[ÖZU90]

[PAL92]

[PAN89]

[PAN91a]

[PAN91b]

[PAP90]

[PA P911

[O A T 94] Oates, T. Nagendra Prasad, M.V. Lesser, V.R. (1994). Cooperative Information Gathering:

A Distributed Problem Solving Approach. UMass Computer Science Technical Report 94-

66, University o f Massachusetts.

Ohori, A. (1990). Representing Object Identity in a Pure Functional Language./«: 3rd.

International Conference on Database Theory (ICDT'90). Proceedings. Springer Verlag,

pp. 41-55.

Olle, T.W. (1978). The CODASYL Approach to Data Base Management. (NY: John Wiley

and Sons).

Oxborrow, E. Ismail, H. (1988). KBZ - an Object-oriented Approach to the Specification

and Management o f Knowledge Bases. In: 6th. British National Conference on Databases

(BNCOD 6). Proceedings. Cambridge, UK: Cambridge University Press, pp. 21-46.

Oxborrow, E. Ismail, H.M. (1990). An Object-oriented Approach to Distributed Database

Management Systems. D atabase Technology 3 (1): 13-26.

The Oxford Illustrated Dictionary. (1975). 2nd. ed., ed. by Coulson, J. Petter, D. Eagel, D.

Hawkins, J. (Oxford: Clarendon Press).

Özsu, T. Barker, K. (1990). Architectural Classification and Transaction Execution Models

o f Multidatabase Systems. In: Lecture Notes on Computer Science - Vol. 468, ed. by Goos,

G. Hartmanis, J. (Springer Verlag).

Palananiappan, M. Yankelovich, N. Fitzmaurice, G. Loomis, A., Haan, B. Coombs, J.

Meyrowitz, N. (1992). The Envoy Framework: An Open Architecture for Agents. A C M

Transactions on Inform ation System s 10 (3): 233-264.

Pan, J.Y.-C. Tenenbaum, J.M. Glicksman, J. (1989). A Framework for Knowledge-Based

Computer Integrated Manufacturing. IE E Transactions on Sem iconductor M anufacturing 2

(2): pp. 33-46.

Pan, J.Y.-C. Tenenbaum, J.M. (1991). Towards an Intelligent Agent Framework for

Enterprise Integration. In: A nnual Conference o f the American Association fo r Artificial

Intelligence (AAAI 91). Proceedings. Menlo Park, CA: AAAI, pp. 206-212.

Pan J.Y.-C. Tenenbaum, J.M. (1991). An Intelligent Agent Framework for Enterprise

Integration. IEEE Transactions on Systems, M an and Cybernetics, Special Issue on

D istributed Artificial Intelligence 21 (6): 223-250.

Papazoglou, M.P. Marinos, L. Bourbakis, N.G. (1990). Distributed Heterogeneous

Information Systems and Schema Transformation. In: International Conference on

Databases, Parallel Architecture and Their Applications (PARABASE). Proceedings. Los

Alamitos, CA: IEEE Computer Society Press, pp. 388-549.

Papazoglou, M.P. Bobbie, P.O. Hoffman, C. (1991). Active Information Systems in Support

o f Decision Making. In: 24th. Hawaii International Conference, on Systems Science.

Proceedings. Los Alamitos, CA: IEEE Computer Society Press, pp. 407-416.

359

[PAP92b]

[PAT88]

[PEA88]

[PEA93]

[PET92]

[POET]

[POL70]

[POL74]

[POL92]

[POL94]

[POL95]

[POLA92]

[PRE92]

[PRI67]

[PRI69]

[PA P92a] Papazoglou, M. Laufmann, S. Sellis, T.K. (1992). An Organisational Framework for

Cooperating Intelligent Information Systems. International Journal o f Intelligent and

C ooperative Inform ation System s 1 (1): 169-202.

Papazoglou, M.P. Blum, B.I. Hughes, J.G. (1992). An Expert System-like Architecture for

Integrated Disparate Information Sources. In: 25th. Hawaii International Conference on

System s Science. Proceedings. Los Alamitos, CA: IEEE Computer Society Press, pp. 600-

610.

Paton, N.W. Gray, P.M.D. (1988). Identification o f Database Objects by Key. In: 2nd.

International Workshop on Advances in O bject-O riented Database Systems. Proceedings.

Springer-Verlag, pp. 280-285.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks o f Plausible

Inference. (San Metro, CA: Morgan Kaufmann).

Pearl, J. (1993). B elief Networks Revised. Artificial Intelligence 59: pp. 49-56.

Petri, C. (1992). A Minimalistic Model for Cooperation. In: 1st. International Conference

on Enterprise Integration. Proceedings. Cambridge, MA: MIT Press, pp. 409-415.

Poet Software Corporation, San Mateo, CA, The Object Database for C++, Release 10.

January 1995, Version 3.0.

Pollock, J.L. (1970). The Structure o f Epistemic Justification. In .A m erican Philosophical

Q uarterly 4: pp. 62-78.

Pollock, J.L. (1974). Knowledge and Justification. (Princton, NJ: Princton University

Press).

Pollock, J.L. (1992. How to Reason Defeasibly. Artificial Intelligence 57: 1-42.

Pollock, J.L. (1994). Justification and Defeat. Artificial Intelligence 67: 377-407.

Pollock. J.L. (1995). Rational Agency in OSCAR .In : AAAI-95 Fall Sym posium Series

Rational Agency: Concepts, Theories, M odels and Applications. To appear as a Technical

Report o f the American Association for Artificial Intelligence (AAAI),M enlo Park, CA, pp.

112-116.

Polat, F. Giivenir, H. A. (1992). A Conflict Resolution Based Cooperative Distributed

Problem Solving Model. Paper presented at the Annual Conference o f the American

Association for Artificial Intelligence (AAAI), Workshop on Cooperation Among

Heterogeneous Intelligent Systems, San Jose, CA.

Preece, A.D. Shinghal, R. (1992). Verifying Knowledge Bases by Anomaly Detection: An

Experience Report. In: 10th. European Conference on Artificial Intelligence (ECAI-92).

Proceedings. Vienna: John Wiley and Sons, pp. 835-839.

Price H.H. (1967). Some Considerations About B elief./« : Knowledge and Belief, ed. by

Griffiths. (Oxford, UK: Oxford University Press).

Price, H.H. (1969). Belief. In: The Gilford Lecture Delivered at the University o f Aberdeen

in 1960. (London, UK: George Allen and Unwin Ltd.).

360

[RAZ86]

[RES75]

[SAD90]

[SEL93]

[SEU92]

[SHA75]

[SHA82]

[SHA76]

[SHA93]

[SHE90]

[SHE93]

[SMI80]

[SMI81]

[SMI95]

[SOL95]

[Q U T 92] Qutaishat, M.A. Fiddian, N.J. Gray, W.A. (1992). A Meta-Integration System for

Heterogeneous Object-Oriented Database Environment - Implementation in Prolog./«: 1st.

International Conference on Practical Applications o f Prolog. Proceedings. London, UK:

Institute o f Civil Engineering, pp. 1-16.

Raz, J. (1986).The Morality o f Freedom. (Oxford, UK: Oxford University Press).

Rescher, N. (1975). A Theory o f Possibility. (Pittsburgh: University o f Pittsburgh Press).

Sadreddini, M.H. Bell, D.A. McClean, S. (1990). Architectural Considerations for

Providing Statistical Analysis o f Distributed Data. Information and Software Technology 32

(7): 459-469.

Seligman, L. Kerschberg, L. (1993). An Active Database Approach to Consistency

Management in Data and Knowledge-Based Systems. International Journal o f Intelligent

and Cooperative Inform ation System 2 (2): 187-200.

Seung, T.K. Bonevac, D. (1992). Plural Values and Indeterminate Rankings. Ethic 102 (4):

799-813.

Shave, M.J.R. (1975). Data Structures. (London, UK: McGraw-Hill Book Company Ltd.).

Shave, M.J.R. Bhaskar, K.N. (1982). Computer Science Applied to Business Systems.

(London, UK: Addison-W esley Publishers Ltd., International Computer Science Series).

Shafer, G. (1976). A Mathematical Theory o f Evidence. (Princton: Princton University

Press).

Shaw, M.J. Fox, M.S. (1993). Distributed Artificial Intelligence for Group Decision

Support. Decision Support System s 9: 349-367.

Sheth, A. Larson, J. (1990). Federated Database Systems for Managing Distributed

Heterogeneous, and Autonomous Databases. A C M C om puting Surveys 22 (3): 183-235.

Sheth, A.P. Gala, S.K. Navathe, S.B. (1993). On Automated Reasoning for Schema

Integration. International Journal o f Intelligent and Cooperative Information System 2 (1):

23-50.

Smith, R. (1980). The Contract Net Protocol: High-Level Communication and Control in a

Distributed Problem Solver. IEEE Transactions on Computers C-29 (12): 1104-1113.

Smith, G.R. Davis, R. (1981). Frameworks for Cooperation in Distributed Problem Solving.

IEEE Transactions on Systems, Man, and Cybernetics 11 (1): 61-70.

Smit, R.A. Verhagen H.J.E. (1995). On Being Social: Degrees o f Sociality and Models o f

Rationality in Relation to Multiagent System s./«: AAAI-95 Fall Symposium Series Rational

Agency: Concepts, Theories, M odels and Applications. To appear as a Technical Report o f

the American Association for Artificial Intelligence (AAAI), Menlo Park, CA, pp. 131-135.

Solomon, M. (1995). Social Empiricism. In: AAAI-95 Fall Symposium Series Rational

Agency: Concepts, Theories, M odels and Applications. To appear as a Technical Report o f

the American Association for Artificial Intelligence (AAAI),M enlo Park, CA, pp. 141-144.

361

[SPA92]

[SQL]

[STE90]

[STO76]

[ST 084]

[ST 091]

[SU 90]

[SU 91]

[SUB90]

[SYC89]

[THO90]

[TOY94]

[SPA 91]

[TR U 87]

Spaccapietra, S. Parent, C. (1991). Conflicts and Correspondence Assertions in

Interoperable Databases. Sigm od Record 20 (4): 49-54.

Spaccapietra, S. Parent, C. Dupon, Y. (1992). Model Independent Assertions for Integration

o f Heterogeneous Schemas. VLDB Journal 1: 81-126.

American National Standard for Information Systems (ANSI) Database Language SQL

(Structured Query Language) ANSI X3.135. (1986). NY: ANSI.

Steiner, D. Mahling, D. Haugeneder, H. (1990). Collaboration o f Knowledge Bases via

Knowledge Based Coordination. In: International Working Conference on Cooperative

Knowledge Based Systems. Proceedings. London: Springer Verlag, pp. 113-129.

Stonebraker, M. Wong, E. Kreps, P. (1976). The Design and Implementation o f INGRES.

A C M Transactions on Database System s 1 (3): 189-222.

Stocker, P.M. Atkinson, M.P. Oxborrow, E.W. (1984). PROTEUS: A Heterogeneous

Distributed Database Project. In: Database - Role and Structure, ed. by Gray, P. Stocker,

P.M. Atkinson, M.P. (Cambridge, UK: Cambridge University Press).

Stolze, M. Gutknecht, M. (1991). Building Human-Centred Intelligent Cooperative

Information Systems with IKEA. In: The Next Generation o f Information Systems - From

Intelligence to Distribution and Cooperation, ed. by Papazoglou, M.P. and Zeleznikow, J.

(London: Sprinter Verlag).

Su, S. Park, J.H. (1990). A Knowledge Representation Scheme and a Knowledge Derivation

Mechanism for Achieving Rule Sharing Among Heterogeneous Expert Systems. In:

Conference on D atabase and Expert System s Applications (DEXA 90). Proceedings, pp.

359- 366,

Su, S. Park, J.H. (1991). An Integrated System for Knowledge Sharing Among

Heterogeneous Knowledge Derivation Systems. Journal o f A pplied Intelligence 1: 223-245.

Subramanyan, S. Park, J.H. Su, S.Y.W. (1990). An Integrated Heterogeneous Expert

System: Design and Implementation. In: PROCIEM 90.Proceedings. Tampa, FI

Sycara, K. (1989). Multiagent Compromise via Negotiation. In: 8th. Workshop on

Distributed Artificial Intelligence Volume 2, ed. by Gasser, L. Huhns, M. (London, UK:

Pitman).

Thomas, G. Thompson, G. Chung, C.-W. Barkmeyer, E. Carter, F. Templeton, M. Fox, S.

Hartman, B. (1990). Heterogeneous Distributed Database Systems for Production Use.

A C M C om puting Surveys 22 (3): 138- 265.

Toy, G. Cutkosky, M.R. Leifer, L.J. Tenenbaum, M.J. Glicksman, J. (1994). SHARE: A

Methodology and Environment for Collaborative Product Development. International

Journal o f Intelligent and Cooperative Information System 3 (2): 129-153.

Trusted, J. (1987). Moral Principles and Social Values. (London, UK: Routledge and Kegan

Paul).

362

[VIT91]

[VIT92]

[WER91]

[WIE90]

[WIE91]

[WIE92]

[WIL82]

[U N L 90]

[WIT93]

[W ON94]

[W 0 0 9 2]

[Z A N 90]

Unland, R. Schlageter, G. (1990). Object-Oriented Database Systems: Concepts and

Perspectives. Lecture Notes in Computer Science Vol. 466. ed. by Blaser, A. (Springer

Verlag).

Vittal, J. Silver, B. Frawley, W. Iba, G. Fawcett, T. Dusseault, S. Doleac, J. (1991). A

Framework for Cooperative Adaptable Information Systems. In: The Next Generation o f

Information Systems - From Intelligence to Distribution and Cooperation, ed. by

Papazoglou, M.P. and Zeleznikow, J. (Springer Verlag).

Vittal, J. Silver, B. Frawley, W. Iba, G. Fawcett, T. Dusseault, S. Doleac, J. (1992).

Intelligent and Cooperative Information Systems Meet Machine Learning. International

Journal o f Intelligent and Cooperative Information Systems 1 (2): 347-361.

Werkman, K. (1991). Using Negotiation and Coordination in Multiagent Intelligent

Cooperative Information Systems. In: The Next Generation o f Information Systems - From

Intelligence to Distribution and Cooperation, ed. by Papazoglou, M.P. and Zeleznikow, J.

(Sprinter Verlag).

Wiedehold, G. (1990). Future Architectures for Information Processing Systems.

International Conference on Databases, Parallel Architectures, and Their Applications

(PARABASE-90). Proceedings. Los Alamitos, CA: IEEE Computer Society Press, pp. 160-

176.

Wiederhold, G. (1991). The Roles o f Artificial Intelligence in Information System s./«:

Lecture Nodes in Computer Science. 6th. M ethodologies for Intelligent Systems. (Springer

Verlag).

Wiedehold, G. (1992). Mediators in the Architecture o f Future Information Systems.IEEE

Com puter 3: 38-49.

Williams, R. Daniels, D. Haas, L. Lapis, G. Lindsay, B. Ng, P. Obermarck, R. Selinger, P.

Walker, A. Wilms, P. Yost, R. (1982). R*: An Overview o f the Architecture./«: Improving

Database Usability and Responsiveness, ed. by Scheuermann, P. (Orlando, FL: Academic

Press). And. In: 2nd. International Conference on Databases: Improving Responsiveness.

Proceedings. Jerusalem, Israel: Hebrew University Jerusalem.

Witteveen, C. Brewka, G. (1993). Sceptical Reason Maintenance and B elief Revision.

Artificial Intelligence 61: 1-36.

Wong, S.T.C. (1994). Preference Based Decision Making. A C M Transactions on

Information System s 12 (4): 407-435.

Woo, C.C. Lochovsky, F.H. (1992). Knowledge Communication in Intelligent Information

Systems. International Journal o f Intelligent and Cooperative Information Systems I (1):

203-228.

Zaniolo, C. (1990). Object Identity and Inheritance in Deductive Databases - An

Evolutionary Approach. In: 1st. International Conference on D eductive and Object-

3 6 3

[Z L 091]

[Z L 093]

[Z L A 92]

O riented Databases (DOOD'90). Proceedings. The Netherlands: Elsevier Science

Publishers B.V. pp. 7-24.

Zlatareva, N.P. (1992). Truth Maintenance Systems and Their Application for Verifying

Expert Systems Knowledge Bases. Artificial Intelligence Review 6: 67-110.

Zlotkin, G. Rosenschein, J. (1991). Cooperation and Conflict Resolution via Negotiation

Among Autonomous Agents in Noncooperative Domains. IEEE Transactions on Systems,

M an and Cybernetics 21 (6): 1317-1324.

Zlotkin, G. Rosenschein, J.S. (1993). Negotiation with Incomplete Information about

Worth: Strict versus Tolerant Mechanism. In: International Conference on Intelligent and

Cooperative Inform ation Systems (ICICIS 93). Proceedings. Los Alamitos, CA: IEEE

Computer Society Press, pp. 175-184.

364

