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The inspection and maintenance of electrical power lines (PL) via unmanned aerial vehicles (UAV) require
fast and accurate PL detection to ensure smooth and secure electrical operations. However, the detection
of PLs from aerial images is a highly challenging task due to the thin nature of PLs and the inherent noisy
image backgrounds. Traditional line and edge detection methods do not detect the PLs accurately due to
the cluttered backgrounds while the more recent deep learning (DL) CNNs are also not feasible for effi-
cient PL detection due to the coarse bounding boxes and the computationally expensive pixel-based seg-
mentations. Hence, in this study we propose PLPose, a novel framework for detecting the PLs via key
points-based pose estimation technique and adapt the MobileNetV3 CNN for this task (kMobileNetV3),
by adding a simple key point detection head to predict the PL key points. We also introduce a novel
data-centric architecture (kMobileNetV3 + UDP), by adding the unbiased data processing (UDP) module
to our kMobileNetV3, for faster and more accurate key point-based PL detection along with novel meth-
ods for data annotations and performance evaluation. Evaluations of PLPose on three benchmark PL data-
sets (PLDM, PLDU and the Mendeley Powerline Dataset) reveal that our proposed framework outperforms
the state-of-the-art top-down pose estimation networks (HRNet-w32, HRNet-w32 + UDP and Resnet-50
Simple Baselines) in processing speed (�29 FPS) and model size (5.23 M) for PL detection. Thus, the com-
prehensive experimental results demonstrate the effectiveness of our proposed framework. Our code is
available from Github (https://www.github.com/rubeea/pl_mmpose).
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction or faults in the PLs can disrupt the continuous supply of electricity
Power lines (PL) or transmission cables are the backbones of
electrical infrastructure in all urban and rural areas. Any damage
and can lead to power outages. There are many possible problems
that can cause faults in PL, for instance, tree contact, equipment
damage, extreme weather conditions and animal or human inter-
vention. These have been reported to be the major causes of PL
faults and the subsequent power outages (Wang, 2016). Power
outages incur severe economic and societal problems, such as
maintenance and restart costs, equipment damage, discomfort at
homes or workplaces and among others (Amadi & Okafor, 2015).
Hence, to avoid these problems, it is crucial to guarantee correct
operation of PLs, whose reliability is ensured via frequent
inspection and maintenance operations.

Traditional approaches to PL inspection comprise of visual
inspection from the ground by utilities employees, via regular foot
patrolling (Russell et al., 2007). Recently, unmanned aerial vehicles
(UAV), equipped with vision systems, have replaced and
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automated the manual inspection approaches due to several
advantages, namely, their effortless approach, consistent results
and the ability to reach remote areas conveniently (Li et al.,
2010; Miao et al., 2019). PL detection constitutes the core of such
UAV-based inspection systems. Accurate and timely PL detection
is required for the safe navigation and real time motion planning
of UAVs. Besides UAV-based inspection, efficient PL detection is
also necessary for safe navigation and obstacle avoidance in air-
crafts operating at low altitudes.

The PL detection task is considered highly challenging due to
the thin morphological structure, weak visual appearance and per-
vasive existence of PLs in aerial images (Yan et al., 2007). More-
over, the presence of background clutter and various lighting
conditions (bright, dark, foggy etc.) further add to the difficulty
of accurately detecting the PLs from aerial images (Li et al., 2010;
Memon et al., 2021; Zhang et al., 2019a; Zhou et al., 2016). Accord-
ing to the reports of United States Army, more helicopters have
been lost to PLs, in urban search and rescue (USAR) missions, than
against enemies in actual combats due to the failure in the identi-
fication of these PLs in low-contrast and heavily cluttered back-
grounds (Avizonis & Barron, 1999).

Traditional methods of PL detection focus on hand-crafted edge
and line detectors (Candamo, Kasturi, Goldgof, & Sarkar, 2006;
Golightly & Jones, 2005; Golightly, 2006; Kasturi et al., 2002; Li
et al., 2008; Li et al., 2010; Yan et al., 2007; Zhang et al., 2012).
These methods work under the assumptions of a distinct contrast
between the PLs and the background, and straight PL shapes
(Candamo, Kasturi, Goldgof, & Sarkar, 2009; Kasturi et al., 2002).
Hence, they fail to detect PLs accurately in complex image environ-
ments and noisy backgrounds (Dai et al., 2020). Few works also
employ machine learning techniques for PL detection but are lim-
ited by their requirement to design hand-crafted features which do
not generalize well for complex image scenarios (Yetgin & Gerek,
2018a, 2018b). The recent deep learning (DL) semantic segmenta-
tion CNNs have shown remarkable performances in a variety of
object detection tasks (Huang et al., 2022; Wang et al., 2022; Yun
et al., 2022) and hence, have been successfully applied to detect
PLs at the pixel level with remarkable results (Choi et al., 2019;
Madaan et al., 2017; Zhang et al., 2019). However, these methods
come with a huge computational cost and low inference speed
associated with pixel-level classification. Semantic segmentation
detectors also suffer from insufficient spatial resolution (Hao
et al., 2020; Zhao et al., 2019), lack of global context (Baker et al.,
2018; Z. Huang et al., 2019) and missing inter-pixel relationships
(Ghafoorian et al., 2018; Zhao et al., 2019), all of which are neces-
sary to accurately detect the PLs. Moreover, these semantic seg-
mentation PL detectors also require additional techniques to:

� Handle class imbalance issue as PL pixels only occupy a minimal
portion 1–5% of the aerial images in comparison to the majority
of background pixels 95–99% (Jaffari, Hashmani, & Reyes-
Aldasoro, 2021a).

� Post-process and cluster the ungrouped detected PL pixels,
resulting from insufficient contextual information, for a uniform
and more accurate PL representation.

Lastly, the performance of the semantic segmentation detectors
is directly proportional to the labelling cost. Pixel-level annotations
are generally time-consuming and commercially expensive.
According to the Microsoft COCO dataset annotation report, the
workload of pixel level annotations is 15 times more than that of
spotting object locations (Lin et al., 2014). For PL detection, this
workload will increase even more as PLs are only a few pixels wide
and therefore, must require precise and careful pixel level annota-
tions (Choi, Koo, Kim, & Kim). Usually, bounding box based CNNs
2

are considered viable alternatives to semantic segmentation detec-
tors due to their high inference speed and minimal annotation
effort. However, these detectors are also not suitable for detecting
thin PLs as the coarse bounding box detections contain several
meaningless pixels which do not correspond to the thin PL objects
of interest (Jaffari et al., 2021b; Li et al., 2019a). Few works focus on
weakly supervised learning (Choi et al.) and key points-based PL
detection (Dai et al., 2020; Sumagayan et al., 2021) to bypass the
pixel-level annotations and rectangular bounding boxes. However,
these techniques require a post-processing module for PL curve fit-
ting and line refinement. Another alternative category of detection
methods is the generic DL-based line segment detectors (Huang
et al., 2018; Li et al., 2021; Xue, Bai, Wang, Xia, Wu, & Zhang,
2019; Xue, Wu, Bai, Wang, Xia, Zhang, & Torr, 2020; Zhou et al.,
2019) which may be utilized to detect PLs due to the geometrical
similarities between generic lines and thin PLs. However, these line
segment detectors either assume the lines to be straight and/or
focus on joint inference of junctions (line segment end points)
along with the saliency of lines which might not always hold true
for PLs. In addition to this, these methods also suffer from insuffi-
cient spatial information which hinders accurate PL detection
(Abdelfattah et al., 2022). Few miscellaneous works (Abdelfattah
et al., 2022; Xu et al., 2021) propose to utilize GAN and transformer
networks for PL and line detection respectively but suffer from
painfully long training times. Hence, there is a need for an efficient
PL detection framework that successfully tackles the aforemen-
tioned issues.

To overcome the problems of coarse bounding box detectors,
computationally expensive pixel-level detectors and the associated
pixel-level annotations, class imbalance and post-processing tech-
niques, in this paper, we propose PLPose, an efficient end-to-end
DL framework for processing and detecting PLs from aerial images
directly via key points-based pose estimation. We treat PL detec-
tion as a key point-based top-down pose estimation task similar
to human pose estimation (HPE). We empirically investigate vari-
ous key point-based annotation protocols and introduce a novel
data labeling method for PL detection based on only three repre-
sentative key points. For PL detection via pose estimation, we mod-
ify the vanilla MobileNetV3 (small version) CNN model (Howard
et al., 2019) by appending a simple key point head, with three
deconvolutional layers (dconv), for predicting PL key point heat-
maps (Xiao et al., 2018) and name it kMobileNetV3 (k for key
points). Being a pose estimation network, the proposed kMobile-
NetV3 rules out the necessity of a separate post-processing module
to cluster and connect the detected key points. Instead, the connec-
tion between the key points is directly estimated as pose for PL
representation. We also incorporate an additional data-centric
unbiased data processing module (UDP) to our kMobileNetV3
(Huang et al., 2020), which is employed to improve the detection
performance in HPE tasks. MobileNetV3 (small version) is chosen
as the base network for our PLPose framework as it reduces the
network parameters and speeds up the detection process with lit-
tle to no effect in the detection performance. UDP is employed to
improve the detection performance by compensating for the bias
usually introduced, due to the flipping strategy and encoding
decoding statistical error, in pose estimation tasks. To the best of
authors’ knowledge, this approach has not been introduced previ-
ously. The effectiveness of our proposed PLPose framework is
demonstrated by validating it on three public PL datasets: namely,
(1) the Mendeley power line dataset (Yetgin & Gerek, 2019), (2) the
power line dataset of a mountain scene (PLDM) and (3) power line
dataset of an urban scene (PLDU), published in (Zhang et al., 2019).
The experimental results demonstrate that PLPose outperforms the
state-of-the-art in terms of inference speed and model complexity
while maintaining equivalent characteristic detection parameters



Fig. 1. Schematic Diagram of proposed PLPose for processing and detecting PLs via key points-based pose estimation. The main modules are highlighted in green color.

R. Jaffari, M.A. Hashmani, C.C. Reyes-Aldasoro et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101615
of precision and recall. The schematic diagram of PLPose is
depicted in Fig. 1. The major contributions of this work are
four-fold:

� A novel pipeline for processing and detecting PLs from aerial
images via key points-based top-down pose estimation. At the
core of this pipeline is the top-down pose estimator for PL
detection.

� Adaptation of MobileNetV3 for the key points-based top-down
pose estimation task (kMobileNetV3) via the addition of a sim-
ple key point head comprising of three dconv layers to predict
the key point heatmaps.

� A novel top-down pose estimation model architecture
(kMobileNetV3 + UDP), realized via the extension of kMobile-
NetV3 with a data-centric unbiased data processing module
(UDP), for the efficient detection of PLs.

� Empirical analysis of the choice of annotation protocol and
introduction of a new data labeling method for PL representa-
tion. We represent PLs via a group of three representative key
points only. The proposed annotation format is more accurate
and concise as compared to the existing annotation formats of
rectangular bounding boxes or pixel level segmentation masks.

It is noteworthy that the scope of this study is limited to effi-
cient PL detection which can aid in subsequent PL faults detection
and even power grid faults detection (Gao et al., 2021) via constant
monitoring mechanisms.

The remainder of this paper is organized as follows: Section 2 of
this study briefly discusses the related works for PL detection.
Section 3 proposes the novel PLPose framework for PL detection
task via key points-based pose estimation. Section 4 presents the
related new data labeling method. Section 5 presents the experi-
mental results and discussions along with a detailed comparative
analysis of PLPose with established baselines. Finally, conclusion
and future work is presented in Section 6.

2. Related work

This section reviews various traditional and deep learning tech-
niques for PL detection.

2.1. PL detection using traditional techniques

The traditional PL detection techniques can be divided into
three main categories: (1) edge and line-based methods, (2)
knowledge-based methods and (3) machine learning based
methods.

2.1.1. Line-based methods
Most of the traditional PL detection literature considers edge

and line detectors on the assumption that PLs usually appear as
3

straight and parallel lines in aerial images. The Hough Transform
(HT) (Hough, 1962) and its variants were frequently used to detect
PLs. The works in (Candamo, Kasturi, Goldgof, & Sarkar, 2006;
Kasturi et al., 2002; Wu et al., 2010) first identified the edges of
PLs using an edge detector such as Steger’s method (Kasturi
et al., 2002), SWIFTS algorithm (Wu et al., 2010) or Canny edge
detector (Candamo et al., 2006) respectively, followed by the appli-
cation of conventional HT in (Kasturi et al., 2002; Wu et al., 2010)
and windowed HT in (Candamo et al., 2006) to detect PLs from the
extracted edge map. Zhang et al. (Zhang et al., 2012) used HT to
detect PLs followed by the clustering and tracking of PLs using K-
means clustering algorithm and Kalman filter. The vision system
developed by Golightly and Jones (Golightly & Jones, 2005;
Golightly, 2006) used HT to identify overhead PLs. Instead of con-
ventional edge detectors, Li et al. (Li et al., 2008; Li et al., 2010)
used a single layered Pulse Couple Neural Network (PCNN) to filter
out the background noise and generated an intriguing edge map of
PLs which was then passed to HT for detection. Apart from HT,
Radon transform (RT) has also been employed for PL detection by
Yan et al. in (Yan et al., 2007).
2.1.2. Knowledge-based Methods
Knowledge-based methods tend to leverage the contextual PL

characteristics like structure, color, and shape for efficient detec-
tion. Thin line structure, parallel lines, flat color, and co-existence
with pylon poles are some of the auxiliaries employed by these
methods for PL detection. Zhang et al. (Zhang et al., 2014) used
the spatial correlation between the PLs and pylon poles to detect
PLs. The authors in (Ceron & Prieto, 2014) employed a circle-
based search technique to detect PLs based on the fact that PLs
are straight parallel lines and two equidistant points on the
straight line always lie at the circumference of the circle. An edge
drawing method was reported by authors in (Santos et al., 2017) to
detect PLs based on their form and parallelism auxiliary. Most of
these auxiliaries were determined manually (Pan et al., 2017).
However, the technique introduced in (Shan et al., 2017) tried to
automate the auxiliary determination process via a local optimiza-
tion approach.
2.1.3. Machine Learning based Methods
Yetgin (Yetgin & Gerek, 2018a, 2018b) introduced a new feature

selection mechanism based on Discrete Cosine Transform (DCT) for
the binary classification of PL scene recognition. Spectral clustering
approach was utilized by Rishav Bhola et al. (Bhola et al., 2018) to
segment PL pixels from aerial images. Apart from these, many
works (Li et al., 2008; Li et al., 2010; Wu et al., 2010; Zhang
et al., 2012) utilized the k-means and nearest neighbor machine
learning algorithms for clustering the detected lines.

Despite the development and improvement of the traditional
approaches, the accurate detection of PLs in diverse and complex
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image environments remains challenging due to noisy back-
grounds and the need of hand-crafted auxiliaries.

2.2. PL detection using deep learning

The recent approaches to PL detection rely on DL techniques
due to their ability to automatically extract the PL features from
aerial images and work well for complex image environments.
The works in (Yetgin et al., 2018; Zhang et al., 2018b) tend to clas-
sify the PL objects, against the background, from aerial images
without localization. For detection and localization, pixel-based
semantic segmentation is the most commonly used DL technique.
Madaan et al. (Madaan et al., 2017) first utilized a CNN with dilated
convolution operation for segmenting PL pixels using synthetically
generated PL images. Heng Zhang et al. (Zhang et al., 2019) fused
the convolutional and structural features of PLs for accurate detec-
tion. Li et al. (Li et al., 2019b) proposed attentional fusion network
for detecting PL pixels. Nguyen et al. (Nguyen et al., 2019) pro-
posed LS-Net, a fast single-shot line segment detector for detecting
PLs generated synthetically via a physical based rendering tech-
nique. U-Net segmentation architecture and its variants were
deployed for segmenting PL pixels in (Saurav et al., 2019). PLGAN
(Abdelfattah et al., 2022) uses a GAN network for pixel-wise PL
detections. The greatest disadvantages of pixel-level detection
methods are the computational complexity and lack of large, pub-
licly available pixel-wise annotated datasets. The only publicly
available pixel-wise PL datasets are: Mendeley power line dataset
(Yetgin & Gerek, 2019) and, Power line dataset of urban (PLDU)
(Zhang et al., 2019b) and mountain scenes (PLDM) (Zhang et al.,
2019a) introduced in (Ö. E. Yetgin et al., 2018) and (Zhang et al.,
2019b) respectively. These datasets are not large and contain
approximately 500 images or less. The works in (Madaan et al.,
2017; Nguyen et al., 2019) utilized PL datasets which are not pub-
licly available.

Several approaches have been introduced to cope with the com-
putational complexity and time-consuming annotations associated
with the pixel level methods. For instance, the works in (Choi et al.;
Li et al., 2018) utilized patch level labels instead of pixel annota-
tions for detecting PLs. These techniques usually required line
refinement and clustering methods to construct the final PLs.

Apart from the pixel-level methods, generic DL line-based
methods can also be used for thin PLs detection. Most of these
methods rely on junction information for efficient line detection,
for instance, HAWP (Xue et al., 2020) and DWP (Huang et al.,
2018) use a stacked Hourglass backbone network to collectively
detect the line segments and the junctions. L-CNN only detects
the junctions using a stacked Hourglass network and then infers
the corresponding line segments from it. AFM (Xue et al., 2019) cir-
cumvents the heuristic-based junction detection and constructs an
attraction field map using the U-Net backbone network for lines
detection but demonstrates an inferior performance as compared
to the junction-based methods. ULSD (H. Li et al., 2021) represents
the line segments using a Bezier curve for efficient detection from
both distorted and undistorted images. It is notable that these
methods cannot handle the curved PLs due to their reliance on sal-
iency of straight lines and/or junction information which might not
be present for PLs in aerial images. Moreover, the quality of these
line segment detectors may not be very good due to the inherent
spatial region partitioning which causes dislocations between the
detected PLs and the corresponding GTs (Abdelfattah et al.,
2022). All these techniques rely on heuristics-based modules
(edge, region, junction), line grouping and post processing mecha-
nisms which are refuted by LETR (Xu et al., 2021) to detect lines via
a transformer network. However, being a computationally expen-
sive transformer network LETR is limited by its ability to efficiently
work on target embedded environments.
4

Key points have also been used to represent and detect PL
objects in (Dai et al., 2020; Sumagayan et al., 2021) due to their
concise format. The authors in (Dai et al., 2020) used a group of five
key points to represent a PL while the authors in (Sumagayan et al.,
2021) used dense key points similar to pixel annotations. However,
the problem with key points-based approaches is that they require
additional post-processing techniques such as curve fitting to con-
struct PLs from the detected key points.
3. Materials and methods

3.1. Materials

3.1.1. Dataset
We utilized three benchmark PL datasets in this study namely,

the Mendeley PL Dataset (Yetgin & Gerek, 2019), the Power line
Dataset of Urban Scenes (PLDU) (Zhang et al., 2019b) and the
Power line Dataset of Mountain Scenes (PLDM) (Zhang et al.,
2019a). These datasets contain the visual light images of electrical
PLs captured by a UAV along with their corresponding pixel-wise
ground truth (GT) annotations. For PLPose, we generated the key
point and bounding box annotations for these datasets using the
annotation module. The Mendeley PL dataset is composed of 400
images of size 512 � 512, out of which 200 images contain the
PLs while the remaining 200 images only contain the background
with no PLs in them. We only considered the 200 images contain-
ing the PLs for our experiment and split this dataset according to
the 80:20 train-test split so that the training dataset contains
160 images while the test dataset contains the remaining 40
images. We employed stratified sampling method to split the
dataset into train-test sets. The PLDU and PLDM datasets are
already split into training and test sets. The images in these
datasets are either of size 560 � 360 or of size 360 � 560. We
resized all the images to a standard size of 256 � 256 for our
experiments. The details of these PL benchmark datasets are
summarized in Table 1. Some of the images from these datasets
are illustrated in Fig. 2.

3.2. Methods

PLPose takes on a top-down pose estimation approach to detect
the PLs represented via key points. The details are discussed in the
succeeding subsections, but first, since the key points were
inspired by Human Pose Estimation, this will be described first.

3.2.1. Human pose estimation (HPE)
Human pose estimation (HPE) focuses on estimating the config-

uration of human body parts from images or videos. The human
body parts are most commonly modeled via a kinematic or
skeleton-based model (Chen et al., 2020) in which the body joints
are represented using key points and the connections between
these key points represent the limb orientations as depicted in
Fig. 3.

HPE is generally employed for visual understanding tasks such
as action recognition and tracking. Depending on the number of
people, HPE methods can be categorized into single-person and
multi-person methods. Since multi-person HPE is more appropri-
ate for real life scenarios it is achieved via two major techniques,
namely, the top-down pose estimation and the bottom-up pose
estimation.

The top-down pose estimation pipeline first detects the human
objects in the image via rectangular bounding boxes and then pre-
dicts location of key points within these boxes. On the other hand,
the bottom-up pose estimators do not utilize any bounding boxes
and directly start with regressing the key points followed by the



Table 1
Detailed Information of the PL Datasets used in this Study.

S.# Dataset Train Test Image Size

1 Mendeley PL Dataset (Yetgin & Gerek, 2019) 160 40 512 � 512
2 PLDU (Zhang et al., 2019b) 453 120 560 � 360 or 360 � 560
3 PLDM (Zhang et al., 2019a) 237 50 560 � 360 or 360 � 560

Fig. 2. Example images of PLs. Top Row: Mendeley PL dataset (Yetgin & Gerek, 2019), middle row: PLDU (Zhang, 2019b) and bottom row: PLDM (Zhang, 2019a). It should be
noted that lines are not always straight lines and that the contrast can be very different like the Fig. 2 (e) and Fig. 2 (h).

Fig. 3. Kinematic/Skeleton-based model for human body modeling in HPE. Various
human joints are represented via 15 different colored key points. The representa-
tions are color-coded as: orange: head, light orange: neck and shoulders, yellow:
elbow and hands, green: hips and groin, light blue: knees, dark blue: feet. ().
Adapted from Zheng et al., 2020
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assembling of the detected key points for final pose representa-
tions (Zheng et al., 2020). The top-down and bottom-up pose
estimation pipelines are depicted in Fig. 4. The top-down pose esti-
5

mation methods dominate the HPE performances due to their fast
inference speeds and ability to work with small datasets.

3.2.2. PLPose: An efficient framework for detecting PLs via key points-
based pose estimation

The schematic diagram for PLPose is presented in Fig. 1. For
PLPose, we take inspiration from works (Dai et al., 2020;
Sumagayan et al., 2021), which treat PL detection as a key points
estimation task. To avoid the rigorous approaches of curve fitting
or clustering for post-processing the detected key points, to cope
with the available small scale PL datasets and to detect multiple
PLs per image, PLPose frames PL detection as a top-down pose esti-
mation task that is it first detects the PLs objects in the image via
rectangular bounding boxes and then predicts the location of PL
key points within these boxes. Hence, there is no limit on the num-
ber of PLs detected by PLPose. As shown in Fig. 1, PLPose consists of
three main modules highlighted in green: (1) the annotation mod-
ule (2) the kMobileNet V3 module (3) and the UDP module.



Fig. 4. Illustration of top-down and bottom-up HPE pipelines (a) Top-down approaches have two sub-tasks: (1) human detection and (2) pose estimation in the region of a
singe human; (b) Bottom-up approaches also have two sub-tasks: (1) detect all keypoints candidates of body parts and (2) associate body parts in different human bodies and
assemble them into individual pose representations. (). Adapted from Zheng et al., 2020

Fig. 5. Sample of PL annotation from the PLPose annotation module. In this image,
two PLs are labelled with three points each, the start and end extremes are labelled
with dark blue and green dots respectively and the centre with a cyan dot. A
bounding box shows the region of interest. It should be noticed that if an edge
detection method would be used, the left edge of the surface would generate false
positive lines.
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3.3. Annotation module

This module is responsible for determining the appropriate key
points for the PL annotation. The PLs are then annotated accord-
ingly via manual annotators. Each PL in the aerial image is repre-
sented via a set of three representative key points: start, center,
and end, which were selected after the empirical investigation of
two key point annotation protocols (discussed in Section 4) by
the annotation module. The connections between these key points
constitute the pose of a PL for final PL representation. Since top-
down pipeline first identifies the objects of interest via bounding
boxes, hence bounding box annotations are also required for train-
ing a top-down pose estimator. The annotation module, however,
extracts the bounding box representations of PLs automatically
from the annotated key points. A sample of the PL annotation
obtained via the annotation module is depicted in Fig. 5. The final
annotated PL dataset is employed for the training and performance
evaluation of the top-down pose estimation network.

3.4. kMobileNetV3 module

High resolution network (HRNet) (Sun et al., 2019) is consid-
ered the state-of-the-art in top-down HPE task due to its stronger
feature representation capability achieved via parallel multi-scale
feature fusion instead of a series of low-to-high down-sampling
and up-sampling feature extraction process. However, HRNet is
computationally expensive and results in a model with increased
network parameters. MobileNetV3 is a light-weight model
designed for achieving acceptable performance on various com-
puter vision tasks in resource constrained devices (Howard et al.,
2019). It extends MobileNetV2 (Sandler et al., 2018) model by
using AutoML (Gupta & Tan, 2019) to find the optimal architecture
best suited to mobile computer vision tasks. The basic building
block of MobileNetV3 comprises of inverted residual bottlenecks
from MobileNetV2 along with the Squeeze and Excitation (SE)
blocks which enhance the features that contribute more to the
detection task and suppress the non-contributing features. Hard-
swish (H-swish) non-linearity was introduced, to work efficiently
in embedded environments, as an alternative to the swish linearity
6

function. MobileNetV3 is available in small and large versions for
different resource platforms. The MobileNetV3 block is depicted
in Fig. 6.

For PLPose, we adopted the vanilla MobileNetV3 as the back-
bone network for efficient processing and simply added a head net-
work over the last convolution stage for key points pose estimation
following the work in (Xiao et al., 2018). The head network con-
sisted of three deconvolution (dconv) layers each with 256 filters,
4x4 convolution kernel, stride 2 and padding 1. Batch Normaliza-
tion and ReLu activation were used in each of the three dconv lay-
ers. A 1 � 1 convolutional layer was added at last to generate
predicted heatmaps for all k (k = 3 for PLPose) key points. We
employed an image input of size 256 � 256 � 3 and predicted
heatmaps of size 64 � 64 � k where k is the number of key points.
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It should be noted that either of the vanilla MobileNetV3 versions
(small or large) may be employed as the backbone in our kMobile-
NetV3 network. The proposed model is depicted in Fig. 7 and the
detailed model specification along with its layers is presented in
Table 2 for the small version and in Table 3 for the large version.

3.5. Unbiased data processing (UDP) module

The unbiased data processing (UDP) is a model-agnostic data
processing technique to improve the key points detection perfor-
mance in HPE by handling the bias and statistical error introduced
in top-down pose estimators due to flipping augmentation and
encoding–decoding process (J. Huang et al., 2020). We investigated
the application of UDP to our proposed PLPose top-down pose esti-
mation network (kMobileNetV3) to understand its effect on the PL
detection performance.

UDP was applied to PLPose during the affine data augmentation
operation in the train and test phases as depicted in Fig. 1. The final
datasets from the UDP module were utilized during the model
training and evaluation.

Our proposed top-down pose estimation models kMobileNetV3
and kMobileNetV3 + UDP achieved state-of-the-art performance
on benchmark PL datasets in terms of model size and inference
speed as discussed in Section 5.

4. Manual data labeling

The public PL datasets (Mendeley PL dataset (Yetgin & Gerek,
2019), PLDU (Zhang et al., 2019b) and PLDM (Zhang et al.,
2019a)) comprise of pixel-level annotations. Hence, due to the
unavailability of large-scale public datasets with key points anno-
tation for PL detection, we proposed a data labeling method to rep-
resent PLs via key points. We identified and investigated two
annotation protocols for labeling the PLDU and PLDM datasets
and evaluated four top-down key point pose estimators on the
labelled datasets to observe the detection performance (results in
Section 5). The annotation protocol with the best results was cho-
sen to annotate all the three PL datasets. The annotation protocols
which were investigated are discussed as follows.

4.1. Annotation protocol 1: Six key points (k = 6)

Each PL was represented via six unique key points (k = 6):
start1 (S1), center1 (C1), end1 (E1), start2 (S2), center2 (C2) and

end2 (E2), constituting the two distinct boundaries of the PL as
shown in Fig. 8. The start (S1, S2) and end (E1, E2) points repre-
sented the two ends of the PL while the center points (C1, C2) are
additional points that were used to label any bend or curve in
the PL. This allowed us to even annotate PLs which were not
Fig. 6. MobileNetV3 Block: MobileNetV2 + Squeeze-and-Excite. The squeeze and
excite is applied in the residual layer. Different nonlinearities (NL) (Relu and hard-
r) are applied depending on the layer. Dwise represents the depth-wise convolu-
tions and FC represents the fully connected layers. (). Adapted from Howard et al.,
2019
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straight lines. In the case of straight PLs, C1 and C2 represented
the actual centers of the PLs. This annotation scheme can be
extended to annotate PLs with more than one curve, or more com-
plex geometry, by introducing additional center points (C11, C12

etc.). However, since the PLs in PLDU and PLDM datasets are mostly
straight with maximum one curve (if any), we only used one center
point for each boundary of the PL. We defined (x1, y1), (x2, y2), (x3,
y3), (x4, y4), (x5, y5), (x6, y6) as pairs of � and y coordinates of S1, C1,
E1, S2, C2 and E2 respectively. The key points were connected
sequentially to form the skeletal pose for each PL. For k = 6, the
key points were connected as follows: S1 ? C1 ? E1 and
S2 ? C2 ? E2. The bounding box for each PL was then represented
via (x, y, w, h) where (x, y), w and h are calculated according to Eq.
(1), Eqs. (2) and (3) respectively.

x; yð Þ ¼ x1; y1ð Þ ð1Þ
w ¼ x6 � x1 þ 1ð Þ ð2Þ
h ¼ y6 � y1 þ 1ð Þ ð3Þ
Usually the start (S1, S2) and end points (E1, E2) are interchange-

able, but we annotate S1 and S2 starting from the image top and E1
and E2 at the image bottom. Fig. 8 depicts these annotations on PL
mask images, rather than original images, for better visualization.
It takes approximately 6 s to annotate each PL with six key points.
4.2. Annotation protocol 2: Three key points (k = 3)

Instead of six distinct key points, each PL was represented via
three distinct key points (k = 3) only, namely: start (S), center (C)
and end (E). The key points were labelled in the middle of the
two PL boundaries as shown in Fig. 9.

The objective of reducing the annotation key points to half is to
determine the optimal PL representation for the detection process,
that is two representative lines for each PL curve (k = 6) versus only
one representative line (k = 3). It took approximately 3 s to anno-
tate the PLs with three key points. We defined (x0

1, y
0
1), (x

0
2, y

0
2), (x

0
3,

y0
3) as pairs of � and y coordinates of S, C and E respectively. For

k = 3, the key points were connected as follows: S ? C ? E. The
bounding box for each PL was then represented via (x, y, w, h)
where (x,y), w and h are calculated according to (4), (5) and (6)
respectively.

x; yð Þ ¼ x01; y
0
1

� � ð4Þ
w ¼ x03 � x01 þ 1
� � ð5Þ
h ¼ y03 � y01 þ 1
� � ð6Þ
The key points for both the annotation protocols were initially

labelled by a group of three researchers and then cross-checked
by another group of three researchers. The resultant key point
annotations are compatible with the Microsoft COCO Keypoint
Dataset (Lin et al., 2014). It should be noted that our annotation
module (Section 3) automatically calculated the bounding boxes
from the labelled key points, using the calculations in Eqs (1)–
(6), for both the annotation protocols. This makes our annotation
scheme more efficient in contrast to the manual bounding box
annotations which usually require 42 s for labelling each box (Su
et al., 2012). The performance of four state-of-the art top-down
pose estimation networks on the PLDU and PLDM datasets anno-
tated via annotation protocols 1 and 2 are discussed in Section 5.
We provide complete annotations using both the annotation proto-
cols for all the mentioned datasets in our Github repository for
public use and future research.



Fig. 7. The proposed kMobileNetV3 (MobileNetV3 + Simple Key Point Head) Network for PL detection via top-down pose estimation. MobileNetV3 small or large version can
be used as the backbone in the network. In this image, MobileNetV3-Small constitutes the backbone for extracting the feature maps (8x8x96) from the image via
downsampling while the simple key point head uses three dconv layers to generate the high resolution key point heatmaps (64x64xk) via upsampling process, where k is the
number of key points. It should be noted that k = 3 (start,center and end) for PL detection in this study. PL start, center and end are detected via red, green and cyan key points
and the PL is detected as the pose with a yellow line along with a white bbox.

Table 2
Specification for MobileNetV3-Small: Top-down Pose Estimation Network for PLPose. SE denotes whether there is a Squeeze-And-Excite in that block. NL denotes the type of
nonlinearity used. HS denotes h-swish and RE denotes ReLU. NBN denotes no batch normalization. s denotes stride.

Component Input Operator exp size #out SE NL s

MobileNet V3 (small) Backbone Network 2562 � 3 conv2d, 3 � 3 – 16 – HS 2
1282 � 16 bneck, 3 � 3 16 16 SE RE 2
642 � 16 bneck, 3 � 3 72 24 – RE 2
322 � 24 bneck, 3 � 3 88 24 – RE 1
322 � 24 bneck, 5 � 5 96 40 SE HS 2
162 � 40 bneck, 5 � 5 240 40 SE HS 1
162 � 40 bneck, 5 � 5 240 40 SE HS 1
162 � 40 bneck, 5 � 5 120 48 SE HS 1
162 � 48 bneck, 5 � 5 144 48 SE HS 1
162 � 48 bneck, 5 � 5 288 96 SE HS 2
82 � 96 bneck, 5 � 5 576 96 SE HS 1
82 � 96 bneck, 5 � 5 576 96 SE HS 1

Simple Key Point Head Network 82 � 96 dconv2d, 4 � 4 – 256 – RE 2
162 � 256 dconv2d, 4 � 4 – 256 – RE 2
322 � 256 dconv2d, 4 � 4 – 256 – RE 2
642 � 256 conv2d, 1 � 1 – k – – 1

Table 3
Specification for KMobileNetV3-Large: Top-down Pose Estimation Network for PLPose. See Table 2 for notation.

Component Input Operator exp size #out SE NL S

MobileNet V3 (large) Backbone Network 2562 � 3 conv2d, 3 � 3 – 16 – HS 2
1282 � 16 bneck, 3 � 3 16 16 – RE 1
1282 � 16 bneck, 3 � 3 64 24 – RE 2
642 � 24 bneck, 3 � 3 72 24 – RE 1
642 � 24 bneck, 5 � 5 72 40 SE RE 2
322 � 40 bneck, 5 � 5 120 40 SE RE 1
322 � 40 bneck, 5 � 5 120 40 SE RE 1
322 � 40 bneck, 3 � 3 240 80 – HS 2
162 � 80 bneck, 3 � 3 200 80 – HS 1
162 � 80 bneck, 3 � 3 184 80 – HS 1
162 � 80 bneck, 3 � 3 184 80 – HS 1
162 � 80 bneck, 3 � 3 480 112 SE HS 1
162 � 112 bneck, 3 � 3 672 112 SE HS 1
162 � 112 bneck, 5 � 5 672 160 SE HS 2
82 � 160 bneck, 5 � 5 960 160 SE HS 1
82 � 160 bneck, 5 � 5 960 160 SE HS 1

Simple Key Point Head Network 82 � 160 dconv2d, 4 � 4 – 256 – RE 2
162 � 256 dconv2d, 4 � 4 – 256 – RE 2
322 � 256 dconv2d, 4 � 4 – 256 – RE 2
642 � 256 conv2d, 1 � 1 – k – – 1
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5. Experiments and analysis

5.1. Implementation

We utilized mmpose framework (Contributors, 2020), a
Pytorch-based framework, to implement our proposed
8

kMobileNetV3 and kMobileNetv3 + UDP top-down pose estima-
tion networks for PL detection via pose estimation. Since the
size of the datasets was rather small for training a deep pose
estimation network, the following on-the-fly data augmenta-
tions were applied to the images in sequential order in all
the training datasets.



Fig. 8. Example of manual PL annotations with curves using six unique colored key
points (S1 (red), C1 (yellow), E1 (green), S2 (dark blue), C2 (cyan), E2 (magenta)). First
column: key point annotations; Last column: key point annotations with corre-
sponding bounding boxes (bbox: grey).

Fig. 9. Example of manual PL annotations with curves using three unique colored
key points (S (green), C (dark blue), E (yellow)). First column: key point annotations;
Last column: key point annotations with corresponding bounding boxes (bbox:red).
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� Random horizontal flipping with a probability of 50%.
� Data augmentation with random scaling ½1� scale factor;1þ
scale factor� and rotation ½�2� rotation factor;2� rotation
factor�. A scale factor of 0.5 and a rotation factor of 40 with a
rotation probability of 60% is applied.

� Affine data transformation with UDP enabled for the UDP vari-
ants of the network and disabled otherwise. The required scal-
ing and rotation parameters are kept the same from the above
random scaling and rotation data augmentation.

� RGB channel data normalization.

As far as the test datasets are concerned, only the horizontal
flipping, affine transform and data normalization were applied
during the test phase.

The network was trained on NVIDIA Tesla K80 GPU compute
available via Google Colab, for 210 epochs with a batch size of 2.
Mean squared error (MSE) loss was used for training the network
with regular checkpointing at every 10 epochs. Adam optimizer
was employed for model training with an initial learning rate
(LR) of 5e-4 and a step learning policy with linear warmup itera-
tions of 500, warmup ration 0.001 and steps in the range of
[170,200]. These parameters were identified via a grid search
method. No transfer learning was applied for training the proposed
kMobileNetV3 and kMobileNetV3 + UDP networks in order to pre-
sent a fair evaluation of the proposed networks against state-of-
the-art networks commonly employed for top-down pose
estimation.
9

5.2. Evaluation parameters

Since there is no public performance evaluation standard for PL
detection via pose estimation, we adopted the standard COCO pose
estimation criteria based on the object key point similarity (OKS)
defined by (7) as follows:

OKS ¼

P
i e

�d2
i

2s2K2
i

� �
d v i > 0ð Þ

2
64

3
75

P
i d v i > 0ð Þ½ � ð7Þ

where:

� di: Euclidean distances between each corresponding ground
truth and detected key point.

� v i: the visibility flags of the ground truth (the detector’s pre-
dicted v i are not used).

for each key point i.
To compute OKS, we pass the di through an unnormalized Gaus-

sian function with standard deviation sKi where s is the object
scale and Ki is a per key point constant that controls falloff
(COCO, 2016). The object scale s is calculated via the bounding
box area while Ki is calculated via Ki ¼ 2ri where sigma (ri) is
the normalized factor of the object skeletal key point and is calcu-
lated by the standard deviation of human annotation result. Hence,
Ki measures the annotation quality. The ri s were set to 0.025 for
all the i key points in PL detection. For each key point this yielded
an OKS value in the range [0,1]. Perfect predictions will have an
OKS = 1 and predictions for which all key points are far off by more
than a few standard deviations sKi will have OKS � 0. The OKS is
analogous to the intersection over union (IoU) in the case of object
detection/segmentation. Given the OKS, we can compute AP and
AR just as the IoU allows us to compute these metrics for box/seg-
ment detection by measuring the degree of overlap between the
predicted and the ground truth values. As per the COCO evaluation
criteria, the average precision and recall (based on OKS) are used to
characterize the performance of our proposed key point detector.
We used 6 COCO evaluation metrics to describe the performance
of our model. They are AP, AP0.5, AP0.75, AR, AR0.5 and AR0.75 as
shown in Table 4. The values 0.5 and 0.75 signify the OKS thresh-
olds to adjust the matching criterion where 0.5 is a loose threshold
and 0.75 is a stricter one. If the OKS is larger than a specified
threshold, say 0.5, the corresponding ground truth and key points
prediction are considered as a matching pair. The AP and AR met-
rics are averaged over 10 OKS threshold values (0.50:0.05:0.95).
Apart from these metrics, we also considered the F1-score, model
size and inference speed as additional criteria for evaluating the
performance as per the PL detection studies in (Dai et al., 2020;
Sumagayan et al., 2021). All the evaluation parameters are listed
in Table 4.
5.3. Experimental results

We compared three state-of-the-art top-down pose estimation
networks with our proposed networks (kMobileNetV3 and
kMobileNetV3 + UDP in small and large versions), according to
the evaluation parameters listed in Table 4. These networks are:
HRNet-w32 (Sun et al., 2019), HRNet-w32 + UDP (J. Huang et al.,
2020) and the Resnet-50 model for HPE from Simple Baselines
(Xiao et al., 2018). It should be noted that basic versions of these
models were selected in this study to keep the model size to min-
imum so that a high inference speed can be achieved for real-time
monitoring. The evaluations were done on the public PL datasets



Table 4
PL Detection Evaluation Parameters used in this Study.

S.# Type Metric Description

1 Average
Precision

AP % AP at OKS = 0.50:0.05:0.95
2 APOKS=.50 % AP at OKS = 0.50 (loose metric)
3 APOKS=.75 % AP at OKS = 0.75 (strict metric)
4 Average

Recall
AR % AR at OKS = 0.50:0.05:0.95

5 AROKS=.50 % AR at OKS = 0.50 (strict metric)
6 AROKS=.75 % AR at OKS = 0.75 (loose metric)
7 F1-Score F1-Score Dice or F1-score
8 Model Size Model Size Trainable Model Parameters in

million (M)
9 Inference

Speed
Frames per
second (FPS)

Detection speed in FPS

10 Total Time Total Time Total inference time on test
dataset in seconds (s)
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labelled via the annotation module of PLPose using the annotation
protocols (k = 6 and k = 3) discussed in Section 4.

For HPE, these networks have 17 channels in the output layer to
predict the 17 human body joints via key points. Here, we changed
the number of output channels from 17 to 6 in annotation protocol
1 (k = 6), and 17 to 3 in annotation protocol 2 (k = 3), to represent
the characteristic key points of each PL.

First, we compared the performances of two annotation proto-
cols: 1 (k = 6) and 2 (k = 3) on the PLDU and PLDM datasets to iden-
tify the optimal annotation protocol for labeling PLs via key points.
The results for PLDU and PLDM datasets annotated via protocols 1
(k = 6) and 2 (k = 3) are summarized in Table 5, 6, 7 and 8 respec-
tively. The best values for each parameter are specified in bold.

Table 5, 6, 7 and 8 reveal that the results obtained with annota-
tion protocol 2 (k = 3) are more promising than those obtained
with annotation protocol 1 (k = 6) (ref. to Discussions section for
more details), hence, annotation protocol 2 (k = 3) is employed
to label the Mendeley PL dataset. The performance of the men-
tioned top-down pose estimation networks on the Mendeley PL
dataset is summarized in Table 9.

Supplementary plots depicting the tradeoff between the charac-
teristic evaluation parameters (AP, AR, F1-Score, Model Size, and
Inference Speed) for the mentioned top-down pose estimation net-
works, with the selected annotation protocol 2 (k = 3) are pre-
sented graphically in Figs. 10-12 for PLDU, PLDM and Mendeley
PL datasets respectively. These plots reveal that our proposed net-
works (kMobileNetV3 and kMobileNetV3 + UDP in small and large
versions) yield the most optimal configuration for the characteris-
tic evaluation parameters, with least model size, highest inference
speed and almost equivalent precision, recall and F1-Score values
in comparison to the other top-down pose estimation networks
(ref. to Discussion section for more details).
Table 5
Experimental Results of various top-down pose estimation networks (HRNet-w32, HRNet
kMobileNetV3 + UDP)) on PLDU Test Set (k = 6) with 120 Images.

Network AP % APOKS=.50 % APOKS=.75 % AR %

HRNet-w32 38.8 ± 0.85 80.6 ± 1 33.6 ± 1.65 52.5
HRNet-w32 + UDP 40.8 ± 0.80 80.9 ± 0.85 34.6 ± 1.98 54.7
ResNet-50 Simple Baseline 36.0 ± 0.66 78.9 ± 1.40 28.8 ± 0.75 50.3
kMobileNetV3-Small (Proposed) 36.2 ± 0.15 76.7 ± 1.04 29.4 ± 1.05 50.2
kMobileNetV3-Small + UDP

(Proposed)
38.3 ± 2.46 79.9 ± 2.38 34.9 ± 3.92 51.6

kMobileNetV3-Large (Proposed) 36.1 ± 1.05 77.0 ± 1.59 30.0 ± 2.63 49.6
kMobileNetV3-Large + UDP

(Proposed)
38.8 ± 0.40 79.8 ± 0.93 33.7 ± 0.74 52.8
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We also presented the results of the mentioned top-down pose
estimation networks on the combined PLDU + PLDM dataset,
referred to as PLD dataset in Table 10. This was done to compare
the performance of the selected annotation protocol with three
key points (k = 3) and the proposed top-down pose estimation net-
works (kMobileNetV3 and kMobileNetV3 + UDP in small and large
versions) with the reported results from the paper that introduced
the Convolutional Neural Network-based cable detection method
(CNNCDM) (Dai et al., 2020) which used five key points and an
encoder decoder style network to detect PLs in the PLD dataset.

The work in (Dai et al., 2020), CNNCDM, compared the perfor-
mances of several DL-based methods on the PLD dataset, such as
SSD (W. Liu et al., 2016), YOLOV3 (Redmon & Farhadi, 2018),
RFBNet (S. Liu & Huang, 2018), FSSD (Zuoxin Li & Zhou, 2017), Reti-
naNet (Lin et al., 2017), RefineDet (Zhang et al., 2018a) and Cen-
terNet (Duan et al., 2019) in terms of AP and processing time in
frames per second (FPS). Since, the Figs. 10-12 reveal that our pro-
posed networks achieve the best trade-off between the character-
istic evaluation parameters, hence, the results of comparative
analysis of the mentioned networks from (Dai et al., 2020) were
only compared with the proposed networks (kMobileNetV3 and
kMobileNetV3 + UDP in small and large versions) in terms of AP
and FPS. For processing time, the greater the frames per second
(FPS), the better the model performance. The results of AP and
FPS are summarized in Table 11 and 12 respectively. All the results
can be cited back from the work (Dai et al., 2020). However, it
should be noted that these AP and FPS results (Tables 11-12) were
obtained using a slightly different routine and hardware in com-
parison to our PLPose AP and FPS results. Nevertheless, we believe
that these results are still comparable to our PLPose results due to
the reasons stated in part 4 of the Discussions section.

We also compared the qualitative test results of various models
from (Dai et al., 2020) with the modified PINet model (Sumagayan
et al., 2021) and our proposed kMobileNetV3-Large + UDP on some
sample images from the PLD dataset in Fig. 13. Various models
from (Dai et al., 2020) include the convolutional features and struc-
tured constraints (CFSC) (Zhang et al., 2019) and some typical
power cable inspection methods, like, Bi-directional cascade net-
work perceptual edge detection (BDCN) (He et al., 2019), Richer
convolutional features for edge detection (RCF) (Liu et al., 2017),
Holistically-nested edge detection (HED) (Xie & Tu, 2015), Gestalt
Grouping (Rajaei & von Gioi, 2018) and Canny (Canny, 1986). The
sample images of the mentioned methods were copied from the
CNNCDM paper (Dai et al., 2020). From our proposed models, only
the kMobileNetV3-Large + UDP results are displayed in Fig. 13 due
to its optimal results for all the evaluation parameters (ref. Table 7
and 8). We further qualitatively analyzed some success and failure
modes of our best model variant (kMobileNetV3-Large + UDP) on
some sample images from the PLD dataset in Fig. 14. All the pre-
sented results are discussed in detail in the succeeding subsection.
-w32 + UDP, Resnet-50 Simple Baseline, and Proposed Approach (kMobileNetV3 and

AROKS=.50 % AROKS=.75 % F1-Score % Model
Size
M

Inference
Speed
FPS

Total
Times

± 0.83 86.7 ± 0.66 54.2 ± 1.55 44.6 ± 0.85 28.54 9.34 34.04
± 1.43 86.7 ± 1.09 54.8 ± 2.15 46.7 ± 1.02 28.54 7.28 43.71
± 0.85 85.8 ± 1.10 50.5 ± 0.85 41.9 ± 0.70 34.0 27.48 11.57
± 0.3 83.9 ± 0.6 51.1 ± 0.75 42.0 ± 0.25 3.36 42.17 7.55
± 2.67 84.5 ± 1.56 54.8 ± 3.74 43.9 ± 2.56 3.36 32.81 9.68

± 0.77 83.9 ± 0.75 51.4 ± 1.93 41.7 ± 0.95 5.23 36.43 8.71
± 1.10 85.4 ± 1.08 54.8 ± 1.12 44.7 ± 0.65 5.23 29.72 10.68



Table 6
Experimental Results of various top-down pose estimation networks (HRNet-w32, HRNet-w32 + UDP, Resnet-50 Simple Baseline, and Proposed Approach (kMobileNetV3 and
kMobileNetV3 + UDP)) on PLDM Test Set (k = 6) with 50 Images.

Network AP % APOKS=.50 % APOKS=.75 % AR % AROKS=.50 % AROKS=.75 % F1-Score % Model
Size M

Inference
Speed FPS

Total
Times

HRNet-w32 42.4 ± 0.25 71.1 ± 0.70 45.1 ± 1.36 53.1 ± 0.26 76.7 ± 1 55.5 ± 1.15 47.1 ± 0.21 28.54 9.39 9.99
HRNet-w32 + UDP 46.3 ± 0.14 70.6 ± 1.93 46.0 ± 1.45 53.1 ± 1.16 74.7 ± 1.73 54 ± 0.86 49.5 ± 0.66 28.54 7.32 12.83
ResNet-50 Simple Baseline 38.8 ± 0.7 66.8 ± 0.95 40.8 ± 2.67 52.4 ± 1.30 75.8 ± 0.58 58.6 ± 3.10 44.6 ± 0.95 34.0 27.46 3.42
kMobileNetV3-Small (Proposed) 33.6 ± 0.75 59.8 ± 1.60 34.4 ± 2.65 48.3 ± 1.16 72.7 ± 1 52.5 ± 1.73 39.6 ± 0.95 3.36 42.22 2.20
kMobileNetV3-Small +

UDP (Proposed)
36.8 ± 1.04 67.0 ± 1.19 36.8 ± 1.70 47.1 ± 1.01 73.7 ± 1.53 48.5 ± 1.15 41.3 ± 1.02 3.36 32.62 2.86

kMobileNetV3-Large (Proposed) 37.8 ± 0.85 67.9 ± 1.10 36.1 ± 1.02 49.2 ± 0.62 73.7 ± 0.57 50.5 ± 1 42.7 ± 0.73 5.23 37.59 2.49
kMobileNetV3-Large +

UDP (Proposed)
38.4 ± 0.21 62.0 ± 1.85 44.5 ± 1.83 50.4 ± 0.40 70.7 ± 1.53 56.6 ± 2.05 43.5 ± 0.25 5.23 28.19 3.32

Table 7
Experimental Results of various top-down pose estimation networks (HRNet-w32, HRNet-w32 + UDP, Resnet-50 Simple Baseline, and Proposed Approach (kMobileNetV3 and
kMobileNetV3 + UDP)) on PLDU Test Set (k = 3) with 120 Images.

Network AP % APOKS=.50 % APOKS=.75 % AR % AROKS=.50 % AROKS=.75 % F1-Score % Model
Size M

Inference
Speed FPS

Total
Times

HRNet-w32 57.9 ± 1.40 89.3 ± 0.86 59.4 ± 70.1 ± 1.05 92.0 ± 0.5 74.6 ± 1.85 63.43 ± 1.26 28.54 9.37 33.92
HRNet-w32 + UDP 61.3 ± 0.49 91.0 ± 1.47 64.4 ± 3.42 72.1 ± 1.20 92.6 ± 1.53 76.5 ± 1.88 66.20 ± 1.38 28.54 7.18 44.26
ResNet-50 Simple Baseline 55.2 ± 1.05 88.9 ± 1.04 56.5 ± 0.70 67.5 ± 0.80 91.6 ± 0.6 71.5 ± 0.52 60.70 ± 0.98 34.0 27.42 11.59
kMobileNetV3-Small (Proposed) 56.5 ± 1.06 88.2 ± 1.13 62.5 ± 3.60 68.2 ± 0.91 90.7 ± 0.84 75.9 ± 2.89 61.70 ± 0.91 3.36 42.15 7.53
kMobileNetV3-Small +

UDP (Proposed)
56.8 ± 0.15 89.2 ± 1.18 59.5 ± 1.36 67.8 ± 0.87 90.4 ± 0.86 73.7 ± 1.26 61.81 ± 0.46 3.36 31.56 10.07

kMobileNetV3-Large (Proposed) 56.0 ± 1.11 88.6 ± 0.78 56.5 ± 1.61 67.0 ± 0.85 90.4 ± 0.45 71.5 ± 0.86 60.9 ± 0.95 5.23 36.36 8.73
kMobileNetV3-Large +

UDP (Proposed)
59.5 ± 0.90 90.7 ± 2.85 65.5 ± 2.32 69.9 ± 1 92.0 ± 2.36 76.8 ± 2 64.3 ± 0.97 5.23 28.48 11.15

Table 8
Experimental Results of various top-down pose estimation networks (HRNet-w32, HRNet-w32 + UDP, Resnet-50 Simple Baseline, and Proposed Approach (kMobileNetV3 and
kMobileNetV3 + UDP)) on PLDM Test Set (k = 3) with 50 Images.

Network AP % APOKS=.50 % APOKS=.75 % AR % AROKS=.50 % AROKS=.75 % F1-Score % Model
Size M

Inference
Speed FPS

Total
Times

HRNet-w32 49.0 ± 0.75 71.5 ± 1.65 54.7 ± 1.40 58.8 ± 0.20 75.8 ± 1.05 63.6 ± 0.57 53.4 ± 0.40 28.54 9.38 10.04
HRNet-w32 + UDP 57.8 ± 1.13 72.8 ± 2.45 62.2 ± 1.05 65.4 ± 1.70 76.8 ± 2.05 68.7 ± 1.53 61.3 ± 1.34 28.54 7.10 13.23
ResNet-50 Simple Baseline 44.9 ± 1.33 73.4 ± 3.21 49.1 ± 1.71 56.6 ± 0.61 77.8 ± 1.53 61.6 ± 0.57 50.0 ± 0.98 34.0 27.84 3.37
kMobileNetV3-Small (Proposed) 38.4 ± 0.61 65 ± 0.45 38.3 ± 0.78 50.4 ± 1.02 73.7 ± 1 54.5 ± 1.05 43.6 ± 0.79 3.36 42.88 2.17
kMobileNetV3-Small +

UDP (Proposed)
47.5 ± 1.15 68.2 ± 3.51 55.4 ± 3.44 56.9 ± 1.58 74.7 ± 1.57 63.6 ± 3 51.0 ± 0.90 3.36 33.69 2.81

kMobileNetV3-Large (Proposed) 47.1 ± 0.1 73.2 ± 1.76 52.2 ± 1.49 57.3 ± 0.17 76.8 ± 1.21 64.6 ± 0.57 51.7 ± 0.15 5.23 36.97 2.51
kMobileNetV3-Large +

UDP (Proposed)
49.3 ± 0.83 70.4 ± 1.45 54.2 ± 1.60 57.0 ± 0.93 74.7 ± 1.57 61.6 ± 1 52.8 ± 0.55 5.23 29.22 3.19

Table 9
Experimental Results of various top-down pose estimation networks (HRNet-w32, HRNet-w32 + UDP, Resnet-50 Simple Baseline, and Proposed Approach (kMobileNetV3 and
kMobileNetV3 + UDP)) on Mendeley PL Test Set (k = 3) with 40 Images.

Network AP % APOKS=.50 % APOKS=.75 % AR % AROKS=.50 % AROKS=.75 % F1-Score % Model
Size M

Inference
Speed FPS

Total
Times

HRNet-w32 83.7 ± 4.76 97.0 ± 0 95.0 ± 2.68 87.8 ± 3.37 97.0 ± 0.46 95.0 ± 2.13 85.7 ± 4.11 28.54 9.40 4.33
HRNet-w32 + UDP 87.3 ± 1.04 97.0 ± 0 97.0 ± 3.34 90.2 ± 0.58 97.0 ± 0.46 97.0 ± 2.28 88.72 ± 0.8 28.54 7.19 5.65
ResNet-50 Simple Baseline 82.4 ± 1.08 97.0 ± 0 90.0 ± 0.36 86.5 ± 0.35 97.8 ± 0 91.3 ± 0 84.40 ± 0.77 34.0 27.10 1.50
kMobileNetV3-Small (Proposed) 78.6 ± 3.30 97.0 ± 1.15 90.6 ± 3.55 83.5 ± 2.88 97.0 ± 1.05 91.3 ± 3.30 80.97 ± 3.11 3.36 42.24 0.97
kMobileNetV3-Small +

UDP (Proposed)
80.7 ± 1.48 97.0 ± 0 92.9 ± 0.21 85.2 ± 0.98 97.0 ± 0.46 93.5 ± 0 82.88 ± 1.23 3.36 33.93 1.19

kMobileNetV3-Large (Proposed) 83.1 ± 0.1 97.0 ± 0.15 93.0 ± 0.95 87.2 ± 0.28 97.8 ± 0 93.5 ± 0 85.10 ± 0.15 5.23 36.79 1.09
kMobileNetV3-Large +

UDP (Proposed)
84.0 ± 0.26 97.0 ± 0.05 97.0 ± 0.05 88.0 ± 0.2 97.8 ± 0 97.8 ± 0 86 ± 0.2 5.23 28.88 1.40
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Fig. 10. Comparative analysis of various top-down pose estimation networks (HRNet-w32, HRNet-w32 + UDP, Resnet-50 Simple Baseline, and Proposed Approach
(kMobileNetV3-Small, kMobileNetV3-Small + UDP, kMobileNetV3-Large and kMobileNetV3-Large + UDP)) in terms of tradeoff between the characteristic evaluation
parameters on PLDU test dataset with 120 images.

Fig. 11. Comparative analysis of various top-down pose estimation networks (HRNet-w32, HRNet-w32 + UDP, Resnet-50 Simple Baseline, and Proposed Approach
(kMobileNetV3-Small, kMobileNetV3-Small + UDP, kMobileNetV3-Large and kMobileNetV3-Large + UDP)) in terms of tradeoff between the characteristic evaluation
parameters on PLDM test dataset with 50 images.

Fig. 12. Comparative analysis of various top-down pose estimation networks (HRNet-w32, HRNet-w32 + UDP, Resnet-50 Simple Baseline, and Proposed Approach
(kMobileNetV3-Small, kMobileNetV3-Small + UDP, kMobileNetV3-Large and kMobileNetV3-Large + UDP)) in terms of tradeoff between the characteristic evaluation
parameters on Mendeley PL test dataset with 40 images.
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Table 10
Experimental Results of various top-down pose estimation networks (HRNet-w32, HRNet-w32 + UDP, Resnet-50 Simple Baseline, and Proposed Approach (kMobileNetV3 and
kMobileNetV3 + UDP)) on PLD Test Set (k = 3) with 170 Images.

Network AP % APOKS=.50 % APOKS=.75 % AR % AROKS=.50 % AROKS=.75 % F1-Score % Model
Size M

Inference
Speed FPS

Total
Times

HRNet-w32 55.7 ± 1.09 84.3 ± 0.66 57.8 ± 1.15 67.2 ± 1.10 87.4 ± 0.7 71.6 ± 1.27 60.90 ± 1.11 28.54 9.22 45.21
HRNet-w32 + UDP 58.9 ± 0.50 86.8 ± 0.58 60.0 ± 1.07 70.2 ± 0.11 89.6 ± 0.11 73.2 ± 0.40 64.02 ± 0.31 28.54 7.14 58.41
ResNet-50 Simple Baseline 53.4 ± 0.55 85.3 ± 0.75 55.9 ± 1.31 65.8 ± 0.75 88.9 ± 0.62 71.6 ± 1.34 58.9 ± 0.65 34.0 27.60 15.11
kMobileNetV3-Small (Proposed) 48.3 ± 0.45 82.8 ± 1.12 48.8 ± 0.90 60.9 ± 0.5 86.0 ± 0.69 65.9 ± 0.96 53.8 ± 0.40 3.36 42.71 9.76
kMobileNetV3-Small +

UDP (Proposed)
54.6 ± 0.58 84.0 ± 0.89 58.9 ± 1.73 66.2 ± 0.76 86.7 ± 0.7 72.3 ± 1.32 59.8 ± 0.60 3.36 31.99 13.03

kMobileNetV3-Large (Proposed) 52.2 ± 0.23 85.2 ± 0.55 53.1 ± 0.49 64.5 ± 0.35 87.7 ± 0.62 68.7 ± 0.40 57.7 ± 0.32 5.23 37.23 11.19
kMobileNetV3-Large +

UDP (Proposed)
56.5 ± 0.72 85.0 ± 0.26 59.9 ± 0.85 67.7 ± 0.65 87.4 ± 0.25 73.0 ± 0.85 61.56 ± 0.69 5.23 29.10 14.32

Table 11
Performance in average precision (AP) of Various Key Point Detectors on PLD Test Set
with 170 Images.

S.# Model Key Points AP (%)

1 SSD512 (Liu et al., 2016) 5 30.04
2 YOLOV3 (Redmon & Farhadi, 2018) 15.36
3 RFBNet (S. Liu & Huang, 2018) 32.34
4 FSSD (Zuoxin Li & Zhou, 2017) 40.80
5 RetinaNet (Lin et al., 2017) 32.87
6 RefineDet (Zhang et al., 2018) 26.13
7 CenterNet (Duan et al., 2019) 52.71
8 CNNCDM (Dai et al., 2020) 54.80
9 kMobileNetV3-Small (Proposed) 3 48.30
10 kMobileNetV3-Small + UDP (Proposed) 54.60
11 kMobileNetV3-Large (Proposed) 52.20
12 kMobileNetV3-Large + UDP (Proposed) 56.50

Table 12
Processing Time in FPS of Various Key Point Detectors on PLD Test Set with 170
Images.

S.# Model FPS

1 SSD512 (Liu et al., 2016) 17.15
2 YOLOV3 (Redmon & Farhadi, 2018) 19.26
3 RFBNet (Liu & Huang, 2018) 14.48
4 FSSD (Li & Zhou, 2017) 15.91
5 RetinaNet (Lin et al., 2017) 15.36
6 RefineDet (Zhang et al., 2018) 14.35
7 CenterNet (Duan et al., 2019) 18.97
8 CNNCDM (Dai et al., 2020) 16.21
9 kMobileNetV3-Small (Proposed) 42.71
10 kMobileNetV3-Small + UDP (Proposed) 31.99
11 kMobileNetV3-Large (Proposed) 37.23
12 kMobileNetV3-Large + UDP (Proposed) 29.10
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5.4. Discussion

5.4.1. Comparative analysis of proposed annotation protocols
It can be seen from the results depicted in Tables 5 and 7 that

the annotation protocol 2 (k = 3) increases the precision results
of all the top-down pose estimation networks by 18–20% and recall
results by 16–18% while maintaining approximately equivalent
inference speeds for all the networks on the PLDU dataset. For
the PLDM dataset, annotation protocol 2 (k = 3) increases the pre-
cision values by 4–12% and recall values by 2–12% in comparison
to the annotation protocol 1 (k = 6) as shown in Table 6 and 8,
while maintaining approximately equivalent inference speeds for
all the networks. It is also noteworthy that the UDP networks
(HRNet-w32 + UDP, kMobileNetV3-Small + UDP and
kMobileNetV3-Large + UDP) show the highest improvements in
terms of precision and recall values for both the PLDU and PLDM
datasets for annotation protocol 2 (k = 3) in comparison to the
13
annotation protocol 1 (k = 6). These results imply that the investi-
gation of the annotation protocol in top-down key point pose esti-
mation networks is a significant but often neglected aspect. The
performance gain in the results of annotation protocol 2 (k = 3)
in comparison to the annotation protocol 1 (k = 6) is because the
OKS calculation (ref. Eq (7)) divides the sum of negative exponen-
tial functions, of Euclidean distances between the ground-truth
and the predicted key points, for all the key points by the total
number of key points. For similar numerator values, dividing by
a larger number (k = 6 in annotation protocol 1) instead of a smal-
ler one (k = 3 in annotation protocol 2) would yield lower OKS
results and vice-versa. We also believe that the performance gain
is because the annotation protocol 2 (k = 3) utilizes only 3 output
channels to predict 3 key points while annotation protocol 1 (k = 6)
requires double the channels for predicting 6 key points. Increasing
the number of key points will lead to a performance drop because
the model needs more capacity to learn more things. Hence, anno-
tation protocol 2 (k = 3) is identified as the optimal protocol for
labelling the PL key points and is employed to label the key points
for the third Mendeley PL dataset.
5.4.2. Comparative analysis of proposed kMobileNetV3 and
kMobileNetV3 + UDP with various State-of-the-art Top-Down pose
estimation networks

The results in Table 7, 8 and 9 depict that our proposed kMobi-
leNetV3 and kMobileNetV3 + UDP (in small and large versions)
top-down pose estimation networks outperform all the other
top-down pose estimation networks (HRNet-w32, HRNet-
w32 + UDP and Resnet-50 Simple Baseline) in terms of least model
size, the highest inference speed and the highest total inference
time for PLDU, PLDM and Mendeley datasets respectively at the
cost of little to no degradation in the precision (AP), recall (AR)
and F1-Score values. Figs. 10-12 depict these results graphically
by highlighting the trade-off between the mentioned characteristic
evaluation parameters for the PLDU, PLDM and Mendeley datasets
respectively. Overall HRNet-w32 + UDP network yields the best AP,
AR, and F1-Score values for PLDU (Table 7), PLDM (Table 8) and
Mendeley PL (Table 9) datasets but it suffers from high model com-
plexity (28.54 M) and painfully low inference speeds (�7 FPS). In
comparison to HRNet-w32 and its UDP variant, Resnet-50 Simple
Baseline model yields better inference speeds (�27 FPS) but suffers
a minor degradation in the range of� 2–4% in the AP and AR values
and comprises of even a bigger model size (34.0 M parameters).
However, even with a larger backbone network, our proposed
kMobileNetV3-Large and kMobileNetV3-Large + UDP yield a model
size of only 5.23 M parameters and an inference speed in the range
of 28–37 FPS which is better than the HRNet-w32, HRNet-
w32 + UDP and Resnet50 Simple Baseline networks. As far as AP,
AR and F1-Score values are concerned, our proposed



Fig. 13. Results on some sample images from PLD dataset (From left to right: original image, proposed kMobileNetV3-Large + UDP model with the three key points: S (green),
C (purple), E (red), modified PINet model (Sumagayan et al., 2021), CNNCDM, BDCN, CFSC, RCF, HED, Gestalt Grouping and Canny). Our model can detect the power lines using
the connections between three key points only. The connections between the key points are estimated directly as pose of the PL from our proposed model.
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kMobileNetV3-Large + UDP suffers a minor degradation of � 2%,
�7% and � 3% in evaluation parameter values for PLDU (Table 7),
PLDM (Table 8) and Mendeley (Table 9) datasets respectively. For
the PLDU, PLDM and Mendeley datasets, our proposed
kMobileNetV3-Large + UDP yields equivalent AP, AR, and F1-
Score values as HRNet-w32 with a much lower model size
(5.23 M compared to 28.54 M) and a higher inference speed
(�29 FPS compared to � 9 FPS). Our proposed kMobileNetV3-Lar
ge + UDP surpasses the Resnet-50 Simple Baseline network in
terms of all evaluation parameters on all the three datasets.

Amongst our proposed range of models, kMobileNetV3-Small
yields the least model size (3.36 M), best inference speed (�42
FPS) and the subsequent least total inference time on all the three
datasets. However, kMobileNetV3-Small lags behind its larger
counterpart (kMobileNetV3-Large) in terms of AP, AR and F1-
Scores due to a smaller feature extraction backbone structure
(ref. Table 2 and 3). Hence, keeping in mind all the evaluation
parameters (ref. Figs. 10-12), we conclude that our proposed
kMobileNetV3-Large + UDP is the most optimal top-down pose
estimation network model for PL detection due to higher AP, AR,
and F1-Scores with lower model size and higher inference speeds
and is therefore, adopted as the main PL detection network in
our proposed PLPose framework. We tested the processing speeds
of all the models on the same Nvidia Tesla K80 GPU that was uti-
lized for training these networks.

The overall precision and recall values for all the datasets are
much higher for a lower and more flexible OKS threshold of 0.50
as compared to the more restricted OKS = 0.75 and OKS = 0.5–0.9
5. It should also be noted that amongst the three datasets, the eval-
uation results for the Mendeley PL dataset are the highest, followed
by PLDU and then the PLDM datasets. This is because the PL images
in PLDU and PLDM datasets are more complex and cluttered as
compared to those in the Mendeley PL dataset.

5.4.3. Effect of unbiased data processing (UDP) module
It can be observed from the results in Tables 5-10 that the UDP

variants of the networks (HRNet-w32 + UDP, kMobileNetV3-Smal
14
l + UDP and kMobileNetV3-Large + UDP) help to increase the AP,
AR, and F1-Score values, on all the three datasets and for both
the annotation protocols (k = 6 and k = 3), in comparison to their
vanilla counterparts (HRNet-w32, kMobileNetV3-Small and
kMobileNetV3-Large). On average, an increment of 3–4% is
observed in the results of all the networks that employ a UDP mod-
ule for PL detection. This gain is the result of semantic alignment
by UDP, between the input PL key points and the predicted output
key points, during the data transformation and inference phases of
PL detection via top-down pose estimation. This semantic align-
ment is essential because the standard top-down pose estimation
networks produce unaligned results, by employing pixel as a
means of image measurement, when performing the de facto stan-
dard flipping strategy during inference (Sun et al., 2019; Xiao et al.,
2018). In this work, PL detection via conventional top-down pose
estimation networks shifts the output heatmap by 1 pixel (follow-
ing the works in (Sun et al., 2019; Xiao et al., 2018)) to compensate
these unaligned results between the input and the predicted PL key
points. This compensation requires additional post-processing and
degrades the accuracy of PL predictions. Since the UDP module is
based on unit-length measurement of images instead of pixels (J.
Huang et al., 2020), it successfully handles the unaligned PL key
points without any heatmap shifting, when deployed for the con-
ventional top-down pose estimation networks. However, it should
be noted that the deployment of UDP module to the top-down pose
estimation networks reduces their inference speeds due to the
associated data processing.

5.4.4. Comparative analysis of PLPose with various State-of-the-art
key point detectors for PL detection

The results of our proposed PLPose, comprising of annotation
protocol (k = 3) and the best performing top-down pose estimation
network (kMobileNetV3-Large + UDP), are compared with the
state-of-the-art PL key point detectors from (Dai et al., 2020) on
the combined PLD dataset, in Table 11. The reported results from
state-of-the-art PL detectors in Table 11 are selected at threshold
16 (ref. Table 6 in (Dai et al., 2020)). Table 11 shows that our



Fig. 14. Success (top two rows) and failure (bottom two rows) cases of PLPose on some sample images from PLD dataset. Success modes: Row 1: occlusion handling (a)-(b) by
treating non-occluded PL parts as separate PL instances, Row 2: effective multiple PL detection in diverse backgrounds (c)-(d); Failure modes: Row 3: No or missing key point
detections of short-length PLs at image corners (e)-(f), Row 4: Incorrect center point detection and pose estimation for curved PLs (g)-(h). All the three key point (S (green), C
(purple), E (red)) detection results are depicted on washed out images for better visualization.
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proposed annotation scheme with only three key points and the
top-down pose estimation network (kMobileNetV3-Large + UDP)
achieves a precision of 56.50% in comparison to the top-
performing CNNCDM network which uses five key points and an
encoder-decoder style network to achieve a precision of 54.80%.
Even higher precision values (>56.50%) can be achieved by our pro-
posed detection model for less strict OKS thresholds of OKS = 0.5
and OKS = 0.75 as depicted in Table 10. It should be noted that
the AP values for CNNCDM are also calculated using a Euclidean
distance-based matching method, to compare the ground-truth
and detected key points, like our OKS evaluation metric. Hence,
the results from the two methods are comparable. As far as the
processing speed is concerned, Table 12 clearly depicts that our
proposed model and its variants outperform all the other PL key
point detectors on the PLD dataset. The processing speed results
of other models are copied from CNNCDM paper and are obtained
using Nvidia GTX 1070 GPU which is more powerful than the Nvi-
dia Tesla K80 GPU utilized for our experiments. Even with a less
powerful GPU, our proposed kMobileNetV3-Small model achieves
the highest processing speed of 42.71 FPS in comparison to the
top-performing method YOLOv3 which has a processing speed of
20.60 FPS (a gain of � 22%). Moreover, our least performing model
kMobileNetV3-Large + UDP also achieves a processing speed of
29.10 FPS which is higher than the processing speed of YOLOv3
15
(a gain of � 9%) which confirms the effectiveness of our proposed
models.

5.4.5. Qualitative assessment of proposed PLPose with various State-
of-the-art key point detectors for PL detection

Fig. 13 shows a qualitative assessment of the proposed
PLPose in comparison to other PL detectors from (Dai et al.,
2020; Sumagayan et al., 2021). It should be noted that all of
these methods except the CNNCDM (Dai et al., 2020) and PINet
(Sumagayan et al., 2021) produce resulting images of predicted
edges. Meanwhile, our proposed method predicts the key points
(S (green), C (purple), E (red)) similar to CNNCDM and PINet.
However, being a pose estimation network, the proposed
method predicts the connections between the key points
directly as pose, unlike the CNNCDM and PINet which employ
additional curve-fitting methods to group the detected key
points. Lastly, our proposed annotation scheme that employs
only three representative key points is more efficient than the
annotation scheme used in CNNCDM (five key points) and PINet
(dense key points).

In this manner, our proposed PLPose significantly advances the
state-of-the-art on various PL benchmark datasets and is hence, a
suitable framework for detecting PLs via top-down key point pose
estimation method.
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5.4.6. Qualitative assessment of failure and success modes
Some examples of complex images from the PLD dataset where

our best model variant (kMobileNetV3-Large + UDP) does and does
not work well in detecting PLs are depicted in Fig. 14. The top two
rows in Fig. 14 highlight the success cases while the bottom two
rows highlight the failure ones. The images are labelled via lower-
case letters and their corresponding detections by complemented
lowercase letters. All the detection results (key point: S (green), C
(purple), E (red), pose and a supplementary bounding box) are
depicted on washed out images for better visualization. The
visualization of the bounding boxes is optional in our proposed
PLPose. The first row in Fig. 14 reveals the occlusion case where
parts of the PLs are occluded in the middle (a, b) and proposed
model handles this anomaly by detecting the non-occluded PL
parts (a’, b’) as separate PL instances. The second row depicts that
multiple PLs under diverse and complex backgrounds: (c) trees and
(d) human are detected perfectly (c’, d’) with the three key points
and pose connections between them. The third row in Fig. 14
highlights a failure case involving the detection of short-length
corner PLs (e, f). The short-length corner PLs (e, f) are detected
by our PLPose via a bounding box in Fig. 14 (e’) and a bounding
box and an additional key point (S) in Fig. 14 (f’) without the
other key points and their corresponding pose connections. Lastly,
the proposed PLPose also fails in effectively detecting the curved
PLs depicted in Fig. 14 (g, h). In the case of curved PLs, the center
point C, was annotated to highlight the curve in the proposed
annotation scheme (ref. Fig. 9). However, these center points are
not detected correctly at the point of curve (Fig. 14 (g’), (h)’) and
are instead localized at the actual centers of the PLs. We believe
that this might be due to the scarcity of the curved PL samples in
the benchmark datasets and might improve otherwise. Moreover,
the pose connections in Fig. 14 (g’), (h)’ are also not inferred
correctly with the E key point being connected to the S key
point directly without any connection between the C and S key
points. The efficient handling of these failure cases is left as future
work.
6. Conclusion

In this study, we framed PL detection as a key points-based pose
estimation task. We introduced PLPose, an end-to-end processing
and detecting framework for PL key points pose estimation. For
the PL key points detection within PLPose, we first introduced an
efficient key points annotation protocol with three key points only
and then adapted the MobileNetV3 CNN for top-down key points
pose estimation by adding a simple key point head with dconv lay-
ers for predicting the key point heatmaps and named it as kMobi-
leNetV3. kMobileNetV3 was introduced in two versions:
kMobileNetV3-Small and kMobileNetV3-Large to investigate the
effect of feature extraction backbone size on the model perfor-
mance. We also extended the proposed kMobileNetV3 by combin-
ing it with the unbiased data processing (UDP) module for better
detection performance, which yielded a novel data-centric top-
down pose estimation model. It was found that kMobileNetV3-La
rge + UDP yielded the most optimal results (high AP, AR, F1-
Scores, Inference Speed and low model size and total inference
time) amongst all other variants (kMobileNetV3-Small,
kMobileNetV3-Small + UDP, kMobileNetV3-Large) of the proposed
kMobileNetV3. The models were evaluated on three public PL data-
sets (PLDU, PLDM and Mendeley PL). Our proposed network
(kMobileNetV3-Large + UDP) outperformed the HRNet-w32 and
Resnet-50 Simple Baseline state-of-the-art top-down pose estima-
tion networks in terms of all evaluation parameters on all the three
PL datasets. However, the proposed kMobileNetV3-Large + UDP
lagged the HRNet-w32 + UDP model in terms of AP, AR, and F1-
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Scores on 2 out of 3 datasets but successfully surpassed the
HRNet-w32 + UDP in terms of model size and inference speed on
all the three datasets. Therefore, kMobileNetV3-Large + UDP was
chosen to be the most optimal top-down pose estimation network
for our proposed PLPose framework. Moreover, our proposed anno-
tation protocol with only 3 key points also surpassed other anno-
tation protocols for key points-based PL detection by yielding
better precision and processing time results. This implied that
the examination of the annotation protocol is an important but
often underestimated step in the top-down key point pose estima-
tion networks.

Limitations and future directions
Currently, the proposed PLPose cannot distinguish and segment

the individual PL instances. Moreover, kMobileNetV3-Large + UDP,
the top-down pose estimation network of PLPose, currently lags
behind HRNet-w32 + UDP in terms of AP, AR, and F1-Scores. All
these improvements along with the handling of the mentioned
failure cases will be made as part of our future work. The investi-
gation of bottom up HPE detectors for PL detection and the effect
of several pre- and post-processing techniques will also be carried
out in future.

Lastly, it is important to highlight that all the results discussed
in this study were presented on benchmark PL datasets comprising
of aerial images. However, for any computer vision application, the
performance of the detection models can vary greatly with the
scale and altitude of image data as in the case of object detection
from high-resolution UAV images (Zhang et al., 2021; Zhang
et al., 2020). Hence, a study of the proposed detection framework
on PL images acquired at a much higher or much lower altitudes
with varying resolutions than those presented in this work will
also be an interesting future direction.
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