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Abstract

This thesis is concerned with the funding of retirement benefits in a defined-benefit final- 
salary pension plan. A simplified model is set up in order to investigate the evolution of the 
pension funding system in a random economic and demographic environment. The long-term 
objectives of benefit security, contribution stability and flexibility are highlighted and are 
shown to relate to the motivation for advance funding of benefits. Actuarial valuations are 
construed as control processes to achieve these objectives through the determination of a suit-
able funding policy. One aspect of the funding policy is the choice of a suitable contribution as 
economic and demographic experience unfolds and deviates from actuarial valuation assump-
tions. Efficient actuarial methods of liquidating such deviations are considered when general 
autoregressive rates of return are projected, when new entrants into the plan vary randomly, 
and when other stochastic perturbations, such as discretionary contributions, are included. 
Two particular methods of determining contributions are compared and one is found to be 
more efficient at achieving the long-term objectives of security and stability. Stochastic op-
timal contribution and asset allocation decisions over a finite term, under certain rigorous 
assumptions and in a two-asset model, are derived using the dynamic programming princi-
ple. The optimal contribution control resembles the proportional spreading of surpluses and 
deficits while the optimal asset allocation is found to be a portfolio that dynamically hedges 
against the risk of inadequate benefit provision and unstable contributions. The methodology 
of actuarial valuations is examined qualitatively and the concept of a hedging or matching 
portfolio is found to be central to the valuation of pension plans, whether a market-oriented 
or a cash flow-oriented method is adopted. Various pension fund asset valuation methods 
are contrasted. The mathematical symmetry between asset gain/loss amortization and asset 
valuation is emphasised and an efficient way of determining actuarial asset values is investi-
gated. Finally, the concept of economic prudence in actuarial valuations is explored in terms 
of the margins allowed in the choice of the discount rate (net of salary inflation) employed to 
value liabilities. The reasons for such prudence and its implications on funding are consid-
ered. It is well-known that conservatism leads to surpluses. Excessive and volatile surpluses 
as well as variable sponsor contributions must be avoided while retaining prudent funding 
objectives. A few simple methods (including an original method) to achieve this are studied. 
Some suggestions for further work are also discussed.
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Chapter 1

Introduction

1.1 Aim  and Outline

The aim of this thesis is to investigate the dynamics and actuarial control of defined ben-
efit pension funds in a variable economic and demographic environment. Various actuarial 
methods are used in practice to achieve certain fundamental objectives of retirement benefit 
provision (Chapter 2). The determination of suitable contribution and asset allocation deci-
sions (Chapter 3), pension fund asset and liability valuation methods (Chapter 4), and the 
use of prudence in the valuation basis (Chapter 5) are the methods of actuarial control that 
are investigated in this thesis. For this purpose, a pension plan model is set up under some 
very simplified assumptions. This admits a mathematical analysis and an objective evaluation 
of these actuarial methods. In each chapter, simple measures of the performance of pension 
funds towards meeting certain objectives are used and efficient or optimal methods are then 
derived.

1.2 M ethod

As in other disciplines, various methods need to be used to investigate pension fund-
ing problems. Different methods are required to satisfy different purposes. For many prob-
lems professional experience may generate satisfactory intuition. Sometimes, narrowly-defined 
problems of a practical and commercial nature dictate the use of numerical methods. In order 
to test actuarial methods and design pension fund systems, a more rigorous, mathematical 
method may be useful. This inevitably requires that a number of idealising assumptions 
be made. It follows that reality is simplified and possibly distorted. The consequent loss 
of realism and applicability must be balanced against certain advantages which justify the 
mathematical approach taken here:

Tractability: In order to obtain mathematical results that can be interpreted, simple as-
sumptions are necessary at the outset.
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Generality: A pension funding model that is very realistic, such as one based on simulations, 
is likely to be specific to particular situations, jurisdictions, economic circumstances, 
professional practice and custom. Results from a simpler model can be generalised 
and axe usually less ephemeral; they may always be tested in more realistic models for 
particular practical purposes.

Optimality: Qualitative models based on experience or professional judgement may be diffi-
cult to ameliorate and ‘tune’: ideas that appear sensible prima facie turn out sometimes 
to be wrong. Complex ‘real-world’ models may not admit performance optimisation, 
except by trial and error.

Robustness: A model should allow us to test for robustness to different practical scenarios, 
even though it may not yield optimal solutions or complete accuracy.

Objectivity: Realistic models will not yield results that are definitive and any conclusion 
drawn is liable to subjective interpretation: we can never simulate all possibilities and 
are limited by preconceptions and computational expense. A mathematical model may 
be constructed with well-defined assumptions and may give results that are clearly 
interpretable.

Parsimony: A useful model is usually simple to understand and apply and is parsimonious.

Heuristics: A mathematical model can strengthen professional judgement and understanding 
of real pension funding issues by giving greater insight. It can also provide a suitable 
basis for teaching and learning about the fundamentals of pension funding.

1.3 M odel

The simple mathematical model used in this thesis is based on the discrete-time stochastic 
model described and investigated by Dufresne (1986). This is itself an extension of the 
seminal model of Trowbridge (1952, 1963) designed to study the mathematics of actuarial 
pension funding methods in a simplified demographic and economic context that is static 
and deterministic. Bowers et al. (1976, 1979, 1982) advance the model of Trowbridge (1952) 
by incorporating several time-variant and deterministic features concerning the pension plan 
population and the return on assets. Dufresne (1986, 1988, 1989) and O’Brien (1986) allow 
these factors to be random so that the pension fund becomes a stochastic process. Haberman 
(1994b) includes more complicated models for the investment return on the pension fund as 
well as a number of other features. O’Brien (1987), Benjamin (1989), Boulier et al. (1995) 
and Sung (1997) further regard the pension fund as a dynamic financial system with actuarial 
input as a form of control. The model in this thesis subsumes aspects common to several 
of these models and comprises both deterministic and stochastic features as well as static,
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time-variant and dynamic approaches. Various other theories are in part or in full exploited 
in this thesis: the classical actuarial theory of pension funding (as developed by McGill (1964) 
and Trowbridge & Farr (1976), among others) and the financial theory of pension funding 
[Bagehot (1972), Treynor (1977), Black (1980)] are also relevant.

1.4 Terminology

The historical variations in pension arrangements around the world mean that pension 
funding has developed in different ways and the associated parlance is diverse. Some consensus 
on usage is developing in English-speaking countries but confusion may arise even within one 
country. Competing sets of terminology are favoured by various professional bodies and other 
authorities. Four features deserve emphasis:

1. The term ‘real’ is usually taken to mean ‘net of salary inflation’ in the context of 
final-salary pension plans in the Anglo-Saxon pension-actuarial jargon. In this thesis, 
unless otherwise qualified, the term ‘real’ always means ‘net of salary inflation’. All 
mathematical symbols represent amounts that are real (net of salary inflation).

2. ‘Cost’ means accounting cost and not contribution in the U.K. ‘Cost’ is used to mean 
contribution in North America with the term ‘pension expense’ describing accounting 
cost. ‘Cost’ and ‘contribution’ are distinguished except in established terms such as nor-
mal cost and supplemental cost. Trowbridge & Farr (1976:22) also prefer ‘contribution’ 
to ‘cost’ but defer to common usage in North America.

3. I use the term ‘amortization’ as it is defined in North American finance and pension 
work (see below).

4. It is important in pension funding to draw a distinction between actual market val-
ues and values that are the results of actuarial calculations. Mathematical symbols 
in upper-case refer to ‘actuarial’ values, usually but not exclusively values placed on 
liabilities; whereas symbols in lower-case refer to market values, usually but not always 
terms on the asset side of the balance sheet. Terms such as the unfunded liability that 
involve a comparison between assets and liabilities are usually in lower-case because the 
assumption that values are consistent and comparable is then being made.

This glossary is not comprehensive, but covers some important terms as used in this thesis.

Actuarial basis: see valuation basis.

Actuarial cost method: see pension funding method.

Actuarial liability: the reserve as defined under various ‘individual’ pension funding methods-, 
also standard fund.
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Amortization: a schedule of payments (or a particular payment in the schedule) of S / a at 
a given interest rate every year over a period of n years to pay off an amount 5; in U.S. 
pension terminology, it is associated with removing actuarial gains and losses; in U.K. 
pension terminology, it has come to mean the repayment of a deficit or surplus spread 
in a regular manner over time, possibly over a moving term.

Asset valuation method: a procedure for establishing the value of the assets of a pension 
plan.

Contribution: the total contribution paid by the plan sponsor and/or plan participants, and 
comprising the standard contribution (or normal cost), the supplementary contribution 
(or supplemental cost) as well as any discretionary extra contribution; sometimes cost is 
used in North America.

Contribution adjustment: the supplementary contribution.

Cost: in the U.K. it refers to the accounting cost; in North America it is often used to mean 
contribution while pension expense refers to the accounting cost.

Deficit: the excess of actuarial liability over assets; also unfunded liability, a negative surplus.

Employer: a plan sponsor.

Discretionary extra contributions: contributions (positive or negative) that a pension fund 
sponsor may pay into a fund in addition to the actuary’s recommended contribution.

Gain: a negative loss.

Initial unfunded liability: unfunded liability or deficit arising because of a change in valuation 
assumptions, funding method, amendment to benefit entitlements or because of past 
service, but not because of unanticipated experience.

Liability valuation method: a procedure for establishing the value of the liabilities of a pension 
plan.

Loss (actuarial or inter-valuation or experience loss), l(t): unanticipated change in unfunded 
liability, the difference between actual unfunded liability at the end of the year and the 
unfunded liability as anticipated on the valuation basis for the year.

New entrants: plan participants who have joined the pension plan at the beginning of the 
year.

Normal cost: a regular contribution or premium as defined under various ‘individual’ pension 
funding methods; also standard contribution.
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Pension: income in retirement.

Pension expense: accounting cost in Financial Accounting Standard No. 87 (FAS87).

Pension fund: the collection of assets owned by a pension plan; ‘superannuation fund’ in 
Australia and New Zealand.

Pension funding method: a systematic way of accumulating funds to meet retirement bene-
fits; also actuarial cost method.

Plan sponsor: a corporate employer who sets up a pension plan.

Projection: a forecasting exercise, using stochastic or scenario-based assumptions, distinct 
from a valuation.

Real: net of salary inflation in pension parlance; net of price inflation in economic parlance.

Salary inflation: the general increase in levels of wages across the economy, excluding merit 
and promotional salary increases; also wage inflation.

Standard contribution: see normal cost.

Standard contribution rate: standard contribution expressed as a percentage of payroll.

Standard fund: see actuarial liability.

Supplementary contribution: the portion of contribution, which is additional to the standard 
contribution (or normal cost), and recommended by an actuary following a valuation; 
also contribution adjustment or supplemental cost; see also discretionary extra contribu-
tion.

Supplemental cost: see supplementary contribution.

Surplus: a negative deficit; also actuarial surplus.

Term structure of interest rates: the relationship between yields to redemption and term to 
maturity of government securities (also yield curve).

Unfunded liability: a deficit or negative surplus; see also initial unfunded liability.

Valuation: a consolidation of cash-flows into a pension fund performed regularly to establish 
the financial status of a pension plan and recommend contributions on an ongoing basis; 
a valuation can be performed for several statutory or regulatory purposes; also ‘actuarial 
investigation’.

Valuation Basis: the set of assumptions made by an actuary for the purpose of a valuation; 
also actuarial basis.
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Valuation Discount Rate: the rate at which pension fund cash flows are discounted for the 
purpose of a valuation.

Wage Inflation: see salary inflation.

1.5 G lossary o f  Sym bols

a{t) random risk premium in §3.6 ki parameter in equation (5.32)
a Ea(t) in §3.6 lit) actuarial loss

rate of growth of membership X smoothing parameter in asset
m logarithmic (or geometric) rate of return valuation method
e E e(i) m period over which surpluses and
e(f) random additive perturbation deficits are spread forward
a 2 Van(t) (except in §3.3 where ma period over which gains and losses

it is Var<J(t)) are amortized
Vare(i) m s m  in §3.5
Var^(i) rm 1 /ki or integral spreading period

a entry age N C normal cost or standard contribution
adj(t) supplementary contribution or Pi t) amortization payment for initial

contribution adjustment unfunded liability
AL actuarial liability or standard fund 9 U 2 + <72
B benefit outgo Q 1 — k in §3.3
c{t) contribution r retirement age in §3.1; risk-free rate
d i / { l + i ) of return in §3.6
du iy J(l H" ̂ v) u{t) 1 + i(t)

fo initial fund level (at time 0) u E u(t)

f i t ) fund level (at market value) u i t ) unamortized part of initial
Fi t) actuarial asset value unfunded liability
i[t) arithmetic rate of return ulo initial unfunded liability (at time 0)
i mean arithmetic rate of return uflt) unfunded liability or actuarial deficit
i'ii valuation discount rate V 1/u

9 Es(*) w last age in life table

9 it) population distribution function vi t) proportion of fund invested in
k risky asset in §3.6
K 1 - k y fraction of ulo that is not

kp parameter in equation (5.32) amortized separately
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Chapter 2

Pension Funding and Actuarial 
Valuations

2.1 The Nature of Pension Funding

Pensions. For an employee, a pension is income received during retirement. For an em-
ployer, pensions are a form of deferred remuneration. A pension plan or scheme is an ar-
rangement through which this remuneration can be organised. A pension fund is a trust fund 
holding the assets required by a pension plan for the purpose of financing pension benefits. 
How to finance pensions and ancillary benefits is the subject of pension funding theory.

Benefit Policy. An employer who contemplates remunerating his employees through pen-
sions is faced with a decision as to how to plan financially for this. A starting point is to 
determine what benefits axe to be provided: a ‘benefit policy’ is required. The objectives of 
pension provision from the viewpoints of employees and employers must be considered:

1. Employees may expect a pension as part of their remuneration package. The pension 
must be sufficiently high but also guaranteed.

2. Employers wish to attract and maintain a highly motivated workforce. They must be 
willing to pay benefits that are competitive and attractive. The pension plan must be 
cost-effective.

Funding Policy. Clearly these objectives axe not complementary. Excellent benefits may 
prove costly. Decisions as to how to finance these benefits must be made: a ‘funding policy’ 
must be developed. A pension fund may be considered to be a savings and investment vehicle 
that helps and encourages a company to provide pension benefits.
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The Pension Funding System. Actuaries are involved in controlling the mechanism 
through which pensions are financed. This involves determining and valuing cash flows. At its 
simplest, the pension fund can be reduced to three sources of income (employee and employer 
contributions and investment earnings) and two outgoing cash flows (benefit payments and 
expenses). A number of uncertain factors will affect the cash flows and actuarial control is 
required to balance outgo and income. The pension fund may be managed by controlling the 
benefit outgo, the funding policy, the investment strategy of the fund and the contributions 
in order to achieve financial balance. The pension fund may be viewed as a mechanism to be 
regulated, as described by Trowbridge (1966).

The Substitution of Contributions for Investment Income. The funding and benefit 
policies are interdependent but distinct. For the plan participants, the benefit policy dictates 
the level of income they will receive in retirement, whereas the funding policy will determine 
how secure their pension rights are. Their pension rights will normally become effective a 
long time ahead in the future. For the sponsoring company and the pension fund, the benefit 
policy determines the total benefit outgo over time, whereas the funding policy will affect cash 
flows in order that these benefits are met as and when due. Regular contributions together 
with investment income from the assets of the fund combine to meet the pension benefits of 
retired employees. The funding policy is about the substitution of contributions by investment 
income. Funding is about setting monies aside for an event in advance of its contingency. 
The earlier this is done, the more investment income is being substituted for contributions.

The Structure of a Pension Plan. The income and outgo of a pension fund must ulti-
mately balance. The risks involved in not achieving this balance can be borne either by the 
sponsoring company or by the plan membership.

— Contributions may be predetermined and benefits may be somehow targeted without 
any guarantees as to their eventual levels. Such a pension plan is called a defined 
contribution plan: examples are money purchase schemes or accumulation funds.

-  Alternatively, benefits can be defined according to set formulae and contributions can 
be determined to achieve these levels of benefits. This is a defined benefit pension plan.

Defined benefit plans are common in many countries and are the subject of this thesis.
Pension benefits are normally a function of the final salary (or an average of final salaries) 

earned by the pension plan member. This is because employees should be able to maintain 
their standard of living after retirement. Pension plans may also be based on career-average 
salary or indeed be independent of salary altogether, as in social insurance systems. We will 
only consider final-salary plans, by far the most common in English-speaking jurisdictions.
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2.2 The Objectives of Pension Funding

This thesis is therefore concerned with the funding of pension benefits in a defined-benefit 
final-salary pension plan. First, we explore some of the objectives of pension funding and 
describe the actuarial input in achieving these objectives. In order to explore this further, 
we will set up a simple mathematical projection model for the pension fund and incorporate 
aspects of the valuation process.

2.2 .1  R easons for Funding

The reasons why assets are held in a pension fund to meet pension benefits are as follows:

Benefit security: the benefits to which plan members axe entitled are perceived to be more 
secure if funds are set aside in advance for them;

Contribution stability: the plan sponsor makes contribution payments which may be bud-
geted for and may be more stable in the long term if a fund is built up, while the 
contributions can also change more smoothly over time if necessary;

Value: both the plan members and the plan sponsor (and his shareholders) want greater 
value through

flexibility: advance funding implies a degree of flexibility in the contributions required 
every year, so that there is less strain on corporate cash flows;

tax advantages: advantage may be taken of tax credits on investment earnings on assets 
in a pension fund;

stable and realistic accounting cost: a funding arrangement allows the accounting 
charge to be recognised in the period in which the benefits accrue such that it 
has the least effect on the financial status of the sponsor;

fewer expenses: if benefits are financed in a regular and organised way, expenses such 
as investment transaction costs and administrative or legal expenses can be min-
imised.

2.2 .2  T ypes o f O bjectives

The objectives of pension funding are closely tied to the reasons why funding is undertaken 
in the first place. These objectives are broadly of two types:

Special Objectives. Special or ‘compliance’ (Dyson &; Exley, 1995) objectives are nor-
mative and are usually externally imposed on pension plans, through various statutory and 
regulatory obligations placed on them. They are usually independent of the funding policy
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Special Objectives Interested Stakeholder
Solvency (Minimum funding) 
Surplus (Maximum funding) 
Appropriate accounting

Plan members 
Revenue authorities 
Company shareholders

Table 2.1: Some special compliance objectives of funding for retirement benefits.

being followed by the pension plan. ‘Solvency’ (or minimum funding) is one such special ob-
jective. From the perspective of plan members, the minimum wind-up benefits that need to 
be paid if the company ceases to operate is very important and should determine a minimum 
level of funding. There are also limits to pension fund surpluses (or maximum tax-exempt 
funding) allowed by revenue authorities, and a critical objective will be to avoid such excessive 
surpluses. Finally, there are rules regarding pension accounting that need to be followed: as 
benefits accrue, they must be financed and accounted for in a consistent and realistic manner. 
Some special objectives, along with the party most concerned by them, are listed in Table 2.1.

M anagement Objectives. Ongoing or ‘management’ (Dyson & Exley, 1995) objectives 
depend both on the benefit and funding policies. Whereas special objectives are imposed by 
statute or by regulation, management objectives are intimately related to the fundamental 
reasons that justify advance provision of benefits. Attention is often paid to the special ob-
jectives because there may be penalties if they are not satisfied. But management objectives 
represent the true underlying long-term motivation for pension funding and are internally gen-
erated as a result of creative tension between the conflicting interests of various stakeholders 
and as a result of arbitration by actuarial and fund management professionals. Management 
objectives are based on the ‘going-concern’ principle, i.e. that the plan will exist for a long 
time. Whether the long-term benefits promised to members upon retirement in 20 or more 
years are adequately funded will matter to the plan members: it is of little comfort if the 
fund is technically solvent but the benefits they are promised many years hence are not being 
financed. Plan members will be concerned with whether the substitution of contributions by 
investment income affects the security of their benefits. The plan sponsor will be concerned 
with the cost of funding pension benefits at a particular pace. From his perspective, the 
opportunity cost of providing pension benefits must be acceptable and it is essential that 
pension provision remains economic. The contributions required from him will need to be 
predictable. All the parties will want to maximise economic value by taking advantage of 
favourable revenue rules as well as of the inherent flexibility of advance funding. Actuarial 
involvement with a pension fund is therefore about balancing the various objectives of se-
curity, stability, flexibility etc. Some of these management objectives are listed in Table 2.2 
on the next page. In the next sections and the rest of this thesis, we consider various issues
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Ongoing Objectives Interested Stakeholder
Benefit security 
Contribution stability 
Economic value

Plan members 
Plan sponsor
Plan members and sponsor

Table 2.2: Some ongoing management objectives of funding for retirement benefits.

pertaining to these management objectives.

2.2 .3  Security

Security of Benefits or Adequacy o f Fund

The most important objective of pension funding, certainly from the point of view of plan 
members, is to secure long-term benefit entitlements. This means that the pension fund must 
hold enough assets to meet pension benefits, as and when they are due.

Solvency and Security

Security, as a funding objective, usually encompasses the technical or regulatory concept 
of fund solvency, which we have classified as a special objective (Table 2.1). In other words, 
the process of funding on an ongoing basis usually (but not always) satisfies the criteria 
for solvency. In addition to statutory minimum funding requirements that exist in various 
jurisdictions, the benefit policy or rules of a plan determine how much should be reserved 
for wind-up benefits, i.e. how much assets to hold in order to satisfy the minimum benefit 
pay-out upon wind-up or discontinuance of a pension plan. On the other hand, funding is 
concerned with the ongoing maintenance of, not only the pension plan, but also the pension 
rights of plan participants. There is no unique best level of funding, and the level of funding 
will depend upon the funding strategy chosen, but this will normally imply holding more than 
the minimum solvency requirements or wind-up benefit reserves:

1. A pension fund is a savings and investment vehicle that encourages and helps sponsors 
to provide benefits for possibly several generations of employees, in changing economic 
and demographic conditions. It is not merely a deposit for the current generation.

2. A pension plan is set up not only to secure members’ benefits but also to help sponsors 
by achieving stable and flexible contributions, realistic and suitable pension expensing 
etc. and this may clearly require more than just funding for the termination benefits.

3. Although a pension plan may terminate, the members of a pension plan may move to 
another plan, in which case the benefits that they have accrued during membership of 
their original plan will only be preserved if backed by the transfer of sufficient assets.
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As a matter of concept rather than semantics, we must therefore strictly differentiate 
benefit security (or fund adequacy) from fund solvency. The complex issue of fund solvency 
is not directly addressed in this thesis. Fund solvency is assessed during solvency valuations, 
when the actuary assumes that the plan is being wound up: market values of assets are 
taken and the discontinuance liability might be the cost of purchasing annuities for each plan 
member (or some other measure, depending upon local regulations). In general (but not 
always), a fund is solvent if its ongoing funding level is high. Note that it is also argued, for 
example by McLeish & Stewart (1987), that security should be almost equivalent to technical 
solvency.

Over-funding and Security

It may be to the disadvantage of both plan sponsor and members if excessive funds are 
diverted from normal company operations to the pension fund. The opportunity cost of 
over-funding may be high and in extremis may endanger corporate profits and members’ 
employment. Over-funding must be avoided. In addition, pension funds have special tax 
privileges in many jurisdictions. Financial penalties may be incurred by the plan sponsor if 
excessive surpluses are held in the pension fund, since these can be construed as ‘tax havens’. 
For both plan sponsor and plan participants, “third-party leakage” of economic value, as 
described by Exley et al. (1997), should be minimised: the pensions promised are adequately 
funded and the funds set aside for providing these pensions are secure against heavy taxation 
and resultant financial loss, if maximum surplus limits are not breached. Security therefore 
involves a balance between under- and over-funding and in addition is not the sole concern 
of plan members. Loades (1988) considers the level of security provided by a pension fund 
to be “a measure of the balance between the interests of members and employers.” When 
pension fund valuations take place, actuarial ‘management’ of pension funding endeavours to 
achieve secure pension funding levels so that neither under-funding nor over-funding occurs 
and a suitable intermediate course is steered: see, for example, Farren [Thornton & Wilson 
(1992a): discussion], Wise [McLeish & Stewart (1987): discussion] and Grubbs [Cronquist & 
Dreher (1972): discussion].

2 .2 .4  C ontrib ution  S tab ility

This objective is concerned with what Trowbridge & Farr (1976) term the “budgeting 
problem” faced by the plan sponsor. In other words, the pension plan must operate in such 
a way that the sponsor can always allow in advance for contributions to the fund in his 
overall corporate financial planning. Indeed, a reason for funding benefits in advance is that 
an employer can spread contributions over time and does not immediately bear the costs 
of the unpredictability of pension provision. The sponsor will find it advantageous if the 
contributions recommended by the actuary are relatively stable over the long term. “Smooth
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contribution patterns” (Trowbridge & Farr, 1976) are often sought.
Note that the sponsor’s contributions are not necessarily equal to the pension accounting 

cost. Although in the past the contributions that were made by an employer to the plan 
were taken as the pension expense in the employer’s accounts, this is not so any more. The 
requirement for contribution stability does not therefore necessarily lead to smoothed and 
unrepresentative pension accounting costs. Note also that contributions will naturally vary 
as a result of economic wage inflation as well as varying plan membership size, among other 
things. To adjust for both influences, the contribution rate (contribution as a percentage of 
payroll) is often considered and the plan sponsor is said to seek a stable contribution rate.

2.2 .5  C ontrib ution  F lex ib ility

Funding pensions in advance is inherently flexible in that it allows contributions to be 
spread over the long term. This means that sponsors are able to vary their contributions, 
within limits, if it is necessary or advantageous to do so. If capital projects are being planned 
and pension contributions are sufficiently flexible, then sponsors can temporarily divert cash 
and so do not have to rely on expensive external financing. Sponsors may alternatively wish 
to take advantage of tax credits and contribute more when their cash is available. A good 
pension funding policy will therefore ensure that contributions are not only stable over the 
long-term but are also flexible over the short-term. This maximises economic value for the 
corporate sponsor and also indirectly for the working members. Flexibility in employers’ 
contributions is naturally afforded by the amortization of gains or losses (or spreading of 
surpluses and deficits) over future periods as well as by discretionary extra contributions 
which a sponsor may pay into the fund.

Although it is an important objective in the management of pension funds, flexibility is 
subsidiary to the other objectives, and in particular it cannot override the security of benefits. 
Indeed, ‘flexibility’ implies that there is some prior constraint on the sponsor contributions. 
This constraint is the “will to fund” and plan solvency mentioned by McGill (1964:319). 
McGill (1964:325) also juxtaposes flexibility with the “responsibility” of the sponsor to provide 
promised pension benefits. Snelson (1970) likewise regards advance funding as implying “a 
discipline which in itself imposes limitations on flexibility.” Griffin (1966) also contrasts a 
sponsor’s requirements for “long-range contribution stability” against “the safety valve of 
short-range contribution flexibility” .

2.3 Valuations and Control of Pension Funding

2.3.1 V aluations

During regular actuarial valuations of a pension plan,

1. the performance of the plan in respect of the various objectives of funding is measured;
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2. recommendations are made to manage or control the pension funding system to attain 
these objectives.

An ongoing or management valuation monitors whether management objectives (as in 
Table 2.2) are being achieved and leads the actuary to decide upon appropriate contributions 
to the fund. Special valuations (discontinuance or solvency valuations, accounting valuations, 
as well as other statutory valuations) will also be performed in connection with certain special 
objectives (Table 2.1). In this thesis, we concentrate on ongoing management valuations.

Four distinct parts of a valuation can be identified.

1. The first part of a valuation consists of establishing a set of valuation assumptions (a 
valuation basis) about the various economic, demographic and statistical factors that 
will influence the future evolution of the pension funding system.

2. Future pension liabilities must also be estimated (the liability valuation) based on the 
valuation assumptions in order to establish

— the reserve (actuarial liability or standard fund) that should be held to meet such 
liabilities,

— the regular premium or contribution (normal cost or standard contribution) re-
quired to maintain such a reserve;

and thus the fund and contribution targets implied by a chosen funding method are 
determined.

3. A suitable value must be placed on the assets held in the pension fund (the asset 
valuation).

4. In the final part (the actuarial recommendation), the actuary compares the future asset 
and liability cash flows for the fund in a consistent way, assesses whether the funding 
objectives are being attained, and

— determines a suitable contribution;

— comments on a suitable investment strategy;

— comments on possible benefit improvements and cognate matters.

The procedure whereby liabilities are evaluated and contributions are determined is com-
monly referred to as the pension funding method or actuarial cost method. An important 
concept in this thesis is that these four parts are interdependent and must be chosen in a 
consistent manner.

24



2.3.2 P en sio n  Fund C ontrol

The three principal ways of exercising control on the pension fund and ensuring that a rea-
sonable balance between the objectives is achieved [Winklevoss (1993:226-241)] are through:

1. a benefit policy;

2. a strategic investment policy;

3. a funding policy.

Benefit Policy

The benefits promised in a defined-benefit pension plan are fixed by definition. The 
benefit rules are nevertheless changed occasionally. The pension promise is defined in the 
sense that it is modified only infrequently and is usually only improved. Actuarial input is 
required to determine what changes are acceptable. It may be customary for pensions in 
payment to be augmented on a discretionary basis. Fujiki (1994) describes this as one of the 
ways in which actuarial control may be effected. When large surpluses emerge as a result 
of profitable investment strategy, they may be shared by the plan sponsor through reduced 
contributions and by members through ad hoc increases in pensions in payment. Adjusting 
pensions in payment has been particularly prevalent in inflationary economic circumstances 
in the past in the U.K. and it is viewed as a ‘regulator’ by Shucksmith [Thornton & Wilson 
(1992a): discussion]. Such control may be one-way as it is politically difficult to reduce 
benefits. Another aspect of control through benefit policy is described by Thornton & Wilson 
(1992b:§8) who note that, in order to control investment risks, vested plan members in the 
U.K. who leave service could be encouraged to transfer their pension rights to the plan 
sponsored by their new employer rather than defer their pension benefits. It is also important 
to control benefit outgo if the pension plan is in financial difficulties. Guidance Note 461 of the 
Institute of Actuaries of Australia (1994) suggests various “means of control” of technically 
insolvent funds, such as paying benefits in instalments or even suspending benefit payment 
until solvency is restored.

Investm ent Policy or Asset Allocation Control

Investment earnings usually exceed contribution payments and it is possible to control the 
performance of the plan if the investment of the fund is successfully managed. It is important 
to determine a suitable investment strategy that allows the pension fund to meet its various 
objectives. One possible investment policy is to choose to invest in assets that hedge or match 
liability cash flows so as to reduce the chances of insolvency and maximise security. As losses 
may be curtailed, this may also stabilise contributions. On the other hand, it has also been 
argued that profitable investment opportunities may be missed. It is also said that pension
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funds ought to invest in such a way as to gain from the favourable taxation rules applying to 
pension funds. This should benefit both sponsor (and its shareholders) and plan members as 
the sponsoring company gains financially. This minimises the loss of economic value by giving 
considerable flexibility to the sponsor, but may not appeal to plan members’ sense of security. 
Many pension funds are also managed so that returns are maximised (and contributions 
minimised) subject to an acceptable degree of risk. Various investment strategies appear to 
be followed in practice. Control through asset allocation is dealt with in §§3.6 and 4.3.5.

Funding Policy

Actuaries do not have direct control on setting investment strategy and are sometimes 
confined to, at most, an advisory role in that respect. In a defined benefit plan, the scope 
for managing a fund through benefit improvement is also limited. A far more important 
way in which actuaries contribute to the successful management of a pension plan is by 
developing and implementing a funding policy. The funding policy determines the substitution 
of contributions by investment income and therefore determines the amount and incidence 
of payments in order to meet future pension benefits. In particular, the actuary controls 
the pace of funding, i.e. the speed with which the pension plan builds up funds to a desired 
funding level. This control occurs through the choice of:

Funding method. Some funding methods require larger contributions earlier on and build up 
a larger fund. Funding methods are discussed in Chapter 3. The actuarial literature 
on pension funding contains extensive discussions of the choice of funding methods, to 
which exclusive attention is sometimes paid.

Valuation basis. It is well known that the use of more conservative assumptions when valu-
ing pension liabilities will speed up funding. The “funding basis” is part of the pension 
funding “control system” of Benjamin (1989). He focuses on the ‘valuation rate of in-
terest’ (an arithmetic average of real pension fund returns) as the key control variable. 
Fujiki (1994) also regards the determination of valuation assumptions as a control deci-
sion; he simulates various economic scenarios and investigates how assumptions may be 
set. The concept of prudence in the choice of one important element of the valuation 
basis, the discount rate, is examined in Chapter 5.

Asset valuation method. Asset values may be volatile and are often smoothed. This is meant 
to stabilise the funding process over the long term. Asset valuation is discussed in some 
detail in Chapter 4.

Contribution policy. If assumptions are not realised, losses need to be defrayed and surpluses 
need to removed, so that contributions must be appropriately adjusted. The method 
of adjustment is usually applied consistently and affects the dynamics of the funding
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process. Contribution control has been investigated by Dufresne (1986), O’Brien (1986, 
1987), Haberman & Sung (1994), Boulier et al. (1995, 1996) and Cairns (1997). See 
Chapter 3.

These control mechanisms closely parallel the four parts of an ongoing valuation exercise as 
identified in §2.3.1. The ongoing valuation is in fact intimately related to the funding policy. 
During a valuation exercise, the actuary can implement a suitable funding policy. Benjamin 
(1984) regards actuarial valuations as control techniques to achieve long-term financial control.

2.4 Uncertainty in Pension Funding and Projections

A pension plan valuation is an exercise in controlling pension funds to achieve long-term 
objectives in an uncertain financial and demographic environment. These uncertain variables 
are often explicitly modelled using projections or forecasting exercises of various types.

Whereas valuations are concerned with determining the financial state of the pension 
plan at the time of the valuation and the best course of action in the inter-valuation pe-
riod, the aim of projections is to investigate pension funding over a longer time horizon. 
There is therefore a distinction between valuation assumptions and projection assumptions 
[Winklevoss (1977:201), Kemp (1996:^4.5)]. Various events of a demographic and economic 
nature will affect the future course of the pension plan and its fund. It is impossible to be 
certain about the magnitude and timing of these events and yet decisions must be made 
as to the management of the fund to mitigate or control the effect of these various factors. 
Valuation assumptions represent simple, and usually deterministic and time-independent es-
timates of these factors so that their effects can be measured on the asset and liability cash 
flows of the pension fund. In practice, valuation assumptions will also contain margins for 
prudence. Projection assumptions, in contrast, need to be as realistic as possible and are 
often stochastic. McGill et al. (1996:574) refers to projections and projection assumptions 
as “stochastic forecasting” and stochastic “experience assumptions” respectively. Different 
projection assumptions may be used according to the aim of the projection exercise.

Projections are used for two main purposes. The most common one is to investigate and 
set strategic investment policy. Projections are also of use when investigating funding policy, 
such as when deciding on suitable valuation assumptions or funding methods. A popular 
type of projection exercise is Asset-Liability Modelling (ALM), which requires an integrated 
model for future investment returns on various asset sectors as well as for liability cash flow. 
Such a model will usually be stochastic or scenario-based and enable the actuary or fund 
manager to devise an optimal investment strategy that takes into account future liabilities 
of the plan. Asset-liability modelling has been employed in the context of pension funding 
mainly to investigate investment policy for example by Daykin et al. (1993) and Kemp (1996). 
Winklevoss (1982, 1993), McKenna (1982), Kingsland (1982), Loades (1988), MacBeth et
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al. (1994), Bilodeau (1995), Alphen et al. (1997), Kleynen (1997) and Haberman & Smith 
(1997) among others, show that ALM can also be used to investigate aspects of funding and 
benefit policies such as contribution levels, pension costs, benefit indexation, valuation bases, 
demographic changes and funding methods as well as investment policy.

In the following sections, some of the factors, and corresponding valuation and projection 
assumptions, that affect pension funding are described.

2.5 Dem ographic Variables in Pension Funding

Various factors influence the membership of a pension plan and consequently affect pension 
funding. Demographic factors include: mortality (for both retired and active plan members), 
retirement (including normal, early and late retirement), new entrants (at multiple entry 
ages), involuntary withdrawal (redundancy), voluntary withdrawal (resignation), disability 
(including permanent invalidity, disability recovery, partial disability).

Other non-economic variables (sometimes referred to as ‘statistical’ factors) in the pen-
sion funding process include: salary scale (according to merit, promotion and longevity and 
excluding economic wage inflation), option election rates (e.g. commutation to lump sum; this 
is material if options are not actuarially neutral and there are opportunities for selection by 
plan members), marriage rates and family composition and dependency (members’ spouses 
and dependants may be entitled to benefits).

Valuation assumptions made about many non-economic factors are collated in the form of 
service tables. These may be generated from past experience of the pension plan or of similar 
plans (from the same industrial sector) and from national statistics. Plan-specific information 
and general trends are also be used by actuaries. Demographic projection assumptions, as 
used in Asset-Liability Modelling for example, do not usually differ from valuation assump-
tions [Kemp (1996:^[A.7)]. This is because changes in the rates of various decrements are 
observed to change only slowly over several years. For a large plan, the law of large num-
bers means that a deterministic approach may well be suitable when projecting the evolution 
plan. In addition, these changes may well be small and immaterial on funding as compared 
with economic factors and so demographic projection assumptions are often the same as de-
mographic valuation assumptions. Nevertheless, stochastic models allowing for demographic 
factors such as redundancy, mortality, disability etc. that affect pension liabilities have been 
constructed by Shapiro (1979) and De Dominicis et al. (1991) among others.

Two demographic factors that may change significantly and that may have considerable 
financial effects in the long term are new entrants and redundancy numbers (involuntary 
withdrawal). They Eire sometimes modelled very explicitly in projection work. Tepper (1977), 
for example, uses an Asset-Liability Model that integrates the “dynamics of the workforce”, 
including “labour use projections”, “turnover considerations” and “personnel policy” along 
with asset modelling. Demographic projection assumptions are usually deterministic and
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scenario-based and axe common in Asset-Liability Modelling work. They may be useful in 
representing various scenarios:

— The effect of ‘trends’ such as the growth and decline of firms and industries and their 
impact on recruitment policies may be modelled (Snelson, 1970). Trends in the plan par-
ticipant population may be material to the durability of pension plans [Lee (1986:159)].

— Another trend that may be usefully modelled in a deterministic manner might be na-
tional demographic shifts. In the case of large, public funded pension plans, demographic 
shifts, such as an ageing population, falling fertility and immigration, that are projected 
to occur can be modelled.

— In the case of medium-sized private pension plans, the effect of a merger or consolida-
tion or planned and possibly phased redundancies as a business is ‘restructured’ may 
be explored. Kemp (1996:^[A.7) suggests that “a planned acquisition or redundancy 
exercise” may be modelled deterministically.

It is worth noting that ‘open-group’ valuation techniques such as the forecast valuation method 
[Fleischer (1975), Schnitzer (1977)] also employ deterministic assumptions about the evolution 
of new entrants into the plan. Bowers et al. (1976, 1979, 1982) and Winklevoss (1993) model 
pension plans with deterministic stable populations (i.e. with constant rate of exponential 
growth). Randomness in new entrant numbers may also have consequences for the stability 
and security of the pension fund. O’Brien (1986) assumes random rates of growth of the 
pension plan population and Mandl & Mazurova (1996) assume that new entrant numbers 
vary as a stationary autoregressive process. The effect of variable new entrants is investigated 
in Chapter 3 (§3.4.4).

2.6 Economic Variables in Pension Funding

The major economic variables that enter the pension funding process include:

1. price inflation;

2. wage inflation (excluding salary scale based on merit, promotion and longevity);

3. investment return on various asset types and on the fund as a whole.

We now consider each of these economic factors in turn and examine the valuation and 
projection assumptions used as a proxy for them.
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2.6.1 P rice  Inflation

Relevance to Pension Funding

There axe many different economic theories as to the sources of price inflation. Inflation 
appears to stem from a number of factors including imbalance between supply and demand 
(Keynesian demand-pull inflation), imbalance between wage increases and productivity im-
provements (cost-push inflation), expansion of money supply (monetarist theory of inflation), 
economic cycles. The general increase of prices in the economy has important consequences 
for the funding of retirement benefits. The most important consequence is the erosion of 
the purchasing power of pensioners who receive benefits that are nominally fixed or that do 
not allow for inflation. The adequacy of pension benefits can only be maintained if some 
form of linkage of post-retirement benefits with prices, either by formal indexation or on 
a discretionary basis, is undertaken. Price inflation is also important because it is usually 
accompanied by salary inflation, which has obvious consequences for a final-salary plan. Fi-
nally, the investment return on real assets held by the fund will be influenced by the past and 
present levels of price inflation.

Price Inflation Valuation Assum ption

The selection of an assumption as to economic price inflation in the future is almost 
invariably the starting point of the valuation basis. The price inflation assumption matters 
particularly if benefits that are indexed with consumer or retail price indices are promised (as 
in most large public-sector schemes in the U.K.). Often discretionary post-retirement pension 
increases are also informally related to the level of inflation in the economy. In other cases, 
some form of limited price indexation (as in private defined-benefit plans in the U.K.) also 
means that the assumption as to price inflation matters. The relative levels of the valuation 
discount rate (or the investment return assumption) and the price inflation assumption are 
particularly critical to the valuation of pensioner liabilities. In most cases, if price inflation 
is assumed to be high relative to investment returns, the value of pensioner liabilities will 
be overestimated, which is more prudent. The price inflation assumption is also important 
as price inflation affects various other factors, and it must be chosen consistently with other 
assumptions.

The price inflation assumption is usually set after consideration of price indices data. It 
is important that attention be paid to long-term historical experience and not just to the 
recent past, given the long duration of pension liabilities. It is equally important that a 
forward outlook be maintained: economic forecasts of inflation and the yields on bonds and 
government securities are important sources of information. The difference in yields between 
real return and conventional bonds (e.g. index-linked and conventional gilt-edged securities 
in the U.K.) gives an indication of market expectations of inflation, notwithstanding the
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uncertainty concerning the relative risk premiums in the returns from such bonds. It is 
most common to choose a single term-invariant price inflation assumption, but “select and 
ultimate” rates are also allowed by the Actuarial Standard of Practice No. 27 of the American 
Academy of Actuaries (1996:^[3.5.2).

Price Inflation Projection Models

Price inflation is most commonly modelled using ARIMA techniques in pension funding 
work. Inflation in any one year is projected to be dependent on inflation in the past year, 
probably because of yearly wage negotiations (these will depend on price increases over the 
past year) as well as yearly price reviews by firms. Wilkie (1987) models the force (or loga-
rithmic rate) of price inflation in the past few decades in the U.K. as an autoregressive process 
of order 1 (AR(1)). His model has a ‘cascade’ structure and the price inflation model ‘drives’ 
all other variables. Current price inflation depends therefore only on past inflation. Daykin 
et al. (1994) and Sharp (1992) describe a very similar model using other data. Unconditional 
AR(1) models for projecting price inflation axe used by Cairns (1994), Daykin et al. (1993) 
and Knox (1993), among others, in pension funding work.

Several variations on the basic autoregressive model exist:

1. There is evidence to suggest that the residuals of various price inflation series may not 
be normally distributed and are negatively skewed and ‘fat-tailed’. Daykin et al. (1994) 
use shifted Gamma distributions as an alternative to normal distributions.

2. There is also evidence that the variance of the residuals is not constant over time. 
The addition of ARCH (autoregressive conditional heteroscedastic) (Engle, 1982) effects 
allows not just current inflation, but also the variance of current inflation, to depend on 
the previous year’s inflation. The variance of the error term is itself stochastic and so 
the variance of the inflation series is non-stationary and depends on the previous year’s 
inflation. This approach is followed by Wilkie (1995:§2) for example.

3. Another variation is to include both price and wage inflation in a vector autoregressive 
model, as also discussed by Wilkie (1995:§2), and used by Kleynen (1997) in pension 
fund projections. In Thomson’s (1996) South African asset model, price inflation is not 
independent of other economic variables and is driven by lagged equity dividend growth.

4. Historic data show that price inflation has become unpredictable over the recent past 
with irregular and large shocks occurring, for instance, after the 1973 Oil Crisis, along 
with periods of sustained high and low inflation, possibly in line with economic cycles 
(Huber, 1996). For these reasons, Clarkson [Geoghegan et al. (1992)] suggests a non-
linear modification to the AR(1) inflation model comprising positively biased trend and 
random shock (Bernoulli random variable) components. Parameter estimation for such 
a model is not straightforward (Wilkie, 1995:§2).
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2.6.2 W age Inflation  

Relevance to Pension Funding

Wage or salary inflation is the general increase in wages and salaries of workers across 
the economy, excluding salary increases for reasons of promotion, seniority or merit. It is 
generally thought of as resulting from:

Price inflation: workers want to maintain their purchasing power and real standards of living 
and unions will demand that salaries rise at least with general price levels;

Productivity improvements: firms that remain in business must be making profits that rise 
over and above price inflation as a result of improved productivity, part of this being 
transferred to labour as higher wages.

Daykin (1976:294, 1987) and Thornton & Wilson (1992a:244), for example, illustrate with 
U.K. data that salary levels rise faster than prices. It is also thought that there will usually 
be a lag between price and salary inflation as the labour market reacts, through varying trade 
union power, government regulation and competitiveness, to price levels. The dynamics of 
salary inflation and its relationships to other economic variables are very important to a 
final-salary plan and will determine its investment strategy.

Wage Inflation Valuation Assum ption

The salary or wage inflation assumption is distinct from the salary or merit scale mentioned 
in §2.5. (The salary scale is regarded as an economic assumption in North America as in the 
Standard of Practice for Valuation of Pension Plans of the Canadian Institute of Actuaries 
(1994:^[4.03), for example. This is only a matter of classification and I will consider that the 
wage inflation assumption excludes salary scales.) It is usually easier to determine a suitable 
assumption as to real salary inflation first, as salaries are more stable when considered relative 
to prices. The value placed on the liabilities of active employees is particularly sensitive to 
the assumption of investment return (or valuation discount rate) relative to wage inflation. In 
a young, immature plan, active liabilities dominate the liabilities of pensioners and members 
whose benefits are in deferment. Assuming high salary inflation relative to investment return, 
i.e. assuming that returns net of salary inflation are low, usually increases the value placed 
on active liabilities, which may again be a prudent measure. National earnings data and 
data on productivity are the most important sources of information used to determine a wage 
inflation assumption. Again, inordinate emphasis must not be placed on the recent trend in 
salaries at the expense of long-term trends.
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Wage inflation is often modelled as a simple additive component to the main price inflation 
model, i.e. real wage inflation is projected because it is more stable. In his mathematical 
model of asset-liability cash flow matching for a closed pension fund, Wise (1984) projects 
earnings inflation as price inflation plus a constant level. A similar model is employed by 
Knox (1993) in the context of defined contribution superannuation funds: constant level plus 
AR(1) price inflation. Geoghegan et al. (1992) propose that the force (or logarithmic rate) 
of salary inflation net of contemporaneous price inflation be modelled as an independent and 
identically distributed (i id ) normal variate. They also suggest an AR(1) process, instead 
of the iid  component with the normal errors of the price inflation and real salary inflation 
series being independent. However, the possibility of autoregressive real salary inflation series 
on U.K. data is rejected by Wilkie (1995:§3). He rejects co-integration (i.e. stationarity in 
a linear combination of two series) in U.K. price and wage inflation series, although Sharp 
(1992) applies it to Canadian wage and price inflation data.

Wilkie (1995:§3) projects the force of salary inflation in various ways, more particularly 
as

-  a proportion of current price inflation as well as an AR(1) component;

-  proportions of current and lagged price inflation as well as an AR(1) component, allow-
ing for the lagged effects of prices on wages;

-  a vector autoregressive model with salary and price inflation depending on each other, 
rather than having a unidirectional ‘cascade’ structure.

Sherris (1995), using Australian data, also develops a vector autoregressive model of order 1 
(VAR(l)) which comprises several factors including equity returns, interest rates as well as 
salary inflation.

2.6.3 A sset R eturns  

Pension Fund Constituent Assets

Pension funds invest in a diverse range of assets, including equity (or common stock, 
both overseas and local), debt (both government securities (conventional or index-linked) and 
corporate bonds), property (directly or through property trust funds), cash (usually held for 
liquidity purposes), as well as derivative instruments, commodities etc. The selection of a 
suitable portfolio of assets and securities is not directly addressed in this thesis, except in 
the theoretical context of dynamic portfolio allocation between a risky and a risk-less asset 
in §3.6. The issues of valuation and investment are related, particularly through the concept 
of hedging or matching. Certain issues relevant to asset investment are discussed below and 
in §4.3.

Wage Inflation Projection M odels
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The well-known Fisher hypothesis suggests that the nominal return on gilts, bonds and the 
like will reflect investors’ expectations of price inflation, and also comprise a risk premium 
(practically nil for government securities) and pure interest. The risk premium and pure 
interest constitute real interest.

Price inflation also affects equity returns. Company dividend payouts depend upon their 
profits and turnover and hence upon general price levels. Dividends are therefore expected to 
grow at least in line with price inflation. Indeed, because of real productivity improvements, 
dividends ought to outpace inflation. This is illustrated by Daykin (1976:299, 1987) and 
Thornton & Wilson (1992a:239). In addition, we expect a time lag (also depicted by Daykin, 
1976) between price inflation and its effect on company profits and dividend policy, just like 
that between price and salary inflation.

Equity returns also arise from capital growth as share prices increase. Share prices rep-
resent the present value of dividend income expected by the market, at the market discount 
rate (market’s expectations of interest rates). Share prices are thus expected to increase in 
advance of an increase in dividends, which is generally well forecast by the market. Share 
prices are also expected to decrease (and dividend yields increase) if interest rates increase. 
Daykin’s (1976) data shows a positive relationship between discount rates in the U.K. econ-
omy (through irredeemable gilt (Consol) yields) and equity dividend yields. Higher price 
inflation leads to higher interest rates, because of the Fisher relation, and lower share prices. 
It is generally observed that equity returns are not correlated, or even negatively correlated, 
with price inflation in the short term [Fama & Schwert (1977), Sharpe et al. (1995:374)]. 
There is also broad consensus that, over the long term, equities have returned much more 
than government securities (exhibiting a premium for the risk involved in holding equities) 
and also over and above inflation (indicating that equities are ‘real’ assets).

Equity dividend growth is also expected to be driven by productivity improvements, be-
sides price inflation. Now, productivity gains are also said to contribute to salary inflation. 
This gives rise to the proposition that equities are (at least partially) a good match or hedge 
for salary inflation-related liabilities, such as those of a final-salary pension plan. There is 
strong acceptance of an economic link between salary inflation and dividend growth particu-
larly among British actuaries. Daykin (1976:ff33, 34) and Thornton & Wilson (1992a:§5.2) 
claim that dividend growth is in line with lagged salary inflation. Wilkie (1995:§5) obtains 
strong evidence on U.K. data that wages and dividends are co-integrated: the difference be-
tween log dividend and log wages is stationary. This is usually justified by the theory that 
macro-economic Gross Domestic Product (GDP) growth must be shared by labour (in the 
form of wages) and capital (in the form of dividends) according to stable long-term propor-
tions. Increases in productivity are therefore supposed to be reflected in a balanced way in 
both wage inflation and dividend growth. It is accordingly held that equities are a suitable

A sset Return—Inflation Linkage
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investment to meet salary-related pension liabilities in the long term.
This is subject to considerable controversy, however, on the grounds that economic growth 

may arise from inward investment from foreign corporations for example. Exley et al. (1997) 
contest the link between dividend and salary growth for another reason. They examine the 
share of Gross Domestic Product between dividend and wages in the U.K. and conclude 
that small changes in wages, as a proportion of total wages, are balanced by much larger 
changes in dividends, as a proportion of total dividend, because dividends represent a much 
smaller share of national income than wages. Exley et al. (1997) favour the arguably more 
stable relationship between salary inflation and price inflation plus an estimated real salary 
inflation component. This argument has important consequences for the determination of the 
strategic investment policy for a final-salary plan (see §4.3.4) and specially for the valuation 
of salary-related liabilities (in the choice of valuation discount rate) (see §5.2.1).

Investm ent Return and Discount Rate Valuation Assum ptions

The custom in many pension fund valuations is not to differentiate between the discount 
rate and investment return assumptions. A single assumption is made covering both and 
it is often referred to as a ‘valuation rate of interest’. I avoid use of this term as it is 
confusing on several counts, one of which is that it is only indirectly related to economic 
interest rates, and another being that it does not distinguish between the discount rate and 
the investment return assumptions. Strictly, the discount rate refers to the rate used to value 
liabilities, whereas the investment return assumption is a ‘best-estimate’ assumption as to the 
long-term return on current and future pension fund assets. A major portion of this thesis 
(Chapter 5) is concerned with the distinction, conceptual and numerical, between them. 
Actuarial Standard of Practice No. 27 of the American Academy of Actuaries (1996:§3.6) 
also distinguishes between the discount rate and the investment return assumption. The two 
assumptions relate to the return on different portfolios of assets: a notional or hypothetical 
portfolio in the case of the valuation discount rate, and the actual and anticipated future 
portfolio of assets held by the fund. The valuation discount rate also incorporates various 
risk-adjustments. This is discussed further in Chapter 5.

At this stage, we note that the investment return for any portfolio of assets comprises 
income from various asset classes as well as capital growth upon trading of these assets. 
In the U.K., the investment return assumption is usually subdivided into a dividend yield 
(representing income) and a dividend growth (representing capital growth). The dividend 
yield is also relevant to the Discounted Income Value placed on assets (see §4.4.1). We also 
note that any estimation of investment return must be consistent with the price and salary 
inflation assumptions. Liability values are particularly sensitive to their relative levels as 
discussed above (§§2.6.1, 2.6.2). The value placed on nominally-fixed liabilities will depend 
on the absolute discount rate assumption, however. Pension liabilities will be conservatively
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estimated (i.e. overestimated) if the discount rate is low.

Asset Return Projection Models

The traditional economic model for stochastic security price behaviour rests on the Effi-
cient Market Hypothesis (EMH). Market efficiency is defined in various ways, but essentially 
means that all information is reflected in security prices on a market so that it is impossible 
to predict future price movements and make abnormal profits. It follows from this that se-
curity prices are martingales: changes in prices must be statistically independent over time. 
Much evidence has been presented, in the financial economics literature, that a random walk 
model can be fitted to security prices, i.e. that the change in share prices is independent 
and identically distributed. Log-normal distributions axe usually chosen because they are 
mathematically tractable and easily estimated. For example, Godolphin [Ford et al. (1980): 
Appendix C] fits a Gaussian random walk to the U.S. Standard & Poor Composite rolled- 
up (i.e. with dividend reinvested) index. Ibbotson & Sinquefield (1993) also examine in the 
form of random walks the rolled-up returns (“cumulative wealth ratios”) on a wide variety of 
U.S. financial data, including common stock and long-dated bonds. Log-normal distributions 
are also commonly assumed in Asset-Liability modelling or stochastic forecasting exercises 
for pension funds [McGill et al. (1996:575), Kemp (1996)]. Other distributions have been 
proposed, including Gamma distributions (Smith, 1996) and the general family of stable dis-
tributions (Finkelstein, 1997) particularly because empirical distributions of share returns 
appear to be more ‘fat-tailed’ than log-normal distributions.

The random walk model has been used in the modelling of pension funds particularly 
because it is a tractable model for describing the investment of total fund assets. Both 
Wise (1984) and O’Brien (1986) use a Gaussian random walk in simplified mathematical 
models for pension fund investment. Knox (1993) assumes that the rate of return net of 
price inflation is independent and identically distributed over time. Pension fund investment 
return, net of salary inflation, is assumed to be independent and identically distributed over 
time by Dufresne (1986, 1988, 1989), Cairns (1994), Haberman (1992a, 1993, 1995) and Sung 
(1997), among others. In Asset-Liability modelling, Kemp (1996) also favours independent 
and identically distributed rates of return on various (contemporaneously correlated) asset 
classes, including equities and real-return as well as conventional U.K. government bonds 
(gilts), mainly on account of market efficiency.

Some evidence has accumulated more recently regarding the inappropriateness of random 
walks over long periods. Fama & French (1988) report that negative autocorrelation can be 
detected in returns over long periods, induced by some mean reversion in stock prices. Panjer 
& Bellhouse (1980) find that a number of financial variables, from Moody’s and Standard 
&; Poor’s data on interest rates and equity dividend yields in the U.S., may be modelled as 
stationary autoregressive processes. Godolphin [Ford et al. (1980): Appendix C] fits both a
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stationary autoregressive process of order 7 (AR(7)) and a moving average process of order 
2 (MA(2)) to rolled-up returns from the U.K. de Zoete (now BZW) equity index. Vector 
autoregressive models (VAR(l)) incorporating various economic variables are also fitted by 
Sherris (1995) and Kleynen (1997) and used in pension fund modelling. Frees (1990) also 
models the log annual returns of the Salomon Brothers Bond Index as both MA(1) and AR(1). 
Such auto-correlated models run counter to market efficiency arguments. Frees (1990) justifies 
consideration of such models because

“when examining the microstructure of investments, returns will follow a martin-
gale plus some corrupting influences. It is posited that the corrupting influences 
account for the observed autocorrelations of returns.”

Wilkie’s (1987, 1995) model is perhaps the most commonly used in stochastic pension 
fund projections in the U.K. It consists essentially of autoregressive time series. Variables 
are ordered into a cascade structure and defined in terms of lagged values of themselves or a 
variable of lesser order. The residuals are independent and identically normally distributed. 
Ordinary Least Squares estimates are obtained for the parameters. Wilkie (1995) also uses 
vector autoregression (VAR) and co-integration. One of the discerning features of Wilkie’s 
(1987, 1995) model is that equity dividend yields and dividend growth are modelled separately, 
in contrast to most econometric and earlier actuarial models. This is reasonable since equity 
investment return consists of the two distinct processes of capital growth and dividend income.

Wilkie’s (1987) log dividend yield model consists of an AR(1) component, so that there is 
dependence on past dividend yields, and a proportion of the current force of price inflation, 
with an increase in price inflation (leading to higher interest rates) causing the share yield 
to increase as well. His log dividend growth model comprises three components: a moving 
average MA(1) component (share dividends are influenced by past dividends); a proportion 
of current price inflation and an exponentially weighted average of past and current price 
inflation (an increase in price inflation leads to an equal percentage growth in the share 
dividend gradually, with the dividend being sensitive to current as well as past price inflation); 
and a proportion of the lagged residual from the share yield series (increases in share dividends 
are usually forecast by the market so that they are preceded by an increase in share price 
and hence the dividend yield decreases). Wilkie (1987, 1995) also models long-term interest 
rates by using yields on a British irredeemable gilt (Consols 2.5%). His model of long-term 
interest rates consists of: an exponentially weighted moving average of past and current price 
inflation, which stands for market expectations of price inflation which, by the Fisher relation, 
sire reflected in gilt yields; a stationary AR(3) (simplified to an AR(1)) component, so that 
there is dependence on past interest rates; a proportion of the residual from the share yield 
series, describing the dependence of the equity dividend yields on market discount rates, 
which depend on investors’ borrowing rates (short-term rates) which are themselves reflected 
in long-term interest rates. Various other asset classes, including short-term gilts and property
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which are relevant to pension fund investment, are considered by Wilkie (1995).
There are certain problems associated with using Wilkie’s (1995) model in pension fund 

projections:

1. The model comprises scores of parameters and is not parsimonious [Kemp (1996:^5.6), 
Huber (1996)] which renders its application, especially in mathematical models, difficult.

2. Economic theory suggests that there may be statistical dependence between dividend 
growth and salary inflation through improvements in productivity. No measure of pro-
ductivity, which influences both salary inflation and dividend growth, has been included.

3. Wilkie’s (1995) model is meant to give a reasonable fit to the data (while not being 
devoid of economic content). Huber (1996, 1997) nevertheless criticises the statistical 
fit of Wilkie’s (1995) model to actual data and argues that the dividend growth and 
long-term interest rate models appear to be over-parameterised.

4. The model seeks to retain a degree of economic realism (and thereby does not fully 
adhere to statistical considerations of investment data). However, it conforms neither 
to the efficient market hypothesis, nor to the rational expectations hypothesis, nor to 
aspects of portfolio theory [Huber (1996:76-81)].

5. The model is concerned with investment performance over the long term. Although 
short-runs of the model are very similar to random walks [Wilkie (1987, 1995:§§4, 5)], 
in the longer term mean-reversion means that the model is inconsistent with market 
efficiency. It is theoretically possible, by virtue of mean reversion, to make abnormally 
large profits without much risk and dynamic investment strategies cannot be devised 
(Kemp, 1996).

2.7 Valuation and Projection Assum ptions in Our M odel

A number of simplifying assumptions are made in the mathematical model used subse-
quently in this thesis. Many of these assumptions are either implicit or are explicitly stated in 
the models of Trowbridge (1952), Bowers et al. (1976, 1979), Dufresne (1986) and Benjamin 
(1989).

M odelling Assum ptions. A set of simple modelling assumptions are required first and 
foremost.

Mo d e l l in g  As s u m pt io n  2.1 (In c id e n c e  o f  c a s h  f l o w s )
Contributions c(t) are paid into the fund and benefits B (t) are paid out at the start o f year 
(t, t +  1). The rate o f return (net of salary inflation) during the year, based on market values 
of assets, is i(t +  1).
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Modelling Assumption 2.1 concerns the timing of cash flows in and out of the pension fund: 
discrete-time processes are involved.

M o d e l l in g  As s u m pt io n  2.2 (In it ia l is a t io n )
The initial fund level is known with certainty, /(0) =  /o w.p. 1.

Mo d e l l in g  As s u m pt io n  2.3 (In v a r ia n c e  o f  v a l u a t io n  b a s is  a n d  m e t h o d s )
All actuarial valuation procedure and assumptions (including the valuation discount rate) are 
assumed fixed in time.

The assumption of a static valuation method and basis as in Modelling Assumption 2.3 is 
strictly maintained. Actuarial valuation assumptions change slowly in practice.

Mo d e l l in g  As s u m pt io n  2.4 (‘Re a l ’ m o n e t a r y  q u a n t it ie s )
All economic and financial quantities, including benefits, salaries, asset values, actuarial 
present values of benefits, rates of return and discount rates, are assumed to be net of general 
economic salary inflation.

In the rare occasions where the above assumption is relaxed, it will be signalled that ‘nominal’ 
quantities are being considered.

Mo d e l l in g  As s u m pt io n  2.5 (In t e r v a l u a t io n  p e r io d )
Valuations are effected at regular time intervals of one time unit.

This assumption is enforced throughout.

M o d e l l in g  A s s u m pt io n  2.6 (P e n s io n  f u n d in g  m e t h o d )
The pension funding method or actuarial cost method employed is a consistent method in 
that it does not generate actuarial gains or losses when all assumptions are exactly realised. 
It is also an ‘individual’ method in that actuarial present values for the plan are the sum total 
of actuarial present values for individual plan participants.

Pension funding methods, including ‘aggregate’ ones, are discussed in Chapter 3. 

Mo d e l l in g  As s u m pt io n  2.7 (As s e t  v a l u a t io n )
The assets o f the pension fund are readily marketable and their market value is f( t) .

The use of an actuarial value F (t) is considered in Chapter 4.

Plain Assum ptions. A simple model pension plan is hypothesised.

P l a n  A s s u m pt io n  2.1 (De c r e m e n t s )
The plan has a single entry age a and a single retirement age r. There are no decrements 
other than retirement (at age r) and mortality.

All pensioners are credited with r — a service years.

39



P l a n  A s s u m pt io n  2.2 (Sa l a r y )
All active members receive the same salary increasing in accordance with a promotional salary 
scale and general economic in f at ion.

See Valuation Assumption 2.3 below concerning the salary scale.

P l a n  A s s u m pt io n  2.3 (Be n e f i t s )
Only a retirement benefit, effectively a whole-life annuity, is paid. Benefts accrue at an 
accrual rate b, such that a pension equal to fraction b o f fna l salary is paid for each year of 
service.

P l a n  A s s u m pt io n  2.4 (Be n e f it  in d e x a t io n )
Benefts in payment are indexed with economic wage infation.

Partial indexation of benefits with price inflation is a statutory requirement in a few juris-
dictions and a commitment to complete indexation is sometimes made. This is likely to 
become more common with real-return securities being issued and traded in several coun-
tries. Political arguments are made regarding the indexation of certain state pensions with 
wages. Plan Assumption 2.4 is therefore unusual but theoretically plausible and mathemati-
cally convenient. A consequence of the provision of final-salary wage-indexed benefits (Plan 
Assumption 2.3) and the measurement of ‘deflated1 quantities (Modelling Assumption 2.4) is 
that inflation may be ignored [Dufresne (1986), Haberman (1994b)].

P l a n  A s s u m pt io n  2.5 (St r ic t l y  d e f in e d  b e n e f i t s )
Plan beneft rules do not change and no discretionary or ad hoc beneft improvement is allowed 
(except for indexation).

Plan Assumption 2.5 implies that a strictly defined benefit pension plan is posited. This is 
not always the case in practice. The option-like feature of an enhancement to plan members’ 
benefits is disregarded. Control through ‘benefit policy’ is therefore disallowed (§2.3.2).

Valuation Assum ptions. The following valuation assumptions are made.

Va l u a t io n  A s s u m pt io n  2.1 (In f l a t io n )
Infation on benefts is the same as infation on salaries. No valuation assumption as to 
economic price infation is necessary. No valuation assumption as to absolute level of wage 
infation is necessary.

This is a consequence of Plan Assumptions 2.3 and 2.4. The relative levels of investment 
return and wage inflation, rather than the absolute level of wage inflation, is material.

Va l u a t io n  A s s u m pt io n  2.2 (Va l u a t io n  d is c o u n t  r a t e )
The valuation discount rate net of salary infation (iv) is equal to the long term mean rate of 
return net o f salary infation, i.e. iv =  E i(t) = i.
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The assumption that the valuation discount rate equals the rate of return on the fund is 
discussed in Chapter 5.

Va l u a t io n  A s s u m pt io n  2.3 (Mo r t a l it y )
Mortality is assumed to be contingent as per a life table {o < x < w : lx} that incorporates a 
salary scale (i.e. ifl'x is the standard survival function and sx represents a salary scale, then 

lx = Sxlx)-

As a result of plan assumption 2.1, no valuation assumption regarding withdrawal rates, 
disability, early retirement etc. is required.

Projection Assum ptions. The actual experience will generally differ from the actuarial 
assumptions chosen at valuation. We simplify considerably by establishing the following 
projection assumptions for future experience.

P r o j e c t io n  A s s u m pt io n  2.1 (Ex pe r ie n c e )
Actual experience is in accordance with actuarial valuation assumptions except for the rate 
of investment return (net of salary inflation).

The only source of unexpected experience and hence of actuarial gains and losses is through 
pension fund investment. The fact that investment return is the most important factor affect-
ing pension funding is well-known and documented [Thornton & Wilson (1992a), Winklevoss 
(1993:213), McGill et al. (1996:574)] and justifies Projection Assumption 2.1.

In order to look at the variation in membership size and age distribution, a population 
distribution function g(t) as defined hereunder is needed. It is the discrete-time equivalent 
of the population density function g\(t) of Bowers et al. (1976). The population distribution 
function g{t) is defined such that the size of the membership aged x at time t is g(t + r — x)lx . 
r is the retirement age and the number of members retiring (aged r) at time t is g(t)lT.

P r o j e c t io n  As s u m pt io n  2.2 (Me m b e r s h ip)
The membership is stationary (deterministic) from the start such that the population distri-
bution function g(t) is constant Vi.

This assumption is modified in Chapter 3.
Finally, an assumption as to investment return is required.

P r o j e c t io n  As s u m pt io n  2.3 (In v e s t m e n t  r a t e  o f  r e t u r n )
The real rate of return i(t) is a sequence of independent and identically distributed random 
variables. Ei(t) =  i > —100%. Vari(f) — u2 < oo.

Rates of return are also assumed to be serially dependent when simple mean-reverting 
rates of return are studied in Chapter 3. Projection Assumption 2.3 may be justified on four 
levels:
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1. It accords with the Efficient Market Hypothesis (§2.6.3).

2. Smith (1996:§3) notes that it is prudent not to model market inefficiencies because if 
these inefficiencies are absent, or change or disappear over time, then incorrect decisions 
may be made with potentially damaging consequences.

3. The aim of projecting the state of the pension fund stochastically is not necessarily 
to forecast the finances of the pension plan, but instead to test and investigate the 
behaviour of the pension fund system as a consequence of economic variability and 
investment in volatile capital markets. Projection Assumption 2.3 is a simple way 
of introducing volatility in actuarial models. Frees (1990) views the assumption of 
independent and identically distributed rates of return as

“a useful modification of the traditional deterministic [rate of interest]. This 
modification permits volatility of interest rates in the model.”

4. It is a simple assumption that allows for mathematical tractability, parsimony and a 
search for optimality and robustness (§1.2) in the pension fund model. Haberman & 
Wong (1997) note that

“In reality the rate of investment return is not deterministic, nor does it 
follow any known stochastic model so that future returns can only be partially 
predicted. [ . . .  ] The representation of these economic variables is a difficult 
problem for the actuary to determine on a regular basis.”

Simple models are acceptable because, according to Huber (1996:49),

“As all models are controversial, an alternative approach is to select the most 
general mathematically tractable model that is broadly consistent with fi-
nancial economic theory. Until an empirically adequate and theoretically 
consistent model is discovered, these hypothetical models are often the most 
pragmatic alternative.”

2.8 Summary

This section summarises some of the major points made in this chapter. The nature of 
defined-benefit pension funding is explored. A pension fund is viewed as a financial system 
that is set up to achieve a range of objectives. Some of these objectives are enforced by statute 
or regulations. Two long-term objectives stand out and are associated with the motivation 
for advance funding of pension benefits: benefits must be secured through the accumula-
tion of assets, and the contributions required from sponsors must be stable and predictable. 
Furthermore, limited flexibility in the timing of these contributions is advantageous.
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Regular actuarial valuations are likened to exercises in the control of pension funds to 
achieve these objectives. Actuaries exercise control by determining a funding policy through 
the choice of suitable funding methods, valuation bases, valuation methods and contributions 
as well as by influencing strategic asset allocation. This control is necessary to mitigate 
the effects of the uncertain economic and demographic environment in which pension plans 
are set up. Projections or forecasts for pension planning are based on basic economic and 
demographic theory, some elements of which are discussed in §§2.5 and 2.6. Economic price 
and wage inflation are particularly relevant in final-salary plans, whether benefits are indexed 
with inflation or are enhanced on a discretionary basis. The relationship between returns on 
several classes of assets and (price and wage) inflation is crucial and is also discussed.

Finally, a simplified pension fund model is set up to explore various aspects of the dy-
namics and actuarial control of pension funds. The model is justified by the Efficient Market 
Hypothesis, but is primarily designed to achieve parsimony and mathematical tractability.
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Chapter 3

M ethods of Funding

3.1 Funding M ethods

3.1.1 P en sion  Funding M eth od s

A “pension funding method” or “actuarial cost method” is a systematic way of accumu-
lating funds to provide retirement benefits. It is essentially a plan for the orderly substitution 
of contribution by investment income [Trowbridge & Farr (1976:19)]. Trowbridge (1952) also 
defines a pension funding method very generally as “the budgeting scheme or payment plan 
under which the benefits are to be financed.” Pension funding methods determine the extent 
to which investment income is required as against contributions, i.e. the degree of advance 
funding sought. A pension funding method defines a subset of the pension liabilities for which 
assets should be held. Investment return from these assets together with contributions go to 
meet the liabilities as and when they are due.

An infinite number of funding methods may be devised but the patterns of contributions 
and funding levels they generate must be consistent. The actuarial present value of any 
portion of the pension liabilities may be calculated: this is the discounted present value of 
the liability cash flow stream, allowing for mortality and other contingencies. At any point in 
time, over the set of all plan members (i.e. assuming a ‘closed group’), the actuarial present 
value of future contributions together with the fund already built up should equal the actuarial 
present value of future benefits (as well as expenses). In addition, for any ‘individual’ funding 
method (see below), this equation of value, or actuarial equivalence principle, should hold for 
every single plan member.

The classic papers of Trowbridge (1952) and Seal (1952) include classifications and dis-
cussions of many of the actuarial cost methods allowed by the U.S. Internal Revenue Service 
and in use by U.S. pension actuaries at the time. Since then, pension funding methods have 
been classified and codified several times in several places. For the terminology promoted by 
the professional bodies, see Actuarial Standard of Practice No. 4 of the American Academy of
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Actuaries (1993) and Guidance Note 26 of the Manual of Actuarial Practice of the Institute 
and Faculty of Actuaries (1997b). McGill et al. (1996) have devised a different terminology.

Pension funding methods are also described and discussed by several authors, notably 
Paquin (1975), Trowbridge & Farr (1976), Bowers et al. (1976), Dufresne (1986, 1994), Berin 
(1989), Anderson (1992), Winklevoss (1993) and Aitken (1994). Colbran (1982), Turner et al. 
(1984) and O’Regan Sz Weeder (1990) take a U.K. perspective on the subject. Accordingly, 
I will not describe the various pension funding methods here, but I will emphasise certain 
relevant overriding features. The classification of pension funding methods in terms of these 
characteristics is principally due to McGill (1964) [see also McGill et al. (1996) and Winklevoss 
(1993)].

Projected v. Accrued Benefit M ethods. The retrospective, or accrued benefit, or ben-
efit allocation, or fund approach first defines the liabilities that should be funded in terms of 
the benefits (based on projected final salary or current salary) that have accrued to members 
in respect of past service. This defines an actuarial liability or standard fund as a retrospective 
reserve. The normal cost or standard contribution for a given year is then found by means 
of the actuarial equivalence principle as the actuarial present value of future benefits less this 
reserve, which turns out to be the actuarial present value of benefits earned during the year. 
Benefit is therefore assigned or allocated to each service year. Thus, “an accrued benefit cost 
method is a method which endeavours systematically to match pension costs [contributions] 
with the year in which each pension benefit is presumed earned or in which it ‘accrues’ ” 
(Paquin, 1975). Examples of such funding methods are the Projected or Current Unit Credit 
methods. The Unit Credit family of methods is described in §3.1.2.

Alternatively, a prospective, or projected benefit, or cost allocation, or contribution ap-
proach may be taken. This requires a definition of standard contribution or normal cost 
based on the benefits which members are projected to receive. A level standard contribution 
(typically as a percentage of payroll) may be determined for each year of service. ‘Cost’ 
(or contribution) is therefore allocated to each service year. The actuarial liability is then 
the prospective reserve equalling the difference between the actuarial present value of future 
benefits and the actuarial present value of future standard contributions. Examples of such 
funding methods are the Aggregate and Entry Age Normal methods (see §3.1.2).

Individual v. Aggregate Approach. Some pension funding methods compute an actu-
arial liability and a normal cost for each individual plan participant and they are then added 
up to give totals for the plan membership. Such ‘individual’ methods may follow either the 
accrued benefit or projected benefit approach. Examples are the Entry Age Normal and the 
Unit Credit methods. Other methods do not ascribe the normal cost and actuarial liability 
to individual plan participants and are said to follow an ‘aggregate’ approach. They follow 
the ‘projected benefit’ approach. Examples are the Aggregate or the Frozen Initial Liability

45



methods.

Actuarial G ains/Losses and Supplementary Contributions. The demographic and 
financial assumptions that are made to calculate actuarial present values are unlikely to be 
borne out in reality. Gains or losses will emerge at successive valuations and will need to 
be adjusted for. In addition, there may be initial unfunded liabilities to be amortized. The 
‘aggregate’ methods adjust contributions implicitly as surpluses or deficits emerge. They are 
also called ‘spread gain’ cost methods. The ‘individual’ methods require separate, explicit 
adjustment to the contribution as gains/losses or surpluses/deficits arise. They are known as 
‘immediate gain’ cost methods (Berin, 1989). Methods of calculating supplementary contri-
butions to adjust explicitly for gains/losses are a central topic of this chapter.

Initial Unfunded Liability. Some actuarial cost methods distinguish initial unfunded li-
abilities from surpluses/deficits that arise from unpredicted experience and deal with them 
separately (e.g. the Frozen Initial Liability method), whereas others do not (e.g. the Aggregate 
method). This point is stressed by McGill et al. (1996) who classify pension funding meth-
ods according to whether they are ‘with supplemental liability’ (if an explicit adjustment 
for initial unfunded liabilities as well as experience surpluses/deficits is made) or ‘without 
supplemental liability’ (if the adjustment for initial unfunded liabilities as well as experience 
surpluses/deficits is implicit).

Internal Consistency. Any funding method that does not satisfy the actuarial equivalence 
principle is inconsistent in that the contributions it requires are not compatible with the level 
of funding sought. Actuarial gains/losses continually emerge and the pension fund is not 
in financial balance and exhibits a persisting surplus or deficit. The U.S. Internal Revenue 
Service requires the use of a “reasonable funding method” which it defines as a method that 
generates no gain or loss and stable contributions if actuarial assumptions turn out to be 
correct. Any such method is said to satisfy a “zero-gain criterion” by Sharp (1996), and to 
be “conditionally consistent” and “well-defined” by Shapiro (1983).

3 .1 .2  Som e P en sion  Funding M eth od s

Precise definitions of various funding methods are given in Actuarial Standard of Practice 
No. 4 of the American Academy of Actuaries (1993) and Guidance Note 26 of the Manual of 
Actuarial Practice of the Institute and Faculty of Actuaries (1997b).

M odel Plan

The operation of most pension funding methods can be effectively illustrated using a simple 
model. The simple model of §2.7 is assumed, with the exception of Projection Assumption 2.2:
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suppose that the plan membership aged x  at time t is git + r — x)lx . where g(t + r — x) may 
be time-variant. Recall from Plan Assumption 2.1 and Valuation Assumption 2.3 that all 
plan members enter at age a, retire at age r with the survivorship function {lx} defined 
according to an actuarial life table incorporating a salary scale (the life table terminates at 
age w ). A pension equal to a fraction b of final salary is paid for each year of service to plan 
members when they reach age r. We also make a somewhat sweeping assumption concerning 
salary inflation by operating under Plan Assumptions 2.3 and 2.4. There is no difficulty in 
introducing inflation when describing pension funding methods, as Dufresne (1986, 1994) and 
Winklevoss (1993) among others show. All monetary terms hereunder axe assumed to be net 
of salary inflation (Modelling Assumption 2.4). Finally, assume that all working members of 
the pension plan earn a salary s (net of salary inflation) (Plan Assumption 2.2).

The benefit received by a member aged x  is

B X

0 a < x < r — 1

sb(r — a) x  > r.

Total benefits paid out to retired members in year (t, t +  1) equal

W

B(t) = g(t +  r  -  x)lxsb(r -  a).
x=r

(3.1)

(3.2)

The actuarial present value of the benefit that an active member aged x < r who joined the 
plan at age a is projected to receive is sb(r — a)r_x\ax. The actuarial present value of the 
benefit he has accrued is sb(x — a)r_x\ax. The actuarial present value of the benefit for a 
retired member aged x > r with exactly r — a years of service is sb(r — a)ax . The actuarial 
present value of benefit outgo from year t onwards for the current plan membership is

r—1 w

P V B (t) = g{t + r — x)lxsb(r — a)r_x\ax +  g{t +  r — x)lxsb(r — a)ax (3-3)
x—a x=r

U n it C re d it M ethods

The Unit Credit family of methods is the most common in use. A mathematical demon-
stration of the method is given by Trowbridge (1952), Bowers et al. (1976) and Dufresne 
(1986, 1994). The difference between the Projected and Current Unit Credit methods lies in 
the treatment of salary inflation, which is ‘assumed away’ in the simplified model plan.

The actuarial liability for a member aged x  is defined under the Unit Credit pension 
funding method as the actuarial present value of the benefit he has accrued to date. Therefore,

AL u c  =
X

sb(x Cl)r—x |dx) 
sb(r -  a)ax,

a < x  < r — 1, 

x > r.
(3.4)
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The actuarial equivalence principle applies to each plan participant for an ‘individual’ 
funding method, i.e. the actuarial present value of benefits less the actuarial present value of 
future normal contributions must equal the reserve. For any plan member aged x,

f v y~xNCy +  ALX =
y - x

sb(r — a)r_x\ax, a < x < r — 1, 

sb(r — a)ax, x > r.
(3.5)

Contributions are not paid for retired members and for a plan member aged x > r the normal 
cost is clearly zero, since ALX =  sb(r — a)ax. For a plan member aged a < x < r — 1, it 
is easy to show that equation (3.5) with ALX = sb(x — a)r_x\ax takes NCX = sbr_x\ax as 
solution (noting that r- x-i\dx- \v lx+\ / lx = r_I | ax). The normal cost for an individual aged 
x  is therefore equal to the actuarial present value of the benefits he accrues during the year:

NCx c  =
a < x  < r — 1, 

x > r.
(3.6)

The actuarial liability and normal cost for the plan at time t is (by summing separately 
over the set of active and retired members):

r—X w

A L u c (t) =  ^ 2  g{t + r -  x)lxsb(x -  a)r_x\ax A ^ g i t  + r -  x)lxsb(r -  a)ax, (3.7)
x—d x= r
r — 1

N C u c (t) = ^ g { t  +  r -  x)lxsbT_x\dx. (3.8)
x=a

E n tr y  A ge N o rm a l Method

This is a projected benefit or cost allocation method. The aim of this method is to generate 
a stable contribution for the duration of the working lifetime of a plan member. The normal 
cost or standard contribution for an active plan participant aged a < x < r — 1 is such that

N C x a  x aa— | =  sb(r -  a)r_a]aa (3.9)

and for a retired plan member it is zero.
It is easy to show that the actuarial liability for an active member aged a < x < r — 1, 

from the actuarial equivalence principle in equation (3.5), is a prospective reserve

AL%A = sb(r -  a)r_x\ax -  sb{r -  a) r_Q|aa ax.— j /  aa:̂

=  sb{r -  a) r_x\ax &a. /  'da—  ̂ (3.10)

since r_a\dal T_x\dx =  vx~alr/lx and aQ.p^j =  aa.— \ + ax. ^ \ v x~alr/lx. For a retired member 
aged x > r the actuarial liability is

AL x a  = sb(r — a)ax . (3.11)
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The actuarial liability and normal cost for the plan at time t is thus (by summing separately 
over the set of active and retired members):

r—1

A LEA{t) =  $(* + r ~  x )l^ r -  a) r-x\ax aa— j /
x=a

w
+  ^ 2  9(t + r -  x)lxsb(r -  a) ax,

x—r
(3.12)

r—1
h C EA(t) ~ Y ^ 9 (,t + r - x ) l xs b ( r - a )  r_a|a0/a a:r_a|.

x=a
(3.13)

A ggrega te  M ethod

This method operates in the ‘aggregate’, i.e. over the total plan membership. No actu-
arial liability and normal cost is defined and assigned to individual plan members. A stable 
contribution rate (contribution per payroll) is sought. If the actuarial equivalence principle 
is to hold, then the actuarial present value of future contributions, obtained by applying the 
constant contribution rate to the total future payroll for all members, must equal the actuarial 
present value of benefits less the fund already accumulated.

In the simple model considered here, payroll in year t is

r—1

S ( t ) — + r -  x)lxs (3-14)
x=a

and the actuarial present value of payroll from year t onwards is

r— 1
P V S(t) = J 2 9 ( t  + r - x ) l xs d x — y (3.15)

x=a

(.S (t) and PV S(t) are net of salary inflation in this simple model.) The total contribution 
c(t) required at the beginning of year (f, t +  1) under the Aggregate method is given by

c(t)P VS(t)/S(t) =  P V B(t) -  f{ t). (3.16)

F rozen  In itia l L ia b ility  M ethods

This method is also an ‘aggregate’ one and does not require the development of an actuarial 
liability or of a normal cost. It involves a modification of the previous method. Initial 
unfunded liabilities arise for different reasons than experience surpluses and deficits and may 
be quite large. It is sensible to amortize them over different periods. The initial unfunded 
liability may then be ‘frozen’ and dealt with separately: it is referred to as an ‘initial unfunded 
frozen actuarial liability’. The unfunded frozen actuarial liability may be calculated in the 
same way as under the Entry Age method (in which case the method is known as the Frozen
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Entry Age method) or as under the Unit Credit method (in which case the method is known 
as the Frozen Attained Age method).

The amortization of the frozen unfunded liability u Iq may be effected through a separate 
payment P(t).

p m =
0 < t < n — 1, 

t > n.
(3-17)

In year (t , f+1). the unfunded frozen liability (i.e. the unamortized part of the initial unfunded 
frozen liability) is:

U(t) =
ulQ i|/^n |!

0,

0 < t < n — 1, 

t > n.
(3.18)

The objective of the Frozen Initial Liability methods is that the contributions required 
in addition to P(t) be a stable proportion of payroll every year. The actuarial equivalence 
principle therefore dictates that the fund at hand together with the actuarial present value 
of future contributions in excess of the frozen liability payments be equal to the actuarial 
present value of benefits less the frozen unfunded liability:

[c(f) -  P(t)]PVS{t)/S(t) = P V B (t) -  U(t) -  f( t) . (3.19)

Equilibrium

All consistent funding methods abide by the actuarial equivalence principle. This applies 
at the level of the individual plan member in ‘individual’ methods (equation (3.5)). It also 
applies over the total plan membership, since

W

A L (t) =  T ;  g(t +  r — x)lxALx, (3.20)
x=a

w

NC{t) = J 2 9 ( t  + r - x ) l xN C x, (3.21)
x—a

w
B(t) = ^ g ( t  + r - x ) l xB x. (3.22)

x=a

In the simple model assumed above, it follows that
oo

AL(t) =  ]T (  1 +  i)i_s[5(a) -  N C (s)] (3.23)
$=t

for a plan that never terminates and whose benefits are valued at the valuation discount rate 
i(>  0). Equation (3.23) may be written as

ALlt +  !) =  (! +  i)[AL{t) + N C it) -  B{t)]. (3.24)
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Bowers et al. (1976) refer to this as the “liability growth equation”. It may be shown that it 
holds for ‘individual’ funding methods such as the Unit Credit and Entry Age Normal methods 
[Bowers et al. (1976), Dufresne (1986)].

Consider the pension fund model of §2.7: the idealised situation of a stationary pension 
plan population, as under Projection Assumption 2.2, is now asserted. The size of the mem-
bership at any age x  remains constant over time. Under the individual funding methods, the 
actuarial liability and normal cost over the total plan population axe now constant, say AL  
and N C  respectively. (Replace g(t + r — x) =  g (say) Vi in equations (3.7) and (3.8) or (3.12) 
and (3.13) for example.) Equation (3.23) or (3.24) may then be written as

AL — u(AL  +  N C  — B), (3.25)

where u =  1 +  i, or as

B  = dAL  + NC, (3.26)

where d = i/(  1 +  i). These equations denote a state of financial equilibrium in the pension 
fund: contribution plus the present value of the return on the reserve exactly meet the benefit 
outgo. Trowbridge (1952) describes equation (3.25) as an “equation of maturity”: both the 
plan membership and the pension fund have grown or matured and become stationary.

3.1 .3  Supplem entary Funding M ethods

‘Aggregate’ methods calculate the contribution (or contribution rate) for the pension 
fund directly based on benefits and assets held. The definition of an ‘individual’ funding 
method does not refer to the contributions and fund levels but instead incorporates consistent 
definitions of actuarial liability (or standard fund) and normal cost (or standard contribution). 
These two concepts are broadly analogous to the concepts of ‘actuarial reserve’ and ‘premium’ 
in life insurance mathematics. Descriptions of ‘individual’ funding methods are incomplete 
without mention of supplementary methods that relate the normal cost and actuarial liability 
to the actual contribution and fund levels.

Consider the model described in §2.7, except that the pension plan membership is allowed 
to be time-variant (Projection Assumption 2.2 does not apply). The fund level at the end of 
year (t, t + 1) is related to the fund level, contribution income and benefit outgo at the start 
of the year by

f ( t  +  1) =  u[t +  l)[/(t) + c(t) -  B(t)], (3.27)

where u(t +  1) =  1 +  i(t +  1), where i(t +  1) is the (arithmetic) rate of return earned during 
the year.

The normal cost can be viewed as the “regular contribution” and the actuarial liability as 
the “theoretical level of assets” [Trowbridge & Farr (1976:22-24)] required under a pension
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funding method if all actuarial valuation assumptions are borne out exactly by experience. 
Since assumptions are not likely to hold exactly, regular valuations are required to determine 
the deviations in experience and to adjust contributions accordingly. The normal cost is 
therefore adjusted by an amount adj(t), a function of the experience deviations, to give the 
contribution

c(t) = NC(t) +  adjit). (3.28)

The experience deviations give rise to an unfunded liability or actuarial deficit ul(t):

ul(t) = AL(t) -  f( t) , (3.29)

a surplus being just a negative deficit. Recurrence relation (3.27) may be written in terms of 
ul(t) and adj(t):

ul(t + 1) =  AL(t +  1) +  u(t +  l)[tiZ(i) — adj(t) — AL(t) — N C (t) +  B(t)]. (3.30)

Actuarial losses or gains emerge as experience differs from actuarial valuation assumptions. 
McGill et al. (1996:522) refers to experience actuarial gains and losses:

“Only by coincidence will the actual experience of the plan conform to the as-
sumptions that underlie the actuarial cost estimates. If the experience of the plan 
is financially more favorable than the underlying assumptions, actuarial gains 
emerge. If the experience is financially less favorable than that assumed, actuarial 
losses emerge.”

The loss (or negative gain) l(t) experienced during year (i — 1, f) is the difference between ulit) 
and the unfunded liability (ulA(t)) had all actuarial assumptions held true. Under Projection 
Assumption 2.1, all valuation assumptions are borne out by experience, except investment 
returns. l(t) is therefore termed an asset loss.

ulA{t) =  AL(t -  1) +  u[ul{t -  1) -  adj(t -  1) -  AL(t -  1) -  N C (t -  1) +  B{t -  1)], (3.31)

where the valuation discount rate iv — Ei(t) = i (and u — 1 +  *), in accordance with Valuation 
Assumption 2.2. The actuarial loss experienced during year (i — 1, t) is therefore

l i t) = ul(t) — u[ul(t — 1) — adj(t — 1) — AL(t — 1) — N C (t — 1) +  B (t — 1)] — AL{t — 1).
(3.32)

Projection Assumption 2.2 is now restored. The actuarial liability, normal cost and benefit 
outgo terms are constant in time and the equation of equilibrium (3.25) of Trowbridge (1952)
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applies. Hence, the following equations govern the basic model of §2.7:

f i t  +  1) =  u(t +  l)[/(f) +  c{t) -  B], (3.33)

c(t) — N C  +  adj(t), (3.34)

ul(t) = AL  -  f( t) , (3.35)

ul(t +  1) =  AL + u(t +  1 )[ul(t) — adj(t) — vAL], (3.36)

l(t) =  ul(t) — u[ul(t — 1) — adj(t — 1)]. (3.37)

(v = 1/u — 1/(1 +  i ).)
Actuarial gains and losses emerge as experience deviates from actuarial valuation assump-

tions, as described in the previous section. Actuarial losses increase the unfunded liability 
of the pension plan, whereas gains reduce it. But actuarial losses may also arise for reasons 
other than experience deviations:

Plan inception: Benefits that have accrued before the inception of the pension plan represent 
an unfunded ‘past service liability’.

Plan amendment: If the benefit entitlements of plan members are enhanced (particularly 
restrospectively), this may increase the pension liability of the plan.

Amendment to valuation assumptions and funding method: Bleakney (1972:127) thus refers 
to “actuarial revaluation gains and losses” which “arise when actuarial assumptions are 
changed to reflect a reassessment of anticipated experience.”

An ‘initial’ surplus or deficit in a pension plan, or initial unfunded liability, exists for 
any of the reasons stated above. The initial unfunded liability occurs only at time 0 in our 
model under Modelling Assumptions 2.2 and 2.3. Suppose the initial unfunded liability is 
u Iq = AL — /o- It is paid off explicitly under some funding methods, such as the Frozen Initial 
Liability methods (§3.1.2). In other funding methods, it may be paid off separately by explicit 
contribution payments. The initial unfunded liability is sometimes called a supplemental lia-
bility, to be amortized by explicit supplemental costs or supplementary contributions. Various 
patterns of payments may be employed but usually u Iq is amortized over a period n (say): 
P(t) in equation (3.17) represents the amortization of the initial unfunded liability and U(t) 
in equation (3.18) is the unamortized part of the initial unfunded liability.

The specification of adj (f) in terms of

-  past and present experience deviations, represented either in terms of the actuarial 
losses l(t) or the actuarial deficit ul(t), and

— amortization of the initial unfunded liability u Iq (if any)

completes the definition of the ‘individual’ funding methods. The contribution adjustment 
adj(t) in equation (3.28) or (3.34) is variously known as the supplemental cost (in juxtaposition
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to the normal cost N C(t)) or the supplementary contribution (relative to the standard con-
tribution NC(t)). It is also known as the past-service contribution as it amortizes unfunded 
pension liability accruing for service before time t, whereas the normal cost is sometimes 
termed future-service contribution as it amortizes benefits accruing for projected service after 
time t.

The calculation of the supplementary contribution is crucial to the dynamics of the pen-
sion fund. This is often revealed in stochastic projections or simulations of pension funds. 
Winklevoss (1982:593) finds that the choice of method to fund actuarial deviations is ‘critical!

“The correct treatment of actuarial gains and losses is critical in stochastic simu-
lations because the effect of random fluctuations in salaries and plan assets impact 
on costs through the funding of such deviations.”

There axe various ways of adjusting contributions as experience deviates from actuarial 
assumptions and gains and losses occur. Some of the more common ways of calculating past 
service contributions include:

Amortizing gains and losses over a fixed term. This is studied mathematically by Dufresne 
(1986. 1989) among others (see §3.5).

Spreading surpluses and deficits over a moving term. This is also considered in detail by 
Dufresne (1986, 1988) among others (see §3.2).

Asymmetric spreading of deficits and surpluses. Surpluses and deficits need not be dealt with 
identically. This is a variation on the method above and is investigated numerically by 
Haberman & Smith (1997) (see §5.4).

Contribution holidays. ‘Contribution holidays’ are often taken by sponsors if large surpluses 
are emerging, no benefit improvement is being planned, and maximum surplus revenue 
rules are likely to be breached: it was fairly common practice in the U.K. in the 1980’s.

Immediate cash injection. In some circumstances, gains/losses or surpluses/deficits may be 
removed immediately rather than being amortized gradually.

Ignoring gains and losses if they are within a given corridor. The ‘corridor’ approach is 
taken in various accounting standards, such as the U.S. Financial Accounting Standard 
No. 87 and International Accounting Standard No. 19. Small surpluses and deficits are 
merely carried forward. This is based on the conjecture that gains/losses will cancel 
out without any adjustment if actuarial valuation assumptions are ‘on average’ correct: 
this is investigated by Dufresne (1993, 1995).

Establishing a reserve. The reserving approach is common in jurisdictions where book values 
are used for assets: this may involve an implicit ‘hidden’ reserve [Daykin et al. (1994)] or
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an explicit ‘investment’ reserve. The latter is called ‘buffer capital’ by Kleynen (1997) 
who investigates by simulations how to use it to stabilise contributions and deal with 
surpluses/deficits in a Dutch pension fund. The ‘buffer capital’ is equal to the market 
value less the book value of assets upon which contributions are based. The buffer 
increases by the stock price increase over the year (up to a maximum) when the fund 
performs better than anticipated, while the buffer decreases (to a minimum of zero) if 
the fund does not perform as well and an actuarial loss arises.

3.2 Spreading Surpluses & Deficits over a M oving Term

3.2.1 A  Su pplem entary Funding M ethod

A particular supplementary funding method is examined in more detail in this section. 
This method requires the unfunded liability at time t to be spread into the future, over a 
‘spread period’ of m  thus:

adj(t) = k ul(t), k = l/ojjj|. (3.38)

The annuity is typically calculated at the valuation discount rate. We assume that the same 
spread period is used whether there is a surplus or deficit. In practice, this may not be so. 
Surpluses or deficits are never completely removed except asymptotically as t —» oo as shown 
by Bowers et al. (1979). This is not a drawback because the random nature of experience 
deviations is such that no method completely removes gains and losses over a finite term.

When surpluses and deficits are spread forward as in equation (3.38), then from equa-
tions (3.28) and (3.29), the contribution paid at the start of year (t, t + 1) is

c(f) =  NC{t) +  k[AL(t) -  f(t)\. (3.39)

The following recurrence relations may be set up in terms of the fund level and unfunded 
liability (given equations (3.27) and (3.30)):

/(< + 1) =  u(t +  1)[(1 -  k)f{t)  + N C(t) + kA L (t) -  B{t)}, (3.40)

ul(t +  1) =  AL(t +  1) +  u{t + 1) [(1 -  k)ul{t) -  AL(t) -  NC(t) +  B{t)]. (3.41)

Equation (3.40) may be rewritten as:

t t-1 t
f(t) =  M l - k ) t H u ( j )  +  ^ - k ) t- j - 1[NC(j) +  k A L ( J ) - B ( j )] H  «(r), (3-42)

j =  1 j = 0 T = j - 1-1
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or in terms of the logarithmic rate of return as:

f( t )  = fo il -  k)* exp
t
Ew)
t-1

+ -  k)t~J~1[NC{j) +  kAL[j) -  B(j)] exp
3=0

Y  <5( r )
r = j+ 1

(3.43)

In the basic model of §2.7, the actuarial liability, normal cost and benefit outgo are fixed 
and Trowbridge’s (1952) equation of equilibrium (3.25) holds. Hence, the following equations 
apply:

c(t) = N C  + k{AL — f(t)),  

f ( t  + 1) =  u{t +  1)[(1 -  k)f{t) + { k -  d)AL\, 

ul(t + 1) =  AL + u(t +  1)[(1 — k)ul(t) — vAL],

Equations (3.42) and (3.43) may also be simplified:

t t-1 t
f ( t )  = fo il ~ k)* I ju ( j i )  + AL(k ~  d ) ^ 2 { l  -fe )i-J_1 u(r)

j  =  1 j = 0 T = j + 1

/o (l — kY  exp E«>
3=1

t - 1

+ AL(k  — d) ^ ( 1  — kY  J 1exp ^  5(r)
j= 0  T = j+ 1

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

The method of adjustment defined by equation (3.38) is commonly used in the United 
Kingdom. Turner (1984:21-23) gives an account of typical implementations of this method 
in the U.K. It has been called the ‘Spread’ method, the terminology being borrowed from 
Trowbridge (1952). It does not involve actuarial gains and losses directly but is an indirect 
method or a “spread method of dealing with gains and losses” in the sense that “actuarial 
gains and losses are automatically, and without separate identification, spread” over a future 
period, as McGill et al. (1996:525) explain. In addition, initial unfunded liabilities are not 
treated separately from experience actuarial gains/losses. Bowers et al. (1979) also describe 
this method as “Normal Cost plus Amortization over a Moving Term”.

This supplementary funding method is implicit in the Aggregate actuarial cost method, 
which is itself referred to as a “spread gain valuation” method [Berin (1989:63), Aitken 
(1994:326)]. Under Aggregate funding,

f i t  +  1) =  u(t +  1) [(1 -  S{t ) /PVS(t )) f ( t )  +  PVBi t )  S( t ) /PVS( t )  -  B(t)], (3.49)

(by substituting equation (3.16) into equation (3.27)) which somewhat resembles the funding 
pattern described in equation (3.40) when surpluses and deficits are spread forward. By virtue 
of the assumptions in the simple model of §2.7, the benefit outgo B(t),  the present value of

56



future benefits P V B  it), the total payroll for actives S(t), and the present value of future 
salaries PVS(t)  (inequations (3.2), (3.3), (3.14) and (3.15) respectively) are fixed in time.

f { t  +  1) =  u(t +  1) [(1 -  S / PVS) f [ t )  +  P V B  S / P V S  -  B] , (3.50)

S / P V S  and P V B  S / PVS ,  when the Aggregate funding method is used, correspond precisely 
to k and N C + kA L  respectively when surpluses and deficits are spread forward (by comparing 
equations (3.45) and (3.50)). This point is specifically noted and exploited by Trowbridge 
& Farr (1976:85), Bowers et al. (1979) and Dufresne (1986). Trowbridge (1963) effectively 
considers S / P V S  as a free control parameter for a generalised family of aggregate funding 
methods. The Aggregate method is not pursued here because of this similarity.

It is obvious that the ‘pace’ of funding depends on the period over which payments for the 
unfunded liability are spread into the future. It has also been shown by Dufresne (1988) that 
the choice of this parameter affects the stationarity in the limit of the fund and contribution 
levels.

Two special and simple cases arise. The following observations follow from equation (3.45).

1. Suppose there is an immediate cash injection to pay off the unfunded liability in its 
entirety: m  =  k =  1.

f{t) — vA L uit), t > 1. (3.51)

2. Suppose surpluses and deficits are spread in perpetuity: m = oo, k = d. Only interest 
is paid on the surplus or deficit (A: =  d in equation (3.38)).

f ( t + l )  = f( t )u(t  + l)v, (3.52)
t

f i t )  = fov* 13 u {t ), t > 1. (3.53)
T =  1

Dufresne (1988) derives the following result based on equations (3.44), (3.45) and Projec-
tion Assumption 2.3.

R e s u l t  3.1 Let u =  1 +  i.

Ef i t )  — AL  — uJoM l -  k)]*, (3.54)

Ecit) = N  C + ulo[uil — k)Y, (3.55)

Provided |u(l — k)\ < 1, then

lim Ef i t )  =  AL,t—>00
lim Ecft) =  NC.

i-> oo
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If m  =  1, then k =  1 and E /(i) =  AL for t > 1. If m  = oo, then k =  d and E f ( t )  = fo Vi.
Let q =  Eu(i)2 = u2 + a2. Provided q{ 1 — k)2 < 1, then

lim Var/(t) =  cr2u2AL2/[l — g(l — A:)2] (3.58)
t-AOO

lim Varc(t) =  A:2 lim Var/(i). (3.59)
t—oo

Projection Assumption 2.3 requires that {¿(i)} be a sequence of independent and iden-
tically distributed random variables, so that i(t +  1) is independent of i(t) and of f ( t )  in 
equation (3.45). Solving the difference equation obtained by taking expectations across re-
currence relationship (3.45) yields equations (3.54) and (3.56). The first moment of c(t) is 
obtained from equation (3.44). Equation (3.58) follows by squaring and taking expectations 
across equation (3.45), and solving the resulting difference equation,

V ar/(t +  1) =  q( 1 — /c)2Var/(f) +  <72i;2[E /(i +  l)]2. (3.60)

From equation (3.44), one finds that

Varc(t) =  k2Vaxf(t).  (3.61)

The solution of equation (3.60) is given by Owadally & Haberman (1999):

R e s u l t  3.2 If  surpluses and deficits are spread over m such that {d < k < 1, k ^  1 — u/q,  
k ^  where k^nin — 1 1 /yJq, then

Varf{t)  =  0  +  fi[«(l -  Jfc)]* +  V[u( 1 -  k)]2t -  (0  + Cl +  <F)[g( 1 -  k)2}\  (3.62)

Varc(i) =  fc2Var/(i), (3.63)

where 0  =  a2v2AL2/[l — ^(1 — k)2], Q — —2a2v2ALulo/[l — vq( 1 — A;)], and =  —u Iq . 
If k > kmin, then as t -> oo, Var f(t )  -> 0 . When m  =  1 (k = 1), Var f i t )  — a2v2A L2 
(which is immediately verified from equation (3.51),). When m —> oo (k = d), then Varf ( t )  — 
[(1 +  a2v2y  — l] / 2 and f(t)  is not stationary (as may also be verified from equation (3.53)

The first moment of the funding process is stable if |u(l — k)\ < 1. It can be shown that 
for i > —100%, 0 < u( 1 -  k) < 1 or k > d (Haberman, 1992a), so that as t -» oo, E /(f) —> AL  
and Ec(i) —> NC. This implies that the fund eventually accumulates to meet all pension 
liabilities on average and that the average contribution is eventually equal to the normal cost 
or standard contribution. For stability in the second moments, there exists a maximum spread 
period, corresponding to kmin (i.e. q( 1 — k)2 < 1 for stability). This condition becomes more 
constraining as the variance a2 of the rate of return process increases.

Dufresne (1986) also investigates the funding process when Valuation Assumption 2.2 
does not hold and the valuation discount rate iv is not equal to the long-term mean rate of
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investment return on the pension fund. The equation of equilibrium (3.25) or (3.26) may then 
be written

AL = uv{AL + N C - B ) ,  (3.64)

B = dvAL  +  N C  (3.65)

(where uv = 1 + iv and dv =  iv/( 1 +*„)). Equations (3.33), (3.34) and (3.35) apply verbatim 
while equation (3.36) is modified by application of the equation of equilibrium in (3.64):

ul(t + 1) = AL + u ( t +  l)[u/(i) — adj(t) — vvAL], (3.66)

When supplementary contributions are calculated according to equation (3.38), it follows that

f ( t  + 1) =  u{t +  1)[(1 -  k)f{t) + (k — dv)AL\: (3.67)

ul{t +  1) =  AL  + u{t +  1)[(1 — k)ul(t) — vvAL\. (3.68)

It is straightforward to show that the following result applies (see Dufresne (1986)):

R e s u l t  3.3 Provided |u(l — k)\ < 1, then

lim E /(t) =  AL(dv -  k)/(d -  k),¿->■00
lim Ec(f) =  N C  +  ALkid — dv)/(d — k).t—>00

Provided q( 1 — k )2 < 1, then

r2r 2 

— i*21

lim Varf ( t )  = a2v2AL2[ 1 +  (d — du)/(k — d)]2/[ 1 — q( 1 — fc)2],t—¥ OO

lim Varc(i) =  k2 lim Var/(t).t—>00

(3.69)

(3.70)

(3.71)

(3.72)

3 .2 .2  Efficient Spreading P eriods

Dufresne (1986, 1988) shows that the choice of spread period m is crucial not only because 
it affects the pace of funding and the stationarity of the funding process in the limit but also 
because it influences the tradeoff between the security and stability objectives in pension 
funding. Shorter spreading periods for surpluses and deficits (short m) ought to ensure that 
the funding objective is reached faster, thereby enhancing the security of benefits. But larger 
supplementary contributions are then required from the sponsor as and when gains and losses 
emerge. Dufresne (1986, 1988) shows that, in terms of ultimate variances of the fund and 
contribution levels, the tradeoff between security and stability breaks down for long spread 
periods beyond a certain efficient range of spread periods.

Dufresne (1988) proves the following result.

R e s u l t  3.4 Let m* be such that k* = 1 — 1/q. Assuming q > 1,
*/ kmin < k < k* then limVar/(t) and limVarc(t) decrease with increasing k;
if k* < k < 1 then limVar/(f) decreases and limVarc(i) increases with increasing k.
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Figure 3.1: Profile of variances over time for a pension fund with AL — 1.5, N C  =  0.2, 
i = 3%, a — 0.25. Surpluses and deficits as well as the initial unfunded liability u Iq =  0.5 are 
being spread over period m.

m  and k have a one-to-one inverse relationship (k =  1/d^j-)- A limVarc(i) v. limVar/(f) 
curve therefore exhibits a minimum: see Figure 3.1, which is obtained from equations (3.62) 
and (3.63). For spreading periods m > m* (k < k*), there will always be a shorter spreading 
period for which both lim Var/(i) and limVarc(i) are reduced, and therefore they would be 
“inadmissible” (Dufresne, 1988). Dufresne (1986) describes the range 1 < m  < m* (corre-
sponding k* < k < 1) as an “optimal” range of spread periods.

It is clear that the choice of m  in the efficient range [1, m*] depends upon the balance struck 
among the various stakeholders in the pension planning arrangement between the objectives 
of security (low variance in the fund level) and stability (low variance in the contribution 
level). Dufresne (1986, 1988) lists values of m* for various combinations of {z, a}, the first 
and second moments of the rate of return process. He concludes that under current economic 
conditions, m  £ [1,10] is an efficient range for the spreading period. Thornton & Wilson 
(1992a) recommend short spreading periods to be used in the U.K. partly based on Dufresne’s 
(1988) conclusion.

The feature of an efficient range of spreading periods has been reproduced under more 
realistic investment projection assumptions (see §3.3). Haberman & Smith (1997) use Wilkie’s 
(1987, 1995) model and observe numerically that contribution rate variability decreases and
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then increases as surpluses and deficits are spread over longer periods. But this feature is not 
noted by Bilodeau (1995) who also uses Wilkie’s (1987) model and reports that contribution 
variability decreases as the spreading period increases (spreading periods of only up to 20 
years were considered). Loades (1992), who uses a deterministic model with cyclic rates of 
return and more realistic features, such as variable valuation discount rates (exponentially 
smoothed averages of the rates of return) and a discounted income value of assets, also reports 
that spreading over longer periods decreases the variability of contributions.

The choice of period over which to spread forward surpluses and deficits thus affects:

-  the ‘pace’ of funding,

— the stationarity of the pension funding process in the limit,

— moments and probability distributions of the fund and contribution levels over time,

-  the tradeoff between the objectives of security and stability in pension funding.

Careful consideration should therefore be given to its choice.

3.2.3 D elay, Frequency

Delays in the Valuation Process. For a significant minority of pension plans, especially 
large ones, there may be a delay of up to one year between data collection and publication 
of the valuation report. Haberman (1992a) and Zimbidis & Haberman (1993) investigate the 
effect of such delay by introducing a delay <f> such that

adj(t) =  k ul(t — <fi) (3.73)

It is important to study the effect of delays in the valuation process not just because of 
the accounting and actuarial effort required during a valuation but also because a number 
of actuarial methods (e.g. when calculating contribution adjustment or setting asset values) 
allow the use of delayed information, usually for purposes of smoothing and averaging.

The introduction of delays in the valuation leads to a loss of ‘information’ and this should 
make the system less stable. Haberman (1992a), Zimbidis (1992) and Zimbidis & Haberman
(1993) demonstrate that the ultimate variances of fund and contribution levels are larger as 
the delay 4> increases. They conclude that delays should be avoided as they adversely affect 
both security and stability in the pension fund. In addition, Owadally & Haberman (1999) 
illustrate that delays in the funding process cause

1. the (first and second moment) stability conditions for the fund level to be more con-
strained (i.e. the allowable spread period range is more restricted);

2. the various moments to exhibit possible oscillatory behaviour (on average, there may be 
a succession of surpluses and then deficits) for certain spread periods, indicating that 
f ( t )  and c(t) do not converge ‘smoothly’ to certain probability distributions in the limit.
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If there are long delays in the pension funding process, oscillations in the first and other 
moments of the fund level mean that the pension system is less ‘stable’. The actuary has less 
control and it becomes more difficult to judge fund solvency and recommend a contribution 
rate. The fact that delays cause instability in actuarial systems is well-known as Balzer 
& Benjamin (1980) show in an insurance system with delayed profit/loss-sharing feedback. 
Balzer (1982) and Taylor (1987) also examine delays in a range of actuarial systems.

Frequency of Valuations. An issue related to delayed information is the frequency of 
pension fund valuations. Because of the long-term liabilities of a pension plan and the com-
plexities and expense of its valuation, triennial valuations were until recently the norm in the 
U.K. Valuations are performed every year in the U.S. Even though they may be infrequent, 
valuations are performed regularly, as required by statute. Haberman (1993) investigates the 
effect of frequency of valuation on the pension fund and finds that less frequent valuations 
lead to more variable contribution and fund levels. Haberman & Smith (1997:§10) also apply 
Wilkie’s (1995) stochastic asset model and simulate the effect of a change in the frequency 
of valuations. They also conclude that less frequent valuations increase the variability of 
the pension funding process. Although it has sometimes been argued (Cronquist k. Dreher, 
1972) that triennial valuations are more efficient on the basis of expense, actuarial practice 
tends to more frequent annual valuations. Grubbs’ [Cronquist & Dreher (1972): discussion] 
views confirm that more effective ‘control’ of pension funds may be achieved with frequent 
valuations:

“Actuarial valuations serve as a guide to steer one’s course toward the objective 
of meeting eventual benefit payments. [ . . .  ] The more frequently [valuations are 
undertaken], the less violent the changes in course that will be required. One 
objective of employers is to have pension costs which will remain relatively stable 
as a percentage of compensation if the plan is related to pay, or as a cost per 
employee if the plan is not related to pay. More frequent valuations serve this end 
a little better.”

3 .2 .4  E xp lic it A m ortiza tion  o f In itia l U nfunded  L iability

When surpluses and deficits are spread forward (as in equation (3.38)), initial unfunded 
liabilities are not treated separately from experience actuarial gains/losses. This appears to 
be usual practice in the U.K. but not in North America. There axe several reasons why initial 
unfunded liabilities ought to be explicitly and separately amortized:

1. Initial unfunded liabilities may exist at plan inception or may arise as a result of an 
amendment to pension plan benefits or to valuation methods and assumptions (§3.1.3). 
The sources of initial unfunded liabilities are of an entirely different nature from ex-
perience gains and losses. They are likely to be ‘one-offs’ unlike random experience
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deviations. There is no reason to treat initial unfunded liabilities like experience gains 
and losses.

2. Both the U.S. Employee Retirement Income Security Act. 1974 (ERISA) and the Cana-
dian Pension Benefits Standards Act, 1985, allow initial unfunded liabilities to be amor-
tized over different schedules than experience gains and losses. (Some accounting stan-
dards, like the Financial Accounting Standards No. 87 (FAS87) also allow separate 
amortization of “prior service cost” arising from plan amendments etc.)

3. Finally, amortizing initial unfunded liabilities over a different period provides more 
“funding flexibility”, as pointed out by McGill et al. (1996:546), since this period can 
be varied (within set maximum limits). Snelson (1970:^21) specifies that the ‘pace 
of funding’ depends not just on the funding objective defined by a particular funding 
method, but also on the period over which initial unfunded liabilities are being de-
frayed. Suitable amortization periods for initial unfunded liabilities are discussed in 
several papers in the early actuarial literature on pension mathematics (see Shapiro, 
1985). (Hagerman & Zmijewski (1979) investigate the choice of periods over which U.S. 
corporations amortized initial unfunded liabilities for accounting purposes at a time 
when accounting standards allowed flexibility in this respect.)

A simple variation on the method of equation (3.38) that allows explicit amortization of 
initial unfunded liabilities is now described (Owadally & Haberman, 1999). Initial unfunded 
liabilities are amortized over a fixed term and the excess of any subsequent actuarial deficit 
over the unamortized part of the initial unfunded liabilities is spread over a moving term:

adj(t) = k[ul(t) — U(t)\ + P(t), k = l/djn\, (3.74)

and the contribution recommended by the actuary at the start of year (t, t +  1) is therefore 
(from equation (3.34)):

c(t) = N C  + k[ul(t) -  U(t)] +  P(t). (3.75)

This method is implicit in Frozen Initial Liability methods (§3.1.2) but does not appear to 
be used with individual actuarial cost methods. The amortization payment P(t) and the 
unamortized part of the initial unfunded liability U(t) are calculated as in equations (3.17) 
and (3.18) respectively. The initial unfunded liability is amortized over n years whereas deficits 
in excess of the unamortized part of the initial unfunded liability sire spread forward a rolling 
term of m years. In the U.S. Employee Retirement Income Security Act, 1974 (ERISA), P(t) 
in equation (3.17) is termed an amortization credit when positive and an amortization charge 
when negative.

A recurrence relation may be set up in terms of the fund level by substituting equa-
tion (3.74) into equations (3.33) and (3.34) and using the equation of equilibrium (3.26):

f ( t  +  1) =  u{t + 1)[(1 -  k)f(t)  + { k -  d)AL +  P{t) -  kU{t)\. (3.76)
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Now consider the Frozen Initial Liability pension funding methods. By virtue of the 
assumptions in the simple model of §2.7, the benefit outgo B(t),  the present value of future 
benefits P V B ( t ), the total payroll for actives S(t), and the present value of future salaries 
PVS( t )  are time-invariant. The contribution c(t) in equation (3.19) may be substituted into 
equation (3.33) to give

f ( t  +  1) =  u(t +  1)[(1 -  S / P V S ) f { t ) +  (PVB S / P V S  -  B)  +  P{t) -  (S/PVS)U{t )].
(3.77)

There is an obvious similarity between equations (3.76) and (3.77) and S / P V S  corresponds 
precisely to k. The Frozen Initial Liability methods implicitly employ a form of surplus/deficit 
spreading with initial unfunded liability amortization.

Owadally & Haberman (1999) obtain the first and second moments of the fund and con-
tribution level when supplementary contributions are calculated according to equation (3.74):

P r o po s it io n  3.1 For n < oo,

e  m  =
AL u Iq dn_i|/o ri|, 

AL,

0 < t < n

t > n ,
1,

E c(t) =
N C  + ulo/an\, 

NC,

0 < t < n -  1, 

t > n.

(3.78)

(3.79)

I f n =  oo, then Ef ( t )  = fo, Ec(i) =  N C  + dulo, for t > 0.
If the initial unfunded liability is amortized overn < oo while subsequent surpluses/deficits 

are spread over m  such that {d < k < 1, k /  kmin, k /  1 — y/(u/q), k ^  1 — u/q}, then

, f $  +  Aui +  Tu2 i-( i>  +  A +  T )[g (l- /c )2]t , 1 < t < n -  1,
Var/(t) =   ̂ J ~  “  (3.80)

|^0 — [g(l — A:)2]* n+1[0 — V ar/(n — 1)], t > n,

where

$  =  a2v2[AL -  «¿o/(l -  vn)]2/[l  -  q( 1 -  fc)2], (3.81)

A =  2 cr2v2[AL — ulo/(l — vn)][vnulQ/il — un)]/[l — vq( 1 — fc)2], (3.82)

T =  a2v2[vnul0/ ( l  -  vn)]2/[ l -  v2q{ 1 -  fc)2]. (3.83)

0  and kmin are defined as in Result 3.2. Varc(f) =  fc2Var/(t). If k > kmin, then as t -» oo, 
Vai f { t )  -)• 0 .

If the initial unfunded liability is amortized in perpetuity (n = oo) and surpluses/deficits 
are spread over m such that {d < k < 1, k /  kmin}, then

Var/(t) =  crV/o2[l -  (q(l -  fc)2)t]/[l -  g(l -  fc)2]. (3.84)
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The proof is very straightforward and is only sketched here (see Owadally & Haberman 
(1999) for more details). The first moment results are easily obtained by taking expectations 
across equation (3.76) and solving the resulting two-stage difference equation (noting that 
U(t) =  P(t) + vU{t + l) and letting U(n) =  0). To obtain the second moments, (1) first square 
equation (3.76) and then take expectation (noting that u(t +  1) is independent of fit))] (2) 
first take expectation on equation (3.76), then square both sides and finally multiply both 
sides by q/u2; (3) deduct (2) from (1) to obtain

This is readily solved to give equation (3.80).
Remarks:

1. After a finite number n of years, we expect the initial unfunded liability to be com-
pletely amortized and the fund and contribution levels to reach their target values

Result 3.1).

2. The first-moment evolution of the funding process does not depend on the spread period 
m  (cf. Result 3.1) but the second moments do.

3. Whether the initial unfunded liability is separately amortized or not, the second mo-
ments of the funding process are the same in the limit (unsurprisingly): in both Re-
sult 3.2 and Proposition 3.1, limVar/(i) =  0  and limVarc(t) =  k2Q, and the same 
stability conditions apply. The efficient range of spreading periods m (see Result 3.4) 
as obtained by Dufresne (1986, 1988) applies.

3.3 Dependent R ates of Return

3.3.1 D ep en d en ce in  P en sion  Fund Investm en t R ates o f R etu rn

The rates of return on the pension fund from year to year are likely to be statistically 
dependent. This is so for two reasons: 1

1. There is considerable controversy over the Efficient Market Hypothesis in the long-term 
(§2.6.3). Nominal returns will incorporate price inflation which is generally observed to 
be correlated over the long term (§2.6.1). Returns on several asset classes have been 
found to be correlated over time, as is demonstrated by the statistical analysis of Panjer 
& Bellhouse (1980), Fama & French (1988), Poterba Sz Summers (1988), Frees (1990), 
Wilkie (1995) among others. (See §2.6.3.)

Var/(f + 1) =
q{ 1 -  fc)2Var/(t) +  a2v2[AL -  U(t +  l)]2 

g(l — &)2Var/(i) +  c 2v2AL2,

(equations (3.78) and (3.79)). Liabilities are only funded asymptotically when surpluses 
and deficits are spread without special amortization of the initial unfunded liability (in
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2. Whether or not markets are efficient, not all the securities held by the fund will be traded 
every year typically and some dependence in the returns from individual securities will 
occur [Vanderhoof (1973), Dufresne (1994:140)]. This is particularly the case where 
debt securities are held until maturity, possibly to match certain liability cash flows. 
Even when the asset portfolio of a pension fund is actively managed, many securities 
will be held for over a year. (McGill et al. (1996:663) report that “in a volatile business 
environment, a third or a half of a common stock (equity) portfolio may turn over within 
a one-year period.”)

It is of interest to consider to what extent the results of Dufresne (1986, 1988) (Results 3.1 
and 3.4) hold when dependent rates of return are assumed. The two most common time series 
of rates of return applied in mathematical actuarial models are the autoregressive [Pollard 
(1971), Panjer k  Bellhouse (1980), Bellhouse k  Panjer (1981), Dhaene (1989)] and moving 
average processes [Frees (1990), Dufresne (1990a)]. Haberman (1994a) examines pension 
funding in the context of stationary Gaussian autoregressive logarithmic rates of return of 
order 1 and 2, AR(1, 2). Wong (1995) and Haberman k  Wong (1997) consider stationary 
Gaussian moving average logarithmic rates of return of order 1 and 2, MA(1, 2).

Haberman (1994a) shows that exact closed-form solutions cannot be obtained for the 
limiting first and second moments of the pension funding process when autoregressive rates 
of return (AR(1, 2)) are assumed and surpluses or deficits are spread forward as in equa-
tion (3.38). His numerical analysis shows that first-order approximations are accurate when 
the rate of return process is not strongly auto correlated. Cairns k  Parker (1997) establish 
some improved upper and lower bounds on the moments for an AR(1) logarithmic rate of 
return. Moving average processes are somewhat more tractable mathematically (Frees, 1990) 
and Wong (1995) and Haberman k  Wong (1997) show that explicit closed-form solutions may 
be obtained when rates of return are MA(1, 2). Haberman (1994a) and Haberman k  Wong 
(1997) report two noteworthy sets of results:

1. Conditions for the stability of first and second moments of the pension funding process 
are obtained for AR(1, 2) and MA(1, 2): these restrict the feasible range of the spreading 
period m. This range decreases as the variance of the rate of return increases. This 
is similar to the conclusion in Result 3.1 as obtained by Dufresne (1986, 1988). The 
allowable range of spread periods also becomes more restricted as the rate of return 
process is more positively correlated. 2

2. An ‘optimal’ spread period range, in the sense of Dufresne (1986), is also obtained for 
the AR(1, 2) and MA(1, 2) cases when the rate of return process exhibits moderate 
autocovariance under practical conditions. As surpluses and deficits are spread over a 
longer period, more stable recommended contributions and more variable fund levels 
are obtained. But beyond a certain spreading period, both contribution and fund levels

66



become more variable. As in the random walk model of Dufresne (1986, 1988), the opti-
mal range is more restricted as the variance of the rate of return process increases. The 
optimal range also decreases for more positively autocorrelated AR(1, 2) and MA(1, 2) 
rate of return processes. As the variance and/or auto covariance of the rate of return 
increase beyond some threshold, the optimal range vanishes and minimum contribution 
and fund level variability are yielded when surpluses and deficits are not spread into the 
future (m = 1).

3.3 .2  A R (p) R ates o f R etu rn

In this section, the results of Haberman (1994a) are extended to a more general station-
ary autoregressive process. Projection Assumption 2.3 is replaced by the following for the 
remainder of §3.3:

P r o j e c t io n  As s u m pt io n  3.1 (In v e s t m e n t  r a t e  o f  r e t u r n )
The logarithmic or geometric rate of return process 6(t) = ln(l +  i(t)) follows a stationary 
Gaussian autoregressive process of order p, AR(p), p < oo:

S(t +  1) — 6 =  (pi[5{t) — J) +  ip 2(<5(i — 1) — 5) +  • • ■ +  ipp(S(t — p +  1) — 6) +  e(t +  1),
(3.86)

where {e(t)} is a sequence of zero-mean independent and identically normally distributed 
variables. 5(t) is stationary and we may let ES(f') = 6 and Var6(t) — o2 Vf.

It may be shown that (Appendix A.l)

v
Cov[6(t), 6{t -  h)] = <t 2 Y 2  Ai ° i > (3.87)

i= X

for h > 0 where {Gt} is the set of distinct roots of

zp -  p izp~l -  ip2zp~2 ---------<pp = 0 (3.88)

and {Ai} is defined by Cov[<5(£), 5{t — h)} for h € [0,p — 1] characterising the stationary AR(p) 
process (3.86). Stationarity implies that

|Gj| < 1 for i e  [l,p].

Furthermore,

Eexp

Eexp

E
.u=s+l

2 E  <>(” )
. U=5+l

= c4 se ^ iZiexp E * Gr

= [cwY se 4^ i2iexp 4 E * G
t—s

(3.89)

(3.90)

(3.91)
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and

Eexp 5Z <*(")+ s (w )
. u = 5 + l  t u = r + l

exP I ^  [^zi G\ s +  2ziG\ T — ZiG* r ] j  ,

where

c = exp r i 1 +  G,
S + 2 Y A<1 - O ii

w - exp 1 ! 3cr2 Y '  1 1 +  Gi
i

zi = a2AiGi{ l - G i) - ‘2.

See Appendix A (§A.l) for a proof of the above.

(3.92)

(3.93)

(3.94)

(3.95)

3 .3 .3  P en sion  Funding under A R (p) R ates o f  R etu rn

It is assumed that the pension fund rate of return S(t) follows a known AR(p) process, so 
that {Gj} may be found from equation (3.88). Wilkie’s (1995) model may be linearised into 
a set of autoregressive series (Kemp, 1996). Rate of return data may also be identified as 
AR(p) series with estimates of {fh}- There is an exact correspondence between {pj} and [ipi] 
through the Yule-Walker equations (Box et al., 1994:57) and {&',} may be found numerically. 
(Estimation errors may affect the robustness of the subsequent analysis.) Note also from 
equation (3.87) that if the terms \AiG{\ are small, then {S(t)} exhibits weak autocorrelation.

The first and second moments of the pension fund and contribution levels when investment 
returns follow an AR(p) process (3.86) may be investigated using equations (3.90)-(3.95). The 
pension funding process is shown to be stable in the sense that the first and second moments 
of f ( t )  and c(t) converge as t —> oo. The fund level at time t is given by equation (3.48) or, 
in terms of the notation of Haberman (1994a),

' t 1 t-i r t

f i t ) =  foQt exp + R.'Y^/ Qt s 1 exp (3.96)
JU=1 •S=0 .U = S + 1

where Q = 1 — k and R = AL(k  — d).

First M oments

Applying equation (3.90) to equation (3.96),

E /(i)  =  /o«?c)<e exp
t-1

+ RQ 1e ^ iZi^ ( Q c ) i s exp (3.97)
5=0
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Given that 6(t) is stationary and therefore inequality (3.89) holds, it follows that expQTk ZiGf) 
< \ziGi\) for s € N.

Ef ( t )  < foiQcYe exp ^  ] \ziGi + RQ 1e E i2i exp ^  ' IZ{Gi
t-1

(3.98)

and the right hand side of the above is convergent as t —»■ oo, provided that \Qc\ < 1. E /(i) 
is bounded above and since all terms in equation (3.97) are non-negative, Ef ( t )  is convergent 
as t —> oo.

A first order approximation to lim E/(f) can also be obtained. From equation (3.97),

E / ( i ) « /o ( Q c ) V - ^ Zi 1 +  Y .Z jG j

t-1
+  Ä Q -1e - ^ ZiE ( Q c)t'

5=0
i + E * G!"

e ^ iZ'Rc (1 -  Qc)~l +  E  ziGi{l ~ QcGi) * 1
i =  1

(3.99)

(3.100)

as t —> oo provided \Qc\ < 1 (and given \GZ\ < 1). This is a reasonable approximation when 
the terms ZiG% are small in magnitude, i.e. when |AjGj| are small, which implies that {¿(i)} 
exhibits weak autocorrelation (equation (3.87)). Indeed, Haberman (1994a) shows that under 
such conditions,

lim E /(i) «  e -̂';Z‘i?c/(l — Qc) (3.101)i-aoo

is an accurate approximation to lirriE/(t) for AR(1) and AR(2) processes. Lower and upper 
bounds are also discussed by Cairns & Parker (1997) for the AR(1) process.

Finally, note from equation (3.44) that limEc(i) =  N C  + k(AL  — lim E/(i)).

Second Moments

When both sides of equation (3.96) are squared and expanded and expectation is taken,

E f ( t Y  = /oQ 2iE exp 2 E  ̂ (u)
. u=l

t- 1 5-1

+ 2f0RQ t~ 1 E  Qi_iEexp

5=1 T=0

E ^)+ E
5=0 Lu=l IU=5+1

E 6̂ + E 5m
.U=S + 1 W=T+1

+  2 R 2Q- 2 EE Qi_'sQi_TEexp

+  R 2Q~2 E  Q2(t_,s)Eexp
t-1

5=0
2 £ 6(u)
. U=S+1

(3.102)
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The third term on the right hand side of equation (3.102) may be simplified, upon appli-
cation of equation (3.92), to

t - 1 s - l

2R 2Q~2 '£ ,'52(Q w )t-*{Qc)t- Te - 3X*« exp £  \2ziGt~s + 2ziGt~T -  z*G?~T]
S =  1 T = 0  l  i  )

t -  1 S - l  (

= 2i?2Q - V 3^ >  ^ ^ ( Q 2cm)i- s(Qc)s- Texp J +  2^G*"T -  z*Gf
S =  1 T = 0

Again, <5(t) is stationary and equation (3.89) holds. Consequently,

exp ( ^ 2^G -) < exp(^2|2;iG i|), 
i i

exp(- E ziG:‘n - exp(E

(3.103)

(3.104)

(3.105)

for s € N. Therefore, the third term on the right hand side of equation (3.102) is bounded 
above by

t - 1 s - l

2R2Q~2e~3^ iZi^ 2 ' ^ 2 ( Q 2cw)t~s(Qc)s~T exp ^ 5 |  ZjGj| , (3.106)
S = 1 T—0 . i

which, as t -> oo, converges to

2R 2Q~2e~3 ̂  Zi exp ^   ̂o\z{Gi
Q2c w Qc

1 — Q2cw 1 — Qc
(3.107)

provided \Qc\ < 1 and Q2cw < 1. Since all terms in (3.103) are non-negative, the third term 
on the right hand side of equation (3.102) converges as t —> oo.

To first order, the third term on the right hand side of equation (3.102) is

t - l  s - l  (  'I

2 R2Q~ 2 E  E i W W “ ' 6" 353' * 1 + E  +  -
S =  1 T = 0

t - l  s - l t - l  s - l

= 2R 2Q - 2e ~ ^ \  J (Q 2cw)‘"s(Qc)i_T + E E Y , ^ cwĜ ~$̂
S =  1 T =  0

+E 2z> E E (Q2cwGi)t- s(QcGiy-T- e ^E E(g w -4 (QcG*)s_r}=
i  s = l  t — 0  i  s = l  r = 0

i  s = 1 t = 0

t - l  s - l

(3.108)

which converges as t —t oo to

e~3^ i Zi2R2Qc2w l  (1 -  Q2c w )~1( 1 -  Qc)-1 +  ^  ZjGj |2(1 -  Q2cwGi)~l { 1 -  Qc)-1
 ̂ i

+ 2Gj(l -  Q2ctcGj)_1(l -  QcGi)~l -  (1 -  Q2c w )~ \  1 -  QcG,)"1! ) .  (3.109)
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This is a suitable approximation when the terms |AjGj| are small, i.e. when the serial corre-
lation of {5(t)} is small. Haberman (1994a) shows that the further approximation

e~z ^ Zi2R 2Qc2w{l -  Q2c w )~ 1{1 -  Qc)“ 1 (3.110)

is accurate for practical purposes for p =  1,2.
As for the last term on the right hand side of equation (3.102), substitution of equa-

tion (3.91) gives
t - i

R 2Q 2e 4^ i Zi ŷ ( Q 2cw)t s exp
s = 0

t - i

< R 2Q 2e i ' ‘̂iZi' ^ j (Q2cw)t s exp
s = 0

4

-4Ei 2»exp 4 j 2 \ ZiGi R 2c w /{ 1 — Q2cu>) (3.111)

1 + 4'y^ / ZjGti

as t —>■ oo provided Q2cw < 1. The fourth term on the right hand side of equation (3.102) 
thus also converges as t —> oo and its limit, to first order, may be obtained as follows:

e~4^ ZiR 2Q -2 J 2 (Q2cw)t~S
s - 0

- + e - ^ ZiR2Q -2

= e-4 ^* ZiR2cw 

Haberman (1994a) shows that

Q2cw
+ 5 > t v

Ci’nvG,
1 — Q2cw ' 11 — Q2cwGl

(1 -  Q2c w )~ 1 + ^P 4zjG ,(l -  Q2cwGt)

as t —> oo

(3.112)

e 4 -̂‘iZiR 2cw(l — Q2c w ) 1 (3.113)

is a reasonably accurate approximation in practice for p =  1,2.
The first two terms on the right hand side of equation (3.102) vanish provided \Qc\ < 1, 

Q2c w < 1 as well as \Q\ < 1. The last condition is redundant since Q — l — k = 1 — 1 / a—y 
Hence, we have shown that E /(i)2 is convergent as t -> oo for S(t) following a stationary AR(p) 
process, p € N, p < oo, provided \Qc\ < 1 and Q2cw < 1. Combining equations (3.110) and
(3.113),

lim E f( t)t—̂CC
2 g —3 Zi 2R2Qc2w

+  e-4 E< zi . R 2c w (3.114)
(1 — Q2ciu)(l — Qc) ' 1 — Q2cw

The numerical analysis of Haberman (1994a) shows that this is an accurate approximation for 
AR(1) and AR(2) processes. Cairns & Parker (1997) provide some lower and upper bounds 
for lim E /(i)2 for the AR(1) process.

Finally, an approximation to lim Var/(i) may be obtained from equations (3.101) and 
(3.114). limVarc(i) =  fc2limVar/(t) given equation (3.44).
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Some Remarks

1. When surpluses and deficits are not spread and m  — 1, the fund level is described by 
equation (3.51) and its moments are straightforward:

for t > 1 (since Eexp(<5(t)) =  exp(<j +  a2/ 2) =  u = v x).

2. c, w and Zi (in equations (3.93), (3.94) and (3.95) respectively) correspond to the defi-
nitions of Haberman (1994a) for p = 1,2. The forms of the first and second moments in 
equations (3.101) and (3.114) respectively generalise the forms obtained by Haberman 
(1994a) for p — 1,2, which justifies Haberman’s (1992b) conjecture to this effect.

3. The stability conditions \Qc\ < 1 and Q2cw < 1 are also obtained by Haberman (1994a) 
for the cases p = 1,2. They impose a stability constraint on allowable spread periods 
m, as discussed by Haberman (1994a). These restrictions are quite general and extend 
to p S N, p < oo. Furthermore, one observes that both c and w decrease as the mean 6 

of the logarithmic rate of return process decreases, so that the maximum spread period 
allowed if the first and second moments of the funding process are to be stable (i.e. if 
the stability conditions above hold) increases. It is also apparent that when the rate of 
return process exhibits small auto covariance and the terms \AiG{\ are small, both c and 
w are small and the maximum allowable spreading period for stability is larger than 
it would otherwise be. These observations are demonstrated numerically by Haberman 
(1994a) and Haberman & Wong (1997) for an AR(1) and MA(1) rate of return process 
respectively.

4. The second moment of the fund level in the limit depends on the spread period through 
Q alone and not through c, w and {zt }. The structure of the limiting second moments 
(equation (3.114)) of the pension funding process for p =  1, 2 is retained for p G N, p < 
oo and for {5(f)} with small autocovariance over time. One may therefore surmise that 
the conclusion from Haberman’s (1994a) numerical analysis concerning the existence 
of an ‘optimal’ range of spreading periods when rates of return are AR(1, 2) holds 
generally for p 6 N, p < oo, viz. the ‘optimal’ range reduces as the variance of the 
rate of return increases and as the rate of return is more positively correlated. The 
numerical investigations of Haberman & Smith (1997) using Wilkie’s (1995) asset model 
(essentially a linear autoregressive model—see §2.6) do indeed reveal the existence of an 
‘optimal’ range of spreading periods. This, combined with the conclusions of Dufresne 
(1986, 1988) and Haberman & Wong (1997) for different rate of return models, provides 
a strong indication that shorter spreading periods for surpluses and deficits are called 
for when asset returns are very variable and/or very positively correlated over time.

E f{t) = vALEem  = AL,

Var/(f) =  v2AL2Vare0® = AL2(ea2 -  1).

(3.115)

(3.116)
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3.4 Perturbations in the Funding Process

3.4.1 Som e R an d om  D isturban ces

The only source of uncertainty included in the previous sections was the investment return 
process. Other possible perturbations in the pension system include

— contributions differing from the actuary’s recommended contribution;

— accounting or valuation errors at each valuation exercise;

— random variation in benefit outgo resulting from changes in plan membership.

These may be viewed as additive noisy perturbations in the pension funding system. The 
first two items are dealt with in §3.4.3 while variable pension plan populations are considered 
in §3.4.4. It is of interest to verify how robust Dufresne’s (1986, 1988) conclusions are when 
perturbations are introduced.

3.4.2 D iscretion ary  C ontributions

Of the possible reasons for including additive perturbations in the model, variations in 
sponsor contributions are the least often considered. The contribution recommended by an 
actuary after an ongoing or management valuation is not legally binding on the plan sponsor 
in many jurisdictions. (Matters may be different when statutory compliance valuations are 
performed.) A legitimate motivation for advance funding of pension benefits is that it provides 
flexibility to sponsors. Flexibility arises from the sponsor having some limited control on the 
timing of their contributions to provide retirement benefits (§2.2.5). Indeed, Shapiro (1983) 
defines flexibility as the ability of the plan sponsor to control the incidence of contributions. 
Flexibility arises, to some extent, from all aspects of the funding and contribution policies 
adopted by the pension plan. Pension funding methods can themselves be seen as “eminently 
flexible financing approaches developed to provide pension benefits” (Paquin, 1975). A major 
source of flexibility is in the choice of periods over which initial unfunded liabilities and 
gains/losses are amortized [McGill (1964:319), Snelson (1970:^33), Humphrey et al. (1970:§8), 
Shapiro (1983)]. The (direct or indirect) influence of the sponsor in the choice of funding 
method and in the choice of valuation basis may also afford him some flexibility (this is 
discussed further in §5.2.4).

Discretionary extra contributions (positive or negative) from the plan sponsor are a result 
of the requirement for flexibility. Trowbridge (1966) states that:

“Another desirable characteristic is an element of flexibility, or employer control 
[ . . .  ] such that an additional contribution can be made when a surplus of cash is 
on hand, and a reduced contribution can be made when money is hard to find.”
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Snelson (1970: f̂6) is of a similar opinion:

“If funding is well established it is possible to arrange, within limits for the em-
ployer’s contribution to match his ability to pay. Thus in a year when profits are 
high he can make an extra contribution and when profits are low the contributions 
can be reduced.”

Bassett [Griffin (1966): discussion] believes that the sponsor should have greater control on 
its contributions according to its financial needs, especially if extraordinary circumstances 
apply:

“The actual funding of the plan to meet the objectives must take into account 
how much the [sponsoring] company may desire to contribute at any particular 
time. This is usually expressed by the flexibility that the company has in deter-
mining the contributions in any year or period of years. [ . . .  ]

Flexibility in determining the current level of contributions is vitally impor-
tant for most companies. We have seen it in the casualty insurance companies, 
where contributions were decreased in years of sizable losses such as occurred 
when [hurricanes] Hazel and Betsy created such havoc. We have seen it in utility 
companies who have made extra contributions when the revenues were unusually 
large and profits greater following cold winters or hot summers. We saw it in the 
case of steel companies who reduce contributions in the years in which they had 
prolonged industrial strikes. Flexibility in the amount of company contributions 
has been an important factor in the companies’ financial planning.

It is fine to set forth long-range objectives and goals based upon level of funding 
and adequacy of the fund, but let it remain with the company to plot its own course 
to reach these objectives. [ .. .  ] A company should be left free to establish its 
own patterns to reach these goals and even to change them as conditions change 
in the future.”

Statute and regulations nevertheless do limit the flexibility allowed in the timing of sponsor 
contributions, as noted by McGill et al. (1996:342):

“Not only is the overall costs of retirement programs important, but the timing 
of the costs can be equally important. [ . . .  ] Defined benefit plans offer sponsors 
[ . . .  ] flexibility in that they do not require that maximum contributions be made 
to the plan every year. Again, contributions can be larger in successful years 
and smaller in less successful ones, although the range of flexibility in this regard 
has been considerably restricted in recent years by changes in the laws governing 
pension funding [ . . .  ].
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Discretionary sponsor contributions are called “contribution variances” by Winklevoss 
(1993:97), “extra contributions” by Bassett [Griffin (1966): discussion] and Snelson (1970), 
while Trowbridge (1966) refers to “additional contribution” or “reduced contribution” de-
pending on the sponsor’s financial situation. For modelling and projection purposes, it is 
appropriate to recognise that actual, flexible contributions may differ from the actuary’s rec-
ommended contributions and explicitly deal with this in the actuarial planning and control 
of pension funds. Any attempt to model discretionary extra contributions (positive or neg-
ative) that a sponsor may make is limited by the fact that it is extremely difficult to model 
corporate cash flows separately. Indeed, corporate finance theory indicates that it may not 
be meaningful to distinguish between the cash flows of a defined benefit pension fund and 
those of the corporate sponsor (see also §5.2.4): the balance sheet of the pension fund can 
properly be considered as part of the “extended balance sheet” of the corporation (Bagehot, 
1972). Nevertheless, it may be worthwhile to characterise discretionary contributions if only 
for the purpose of examining their effect on the management of pension funds.

3.4.3 P en sion  Funding under A d d itive  S toch astic  D istu rb an ces

Discretionary extra contributions and random valuation errors may be represented in a 
simple way by an additive ‘noisy’ input, e(t)AL, at the start of year (t. t+  1), so that the net 
cash flow into the pension fund is

N C  +  adj (t) — B  +  e(t)AZ/. (3.117)

The fund grows according to the modified recurrence relationship

f i t  +  1) =  u(t +  1)[(1 — k)f(t)  + (k — d)AL + e(t)AL\, (3.118)

(cf. equation (3.45)) so that

t  t - i  t

f ( t )  = f o { l - k ) t Y l u i t i  + Y ^ i l - k Y ^ ^ i k - d  + e i j ^ A 1  tt(r) (3.119)
J = 1  j= 0 T—j+l

(cf. equation (3.47)).

M odel for e(t)

A possible model for e(t) is that of a single input e occurring at time t , termed a ‘spike’ 
or ‘impulse’ input [Balzer & Benjamin (1980), Fujiki (1994), Khorasanee (1997)], so that 
e(f) =  e6 (t), where ¿(t) is the Kronecker delta function. A surplus or deficit is instantaneously 
created and will be spread into the future. It is trivial that only transient effects are produced. 
On the other hand, the effect of a constant non-zero input—to which Benjamin (1984, 1989) 
refers as a ‘step’ input—or of a random input will not be transient. The additive input e(t) 
is projected to be as follows:
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P r o j e c t io n  A s s u m pt io n  3.2
eft) follows a zero-mean stationary autoregressive process o f order p, AR(p),

eft +  1) =  pieft) +  — !) +  •■• +  g>pc(t — p +  1) +  e(t 4- 1), (3.120)

where {e(f)} is a sequence of unbiased independent and identically normally distributed vari-
ables. e(s) and i f t ) are independent V t, s. Eeft) = 0 and Vareft) — of

This is motivated by the following:

1. Valuation errors are likely to be random and non-systematic: a zero-mean sequence of 
independent and identically distributed random variables is a special case of Projection 
Assumption 3.2.

2. If e(f) represents volatility in benefit outgo, possibly as a consequence of random demo-
graphic changes in the makeup of the pension plan membership, it is not clear that e(f) 
will be correlated with the rate of return on the pension fund. If variation in benefit 
payments occur because of random price and salary inflationary effects, then this may 
be correlated with the return on the pension fund, although this is ignored here, as a 
first approximation. In either case, serial dependence in eft) is plausible.

3. eft)AL may also represent the discretionary extra contribution (in addition to the ac-
tuary’s recommended overall contribution) made by the sponsor to the pension fund at 
the start of year ft, t +  1). The actual ‘flexible’ contribution paid by the sponsor at the 
beginning of year (t, t +  1) is c(t) + eft)AL, where eft) — N C  +  adjft) is the actuary’s 
recommended contribution. Corporate finance theory predicts that sponsors will seek to 
influence the management of the pension fund to their financial advantage and VanDer- 
hei & Joanette (1988) describe the influence of the sponsor as “an interjection, not usual 
but not infrequent” . Discretionary contributions (positive or negative) depend on the 
finances of the company, on its financial planning, on other capital investment projects 
arising within the firm as well as on taxation issues. Although the rate of investment 
return on the pension fund may be correlated with the financial performance of the 
sponsor, through macroeconomic cyclical effects, there is only an indirect dependence 
between them. The financial performance of the sponsoring company is likely to de-
pend on its performance in previous years and there may therefore be some dependence 
between discretionary contributions over time.

It was shown in §§3.3.2 and A.l that for eft) following a stationary AR(p) process (as in 
equation (3.120)),

p
(3.121)
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for s > 0 where {(?,} is the set of distinct roots of

zv — ipizp 1 — cp2Zp 2 — • • • — ipp =  0 (3.122)

and {Ai} is defined by Cov[e(i), e(f — s)] for s € [0,p — 1] characterising the stationary AR(p) 
process (3.120). Furthermore, =  1. Stationarity implies that

\Gi\ < 1 for i G [l,p]- (3.123)

First and Second M oments

The following results may be shown to hold when the additive random input e(f) is as in 
Projection Assumption 3.2. Provided |u(l — A)\ < 1,

lim E f( t )  = AL,
t-> oo

(3.124)

lim Ec(f) =  NC. (3.125)
i—>■ oo

Provided also that q(l — k )2 < 1,

lim Var/(i) =
t - ¥  OO

a2v2A L2 a2A L2q ^  l +  it(l — k)G i
1 — q{ 1 — k )2 1 — ç(l — A:)2 "  11 — u(l — k)Gi ’

(3.126)

lim Varc(t) =  k2 lim Var/(t). (3.127)

The limit first moments in equations (3.124) and (3.125) are obvious and depend crucially 
on the independence between rates of investment return and e(t) over time, f i t )  depends on 
u(s) (s < t) and e(j) (j < t — 1) as is clear from equation (3.119). u(t + 1) is independent of 
u(s) and e(s) for s < t + 1 and thus u(f +  l) and f( t )  are independent. From equation (3.118),

Ef { t  +  1) =  «[(1 -  k)Ef(t)  + (A — d)AL], (3.128)

and since u{k — d)/[ 1 — tt(l — A)] =  1, one obtains the result of equation (3.124). The limit of 
the first moment of c(t) is immediate upon application of equation (3.44). It may easily be 
shown that, if Ee(i) =  e ^  0, then

lim E /(f) =  AL  +  eAL/(k  — d), (3.129)
t—► oo

lim Ec(i) =  N C  — keAL/(k — d), (3.130)
t—>-oo

which shows (unsurprisingly) that systematic negative discretionary extra contributions from 
the sponsor or errors in the valuation process ought to be avoided as they result in a persisting 
deficit. The second moment results in equations (3.126) and (3.127) are also straightforward: 
refer to Appendix A (§A.2).
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Some Remarks

The conditions for stability in the first and second moments of the pension funding process 
do not change with the introduction of a stationary additive input. The maximum allowable 
spread periods implied by these conditions remain the same, irrespective of the variability in 
discretionary extra contributions or benefit outgo.

It is easy to verify that equation (3.126) may be rewritten as

lim Vaxf i t )  -i—> oo
a2v2AL2 

1 — q( 1 — k )2
a2A L 2u2 A  IT- «(1 — k)Gi 

l - u 2{ l - k )2 At l - u ( l -  k)Gi

+
a2 a2 AL2

[1 -  u2{l -  k)2][l -  q(l -  k)2]
■ST-\ . 1 +  u (l — k)Gi
A  ' l - u { l - k ) G i 'i=i

(3.131)

where the first term on the right hand side represents variance due to i(t) alone and the 
second term represents variance due to e(t) alone. The first term is identical to the result 
obtained by Dufresne (1988) (equation (3.58)).

If surpluses and deficits are not spread forward (m =  k = 1), then since A, =  1,

lim Var/(f) =  lim Varc(f) = \a2v2 +  a2q]AL2, (3.132)
t —too  t—>00

and the variance of the funding process depends on the variance, but not the lagged autocor-
relations, of the perturbations.

If the noisy input {e(f)} is a sequence of unbiased independent and identically distributed 
random variables, then

,. {a2v2 + a2q)AL2 f 100N
Vax/«) =  . (3-W3)

lim Varc(f) =  k2 lim Var/(t), (3.134)
t—>00

as Gi -T 0 and Yii At = 1. A consequence of the random noisy input has been to increase the 
variability in the fund and contribution levels, as can be anticipated. It is immediately obvious 
that limVar/(f) increases monotonically as rn increases (or k decreases). By comparison with 
the result of Dufresne (1986, 1988) (Result 3.4), limVarc(t) decreases as m  increases, for 
1 < m < m*, and increases as m  increases, for m > m*, where m* is as in Result 3.4. 
Dufresne’s (1986) ‘optimal’ range of spreading periods therefore exists.

The situation where investment returns are certain and {e(i)} is a sequence of unbiased 
independent and identically distributed random variables is examined by Dufresne (1994:92): 
from equations (3.133) and (3.134) with <j =  0, it is not difficult to observe that the ‘optimal’ 
range of spread periods is one such that d(l + v) < k < 1 (i.e. lim Varc(i) has a minimum at 
k = 1 — 1 /u 2 = d (l+u) and lim Var/(f) increases monotonically with increasing m). (Dufresne 
(1994:90) also shows that if the only random influence is the additive perturbation and if the

78



Vi <re =  0.1 ct€ =  0.25
-0.95 20.073 21.717
-0.8 20.029 21.079
-0.4 19.874 20.195
0 m *  =19.612 m *  =19.612
0.4 19.020 18.828
0.8 15.991 15.530
0.95 5.280 2.810

Table 3.1: Spread period for which limVarc(f) is minimised for various <re and cpe. iv =  
Ei(t) =  3%, a  =  0.1.

pension fund makes no investment return (u =  1, w.p. 1) (assuming k ^  1 / a—j) . limVarf ( t )  
increases and limVarc(i) decreases as k decreases over the whole of a certain stable range.)

Result 3.4 [Dufresne (1986, 1988)] concerning an efficient or ‘optimal’ spread period range 
does not hold when {e(f)} is autocorrelated: if there does exist an efficient range, then it is 
different because of the second term on the right hand side of equation (3.126). This may 
be investigated further by specifying that the additive noisy term e(t) follows a stationary 
AR(1) process. Let <pi =  in equation (3.120). Equation (3.122) has only one root G = 
and A = 1. Hence,

lim Varf ( t )  =  —
i—>■ oc 1

a2v2AL2
+

a2AL2q[l +  u(l — k)ipe
q ( l - k )2 [1 — 9(1 -  k)2][l -  u (l -  k)(pf] ’

lim Vaxc(i) =  k2 lim Var/(i).
t - ¥  0 0

(3.135)

(3.136)

Assuming stability in the first moment of the funding process and given that (e(f)} is sta-
tionary, |u(l — k)<£e| < 1. For i > —100%, Haberman (1992a) shows that 0 < u(l — k) < 1. 
limVar/(f) and limVarc(i) (in equations (3.135) and (3.136) respectively) increase as a€ 
and/or increase. The more positively autocorrelated the noisy additive disturbance, the 
more variable pension fund and contribution levels become. Numerical tests show' that, in 
most practical circumstances, lim Var/(i) increases as m  increases whereas limVarc(t) ex-
hibits a minimum. For small auto covariance (small |</3e|), the ‘optimal’ spread period range 
does not change much: the spread period for which lim Varc(f) is minimised remains fairly 
close to m* — 19.612 years in the example illustrated in Table 3.1. The ‘optimal’ spread period 
range appears to reduce as additive perturbations become more positively autocorrelated.

3 .4 .4  V ariable P en sion  P lan  P op u lation

Some demographic pension plan population assumptions were considered in §2.5. In this 
section, two membership projection models are considered: a deterministic stable membership
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and a model with random new entrants. We restrict to the simple pension plan described in 
§2.7 (with suitable modifications). Only one entry age, one retirement age and simple (normal 
retirement) benefits are allowed. This is similar to the model of Bowers et al. (1976). (Several 
entry and retirement ages as well as grades of employees may be considered, possibly in the 
manner of Giesecke (1994).)

Determ inistic Stable Plan Population

The population distribution function g(t +  r — x) as described in §2.7 may be used to 
describe new entrant numbers into the plan. Suppose that g(t +  r — x) is deterministic 
and time-variant. The actuarial liability AL(t), normal cost NC(t') and benefit outgo Bit) 
in equations (3.20), (3.21) and (3.22) respectively are time-variant. The “liability growth 
equation” (3.24) of Bowers et al. (1976) applies. For the sake of simplicity, Projection As-
sumption 2.3 is replaced by the following:

Pr o j e c t io n  As s um pt io n  3.3 (In v e s t m e n t  rate  of  r e t u r n )
The pension fund is invested at a risk-less (certain and constant) logarithmic rate of return S 
(net of salary inflation), equal to the valuation discount rate. 1 +  i(t) = u(t) = es Vi.

It is not difficult to see that when the “liability growth equation” (3.24) (with 1 +  i = e5) is 
replaced into equation (3.41) (with u(t + 1) =  e5),

ul(t +  1) =  e5(l -  k)ul(t) or ul(t) = [e5(l -  k)]iui(0). (3.137)

If |e5(l — k )| < 1, then ul(t) —y 0, /(f) —y AL(t) and c(t) —y N C (t), as t —y oo.
Suppose furthermore that the pension plan is fully funded from the outset, ul(0) =  0. No 

gain or loss emerges and, from equations (3.137) and (3.39),

ul(t) =  0, /(f) =  AL(t), c(f) =  NC(t), for f > 0. (3.138)

The pension plan membership is now projected to be stable. This model is standard 
in demographic studies and has been employed by Bowers et al. (1976, 1979, 1982) and 
Winklevoss (1993:58) in pension plan modelling. Such a model allows for an exponentially 
growing or decaying membership, representing the pension plan in an industry or firm in 
a state of expansion or contraction. Membership Projection Assumption 2.2 may now be 
replaced by the following:

P r o j e c t io n  As s u m pt io n  3.4 (Me m b e r s h ip)
The pension plan membership is stable. The new entrant function is defined as follows: 
g(t +  r — x) =  exp[(f +  r  — x)Sg}.

The number of plan members aged x  therefore grows from one year to the next by a logarithmic 
growth factor of 6g. In fact, the pension plan membership as a whole grows by Sg every year,
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(3.139)

since the total number of members at time t is
W W

^2 g(t + r -  x)lx -  et5g
x — cl  X — CL

I shall make a convenient abuse of economic terminology by referring to Sg as the (logarithmic) 
“rate of demographic inflation”. The stationary membership of Projection Assumption 2.2 is 
a special case of the stable membership of Projection Assumption 3.4 with no growth, Sg =  0.

Since g(t +1 + r  — x) =  eSgg(t + r  — x), it is readily observed from equations (3.20), (3.21) 
and (3.22) that AL(t + 1) =  eSgAL(t), N C (t + l) = eSgNC(t)  and B(i +  1) — e5gB(t). Pension 
liabilities are therefore growing at logarithmic rate 6g. From equation (3.138), it also follows 
that f ( t  +  1) =  e5g f(t).  By virtue of the asset growth recurrence relation (3.27),

f( t )  = e5~Sg[f(t) +  c(t) -  B{t)}. (3.140)

Recall that S is the risk-less rate of return on pension fund assets net of salary inflation 
and Sg is the constant rate of growth in new entrants. Final-salary pensions are accrued (Plan 
Assumption 2.3) and pensions in payment are assumed to be linked with salary inflation (Plan 
Assumption 2.4). Pension liabilities (in nominal terms) therefore grow through both salary 
inflation and ‘demographic inflation’. <5 — Sg may be usefully regarded as the rate of return 
on the fund net of both economic and ‘demographic’ inflation. Consider the following three 
scenarios:

1. 6 > Sg. The rate of return net of salary inflation on the fund exceeds the rate of growth 
of the pension plan population. It follows from equation (3.140) that c(t) < B ( t): 
contributions and interest payments from the fund meet the benefit outgo and maintain 
the fund at a stable level.

2. 6 = 6g. The nominal rate of return on pension fund assets equals the rate of growth of 
pension liabilities (in terms of salary inflation and membership expansion). This implies 
that c(t) = B(t): the contribution paid every year equals the benefit outgo. This is the 
situation of a pay-as-you-go or unfunded arrangement. The return on pension fund 
assets net of economic and ‘demographic’ inflation is nil.

3. S < Sg. Finally, if the rate of return on pension fund assets net of salary inflation is less 
than the rate of growth of the pension plan population, it follows from equation (3.140) 
that c(t) > B(t). The required contribution is then greater than under an unfunded 
arrangement. It is cheaper not to provide advance funding for benefits. Assets provide 
negative returns net of economic and ‘demographic’ inflation. It is necessary to con-
tribute more than the benefit outgo in order to maintain the fund in real (economic and 
‘demographic’) terms.

These results are well-known and sufficiently important in the mathematical theory of 
funding to warrant their inclusion here:
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— Bowers et al. (1976) use a continuous-time and deterministic pension plan model to 
demonstrate the result that funded plans require less contribution than pay-as-you-go 
plans when real (net of salary inflation) returns are greater than the rate of growth of 
plan population.

— A related result has been shown in the pension economics literature in the context of 
state pension schemes by Aaron (1966).

— A corollary is also reported in the actuarial literature by Ammeter (1963): if the real 
rate of return (net of salary inflation) is zero and the population is stationary (determin-
istic), then contribution in a funded plan is the same as in a pay-as-you-go (unfunded) 
situation, independently of the funding method.

— Similar concepts are expressed by Taylor (1987:§3) through the proposition that “if the 
rate of expansion of the target fund exceeds the rate of investment income” a smaller 
premium is required in an unfunded situation than in a funded system.

Random N ew  Entrants

The deterministic stable membership model above is a suitable model for immature or 
young plans or plans associated with declining industries. Most pension plans achieve some 
form of maturity with on average stationary memberships at some point. It is then more 
relevant to consider the effect of random numbers of new entrants on the pension fund and 
contribution levels. Mandl & Mazurova (1996) (in a state pension plan model) allow for new 
entrant numbers that vary as a Gaussian stationary autoregressive process, which admits 
negative new entrants, albeit with a small probability. The probability distribution of new 
entrants is not specified in this section and the size of the membership at various ages is not 
correlated.

It is not clear that there is a direct and immediate statistical dependence between the new 
membership of a company’s pension plan and the returns achieved by its pension fund. Data 
concerning the possible correlation of recruitment level and pension benefits (let alone the level 
of funding for pensions) is sparse. It is possible nevertheless to envisage a dependence of both 
investment returns and the recruitment of the sponsoring company on the macroeconomic 
cycle. In addition, trends in the membership (e.g. whether it is ageing) will influence long-
term (strategic) investment. Here we assume that there is no dependence between the new 
entrant function g{t) and the rate of return i(s) for all t, s. The model of §2.7 is assumed, 
including random rates of return (Projection Assumption 2.3). Membership is projected as 
follows:

Pr o j e c t io n  As s u m pt io n  3.5 (Mem b e r s h ip)
The population distribution function g{t + r — x) is assumed to be a sequence of independent 
and identically distributed random variables. Eg(t + r — x) — g, ~Vaxg(t +  r  — x) =  Og.
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Furthermore, {g{t)} and {¿(s)} are independent V t, s.

Since surpluses and deficits are being spread forward, the fund level evolves according to 
equations (3.40) and (3.43):

f ( t  + 1) = u(t  + 1)[(1 -  k ) f ( t )  + N C ( t )  + k A L ( t )  -  B(t)), (3.141)

t t - i  t

f ( t )  = M l - k ) t l [ u ( j )  + J 2 ^ - k ) t- j - 1[ N C ( j ) + k A L ( j ) - B ( j )] I ]  u(r). (3.142)
; = 1  j = 0 r = j + 1

It is shown in Appendix A (§A.3) that, provided |u(l — k)\ < 1,

lim Ef{t) = AL, (3.143)
t - ¥  0 0

lim Ec(t) =  NC, (3.144)
t —»■ o o

where AL  =  EAE(t) and is the actuarial liability if the number of new entrants were constant 
at Eg(t) — g. Similarly, N C  =  ENC(t). Define

W  W

siW = E E w i -  k)]\x- yhxly[NCx + k A L x -  B x][NCy + k A L y -  B y\,
x—a y=a

w  x—1

52(fc) = -  k )T ~ yW N C x + k A L x][NCy + kALy  -  B y\,
x= a + ly= a  

w

s z{k) = Y . l*\-NC* + k A L *?-
x=a

Provided that q( 1 — k )2 < 1,

lim V ar/(i) =i—>00
o 2v 2A L 2 +  <7g<7Si(A;)

1 — g(l — A;)2
lim Varc(i) =  A:2 limVar/(i) -  2a2/c(l — A:) ^ (A ;) +  a2Sz(k).

(3.145)

(3.146)

(3.147)

(3.148)

(3.149)

The conditions for stability of the first and second moments of the funding process are 
unchanged from Result 3.1. These impose a maximum spread period, which is unaffected by 
the variability of the random membership.

The dependence of the variance of the fund level in equation (3.148) on k (or m) changes 
as compared to equation (3.58) and to equation (3.133) (where additive uncorrelated pertur-
bations were assumed) even though the numbers of new entrants are uncorrelated over time. 
This is because the actuarial liability function (as well as the normal cost and benefit outgo) 
is similar to a weighted moving average process and is autocorrelated in a given interval if 
any cohort remains part of the plan membership during that interval.

83



m R.S.D. f{t)
= 0

R.S.D. c(t)
°9 =

R.S.D. f ( t )
0.5
R.S.D. c(f)

5 0.0832 0.8743 0.1156 0.8810
10 0.1211 0.6980 0.1453 0.7051
15 0.1557 0.6550 0.1755 0.6623
TO* =  17 0.1694 0.6513 0.1879 0.6587
20 0.1902 0.6545 0.2069 0.6619
25 0.2260 0.6765 0.2404 0.6838
30 0.2642 0.7145 0.2769 0.7216
35 0.3058 0.7661 0.3170 0.7730

Table 3.2: Relative standard deviations of f i t )  and c(t) in the limit for various spreading 
periods when the Unit Credit funding method is used.

The variance of the fund level in the limit in equation (3.148) may be rewritten as

lim V ar/(t) =  —i—>■ oo 1
cr2v2AL2 cr2u2S\{k) t ________ a2a 2S i(k)

q( 1 -  A:)2 +  1 -  v?(l -  k )2 "  [1 -  u2(l -  k)2}[ 1 -  q(l -  k)2]'+ (3.150)

where the first term on the right hand side represents variance due to random investment 
returns alone and the second term on the right hand side represents variance due to random 
membership alone.

The variance of the fund and contribution levels due to random membership depends 
explicitly on the pension funding method used, since S\(k) in equation (3.148) depends on 
the individual ALX, N C X and Bx functions, as defined in §3.1.2 for example. It is typical that 
demographic variation is small compared to investment variability (<r9 <C a) in which case it is 
clear that the first term on the right hand side of equations (3.148) and (3.149) wall dominate 
and the efficient spread period range noted by Dufresne (1988) is likely to emerge. Some 
numerical results based on the Unit Credit method are shown in Table 3.2. (The relative 
standard deviation or coefficient of variation of / it) is -v/(V ar/(i))/E /(t).) These results 
indicate that fund and contribution levels become more variable as a result of random new 
entrants; and that fund levels become increasingly variable as surpluses and deficits are spread 
over longer periods, whereas the variability of contribution levels is minimised at a certain 
spreading period. The ‘optimal’ range of spreading periods, in the sense defined by Dufresne 
(1986), does not seem to change very much when random new entrants are permitted. Similar 
results are obtained when the Entry Age method is used, as displayed in Table 3.3 on the 
next page. The numerical assumptions and calculations pertaining to Tables 3.2 and 3.3 are 
described in Appendix A (§A.3).
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m R.S.D. f[ t)
= 0

R.S.D. c(t)
a9 =

R.S.D. f i t )
0.5
R.S.D. c(t)

5 0.0832 1.3097 0.1132 1.1316
10 0.1211 1.0456 0.1434 1.0513
15 0.1557 0.9812 0.1738 0.9869
m* = 17 0.1694 0.8757 0.1863 0.9814
20 0.1902 0.9805 0.2055 0.9861
25 0.2260 1.0135 0.2392 1.0192
30 0.2642 1.0703 0.2757 1.0760
35 0.3058 1.1476 0.3160 1.1534

Table 3.3: Relative standard deviations of /(f) and c(t) in the limit for various spreading 
periods when the Entry Age funding method is used.

3.5 Am ortizing G ains/Losses over a Fixed Term

3.5.1 A  Supplem entary Funding M ethod

A different supplementary funding method from the one defined in §3.2 and employed in 
§§3.3 and 3.4 is now considered. In the United States and Canada, the practice is to amortize 
the actuarial gains and losses directly and over a fixed term. The initial unfunded liability is 
also separately and explicitly amortized.

m —1

adj{t)a = P{t) + j)/drn\, (3.151)
3=0

where l{t) =  0 for t < 0 and is defined in equation (3.37). P(t) is the amortization payment 
for any initial unfunded liability (see equation (3.17)) (in our model fund, an initial unfunded 
liability may only arise at f =  0 given Modelling Assumptions 2.2 and 2.3). Both the initial 
unfunded liability and the set of intervaluation losses are amortized entirely, the former within 
n years and the latter within m  years. McGill et al. (1996:525) talk of a “direct method of 
determining and dealing with actuarial gains and losses” in contrast to the “spread method 
of dealing with gains and losses” in §3.2.

Rem ar k  3.1 The subscript a hereafter denotes this method and the subscript s refers to the 
method of spreading surplus and deficits over a moving term, as described in §5.5.

The U.S. Employee Retirement Income Security Act, 1974 (ERISA) requires that actuarial 
gains and losses be amortized over not more than 5 years for single-employer pension plans, 
and 15 years for multi-employer plans (the maximum amortization period for initial unfunded 
liabilities arising from changes in actuarial assumptions, plan amendments etc. is different). 
[Source: McGill et al. (1996:597)]
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The simpler case where m = n is considered by Dufresne (1989), such that we can put 
Z(0) =  ulo, l{t) — 0 for t < 0 and P(t) =  0 Vi. It can be shown formally (see Dufresne
(1994)) that as long as the initial unfunded liability is amortized over a finite period, the 
ultimate behaviour of our model fund is independent of that amortization period. Clearly, 
if m =  n =  1, this method of adjusting the normal cost is identical to the surplus/deficit 
spreading method above.

3.5 .2  M om ents o f  th e  Funding P rocess

The first and second moments of f{ t)a and c(t)a are derived by Dufresne (1989). If the 
method is applied according to equation (3.151), and in particular if the valuation discount 
rate is the same as the mean long-term rate of return (Valuation Assumption 2.2), then it 
can be shown (by comparison with Dufresne (1994:122)) that, for n < oo,

E f ( t ) a =
AL u Iq aTl_i|/a n|, 

AL,

0 < t < n — 1, 

t > n,
(3.152)

E c{t)a =
N C  T u Iq/

NC,

0 < t < n — 1, 

t > n.
(3.153)

This is similar to the first moment results in Proposition 3.1, when surpluses/deficits 
are spread forward over m  years and the initial unfunded liability is amortized over a fixed 
term of n years. If there is no stochastic variation and if the rate of return is the same as 
the valuation discount rate, then there is no difference between amortizing gains/losses and 
spreading surpluses/deficits, provided the initial unfunded liability is also amortized. When 
m  = 1, the two methods of spreading surpluses/deficits and amortizing gains/losses are in 
fact identical and

lim V ar/(t)s =  lim V ar/(i)a =  limVarc(f)s =  limVarc(t)a =  a2A L 2v2. (3.154)

Differences arise when the second moments are considered. Only the asymptotic situation 
when t —► oo is explored. For m > 1, if a2 ^  /32 < 1, Dufresne (1989) gives

lim V ar/(f)0 =t-*-oo
<t 2A L 2v 2 £  X2

lim Varc(i)a =t—>00
a2AL2v2m

(3.155)

(3.156)

where /3j =  for j  € [l,m] and A, =  a ^ r ^ / a ^  for j  € [0,m]. (For equations (3.155))
and (3.156)) to hold for m  = 1, define ¿0] =  Oô | =  0-)
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Note also the identity:

=  (3.157)

In the following section, we investigate the existence of an ‘optimal’ range of amortiza-
tion periods, analogous to the ‘optimal’ spread period range of Dufresne (1986, 1988) (as in 
Result 3.4).

3.5 .3  O ptim al A m ortiza tion  P eriods

Before the tradeoff between the variance of contribution and fund levels is considered, the 
following are defined, based on equations (3.58), (3.59), (3.155) and (3.156):

as(m) =  1 — (u2 +  <r2)(l — k )2 (3.158)

a a{m) = ( l  / J ^ A 2 (3.159)

ßs{m) =  (l — (u2 +  c 2)(l — k )2) / k2 (3.160)

ßa(m) =  ( l  -  a2 ^ ß f )  4 i |/m  (3.161)

where the os are proportional to the reciprocal of the variance of the fund level in the limit, 
and the /3s are proportional to the reciprocal of the variance of the contribution rate level in 
the limit. (/3a(m) is distinct from (3j.)

The following two inequalities are also required and are proven in Appendix B (§B.l).

( f e |  +  ' ' '  +  dl\) /'db=i\ < ( db=i\ + - - -+ dl\) / %  form  > 2 . (3.162)

( 4 i |  +  • • • + ¿ l|)  (<4=T|+  ••■+ 4 | )  > (aw|fî T | +  -”  +  fi5|%|) > form  > 2 . (3.163)

Prom a numerical investigation, Dufresne (1986) draws the sensible conclusion that, when 
gains/losses axe amortized, “greater emphasis is laid on security of benefits” than if sur-
pluses/deficits axe spread. This is encapsulated in the following proposition, proven in Ap-
pendix B (§B.3).

PROPOSITION 3.2 For equal amortization and spread periods,

limVax/(i)a < lim V ar/(t)s, m > 1, (3.164)

lim V ar/(t)Q =  lim V ar/(t)s, m =  1. (3.165)

The following proposition concerns a range of amortization period for gains and losses 
that is ‘optimal’ in the sense of Dufresne (1986). Let m*s (resp. rn*a) be the spread (resp. 
amortization) period for which lim Varc(i)5 (resp. lim Varc(i)Q) is a minimum. Clearly, m* is 
related to k* in Result 3.4. Let m/° (resp. m£°) be the maximum spread (resp. amortization) 
period for which lim Var/(t),s (resp. lim Var/(f)a) remains unbounded.
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P r o po s it io n  3.3 There exists an optimal range of amortization periods [1 , m*]:
if 1 < m  < m*, lim V ar/(i)Q increases and limVarc(f)a decreases with increasing m;
if m*a < m  < m £°, both limVar f { t )a and limVarc(t)a increase with increasing m;
if m >  m t h e n  f{ t)a and c(t)a are not stationary in the limit.
Furthermore, m* > m* and lim Varc(f)a > lim Varc(y)i at m =  m*s.

Proof in Appendix B (§B.4).
Proposition 3.3 confirms that amortizing gains and losses over a longer period means 

that the fund level is more variable and pension benefits are less secure. As in the case 
where surpluses/deficits axe being spread (Result 3.4) and somewhat counterintuitively, the 
contribution variability does not always decrease as the amortization period increases.

The variation of lim V ar/(t)a and lim V ar/(i)s v. m as well as limVarc(i)a and limVarc(f)s 
v. m may be ‘sketched’ using Result 3.4 and Proposition 3.3: see Figure 3.2. The limVarc(f)a 
v. lim V aif(t)a curve has a minimum point at m*. For amortization periods in the non-optimal 
range (m*, oo], there will always be an amortization period in [1, m*] that yields the same 
limVarc(i)a and a lower lim V ar/(i)Q. The tradeoff between fund security and contribution 
stability breaks down for longer amortization periods.

The existence of an ‘optimal’ amortization period range, [1, m*], which is larger than the 
‘optimal’ spread period range, has therefore been shown. The numerical test, based on small 
a and i , performed by Dufresne (1989) fails to show that the tradeoff breaks down for a large 
enough amortization period and that an ‘optimal’ range does therefore exist. The purely 
numerical work of Cairns (1994) illustrates some of the above propositions.

Based on the numerical investigation of these authors, we deduce that a real rate of return 
(net of salary inflation) of 1%, with standard deviations 0.025, 0.05 or 0.1, yields a value for 
m* of over 40 years; whereas a real rate of return of 5%, with standard deviation 0.2, yields m* 
of about 16 years. We conclude that, under current economic conditions, the common practice 
of amortizing gains/losses over periods of about 5 years or less lies within the ‘optimal’ range.

3.5 .4  E fficiency

It is clear from Result 3.1 (equation (3.54)) and Proposition 3.1 that amortizing the 
initial unfunded liability over a fixed term rather than spreading it over a moving term has 
the advantage of hastening its removal. Typically, the initial unfunded liability is amortized 
over n  =10-30 years in North America and a spread period of about m  =10-15 years is 
used in the U.K. Funding is also expected to be more gradual and ‘smoother’ if spreading 
is used rather than amortization in the treatment of the initial unfunded liability. The level 
of contributions also changes more smoothly, which may be more convenient for the plan 
sponsor for budgetary reasons.

Spreading surpluses and deficits over a rolling term is also different from amortizing gains 
and losses when stochastic variation in the pension funding process is considered and the
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limVaif(r )

s a

limVarc(i )

Figure 3.2: Ultimate variances v. m. ‘s’ denotes spreading surpluses/deficits, whereas ‘a’ 
denotes the amortization of gains/losses.
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limVarc(i)

Figure 3.3: Spreading surpluses/deficits (‘s’) is more efficient than the amortization of 
gains/losses (‘a’).

second moments of the funding process are compared. We can now show that spreading 
surpluses and deficits over a moving term should be preferred to amortizing gains and losses 
over a fixed term, on the grounds that variability in the fund and contribution levels are 
minimised.

P r o po s it io n  3.4 According to the objective of minimising ultimate variances of fund and 
contribution levels, spreading surpluses or deficits is more efficient than amortizing gains and 
losses since for {ma,m s ^  1} such that limVarf ( t ) a =  lim Var/(f)S; then limVarc(i)a > 
lim Var c(t)s .

Proof in Appendix B (§B.5).
The limVarc(f)a v. lim Var/(f)a curve lies above the limVarc(t)<; v. lim V ar/(f)s curve 

(except at m  — 1 where they coincide): see Figure 3.3. For a given ultimate variance of the 
fund level, spreading surpluses and deficits will always yield a lower ultimate variance of the 
contribution level than amortizing gains and losses (except at m  =  1). Hence, for equivalent 
‘security’, spreading achieves better ‘stability’. This is not surprising since the amortization 
of gains and losses implies the use of information delayed by up to m a years: the feedback of 
delayed information was considered in §3.2.3 and was found to lead to higher variances, less 
stability and less security, in the pension funding process.

Note again that spreading is implicit in the Aggregate and Frozen Initial Liability pension 
funding methods (§§3.2.1 and 3.2.4). Trowbridge &; Farr (1976:62) describe “the smoothness 
of contributions, the automatic adjustment for actuarial gain or loss, and the relatively easy

90



computations” as attractive characteristics of such methods. They also argue (p. 85) that the 
amortization of gains and losses becomes cumbersome if the amortization period is too long. 
They also state that the apparent drawback of spreading, which is that surpluses and deficits 
are never completely removed except in the limit, is not a weakness, since the random nature 
of deviations from assumed experience means that no method completely removes surpluses 
and deficits over a finite term. For these reasons, Trowbridge & Farr (1976:42) seem to prefer 
spreading over all other methods. Finally, note that the investment rates of return on the 
pension fund were assumed to be independent and identically distributed from year to year 
(Projection Assumption 2.3 is also made by Dufresne (1989)). Gerrard & Haberman (1996) 
obtain stability conditions for the first and second moments of the funding process when gains 
and losses are amortized over a fixed term and the (arithmetic) rate of return process follows 
a stationary autoregressive process of order 1.

3.6 Optimal Contribution and Asset Allocation

3.6 .1  T h e P en sion  Fund System

Assume that the fund may be invested in two assets: a risk-less asset earning risk-free 
rate r  and a risky asset earning r  +  a(i +  1) in year (t, t +  1). a(t +  1) is a random risk 
premium. Furthermore, let y[t) be the proportion of the fund invested in the risky asset in 
year ([t, t + 1), and 1 — y[t) be the proportion invested in the risk-less asset. The arithmetic 
rate of return on the fund in year (t, t + 1) is

r + y(t)a{t +  1). (3.166)

It is further assumed that (o:(i)} is a sequence of independent and identically distributed 
random variables over time, with mean a > 0 and variance a2.

The pension fund can be considered as a random system (or ‘plant’),

f ( t  +  1) =  [1 + r  +  y{t)a(t +  1 )}[f(t) + c(t) -  B ], (3.167)

where the fund level f{t)  is a state variable and c(f) and y(t) are the contribution and asset 
allocation control variables respectively.

Optimal contributions c*(t) and asset allocation decisions y*{t) may be derived by means 
of dynamic programming and optimal control [Bellman (1957), Âstrôm (1970), Bertsekas 
(1976), Whittle (1982)]. They are derived by Boulier et al. (1995) in a continuous-time model 
with the sole objective of minimising (mean-square) contributions. O’Brien (1986, 1987) seeks 
to minimise mean-square contributions as well as deviations in the fund level and assumes 
a finite time horizon. He also assumes a single random asset with the only control variable 
being plan sponsor contributions. In the context of a deterministic model of social security 
rather than a private pension plan, Vandebroek (1990) derives the optimal contribution with
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the objective of minimising (mean-square) deviations of both contribution and fund levels 
from respective targets (presumably normal costs and actuarial liabilities under some chosen 
funding method). Haberman & Sung (1994) and Sung (1997) also consider only contributions 
optimised over a similar criterion but in discrete-time (which is less idealised since valuations 
are performed at discrete intervals). Cairns (1997) extends the method of Boulier et al.
(1995) and assumes a quadratic performance criterion comprising both contribution and fund 
levels. Cairns (1997) also assumes two risky and contemporaneously correlated assets. The 
more realistic set-up of ‘incomplete state information’ is studied by Sung (1997) in a discrete-
time and finite-horizon model: delay and random error is allowed in the valuation process 
and optimal contribution strategies are derived. Sung (1997) also discusses supplementary 
performance criteria that incorporate a desirable pace of funding over time.

In the following, it is assumed that both asset allocation (over one risk-less and one risky 
asset) and contribution controls axe available. The objectives of the funding process are to 
stabilise contributions and remove the unfunded liability over a finite horizon N. A finite 
horizon is useful for four reasons:

1. The control period N  may be perceived as a control parameter, akin to the amortization 
period m  in the foregoing sections, at the disposal of the actuary (Haberman, 1994b).

2. It is typically required that unfunded liabilities be removed over a finite term in most 
jurisdictions, e.g. under the U.S. Employee Retirement Income Security Act, 1974 
(ERISA) and the Canadian Pension Benefits Standards Act, 1985.

3. A fixed control period is important when technical solvency status is material (Sung, 
1997).

4. Optimal control over a finite horizon permits consideration of time-variant parameters, 
such as contribution and fund targets and expected return on the risky asset [Grauer 
Sz Hakansson (1985), Sung (1997)].

It is assumed that valuations are performed over discrete and regular intervals, in keeping 
with the previous sections:

1. It is usually a statutory requirement that valuations be performed regularly. They are 
not performed continuously in practice and cash flows only occur at discrete intervals. 2

2. No distributional assumption is placed on the rate of return process. It is only required 
that the rate of return be independent and identically distributed from year to year, in 
accordance with the Efficient Market Hypothesis. Distributions other than lognormal 
have been suggested for asset returns because they are leptokurtic [Daykin et al. (1994), 
Smith (1996), Finkelstein (1997)] (see §2.6.3).
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Finally, additive noise in the pension fund system (3.167) is suppressed—the derivation 
of the optimal controls may be readily adapted to random additive perturbations. O’Brien 
(1987), Sung (1997) and Cairns (1997) allow for random benefit volatility and show that opti-
mal controls are independent of the variance of additive noise, a consequence of the property 
of ‘certainty equivalence’ in additive random inputs. It is well-known that a system with ran-
dom coefficients such as in equation (3.167) does not exhibit ‘certainty equivalence’ in terms of 
the random coefficients [Chow (1975:227), Bertsekas (1976:80), Sung (1997:192)], i.e. the op-
timal control cannot be replaced by the corresponding deterministic optimal control solution 
with the random coefficients (the rate of return process in equation (3.167)) being replaced 
by their expected values. Randomness in asset returns must therefore be characterised.

3.6 .2  O p tim al C ontrol

Define Wt to be all information available up to time t, i.e. {/(0), . . .  , f( t ) ,  c(0), . . .  , 
c(t — 1), y(0), . . .  , y(t — 1)}. A control policy 7r then specifies c(t) and y(t) in terms of Wt 
for 1 < t < N  — 1 [Bertsekas (1976:42), Whittle (1996:174)].

The performance of the pension fund may be judged in terms of the proximity of the fund 
and contribution variables to their desired levels. The ‘cost’ incurred for any such deviation 
at time 0 < t < N  — 1 may be defined as

C(f{t),c(t),t) = e 1( f ( t ) - F T t )2 + e2( c ( t ) - C T t )2 (3.168)

In this equation, the target fund and contribution levels are FTt and CTt and may be time- 
variant: they relate to the actuarial liability and normal cost generated by the pension funding 
method in use. Different weights (d\ > 0 and 62 > 0) are placed on the twin long-term 
objectives of fund security and contribution stability. At the end of the ‘control period’, a 
terminal cost is incurred if an unfunded liability still exists:

CN = 9 0( f ( N ) - F T N)2. (3.169)

The performance of the fund may be given different importance over time. The discounted 
cost of deviation occurring t years ahead is ¡3tC(f(t),c(t),t).  0 < (3 < 1 represents a psy-
chological discount rate [Boulier et al. (1995, 1996)] or risk discount rate (Cairns, 1997). It 
may be equal to the valuation discount rate [Haberman &; Sung (1994), Sung (1997)]. The 
discounted cost-to-go or discounted cost incurred from time t to N  is

N - l

Q =  Y / PS~tC(f(s),c(s),s) + 0 N- tCN . (3.170)
S = t

An objective criterion for the performance of the pension funding system may therefore 
be defined to be

N - 1
E [C o |W 0] =  E ßNCN + J 2 ßSC(f(s),c(s),s)

5=0
Wo (3.171)
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This criterion, may be minimised by means of dynamic programming. This can be formulated 
as follows [Astrom (1970), Bertsekas (1976), Whittle (1982)]. A value function may be defined 
as the minimum over realisable control policies of the expected cost-to-go from time t given 
information at t,

J(Wt) =  minE[Q|Wt], (3.172)
7T

and the total value function is then the minimum expected cost-to-go from time 0 given 
information at t,

G{Wt) =  minE[Co|Wi]. (3.173)
7T

The Bellman optimality equation then gives:

G(Wt) =  min E[G(Wt+l)\Wt\, (3.174)
c(t),y{t)

with the boundary condition G(Wn) = E[Co |Wjv], and the minimising values of c(t) and y(t) 
are then optimal controls at time t.

Two important simplifying assumptions have been made in §3.6.1:

1. Perfect state observation: It is assumed that the fund level is measured or observed 
without delay or corrupting noise. Sung (1997) considers the optimal contribution 
control of pension funds with incomplete information.

2. Markov property: Since {a(i)} is a sequence of independent and identically distributed 
random variables over time, with mean a and variance a2, f ( t ) has the Markov property 
and Pr[f(t  +  l)\Wt] =  Pr[f{t +  l) |/(i)].

Given the Markov property,

J(Wt) = m inE[Q |/(i)] -  J ( f( t) , t) ,  (3.175)7Tt
where the control policy 7p depends only on c{t), . . .  , c{N — 1), y(t), . . .  , y(N  — 1). Upon 
minimising on 7rt , the value function is a function of f( t )  and t alone. As for the total value 
function,

G(Wt) =  minE[Co|/(i)]

=  minE7Tt

N - 1 t- 1
0 n Cn  + ' £ P SC V ( s ) A s ) ,s ) f( t )  + ^ / 5s C ( / ( S) , c (5) ,5)

s=t J s=0

(since we take expectation given information up to time t and minimise on -rp)

i-1
=  $  m inE[Q |/(i)] +  ^ / 5 sC (/(s), c(s), s)

7!’t s=0
i-1

= (3tJ ( f( t ) , t )  + Y / PsC(f(s),c(s),s).
s=0

(3.176)
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The right hand side of the Bellman equation (3.174) may also be simplified:

min E[G(Wt+1)\Wt]

— min E J ( f ( t  + l ) , t  + l) + Y ^ P sC (f(s),c(S) ,S)
5 = 0

f( t)

(given (3.176))

t - 1

=  mm {E[/3i+1J ( / ( i  +  l ) , t  + l)\f(t)} +  /3tC '(/(t),c(t),i)}  +  ] > > 5C (/(s), c(s), s).
«=o

(3.177)

Since we take expectation given information up to time t and minimise on c(t). y(t), the 
sum on the right hand side of equation (3.177) lies outside the expectation and minimum 
operators.

The Bellman optimality equation may now be simplified. Replacing the left and right 
hand sides of equation (3.174) by equations (3.176) and (3.177) respectively and dividing by 

yields

=  min C(f(t),c(t), t)  + (3E[J(f(t + l) ,f  +  l)|/(f)]

=  min { 91(f(t) -  FTt)2 +  92{c{t) -  CTtf  +  / 3 E + 1 ),t + l ) |/ ( i ) ] l

As for the closing condition, note from equation (3.176) that

JV-1
G(WN) = f3N J ( f (N ) ,  N ) + J 2  W / ( s ) ,  c(5)>s)>

s—0

while

E[Co|B0v] =  E
N - 1

0 NCN + J 2 PSC(f(s),c(s),s)
5=0 

N - 1

f ( N)

= /3NCN + ^ 2 (3 sC(f(s),c(s),s).
s=0

The boundary condition on the recurrence relationship (3.174) is therefore

J ( f ( N) , N)  =  Ov =  90( f ( N)  -  FTn )2.

(3.178)

(3.179)

(3.180)

(3.181)

The Bellman dynamic programming principle states that the minimising values of c(t) 
and y(t) in equation (3.178) are the optimal contribution and asset allocation controls.
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3.6.3 O ptim al C ontrib ution  and A sset A lloca tion  S trateg ies

It may be shown by mathematical induction that the solution to the Bellman equa-
tion (3.178) is

J ( f ( t ) , t ) = P t f ( t ) 2 - 2Q t f ( t ) + R u

where

(3.182)

Pt  — Q l +  02(3a 2 ( l  +  r ) 2P t + i P t + i ,

P t+ i  =  [&2( a 2 +  cr2) +  (3a 2 { 1 +  r ) 2P t+1]- 1 ,

with boundary condition

(3.183)

(3.184)

P n  =

and

(3.185)

Q t =  O^FTt +  82P a 2( l + r ) P t + 1[Qt+ i - P t + i ( l + r ) ( C T t - B ) \  

with boundary condition

(3.186)

Q n  — Oq F T n .

Define

(3.187)

Q t =  $2(<x2 +  cr2) P t .

The optimal contribution is

(3.188)

C*(t) -  e t+1C T t +  (1 -  e i+1)[B -  / ( t )  +  Q t + i P t- + \ ( l  +  r ) - 1] ' (3.189)

and the optimal asset allocation decision is

a 0 i+ i( l  + r ) [ Q t+ 1 -  P t+ i( l + r ) { f ( t )  +  C T t — B )] 
y U  (a2 +  <j 2)[(1 — 0 t+1)Qt4-i +  0 t+ iP t+ i( l  +r ) ( / ( f )  +  C T t — B ) \

These results axe proven in Appendix C (§C.l).

(3.190)

Some P ro p ertie s  of th e  O ptim al C ontrols. First note that since Pjv =  do > 0, Pt > 0,
Pt  >  0, 0 <  ©t < 1 for t  € [1, N  — 1] from the Riccati difference equation for Pt  (3.183) (see 
Appendix C, §C.l). It is reasonable to assume that the fund and contribution targets in any 
year are such that FTt > 0 and CTt < B, as otherwise there is no sense to funding in advance 
for pension benefits. Then, Qt > 0 for t G [1 ,N] from equation (3.186).

The optimal contribution is linear in /(f).  From equation (3.189), c*(t) may be written 
as co(f) — (1 — &t+i)f{t), where 1 — &t+i > 0. The optimal contribution is therefore in the
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same form as a ‘proportional controller’ (Loades, 1998) and is very similar to the contribution 
calculated when surpluses or deficits are spread over a moving term [Sung (1997:218), Cairns 
(1997)].

It is also clear from equation (3.190) that dy*(t)/df(t) is directly proportional to

— (1 + r)2(a2 + a 2)a&t+iPt+iQt+i < 0. (3.191)

The proportion invested in the risky asset therefore decreases as the fund level increases. This 
is a very significant result and is considered further in §3.6.4.

Asym ptotic properties. Optimal asset allocation and contribution controls in an infinite 
horizon, with stationary parameters FT  and CT  and no terminal cost may also be derived. 
Since the cost in equation (3.168) is non-negative and /3 > 0, it is possible to show that the 
value function in equation (3.175) is monotonic increasing and that the limit as N  —>■ oc of the 
dynamic programming equation (3.178) exists (Bertsekas & Shreve, 1978). As t —> -oo, Pt 
and Qt converge to stable values under certain conditions and stationary optimal contribution 
and asset allocation may be obtained. These are the discrete-time counterparts of the results 
of Boulier et al. (1995) and Cairns (1997). For long control horizons N,  the stationary controls 
may provide reasonable approximations to equations (3.189) and (3.190).

Risk-less Investm ent. Consider the optimal asset allocation decision and contribution 
control in year (N  — 1, TV). These are easily found by replacing Pn  and Qn  from boundary 
conditions (3.185) and (3.187) respectively into equations (3.189) and (3.190). Also,

®n  = 62{a2 +  a2)/[02 (a2 + a2) + 90/3a2{l + r )2]. (3.192)

The optimal contribution payment is

C*(N -  1) =  Qn CTn _! +  (1 -  e N)cf {N -  1), (3.193)

whereas the optimal proportion of the fund to invest in the risky asset is

i i _ Qjvq(1 + r ) [ F T N  ~ (1 + r)(/(iV ~ 11 + C T » - i  ~  B)]
y { J (a2 -F ct2)[(1 -  QN)FTN + Qn ( 1 +  r ) ( f ( N  -  1) +  CTN^  -  B)]

= ____________ Qjya(l +  r)2[cf(N — 1) — CTjy_i]_____________
(a2 +  cr2)[(l — Qn )FTn  + @jv(l + r)( f  ( N  — 1) + C T ^ - i  — B)] ’ 1 ' }

where

Cf(N -  1) =  FTn { 1 +  r ) " 1 + B — f ( N  — 1). (3.195)

cf ( N  — 1) is the ‘risk-less contribution’ that is required at A  — 1 if the fund is entirely invested 
in the risk-less asset in year (IV — 1, N)  and if the fund level target of F T \  is to be met at the
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end of the year. c*(N — 1) is a weighted average of the risk-less contribution and the desired 
or target contribution (equation (3.193)).

If the target contribution at the start of year (N — 1, N)  is equal to the risk-less contribu-
tion, then it is optimal to pay the target risk-less contribution c*(N—1) =  CTjv-i =  C f ( N - l )  
(from equation (3.193)) and to invest the fund fully in the risk-less asset, y*(N — 1) =  0 (from 
equation (3.194)). Furthermore, the optimal, target, risk-less contribution will be zero if

/(IV - 1 )  =  FTN(l + r)~l + B.  (3.196)

If, in addition, the fund size at the start of the year is already at the desired level (/(IV — 1) — 
FTjv), then f ( N  — 1) =  B ( l  + r)/r  = f m. f m is the “maximum necessary wealth” [Boulier et 
al. (1995, 1996)] or the “self-financing risk-free steady state” (Cairns, 1997) or the actuarial 
liability (standard fund) under the so-called total or complete funding method (Trowbridge, 
1952): the risk-free interest payments on the fund are enough to meet all benefit outgo without 
contributions being required.

Special Cases. Suppose now that there is no security objective and it is required only that 
contributions remain stable and close to the contribution target (an impractical objective in 
the long term), i.e. do =  $i — 0. Then Pt = l/[02(a2 +  cr2)] and &t = 1. Since Pjv — 0 
and Qjv =  0, then Pt = Qt =  0 t G [1,IV] from recurrence relationships (3.183) and (3.186) 
respectively. Therefore, c*(t) — CTt in equation (3.189) while y*(t) in equation (3.190) is 
not defined. In other words, this (trivial) objective is attained by merely paying the target 
contributions CTt. A more realistic objective may be to minimise the deviation of the fund 
level from its target (e.g. the unfunded liability) at the end of the control period, i.e. 9\ =  0, 
Oo p  0.

Suppose now that there is no stability objective and it is required only that deviations of 
the fund level from target should be minimised within period N , i.e. 62 =  0. Then Pt = d\ 
and Qt =  d\FTt for t G [1, N  — 1} from the recurrence relationships (3.183) and (3.186) 
respectively, and Pn  = do and Qk  = doFTN from boundary conditions (3.185) and (3.187) 
respectively. 0 t =  0 for t G [1, N], From equations (3.190) and (3.189) respectively, it is clear 
that y*(t) =  0 and that

c*(t) = B -  f ( t ) + F T t+1/ ( l + r ) t (3.197)

which we may define as the ‘risk-less contribution’ at time t, Cf(t). It is optimal to invest the 
fund fully in the risk-less asset for maximum security and pay Cf(t). At the beginning of year 
(t, t +  1) the fund, of amount f(t ) ,  earns a risk-free rate of return r and

/(* +  1) =  (1 +  r)\f(t) + cf (t) — B] = FT t+1, (3.198)

i.e. the fund meets its target with certainty and /(f) =  FT) for t € [1, N].



3.6 .4  C ontrolling R isk  in P ension  Funding

Objectives and Risks of Pension Funding. Various objectives of pension funding were 
considered in §2.2.2. Two important management or ongoing objectives are to secure promised 
retirement benefits by pre-funding them and to stabilise contributions so that they are pre-
dictable and the plan sponsor may plan in advance for them. These funding objectives are 
related to the very motivation for advance funding of pensions. Some stakeholders in the 
pension plan have particular interests in these objectives. The plan members (represented by 
the pension scheme trustees) will be concerned with the security of their benefits, whereas 
the plan sponsor is more concerned with the stability of future sponsor contributions. There 
is often a trade-off between these objectives. It is important for all stakeholders that some 
balance be achieved and actuarial input serves precisely this purpose.

The risk of not meeting the stability and security objectives must be addressed by the 
actuary. Pension funding may therefore be construed as a risky activity, where the uncertain 
outcome for the plan membership is that insufficient assets are accumulated to meet liabilities; 
and the uncertain outcome for the plan sponsor is unpredictable, variable contributions. The 
absolute deviation of fund and contribution levels from planned targets is therefore a monetary 
‘loss’ or ‘penalty’ or ‘cost’ incurred by the various stakeholders. Note that large surpluses 
are as undesirable (and possibly costly) outcomes as are excessive deficits (§2.2.3). Actuarial 
control aims at limiting the risks of fund inadequacy and contribution instability. (These 
risks loosely incorporate the risk of insolvency and the contribution rate risk as discussed by 
Haberman (1994b). Griffin (1966) also discusses concepts of adequacy in pension funding.)

The attitude or aversion to risk of the various stakeholders in the pension funding process 
may be formulated through their respective utility (or disutility) functions. The optimal 
contribution and asset allocation strategy may be defined as the one that maximises the 
utility (or minimises the disutility) over time for the different economic agents involved in 
pension funding.

U tility and Disutility. The concept of utility (or satisfaction) for an economic agent of a 
reward or gain is equivalent to the concept of disutility of an incurred loss or penalty. Let x 
represent ‘reward’ or ‘gain’; y represent ‘loss’ or ‘penalty’; U(x) be the utility of a reward; and 
L(y) be the disutility of a loss. Since it is easier to measure the loss or penalty in the pension 
funding system in terms of the deviations from planned targets, the concept of disutility 
rather than utility is more useful. In order to determine a suitable disutility function, we 
need to consider the sensitivity of each party to risk. A penalty or loss y = \f(t) — FTt \ 
is incurred if the fund level deviates from the desired level. This relates to the risk of fund 
inadequacy. A penalty y =  |c(t) — CTt\ is incurred if the contribution level deviates from the 
desired level, and it relates to the contribution instability risk. Three desirable properties of 
disutility functions are considered hereunder.
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Disutility increases for increasing loss or deviation.

L'(y) > 0. (3.199)

Equivalently, utility decreases for decreasing gain or reward: U'(x) > 0. For example, plan 
members axe less tolerant of large deficits than small deficits; the plan sponsor finds large sur-
pluses less desirable than small surpluses; large supplementary contributions are less welcome 
than small supplementary contributions.

Risk aversion or intolerance. The marginal increase in disutility increases for increasing loss 
or deviation:

EL(y) > L(Ey), (3.200)

L"{y) > 0. (3.201)

Equation (3.200) shows that greater disutility is derived by a risk-averse agent from under-
taking a risky activity than a non-risky one. The disutility function is therefore convex. (Risk 
aversion in terms of utility means that the marginal increase in utility decreases for increasing 
gain or reward: U"(x) < 0 and the utility function of a risk-averse agent is concave.) An 
example of risk-aversion is that plan members will (typically) be more dissatisfied by a unit 
increase in the deficit when the deficit is large rather than small.

Risk aversion is non-decreasing with increasing loss or deviation. This may be represented 
in terms of P ratt’s (1964) coefficient of risk-aversion (or risk-tolerance parameter) A(y) = 
L,,(y)/L'(y):

A'(y) > 0. (3.202)

(Risk aversion is non-increasing with increasing gain or reward: A'(x) < 0, where A(x) = 
—U"(x)/U'(x).) The coefficient of risk aversion is usually derived in terms of utilities and a 
justification for equation (3.202) in terms of disutilities is given in Appendix C (§C.2).

Quadratic Disutilities. The cost incurred in equation (3.168) is a quadratic function of 
deviations in the fund and contribution levels. The performance criterion in equation (3.171) 
is therefore based on a quadratic cost functional or quadratic disutility function (Bertsekas, 
1976:18). For a quadratic disutility function, L(y) =  Xy2—where A > 0 and the loss or 
penalty y > 0 could be the absolute deviation of either fund or contribution level from 
target—L'(y) > 0 and L"(y) =  2A > 0, thereby satisfying the properties represented by 
equations (3.199) and (3.201) respectively. But A(y) = 1/y and A'(y) — — 1/y2 < 0: the 
quadratic disutility function does not satisfy property (3.202). This argument is usually made 
in terms of quadratic utility functions which axe therefore found to be imperfect although they 
are convenient mathematically (Pratt, 1964) and widely used.
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Controlling Risks. Since the ‘cost’ of deviation in the pension funding process is quadratic 
in equation (3.168), optimisation over the cost functional or performance criterion (3.171) may 
therefore be interpreted as a minimisation of the discounted quadratic disutilities arising from 
deviations of the fund and contribution levels from targets, i.e. the risks of fund inadequacy 
and contribution instability are minimised. The plan members and sponsor are assumed to 
be averse to these risks, as 9\ > 0 and $2 > 0 in equation (3.168). The dynamic optimal con-
tribution and asset allocation strategies developed inequations (3.189) and (3.190) represent 
minimum-risk strategies. These strategies hedge against fund inadequacy and contribution 
instability.

It was observed in §3.6.3 that it is optimal to invest a smaller proportion of the pension 
fund in the risky asset as the fund level increases. This means that the higher the funding 
level, the more of the fund should be invested into the risk-less asset and, conversely, the 
more pension liabilities are underfunded, the riskier pension fund investment ought to be. 
This feature is also obtained by Boulier et al. (1995) and Cairns (1997).

Thus, an immature pension plan with a relatively young membership may choose to invest 
its fund more aggressively in the early years in order to defray a deficit in respect of past 
service liabilities. Sponsor contributions may also be increased. The balance between these 
two strategies depends on the relative values of 6\ and 62 in equation (3.168), i.e. between 
the relative aversion to the risk of fund inadequacy and contribution instability. Conversely, 
if a plan is in surplus, it should ‘lock’ into these surpluses by investing them into less risky 
assets (Exley et al, 1997) and sponsor contributions may also be reduced.

This result appears to contradict the current actuarial propensity to invest pension fund 
surpluses into risky assets (at least in the U.K.), as noted by Cairns (1997). It is nevertheless 
a sensible result in view of the fact that pension funds need to hedge their liabilities so as to 
minimise both the volatility of surpluses or deficits as well as of contributions. This concept 
is expressed variously in terms of immunization (Vanderhoof, 1984) and hedging (Exley et al, 
1997). Exley et al. (1997) and Bezooyen & Mehta (1998) also regard a hedging portfolio to be 
a ‘minimum-risk’ portfolio. Sometimes consideration of contribution variability is suppressed 
and only volatility of surpluses (in various forms) is minimised, as in Wise’s (1984) discussion 
of asset-liability matching. Some of these concepts axe examined qualitatively in Chapter 4.

Some Limitations. The model used above is a simplification of reality for a number of 
reasons:

1. Inflation. Uncertain salary inflation leads to uncertain growth in the pension liabilities. 
(Salary inflation was assumed deterministic and monetary quantities net of salary infla-
tion were considered.) The statistical dependence between inflation and returns in the 
risky asset is therefore crucial. When benefits are not indexed to price inflation, infla-
tion also triggers demands for benefit enhancement so that the assumption of defined
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benefits in the defined-benefit pension plan model does not hold exactly.

2. Utility function. The quadratic (dis)utility function is simplistic because it does not 
admit solvency and full funding (maximum surplus) constraints. A pension fund with 
large deficits may be technically insolvent and may be prohibited from investing more 
aggressively; larger contributions may be the only acceptable course of action to restore 
financial balance. Discontinuous cost functions in the context of pension funding are 
explored numerically by Boulier et al. (1996). Note that the fact that the quadratic 
utility function is two-sided is not a drawback, but a more realistic utility function 
would be asymmetric: a deficit may be less tolerable than a surplus of equal magnitude.

3. Short selling. The proportion of assets held was not constrained to be non-negative, 
which allows borrowing. This may conflict with long-term liquidity objectives. Such 
a constraint also proscribes closed-form solutions. Cairns (1997) discusses numerical 
solutions with such a constraint.

4. Markovian dynamics. It has been assumed that the risky asset returns followed a 
random walk, which is one consequence of the Efficient Market Hypothesis. It is likely 
that statistical dependence of returns over time will occur, especially when inflation is 
taken into account. This severely restricts the application of optimal controls.

5. Multiple risky assets. It is not difficult to extend the above approach to multiple assets 
with contemporaneously correlated returns. Cairns (1997) assumes two risky assets, for 
example.

3.7 Summary

This section summarises some of the major points made in this chapter. The actuarial 
methods used to fund retirement benefits on a systematic basis are investigated. The con-
cept of a “pension funding method” or “actuarial cost method” is described in §3.1 and the 
principal methods axe illustrated using a simple model. The characteristics of these methods 
in terms of how they liquidate initial unfunded liabilities and whether they operate on an 
‘individual’ or ‘aggregate’ basis are highlighted.

The bulk of the chapter is concerned with “supplementary funding methods” which are 
used to fund actuarial deviations when experience differs from actuarial valuation assump-
tions. One such method (§3.2) spreads surpluses and deficits forward over a rolling term 
(say m s). This method is examined in detail by Dufresne (1986, 1988) and is implicit in the 
Aggregate pension funding method. Dufresne (1986, 1988) examines the first and second mo-
ments of the pension fund and contribution levels when rates of return are random. There is 
a maximum allowable spreading period beyond which the funding process becomes unstable. 
It is also shown by Dufresne (1986, 1988) that an efficient or ‘optimal’ range of spread periods
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[1, m*] exists, the tradeoff between security and stability (as measured by the variances of 
the fund and contribution levels in the limit respectively) being broken outside this range.

The pension funding process and the existence of an efficient range of periods over which to 
spread surpluses and deficits is investigated when various ‘realistic’ features are incorporated 
into the model. Haberman (1992a) and Zimbidis & Haberman (1993) show that delays in the 
pension funding system increase the variance of both contribution and fund levels and should 
therefore be avoided. A similar effect occurs when the frequency of valuations is reduced as 
shown by Haberman (1993). These results are not surprising in that delayed information 
and less frequent feedback control are known to affect adversely the control performance of 
various systems.

A modified supplementary funding method that allows for the explicit, separate amorti-
zation of initial unfunded liabilities (as prescribed under certain funding regulations) over a 
fixed term n is also described in §3.2.4. This method is found to be implicit in the Frozen 
Initial Liability pension funding methods. The first and second moments of the fund and con-
tribution levels over time are obtained. Full funding is achieved within n years on average, 
whereas when initial unfunded liabilities are not dealt with separately, liabilities are funded 
asymptotically. In the limit, the variance of the funding process (and therefore security and 
stability) is the same whether initial unfunded liabilities are removed explicitly or not.

The assumption of independent and identically distributed random rates of return in the 
pension fund is replaced by a more realistic assumption in §3.3: the logarithmic rate of return 
is projected to follow a general stationary Gaussian autoregressive process, AR(p). The results 
of Haberman (1994a) regarding the moments of the pension fund and contribution levels when 
p = 1 ,2  are generalised. These generalised results also suggest that when the mean and/or 
autocovariance of the rate of return decreases, the maximum allowable spreading period for 
stability increases, mirroring the numerical results of Haberman (1992a). It is also possible 
to surmise that his numerical results concerning the evidence of an efficient spreading period 
range may hold approximately for a general autoregressive process, i.e. that the efficient 
spread period range reduces as the autocovariance in the rate of return process increases. 
These results are also obtained numerically by Haberman & Wong (1997) for moving average 
rates of investment return of order 1 and 2.

Various additive perturbations may be included in the pension funding system. One 
such perturbation is discretionary extra contributions from the plan sponsor (§3.4.2). These 
arise from the sponsor’s requirement for contribution flexibility. The moments of the pension 
fund and contribution levels in the limit when stochastic AR(p) additive perturbations are 
included are obtained in §3.4.3. Numerical results indicate that an efficient range of spreading 
periods remains and that it does not change much from the ‘optimal’ range of Dufresne (1986, 
1988) except when perturbations are very strongly autocorrelated. Another perturbation in 
the pension funding system that is considered in §3.4.4 arises from a variable pension plan 
population. An important and well-known result is shown to hold in a simple, deterministic
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context: advance funding is only justified when the rate of investment return on assets exceeds 
the rate of growth of liabilities through inflation and through growth in the pension plan 
membership. The variance of the pension fund level is shown to increase when random 
numbers of new entrants are admitted into the plan. Some numerical results based on both 
the Unit Credit and Entry Age methods indicate that the efficient spread period range as 
obtained by Dufresne (1986. 1988) remains and does not change much. These results indicate 
that Dufresne’s (1986, 1988) conclusion regarding efficient spreading periods is robust and 
holds in different practical circumstances.

A different supplementary funding method is considered in §3.5: actuarial gains and losses 
are directly amortized over a finite term m a, with initial unfunded liabilities being amortized 
separately. Under the assumption of random rates of return and a stationary (deterministic) 
pension plan membership, it is proven that there exists a range of amortization periods, 
[l,m*], that is ‘optimal’ in the sense defined by Dufresne (1986). The tradeoff between the 
ultimate variance of the fund and contribution levels (representing security and stability in the 
pension fund respectively) is maintained when m a G [l,m*]. This range is shown to be wider 
than the corresponding spread period range [1, m*]. It is shown that the amortization of gains 
and losses over a fixed term yields greater fund security than when surpluses and deficits are 
spread over a moving term of equal length. However, it is also proven that spreading surpluses 
and deficits may be regarded as more efficient than amortizing gains and losses, based on the 
criterion of minimising the variances of both fund and contribution levels in the limit. This is 
because amortization involves the feedback of delayed information into the pension funding 
process.

Finally, an optimal pension funding policy through both contribution and asset allocation 
is considered in §3.6. This requires the strict assertion that rates of return are indepen-
dent from year to year so that the dynamic programming principle is applicable. A simple 
two-asset model is postulated—one risk-less and one risky asset. Optimization is based on 
an expected mean square performance criterion measuring the deviation of sponsor’s contri-
bution and pension fund level from target values. This is interpreted as a measure of the 
quadratic disutility derived by plan members and plan sponsor arising from experience de-
viations and thus from variable unfunded liabilities and supplementary contributions. The 
optimal contribution control c* (t) over a finite horizon resembles the proportional spreading 
of surpluses and deficits over a moving term. The optimal asset allocation y*(t) is found to 
be a portfolio that dynamically hedges against the risk of not meeting security and stability 
funding objectives: it locks into surpluses by requiring less risky investment when surpluses 
emerge and conversely requires more risky investment when deficits emerge. The optimal 
funding policy is thus said to hedge against the risks of fund inadequacy and contribution 
instability and to be a ‘minimum-risk’ strategy. Some limitations of this analysis are also 
discussed.
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Chapter 4

A sset and Liability Valuation  
M ethods

4.1 Valuation M ethodology

Various methods are used by actuaries to value the assets and liabilities of a pension plan. 
The choice of method should be consistent with the aim of the valuation. The discussion in 
this chapter pertains only to the ongoing or management valuation. The aim of the ongoing 
valuation is to compare assets and liabilities and to recommend contributions on a going- 
concern basis. Two competing methods are in use: the Discounted Cash Flow (DCF) method 
and the market method.

4.1 .1  T he D iscou n ted  C ash Flow  M ethod

Cash Flows in a Pension Fund. At the core of this method is the view that a pension 
fund valuation is a comparison of different cash flows: there is income from contributions and 
investments, and outgo as benefits are paid. There may then be an overall excess of cash at 
the end of each year, as incoming cash flows exceed benefit outgo, and this excess of cash will 
be reinvested. Conversely, there may be an overall shortfall, as outgoing cash flows exceed 
regular contributions and investment proceeds, and disinvestment from some assets is then 
required to meet the outgo. Gilley & Funnell (1958) and Daykin [Boden & Kingston (1979): 
discussion] offer very clear descriptions of the valuation process in these terms.

Projecting Cash Flows. If we could project cash flows over time, we could then obtain 
the excess or deficiency of cash for each year in the future. These could then be consolidated 
at the rate of reinvestment return on new money to give us a present value of the surplus (or 
deficit) in the pension fund.
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Discounting Cash Flows. In practice, it is computationally difficult to project all cash 
flows. It is easier (Gilley & Funnell, 1958) to discount asset and liability cash flows separately 
at the rate of reinvestment return. We then obtain discounted asset and liability ‘values’. The 
difference between them is the present value of the surplus of asset over liability cash flows. 
We may then determine additional contributions which when reinvested at the assumed rate 
of reinvestment return will amortize the surplus over a given period.

The Breadth of Pension Liabilities. The assets belonging to a pension plan are usually 
clearly defined. It is more difficult to establish what we mean by the pension liabilities in 
the context of a valuation. We could for instance consider benefits only when they become 
payable, e.g. when a member retires. Or we could evaluate only benefits that would have to 
be paid if the pension plan were to wind up. Or we could consider the expected benefit that 
would be paid to all members of the plan as soon as they enter the plan. In other words, we 
need to consider the breadth of the liabilities that must be pre-funded. This determines the 
degree of advance funding for liabilities, i.e. the amount of assets that the fund should aim 
to hold to meet its liabilities. The broader the liabilities that are evaluated, the more assets 
the pension plan will aim to hold, and the more advanced will be the degree of funding.

Pension Funding M ethods. Pension funding is about exchanging investment income for 
contribution income to meet the benefit outgo. Suppose we can project the benefit outgo in 
the future; suppose also that we have determined the degree of advance funding required, i.e. 
the breadth of the liabilities, and so the amount of assets that we aim to hold to meet these 
liabilities; suppose further that the fund actually holds these assets and that we can project 
investment income from them; then the level of regular contributions necessary to ensure 
that the liabilities are funded follows. This is because cash flows must eventually balance: 
the present value of benefit outgo less investment income should equal the present value of 
contributions. Various pension funding methods or actuarial cost methods (see §3.1) have 
been devised precisely to evaluate liabilities (termed ‘actuarial liability’ or ‘standard fund’) 
of varying breadth and to determine suitable regular contributions (termed ‘normal cost’ or 
‘standard contribution’) accordingly.

Contribution Adjustm ent. The fund will not actually always hold enough assets to meet 
the liabilities. The Discounted Cash Flow valuation therefore determines any deficit or surplus 
that may exist, assuming that the ‘standard contribution’ is paid. Given the surplus or deficit, 
we may determine the additional contributions that will be required to defray over a given 
term any existing surplus or deficit: the present value of these future additional contributions 
should equal the present value of future benefit outgo less investment income and standard 
contributions in each future year. The adjustment to contribution that we have described in 
Chapter 3 as spreading surpluses or deficits over a rolling term thus fits in naturally with the
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Discounted Cash Flow valuation method.

The ‘Long-term’ Portfolio. It was implicitly assumed, in the above, that the portfolio 
of assets held by the pension fund will remain unchanged from what it is at the point of 
valuation. Clearly this may not be so: tactical positions may have been taken that will be 
discontinued; new investment opportunities may arise; economic circumstances may change; 
pension obligations may change. The value that is placed on the surplus as an outcome of the 
Discounted Cash Flow valuation depends on the timing and amounts of the cash flows, and 
hence on the portfolio. It is important, therefore, that the portfolio of assets that is assumed 
for valuation purposes be the one that will be held on a ‘long-term’ strategic basis.

The ‘M atching’ Portfolio. Another implicit assumption that was made is that the single 
‘surplus’ value obtained from the discounted value calculation provides an accurate compari-
son of the future cash flows. This will be so if the assumption as to the reinvestment return 
on new money in all future periods turns out to be exactly right. But the reinvestment return 
is an uncertain time-variant economic quantity, although we may assume it to be constant. 
The surplus value resulting from the Discounted Cash Flow calculation provides a meaningful 
and acceptable comparison of cash flows only if the discounted values are insensitive to small 
changes in the assumed reinvestment return.

A strong form of this argument can be expressed in terms of Redington’s (1952) theory of 
‘immunization’. Springbett [Day & McKelvey (1964): discussion] idealises pension fund cash 
flow valuation in the light of well-known immunization results. He argues that a cash flow 
stream must be specified by both its discounted amount and its mean term, and that it is “only 
appropriate to add or subtract items which [have] identical mean terms.” An even stronger 
version of this is encapsulated in Haynes’ & Kirton’s (1952) concept of ‘absolute matching’. 
This is the theoretical notion that if asset and liability cash flows are exactly identical in 
amount and timing, then the valuation discount rate is irrelevant (the same valuation result 
is obtained irrespective of the valuation discount rate).

A weaker form of this argument can be phrased in terms of ‘matching by type’: relative 
changes in the discounted value of assets and liabilities should be roughly comparable for any 
given economic variation in investment return, inflation, real interest rates, currency exchange 
rates etc. Assets and liabilities should therefore have similar characteristics, for example in 
their link with price or salary inflation.

H ypothetical Switch into a Notional Asset Portfolio. It appears therefore that we 
can only judge the result of the discounted cash flow calculation as a reasonable comparative 
measure of asset and liability cash flows if two conditions hold:

1. the asset cash flows that we discount must be those arising from the long-term strategic 
portfolio;
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2. the asset and liability cash flows must be at least ‘loosely’ matched.

Consequently, if the portfolio of assets held by the fund at the point of valuation coincides 
with the long-term portfolio that will be held by the fund, and this in turn coincides with the 
portfolio that somehow matches liabilities, the result of the DCF evaluation will be (broadly) 
reasonable. Such coincidence is unlikely in general. The ‘pragmatic’ technique employed to 
resolve this problem involves two adjustments:

1. assets are valued after assuming a hypothetical switch into a ‘notional asset portfolio’, 
and

2. a suitably adjusted discount rate is used.

The concepts of matching and hedging with respect to valuations are discussed in §4.2. The 
role of matching/hedging in portfolio selection is considered in §4.3.3. The long- term portfolio 
may be the same as the matching portfolio if a minimum risk strategic investment policy is 
pursued. But this will generally not be so, not least because it is not always clear what a 
matching portfolio is, but also because it may be a legitimate investment policy of the pension 
fund to take a ‘mismatch’ risk in the hope of higher returns. It is well known that optimal 
long-term strategic portfolio is usually different from a matching or hedge portfolio. Wise 
(1987) exhibits this difference mathematically (§4.2).

H ypothetical Switch into a Matching Portfolio. The concept of the notional switch 
into a matching portfolio is described by Springbett (1964; Day & McKelvey, 1964: discussion) 
as a “mismatching adjustment” through a hypothetical switch of assets. Arthur k  Randall 
(1990:^[3.7) also specify that a matching portfolio must be used. If assets are hypothetically 
switched into a matching portfolio, future asset cash flows are ‘adjusted’, and if the matching 
portfolio were a portfolio ‘hedging’ the liabilities, this would be equivalent to a ‘risk-neutral’ 
valuation (Exley et al., 1997). Since the actual asset portfolio does not in general perfectly 
match or hedge the liabilities, surpluses and deficits will subsequently emerge and will be 
amortized. The valuation discount rate used is therefore the estimated return on new money 
being reinvested in the matching portfolio, rather than in the actual portfolio. The discount 
rate will also comprise a prudent margin or risk adjustment to allow for the greater downside 
risk posed by returns that are less than anticipated.

H ypothetical Switch into a Long-Term Portfolio. The fact that the notional portfolio 
is not the correct long-term one does not directly affect the comparability of asset and liability 
cash flows. Provided that they are consistently measured (requiring at least a ‘loose’ match) 
any difference will unwind as gains and losses to be amortized. It is also difficult to estimate 
the returns from a strategic investment portfolio, especially compared with a matching port-
folio which is by definition more stable relative to the liability cash flows. It is also doubtful
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that there exists a single ‘long-term portfolio’, given that in practice dynamic decisions are 
made.

A number of actuaries in the U.K. (where the Discounted Cash Flow method is principally 
used) take the view that the notional portfolio should be a suitable long-term strategic invest-
ment portfolio, and not exactly a matching portfolio. Kemp (1996:^[8.16) refers to “two main 
schools of thought” regarding the notional portfolio. Lee (1986:§24.25) and Thornton & Wil-
son (1992a:^[9.7) consider the notional portfolio to be a suitable long-term strategic portfolio. 
In such cases, a ‘best estimate’ of the future asset cash flows is being made, but there is a need 
to guard against the risk introduced by the mismatch between asset and liability cash flows. 
Wise [Colbran (1982): discussion] and McKelvey [Exley et al. (1997): discussion] state that 
this may be done through a mismatch risk adjustment in the valuation discount rate. The 
valuation discount rate used is therefore the estimated return on new money being reinvested 
in the long-term portfolio, rather than the actual portfolio, along with a prudent margin to 
adjust both for the greater downside risk and for the effect of a projected mismatch between 
asset and liability cash flows. The values of assets and liabilities will not be the same if the 
hypothetical switch is made into different portfolios and if the valuation discount rates used 
are different. It is not clear whether the calculated surplus (the difference between assets 
and liabilities) is different if assets are switched into a long-term strategic portfolio rather 
than a matching portfolio. This would presumably depend on the degree of mismatch risk 
involved and on the exact amount of risk adjustment in the discount rate. Wise [Exley et al. 
(1997): discussion] considers the practice of switching into a portfolio suitable for long-term 
investment to be a ‘pragmatic’ one.

Other Issues. The choice of valuation discount rate is discussed further in Chapter 5. 
Asset valuation in the DCF method is discussed further in §4.4.1. Because of the emphasis 
on ensuring that asset cash flows meet liability cash flows, Ezra (1988), Exley et al. (1997) 
and others refer to the DCF valuation method as a ‘funding valuation’ method.

4.1 .2  T h e M arket M eth od

An Economic Value of Cash Flows. The Discounted Cash Flow method seeks to com-
pare asset and liability cash flows by considering them together in the context of funding. 
The market method also attempts to compare asset and liability cash flows but does so by 
determining an economic value for assets and liabilities separately, but consistently. It relies 
on the market price of a set of cash flows as being the measure of economic value.

The No-Arbitrage Hypothesis. As described by Milgrom (1985), Tilley (1988), Sherris 
(1994) and Exley et al. (1997), consistency in the market method is predicated on the no-
arbitrage hypothesis: two cash flows identical in amount and timing must be equally priced by
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the market at any given point in time, lest an arbitrage opportunity arises. This is sometimes 
described as the ‘Law of One Price’. It follows that the market values of any two sets of cash 
flows (asset or liability) should be consistent.

Market Pricing of Asset Cash Flows. The market value of future asset cash flows into 
the pension fund is the market value of the assets. For reasons of long-term stability and 
security, pure market values are not always used, given their volatility. This is discussed 
further in §4.4.1.

Market Pricing of Liability Cash Flows. Since there is no market in typical pension 
liabilities, liability cash flows must be priced by comparison with similar asset cash flows. 
This argument has been diversely expressed in the pension funding and actuarial literature 
in terms of immunization [Milgrom (1985), Vanderhoof (1972)], matching [Wise (1984, 1987), 
Arthur & Randall (1990)] and hedging [Tilley (1988), Exley et at. (1997)]. In other words, the 
market value of a set of liabilities is the market value of a portfolio of assets that immunizes 
or matches or hedges the set of liability cash flows.

Pension Funding M ethod. The breadth of pension liabilities being valued may again be 
determined according to one of a variety of pension funding methods. Again, the liabilities 
do not refer to any accounting or legal liabilities, but relate to the degree of advance funding 
that one wishes to achieve. An actuarial liability is the value of a particular set of liability 
cash flows as set out by a pension funding method. If these liability cash flows can be priced 
by reference to traded assets then, in principle, an actuarial liability can be found using the 
market method. Likewise, a normal cost is the value of a set of cash flows (e.g. benefits 
accruing to members during the following year) that may also be priced, and adjustments to 
the contribution may be effected according to emerging gains/losses or surpluses/deficits.

Liability Valuation Discount Rate. A direct consequence, therefore, of the no-arbitrage 
hypothesis and of the ‘Law of One Price’ is that liabilities may be priced at the market value 
of the portfolio of assets that matches or immunizes or hedges these liabilities. Equivalently, 
liabilities may be discounted at market discount rates implied in the assets that immunize or 
match or hedge them.

Term-dependent Discount Rates. Since liability cash flows can be compared with in-
come from suitable bonds, the market value of liabilities is often obtained by discounting 
cash flow streams at discount rates implied by bond prices, i.e. using the term structure of 
interest rates. Depending upon the nature of the liabilities, different bonds are used for com-
parison. If the liabilities depend upon price inflation, then index-linked gilts or real-return 
bonds are used, but if the liabilities are fixed nominally, conventional gilts or Treasury bonds
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axe more appropriate. This concept can be traced back in the context of pension funding 
to Bagehot (1972) as well as Treynor (1977) who specifically mentions discounting liability 
cash flows using term-dependent risk-free discount rates with or without inflation expecta-
tions. Milgrom (1985) also considers the economic value of liability cash flows in terms of 
the yield curve, although he considers only nominally fixed liabilities. Ezra (1988; Arthur & 
Randall, 1990: discussion) sketches a similar method, with reference to the U.K. index-linked 
yield curve. Several authors refer to the use of gilt yields in the valuation of nominally fixed 
pensioner liabilities, but they do not articulate a consistent yield for other liabilities and do 
not refer to term-dependence: Boden &; Kingston (1979) and Colbran (1982) suggest asset 
values at market and a valuation discount rate for nominal pensioner liabilities that is based 
on gilt yields; gilt yields are also favoured by Jones [Jones (1993): discussion]. Given that the 
yield curve is not flat, term-variant discount rates must therefore be used, strictly, although 
duration-weighted averages of gilt or bond yields may be a useful practical approximation.

O th er Issues. The market valuation of assets and the choice of the discount rate for valuing 
liabilities are discussed further in §4.4.1 and Chapter 5 respectively.

4.1 .3  C om parison o f M arket and D iscou n ted  C ash F low  M eth od s

Both market and Discounted Cash Flow (DCF) methods employ a notional portfolio that 
matches or hedges liabilities. In the market method, it is assumed that a hedge portfolio can 
be accurately determined; that the appropriate market discount rates can be applied; and 
that a correct economic value can be placed on liabilities by valuing them by reference to the 
notional hedge portfolio. In the DCF method, it is assumed that a suitable portfolio that 
matches the liabilities can be found; that an approximate discount rate in the form of the 
matching rate of return can be used; and that both assets and liabilities can be consistently 
valued by reference to the notional matching portfolio. In both cases, liabilities are valued 
by reference to the hedging or matching portfolio: liability cash flows are discounted at 
the minimum-risk (or ideally risk-free) rate implied in the hedging or matching portfolio. 
Ideally, equal liability values can be obtained. Furthermore, assets are also valued equally 
in both methods if the market price (which the market arrives at by discounting the risky 
cash flows from the actual asset portfolio at suitable rates incorporating risk premiums) is 
equal to the discounted income value of the (hypothetically) ‘adjusted’ asset cash flows from 
the notional portfolio using the minimum-risk (or ideally risk-free) matching discount rate. 
Similar valuation results can in principle be obtained from the two methods. Exley et al. 
(1997:§4.7) arrive at a similar conclusion, but do not explicitly argue that it is consistent 
within the Discounted Cash Flow method to use a matching portfolio.

The methods will generally yield different results in practice:

1. Various approximations are made in the choice of discount rates in both valuation
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methods. The use of a computationally convenient term-independent discount rate, 
intrinsic in the Discounted Cash Flow method, may lead to considerable loss of accuracy 
[Cogan (Colbran, 1982: discussion), Exley et al. (1997:^13.2.9)].

2. The choice of the notional portfolio in the DCF method is not always made with rigour. 
The notional portfolio in DCF valuations is often regarded as a long-term strategic 
portfolio rather than a matching or hedging portfolio, as indicated earlier. Exley et al. 
(1997:§4.7) suggest that the notional ‘long-term’ portfolio is likely to be riskier than a 
hedge portfolio and thus lead to higher liability values.

3. Even if a reasonable matching notional portfolio is selected in the DCF method, it is 
not clear that the valuation discount rate is suitably (if at all) adjusted from the best 
estimate investment return assumption on the actual portfolio to reflect the lower risk. 
An expected long-term return is often used, sometimes based on the past performance 
of the fund.

A major difference between the two methods lie in the relationship between liability valu-
ation and asset investment. An important consequence of the market method of valuation is 
that the value placed on liabilities is independent of the investment or funding policy followed 
by the pension fund. Ezra (1988) sums this up as follows:

“Regardless of the funding payments made and the assumptions on which they 
are based, the annual accrual of pension obligations must be measured in terms 
of economic value, explicitly using ‘best estimate’ assumptions that reflect market 
conditions.”

Likewise, Exley et al. (1997:^[6.9.3) state that

“the economic cost of a pension promise depends particularly on the promised 
cash flows, not on the pace at which they are funded, nor on the assets in which 
the fund invests.”

This is in direct contradiction with the theory of the Discounted Cash Flow (DCF) method, 
where projected net cash flows being reinvested every year are discounted. This contradiction 
is relevant in practice when the notional portfolio used in the DCF method is the long-term 
strategic portfolio, rather than the matching or hedging portfolio.

4.2 Liability Valuation M ethods

Actuarial Present Value. As described in §4.1, ongoing pension liabilities are not in 
any sense accounting or statutory solvency liabilities, but refer rather to a subset of future 
benefit outgo which is to be pre-funded. They are traditionally valued using the actuarial
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present value (APV). This is the discounted value of a cash flow stream (at the valuation 
discount rate), allowing for mortality and other contingencies. Turner (1984) defines it as 
“a summation over time of the product of the amount payable (allowing where appropriate 
for earnings increases), the probability of payment at that time, and a reduction factor for 
interest” all according to the valuation basis. This is usually calculated over the set of all 
current plan members (i.e. assuming a ‘closed group’), although a projection for new entrants 
may be made. It is typical that actuarially neutral options are offered to plan members (e.g. 
commutation of benefit into a lump sum at retirement). The various options are designed 
such that their actuarial present values are equal.

Hedging. A statistical hedge for a set of liability cash flows may be found by regressing 
liability cash flows on income or dividend from various assets, or by rolling up the liability 
and regressing the growth of liability on the total returns of various assets. The regression 
coefficients are then taken as the weights of each asset in the hedging portfolio. In terms of 
their market values, the hedge portfolio and the set of liabilities are expected to respond to 
changes in market conditions in the same way. Exley et al. (1997:§5.3) state that a suitable 
hedge portfolio for pension liabilities will be such that the surplus (or deficit) of assets over 
liabilities (at market values) will be uncorrelated with contemporaneous price changes in par-
ticular assets, as well as past and future price changes. If risk-less arbitrage is disallowed, then 
since the liabilities and their hedge portfolio have identical price behaviour, the theoretical 
value of their underlying cash flows are equal, and so the market value of the liabilities is 
equal to the market price of the hedge portfolio.

M atching. The term ‘matching’ is used in various ways in the actuarial literature. Fujiki 
(1994) describes the various concepts that have been associated with matching. The quan-
titative theory provided by Wise (1984, 1987) illustrates its application to the valuation of 
pension liabilities. The theory focuses on the ultimate surplus that emerges as assets are 
run off against liabilities over a suitably long period. Wise (1984) uses moments of the sur-
plus as measures of investment and mismatch risk (‘ruin’ probabilities are also mentioned by 
Wise (1989) and Fujiki (1994)). Wise (1984) also shows that the value of liabilities is the 
value of a matching asset portfolio. The degree of mismatch between assets and liabilities at 
any point in time is measured by the expected value of the square of the ultimate surplus 
that is residual when all liabilities (in respect of all plan members at that point in time) are 
extinguished. (A notional assumption of ‘no new entrants’ is therefore made, although this 
may be relaxed.) Stochastic models for interest, price inflation and dividend growth must 
be assumed. A ‘positive matching’ portfolio (negative asset holdings are proscribed) may be 
found that minimises the mean square surplus.

Wilkie (1985) suggests that the ‘price’ of assets is also a variable—since the liabilities are 
not traded and cannot be regarded as negative securities—and therefore considering mere
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proportions of assets is insufficient. Portfolios are therefore constructed in a so-called P-E-V  
space (price- expected ultimate surplus-variance of ultimate surplus).

For the investment manager, there is a budget constraint: P  is fixed and is the current 
market value of the fund. Optimality is achieved in E-V  space when a portfolio has maximum 
expected ultimate surplus with the minimum variance. This is a reformulation of MPT in 
terms of surplus, with fixed liabilities (see §4.3.2 below) and a single-period optimization 
carried out over a suitably defined longer term instead of just one accounting year. Sherris 
(1992) casts the theory in a more general portfolio selection framework, with the use of a 
utility function, and attempts an extension to multi-period optimization.

For the actuary, the expected surplus E  should be close to zero, and portfolios that 
minimize both the price of assets and variance of the ultimate surplus are ‘efficient portfolios’ 
in P- V  space. Specification of the willingness to trade off greater variation of surplus with 
a lower price for the portfolio (- dV/dP:  a risk tolerance factor or ‘degree of risk’) yields a 
particular unique efficient portfolio, which we may call the ‘optimal’ portfolio. (Wise shows 
that this is not too different from his ‘matching portfolio’.) This portfolio is significant because 
its price, based on the current market value of its constituent securities, represents the market 
value of the liabilities of the pension scheme.

By contrast with hedging, which applies market valuation principles to the stochastic 
valuation of liabilities, Wise’s (1984, 1987) matching represents stochastic valuation from a 
cash flow perspective. Cash flows are not discounted but accumulated. Consistency is achieved 
by accumulating both assets and liabilities using a single set of (stochastic) assumptions. 
The deterministic economic valuation assumptions of the traditional Discounted Cash Flow 
method (§4.1.1) are replaced by stochastic assumptions, which may be considered to be more 
realistic. Conversely, the results of a matching valuation may be very dependent on the 
stochastic model assumed. Analytical results are only possible for a very simple stochastic 
‘valuation basis’. In practice, simulations will be necessary.

A deficiency of Wise’s (1984, 1987) matching valuation is that it is not clear how one 
determines suitable contributions. This is after all the output of an ongoing long-term val-
uation. The optimised match of asset and liability cash flows derived by Wise (1984) either 
ignores contributions or assumes a prior pattern of contributions. It is not clear which of port-
folio selection or valuation should come first, and this arises because of the circular argument 
concerning contributions. This can be clarified by noting that one can equally perform the 
matching valuation on any subset of the liability cash flows, i.e. obtain a portfolio of assets 
that matches any subset of the total liabilities and hence value this subset. (In this respect, 
note that Wise (1989) postulates a criterion of linear combination and scaling of cash flows.)

A given pension funding method defines the actuarial liability as the value of a particular 
subset of liability cash flows, which can in principle be matched and ‘valued’. Likewise, a 
normal cost is the value of a set of cash flows (e.g. the portion of liabilities that will accrue 
in the following year) which can be similarly valued. Any deficit (excess of actuarial liability
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over fund) also represents a liability. To spread this over m  years, one can determine the 
equivalent of the annuity factor in the DCF method: the matched value of a unit cash flow 
over m  years. Hence, the past-service contribution or adjustment to the normal cost is equal 
to the deficit divided by the ‘annuity factor’. (Note that the spread period m  could take any 
positive value, m  could conceivably be longer than the period during which all liabilities due 
to current members are extinguished, provided that the optimisation is carried out over this 
longer period and an assumption, possibly stochastic, is made about new entrants over this 
longer period.)

Once recommended contributions are established, an optimal portfolio, from the viewpoint 
of the investment manager can be found. Optimisation in E-V  space, allowing for the rec-
ommended contribution cash flows (for the first m  years) and the standard contribution (for 
the remaining years of the projection during which there are active members), and assuming 
an investment risk tolerance factor dV/dE,  then yields an ‘optimal’ portfolio for investment.

4.3 Some Issues in Strategic Asset Allocation

This section briefly reviews some issues in the choice of assets for pension funding. This is 
an area where consensus has not emerged. Different views are held in different jurisdictions. 
These views cannot always be reconciled by appealing to differing pension liability profiles, 
or to the different structures of financial markets, or to differences in taxation and statute.

4.3 .1  A sset-L iab ility  M odelling

In some countries (notably in the U.K. and the Netherlands), actuaries have sought a role 
in the integrated management of assets and liabilities. Some are involved in Asset-Liability 
Modelling (ALM) and hence in strategic asset sector selection. Tactical asset allocation 
(market timing) and security selection are usually left to the fund manager. In North America, 
it seems that fund managers have more latitude, and have incorporated liabilities (usually 
accounting liabilities) into their work (see §4.3.2).

One of the problems of ALM is the choice of suitable objectives. Although they make 
reference to all long-term funding objectives (see §2.2), most authors concentrate on the choice 
of a portfolio that optimises aspects of security in the long-term. There are differences as 
to the choice of underlying stochastic asset model and the definition of ‘risk’. Both Loades 
(1988) and Daykin et al. (1993) use versions of the Wilkie (1987) model. Daykin et al. (1993) 
investigate four static portfolios in the context of closed pension funds and measure risk in 
terms of the frequency with which funding levels are less than 1 after a given period of time. 
Loades (1988) considers the level of security offered by the strength (or conservatism) of the 
basis used to value liabilities and measures security in terms of the frequency distribution 
of funding levels. Kemp (1996) prefers a model that is predicated on market efficiency and
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measures the riskiness of a portfolio as the covariance between its returns and those of a 
portfolio that closely matches pension liabilities.

Some authors determine an optimal investment portfolio in terms of the contributions 
required from the sponsor. This approach is followed by McKenna (1982). Black (1995) 
favours minimising the present value of future contributions. MacBeth et al. (1994) describe 
projections that are aimed at finding the portfolio which stochastically dominates all others 
in terms of the frequency of contributions at various levels (a relatively short horizon is used). 
McKenna & Kim (1986) seek the portfolio which dominates in terms of mean and semi-
variance of contributions over a term comparable to the duration of the liabilities, given the 
sponsor’s level of risk aversion. Such modelling seems to assume that the actuary uses a given 
pension funding method—often the Aggregate method, which readily yields a contribution 
without the construction of an actuarial liability or normal cost.

4.3 .2  M odern P ortfo lio  T heory w ith  U nm arketab le L iab ilities

The Modern Portfolio Theory (MPT) of Markowitz (1952) implicitly assumes that liabil-
ities are tradeable securities and hence ‘negative’ assets. In the 1980’s, U.S. fund managers 
developed models based on MPT and efficient risk/return frontiers as well as performance 
measurement and risk-adjusted returns to justify and set investment strategy over short-term 
horizons for pension funds. These models ignored pension liabilities. In the 1990’s, the advent 
of Financial Accounting Standards No. 87 (FAS87) led fund managers to focus on optimising 
surpluses [Leibowitz (1986c), Sharpe et al. (1995:477)]. MPT was adapted to included fixed 
(i.e. unmarketable) liabilities such as those of a pension fund. The efficient set of portfolios is 
then based on the mean and variance of a ‘return’ on the pension fund surplus [Ezra (1991), 
Leibowitz et al. (1992)]. This ‘return’ is the difference between, on the one hand, the rate of 
return on assets held and, on the other, the rate of growth of liabilities multiplied by some 
risk tolerance factor and divided by a fixed asset/liability ratio. The fixed funding level is 
present precisely because liabilities are unmarketable, so that actual prices and liability values 
(rather than mere proportions) do matter in the portfolio, as pointed out by Wilkie (1985) 
(see §4.2).

FAS87 provides two measures of pension liabilities at market discount rates (the accumu-
lated and projected benefit obligations: ABO and PBO). They are used by fund managers 
as proxies for pension liabilities. Sharpe & Tint (1990) note that these measures need to be 
accepted and used consistently from year to year. Efficient portfolios may be determined such 
that period-by-period surplus is optimised: its mean is maximised and its variance minimised. 
Ezra (1991) investigates efficient portfolios, using both the ABO and the PBO as measures 
of liability, under various conditions.

This approach is a useful extension of MPT in that it integrates assets with liabilities. 
In this sense, it satisfies the actuarial perspective of “investing to meet liabilities”, as argued
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by Arthur & Randall (1990) inter alia. It seeks to maximise security but disregards the 
other long-term objectives of funding, in particular the sponsor’s requirement for contribution 
stability and flexibility. FAS87 aims to provide an economic value of liabilities but the market 
discount rates used may be inconsistent with the term structure of discount rates implied in 
the assets that hedge the pension liabilities in the long term. This method may therefore 
suffer from too short-term a perspective.

4.3 .3  A sset A lloca tion  by M atching or H edging L iabilities

Some authors suggest that a pension fund should invest its assets in order to match or 
hedge at least some of its liabilities. Such investment policies aim to minimise the risk of 
assets not meeting liabilities:

1. ‘Dedicated’ bond portfolios, which match current (nominal) pensioner liabilities (Lei- 
bowitz, 1986a, b), are used to minimise the risk of not meeting these liabilities. Dedi-
cated or immunized portfolios in the context of ‘surplus’ optimisation (see §4.3.2 above) 
are considered to be analogous to a risk-free asset (Leibowitz & Henriksson, 1988).

2. Keintz & Stickney (1980) also consider the desirability of an immunized investment 
strategy for pension funds. Because of the long duration of pension liabilities, they 
conclude that a significant investment in equities will be necessary, although less is 
required as the plan membership matures and liability duration shortens.

3. ‘Lifestyle switching’ arguments such as Samuelson’s (1989) ‘age-phased’ investment 
strategy—justifying “folk wisdom” concerning less risk being taken by individuals (i.e. 
less equity investment) as they grow older—are also used in deciding investment strat-
egy. They are sometimes confirmed by Asset-Liability Modelling studies (§4.3.1) such 
as by Kingsland (1982). Blake (1996) argues that as a plan matures, it should invest less 
in equities and long bonds and be able to invest in a “liability immunising portfolio”. 
When the plan is mature, any funds in excess of the liability immunising portfolio can 
be invested to achieve higher returns, given the plan sponsor’s risk tolerance.

4. Vanderhoof (1984) also seeks a portfolio of assets that somehow immunizes the liabilities. 
This is meant to minimise investment gains/losses and thus stabilise contributions.

5. Exley et al. (1997) and Bezooyen & Mehta (1998) favour a ‘minimum risk’ portfolio that 
hedges liabilities. They also note that this should yield, in addition to greater security, 
more stability in contributions and in reported costs, thereby enabling the plan sponsor 
to budget for his contributions and raise capital more effectively. They also point out 
that the greater stability in the funding process as a result of a matching or hedging 
policy should make it easier for the plan to remain within minimum and maximum 
funding limits.
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Other authors, such as Arthur & Randall (1990), argue that pension funds should identify 
a matched investment position but may then take a mismatch risk in order to derive higher 
returns. This is based on the argument that higher returns may then be shared by the 
sponsor and its shareholders (through lower contributions) and by plan participants (through 
eventual benefit improvement). In terms of ultimate run-off surplus, Wise (1987) shows that 
the set of efficient strategic investment portfolios (maximum mean surplus with minimum 
surplus variance and a given risk tolerance parameter) is generally different from the matching 
portfolio (see §4.2).

At one extreme, a policy of hedging or matching enhances benefit security for members, 
but may nullify one of the purposes of funding, i.e. exchanging more investment return for 
less contribution. At the other extreme, a mismatched investment policy that is successful 
will reduce the level of contributions required to finance promised pension benefits, but may 
also put them at risk. In general, there will be some asset-liability mismatch according to 
the balance struck between the various pension funding objectives (§2.2), which themselves 
depend on the plan’s demographic maturity, its funding level, the sponsor’s risk tolerance 
and financial situation, his requirements for contribution stability, flexibility etc. This may 
involve a conflict of interest between trustees, members and sponsor.

4 .3 .4  E quities v. B onds

There are considerable differences of opinion over whether pension funds should invest 
mostly in equities or in fixed-income securities. Many of these differences originate from the 
lack of consensus on certain features of equity investment returns, as discussed in §2.6.3. The 
equities v. debt debate relates partly to the argument over whether equities provide a better 
hedge against salary inflation than index-linked bonds. Whether a matching investment policy 
is followed or not, supporters of equity investment point to

— higher real returns in the long term, giving rise to surpluses that can be shared between 
the plan sponsor in the form of reduced contributions and plan members by receiving 
improved benefits;

— returns that may be at least partially correlated with salary inflation in the long term, 
so that final-salary pension rights are more secure;

— putative mean reversion in long-term returns corresponding to possibly reduced risk 
that long-term pension obligations are not met.

Supporters of heavier bond investment, on the other hand, point to

— low default risk on government securities and high-grade corporate bonds signifying 
greater security of benefits for plan members;
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— reduced volatility of bond returns and hence greater stability in contributions and pen-
sion expenses which benefits the sponsor;

— tax advantages to the plan sponsor and to its shareholders [Black (1980), Tepper (1981), 
Black & Dewhurst (1981)].

These differences again stem from the relative importance attached to the various objectives 
of funding.

4 .3 .5  C ontrol th rou gh  A sset A lloca tion

The three major areas of control of pension funding were noted in §2.3.2 to be benefit 
policy, funding policy and strategic investment policy. A suitable asset allocation strategy is 
required to balance the various objectives of funding for retirement benefits. The sheer size 
of pension funds and of the returns available on capital markets means that asset allocation 
must be regarded as a major controlling variable. The distinctions between special compliance 
and ongoing management objectives (see §2.2.2), and between solvency and ongoing actuarial 
liability, are important in this respect.

Liabilities are sometimes conceptually ‘partitioned’ (Mennis et al, 1981) for investment 
purposes on the basis of nature of membership (i.e. active vested, retired etc.), although Wise 
& Annable (1990) among others consider such ‘segmentation’ not to yield optimal investment 
performance. The distinction between solvency and ongoing actuarial liability is primarily 
based on the breadth of liabilities (see §4.1), while solvency liability may also be defined 
by statute or regulation and will tend to be related to wind-up benefits as stated in the 
pension plan document. Assets need to be accumulated initially to meet the solvency liability 
(this is a ‘compliance’ objective: see §2.2.2) and should be arranged first to hedge solvency 
liabilities. Additional assets may be accumulated to meet the additional actuarial liability 
(i.e. actuarial liability less solvency liability, for example when salary projection is taken into 
consideration from a going-concern perspective). The exact amount of the actuarial liability 
will be rationalised through the pension funding method, and will depend on the balance 
sought between the various objectives of funding, i.e. the security that members should be 
offered by advance funding, contribution stability and flexibility required by the sponsor, 
optimal value through savings on tax and transaction costs etc. (see §2.2). This balance will 
dictate the degree to which the additional assets are needed to match the additional actuarial 
liability. In a sense, two notional sub-funds may be deemed to exist. The first sub-fund 
consists of the solvency liabilities backed by assets that hedge them. The second consists of 
the additional actuarial liability backed by ‘additional’ assets, with the extent of mismatch 
being related to the balance struck between the various funding objectives.

It is not clear how much influence actuaries have in setting investment strategy and this 
appears to differ among various jurisdictions. Actuaries are often professionally required to
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comment on any mismatch between the strategic investment policies and the liabilities of 
a defined benefit pension plan when they perform an ongoing funding valuation. See for 
example Professional Standard 400 of the Institute of Actuaries of Australia (1995:^[64) and 
Guidance Note 9 of the Institute and Faculty of Actuaries (1997a:f3.5.3). Such comments 
appear to be reserved for more extreme cases of mismatch. Indeed, the investment policies 
of pension funds that are technically insolvent or are close to insolvency may be restricted. 
Actuaries do not continually determine investment strategies (unlike contribution rates) for 
pension funds. Neither trustees nor fund managers are bound by the actuary’s comment on 
their investment strategy [Freethy (Arthur & Randall, 1990: discussion)]. Indeed, not all 
fund managers welcome actuarial interference in asset allocation, although some are positive 
about it [Blake (1997:16), Ezra (Arthur &; Randall, 1990: discussion)]. As compared to the 
sole responsibility they have for setting contribution rates, actuaries do not exert as much 
effective control on the pension fund through asset allocation.

4.4 Asset Valuation M ethods

Asset valuation methods have been described and discussed by several authors. Again, I 
will not describe the details of the various asset valuation methods here, but I will summarise 
a few important features.

4.4 .1  Som e P ractica l M eth od s and Issues

Discounted Income Value of Assets. The discounted income value follows naturally 
from the Discounted Cash Flow method of valuation (§4.1.1). This involves discounting in-
come from assets and is also sometimes referred to as ‘Present Value’ method. This method-
ology has originally been advanced by Heywood &; Lander (1961) and Day & McKelvey 
(1964), as an alternative to book or historic cost value. The method may be applied to value 
individual securities but is usually applied to broad asset classes instead. Its use in valuing 
fixed-income securities is very straightforward but various additional assumptions are required 
when valuing variable income assets such as equities and property. Equities are usually val-
ued using the original Dividend Discount Model of Gordon (1962): a constant growth rate in 
dividends is most often used. Various modifications such as ‘select and ultimate’ assumptions 
as to dividend growth axe also employed. The dividend growth rate assumption is therefore 
very important, in particular relative to the valuation discount rate. The Discounted Income 
Value of equities is criticised (Dyson & Exley, 1995) on the grounds that it is too sensitive to 
the difference between assumed dividend growth and discount rate (i.e. the dividend yield in 
Gordon’s (1962) model), that the assumption of a fixed, term-independent dividend yield is 
not a suitable approximation and that it adversely affects the dynamics of pension funding 
and investment (see also §4.4.5).
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Market-related Value of Assets. The pure market value (price) of assets is rarely used 
because of the volatility in the price of heavily traded securities such as equities and bonds. 
In such cases, market-related values are used, with the aim of moderating some of the large 
and impermanent fluctuations in prices. A great variety of methods appear to be used to 
achieve this aim. The list below is not exhaustive.

Averaging over Security Prices. Some average over time of the price of each security, 
especially equities, is calculated. A moving average of prices may be taken over a given 
period—typically 3 to 5 years [Jackson & Hamilton (1968), McGill et al. (1996:678), Win- 
klevoss (1993:173)]. An alternative is to use some form of exponential smoothing by recognis-
ing only a proportion of the change in prices [McGill et al. (1996:678), Winklevoss (1993:173)]. 
Aitken (1994:289), for example, describes a smoothed actuarial value that is a weighted av-
erage of current market value (20%) and previous actuarial value (80%).

Averaging over Fund. A common method is to recognise only a fixed percentage of the 
capital appreciation in a year or else recognise only a fixed fraction of the return in excess of the 
assumed return on the valuation basis. Dyson & Exley (1995:§7) propose a related smoothing 
method, based on the funding level or asset/liability ratio rather than the asset value. These 
methods put only a certain weight on current market values: Jackson & Hamilton (1968) 
and Colbran (1982) seem to suggest 10%; Ferris & Welch (1996) report typical fractions of 
25% or 30% being used in Australia; Winklevoss (1993:174) suggests that current market 
values are weighted by 25-33% in the U.S.; finally, Dyson & Exley (1995:^7.5.3.10) conclude 
that, in the calculation of actuarial values in the U.K., an effective weight of about 20% is 
placed on current market value. Among other methods, “spreading capital gains arising in 
any year over a specified period, typically two to five years” is sometimes used according to 
Ferris & Welch (1996). For expensing purposes, the U.S. Financial Accounting Standards 
No. 87 (FAS87) also allows averaging that “recognizes changes in fair [i.e. market] value in a 
systematic and rational manner over not more than five years.” Finally, note that a simple 
average over time of the total market value of the fund cannot be taken as cash flows must 
be allowed for [Anderson (1992:§5.2)].

Other M ethods. Various ‘pragmatic’ methods appear to be employed to value assets. 
Sometimes, different methods are used to value different types of securities, e.g. prices of 
common stock or equities may be averaged but bonds are taken at discounted income (‘amor-
tized’) value. Many methods that restrict only extreme fluctuations in market value have 
also been suggested. Jackson fc Hamilton (1968) describe “adjustment accounts” in which 
all or part of the return in excess of a reasonable investment return in a year is held, while 
losses are immediately recognised but can be deducted from the adjustment account. Boden 
& Kingston (1979) appear to suggest a combination of market and Discounted Cash Flow
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methods: the more extreme fluctuations of market equity values are dampened by limiting the 
variation of equity dividend yields (on an index) and discounting income at these extremes. 
If y is the current dividend yield on a suitable equity index, [yo, yi] is an ‘acceptable’ range 
for dividend yields, and M  is market value of equities, then

Assessed equity value =  <
My/yo if y < yo j

M  if yo < y  < y i ,  i4-1)

My/yx  if y > yi •

It is not clear how consistency with the valuation of liabilities would be maintained if such 
an asset valuation method were used. Methods that only remove extreme fluctuations do not 
smooth market values continuously and this may make contribution rates more unpredictable.

Proxim ity to Market Values. There is also concern that actuarial values, while smooth-
ing market values, should not stray too far from them. In the context of the U.S. Employee 
Retirement Income Security Act, 1974 (ERISA), it is generally regarded that the smoothed 
actuarial value should reflect current market values [Winklevoss (1993:172)]. The U.S. Inter-
nal Revenue Service (IRS) imposes a 20% corridor of market (‘fair’) value within which the 
actuarial value must lie [Anderson (1992:108), McGill et al. (1996:679)]. Actuarial Standard 
of Practice No. 4 of the American Academy of Actuaries (1993:^5.2.6) thus requires that 
asset values should “generally reflect some function of market value”. The requirements of 
the Canadian Pension Benefits Standards Act 1985 [Office of the Superintendent of Financial 
Institutions Canada (1987:43)] are that:

“Averaging techniques and other smoothing methods are permitted, provided the
values obtained do not systematically exceed a reasonable market-related value.”

4.4 .2  C onsisten cy

Since pension fund valuation is a comparison of asset and liability cash flows, it is impor-
tant that values placed on assets and liabilities are consistent and comparable. As interest 
and inflation rates became more unstable and equity investment in pension funds rose during 
the 1960’s, the practice of valuing assets at book value or historic cost declined, precisely 
because such asset values became increasingly inconsistent with pension liabilities. In North 
America, market-related methods (§4.1.2) gained pre-eminence. Book values were revised in 
line with market value changes, using various methods as described by Jackson & Hamilton 
(1968). Market values, usually smoothed somehow, are now in use. The valuation of assets 
and liabilities using market methods can be consistent, but there are various practical diffi-
culties in the choice of economic assumptions to achieve this. In the U.K., the Discounted 
Cash Flow valuation method (§4.1.1) became more popular. Since liabilities and assets are
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discounted using closely related assumptions, it is claimed that this method yields asset values 
that are more consistent with liability values.

4 .4 .3  R ealism  and O b jectiv ity

It is not a primary objective of a funding or management valuation to place an absolute 
value on assets, although it is sometimes argued that actuarial asset values can be superior 
to market values in the long term. If consistency is preserved (whether in the market or 
Discounted Cash Flow method), a consistent value of the unfunded liability will be obtained, 
regardless of whether intermediate ‘values’ placed on assets and liabilities are correct or 
realistic. Asset values must nevertheless be chosen in an objective fashion and must bear 
some relationship to reality if an artificial valuation result is to be avoided.

When the market method is used, various averaging techniques are applied to mar-
ket prices so that short-term volatility is removed. Since most assets do have to be sold 
eventually-—not all assets are held to redemption—and the assumption of perpetuity made 
when discounting income from equities is not always tenable [Anderson (1992:103)], it is said 
that market methods are more realistic. Nevertheless, the opacity and variety of averaging 
techniques employed make market-related asset valuations somewhat arbitrary.

Some actuaries (notably in the U.K.) contend that discounting the cash flow from assets 
allows the actuary to place a superior long-term ‘value’ or ‘worth’ on pension fund assets. 
This ‘value’ is considered to be superior to the market price: see for example Day & McKelvey 
(1964) and Pemberton (1998). This is based on the assumption that the actuary can take into 
account the degree of mismatch between pension fund assets and liabilities and differences 
between various market investors in terms of their liabilities or their tax position. But the 
arbitrariness of the Discounted Income Value is also apparent: it has been shown [Atkinson 
(1994), Dyson &; Exley (1995)] that the Discounted Income Value method, when applied to 
variable income assets such as equities, is very sensitive to the (usually term-independent) 
assumption as to income growth; in addition, the choice of a notional asset portfolio (see 
§4.1.1) is often arbitrary.

4 .4 .4  Sm oothn ess

According to Bleakney (1972:125),

“The special asset valuation methods in use are [ . . .  ] designed to strike a 
balance between two purposes, which are sometimes in opposition:
A recognition of each security’s intrinsic value at the time of valuation;
An attempt to gain stability of valuation, so as to avoid fluctuating gains and 
losses which have no long term significance.”
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For funding purposes (as opposed to compliance purposes, such as for solvency or ac-
counting), it is perhaps less important to find absolute ‘values’ of the assets and liabilities: 
comparable values are required. In this respect, the short-term volatility of pure market val-
ues may not reflect the true financial situation of the pension fund. Actuarial asset values 
(whether in the market or Discounted Cash Flow method) then need to be ‘smoothed’ so that 
a correct long-term assessment of the security of pension benefits may be made. In addition, 
if asset values are smoother and more stable, the resulting surplus or deficiency and hence 
contributions are smoother and more stable. Thus, the Standard of Practice for Valuation of 
Pension Plans of the Canadian Institute of Actuaries (1994:^5.01), allows for

“a market-related value which moderates the effect of short-term volatility of 
market values”

while the Actuarial Standard of Practice No. 4 of the American Academy of Actuaries 
(1993:§5.2.6) requires asset valuation methods that

“smooth out the effects of short-term volatility in market value”.

The Discounted Income Value of assets has been shown by a number of British authors to 
generate a smoother set of contribution rates than pure market values. This has been used 
as an argument in favour of using the Discounted Cash Flow method. Indeed, in practical 
situations, it is smoothness rather than consistency (§4.4.2) that may motivate the use of 
discounted income values [Atkinson (1994), Dyson &: Exley (1995)]. It has also been argued, 
for example by Ross [source: Lochhead (1994)] and Exley et al. (1997), that the Discounted 
Income Value of assets will only be smooth while the dividend growth assumption is left 
unchanged: if experience turns out to be different in the long term and this assumption 
needs to be changed, asset values and consequently contributions will need to be realigned. 
Clearly, the effect of such changes to the valuation basis should be tempered by a suitable 
amortization of the ‘initial unfunded liability’ (see §3.2.4) that is then generated, especially 
if initial unfunded liabilities are amortized separately. This shows that smoothness is related 
both to the asset valuation method and to the way in which gains/losses or surpluses/deficits 
are dealt with.

4 .4 .5  D ynam ics

The dynamics of any asset valuation method will affect the pension fund cash flows. 
Asset-liability models of pension fund are sensitive to the asset valuation method, as noted 
by Kemp (1996:§8) and Kingsland (1982). Pension fund investment, and thus the ex post cost 
of pensions, will depend on the dynamics of the asset valuation method because asset allo-
cation decisions are taken based on assessments of the liabilities and assets. While achieving 
‘smoothness’, an asset valuation method must not distort the plan trustees’ or sponsor’s per-
ception of economic reality and lead to wrong investment decisions [Ezra (1979:110)]. Dyson
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& Exley (1995) axe particularly critical of the Discounted Income Value method in the U.K. 
for this reason.

The asset valuation method will also affect the timing of contributions: the emergence of 
investment gains and losses, especially unrealised ones, will be different depending upon how 
assets are valued. If an asset valuation method does not sufficiently even out the short-term 
fluctuations of market values, large gains and losses may arise which will lead to volatile contri-
bution rates. It is usually considered that the amortization of these gains/losses (or spreading 
of the surpluses/deficits) will not be powerful enough on its own to stabilise contributions. 
For example, Anderson (1992:108) suggests that

“there are situations where the normal damping of [investment gains (or losses)] 
through amortization of the gains is not enough: If we want year-to-year stability 
in pension cost we have to apply extra damping, which means we have to use an 
artificial asset value in place of the actual market value.”

On the other hand, some authors feel that volatility in market values may be dampened by the 
gain/loss adjustment itself, if this is sufficiently powerful. Trowbridge [Jackson & Hamilton 
(1968): discussion] states that:

“There is little reason why common stocks cannot be valued at market on asset 
side of the pension balance sheet, if at the same time a powerful smoothing device 
is employed in the calculation of contributions to level out actuarial gain or loss.”

Hennington [Jackson & Hamilton (1968): discussion] also believes that:

“The smoothness of the annual contribution is determined not only by the method 
for determining asset value but also by the actuarial funding method. [ . . .  ] An 
actuarial cost method involving a spreading of actuarial gains and losses makes it 
easier to use some of the market value methods”.

It is not meaningful therefore to consider the issue of asset valuation without addressing 
contribution adjustment methods. Trowbridge & Farr (1976:73) write of “the consistency 
between the asset valuation and the techniques of actuarial gain or loss adjustment” . (Recall 
that asset and liability values must also be consistent.) In the following section, a simple 
analysis of a market-related asset valuation method with surpluses/deficits spread forward is 
presented.

4.5 A M ethod for Smoothing A sset Values

4.5 .1  M otivation

The fundamental reason for smoothing asset values is to generate a stable and smooth 
pattern of contribution rates. As is pointed out by Daskais [Jackson &; Hamilton (1968):
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discussion], Trowbridge & Farr (1976:93) and others, smooth asset values are not necessary 
for a smooth sequence of contributions: contributions can be smoothed separately. Dyson & 
Exley (1995) argue that the asset valuation method per se should not be required to yield a 
smooth value. They draw a distinction between the aim of an asset valuation and the overall 
objective of smoothness in an ongoing valuation and suggest that a separate mechanism be 
used to smooth asset values.

Another reason for smoothing asset values is to generate an asset value that is more 
consistent with the long-term assumptions used when valuing liabilities [Ezra (1979:108)], so 
that a better long-term assessment of the security of benefits is made. This assumes that any 
smoothed asset value is consistent with the value placed on the liabilities. It is not clear how 
one can ensure this consistency. The Standard of Practice for Valuation of Pension Plans of 
the Canadian Institute of Actuaries (1994:^5.01) suggests that the asset valuation method 
will be consistent (with the liability valuation) if

“the asset valuation method, when considered in conjunction with the assumed 
rate of investment return (before inclusion of a margin for adverse deviations or 
compensating adjustments to related assumptions), can reasonably be expected 
to result in gains and losses which will offset each other over the long term.”

Actuarial gains and losses are only consistently measured, however, if one supposes that 
assets and liabilities are being consistently valued in the first place. Consistency can only 
genuinely be upheld if the same assumptions are used to discount the liabilities and assets 
(the Discounted Cash Flow method: §4.1.1) or if the liabilities and assets are both measured 
at market value (the market method: §4.1.2).

In the following, I will assume that the asset valuation method is a mechanism for pro-
ducing stable and smooth contribution rates, rather than being a superior measure of value. 
This is in agreement with the ideas expressed by Dyson & Exley (1995) in the U.K. It is 
also implied by the U.S. Employee Retirement Income Security Act of 1974 (ERISA) and the 
Canadian Pension Benefits Standards Act of 1985. This assumption is also central to most 
North American pension funding theory and practice. Berin (1989:28-29) thus considers asset 
valuation methods to be “adjusted asset systems” which “should include a smoothing device” 
and must be “related to Market Value” . Ezra (1980) regards the main purpose of actuarial 
asset values to be to smooth contributions: actuarial asset values are not meant to be superior 
to market values, but are “damped” or “toned down” in an attempt to remove short-term 
fluctuations. Likewise, Aitken (1994:289) considers that “actuarial values are market val-
ues with dampened volatility.” See also Anderson (1992:107) and Winklevoss (1993:171) for 
further discussion of this point.
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4.5.2 D efin ition

A particular asset valuation method, applied to the whole of the pension fund, is now 
considered. Let

f(t )  =  the market value of assets,

F(t) — the actuarial value of the pension fund assets,

ul(t) = AL — f ( t ) =  the unfunded liability based on market values,

UL(t) =  AL — F(t) =  th e ‘actuarial’ unfunded liability.

F(t) is defined as

-  the value of assets as anticipated on the valuation basis after allowing for new cash, with 
recognition of a fraction of the difference between market value and this anticipated 
value, or

-  a weighted average of the market value of assets and the value of assets anticipated on 
the valuation basis after allowing for new cash.

For t > 1,

F{t) = Xuv [F(t -  1) +  c(t -  1) -  B] +  (1 -  A)f(t)  (4.2)

=  uv [F(t -  1) +  c(t — 1) — B\ +  (1 — A) [/(*) -  uv{F(t -  1) +  c(t -  1) -  B ) \ , (4.3)

and we may define F(0) =  /o, the initial market value of assets.
Remarks:

1. Cash flows (contribution and benefit payments) and the time value of money are being 
allowed for in equations (4.2) and (4.3).

2. The asset valuation method described by equations (4.2) or (4.3) is sufficiently general 
to encompass many of the methods described by Jackson k  Hamilton (1968), Ferris & 
Welch (1996) and Aitken (1994:289) (see §4.4.1).

3. It is also mathematically akin to Dyson & Exley’s (1995:§7) exponential smoothing 
method (§4.4.1).

Winklevoss (1993:174) describes a commonly used method to which he refers as a ‘corridor’ 
variation on the ‘write-up method’. Using his notation, if (AV)t is the actuarial value of assets 
in year t then the asset value may be written up to (AV)'t+l after a year, in line with the 
assumed valuation discount rate i, so that

(AV)'t =  [(AV)t-i +  Ct-1 -  B t. x](l +  i). (4.4)
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(Ct-1 and B t_i represent cash flows in year t.) Further, if ( MV) t is the market value of 
assets, k is an “adjustment fraction”, and ci and C2 define a range as a proportion of market 
values within which the actuarial value must lie, then

(AV)t =

(AVYt + k i d i M V ^ - i A V y t ] ,  

< (Avyt -k[(AV)'t - c 2(MV)t}, 

1 ( A v y t ,

if (AV)’t < a ( MV ) t ,  

if (AV)'t > c2(MV)t,  

otherwise.

(4.5)

The method described in equation (4.2) or (4.3) is identical to the method described by 
Winklevoss (1993:174) when Ci =  C2 =  1 and k — 1 — A, i.e. the actuarial value is written 
up based on the return assumed in the valuation basis and is also adjusted relative to the 
market value even if the actuarial value is within a given range (or ‘corridor’) of the market 
value. The discontinuity mentioned by Winklevoss (1993:174) is effectively avoided by not 
setting a corridor. But the method described in equation (4.2) or (4.3) is not compliant with 
the ERISA 20% corridor requirement (see §4.4.1). However, if the smoothing parameter A is 
properly chosen, the probability that asset values breach the corridor may be reduced.

4.5.3 M odel

Trowbridge (1952), Bowers et al. (1976, 1979, 1982), Benjamin (1989), O’Brien (1986, 
1987), Dufresne (1986, 1988, 1989), Haberman (1992a, 1994a, b), Sung (1997), Boulier et al. 
(1995, 1996), Cairns & Parker (1997) and Loades (1998) consider pure market values of assets 
only. We must assume, for consistency, that the liabilities are being valued at some average 
market-related valuation discount rate. In their simulation models, Loades (1992) and Fujiki 
(1994) use a Discounted Income Value for the assets, with a discount rate consistent with the 
one used to evaluate the liabilities.

It is also assumed that surpluses and deficits axe spread forward over a moving term (§3.2). 
We make this assumption for several reasons:

1. We have shown that spreading over a moving term is more efficient than amortizing 
over a fixed term (§3.5).

2. Several authors have observed that using the aggregate funding methods or using a 
moving term to remove surpluses and deficits seems to result in ‘smoother’ funding: 
see Hennington [Jackson & Hamilton (1968): discussion] (§4.4.5), Trowbridge & Farr 
(1976:62) (§3.5.4).

3. The spreading method deals with a fraction (£:) of the surplus or deficit in any year. 
The asset valuation method that we consider here similarly deals with a fraction (1 — A) 
of the unanticipated change in asset value.
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We anticipate a relationship between spreading and smoothing, and between k and A, on 
account of item 3 above. It turns out to be more convenient to introduce K  =  1—k = 1 — 1/a— .̂ 
As m and K  increase, deficits and surpluses are spread further (note also that when m — 1, 
K  =  0). As A increases, less weight is placed on the current market value and asset values 
are more heavily smoothed.

Assume that surpluses/deficits are spread over a moving period m, with a fraction (1 — y) 
(0 < y < 1) of the initial unfunded liability being amortized over a fixed term n, so that

with

Note that

c(t) = N C  + k(UL{t) -  U(t)) +  P(t),

= N C  +  (1 -  K)(UL(t) -  U(t)) +  P{t)

p eo =

U(t)

(1 — y)uh/a—̂ 0 < f < n — 1,

0, t > n,

J (1 - y ) u l 0 ä^Zi|/öjj|, 0 < f < n — 1,

0, t >  n.

(4.6)

(4.7)

(4.8)

Pit) = U{t) -  vvU{t + 1), (4.9)

where we define i7(n) =  U{n + 1) =  . . .  =  0.
Rewriting equation (4.2) in terms of ul{t) and UL{t), we obtain

UL(t) = A uv [UL(t - l ) - c { t - l )  + B -  dvAL\ +  (1 -  A )ul{t), (4.10)

=  Auv [UL{t -  1) -  c(t -  1) +  NC] +  (1 -  A)ulit), (4.11)

where we have used the equation of equilibrium (3.65). Now, replace P(t) from equation (4.9) 
into equation (4.6), and substitute c{t) into equation (4.11) to give

UL(t) =  Auv [K(UL(t -  1) -  U{t -  1)) +  vvU{t)} +  (1 -  A)ul{t), (4.12)

iULit) -  17(f)) =  AK uv{UL{t -  1) -  [7(f -  1)) +  (1 -  A)(ul(t) -  [7(f)), (4.13)

for t > 1.
Consider first a situation where surpluses and deficits are not spread forward and are 

repaid immediately (m =  k =  1, K =  0). A simple relationship between the ‘actuarial’ and 
market value of the fund follows from equation (4.13). In terms of unfunded liabilities,

ULit) -  [7(f) =  (1 -  A)(ul(t) -  [7(f)). (4.14)
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Furthermore, from equation (4.6), the recommended contribution becomes

c(t) = N C  + ( l -  A)(ul(t) -  U(t)) +  P{t). (4.15)

Now, this form of adjustment to the contribution is exactly identical to the one existing 
when surpluses and deficits are spread and ‘initial unfunded liabilities’ axe amortized. Equa-
tion (4.15) is identical to equation (3.75), except that 1 — A replaces k. We recognise that 
Proposition 3.1 applies here, with the appropriate substitution of k by 1 — A. This symme-
try is not surprising. The common motivation of smoothing underlies both the methods of 
spreading forward surpluses/deficits and smoothing asset values.

The more general case may now be considered. At t = 0, we have defined UL(0) =  u Iq 
and Î7(0) =  (1 — y)ulo, and so (UL(0) — 17(0)) =  yulo. Hence, it is easily verified that 
equation (4.13) may be rewritten as

t
(UL(t) -  U(t)) =  (1 -  A) £ y - J '( u i ( j )  -  U(j)) +  A pV o, (4.16)

1=0
for t > 0 and where p — XKuv.

The recommended contribution is therefore, from equations (4.6), (4.9) and (4.16),
t

c(t) =  N C  +  (1 -  Fl )(1 -  A) ^ p i_J'(ul(j) -  U(j)) + (1 -  K ) \p lyuk  + U(t) -  vvU{t + 1).
r=o

(4.17)

It depends on an exponentially weighted sum of past and present unfunded liabilities (at 
market value).

We may now obtain a recurrence relationship for the unfunded liability. Substituting 
equation (4.17) for adj(t) into equation (3.66), and rearranging,

(ul{t + l ) - U { t  + l))

=  (AL — U(t +  1)) +  u(t +  1) (ul(t) -  U(t)) -  (1 -  *T)(1 -  A) £ > - > 1 0 - )  -  U(j))
l=o

-  vv(AL -  U(t + 1)) -  (1 -  K)\p*yulQ , (4.18)

for t > 0.

4 .5 .4  F irst M om ents

Pure Smoothing. The direct correspondence between pure spreading (with A =  0) and 
pure smoothing (with m  =  k =  1 or K  = 0), which we noted earlier in §4.5.3, leads to 
Proposition 4.1 (cf. Result 3.3 on page 59). We note also that the results concerning F(t) 
follow from taking expectation and then limits (as t —r oo) on equation (4.14), so that 
limE-F’(f) =  (1 — A) lim E /(l).
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P r o po s it io n  4.1 Suppose that surpluses and deficits are not spread forward and are repaid 
in full (m = 1). Then, provided |Au| < 1,

lim Eul(t) = AL(d -  dv)/(d  -  (1 -  A)), (4.19)
t —► 0 0

lim EUL(t) =  AL(l  — A)(d — dv)/(d — (1 — A)), (4.20)
t —*■ OO

lim Ef{t) = AL(dv -  (1 -  A))/(d -  (1 -  A)), (4.21)
i —*• OO

lim EF(f) =  AL -  AL(1 -  A)(d -  dv)/(d  -  (1 -  A)), (4.22)
t—y oo

lim Ec(i) =  N C  +  AL(1 -  A)(d -  d„)/(d -  (1 -  A)). (4.23)
t-yoo

Combined Smoothing and Spreading. We may take expectations across equation (4.18), 
noting that u(t +  1) is independent of u(t) and ul{t), ul(t — 1) etc., to obtain

E(ul(t + 1) — U(t + 1))

=  (AL — U(t+  1))(1 — uvv) + uE(ul{t) — U(t))
t

-  u{ 1 - K ) (  1 -  A) -  U(j)) -  u \ ( l  -  K t fy u lo ,  (4.24)
l=o

for t > 0. We forward-shift equation (4.24) in time (so that it holds for t > — 1) and upon 
deducting equation (4.24) multiplied by p, we obtain

E[ul(t + 2) —U(t + 2)]

— \p + u — u (l -  K){ 1 -  A)]E[u/(t +  1) — U(t + 1)] +  upE[ul(t) — U(t)\

— AL{ 1 —p)( 1 — uvv) — [U(t + 2) — pU(t + 1)](1 — uvv), (4.25)

which holds for t > 0 and requires E(ul(0) — U(0)) =  y u Iq and an additional initial condition 
E(u/(1) — U( 1)) that may be found from equation (4.24). These initial conditions have only a 
transient effect, and we will examine the situation in the limit only and so do not need them. 

The characteristic equation of the second order difference equation (4.25) is

P(z) =  z2 — [p +  u — u (l — K){ 1 — A)]z +  up — 0. (4.26)

U (t) —y 0 as t —¥ oo, from equation (4.8). Eul(t) converges as t —> oo provided the roots of the 
characteristic equation (4.26) are less than unity in magnitude. This will occur if (Haberman, 
1992a):

\up\ < 1, (4.27)

P(z  =  1) > 0 1 —u — p + up + u(l — K )( l  — A) > 0, (4.28)

P(z  =  — 1) > 0 1 + u + p  + u p - u ( l  — K )( l  — A) > 0. (4.29)
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Two simplifying assumptions are now made: both the valuation discount rate (iv) and the 
mean long-term rate of return on assets (i) are greater than -100%. These assumptions are 
not restrictive in practice and mean respectively that uv > 0 and u > 0. If iv > —100%, then 
0 < K u v < 1 (Haberman, 1992a), since K  — 1 — 1/a^j-. Given that, by definition, 0 < A < 1, 
it is also clear that 0 < AK uv =  p < 1.

It is convenient to define

9 = { 1 - K ) { 1 -  A)/(l - p )  = (1 -  *0(1 -  A)/(l -  AK uv). (4.30)

Condition (4.27) can be written as

AK uuv < 1. (4-31)

As for condition (4.28), it may be written as [1—p][l—u (l —0)] > 0, which, since 0 < p < 1 and 
u > 0, simplifies to 9 > d. Condition (4.29) follows directly from the additional assumptions 
that uv > 0 and u > 0 (since u — u (l — K)(  1 — A) > 0 and 1 + p +  up > 0).

lim E /(t) follows immediately, given these stability conditions. Taking expectations across 
equation (4.13) and then taking limits, we find that limEi7L(i) =  lim Etd(i)(l — A)/(l — \ K u v) 
provided

— 1 < p = XKuv < 1, (4.32)

which holds as shown above. Also, limEE(f) = A L —\imEUL(t). Finally, taking expectations 
and limits across equation (4.6) shows that limEc(f) =  N C  + k\imEUL(t).

These results are summarised in the following proposition:

P r o po s it io n  4.2 Let 9 =  (1 — K)(  1 -  A)/(1 -  XKuv). Provided that

iy > —100%, (4.33)

i > -100%, (4.34)

XKuuv < 1, (4.35)

9 > d, (4.36)

lim Eul(t) =  AL(d — dv)/{d — 9),i—*■ oo (4.37)

lim EUL{t) = AL9(d -  dv)/k{d -  9),
t—)-oo (4.38)

lim E /(t) =  AL(dv -  9)/{d -  9),t-+ 00 (4.39)

lim EF(t) =  AL  — AL9(d -  dv)/k(d  -  9),t-¥ OO (4.40)

lim Ec(i) =  N C  +  AL9(d -  dv)/{d -  9).
t-¥  OO

(4.41)
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Remarks:

1. The similarity with Proposition 4.1 on page 131 and Result 3.3 on page 59 is self-evident. 
Equation (4.30) reveals that 8 = k — 1 -  K  when A =  0 (pure spreading) and 8 =  1 -  A 
when m = k — 1 or i f  =  0 (pure smoothing).

2. There is symmetry between K  and A: they can be interchanged without affecting the 
first moments of the fund and contribution levels (8 remains unchanged). If surpluses 
and deficits are spread over a period such that K  =  K\  and if the weight placed 
on current market value is 1 — A =  1 — Ai, then we expect exactly the same fund 
and contribution levels in the limit were a spreading period such that K  =  Ai and a 
smoothing parameter of A =  K\ to be used. This serves to illustrate that the spreading 
and smoothing processes complement each other.

3. Assuming that there is no initial unfunded liability, or that it has been completely 
amortized, then the symmetry between K  and A holds throughout the dynamics of 
the funding process: K  and A are interchangeable in equations (4.17) and (4.18) (with 
ulo -  0).

4. Note that this symmetry does not extend to the ‘actuarial’ asset value, as can be 
observed in equations (4.16), (4.38) and (4.40).

4.5 .5  F irst M om ents w ith  U nbiased  D iscou nt R ate

Simpler results follow if we assume that the valuation discount rate equals the mean rate 
of return (iv = i or dv = d). Then conditions (4.27) and (4.32) become

\ X K u 2 \ < 1, (4.42)

|AKu\ < 1. (4.43)

respectively. The right hand side of condition (4.28) factors to (1 — Ku)  (1 — Xu) while the 
right hand side of condition (4.29) factors to (1 +  Ku) (1 +  Xu):

( 1 - A u ) [ l - A u ] > 0 ,  (4.44)

(1 +  Au)[l +  Ku] > 0 . (4.45)

These stability conditions are not too restrictive under ‘normal’ economic conditions. If 
we again make the further assumption that i > —100%, then 0 < K u  < 1 (Haberman, 1992a) 
or 0 < K  < v. Given that 0 < A < 1, then clearly 0 < p = XKu < 1 so that stability 
condition (4.43) holds. For condition (4.44) to hold, we require that A < v\ inequality (4.42) 
will hold if A < v < v /(K u ); and the left hand side of condition (4.45) is clearly positive. 
Hence, it is sufficient that iv = i > -100%, 0 < K  < v and 0 < A < v for the first moments 
to be stable as t -> oo. Putting d =  dv in equations (4.37)-(4.41) gives the required moments. 
This is summarised in Corollary 4.1.
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C o r o l l a r y  4. 1 Pr o vi d e d t h at

i v > - 1 0 0 %, ( 4. 4 6)

K  < v, ( 4. 4 7)

A < v, ( 4. 4 8)

th e n

li m Eulit)  = li m E U L (t) =  li m Ea dj(t) =  0, ( 4. 4 9)
¿ — > •00 ¿ — > o 0 ¿ — > o c

li m Ef (t ) = li m EF (t) = A L,  ( 4. 5 0)
¿ — > 0 0  t —> O C

li m E c(i) =  i V C. ( 4. 5 1)
t — > 0 0

R e m ar k s:

1. W h e n A = 0, a n u n s m o ot h e d m ar k et v al u e is u s e d (fr o m e q u ati o n ( 4. 2)). T h e r e s ult s of 

D ufr e s n e ( 1 9 8 6) ( R e s ult 3. 1 o n p a g e 5 7) s h o ul d f oll o w. T hi s is e a sil y v erifi e d t o b e tr u e 

si n c e A = 0 =$ ► 6  = 1 — K  = k ( e q u ati o n ( 4. 3 0)).

2. N ot e fr o m Pr o p o siti o n 4. 2 t h at w h e n i /  i v,

li m E U L(t) =  li m E ul(t) — A L ( k — 9)( d — d v)/ k ( d — 6 ),  ( 4- 5 2)
t —> 0 0  t —> 0 0

l i m E F {t ) = \i m E f {t ) + A L { k - 6 ) { d - d v) / k ( d - 8 ).  ( 4. 5 3)
¿->■ 0 0  t —> o o

W h e n a ss et v al u es ar e s m o ot h e d a n d t h e v al u ati o n dis c o u nt r at e is n ot e q u al t o t h e 

l o n g-t er m e x p e ct e d r at e of r et u r n ( w h e n A > 0 a n d i ^  i v),

( a) t h e l o n g-t er m a v er a g e a ct u ari al a n d m ar k et v al u es of t h e f u n d d o n ot c oi n ci d e (fr o m 

e q u ati o n ( 4. 5 3)): t hi s is b e c a u s e t h e r et u r n a nti ci p at e d i n t h e v al u ati o n b a sis, a n d 

t h u s t h e a nti ci p at e d v al u e of t h e f u n d w h e n t h e a ct u ari al v al u e is s m o ot h e d, ar e 

n ot r e ali s e d o n a v er a g e;

( b) t h e f u n d d o e s n ot m e et li a biliti e s o n a v er a g e (fr o m e q u ati o n s ( 4. 3 9) a n d ( 4. 4 0)): 

n eit h er t h e f u n d l e v el m e a s ur e d at m ar k et, n or t h e s m o ot h e d a ct u ari al v al u e of t h e 

f u n d, e v e nt u all y e q u als t h e a ct u ari al li a bilit y.

3. W h e n a s s et v al u es ar e s m o ot h e d a n d t h e v al u ati o n di s c o u nt r at e i s e q u al t o t h e l o n g-

t er m e x p e ct e d r at e of r et u r n ( w h e n A > 0 a n d i = i v\ i v c o nt ai n s n o m ar gi n), t h e n 

o v er t h e l o n g-t er m, n o g ai n/l o s s is e x p e ct e d t o e m er g e ( e q u ati o n ( 4. 4 9)). T hi s e x a ctl y 

s atisfi e s t h e crit eri o n f or c o n si st e n c y b et w e e n a s s et a n d li a bilit y v al u ati o n s sti p ul at e d 

i n t h e St a n d ar d of Pr a cti c e f or V al u ati o n of P e n si o n Pl a n s of t h e C a n a di a n I n stit ut e of 

A ct u ari e s ( 1 9 9 4: ^ 5. 0 1), a s q u ot e d i n § 4. 5. 1.
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4 .5 .6  Second M om ents

For the rest of this chapter, we make the simplifying assumption that the valuation dis-
count rate is equal to the long-term expected rate of return {i = i v).

Pure Sm oothing. Proposition 4.3 is obtained straightaway by virtue of the direct relation-
ship between pure spreading and pure asset smoothing described in §4.5.3. The second mo-
ment of F(t) follows from taking the variance and then limits (as t —> oo) on equation (4.14), 
so that lim VaxF(i) =  (1 — A)2 lim Var/(i).

P r o po s it io n  4.3 Suppose that surpluses and deficits are not spread and are paid immediately 
(m = 1). Let q =  u2 + a2. Provided that |Au| < 1 and q\ 2 < 1, then

lim Varf ( t )  =  a2v2AL2/ ( l  — qX2) =  V,x  (say), (4.54)
t-¥ OO

lim Varc(f) =  lim VarF(i) = (1 — A)2^ .  (4.55)
t-¥  OO t —»  OC

Combined Smoothing and Spreading. It is more difficult to determine the variability 
in the fund and contribution processes w'hen, at once, surpluses and deficits are spread and 
asset values for actuarial purposes axe smoothed.

P r o po s it io n  4.4 Let Vx  =  a2v2AL2/Q, where

Q = { 1 -  ç F 2)(1 -  A V )(1 -  XKu2) -  A(1 -  K )a 2[2K{l -  X V )  +  A(1 -  K){ 1 +  A F u 2)],
(4.56)

=  (1 -  <?A2)(1 -  K 2 u 2 ) {  1 -  XKu2) -  K{ 1 -  A)c 2[2A(1 -  K 2u2) +  K (  1 -  A)(l +  XKu2)].
(4.57)

Provided that conditions (4.46)-(4.48) are true and also provided that

Q > 0 (4.58)

and that

(1 +  X2K 2qu2)(l +  AsF W  -  A4F V 6)

> 2X4K 4{X + K)qa2u4 + XK{X + K )2qu2{l -  X2K 2qu2), (4.59)

then

lim Var f i t )  =  Voo[(l -  XKu2)(l -  X2K 2u2) +  2AF(1 -  A)(l -  K )u2),
t - i  o o

lim VarF(f) =  ^ ( 1  -  A)2(l +  XKu2),t—>oc
lim Varc(i) =  ^«,(1 -  K )2{ 1 -  A)2(l +  XKu2),
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lim Cov[/(t),F(t)] = 1^(1 -  A)[1 +  XK{1 - K -  X)u2}, (4.63)
i —>• 00

lim Cov[/(f),c(t)] =  - V ^ l  - K ) { 1 -  A)[1 +  XK{1 - K -  A)u2], (4.64)
t—> 00

lim Covjc(t), F(f)l =  - ^ ( l  -  K){ 1 -  A)2(l +  AK u 2). (4.65)
t —► 00

Proof in Appendix D.
Remarks:

1. Suppose pure market values of assets are used (A =  0). Then, from equation (4.56), 
Q = 1 — qK2, and second moment results identical to those of Dufresne (1986, 1988) 
(Result 3.1 on page 57) are obtained. Note also that, unsurprisingly, lim VarF(t) =  
lim Var/(f) in this case.

2. Suppose now that smoothed asset values are used, but that surpluses and deficits are 
not spread (m = 1). Then, from equation (4.57), Q =  1 — qX2, and the same second 
moments as in Proposition 4.3 emerge.

3. The second moments, like the first moments, are also completely symmetrical between 
K  and A. K  and A can be interchanged without changing the various second moments 
and covariances of the fund and contribution levels. Q remains unchanged. If surpluses 
and deficits are spread over a period such that K  = K \  and if the weight placed on 
current market value is A =  Ai, then the fund and contribution levels will exhibit the 
same variability and co-variability structure in the limit had a spreading period such 
that K  — X\ and a smoothing parameter of A =  K\  been used. It is again clear that 
surplus/deficit spreading and asset smoothing are performing the same function.

4. Assuming that there is no initial unfunded liability, or that it has been completely 
amortized, then the symmetry between K  and A holds over time in all moments of 
the funding process: K  and A are interchangeable in equations (4.17) and (4.18) (with 
ulo =  0).

5. K  and A are not symmetrical in the ‘actuarial’ asset value, as can be observed in 
equations (4.16), (4.61), (4.63) and (4.65).

About Stability. Conditions (4.46)-(4.48), (4.58) and (4.59) are sufficient for stability 
in the second moments. Necessary and sufficient conditions are discussed in Appendix D 
(§D.2). Under ‘normal’ economic conditions, the sufficient conditions are accurate and the 
most constraining condition is inequality (4.58). Upper bounds are easily placed on this 
condition.

It is shown in the proof of Proposition 4.4 that stability conditions (4.46)-(4.48) and (4.58)
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imply that

K  < 1/y/q, 

A < 1 /y/q,

(4.66)

(4.67)

(see equations (D.113) and (D.114) in Appendix D). It is instructive to compare inequal-
ity (4.66) with the second condition for stability in Result 3.1 in the case of simple spreading, 
and also to compare inequality (4.67) with the second convergence condition in Proposi-
tion 4.3.

Table 4.1 on the next page exhibits the stability constraints in terms of maximum allowable 
spread periods for various choices of {*, a, A}. Table 4.2 on page 139 shows maximum allowable 
smoothing parameters for various choices of {«, a, m}. Both tables are based on stability 
conditions (4.46)-(4.48), (4.58) and (4.59).

Inequalities (4.66) and (4.67) are easily verified from Tables 4.1 and 4.2. It is clear from 
Table 4.1 that the more asset smoothing is applied (i.e. the less weight is placed on the current 
market value of assets), the shorter the spreading period for surpluses and deficits should be 
to maintain stability in the second moments. Table 4.2 indicates that the longer the period 
over which surpluses and deficits are spread, the less asset values should be smoothed if the 
funding process is to remain stationary in the limit. We conclude that:

1. Very long spreading periods must be avoided, as emphasised by Dufresne (1986, 1988), 
lest the funding process becomes unstable eventually. Likewise, excessive smoothing, 
especially in combination with surplus/deficit spreading, must be avoided as the funding 
process may become non-stationary. 2

2. Asset gain/loss amortization or spreading and asset smoothing perform a complemen-
tary actuarial smoothing function. One must have regard to the cumulative amount of 
smoothing through both asset valuation and gain/loss adjustment.

4 .5 .7  S ta b ility  o f ‘A ctu aria l’ A sset V alue

It has been understood thus far that the smoothed ‘actuarial’ asset value F(t)

— should remain close to the market value / (f) of the assets, and

— should be more stable than the market value.

These are held to be important properties of an acceptable asset valuation method. It is 
now possible to verify that these properties hold for the smoothing method described in 
equations (4.2) or (4.3).
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a i A = 0 A =  20% A = 40% A =  60% A = 80% A =  90%
0.05 1% 222 222 221 219 214 203

3% 110 110 109 107 102 89
5% 78 77 76 74 68 75
10% 48 47 46 43 37 13
15% 36 35 34 32 23

0.1 1% 112 111 110 109 104 94
3% 67 67 66 64 59 47
5% 51 50 49 47 42 29
10% 33 33 32 30 23 5
15% 25 25 25 22 14

0.15 1% 65 65 64 62 57 48
3% 45 45 44 42 37 27
5% 36 36 35 33 27 16
10% 25 25 24 22 16 1
15% 21 20 19 17 9

0.2 1% 42 41 41 39 34 26
3% 32 32 31 28 24 20
5% 27 27 24 22 19 9
10% 20 20 17 15 11
15% 17 16 15 13 7

0.25 1% 29 29 28 26 22 14
3% 24 24 23 21 16 9
5% 21 20 20 18 13 5
10% 16 16 15 13 8
15% 14 13 13 11 5

Table 4.1: Maximum allowable spread periods for various mean real (net of salary inflation) 
returns i, standard deviation of return a and smoothing parameter A based on stability 
conditions (4.46)-(4.48), (4.58) and (4.59). Blanks indicate that conditions do not hold.
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a i m  =  1 3 5 10 15 20 25 30 40 50
0.05 1% 98.9 98.9 98.9 98.9 98.8 98.8 98.8 98.8 98.7 98.6

3% 97.0 97.0 96.9 96.9 96.8 96.7 96.6 96.4 96.1 95.5
5% 95.1 95.1 95.1 95.0 94.8 94.6 94.2 93.8 92.7 91.1
10% 90.8 90.8 90.7 90.4 89.7 88.7 87.4 85.5 76.3
15% 86.9 86.8 86.7 86.0 84.5 82.3 78.6 70.5

0.1 1% 98.5 98.5 98.4 98.4 98.3 98.2 98.0 97.8 97.5 97.0
3% 96.6 96.6 96.5 96.2 95.9 95.5 94.9 94.2 92.4 88.9
5% 94.8 94.7 94.6 94.1 93.4 92.5 91.2 89.6 82.9 34.7
10% 90.5 90.4 90.1 88.8 86.7 83.6 78.0 63.2
15% 86.6 86.4 85.9 83.6 79.5 71.4 40.8

0.15 1% 97.9 97.8 97.7 97.4 97.0 96.6 96.0 95.2 93.1 88.9
3% 96.1 95.9 95.7 95.0 94.0 92.7 90.9 88.3 73.8
5% 94.3 94.0 93.7 92.5 90.7 88.1 84.0 75.5
10% 90.1 89.6 89.0 86.2 81.5 71.9 31.7
15% 86.2 85.6 84.6 79.8 70.3 31.5

0.2 1% 97.1 96.9 96.6 95.8 94.5 92.9 90.6 86.8 54.9
3% 95.3 94.9 94.5 92.8 90.4 86.6 79.4 58.0
5% 93.6 93.0 92.4 89.8 85.7 78.2 55.0
10% 89.4 88.6 87.4 82.1 71.5 25.2
15% 85.7 84.6 82.7 74.2 49.7

0.25 1% 96.1 95.6 95.0 92.9 89.6 83.9 70.1
3% 94.3 93.6 92.7 89.3 83.3 69.4
5% 92.6 91.7 90.5 85.5 75.9 40.5
10% 88.6 87.3 85.2 75.9 47.5
15% 85.0 83.2 80.2 65.7

Table 4.2: Maximum allowable smoothing parameter (%) for various mean real (net of salary 
inflation) returns i, standard deviation of return a and spread period m  based on stability 
conditions (4.46)-(4.48), (4.58) and (4.59). Blanks indicate that conditions do not hold.
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Pr o po s i t i o n  4.5 Assuming stability conditions (4.46)-(4.48), (4.58) and (4.59) of Proposi-
tion 4 .4 ,

Inn E[/(f) -  F(i)]2 < oo, (4.68)

lim VarF(t) < lim Var/(i). (4.69)
t —►o o  t —* o o

Proof in Appendix E (§E.l).
Remarks:

1. The first part of Proposition 4.5 indicates that the deviation between asset value at 
market and actuarial asset value as defined in equation (4.2) or (4.3) is bounded in the 
mean-square. The actuarial asset value over the long term remains in the proximity of 
market value. This is a requirement in several jurisdictions (§4.4.1).

2. The second part of Proposition 4.5 shows that the smoothed actuarial value of assets 
is less variable than the pure market value of assets. (See §4.5.1.) This, together with 
the fact that no gain or loss emerges on average in the long term (§4.5.5), qualifies the 
method as a suitable one for asset valuation.

3. Equality in equation (4.69) should follow if A =  0, as can indeed be verified in equa-
tion (E.3) in Appendix E.

4. It is also easily verified from previous results that inequality (4.69) holds if pure smooth-
ing (i.e. without spreading deficits and surpluses) is used: compare equations (4.54) and 
(4.55) (0 < A < 1 by definition).

4.5 .8  E ffect o f S m ooth in g  and Spreading on Fund Level

Pure Spreading. Dufresne (1986, 1988) shows that spreading surpluses and deficits over 
longer periods leads to more variable fund levels (Chapter 3) which may endanger the security 
of funded retirement benefits. This conforms with conventional expectations because a slower 
recognition of gains and losses should affect security.

Pure Smoothing. Suppose that that asset values are smoothed and also that the fund 
is disbursed immediately to cover deficits and surpluses. An immediate consequence of the 
congruence of ‘pure’ asset smoothing and ‘pure5 spreading, as described earlier (§4.5.3), is 
that more smoothing means more variable fund levels—the proof, by direct correspondence 
with Dufresne’s (1986, 1988) result, is trivial (see also Proposition 4.7). This result also agrees 
with intuition: asset smoothing implies deferred recognition of asset gains and losses. We do 
not anticipate that asset smoothing will stabilise fund levels at market value, as the primary 
aim of asset smoothing is to stabilise contributions (§4.5.1).
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Combined Sm oothing and Spreading. We may now show that the combined effect of 
asset smoothing and surplus/ deficit spreading is to increase the variability of the pension fund 
level.

Pr o po s it io n  4.6 For stable {m, A} satisfying conditions (4.46)-(4.48), (4.58) and (4.59), 
limVar/(f) increases monotonically with both m  and A.

Proof in Appendix E (§E.2). This result is illustrated in Figure 4.1 on the next page (K  
has a direct one-to-one relationship with t o).

Remarks:

1. Heavier smoothing of asset values and spreading of surpluses/deficits over longer pe-
riods both lead to more variable fund levels at market value. This is not surprising 
as both cause asset gains/losses not to be recognised immediately. In addition, heav-
ier smoothing results in more weight being placed on delayed asset value data rather 
than current market value and delay is known to increase the variability of the pension 
funding process (§3.2.3).

2. The combined effect of spreading and smoothing must be considered in pension funding. 
Care should be taken that spreading and smoothing do not lead together to excessive 
smoothing and very variable fund levels.

3. It is clear again that spreading and smoothing perform a similar overall smoothing 
function in pension funding. They are complementary. Figure 4.1 on the following page 
exhibits a clear symmetry in the plane K  =  A.

4.5.9 Effect o f S m ooth in g  and Spreading on C ontrib ution  Level

Pure Spreading. A principal aim of spreading surpluses and deficits over longer periods is 
to smooth out fluctuations in gains and losses and stabilise contributions. However, Dufresne 
(1986, 1988) shows that spreading over a term beyond t o* (corresponding to K* — 1/q) 
is counter-effective, as the long-term variability in contribution levels then increases as the 
spreading period increases (Result 3.4).

Pure Sm oothing. The motivation for using a smoothed ‘actuarial’ asset value rather than 
market values is to generate more stable contribution requirements, as described in §4.5.1. In 
exact symmetry to the result of Dufresne (1986, 1988), it is possible to show that smoothing 
beyond a certain amount (A > A* =  1/q) is counter- effective: contributions become more 
variable if the weight placed on current market value of assets is reduced to less than 1 — A*. 
This is summarised in the following proposition.
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0.8

0
Figure 4.1: lim Var/(f)/AL2cr2v2 against K  and A. i — 10%, a — 0.05.

P r o po s i t i o n  4.7 Suppose that surpluses/deficits are not spread and paid in full immediately 
(m = 1). Then,

i f 0 < \ <  l/q, then limVar/(i) increases, limVarc(f) and limVaiF(t) decrease with increas-
ing A;

if l /q  < A < 1 ¡yjq, then limVar/(t), limVarc(t) and limVarF(i) increase with increasing A; 

if A > 1 fyjq, then f(t),  c(t) and F(t) are non-stationary in the limit.

Proof. This follows, as a matter of course, by repeating Dufresne’s (1986, 1988) proof 
of Result 3.4, except that limVar/(i) and limVarc(i) =  limVari?(i) in equations (4.54) and 
(4.55) respectively are used and differentiation w.r.t. A (which exactly replaces 1 — A:) is 
performed.

Combined Smoothing and Spreading. It is seldom that pure smoothing or pure spread-
ing is used in pension fund valuations. The combined effect of smoothing and spreading must 
therefore be investigated.

Pr o po s i t i o n  4.8 Suppose m  > 1 and A > 0. For stable {m, A} satisfying conditions (4.46)- 
(4.48), (4.58) and (4.59),

1. as m  increases,

limVarc(f) has at least one minimum at some m * ^  < m *, provided 0 < A < A*;
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limVarc(i) increases monotonically, provided either A > A* or m  > m*;

2. as A increases,

limVarc(i) has at least one minimum at some A < A*, provided 1 < m  < m*; 

limVarc(i) increases monotonically, provided either m >m*  or A > A*.

Proof in Appendix E (§E.3). This result is illustrated in Figure 4.3 on the next page (K  
has a direct one-to-one relationship with m).

Remarks:

1. The first part of Proposition 4.8 is illustrated in Figure 4.2 on the following page. This 
shows that lim Vare(t) against K  (for stable K  > 0 or m  > 1) has no minimum and 
increases monotonically when A =  A* =  0.82 and A =  0.85 > A*. But when A < A*, a 
minimum clearly exists. The minimum for A =  0 is seen to occur at K  =  K* =  0.82. 
The minima for 0 < A < A* clearly occur at some K* W < 0.82.

2. The two parts of Proposition 4.8 axe identical except that m  and A axe interchanged. 
The variation of lim Varc(i) with K  is similar to its variation with A. Figure 4.3 on the 
next page is symmetrical about the plane K  =  A.

3. Smoothing asset values and spreading surpluses/deficits initially reduce the long-term 
variability of contribution levels. But beyond some critical amount of combined smooth-
ing and spreading, contribution levels become more unstable as a result of increased 
smoothing or spreading.

4. Once more, the combined effect of spreading and smoothing must be considered in 
pension funding. Excessive spreading and smoothing may result in more variable con-
tribution levels, rather than more stable ones.

4 .5 .10  O ptim al Sm ooth in g  and Spreading

Pure Spreading. In the situation where market values are used for assets, Dufresne (1986) 
describes the range of spreading periods [1, m*] as an ‘optimal’ one because there always exists 
a spread period within this range that yields less variable fund levels for the same contribution 
variability as would occur for any choice of spread period outside this range. This follows 
from Result 3.4. Dufresne (1988) qualifies the range (m*, oo) as ‘inadmissible’.
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Figure 4.2: lim Varc(f)¡AL2g 2v 2 against K  for various A. K  and A can be interposed, i =  10%, 
cr =  0.1, A* =  K* = 0.82.

0 .4

Figure 4.3: limVarc(i)/A L 2a2v2 against K  and A. i = 10%, o — 0.05.
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Pure Smoothing. By direct analogy, if surpluses and deficits are not spread forward (m =
1), then there exists an ‘optimal’ smoothing parameter range: A £ [0, A*]. Smoothing within 
this range will always yield less variable fund levels for the same contribution variability as 
would occur for any choice of smoothing parameter outside this range. This follows from 
the fact that limVar/(f) increases with A but limVarc(t) exhibits a minimum at A*: see 
Proposition 4.7.

Combined Smoothing and Spreading. Propositions 4.6 and 4.8 show that both lim Var/(f) 
and lim Varc(f) increase with m  (or K)  and A, if either m > m *  or A > A*. Since maximising 
security and minimising contribution stability are rational objectives of pension funding (see 
§2.2), a situation where both limVar/(f) and limVare(i) increase is not admissible. This is 
summarised in Proposition 4.9.

Pr o po s i t i o n  4.9 It is not efficient either to spread surpluses/deficits over periods exceeding 
m*, or to smooth asset values by weighting current market value by less than 1 — A*.

Remarks:

1. The first part of Proposition 4.9 does not conflict with the conclusion of Dufresne (1988) 
that the range (m*, oo) is inadmissible. His conclusion holds, even when smoothed asset 
values are used.

2. The second part of Proposition 4.9 provides an important lower bound on the weight 
to be placed on the current market value (i.e. an upper bound on A). The column for 
m  = 1 in Table 4.4 on page 148 shows the upper bound on A (A* =  1/q) for various 
choices of {t, cr}.

This section is concluded with some observations from numerical experiments based on 
the above.

1. There is only one minimum, at m (say), in the variation of lim Varc(t) with m, for 
0 < A < A*. Table 4.3 on page 147 shows m * ^  for various choices of {A, i, a}. By 
comparison with Table 4.2 on page 139, it is clear that m * ^  is less than the maximum 
allowable spread period for stability in the first and second moments of the pension 
funding process.

2. There is also only one minimum, at \*(m'> (say), in the variation of limVarc(f) with 
A, for 1 < m  < m*. Table 4.3 on page 147 shows A*(m) for various choices of {m, i, 
a}. By comparison with Table 4.1 on page 138, it is clear that X*̂ m> is less than the 
maximum allowable smoothing parameter for stability in the first and second moments 
of the pension funding process.
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3. Prom Table 4.3, it is clear that the ‘optimal’ range of spreading periods [1, m*(A)] shrinks
as more asset smoothing is applied. Likewise, in Table 4.4 on page 148 the ‘optimal’ 
range of smoothing parameter [1, shrinks as surpluses and deficits are spread
over longer periods.

4. Recall from §4.4.1 that the weight placed on current market value is typically in the 
range 10-33% [Jackson &; Hamilton (1968), Colbran (1982), Winklevoss (1993:174), 
Aitken (1994:289), Dyson & Exley (1995:^7.5.3.10), Ferris & Welch (1996)]. Table 4.4 
indicates that if surpluses and deficits are spread over up to 10 years, then in ‘normal’ 
economic conditions, A should be at most 40% if funding is to remain ‘optimal’, i.e. the 
weight placed on current market value should be at least 60%. This contrasts markedly 
with typical practice. For spread periods of around 15 years, the weight placed on 
current market value should be even higher.

5. It appears that the lowest numerical value of limVarc(i) occurs at {(m =  m*, A =  0), 
(m =  1, A = A*)}. This may be observed from Figure 4.2 on page 144.

6. Figure 4.4 shows contour plots of lim Var/(i) and limVarc(i) against K  and A. As K  
or A increases, the lighter shading in the first contour plot indicates that limVar/(i) 
increases.

7. As AT or A increases, the shading in the lower contour plot in Figure 4.4 first darkens and 
then lightens, indicating a ‘trough’ where limVarc(t) is lowest. This ‘trough’ appears 
to be fairly broad and, in this area, lim Vare(f) is fairly insensitive to changes in the 
degree of smoothing and spreading. This is also a feature of Figure 4.2 on page 144, 
where the minima in the curves for various A may be observed to be fairly close for A 
between 0 and 0.7.

8. The ‘boomerang-shaped’ contours of Figure 4.4 on page 149 are a further indication of 
the complementary function of surplus and deficit spreading and asset smoothing: the 
same contribution or fund level variability may be achieved by trading off A and K.

4.6 Summary

This section summarises some of the major points made in this chapter. In §§4.1 to 4.4, 
the methodology and theory of valuation as applied to the assets and liabilities of a pension 
fund are explored.

1. Two fundamentally different methods of valuation exist in common practice. In what 
is termed the Discounted Cash Flow method (§4.1.1), assets are valued by reference 
to the liabilities using valuation assumptions that are determined by the actuary and
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a i A = 0 A =  20% A =  40% A =  60% A = 80% A =  90%
0.05 1% 58 59 59 58 55 49

3% 23 22 22 21 17 6
5% 14 14 13 12 8 1
10% 8 7 7 5 1 t
15% 5 5 4 3 t

0.1 1% 42 41 41 39 36 28
3% 20 19 19 17 14 3
5% 13 13 12 11 6 1
10% 7 7 6 5 1 t
15% 5 5 4 2 t

0.15 1% 28 27 27 26 22 14
3% 16 16 15 14 10 1
5% 11 11 10 9 4 t
10% 7 6 6 4 2 t
15% 5 5 4 2 t

0.2 1% 19 19 18 17 13 5
3% 13 13 12 11 6 1
5% 9 9 9 7 3 t
10% 6 6 5 4 1
15% 5 4 4 2 t

0.25 1% 14 14 13 12 8 1
3% 10 10 9 8 4 t
5% 8 8 7 6 2 t
10% 6 5 5 3 t
15% 5 4 3 2 t

Table 4.3: Spread period m * ^  for various mean real (net of salary inflation) returns i = iv, 
standard deviation of return a and smoothing parameter A at which minimum in limVarc(t) 
occurs, (f) indicates that limVarc(i) has no minimum and is strictly increasing with its lowest 
value at m  =  1. Blanks indicate that stability conditions do not hold.
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a i m — 1 3 5 10 15 20 25 30 40 50
0.05 1% 97.8 97.7 97.6 97.4 97.1 96.5 95.4 92.7 42.4 14.6

3% 94.0 93.5 92.8 87.8 41.5 9.5 t t t t
5% 90.5 88.9 86.0 32.1 t t t t t t
10% 82.5 74.7 39.3 t t t t t t
15% 75.5 52.6 5.8 t t t t t

0.1 1% 97.1 96.9 96.7 96.0 94.8 91.6 73.1 34.5 3.2 t
3% 93.4 92.6 91.4 80.6 23.9 t t t t t
5% 89.9 87.9 83.8 22.8 t t t t t t
10% 82.0 73.0 35.0 t t t t t
15% 75.0 50.4 4.0 t t t t

0.15 1% 95.9 95.5 94.7 92.6 83.7 37.9 10.1 t t t
3% 92.3 91.0 88.8 55.4 5.7 t t t t
5% 88.9 86.0 79.3 11.1 t t t t
10% 81.1 70.2 28.0 t t t t
15% 74.3 46.8 1.1 t t t

0.2 1% 94.3 93.4 92.0 81.5 27.1 t t t t
3% 90.8 88.6 84.2 25.0 t t t t
5% 87.5 83.2 70.7 t t t t
10% 80.0 66.0 20.2 t t t
15% 73.4 42.0 t t t

0.25 1% 92.4 90.3 86.8 39.2 t t t
3% 89.0 85.1 75.4 3.6 t t
5% 85.8 79.2 55.6 t t t
10% 78.6 59.9 12.0 t t
15% 72.2 36.2 t t

Table 4.4: Smoothing parameter A*(m) (%) for various mean real (net of salary inflation) re-
turns i, standard deviation of return a and spread period m  at which minimum in lim VarF(f) 
and limVarc(f) occurs, (f) indicates that limVaiF(t)  and limVarc(f) have no minimum and 
are strictly increasing, with their lowest values at A =  0. Blanks indicate that stability 
conditions do not hold.
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Figure 4.4: Contour plots of limVar/(t) (above) and limVaxc(t) (below) against K  and A. 
i — 10%, a =  0.05. Lighter shading represents higher values.
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that axe applied consistently. In the Market method (§4.1.2), non-marketable liabilities 
are valued by reference to marketable assets using assumptions that are implied by the 
market at the time of the valuation. In practice, actuaries often use a pragmatic mix of 
techniques from both methods.

2. Some form of notional or hypothetical portfolio is required in both methods. This is a 
portfolio that matches or hedges or immunizes pension liabilities. The use of a long-
term strategic portfolio, which may be different from the matching portfolio, in the 
Discounted Cash Flow method is theoretically imperfect.

3. The same valuation result may in principle be obtained using the Discounted Cash 
Flow and Market methods, although for various practical reasons, this is unlikely. This 
conclusion is also drawn by Exley et al. (1997), although they do not show that it is 
self-consistent within the Discounted Cash Flow method for a matching portfolio to be 
used.

4. Some aspects of the valuation of liabilities, in a traditional, deterministic setting as well 
as using stochastic methods are reviewed in §4.2.

5. In §4.3, a few issues concerning asset allocation or investment strategy for pension funds 
are also considered. The issue of hedging or matching is found to be important, even if 
a deliberate matching policy is not followed. Valuation and asset allocation are related 
through the concept of matching or hedging. Asset allocation may be regarded as a 
means of controlling the pension fund in order to achieve certain funding objectives.

6. Some practical pension fund asset valuation methods are briefly described in §4.4. Their 
various properties, in terms of consistency with liability valuation, smoothness, objec-
tivity and their impact on the dynamics of pension funding are reviewed.

7. The interrelationship between asset and liability valuation methods and the choice of 
valuation discount rate is explored. It is also surmised that asset valuation and the tech-
niques of contribution determination and asset gain/loss adjustment should be chosen 
consistently.

A particular market-related asset valuation method is introduced and studied in §4.5.

1. The method considered is one of various methods used in practice.

2. The evolution of the first and second moments of the pension funding process is derived 
mathematically, under some simplistic assumptions, notably that pension fund returns 
perform a random walk.

3. An immediate observation is the congruence between spreading surpluses and deficits 
when determining contributions and asset smoothing for valuation purposes.
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4. Symmetry between the twin processes of spreading and smoothing is striking and com-
plete. They have a complement ary function in achieving smoothness in pension funding.

5. Dufresne (1986, 1988) shows that, when pure market values are employed, there is 
an allowable range of spreading periods for stability (such that K  € [0, 1 / y/q]) in 
the pension funding process. It is found that, w'hen surpluses and deficits are not 
spread forward and are repaid immediately, there also exists a similar stable range of 
the smoothing parameter (A € [0, 1 /%/<?]) beyond which the second moments of the 
funding process are unstable. When asset smoothing and surplus/deficit spreading are 
combined, upper bounds are placed on the possible stable ranges of spread period and 
smoothing parameter; these stable ranges are also investigated numerically.

6. The ‘actuarial’ value of assets generated by the smoothing method investigated is shown 
not to be divergent from the market value of assets. It is also shown to be less variable 
than the market value of assets. These are regarded as important properties for a 
suitable asset valuation method.

7. Smoothing and spreading, separately and together, are found to affect adversely the 
variability of the fund level at market.

8. Smoothing and spreading, separately and together, are also found to improve contri-
bution stability, but only up to a point. The range of spreading periods such that 
K  > 1/q and the range of smoothing parameter such that A > l /q  are inefficient as 
shorter spread periods and smaller smoothing parameters may always be chosen to 
reduce fund variability for equal stability in the contributions.

9. Numerical experiments reveal ‘optimal’ ranges for the spread period (for a given degree 
of asset smoothing) and for the smoothing parameter (for a given period over which 
surpluses and deficits are spread).

10. An important result of this analysis is that the ‘optimal’ weight to be placed on current 
market value when smoothing asset values should be upwards of 60% (depending upon 
the term over which surpluses/deficits are spread). This appears to contrast markedly 
with the more typical range of 10-33% reported in the literature as being used in 
practice.

11. A further result is that it is necessary to consider the combined effect of spreading 
surpluses and deficits as well as smoothing asset values. This emphasises the point 
that pension fund asset valuation and asset gain/loss adjustment cannot be considered 
separately.
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Chapter 5

Actuarial Prudence in Pension  
Funding

5.1 Prudent Valuations

Actuarial Prudence. An important feature of actuarial valuations of pension plans and 
of actuarial control of pension funding is the exercise of prudence in a volatile and possibly 
unpredictable economic environment. Prudent overestimates of liability cash flows and un-
derestimates of asset cash flows are usually made. Investment returns are the most important 
source of risk and uncertainty when retirement benefits are funded in advance. A prudent 
estimate of the rate at which to discount liabilities is therefore essential. In this chapter, 
some aspects of actuarial prudence in the choice of the valuation discount rate are discussed. 
Prudence in other assumptions is not considered: Bader (1983) states that the discount rate 
valuation assumption is “traditionally used as a repository for margins against inadequacies 
in other assumptions” and Thornton & Wilson (1992a) also recommend best estimates in all 
assumptions with prudent margins only in the valuation discount rate.

Discount Rate and Valuation M ethod. The valuation discount rate assumption refers 
to the rate used to value liabilities. The choice of the discount rate used in a pension fund 
valuation depends on the method of valuation, as discussed in Chapter 4 (§4.1).

When the Discounted Cash Flow valuation method (§4.1.1) is employed, the valuation 
discount rate is related to the long-term average return on new money being reinvested in a 
notional portfolio that matches the liabilities (rather than in the actual portfolio of assets held 
by the fund). Assets and liabilities are both valued using the same discount rate assumption, 
which ensures consistency. The valuation discount rate in the market method (§4.1.2) is 
related to the (term-dependent or weighted average) discount rate implied in the assets that 
hedge or match future liabilities. A market-related value of assets is used, with the liabilities 
also being valued by reference to the market, so that consistency also follows. Actuaries
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appear to use a pragmatic mix of both methods.

Best-estim ate Investment Return Assumption. The choice of the valuation discount 
rate depends therefore on the method of valuation employed. Whatever the method of valu-
ation, the discount rate refers to the estimated future return on the portfolio of assets that 
matches or hedges the liabilities of the pension plan, rather than to the estimated return on 
the actual and future asset portfolio of the fund. In addition to selecting a valuation discount 
rate for liabilities, an assumption regarding the long-term investment return on current and 
future pension fund assets may also be made.

Such an investment return assumption is a ‘best estimate’ of the return on the strategic 
portfolio of assets that will be held by the fund in the long term. The strategic portfolio 
may of course be different from the current asset portfolio, as temporary tactical positions 
may occasionally be taken. Unless the pension fund has a long-term policy of investing in the 
minimum-risk asset portfolio that hedges or matches its liabilities, there is also a conceptual 
difference between the investment return assumption and the discount rate as they relate to 
different portfolios. There may or may not be a numerical difference in practice given that 
it is not always possible to determine either the hedging portfolio or the long-term portfolio 
exactly and given also the imprecision in the estimation of relevant discount rates. A single 
best estimate of the investment return is usually made whereas multiple liability discount 
rates may be used.

Terminology. It is customary in most pension fund valuations not to distinguish between 
the valuation discount rate and the investment return assumption, unlike in product pricing 
in life assurance. A single assumption is often made and is traditionally termed a ‘valuation 
rate of interest’. This phrase is misleading on several counts:

1. It does not explicitly distinguish between the valuation discount rate and the best- 
estimate investment return assumptions.

2. It is possible that multiple risk-adjusted discount rates are used in a valuation rather 
than just one ‘valuation rate of interest’.

3. It is possible that term-dependent discount rates are used in a pension fund valuation.

4. The discount rate and investment return assumptions are only indirectly related to 
economic interest rates. The valuation discount rate comprises various risk-adjustments, 
whereas the investment return assumption reflects the risk premiums in the various asset 
classes in which a pension fund is invested.

For these reasons, I avoid use of the term ‘valuation rate of interest’. Ezra (1988) and Smith
(1996) also prefer the term ‘valuation discount rate’ as the rate used to value liabilities for
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funding purposes. The conceptual difference between the valuation discount rate and the 
investment return assumption is also made in Actuarial Standard of Practice No. 27 of the 
American Academy of Actuaries (1996:§3.6).

Prudence Margins. It is a central tenet of this chapter that there exists a conceptual 
difference between the discount rate and the best-estimate investment return assumption. 
This difference is in most cases also a numerical one. The valuation discount rate is sometimes 
referred to as a prudent investment return assumption, and the difference between the prudent 
and best-estimate assumptions is described as a ‘margin’ (Thornton & Wilson, 1992a). The 
term margin in the rest of this chapter refers to the difference between the valuation discount 
rate and the best-estimate investment return assumption. Reasons for the existence of a 
prudence margin are explored in §5.2 and the effects of such margins on pension funding are 
considered in the rest of this chapter.

5.2 Prudence Margins in the Valuation Discount Rate

There are various reasons for the difference between the discount rate used to value lia-
bilities and the long-term expected return on assets:

1. Assets are not perfectly matched to liabilities: there exists a mismatch risk margin 
(§5.2.1).

2. The liability discount rate is adjusted for various risks in the liability cash flows (§5.2.2).

3. Margins seem to be used to control the ‘pace’ of funding (§5.2.3).

4. Margins are also inserted as a source of flexibility when determining employer contri-
butions (§5.2.4).

5. The choice of discount rate is imprecise (§5.2.5).

5.2.1 M ism atch R isk  M argin

Hedging or Matching Portfolio. When the Discounted Cash Flow method is used (with 
notional switching into a ‘long-term’ strategic portfolio of assets), the valuation discount rate 
is the long-term reinvestment yield less an adjustment for the mismatch risk taken. When 
the market method is used, the valuation discount rate is the return on the portfolio of assets 
that hedges or matches the pension liabilities. The actual and future assets in which the 
pension fund invests may be different from the matching or hedging portfolio. The long-term 
estimated return on the actual assets held by the fund may therefore be different from the 
valuation discount rate, reflecting the mismatch risk taken in the investment of the fund.
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McLeish [Thornton Sz Wilson (1992a): discussion], for example, deals explicitly with the 
mismatch risk margin:

“The projection rate is meant to represent the yield which will be obtained on 
the asset portfolio held by the ongoing fund, whereas the lower settlement rate 
[the discount rate used to value liabilities] is meant to represent the yield which 
would be obtained on a portfolio of assets closely matched to accrued liabilities.
There would be a difference between these rates, even if both were best estimates 
of the return from the two different portfolios.”

Wise (1984) and Exley et al. (1997) make similar arguments, in terms of matching and hedging 
respectively. Vanderhoof (1972) (see Milgrom (1985:§1)) also relates the liability valuation 
discount rate to an immunized asset portfolio. Brownlee & Daskais (1991) attempt a similar 
explanation for the discount rate in terms of the concept of immunization. Any mismatch 
investment risk taken by the plan sponsor and trustees then results in a (more volatile) 
surplus, and hence (more volatile) lower contributions.

Investm ent Return Volatility. It has been shown [Thornton &; Wilson (1992b:^[2.2), 
McGill et al. (1996), Winklevoss (1993)] that the variability in asset returns generally tends 
to dominate any other source of uncertainty in pension funding. The liability discount rate 
is generally not a risk-free discount rate as it depends upon the minimum-risk asset portfolio 
that is considered to hedge or match pension liabilities including salary-related ones. (Nev-
ertheless, a ‘dedicated’ bond portfolio that matches the liabilities has been called a risk-free 
asset by Leibowitz & Henriksson (1988) among others.) The best-estimate investment return 
assumption incorporates a risk premium for the uncertainty in the return on assets such as 
equities in the actual pension fund portfolio. The liability discount rate comprises a risk 
adjustment for the uncertain return on assets in the hedging portfolio (which will usually 
comprise a different proportion of equities or possibly none at all if it is believed that equities 
are not suitable for hedging pension liabilities). Volatility in equity returns is therefore re-
flected in a prudence margin between the discount rate and best-estimate investment return 
assumption. Fixed-interest securities are also not risk-free unless they exactly match liability 
cash flows until maturity: an adjustment for the risk from the reinvestment of the proceeds 
from fixed-interest securities is also required.

Hedging Salary-Related Liabilities. There is some debate regarding the best match or 
hedge for certain pension liabilities and so it is not always clear what the liability valuation 
discount rate ought to be. Whereas conventional and index bonds hedge nominal and price- 
related liabilities respectively, there is contention over which assets best hedge salary-related 
liabilities. It is argued that productivity improvements in the economy are shared between 
capital (through dividends) and labour (through wages) in roughly stable proportions so
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that equity dividend growth and wage inflation reflect productivity growth. Equities are 
therefore held up as a hedge (or at least as a partial hedge) for the final-salary liabilities 
of active members and so equity returns are at least partially relevant to the valuation of 
active liabilities. Such an argument ignores the fact that foreign capital may also be invested 
in the economy. Exley et al. (1997) regard the link between equity dividends and salaries 
as “spurious” for a different reason. They argue that dividends represent a much smaller 
proportion of national income than wages. Since capital and labour share productivity gains, 
small variations in wages may be offset by variations in dividends that are, as a proportion of 
total dividends, much larger. Exley et al. (1997:§7) claim that there is therefore considerable 
instability in the relationship between salary inflation and dividend growth. They seek to 
establish an alternative link between salary-related liabilities and index-linked gilts (real- 
return government bonds) by arguing that salary inflation is closely related to price inflation 
plus an estimated real salary inflation component. (See also §2.6.3.) Various authors including 
Exley et al. (1997) therefore reject any role for equity returns in deciding the valuation discount 
rate as amounting to taking advance credit for the equity risk premium.

The argument over the role of equities as a hedge for salary-related liabilities is particularly 
relevant to solvency and accounting valuations, but also to ongoing management valuations. 
For the purpose of setting contributions, some actuaries take the view that the valuation 
discount rate may allow for a realistic, partial recognition of the mismatch investment risk 
taken in pension funding: they suggest that the discount rate may then contain a prudent 
estimate of the mismatch risk premium. In particular, if there is significant equity investment 
by the pension fund, they argue that it is reasonable to take some advance credit for the 
excess return on equities versus fixed-income securities, irrespective of whether equities hedge 
salary-related liabilities. Dyson & Exley (1995:^6.3.1) call this a “subjective, realistic basis 
with explicit allowance for both real salary increases and for a rate of expected investment 
return in excess of that implied by Government securities.” This view is taken by Thornton 
& Wilson (I992a : l1[6.5.2, 10.11) who suggest that ongoing contributions should be calculated 
on a realistic basis, “to take credit for best estimate investment returns”, whereas funding 
should be on a prudent basis.

Hedging Nominal and Price-Related Liabilities. When suitable assets exist and are 
held to meet nominally fixed or price inflation-indexed liabilities, it is much easier to determine 
a suitable ‘matching’ valuation discount rate:

1. The “cash flow matching method” of the Actuarial Standard of Practice No. 27 of the 
American Academy of Actuaries (1996:§3.6) relates the valuation discount rate to the 
internal rate of return on a hypothetical bond portfolio that generates income that 
approximately matches future pension liability outgos.

2. When a ‘dedicated’ bond portfolio (see §4.3.3) is set up to match current pensioner
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liabilities, Bader (1983) suggests that the discount rate for the liabilities to which the 
bonds are dedicated may be set such that the value of these liabilities is equal to the 
market value of the dedicated bond portfolio. He also suggests as an alternative that the 
valuation discount rate may be the known future yield on the dedicated bond portfolio.

3. A similar approach for a closed and mature plan whose liabilities are ‘immunized’ and 
‘matched’ is described by Anderson (1992:162) and Thornton & Wilson (1992a:f9.5).

4. Taylor (1986:§4.3) makes a related argument in the context of general insurance.

Term-dependent Discount Rates. A further complication in the choice of discount rates 
is that a strict application of the market valuation method requires the use of term-dependent 
discount rates (see §4.1.2), since the term structure of interest rates is generally not flat. For 
many plans (especially large ones, where the expense can be justified), simple sets of term- 
dependent discount rates are indeed used, especially in North America. Lee (1986:^11.29) 
describes this as a “short-term patch”. Allison k  Winklevoss (1975) contemplate the use 
of a graded, non-uniform discount rate that varies by calendar-year, with the discount rate 
interpolated between current and expected long-term returns. Furnish et al. (1985) study at 
length the practical use of “select and ultimate financial assumptions” (analogous to mortality 
assumptions). Such assumptions are allowed by the Actuarial Standard of Practice No. 27 
of the American Academy of Actuaries (1996:^3.6.4). The main justification for such term- 
dependent discount rates is, of course, that they conform with a non-flat yield curve and 
give consistency to market valuations of assets and liabilities. Greater uncertainty in the 
more distant future may require greater risk-adjustments or larger prudence margins in term- 
dependent discount rates (this is also mentioned by Cavaye k  Springbett (1964:^[4)). Jackson 
(1984) also suggests that a change in ‘ultimate’ assumptions may have a less abrupt effect 
in terms of recommended contribution if term-dependent discount rates are used. The use 
of discount rates based on the prices of s t r ips  (Separate Trading of Registered Interest and 
Principal securities—see Sharpe et al. (1995:119)) of various terms has also been suggested 
in the context of accounting valuations (IFAA, 1997).

In most pension fund valuations, some form of duration-weighted average tends to be 
used as an approximation to term-dependent discount rates. Dyson k  Exley (1995) describe 
a valuation method that uses spot rates from the yield curve of conventional and index-linked 
gilts and suggest that an average rate, weighted by the duration of the liabilities of the pension 
plan, can be used as a first-order approximation to term-dependent discount rates. Thornton 
[Exley et al. (1997): discussion] anticipates that future international accounting standards 
may also require a single average market discount rate rather than a set of term-dependent 
discount rates.
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M ultiple Discount Rates. It is plausible in theory to assume different discount rates for 
different sets of liabilities. Different discount rates may be used when there exists a set of assets 
and liabilities that are expressly matched. A practical example occurs in the North American 
practice of constructing ‘dedicated’ bond portfolios to match current pensioner liabilities 
(see §4.3.3). Bader (1983) suggests that the subset of pension assets and liabilities that are 
matched or ‘dedicated’ (constituting a “dedicated sub-plan”) may be valued differently from 
the non-dedicated assets and liabilities. Two different discount rates are then used for the two 
sets of liabilities. These discount rates may both be different from the assumption regarding 
long-term investment return on the pension fund.

5.2.2 O ther R isk  A dju stm ents

The valuation discount rate generally contains adjustments for various risks pertaining 
to the pension liabilities, whereas the best-estimate investment return assumption does not. 
This also partly explains the ‘prudence margin' between them.

Uncertainty in Cash Flow Amounts. The valuation discount rate is usually adjusted 
for the uncertainty or risk in the amount of benefit payments (for example demographic risks) 
and possibly expenses. This may be of particular importance for smaller pension plans. The 
pension plan sponsor may also improve benefits on a discretionary basis and Wise (1998; 
Exley et al., 1997: discussion) suggests that discount rates should reflect the uncertainty 
involved in benefit enhancement. Note also that different liabilities are hedged or matched by 
different assets. Liability cash flows may therefore be subject to different levels of uncertainty 
or risk and different risk adjustments may therefore apply for different sets of liabilities [Smith 
(1996), Exley et al. (1997)]. In theory this means using multiple risk-adjusted discounted rates 
for the various sets of liabilities, although in practice they appear to be combined in some 
form of approximate weighted average.

Uncertainty in Cash Flow Timing. There is uncertainty not only in respect of the 
amount of benefit and expense cash flows, but also regarding their timing. The election 
of various options may also cause liquidity problems. Actuarial Standard No. 27 of the 
American Academy of Actuaries (1996) also mentions the risk pertaining to “supplementary 
benefits triggered by corporate restructuring” (generous benefits being sometimes awarded for 
voluntary redundancy). Wise (1998; Exley et al., 1997: discussion) also considers the option 
of the sponsor to wind up the plan at any time (if investment returns are insufficiently high 
for instance). Such uncertainty in the pension plan arrangement may also warrant further 
adjustments to the discount rate.

Insolvency and Credit Risk. Solvency considerations may also justify using more pru-
dent discount rates in ongoing funding valuations. Thornton & Wilson (1992b:^[5.3) suggest
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that there should be “a margin of at least 20% between the discontinuance position and 
the ongoing funding position” because of the wide fluctuations in investment return experi-
ence and potential emergence of deficits coinciding with wind-up of the plan. The valuation 
discount rate should therefore be a ‘prudent’ one. McLeish [Thornton & Wilson (1992a): 
discussion] incorporates “a margin in the settlement rate [the discount rate used to value 
liabilities] to reduce to an acceptably low level the probability of inadequate funding, which 
otherwise might be 50% in the event of winding-up.” It is not clear how such a margin should 
be determined. In the classical financial theory of pension plans [Bagehot (1972), Treynor 
(1977)], a ‘risk-free’ discount rate is meant to be used in the valuation of pension liabilities 
as the plan is assumed to be ongoing with benefits ‘guaranteed’ by the plan sponsor. Pension 
plans do become insolvent, however, and the discount rate used to value liabilities should re-
flect this risk. When pension liabilities are valued for accounting purposes, the U.S. Financial 
Accounting Standards No. 87 (FAS87) and Exposure Draft 54 of the IASC (1996) require the 
use of discount rates implicit in annuity contracts or corporate bonds to reflect the situation 
if the plan were wound-up. Exley et al. (1997:§8) consider that this does not adequately 
describe the “credit risk of a pension promise”, i.e. the risk of pensions not being paid out if 
the pension plan is terminated. They argue that this risk depends on the simultaneous events 
of plan assets defaulting and the plan sponsor being bankrupt and unable to make good on 
the pension promise. These two events axe dependent, according to Exley et al. (1997:§8), 
since sponsor bankruptcy may be triggered by having to make large contributions because of 
minimum funding requirements being breached. Exley et al. (1997:§8.5) therefore comment 
that the risk adjustment in the discount rate should be related to the plan sponsor’s credit- 
worthiness; to the funding level, investment policy and maturity of the plan; to the “strength 
of covenant” between sponsor and members; as well as to the “matching policy”. This is 
sometimes used to vindicate the inclusion of part of the equity risk premium in the discount 
rate (see §5.2.1), although Exley et al. (1997:^8.5.1) reject this argument.

5.2 .3  M argins to  C ontrol Funding

‘Prudence margins’ in the valuation discount rate are also used by actuaries to influence 
the value placed on liabilities and hence the ‘pace’ of funding for benefits. Daykin (1976:^6) 
suggests that the valuation discount rate can be used

“as a conscious but undeclared means of speeding up or slowing down the explicit
pace of funding.”

Some actuaries are uncomfortable with the fact that this control is ‘undeclared’. Brownlee & 
Daskais (1991) accept that the use of margins in the valuation discount rate (which they refer 
to as “tinkering with the discounting assumption”) may be acceptable to speed up funding 
if there is a risk that the sponsor may become insolvent or that the investment policy being
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followed is too aggressive, and also provided the prudence margins are disclosed. Even with 
disclosure, it is not always considered to be acceptable practice [Snelson (1970:^33)].

Valuation Assum ptions and Cost of Pension Provision. The justification for such 
margins in the discount rate seems to be that prudence margins ought not to affect directly 
the ultimate cost of pension funding and therefore do not directly matter. It is usually accepted 
that the ex post cost of providing pension benefits depends

-  primarily upon the benefit policy (i.e. the level of benefits promised) and upon the 
economic and demographic experience of the plan,

-  and only indirectly upon the funding and contribution policies (i.e. the funding method 
and assumptions), as the incidence of contributions influences investment policy or as 
surpluses entail an improvement in benefits.

Management or ongoing valuations are perceived to be exercises in managing the pension 
fund and delivering on the various objectives of benefit security, contribution stability etc. 
Actuarial intervention in the funding of retirement benefits, when the pension fund is being 
valued, is aimed at managing or controlling the pension plan by setting a funding strategy. 
Since valuation assumptions are thought not to affect directly the ultimate cost of providing 
pensions, they are considered to be legitimate tools in the control of pension funding. It is 
argued that it does not directly matter that assumptions may be wrong or that prudence 
margins may be included, provided they are adjusted as experience unfolds.

The valuation discount rate assumption is for this reason rarely referred to as a forecast, 
particularly since it is commonly held that neither the market nor the actuary can successfully 
and accurately predict the future economic environment in which a pension plan operates. 
Some authors thus describe the valuation discount rate assumption as an “educated guess” 
[Trowbridge (1966), Ezra (1980), Anderson (1992:165)] or an artificial construct [Paquin (Van- 
derhoof, 1973: discussion)] or a technical tool [Trowbridge (1966), Ezra (1988)] rather than a 
forecast. Indeed, various authors do use the valuation discount rate as a formal technical tool 
or control parameter. Cairns & Parker (1997) attempt to maximise contribution stability in 
a mean-variance context in a simple pension fund model by determining an ‘efficient frontier’ 
or range for the valuation discount rate such that the variance of contributions is minimised 
for a given mean level of contribution. Benjamin (1984, 1989), Loades (1992) and Fujiki 
(1994) likewise seek to determine a suitable valuation discount rate as some form of average 
of previous rates of return with or without a prudence margin to stabilise various aspects of 
pension funding.

For the purposes of funding and setting contributions, liability and asset ‘values’ are 
not necessarily economic values (for example in the Discounted Cash Flow method), but 
should be somehow comparable. An ongoing or management valuation is not therefore strictly
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an economic valuation (Ezra, 1988) but is concerned with financing the pension benefits 
[Trowbridge (1952), Paquin (1975)] or regulating the pace of funding [Daykin (1976:^(2)] or 
budgeting for pension liabilities [Exley et al. (1997:^[3.2.5)]. It is therefore argued that, since 
the relative conservatism of assumptions merely changes the incidence of contributions and 
advances or delays the financing of pensions, the choice as to the assumptions should be made 
by balancing the interests of sponsor and members. This view is taken by Trowbridge (1966) 
for instance:

“On the one hand, the higher [contribution] is likely to be better from the 
viewpoint of employee security, and may be fine for the employer as well if he can 
conveniently concentrate contributions into the early years. On the other hand, 
the lower initial outlay calculated by less conservative actuarial assumptions or 
cost methods may well be indicated by any of several business considerations, and 
the lower employee security well justified by the increased likelihood that over the 
long haul the plan can be continued.”

Sm oothing the Emergence of Surplus. There are at least two reasons why prudence 
margins in the valuation discount rate are used to control funding. The first is that margins 
may be used to smooth the emergence of surplus. This seems to originate from actuarial 
practice in conventional life assurance (Fisher & Young, 1971). It prevails in circumstances 
where continual benefit improvements are the norm. When increases to pensions in payment 
are made in an ad hoc way as surpluses appear, the rate of emergence of surpluses in the 
fund must be regulated. Daykin (1976:<|6), for example, regards the valuation discount rate 
assumption as

“a principal means of control in the management of a fund, for example in funds 
where benefits are increased as surplus emerges, in which case the rate of increase 
of benefit may be controlled by a judicious choice of rates of interest in successive 
valuations.”

Sm oothing Sponsor’s Contributions. Another reason why prudence margins may be 
used in the valuation discount rate is to stabilise and smooth the sponsor’s contributions 
(§2.2.4). Actuarial assumptions, and in particular the valuation discount rate, are therefore 
selected to even out the effect of one-off events. Snelson (1970) gives an account of such 
practice:

“Sometimes an employer wishes to provide a certain scale of benefits but wishes 
the initial outlay to be somewhat lower than that originally suggested [ . . .  ] The 
proper way to deal with this problem is to lengthen the period [of amortization] 
to achieve the desired degree of funding [ . . .  ] In practice a reduction in outlay is 
sometimes attempted by making lighter assumptions.”

161



Chambers [Colbran (1982): discussion] believes that due consideration to the sponsor’s situ-
ation must be paid if valuation assumptions need to be changed in a way that may not have 
been anticipated by the sponsor:

“It would often be wrong and damaging to a client to expose him to the 
traumatic consequences of a material change in the valuation basis if the option is 
available of a progressive strengthening or weakening over a period. There will be 
occasions when this option is not available or is inappropriate. Whether the option 
is available and the extent to which it is available are matters for the actuary to 
consider. He should discuss these things with his client, but the decision rests 
with the actuary.”

Finally, note that although ‘prudence’ may be employed in the valuation discount rate to 
control various aspects of funding, margins do not change the economic value of liabilities. 
Ezra (1988) states that they simply give rise to a

“concealed contingency reserve [which] can be used for at least two distinct pur-
poses — to prefund future benefit improvements or to create a reserve against 
fluctuations in funding contributions.”

Smith (1996:§2.3) uses the terminology of Bride & Lomax (1994) and describes margins in 
the discount rate as creating a “cost of capital adjustment, or COCA” which is used as

“one way of adjusting the pace of funding, or equivalently, of moving the future 
capital cost onto and off the balance sheet. The COCA is, in effect, acting as a 
slush fund to smooth out market fluctuations.”

5 .2 .4  M argins as a Source o f F lex ib ility  for th e  Sponsor

Flexibility in Pension Funding. One of the essential features of any form of advance 
funding is the flexibility that it provides to the sponsor in terms of the timing of contributions. 
Indeed, flexibility is often cited as a motivation for advance funding. The fact that money is 
set aside is taken to imply that sponsors have more freedom in varying their contributions to 
the pension fund than in a pay-go situation. Flexibility is afforded to sponsors in various ways 
(§§2.2.5, 3.4.2), notably in the choice of period over which unfunded liabilities or gains/losses 
are amortized, in the choice of funding method, and in discretionary contributions. Valuation 
assumptions, and particularly the valuation discount rate, also appear to be varied so as to 
provide some flexibility to sponsors, although this may be rationalised by alternate means.

Actuaries do take into account the plan sponsor’s interests in their recommendations about 
funding. The reasons why flexibility could be valuable to corporate sponsors are summarised 
by McGill (1964:319) who states that
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“Sufficient flexibility to permit an employer to take optimum advantage of tax 
deductions and to adjust his contributions to his earnings experience is regarded 
as a desirable objective so long as it does not impair the ‘will to fund’ and hence, 
the solvency of the plan.”

McGill (1964:317) thus explains that there has to be “latitude” as to the choice of assumptions 
in pension funding since there has to be a “necessary degree of flexibility in projecting the 
costs and accumulating the funds.” Bassett (1972) similarly believes that it is justifiable to 
vary prudence margins in the various valuation assumptions, including the valuation discount 
rate:

“An actuary [ . . .  ] usually recommends, with considerable justification, that 
his client take a conservative approach to pension funding, albeit at concomitantly 
high cost. However, if an employer has enough financial flexibility to increase his 
contributions, should unfavorable circumstances require it, the actuary is justified 
in using less conservative, more aggressive assumptions that lead to lower pension 
costs.”

Corporate Finance Theory. The theory of corporate finance in fact suggests that plan 
sponsors may seek to use pension funds to their financial advantage [Bodie et al. (1985), 
Exley et al. (1997)]. Corporations sponsoring defined benefit plans may seek flexibility in 
their contributions for at least two clear reasons:

1. To suit their cash flow needs: Companies may wish to steer assets into the pension fund 
when times are good, whereas financially distressed sponsors with less spare cash may 
seek to do the opposite. Bodie et al. (1985) refer to plan sponsors maintaining “some 
financial slack in order to avoid having to rely on external financing at ‘unfavorable’ 
times.” Exley et al. (1997:^8.15.2) similarly suggest that sponsors may benefit from 
controlling the timing of contributions in order to reduce “the costs of raising and 
distributing capital.” In particular, Exley et al. (1997:^8.8.7) believe that

“Many actuaries, in practice, are not blind to the synergies available to com-
panies who wish to take into account the cash needs of the business when 
planning their pension fund contributions.”

2. To benefit from, tax advantages: Black (1980), Tepper (1981), Black & Dewhurst (1981) 
and more recently Exley et al. (1997) have described how sponsors and their shareholders 
would benefit from the pension fund investing in fixed-income securities which are less 
heavily taxed compared to equities. If sponsors do enjoy a degree of flexibility in their 
contributions to pension funds and have cash at hand, they may wish to make earlier 
and larger contributions in order to benefit from the tax privileges of pension funds.
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Some Anecdotal Evidence. There is some anecdotal evidence that the sponsor’s financial 
status does influence the choice of actuarial assumptions. Thornton &: Wilson (1992a:§10) 
describe how the financial circumstances of the sponsor may lead to a preference in the level 
of prudence or in the margins in valuation bases:

“Some clients would wish to fund on best estimate bases; this is typically in 
cases where finance is difficult, where pension costs have to be minimised in the 
company accounts to achieve respectable company results, or where cash is short.
[ . . .  ] In other cases, the sponsoring company itself may be concerned to maintain 
a strong fund. This might be because the future prospects for the company or 
its industry may be uncertain, and the risk of having to support an underfunded 
scheme in later more difficult times is to be avoided.”

VanDerhei & Joanette (1988) also describe the interaction between actuary and plan sponsor 
in the U.S. in anecdotal terms:

“At times management conveys a cost objective to the actuary, such as the 
need to reduce pension contributions, and the actuary responds by recommending 
a change in the actuarial assumptions or methods. But when left to their own 
devices, most actuaries [ .. .  ] axe conservative by nature. Thus, the economic 
determinants flowing from management incentives are an interjection, not usual 
but not infrequent, in the determination by the actuary of the actuarial cost 
method and assumptions which he or she deems most reasonable for pension cost 
attribution.”

Ezra (1988) gives a subjective account of practice in the early 1980’s in North America—when 
companies were cutting costs as a result of recession—which also shows that actuaries are 
sensitive to corporate financial requirements when choosing assumptions:

“[Corporations] discovered that contributions hitherto referred to in actuarial 
reports as ‘required’ were in fact quite flexible, and in many cases were not re-
quired at all, because the actuarial assumptions on which they were based were so 
cautious. As corporate financial executives took over control from the actuaries 
to whom they had implicitly delegated those decisions in the past, they realized 
that an actuarial ‘recommendation’ as to contributions was almost meaningless, 
because it makes little sense to produce a recommendation without considering 
alternative uses of that money. Intent on survival and improving the bottom line, 
corporations overruled traditionally recommended contribution rates, which actu-
aries then gamely changed, revealing unsuspected depths of response to reality.”

Sometimes, actuaries may well vary prudence margins in valuation assumptions to suit the 
interests of plan sponsors but rationalise this by other means. Exley et al. (1997:^[8.8.7) point
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out that actuaries can be “accommodating” in their choice of the assumed equity dividend 
growth for asset valuation purposes in the U.K.:

“We do not see why an actuary who, quite reasonably, has taken account of the 
short term cash flow of the sponsor when reaching a recommendation, should feel 
obliged to rationalise the process in terms of a change in his view of long term 
dividend growth.”

Parsons [Thornton & Wilson (1992a): discussion] in fact describes the dividend growth valu-
ation assumption as a “device”:

“It is important to remember that, unless one is using ‘realistic’ assumptions 
for the whole valuation, a dividend growth assumption used for valuing assets 
is merely a device for obtaining the appropriate result; it will not be a realistic 
assumption in its own right. If one does not maintain an appropriate gap [assumed 
discount rate less dividend growth], one starts dealing in ‘funny numbers’ and this 
can only harm the credibility of the actuarial profession.”

Some Statistical Evidence. There is little statistical evidence regarding the importance 
of sponsors’ influence in the prudence margins in valuation assumption. In a survey of 63 
actuaries who recently valued 106 Australian defined benefit superannuation funds, Ferris & 
Welch (1996:18) investigate qualitatively the extent of influence by the fund sponsors. Most 
of the actuaries reported no influence by the sponsors on their assumptions. Approximately 
40% of the actuaries stated that they used conservative assumptions, by their own estimates. 
In four cases the sponsors and actuaries debated the margins incorporated in the basis, with 
the sponsors desiring more liberal assumptions. Bodie et al. (1985), Friedman (1983) and 
Joanette (1985) also claim to find statistical evidence for the positive correlation of plan 
sponsors’ profitability with pension funding levels. (They claim to use some form of normalised 
funding level to compare different pension plans accurately.) This would appear to confirm 
the hypothesis that pension funding is not entirely independent of plan sponsors’ finances, 
which may in turn mean that actuarial assumptions are guided or at least influenced by the 
finances of the corporate plan sponsor.

Some Evidence from Accounting Valuations. There is also anecdotal evidence that the 
valuation discount rates used for accounting purposes in the U.S. prior to Financial Account-
ing Standards No. 87 (FAS87) were influenced by the sponsor’s financial situation. Indeed, 
the motivation of FAS87 was to standardise financial reporting regarding pension funds and 
improve comparability between the accounts of companies. Firms in financial difficulty ap-
peared to try to minimise their reported pension liability. VanDerhei & Joanette (1988) 
suggest that the discount rate used for calculating pension expense and contributions (which
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were often equal prior to FAS87) was at times not the same as the discount rate used to report 
pension liability under Financial Accounting Standards No. 36 (FAS36). McGinn [Holcombe 
et al. (1973)] also states that “corporations and boards of directors have pressured actuaries 
to use realistic assumptions in valuing pension liabilities in order to charge pension costs 
equitably among generations of common stockholders.” Regan (1980) presents some evidence 
that higher discount rate (net of salary inflation) assumptions were used in the valuation of 
pension funds whose sponsors were awarded a higher credit rating by Moody’s. Bodie et al. 
(1985) find evidence that the valuation discount rates used (and disclosed) in the calculation 
of FAS36 pension liability was negatively correlated with the profitability of plan sponsors.

Professional Practice. Finally, note that it is customary actuarial practice to discuss the 
evolution of the pension fund with the sponsor so as to enable him to budget for future con-
tributions or to decide to improve benefits. Many actuaries consider positively the sponsor’s 
financial interests and believe that sponsors should be explicitly involved in decisions regard-
ing the pace of funding and the choice of funding method. This view is held by some British 
actuaries [Colbran (1982:^10.1), Humphrey et al. (1970:^[8.14)] although it finds more favour 
among North American actuaries (Holcombe et al., 1973). Professional standards do not 
prohibit input from sponsors and the actuary is not forbidden from considering their financial 
situation. ‘Professional judgement’ is apparently called for. Professional Standard 400 of 
the Institute of Actuaries of Australia (1995:^11, 12) stipulates that actuarial assumptions 
chosen for an ongoing funding valuation

“must give proper weight to every aspect of significance, including the operating 
environment of the employer, and the manner in which discretions are likely to be 
exercised”.

Whereas an actuary in Australia is responsible for the choice of assumptions in consultation 
with other parties, there may be circumstances where “the actuary may be directed to use 
particular methods and/or assumptions” and if he disagrees with such assumptions he should 
discourage their use or decline to perform the valuation.

‘Flexible’ Margins in Discount Rate. It is apparent therefore that the choice of valua-
tion assumptions, such as the discount rate for valuing liabilities, is not always purely based 
on the experience of the pension plan. There is circumstantial and anecdotal evidence that the 
valuation discount rate is not always chosen independently of the sponsor’s financial needs. 
The level of prudence or margin built into the valuation discount rate in comparison with 
the best-estimate investment return assumption may be influenced by the sponsor’s financial 
circumstances.
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5.2 .5  Im precision in th e  C hoice o f D iscou n t R ate

The choice of the valuation discount rate is not always made with exactitude. There are 
various reasons why the discount rate is only an approximation:

Risk-adjustments. It is not always clear how various risk-adjustments to the liability 
discount rate are to be determined. The size of such adjustments seems to be chosen in 
an ad hoc manner in practice.

Hedging portfolio. It is also difficult, in most cases, to determine exactly a minimum 
risk or hedging or matching portfolio for the pension liabilities. This difficulty is particularly 
apparent in the approximate nature of the notional or hypothetical portfolio used in the 
valuation of assets in the Discounted Cash Flow method in the U.K.

Norm ative Aspects. The valuation discount rate employed by actuaries in the valuation 
of particular pension plans is often observed to change infrequently since it is a ‘long-term’ 
assumption. Actuaries are influenced by published surveys of assumptions used by other 
actuaries. Brownlee & Daskais (1991) describe how actuaries sometimes “consult a survey of 
what other actuaries axe doing and try to avoid being outside the bounds, frequently very 
wide bounds, of current practice.”

B est-estim ate Ranges. Actuarial assumptions will not be borne out exactly by experi-
ence, except by chance, and cannot be known in advance. It is therefore said that valuation 
assumptions, especially uncertain economic ones, may be chosen anywhere within a best- 
estimate range. This by itself implies that there is an acceptable margin in any assumption. 
Given an acceptable range for each assumption, it is sometimes extrapolated that there must 
be an acceptable range of valuation results. A probably typical illustration of how valuations 
are carried out in the U.K. is described by Heywood [Colbran (1982): discussion]:

“[ . . .  ] I believe that there is a range of valuation results. The top limit is the 
most stringent basis allowable, and the lower limit is that below which it would 
be dangerous to go. Any result in-between is very much a matter of opinion. My 
procedure is to write a preliminary summary letter of the results to the client, 
then talk to him, because I do not believe that the actuary is better qualified 
than other people to forecast future rates of interest or future rates of inflation. 
These matters are discussed and eventually a valuation result is reached. The 
result should be considered against the financial background of the company. If 
it is doing extremely well, the result might be pushed towards the more stringent 
end of the range. If it is not doing so well, it might be pushed the other way. 
However, the ultimate responsibility must rest with the actuary.”
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Averaging. Multiple discount rates for different liabilities and term-dependent discount 
rates (§5.2.1) are usually replaced by computationally convenient but approximate single-
valued averages in practice.

Stability and Consistency. The importance of contribution stability to the plan sponsor 
means that asset values are often smoothed (§4.4). Since assets and liabilities must be valued 
in a consistent way, the assumption that is made concerning the valuation discount rate 
is also more stable than market discount rates, say. The valuation discount rate is thus 
said to be a ‘long-term’ one to correspond to the long-term stable asset value (Ezra, 1980). 
Anderson (1992:162) states that the valuation discount rate “must reflect not only the type 
of investments made by the fund, but also how those investments axe valued.” Trowbridge 
& Farr (1976:93) stress “the consistency between the approach to asset valuation and the 
investment earnings assumption.” Accordingly, Loades (1992) uses a valuation discount rate 
that is smoothed or averaged over time. It is not always clear in practice how consistency 
and stability in the choice of discount rate axe achieved.

5.3 Persisting Surpluses/Deficits

A common problem in pension systems is the existence of persisting surpluses or deficits. 
They occur because of recurring actuarial gains or losses as a consequence of actuarial as-
sumptions differing consistently from experience. In the short term, assumptions axe not 
borne out by experience, except by chance. An ‘analysis of surplus’ pinpoints systematic 
deviations from experience over the long term and assumptions may then be rectified. Even 
if all actuarial valuation assumptions are ‘realistic’ and ‘best estimates’, prudence margins are 
still incorporated in the valuation discount rate, for the various reasons enunciated in §5.2. 
Such margins inevitably give rise to surpluses. Deficits will arise if, conversely, valuation 
assumptions are too liberal or optimistic. Large and permanent deficits potentially endanger 
the security of funded retirement benefits. They may even lead to technical insolvency. Large 
and permanent surpluses are equally undesirable because over-funding represents an oppor-
tunity cost to the plan sponsor as funds are diverted away from productive activity in the 
firm. This reduces corporate profits, thereby affecting plan members’ employment. Excessive 
surpluses may also incur revenue charges. (See §2.2.3.)

The sensitivity of valuation results to valuation discount rates is well-known. The long 
duration of pension liabilities means that their (actuarial) present or discounted value is 
highly sensitive to the choice of discount rate. Various authors [Bizley (1950), Adams (1967)] 
illustrate this sensitivity mathematically. Since the choice of valuation discount rate influences 
the value placed on liabilities, it will also influence the contribution recommended, and hence 
the size of surpluses or deficits that eventually emerge. This will of course depend on the 
pension funding or actuarial cost method employed. (A common rule of thumb is that a
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1/4% change in the discount rate (net of salary inflation) entails a 5% change in long-range 
recommended contribution when the projected unit credit method is used. Such rules of 
thumb appear to hold for a range of ‘reasonable’ discount rates because pension payments 
occur so far in the future that the duration of pension liabilities is itself fairly insensitive to 
changes in discount rate, as shown by Keintz & Stickney (1980).)

The size of surpluses and deficits that emerge depends not only on the prudence margin 
between the valuation discount rate and the long-term mean rate of return on the fund (as 
well as margins in other assumptions) but also on

1. the method of removing surpluses/deficits or gains/losses, and

2. the period over which they are removed.

This is most clearly illustrated by Dufresne (1986, 1988) in terms of the first and sec-
ond moments of the pension fund and contribution levels. Assume in the following that all 
valuation assumptions, except for the valuation discount rate, are ‘best estimates’ and are ex-
actly borne out by experience. The model described in §2.7 is assumed except for Valuation 
Assumption 2.2: the valuation discount rate is not necessarily equal to the long-term mean 
rate of return on pension plan assets. All prudence margins are therefore concentrated in 
the valuation discount rate assumption, as described by Bader (1983) and recommended by 
Thornton & Wilson (1992a) (see §5.1).

When surpluses/deficits are spread over a rolling term, the second moments of the pension 
funding process are obtained by Dufresne (1986) (Result 3.3) and depend on i -  iv. Let A 
represent the ‘margin’:

A =  d — dv - vv — v. (5.1)

Dufresne (1986) then proves the following:

R e s u l t  5.1 Provided

i > -100%, 

d < k < 1 ,

then

lim Eul(t)/AL = A / (d  — k),
t-i-OO

(5.4)

lim Eadj{t)/AL =  Ak/(d — k),
t-K »

(5.5)

and provided further that

q ( l - k )2 < 1, (5.6)

(5.2)

(5.3)
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then

lim Eul(t)2/A L 2 =  A2/(d  — A;)2 +  cr‘2v2(k — d + A )2/[I — q(l — k)2](k — d)2 (5.7)
t —too

=  A 2/(d — k )2 + a 2v2[l +  A/(A: — d)]2/[ l — g(l — A:)2], (5.8)

lim Eadj(t)2/A L 2 = A2k2/(d -  k )2 + a2v2k2( 1 +  A /(k  -  d)]2/{l -  q( 1 -  fc)2]. (5.9)
t - i  OO

Remarks:

1. The unfunded liability in equations (5.4) and (5.8) should be as small as possible, i.e. 
full funding is aimed for and the fund level should converge in time to the value placed 
on the liabilities (the actuarial liability) calculated at the risk-adjusted, prudent discount 
rate ẑ j.

2. Prom equation (5.4), as |A| increases, | \imEul(t) /  AL\ increases. From equation (5.8), 
as A —> ±oo, limEul(t)2/A L 2 -> oo. (The right hand side of equation (5.8) is quadratic 
in A with the coefficient of A2 being positive, given the stability conditions (5.2), (5.3) 
and (5.6).)

3. k =  1/a— is a reciprocal annuity factor that is usually calculated at the valuation 
discount rate iv. Suppose, however, that it is only a proportional spreading factor 
which is independent of iv . Prom 1 and 2 above, it is clear that large absolute differences 
between the discount rate and the mean long-term rate of return, i.e. margins of large 
magnitude cause large surpluses/deficits to emerge and potentially threaten the security 
of pension benefits.

4. The unfunded liability that ultimately emerges also depends on the spreading period 
through the spreading factor k in equations (5.4) and (5.8). If surpluses and deficits 
are spread over a shorter term m  (meaning a larger k — d in the denominators of the 
right hand sides of equations (5.4) and (5.8)), smaller surpluses/deficits will emerge 
eventually.

5. The expected ultimate surplus such as in equation (5.4) is called a ‘bias’ by Wise 
(1984:^2.16) albeit in a different context (namely, asset-liability matching for a pension 
fund assumed to be closed to new entrants).

The fact that long-term surpluses and deficits depend on the period over which gains and 
losses are removed as well as on the margin between the valuation discount rate and the long-
term mean rate of return is noted by a few other authors previously:

1. Trowbridge (1952) shows that the same ultimate fund levels result from the use of 
the Aggregate and Entry Age Normal funding methods; he makes the assumption that 
the valuation discount rate equals the constant (deterministic) rate of return on the
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fund. Weaver [Trowbridge (1952): discussion] shows that there is a difference in the 
ultimate fund levels of the two methods when there is a (prudent or liberal) margin in the 
discount rate assumption. Trowbridge [Trowbridge (1952): discussion] explains that this 
difference arises because the two methods spread surpluses/deficits over different periods 
and Weaver [Trowbridge (1952): discussion] considered Entry Age Normal method with 
an immediate adjustment for gains/losses only.

2. Adams (1967) investigates numerically the effect of varying discount rates (in a zero- 
salary inflation setting) on a pension plan funded according to various methods. Pension 
liabilities have a long duration and so the value placed on them will be sensitive to 
the valuation discount rate. Adams (1967) shows that methods that build up larger 
funds result in contributions that are more sensitive to the choice of valuation discount 
rate, which is assumed to be equal to the actual investment returns that will be made 
by the fund. Grubbs [Adams (1967): discussion] points out that results will be very 
different if the valuation discount rate and the actual investment return are not equal. 
Berin [Adams (1967): discussion] indicates that the amortization of gains/losses as they 
emerge will also have an effect.

3. Bowers et al. (1982) assume that the Aggregate method of funding is used (which is 
equivalent to spreading surpluses and deficits over a moving term—see §3.2.1) and con-
sider among other things the effect of a difference between the assumed and actual 
(deterministic and exponential) rates of investment return, salary inflation and popula-
tion growth. They show that

“it is the relationship between the difference of spread between the interest and 
growth rates in the valuation assumptions and the experience that determines 
the asymptotic relationship between the size of the fund and the size of the 
supplementary present value.”

From their results it is obvious that the annuity factor used to spread surpluses or 
deficits also affects this “asymptotic relationship”.

4. Thornton & Wilson (1992a) point out that the cumulative effect of small margins in 
various valuation assumptions may lead to considerable conservatism in the overall val-
uation result. They argue that including a ‘prudent’ (rather than ‘cautious’) margin 
in the valuation discount rate assumption, while adopting ‘best estimates’ for all other 
assumptions, avoids excessive conservatism. (Various authors including Bassett (1972) 
and Brownlee & Daskais (1991) also recommend less conservatism in the valuation 
discount rate assumption.) Thornton & Wilson (1992a:§6.2) show, through a simple 
static analysis, how prudent/optimistic margins in the valuation discount rate lead to 
surpluses/deficits (respectively) in the long term. Loades (1992) reaches a similar con-
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elusion from more realistic deterministic simulations. Thornton & Wilson (1992a:§6.2) 
also show how long-term surpluses and deficits depend on the value of the annuity fac-
tor used to spread surpluses/deficits and hence urge the use of shorter spreading or 
amortization periods.

Persisting long-term surpluses emerge as a consequence of the prudence margin in the 
valuation discount rate (and possibly in other assumptions). If such margins are reduced, 
then smaller surpluses will arise. For reasons of prudence (and other reasons mentioned in 
§5.2), a margin in the valuation discount rate cannot always be avoided. The effect of such 
margins is seen to depend on the method of gain/loss adjustment and on the period over 
which gains and losses are defrayed. Two methods are used in practice to deal with persisting 
surpluses or deficits. The first method is to spread surpluses (or deficits) more quickly than 
deficits (or surpluses). The second is a ‘dual-interest’ method. We briefly consider these two 
methods (in §§5.4 and 5.5) and also introduce and analyse a third possible candidate (in §5.6).

5.4 Asym m etric Spreading of Deficits and Surpluses

We have assumed thus far that surpluses and deficits (or gains and losses) are treated 
similarly. This is not necessarily so in practice. Deficits may be less tolerable than surpluses 
because of the greater downside risk posed by deficits. Deficits may therefore be spread over a 
short period or may even be defrayed immediately to maintain the security of benefits, whereas 
surpluses may be removed over a longer period in an effort to stabilise contributions. The 
existence of excessive surpluses may alternatively prompt the reverse treatment. If pension 
fund surpluses persistently emerge over time, then it is plausible to liquidate surpluses faster 
than deficits.

Pension funds in the U.K. have experienced large surpluses in the past and it has been com-
monplace to remove surpluses over shorter periods (at times through contribution holidays— 
Lee (1986:193)) as compared to deficits. Khorasanee (1993) investigates this by using a 
model plan and simulating economic conditions according to U.K. investment data over the 
post-second world war period. He concludes that spreading surpluses over a shorter period 
compared to deficits does reduce the size of surpluses emerging over time—but not by much— 
while the risk of insolvency increases.

Haberman & Smith (1997:§12) carry out stochastic simulations on a pension fund invested 
in 70% equities and 30% index-linked gilts, using the Wilkie (1995) model (which is also 
primarily designed for and fitted to U.K. investment data). Haberman fe Smith (1997:66) 
conclude that when the ‘surplus’ spread period is shortened (but the period over which deficits 
are spread is unchanged) the pension fund becomes more efficient at removing surpluses, while 
deficits are more likely to occur.

Both these studies indicate that a potential solution to the problem of persisting surpluses
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may be to spread deficits over shorter terms than surpluses, although this may be at the 
expense of larger and more frequent deficits.

It is difficult to investigate mathematically the asymmetric treatment of deficits and sur-
pluses. Instead, a simple simulation study has been carried out, with the same assumptions 
as in §2.7 and the following features:

Number of scenarios: 2000.

Time horizon: 150 years.

Funding method: Any of the ‘individual’ methods with surpluses/deficits being spread over 
a moving term.

Initial conditions: No initial unfunded liability.

Logarithmic rate of investment return: Independent and identically normally distributed.

(The randomization routine generates the same set of 150 x 2000 random numbers so that 
sampling error does not occur when we compare results. 10000 scenarios have also been run 
in some cases to verify the accuracy of the results.)

If the logarithmic rate of investment return (net of salary inflation) over year (t — 1, t) 
is ¿(i), then the arithmetic rate of return (also net of salary inflation) is i(t) =  exp(<$(t)) — 1 
with i =  Ez(t) and a 2 =  Varz(i).

5.4.1 V aluation  D iscou nt R ate  w ith o u t P rud en ce M argin

The valuation discount rate is first assumed to be the same as the mean arithmetic rate 
of investment return, so that on average no surplus emerges. The following observations are 
based on the results displayed in Table 5.1 on the next page and Figure 5.1 on page 176 and 
Figure 5.2 on page 177.

A verage Table 5.1 on the following page shows that when surpluses are being spread over 
shorter periods than deficits, on average a deficit emerges eventually. This is presumably 
because deficits are being removed more slowly than surpluses. Contributions are also higher 
on average. The converse applies when deficits are spread over shorter periods than surpluses.

Dispersion

1. Table 5.1 on the next page shows that fund levels are less dispersed (compare histograms 
A and D of Figure 5.1 on page 176), while contribution levels become more dispersed 
(compare histograms A and D of Figure 5.2 on page 177), as spread periods (equal for 
surpluses and deficits) are reduced from 20 to 5 years. In this case, Dufresne’s (1986, 
1988) ‘optimal’ spread period range is [1, 23] and this result is not surprising.
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Surplus/deficit 
spread periods

20/20 5/20 20/5 5/5

Mean fund 1.000 0.9521 1.049 0.9994
level (1) (1)
Mean contribution 0.2000 0.2015 0.1926 0.2000
level (0.2) (0.2)
Vaxiance of 1.184 x 10~2 5.547 x 10~3 7.844 x 10~3 2.498 x 10“ 3
fund level (1.174 x 1 0 '2) (2.490 x 10“3)
Variance of 5.035 x 10~5 6.119 x 10~5 7.074 x 1 0 '5 1.106 x 10~4
contribution level (4.999 x 10~5) (1.119 x lO“4)

Table 5.1: Sample statistics at time horizon. iv — i = 3%. (Exact results in the limit are 
in parentheses.) The top row shows the spreading periods for surpluses/ deficits respectively, 
a  =  3%, AL = 1, NC  =  0.2, B = 0.2291262.

2. From Table 5.1, the variance of the fund level, when surpluses and deficits are not spread 
over the same periods, is intermediate between:

-  the value of the variance had the ‘deficit’ spread period been used to spread symmet-
rically both deficits and surpluses,

-  and the value of the variance had the ‘surplus’ spread period been used to spread 
symmetrically both surpluses and deficits.

Haberman & Smith (1997) report similar results. At least in the cases considered (noting 
specifically that the ‘surplus’ and ‘deficit’ spread periods used are within Dufresne’s 
(1986, 1988) ‘optimal’ spread period range), we see that shortening the period over 
which surpluses and deficits are spread reduces the variability in the fund level, but 
increases the variability in the contributions (Table 5.1).

Frequency Distribution and Skewness

1. Histograms A and D of Figure 5.1 on page 176 show that the distribution of the fund 
level at the time horizon is positively skewed. Dufresne (1990b) proves that, when the 
rate of investment return is modelled as a white noise process, the fund level (in con-
tinuous time) follows an inverse Gamma distribution. Cairns & Parker (1997) show by 
recursive methods that the inverse Gamma distribution is a good approximation when 
the logarithmic investment return is independently and identically normally distributed 
in a discrete time model. The distribution of the contribution level is negatively skewed 
(contribution level histograms A and D of Figure 5.2 on page 177). This is also obtained
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with more complex asset-liability modelling, as is illustrated by MacBeth et al. (1994) 
and Haberman & Smith (1997).

2. Histograms A and B of Figure 5.1 on the following page illustrate that in the long 
term large surpluses are less frequent when surpluses and deficits are spread over 5 
and 20 years respectively, as opposed to when both are spread over 20 years. Large 
surpluses can be removed even more drastically by spreading both valuation surpluses 
and deficits over shorter periods (histogram D of Figure 5.1 on the next page). Similarly, 
large deficits are less frequent when deficits at each valuation are spread over a reduced 
period (histograms A and C of Figure 5.1 on the following page).

3. Shortening the spread period for surpluses makes the frequency distribution for the 
fund level more peaked and symmetrical about the ‘breakeven’ point represented by 
the actuarial liability (histograms A and B of Figure 5.1 on the next page). Deficits, 
although not large ones, appear to occur more frequently on the whole.

4. The distribution of contribution levels exhibits a discontinuity since the contribution 
control applied to the pension funding system is now non-linear (histograms B and C 
of Figure 5.2 on page 177).

5.4 .2  V aluation  D iscou nt R ate  w ith  P rud en ce M argin

The preceding results appear to agree with intuition. Now assume that there is a prudence 
margin in the valuation discount rate (taken to be 3%) so that it is less than the mean 
arithmetic rate of investment return (4%) on the fund. It is anticipated that a surplus will 
emerge in the fund in the long term. The following observations are based on the results 
displayed in Table 5.2 on page 178 and Figure 5.3 on page 180 and Figure 5.4 on page 181.

A verage

1. When surpluses are spread over a shorter period than deficits, on average a smaller 
surplus eventually emerges (Table 5.2).

2. A comparison of the mean fund levels in Table 5.1 on the preceding page and Table 5.2 
on page 178 shows that the prudence margin of 1% has led to a higher average fund 
level and a lower average contribution level.

Dispersion

1. It may be observed from Table 5.2 on page 178 that shortening the period over which 
surpluses are spread reduces the variability in the fund level (just as in §5.4.1 when there 
was no prudence margin in the discount rate). The effect on contribution variances of
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Figure 5.1: Histograms of fund level, with iv = i = 3%, for various combinations of spreading 
periods for surpluses and deficits, a — 0.03, AL = 1, N C  =  0.2, B  =  0.2291262.
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Figure 5.2: Histograms of contribution level, with iv =  i = 3%, for various combinations of 
spreading periods for surpluses and deficits, o — 0.03, AL  =  1, N C  — 0.2, B  = 0.2291262.
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Surplus/deficit 
spread periods

20/20 10/20 5/20 5/5

Mean fund level 1.341
(1.348)

1.121 1.047 1.053
(1.054)

Mean contribution 
level

0.1777
(0.1773)

0.1861 0.1889 0.1887
(0.1886)

Variance of 
fund level

2.777 x 10~2 
(2.793 x 10“ 2)

7.287 x 10~3 3.390 x 10~3 2.826 x 10“3 
(2.819 x 10~3)

Mean square deviation 
of fund from AL

0.1443
(0.1429)

2.197 x 10“ 2 5.644 x 10~3 5.652 x 10~3 
(5.713 x 10“ 3)

Variance of 
contribution level

1.182 x 10~4 
(1.189 x 10-4)

8.908 x 10~5 1.125 x 10~4 1.252 x 10"4 
(1.267 x 10-4)

Mean square deviation 
of contribution from NC

6.154 x 10~4 
(6.358 x IQ“4)

2.835 x 10~4 2.350 x 10"4 2.537 x 10~4 
(2.567 x 10~4)

Table 5.2: Sample statistics at time horizon, iv =  3% < i =  4%. (Exact results in the limit are 
in parentheses.) The top row shows the spreading periods for surpluses/deficits respectively, 
a  =  3%, AL  =  1, JVC = 0.2, B = 0.2291262.

treating surpluses and deficits differently is less clear (because of the discontinuity in 
the distribution of contributions—see below).

2. The mean square deviation of the fund level from the actuarial liability decreases as 
surpluses are removed over shorter periods: this is clearly visible when comparing his-
tograms A and B of Figure 5.3 on page 180. This means that the surplus that is expected 
to emerge in the long run is being effectively removed.

Frequency Distribution and Skewness

1. The fund level is again observed to be positively skewed (histograms A and C of Fig-
ure 5.3 on page 180) and the contribution level is again negatively skewed (histograms 
A and C of Figure 5.4 on page 181).

2. Histograms A and C of Figure 5.3 on page 180 show that hastening the removal of 
surpluses does reduce the frequency of large surpluses emerging.

3. This does not seem to be at the expense of more frequent large deficits which could
threaten the solvency of the fund. When the spread period for surplus is shortened, the
frequency distribution for the fund level is more peaked and symmetrical.
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4. The frequency distribution and statistics for the long-term fund levels with surpluses 
spread over 5 years and deficits over 20 years are not very different from those when both 
surpluses and deficits are spread over a short period of 5 years (compare histograms B 
and C of Figure 5.3 on the next page).

5. The distribution of contribution levels when surpluses and deficits are not spread equally 
again exhibits a discontinuity (histogram B of Figure 5.4 on page 181).

5.4 .3  C onclusion

These observations broadly agree with the conclusions of Khorasanee (1993) and Haber- 
man k  Smith (1997:§12), although they use different (more ‘realistic’) economic/investment 
scenarios. It does appear that the incidence of large surpluses is diminished when the period 
over which surpluses (but not deficits) are spread is shortened. Depending upon the margins 
left in the actuarial assumptions, this may or may not increase the likelihood of large deficits,
i.e. increase the risk of insolvency.

Application of this method causes various problems:

1. The unpredictability of a discontinuous contribution adjustment function may not ap-
peal to the plan sponsor with budgetary requirements for stable contribution cash flows 
which change smoothly from year to year. From one year to the next, a possibly large 
negative adjustment may follow a negligible adjustment to the contribution, as an ac-
tuarial surplus succeeds a deficit when the fund is valued.

2. The overall consequence on the pace of funding for the plan is unclear and will depend 
on the prudence margins in the valuation basis. It will be even less clear to plan trustees 
and to the sponsor.

3. In terms of removing persisting surpluses and reducing the volatility of the fund level, 
similar results may apparently be obtained more simply by spreading both surpluses and 
deficits over shorter periods. 4

4. Finally, it is difficult to determine exactly what the shorter period for spreading sur-
pluses, as opposed to deficits should be, especially as we do not know a priori the size of 
the margins left in the actuarial assumptions. This problem of parameter uncertainty 
in the control of the fund is compounded by the inherent non-linearity involved in the 
method. It is not clear that ‘professional judgement’ can be successfully applied to 
determine the different periods over which to spread surpluses and deficits.
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B. Surpluses: 5, Deficits: 20

C. Surpluses: 5, Deficits: 5

Figure 5.3: Histograms of fund level, with iv = 3% < i — 4%, for various combinations of 
spreading periods for surpluses and deficits, a =  0.03, AL  =  1, N C  =  0.2, B  =  0.2291262.
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Figure 5.4: Histograms of contribution level, with iv = 3% < i =  4%, for various combinations 
of spreading periods for surpluses and deficits, a =  0.03, AL — 1, N C  =  0.2, B  =  0.2291262.
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5.5 The ‘Dual-Interest’ M ethod

Another solution to the problem of persisting surpluses or deficits is to recognise explicitly 
that there is a difference between the valuation discount rate and the long-term rate of return 
on the fund. An estimate (say ir) as to the long-term rate of return on assets is then made. It 
is in general different from the assumption regarding the discount rate used to value liabilities 
(iv). A further adjustment to the contribution is then made talcing this difference into account. 
Such a ‘dual-interest’ method can be studied within a simple model.

No statistical property is ascribed to the assumed rate of return ir: it is usually a ‘best es-
timate’ based on past rates of return and an estimate of future reinvestment yields. Benjamin 
(1984, 1989), Loades (1992) and Fujiki (1994) consider ir to be some average of previously 
observed values of {¿(t)}.

Again, we restrict consideration to the method of spreading surpluses/deficits forward over 
a moving term as described in §3.2. If contributions and benefits are paid at the beginning of 
the year but investment income is received at the end of the year (Modelling Assumption 2.1),

c(t) =  N C  + {k + k ){AL -  f[t))  +  AL{dv -  dr). (5.10)

AL  and N C  are calculated at the valuation discount rate iv. (All compound interest symbols 
deriving from iv, ir bear the relevant subscript, d — i/{ l  + i), dv =  iv/{ 1 -I- iv) and dT — 
V /( 1 A ir)■)

R e m a r k  5.1 If all cash flouts occur at the end of the year, replace dr and dv by ir and iv 
respectively; and if they are paid continuously, replace dr and dv by 5r and 5V respectively.

A pplications. One instance of this method is used in the calculation of pension expense 
according to the Financial Accounting Standards No. 87 (FAS87) in the U.S. Berin & Lofgren 
(1987) and Dufresne (1993) give a mathematical development of some aspects of FAS87. 
FAS87 uses two different rates: a discount rate to value liabilities as well as an “expected 
long-term rate of return on plan assets”. It may be observed that in FAS87, « =  dT:

c(t) = N C  +  k[AL -  f{t)) +  dvAL -  dr f i t )  (5.11)

If c(t) in equation (5.11) is analogous to the “pension expense” , then A C  is the “service cost” , 
kiAL  — f{t)) represents an “amortization payment” , dvAL  is the “interest cost” and drf  (t) is 
the “expected return on plan assets” . FAS87 requires fixed-term amortization of gains/losses, 
but this may be modified to allow for the spreading of surpluses and deficits over a moving 
term.

Thornton & Wilson (1992a:§6.5) describe another instance of the method described in 
equation (5.10), with k  =  0. This is apparently adapted from FAS87 and intended for com-
patibility with the ‘best-estimate’ assumptions required by the U.K. Statement of Standard
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Accounting Practice No. 24 (SSAP24). They refer to it as a ‘dual-interest’ method and 
describe it as

“a variation of the projected unit method whereby the standard fund is calculated 
by reference to the prudent funding basis, but the contribution rate set takes into 
account the additional interest which it is expected will be earned on the fund, 
using a best estimate basis. The intended result of this method is that surpluses 
should not be built up, that a best estimate rate of interest is used for setting 
the contribution rate as required for [accounting] purposes, whilst a strong fund 
is preserved which will satisfy trustees and members.”

If At =  0 in equation (5.10),

c(t) = N C  + k(AL -  f ( t )) +  AL(dv -  dr) (5.12)

Rationale. The more general method in equation (5.10) is considered here. The contribu-
tion c(t) in equation (5.10) may be replaced in equation (3.33) to yield

f { t  +  1) =  u(t + 1) [fit) + N C  + {k + k ){AL -  f i t) )  +  AL{dv -  dr) -  B ] . (5.13)

Liabilities are valued using the valuation discount rate and so, using the equation of equilib-
rium (3.65),

f ( t  + 1) =  u{t +  1)[(1 — k — ft)/(t) +  AL(k + k  — dr)]. (5-14)

The rationale of this method is immediately obvious if it is assumed that the rates of 
return earned in future are exactly (and ideally) equal to the assumption about the long-term 
rate of return on plan assets, i.e. i(t) = i  — ir Vi. (The subscript may therefore be dropped.) 
i may or may not be equal to the liability valuation discount rate iv . Equation (5.14) may be 
rewritten in terms of the unfunded liability to give

ul(t +  1) =  AL + «[(1 — k — n)ul(t) — vAL\,

= u{l — k — n)ul{t), (5.15)

so that

ul{t) = uio[it(l — k — «)]* -¥ 0 as t —> oo, (5.16)

provided that |u(l — k — k ) | < 1 . No long-term surplus or deficit emerges, even though there 
may exist a margin between the rate of return on assets i — ir and the liability valuation 
discount rate iv .
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Random Biased Returns. In order to explore the effect of investment gains and losses, 
rates of return {i{t)} must be assumed to be random. Now, the assumption as to the “long-
term rate of return on plan assets” (ir) may be biased, such that Ei(i) = i ^  ir ^  iv. Propo-
sition 5.1 summarises some important results. It is assumed that the dual-interest method is 
used as in equation (5.10) and that {¿(i)} is identically and independently distributed.

P r o po s it io n  5.1 Suppose Ei{t) =  i ^  ir ^  iv . Provided that

|u(l — k — /t)| < 1, (5-17)

lim Ef{t) = AL{dr -  (k +  «))/(<* -  {k + «)), (5.18)
¿—>■00

lim Eulft) = AL(d -  dr)/(d -  (k + «)), (5.19)
t—>00

lim Ec(f) =  N C  + AL(dv -  dr) + AL(k + K){d-  dr)/(d -  (Jfe +  «)). (5.20)
t-¥ 00

Let q — u2 4- a2. If

k + K > 1 — 1/y/q, (5-21)

lim Var/(f) =  a^v2AL2[dT — (k + «)]2/[l — q( 1 — k — K)2][d — (k +  k )]2, (5.22)
t—>O0

lim Eul(t)2 =  limVar/(i) +  limfEu^i)]2, (5.23)
t—+oo

lim Varc(i) =  (k +  k )2 lim Var/(i). (5-24)
t —>oo

The proof, in Appendix F (§F.l), is a straightforward application of the method of 
Dufresne (1988). Remarks:

1. The conditions for stability in the first two moments (inequalities (5.17) and (5.21)) 
depend exclusively on the mean and variance of the rate of return process. The limits 
on k + K depend neither on the assumed rate of return (ir) nor on the valuation discount 
rate (¿„).

2. The ‘pace’ of funding depends on k + k  rather than k alone, as is clear from equa-
tions (5.14) and (5.16). For equal spreading periods the method implied by FAS87 
(k  =  dr) will require that deficits axe financed faster than in the method described by 
Thornton & Wilson (1992a:§6.5) (n =  0).

3. k is the reciprocal of an annuity that is usually calculated at the valuation discount 
rate. If we assume that k is only a surplus/deficit spreading factor, then the funding 
level is independent of the choice of the valuation discount rate but does depend on 
the assumption made regarding expected future investment returns. As a proportion of 
the actuarial liability, the first two moments of the ultimate funding level (f ( t ) /A L ) in 
equations (5.18) and (5.22) axe independent of the valuation discount rate. The funding 
level over time is also independent of the valuation discount rate, as may be observed 
in equation (5.14).

184



Random Unbiased Returns. More interesting results follow if it is assumed that the 
assumption as to the long-term return on plan assets is a ‘best’ estimate, is not biased and 
is equal to the expectation of the rate of return i(t), i.e. iT = Ei(t) = i. (For economy, the 
subscript r may be dropped.) Corollary 5.1 immediately follows from Proposition 5.1. It is 
assumed again that the dual-interest method is used as in equation (5.10), {z(i)} is identically 
and independently distributed.

Coro ll a r y  5.1 Suppose Ei(t) =  i = iT 7̂  iv. Provided that

then,

Furthermore, provided that

then

lim Varf( t)i—>00
lim Varc(i)t—>00

|tt(l — k — k )| < 1, (5.25)

lim E f{t) = AL,t—>00 (5.26)

lim Eul(t) - 0,t—>00
(5.27)

lim Ec(t) = N C  + AL{dv -  d).t—>00 (5.28)

+  1 — 1/  \/q, (5.29)

— lim Eul(t)2 — a2v2AL 2/[l — q( 1 — k — k )2], 
t-¥ 00 (5.30)

=  (k +  k )2 lim Var/(f), (5.31)

Remarks:

1. When surpluses and deficits are spread in the normal way, it was found in §5.3 that 
the ultimate funding level depended on the margin between the valuation discount rate 
and the mean of the rate of return process: this margin resulted in a persisting average 
surplus (or deficit) in the long-term. In Corollary 5.1, use of the ‘dual-interest’ method 
means that ultimately the surplus is expected to be removed (equations (5.26) and (5.27)) 
even though the discount rate used to value liabilities is different from the expected rate 
of return on assets.

2. The mean square deviation of the ultimate surplus or deficit depends directly on k +  k  
(equation (5.30)). The selection of k  — 0 as in Thornton & Wilson’s (1992a:§6.5) 
method should therefore lead to more stable fund levels and smaller surpluses and 
deficits emerging in the limit, compared to k  — d as according to FAS87. The spreading 
period m  and k =  1 /a—̂ have an inverse relationship and, as a consequence, spreading 
surpluses and deficits over shorter periods will reduce the size of surpluses and deficits 
that arise in the long-term. This is similar to the conclusion from equation (5.4) when 
normal spreading is used in §5.3.
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3. The variances of fund and contribution levels in equations (5.30) and (5.31) are in 
exactly the same form as the variances in the case when conventional spreading of 
surpluses and deficits is used (Result 3.1). It is immediately possible to infer that there 
exists an ‘optimal' spread period range (as defined by Dufresne (1986)) such that the 
choice of any spread period outside this range results in a higher variability of the fund 
level for the same contribution stability as would be obtained from spreading surpluses 
and deficits over a term in the ‘optimal’ range. By direct comparison with the result 
of Dufresne (1986, 1988), the ‘optimal’ spread period range is now such that k € [1, 
k* — k ], where k* is as in Result 3.4.

4. The most important difference between Proposition 5.1 and Corollary 5.1 lies in equa-
tions (5.19) and (5.27). The expected ultimate surplus or deficit is zero only if ir — 
Ei(t) — i.

Conclusion. The ‘dual-interest’ method is therefore effective at avoiding long-term persist-
ing surpluses and deficits, especially when combined with short spreading periods. It depends 
on an explicit distinction being made between the discount rate used to value liabilities and 
the estimate of the rate of return on present and future plan assets. The ‘dual-interest’ 
method only succeeds in removing persisting surpluses and deficits on average if an unbiased 
assumption is made as to future rates of return. The next method does not require any such 
assumption about future returns to be made.

5.6 An ‘Integral’ M ethod

5.6.1 D escrip tion  and R ation ale

It may be difficult to estimate the mean long-term return on the pension fund. The invest-
ment returns on certain asset classes are very volatile and difficult to predict. Furthermore, 
investment objectives and strategic asset allocation may themselves also change. It is easier 
by comparison to estimate the liability valuation discount rate, especially net of price and 
salary inflation, as it relates to the portfolio that hedges or matches liabilities and is therefore 
less volatile. More confidence may thus be attached to the estimate of iv than iT in §5.5.

The third method for removing persisting surpluses and deficits that is considered in this 
chapter does not require any foreknowledge of the mean long-term rate of return on the fund. 
It is based on the concept of “integral control” as suggested in other contexts by a number of 
authors, notably Balzer (1982), but it does not appear to be used directly in practice. The 
recommended contribution is calculated as follows:

t
c(t) =  N C  + kp(ul(t) -  U(t)) + ki ]T (rd (j) -  U(J)) +  P(i), (5-32)

i -o
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where

ul(t) is the unfunded liability or deficit;

P(t) is a payment towards the amortization of the initial unfunded liability u Iq (or some 
fraction 1 — y of it) over a fixed schedule of n years (see equation (4.7));

U (t ) is the unamortized part of the initial unfunded liability u Iq (or of the fraction of it being 
amortized) (see equation (4.8));

kp and kt represent actuarial control parameters.

The first term on the right hand side of equation (5.32), NC,  is the normal cost or 
standard contribution that is paid if no experience gain or loss emerges. The second term, 
kp(ul(t) — U(t)), represents proportional spreading of the current unfunded liability of the 
pension plan. If a fraction 1 — y of the initial unfunded liability is being ‘frozen’ and amortized 
separately, then the current unfunded liability in excess of the unamortized portion of the 
‘frozen’ initial unfunded liability is being spread. This term is therefore akin to spreading 
forward surpluses or deficits (§3.2), with kp replacing k — 1/<T -̂. It is not essential that the 
initial unfunded liability be ‘frozen’ and amortized separately (y may be set to 1), although 
this may prove to be useful to control the pace of funding for example (see §3.2.4).

The third term on the right hand side of equation (5.32), ki J ^ ( .. .) ,  represents historic or 
integral spreading of cumulative unfunded liabilities of the pension plan. If a fraction 1 — y 
of the initial unfunded liability is being ‘frozen’ and amortized separately, then this should 
refer, more precisely, to the unfunded liabilities in excess of the unamortized portions of the 
‘frozen’ initial unfunded liability. This term is zero if the cumulative sum (without interest) 
of previous and current unfunded liabilities is zero. This would happen if all actuarial gains 
and losses have ‘cancelled out’.

Gain/loss adjustment as in equation (5.32) has been described in various other actuarial 
systems:

1. Balzer (1982) employs a similar method in the context of a deterministic, discrete-
time general insurance system. He refers to the problem of a “persisting surplus or 
deficit” resulting from a “persisting stream of unpredicted claims”. The typical actuarial 
solution to this, according to him, is to carry out an “ad hoc adjustment” to the valuation 
basis in the valuation process or “predictor” . Balzer (1982) suggests instead the use of 
“integral action” represented by a term similar to the third term on the right hand side 
of equation (5.32).

2. Taylor (1987) considers a more general funding system, allowing for investment income. 
Taylor (1987:§6) describes some general formulae to calculate premiums from claim pay-
ments and suggests a formula similar to the ‘integral’ method above. In the event that 
“deviations of actual from predicted claims experience are too persistent”, he suggests
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that “ad hoc methods” may be used to change the valuation basis. Taylor (1987:§7) con-
cludes that “estimated claims escalation could be monitored, and the premium formula 
changed when experience appeared to have departed sufficiently from the expectations 
implicit in the formula.”

3. Loades (1998) also uses an ‘integral’ method to control pension funding (in a determin-
istic and continuous-time context) and to remove the “offset” that occurs when there 
are “interest margins” so that the pension funding system can “home in on the required 
funding level.”

Substitution of the contribution level c(t) from equation (5.32) into equation (3.33) and 
using the equation of equilibrium (3.64) yields a recurrence relationship in terms of the fund 
level:

f ( t  +  1) — u(t + 1) (1 — kp) f ( t ) — hi +  {kp — dv)AL +  (t + l)k{AL
j -o

- k pU ( t ) - k %J 2 u ( j )  + p (t)
3=0

, (5.33)

for t > 0. This can equally be written in terms of the unfunded liability, by substituting 
equation (5.32) into equation (3.66), as

{ul{t +  1) -  U(t +  1)) -  (AL -  U(t A 1))

— u(t +  1) 

for t > 0.

(1 -  kp)(ul(t) -  U(t)) -  ki -  U(j)) -  vv(AL -  U(t + 1))
3=0

(5.34)

5.6.2 F irst M om ents

It is easier to derive the moments of the fund and contribution levels using ul(t) in equa-
tion (5.34). It is more instructive in the first instance to use equation (5.33). We note again 
that u(t +  1) is independent of u(t), u(t -  1) etc. and therefore also of /( t) , f ( t  -  1) etc. 
Therefore, when expectations are taken on both sides of equation (5.33),

t
Ef ( t  +  1) =  u(l -  kp)Ef(t) — uki ^ 2  E /(i)  +  u(kp — dv)AL + (f +  1 )ukiAL

j=o
t

- u k pU{t) - u k i J 2 u U) + uP{t), (5.35)
3=0
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for t > 0. Forward-shift equation (5.35) in time (so that it holds for t > —1) and deduct 
equation (5.35) to obtain

E f ( t  +  2) — E f ( t  +  1) = u(l — kp)[Ef(t +  1) — E/(t)] — ukiEf(t  +  1)4- uk{AL

— ukp(U(t +  1) — U(t)) -  ukiU{t +  1) + u(P(t  +  1) — P(t )) (5.36)

which holds for t > 0 and requires E/(0) =  /o and an additional initial condition E /( l)  
that may be found from equation (5.35). Since these initial conditions have no effect in 
the limit, and we are interested in limit results only at this stage, we do not require them. 
Equation (5.36) may be simplified:

E/(< +  2) -  [1 -  u (l — kp — ki)]Ef{t +  1) +  u{ 1 -  kp)Ef(t)

=  ukiAL  — u(kp + ki)U(t +  1) +  ukpU(t) + u(P(t  +  1) — P{t)). (5.37)

The absolute value of the roots of the characteristic equation

P(z) =  z2 — [1 +  u (l — kv — ki)\z +  u (l — kp) =  0 (5.38)

of equation (5.37) must be less than unity for asymptotic stability. Well-known necessary and 
sufficient conditions for this (as in §4.5.4) are:

|u(l -  kp)| < 1 (5.39)

P ( l)  =  1 — [1 +  u (l — kp — ¿¿)] +  u(l — kp) > 0 <+> uki > 0, (5.40)

P ( —1) =  1 +  [1 +  u(l — kp — ki)) +  u (l — kp) > 0 44- 1 +  u(l — kp) > uki/2, (5.41)

Conditions (5.40) and (5.41) may also be combined to give

|1 +  u(l — kp — ki)\ < l + u ( l  — kp). (5-42)

It is necessary and sufficient that these conditions hold for E /(i) in equation (5.37) to be 
asymptotically stable:

lim E /(t) =  ukiAL / [1 -  (1 +  tx( 1 -  kp -  ki)) +  tt(l -  kp)] = AL. (5.43)
i-> oo

Upon taking expectations on both sides of equation (3.33) and noting that u(t +  1) is inde-
pendent of f( t)  and c(t),

E f ( t  +  1) =  u{Ef{t) +  Ec(i) -  B)  (5.44)

and the limit as t —> oo of Ec(t) exists if E /(i) converges as t —> oo. Hence,

lim Ec(t) =  B — d lim E/(<)
t->  oo v t-yoo

= B — dAL (from equation (5.43))

= N C  + {dv - d ) A L ,  (5.45)
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where the equation of equilibrium (3.65) is used in the last step.
Note that condition (5.40) proscribes ki = 0. This must be examined separately. When 

ki =  0, the contribution adjustment function in equation (5.32) is exactly identical to the 
situation where surpluses and deficits are being spread forward over a moving term. The 
characteristic equation from equation (5.35) is then

z — u(l — kp) — 0 (5.46)

requiring |u(l — kp)\ < 1 for stability so that

l̂im E /(i) =  ALuikp — dv)/{ 1 — u( 1 — kp)] =  AL(dv — kp)/(d — kp). (6-47)

This is the result of Dufresne (1986). If there is no margin between the valuation discount 
rate and the mean long-term rate of return, i.e. d — dv, then lim E /(i) =  AL. Other first 
moments are as in Result 5.1 (with kp replacing k).

These results are summarised in Proposition 5.2.

P r o po s i t io n  5.2 If and only if |u(l — kp)\ < 1 and |1 +  u (l —kp — kf)| < 1 +  u( 1 — kp) (=$■ 
ki ^  0, i ^  — 1 ), then

lim Ef(t)  = AL, (5.48)
t—y oo

lim Eul(t) = 0, (5.49)
t—too

lim Ec(t) = N C  +  (dv — d)AL. (5.50)
t—y oo

If ki — 0 and |u(l — kp)\ < 1, then

lim E /(i) =  AL(dv — kp)/(d — kp), (5.51)¿—>■00
lim Eul(t) = AL(d — dv)/(d — kp), (5.52)

t-y  oo

lim Ec(i) =  N C  + ALkp(d — dv)/(d — kp). (5.53)

A shorter proof may be obtained by using ul(t) rather than f(t): see Appendix F (§F.2).
Remarks on Proposition 5.2:

1. When ki ^  0, i.e. when ‘integral’ spreading of surpluses and deficits is used in the 
regulation of the contribution, the fund is ultimately expected to equal the value placed 
on the liabilities (the actuarial liability) calculated at the risk-adjusted and prudent 
discount rate iv (equation (5.48)). 2

2. It was observed in §5.3 that the ultimate pension funding level depends on the margin 
between the valuation discount rate and the long-term average rate of investment return 
on the fund when surpluses and deficits are spread over a moving term. A persisting
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average surplus emerges if such a prudence margin exists. (Equations (5.4) and (5.52) 
are identical if kp =  k.) It was found in §5.5 that if the mean rate of return on the 
pension fund is estimated without bias, then it is possible to adjust contributions such 
that long-term average surpluses or deficits are avoided. Equation (5.49) shows that it 
is possible to remove undesirable permanent surpluses or deficits caused by margins in 
the valuation discount rate without making any prior assumption regarding investment 
returns on the pension fund.

3. The conditions for stability in the first moments do not depend on the valuation discount 
rate, but only on the mean of the actual rate of return process.

4. The first moments in the limit when k{ ^  0 depend neither on kp nor on kl . but when 
ki — 0 they do depend on kp (which may be a function of the spreading period).

Sufficient Conditions. Stability conditions (5.39) and (5.42) may be simplified. Sufficient 
conditions are gathered in Corollary 5.2.

Co r o l l a r y  5.2 Provided that

i > -100%, (5.54)

d < kp < 1, (5.55)

0 < ki < 2(1 - d  + l - k p ) .  (5.56)

the first moments of the funding process in equations (5.48), (5.49) and (5.50) follow.

Proof. Inequalities (5.54) and (5.55) imply that 0 < u( 1 — kv) < 1 =>- |u(l — kp)\ < 1 
(condition (5.39)). From inequality (5.56), ki > 0 and given inequality (5.54), condition (5.40) 
follows. Likewise, from inequality (5.56), ki < 2(1 — d +  1 — kp) and given inequality (5.54), 
uki < 2(1 + u ( l  — kp)) and condition (5.40) follows. □

Remarks on Corollary 5.2:

1. When integral spreading is used, conditions (5.54) and (5.55) for stability imply that 
kp 7̂  0 and condition (5.56) implies that ki ^  0.

2. Condition (5.54) is realistic under ‘normal’ economic conditions. Rates of investment 
return cannot be negative forever in a growing economy.

3. Conditions (5.54) and (5.55) are similar to conditions (5.2) and (5.3) respectively. kp 
is analogous to the reciprocal annuity factor k = 1 /a —y when surpluses and deficits are 
spread over a moving term m.

4. A sufficient upper bound may be placed on kt for stability in the first moments. Since 
the lowest value of 1 — kp is 0 in inequality (5.55), it follows from condition (5.56) that
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0 < ki < 2v. This provides for a wide range of values of k% under usual economic 
circumstances.

5. The ultimate mean contribution level in equation (5.50) is the same as is in the dual-
interest method (equation (5.28)), although no assumption (biased or unbiased) as to 
the future average rate of return on assets has been made here. The system settles at 
the same ‘equilibrium state’ in both cases.

6. Comparison of equations (5.50) and (5.53) reveals that when there is a prudence margin 
between the valuation discount rate and long-term mean rate of return and when integral 
spreading is used, as opposed to pure spreading, the long-term average contribution 
level is closer to the normal cost or standard contribution N C  (since kP/(kv — d) > 
1 from stability conditions (5.54) and (5.55)), i.e. a smaller (in magnitude) average 
supplementary contribution is required from the sponsor.

In teg ra l Spreading. From equation (5.32), as t —> oc, it is clear that

after substituting limEul(t) from equation (5.49) and limEc(f) from equation (5.50). The 
right hand side of equation (5.57) is of course identical to the adjustment term in the ‘dual-
interest’ contribution function (the third term on the right hand side of equation (5.10)) when 
the mean rate of return is estimated without bias (dr =  d). The same adjustment is performed 
‘automatically’ when integral spreading is used, without any estimation of the rate of return 
on the fund. If there is a difference between the valuation discount rate iv and the long-term 
mean rate of return on the fund i, actuarial gains and losses will continually emerge. They 
give rise to the cumulative surplus or deficit represented in equation (5.58) and contributions 
are accordingly adjusted.

5.6 .3  Second M om ents

Pension fund gains and losses are volatile and random. The first moment results of §5.6.2 
are interesting but it is much more important to consider the variability of surpluses and 
deficits as they emerge. The second moments of the fund and contribution levels are found 
in Proposition 5.3.

(5.57)

(5.58)
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P r o p o s i t i o n  5 .3  L e t

Poo =  cr2v2A L2/[l -  9(1 -  kp)2 -  qki(kp -  d) / 2], (5.59)

Provided that conditions (5.54)-(5.56) are true and also provided that

0 < ki < 2 u [ l - q ( l - k p)2] / q [ l - u { l - k p)] (5.60)

and

[1 + g(l -  fcp)2][l -  qu2{ 1 -  kp)4] +  u(l -  kp)[ 1 -  q( 1 -  kp)2][ 1 + g(l -  -  kj)2]

> 2g(l —  kp)ki[l — u2(l — kP)2], (5.61)

lim Varf i t )  =i—► 00 lim Eul(t)2 =  P oo ,t—KX> (5.62)

lim Varc(t) =t—>00 Poo [kp + ki +  ki(kp -  d )/2], (5.63)

lim Cov[/(f), c(f)] =t—¥ OO
~Voo{kp + ki/2). (5.64)

The proof of Proposition 5.3, in Appendix F (§F.3), uses some results from Appendix D. 
Remarks on Proposition 5.3:

1. The conditions for stability (conditions (5.54)-(5.56), (5.60) and (5.61)) in the second 
moments of the pension funding process are independent of the valuation discount rate 
iv and depend only on the moments of the rate of return process {i(t)}.

2. Assume that kp and ki are independent of the valuation discount rate iv. The variance 
of the funding level (i.e. fund level as a proportion of the actuarial liability) ultimately 
is also independent of the valuation discount rate (equation (5.62)).

A bou t S tability. Conditions (5.54)-(5.56), (5.60) and (5.61) are sufficient for stability in 
the second moments. Necessary and sufficient conditions are discussed in Appendix F (§F.3). 
The sufficient conditions are accurate under ‘normal’ conditions.

The most constraining condition is found numerically to be inequality (5.60). As a —> 0, 
condition (5.60) tends to condition (5.56) since

2u[l — u2(l — kp)2]/u2[\ — u(l — kp)] =  2v\l + u(\ — kp)] =  2[1 — d +  1 — kv\. (5.65)

A lower bound is easily placed on kp. It is shown in the proof of Proposition 5.3 (Ap-
pendix F) that stability conditions (5.54), (5.55) and (5.60) imply that

kp > 1 - 1 /V q  (5-66)
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(see equation (F.56) in §F.3). Compare inequality (5.66) with condition (5.6) when surpluses 
and deficits are spread forward.

Condition (5.55) is discussed in §5.6.2 and is found to be similar to condition (5.3) when
surpluses and deficits are spread forward. Since condition (5.66) is also similar to (5.6). kp is
similar to the reciprocal annuity factor k when conventional spreading is considered.

I will henceforth assume, without loss of generality, that

kp =  k = l/a — ,̂ (5.67)

ki =  1 /rrii. (5.68)

The annuity in equation (5.67) is calculated at iv, as is typical in practice. Balzer (1982) uses 
a parameter similar to ki, whereas Loades (1998) uses an “integral time” parameter similar 
to rrii. Equation (5.68) represents a form of amortization without interest. Interest is ignored 
in the amortization expense of U.S. Financial Accounting Standards No. 87 (FAS87) and also 
in the spreading of surpluses and deficits by Dyson & Exley (1995:§7.5.3.12).

Condition (5.60) therefore requires that

rm > m™n = q(k -  d)/2[l -  q(l -  k)2]. (5.69)

Table 5.3 on the next page shows m™m, i.e. the minimum value of mi (corresponding to
a maximum ki) according to the stability conditions in Proposition 5.3, for various valuation 
discount rates (net of salary inflation) iv, mean rate of return i (also net of salary inflation)
and spread period m. It is assumed that the standard deviation of the rate of return is
a =  0.1. The minimum value of mi may be seen to increase as the prudence margin i — iv 
increases. We envisage that mj > 1 since it is akin to a ‘spreading’ period. Table 5.3 on the 
following page shows that for typical spread periods up to 15 years, real valuation discount 
rates of up to 5% and prudence margins of 3.0% or less, mi may lie in the range [1, oo).

5 .6 .4  Effect on  Fund Level

The speed with which retirement benefits are funded depends initially on the period used 
to amortize any ‘frozen’ initial unfunded liability. Once these initial deficits or surpluses are 
amortized, the pace of funding will depend on the choice of kp and ki. If the roots of the 
characteristic equation (5.38) are a  and (3, then the expected deficit takes the form

Eul{t) = A a t + B(3\ (5.70)

from the second order linear difference equation (F.10) (in Appendix F), where initial un-
funded liabilities are ignored and it is assumed that a  and f3 are not coincident. Stability 
conditions (5.54)—(5.56) ensure that |a| < 1 and \(3\ < 1. In terms of first moments, funding 
will accelerate (i.e. Eul(t) vanishes at a faster rate) if |a| and \3\ are small, a/3 =  u( 1 — kp)
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iy i iy m — 1 3 5 10 15 20 25 30 40 50
1% 0.00% 0.510 0.308 0.288 0.280 0.283 0.290 0.299 0.309 0.336 0.372

0.25% 0.511 0.308 0.288 0.281 0.285 0.292 0.302 0.315 0.350 0.406
0.50% 0.512 0.309 0.289 0.281 0.286 0.295 0.307 0.322 0.371 0.467
1.00% 0.515 0.310 0.290 0.283 0.289 0.300 0.318 0.344 0.462 1.487
1.50% 0.517 0.311 0.290 0.284 0.292 0.307 0.335 0.386 1.287

3% 0.00% 0.520 0.313 0.292 0.285 0.291 0.301 0.316 0.336 0.402 0.549
0.25% 0.521 0.313 0.293 0.286 0.292 0.304 0.322 0.348 0.455 0.930
0.50% 0.522 0.313 0.293 0.287 0.294 0.307 0.330 0.366 0.575
1.00% 0.525 0.314 0.294 0.288 0.297 0.316 0.353 0.436
1.50% 0.527 0.315 0.295 0.290 0.301 0.330 0.401 0.802

5% 0.00% 0.530 0.317 0.297 0.290 0.298 0.314 0.339 0.378 0.580 4.628
0.50% 0.532 0.318 0.298 0.292 0.302 0.324 0.367 0.467
1.00% 0.535 0.319 0.298 0.294 0.307 0.340 0.431 1.208
2.00% 0.540 0.321 0.300 0.298 0.321 0.427
3.00% 0.545 0.323 0.302 0.302 0.352

10% 0.00% 0.555 0.329 0.308 0.304 0.322 0.363 0.465 0.852
0.50% 0.557 0.330 0.309 0.306 0.330 0.406 0.984
1.00% 0.560 0.331 0.310 0.309 0.342 0.530
2.00% 0.564 0.333 0.311 0.314 0.396
3.00% 0.569 0.334 0.313 0.322 1.231

Table 5.3: m™*” , or minimum allowable m, based on stability conditions (5.54)-(5.56), (5.60) 
and (5.61), for various {iv, i. m} and for a — 0.1. kp — 1/a—y, where the annuity is calculated 
at iv. hi = 1 /m ,. Blanks indicate that stability conditions do not hold.
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is likely to be small, or kp is large. Also, a  +  (3 — 1 + u{l — kv — hi) is small, or fc* is likely 
to be large. It appears therefore that large kp and kt (or short m  and mt) hasten the pace 
of funding, although I do not prove this mathematically. This is illustrated in Figure 5.5 on 
the next page. The parameters kp and kt must thus be chosen in combination to achieve 
the requisite ‘pace’ of funding. Note also that if a and /3 are conjugate imaginary roots or 
negative real roots, then oscillations will occur in Eul(t) in equation (5.70). Conjugate roots 
will not occur of course if

[1 +  u(l -  kP — ki)]2 > 4u(l -  kp) (5-71)

(based on the determinant of the quadratic in equation (5.38)). Funding without transient 
cyclic disturbances can be achieved fastest when a and (3 are coincident real roots, i.e. if 
the inequality in (5.71) is replaced by an equality. Features such as ‘oscillations’, ‘speed of 
response’, ‘critical damping’ and ‘overshoots’ are investigated in some detail by Balzer (1982) 
and Loades (1998). Balzer (1982) shows that delays in the feedback process in the funding 
system may lead to oscillations and he uses the ‘root locus’ method to determine suitable 
control parameters.

Such considerations may not be particularly relevant to the present model:

1. Oscillations may not be particularly large if the initial unfunded liability (often the 
largest source of deficit or surplus in the fund) is being amortized separately. For 
example, if at some time (say t = 0) the initial unfunded liability is completely removed 
(U(t) — 0, t > 0), if there is no surplus or deficit remaining (Eul(0) =  0), and previous 
gains and losses were negligible QCr<0 Ettl(r) =  0), equation (F.9) shows that Eul(l) — 
0; and from equation (F.10), Eul(t) = 0, t > 0.

2. Stochastic variation in the funding process (particularly through the investment returns 
of the pension fund) may dominate and swamp oscillations. (Oscillations may never-
theless be of a large amplitude, as Balzer (1982) and Loades (1998) demonstrate, if kp 
is small—which is comparable to a short spreading period—and/or if there are long 
delays.)

It is more important to consider the variability of the pension fund surpluses and deficits 
in the long term. This may be measured using the long-term mean-square unfunded liability. 
A two-sided measure is appropriate since both excessive surpluses and excessive deficits are 
undesirable.

P r o po s it io n  5.4 Let A =  d — dy represent the prudence margin between the valuation dis-
count rate and the long-term mean rate of return.

Suppose A =  0. Then it is more efficient, in terms of minimising long-term mean square 
unfunded liability, to use conventional, rather than integral, spreading.
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Figure 5.5: Expected surplus against time for various conventional spreading periods m  and 
integral spreading periods rr^. iv = 3%, i = 4%, AL = 1.
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S u p p o se  A  >  0. T h en  i t  is  m ore  e ff ic ie n t to  u se  in tegra l, ra th e r  th a n  c o n v e n tio n a l, spread-

For A > 0, maximum efficiency (i.e. minimum long-term mean square unfunded liability) 
is achieved with conventional spreading when A =  0. The longer mi is, the more efficient 
integral spreading becomes. As mi oo, integral spreading (for any A ) becomes as efficient 
as conventional spreading as if A =  0.

Proof in Appendix F (§F.4). Remarks on Proposition 5.4:

1. Proposition 5.4 may be interpreted as follows: if there is no prudence margin, smaller 
long-term surpluses will emerge when conventional spreading is used as opposed to 
integral spreading; but if a margin does exist, then it is more efficient to use integral 
spreading, as long as mj > m {.

2. The last part of Proposition 5.4 indicates that a long integral spreading period mi is 
more efficient in the sense that it leads to a smaller mean square surplus in the long-
term. A very long m, would of course mean that surpluses Eire only removed very slowly. 
A balance must be struck between the pace of funding in the short term and variability 
in the funding process in the long term.

In order that smaller permanent surpluses and deficits emerge when integral spreading is 
used {hi 0) as compared to conventional spreading (k, =  0), the parameter mi should be 
greater than m {. rn{ is listed in Table 5.4 on the following page for various valuation discount 
rates (net of salary inflation) iv, mean real return i (net of salary inflation) and spread period 
m. It is assumed that the standard deviation of the rate of return is a =  0.1.

The following observations are based on Table 5.4 on the next page:

1. It appears that as the prudence margin between the valuation discount rate and the 
long-term mean rate of return decreases, m{ decreases and then increases. For most 
practical values, Table 5.4 shows that the smaller the prudence margin is, the longer 
must be in order for integral spreading to be more effective at removing surpluses than 
conventional spreading. If there is only a small prudence margin, long-term persisting 
surpluses will be small and it may not be worthwhile to use integral spreading of gains 
and losses.

2. Very long integral spreading periods are required if current unfunded liabilities are 
spread forward over short terms (e.g. m =  1). It was shown in §5.3 (and it is well- 
known to several authors including Trowbridge (1952), Dufresne (1986) and Thornton

ing, provided mi > m {, where
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% Zy m  = 1 3 5 10 15 20 25 30 40 50
1% 0.00% t t t t t t t t t t

0.25% 92.04 17.15 9.46 4.54 3.04 2.32 1.91 1.65 1.37 1.26
0.50% 41.67 7.43 4.11 2.02 1.39 1.10 0.94 0.84 0.76 0.80
1.00% 17.62 3.01 1.71 0.90 0.67 0.57 0.52 0.51 0.59 1.70
1.50% 10.26 1.75 1.03 0.60 0.48 0.43 0.43 0.46 1.39

3% 0.00% t t t t t t t t t t
0.25% 95.47 17.34 9.38 4.29 2.76 2.04 1.64 1.41 1.26 1.91
0.50% 43.14 7.49 4.06 1.91 1.28 0.99 0.84 0.77 0.90
1.00% 18.19 3.03 1.69 0.86 0.63 0.54 0.51 0.56
1.50% 10.57 1.76 1.02 0.58 0.46 0.43 0.47 0.87

5% 0.00% t t t t t t t t t t
0.50% 44.63 7.55 4.02 1.81 1.17 0.90 0.78 0.80
1.00% 18.77 3.04 1.66 0.83 0.60 0.52 0.56 1.38
2.00% 7.29 1.22 0.73 0.45 0.40 0.47
3.00% 4.10 0.76 0.51 0.37 0.38

10% 0.00% t t t t t t t t
0.50% 48.43 7.68 3.90 1.58 0.96 0.78 1.38
1.00% 20.23 3.07 1.61 0.75 0.54 0.65
2.00% 7.79 1.23 0.72 0.44 0.44
3.00% 4.36 0.77 0.50 0.37 1.26

Table 5.4: m{ for various choices of {iv, i, m} and a =  0.1. kv — l/a —^ where the annuity 
is calculated at iv. ki =  1 /m t. Blanks indicate that stability conditions do not hold, (f) 
indicates that it is more efficient to use conventional spreading of surpluses and deficits (i.e. 
ki = 0).
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& Wilson (1992a), although often only in a deterministic context) that shorter spreading 
periods lead to smaller emergent surpluses in the long term. This is also graphically 
depicted in Figure 5.3 on page 180 (cf. histograms A and D). It may therefore not be 
worthwhile to introduce integral spreading of gains and losses when short spreading 
periods m  are being used. Nevertheless, note from Table 5.4 on the page before that 
mi > 20 is efficient in most cases and will reduce long-term surpluses as compared to 
conventional spreading.

5.6.5 Effect on C ontrib ution  Level

Persisting surpluses or deficits are also accompanied by contributions that are persistently 
different from the standard contribution or normal cost. Most plan sponsors require long-term 
stability in their pension fund contributions (§2.2.4). Contribution stability is not only a long-
term funding objective, but also a short to medium-term ‘investment’ objective, according to 
a survey by Ferris (1997). She states that contribution stability is perhaps more important to 
sponsors as shorter spreading and amortization periods are now in use, as a result of various 
funding requirements. The oscillations in the first moments referred to in §5.6.4 also occur in 
the average contribution (as shown by Loades (1998)) and may not be desirable.

It is more important at this juncture to consider the long-term stochastic variation in 
the contribution adjustment or supplementary contributions required from the sponsor. This 
may be measured in terms of the long-term mean-square supplementary contribution. Since 
contributions may be targeted, a two-sided measure is acceptable.

P r o po s it io n  5.5 Let A =  d — dv represent the prudence margin between the valuation dis-
count rate and the long-term mean rate of return.

Suppose A =  0. Then it is more efficient, in terms of minimising long-term mean square 
supplementary contribution, to use conventional, rather than integral, spreading.

Suppose A > 0. Then it is more efficient to use integral, rather than conventional, spread-
ing, provided rnt > m \, where m f > rnj (in Proposition 5-4) and

For A > 0, maximum efficiency (i.e. minimum long-term mean square supplementary

m \ — — d)q[a2v2(k — dv)2k2 + (d — dv)2( 1 — q( 1 — k)2)d(2k — d)]

+ cr2v2(k — d)2( 2 + k — d)[l — g(l — k )2] 2 (d — dv)[ 1 — q( 1 — k)2]

[a2v2(k — dv + k -  d)k2 + { d -  dv){ 1 -  q{ 1 -  k)2)d{2k -  d)] 1. (5.73)

contribution) is achieved with conventional spreading when A =  0. The longer mi is, the 
more efficient integral spreading becomes.

Proof in Appendix F (§F.5). Remarks on Proposition 5.5:
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1. Suppose there is no prudence margin. Smaller supplementary contributions will be 
required from the sponsor if conventional as opposed to integral spreading is used. If 
there is a margin, it is more efficient to use integral spreading, with m» > m\.

2. A long integral spreading period m, is more efficient in the sense that it leads to smaller 
and less variable supplementary contributions in the long term. Again, this must be 
traded off against a slower pace of funding.

In order for smaller supplementary contributions to be required from the sponsor when 
integral spreading is used (/c, 0) as compared to conventional spreading (ki =  0), the
parameter rrii should be greater than m\. m \ is listed in Table 5.5 on the following page for 
various valuation discount rates (net of salary inflation) iv, mean rate of return i (net of salary 
inflation) and spread period m. The standard deviation of the rate of return is a =  0.1.

The following observations pertain to Table 5.5 on the next page:

1. The smaller the prudence margin between the valuation discount rate and the long-
term mean rate of return, the longer m* must be in order that integral spreading leads 
to smaller supplementary contributions than conventional spreading. When a small 
prudence margin exists, small gains and losses emerge and contributions do not need 
to be heavily adjusted. Integral spreading of gains and losses may not bring more 
advantages than conventional spreading.

2. Except for very large margins, a long integral spreading period rrii > 100 seems to be 
required for similar variability of supplementary contributions when conventional and 
integral spreading are used. Long m, mean that persisting surpluses will be removed 
very slowly.

5.6.6 Efficiency

Proposition 5.6 follows directly from Propositions 5.4 and 5.5.

P r o po s it io n  5.6 Suppose there is a prudence margin (i > iv) and the current unfunded 
liability (with or without separate fixed-term amortization of the initial unfunded liability) is 
being spread over some (stable) term m.

1. In terms of minimising the mean square surplus in the limit, it is more efficient to add 
integral spreading, with m * > m{, than to use conventional spreading over m alone. 2

2. In terms of minimising mean square surpluses as well as mean square supplementary 
contributions in the limit, it is more efficient to add integral spreading, with mi > m \, 
than to use conventional spreading over m alone.
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iy 1 iy m = 1 3 5 10 15 20 25 30 40 50
1% 0.00% t t t t t t t t t t

0.25% 404 688 1011 1701 2236 2643 2946 3164 3398 3437
0.50% 201 338 480 768 967 1100 1183 1227 1232 1157
1.00% 99 155 211 305 352 371 372 359 306 227
1.50% 65 94 122 158 169 166 154 137 87

3% 0.00% t t t t t t t t t t
0.25% 410 645 882 1254 1410 1435 1382 1282 1021 747
0.50% 203 307 406 542 580 567 524 465 329
1.00% 99 138 171 203 200 181 153 121
1.50% 65 82 95 103 94 78 59 38

5% 0.00% t t t t f t t t t t
0.50% 205 284 349 399 37 315 251 188
1.00% 100 124 142 145 124 95 66 39
2.00% 47 47 48 41 30 17
3.00% 29 24 23 17 10

10% 0.00% t t t t t t t t
0.50% 211 238 251 206 139 82 41
1.00% 100 99 96 71 43 20
2.00% 45 35 31 19 9
3.00% 27 18 15 8 3

Table 5.5: m | for various choices of {iv, i, m} and cr =  0.1. kp =  1/a—y, where the annuity 
is calculated at iv. ki — l/m,i. Blanks indicate that stability conditions do not hold, (f) 
indicates that it is more efficient to use conventional spreading of surpluses and deficits (i.e. 
ki = 0).
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If there is no prudence margin (i — iv), it is more efficient, in terms of minimising 
both mean square surpluses and mean square supplementary contributions in the limit, to use 
conventional spreading over some stable m than to use integral spreading, .

The results of §§5.6.4 and 5.6.5 show that if there is a prudence margin (i > iv), both 
the mean square unfunded liability and the mean square supplementary contribution are 
reduced when integral spreading is used and m, > mf. Both security and stability may 
therefore be improved by the introduction of integral spreading. When there is no prudence 
margin, integral spreading leads to higher mean square unfunded liability and mean square 
supplementary contribution than conventional spreading and it is not therefore efficient.

It is important to note that Proposition 5.6 takes no account of the ‘pace’ of funding. 
(The ‘optimal’ range of spread periods of Dufresne (1986, 1988) also ignores intermediate or 
transient funding objectives.) It may require a long integral spreading period mj for integral 
spreading to be more efficient than conventional spreading, in particular in terms of variability 
in supplementary contributions (as shown in Table 5.5 on the preceding page). In practice 
some improvement in security may be traded off against higher contribution variability by 
choosing some mj € [m{,m(].

Table 5.6 on the next page shows the amelioration in security and stability, as a percent-
age reduction in the root mean square of unfunded liability and supplementary contribution 
respectively. A negative reduction represents a deterioration in security and stability. (The 
valuation discount rate (net of salary inflation) iv is assumed to be 3% and the mean of the 
real (net of salary inflation) rate of return is 4, 5%. The standard deviation of the rate of 
return is taken to be cr =  0.1.)

1. Suppose that there is a prudence margin of about 2% between the valuation discount 
rate and the long-term mean rate of return on the fund. If pension fund contributions 
are adjusted by about 0.67% of cumulative unfunded liabilities (mi =  150) in addition 
to a typical 8% of the current unfunded liability (m =  15), then smaller surpluses will 
emerge eventually: the dispersion of fund levels about the actuarial liability reduces 
by about 52.4%. Smaller supplementary contributions will also be required from the 
sponsor eventually: the dispersion of contributions about the standard contribution or 
normal cost decreases by about 26.7%.

2. If the prudence margin is only of the order of 1% and m, =  150 then an improvement in 
security of about 27.1% is obtained at the expense of a deterioration in stability of some 
6%. When mj >  200, both security and stability improve with the introduction of inte-
gral spreading. In general, for small prudence margins, long integral spreading periods 
mj must be used to avoid a significant deterioration in the stability of contributions.

3. Note also from Table 5.6 that the reduction in root mean square surplus is not sensitive 
to the choice of m, > 50 as m{ is generally much less than 50 (see Table 5.4 on page 199).
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i %y = 1% i iy =2%
m k m. hi (1) (2) (1) (2)
5 21.2% 50 2% 8.9% -13.5% 22.4% -2.4%

100 1% 9.0% -4.1% 22.5% 5.1%
150 0.67% 9.1% -0.8% 22.5% 7.7%
200 0.5% 9.1% 0.9% 22.5% 9.0%

10 11.4% 50 2% 18.1% -34.7% 39.2% -4.6%
100 1% 18.2% -12.8% 39.3% 10.7%
150 0.67% 18.3% -4.6% 39.3% 16.4%
200 0.5% 18.3% -0.2% 39.4% 19.4%

15 8.1% 50 2% 27.0% -49.6% 52.3% -0.3%
100 1% 27.1% -18.8% 52.4% 19.1%
150 0.67% 27.1% -6.6% 52.4% 26.7%
200 0.5% 27.1% 0.0% 52.4% 30.8%

20 6.5% 50 2% 35.6% -56.0% 63.6% 10.9%
100 1% 35.7% -20.0% 63.6% 30.8%
150 0.67% 35.7% -5.4% 63.6% 38.9%
200 0.5% 35.7% 2.7% 63.7% 43.3%

Table 5.6: Percentage reduction in root mean square of (1) surplus and (2) supplementary 
contribution when integral spreading is used instead of conventional spreading, for various 
{f, m, mi} with iv =  3% and a =  0.1. k =  1 /a ^ , where the annuity is calculated at iv. 
ki =  l/m*.

5.7 Summary

This section summarises some of the major points made in this chapter. Actuarial pru-
dence is a major feature of the actuarial valuation of pension plans. Prudence is particularly 
necessary when economic factors are estimated because pension funds often operate in volatile 
economic conditions. The level of prudence in the discount rate when valuing liabilities allows 
a degree of actuarial control on pension funding (§5.1). The meaning of the valuation discount 
rate depends on the method of valuation. In the market method, the valuation discount rate 
is the market discount rate implied in the assets that hedge the pension liabilities. In the 
Discounted Cash Flow method, it is the estimated rate of return on reinvestment in a notional 
portfolio of assets that matches the liabilities of the pension plan. The valuation discount rate 
is conceptually different from the estimated return on the actual and future asset portfolio of 
the fund. The numerical difference between the valuation discount rate and the best-estimate 
investment return assumption is referred to as a prudence margin and the valuation discount
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rate is sometimes called a prudent valuation rate of interest assumption.
Various factors influence the size of the prudence margin (§5.2):

1. A major determinant is the degree of mismatch between pension fund assets and lia-
bilities. A perfect hedging or matching investment policy is rarely followed. There is 
a lack of consensus on how to hedge salary-related liabilities, i.e. the pension liability 
for active members. This has implications for the choice of a suitable discount rate for 
the valuation of such liabilities. Some actuaries believe that for the purpose of setting 
contributions, a prudent estimate of the equity risk premium may be incorporated in 
the discount rate.

2. The liability discount rate is also adjusted to reflect the risk in liability cash flows, both 
in their amount and timing. The risk of insolvency, both for the pension plan and for 
the sponsor, should also be taken into account.

3. Margins may also be included as an actuarial control parameter, specially to establish 
the pace of funding for benefits. The size of the margin may be varied to smooth 
contributions and stabilise them over the long term in spite of short-term fluctuations 
in experience. It is believed that margins do not have a direct effect on the ultimate 
cost of pension provision.

4. A major advantage of advance funding for retirement benefits is that it affords some 
short-range flexibility to the plan sponsor in terms of the timing of his contributions. It 
appears that conservative margins are allowed if it is to the advantage of the sponsor to 
transfer resources to the pension fund. Actuaries may also vary margins (within limits) 
and hence the pace of funding in order to suit the cash flow needs of the sponsor. This 
appears to agree with aspects of the theory of corporate finance.

5. The choice of the valuation discount rate is not always very precise. Various approxima-
tions are made when choosing a notional hedge or matching portfolio, when averaging 
over term-dependent discount rates or when averaging over time to avoid unnecessary 
fluctuations in the valuation result.

The effect of prudence margins in the valuation discount rate is to create persisting sur-
pluses in the long term (§5.3). Large and permanent surpluses may have a deleterious effect 
on pension funding: plans may be penalised for breaching maximum surplus regulations (full 
funding limits) by revenue authorities; large surpluses imply that resources are diverted from 
productive activity and corporate profits and eventually employment in the firm may be af-
fected. The size of such surpluses is seen to depend not only on the size of prudence margins 
in the valuation discount rate, but also on the method of amortizing gains and losses and 
particularly on the term over which they are liquidated.
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Three methods of removing persisting surpluses while retaining a prudent funding objec-
tive are described and their properties analysed. A practical method is to spread surpluses 
over a shorter period than deficits. This is investigated by means of simple stochastic simu-
lations (§5.4):

1. Undesirable long-term surpluses appear to be removed when this method is applied, 
although the incidence of deficits may increase.

2. The pattern of contributions generated may not be smooth because gains and losses are 
not treated identically.

3. It is not clear how the pace of funding is affected if two different spreading periods are 
used.

4. It is not clear how the different spreading periods for surpluses and deficits should be 
chosen.

Another method, promoted for compliance with accounting requirements, involves making 
an estimate of the long-term rate of return on assets, as well as making an assumption 
regarding the liability discount rate (§5.5). Recommended contributions are then adjusted to 
take into account the difference between these two assumptions.

1. The first and second moments of the pension funding process in the limit are obtained 
under the assumption that rates of investment return are independent and identically 
distributed over time.

2. Some stability conditions constraining the choice of spreading period as well as another 
parameter are also obtained. An ‘optimal’ range of spreading period, similar to the one 
described by Dufresne (1986, 1988), may be derived.

3. The ‘dual-interest’ method implied by the U.S. Financial Accounting Standards No. 
87 (FAS87) is shown to defray deficits and surpluses faster than the comparable ‘dual- 
interest’ method of Thornton & Wilson (1992a:§6.5), but the latter leads to less variable 
surpluses and deficits.

4. It is found that the method is successful at removing extraneous surpluses if an un-
biased estimate of the rate of return on the future asset portfolio of the fund can be 
made. It is argued that much less confidence can be attached to the estimate of future 
investment returns than to the liability valuation discount rate (both net of price and 
salary inflation) as the strategic asset portfolio may be mismatched to the liabilities so 
that returns tend to be volatile.

The final method of avoiding undesirable surpluses does not require an assumption about 
the future return on pension fund assets and involves a cumulative gain/loss adjustment to the
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standard contribution or normal cost (§5.6). In addition to spreading the current unfunded 
liability forward over a rolling term m, cumulative or integral unfunded liabilities are spread 
over a (different) term mt.

1. The first and second moments of the pension funding process are derived when this 
method is applied. An important and restrictive assumption that is made in the analysis 
is that pension fund investment returns perform a random walk.

2. It is shown that no surplus or deficit emerges in the long term on average, even if there 
is a margin between the valuation discount rate and the mean rate of return on the 
assets, without any actuarial assumption being required as to the latter.

3. When integral spreading is used, the contribution that is eventually required from the 
sponsor is on average closer to the standard contribution or normal cost than with 
conventional spreading.

4. A wide range of conventional spreading periods m and integral spreading periods m, are 
shown to exist for which the first and second moments of the pension funding process are 
stable. The stability constraints on m  and m t are independent of the valuation discount 
rate assumption (except that when surpluses and deficits are spread, an annuity factor 
that is calculated at the valuation discount rate is used) and depend only on the moments 
of the rate of investment return process.

5. It may be useful, in terms of controlling the pace of funding and avoiding large cyclic 
disturbances in the funding process, to ‘freeze’ and amortize initial unfunded liabilities 
separately over a fixed term, m  and m l must be chosen in combination to achieve the 
requisite pace of funding. It appears that shorter m  and/or rrii hasten the pace of 
funding on average.

6. Security is an important long-term funding objective in pension planning. If there is 
a prudence margin between the valuation discount rate and the mean rate of return, 
the mean square unfunded liability in the limit is minimised when an integral spreading 
period longer than a certain minimum (m f) is used. The longer the integral spread-
ing period that is used, the smaller the mean square surplus that emerges. Numerical 
experiments indicate that the minimum m{ is fairly short except for very short con-
ventional spread periods m  and very small margins: if there is a prudence margin, an 
improvement in security will usually follow when integral spreading is used.

7. Contribution stability is also an important pension funding objective. It is also shown 
that if there is a prudence margin, it is more efficient to employ integral spreading (with 
an integral spreading period longer than some minimum mf) as this results in a lower 
mean square supplementary contribution being required from the sponsor in the limit.
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The longer the integral spreading period that is used, the smaller the mean square 
supplementary contribution that is required from the sponsor. Numerical experiments 
show that long integral spreading periods may be required particularly for very short 
conventional spread periods m  and very small prudence margins. High values of m, 
may mean that it takes a very long time for surpluses to be removed. In practice, if 
there is a prudence margin and integral spreading is used, an amelioration in security 
may have to be traded off against a deterioration in stability.

8. If there is no prudence margin between the valuation discount rate and the long-term 
mean rate of return, however, it is more efficient to use conventional spreading as this 
yields a lower mean square surplus as well as a lower mean square supplementary con-
tribution.
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Chapter 6

Conclusions

6.1 Summary

This section summarises some of the major points made in this thesis. The aim of the 
thesis is to investigate the dynamics and actuarial control of defined benefit pension funds.

Chapter 2. The objectives of funding in advance for retirement benefits are considered and 
the security of benefits and the stability and flexibility of contributions are emphasised. The 
pension fund is viewed as a system, and actuarial involvement, through regular valuations, is 
likened to an exercise in the control of the pension system to achieve these objectives. Control 
is complicated by the uncertain economic and demographic environment in which pension 
plans operate. Some of the factors that affect final-salary pension funding are discussed 
in some detail. A simple mathematical model is introduced and described with a view to 
investigating aspects of the dynamics of funding in the later chapters of the thesis.

Chapter 3. Two aspects of the actuarial funding policy or control are then examined: the 
determination of a suitable contribution and asset allocation. Pension funding methods—in 
particular methods that systematically liquidate deviations when economic and demographic 
experience differs from actuarial valuation assumptions—are discussed. It has been shown 
that when such deviations are being spread forward over a rolling term and rates of invest-
ment return are modelled as simple stochastic processes, a certain range of spreading periods 
is efficient in terms of achieving a tradeoff between security and stability. The robustness of 
the efficient range is investigated when different economic and demographic experience is pro-
jected, namely when rates of return are general autoregressive processes, when new entrants 
into the plan vary randomly, and when other stochastic perturbations, such as discretionary 
contributions, axe allowed.

It is proven that there also exists an efficient range of periods over which actuarial gains 
and losses can be directly amortized. The usual range of amortization periods between 1 and
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5 years, as typically used in North America, is found to be within the efficient range. It is 
shown that the amortization of gains and losses over a fixed term yields greater security than 
when gains and losses are indirectly spread forward over a rolling term (i.e. when surpluses 
and deficits are spread). It is nevertheless more efficient to spread surpluses and deficits than 
to directly amortize gains and losses because there always exists a spreading period such that 
better security and stability are obtained.

Minimum-risk optimal asset allocation and contribution policies are derived, based on min-
imising the discounted quadratic disutility to the plan members and sponsor of not achieving 
security and stability objectives. The optimal contribution control resembles the proportional 
spreading of surpluses and deficits over a moving term, while the optimal asset allocation dy-
namically hedges against the risks of fund inadequacy and contribution instability.

Chapter 4. The methodology of actuarial pension plan valuations is discussed. Two dis-
tinct market-oriented and cash flow-oriented methods are identified. Both are found to rely on 
a notional or hypothetical portfolio that matches or hedges the pension liabilities. Some prac-
tical issues concerning investment strategy are also considered. Valuation and asset allocation 
are observed to be related through the concept of hedging or matching liabilities.

Various pension fund asset valuation methods and their properties, in terms of consis-
tency with liability valuations, smoothness, objectivity and dynamics, are briefly discussed. 
One particular market-related method is analysed in detail. The actuarial asset value is one 
that recognises a fraction of the unanticipated difference between market and actuarial asset 
value, or alternatively it is a weighted average of the market value of assets and their actuarial 
value as anticipated based on the actuarial valuation assumptions. Under this method, sym-
metry between asset gain/loss amortization and asset valuation is explicitly demonstrated: 
asset gain/loss amortization and asset valuation have a complementary function in achieving 
smoothness in the funding process. When gains and losses are paid off immediately, it is 
shown that it is efficient to weight the current market value upwards of a certain minimum. 
This range is directly comparable with the efficient range of spreading periods. Smoothing 
and spreading, separately and together, are found to improve contribution stability, but only 
up to a point. Numerical experiments show that there axe efficient ranges of spreading peri-
ods, for a given degree of asset value smoothing, and corresponding and symmetrical efficient 
ranges of smoothing parameters for a given spreading period. It appears that the efficient 
weight to be placed on current market value of assets should be upwards of 60%.

Chapter 5. The last aspect of pension plan valuations that is considered concerns actu-
arial prudence in the determination of liabilities, and in particular prudence margins in the 
valuation discount rate. The extent of prudence in the discount rate when valuing liabilities 
allows a degree of actuarial control on pension funding. The valuation discount rate is the 
market discount rate implied in the assets that hedge the pension liabilities; alternatively,
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it is the estimated rate of return on reinvestment in a portfolio of assets that matches the 
liabilities of the pension plan. The valuation discount rate is different from the best-estimate 
rate of return assumption. This difference is referred to as a ‘prudence’ margin. The prudence 
margin depends primarily on the degree of asset-liability mismatch in the pension fund as 
well as the risk in the amount and timing of liability cash flows. But various other factors 
appear to influence the size of the ‘prudence’ margin. Margins are used as a control parameter 
to establish the pace of funding for benefits, and also to provide some flexibility to the plan 
sponsor in terms of the timing of his contributions, possibly to suit his cash flow needs, as 
predicted by corporate finance theory.

The effect of excessive prudence (or ‘conservatism’) is to create persisting surpluses in the 
long term. These surpluses have an opportunity cost for the sponsoring firm and may also 
be expensive if full funding limits (or maximum surplus regulations) are breached. A few 
methods of avoiding undesirable and volatile surpluses and variable sponsor contributions, 
while retaining prudent funding objectives, are considered. The first method calls for the 
defrayal of surpluses over a shorter term than deficits. This is used in practice but stochastic 
simulations show that the pattern of contributions required from the sponsor is not smooth 
and in addition it is not clear over what periods surpluses and deficits ought to be spread 
and how this affects the ‘pace’ of funding. A second, ‘dual-interest’, method is promoted for 
compliance with accounting requirements and originates from the U.S. Financial Accounting 
Standards No. 87 (FAS87). It is shown to be successful at removing surpluses if an unbiased 
estimate of the rate of return on the future asset portfolio can be made. But asset returns are 
likely to be volatile if the pension fund assets axe not matched to the liabilities, as a matter of 
investment policy. The final method does not require any assumption about the future return 
on plan assets and involves the cumulative or integral spreading of unfunded liabilities. Some 
suitable parameters to achieve security and stability objectives more efficiently are considered. 
Substantial reductions in the size and volatility of surpluses and supplementary contributions 
axe possible if this method is applied when typical spxeading pexiods of 10-15 years and 
prudence margins of 1-2% axe used.

6.2 Future Developments

There axe various areas in which the analysis undertaken in this thesis may be extended 
and improved.

Inflation. Price and salary inflation are central economic variables in final-salary defined 
benefit pension funding. In this thesis, benefits are assumed to be indexed with salary inflation 
and asset returns net of salary inflation are projected. (Alternatively, like Dufresne (1986), 
it may be assumed that there is no inflation on salaries and nominal investment returns are 
then projected.) This is not realistic. Stochastic modelling for salary inflation is necessary.
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Benefit indexation is an important issue and price inflation needs to be modelled. Serial 
and contemporaneous correlation between price and salary inflation must be considered. The 
linkage between equity returns and salary inflation must also be investigated.

Investm ent Returns. Very simple models are employed to model the return from invest-
ment of the pension fund in this thesis. More ‘realistic’ modelling is necessary to test for 
the robustness of the simple conclusions obtained. The model of Wilkie (1995) is a possible 
candidate for such work. More complicated asset models have been proposed which include 
ARCH effects and VAR methods.

Stochastic Asset-liability Modelling. The analysis undertaken in this thesis is based 
on a simplified theoretical pension plan model. The conclusions may nevertheless have a 
direct practical value. The theoretical result of Dufresne (1986, 1988) regarding an efficient 
period over which to spread surpluses and deficits appears to have been reproduced in more 
realistic simulations using a more complicated asset and liability model (Haberman & Smith, 
1997). One obvious area of work is to test some of the conclusions of this thesis by employing 
simulation methods.

Optimal Asset Allocation. Optimal asset allocation strategies may be investigated using 
several contemporaneously correlated assets, in an infinite horizon stationary context. Dis-
continuous utility functions, approximating full funding limits and solvency requirements, as 
well as non-negative asset holding constraints may be required. The robustness of optimal so-
lutions under dependent rates of return may need to be investigated. Finally, realistic delays 
and random ‘measurement’ errors in the valuation process should be allowed for.

Asset Valuation. Various asset valuation methods appear to be used in practice and may 
be investigated in combination with different asset gain/loss amortization methods. One 
example is arithmetic averaging with consideration of cash flows, as opposed to exponential 
smoothing. The effect of dependent rates of return, stochastic inflation and a prudent or 
dynamic valuation basis must be considered. A mathematical comparison of market-related 
methods with the discounted income asset valuation method may be attempted. The effect of 
the corridor imposed by the U.S. Employee Retirement Income Security Act, 1974 (ERISA) 
on actuarial asset values is also of crucial practical importance.

Valuation M ethodology. If a market valuation methodology is employed, then market 
interest rates are required to value pension liabilities. This will require the use of a model 
for the yield curve. Several such models exist in the Financial Economics literature. The 
models of Dyson & Exley (1995) and Smith (1996) may be simple enough for mathematical 
tractability.
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Plan M embership. The plan population model that is considered in this thesis is ex-
tremely simplified. Further work on random new entrants, with multiple entry and exit ages, 
deferred benefits and redundancy (withdrawal) is also possible.

Financial Reporting. Finally, this thesis is concerned only with the funding of retirement 
benefits. A mathematical approach may also be used for the development of pension costs, 
under various accounting standards (including the new international standards). Dufresne 
(1993, 1994) examines various aspects of the U.S. Financial Accounting Standards No. 87 
(FAS87), in particular the treatment of accounting gains and losses and the use of a market 
discount rate, using both a mathematical and a simulation-based approach.
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A ppendix A

Stochastic Investm ent Return, 
M em bership and Other 
Pert ur bat ions

A .l Stationary Autoregressive Rate of Return

Suppose that the logarithmic or geometric rate of return process S(t) is a stationary 
Gaussian autoregressive process of order p or AR(p), with p < oo, as in equation (3.86). The 
moments of such a process are well-known [Box et al. (1994:54)]. Let ((t) =  S(t) — S.

t( t  +  1) =  PiCW + <£2C(t — 1) H---- +  PPC(* —p +  1) +  e(t +  1) (A.l)

Since <5(i) is stationary (unconditional). E£(f) =  0 and E6 (t) =  6 Vi. Let pk =  E[C(t)C(t ~ 
k)]/E ((t)2 be the autocorrelation function, pk obeys ap th  order linear difference equation

Pk+l =  Pi Pk +  P2Pfc-l H---- +  PpPk-p+l- (A.2)

(This follows if equation (A.l) is multiplied by ( ( t—k), and mathematical expectation is taken. 
Note that e(f +  l) is uncorrelated with ((t — k) and that pk — p~k■) Difference equation (A.2) 
requires p ‘initial’ conditions, namely po =  1 (by definition), p_i =  p\. p_2 =  P2, ••• , 
Pi~p — pp-i- There is a correspondence between po,-- - -. Pp-i and <pi,... , <pp, through the 
Yule-Walker equations (see Box et al. (1994:57)). Assume a given AR(p) process with known 
{pi,-- - ,pp- 1} or { p i , . . .  ,tpp}, or alternatively assume that these parameters have been 
estimated from statistical data.

A general solution to the homogeneous linear difference equation (A.2) is

pk = J 2 A tG l  (A.3)
¿=1
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where {(?,} is the set of roots of the characteristic equation

* Pp 0ZP — ip\ZP 1 — p 2 ~ P 2 (A.4)

and {Ai} represents arbitrary constants depending upon the ‘initial’ values {pk}, k £ [ l,p —1]. 
Letting VaiS(t) = a2, for a stationary AR(p) process,

p
Cov[<5(i), <J(s)] = a 2 AiGl~s. (A.5)

i= 1
Note that by definition, po = — 1- Since 6(t) is assumed stationary, |Gj| < 1 [Box

et al. (1994:56)]. It has also been assumed, in the manner of Box et al. (1994:60), Bellhouse 
& Panjer (1981) and Haberman (1994a), that all roots Gi are distinct (real or imaginary). 
This is likely to be the case if the autoregressive process has been estimated from data.

It is required to find the moments of the accumulation of 1 when the logarithmic ‘rate of 
interest’ 6 (t) follows an AR(p) process. Such expressions have been obtained by Boyle (1976) 
for independent and identically normally distributed {<5(i)}, by Panjer & Bellhouse (1980) 
for stationary AR(1) and AR(2) processes, and by Bellhouse & Panjer (1981) for conditional 
AR(1) and AR(2) processes.

First, consider the variance of a sum of 5(t) over a term t — s.

Var X̂
_u=s+l

= 2 E E Cov[<5(u),<5(u>)] — X̂ Var<J(u)
U=s+1 w = s + l  u = s + l

= E Ai E Ê
Î U = S + 1  U )= S  +  1

(A.6)

after substituting equation (A.5). This may be expanded to

E a -
2- 2 ( t _ , ) +

1 — G (1 -  G,)2 (1 -  Gi)2\

1 +  Gi 2u \ i 2cr2GiAj t_ s 2a2GiAi
= L t z g A °(‘- s> + L7r7G^G. -E

— a2(t — s)

a2G{Ai
(1 -G O 2 (1 -  G,)2

, (A.7)

where use is made of the fact that =  1.
The covariance of sums of 5(t) over different terms may also be found.

Cov
t t

XZ *(**)> X I s M
_U=S-\-1 tt>=T+l

XI <*(«) + Cov= Var
.u=s+l

(s > r) where the second term on the right hand side is

X] XI Cov[$(ti),$(w)] =  v2J 2 Ai XI XI G

X̂ (̂“)> XI s(wï
,u = s+ l w = r + 1

(A-8)

u —w
i

U=S-1-1 W =T-1-1 U = S + l V J= T + l

UGi= E " a‘~‘ - G'~T + GV1 (A.9)
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where equation. (A.5) has again been used. 
Therefore,

Var

=  Var

Y 6m + Y
, U = S + 1  W = T + 1

E «<»>
.«=«+1 

t

+ Var

3Var
,U=i+l

Y  w
JW =T + 1

t

Y ,  <5(u) +V ar Y j  fi(w)
_W =T+ 1

t t

+ 2Cov I E <’(“ ). E 5(w)
.■U=s+1 U>=T+1

t S

+ 2Cov ! E «(<*>. E «m
,u = 5+ l w = r + l

and using equations (A.7) and (A.9), this may be simplified to

A m  -s)+(t-r)] e  -  E  -  2° 7 ! + < ? r  -
1 +  Gi 2cr 2G't—T1

{¿(i)} is a Gaussian process. Since

'  t t

E Y  ¿(u) + Y
.U—S + l  W = T + 1

and given the variance in equation (A.11), we can write

" t t

Eexp Y j  Hu) +  ' Y  w)

=  (t -  s )6 +  (t -  t )6,

-ti=S+l Ul=T+l

=  ct" V - * e " 3E‘‘i exp | e  [2 * G f * + 2 ZiG‘r-  |

where

c =  exp

w — exp

- cr2 ^
¿ + y E a

1 +  Gi 
l — Gi

l 3aY . i i +  Ui
+ 2 - G i

1 +  Gi 
1 -  Go

Zi — a2AjGi(l — Gi) 2.

Likewise,

Eexp

Eexp

E %)
_ti=s+l

2 Y
. ti=S+l

exp E « G‘"

= (cwY se 4^ ;Ziexp s

(A.10) 

(A.11) 

(A-12)

(A-13)

(A.14)

(A.15) 

(A-16)

(A.17) 

(A.18)
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A .2 Stationary Autoregressive Additive Perturbations

This proof is concerned with the second moments of the pension funding process with 
an additive stationary autoregressive input e(t). f( t)  and e(t) are statistically dependent 
(equation (3.119)). Multiplying both sides of equation (3.119) by e{t) and taking expectation 
yields

t - i

Cov[/(f), e(f)] =  (1 -  A:)“ 1̂ !  J^ [u ( l -  fc)]t-JCov[e(i),£(j')], (A.19)
l=o

since e(t), u(s) are independent V t, s, and since Ee(t) — 0, Cov[/(t), e(t)j =  Ef(t)e(t) and 
Cov[e(i), e(j)] — Ee(t)e(j). The autocovariance of e(t) may be replaced from equation (3.121) 
and

t-1
Cov[/(t),e(i)] = (1 -  k y ' A L a ^ A i  J > ( 1  -  k )G if~ \  (A.20)

i 1=0
lim Cov[/(f), e(t)] =  (1 — k)~lALo2 ^ u ( l  — k)AiGi/[ 1 — u(l — k)Gj\. (A.21)

i
The limit in equation (A.21) exists provided |u(l — k)Gi\ < 1. |Gj| < 1 and it is sufficient 
that |u(l — fc)| < 1 for the limit to exist.

Both sides of equation (3.118) may be squared and it then follows that

E /( t  +  l )2 = 9 [(1 -  k)2E f{ t)2 +  AL2{k -  d)2 + AL2Ee{t)2

+ 2(1 -  k)(k -  d) ALE f i t )  + 2(1 -  k)A L E f (f)e(t)], (A.22)

since u{t + 1) is independent of u{s) and e(s) (s < t +  1) and u(t + l) and f{ t)  are independent. 
Now square both sides of equation (3.128) and multiply both sides by qv2 (or (u2 +  a 2)/« 2); 
deduct the resulting equation from equation (A.22). This yields a difference equation in 
Var fit):

Varf[ t  + 1) = a2v2[Ef{t + l)]2 +  g[(l -  &)2Var/(f) 4- A L 2a2

+ 2(1 -  k)ALCov[f{t),e(t)}]. (A.23)

The limits as t —> oo of E /( t  +  l) and Cov[/(f), e(f)] are given in equations (3.124) and (A.21) 
respectively. Provided that q{ 1 — k )2 < 1, the limit of Var/(i) as t -> oo exists and is

lim V ar/(i)[l — q{ 1 — k )2] (A.24)
t—¥CO

2 2 =  a v A L2 AL2a2 +  2 A L 2a\ 1 — u(l — k)Gi

(A.25)

where we use ^  Aj =  1. As for the second moment of the contribution level, lim Varc(f) = 
k2 lim Var/(i) from equation (3.44).
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A .3 Random New Entrants

Given g(t + r — x) in Projection Assumption 3.5, the mean actuarial liability, from equa-
tion (3.20), is

W
AL  =  EAL(t) = g ^ 2  lxA Lx, (A.26)

x=a

and its variance is
U)

VarAL(i) =  a2gJ 2 ll A L l  (A-27)
x=a

Likewise from equations (3.21) and (3.22), the mean and variance of the normal cost and 
benefit outgo are as in equations (A.26) and (A.27), with ALX being replaced by N C X and 
Bx appropriately. AL = EAL(t), N C  =  ENC(t) and B = EB(t) represent the actuarial 
liability, normal cost and benefit outgo when the plan population is stationary, with glx 
members aged x  at all times t, so that Trowbridge’s (1952) equation of equilibrium (3.25) 
holds.

It is convenient to define

and

It follows that

Rx — kALx +  N C X — Bx,

R(t) = kAL(t) + NC{t) -  B{t)
w

= ^ 2 g { t + r -  x)lxRx,

Px — kALx + NCx,

P(t) =  kAL{t) +  NC(t)
w

= ^ g { t  + r  -  x ) ix p x .

R  = ER(t) = kAL  4- N C  — B = (k — d) AL, 

P = EP(t) = kAL + NC,
W

VaxR ( t )  = a 2g J 2 i2x R l
x=a

w

VarP(i) =  cr2 ĝ l 2xP l
x=a

(A.28)

(A.29)

(A.30) 

(A.31)

(A.32) 

(A.33)
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W  W

Co \[R (t),R (t — t )] =  E E w  yCov[g(t + r -  x),g{t -  r  + r -  y)]

Note also, from equation (A.28), that R ( t )  is akin to a ‘moving average’ process.

x= ay= a

o i f  t  > w — a 

lyly+'rRyRy+Tcrg i f  0  < r  < w — a.
(A.34)

given that {g(t + r — x)} are not correlated over time, and taking into account the correlation 
of R(t) and R(t — r) when the lag r  is short such that cohorts indexed t -  x  and t — r  — y 
‘overlap’. Likewise, the cross-covariance between P(t) and R(t — r) is:

Cov[P(f), R(t — r)] =
0  i f  t  > w — a

w — T  i i  n  r >X v= a  lyly+rRyPy+ra] if 0 < T <
(A.35)

w — a.

Now, given Projection Assumption 3.5, {u(t)} and {ff(s)} are independent V t, s, and 
consequently {u(t)} and {R{s)} are independent V t, s. Therefore, from equation (3.142),

t - i

Ef{t)R (t) = fo[u(l -  k)]*ER(t) +  (1 -  k)~l J > ( 1  -  k ^ E R m i t ) ,
3=0

{AM )

while
t - 1

Ef{t)ER{t) = / 0[u(l -  A:)]iEiî(t) +  (1 -  k )"1 ]£ [u (l -  k ^ E R ^ E R ^ ) ,
3=0

(A.37)

from which it follows that
t - 1

Cov[/(i), R{t)] = (1 -  k ) ' 1 ]> > (1  -  Ar)]*-JCov[«(t),R(j)]
3=0

t

= (1 -  k)~l ^ [ u ( l  -  k)]TCov[R(t), R(t — r)]. (A.38)
T= 1

Substituting from equation (A.34), one obtains

w —a

COV[f (t) , R(t)] = (1 — k) X > ( 1  — k)] lyly+TRyRy+Ta
W — T

t —1 y = a

w —a w —T

Likewise,

=d-‘)-l«,’E E  [«(I k)] l y l y ^ j R y R y ^ r -
t = 1 y=a

Z

Cov[/(f), P{t)] = (1 -  k r 1 J > ( 1  -  k)YCov[P(t),R(t -  r)],
T — 1

(A.39)

(A.40)

219



w—a w —r

Cov[f{t),P(t)} = (1 -  k)~l a2 [lt(l ~  k)}Tlyly+TRyPy+T. (A.41)
r=l y—a

First moment results are obvious from equation (3.141), since u(t +  1) is independent of 
both f( t )  and R(t):

Ef ( t  +  1) =  u[(l -  k)E f(t)  +  ER(t)], (A.42)

and, using equation (A.30), ER(t) = (k — d)AL, so that

lim E /(t) =  u(k -  d)AL/{ 1 -  u (l -  k)) = A L , (A.43)
i-voo

provided |u(l — k)\ < 1. limEc(f) is straightforward given equation (3.39) and ENC(t) — NC. 
When both sides of equation (3.141) are squared, it follows that

Ef{ t  + l )2 = q [ { l -  k)2E f( t )2 + ER(t)2 +  2(1 -  k)E f{t)R {t)], (A.44)

and upon replacing equation (A.35),

since u(i + l) is independent of u(s) and R(s) (s < i+1) and u (t+ 1) and f ( t )  are independent. 
Now square both sides of equation (A.42) and multiply both sides by qv2 (or (u2 +  a 2)/u 2); 
deduct the resulting equation from equation (A.44). This yields a difference equation in 
V ar/(t):

Var f ( t  +  1) =  a2v2[Ef(t + l)]2 +  g[(l — /c)2V ar/(i) +  VaiR (t)

+  2(1 — k)Cov[f (f), R(t)]]. (A.45)

The limit as t —> oo of E f (t + 1) is given in equation (A.43). From equations (A.32) and 
(A.39), it may be noted that

W W

Varfl(i) +  2(1 -  fc)Cov[/(f), R{t)] = 4 E E w i  -  k ) f~ y h xlyR xRy -  Si(k). (A.46)
x = a y = a

Then, limVar/(t) inequation (A.45) exists provided q ( l - k )2 < 1 and is as inequation (3.148). 
Finally, it is clear from equation (3.39) that

Varc(f) =  VarP(i) -  2JfcCov[/(i), P(t)] +  A:2V ar/(i), (A.47)

and substitution of equations (A.33), (A.41) and (3.148), yields the result of equation (3.149).
The results of Table 3.2 on page 84 and Table 3.3 on page 85 are based on equations (3.148) 

and (3.149). The following data was employed:

Mortality: English Life Table No. 12.

Ages: Single entry age at 20, single retirement age at 65.

220



Unit Credit Entry Age
Mean yearly benefit outgo
Mean actuarial liability per mean benefit outgo
Mean normal cost per mean benefit outgo
r .S.d . of benefit
r .s .d . of actuarial liability
r .s .d . of normal cost

39866
16.94

0.3486
11.60%
8.000%
8.322%

39866
19.16

0.2630
11.60%
7.633%
7.474%

Table A.l: Valuation statistics for the Unit Credit and Entry Age funding methods with 
random new entrants, r .s .d . =  relative standard deviation.

Investment Returns: i =  4%, a = 5%.

New Entrants: gla =  100, agla = 50.

Funding Methods: Unit Credit and Entry Age methods, both with surpluses and deficits 
being spread forward.

The mean and standard deviation of the actuarial liability generated by the two different 
funding methods (using equations (A.26) and (A.27)) are shown in Table A.l. Statistics 
for the normal cost and benefit outgo axe also shown. The benefit outgo is independent of 
the funding method, of course. The Entry Age method is more conservative than the Unit 
Credit method as the mean actuarial liability for the former is higher than for the latter. The 
equation of equilibrium (3.26) of Trowbridge (1952) is easily verified to hold for both methods 
in terms of the mean values:

0.03846 x 16.94 + 0.3486 =  1.000, 0.03486 x 19.16 +  0.2630 =  1.000.

The lower relative standard deviations for the Entry Age method indicate its inherent stability 
to variation in the number of new entrants, as is well known. (The relative standard deviation 
of benefit outgo B (t) is y/(VaxB(t))/EB(t).)
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A ppendix B

Efficient Am ortization M ethods and 
Periods

B .l  Proof of Inequality (3.162)

First note that

®t-i|°t+i| < ®t| (B-l)

since ~ 1 =  — l)2/ (1 — v*)7 < 0
Proof by induction. Let m = 2; the left hand side of inequality (3.162) is zero, and the 

right hand side is positive; hence the proposition is true for m — 2. (It can also easily be 
proven for m  = 3.)

Assume inequality (3.162) is true for m  = t, t € Z+. Then, replace the denominator 
on the left hand side by o | and the one on the right hand side by The inequality is
maintained as a result of inequality (B.l) and we have:

(°i=3| + f i o|) lh\ <  ( fit-i|  +  ' "  +  fio | ) / s t+i|- (B -2 )

We can then subtract the following from the left hand side to yield the required result 
(the inequality is maintained again as a result of inequality (B.l)):

d-t\/dh i \  ~  ( >  0 )• B̂-3)

Since the result holds for m = 2, it must hold for { m £ Z+ : m  > 2 }. □
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B.2 P roof of Inequality (3.163)

Proof by induction. Let m = 2 and (a | + 0^ )0^ > d§|0|| and therefore inequality (3.163) 
holds for m  =  2. Suppose it also holds for m =  t, t € Z+. Then, we may expand

[àhî\ +  (®f| +  • ■ ■ +  « I |) ]  [ü f | +  (a |rî| + • • • +  « f |) J  -  [àm \ àt\ +  +  • • • +  àl\àî\)
(B.4)

cancel out à-— - ^  and obtain T\ +  T2, where

T\ =  (d | + ---- 1- ¿T|)(afrî| + ----  ̂°i|) — 4---- +  ¿¿2|^r|)2 > 0, (B.5)

and

T2 =  a ^ !  ( a ^  +  • • • +  a^) +  a|(af, +  ■ ■ • +  a |)  -  2am i a-t[(a^ a ^ i +  • ■ ■ +  Û2|«I|)>

> ^i+I| (¿ï | +  ’ "  +  “i| )  ̂ — àj\ (d-j-pYi +  • • • +  d j|) ! > 0. (B.6)

Therefore T\ +  T2 > 0 and the result holds for m  =  t + 1. Hence, the proposition is true 
for {m  G Z+ : m  > 2}. □

B.3 P roof of Proposition 3.2

For m  > 1, we need to show that a Q(m) > a s(m). Starting from inequality (3.162) and 
noting that tt(l -  k) = a -^ z ^ /a ^ ,  it is easily shown that

[ l - ^ ( l - f c ) 2] E Ai < 1 (B-7)

u2 A2 . {1 -  (u2 +  tr2)(l -  fe)2} < u2 +  (T2 -  cr2 À2 (B.8)

where we have multiplied across by (u2 +  a 2). Rearranging and using equation (3.157), the 
inequality in Proposition 3.2 is proven.

For m  =  1, it is easy to show identity of the two methods of amortizing gains/losses and 
spreading surpluses/deficits (equation (3.154)). □

B.4 P roof of Proposition 3.3

A bou t lim V ar/(i)a. We must first prove that lim V ar/(i)a increases monotonically with 
the amortization period m:

V lim V ar/(i)a > 0. (B.9)
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We may equivalently prove that V aa(m) < 0. Using the customary backward difference 
operator rules,

The denominator is positive, and the numerator is proved to be negative by rearranging 
it into

and using inequality (3.162).

A bou t m axim um  spread  and am ortiza tion  periods. The stability conditions on equa-
tions (3.58) and (3.155) provide maximum spread and amortization periods, which we shall 
denote by m£° and respectively, for the pension funding process to be stationary in the 
limit. kmin in Result 3.4 is clearly related to m£°. For the same i and a, the maximum spread 
period allowable for stability is not greater than the maximum allowable amortization period:

This follows from the fact that the lim V ar/(i)s v. m  curve has a vertical asymptote at 
m  =  m£° (equation (3.58)), whereas the lim V ar/(t)a v. m curve has a vertical asymptote 
at m = m (equation (3.155)). Proposition 3.2 and inequality (B.9) mean that the latter 
asymptote must occur at an amortization period not less than the former asymptote.

A bou t limVarc(i)a. Finally, it may be proven that the limVarc(f)a v. m  curve has only 
one turning point, which is a minimum point, at which the limVarc(t)i v. m  curve intersects 
it:

(B.10)

(B.12)

limVarc(f)s|m-m* < lirnVarc(i)a |m=m*.

(B.13)

(B-14)

First, note that
m m

=  m ./3a{m ), (B.15)
m

(B-16)

V{m(3a{m)) =  &(m). (B.17)
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A number of alternative methods can be followed.

1. /3a(m) is an average of (3s(i) over i < m. By Result 3.4, (3s (m) has a maximum; 
3s{m T)  =  (0a(m^°) =  0 with m£° < m£° (inequality (B.12)); /3s(m =  1) =  0a(m — 1). 
As fls(m) increases with m, (3a{m) increases, but /3a(m) < (3s{m). When f3s(m ) decreases 
and intersects (3a(m), /3a(m) then starts decreasing.

There will only be one maximum in 3a{m). It occurs where the two curves intersect 
and the maximum in /?s (m) will occur before the maximum in /3a(m) as m  increases, 
i.e. m* < m*a. limVarc(i)i and limVarc(t)a are ‘reciprocals’ of 3s(m ) and 3aim ) 
respectively.

2. Differencing equation (B. 16),

V 3a [m) =

V2/3a(m)

m3s(m) -  Y a Li3s{i) 
m(m  — 1)

3s jm) -  3 a {m )  
m — 1

VA(m) -  2V3a (m) 

m  —  2

(B.18)

(B.19)

For a turning point, V/?a(m) «  0, or 3s(m ) ~  /3a(m )- Hence, turning points in /3a(m) 
will only occur where it crosses 3s{m )- Consider the shape of /3s(m); /3s(m£°) = 
/3a(m“ ) =  0 with < m£° (inequality (B.12)); /3s(m =  1) =  3a(m  — 1)- Hence, 
/?Q(m) can only intersect /35(m) once when it is decreasing, i.e. V 2/3a(m) < 0, giving 
rise to a single maximum in /3a(m), i.e. a single minimum point in limVarc(i)a.

Hence, Proposition 3.3 is proven. □

B.5 P roof of Proposition 3.4

Consider a spread period m s (and ks = 1 / ¿¿mrl) and an amortization period m a (with 
corresponding ^  A2 and X) 3]) such that lim V ar/(f)5 =  lim Var/(f)a. Using equations (3.158) 
to (3.161), we find that

a s(ms) = a a(ma), (B.20)

3s(ms)k2sa ^ \  ^  \ )  = 3a{ma) m a. (B.21)

If m a = m s = 1, then clearly limVarc(f)a =  limVarc(f)s . For other {ma, m s}, if we show 
that < m a> then we will show that limVarc(f)a > limVarc(f)s.

Substituting equations (3.158) and (3.159) into equation (B.20), we have

[i -  (u2+ a2)(i -  m 2] e  4  = i -  ^  E  4  <B-22>
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Replacing Y P j  using equation (3.157), multiplying across by u2 and rearranging, we obtain 
[1 -  «2(1 - * ,)2] £  A? =  1, and so k] =  [ ( £  A2)1/2 -  „ ( £  A2 -  l ) 1/2]2/  £  A2.

Hence,

Ks am,a
1/21 2

I

=  [ ( 4 vT| +  • • • +  af|)1/2 _  +  • ■ • +  «I|)1/2_

=  (4iT| + -----b ¿f|) +  ^2(“iir=T| +  • •' +  af|)

“  M i ^ l  + • • • +  5f|)(a^73T| +  • • • +  “l|)]1/2I|AuTOa_i|

(B.23)

(B.24)

(B.25)

< (<W| -1-------b aT|) + u (a^Ti| H-------b aT|) -  2v(a^|a—— | H-------b a2|®i|) (B.26)

where we use inequality (3.163) in the last step. Since (aj| — vcq—j|)2 =  1, t £ Z+ , we find 
that k2 'al—, A2 < m a. Prom equation (B.21), we have therefore proven that limVarc(f)a > 
limVarc(f)s. □
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A ppendix C

Optimal Controls

C .l Proof of Optimal Asset Allocation and Contribution Con-
trols

This proof is concerned with the optimal asset allocation and contribution decisions as 
given in §3.6.3.

Assume that

<h  = m + c ( t ) - B ,  (c .i)

=  1 + r  + y(t)a. (C.2)

and note that

y(t)2 — a ~2'$2 -  2aT2(l +  r ) \ +  a _2(l +  r )2, (C.3)

(c(t) -  CTtf  =  $ 2 -  2(/(i) - B  + CTt)$ t + ( f i t ) - B  + CTtf .  (C.4)

Since a(t) is independent and identically distributed over time, it follows from equa-
tion (3.167) that

E [/(i +  l) |/(i)] =  (C.5)

Var[/(i +  l) |/( t)]  =  cr2$ 2y(t)2, (C.6)

and using equation (C.3)

E [/(i +  1)2|f{t)} =  (1 +  a2a~2) ^ 2t -  2cr2a~2(l +  +  o2cT2(\ +  r )2$ f. (C.7)

The Bellman optimality equation (equation (3.178)) is

J ( f ( t ) , t ) =  “ in -7, (c -8)
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where

J  =  *!(/(*) -  FTt)2 + e2(c(t) -  CTt)2 +  /3E[J(/(f +  1), t +  l)|/(f)], (C.9)

and with boundary condition, at time t = N,

J ( f ( N ) , N ) = 0 o( f ( N ) - F T N)2. (C.10)

A trial solution for equation (C.8) is

t) = Ptf ( t )2 -  2Qtf( t )  + Rt. (C .ll)

The boundary condition in equation (C.10) certainly satisfies the trial solution, with

Pn  = 0 o, (C.12)

Qn  =  OqFTn . (C.13)

We proceed by induction. Suppose that equation (C .ll) is a solution of the Bellman 
equation (C.8) at t + 1. Then,

E [J(/(f +  l) ,f  +  l)|/(f)]

=  Pt+iE[f(t  +  1)2|/(<)] -  2Qt+1E[f(t  +  l)|/(f)] +  R t+1 

=  (1 +  a2a~2)Pt + l ^ 2 -  2[Qw $ t +  a 2a~ 2(l +  r)Pt+1$ 2 t}Vt

+ <J2a _2(l +  r)2Pt+i$ 2 +  Rt+i- (C.14)

where we make use of equations (C.5) and (C.7).
J  may now be written as a quadratic expression in xVt, <fq and /(f), by substituting 

equations (C.4) and (C.14) into equation (C.9):

J  = [/3(1 +  a2a~2)Pt+l^ 2t -  2f3[Qt+1$ t + a2a~2(l +  r)Pt+1$ 2}%

+  [02 +  pa2a~2(l + r fP t+ ijS 2 -  202(/(f) — B + CTt)$ t

+  pR t+1 +  e2{f(t) - B  + CTt )2 + 0 i(/(f) -  FTt)2. (C.15)

The first two terms on the right hand side of equation (C.15) are quadratic in 4q and 
(upon completing the square) may be written as

T tA(Tt - T f ) 2 +  T f ,

where

+  a 2a - 2)Pm i»t2, 
o-2a~ 2(l +  r)Pt+i $ t +  Qt+1

* (l +  cr2a -2)Pi+1$ f
_  (3[cr2a~2{l +  r)Pf+i$ t +  Qt+1]2

t (1 +<J2o:-2)Pi+i

(C.16)

(C.17)

(C.18)

(C-19)
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The third and fourth terms on the right hand side of equation (C.15) as well as the last
term (\&p) in expression (C.16) are quadratic in and may be written as

S .? p -\(a 2 + a 2) - 1

-  $ t[262(a2 +  a 2)(/(f) — B  + CTt) + 2/3a2(l +  r)Qt+l]/(a2 +  a2)

~/3a2Q2t+1/[(a2 + a 2)Pt+l} (C.20)

or, by completing the square, as

$ tA($ t - $ ? ) 2 +  $ f ,  (C.21)

where

Pt+l = [92(0? + cr2) + f3cr2(l + r)2Pt+i] 1, (C.22)

* t  = P& {c? + o * ) - \  (C.23)

* ?  =  e2(a2 +  cr2)Pt+i(f (t) - B  + CTt) +  /3a2( 1 + r)Pt+lQt+l], (C.24)

= - Pt+i[d2(a2 +  cr2)(/(t) -  B +  CTt) +  /3a2(1 +  r)Q t+1]2]/(a 2 +  a2)

-  (3a2 (a2 + a 2)_1Pt“2Q2+1. (C.25)

Finally, the last three terms on the right hand side of equation (C.15) along with the last 
term ) in expression (C.21) are quadratic in f i t )  and may be written as

/ ( t )2 ĵ i + #2 — 92 (o!2 + 0~)Pt+ 1

- f { t )  [2exFTt +  202{B -  CTt) -  Pt+ i[202(a2 +  a 2)(£  -  CTt) -  202/3a2(l +  r)Qt+1]

+  remaining terms independent of f{t),  (C.26)

or

A t f ( t )2 — 2Btf{t) + remaining terms independent of /( t) , (C.27)

where

At = 6 1 +  02/3a2(l +  r)2Pt+1Pt+1, (C.28)

Bt = OxFTt +  62(3a2{l + r)Pt+1[Qt+i +  (1 +  r)Pt+1(B -  CTt)}, (C.29)

since, from equation (C.22),

1 — 62{a2 +  a 2)Pi+i =  (3cr2[l + r)2Pt+iPt+i- (C.30)

J  may therefore be written as

J  =  TtA(Tt - T f ) 2 +  i»tA( ^ - $ f ) 2

+  Atf{t )2 — 2B tf{t)  +  remaining terms independent of /(f). (C.31)
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J  has a unique minimum in Tt and <&t provided > 0 and > 0. It is sufficient that 
Pt > 0 for t G [1, TV] for both these conditions to be satisfied (since Pt > 0 =>■ Pt > 0). 
The minimum occurs when T* =  \I>f and 4>t =  <&f simultaneously. Now, there is a direct 
linear relationship between c(t) and (equation (C.l)) and between y(t) and Tf (a > 0 in 
equation (C.2)). Therefore,

min J  =  A t f ( t )2 -  2Btf( t)  +  remaining terms independent of /(f), (C.32)
c(t),y(t)

which is in the form postulated in the trial solution (C .ll). Since the solution holds for t — N, 
it holds for t £ [1,7V]. Pt — At and Qt =  Bt, by comparing equations (C .ll) and (C.32), 
with respective boundary conditions (C.12) and (C.13). Since Pn  =  0q > 0, Pt = At > 0 for 
t e  [1,1V] and the sufficient condition for the existence of a single minimum is satisfied.

Let ©t =  62(0?  + cr2)Pt . Then,

1 -  ©t+1 =  /3cr2(l + r ) 2Pt+1Pt+1, (C.33)

from equation (C.30).

=  e t+i( /( t)  +  c(t) -  B) +  (1 -  Qt+1)Qt+lPt-+\ ( l  + r ) - \  (C.34)

Using equation (C.l), c*(t) = +  B — f(t)  is readily obtained. Replacing <i>t =  in the
right hand side of equation Tj =  *1i f  gives

and from equation (C.2),

.T. , _  QW +cr2a - 2(l +  r)P t+1^  
* (1 +  a2a~2)Pt+i$t

(C.35)

ay*(i) =  ®t* - (  1 +  r)
_ Qi+i — (1 +  r)Pt+\^ t  

(1 +  cr2a~2)Pt+i$t ’
which readily yields y*{t) when from equation (C.34) is substituted.

(C.36)

C.2 Property of Increasing Risk Aversion

This section is concerned with the coefficient of risk aversion and equation (3.202) of §3.6.4. 
It involves a slight variation (in terms of disutilities and losses) on the usual derivation (based 
on utilities and gains), as given by Bertsekas (1976:17-18) or Elton & Gruber (1987:198).

Let y be the random loss or penalty incurred by an agent undertaking a risky activity. 
Ey =  y and Vary =  a2. Assume that the properties given by equations (3.199) and (3.200) 
apply. If the agent is risk-averse, then suppose that he is willing to pay an additional penalty 
or risk premium n to incur the loss y, and avoid undertaking the risky activity. Then,

L ( y  + t t ) =  E  L ( y ) .  (C .3 7 )
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The premium 7r is an intuitive measure of the aversion to risk of the agent. Now, the left 
hand side of equation (C.37) may be expanded around y,

L(y+  n) = L(y)+TvL'(y)-\---- , (C.38)

and the right hand side of equation (C.37) may be expanded about y thus:

L{y) = L(y) +  (y -  y)L \y )  +  | ( y  -  y)2L"(y) + ■■■
2

EL(y) = L (y )+ 0  + ^ L " ( y )  + •••

Hence, equating (C.38) and (C.39),

, V  L»{y)
* ~  2 L'(y)

(C.39)

(C.40)

which justifies the use of A(y) =  L"(y)/ L'(y) as a coefficient of local risk aversion in terms of 
disutilities. If the agent is (ideally) increasingly risk-averse as a larger loss is incurred, then 
a greater positive premium it  is paid to forego risk and, from equation (C.40), A'(y) > 0.

For a quadratic disutility function L(y) =  Ay2, i t  is the solution to a quadratic equation 
and, neglecting the negative solution { i t  +  y > 0),

7T =  V(y2 + 0-2) (C.41)

and dir/dy =  y /^ (y 2 +  a2) — 1 < 0. An agent with a quadratic disutility function therefore 
exhibits decreasing risk aversion with increasing losses.

Note also that any disutility function can be transformed into a utility function by a 
series of linear operations. Linear operations have no effect on preference. Cost and reward 
are related by, say, x  +  y =  constant and

U{x) = —AL{y) + B  {A > 0). 

then it follows that —U"{x)/U'{x) =  L"(y)/L'{y).
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A ppendix D

A sset Valuation M ethod

D .l  A General M odel to Prove Propositions 4.4 and 5.3

A general model is set up that allows the second moments of the funding process in two 
special cases to be investigated:

-  the method for smoothing asset values as described in §4.5 and

— the method for avoiding persisting surpluses as described in §5.6.

Generalised Recurrence Relation

Consider a generalised recurrence relationship for the unfunded liability:

ul(t +  1) =  AL + u(t +  l)[ul(t) — adj(t) — vvAL\, t >  0, (D.l)

where
t

adj(t) = ki(ul(t) -  U{t)) + k2 ^ 2 p t~: {ul{j) -  U{j)) +  h p 1 +  P(t).
j =o

By definition,

ul(t) = A L - f ( t ) ,  

c(t) = N C  + adj (t).

(D.2)

(D.3)

(D.4)

If a fraction (1 — y) of the initial unfunded liability u Iq is being amortized over a fixed 
term n  then, the amortization payment at the beginning of year (t, t +  1) is

P ( t )  =
(1 -  y)ul0/d^ ,

0,

0 < t < n — 1, 

t > n ,
(D .5 )
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and the unamortized part of (1 — yjuhj at the beginning of year (f, t +  1) is

Note that

U(t) =
(1 - y ) u l 0 ÖH=t|/än|,

0,

o < t  < n -  1, 

t > n.
(D .6)

P(t) = U { t ) - v vU{t + 1), (D.7)

where we define U(n) =  U(n +  1) =  .. .  =  0.
By equations (D.2), (D.4) and (D.7), the contribution process in this general model is 

therefore
t

c(t) = N C  +  h{ul(t) -  U(t)) +  k2 -  U(j)) +  kzp* +  U(t) -  vvU(t +  1). (D.8)
j=o

For brevity, we also define

ulu(t) = ul(t) — U(t),

at =  E ulu(t), 

bt = E ulu{t)2,

ct = E 

dt = E

3=0
■ T 2

j=o

(D.9)

(D-10)

(D.ll)

(D.12)

(D-13)

We may substitute P(i) from equation (D.7) into equations (D.l) and (D.2) and, using 
ulu(t) from equation (D.9), rearrange to obtain, for t > 0,

ulu(t +  1) — (AL — U(t + 1))
t

= u(t +  1) ulu{t)( 1 -  fci) -  vv{AL -  U(t + 1)) -  k2 ^ p t~JulU{j) -  h p 1
3=0

After taking expectations across the following simple identity,
2

(D.14)

3=0

= 2 Y j J - i v t i j )  ¿P^ui^fc) -  ¿ p 2̂ \ r ( ; ) 2,
j=0  A:=0  J=0

(D.15)

and noting that pt k = pt 3p* , we obtain:

d( = 2 ^ p 2N ) Ci^ p2(H )i r
j=o j =0

(D .16)
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Another useful result follows from taking expectations across the identity,

t t + i

ulu(t + +ulu(t +  l)2 =  ulu{t +  1) Y , P t+1~julUti)>
j - 0 j = 0

(D .1 7 )

which gives:

E uiu( t + i)p y y  j uiu{j) 
j =o

+ Eii/U(i +  l )2 — Cf.|-i. (D.18)

Dynamic System  of Equations

A number of simultaneous difference equations may be set up. First, taking expectations 
across equation (D.14), and noting that {-u(f)} is a sequence of independent and identically 
distributed random variables, so that u(t +  1) is independent of u(s) and ul(s) for s < t, we 
obtain

t

ot+i =  otu(l — kx) — uk2 +  (1 — uvv)(AL — U(t +  1)) — uk3pf. (D.19)
3—0

for t > 0.
In order to find the second moments, we proceed to square both sides of equation (D.14) 

and then take expectations. Note again that {-u(f)} is a sequence of independent and identi-
cally distributed random variables so that u(t + 1) is independent of u{s) and ul(s) for s < t. 
Upon substituting dt from equation (D.16) and collecting like terms, we have, for t > 0,

t t

bt+i ~  q{ 1 -  ki)2bt +  qk\ ^ p ^ ^ b j  +  2qk2{l -  kx)ct -  2qk\
j=o i=o

= 2 (AL — U(t + l))at+i — 2qvv(l — k\)(AL — U(t + l))at — 2gA:s(l — ki)ptat
t t

+  2qvvk2(AL — U(t + 1)) +  2qk2k3 ' y ^ p 2('t~^lpP aj
j =o j=0

+ {qv2v -  1 ){AL -  U(t +  l))2 +  2qk3vv(AL -  U(t +  l))p* +  qk\p2t. (D.20)

A third equation may be found by multiplying equation (D.14) by p and
adding ulu(t +  l )2 on both sides, and then taking expectations. Upon using equation (D.18) 
and collecting like terms, we find that, for t > 0,

<H+1 ~  up{ 1 -  k\)ct +  uk2pdt -  bt+i

— (1 — uvv)(AL -  U(t + l ) )p ^ P *   ̂cl j
3=0

- u k zp t + l ^ p t J<U-
j=o

(D .21 )

234



t t
ct+1 -  up{ 1 -  ki)ct +  2uk2p Y ^ P 2<'t~j)cj ~ bt+1 -  uk2p'^2 p2{t~j)bj

j - o j= o
t t

= (1 — uvv)(AL — U(t + 1 ))p’Y^JPt~'iaj ~ ukzp'y^jp2 t̂~^pPaj- (D.22)
j—o j=0

Alternative Representation of Difference Equations

Equations (D.19), (D.20) and (D.22) constitute a linear dynamic system. In the limit 
(or ‘steady-state’), the system is not affected by initial conditions. We are interested only in 
the ultimate situation and we may therefore ignore initial conditions. From equation (D.6), 
U(t) =  0 for t > n. We could consider difference equations (D.19), (D.20) and (D.22) for 
t > n. Equivalently and more simply, it is convenient to put U(t) = 0 in these three difference 
equations. Similarly, we can assume that as — bs — cs — 0 for s < 0.

It is also convenient to use the forward shift operator E  (as distinct from the statistical 
expectation operator E) where E mxt =  xi+m. One could alternatively use z-transforms or 
generating functions. Note that, if xs — 0 for s < 0,

t t t
^ 2 a * - j X j=  at~jxJ=  at~j ( E - l )t- ^x t = E { E - a ) - 1x t . (D.23)
j=0 j=~oo j—- oo

This also follows from Brand’s (1966:375) definition of the ‘power shift’:

E(E — a)~1x t =  (E — a)_1xt+i =  (E — a)~1ata~txt+1 =  ai_1 (D.24)

and since
t- i

A ^ a -J£j+i = a_ixt+i, (D.25)
— 00

therefore,
t - 1 t t

E (E  — a)~lx t — at_1 ^  a_^xJ+i = ^  ak~^Xj =  ^  al~^Xj. (D.26)
-o o  —oo 0

In terms of the E  operator, equation (D.19) may be written as

Eat — AL(1 — uvv) +  atu( 1 — k\) — E(E  — p)~1atuk2 — ukzpt . (D.27)

We may multiply across by (E — p). This is equivalent to applying the following operation to 
equation (D.19): equation (D.19) is forward-shifted in time (so that it holds for t > —1) and 
equation (D.19) multiplied by p is then deducted. This yields

Again, dt  may be replaced from equation (D.16) to give:

P ( E ) a t  =  ( E - p ) e u (D.28)
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which holds for t > 0 and where

P(E) = [ E -  «(1 -  f c i)p  - p \  + Euk2 

6t =  AL(1 — uvv) — ukzp1 ■

(D.29)

(D.30)

Using the forward-shift operator, equation (D.20) may be written as:

[E -  q( 1 -  h ) 2}^ +  E(E -  p2)~l btqkl +  ct2qk2(l -  h )  -  E (E  -  p2)~lct2qkl

=  [E — qvv( 1 — ki)\at2AL — atpt2qkz(l -  k\) + E{E — p)~1at2ALqvvk2

+ E{E - p 2) - lptat2qk2kz + (qv2 -  1 )AL2. (D.31)

Multiplying across by (E — p2)(E — p) gives

1>(E)(E-p)bt  +  7 (E)(E -  p)ct = v(E)at +  (qv2 -  1 )AL2(E -  p2) ( E - p ) ,  (D.32)

which holds for t > 0 and where

rp(E) = ( E -  q( 1 -  k ^ E  -  p2] + Eqk22) (D.33)

7 (E) = 2qk2(l -  h ) ( E  -  p2) -  2qk22E, (D.34)

v(E) =  2AL[E -  qvv( 1 -  ki)\(E -  p2)(E -  p) -  (E -  p2) ( E - p ) p t2qkz(l -  k{)

+ 2qvvk2ALE(E — p2) + E (E  — p)pt2qk2kz- (D.35)

Equation (D.22) may also be expressed in terms of the forward-shift operator as:

[E -  up( 1 -  ki)\ct + E(E -  p2)_1Ci2u/i:2p -  Ebt -  E(E  -

= E(E  — p)~lat AL(l  — uvv)p — E(E  — p2)~1atptuksp. (D.36)

Multiplying on both sides by (E — p2)(E — p) gives

Recurrence R elation for bt

The difference equations (D.28), (D.32) and (D.37) hold simultaneously for t > 0. We 
can contrive to cancel out {c*} from equations (D.32) and (D.37) if we perform a series of 
linear operations on each. Given the coefficient of c* in equation (D.32), we multiply across

cp ( E ) ( E - p ) c t -  p ( E ) ( E - p ) b t = u(E)a t , (D.37)

which holds for t > 0 and where

p(E)  =  [E -  up( 1 -  ki)][E - p 2] +  2uk2pE, 

p(E) =  E(E  -  p2) + uk2pE,

u;(E) =  AL(1 — uvv)pE(E — p2) -  uk$pE(E — p)pt .

(D.38)

(D.39)

(D.40)
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equation (D.37) by 7 (E) and equation (D.32) multiplied by <p(E) is then deducted. Thus we 
have

(E-p)[xP(E)<p(E)+v(E)7 (E)}bt

= {qv2v -  1 )AL2{ E - p 2){E-p)cp(E)+v{E)p{E)at -  u(E)-y(E)at . (D.41)

Now,

tp(E)ip{E) + n i E ^ i E )

= \{E -  q{ 1 -  h ) 2) {E -  p2) +  Eqk2]<p(E) + [E{E -  p2) +  uk2pE]7 (E)

= ( E -  q( 1 -  A*)2)(E -  p2)p(E) + E(E  -  p2)7 (E)

+ Eqk^iE — up( 1 — k\))(E — p2) + uk2pE 2qk2{l — k±)(E — p2)

— {E — p2)Q(E), (D.42)

where

Q(E) = [E — q{ 1 -  h ) 2]p{E) + E~f{E) + Eqk22[E + up{ 1 -  h)}.  (D.43)

We can now replace at from equation (D.28) into equation (D.41) while making use of equa-
tions (D.42) and (D.43). If we also multiply across by P(E)(E — p)~1, we obtain, for t > 0,

P(E)Q(E)(E  -  p2)bt = {qv2v -  1 )AL2{E -  p2)p(E)P(E) + v{E)p{E)6t -  t4 E ) 7 (E)0t .
(D.44)

Equation (D.44) is a linear difference equation satisfied by bt (ignoring initial conditions). 

R ecurrence  R elation  for Ct

We can also cancel {at} and {bt} from the system of equations to obtain an equation in {ct} 
alone. Substituting bt from equation (D.44) and at from equation (D.28) into equation (D.37) 
results in the following:

ctp { E ) ( E - p )

=  [{qv2v -  1 )AL2( E - p 2)p(E)P(E) + v{E)p{E)et -  ca(E)7 (E)et\ x
l u ( E ) ( E - p ) / P ( E ) Q ( E ) ( E - p 2)] +  (E -p )u ; (E ) /P (E )e t . (D.45)

Multiplying across by P{E)Q(E){E — p2){E —p)~l gives 

p ( E ) P ( E ) Q ( E ) ( E - p 2)ct

= p(E) [(qv.2 -  1 )AL2( E - p 2)p(E)P(E)  +  v{E)p{E)6t]

-  u>(E)7 (E)ii{E)9t + l o(E)Q(E)(E -  p2)6t . (D.46)
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c j (E) [Q(E) (E-p2) - y ( E ) p ( E) } e t = Lu(E)^(E)<p(E)et . (D.47)

Substitution of equation (D.47) into equation (D.46) supplies

P ( E ) Q ( E ) ( E - p 2)ct =  (qv2v -  1)AL2( E - p 2)P(E)p(E) + u(E)p(E)dt +  u(E)^(E)9t .
(D.48)

The last two terms on the right hand side of the above simplify, using equation (D.42), to

Limits

If we disregard initial conditions, equations (D.28), (D.44) and (D.48) are linear difference 
equations satisfied by at, bt and ct respectively. From the left hand side of equation (D.28), 
it is clear that stability depends on the roots of the equation P{z) — 0. From the left hand 
sides of equations (D.44) and (D.48), stability also depends on the polynomial Q(z).

Special Cases

Special cases can be considered at this stage. The second moments for the funding process 
when asset values are smoothed, as described in Chapter 4, are derived in the next section. 
The second moments when persisting surpluses Eire removed using a method described in 
Chapter 5 are derived separately in Appendix F.

D.2 Proof of Proposition 4.4

A Special Case of §D .l

This proof concerns the second moments of the pension funding process when asset values 
Eire smoothed according to the method described by equations (4.2) or (4.3). Comparison 
of equations (4.17) and (D.8) reveals that this can be considered to be a special case of the 
general model described in §D.l.

Note that in Proposition 4.4, we assume condition (4.46) from Corollary 4.1, i.e. that

1. the valuation discount rate equals the mean long-term rate of return on assets (i = iv)

2. the mean rate of return on assets i > —100%, from which it follows that 0 < Ku < 1 
(Haberman, 1992a) (since K  = 1 — 1/a^r) and therefore that 0 < A K u  =  p < 1 (by 
definition, 0 < A < 1).

In equations (D.2) and (D.8), we may therefore let

i = iv, ki = 0, &2 =  (1 ~  K )( l  — A), kz — kXyulo, p = XKu, \p\ < 1. (D.49)
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In this special case, equation (D.2) now becomes

adj(t) = (1 -  K)(UL(t)  -  U(t)) + P(t), (D.50)

where

UL{t) -  U{t) = (1 -  A) ' ^ p t j ulu[j) +  Xyulop*.
3= 0

By definition,

F{t) = AL -  UL{t).

Equation (D.14) can be rewritten as

(D.51)

(D.52)

ulu{t + 1) -  {AL -  U{t +  1)) 

- u{t +  1) ulu{t) — k{ 1 -  A) ^ulu{j) — kXyulap1 — v{AL — U{t+  1)) 
3=0

We have shown in Corollary 4.1 that, provided certain conditions hold,

lim Eul(t) =  lim Eulu(t) = 0,
t —too t—¥ OO

lim EUL{t) = 0,
t - +  OO

lim Eadj(t) =  0,
i->oc

lim p4 JEulu(j) — lim pl aj = 0.
3= 0 3=0

. (D.53)

(D.54)

(D.55)

(D.56)

and by taking expected values of equation (D.51) and then limits as t —>■ oo and using 
equation (D.55), it is evident that

(D.57)
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M ean Square Deviation of u l ( t ) and Variance of f ( t )

In the special case (equations (D.49)) considered in this section,

9t =  - u k 3p \

P(E) = ( E -  u)(E - p )  + Eu( 1 -  K)(l  -  A),

M E ) = ( E -  q ) ( E - p 2) +  Eq{ 1 -  K )2( 1 -  A)2,

7 (E) = 2q(l -  K)( 1 - X ) [ E - p 2 - ( l -  K)(  1 -  A)E],

=  2AL(E -  q v ) { E - p 2) ( E - p )  -  p ^ q k ^ E  -  p2)(E -  p),

<p{E) = { E -  up)(E -  p2) +  2tt(l -  ff)(l -  A)pE,

/i(£?) - S ( S - p 2) + u ( l - K ) ( l - A ) p E ,

w(£0 =  - t ^ t+1E C E -p ),
Q(E) =  (E -  q)<p(E) +  E ^ E )  + Eq( 1 -  K )2(l -  A)2(£  +  up)

= ( E - q ) ( E - u p ) { E - p 2) + 2u{l -  K)( l  -  X)pE{E -  q)

+  2<?(1 -  K){ 1 -  A)£[£ - p2 -  (1 -  K){1 -  \)E] + Eq{ 1 -  K ) 2( 1 -  A)2

Hence, equation (D.44) may be written as

P(E)Q(E)(E — p2)bt

= o-2v2AL2{ E - p 2)p(E)P{E)

-  [ 2 A L { E - q v ) ( E - p 2) ( E - p ) - p t2qkz { E - p 2) { E - p ) \  x

[(E — up)(E —p2) +  2u(l — i<r)(l — A)pE] ukzpt

-  [uk3pt+1E ( E - p ) ]  2q{l -  A) [E - p2 -  (1 -  K){ 1 -  A)£] u k ^ ,

while equation (D.48) is

P{E)Q{E){E - p 2)ct

= a2v2AL2{ E - p 2)p(E)P{E)

-  [2AL{E — qv)(E — p2) (.E - p ) -  pt2qk3[E -  p2) (E -  p)] x 

[E(E - p 2) + u( 1 - K ) (  1 -  A)pE]

+  [uk3pt+1E ( E - p ) \  [{E -  q)(E — p2) +  Eq{\ -  K )2{ 1 -  A)2] u k r f

(D.58)

(D.59)

(D.60)

(D.61)

(D.62)

(D.63)

(D.64)

(D.65)

(D.66)

{E +  up). 
(D.67)

(D.68)

(D.69)
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Note that

<¿>(1) =  (1 — up)( 1 — p2) +  2u(l — K)(  1 — À )p (D.70)

=  (1 -  XKu2)(l -  X2K 2u2) + 2XK(1 -  A)(l -  K )u2, (D.71)

/z(l) =  1 - P 2 + u { l - K ) ( l -  X)p (D.72)

=  1 +  XK {1 -  K  -  X)u2, (D.73)

7 (1) =  2q(l - K ) (  1 -  A )[l- p 2 -  (1 -  K)( l  -  A)]

=  2q{l -  K){ 1 -  A)[l -  X2K 2u 2 -  (1 -  K )( l  -  A)], (D.74)

<2(1) =  (1 -  1) +  7(1) +  Ml -  K ) 2{ 1 -  A)2(l +  up). (D-75)

Now, p =  AK u  (from equation (D.49)) is symmetrical in K  and A, i.e. K  and A may 
be interchanged. Similarly, <p( 1), M l), 7(1) and <2(1) are symmetrical in K  and A. <2(1) in-
equation (D.75) may be expanded by replacing p =  XKu, <p(l) (from equation (D.71)) and 
7(1) (from equation (D.74)), and collecting terms in A. This yields

Q(l) =  (1 -  qK2) -  XK[u 2{1 -  qK2) + 2(1 -  K )a 2}

-  A2[u 2(1 -  qK2) + a2( 1 -  K )2] +  X3K u 2[u2(l -  qK2) +  a 2(l -  A'2)] (D.76)

<2(l) =  (1 -  qK2){ 1 -  Xu 2K  -  X2u2 +  X3u 4K]

-  X[2K{1 -  K )a 2 + A(1 -  K ) 2a2 -  X2K(1 -  K 2)a2u2]

= (1 -  qK2)( 1 -  A V )(1 -  XKu2)

-  A(1 -  K ) cx2[2K{1 -  A V ) +  A(1 - K ) {  1 +  XKu2)]. (D.77)

Because Q( 1) is symmetrical in K  and A, Q(l) may also be written as

<2(1) =  (1 -  gA2)(l -  K 2u 2){ 1 -  XKu2)

-  K(  1 -  A)a2[2A(l -  K 2 u 2 ) +  K(  1 -  A)(l +  XKu2)]. (D.78)

Equations (D.68) and (D.69) are linear difference equations in bt and ct respectively.
Since |p| < 1 (equation (D.49)), the second and third terms on the right hand side of equa-
tions (D.68) and (D.69) vanish as t —» 00. Assume for now that the limits of bt and Ct as 
t —> 00 exist. Then, taking limits as t —s- 00 on equation (D.68),

P(1)<2(1)(1 - P2) lim bt = a2v2AL2( 1 - p2)(p(l)P(l), (D.79)
t - t o c

lim bt = cr2v2AL 2<p(l)/Q(l). (D.80)
t-¥  0 0

Define Q = <2(1) (from either equation (D.77) or (D.78)). Also define Eoc =  a 2v2AL2/Q. 
Then,

lim bt = Eoo<Ml), (D.81)
t—too

= Vco[(l -  XKu 2)(1 -  X2K 2u 2) +  2AA(1 -  A)(l -  K)u2], (D.82)
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where <¿>(1) is substituted from equation (D.71).
It is now possible to find the variance of the fund level.

lim Var/(i) =  lim Varul(t) (given equation (D.3))
¿ —> 0 0  ¿ —> OO

= lim Varulu{t) (from equation (D.9))¿—>oo
= lim Eulu(t)2 (using equation (D.54))¿—>■00
= lim bt (by definition from equation (D .ll)). 

¿—>00

Hence, using equation (D.82),

lim Varf i t )  = V^Ul -  XKu2)(l -  A2K 2u2) +  2XK(1 — A)(l — K )u2},¿—>oo
which proves equation (4.60) of Proposition 4.4.

(D.83)

(D.84)

Covariances

The same procedure yields the required covariances. Assuming that the limit of Ct as t -> 
oo exists and noting that the second and third terms on the right hand side of equation (D.69) 
vanish as t -» oo (since \p\ < 1 (equation (D.49)), then by taking limits on equation (D.69),

P(1)Q(1)(1 -  p2) lim et = a2v 2AL2( 1 -  p2)p{l)P(l) ,  (D.85)
t—>00

lim ct =  cr2v2AL2p(l) /Q(l) ,
t—>oc

=  ^ ( 1 ) ,  (D.86)

= V00[1 + X K { 1 - K  -  X)u% (D.87)

where //(l) is replaced from equation (D.73), Q — Q( 1) (from either equation (D.77) or 
(D.78)) and Vqo =  a2v2AL 2Q~1 again.

Hence, assuming that the limit exists,

lim Cov
t—too

i—o
=  lim ct — lim Eulu(t) lim pl ^Eulu(j)

¿—>■00 ¿—>00 ¿— >oo¿—>00 ■
3=0

= V ^ l  + XK(1 -  K  -  X)u2}, (D.88)

upon using equations (D.54), (D.57) and (D.87). 
Other covariances follow readily:

Cov[/(i), F(t)] =  Cov[AL — ul(t),AL — UL(t)\ (from equations (D.3) and (D.52)) 

=  Cav[ul(t),UL(t)]

= Cov[ul{t) -  U{t), UL(t) -  U(t)]

=  Cov ulu( t ) , { l -  X ) J 2 p '
j=0

t- j uluU) + Xyulop1
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(u sing  e q u a tio n  (D .51))

= (1 -  A)Cov
3=0

(D.89)

Assuming that the limits exist, and using equation (D.88),

lim Cov[/(i), F(i)] =  Foo(l -  A) [1 +  \ K ( l  - K -  A )u2}.
t —to c

(D.90)

From equations (D.4), (D.50) and (D.52),

Cov[/(f), c(i)] =  -(1  -  K)Cov[f{t), F(i)], (D.91)

and upon using equation (D.90),

lim Cov[/(t),c(t)] =  -4 ^ (1  - K ) (  1 -  A)[1 +  XK (1 - K -  A)u2]. (D.92)t—YOC

Equations (D.90) and (D.92) are of course identical to equations (4.63) and (4.64) respec-
tively in Proposition 4.4.

Variance of F(t)

Other results follow from the above. In the special case defined in equations (D.49) that 
we are considering, equation (D.21) becomes

Q+i -  upct -I- u( 1 -  K)(  1 -  A)pdt -  bt+1 =  -uksp t+1 j aj. (D.93)
3=0

Again, assuming that the limits exist and using equations (D.57), (D.81) (replacing <p(l) from 
equation (D.70)) and (D.86) (replacing p( 1) from equation (D.72)),

u(l — K)(  1 — A)p lim dt
t —)-oo

= lim bt — (1 — up) limct 

-  Voo[(l -  up)(l -  p2) +  2u(l -  K)(  1 -  X)p]

-  Voo(l -  Itp)[(l - p 2) + u(  1 -  K){  1 -  A)p]

=  Voouil —K){ 1 -  A)p(l +  up).

Hence,

lim dt -  Voo(l +  up)
t - ±  oo

= VO0{l + XKu2).

(D.94)

(D.95)
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I t  is s tra ig h tfo rw a rd  th a t

lim V a r^ p *  Julu(t) =  lim dt — lim 
i=0

= K»(l +  XKu2),

where we use equations (D.57) and (D.95). Furthermore,

VarF(f) =  VarFX(i) (given equation (D.52))
t

= (1 — A)2Var y y pt~^ulu(t) (from equation (D.51)), 
3=0

t

E
j=o

lim VarF(i) =  V ^ l  -  À)2(l +  XKu2) (using equation (D.96)),

which proves equation (4.61) of Proposition 4.4.

(D.96)

(D.97)

(D.98)

Variance of c(t)

Finally,

lim Varc(i) =  lim \ raiadj(t) (given equation (D.4))
t—»00 t—>-00

= (1 — K )2 lim VarF(f) (from equations (D.50) and (D.52))

=  Voo(l -  F ) 2(l — A)2(l +  AK u 2) (using equation (D.98)), (D.99)

and

lim Cov[c(i),F(f)l =  — lim Co<v[adj(t),UL(t)] (given equations (D.4) and (D.52))
t —» OO t —» OO

=  — lim (1 — K)YaxUL(t) (from equation (D.50))
t - >  OO

= — lim (1 — Ff)VarF(f) (from equation (D.97))<-»•00
= —̂ ( l  — K)(  1 — A)2(l +  XKu2) (using equation (D.98)). (D.100)

The last two results (equations (D.99) and (D.100)) correspond respectively to equations (4.62) 
and (4.65) of Proposition 4.4.

Stability Conditions

We have assumed thus far that these limits exist and must now establish appropriate 
stability conditions. Prom Corollary 4.1, for the limits in equations (D.54)-(D.57) to exist, it 
is sufficient that:

iv = i > —100%,

0 < K  < v,

0 < A < v.
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Conditions (D.101), (D.102) and (D.103) imply that 0 < p =  AK u < 1. which satisfies the 
requirement that |p| < 1 in equation (D.49).

The limits of Ò* and c* as t —> oo exist if and only if the magnitude of the roots of 
P(z)Q(z)(z — p2) =  0 are less than unity, from the right hand sides of equations (D.68) and 
(D.69) respectively. But P(z ) is the characteristic polynomial that determines first moment 
stability, as seen in equation (D.28) (as well as in equation (4.26)). We need to investigate 
the roots of Q(z) = 0.

From equation (D.67), Q(z) can be expanded into a standard cubic form:

Q(z) = z 3 -  Az2 + B z - C ,  (D. 104)

where

A = p2 +  q{l — (1 -  *0(1 -  A))2 +  up{ 1 -  2(1 -  *0(1 -  A)), (D.105)

B  = [up2 +  uq( 1 -  (1 -  *0(1 -  A))2 +pq[ 1 -  2(1 - * 0 ( 1 -  A))]p, (D.106)

C = up3q. (D.107)

The coefficient of z3 in Q(z) is one. Necessary and sufficient conditions for the roots of 
Q(z) — 0 to be less than unity in magnitude are given by, among others, Jury (1962, 1964:136) 
and Marden (1966):

\C\ < 1, (D.108)

\A + C\ < 1 + B,  (D.109)

\ A C - B \  < l l - C 2!. (D.110)

We now show that conditions (D.108), (D.109) and (D.110) are true if conditions (D.101)- 
(D.103) hold as well as if

Q > 0 (D .lll)

and

(1 +  \ 2K 2qu2)(l +  AzK za2u2 -  A4K 4que)

> 2 \ 4K 4{\ + K)qa2u4 + \ K ( \  + K ) 2qu2( l - \ 2K 2qu2), (D.112)

where Q =  Q(z =  1) =  1 — A + B  — C  (from equation (D.104)) and Q is also expanded in 
equations (D.77) and (D.78). First note that

Q > 0 => qK 2 < 1, (D.113)

Q > 0 =► ?A2 < 1. (D.114)

The second term on the right hand side of equation (D.77) is positive, given stability condi-
tions (D.101)-(D.103). In the first term on the right hand side of equation (D.77), 1 — A2u2
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and 1 — AK u 2 are also positive given the same first moment stability conditions as above. 
For Q > 0 (condition (4.58)), it is necessary, but not sufficient, that 1 — qK 2 > 0. By the 
symmetry between K  and A (using equation (D.78)), it is also necessary, but not sufficient, 
that 1 — qX2 > 0.

Condition (D.108)

If conditions (D.102), (D.103) and (D .lll) are true (and using implication (D.113)), then 
\C\ — \upi q\ = (Xu)2qK 2\Xu\\uK\ < 1, i.e. condition (D.108) follows.

Condition (D.109)

The requirement that A +  C < l  + .B isof course equivalent to inequality (D .lll).
Next, consider A  +  C > —(1 +  B). Assuming that conditions (D.101)-(D.103) are true, 

then C > 0. In addition,

A = p 2 + qK 2 + q{l -  K ) 2X2 + 2qK(l  -  K)X +  up -  2A(1 -  X)u2K ( l  -  K)

= p2 + qK2 +  q( 1 -  K ) 2A2 + up + 2(1 -  K)XK(q  -  (1 -  A)u2)

— p2 A qK 2 +  ^(I — K ) 2X2 +  up +  2(1 — K)XK(o2 +  Xu2)

> 0 , (D.115)

given conditions (D.101), (D.102), (D.103). Further,

B  = p[up2 +  uq( 1 — (1 — K)( l  — A))2 +  u2p( 1 -  2(1 -  K)(  1 — A))

+ a2p ( l - 2 ( l - K ) ( l - X ) ) }

= upA + o 2p2( l - 2 { l - K ) { l - X ) )  (D.116)

=  up\p2 + qK 2 +  q{ 1 -  K ) 2A2 +  up +  2(1 -  K)X2K u 2] + a2p2{ 1 +  2A(1 -  K))

> 0, (D.117)

given (D.101), (D.102) and (D.103). Hence, A  +  C > 0 > -1  > -(1  +  B).
Therefore, if conditions (D.101), (D.102), (D.103) and (D .lll)  hold, then condition (D.109) 

also holds.

Condition (D.110)

Provided conditions (D.101), (D.102), (D.103) and condition (D .lll)  are true (using im-
plication (D.113)), 0 < C < 1. First, consider AC — B < 1 -  C2. If condition (D.109) holds, 
then A + C < 1 +  B  and so AC + C2 <1 + B.

Next, consider AC — B > —(1 — C2). This turns out to be an inequality of the sixth 
degree in A. By exploiting the symmetry between K  and A and collecting terms in AK  and 
A +  K,  it may be written as inequality (D.112).
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Sufficient Conditions

We have shown that provided conditions (D.101), (D.102), (D.103), (D .lll)  and (D.112) 
are true, the limits in equations (D.82)-(D.100) do exist.

This concludes the proof of Proposition 4.4. □
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A ppendix E

Properties o f A sset Valuation  
M ethod

E .l Proof of Proposition 4.5

This proof is concerned with the stability of actuarial asset values (as defined in equa-
tion (4.2) or (4.3)) and their proximity to market values.

E [/(i) -  F(f)]2 = Var/(f) +  VarF(f) -  2Cov[f(t),F(t)] +  (E[/(t) -  F(t)})2, (E.l)

and since lim(E[/(i) — F(t )])2 =  (lim E/(i) — lim EF(f))2 =  0 (using equation (4.50)), it is 
clear that, in the limit as t —> oo,

lim E[/(i) — F(t )]2 — limVar/(f) +  limVarF(i) — 2 lim Cov[/(i), F(t)]. (E.2)

Each of the limits on the right hand side of equation (E.2) exists (equations (4.60), (4.61) 
and (4.63)), given the stability conditions of Proposition 4.4, so that inequality (4.68) is true.

As for inequality (4.69) of Proposition 4.5, we substitute lim Var/(t) and limVarF(f) from 
equations (4.60) and (4.61) respectively to obtain

lim Vai f ( t )  — lim VarF(i)
t—fr-OO v i-i-oo v

=  Voo[(l -  XKu 2){1 -  X2K 2u 2) + 2XK(1 -  A)(l -  K )u 2 

- ( 1 - A ) 2(1 +  A K u 2)\

(and upon expanding and collecting terms in A)

=  Voo [ -  Xzu2K ( l  -  u 2K 2) -  A2(l -  u 2K 2)

+  2A(1 - u 2K 2)]

= Voo(l -  u 2K 2)X [(1 -  A) +  (1 -  A2u 2K)\  (E.3)

> 0 ,
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from inequalities (4.46), (4.47) and (4.48).
This concludes the proof of Proposition 4.5. □

E.2 Proof of Proposition 4.6

This proof is concerned with the variation of lim Vax/(i) with K  and A. Note the following 
at the outset:

1. m  and K  = 1 — 1/a— have a direct one-to-one relationship.

2. lim Vax/(i), in equation (4.60) in Proposition 4.4, is symmetrical in K  and A: they 
can be interchanged without changing the value of lim Var/(f). Hence, any proof that 
d[\imVaif(t)]/dK > 0 will apply, except with all K  and A interchanged, to show that 
<9[lim Var/(i)]/<9A > 0.

We use equations (D.80) and (D.83) from Appendix D and express

lim Varf( t)  — a2v2AL2<p/ Q , (E.4)
t—y co

where <p =  <p(l) in equation (D.71) and

Q = Q(l) =  (l-q)<p + 7 {l) + q { l - K ) 2{ l - \ ) 2(l + up) (E.5)

in equation (D.75). By replacing 7 (1) from equation (D.74), we may simplify

7 (1) +  q{ 1 -  K )2( 1 -  A)2(l +  up)

=  2q(l -  K)(  1 -  A)[l -  A2 K 2 u 2 -  (1 -  K)(  1 -  A)]

+  <7(1 — iQ 2(l — A)2(l +  XKu2)

= q( 1 -  K)(  1 -  A)[2 -  2A2K 2u2 -  2(1 -  K )( l  -  A)

+ (1 -  K){1 -  \){1 + \ K u 2)]

= q{l -  K ) ( l  -  A)[2(l -  A2K 2u 2) -  (1 -  K )( l  -  A)(l -  XKu2)]

= q { l - K ) { \ - X ) p  (say). (E.6)

Therefore,

Q = Q(l) -  (l-q)<P + q ( l - K ) ( l - \ ) p t (E.7)

and, in equation (E.4), we write

lim Var/(t) = cr2v2AL2ip/[(l — q)tp +  g(l — K )( l  — Ap)]. (E.8)t—+OC
Now, note from equation (D.71) that

<p =  1 +  K X u 2 (1 -  2A) -  K 2Xu 2 {2 -  X) +  X 3A3u4, (E.9)

d p /d K  = Au 2(1 -  2A) -  2KXu2{2 -  A) +  3K 2X3u4. (E.10)
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Prom equation (E.6), p may also be expressed as a polynomial in K  and differentiated w.r.t. 
K:

p =  (1 +  A) +  K{\  -  A)(l + Xu2) -  K 2A(1 +  A)u2, (E .ll)

dp/dK  =  (1 -  A)(l +  Au2) -  2KX(1 + X)u2. (E.12)

lim Var/(i) is finite in the stable range imposed by stability conditions (4.46)-(4.48) and
(4.58). In particular, Q > 0, so that when examining <9[lim ~Va,if(t)]/dK we only need consider 
the ‘numerator’ of the differential of the right hand side of equation (E.4):

3[limVar/(i)]/5fir oc Q dp/dK  — pdQ /dK

= [(1 -  q)<p +  q{ 1 - K ){1 -  X)p]dp/dK

-  <p[(l -  q)dp/dK — q{ 1 — A)p +  g(l -  K){  1 -  A)dp/dK]

= q( 1 — A)[(l — K)pdp /dK  +  pp  — (1 — K)pdp/dK\

oc (1 -  K )pdp /dK  + ip p - {  1 -  K)pdp/dK.  (E.13)

This may be expanded by replacing cp, dp /dK,  p and dp/dK  from equations (E.9), (E.10), 
(E .ll) and (E.12) respectively, and by collecting terms in K  to give

[2A -  2A V ] +  K [2 -  2A -  2A V  + 2A3«2] -  K 2[2Xu2 +  2A V  -  2A V  -  2A4u4]

-  K 3[2X2u 4 -  2A3u 4 -  2A V  + 2A5u 6] +  K 4[2X2u4 -  2A4u 6]. (E.14)

Now 2(1 — X2u2) is a factor in each ‘coefficient’ of K  above. 1 — A2u2 > 0 from condi-
tion (4.48). After factoring out 2(1 — A2u2), we are left with

A +  K ( l  — A) -  K 2Xu2(l +  A) -  AT3A2u 4(1 -  A) + K 4X2u4. (E.15)

Terms in A may be collected to give:

K  +  A(1 -  K  -  K 2u2) -  X2K 2u 2(1 + K u 2 -  K 2u2) + XzK zu4

=  A(1 -  K)  -  A2AT3(1 -  K)u4 +  K[ 1 -  A K u 2 -  A 2K u 2 + X zK 2u4]

= A(1 -  K)[ 1 -  Au 4K 5] + K[ 1 -  XKu 2}[1 -  X2u2K]

> 0. (E.16)

The last inequality follows by virtue of conditions (4.47) and (4.48) and the definitions 
of 0 < A < 1 and 0 < K  < 1. (A u4K 3 = X u { K u f  < 1, A K u 2 = (A u){Ku) < 1, A 2u2K  = 
(Au )2K  < 1.) Equality in (E.16) occurs if K  =  0 (or m — 1) and X = 0.

Hence, we have shown that <9[lim Yaif (t)]/dK > 0 for K  > 0 and A > 0. By virtue of 
arguments 1. and 2. at the beginning of this section, we have therefore shown that, as m 
increases or as A increases, lim Var/ (t) increases monotonically.

This concludes the proof of Proposition 4.6. □
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E.3 Proof of Proposition 4.8

This proof is concerned with the variation of lim Varc(i) with m  and A. Note at the outset 
that m  and K  have a direct one-to-one relationship (d m /d K  > 0) so that we may investigate 
the variation of lim Varc(f) with K  rather than with m.

Q from equation (E.7) may be replaced into equation (4.62) from Proposition (4.4) so 
that

lim Varc(f) =  a2v2AL2{ 1 -  K )2{ 1 -  A)2(l +  \ K u 2)/[{1 -  q)ip + q{ 1 -  *0(1 -  A)p], (E.17)
t—>00

We note that

d[{l -  K ) 2{1 +  \ K u 2)]/dK =  (1 -  K)[Xu2 -  2 -  3AK u 2], (E.18)

and also that

dQ /dK  =  8[{1 -  q)p + q{ 1 -  ¿0(1 -  A)p\/dK

= (1 -  q)d<p/dK -  q{ 1 -  A)p +  q{ 1 — A)(l — K)dp/dK.  (E.19)

Since the denominator is required to be positive (Q > 0) from stability condition (4.58), we
need only consider the ‘numerator’ of the differential of the right hand side of equation (E.17):

d[limV&Tc(t)\/dK

oc Qd[( 1 -  J 0 2(1 +  XKu2)]/dK  -  [(1 -  i 0 2(l + AK u 2)]dQ/dK 

= [(1 -  q)q> + q{ 1 -  K)(  1 -  A)p](l -  K)[\u2 -  2 -  3AK u 2}

-  [(1 -  K )2{ 1 + X K u 2 ) }[ ( 1  -  q )dp /dK -  q(l -  \ ) p + q ( l  -  A)(l -  K)dp/dK],
(E.20)

by using equations (E.18), (E.19).
1—K  may be factored. We may also replace cp, d p / d K . p and dp /dK  from equations (E.9), 

(E.10), (E .ll) and (E.12) respectively. Upon collecting terms in K,  we obtain

[-2  +  2Aq +  2A V  -  2 A V 2] +  K[2q -  2Aq -  2A2qu2 +  2Azqu2]

+ K 2{—2\qu2 + 2A2qu2 +  2A3qu4 — 2A4qu4] +  K 3[2X2qu2 — 2A2qu2 -I- 2A2u4 — 2A2quA

-  2 A V 4 +  2A4gu4 -  2A4u 6 + 2A4gu6]. (E.21)

2(1 — A2u2) > 0 from condition (4.48) and may be factored from each ‘coefficient’ of K  in the 
above to give

- \  + Xq + K ( l  — X)q — K 2 A(1 — X)qu2 + K 3Xu2[q — A q+ Xu2 — Agu2]. (E.22)

This becomes, after terms in A are collected,

7t (A) =  -(1  -  Kq) +  A(1 -  K)q(l  -  u2K 2) +  X2K 2u2[u2(l -  Kq) + (1 -  K )a 2}. (E.23)
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We have shown therefore that

<9[limVarc(t)\/dK cx (1 — A )2(l — A2u 2)7t (A), (E.24)

where 1 — K  > 0 and 1 — A2u2 > 0 by conditions (4.47) and (4.48). The sign of 7t (A) needs 
to be investigated.

P ro o f th a t  m > m* => limVarc(t) increases m onotonically  w ith  m.  It is easily proven 
that it is sufficient for m  > m* (and A > 0) for 7r(A) > 0. The right hand side of equa-
tion (E.23) is easily rearranged into

t t (A) =  -(1  -  Kq)[ 1 -  \ 2K 2u 4} +  A(1 -  K)q{ 1 -  u2K 2) +  \ 2K 2{\ -  K )u2a2. (E.25)

The last two terms in the right hand side of the above are positive (for A > 0 and given 
condition (4.47)). The sign of the first term depends on 1 — Kq  (note that 1 — A2K 2u4 — 
1 — (Au )2(Ku )2 > 0, given conditions (4.47) and (4.48)). Hence, if A > 0 and m > m* 
(1 — Kq  < 0) then 7t (A) > 0. It follows therefore that limVarc(i) increases with increasing 
m  >m*.

P ro o f th a t  A > A* => limVarc(t) increases m onotonically  w ith  m.  Next, it can also 
be proven that it is sufficient for A > A* (and m > 1) for 7r(A) > 0. Note that this has already 
been proven when m  > m* in the previous paragraph. We need only consider m < m* 
therefore. Now, from equation (E.23), 7r(A) is quadratic in A. When 1 — Kq > 0 (i.e. when 
m  < m*), the coefficient of A2 is positive, so that 7r(A) has a minimum. Further, 7t (A =  0) < 0 
and 7t '(A =  0) > 0. If we show that 7r(A =  A* > 0) > 0, then it follows that 7r(A > A*) > 0.

Q2 t t (A =  A* =  1/q)

= u 2A 'V ( 1  -  Kq) +  (1 -  K )a2] + q2{ 1 -  K){  1 -  u2K 2) -  q2(l -  Kq)

= u 2K 2[u 2{ 1 -  Kq) +  (1 -  K )a2} -  q2K  +  q2K[q -  u2K (  1 -  K)]

= K  [u 2K[u 2( 1 -  Kq) +  (1 -  K )a2} +  q2[q -  1 -  u2K{ 1 -  A)]]

=  K  [u 4K  -  qv4K 2 + K ( l  -  K )a 2u2 +  q2{q -  1) -  q2u2K ( l  -  K)]

=  K  [u 2K[u 2 — qu2K  +  (1 — K )a 2 — q2(l — K)] +  q2(q — 1)]

=  K  [u 2K[—u 2(q -  1) -  (1 -  K )a2(q -  1)] +  q2(q -  1)]

=  K{q -  1) [ - u 2K ( u 2 + (1 -  K)a2) +  q2]

> K(q — 1) [—u 2K ( u 2 +  (1 — K)cr2) +  u2] (since q2 > u2)

= K(q -  1 )u2 [l -  K(u2 +  (1 -  A)cr2)]

>  K(q — l)u2[l — Kq] (since u2 +  (1 — K )a 2 < q)

> 0 (when m <m*).
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Hence, we have shown that 7t (A > A*) > 0 or that limVarc(f) increases monotonically 
with increasing m  provided A > A*.

Proof that lim Varc(f) has at least one minimum, as m increases, at some m * ^  < m*,
provided 0 < A < A*. 7t (A) in equation (E.23) may be rearranged into a cubic polynomial
in K:

7r(K) = - (1  -  A q) + Kq{ 1 -  A) -  K 2 A(1 -  A )qu2 +  K z\ u 2(q -  A qu2 -  A a 2). (E.26)

If A < A* =  1/q, then it is clear that n(K  =  0) < 0. In addition, t t ' (K  =  0) > 0 and 
tt"(K  =  0) < 0. We have shown already that n(K  =  K* = 1/q) > 0  from equation (E.25). 
7t (K) in equation (E.26) is a cubic in K.  Hence, if A < A*, iv(K) must have at least one root 
at some K  = K * ^ \  such that 0 < K * ^  < 1/q and such that tv' (K  =  K * ^ )  > 0, i.e. 7r(K) 
must have at least one minimum at 0 < K *(x'1 <1/9-

Hence, we have shown that, if 0 < A < A*, as m  increases, limVarc(t) has at least one 
minimum at some 1 < m *^ < m*.

Sym m etry between K  and A. A consequence of the symmetry between K  and A is that 
lim Varc(f) remains unchanged in equation (4.62) if K  and A are interchanged. Therefore, the 
proof above concerning the variation of lim Varc(t) with m  (or K)  applies when we consider 
the variation with A, except that all K  and A are exactly interchanged. The second part of 
Proposition 4.8 is therefore exactly symmetrical with the first part.

This concludes the proof of Proposition 4.8. □
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A ppendix F

4 D ual-interest’ and ‘Integral 
Spreading’ M ethods

F .l  Proof of Proposition 5.1

This proof is concerned with the ‘dual-interest’ method of §5.5. It is a straightforward 
application of the method employed by Dufresne (1986, 1988). Since {¿(t)} is a sequence of 
independent identically distributed random variables, it follows that u( t+ 1) in equation (5.14) 
is independent of u(t), u(t — 1) etc. and also of ul(t), ul(t — 1) etc. Upon taking expectations 
on both sides of equation (5.14), it is clear that

E /( i  + l) = u(l — ki)Ef(t)  +  uAL(k\ — dr), (F.l)

where k\ = k +  k . Hence, provided that |u(l — ki)\ < 1, taking limits as t —> oo yields 
equation (5.18). By definition,

ul(t) =  A L - f { t ) t (F.2)

and taking expectations and limits as t —>■ oo on equation (F.2) and using equation (5.18), 
limE'td(f) in equation (5.19) follows readily. limEc(i) in equation (5.20) is obtained by taking 
expectation and limits as t —>■ co on equation (5.10) and using equation (5.19).

The second moments are obtained most easily by following the method of Dufresne (1986, 
1988). When equation (F.l) is subtracted from equation (5.14), it is found that

f { t  +  1) -  E /(f +  1) =  u(t +  1 )[f(t) — E /(f)](l -  fci) +  (u(f +  1) - u ) Y ( t ) ,  (F.3)

where

Y(t) = (k1 - d T)AL + ( l - k 1)Ef(t). (F.4)
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Further, when both sides of equation (F.3) are squared,

[ f( t+  1) -  E /( t +  l)]2 =  u(t +  1 )2[f(t) -  E f  (i)]2(l -  h )2 +  [u(t +  1) -  u)2Y ( t ) 2

+ 2uit  + l)(u(i +  1) -  u)[f(t) -  E /( t)]y ( t)( l -  h ) .  (F.5)

It is clear that u(t +  1) is again independent of {u(s)}, {f{s)}  for s < t. Taking expectations 
as t —> oo on both sides of equation (F.5) yields

V ar/(i +  1) =  ?(1 — kx)2Var/(i) +  cr2y ( i)2. (F.6)

Taking expectations across equation (F.4) and then taking limit as t -* 00 and applying 
equation (5.18), it follows that

lim Y(t) =  (hi -  dr)AL +  (1 -  kx) lim E /(i)
t—> 0 0  t-¥  OO

= ALv(dr — ki)/(d — hi). (F.7)

Thus, if <7(1 — ki )2 < 1 in equation (F.6), it follows that

lim Var/(t) =  ex2 lim y(i)2/[ l  — q( 1 — ki)2]. (F.8)
t —¥ OO

Replacing lim y(f) in equation (F.7) into equation (F.8), the result in equation (5.22) follows, 
lim Varc(t) is obtained by taking variance and limits as t —» 00 on both sides of equation (5.10) 
of course.

This concludes the proof of Proposition 5.1. □

F.2 Proof of Proposition 5.2

Define ulu(t) =  ul(t) — U(t). We note that u(t + 1) is independent of {u(s)} and {ul(s)} 
for s < t .  Taking expectations across equation (5.34),

t

Eulu(t +  1) = u(l — kp)Eulu(t) — uki Eulu(j) + (1 — uvv)(AL — U(t +  1)), (F.9)
3=0

for t > 0. Forward-shift equation (F.9) in time (so that it holds for t > — 1) and deduct 
equation (F.9) to obtain

E ulu(t +  2) — [1 — u(l — kp — ki)]Eulu(t +  1) +  w(l — kp)Eulu(t)

= { l - u v v){U(t + l ) - U { t  + 2)). (F.10)

The characteristic equation and stability conditions for difference equation (F.10) are identical 
to those of equation (5.37). Assuming these conditions hold, then

lim Eul(t) = lim Eulu(t) = 0  <i4> lim Ef( t)  = A L , (F .ll)
t—>00 t —>■ 00 t —too

since U(t) —> 0, as t ->• 00. The rests of the proof proceeds as in §5.6.2. □
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F.3 Proof of Proposition 5.3

A Special Case of §D .l

This proof is concerned with the second moments of the pension funding process when 
gains and losses are adjusted according to the method described by equation (5.32). Com-
parison of equations (5.32) and (D.8) reveals that this can be considered to be a special case 
of the general model described in §D.l.

We may therefore consider a special case of the general situation described in §D.l by 
letting

h  -  kp, k% = ki, h  = 0, p  = 1. (F.12)

Equation (D.2) is now

t

adj (t) = kpulu(t) + k ^ n j )  + P(t), (F.13)
i=o

and equation (D.14) becomes 

ulu{t + 1) -  (AL — U(t + 1))

— u(t +  1)
t

ulu(t){\ — kp) -  ki ^  ulu(j) — vv(AL — U(t+  1))
3=0

(F.14)

This is the same as equation (5.34).
We have shown in Proposition 5.2 and Corollary 5.2 that, provided certain conditions 

hold,

lim Eul(t) = lim Eulu(t) = 0, (F.15)
t—>oo OO

lim Eadj(t) = AL(dv — d). (F.16)
t —¥O0

From equation (5.58),

t

lim y ^ E uln(j) — AL(  1 - u v v)/uki = AL(dv — d)/ki. (F.17)
t-¥ OO Z— /

3=0
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In the special case given by equations (F.12),

Ot = A L ( l - u v v), (F.18)

P(E) = { E -  «(1 -  kp)){E -  1) +  Euki, (F.19)

ip(E) = ( E -  q( 1 -  kp)2)(E  -  1) +  E q k l  (F.20)

7 (E) = 2qki{l -  kp)(E -  1) -  2qk2E, (F.21)

v(E) =  2AL[E  -  qvv{\ -  kp)){E -  l)2 +  2qvvkiA L E (E  -  1), (F.22)

tp(E) = ( E -  u(l -  kp))(E  -  1) +  2ukiE, (F.23)

fi{E) = E (E  -  1) +  ukiE, (F.24)

u(E) = A L { l - u v v) E { E - l ) ,  (F.25)

Q(E) = [ E -  q{ 1 -  k2p))[{E -  u(l -  kp)){E -  1) +  2uklE]

+  E2qki[(l -  kp){E -  1) -  ktE] + Eqk\[E  +  u(l -  kp)]. (F.26)

Hence, equation (D.44) may be written as

Mean Square Deviation of ul ( t )  and Variance of /(f)

P(E)Q(E)bt

= (qvl ~  l)A L 2<p(E)P(E)

-t- 2AL2(1 — uVy) [{E — qvv( 1 -  kp))(E  -  1) +  qvvkiE] [{E — u(l — kp))(E  — 1) +  2uk{E]

— (1 -  uvv)Eqki [(1 -  kp)(E  -  1) -  k{E]

while equation (D.48) becomes 

P(E)Q(E)ct =  (qv2y -  1 )AL2h (E)P(E)

(F.27)

4- A L2( 1 — U V y ) [2(E  — qvv( 1 -  kp))(E  -  1) +  2qvvki] [E(E — 1) +  Euki]

+ (1 -  uvv) [{E -  q( 1 -  kv)2){E -  1) +  E q ^] (F.28)

Equations (F.27) and (F.28) axe linear difference equations in bt and ct respectively. Note 
that <¿>(1) — 2uki, P( 1) =  /i(l) =  uki and

Q(l) =  2uki{l -  q( 1 -  kp)2) -  qk2( 1 -  u (l -  kp)).

Assume that the limit of bt as t  -4- oo exists. Then, from equation (F.27),

(qvl — l)A L 22u2k2 + 2AL2(1 -  uvv) [qvvk{2uki +  (1 — uvv)qk2]
lim bt =t—► 00 uki [2u k i ( l  -  q {\ -  kp)2) -  q k2{1 -  u (l -  kp))] 

A L 22u 2k 2 [q v2 — 1 +  q v2( 1 — u vv ) ( l  +  uv„)]
2u kiuki [1 — q ( l  — kp)2 — q v k i i l  — u(l — kp ))/2]

(F.29)

(F.30)

(F.31)
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Variance of c(t)

Other results can also be obtained. Under the special case defined in equations (F.12), 
equation (D.21) becomes

t

ct+1 -  tt(l -  kp)ct +ukidt -  bt+i = (1 -  uvv)(AL - U ( t +  1)) Y 'd j .  (F.38)
j =o

By talcing limits (assuming they exist) on equation (F.38) and using equations (F.17), (F.32) 
and (F.34),

uki lim dt = lim6t — (1 — u( 1 — kp)) limct +  AL2(1 — uvv)2/uki
t-¥ OO

=  [1 -  (1 -  u(l -  kp)) /2]V00 +  AL2( 1 -  uvv)2/uki 

=  (1 +  u (l -  kp))V00/2  +  AL2( 1 -  uvv)2/uki (F.39)

k2 lim dt = h i 2 - k p -  d)Vx>/2 + AL2{dv -  d)2. (F.40)

Therefore,

k2 lim VarY^ ulu(j) — kf lim dt — k? lim
1 t-too 1 t-K3C

3= 0
Î -+ O C t—too E e ^u(j )

3= 0

= ki(2 — kp — d)VO0/2  (from equations (F.17) and (F.40)). (F.41)

Finally,

Varc(i) =  Var adj (t)
t

+  fcfVar ^ u P ( i ) ,  
3=0

= k2Varulu(t) +  2kpkiCov ulu( t ) ,J " u lu(j)I / ,
3= 0

where we have used equations (D.4) and (F.13). Assuming limits exist,

lim Varc(i) =  [k2 +  ki +  ki(kp -  d)/2]V00,

using equations (F.33), (F.35) and (F.41).

(F.42)

(F.43)

S tab ility  C onditions

We now need to investigate the conditions for which these limits exist. From Corollary 5.2, 
for the limits in equations (F.15)-(F.17) to exist, it is sufficient that:

i > -100%, (F.44)

0 < u(l — kp) < 1, (F.45)

0 < k{ < 2(1 — d + 1 -  kp). (F.46)

259



Furthermore, the limits of bt and Ct as t -* oo exist if and only if the magnitude of the 
roots of P(z)Q (z) =  0 are less than unity, from the right hand sides of equations (F.27) and 
(F.28) respectively. But P(z) is the characteristic polynomial that determines first moment 
stability, as seen in equation (D.28) (as well as in equation (5.38)). It remains to consider the 
roots of Q(z) = 0.

Q(z), in equation (F.26), can be expanded into a standard cubic form:

Q(z) = 23 -  A z2 + B z — C, (F.47)

where

A = 1 + q{l — kp -  hi)2 + u (l — kp -  2ki), (F.48)

B  =  [u +  uq{ 1 — kp -  ki)2 +  q{ 1 — kp — 2&j)](l -  kp), (F.49)

C = u q { l - k pf .  (F.50)

The coefficient of z3 in Q(z) is unity. Necessary and sufficient conditions for the roots of 
Q(z) — 0 to be less than one in magnitude—using, for example, the criteria of Jury (1962, 
1964:136) or Marden (1966)— are that:

\C\ < 1, (F.51)

\A + C \< 1  + B, (F.52)

\A C - B \  < |1 — C2|. (F.53)

We now examine each in turn.
We can show that if conditions (F.44)-(F.46) hold as well as if

0 < ki < 2u[l — q(l — kv)2]/q[l — u{l — kp)] =  (say) (F.54)

and

[1 + ç ( l  -  kP)2][ 1 -  qu2{ 1 -  kp)4] + u(l -  kp)[l -  q{ 1 -  kp)2][ 1 +  q{ 1 -  kp -  ki)2]

> 2q{l -  kp)ki[ 1 -  u2(l -  kp)2], (F.55)

then conditions (F.51), (F.52) and (F.53) are true. First observe that conditions (F.44), 
(F.45) and (F.54) imply that

q( 1 -  kp)2 < 1. (F.56)

C ondition (F.51)

Since \C\ =  g(l — kp)2\u(l — fcp)|, it is sufficient that inequalities (F.45) and (F.56) (and 
hence condition (F.54)) hold for condition (F.51) to be true.
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C ondition  (F.52)

First, consider A  + C < 1 +  B. This readily simplifies to

qk2 -  2uki < k2qu(l — kp) — 2kiuq(l — kp)2, (F.57)

ki[qki(l -  u(l — kp)) — 2u(l -  q(l — kp)2)] < 0. (F.58)

It is clear that 0 < k{ < «¿, as in condition (F.54), implies that A  +  C < 1 +  B.
Next, consider A + C > — (1 +  B). Upon expanding and collecting terms in k{, we have

k2q[ 1 +  u(l -  kp)] -  ki[2u{l +  q(l -  kp)2) + 4q(l -  kp)]

+  [2 + 2q{l -  kp )2 + 2u(l -  kp) +  2uq{l -  kp)3] > 0, (F.59)

and the term independent of kt can be factorised as 2[1 +  q( 1 — kp)2][ 1 + u(  1 — kp)]. Thus, 
A + C > — {1 + B) reduces to a quadratic inequality in k f

k2q[ 1 T  u(l -  kp)] -  ki[2u{l +  q( 1 -  kp)2) + 4q(l -  kp)]

+  2[1 +  ^(1 — kp)2][l + w(l — kp)] > 0, (F.60)

where the coefficient of k2 is positive (given condition (F.45)). Now, the discriminant of the 
quadratic on the left hand side of inequality (F.60) is

4u 2[1 +  q(l -  kp)2]2 +  16ug(l -  kp)[ 1 +  q( 1 -  kp)2] +  16g2(l -  kp)2 

-  8g[l +  g(l -  kp)2][ 1 + u( 1 -  kp)]2 

= 4[1 +  q( 1 -  kp)2][u2 -  qu2{l -  kp)2 -  2q] +  16g2(l -  kp)2 

=  4u2[1 +  g(l -  kp)2][ 1 -  q{ 1 -  kp)2] -  8g[l -  q( 1 -  kp)2]

=  4[1 -  q{ 1 -  kp)2][u2 + u2{ 1 -  kp)2q -  2q]

= ~4[1 -  q( 1 -  kp)2][o2 +  q{ 1 -  u2(l -  kp)2)]

< 0 ,

given conditions (F.45) and (F.56) (or condition (F.54)). Therefore the quadratic inequal-
ity (F.60) holds.

Hence, conditions (F.45) and (F.54) are sufficient for condition (F.52) to be true. 

C ondition  (F.53)

AC — B  <1 — C2 may be written in the form of condition (F.55).
Next, consider AC  — B > — (1 — C2). Upon expanding and collecting terms in kt, we 

obtain

uq( 1 -  kv)3[q( 1 -  kp)2 + u(l -  kp)] -  (1 -  kp)[u +  q{ 1 -  kp)] +  1 -  [uq( 1 -  kp)3]2 

-  2ki[uq{\ -  kpf{q{  1 -  kp) + u) -  g(l -  kp)(l +  u{ 1 -  kp))]

— k2qu(l — kp)[l -  q(l — kp)2] > 0. (F.61)
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The term independent of kt factors to [1 -  u(l — /cp)][l — g( 1 — kp)2][ 1 — g(l — kp)2u( 1 — kp)]. 
AC — B  > —(1 — C2) therefore reduces to a quadratic inequality in kt:

kfqu{ 1 -  kp)[ 1 -  g( 1 -  kp)2] -  2/c,g(l -  kp)[u{l -  A:p)[l -  g( 1 -  kp)2) +  1 -  u2(l -  kp)2]

— [1 — u(l — fcp)][l — g(l — kp)2][l — g(l — kp)2u (l — kp)} < 0. (F.62)

Let the left hand side of inequality (F.62) be ir(ki). The coefficient of kf is positive if con-
dition (F.45) and inequality (F.56) (or condition (F.54)) hold, and n(ki) must then have a 
minimum. The constant term (independent of ki) is negative if condition (F.45) and inequal-
ity (F.56) (or condition (F.54)) are true, so that ir(ki =  0) < 0. it (ki) =  0 has two real roots 
a  and (3 with a < 0 < (3 and tt (ki) < 0 for ki £ {a, (3). Ki is defined in inequality (F.54) and 
Ki > 0 under condition (F.45) and inequality (F.56) (or condition (F.54)). By disregarding 
the constant term in inequality (F.62),

7T (ki =  Ki)/Ki

< Kiqu( 1 -  kp)[ 1 -  g( 1 -  kp)2] -  2q(l -  kp)[u( 1 -  kp)( 1 -  q(l -  kp)2) +  1 -  u2(l -  kp)2]

< Kiqu( 1 -  kp)[ 1 -  g(l -  kp)2] -  2q(l -  kp)[ 1 +  u( 1 -  /cp)][l -  q( 1 -  A:p)2]

(since q = u2 + a2 > u2 and 1 — u2(l — kp)2 > 1 — q(l — kp)2)

= 2u 2(1 -  fcp)[l -  g(l -  kp)2]2/[ 1 -  u(l -  kp)] -  2g(l -  kp)[ 1 +  u( 1 -  kp)][ 1 -  q{ 1 -  kp)2]

(after replacing Ki from equation (F.54))

=  [u2(l -  q{ 1 ~ kp)2) -  q( 1 -  u2{ 1 -  fcp)2)]2(l -  kp)[ 1 -  g(l -  A:p)2]/[1 -  u{ 1 -  kp)]

=  -2(1 -  fcp)[l -  g(l -  kp)2]a2/[ 1 -  u(l -  kp)]

< 0, (F.63)

under condition (F.45) and inequality (F.56) (or condition (F.54)). Therefore, a  < 0 < Ki < 
/?; and for 0 < ki < Ki, ir{ki) < 0 or AC — B > —(1 — C2).

Hence, condition (F.53) is true provided conditions (F.45) and (F.54) hold.

Sufficient Conditions

We have shown that it is sufficient that conditions (F.44), (F.45), (F.46), (F.54) and (F.55) 
hold for the limits in equations (F.30)-(F.43) to exist.

This concludes the proof of Proposition 5.3. □

F.4 Proof of Proposition 5.4

This proof is concerned with the ultimate mean square unfunded liability when integral 
spreading is used according to the method described in equation (5.32).
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D efine th e  follow ing:

C S  =  lim Eul(t)2/A L 2 when Conventional Spreading is used (kl =  0) (F.64)

(F.65)IS  = lim Eul(t)2/A L 2 when integral Spreading is used (ki ^  0).

The second non-central moment of the unfunded liability when surpluses and deficits are 
spread forward is found in equation (5.8):

First, consider the last part of Proposition 5.4. Since k > d from stability condition (5.55) 
and for A > 0, it is clear that CS  in equation (F.66) is smallest when A — 0. It is also 
immediately clear from equation (F.68) that as k  -» 0 (or m* —> oo), IS  —> a 2 v 2 l [ \ — q ( l — k ) 2 }. 

Integral spreading (for any A) becomes as efficient as conventional spreading as if A =  0.
Next, note that I S  in equation (F.68) decreases monotonically as kt decreases (or m* 

increases), given conditions (5.54) and (5.55), and since the coefficient of ki in the denominator 
of the right hand side of equation (F.68) is negative. The longer m* is, the more efficient 
integral spreading becomes.

When A = 0, C S  in equation (F.67) is less than IS  in equation (F.68) (except at —>• oo).
Conventional spreading is therefore more efficient.

When A > 0, C S  in equation (F.66) is greater than ct2u 2/[1 — <?(1—fc)2]. But as m* increases 
from m ™111 tending to +oo, IS  decreases monotonically from +oo tending to a2v2/[ 1 — q( 1 — 
k)2]. Therefore, there exists some {m^} such that IS  < CS. This inequality is linear in ki, 
and can be rewritten, using equations (F.66) and (F.68), as:

CS =  A2/{d -  k )2 + a V [ l  +  A/(Jfc -  d)]2/[ l -  9(1 -  fc)2], 

A =  0 C S = a2v2/[l — q(l — k)2\.

(F.66)

(F.67)

From equation (5.62),

IS  — cr2v2/[ 1 — q( 1 — k )2 — q k(k  — d) /  2]. (F.68)

(F.69)

where

(F.70)

m l  in equation (5.72) is the reciprocal of k l in equation (F.70).
This concludes the proof of Proposition 5.4. □

263



F .5 Proof of Proposition 5.5

This proof is concerned with the ultimate mean square supplementary contribution or 
contribution adjustment when integral spreading is used according to the method described 
in equation (5.32).

Define the following:

CSi =  lim Eadj(t)2/A L 2 when Conventional .Spreading is used (ki = 0), (F.71)
t —¥ 0 0

IS i  =  lim Eadj(t)2/A L 2 when integral Spreading is used (ki /  0). (F.72)
t —* 0 0

The second non-central moment of the supplementary contribution when surpluses and 
deficits are spread forward is found in equation (5.9):

CS\ =  k2 A2/(d — k )2 +  a2v2k2[ 1 +  A /(k  — d)]2/[ 1 — q( 1 — A:)2], (F.73)

A = 0 =» CSi = a2v2k2/[ 1 -  q( 1 -  k )2]. (F.74)

From equations (5.50) and (5.63),

I  Si — A 2 + a2v2[k2 + ki + ki(k -  d)/2]/[l -  q(l -  k )2 -  qki(k -  d )/2]. (F.75)

First, consider the last part of Proposition 5.5. Since k > d from stability condition (5.55) 
and for A > 0, it is clear that CSi in equation (F.73) is smallest when A =  0. From 
equation (F.75), as ki —> 0 (or m, -» oo), I  Si —>• A2 +  a2v2k2/[I — q(l — k)2].

Next, note that IS i  in equation (F.75) decreases monotonically as ki decreases (or m, 
increases). Given conditions (5.54) and (5.55), the coefficient of ki in the denominator of the 
right hand side of equation (F.75) is negative, while the coefficient of ki in the numerator is 
positive. The longer m, is, the more efficient integral spreading becomes. As m, increases 
from m™in tending to +oo, IS \  decreases monotonically from +00 tending to A 2+a2v2k2/[l — 
<7(1 -  k)2].

Since v > 0 and k > d from stability conditions (5.54) and (5.55) respectively, then for 
^  >  0 or m, < 00,

<t 2v2[A;2 +  k{ +  ki(k — d)/2] > a2v2k2, and 

1 — q(l — k )2 — qki(k — d) /2  < l — q(l — k)2,

so that IS \ > a2v2k2/[ 1 — q( 1 — k)2}. When A =  0, IS i > CS\, and conventional spreading 
is more efficient.

Suppose A > 0. The first term on the right hand side of equation (F.73) is larger than 
A2, since k /(k  — d) > 1 (given conditions (5.2) and (5.3)). Furthermore, [1 + A /(k  — d)]2 > 1 
when A > 0 (since k > d given condition (5.3)). Therefore,

CSi > a2v2k2/[\ -  q(l -  k)2] + A 2 = lim I S X. (F.76)
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But as rrii increases from m 7am tending to +oo, I  Si decreases monotonically from +oo tending 
to A2 4- cr2v2k2/[I — q( 1 — k )2]. Therefore, there exists some {m*} such that IS i < CS\. This 
inequality is linear in fcj, and can be rewritten, using equations (F.73) and (F.75), as:

ki < k l  (F.77)

where

kl =  |2 (d - d „ ) [ l  -q {  1 -  k)2][a2v2(k -  dv + k -  d)k2 + (d -  dv)(l -  q(l -  k)2)d(2k -  d)]

|(A; — d)q[a2v2(k — dv)2k2 +  (d — dv)2( 1 — q( 1 -  k)2)d(2k — d)]

+  a2v2(k — d)2( 2 +  k — d)[l — q{ 1 — fc)2] l .  (F.78)

m l in equation (5.73) is the reciprocal of kf in equation (F.78).
By comparing equations (F.68) with (F.75) as well as (F.66) with (F.73), it is easily found 

that

IS i =  [k2 +  h  + ki(k -  d)/2)IS + A2, (F.79)

CSi = k2CS. (F.80)

Now, assume that mi = m\. Then, I  Si = CS\ or

[ k i+ k i(k -d ) /2 ] IS +  k2{ I S - C S )  + A 2 = 0. (F.81)

Since the first and third term on the left hand side of the above are positive, it follows that 
IS  < C S  or mi = m l > m{.

This concludes the proof of Proposition 5.5. □
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