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ABSTRACT
Motivated by three health economics-related case studies, we propose a uni-
fying and flexible regression modeling framework that involves regime switch-
ing. The proposal can handle the peculiar distributional shapes of the consid-
ered outcomes via a vast range of marginal distributions, allows for a wide
variety of copula dependence structures and permits to specify all model
parameters (including the dependence parameters) as flexible functions of
covariate effects. The algorithm is based on a computationally efficient and
stable penalized maximum likelihood estimation approach. The proposed
modeling framework is employed in three applications in health economics,
that use data from the Medical Expenditure Panel Survey, where novel patterns
are uncovered. The framework has been incorporated in the R package GJRM,
hence allowing users to fit the desired model(s) and produce easy-to-interpret
numerical and visual summaries.

ARTICLE HISTORY
Received 25 April 2023
Accepted 21 August 2023

KEYWORDS
Copula; penalized regression
spline; simultaneous
estimation; structural
equation model; switching
regime.

1. Introduction

Inspired by health economics-related studies, we introduce a unifying and flexible regression modeling
framework with endogenous regime switching. In particular, we consider three case studies which
investigate the effect of a binary treatment on different types of outcomes. The first study involves a
continuous outcome and investigates the effect of holding insurance through the employer on female
wage earnings, and tests whether the theory of “compensating differentials” holds. The second study,
where the outcome is discrete, addresses the question of whether visiting a doctor to obtain curative
health care services affects children’s school attendance. The third study, which involves a binary
outcome, investigates the effect of private health insurance on health care consumption, and assesses
the theory of “favorable selection”. These studies use data from the Medical Expenditure Panel Survey
(MEPS), collected and published by the Agency for Healthcare Research and Quality, an agency within
the U.S. Department of Health and Human Services. Commencing in 1996 and still ongoing to this
day, the MEPS enjoys a reputation for having the most complete individual-level information on health
insurance, health care usage, and health conditions among large-scale household surveys in the U.S. The
MEPS database files are freely available at https://www.meps.ahrq.gov.

Endogenous switching regression was originally envisioned in economics by Roy (1951) and then
later exploited by Borjas (1987). A parallel approach was independently developed in statistics under
the name of potential outcome framework (Cox, 1958; Neyman, 1923). The main difference between
the two frameworks is in the model’s formalization; in economics, models are thought of in terms of
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realized, not potential, outcomes, because the counterfactual information is already enclosed in the
related structural equations and hence there is no need to construct “non-realised” variables to carry
this information (Pearl, 2015). Given our background knowledge and acquired experience, we adopt
the structural equation approach since it naturally fits within the context of our case studies. In fact, this
framework allows us to assess economic theories, check model assumptions, account for the continuous
or non continuous nature of the data, quantify the presence of omitted confounders, use the structural
coefficients to obtain treatment effects, and flexibly adjust for the effect of many and different types of
observed confounders (e.g., Bollen, 2013).

Switching regression has proved to be a valuable tool in labor economics where it has been abundantly
applied, discussed, and extended in several ways (e.g., Chen et al., 2014; Cornelissen et al., 2016;
D’Haultfoeuille and Maurel, 2013; Eisenhauer et al., 2015; French and Taber, 2011; Heckman and
Honore, 1990; Heckman et al., 2003; Smith, 2005). Applications and extensions have also appeared in
other fields (e.g., Bayer et al., 2011; Fitawek and Hendriks, 2021; Kim, 2021; Moscelli et al., 2018), hence
highlighting the relevance of the modeling framework. When the approach was first developed and
formalized, multivariate normality was assumed for theoretical and computational tractability. Since this
assumption is clearly questionable in applications, extensions were proposed. A notable example is Smith
(2005) who introduced a class of alternatives to the multivariate Gaussian based on copulae, a modeling
strategy whereby a joint distribution is formed by specifying marginal distributions and a copula
function that binds them together. In terms of software implementation, the traditional model, based on
the assumption of normality, can be found in Lokshin and Sajaia (2004) and Toomet and Henningsen
(2020). Hasebe (2013) provided an implementation where the normal, logistic and Student’s t univariate
distributions as well as several bivariate copulae can be employed to specify the model. Hasebe (2020)
presented a switching regression model for count-data that exploits multivariate normality.

The aim of this work is to introduce a unifying parametric but flexible copula-based switching
regression framework that: (a) is capable of handling binary, discrete, and continuous outcomes via a
vast range of marginal distributions; (b) permits to model each parameter of the assumed multivariate
distribution as a function of regression effects; (c) can accommodate flexible regression structures; (d)
allows for a wide variety of copula dependence structures. These points are prompted by the three case
studies. For example, in the first study, less conventional distributions such as the inverse Gaussian and
Fisk distributions fit wage earnings better than traditional ones. Also, since all distributional parameters
can be modeled as a function of observed confounders, the information contained in the data can be
exploited more fully. In the second study, the negative binomial type II fits well the missed school days
outcome, and the observed confounders enter both mean and dispersion parameters. The ability to
accommodate flexibly outcome-observed confounder relationships means that new patterns and trends
in the data may be uncovered and the impact of misspecification mitigated. As an example, in the first
study, instead of imposing a quadratic shape on the effect of age, we let the data determine the functional
shape which was found to be an increasing, but slightly concave, curve among females who do not
hold insurance through their employers, and a non monotonic pattern among females who do hold
insurance. Finally, the copula parameters provide information on the presence and role of unobservables.
In the third study, the estimated dependencies are negative for both treatment regimes, corroborating
the assumption that unobservables that increase the likelihood of insurance also tend to reduce the
probability of having a doctor visit.

The potential drawback of the proposed framework is that treatment effect identification is essentially
based on parametric functional form assumptions. However, in spite of this, the flexibility offered by
the methodology enables the data to point to meaningful model structures, hence capturing in a sense
the spirit of distribution-free methods. Moreover, as stressed, by Chen et al. (2014, see also references
therein), the use of non parametric techniques in this context may be problematic because, among other
things, they do not easily allow for treatment effect calculations and rely on asymptotic arguments that
make such approaches less viable for empirical research.

The introduced approach allows for many layers of complexity; however, there is no price to pay
in terms of usability and interpretability. In fact, the modeling approach has been incorporated in
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the software package GJRM (Marra and Radice, 2023), written for the programming language R (R
Core Team, 2023), which significantly eases the use of our proposal. Parameter estimation relies on a
carefully structured algorithm, whereas inference exploits a Bayesian result often employed for penalized
likelihood-based models. The proposed methodological developments, together with fast and reliable
software implementation, represent a significant advance in switching regression modeling. To the best
of our knowledge, this is the first freely available implementation of a unifying and flexible copula-based
switching regression framework.

The article is organized as follows. Section 2 introduces the general model and then discusses the
related log-likelihoods (and the components that make them up) as well as the incorporation of flexible
covariate effects. Section 3 describes parameter estimation, whereas Section 4 gives details on inference,
some properties of the estimator, information criteria, and the definition of residuals. Section 5 discusses
the calculation of the average treatment effect and the procedure to obtain an interval for it. Section 6
presents the findings from our three case studies, and Section 7 concludes the paper with a discussion.
The on-line supplementary material (which is made up of Appendices A, B, and C) provides details on
the algorithm, discusses the findings of various simulation studies, and illustrates the use of GJRM in
the three empirical applications.

2. The model

In switching regressions models, a random variable of interest is explained in different ways across
alternate regimes. When there are two regimes, the model has a trio of underlying random variables
(Y∗

1i, Y∗
2i, Y∗

3i) which connect with observable random variables (Si, Y2i, Y3i) via the rules

Si = 1(Y∗
1i > 0), Y2i = (1 − Si)Y∗

2i, Y3i = SiY∗
3i,

where 1(·) is an indicator function equaling 1 if the condition inside the braces holds and 0 otherwise.
These rules imply a binary switching mechanism: if Si = 0 then Y2i holds the observed value of Y∗

2i and
Y3i equals 0 (which here means that Y3i is missing or unobserved), and if Si = 1 then Y3i holds the
observed value of Y∗

3i and Y2i equals 0. Note that the first rule implies P(Si = 0) = P(Y∗
1i ≤ 0), i.e., the

cumulative distribution functions (cdfs) of Si and Y∗
1i coincide at si = y∗

1i = 0.
Each member of the trio (Y∗

1i, Y∗
2i, Y∗

3i) has associated marginal cdfs and probability (density or mass)
functions (pdfs/pmfs) which can be denoted as Fj(y∗

ji|ϕj) and fj(y∗
ji|ϕj), for j = 1, 2, 3, where ϕj represents

a vector of distributional parameters of dimension wj ∈ N+ that can be specified as flexible functions of
regression effects (as detailed in Section 2.3). Potentially useful in some empirical settings, the marginal
distributions for regimes 2 and 3 need not follow identical functional forms (Smith, 2005). Our first case
study demonstrates one such setting, where the presense (or lack thereof) of insurance coverage through
a person’s place of employment appears to alter the entire distributional shape of wage compensation.
Recall that, in line with previous work (e.g., Heckman et al., 2003), the equation related to the switching
mechanism usually requires an instrument or exclusion restriction. The model also requires bivariate
cdfs that relate the first variable in the trio to the other two variables, that is F12(y∗

1i, y∗
2i|ϕ1, ϕ2, θ12)

and F13(y∗
1i, y∗

3i|ϕ1, ϕ3, θ13), where θ12 and θ13 are parameters capturing the dependencies across the
respective margins.

The next section gives details on the form of the log-likelihood for different types of outcome
variables. Section 2.2 discusses the range of options for the specification of the copula and marginal
distributions. Section 2.3 explains how flexible regression structures can be accommodated in the
modeling framework.

2.1. Log-likelihoods

Let (si, y2i, y3i) denote the ith observation on (Si, Y2i, Y3i), for i = 1, . . . , n, where n ∈ N+ denotes the
sample size. For a given observed random sample, the log-likelihood function can be expressed in three
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different ways depending on whether the outcome variable of interest is continuous, discrete, or binary.
In the continuous case, as in Smith (2005), we have

�(δ) =
n∑

i=1
(1 − si) log

{
∂F12(0, y∗

2i|ϕ1, ϕ2, θ12)

∂y∗
2i

} ∣∣∣∣
y∗

2i=y2i

+si log
{

f3(y∗
3i|ϕ3) − ∂F13(0, y∗

3i|ϕ1, ϕ3, θ13)

∂y∗
3i

} ∣∣∣∣
y∗

3i=y3i

, (1)

where δ = (ϕT
1, ϕT

2, ϕT
3, θ12, θ13)

T. In the discrete case, the log-likelihood function is instead built using
finite differences, i.e.,

�(δ) =
n∑

i=1
(1 − si) log

{
F12(0, y∗

2i|ϕ1, ϕ2, θ12) − F12(0, y∗
2i − 1|ϕ1, ϕ2, θ12)

} ∣∣∣∣
y∗

2i=y2i

+si log
{

f3(y∗
3i|ϕ3) − F13(0, y∗

3i|ϕ1, ϕ3, θ13) + F13(0, y∗
3i − 1|ϕ1, ϕ3, θ13)

} ∣∣∣∣
y∗

3i=y3i

. (2)

In the binary scenario, we have four possible outcomes and hence

�(δ) =
n∑

i=1
(1 − si)(1 − y2i) log

{
F12(0, 0|ϕ1, ϕ2, θ12)

}
+(1 − si)y2i log

{
F1(0|ϕ1) − F12(0, 0|ϕ1, ϕ2, θ12)

}
+si(1 − y3i) log

{
F3(0|ϕ3) − F13(0, 0|ϕ1, ϕ3, θ13)

}
+siy3i log

[
(1 − F1(0|ϕ1)) − {

F3(0|ϕ3) − F13(0, 0|ϕ1, ϕ3, θ13)
}]

. (3)

Note that, since the log-likelihood functions above do not depend on F23(y∗
2i, y∗

3i|ϕ2, ϕ3, θ23), where θ23
would represent a further dependence parameter, potential links between Y∗

2i and Y∗
3i cannot be (directly)

recovered (e.g., Smith, 2005), hence it is superfluous to specify a trivariate distribution for (Y∗
1i, Y∗

2i, Y∗
3i).

2.2. Copulae and marginal distributions

This section provides a very succinct description of the copula approach; we refer the reader to, e.g.,
Nelsen (2006), Nikoloulopoulos and Karlis (2010), Trivedi and Zimmer (2007), and Joe (2014) for
technical details in various contexts. Using the copula method, the joint cdf of the random variables
of interest can be expressed as

F1j(y∗
1, y∗

j |ϕ1, ϕj, θ1j) = C1j
(

F1(y∗
1 |ϕ1), Fj(y∗

j |ϕj); θ1j
)

, j = 2, 3, (4)

where C1j : (0, 1)2 → (0, 1) is a two-place copula function. The main practical advantage of copulae is
that, with knowledge of arbitrary F1 and Fj and a copula function C1j that glues them together, one can
assemble a distribution of the otherwise difficult-to-know F1j. The copulae implemented in GJRM are
reported in Table 1. For those copulae that can only account for positive dependence (e.g., Clayton and
Joe), counterclockwise-rotated versions of them can be obtained (Brechmann and Schepsmeier, 2013).
For a pictorial representation of some of the copulae considered here see, e.g., Hasebe (2013).

Using (4), log-likelihood function (1) is made operational by replacing F12(y∗
1i, y∗

2i|ϕ1, ϕ2, θ12) and
F13(y∗

1i, y∗
3i|ϕ1, ϕ3, θ13) with C12

(
F1(0|ϕ1), F2(y2i|ϕ2); θ12

)
and C13

(
F1(0|ϕ1), F3(y3i|ϕ3); θ13

)
, respec-

tively. A similar reasoning applies to log-likelihood functions (2) and (3). Note that in (2), F12(y∗
1i, y∗

2i −
1|ϕ1, ϕ2, θ12) is replaced with C12

(
F1(0|ϕ1), F2(y2i|ϕ2) − f2(y2i|ϕ2); θ12

)
, where, for the second margin,

the relation f2(y2i|ϕ2) = F2(y2i|ϕ2) − F2(y2i − 1|ϕ2) is exploited to avoid the evaluation of F2 for
negative arguments; similarly for F13.

Regarding the marginal distributions, for S we employ a Bernoulli distribution with parameter μ1 ∈
(0, 1), representing the probability of switching. For Y2 and Y3 several choices are possible: a Bernoulli
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Table 1. Definition of the copulae implemented in theRpackageGJRM, with corresponding parameter range of association parameter
θ , and one-to-one transformation function of θ .

Copula C(u1, u2; θ) Range of θ Transformation of θ

AMH ("AMH") u1u2
1−θ(1−u1)(1−u2)

[−1, 1] tanh−1(θ)

Clayton ("C0")
(

u−θ
1 + u−θ

2 − 1
)−1/θ

(0, ∞) log(θ)

FGM ("FGM") u1u2 {1 + θ(1 − u1)(1 − u2)} [−1, 1] tanh−1(θ)

Frank ("F") −θ−1 log {1 + (exp {−θu1} − 1)

(exp {−θu2} − 1)/(exp {−θ} − 1)} R\ {0} −
Galambos ("GAL") u1u2 exp

[{
(− log u1)−θ

+(− log u2)−θ
}−1/θ

]
(0, ∞) log(θ)

Gaussian ("N") �2

(
�−1(u1), �−1(u2); θ

)
[−1, 1] tanh−1(θ)

Gumbel ("G0") exp
[
−

{
(− log u1)θ

+(− log u2)θ
}1/θ

]
[1, ∞) log(θ − 1)

Joe ("J0") 1 −
{
(1 − u1)θ + (1 − u2)θ

−(1 − u1)θ (1 − u2)θ
}1/θ

(1, ∞) log(θ − 1)

Plackett ("PL")
(

Q − √
R
)

/ {2(θ − 1)} (0, ∞) log(θ)

Student’s t ("T") t2,ζ

(
t−1
ζ (u1), t−1

ζ (u2); ζ , θ
)

[−1, 1] tanh−1(θ)

�2(·, ·; θ) denotes the cumulative distribution function (cdf) of the standard bivariate normal distribution with correlation coefficient
θ , and �(·) the cdf of the univariate standard normal distribution. t2,ζ (·, ·; ζ , θ) indicates the cdf of the standard bivariate Student-
t distribution with correlation θ and fixed ζ ∈ (2, ∞) degrees of freedom, and tζ (·) denotes the cdf of the univariate Student-t
distribution with ζ degrees of freedom. Quantities Q and R are given by 1 + (θ − 1)(u1 + u2) and Q2 − 4θ(θ − 1)u1u2, respectively.
Arguments copula and copula2 of gjrm() in GJRM allows the user to employ the desired copulae and can be set to any of the
values within brackets next to the copula names in the first column; e.g., copula = "C0" and copula2 = "FGM". For Clayton,
Galambos, Gumbel and Joe, the number after the capital letter indicates the degree of rotation required: the possible values are 0, 90,
180 and 270. The rotations are defined as C90(u1, u2; θ) = u2 − C(1 − u1, u2), C180(u1, u2; θ) = u1 + u2 − 1 + C(1 − u1, 1 − u2)

and C270(u1, u2; θ) = u1 − C(u1, 1 − u2).

Table 2. Definition and some properties of the main discrete distributions implemented in GJRM.

f (y|μ, σ) E(Y) V(Y)

Poisson ("PO") exp(−μ)μy

y! μ μ

Negative binomial type I ("NBI") �(y+1/σ)
�(1/σ)�(y+1)

(
σμ

1+σμ

)y (
1

1+σμ

)1/σ
μ μ + σμ2

Negative binomial type II ("NBII") �(y+μ/σ)σ y

�(μ/σ)�(y+1)(1+σ)y+μ/σ μ (1 + σ)μ

Poisson inverse Gaussian ("PIG")
(

2α
π

)0.5 μy exp(1/σ)Ky−0.5(α)

(ασ)y y! μ μ + σμ2

These have been parametrized according to Rigby and Stasinopoulos (2005) and are defined in terms of parameters μ and σ . In all
cases, y ∈ N0 and μ, σ ∈ (0, ∞). Since the distributional parameters can only take positive values, the transformation function log(·) is

employed in all cases. α =
√

1
σ 2 + 2μ

σ and Kλ(t) = 1
2

∫ ∞
0 xλ−1 exp

{
−0.5t(x + x−1)

}
dx are the modified Bessel function of the third

kind. Argument margins of gjrm() in GJRM allows the user to employ the desired discrete marginals This is achieved using the
characters within brackets next to the names of the distributions; for instance, margins = c("logit", "NBI", "PIG").
Note that for the first margin, which models the probability of switching, other choices are possible: probit and cloglog.

distribution and those listed in Tables 2 and 3. These choices imply that ϕ1 = μ1 and that ϕj, for j = 2, 3,
is equal to either μj, (μj, σj)T or (μj, σj, νj)T.

2.3. Flexible covariate effects

Each parameter of the model can be linked to regression effects via an unknown smooth function
m(zi) ∈ R, where zi represents a covariate vector (containing, e.g., binary, categorical, continuous, and
geographic variables), and a known monotonic one-to-one transformation function ensuring that the
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restriction on the space of the parameter being considered is not violated. As an example, for a model
with Bernoulli, Fisk and Gumbel margins, and Gumbel and Clayton copulae, we would have gμ1(μ1i) =
mμ1(zi), gμ2(μ2i) = mμ2(zi), gσ2(σ2i) = mσ2(zi), gμ3(μ3i) = mμ3(zi), gσ3(σ3i) = mσ3(zi), gθ12(θ12i) =
mθ12(zi), gθ13(θ13i) = mθ13(zi), where gμ1(μ1i) = �−1(μ1i), with �−1(·) being the quantile function
a standard normal distribution, gμ2(μ2i) = log(μ2i), gσ2(σ2i) = log(σ2i), gμ3(μ3i) = μ3i, gσ3(σ3i) =
log(σ3i), gθ12(θ12i) = log(θ12i − 1) and gθ13(θ13i) = log(θ13i). For the binary margin, we assumed a
probit link, however, the logit and complementary log-log functions could have been chosen instead.
Furthermore, we assumed that the same covariate vector is employed for each parameter, although
different subsets of it can be adopted for different parameters.

Using m(zi) makes the model very flexible. However, in practice, n would have to be unfeasibly large
due to the well known curse-of-dimensionality when the dimension of zi is large, as in most empirical
situations. To this end, we impose an additive structure on m(zi) which, while it implies that not all the
interaction terms among the covariates can be accounted for, still allows for a great deal of flexibility and
retains good theoretical properties (e.g., Wood, 2017). Therefore, dropping for simplicity the subscript
denoting which parameter the smooth function belongs to, we define

m(zi) = β0 +
K∑

k=1
sk(zki), (5)

where β0 ∈ R is an overall intercept, zki denotes the kth sub-vector of zi and the K functions sk(zki)
represent generic effects chosen according to the type of covariate(s) considered, as explained in the
next sections. Each sk(zki) can be expressed as a linear combination of Jk basis functions bkjk(zki) and
regression coefficients βkjk ∈ R,

Jk∑
jk=1

βkjk bkjk(zki). (6)

This means that the vector of evaluations {sk(zk1), . . . , sk(zkn)}T can be written as Zkβk with βk =
(βk1, . . . , βkJk)

T and design matrix Zk[i, jk] = bkjk(zki). This allows the right hand side of (5) to be written
as β01n + Z1β1 + . . . + ZKβK or as Zβ , where Z = (1n, Z1, . . . , ZK), β = (β0, βT

1, . . . , βT
K)T and 1n is

an n-dimensional vector made up of ones.
Each βk has an associated quadratic penalty λkβ

T
kDkβk whose role is to enforce specific properties on

the kth function, such as smoothness. Here, Dk only depends on the choice of basis functions and hence
not on βk. Tuning or smoothing parameter λk ∈ [0, ∞) controls the trade-off between fit and parsimony,
and plays a crucial role in determining ŝk(zki); a large value for λk will allow the related quadratic penalty
to have a large influence on the estimation of βk during model fitting, and vice versa. The overall penalty
can be defined as βTDλβ , where Dλ = diag(0, λ1D1, . . . , λKDK). To ensure identifiability of the model
regression structure, the sk(zki) are subject to centering constraints which are imposed by adopting the
parsimonious approach detailed in Wood (2017, Section 5.4.1). The next sections show how the above
framework can be utilized to model, among others, linear and non linear effects; these are relevant to
our case studies.

2.3.1. Parametric effects
These effects usually relate to binary and categorical variables and are represented by setting sk(zki) =
zT

kiβk. The corresponding design matrix is obtained by stacking all covariate vectors zki into Zk. No
penalty is typically assigned to parametric effects, hence Dk = 0. There might be, however, contexts in
which it would be advisable to do so. An example is that of a factor variable with many categories and
only a few observations available for some of them. The parameters of such categories may be weakly
or not identified by the data in which case a ridge penalty (obtained by setting Dk = Ik, where Ik is
an identity matrix) can be employed to circumvent such problem. Note that this is equivalent to the
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assumption that the coefficients are i.i.d. normal random effects with unknown variance (Wood, 2017,
Section 5.8).

2.3.2. Non parametric effects
Penalized regression splines are a popular and computationally efficient way for representing unknown
non linear effects of continuous covariates. The main requirement is a global smoothness assumption on
differentiability. This method makes it possible to avoid arbitrary modeling decisions, such as choosing
the degree of a polynomial or specifying cut-points, which could induce misspecification. This approach
has been popularized by Eilers and Marx (1996) and its theoretical properties addressed by several
authors (e.g., Claeskens et al., 2009; Kauermann et al., 2009; Wood, 2017).

For a continuous variable zki, we use representation (6), where the bkjk(zki) are known spline basis
functions. The design matrix Zk comprises the basis function evaluations for each i, and essentially
contains Jk curves with varying degrees of complexity. To enforce smoothness, the penalty is based on the
conventional choice Dk = ∫

dk(zk)dk(zk)
Tdzk, where the jthk element of dk(zk) is given by ∂2bkjk(zk)/∂z2

k
and integration is over the range of zk. This approach can virtually accommodate any (sensible)
definition of basis function and penalty (e.g., penalized low rank thin plate regression splines, P-splines)
and we refer the reader to Wood (2017, Chapter 5) for various definitions as well as a through discussion
of their theoretical and computational aspects.

When setting up the basis functions, knots have to be chosen unless not required (e.g., thin plate
regression splines, Wood, 2017, Section 5.5.1). A value for Jk has to be chosen too. Instead of addressing
these problems, which may be computationally cumbersome, the penalized regression spline method
relies on setting Jk to a large number and then using a penalty during model fitting to suppress that
part of the smooth term complexity that is not supported by the data. Still, Jk has to be chosen and the
theoretical analysis of the above authors suggest that Jk has to grow slowly with n to achieve statistical
performance that is asymptotically indistinguishable from that of a full smoothing spline. In practice,
one may perform a sensitivity analysis to assess how the estimates change for several values of Jk.

The penalized regression smoothing framework described in this section allows for several other
specifications as well as a vast variety of penalized spline functions. These include interaction terms
via varying coefficient smooths obtained by multiplying one or more smooth components by some
covariate(s), smooth functions of two or more continuous covariates (tensor product terms), Gaussian
Markov random field, Gaussian process and adaptive smoothers, to name but a few. Such flexibility
makes the scope of the introduced models and the related implementation in GJRM very wide and hence
applicable to a large suite of empirical problems.

3. Parameter estimation

For a given observed random sample
{
(si, y2i, y3i, zi)

}n
i=1, because of the highly flexible regression

structures allowed for by the proposed modeling framework, parameter estimation is based on an
objective function augmented by an overall quadratic penalty term which is set up using the approach
discussed in Section 2.3. That is,

�p(δ) = �(δ) − 1
2
δTSλδ,

where �(δ) is equal to either (1), (2), or (3), δ is defined as (βT
μ1 , . . . , βT

θ12 , βT
θ13)

T, which is made up of
the coefficient vectors related to mμ1(zi), . . ., mθ12(zi), mθ13(zi) and whose specific set up and dimension
depend on the model specification, and Sλ = diag(Dλ,μ1 , . . . , Dλ,θ12 , Dλ,θ13), which contains the overall
smoothing parameter vector λ = (λT

μ1 , . . . , λT
θ12

, λT
θ13

)T.
The construction of an algorithm that can estimate δ and λ in a stable and efficient manner

requires careful considerations and attention to certain details. For instance, experimentation based
on various optimization schemes that rely on derivative free and quasi-Newton techniques revealed a
series of convergence and speed issues; in the cases explored, throughout the iterations, the score and
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Hessian of �(δ) were poorly approximated by numerical differentiation methods. We finally settled on a
simultaneous estimation approach, based on analytical first and second order derivatives, implemented
by adapting to this context the algorithm of Marra and Radice (2020) (see Appendix A for details).

4. Further considerations

At convergence, instead of basing inference on the classically derived frequentist covariance matrix
−H−1

p HH−1
p , where Hp and H are the Hessians of �p(δ) and �(δ), intervals for any linear function of δ,

e.g. sk(zki), are obtained via the Bayesian large sample approximation

δ
a∼ N (δ̂, −H−1

p ). (7)

Adopting the Bayesian framework in the context of penalized models implicitly assumes that overly
complex models are less likely than simpler or smoother ones which translates into the prior specification
fδ ∝ exp

(−1/2δTSλδ
)
. As elaborated by Wood (2017, Section 6.10, see also references therein), the

Bayesian covariance matrix gives close to across-the-function frequentist coverage probabilities since it
includes the bias and variance components in a frequentist sense, which is not the case for the frequentist
covariance matrix. Intervals for non linear functions of δ (see the next section for an example) can be
conveniently obtained via posterior simulation, whereas p-values for the terms in the model can be
reliably obtained by using the results summarized in Wood (2017, Section 6.12) which are based on
−H−1

p .
Model building can be aided using tools such as the Akaike information criterion (AIC, Akaike,

1973), the Bayesian information criterion (BIC, Schwarz, 1978), and (randomized) normalized quantile
residuals (Dunn and Smyth, 1996). The AIC and BIC are defined as −2�(δ̂) + 2edf and −2�(δ̂) +
log(n)edf , respectively, where the log-likelihood is evaluated at the penalized parameter estimates and
edf = tr(Â) with A = √−H

(−Hp
)−1 √−H (see Appendix A for details on the derivation of this

quantity).
As for the residuals, for a continuous Y2, these are defined as q2i2 = �−1 {̂

F2|1(y2i2 |y1i2 = 0)
}

, where
i2 = 1, . . . , n2, n2 is the size of the sub-sample related to Y2 and F̂2|1(·) is the estimated conditional
cdf of Y2 given Y1 = 0. Similarly for Y3, q3i3 = �−1 {̂

F3|1(y3i3 |y1i3 = 1)
}

, where i3 = 1, . . . , n3, n3 is
the size of the sub-sample for Y3 and F̂3|1(·) is the estimated conditional cdf of Y3 given Y1 = 1. The
conditional cdfs are given by the ratios of the respective joint cdfs and marginal probabilities, and
account for the fact that Y2 and Y3 are observed only for sub-samples. If the cdfs are close to their
respective true distributions, then the quantile residuals follow the standard normal distribution, which
can be easily assessed by, e.g., inspecting the corresponding QQ-plots. For discrete margins, randomized
normalized quantile residuals are used instead. For Y2, these are based on q2i2 = �−1(u2i2), where
u2i2 is a random value from the uniform distribution on

[̂
F2|1(y2i2 − 1|y1i2 = 0), F̂2|1(y2i2 |y1i2 = 0)

]
.

Similarly for Y3, q3i3 = �−1(u3i3), where u3i3 is a random value from the uniform distribution on[̂
F3|1(y3i3 − 1|y1i3 = 1), F̂3|1(y3i3 |y1i3 = 1)

]
. Randomization allows one to view the discrete distributions

as if they were continuous. With regard to S, because of its binary nature, residual analysis is not
informative (e.g., Collett, 2002). In this case, a sensitivity analysis based on different link functions can
be carried out; experience suggests that the model fit is not typically affected by this choice.

Studying the asymptotic properties of the proposed estimator is beyond the scope of this article.
However, this could be approached by considering a fixed number of knots for the basis functions (e.g.,
Kauermann, 2005), in which case we would obtain, for instance, that δ̂ P→ δ0 and ‖δ̂ − δ0‖ = OP(1/

√
n)

and
√

n(δ̂ − δ0)
d→ N (0, i−1(δ0)), where i(δ0) = cov

[
∂�(δ)/∂δ|δ0

]
.

Appendix B discusses the results of a series of simulation studies. In summary, the proposed approach
works well under correct model specification, yields less precise estimates in the absence of an exclusion
restriction, produces biased estimates when choosing incorrectly the marginal distributions, and it is
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not too sensitive to the choice of copulae as long as the magnitudes of the dependencies are captured.
Appendix C illustrates the use of GJRM.

5. Average treatment effect

The binary switching indicator variable Si can be referred to as treatment and takes value 1 or 0 which
has implications on whether Y2 or Y3 can be observed. A well-known measure of treatment evaluation is
the average treatment effect (ATE), which quantifies the expected impact of a treatment for a randomly
chosen individual from the population of interest. For a fitted model, the ATE can be estimated as follows

ATE(δ̂) = 1
n

n∑
i=1

{
Ê(Y3i) − Ê(Y2i)

}
, (8)

where, for binary outcomes, the expectations can be expressed in terms of marginal probabilities (based
on the probit, logit, or complementary log-log link functions), whereas for discrete and continuous
outcomes the required formulae are reported in Tables 2 and 3. Note that in the continuous case, some
expectations are given by linear or non linear combinations of more than one distributional parameter.
Moreover, the ATE depends on δ (strictly speaking on that subset of it that relates to the distributions of
Y2 and Y3) through the m(zi) as detailed in Section 2.3. Note that Eq. (8) can be easily modified to yield
a percentage; this is achieved by dividing by Ê(Y2i).

Since Y∗
2i and Y∗

3i are not available for the whole sample, imputation or prediction is required to
compute (8). This is simply based on the regressors and estimated parameters of the related equations.
However, some caution is needed when selecting the set of covariates to consider in the empirical
analysis, especially when there are factor or categorical variables. Here, one has to check that the levels
of the variables that appear in the whole sample also appear in the selected sub-samples (those related
to Y2 and Y3). Consider, for instance, the situation in which the data contain a factor variable with five
levels and that only three of them appear in the selected sample for Y2, and four of them in the sample
associated with Y3. In such a case, a model can still be fitted but it will not be possible to carry out the
prediction exercise required to compute (8).

Intervals for the ATE are obtained by employing the following procedure:

1. Draw V random vectors δ̃v, v = 1 . . . , V , using result (7).
2. Obtain V realizations of the function of interest, that is ATE(δ̃v).
3. Calculate the (ϑ/2)-th and (1 − ϑ/2)-th quantiles of the V realizations. The interval is then given by

CI1−ϑ = [ATE(δ̃v)ϑ/2, ATE(δ̃v)1−ϑ/2].
Parameter ϑ is typically set to 0.05. Furthermore, a value of V equal to 100 usually produces

representative results although it can be increased (for a little extra computational effort) if more
precision is required.

Since our approach links all the parameters of the assumed multivariate distribution to covariate
effects, treatment effects on several aspects of such distribution (e.g., variance, skewness, kurtosis) can
be obtained. Although in the three case studies considered in this article, treatment effects beyond the
mean were not deemed relevant, they can easily be computed by modifying Eq. (8) accordingly.

6. Case studies

This section applies the proposed copula-based switching regression framework to three case studies
which investigate the effect of a binary treatment on various outcomes. To maintain a consistent theme,
all studies come from the field of health economics, a discipline for which binary treatments and peculiar
distributional shapes for outcomes are pervasive. As explained in the introduction, the studies use data
from the MEPS.
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6.1. Case study 1: continuous outcome

The majority of privately-insured Americans receive coverage through their employers as part of their
total compensation. In turn, the theory of “compensating differentials” holds that an employee who
receives health insurance from his employer should, all else equal, receive a lower wage than an employee
who does not receive coverage (Rosen, 1986). However, compensating differentials are very difficult to
observe in practice because good jobs tend to pay well and offer insurance coverage (Currie and Madrian,
1999).

Olsen (2002) finds evidence of compensating differentials using instrumental variable regression.
Focusing on a sample of full-time employed females from the Current Population Survey, and using
information on their husbands’ employment and insurance status as instruments, he calculates that
insurance reduces wages by approximately 20%. Our study attempts to mimic Olsen’s approach by
applying the proposed framework to MEPS data.

The dataset focuses on females in the age range 25 − 64 from the 2012 wave of the MEPS. (We
focus on 2012 to avoid complications associated with the Affordable Care Act, which, starting in 2014,
required that most employers in the U.S. offer health benefits.) Similar to Olsen, the dataset focuses
on females employed in the private sector full-time (at least 35 hours per week) who are not self
employed. Furthermore, all females in the dataset are married to husbands who, themselves, also are
employed. Table 1 from Appendix C presents sample means partitioned according to whether the
female holds insurance through her employer. The top row shows the difficulty of finding evidence of
compensating differentials, with insured females having higher wage earnings. (Those wage numbers
are highly statistically different, according to a conventional two-sample t-test.) The bottom of the table
shows two instruments similar to the ones used in Olsen’s study. The first, whether the female’s husband
holds insurance through his employer, suggests that wives tend to decline coverage when they have
options through their husbands’ plans. The second suggests that wives of husbands who work at larger
firms, and thus presumably have better insurance options, also tend to decline coverage.

For the copula-based switching regression approach, the main modeling decisions involve the
distributional forms for the three marginals and the two copulae. To arrive at those decisions, we explore
many permutations of marginals and copulae available in the GJRM package, and we settle on the forms
that yield the best overall fit according to the AIC and BIC, defined in Section 4, and by inspecting
residual plots (see Fig. 1 for the plots of the chosen model). Using such a data-driven approach, the
treatment variable, an indicator for whether the wife holds insurance through her employer, follows a
probit specification. However, owing to the binary nature of such variable, using logit and cloglog links
produced virtually identical results for the ATE of health benefits on wage earnings, the measure of
interest. For the wife’s wage income, the choices are the inverse Gaussian distribution among wives who
do not hold insurance through their employers, and Fisk for those who do. Using marginal distributions
that do not yield a good fit (e.g., Weibull, Gamma, log-normal; for an example, see Figure 17 in Appendix
C), the ATE was found to be about 40% lower or higher than that from the chosen model, hence
highlighting the importance of finding marginal distributions that fit the data well. As for the copulae,
we have the Gumbel to link insurance to wages among wives who do not hold insurance through their
employers, and the Gaussian for those who do. Different choices produced similar estimated effects but
with larger intervals, hence suggesting that employing the copulae that are most supported by the data
leads to efficiency gains. Note that the set of alternative copulae should be selected so that the magnitudes
of the dependencies present in the data can still be captured, otherwise parameter estimates will be
adversely affected. For instance, using AMH and FGM copulae, the ATE was found to be about 80%
lower than that from the chosen model.

Before analyzing the ATE results, the next three paragraphs comment on the estimated model param-
eters which are reported in Appendix C. Regarding the switching mechanism equation (EQUATION
1 of the R output), the coefficients corroborate a priori expectations. For example, for a married
woman, being a union member and working at a larger firm increase the likelihood of accepting her
employer coverage. Regarding the regime regressions, the interpretation might or might not be that
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Figure 1. Histograms of normalized quantile residuals and normal Q-Q plots of residuals for the wage outcome variable under regime
0 (top) and regime 1 (bottom).

intuitive depending on the chosen distribution. For instance, since the selected distribution for regime
0 (wives who do not hold insurance through their employers) is an inverse Gaussian, the coefficients in
EQUATION 2 can be used to obtain the usual percentage effects on the mean. For example, for wives
who do not hold insurance through their employers, the wage of a Hispanic is, on average, 25% lower
as compared to that of a white woman. This interpretation does not hold for regime 1 (EQUATION 4)
since the chosen distribution is the Fisk and, as reported in Table 3, the mean is a function of both μ and
σ . However, interpretable effects can be easily obtained as illustrated in Appendix C. As for EQUATION
3 and EQUATION 5, the coefficients can be used to obtain effects on the σ parameters which, however,
do not correspond to standard deviations; to calculate these, the formulae reported in Table 3 have to be
employed in a similar way as for the mean of the Fisk distribution.

Regarding the estimated smooth functions, reported in Fig. 2, we note that age does not have an
effect on the switching mechanism. For parameter μ of the inverse Gaussian, the effect of age shows
an increasing, but slightly concave, shape among females who do not hold insurance through their
employers. For μ of the Fisk, the effect of age follows a non monotonic pattern, reaching its peak
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Figure 2. Estimated smooth effects of age for the probit equation, for the μ parameters of the inverse Gaussian and Fisk, and for the
σ parameters of the same distributions. 95% point-wise intervals are also reported. The jittered rug plot, at the bottom of each graph,
shows the covariate values. The numbers in the brackets of the y-axis captions are the edf of the smooth curves. Note that the estimated
smooth functions are centered around zero because of the centering identifiability constraints. When edf = 1, the intervals correctly
exhibit the behavior displayed in the last plot because of such constraints.

Table 4. Average treatment effects for case study 1.

Estimate 95% C.I.

Univariate Fisk 0.10 (0.04, 0.17)
Control function Fisk −0.11 (−0.24, 0.04)
Proposal −0.28 (−0.38, −0.13)

positive effect around age 45 among females who do hold insurance. For the σ parameters of the two
distributions, age does not show any significant effect.

The dependence terms, shown in Appendix C, indicates overall that unobserved factors that increase
a female’s likelihood of holding insurance through her employer also correlate with higher wages. In
particular, that relationship appears to be present and precisely estimated, among females who do not
hold their own insurance, implying that certain types of females likely sort into jobs based on desires for
health benefits. The same is not true for females who do hold their own insurance since the dependence
parameter is virtually zero. Such subtle details of endogeneity bias are impossible to detect in more
conventional regression setups.

Table 4 displays the results for the ATE. The first row shows the estimate and related interval from
a univariate regression (including all controls, minus the two instruments) where the wage variable is
assumed to follow the Fisk distribution (which appears to offer the best univariate fit). That number
suggests that holding insurance is associated with a 10% higher wage. The next row shows the result
from a control function approach which consists of two steps. The first involves a probit regression of
the endogenous treatment (insurance status) on all controls plus the instruments, and serves to generate
residuals. The second step involves a Fisk-based regression of the wage outcome on all variables (minus
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the two instruments) plus the first-stage residuals, which control for the endogeneity problem (Terza et
al., 2008). The ATE calculation for this approach is based on Eq. (13) of these authors’ paper; the result
suggests that insurance lowers wages by about 11%. Finally, the bottom row reports the effect obtained
from the more flexible switching regression framework. The estimate suggests that insurance lowers
wages by about 28%, more that 150% larger than that of the control function. The control function setup
(analogous to traditional instrumental variables regression), by restricting the link between insurance
and wages to operate via a simple intercept shift, seems to under-report the magnitude of compensating
differentials. Probably, having insurance tends to reduce take-home pay by a larger amount than is
typically recognized.

The flexible switching regression approach allows one to specify ancillary parameters, including
copula dependence terms, as functions of covariates. Specifically, it seems plausible that the copula terms
might depend upon a wife’s level of educational attainment. The results reported in Appendix C show
the coefficient estimates when the copula terms are given regression structures dependent on the three
education dummies. Bear in mind that the coefficients are not statistically significant but for the sake of
demonstrating the capabilities of the approach we provide an interpretation of the results. Focusing on
the effect of college, having at least some college education appears to strengthen the positive association
between having insurance and wage earnings among wives who have insurance, but college education
exerts a more ambiguous influence among wives who do not have insurance.

6.2. Case study 2: binary outcome

For people in the U.S. younger than age 65, having private coverage requires individuals to either find
employment at a place that offers insurance or navigate the maze of insurance exchanges established by
the Affordable Care Act. That level of effort implies that private coverage likely is endogenously linked to
key outcomes, most importantly the consumption of health care services. Consequently, one of the core
topics of health economics centers on estimating the effect of private health insurance on health care
consumption. This case study draws inspiration from Deb et al. (2006) who explored this topic using
methods similar to those presented here, albeit with a different econometric focus.

This case study considers the effect of a binary treatment (having insurance) on a binary outcome
(having visited a doctor during the previous calendar year). Nearly all contacts with the health care
system in the U.S. begin with an office-based visit to a doctor, so having a doctor visit is a reasonable
proxy for a broad category of medical service usage. Drawn from the 2012 and 2013 waves of the
MEPS, Table 2 from Appendix C shows sample means for people with ages in the range 18 − 64 who
work in the private sector. No one in the sample reports being self employed, and no one reports ever
having any form of public insurance during the survey period. Shown near to the top of the table, 64%
of insured subjects report having a doctor visit, compared to only 30% of uninsured subjects. Those
numbers differ statistically according to a standard t-test. Inspired by Deb et al. (2006), the bottom of the
table shows the instrument, firm size, which appears to strongly associate with the likelihood of having
insurance.

With both treatment and outcome being binary, all marginal distributions follow logit specifications,
which appear to offer the best fit. Since the responses are binary, using different combinations of link
function specifications for the marginals did not affect the results. For the two copulae, the information
criteria point to the 270 degree rotated Clayton to link insurance to doctor visits among people without
insurance, and the Gaussian copula among people with insurance. As for alternative copulae, findings
and considerations were similar to those of the previous case study. As an example, using AMH copulae,
the ATE was found to be 24% lower than that from the chosen model.

Results for the copula-based switching regression approach are reported in Appendix C. Most
coefficient estimates corroborate a priori expectations. In particular, the instrument appears to influence
the probability of having insurance, with subjects employed at larger firms more likely to have coverage.
Dependence appears to be negative for both treatment states. The overall interpretation is that unob-
served factors that increase the likelihood of insurance also tend to reduce the probability of having a
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Table 5. Average treatment effects for case study 2.

Estimate 95% C.I.

Univariate logit 0.25 (0.23, 0.27)
Control function logit 0.37 (0.26, 0.47)
Proposal 0.37 (0.27, 0.45)

doctor visit. Health economists label that pattern “favorable selection” which means that insured subjects
tend to be healthier and/or more risk averse.

Table 5 presents ATEs of insurance on having a doctor visit. The first row shows an estimate from
a univariate logit regression (including all controls, minus the instrument). That number suggests that
having insurance increases the probability of having a doctor visit by 25% points, a sizable effect relative
to the sample mean of 55% of subjects having a doctor visit. The next row shows the result from the
control function approach which suggests that having insurance increases the probability of a doctor
visit by 37% points. Finally, the bottom row reports the effect obtained from the more flexible switching
regression framework. The effect is 0.37, which is the same as that obtained from the control function
approach. Thus, in this case, the proposal confirms the result of the more restrictive control function
approach.

6.3. Case study 3: discrete outcome

A large swath of research explores reasons for school absenteeism, but the most important determinant
appears to be health, with medical problems strongly linked to higher absenteeism (Basch, 2011; Holbert
et al., 2002). Thus, consider the following narrowly-targeted question: Does visiting a doctor in order
to obtain curative health care services cause children to miss school? Drawn from the 2015 wave of the
MEPS, Table 3 from Appendix C shows sample means for children between ages 6 − 13, a range for
which schooling is compulsory in most U.S. jurisdictions.

The top row of the table indicates that students who visit a doctor to obtain curative medical services
during the calendar year have, on average, 3.33 missed school days, compared to 1.50 missed days for
students who do not have curative visits. Those numbers differ statistically according to a standard t-test.
The bottom row of the table shows the chosen instrument: an indicator for whether the family of the
child can arrive at its usual source of medical care in less than 30 minutes. (That variable likely reflects, in
part, travel costs that families must incur in order to acquire medical services.) The numbers suggest that
being located closer to one’s usual source of care associates with larger probabilities of having a curative
visit.

Exploring many permutations of marginals and copulae, the best overall fit comes when the distri-
bution of the treatment variable (whether the child had a curative visit) follows a logit specification,
and both marginals for the outcome variable (the number of missed school days) follow a Negative
Binomial-type II (see Figure 18, Appendix C). For the two copulae, the link between doctor visit
and missed days follows a 90 degree rotated Joe among children with no doctor visits, and a non
rotated Joe among children with doctor visits. Using Poisson marginals (clearly not appropriate here
as shown in Figure 20, Appendix C), the ATE was found to be 58% higher than that from the chosen
model. As for alternative copulae, findings and considerations were similar to those of the previous case
studies.

The estimated results are reported in Appendix C. Most of the coefficients corroborate a priori
expectations. The age effects are linear in the curative visit equation. But for missed school days, as
far as the μ parameter is concerned (which is also the mean of the distribution), among students who
do not have curative visits, age shows an overall decreasing non linear effect which then starts increasing
in the final years. Among students who do have curative visits, the age effect shows a decreasing linear
pattern. As for σ , age shows an increasing linear effect among students who do not have curative visits
and a quadratic effect among students who do have curative visits.
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Table 6. Average treatment effects for case study 3.

Estimate 95% C.I.

Univariate NBII 1.62 (1.40, 1.86)
Control function NBII 1.46 (−0.47, 4.45)
Proposal 0.94 (0.58, 1.40)

The dependence terms point to very different patterns by treatment status. The association is negative
for children without curative visits, suggesting that, on average, unobserved traits that induce children
to have office visits tend to reduce missed school days among children who do not have office visits. On
the other hand, the other dependence term is positive, indicating the opposite pattern among children
who do have office visits. Taken together, those disparate associations suggest a pattern whereby parents
who have trouble accessing medical care also tend to have children who miss school, a finding that could
not have been detected with a more conventional approach.

Table 6 shows the effects of curative visits on missed school days. The first row presents an estimate
from a univariate NBII regression (including all controls, minus the instrument). That number suggests
that having a curative visits leads to approximately 1.62 more missed school days, a sizable effect relative
to the sample mean of 2.10 missed days. The next row shows the result from the control function
approach which shows that having a curative visits leads to 1.46 more missed days; this is similar in
magnitude to the univariate NBII regression, but with a much wider confidence interval. Finally, the bot-
tom row reports the effect obtained using the proposed switching regression framework. The resulting
estimate suggests that having a curative visit leads to 0.94 more missed days, which is approximately less
than one-third the magnitude of the control function estimate. Evidently, the control function method
fails to detect the nuanced pattern of endogeneity, likely because, as indicated by the dependencies
commented in the previous paragraph, endogeneity tugs in opposite directions and different magnitudes
depending on whether children have doctor visits. In the control function approach, those opposite
directions appear to cancel out as well as lessen precision, leaving an effect similar to that of the univariate
NBII regression. The flexible switching regression setup, where endogeneity is considered separately by
treatment state, finds a smaller ATE. Giving the dependence terms regression structures did not appear
to produce interesting insights.

7. Conclusions

Motivated by three case studies in the field of health economics, we have introduced a unifying and
flexible approach to switching regime regression. Various details including the model set up, parameter
estimation, and inference have been discussed. All developments have been integrated within the R
package GJRM whose modularity allows for easy inclusion of virtually any parametric copula and
marginal distribution.

The proposed approach makes a significant contribution in switching regression modeling since it
can handle various empirical situations and is practically usable. Although the literature in this area is
ample, to the best of our knowledge, until now there has existed no work that provided a methodological
framework together with software implementation for the type of switching regime regression problem
considered in this article. Recall that the proposal can handle many types of outcomes via a vast range of
marginal distributions, allows for a wide variety of copula dependence structures, and permits to specify
all model parameters as flexible functions of covariate effects. The findings from our three case studies
have provided new evidence on the problems tackled.

Future research will focus on extending the scope of the modeling framework by allowing for survival
margins as well as by exploring alternative copula selection methods along the lines of Cai (2014), for
instance. We will also look into developing a testing approach for weak instruments.
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