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ABSTRACT

With the use of ultrasonic transducers, the relation between defect sizes and ranges 
with the their echo amplitudes has been investigated both theoretically and 
experimentally. It is demonstrated that this relation is affected by diffraction effects 
which also complicate the interpretation of echo signals. These diffraction effects 
are interpreted in terms of compression plane and edge waves together with 
mode-converted shear edge waves emanating from a circular compressional 
transducer.

The investigation has been established with the aid o f a model that predicts echo 
responses for flat-bottomed holes (FBH) in isotropic lossless solids interrogated by 
uniformly excited sources. The results predicted by the model are in good 
agreement with experimentally measured results obtained using commercially 
available wide and narrow band circular transducers.

It has been shown experimentally and theoretically that, using transducers excited 
with multi-cycle pulses produces large fluctuations with range in echo amplitudes 
for small targets. These fluctuations might results in misinterpretations of target 
size. The fluctuations disappear when a short pulse is used to excite the transducer.

The model is also used to obtain new distance-gain-size (DGS) diagrams that can 
predict the significant response variations in both the near and the far fields of a 
transducer. Calculated DGS diagrams have shown good agreement with 
experimentally obtained curves for small FBH targets positioned mostly in the near 
field of the transducer.

Factors like the transducer radius, excitation-pulse shape, and the method of 
calculating the echo amplitude have been shown to affect DGS diagrams, especially 
for the case o f small targets in the near field. The new model provides the 
explanation o f these effects.

A comparison between the new curves and curves produced using an earlier fluid 
model showed that there are significant differences between both curves, especially 
for small targets. Therefore, care should be taken when the fluid model is used to 
estimate target size in a solid medium.
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1- INTRODUCTION

Ultrasonic pulse echo methods have many applications in the nondestructive testing 

of materials, including material evaluation and defect detection and 

characterisation. The detection of defects has been considered to be easier than 

their characterisation (Krautkramer, 1959) because of several factors. These are 

defect type, shape and the roughness of its surface, the ultrasonic beam behaviour 

in the material, and the electronics involved in the process of testing.

An early attempt to size defects was introduced by Krautkramer in 1959 in which 

he related the echo amplitude for flat disc-like defects to their size and distance 

from the transducer in a fluid medium. These targets were at right angles to the 

axis of the radiated field. He defined this relation as Distance Gain Size (DGS) 

diagrams. However, Krautkramer's diagrams were produced theoretically for 

targets in the very far field of the probe. The rest of the diagrams for targets in the 

near field were completed experimentally. For targets within the near field of the 

transducer, it was noted that there were fluctuations in the echo amplitudes with 

range. These fluctuations increase as target sizes decrease.

Since then, this method of defect sizing has been widely used in many countries 

and it was considered to be a very important step in solving the defect sizing 

problem. However, the method is not without its drawbacks. For example, The 

reason for fluctuations in the echo amplitude for small targets positioned in the 

near field of the probe was to a certain extent not known. Also, the same method 

was used for defect sizing in solids, while originally it had been developed for 

targets in a fluid medium. These setbacks meant that it was very important to 

understand the propagation of ultrasound in a solid medium, its interaction with 

targets and the corresponding echo waveforms on reception

Consequently, many approaches have been made towards this understanding. For 

example, solving the elastodynamic equations (EDE), (Schmerr and Sedov, 1989) 

The main setback of this approach is the length of time required. Another approach 

was using the geometrical theory of diffraction (GTD), (Chapman, 1988).



However, this approach used continuous wave theory and assumed the 

propagated waves to be plane

A different approach was the transient field theory. In this theory most calculations 

of transient piston fields have been based on a convolution integral representation 

(Stepanishen, 1971). This integral introduces the concept of an impulse response 

which relates the acoustic field to the radiating source geometry. Using the same 

transient field theory, the propagation of sound in a fluid medium has also been 

defined using the concept of plane and edge waves (Weight and Hayman, 1978). 

With the aid of the same concept, the propagation of sound in a solid medium 

(Weight, 1982, 1987) and the echo responses of small targets in solids (Weight, 

1993) were modelled.

The approach given by Weight (1993), gave the ability to develop a model that can 

predict the echo responses from flat-bottomed hole (FBH) targets of various sizes 

(as will be seen later in Chapter 2). The study of the echo responses of such targets 

is one of the objectives of this thesis.

Other important objectives are the applications of the new model in defect sizing in 

solids. As mentioned earlier, the first method introduced for defect sizing was the 

use of DGS diagrams for targets in a fluid medium. It is intended that this model 

will be able for the first time to produce full theoretical DGS diagrams for targets 

in a solid medium. Also, it will provide a quantitative explanation for the 

fluctuations in the amplitude of the echo response for the same target size with 

range and the reason behind the reduction in these fluctuations as the target size 

increases. A comparison between the new DGS diagrams constructed using the 

new model and the diagrams produced using the fluid model is given. At this 

point, it is very important to mention that only aspects relating to the propagation 

of ultrasound from the transducer face and its subsequent scattering and reception 

in pulse-echo mode are considered and not the electro-acoustic modelling to relate 

the motion of the transducer to the electrical excitation pulse.
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Briefly, the material presented in this work is laid out as follows:

Chapter 2 begins by introducing, briefly, the transient theory for propagation of 

sound in a fluid, as well as the impulse response method for the calculation of 

pressure waveforms and transmit-receive mode responses for uniformly excited 

transducers. Next, the extension of the impulse response method to model the 

propagation of sound in a solid is reviewed. This is followed by a discussion of the 

origin of the mode-converted shear waves radiated from normally coupled 

transducers. Then, extension of the theory to predict the echo response of small 

targets in a solid medium is reviewed. This leads to a model which predicts the 

echo response of finite sized targets in a solid medium.

A brief review of the origin of DGS diagrams follows. The advantages and 

disadvantages of these diagrams as a method of defect sizing and new 

developments in this method are discussed. Chapter two finishes with the 

numerical calculations implemented for the impulse responses and the echo 

responses for finite-sized targets.

Chapter 3 describes the transducers and measuring systems used to obtain the 

experimental waveform measurements presented in this work.

Detailed calculations of transmit-receive mode responses from targets of various 

sizes in a solid medium are given in Chapter 4. These calculations are compared 

with experimental results obtained using conventional narrow- and wide-band 

transducers. The applications of this model in producing new DGS diagrams for 

targets in solids are shown and are experimentally verified for both narrow and 

wide band transducers. Some other factors that can affect DGS diagrams, like the 

method of detecting the echo amplitude are discussed. Also, a comparison between 

the diagrams produced using the new model and diagrams produced using the fluid 

model is shown.

Chapter 5 deals with the implications of the results in Chapter 4 for defect 

detection and sizing in practical NDT.

Proposed future work and developments are given in chapter 6, followed by 

conclusions of this work in chapter 7.



2- THEORY

Much of the theoretical and experimental work presented in this thesis is associated 

with the propagation of ultrasound in a solid medium, its interaction with targets 

within the solid and the reception of the ensuing scattering back at a single 

transducer. This is generally more complicated than the corresponding problem 

with a fluid medium of propagation, because shear waves as well as compression 

waves can propagate in a solid. For this reason, the theory for solids is introduced 

by first briefly reviewing the existing impulse response theory for fluids (after 

Weight and Hayman 1978). This is followed by a more detailed review of a model 

used to predict the echo responses of point-like targets in solids (Weight 1993). 

This model is then extended to deal with finite sized targets in solids. Finally, the 

use of the new model as a tool to size defects in solids is discussed.
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2.1 Propagation of sound in a fluid using the impulse response method

Rayleigh's equation for arbitrary motion of a source radiating into a fluid expresses 

the velocity potential at a point as the sum of contributions from all the elementary 

Huyghens sources that make up the source surface. This gives

<Kr,/)= l/27t J ^ v ^ d s ,  (1)

where <J> is the velocity potential, v is the normal velocity of the piston, r is the 

distance from the field point to the surface element ds and c is the velocity of 

sound in the fluid.

The pressure in a fluid of density p is then given by

P(r,t) = pdfy/dt. (2)

If the piston velocity v is uniform over the piston surface then by using the shifting 

property

K ' - f ) = K 0 * 8  ( t - i ) ,  (3)

where * denotes convolution.

Assuming a linear-time invariant system, the velocity potential for arbitrary motion 

v(7) of the source is then

<Ha  0  = KO * <f><(>, t) . (4)

and the impulse response <}>. is

5
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After a velocity impulse has been applied to a piston at t = 0, the field at point O is 

made up of contributions from all points on the piston surface a distance cl from 0. 

These equidistant points lie on a circular arc centred at the projection of 0  on the 

source plane, as shown in Figure 2.1.1.

Figure 2.1.1: Geometry for a circular source of radius a, propagating in a fluid 
medium, showing the angle subtended at the transducer circumference from a point 
Q on the medium. The angle Q is the included angle of an arc on the transducer 
surface, each point on the arc being equidistant from Q.

By a simple change of variable (Stepanishen, 1971), a very useful result is obtained 

for the solution to Eq (1), namely that the velocity potential for an impulsive 

motion o f a source is proportional to the length of equidistant arc included in the 

source surface. Mathematically this is

<}>/(/■, 0  = cQ.(cl)/2n if r\ <ct < ri (6)

and 4>i (r,t) = 0 elsewhere, where Q is the full angle of the included equidistant arc, 

rI and r2 are the distances from the field point to the near point and the far point of 

the source circumference, respectively. For the case o f a circular source analytic 

expressions for Q (cl) have been given by a number of authors using the law of 

cosines, those tabulated by Robinson (1974) are summarised in the appendix. The
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pressure impulse response may then be obtained by numerical differentiation and 

convolved with the source velocity motion to give the pressure response as:

p = v(t)*pi, (7)

where

Pi = P<3cjh/dt (8)

Weight and Hayman (1979), introduced a physical explanation that follows from 

Eq (7) which said that the field structure for a circular source emanating in to a 

fluid medium consists of plane and edge waves. The plane wave travels in the 

geometrical beam region straight ahead of the transducer. The edge wave travels 

as a spreading wave from the edge of the transducer and has a toroidal wavefront. 

As an aid to clarify the concept of plane and edge waves Figure 2.1.2 shows a 

schematic representation for these waves. Since in this thesis more attention is 

given to the propagation of sound in solids as seen later in section (2.2), more 

details about the propagation of sound in fluids can be seen elsewhere (Weight, and 

Hayman, 1978 and 1979)

Figure 2.1.2: A schematic representation of the concept of the plane and edge 
waves emanating from the transducer excited with single sinusoidal pulse. Shown 
in circles are the opposite polarities of the waveforms at the moment of excitation 
(t=0).
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21.1 Impulse response method to calculate pulse echo waveforms for a point-like 
target in a fluid.

By invoking the principle of reciprocity (Weight and Hayman, 1978/ 79), the 

impulse response method has been extended to allow calculations to be made of 

the transmit-receive mode response of a uniformly excited source interrogating a 

point-like target in a fluid. If the source is considered to also function as a 

receiving transducer that is uniformly pressure sensitive, its output voltage £(/), 

when used in transmit-receive mode on reception of the echo from an idealised 

point reflector is given by

E(t) = (kp/2c)v(t) * dfyj/dt * d§j/dt, (9)

where k is a constant.

The above result is obtained by making the simplifying assumption that the incident 

wave is locally plane and the target has a reflection coefficient of I. i.e, the target 

has an acoustic impedance much smaller than that of the fluid medium in which it is 

immersed. The double convolution of Eq (9) means of course that the pulse-echo 

waveform is quite different (Weight and Hayman (1978)) from that obtained for 

the field point pressure. Predicted echo responses for small targets in fluids using 

Eq (9), showed good agreement with experimentally obtained echo responses for 

the same targets (Hayman and Weight, 1979).



2.2 Propagation of sound in a solid

In solids, both longitudinal and transverse waves can propagate, and so the 

modelling of the propagation of sound in a solid is a harder task than is the case 

with fluids. Many approaches have been developed. For example, using the 

Cagniard de Hoop method (1959), Aulenbacher and Langenberg (1983) have 

given the impulse response and hence the pulsed directivity pattern of a line or 

point source radiating into a solid half- space. By suitable integration techniques 

they have extended the line source results to calculate the impulse response of an 

infinite ribbon source.

Weight (1982) introduced a simple model for the impulse response that can be 

used to rapidly calculate the propagation of sound in solid. His work is discussed in 

detail in section 2.2.1.

Kawashima (1984) numerically evaluated the integral expressions for the 

displacement amplitude for any point in the field of a circular source undergoing 

continuous sinusoidal motion. He then obtained pulsed displacements by harmonic 

synthesis.

Ilan and Weight (1987) used the finite difference approach to calculate the time 

development of displacements within a solid half space. Then they expressed the 

elastodynamic equations in cylindrical co-ordinates by inserting suitable surface 

boundary conditions into the equation From that they calculated the displacements 

due to a circular source undergoing arbitrary motion.

Bresse and Hutchins (1989) showed how the use of integral transforms and the 

Cagniard method can give exact, finite integral expressions that can be evaluated 

numerically for the transient waves generated from axisymmetric sources.

9



Schmerr and Sedov (1989) calculated the propagation of sound in a solid using an 

elastodynamic model that uses high frequency asymptotic solutions. This was done 

for both compression and shear wave transducers that were directly coupled to a 

solid surface and radiating a short pulse. Interestingly, they demonstrated that 

within the main beam of the transducer and in the far field, the differences between 

their model and the fluid model are very small. But, in the near field, the 

elastodynamic model provides a more complete description of the transducer 

radiated wave field than does the fluid model. However, they concluded that their 

solid model agrees very well in many cases with the simpler fluid models that have 

been used for such problems.

Djelouha and Baboux (1992), modelled the problem of the transient ultrasonic field 

radiated from a circular source in a solid medium, by a homogeneous isotropic 

elastic half space whose surface is subjected to a normal load uniformly distributed 

under the active area of the transducer. Taking account of these particular 

boundary conditions, they solved the partial derivative equations that govern the 

propagation of elastic waves using integral transform techniques. The numerical 

simulation obtained using this formulation showed that the radiated field is 

relatively complicated because of the diffraction by the transducer edges. The 

radiated field obtained consists of a compression plane wave propagating in the 

geometric region straight ahead of the source, together with compression- and 

shear-edge waves emanating from the transducer circumference.

Baboux and Kazys (1992), studied the transient radiation of ultrasonic fields into 

isotropic solids by circular sources. Their calculations of the axial and radial 

components of the particle velocity spatial-temporal distributions were performed 

using an harmonic synthesis approach. The results obtained were explained in 

terms o f direct, compression-edge, shear-edge and head waves.

Lhemery (1994), introduced an approximate model for the solution of the problem 

of the radiation of the transient pulses in an elastic medium. In his work Lhemery 

derived two approximations allowing the proposal of a new integral formula for the

10



problem of the radiation of transient pulses in an elastic medium by an arbitrary 

loading. The first approximation was to neglect the first term in Green's dyadic (K 

Aki and P. G. Richard, 1980). The second approximation was to ignore the head 

waves. His results showed good agreement with the exact solutions obtained by 

Baboux and Kazys (1992).

Most of the above approaches are time consuming in terms of computation even 

on main frame computers. Since the present work is mainly involved in extremely 

extensive calculations (like producing DGS diagrams), these approaches would be 

very time consuming. Hence the need for a model that produces rapid and accurate 

results has arisen.

2.2,1 Impulse response method to calculate the propagation of sound in a solid.

Plane wave theory predicts that a compression wave obliquely incident on a surface 

partially mode converts into a shear wave. However, other studies showed the 

existence of shear waves radiating from normally coupled compressional 

transducers, (Hall 1977, Hayman and Weight 1977, Saches and Hsu 1978, Ying 

and Li 1981).

Hayman and Weight (1977) suggested that these shear waves are mode converted 

edge waves and thus may be considered to be shear edge waves. Evidence to 

support this hypothesis was given by using a stroboscopic photoelastic system to 

visualise a short pulse propagating into a fused quartz block.

To show that these waves originate from the edge of the probe and are not due to 

mode conversion at the edge of the incident compression plane wave, Weight 

(1982) showed results taken with the transducer water-coupled, at a range of 

4mm, to a quartz block. The positions of the compression plane wave and the 

shear edge wave were marked on a glass slide placed alongside the quartz block



Then the transducer coupling range was increased to 8mm but the depth of 

penetration into the quartz remained the same. If the shear edge wave was due to 

mode conversion at the edge of the incident compression plane wave, the radius of 

curvature of the shear wave at the new coupling range would be the same as at the 

4mm coupling range. However, this was not the case. In fact, consistently with the 

idea of mode-converted edge waves, the centre of the curvature of the shear edge 

wave at the 8mm coupling distance was back at the edge of the transducer 

(allowing for refraction at the fluid/solid interface).

Thus the basis of the model to be used here is to consider that the compression 

edge wave that propagates from the rim of the transducer partially mode converts 

into a shear edge wave, the proportion depending on the angle from the field point 

to each element of the source rim. This is achieved by 'splitting' the compression 

edge wave component from each element of the source rim into two components, 

one propagating at the compression wave velocity, the other at the shear wave 

velocity (Weight, 1987).

It is important that to express the impulsive velocity potential at a point inside 

the solid as the sum of two Rayleigh diffraction integrals, one for the compression 

wave the other for the shear wave, is not valid as it stands since the assumptions 

made in deriving Rayleigh's integrals are only valid for a fluid propagating medium. 

For instance, such an approach would predict the existence of a shear plane wave 

from a normally coupled compression wave transducer. This contradicts the 

theory of the propagation of plane waves across a boundary. However, Weight 

(1982) suggested that the fluid theory could be used to predict the form of the 

shear edge wave radiated from a normally-coupled transducer. He showed that the 

the problem of the non-existing shear plane wave also predicted could easily be 

overcome by simply omitting it from all further calculations.

Thus Weight (1987) expressed the pressure impulse response as,

PS = pc;[6(t -  To) -  -  u) -  (c,/ci)m,(Q)f,(t -  /,)]. (10)
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where f , ( t  - t)  is the edge-wave contribution predicted for a fluid propagating 

medium having sound velocity c( and f t (t - t)  is that for a medium having sound 

velocity ct . The functions f t (/ - /,) and f t (t - t() are extracted from the impulse 

response given by Eq (6) and the expressions are listed in the appendix It should 

be mentioned that for the on-axis case, these functions reduce to a delta function 

since, on-axis, the edge wave components are no longer dependant on the angle 9 

(due to the symmetry around the axis of propagation) and are only dependant on 

the mode conversion factors. The terms ml (0 ) and mt{9) are mode conversion 

factors for compression and shear edge waves respectively and are explained in 

more detail in section 2.2.2.

Thus ml ( 9 ) f t (t - () and rnt ( Q ) f t (t - 1) are the compression and shear edge wave 

components, respectively. and tt being the arrival times at the field point of the 

compression and the shear wave contributions from each element of the source 

circumference. The limits of t, and tt are given by

ri/ci <ti< r-ilci

and

ri/ct <t,< r2lct

where, (Figure 2.1.1), rt and r, are the distances from the field point to the near 

point and the far point of the source circumference, respectively The angle 0 is 

now given by

9 =sin ~l(r0/citi) =sin_1(ro/c,T) (1 1)

13



2.2.2 Mode conversion

It is convenient at this point to consider the angular variation of the mode 

conversion factors ml (0 ) and mi (0 ). These are dimensionless factors that give 

the relative amplitudes of the particle velocities of the compression and shear edge 

waves, respectively. These functions and the constants within them (equations 12 

and 13) were empirically derived by Weight (1987) in order to match results 

predicted using the finite difference method and used in his impulse response 

model.

m,(Q)= \ - e ~ ae ( 12)

and

m,(Q) = [Z>0e(1-i9)]2, (13)

where 0, the angle from each element of the source rim to the field point, is given 

by

0=sin l(r0/rQ) , (14)

where r0 and rg are the distances from the field point to the plane and each point of 

the rim of the source, respectively, and a and b are normalising factors to relate the 

amplitude of the edge wave components to that of the compression plane waves. 

Values of a and b may be found by again referring to finite difference results (Ilan 

and Weight, 1987) to obtain the ratio of the amplitudes of the two edge waves in 

the normal direction straight ahead of the source rim.

It was found empirically by Weight (1993) that good agreement was obtained 

between predicted and measured results, if a = b = 2.

14



From Eq (10) the two edge wave components of the impulse response are

ei = pcimi(QYi(t -  h) (15)

e, = p (16)

2.2 3 Vector Particle velocities

Eq (10) gives the scalar pressure at points in the field o f a circular source coupled 

to a solid. To give a complete treatment for propagation in solids, vector particle 

velocities are required.

The approach adopted here (Weight, 1987) is to make use of a knowledge of the 

plane and edge wave structure of the radiated pulses. This, together with 

considering the wave front as locally plane, will then allow vector particle 

velocities to be obtained as described below.

Figure 2.2.1 shows a two dimensional schematic representation of the plane and 

edge waves radiated, including their relative polarities. The convention (Weight, 

1987) adopted for the sign of compression and shear wave particle velocities is 

shown in the same figure. The radial and tangential components of the edge wave 

portions of the particle velocity impulse response us are denoted ur and u(p 

respectively. The corresponding vertical and horizontal components of the 

compression wave particle velocities in the plane z= 0 are denoted by uxl and uyl , 

respectively. Similarly, the vertical and horizontal components of the shear edge 

wave are uxt and u ,t . The polarities indicated by the arrows representing the

15
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Axis of symmetry

Figure 2.2.1: The wavefront of the plane and edge waves with their relative 
polarities radiated from a circular source coupled to a solid, Weight (1987).

vector particle velocities are those predicted by scalar impulse response theory and 

their direction is given by the plane and edge wave structure of the wave fronts 

radiated. With 9 and (3 as defined in Figure 2.1.1 and 2.2.1, then (Weight, 1987)

uxi = ;//sin0, (17)

uyi = -îz/cos0cosp , (18)

Ux, = U,COS0 , (19)

iiyt = 7/fsin0sinp . (20)

By assuming that the edge waves may be considered locally plane, the amplitudes 

of the compression and shear particle velocities are given by, respectively,

ui = ei/pa , (21)

u, -  e,/pc, , (22)
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where <?; and et are the compression and shear-edge wave impulse responses given 

in Eqs (15) and (16).

Using Eqs (17) and (19), the normal component of the particle velocity impulse 

response becomes

Uxh =  5( /  -  T 0)  -  mi(Q)fi(t -  i/)sinQ -  -  6)cos0 , (23)

From which the particle velocity response for an arbitrary source velocity motion 

becomes

tlx =  v(t) * Ux5 , (24)

where v(/) is the velocity function of the transducer.

2,2,4 Impulse responses and particle velocity waveforms

A graphical representation of Eq (24) will give a clearer picture to the reader about 

the nature of sound propagation in a solid. This representation is seen in Figure

2.2.2 which shows on-axis calculated impulse responses and waveforms for short 

ultrasonic pulses propagating from a 19mm diameter, 5MHz transducer into a 

solid medium. These waveforms and the way in which they vary with range can be 

explained in terms of the contributions of the compression plane and edge waves 

together with a mode converted shear edge wave.

The waveform starts with a contribution due to arrival o f the locally plane wave 

(P) which retains its shape and amplitude at all points within the geometric region 

straight ahead of the source. The plane wave pulse is followed by the compression 

edge wave pulse (Ec). Since for a point on axis the edge contributions from each 

element of the source rim arrive simultaneously, there is then just one edge-wave
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Impulse response Velocity Functiom v (t ) Particle velocity

Metal distance = 50mm

Es

- f

Figure 2.2.2: Impulse responses and particle velocity waveforms of sound propagating 
in an ideal solid medium at different axial ranges assuming a 19mm diameter source 
excited with a 5MHz short pulse. P denotes the compression-plane wave pulse, Ec 
denotes the compression-edge wave, and Es denotes the shear-edge wave pulse.* 
denotes convolution
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pulse. As described in section 2.1, this pulse has opposite polarity to that of the 

plane wave pulse (propagation of sound in fluid). In a similar fashion, there is a 

single shear edge wave pulse (Es) at an axial point and as expected this arrives after 

the compression edge wave. At short ranges the angle subtended at the source rim 

is such that strong mode conversion of the incident compression edge wave occurs, 

as shown in the examples in section 2.2.2. Further away, the mode convesion 

effect is less strong. Note also that the separation between the compression plane 

and edge wave components becomes less with axial range and with increasing 

range they will eventually overlap. However, since the shear wave travels at 

approximately half the compression-wave velocity, the shear-wave pulse becomes 

further separated from the compression pulses and its amplitude becomes smaller 

than that of the compression edge-wave pulse as the mode conversion becomes 

weaker.

As shown in Figure 2.2.3, for points off the axis of the source, the plane wave 

pulse is the same as that in the on-axis results, but each of the edge wave 

contributions (Ec and Es) are now smaller and smeared out in time. However, two 

main contributions to the smeared edge wave pulse can be seen, one from the 

nearer edge of the source, the other from the further edge.

Weight (1987) verified the predictions of the model by comparing its results with 

experimental measurements of field point waveforms at points on the surface of a 

solid.
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Impulse response On-Axis Particle velocity

2mm Off-Axis

Figure 2.2.3: Impulse and particle velocity waveforms for axial and non-axial 
points in a solid. The source parameters are as mentioned in Figure 2.2.2
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2.2.5 Pulse echo waveforms for a point-like target in a solid

In a solid medium, scattering of the incident plane and edge waves gives rise to a 

multipulse echo response even more complicated than of a similar target in a fluid 

(Weight, 1993). Such complications stem from the existence of shear edge waves 

and the probability of mode conversion at the target. For the case of a target in a 

solid, the approach adopted here is similar to the approach reviewed in section

(2.1.1) for a fluid medium, but takes into account the extra complications of the 

compression and shear components of the interrogating beam and the behaviour of 

the transducer when acting as a directly coupled receiver.

Following Weight's approach (1993) the target is considered to be a point-like free 

boundary in the solid. Using the same geometrical variables as defined in figure

(2.1) the motion vr of the target is equal to the normal component of the particle 

velocity of the incoming waves. Thus, for impulsive motion of a transducer directly 

coupled to the surface of a solid, v. is

U = - K s  (25)

where as above uxS is the normal component of the radiated particle velocity us 

(r,t). The minus sign in equation 25 comes as a result of making the simplifying 

assumption that the incident wave is locally plane and that the target has a 

reflection coefficient of -1. This assumption is valid since the difference in acoustic 

impedance between air and a solid medium is sufficiently great

Consider now the behaviour of the transducer in reception. Since a finite 

transducer may be represented as a collection of point receivers, it may be 

considered that a directly coupled transducer is uniformly sensitive to the normal 

components of the particle velocity of the incoming waves (Weight, 1993).
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As a result, for the case of a target in a solid medium, the normalised particle 

velocity impulse response is given as

£s*(0 = Uxhir, t) * ux5(r, /), (26)

and the echo response for arbitrary excitation of the transducer is then

E s(t) =  v(t) *Ess(t). (27)

From Eq (27), it is clearly seen that the waveform from a small target in a solid is 

obtained by a double convolution. This means that waveforms produced by Eq 

(27) are considerably different from those at points in the radiated field, there being 

further time-separated components - as discussed below.

Before going into more details about the nature of these echo responses it is 

appropriate to define 'the path difference (PD)' as used extensively in this thesis. 

As mentioned earlier, the plane wave travels from the face of the source to reach a 

certain point in the field. The edge waves travel from the source edge to reach the 

same point. The difference in the distance travelled by both is defined as 'path 

difference' or PD. For axial points, the term is defined by

where R is the transducer radius and x is the distance from the centre of the 

transducer to the (axial) field point. This term has considerable importance in the 

present work, since many of the results shown later greatly depend on the path 

difference between the plane and edge wave components.

It should be mentioned that for a multi-cycle pulse and at an axial point, when the 

PD between plane and edge waves is nA. (wave length) destructive interference 

between these waves takes place when they overlap. In this thesis such range is

PD= JR2 + x 2 - x  . (28)
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defined as "Destructive interference range" When the axial PD is (2n + 1)A. /2, the 

overlapping portion of the plane and edge waves interfere constructively. This 

range is defined as "Constructive interference range".

Computed impulse responses and transmit-receive mode responses, for point-like 

axial targets at various ranges in a solid are shown in Figure 2.2.4. These exhibit a 

more complicated structure than the corresponding particle velocity waveforms 

shown in Figure 2.2.2. The form of these responses has already been described in 

previous work (Weight, 1993), but briefly, for an axial target, the echo impulse 

response consists o f a series of six pulses. At short ranges, the various plane and 

edge wave components are well separated. As the target range increases, the PD 

between compression plane and edge waves decreases. As a result, the first three 

pulses become closer together, to form a group well separated from the 4th and 

5th pulses, which also move towards one another to form a second group. The 

separation between the second group and the 6th pulse also increases. Further 

details of the origin and phase relationships of each component is given in the next 

section



Impulse response v(t) Echo response
Target range 12mmc

Figure 2.2.4: Calculated impulse responses and echo responses for small target at different ranges 
assuming a 19mm diameter transducer excited with 5MHz single-cycle pulse . The symbols shown 
at the top right of the figure are explained in the text.
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Figure 2.2.4: continued, the S component is not shown in the 
responses at these two ranges since it is very small.



2.2.6 Physical explanation of the form of echo responses

The definition of each pulse shown in Figure 2.2.4 is based on their physical origin 

(Weight, 1993). They are arranged according to their arrival time as shown in 

Table 2.2.1. There are many components that go to form the overall echo response 

and for convenience each of these is given a separate identity using lower case 

letters (the "echo component" column in Table 2.2.1, p 28). Some of these 

components overlap to give overall responses that for circular sources and 

point-like axial targets consist of six pulses (the "echo pulse" column in capitals in 

Table 2.2.1). The first component, pc pc, arises from the scattering of the original 

compression plane wave that returns as a spreading compression wave to be 

received paraxially at the centre of the transducer. This is the sole component 

within the first pulse and hence the corresponding echo pulse is labelled PCPC. In 

contrast, the second pulse PcEc is comprised of two components that each take a 

different propagation path, but are received at the same time. Component pcec 

arises from the scattering of the incident compression plane wave as it is 

simultaneously received by each element of the source rim Whereas, component 

ecpc arises as the scattering of the incident compression edge wave reaches the 

centre of the source. Note that the phase relationships of these various components 

have been explained in detail in earlier work (Weight and Hayman, 1978, Weight, 

1993) but briefly, a locally spherical wave propagating from an axial scatterer to be 

received at the source centre will give rise to a pulse of opposite polarity to that of 

the later arriving pulse generated when the wave is received at the source rim. 

However, since as shown above in Figure 2.1.2 (p 7), the outgoing plane wave has 

opposite polarity to the edge wave radiated into the geometric region straight 

ahead of the source, the final result is that the pcec and ecpc components have the 

same polarity. Since as a result of circular symmetry they are received at the same 

time, they reinforce to give an increased amplitude pulse (the second echo pulse 

labelled Pc Ec in Table 2.2.). The fourth component ecec arises when scattering of 

the outgoing edge compression wave is received at the edge of the source. Since 

this is the sole contribution to the third pulse this is labelled pulse EcEc.
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Note that this latter pulse has the same polarity as the first pulse. Since the first 

three pulses arise from waves that propagate both to and from the target at the 

compression wave velocity, it is convenient to refer to them as a group labelled 'C', 

as is also done in Figure 2.2.4.

In similar fashion to that described above for compression waves, there will be a 

number of components arising from waves propagating either to or from the target 

as shear waves. The fifth component pcê  in Table 2.2.1 is due to reception of the 

scattering of the outgoing compression plane wave that returns as a shear wave to 

be received at the source rim. Note that there will be no pulse produced when this 

latter scattering first reaches the plane of the source, since on reception the source 

responds to the normal component of the particle velocity. For an axial target, 

there will be no component in the normal direction when the shear wave scattering 

it produces is received at the source centre (Weight 1993). The sixth component 

espc arises from an outgoing shear edge wave that returns to the transducer centre 

as a compression wave. Again, the arrival time of these two components is the 

same and just as with the second and third components they have the same 

polarity. They therefore superimpose to give the fourth echo pulse ( labelled PcE5) 

in the overall response. The seventh and the eighth components also have the same 

total propagation time. The e ^  component travels from the rim of the source at the 

compression wave velocity but back to the rim at the shear wave velocity. Whereas 

the esec component travels from the rim at the shear wave velocity but back at the 

compression wave velocity. Again these components add to give the fifth pulse 

EsEc in the echo response. Also, note that the PcEs and the EsEc pulses have 

opposite polarities. Since the fourth and fifth pulses in the response arise from 

waves that travel with the compression wave velocity and back with the shear 

wave velocity or vice versa, they are denoted as the 'C/S' group. As can be seen in 

Figure 2.2.4, this group becomes increasingly separated from the "C" group as the 

target range increases.

The final, ninth component ees travels from and to the source rim as a shear 

wave. Again, since this is the sole contribution to the final pulse in the overall
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response, it is labelled pulse Es Es in Table 2.2.1 and this is the only pulse in the 

final "group" denoted 'S'. Again, as the target range increases, this pulse becomes 

increasingly separated from the "C" and "C/S" groups (see Figure 2.2.4).

The form of the above calculated results has been experimentally verified 

elsewhere (Weight, 1993). Further confirmation showing results appropriate for 

the current work are given later in section 4.2.

Echo
component No

Echo
pulse No

Echo
group

Incident wave Received 
at source:

Scattered wave

P c P c 1 P Pc c 1

C

plane compression Centre compression

P c e c 2

P CE C 2

plane compression Rim compression

e c P c 3 edge compression Centre compression

e ce c 4 ECEC 3 edge compression Rim compression

P c e s 5

P CE S 4

C/S

plane compression Rim shear

e s P c 6 edge shear Centre compression

e ce s 7

E CE S 5

edge compression Rim shear

e s e c 8 edge shear Rim compression

e se s 9 E SE S 6 s edge shear Rim shear

Table 2.2.1: Labelling system to identify the various components in the overall 
echo response of small targets as given in Figure 2.2.4. (after Weight, 1993).

So far, this section has dealt with echo responses from axial point-like targets at 

various ranges. It is now helpful to consider what happens when targets lie off axis. 

As will be seen later, this will aid in describing the form of echo responses from 

finite sized targets. Figure 2.2.5 shows responses for a point-like target, on and off 

axis at a range of 12mm. Since all of the targets are within the geometrical region, 

each will give rise to scattering of the incident plane wave and this will be first 

received when the scattering first returns to the plane of the source. Therefore the 

first component of the echo response will have exactly the same form whether or 

not the target is on axis. However, with off-axis targets, all the later arriving 

components arise either from the scattering of edge waves or from the rim 

reception of the scattered plane wave. On reception, such components are smeared
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Impulse response On-axis Echo response

P F1 C*—'C

4mm Off-axis

PcPc

Figure 2.2.5: calculated Impulse and echo response for small target on and off-axis 
at 12mm range assuming the source parameters mentioned in Figure 2.2.4.
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out in time, since the propagation paths from each element of the source rim to 

the target and back are not equal

2.2.7 Echo responses of finite sized targets in a solid

There have been several approaches used to predict the echo response of planar 

finite sized targets in a solid medium. These approaches assume that the medium 

of propagation is isotropic and lossless and that the target is interrogated by waves 

emanating from a circular compressional wave transducer.

However, some of these approaches assume that the target is in the far field of the 

transducer and is interrogated by plane waves only. For example, Chapman (1988), 

used the geometrical theory of diffraction (GTD) to predict echo responses for 

planar targets in isotropic lossless solids. But this was only valid if all the 

dimensions of the problem are much greater than the pulse wave length.

Another approach adopted by Ogilivy (1991) was the use of Kirchhoff theory. 

Using this theory the target needs to be at least three pulse wavelengths in extent 

to give reliable predictions. However, real piezoelectric ultrasonic transducers used 

in NDT, have been shown to produce more complicated pulses, as mentioned in 

sections 2.2.5 and 2.2.6. Diffraction effects and mode conversion generate 

significant compression and shear edge waves and these go on to scatter and 

produce significant extra signals in many practical situations. Also, the target in 

many cases can be in the near field of the transducer. Hence, the above 

assumptions can neither explain such signals nor deal with situations in which they 

arise.

By using the finite difference method, a more accurate approach to model the echo 

response of targets in solid has been developed by Stacey and Weight, (1993). This 

approach provides a relatively straightforward way of modelling the formation of 

echo responses from scattering defects and readily incorporates realistic transducer
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signals. However, one disadvantage of this work is the length of computer time 

needed.

Recently, Lhemery (1995) proposed a model to predict the echo response from a 

defect of complex geometry at arbitrary position in a solid medium in the field of 

an arbitrary transducer. His model treated scattering by the defect under the 

Kirchhoff approximation, assuming homogeneous, free boundary conditions. He 

illustrated the applicability of his model by treating the case of flat-bottomed holes.

Krstelj and Markucic (1997), introduced a different approach of the mathematical 

modelling of the disc reflector response. Their choice of the mathematical function 

which represents the echo response is based on trial and error, depending on the 

experimental data obtained. The fitting parameters of the function are then 

estimated and optimised using numerical and statistical procedures, respectively.

L. Wang, J. Deng and J. Shen (1997), combined the time-domain boundary 

element method with electro-mechanical reciprocity relation to give an accurate 

model for the ultrasonic echo pulse. Good agreement between the measured echo 

response of a 5mm-diameter void in a solid and its simulated response was 

obtained. Although their model was accurate, its main disadvantage is the 

computing time required.

A rapid method for predicting the echo response of finite sized targets can be 

implemented by extending the model mentioned in section 2.2.5. However, the 

extension is valid only for axisymmetric circular targets.

As might be anticipated if only the front surface scatterer is considered, the echo 

waveform from the surface of a finite sized target can be thought of as the sum of 

the contributions from all the elementary point targets that make its surface 

(McLaren and Weight, 1987). As a result, the impulse particle velocity response 

for a finite sized target can be represented as:



Ess(t) = Ila Uxb * uxSda (29)

where a  is the surface area of the target.

As a result of the circular symmetry of the radiated field from a circular source, 

the particle velocity impulse response at all points on a circular arc on the 

scattering surface that are equidistant from the source centre are identical. The 

surface integral in Eq (29) may therefore be transformed into a line integral by 

treating the surface of the target as a sum of elemental circular rings of area da, all 

points on the circular segments being equidistant from the transducer-.centre. For 

axial circular targets these equidistant ring segments are complete and d a , Figure 

2.2.6, is then

da = 2%ydy (30)

Figure 2.2.6: As in Figure 2.1.1, but the ultrasonic beam is interrogating a circular 
target of radius R.

where y  is the distance off axis. The particle velocity impulse response now 

becomes
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£ s i ( 0  =  i o  *  "xb2nydy (31)

where R is the target radius. The echo response is

Es(t) = - k sv(0 * io t<xb * uxblnydy (32)

For circular targets of different size, but with identical acoustic properties, relative 

echo amplitudes are determined by the integral within Eq (32).

Although the integral in Eq (32) is derived from the work of McLaren 'and Weight 

(1987) for targets in a fluid medium, the present formulation for uxS calculates an 

echo response for finite targets in a solid in terms of particle velocities and not 

pressure.

It should be mentioned here that in deriving Eq (32) a number of assumptions were 

made. Firstly, the head and surface waves were ignored. The justification for 

neglecting them is that the Rayleigh waves are confined near to the surface o f the 

solid and since most uses of ultrasonic transducers involve the interaction of the 

radiated field with subsurface reflectors many wavelengths into the solid, such 

Rayleigh wave contributions are not significant. Also the head waves have a limited 

region o f influence. Schmerr and Sedov (1989) showed that these waves are absent 

beyond the region of 1.73R, where R is the probe radius, into the solid. For 

example if the probe radius was 9.5mm then the head waves will be absent beyond 

about 16mm into the solid.

Secondly, it is assumed that the target surface moves with the normal component 

of any non-normal incident waves such as edge waves. This is a major 

simplification which is only likely to be reasonably valid for small angles of 

incidence. Thirdly, on reception the transducer is assumed to respond to the normal 

component of the incoming particle velocity waveform. Finally, the medium of 

propagation is assumed to be isotropic and lossless.
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The model used in the present work has the advantage that it can predict echo 

responses more rapidly than the finite difference method mentioned above. 

Although less accurate than the finite difference method, the new model has an 

accuracy adequate for many practical applications and gives great insight into the 

formation of echo responses.

Detailed results using the new model are given later in Chapter 4 but as an aid to 

demonstrate the way in which the echo impulse response varies with target size 

some preliminary results are given here in Figure 2.2.7. These results are for 

various diameter FBH's at a range (12mm) where the variation in echo impulse 

response with target size is clearly seen. As can be seen in Figure 2.2.7, the first 

arriving plane wave component comes to dominate the response as target size 

increases. This is because the edge wave components are smeared out with time as 

the integration of Eq (31) proceeds, whereas the first received plane wave 

contribution is not.

Figures 2.2.7 and 2.2.4 show that in general, the C/S and the S components are 

smaller than those within the C group. As will be discussed later in Section 4.4, this 

will be of relevance when estimating pulse amplitudes, especially when considering 

the variation of echo amplitude with range where there will be opportunities to 

reduce calculation times.

34



Figure 2.2.7: Impulse responses for various target sizes at 12mm range from a 19mm.diameter transducer calculated using 
the finite-sized target model. The graphs were scaled to show the edge wave components . The S components in the impulse 
responses of the 9 and 19mm diameter targets are too small to be shown in the figure.



2.3 DGS diagrams

So far we have been looking into the modelling of echo responses for 

flat-bottomed holes in a lossless isotropic solid medium. It is well known that the 

target size and its distance from the probe play a big role in determining its echo 

amplitude. The relationships between echo height, distance and size of a circular 

disk defect were brought into simple and universally applicable forms by 

Krautkramer (1959) in a set of curves known as Distance Gain Size (DGS) 

diagrams.

In deriving his curves, Krautkramer (1959) first considered the sound pressurep  at 

points along the axis of a circular source excited with continuous sinewaves, i .e.

p  = 2/?0sin [7tA.{(Dj/4 + x2)05 -x } ] ,  (33)

where X is the wavelength, Ds is the diameter of the transducer and x is the 

distance along the axis. p 0 is taken to be the average pressure immediately in front 

of the probe, when the crystal is much larger than the wave length.

For a large distance x compared with the diameter Z^and with the near field length 

o f the probe, N, where N  = D2 / 4X, Eq (33) becomes

p = p 0n(D2/4Xx). (34)

If A = x/N, where A is the normalised distance,

p -p o T i/A .  (35)

A very large flat defect or a flat back wall will reflect the beam like a mirror and 

the transducer then acts as a receiver to its own beam at twice the back wall
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distance The probe will then measure uniform sound pressure over the whole of 

its surface.

P  backwall P() Til 2  A (36)

If a small, circular disc is placed in the axis of the beam at so great a distance that 

the sound pressure p 0n IA is uniform over its surface, then this may be regarded as 

the initial pressure of a new radiator, which radiates a similar wave back to the 

probe. The probe itself will therefore measure the echo as:

where Nr = D2J 4A. is the near field of the reflector, the diameter of which is Dr. If 
the defect size is measured in terms of the diameter of the probe one obtains the

'reduced defect size' G where G = Dr/Ds and equation (37) can be simplified to:

The average pressure p 0 can be taken as the back wall echo of a plate which is of 

thickness less than that of the near field of the transducer.

Eqs (36) and (38) express the facts that for sufficiently large distance from the 

transducer, the back wall echo amplitude decreases inversely with the distance and 

the defect echo amplitude is proportional to the target area and inversely 

proportional to target range. A graphical representation of Eq (38) is shown in 

Figure 2.3.1.

P  defect — (p o % I A ) ( % N rl x ) , (37)

P d e f e c t = P 0 K 2( G 2I A 2)  , (38)
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Figure 2.3.1 : DGS curves produced theoretically by Krautkramer (top) and the 

rest of the curves completed experimentally (bottom).
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Eq (38) has several limitations that have been mentioned by Krautkramer. For 

example, it is only applied to the far field, it assumes a fluid medium of 

propagation, and is valid as long as the wavelength is not larger than the diameter 

of either the probe or the defect. This equation was used by Krautkramer to give 

the far-field portion of his DGS diagrams.

Because of such limitations, many studies published were not in favour of this 

method. For example, Bastien (1968), Bradfield (1968), Whittaker (1972) and 

Mundery (1972) claimed the impracticality of such curves in pulse ultrasonic flaw 

detection due to practical problems, like the influences of the probe ahd the shape 

of defects. They suggested that more studies were needed to improve the general 

understanding of the behaviour of sound in the material.

In contrast, Hislop (1969) showed that, if the probe was chosen so that targets 

were positioned in the far field of the transducer, results given by the DGS 

diagrams agreed well with actual target size. He did this by immersing the 

transducer in a water tank and made sure that the echo was detected in a water 

bath which placed the target in the far field of the transducer. He also showed that 

targets can be positioned in the far field easily in direct contact testing by changing 

the probe i.e. smaller diameter probe. This however has some limitations in 

practical NDT. For example, in the far field there is beam spreading. Also, a 

smaller diameter probe limits the ratio of the target size to that of the probe. His 

results were most satisfactory in the region of 1.5-3 NF distances.

McNab (1977) said that the DGS diagrams and reference block methods had the 

advantage that they give a reproducible absolute reference against which to judge 

flaw size. But they do not take into account variation in flaw characteristics, such 

as shape, reflectivity and roughness. Therefore it is not possible to derive actual 

flaw size from these diagrams except where the reflector is the same as that used 

for reference.
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Some publications dealt with producing DGS diagrams using shear wave probes 

(Certo, 1984) and they recommended this method to be used for defect sizing. 

More details regarding using this method for shear wave probes are explained in 

the above article.

Following the development of the impulse response method to model the 

propagation of ultrasound in fluids, McLaren and Weight (1987) developed full 

theoretical DGS diagrams for disc-like targets in a fluid, using an impulse response 

method to predict the echo response of finite targets in a fluid medium. Their 

diagrams compared very well with the diagrams produced by Krautkramer in the 

near field as well as in the far field.

Schmerr and Sedov (1989), developed a model that predicts the pulse echo 

responses from a flat-bottomed hole whose axis is aligned with the axis of the 

compressional wave transducer (axial targets). In their model, they used the 

Schoch solution ( RA, is much larger than 1, where R is transducer radius) for the 

waves incident on the hole bottom, the KirchofF approximation at the hole ( the 

wave length should be larger than the target) and a high frequency asymptotic 

approximation to obtain an approximate analytical expression for the measured 

response. However, in their model they neglected the shear waves, i.e. they 

replaced the elastic solid by an equivalent fluid. This assumption came as a result of 

their work on developing an elastodynamic model for propagation of ultrasound in 

a solid, in which they argued that the effect of shear waves is very small (Schmerr 

and Sedov, 1989). The scattered waves received back at the transducer were 

obtained via a combination of exact integrations and the method of stationary 

phase. From this model, they produced DGS-like diagrams that can predict the 

significant response variation in both the near and far fields of the probe.

Sumbatyan (1989) described the development and numerical implementation of a 

calculation method for DGS diagrams for a flat-bottomed hole that is positioned 

coaxially with a normal transducer (compressional). The method is based on the 

solution of the elastodynamic equations with mixed boundary conditions for the
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case of oscillations that are harmonic in time. From his model, he produced DGS 

diagrams that are similar to those produced by Krautkramer. However, in 

explaining the behaviour of the diagrams in the near field, he only speaks of 

qualitative comparison of these results. For example, he mentioned that for small 

targets there is a sharp minimum in the range of 0.4-0.5 NF and he confirmed this 

experimentally. He also concludes that DGS diagrams are not universal and that 

they are dependent on the factor R/A. , where R is the probe radius and X is the 

wavelength of the propagating sound.

The research into DGS diagrams since they were introduced, can be summarised 

as follows:

i- There are still models that produce DGS diagrams assuming the propagation 

medium to be fluid, arguing that the effect of the shear waves is very negligible.

ii- Other models produce DGS diagrams for targets in a solid medium using the 

elastodynamic equation, which takes into account the shear waves. However, these 

models use much computer time.

iii- The two kinds of assumption mentioned in the first and second points, give a 

qualitative description of the fluctuations seen in the near field o f these diagrams 

without offering a quantitative description.

In the work presented here, DGS diagrams for flat-bottomed holes in isotropic 

lossless solid are introduced. This can be done by generating programs which use 

Eq (32) to generate echo responses for several targets at several ranges. Also, 

experimental DGS diagrams for small targets (i.e. 2mm diameter flat 

bottomed-holes) in solid are shown and compared with predicted DGS diagrams 

using the new model, for both wide and narrow band transducers. In addition, a 

comparison is introduced between the new DGS diagrams for targets in a solid 

medium and the diagrams produced for targets in a fluid medium. The reason for

41



this comparison is to quantitatively investigate the differences between diagrams 

produced for a fluid or solid medium. Finally, some other effects on DGS 

diagrams, such as the excitation pulse of the transducer and the method by which 

the amplitude of the echo is calculated, are explored.
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2.4 Numerical calculations.

Echo responses from normally aligned flat-bottomed hole targets of finite 

dimensions are calculated by numerical evaluation of the convolution and the 

integral in Eq (32). The integration with respect to y  is performed with a constant 

increment of 0.1mm. At each value of^y on the target surface the particle velocity 

potential is calculated as a function of time using the new model and making use of 

the analytical expressions given in the Appendix. Then it is differentiated 

numerically to give the particle velocity impulse response. For targets at short 

ranges, the time increment used in the calculations is chosen to be less than the 

time difference between the arrival of the compression and plane and edge waves. 

This is very necessary in order to avoid any numerical errors in the calculations. 

Also, in order to compare measured and calculated echo responses, the time 

increment used in calculating the simulated echo responses must equal that of the 

measured transducer velocity function. At short ranges a time increment of 10ns 

gives adequate accuracy and the same increment could be used when digitising the 

experimental velocity function. As the target range increases, the time increment 8t 

must be reduced to maintain adequate accuracy as descibed later in Section 4.4 that 

deals with DGS diagrams. It is of course crucial to make a corresponding change 

in the velocity function time increment and this is done by simple linear 

interpolation when measured velocity functions are used. The echo response can 

then be obtained by performing a direct time domain convolution of the particle 

velocity impulse response with the relevant source velocity function.

The source velocity function v(t) can be in several forms. Examples of v(/) that 

consist of several cycles of sinusoidal functions are illustrated in Figure 2.4.1. 

These synthetic pulses are specified by the functions

v(t) = sin (cot) -  (N/N + 1) sin [(N/N+ l)ot] (39)



for the top one and

v(t) = sin(m/) sin(co//jV) (40)

for the bottom one,where N is the number of cycles and œ is the angular frequency. 

Alternatively, v(t) could be measured experimentally by digitising the reflected 

pulse from a perfect reflector. In practice the back wall echo from a thin parallel 

sided aluminium block can be used for this purpose; it is assumed that any 

distortion of the incident pulse introduced by the reflector is negligible (G. 

Georgiou, 1989).
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Time (|is)

Figure 2.4.1: Graphical representation of the source velocity functions 
synthesized by using Eqs (39) and (40). Top is the slowly rising and decaying 
sine envelop function. Bottom is the plateau function.
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3- EXPERIMENTAL MEASUREMENTS.

3.1 The transducers.

Two circular transducers were used to obtain all experimental results shown in this 

work. One was a wide-band transducer (Aerotech Alpha F08179 19mm diameter, 

5MHz central frequency, X= 1.24mm in aluminium). The other was a narrow-band 

transducer (Harisonic HC-3144, 19mm diameter, 3.6 MHz central frequency, X= 

1.72mm in aluminium). The transducers were used for obtaining short and 

multi-cycle pulses respectively.

3 2 The targets

The model introduced in Chapter two predicts the echo response for axisymmetric 

circular targets. To compare the predictions of the model with measured echo 

responses, FBH's were suitable because they offer an optimum reflecting surface 

(with the larger sizes) that is reproducible and they are relatively easy to machine. 

Furthermore, FBH's have many applications in NDT. For example, they are one of 

the oldest reference/calibration standards in the field of ultrasonic non destructive 

testing. They have been used for calibration of ultrasonic test equipment sensitivity, 

flaw detector linearity checks, near surface resolution measurement and for 

generation of distance-amplitude correction curves (Halmshaw, 1991). They are 

also useful for equivalent flaw sizing applications since they can represent the 

response at normal incidence of ideal "perfect" scatterers, such as flat cracks.

As has already beeen demonstrated the echo response from point-like targets has a 

complicated mulipulse structure and to obtain experimental measurements to 

confirm this using FBH's it is important to consider the smallest practicable size. 

One relevant factor is the grain structure of the test material i.e. the target should 

have a certain size so that its echo response is not masked by unwanted grain 

scattering. The transducer dynamic range can also limit the smallest target that can 

usefully be used, since the back scattering which comes from within the transducer 

backing can mask the reflected signal from the target, especially when the target 

range is small.
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Another factor that experimentally confines the target to a certain range is the 

'dead time'. This is the time needed for the amplifier to recover from saturation. 

Bearing in mind the above constraints it was found that a minimum FBH target 

diameter of 2mm could be used. Since this size was larger than some of the 

wavelengths within the interrogating pulses, the smallest FBH was still too large to 

behave as a "point-like" target and it was found that a better approximation for a 

small target was obtained by using a 2mm round-bottomed hole.

3,3 Experimental set-up for short pulse measurements.

Figure 3.3.1 shows the experimental set up used to capture the echo responses of 

targets using a single, directly-coupled wide band transducer (Aerotech Alpha 

F08179 19mm diameter, 5 MHz).

A Panametrics 5052PR puiser receiver unit, simultaneously triggers the digital 

oscilloscope and a high level pulse generator. The pulse generator produces a 

unidirectional pulse of several hundreds volts. This pulse is then applied to the 

wide band transducer that is directly coupled to the block under test. The scattered 

signals from targets within the block are received by the same transducer and fed to 

the receiver amplifier within the Panametrics 5052PR. The output from the 

receiver is then digitised at a sampling frequency of 100MHz using the Lecroy 

digital oscilloscope. The digitised waveforms are then fed to a 486 DX computer 

and stored as files.
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Figure 3.3.1: Block diagram of the excitation system used to capture data 
using the wide-band transducer. In the dotted box the trigger and the 
receiver are in the same Panametrics unit.
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3.4 Experimental set-up for multi-cycle pulse measurements

In order to make experimental measurements to investigate the interference effects, 

a controllable multi-cycle sinusoidal excitation pulse is required. A schematic 

representation of the set-up that produces such a pulse is shown in Figure 3.4.1, 

The basis of the system is a gated amplifier and a suitably synchronised high 

frequency sinewave generator.

The gated amplifier requires to be synchronous to the sinewave generator to 

generate gated sinusoidal waves that are locked to the gate control pulse. 

Furthermore, the pulse repetition frequency (PRF) must be adjustable, to avoid the 

problem of ghost echoes that can mask the echo response of small targets. In 

order to adjust the PRF the synchronous trigger pulse was derived using the 

triggering facilities of an oscilloscope. This was done by synchronising the 

'Tektronix' oscilloscope type 7603 to the sinewave generator. Because the output 

pulse from the oscilloscope as it stands was not suitable, some pulse shaping was 

required. To shape the pulse, the output from the oscilloscope was used to trigger 

a 'Lyons Instruments LI' pulse generator (type PG 2B). This gave control over the 

pulse width, height, and polarity. The output pulse from the PG2B then triggers 

simultaneously the gated amplifier and the Lecroy digital oscilloscope

Using this set-up, the pulse repetition frequency can be controlled using the time 

base of the 7603 oscilloscope. It was noted experimentally that to minimise the 

'ghost echoes' a PRF as low as 20Hz was required.

At the output of the gated amplifier, the signal level is just a few volts and this 

must be considerably amplified proir to to exciting the transducer. To give useful 

overall sensitivity, a pulse of several hundreds of volts is required. This is achieved 

by connecting the gated sinewaves to a 50dB power amplifier.

49



PC Pulse Trigger 7603
generator out Oscilloscope

Sine waves

Lecroy digital 
oscilloscope

Ext Trie In

Sine wave 
pulse generator

Noise reduction 
network

Figure 3.4.1: Block diagram of the excitation system used to capture data when 
the transducer is excited by gated sinusoidal waves.
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Since the measured echo responses are obtained using a single transducer, the 

noise at the amplifier output will be connected to the receiving amplifier. As a 

result, extremely poor echo signal to noise ratio will occur between noise and 

target signals. Using an 'Hewlett Packard' r.m.s voltmeter, the measured noise was 

equal to 6mv. Such a noise level can be larger than the wanted echo signal from the 

smaller targets of interest. Fortunately, it is relatively straight forward to reject 

such noise using the simple diode network shown in Figure 3.4.2.

As a result of their exponential forward characteristics, the diodes will only 

conduct when the voltage across them is greater than ~ 0.6V. So, provided that the 

noise level is less than 600mv it will be rejected. The output voltage of the gated 

sinewaves is several hundreds of volts but the measured noise signal voltage is 

6mv.

The reflected sound pulse is then fed to the receiver within the Panametrics 5052 

PR. The received echo pulses are digitised using the Lecroy oscilloscope and the 

data stored as individual files on a PC.
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Figure 3.4.2: Block diagram showing the function of the Noise 
reduction network. Shown in the dotted box the construction of 
the network.
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4- RESULTS

This chapter first introduces a method to measure the radius of the probe and 

experimental factors affecting the measurements of the echo responses. 

Experimental results obtained using short pulses to detect 2mm diameter round 

bottomed-holes in steel are given. This is followed by results from 2mm and 4mm 

diameter flat bottomed holes (FBH's) in aluminium. These results are compared 

with the theoretical predictions of the present model. Using the same targets, the 

variations of echo responses with range, are then compared with those predicted by 

the model.

Measured and calculated DGS diagrams using both short and multi-cycle pulses 

are given. The influence of the source velocity function on DGS diagrams is then 

shown. Finally a comparison between the diagrams calculated using the solid model 

and diagrams produced using the fluid model is introduced.
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4.1 Experimental factors affecting the measurements.

4 1 1  Measurement of radius of the transducer.

As will be demonstrated later in Section 4.3.4, a number of the theoretical results 

are particularly sensitive to changes in the effective source radius. Thus to obtain a 

true comparison between the theoretical and measured waveforms it is necessary to 

accurately measure the true radius of the transducer. It turns out that an 

uncertainty in the effective radius of the transducer has the largest effect on the 

echo response for the case where a multicycle pulse is used to interrogate a small 

target at a range where destructive interference occurs between the compression 

plane and edge wave components. Such a combination o f experimental conditions 

can be employed to make accurate measurements of the effective source radius.

To measure its radius, the transducer was immersed in a scanning tank filled with 

water and was positioned to be axially aligned with the centre of a small (0.8mm 

diameter) flat-ended cylindrical target. The measurements were taken with the 

frequency of the (gated) sinewaves accurately set to 3.6MHz using a digital 

frequency meter. The distance between the target and the probe was adjusted to be 

close to the range where the PD between the plane and edge waves was 2X (a 

"destructive inteference" range - see Section 2.2.5, p 22). The target range was 

then adjusted until a null in the pulse was observed, confirming that the PD was 

accurately 2\. The true radius could then be found using Eq (28). Since the 

method requires an accurate figure for the velocity o f sound, the temperature at 

which the measurements were taken was monitored using a digital thermometer 

(accuracy ±0.1°C). The average temperature was 18.3 °C, the corresponding sound 

velocity in water being 1 48mm/ps.

The range was measured using the positional sensors (±0.1 mm accuracy) 
incorporated in the scanning tank, by first positioning the probe so that it touched

the target and then moving it away until the null in the echo pulse was at an exact 

minimum. This was repeated fives time and an average figure taken for the 

destructive interference range (55.21mm, corresponding to a PD of 2X). Using Eq. 

28, the figure obtained for the source radius was 9.55mm. As it turns out, this was
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in fact dose to the nominal radius of 9.53mm stated by the manufacturer, but as 

stated above it is particularly important to accurately know the true radius, and 

there was no guarantee that the nominal radius was accurate. The way in which 

errors in the transducer radius affect predicted echo pulse shapes and amplitudes is 

investigated quantitatively in Section 4.3.4. Similarly, their affect on defect sizing 

using DGS diagrams is demonstrated in Section 4.6.

4,1.2, Uncertainties in measurements of the echo responses.

Several uncertainties can affect the experimentally obtained echo responses. 

Firstly, the errors associated with the geometry of the test targets must be 

considered. The 2mm and 4mm FBH's were machined using specially ground drills. 

To minimise errors in flatness, the drill was ground on a numerically controlled 

machine. A check was made on the sensitivity of the calculated echo responses to 

an error in length of the metal path to each target. The metal path was found by 

measuring the thickness of the block and depth of the hole using a vernier gauge 

and subtracting. The estimated accuracy of the metal path was 0.5mm. Feeding

this uncertainty into the model showed that the corresponding error in the 

predicted echo response amplitude was ±3% for the 2mm diameter FBFL For 

larger targets the error becomes smaller.

The velocity of sound in the test blocks was measured using the method of 

successive back wall echoes as displayed on the digital oscilloscope. Knowing the

thickness of the block, the velocity of sound in the metal was 6.2mm/|.is, with 

estimated uncertainty of ±3%.

In addition to these uncertainties, there are several factors which can affect both 

the shape and amplitude of the echo responses of the targets. A major factor is the 

coupling condition. If the couplant is not uniform over the face of the transducer, 

the symmetry of the radiated edge waves will be severely affected. As a result, all 

edge-wave contributions to the overall echo response will be smaller than with true 

uniform coupling. This effect will lead to errors in echo pulse shapes and 

amplitudes, especially for small targets, where the effect of the edge waves is
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pronounced (as seen later in the measured echo responses for 2mm diameter 

round-bottomed targets). To ensure the full propagation of both the plane and 

edge waves, the transducer surface was uniformly and smoothly covered with the 

couplant and the transducer and test block were carefully lapped. To ensure that 

the maximum sound energy has entered the metal, the couplant layer was made as 

thin as possible. As a further check on experimental conditions, repeated checks 

were made to monitor the reproducibility of the back-wall echo from a region free 

of known defects.

It should be mentioned that uncertainties that result from the couplant and the 

flatness of the transducer cannot be easily be estimated quantitatively. To guard 

against such errors, the measured echo responses were taken several times for each

target and the uncertainty in the echo amplitude due to coupling effects was 
estimated to be ±5%.

When measuring relative amplitudes, using an attenuator and a digital oscilloscope,

the uncertainty was estimated ±4%, leading to an overall accuracy in the measured 
results o f ±12%.
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4.2 Echo responses from point-like targets in steel.

In this section, a comparison between calculated and measured echo responses for 

point-like targets is shown. The target sizes and shapes were as discussed in 

Section 3.2 but briefly, the most suitable practical point-like target was found to be 

a 2mm diameter-round bottom hole, whereas the calculated results were close to 

those of an ideal point-like target if a FBH of 1mm diameter or less was assumed

Figure 4.2.1 shows measured and calculated echo responses for small targets in 

steel. As described in Section 2.5, to give a good comparison between calculated 

and measured echo waveforms, the shape of the theoretical source velocity 

function has been chosen to match the shape of the measured back wall echo 

(shown inset to the same time scale) of a thin parallel side steel block of 10mm 

thickness. The theoretical waveforms for each target range have been obtained by 

convolving this pulse with the appropriate target impulse response.

The agreement between the calculated and measured results is generally good in 

terms of the pulse shape, bearing in mind that the comparison between the 

simulated and the measured results is for different target shapes (although both are 

reasonable approximations of a point target), and the existence of coherent 

ultrasonic "noise" (see Section 3.2). Another possible reason for these differences 

is the coupling error discussed above in Section 4.1.2.

At 10mm range, the compression group (C) is clearly seen containing the plane 

PCPC and PcEc pulses. The PcEc pulse is seen to have a different polarity from the 

plane wave pulse. The C/S group can be seen after the compression packet. Again 

the difference in polarity is clearly seen in the two components, in both the 

measured and calculated results.

Further away from the transducer, at 15mm range, the pulses forming the C group 

start to overlap, and the separation between the pulses is less noted.

Also, as predicted by the model (section 2.2.6), the C/S group is further separated 

from the C group.

The S group at the two ranges is very small compared with the other two 

packages, especially at the longer range as discussed earlier in section (2.2.5, p 27).
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4.3 Echo responses from FBH's in aluminium.

In order to evaluate the usefulness and accuracy of the model described in section 

2.6, a number of experimental measurements of echo responses from 2 and 

4mm-diameter FBH's were made and compared with corresponding theoretically 

predicted results. The experimental measurements were made using transducers 

excited with both short and multi-cycle pulses.

4,3,1 Echo responses from 2mm and 4mm FBH targets.

Figure 4.3.1 shows measured and calculated transmit-receive mode waveforms at a 

range of 12mm for 2mm and 4mm diameter targets when interrogated by a short 

pulse from a Panametrics transducer (4MHz, 19mm diameter). As before, the 

shape of the theoretical source velocity function has been measured by taking the 

back wall echo (shown inset) of a thin parallel sided block. Here, a lOmm-thick 

aluminium block was used. The theoretical waveforms were obtained by 

convolving the source velocity function with the appropriate impulse response.

In general, there is good agreement between the predicted and measured echo 

responses. However, as is the case for the results from the 2mm round-bottomed 

holes shown in Figure 4.2.1, there are a number of small discrepancies due to the 

non-ideal behaviour of the transducer. Note that even though the present model 

does not take into account Rayleigh and head waves, there is reasonable agreement 

in the detailed structure of the predicted and measured results. Note also that with 

all targets greater than about 1mm diameter, the pure shear (S) components are in 

general insignificant and no attempt has been made to display them in Figures 

4.3.1-8.

The pulse denoted 'M' in the measured result for the 4mm diameter target is a 

"multiple" echo arising from that portion of the first-received pulse that is reflected 

from the coupling surface to be further scattered by the target. In its present form, 

the new model does not take such effects into account. Note that the 

corresponding multiple pulse with the 2mm target is too small to be clearly seen.
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For targets at a range of 12mm, the pulses of the compression group C can be 

clearly seen, especially the PcPc and the PcEc pulses with their opposite polarities 

for the case of the 2mm target. The PcEc pulse is less pronounced in the echo 

responses for the 4mm target as would be anticipated from the explanation of the 

effect of target size given in Section 2.3.4. The two pulses of the C/S group can 

also be clearly seen.

In the results shown in Figure 4.3.2 a multi-cycle excitation pulse was used. It was 

decided to use a suitable target range of 25mm, where atlA, the PD gives complete 

destructive interference over the "steady state" region of the C group. The centre 

frequency of the multi-cycle pulse was 3.8MHz. The relative sensitivities in the 

experimental results for each target are given by the scale factors in dB in the left 

hand corner o f each experimental measurement. Again, it can be seen that there is 

good agreement between the measured and calculated echo responses for both 

targets.

In the measured and the calculated echo responses for the 2mm target shown at the 

top of Figure 4.3.2, the null region can be seen in the middle of the compression 

group 'C'. The existence of this null region makes it look as though there are two 

separate pulses that could be falsely interpreted as coming from two closely spaced 

targets. In fact it is just an interference effect over the various components of the 

C group from a single target.

For the case of the 4mm target, the destructive interference between the plane and 

edge waves can still be noted, but its effect is not as strong as in the 2mm target 

case. This is because as the target size increases, the contribution of the plane 

waves becomes larger than that of the edge wave and hence the echo response is 

dominated by the plane wave pulse.

Although two completely different source velocity functions were used in obtaining 

the results shown in Figures 4.3.1 and 4.3.2, there can in fact be quite significant 

differences in small target echo pulse shapes for relatively subtle changes in
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velocity function. For example, Figure 4.3.3 shows calculated echo responses for 

2mm and 4mm diameter FBH's at the same range and for the same source diameter 

and centre frequency as in Figure 4.3.2, but with the two velocity functions shown 

inset. For the 2mm target, there are pronounced differences in pulse shape above 

that due to the difference in the velocity functions themselves. Again, with the 

plateau function (right) the echo response could be confused as coming from two 

separate targets, whereas with the sine envelope (left) function this is not the case, 

there being one continuous C group. Note also that there is around a factor of two 

difference in the peak-to-peak amplitude of the two responses, even though the 

source funtions have the same amplitude.

With the larger 4mm-diameter target the difference in the echo response using each 

velocity function is much less dramatic and is virtually just that due to the different 

shape of the functions themselves. The explanation brieflly stems from integrating 

the impulse response over the area of the target (see p61 and Section 2.2.7, p 34).

4,3,2 Variation of echo responses with target size.

Figure 4.3.4 shows calculated echo responses for 2mm, 4mm, 9mm and 19mm 

diameter FBH's at 12mm range, interrogated by short (a) and multi-cycle pulses (b) 

centered at 3.8MHz. Again a 19mm diameter source is assumed.

From Figure 4.3.4a, the result for the smallest 2mm-diameter target shows the 

complicated multipulse structure ascribed to diffraction effects and described in 

Sections 4.3.1 and 2.3.3. At just over 1 (centre frequency) wavelength across, this 

target behaves as a point-like scatterer.

The result from the 4mm-diameter target shows a similar multipulse structure, but 

the edge wave contributions are smaller and smeared out in time (see Sections

2.3.4 and 4.3.1). With even larger targets (9 and 19mm diameter), the multipulse 

structure is less evident, the response being dominated by the first arriving plane 

wave contribution (again see Section 2.2.7). The 19mm-diameter target, being 

some 15 wavelengths wide results in an essentially specular reflection of the direct
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plane wave with just a very small contribution from the edge waves, as illustrated 

at the bottom of Figure 4.3.4a. It should be mentioned that although the plane 

wave contribution retains the same shape with increasing target size, its amplitude 

increases. The increase is approximately proportional to the (planar) target area.

Figure 4.3.4b shows a similar set of results except that the source velocity function 

is now a multi-cycle pulse centred at 3.8MHz. Since the PD at this frequency, 

source diameter and target range is almost exactly 2X, for small targets there will 

be a marked effect due to destructive interference o f the various plane and edge 

wave components (as also shown in the measured echo responses of Figure 4.3.2) . 

The resulting null region in the steady portion of the response is clearly seen with 

the 2mm-diameter target but with the larger targets, this is no longer evident. 

Again this results from the fact that the interfering contributions are no longer of 

similar amplitude.

It is interesting at this point to consider the way in which the overall echo pulse 

amplitude changes when the target size increases from 2 to 4mm for both the short 

and multi-cycle source velocity functions. When the short pulse source velocity 

function is used, the increase in amplitude is proportional to the target area, i.e. the 

echo amplitude for the 4mm target is four times larger than that of the 2mm target. 

This stems from the integration of the plane wave over the surface of the target. 

Also at such short range, there is no interference between the pulses since they are 

separated. However, when the multi-cycle source velocity function is used, the 

echo amplitude for the 4mm target is nearly 6 times larger than that of the 2mm 

target. The explanation for such deviation can be for two reasons. The first one is 

that the edge wave contribution in the case of the 2mm target is strong and is 

nearly equal to that of the plane wave. So, when these waves destructively interfere 

they nearly cancel each other out. For the case of the 4mm target, the plane wave 

contribution is larger than that of the edge wave. Hence, the result of the 

interference will not be as dramatic as in the case of the 2mm target. Hence at this 

range and for these target sizes the rise in the amplitude is not proportional to the 

target area.
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For both source velocity functions, moving from 4mm target to the bigger targets, 

the increase in the overall echo amplitude is proportional again with to target size. 

This is because the echo response is dominated by the plane-wave contribution.

Finally, note that in this section the variation of echo response with target size is 

discussed at just one range (12mm). An investigation of the variation of echo 

response with range for two different target sizes is discussed in the next section. 

These variations in echo amplitude with target size and range have important 

implications for defect sizing using DGS diagrams as discussed in section 4.4.2.

4,3,3 Variation of echo responses with target range in the near field.

In this section, the variation of echo response with range is considered only in the 

near field. In the far field the variation of echo responses is well documented and 

will be considered later when dealing with DGS diagrams in section 4.4. The way 

in which the axial response from 2mm and 4mm diameter targets varies with 

near-field range is illustrated in Figures 4.3.5 and 4.3.6. Both theoretical and 

experimental results are given. The theoretical source velocity function has been 

chosen to be a back wall echo (shown inset) from 10mm aluminium block. To 

match the calculated amplitudes with the measured amplitudes, the positive peak 

amplitude of the calculated echo response for the 2mm target at 12mm range was 

scaled to the measured positive peak amplitude of the same target. The subsequent 

results are plotted using the same scaling factor but note that the relative 

sensitivities in the experimental and calculated results for each target are given by 

the scale factors in dB in the left hand corner of each experimental measurement.

There is good agreement between the predicted and the measured echo responses 

at several ranges in terms of both amplitude and shape. Close to the transducer 

(Figure 4.3.5) at a range of 12mm, the echo response is the same as that described 

in Figure 4.3.1. The multipulse structure due to diffraction effects is clearly 

evident. With increasing range, the PD between the plane and diffracted 

compression edge waves becomes smaller causing them to progressively overlap. 

With the short pulse excitation used here and with these near field results, the
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pulses can only interfere constructively to give an increase in pulse amplitude with 

range. Note also that as a result of the variation of mode conversion with angle 

subtended at the source rim, the contribution of the compression edge wave 

becomes larger with range while the shear edge wave contribution becomes 

smaller, exactly as predicted in Section 2.3.3. These effects result in the echo 

amplitude with the 2mm target increasing by 6dB as the target range increases 

from 12 to 37mm.

From Figure 4.3.6 it can be seen that the rise in echo amplitude with range for the 

case of the 4mm target is smaller than that for the case of 2mm,target. The 

increment in the echo amplitude between 12mm and 37mm is roughly 2dB. This is 

because the edge wave contribution is relatively smaller (see Section 4.3.2 above) 

than the compression plane wave contribution. So, even though their contribution 

is increasing with range, their effect on the overall response is too small to produce 

a pronounced increment in the amplitude. Further discussion about the variation of 

short pulse echo amplitude with range and size is introduced Section (4.4.1)

Similar sets of results for those shown in Figures 4.3.5 and 6 for short pulses are 

given in Figures 4.3.7 and 8 but for a multi-cycle pulse centred at 3.8 MHz. A 

different set of ranges was used, corresponding to a PD range from X to 0.5 A.. The 

matching between calculated and measured amplitudes was done in the same way 

as in the case for the short pulse results but this time the matching range was 

25mm. Again, the relative sensitivities in the experimental and calculated results for 

each target are given by the scale factors in dB in the left hand comer of each 

experimental measurement.

For the case of the 2mm target (as shown in figure 4.3.7) at 25mm range, the false 

'double' pulse structure as explained before is clearly seen. When moving to a 

further range, i.e. 29mm (PD = 0.92A), the central null region in the pulse 

disappears and instead there is just a slight drop in amplitude as a result of the 

partial destructive interference. Further away from the transducer, at range of 

35mm (PD 0.77mm), there is partial constructive interference, leading to an
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Figure 4.3.8: Variation of multi-cycle pulse (3.8MHz and 19mm diameter 
transducer) echo response with range for 4mm diameter FBH.
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increase in amplitude compared to those at the shorter ranges. When the target 

position is at the range where PD is 0.5A. (47mm), full constructive interference 

occurs giving rise to a pulse having an amplitude which is some 17dB higher than 

that at the considerably shorter range of 25mm.

For the case of the 4mm target, (as can be seen in Figure 4.3.8) at a range where 

PD is X, i.e. 25mm, as explained earlier in Section 4.3.3, the destructive 

interference between plane and edge waves is less noted than in the case of the 

2mm targets. At further ranges, the variation o f the echo response has a similar 

behaviour to that of the 2mm target, especially at 47mm range where the PD is 

X/2. Finally the increase in amplitude when moving from 25mm to 47 mm is 

roughly lOdB. The implications of these large echo amplitude variations with range 

are further discussed when the relation between the target size and its echo 

amplitude and range are investigated in section 4.4.3

4,3,4 Effects of uncertainties in transducer radius.

In the previous sections variations in echo responses with target size and range 

have been explored. Investigations showed that accurate predictions of echo 

responses depend very much on the true diameter of the transducer used. So, at 

this point, it is appropriate to demonstrate quantitatively how uncertainties in the 

transducer diameter affect the echo response.

Figure 4.3.9 shows two sets of calculated echo responses for 1mm diameter FBH 

at a destructive interference range (35mm) assuming a 5MHz transducer excited 

with two different multi-cycle pulses (shown inset). The transducer diameter has 

been slightly changed from 19mm (the wanted radius) to 19.2mm and 20mm 

diameter. These changes in the diameter represent errors that might result from 

measuring its effective diameter. These errors are approximately 1% and 5% 

respectively.
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From Figure 4.3.9 the variation in echo pulse shape and amplitude are clearly 

demonstrated for the uncertainties in the transducer diameter, assuming the two 

source velocity functions. These differences are listed in Table 4.3.1.

Type of source 
function

source diameter 
uncertainty

echo amplitude 
change

Echo shape 
change

Plateau 1% +8% slight
5% +100% rapid

Sine envelope 1% +54% slight
5% + 150% rapid

Table 4.3.1: Changes in echo amplitude and shape of echo responses for 
2mm-diameter target at a range of 35mm as a result of uncertainties in transducer 
diameter.

Figure 4.3.10 shows two sets of calculated echo responses for the same target size 

but at a constructive interference range (22mm). Generally the uncertainties in the 

transducer radius has no great effect on the echo response shape. However, the 

effects on the amplitude are noticeable. Again, these differences are listed in Table

4.3.2 below.

Type of velocity 
function

Source diameter 
uncertainty

Echo amplitude 
change

Echo shape 
change

Plateau 1% -7% negligible
5% -44% negligible

Sine envelope 1% -8% negligible
5% -58% negligible

Table 4.3.2: Changes in echo amplitude and shape of echo responses for 
2mm-diameter target at a range of 22mm as a result of uncertainties in transducer 
diameter.

As can be seen in the above two tables, the uncertainties in the source diameter 

have greater effects when the target is at a destructive interference range. This 

arises because, for small targets the interference is between two nearly equal 

amplitude contributions. Also, a small change in the edge wave contributions will 

have a greater effect when there is destructive rather than constructive interference 

The uncertainties discussed above are returned to in Section 4.4.4 when discussing 

the use of the present model to calculate DGS diagrams.
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4.4 New DGS diagrams for FBH targets in a solid medium

In the following Sections, experimental DGS diagrams for 2mm diameter FBH's at 

different ranges are compared with the corresponding calculated curves predicted 

by the model. The effect of the source velocity function on the diagrams is then 

considered before showing the way in which the method of amplitude detection 

affects the curves.

Since the DGS diagrams will be calculated out to ranges much greater than those 

considered so far, it is necessary to consider any implications for numerical 

accuracy. For targets at the near-field ranges considered so far, a 10ns time 

increment (5t) was fine enough to produce accurate pulse shapes. Numerical 

experiments showed that accurate predictions of echo pulse shapes could be made 

provided that

5t <~0.05TD, (42)

where the time difference TD is given by PD/c. When calculating DGS diagrams it 

would not be efficient if 8t was set to conform with the greatest range considered 

since calculation time would be unnecessarily long in the the near field. To save 

time, 5t is automatically calculated to approximately conform to the relationship of 

Eq (42).

In all calculated DGS curves shown in this section, the source characteristics are 

assumed to be a 19mm diameter transducer emanating a pulse (short or multi cycle 

pulse) centred at 5MHz, unless stated otherwise in the text.

4.4,1 Measured and calculated DGS diagrams for 2mm FBH targets.

Figure 4.4.1 shows sections of calculated and experimentally measured DGS 

diagrams for a series of 10, 2mm-diameter FBH's at ranges varying from 12mm 

(PD = 2.1 X) to 60mm (PD = 0.47A, ) in an aluminium block. The experimental 

results were obtained using the same wide band, 19mm diameter, 4MHz transducer 

(Aerotech Alpha F08179) as used to obtain the short pulse echo responses given 

in Section 4.3.3. In order to obtain a good comparison between the measured and 

calculated diagrams, the modelling results were calculated with the theoretical
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source velocity function matched to that of the real transducer (see Sections 4.3.1 

&2). When measuring the velocity function, a time increment of 10ns was used. 

As was described earlier in Section 2.4, this increment may not be as required for 

the numerical calculations. Here we need to conform to Eq (42), and where 

necessary linear interpolation between the sampled data points was used.

In both sets o f results, peak-to-peak echo amplitudes were taken and plotted using 

the same normalised scales as in the original DGS diagrams shown in chapter 2. 

Note however that the distance scale is now linear. The measured echo amplitudes 

were taken after digitally recording the echoes on the Lecroy 9410 oscilloscope, 

with sampling frequency of 100MHz. Note that the calculated and measured 

results may be plotted to the same relative amplitude scale, since they are 

separately normalised to their own echo amplitude for G=1.0.

In general, it can be seen that there is good agreement between the two curves, the 

maximum difference being about 4dB, bearing in mind the errors due to 

experimental uncertainties, such as machining tolerance, transducer positioning and 

coupling, as mentioned in section 4.1.

For the short pulse transducer used and over the near field as considered in Figure 

(4.4.1), it can be seen that the variations in echo amplitude with range are small. 

For example, the increase in the echo amplitude between 27mm and 47mm ranges 

is just 3dB. A similar effect was shown in section 4.3.3, where the echo reponses 

themselves were given. However as was also demonstrated earlier (Figure 4.3.7) 

there will be fluctuations in near field echo amplitudes when a narrow band 

multicycle pulse transducer is used.

To demonstrate this, Figure 4.4.2 shows experimentally measured DGS diagrams 

obtained using the narrow-band 19mm Harisonic transducer to give a multicycle 

pulse centered on 3.8MHz (shown inset). A corresponding calculated curve is 

included for comparison. The band (23-63 mm) of target ranges was chosen so that 

the PD varied from just over IX to just under X/2, thereby including ranges where 

we move from destructive to constructive interference (of the compression wave 

components, see Figure 4.3.7). In both sets of results, peak to peak relative
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amplitudes were taken and plotted using the same normalised scales as in Figure 

4.4.1.

In general, there is good agreement between the calculated and measured results, 

shown in Figure 4.4.2, the maximum difference being about 3dB (or 4.5dB 

including the estimated error). In contrast to the relatively small change in 

amplitude with range with the short pulse results of Figure 4.4.1, there is now a 

variation of some 18dB as the range varies from 25 to 47mm.

It should be noted here that in both Figures (4.4.1 and 4.4.2) all the experimental 

points came below the calculated points. The reasons for such behaviour can be 

referred to several reasons. First of them is the coupling conditions at the moment 

o f capturing the data. As mentioned before (section 4.1.1, p 60-61) if the couplant 

was not uniform all over the face of the transducer, the contribution of edge wave 

will be weak. Hence, the measured amplitude could be less than what it should 

have been if the couplant was uniform.

The second reason could be the roughness of the targets. As mentioned in chapter 

two, the model assumes the target to be smooth and planar. However, the 

experimentally available targets, have some roughness in their surfaces. This 

roughness causes more scattering of the beam. The combination of such effects 

causes the measured echo amplitudes for the targets to be smaller than those of the 

calculated ones.

Having shown that the model can predict the echo amplitude for targets over 

several ranges with reasonable accuracy, we may use it to investigate how various 

experimental conditions and uncertainties would affect DGS diagrams in general.
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4,4.2 Effect of the source velocity function on DGS diagrams

In his original work Krautkramer (1959) mentioned the effect of the form of the 

ultrasonic pulse on DGS diagrams, especially in the near field region. In the present 

work, this effect is taken into account by changing the source velocity function. 

However, he did not fully explain this effect. In this section DGS curves are 

produced for various source velocity functions including both short- and 

multi-cycle pulses. The explanation for each set of curves is given.

Figure 4.4.3 shows DGS curves calculated for FBH targets assuming a single 

cycle, sinusoidal pulse (shown inset). These curves are presented in terms of the 

usual dimensionless parameters G and A (as defined by Krautkramer, 1959, section 

2.3, p 36-37). As usual, the echo amplitudes for all targets at all ranges were 

normalised to the echo amplitude of a target which has the same diameter as the 

probe, at a range (25mm) within the near field of the probe.

As seen in Figure 4.4.3, for the smallest target (G = 0.05), there is a rise in echo 

amplitude with range for ranges up to about 1.5NF. Up to 0.8NF there is a steady 

rise in amplitude. In order to explain this rise it is helpful to consider the detailed 

structure of some appropriate echo responses.

Figure 4.4.4 shows at the top both on-axis and 0.5mm off-axis impulse responses 

for a point target at 12 and 22 mm range. Beneath are shown the impulse 

responses o f a finite target of radius 0.5mm together with the corresponding echo 

responses assuming a short pulse velocity function. From the upper results (a & b), 

it can be seen that the PCEC component of the impulse response increases with range 

for targets both on- and off-axis. This increase stems from the way in which the 

mode conversion factor increases with range as explained in Section 2.2. However 

for the off-axis results (b), the increase is also because the PcEc components are 

less smeared out with time at the longer range. Although both effects can still 

cause the rise in the PCEC pulse when considering finite-sized targets, a more 

important effect comes in to play, as is demonstrated in the lower results (c & d)
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for the 0.5mm radius target. The impulse response for a finite sized target is the 

sum of the contributions from all the elementary point targets that make its surface 

(see section 2.3 in Chapter 2). So, for a 0.5mm radius target (G = 0.05), the total 

PcEc impulse response is the integration of the PcEc impulse responses of point 

targets from on-axis to 0.5mm off-axis. In addition to the effects discussed above, 

since the off-axis contributions become more time compressed with range the 

integration will cause the total PCEC impulse response for this target to increase 

with range, as shown in the lower result (c). For such a target size, this impulse 

response is the largest component of the total impulse response. When the total 

impulse response is convolved with the source velocity function, the amplitude of 

the PCEC pulse increases. So even if there is no overlapping of components within 

the overall response (up to about 0.8NF corresponding to PD>X) the echo 

response of this target will increase with range as demonstrated in result (d). It is 

this "integration effect" that causes the steady rise in amplitude with range (up to 

0.8NF) for G = 0.05 in the DGS curves shown in Figure 4.4.3. It should be 

mentioned that the integration effect will apply to DGS diagrams calculated using 

both the solid and fluid models, as will be demonstrated later in Section 4.5.

From 0.8 to 1.5NF range, there is a steeper rise in amplitude with range for G = 

0.05. The reason for this rise in addition to that due to the integration effect is that 

the path difference between the plane and the edge waves becomes closer to X/2 

and hence they start to interfere constructively.

As discussed above, there is a rise in echo amplitude with range up to 1.5NF for 

small targets (G = 0.05). However, as G increases, different behaviour is observed 

in the curves. Consider the behaviour of the curve G = 0.1. Up to roughly 0.3NF, 

the echo amplitude remains constant with range. The reason for this "flatness" in 

the plots, is that for this size of target the plane wave contribution becomes larger 

than that o f the edge wave. As a result, when the peak to peak amplitude of the 

echo pulse is measured, the plane wave component (PCPC) will be the dominant 

factor in the total echo response, in contrast to the situation with smaller targets, 

where the PCEC pulse is the dominant factor. Because the plane wave does not
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change with range in a lossless medium, the echo amplitude will stay constant and 

hence the flatness in the curves. Beyond 0.3NF and up to 1.5NF, the echo 

amplitude increases with range. Just as was the case for smaller targets, this is due 

to both the integration effect and the overlapping of the components within the 

overall response.

For G = 0.2, the distance within the near field, up to which the amplitude remains 

constant increases to 0.65NF. Again, this is because as the target size increases, the 

plane wave component becomes more dominant.

From the progression of the G = 0.1 and 0.2 curves, it is expected that the echo 

amplitude will be constant over a larger range of distances for G -  0.5 curve. 

Interestingly, the range of distances at which the echo amplitude remains constant 

is less than that for G = 0.2, i.e. the amplitude remains constant up to just 0.4NF 

range and then rises. The unexpected rise in amplitude is because as the target size 

increases, impulse responses components corresponding to the edge wave become 

closer to the plane wave impulse response component. This is because the PD 

between plane and edge waves at the target periphery becomes smaller. Hence the 

separation between the components is less than the length o f the source velocity 

function at ranges from 0.4NF onward. As a result, when the source velocity is 

convolved with the impulse response, overlapping between the corresponding echo 

pulses takes place. This overlapping between the pulses causes the rise in the 

peak-to-peak echo amplitude. Note also that this explanation is also valid for DGS 

curves constructed using the fluid models as will be seen in Section 4.5.

In the very far field, the echo amplitude decreases with range for all target sizes, 

the reason for this decrease in amplitude is that the plane and edge waves start to 

interfere destructively since the PD is now less than 7J2. As the range increases, 

the echo amplitude decreases and the echo amplitude becomes zero at infinite 

distance, where there will be complete destructive interference between equal 

amplitude components.
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The above explanation for the form of short pulse DGS curves can also be used 

when considering curves calculated using a multi-cycle pulse. However, the 

multi-cycle curves show more fluctuations with range because the various 

components within the overall response now overlap over a much greater region of 

the field. Figure 4.4.5, shows theoretical DGS curves generated for FBH targets 

assuming a 15-cycle sinusoidal pulse (shown inset). Again, these curves are 

presented in terms of the usual dimensionless parameters G and A as mentioned 

earlier.

Because the compression edge wave contribution is strongest for smaller targets, 

the effects of interference between plane and edge waves on the echo amplitude are 

more evident than with larger targets. Such strong interference causes the large 

variations in echo amplitude with near field range. As the target size increases, the 

plane wave contribution becomes larger than that of the edge wave. As a result, 

interference effects on echo amplitude become less. This results in less fluctuations 

in the echo amplitude for larger targets.

Within the near field, there is good agreement between the general form of the 

curves given in Figure 4.4.5 and the original curves published by Krautkramer 

(shown in Figure 2.3.1), but it should be born in mind that his results were taken 

for disc-like targets in water and were not for exactly the same pulse shape. Also 

the new curves have the same general form as those given in the more recent work 

of Schmerr and Sedov (1989) and Sumbatyan (1994).

Despite the fact the new model gives similar DGS curve to those produced using 

fluid models (Schmerr and Sedov, 1989) there are some differences between these 

curves as explained later in Section 4.5.

In the far field, there is a linear reduction in amplitude with distance, as predicted 

by Krautkramer as well as by Schmerr and Sedov and Sumbatyan.
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Figure 4.4.5: DGS diagrams calculated using the solid model asuming a 19mm diameter 
transducer excited with 5MHz 15-cycle sinusoidal pulse (shown inset).



One point which is noted from the curves of Figure 4.4.5 is that, for small values 

of G (0.05 and 0.1), the variation in amplitude from 0.5 to 1 NF distance is more 

than 20dB. This variation can be one of the greatest drawbacks in sizing small 

defects using the DGS method. A similar variation was shown in the measured 

waveforms of the 2mm diameter target, where the echo amplitude at 47mm is 

nearly 10 times bigger than the echo amplitude at 25mm (Section 4.3.3). With 

larger targets (G = 0.5 and 1.0), this particular drawback is less o f a problem due 

to the domination of the echo response by the plane wave, as explained in section 

(4.3.2).

Note when using the present model to calculate DGS diagrams, it is not necessary 

to calculate the whole echo response including the shear-wave components, 

provided that their effect on the compression edge-wave components (within the C 

packet) is included. As mentioned earlier in Section 2.3.3, the shear wave 

amplitude is always smaller than that of the compression wave within the ranges 

shown in Figures 4.4.3 and 5. Hence, when just the overall amplitude o f the 

response is required, as in DGS curves, the shear edge wave contribution can be 

truncated, thereby reducing calculation times by a factor of around ten times. Using 

the truncated responses, the time to carry out the calculations made in producing 

the curves shown in Figure 4.4.5 was approximately 2 hours on a 486DX PC.

So far in this section, the considerable differences between DGS diagrams 

produced using short and multi-cycle pulses have been demonstrated and 

explained. In practice, when sizing defects using DGS diagrams there are times 

when the effect of smaller changes in pulse shape are required. For instance when 

changing transducers of nominally the same type and centre frequency.

Figure 4.4.6 shows two sets of DGS diagrams produced assuming that the velocity 

function was two variants of a muli-cycle pulse (shown inset). The two functions 

are the same as used earlier in Section 2.4 . They have the same centre frequency 

(5MHz) and number of cycles (15), but different envelopes.
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At certain ranges in the near field, it can be seen that for small targets, there are 

some differences between the relative echo amplitudes using the two functions. 

As can be seen, the differences are greatest at destructive interference ranges, - 

0.25NF (PD= 2 X ) and 0.5NF (PD= X). As an example at 0.5NF and for G = 0.05, 

the difference in relative echo amplitudes using the two functions is 6dB. This 

difference is because at a destructive interference range, the plane and edge waves 

are s u b tr a c te d  within the steady-state region of the echo pulse. Where the two 

overlapping components are of similar size, the overall peak-to-peak echo 

amplitude is likely to be that of the tr a n s ie n t  region o f the echo response (see 

Figure 4.3.2). The transient regions for the echo responses are not the same 

because the source velocity functions are different. The plane and edge waves are 

of similar sizes, hence small changes in any of these sizes produces large changes 

in the total pulse shape. The combined effects of subtracting two equal quantities 

and different envelope functions causes the discrepencies in echo amplitude.

At ranges other than those where destructive interference occurs, the differences in 

echo amplitude using the two functions are much smaller, this is because the echo 

amplitude is a measure of the height of the s te a d y  state region of the echo pulse. 

When the plane and edge waves that have similar sizes are a d d e d  at these ranges, 

the different rising and decaying times of the velocity function will have small effect 

on the total echo amplitude.

The difference in amplitude becomes less as G increases at the same range. Beyond 

G = 0.5, the amplitudes are virtually the same because as mentioned earlier, the 

echo response is dominated by the plane wave component.

In summary, the shape of the DGS curves in the near field region depends very 

much on the source velocity function. For a short pulse, there is a constant or/and 

continuous rise in the echo amplitude (depending on the target size) with range. 

For multi-cycle pulses, there are fluctuations in the echo amplitude with range, that 

decrease as the target size increases. Also, using two different multi-cycle source 

velocity functions can cause some significant differences in echo amplitude even for 

quite similar driving functions. These differences occur for targets that are up to
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half o f the transducer diameter. Note that this only happens when the target is at a 

destructive interference range within the near field. At other ranges, the excitation 

pulse can make small or no differences on echo amplitude measurement 

In the far field, the shape of the DGS curves is the same for both short and 

multi-cycle pulses.

4,4,3 Effect of the method of amplitude detection on DGS diagrams.

Figure 4.4.7, shows two sets of theoretical DGS diagrams produced assuming a 

19mm diameter source excited with a 5MHz 15-cycle pulse. One set is produced 

by taking the peak-to-peak amplitude of the echo responses (as has been done 

throughout, so far). The other is produced by calculating the mean o f the absolute 

values of compression packet C at each range for each target size.

In the near field of the source and for small values o f G (G = 0.05), the main 

differences in echo amplitude using the two methods are clearly seen at a 

(destructive interference) range of 0.5NF where PD=A,. There is a difference of 

about 4dB between the two methods. The reason for the relative amplitude o f the 

echo response of the target using the peak to peak method being higher than that 

using the mean value method, can be explained by referring to the echo pulse shape 

themselves as shown in Figure 4.4.8. The Figure shows calculated echo responses 

for 1mm, 4mm and 19mm diameter FBH's at 35mm range assuming the same 

source parameters used to obtain the DGS curves shown in Figure 4.4.7. At this 

destructive interference range, the echo response for the small target (G = 0.05) is 

small compared to that of echo response for the larger target (G = 1.0) using the 

two methods. However, the null region in the echo response causes the mean of 

the pulse to be very small. Hence, when the echo response is normalised to the 

mean o f the larger target (G = 1.0), its mean will be less than the peak-to peak 

amplitude.

As the target size increases the plane wave contribution will be larger than that of 

the edge wave. So, at the same range, interference effects on the echo response
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Figure 4.4.7: Calculated DGS diagrams using two different methods of amplitude detection, one is peak 
to peak (the dotted line), the other is the mean of the pulse (the solid line) assuming a 19mm diameter 
transducer excited with a 5MH/. 15-cycle pulse (shown inset).
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Figure 4.4.8: Calculated echo responses for 1mm (G = 0.05), 4mm (G = 0.20) and 
19mm (G = 1.00) diameter FBH's at a range (-0.5NF) which represents a 
minimum at the DGS curves shown in Figure 4.4.7. The height of the dotted line 
represents the mean of the absolute values of the pulse. The two headed arrow 
represents the peak-to-peak (p-p) amplitude.
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will be small and the null region disappears. This results in increasing the mean of 

the pulse. Hence, when the echo response is normalised it is nearly the same using 

both methods. This is clearly demonstrated in Figure 4.4.8 for the 4mm (G = 0.2) 

target.

At other ranges within the near field, the differences are considerably smaller using 

the two methods, since at such ranges, interference effects on the echo response 

will not cause rapid changes in the echo shape.

In the far field, for small and large values of G, there are negligible differences in 

echo amplitude using the two methods, since again the plane and edge waves 

partially overlap and hence the normalised echo amplitudes for both methods are 

nearly equal.

4,4,4 Effect o f transducer radius on DGS curves.

In section 4.3.4, the effect of uncertainties in the source diameter on the echo pulse 

shape was investigated. In this section, the effect o f such uncertainties is extended 

to the DGS curves.

Figure 4.4.9 shows two sets of calculated DGS curves. One set is produced 

assuming a source diameter of 20mm. The other set is produced assuming a 5% 

uncertainty in the source diameter (19mm diameter). For both sets of curves, the 

source velocity function consists o f 15 cycles centred at 5MHz.

At short ranges there are significant differences between the two curves, especially 

for small targets. For example, within the near field of the source and for G = 

0.05, the difference in echo amplitude can be as much as lOdB. The reason for 

such differences is that the edge wave contribution is strongest for such sizes. As a 

result, any miscalculations in the source transducer and hence the PD between 

these waves and the plane wave will produce dramatic differences in the predicted 

echo amplitudes.

96



0.1 1 10

Normalised distance [NF] A

Figure 4.4.9: DGS curves calculated assumings uncertainty in the transducer radius. TR stands for 
transducer radius.



As the target size increases, the differences in the echo amplitude becomes smaller. 

For G = 0.5 the differences in amplitude are less than IdB for all ranges within the 

near field of the source. This is because as explained in Section 4.3.2, the echo 

response is dominated by the plane wave and hence any miscalculations in the PD 

will have very small effect on the predicted echo amplitude.

In the far field, for small and large targets, discrepancies in echo amplitudes 

become less with range since the PD is less sensitive to changes in range. Hence, 

uncertainties in the source diameter will have only a small effect on the echo 

response.
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4.5 Comparison between DGS diagrams calculated using the solid and fluid 
models

As mentioned in section 4.4 there are some differences between curves produced 

using the fluid and solid models. In order to show these differences, a comparison 

between diagrams produced using the new solid model and diagrams produced 

using an earlier fluid model (McLaren and Weight, 1987) is introduced. The 

comparison is made for short and multi-cycle pulse sources, respectively.

Earlier in Figure 4.4.1, a DGS curve calculated using the solid model was 

compared with an experimental DGS diagram for a 2mm target. These results are 

repeated here in Figure 4.5.1, but with a further curve calculated using the fluid 

model. As can be seen, the solid model gives a DGS diagram closer to the 

experimentally obtained result than does the fluid model, taking into account the 

systematic differences between the measured and calculated curves mentioned in 

section 4.4.1. An explantion for the higher amplitudes predicted by the fluid model 

is given below, after further comparisons between the two models are made.

To extend the comparison, Figure 4.5.2 shows a number of DGS curves produced 

using both the fluid and the solid models. Throughout, the source velocity function 

is a single cycle sinusoidal pulse centred at 5MHz (shown inset).

Before going into the comparison between the curves, it should be pointed out that 

the normalisation o f the curves has no effect on the differences between the curves. 

Since both sets o f curves are normalised to the echo amplitude of a target that has 

the same diameter as the source (G = 1.0) positioned at a range within the near 

field of the source. From Figure 4.5.2, for such targets, echo amplitudes are equal 

within the near field o f the source, whatever model is used.

For small targets (G = 0.05), there is rise in the echo amplitude with short ranges 

for both models. As mentioned earlier in section 4.4.1, this is due to the integration 

of the echo impulse responses over the target surface. However, the echo 

amplitude given by the fluid model is slightly higher than that obtained using
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Figure 4.5.1: Comparison between experimentally obtained DGS diagrams for 2mm Diameter flat-bottomed holes 
m aluminium and calculated DGS diagrams using the fluid and the solid models, using a' 19mm diameter excited 
with a 5MHz short pulse (shown inset).



Figure 4.5.2: Comparison between DCS diagrams lor FBH's calculated using the fluid and the solid model, 
assuming a 19mm diameter transducer excited with 5MHz. single sinusoidal pulse (shown inset).



the solid model, especially at shorter ranges. This stems from the fact that in the 

solid model, part of the compression edge wave is converted to a shear edge wave, 

and so the compression packet C decreases in amplitude. Because this effect is 

much stronger at the short ranges, the difference in echo amplitudes using the two 

models is slightly bigger there. As the target size increases, the difference in echo 

amplitudes using the two models becomes less. This due to the domination of the 

echo response by the plane wave, with increasing target size.

With multi-cycle pulses there are also differences in the echo amplitudes using the 

two models. Figure 4.5.3 shows a comparison between the measured multi-cycle 

DGS curve for a 2mm target (shown in Figure 4.4.2) and calculated DGS curves 

using the two models. Again, this figure shows clearly that the solid model gives a 

predicted DGS diagram closer to the experimentally obtained DGS diagram than 

does the fluid model.

Again, with multi-cycle pulses, the comparison between the two models is 

extended theoretically to more target sizes and more ranges, as shown in Figure 

4.5.4. As shown in the comparison with the measured DGS curve in Figure 4.5.3, 

for small targets there are some differences between the two sets of diagrams, 

especially at destructive interference ranges within the near field region. As an 

example, For G = 0.05 and at 0.5NF range, the fluid model would give a larger 

amplitude for small targets than does the solid model by some 6dB. These 

differences are relatively high compared to the differences shown in the case of 

DGS curves constructed assuming short pulse sources. As G increases, in general 

the differences in echo amplitude using the two models become smaller.

From Figure 4.5.4 it can be seen that within the near field region, at two 

destructive interference ranges (i.e. 0.25NF and 0.5NF) the differences between the 

models vary. At other ranges, within the near field, the differences between the 

models are relatively the same. This stems from the fact that in the solid model the 

compression edge wave contribution within the C packet varies with range. So, at 

two destructive interference ranges, the subtraction between two nearly equal
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Figure 4.5.3: Comparison between Experimentally obtained DGS diagram and calculated DGS 
diagrams using the fluid and the solid models for 2mm diameter FBH's, using a 19mm 
transducer excited with 3.8MHz multi-cycle pulse (shown inset).



Normalised Distance [NF] A

Figure 4.5.4: Comparison between DGS diagrams constructed using the solid model (Solid line) and the fluid 
model, (Dotted line) assuming a 19mm diameter transducer excited with 5MHz 15-cycle sinusoidal pulse 
(shown inset)



components, as mentioned in section 4.4.2, (The plane and edge wave) produces 

larger differences when one component slightly changes. At other ranges, when 

one component changes slightly small errors are produced when the two 

components are added.

An important conclusion that can be drawn from the above comparison between 

the two models is that, the use of the fluid model to estimate a target size at the 

destructive interference range might result in giving the impression of the existence 

of a a target that is two times larger than its real size.

For large values o f G, i.e. G = 0.5 and 1.0., at all ranges, there are no noticeable 

differences in the echo amplitudes using the two models, since for larger targets 

the contribution of the edge waves is much smaller than that of the plane wave . 

This implies that the fluid model can be used to estimate the size of large targets in 

solid medium.

As a result of the differences noted in construction o f the DGS diagrams, using the 

fluid and solid models, it is suggested here, that some correction factors are added 

to the DGS diagrams constructed using the fluid model and used to estimate target 

sizes in solid. It should be noted that these correction factors, should be calculated 

for each transducer when applied to the same testing material, since both pulse 

shape and the near field are characteristics of the source.

Some authors (Schmerr and Sedov, 1989), argued that their fluid model can be 

used to predict echo amplitude of targets in solid medium, with either small or 

large targets, because they considered that the existence of the shear waves has 

negligible effect on the echo wave-forms of the targets. Other people, (McLaren 

and Weight, 1987), argued that using the fluid model to predict the echo amplitude 

of targets in solid medium could give some errors in the estimation of the target 

size, especially for small values of G. For larger values of G , they argued that 

there are no differences in estimating the size of large targets in solid using the fluid 

model.
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This work has shown that there are differences between the two models in 

estimating the target size, especially for small targets, at certain ranges within the 

near field when multi-cycle pulse is used. This would support the argument of 

McLaren and Weight that care should be taken when estimating target sizes in 

solid using a fluid model. When short pulse is used, the fluid model can be used to 

estimate small and large target sizes in solid medium if the small differences 

reported in this thesis are tolerable. Hence the argument of Schmerr and Sedov 

can be valid for the short pulse case.

106



5- DISCUSSION: IMPLICATIONS AND APPLICATIONS FOR NDT

Although some of the results in chapter 4 have already been discussed, in this 

chapter the results are discussed in more detail, especially in terms o f their 

implications for NDT. First the implications for individual echo responses and their 

interpretations are considered, before going on to discuss the implications for 

defect sizing using DGS diagrams.

This is followed by the introduction of a new method to use the model as a 

"theoretical standard block".

5.1 Interference effects on the echo response.

5.1.1 Short pulse

For small targets at close ranges (i.e. for PD > X), interference between plane and 

edge waves does not take place when using wide band transducers that have pulse 

shapes similar to the short pulse source velocity shown in chapter 4 (section 4.2 

and 4.3, p 58 and 60). An obvious consequence of this multipulse structure is that 

it could lead to false identification of non-existent targets. When the small target is 

off axis, the edge wave contribution becomes small and only the plane wave pulse 

will dominate the echo response. Hence the multipulse structure disappears. This 

implies that a skilled NDT operator can ease the detection of the target without 

any false interpretation by moving the transducer, so that the target is off-axis.

As the target size increases, the echo response consists mainly o f plane waves. 

Hence the multipulse structure will be very small. As a result misinterpretations of 

the echo response will be minimised.

With short pulse transducers, at ranges where there is no overlapping between 

plane and edge waves, the variations in the amplitudes of the echo responses of 

small targets are small in the near field of the probe, since interference between 

plane and edge waves does not take place. At further ranges, where PD is less than 

X, there is a rise in the amplitude of the echo response due to the overlapping 

between these waves.
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As the target size increases, variations o f echo amplitude with range is small since 

the echo response is mainly dominated by the plane-wave component.

Finally, it is of course likely that the shape of the target could dramatically change 

the echo waveform and hence the amplitude of the target. This is clearly seen, 

when comparing the echo amplitude o f the 2mm diameter FBH's and the 2mm 

diameter round-bottomed holes shown in Figures 4.2.1 and 4.3.1. The difference in 

amplitude between the two targets is nearly 6dB. This means that, as would be 

anticipated, the flat-bottomed hole will give a larger amplitude than the round- 

bottomed hole despite both having the same diameter.

5,1,2 Multi-cycle pulses.
When the excitation pulse contains several cycles, interference between the plane 

and edge waves is clearly seen in the echo responses o f the targets. This 

interference causes dramatic changes (unlike the short pulse measurements) in the 

shape and the amplitude of the echo responses of the targets, especially for small 

targets. As an example of the severe change in pulse shape that can occur, the 

measured echo response of the 2mm target using the long pulse transducer at 

25mm range could give the false impression of two closely spaced targets. Again, 

this problem disappears if the target is off-axis.

The variation in the amplitude of the echo response o f small targets with range in 

the near field o f the probe, is shown to be very large, especially for small targets. 

This is confirmed experimentally, as seen in Figure 4.3.7 where the echo amplitude 

for the 2mm target at 47mm is nearly ten times the amplitude at 25mm range. 

These large variations in echo amplitude with range might give the impression o f a 

target which is some ten times larger than its size.

As the target size increases, the contribution of the edge wave becomes smaller 

compared to that o f the plane wave. As a result the variation in amplitude with 

range, in the near field of the probe, becomes smaller (as seen in Figure 4.3.8). For 

example, the ratio of echo amplitudes of a 4mm diameter target (G = 0.2) 

positioned at the same ranges as the 2mm diameter target, Figure 4.3.8, is equal to
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1:4. Although the ratio is smaller than that obtained for the echo amplitude of the 

2mm diameter target, it still might give the impression of a target which is some 

four times bigger than its real size.

For larger targets which are nevertheless smaller than or equal to the transducer 

diameter (G = 0.50 and 1.00), the variations in echo response and amplitude with 

range are small. This again implies that errors in estimating target size will be 

smaller with such large targets.d
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5.2 Defect sizing using DGS diagrams.

The new model, introduced in chapter 2, gave the ability to produce full theoretical 

DGS diagrams for flat-bottomed holes in a solid medium, positioned in the near 

and the far fields of the transducer and for arbitrary pulse shape. Hence defect 

sizing using the DGS method can be extended theoretically to the near field of the 

probe using rapidly generated "calibration" curves.

This work highlights the drawbacks in using DGS diagrams for defect sizing. For 

example, the fluctuations with range in the echo amplitude of small targets, within 

the near field of the transducer (excited with multi-cycle pulse), can cause 

misinterpretations of different size targets positioned at different distances. This is 

shown in the experimental DGS diagram obtained for 2mm target (Figure 4.2.2), 

where the difference in the echo amplitude of the same target but at different range 

can be 18dB. However, when the excitation pulse is short, the variations of echo 

amplitude with range are minimised. For example, the experimentally obtained 

DGS diagram for the same target (Figure 4.4.1) shows that the variation in the 

echo amplitude o f the target with range when moving from 12mm to 60mm is 

about 5dB.

The main advantage that could be gained from the DGS curves is that they give a 

very good indication to the variations in echo amplitude with range. For example, 

for short pulse transducers they can show clearly that there is a rise in the 

amplitude with near field range for small targets. Also, they can warn the skilled 

operator, prior to the inspection process, of the large variation in the echo 

amplitude when a multi-cycle transducer is used.

Another practical fact which can be deduced about DGS diagrams is that these 

curves are not universal and they depend heavily on the transducer parameters. 

This means that each transducer requires a complete set of DGS diagrams. 

However, the ability of the new model to produce DGS diagrams for any
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conventional transducer can eliminate this problem by producing calculated DGS 

diagrams for each probe.

In practical NDT, measurements of the target range might contain certain errors. 

Hence, there will be an error in determining the target size from the measured echo 

amplitude. Another application of the model is to relate such errors in target 

position to errors in measuring its size, especially in the near field of the transducer. 

In order to demonstrate this error, DGS diagrams for a series of target sizes of 

1mm, 1.2mm, 1.4mm, 1.6mm, 1.8mm, and 2mm diameter were obtained assuming 

a 19mm diameter source excited with multi-cycle pulse centred at 5MHz. The 

range of these targets varied from 23mm to 47mm. Figure 5.2.1 shows these 

calculated DGS diagrams. To show how an error in the target range could lead to 

an error in its size is explained in the following example.

Consider Figure 5.2.1 and assume that the real target range was 31mm and its real 

size was 1.4mm. However, the measured target range was equal to 30mm. When 

trying to relate the measured range to the measured amplitude, the NDT operator 

would assume that the target size is 1.2mm. So, a difference of 1mm target range 

could lead to an error of more than 15% in the target sizing.

Also, from Figure 5.2.1 the possibility of errors in target sizing which come as a 

result of errors in target ranges increases when the ranges are close to the 

destructive interference ranges. This possibility, interestingly, decreases when the 

target ranges are closer to the constructive interference range. This effect arises 

from the way the waves are added or subtracted as mentioned in Section (4.4.3).
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Standard reference blocks must be prepared from material with the same or similar 

alloy content, heat treatment and amount of hot or cold working as the material to 

be inspected, to ensure equal sonic velocity, attenuation and acoustic impedance in 

both reference standard and the test piece (ASTM handbook, 1989). These blocks 

can be divided according to their utility. For example, there are area-amplitude 

blocks and distance-amplitude blocks. The former deals with FBH's at a certain 

range in the block but with different size. The latter deals with FBH's having the 

same size but at different ranges in the block.

In the area-amplitude blocks, the holes should be in the very far field of the probe 

since at this range the echo amplitude is proportional to the target area. However 

this means that the blocks should have a certain thickness, so that the metal range 

is at least equivalent to the far field of the transducer. Here, the model can replace 

the area blocks by simulating the echo responses of the area amplitude blocks for 

the tested material. However, at the present, the simulation can only be done for 

materials that are very close to medium characteristics assumed by the model i.e. 

isotropic, very low noise and very low attenuation materials. For other test 

materials, reference blocks must be prepared. Since the model can be used by the 

NDT industry to simulate certain reference blocks, there are opportunity to save 

money and time. All that is needed to simulate the calibration blocks is to measure 

the sound speed in the material to be tested and the source velocity function for the 

transducer used in the testing. These parameters are then fed to the model and the 

theoretical reference curves can then be produced.

As a demonstration of the ability of the model to simulate such blocks, Figure 5.3.1 

shows theoretical arbitrary echo amplitudes versus target area for various sizes of 

normally aligned, axial FBH's in aluminium. These results were obtained at 15mm 

range in the field of 19mm diameter transducer excited with single (solid line) and 

multi-cycle pulses (dotted line) centred at 5MHz. A peak-to-peak echo amplitude 

has been used in detecting all echo amplitudes. Target sizes range from 1mm

5.3 Application of the model as theoretical calibration blocks.
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Figure 5.3.1: Area-amplitude curve at 15mm range. The echo amplitudes were obtained assuming a 5MHz and 
19mm diameter circular transducer excited with single pulse (solid line) and multi-cycle (15cycles) pulse (dotted line).



diameter, up to a target with dimensions slightly larger than the source aperture 

(20mm diameter).

As seen in Figure 5.3.1, the echo amplitude is proportional to target area for all 

targets with a diameter less than 6mm assuming the single cycle pulse. Above this 

size there is a departure from linearity, the echo amplitude becoming greater than 

would be expected. As the target area approaches that of the transducer the rate of 

increase in the echo amplitude decreases. The reason for the deviation from 

linearity is explained elsewhere ( Weight, 1984 and McLaren, 1987) and here the 

focus is towards the effect of the source velocity function on the area-amplitude 

relationship.

For the case of a multi-cycle pulse, the same behaviour can be seen, but there is a 

slight deviation from linearity for small targets. This could be due to the effect of 

the multi-cycle source velocity function on the echo responses, where interaction 

between plane and edge waves occurs. To demonstrate this effect on the echo 

response, an enlarged part of the curve shown in Figure 5.3.1 is given in Figure 

5.3.2. This figure shows clearly the slight departure from linearity (for targets up 

to 20mm2 in area) in the relation between echo amplitude and target area for the 

case of multi-cycle pulse. Also, from the figure the difference in echo amplitude 

calculated using the two different velocity functions for the same target area is 

relatively high. As an example, for a target diameter of 2mm, the difference in echo 

amplitude is nearly 40%. As the target size increases, the difference in the 

calculated echo amplitude, as seen in Figure 5.3.1, becomes smaller.

In order to demonstrate clearly the effect of interference between plane and edge 

waves on the area-amplitude relation, another curve is constructed for the same 

target sizes but at a range where destructive interference between plane and edge 

waves occurs (35mm) is shown in Figure 5.3.3. As seen in the figure, the echo 

amplitude for small targets obtained with the multi-cycle source velocity function is 

smaller than that obtained with single cycle. Figure 5.3.4 shows this large contrast 

in the echo amplitudes of small targets (0 to nearly 20mm2) using the two source

115



400

350

300

250

200

150

100

50

0
2 4 6 8 10 12 14 16 18 20

Target area (mm2)

Figure 5.3.2: Enlarged view of the left hand side of the curve shown in figure 5.3.1. This enlargement 
shows clearly that the source velocity function produces small differences in the echo amplitude for the 
same target sizes at this range.
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Figure 5.3.3: Area-amplitude curve at a destructive interference range (35mm). The echo amplitudes were 
obtained assuming the transducer parameters mentioned in figure 5.3.1 excited with single pulse (solid line) and 
multi-cycle pulse (dotted line).
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Figure 5.3.4: Enlarged view of the left hand side of the curve shown in figure 5.3.3. This enlargement 
shows clearly that the source velocity function can produce large differences in the echop amplitude for the 
same target size. These differences could reach up to 5 times and decreases as the target size increases.



velocity functions. For the 2mm diameter target, the echo amplitude using a 

multi-cycle pulse is lower than that calculated amplitude using the single pulse by 

nearly 14dB. As the target size increases, the interference effects become smaller. 

Hence, the difference in echo amplitude calculated for the targets using different 

source velocity functions becomes smaller. This is clearly seen for the 5mm 

diameter target, where the echo amplitude using multi-cycle pulse is only 2dB 

lower than that calculated using the single cycle pulse .

Figure 5.3.5 shows the same area-amplitude relation for the same target areas but 

at a range where constructive interference between the plane and edge waves 

occurs (22mm). As expected, the echo amplitude for small targets calculated 

assuming a multi-cycle pulse is larger than their echo amplitude calculated 

assuming a short pulse. This contrast can be clearly seen in the enlarged section of 

the area amplitude relation for small targets (0 to nearly 20mm2) shown in Figure

5.3.6. From the figure, the echo amplitude using the multi-cycle pulse is larger than 

that calculated using the single pulse by 7dB, for the 2mm diameter target case. 

Again, as the target size increases, the difference in echo amplitude becomes 

smaller. For 5mm diameter target the echo amplitude calculated using multi-cycle 

source function is higher than that calculated using short pulse only by 0.3dB.

The common fact concluded from Figures 5.3.1,3 and 5 is that for large targets the 

difference in echo amplitude calculated using both source velocity functions is 

small (the differences vary between 0.3dB to ldB at the most). Hence, for targets 

larger than 5mm diameter, the source velocity function has only a small impact on 

the relation between target area and its echo amplitude.

As a final check on the use of the model as a theoretical calibration block, Figure

5.3.7, shows area-amplitude relation at a very far distance from the transducer 

(400mm) for the same target area. The source velocity function consists of 15 

cycles centred at 5MHz. For small targets, a linear relation between target area and 

amplitude is clearly seen. However, as the target size increases there is a deviation
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Figure 5.3.5: Area-amplitude curve at constructive interference range (22mm).
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Figure 5.3.6: Enlarged view of the left hand side of the curve shown in figure 5.3.5. Note here that 
the difference in echo amplitude using produced for the same target sizes could as much as 2 times. 
This time, is larger using the multi-cycle pulse. The differences decrease as the target size increases.



from linearity. This theoretical deviation agrees well with similar deviations 

recorded experimentally (see for example, ASTM handbook, 1989).

Finally, a major conclusion that stems from Figures 5.3.1,3 and 5 is the amount of 

time and material that could be saved in producing the area-amplitude cuves 

theoretically. In producing the same relation experimentally, three different blocks 

are needed for each range. In addition, the targets machining at each range require 

specialised machining and equipment.

In summary, the present model can be used as a theoretical standard to 

complement and extend current ultrasonic calibration and sizing procedures that 

use FBH's. In order to do this, it is suggested that a topic for future work could be 

to compare such theoretical curves with those measured using standard calibrations 

blocks..
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6- SUGGESTED FUTURE WORK

The main developments which can follow the present work can be divided into two 

parts. One deals with the development of the modelling. The other deals with DGS 

diagrams. These developments are summarised as follows.

It would be a great advantage if the model was modified so that it could calculate 

the echo responses of targets in anisotropic solids and not just the isotropic ones 

that the current model considers. This a very important step in the NDT industry, 

since many of the new composite materials are highly anisotropic materials.

The DGS diagrams produced using the model could be tested practically by 

determining the unknown size of a defect from its echo amplitude This can be 

done by constructing a DGS diagram for a certain transducer and then using these 

curves to determine the size of the defect using 'blind' trials.

Finally, One o f the further developments which could be made to the DGS 

diagrams is the extension of the current DGS diagrams to off-axis targets and not 

just on-axis targets. Because variations in echo amplitude with range will be 

minimised. It is left as a future work to produce these diagrams theoretically and 

compare them experimentally with measured ones.
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7- CONCLUSIONS.

An earlier model for predicting echo responses for point-like targets in a 

homogeneous lossless solid can be extended to calculate echo responses for 

circular disc-like targets. The new model gives rapid calculation times compared to 

numerical methods and can be implemented on a PC. There is good agreement 

between the predictions of the model and the experimental measurements of the 

echo responses of flat-bottomed holes in aluminium. These verifications were done 

using both narrow and wide band transducers.

The model can be used to explain and aid the interpretation of the complicated 

multipulse structure of echoes from targets of simple geometry in terms of the 

propagation , scatter and reception of three waves: compression plane waves and 

compression- and shear-edge waves. Such structure can lead to false prediction of 

non-existent targets, especially for the case of small targets

The interference between plane and edge waves seen in the echo responses for 

targets using transducers excited with multi-cycle pulses can dramatically affect 

the shape and amplitude of the responses. For example, the amplitude of the echo 

response for a given target at different ranges in the near field can vary by a factor 

of 10.

A calculated section of a DGS diagram plotted using the new model shows good 

agreement with an experimental curve obtained from measurements of the echo 

responses from a number of mostly near-field FBH targets in aluminium. This 

comparison was done using transducers excited with short and multi-cycle pulses.

The new model has been used to produce full theoretical DGS diagrams for targets 

in a solid. These diagrams take into account the effect o f the radiated shear edge 

waves that exist even with directly coupled compression wave transducers and 

shear waves produced by the process o f mode conversion at the target. Also, the 

same model is used to explain the form of these diagrams produced for transducers 

excited with short and multi-cycle pulses. For example, with a transducer excited
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with a short pulse there are no near field fluctuations in the relative echo amplitude 

of the targets with range. However, when a multi-cycle pulse is used, there are 

large variations in the echo amplitude of the target with range in the near field of 

the probe, especially for small targets. These variations could reach 20dB for 

smaller values of G (0.05, 0.10).

Some factors, such as the transducer radius, source velocity function and the 

method by which the echo amplitude is detected, are shown to have some effects 

on multi-cycle DGS diagrams. These effects are most pronounced when the targets 

are at ranges where destructive interference between plane- and edge-wave 

components occurs.

Comparison between short pulse DGS diagrams calculated assuming either a fluid-

like medium or a solid medium, shows that the relative echo amplitudes of the 

targets in the case of the fluid model are slightly higher than the echo amplitudes of 

targets in the case of the solid model, especially for the case of small targets. This 

was verified when the two models are compared with experimentally obtained 

DGS diagrams using 2mm diameter FBH targets in aluminium. However for larger 

targets, there is in general good agreement between the two models.

For the case o f a transducer excited with a multi-cycle pulse, the DGS diagrams 

produced assuming a fluid or solid model have a similar form. There are however, 

localised differences that can result in errors o f around a factor o f 2 if a fluid model 

is used to calculate DGS curves subsequently used to estimate the size of the target 

in a solid. Again, this is mostly noticed for small targets. These differences were 

also verified when comparing DGS diagrams calculated using both models with 

experimentally obtained curves for the case of 2mm diameter FBH targets in 

aluminium. This means that a more accurate way of defect sizing using the DGS 

diagrams method could be implemented using the solid model.

For DGS diagrams produced assuming a short pulse, the differences between the 

solid and the fluid models are small even for the case of small targets. This was
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verified when comparing DGS curves produced by both models with 

experimentally obtained curves for 2mm diameter FBH's. Hence the fluid models 

can be used to size defects in solids provided that wide-band short pulse 

transducers are used.

The accuracy of target sizing using DGS diagrams can be optimised by calculating 

a set of curves for all of the experimental conditions pertaining. But it must be 

borne in mind that a major drawback of the DGS method remains, the assumption 

of planar, normally-aligned targets.

The applications of the model could be extended further so as to be used as 

'theoretical standard area and distance blocks'. This was shown theoretically, 

especially for the case of area blocks. It was also shown that the source velocity 

function can dramatically affect the area-amplitude relationship, especially for small 

targets.
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Appendix
Table 1: Expressions for the angle of equidistant arc (2D) on the surface of a 
circular source (after Robinson). The axis and other variables are defined in Figure 
2 . 1.

Region Time Limit D (ct)

Inside geometrical 
beam, y < R

t0 < t < t l K
1 ,c2t2-x2+y2-R2 ̂

C O S  (---- ’•v 2y(c2t2-x2)0-5 '
t x < t < t 2

On edge, y=R '-t- ii © ii t i / 2

t\ <t  <t2 , ( r 2 f 2 _ r 2 \ 0 . 5

V )
Outside geometrical 

beam, y > R
to <t  <t\ 0

t l < t < t 2 _i ,c2t2-x2+y2-R2 ̂cos ' ( — , .. )v ly(c2t2-x2)o i '

where

t o = x/c ,
h = (l/c)[(i?->>)2+x2]05, 
2̂ = (1/c )[(/?+ j ) 2 + x 2]05.


