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mainly developed as (knowledge-based) expert systems. Since then, the defini-

up in several lines of research work, namely, expert systems, machine learn-
ing, recommender systems, and in approaches to neural-symbolic learning
and reasoning, mostly happening during different periods of AI history. In
this article, we present a historical perspective of Explainable Artificial Intelli-
gence. We discuss how explainability was mainly conceived in the past, how
it is understood in the present and, how it might be understood in the future.
We conclude the article by proposing criteria for explanations that we believe
will play a crucial role in the development of human-understandable explain-
able systems.
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1 | INTRODUCTION

As of 2020, explainability has been identified as a key factor for adoption of AI systems in a wide range of contexts
(Doshi-Velez & Kim, 2017; Lipton, 2018; Ribeiro, Singh, & Guestrin, 2016a). Discussion accompanying the increasingly
common deployment of intelligent systems in application domains such as autonomous vehicles and transportation,
medical diagnosis, or insurance and financial services have shown that when decisions are taken or suggested by
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automated systems, it is essential for practical, social, and—with increasing frequency—Ilegal reasons that an explana-
tion can be provided to users, developers, and regulators.

As a case in point, the European Union's General Data Protection Regulation (GDPR) stipulates a right to obtain
“meaningful information about the logic involved”—commonly interpreted as a “right to an explanation”—for con-
sumers affected by an automatic decision (Parliament and Council of the European Union, 2016).>

The reasons for equipping intelligent systems with explanatory capabilities are not limited to issues of user rights
and of technology acceptance, though. Explainability is also required by designers and developers to enhance system
robustness and to enable diagnostics to prevent bias, unfairness, and discrimination, as well as to increase trust by all
users in why and how decisions are made.

Being able to provide an explanation of why a certain decision was made, has thus become a desirable property of
intelligent systems (Doran, Schulz, & Besold, 2017). Explanations should help users in understanding the model of the
system, in order to maintain it, and to use it effectively; they should also assist the user when debugging the model to
prevent and rectify incorrect conclusions. In addition, explanations can serve educational purposes and be helpful for
people in discovering and understanding novel concepts in an application domain. Finally, explanations are related to
users' trust and persuasion, they should convey a sense of actionability, and convince users that the system's decisions
are the most convenient for them.

Notwithstanding, there is no clear agreement about what an explanation is, nor what a good explanation entails. Its
manifestations have been studied across different incarnation of AI systems and disciplines. The first notions of
explainability in Artificial Intelligence had subsided together with that in expert systems after the mid-1980s
(Buchanan & Shortliffe, 1984; Wick & Thompson, 1992), and have been brought back into the focus by recent successes
in machine learning technology (Guidotti et al., 2018), for both autonomous (Nunes & Jannach, 2017) and human-in-
the-loop systems (Holzinger, 2016; Holzinger, Plass, et al., 2019), with applications in recommender systems
(Tintarev & Masthof, 2015), and approaches of neural-symbolic learning and reasoning (Garcez et al., 2015).

In this article, we look at the literature of Explainable Artificial Intelligence (XAI) from a historical perspective of
traditional approaches as well as approaches currently being developed. The relevant literature is vast, and this article
does not aim to be a complete overview of the XAI literature. For each of the perspectives, the reader can find more
comprehensive literature reviews in machine learning and Deep Learning (Arrieta et al., 2020; Fernandez, Herrera,
Cordon, Jose del Jesus, & Marcelloni, 2019; Guidotti et al., 2018; Mueller, Hoffman, Clancey, Emrey, & Klein, 2019),
recommender systems (Nunes & Jannach, 2017; Tintarev & Masthof, 2015), and Neural-Symbolic Approaches (Garcez
et al., 2015). The aim of the article is rather to provide an overview and discuss how different notions of explainability
(resp. format of explanations) have been conceived, and to provide several examples.

The main contributions of this article are:

« To provide an overview of XAI, and how it is understood in expert systems, machine learning, recommender systems,
and neural-symbolic learning and reasoning approaches.
« To provide the reader with a wide range of references, (s)he can use to gain a deeper understanding in the topic of XAl

The article is organized as follows. In Section 2, we give an overview of the different notions of explainability that
are subsequently addressed from different perspectives throughout the article. Section 3 describes two notions of expla-
nations prominently represented in the expert system literature, namely explanations as line of reasoning and as
problem-solving activities. In Section 4, we present how the notion of explanation is commonly understood in machine
learning, as well as a few examples of such explanations. Section 5 discusses how explanations are conceptualized in
the context of recommender systems. Section 6 identifies the increasingly popular perspective of Neural-Symbolic
Learning and Reasoning as promising approach to explainability in AI systems. Section 7 provides a critical discussion
and comparison of the different notions of explainability mentioned throughout the article, and introduces general
desiderata for explainability and a set of challenges for the development of human-understandable explainable Al sys-
tems. Section 8 concludes the article.

2 | WHATIS A (GOOD) EXPLANATION?

Defining what an explanation is remains a still open research question. In particular, determining the criteria for a good
explanation as of today is an active debate in various fields, including cognitive science, computer science, psychology,
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and philosophy (Confalonieri et al., 2019; Guidotti et al., 2018; Hoffman, Mueller, Klein, & Litman, 2018; Lipton, 2018;
Lombrozo, 2016; Miller, 2019).

Miller (2019) articulates the link between discussion in the social sciences and explainability in Al, providing an in-
depth survey on research on explanations in philosophy, psychology, and cognitive science. Three major findings were
highlighted. First, explanations are counterfactual, and humans tend to understand why a certain event happened
instead of some other events. Second, explanations are selective and focus on one or two possible causes—instead of all
possible causes—for a decision or recommendation; that is, explanations should not overwhelm the user with too much
information. Third, explanations are a social conversation and interaction for the purpose of transferring knowledge,
implying that the explainer must be able to leverage the mental model of the explainee while engaging in the explana-
tion process. While according to Miller (2019) these three points are key properties when building useful explanations,
the different notions of explainability prevalent in XAI only recently started to take them into account.

Psychology researchers have studied and defined properties of explanations that are human-oriented. For instance,
Lombrozo (2016) suggested that one needs to differentiate between distinct possible goals for explainability, while
highlighting why and how human explanatory cognition provides crucial constraints for the design of XAI systems.
Hilton (1990) pointed out that explanations imply social interactions, and that for machine-generated explanations, it is
essential to associate semantic information with an explanation (or its components) for effective knowledge transmis-
sion to human users. Kulesza et al. (2013) investigated the relationship between certain properties of generated explana-
tions and the fidelity of users’ mental models, finding that completeness ultimately appears to be more important than
soundness, and that oversimplification is detrimental to users' trust in an explanation.

Work in computer science hitherto focused to the most part on the mechanistic aspects of how explanations are
generated (Guidotti et al., 2018). This includes not only approaches in machine learning and recommender systems,
but also in knowledge-based systems. The types of explanations these systems are able to create—and, consequently,
their properties—mainly depend on the type of reasoning employed in the system, namely, symbolic, subsymbolic, or
hybrid.?

Symbolic reasoning systems draw conclusions or explain why a certain hypothesis holds based on a knowledge
base—usually encoded as a set of production or symbolic rules—and an inference mechanism, such as deduction,
abduction, or analogical reasoning (Doyle, Tsymbal, & Cunningham, 2003; Lacave & Diez, 2004; Mitchell, Keller, &
Kedar-Cabelli, 1986). Explanations in these systems consist of either descriptions coupled to the reasoning trace of the
system, or descriptions more coupled to the story behind the decision-making process of the system (Buchanan &
Shortliffe, 1984; Wick & Thompson, 1992). In either case, metrics and desirable properties for these explanations are,
for instance, accuracy, adaptability, and comprehensibility. While these explanations are typically meant to be a precise
reconstruction of the system behavior, they also should be adaptable to match different user profiles. Indeed, lay users
might be more interested in a less accurate but more understandable explanation, whereas expert users might prefer
more technical and precise explanation formats.

Subsymbolic (or connectionist) reasoning systems are, generally speaking, those that rely on machine learning
models in which representations are in most cases distributed and processing occurs simultaneously in multiple parallel
channels. Unfortunately, these properties frequently bring about a certain black-box nature of the corresponding
models. As a consequence, explanations in these systems often take the form of interpretable models that approximate
or try to mimic the behavior of the black-box (Andrews, Diederich, & Tickle, 1995; Guidotti et al., 2018). An interpret-
able model allows users to understand how decisions are made by means of local or global post-hoc explanations
(Guidotti et al., 2018). Such interpretable models are typically evaluated using metrics such as accuracy and fidelity.
These metrics measure to what extent an interpretable model is able to maintain competitive levels of accuracy with
respect to the original black-box model, and to what extent the model is able to accurately imitate a black-box predictor
respectively. Additional metrics targetting the notion of causability of explanations have recently been introduced by
(Holzinger, Langs, et al., 2019; Holzinger, Carrington, & Miiller, 2020). Causability refers to the extent to which an
explanation achieves a certain level of causal understanding in a specified context of use and is measured in terms of
effectiveness, efficiency, satisfaction related to causal understanding and its transparency for a user. As an additional
class of explanation approaches predominantly for black-box models, methods providing explanations based on coun-
terfactuals (i.e., hypothetical input examples that show how a different decision or prediction could have been obtained)
recently also moved into the focus of active research (see e.g., Mothilal, Sharma, & Tan, 2020).

A particular category of sub-symbolic reasoning systems are recommender systems. There is no clear consensus in
the recommender systems literature on what makes for a good explanation (Nilashi, Jannach, & bin Ibrahim, O.,
Esfahani, M. D.,, & Ahmadi, H., 2016; Nunes & Jannach, 2017; Tintarev & Masthof, 2015). In fact, an explanation on
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the recommendation can have different goals, and impact decision-makers differently (Coba, Rook, et al., 2019). For
example, a tailored explanation can persuade or help a user in finding an item more efficiently (Tintarev &
Masthof, 2015). When implementing an explanation, a usual approach is to first determine its objective. For instance,
stakeholders might be interested in delivering persuasive explanations, since they increase the probability of acceptance
or purchase of a recommended item (Nunes & Jannach, 2017). Trustworthiness is another desired property of an expla-
nation, since users tend to return to and reuse systems that they trust (L. Chen & Pu, 2005). Moreover, efficient, effective,
and satisfying explanations help the users in deciding fast and making good decisions and increase the ease of use,
respectively (Tintarev & Masthof, 2015). Transparency fosters the understandability for the user of the underlying logic
of the advice-giving systems, and scrutability allows the user to tell that the system is wrong. These properties are often
correlated. For instance, transparent explanations should also be comprehensible, and are known to convey trust. For a
detailed discussion about the relationships between characteristics we refer the reader to (Balog & Radlinski, 2020).

Hybrid or neural-symbolic systems are those systems that combine symbolic and sub-symbolic reasoning (Garcez
et al., 2015). The sub-symbolic system is able to build predictive models using connectionist machine learning and
processing large amounts of data, while the symbolic system is equipped with a rich representation of domain knowl-
edge and can be used for higher-level, structured reasoning. These symbolic elements are used by the system to explain
the decisions made by the sub-symbolic components. Also here, accuracy and fidelity are, once more, important metrics
to measure the performance of an interpretable model; whereas consistency and comprehensibility are desirable proper-
ties of the produced explanations from the explainee's point of view. The domain knowledge can serve as basis for
common-sense reasoning, and supports knowledge abstraction, refinement, and injection (Confalonieri, Eppe,
Schorlemmer, Kutz, & Pen~aloza, R.,, & Plaza, E., 2018; Lehmann & Hitzler, 2010). As such, the system has not only
the capability to create explanations for the sub-symbolic parts, but also to change the explanations' level of accuracy
and technicality depending on the user profile. Furthermore, the system can refine the extracted knowledge, and inject
it back to the sub-symbolic system to improve its performance (Garcez, Broda, & Gabbay, 2001).

3 | EXPLANATIONS IN EXPERT SYSTEMS

Expert or knowledge-based systems are software systems augmented by expert or domain knowledge. They are consid-
ered as one of the first instantiations of Al systems. They were developed to support humans in making decisions in sev-
eral domains (Doyle et al., 2003; Lacave & Diez, 2004; Mitchell et al., 1986; Wick & Thompson, 1992).

An expert system consists of a knowledge base encoding the domain knowledge, usually modeled as a set of produc-
tion rules, a rule interpreter or reasoner that makes use of the knowledge base, and an interface through which the user
can query the system for knowledge.

In the literature on expert systems, explanations are mainly understood in one of two ways: an explanation as a line
of reasoning, or as a problem-solving activity.

3.1 | Explanations as lines of reasoning

Seeing an explanation as a line of reasoning means mainly understanding it as a trace of the way that production or
inference rules are used by the system to make a certain decision. While this kind of explanation mainly accommodates
the need of knowledge engineers to understand whether the system's reasoning is technically sound, it (or slight vari-
ants of it) can also be provided as an explanation to domain experts (Buchanan & Shortliffe, 1984; Mitchell et al., 1986).

The most famous instantiation of a system that was able to provide this kind of explanation is MYCIN (Buchanan &
Shortliffe, 1984). MYCIN is a rule-based system with consultation capabilities developed in the 1970s, created with the
aim to provide doctors with diagnostic and therapeutic advice about patients with an infection. MYCIN's expertise con-
sists of a static knowledge base containing domain specific knowledge of an expert, as well as factual knowledge about
the particular problem under consideration.

The domain or expert knowledge is modeled by means of production rules (see Table 1), which are used to provide
diagnosis solutions to specific cases. That is, the user provides some knowledge about a specific patient as input, and
the system uses this knowledge to instantiate rules and to make the diagnosis corresponding to the specific case.

The explanation capability in MYCIN consists of a general question answering module and a reasoning-status
checker. The former answers simple English language questions concerning the system's decision in a consultation, or
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TABLE1 Example ofa MYCIN PREMISE: (AND (SAME CNTXT GRAM GRAMNEG)
rule, in both its logical internal form
(SAME CNTXT MORPH ROD)
(SAME CNTXT AIR ANAEROBIC))
ACTION: (CONCLUDE CNTXT IDENTITY BACTEROIDES TALLY .6)

and English translation

IF: (1) The gram stain of the organism is gramneg,
(2) The morphology of the organism is rod, and
(3) The aerobicity of the organism is anaerobic
THEN: There is suggestive evidence (.6) that

The identity of the organism is bacteroides

about the system's general knowledge. The latter provides explanations about the line of reasoning followed by the
system.

The question answering module accepts a set of predefined questions that allow an expert user to query the dynamic
knowledge or rationale with respect to the rules, parameters, values, and contexts used in a specific consultation. On
the other hand, the reasoning status checker allows the user to go deeper into the sequence of rules that are used. The
question answering module accepts two basic explanation commands: a why command, by which the user can ascend
the reasoning chain and explore higher-goals: and a how command, by which the user can descend the chain of infer-
ences exploring how a goal was achieved.

Although the provisioning of explanations as lines of reasoning of why certain decisions were “logically” made
improves the interpretability of expert systems, humans, when asked to account for complex reasoning, tend to also
reconstruct a story that describes the problem-solving behind the decision. That is, they might reconstruct an explana-
tion that fits their level of knowledge and expertise. For instance, a lay user will not benefit much from a very technical
explanation, compared to a domain expert or a knowledge engineer. This is what motivated the reconceptualization of
explanations as a problem-solving activity by itself as we will discuss in the next section.

3.2 | Explanations as a problem-solving activity

Conceiving of explanations as problem-solving activities means not only re-constructing the line of reasoning of the sys-
tem, but also taking into account different levels of abstraction. These could range from very technical to more explana-
tory explanation formats accommodating different user profiles.

The adaptability of explanations to different types of users can be achieved by de-coupling the explanation capability
from the main reasoning functionality, and by focusing the explanation on the problem-solving knowledge used to
solve a certain task (Hassling, Clancey, & Runnels, 1984; Wick & Thompson, 1992). An example of an expert system
exhibiting this adaptability is Rex (Wick & Thompson, 1992).

Rex was designed to provide explanations of how an expert system moves from the data of a particular case to a final
conclusion (a line of explanation) by building a “story” as an abstract of the expert systems reasoning. Rex was an inde-
pendent component from the expert system used, provided that an interface as well as two knowledge bases existed: a
knowledge specification and explanatory knowledge. The former acted as an interface between the knowledge of the
expert system and the knowledge of the explanation system, and it covered the problem-solving expertise used to solve
problems within the domain. The latter was knowledge used to create an explanation.

The explanation model of Rex is shown in Figure 1. The model takes a set of reasoning cues, and a set of constraints
as input. The reasoning cues consist of knowledge used and inferred by the expert system during the resolution of a cer-
tain case. This knowledge is filtered by a set of problem constraints that decide which of these reasoning cues are avail-
able to the explanation system. The selected reasoning cues are then mapped to the knowledge specification of the
domain, the screener. The knowledge specification (spec) is the common ground between the expert system and the
explanatory system and it is a high-level representation of the domain. It allows the explanation system to abstract from
the procedural details of the expert system. The knowledge specification consists of transitions between hypotheses,
where any transition requires the satisfaction of some goals and the existence of some reasoning cues. At this step, only
some of the transitions might be enabled, thus only some hypotheses can be inferred, and become available to the
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DATA MINING AND KNOWLEDGE DISCOVERY

CUE uplift
SE):(;’igr:t’] Reasoning Cues Value ¢ true
4 Type : direct
Name : the high uplift pressures acting on the dam
v Nickname : uplift pressures
Valuename *cue*
Screener Problem
creene Constraints HYPOTHESIS erosion
Value : true
Name : the erosion of soil from under the dam
Nickname :  erosion
Solution ) Line of Valuename : *hypothesis*
Constraints Explainer Explanation
GOAL det-cause
Name :  determine causal relationships
Nickname : determine causes
Y
CUE SCRIPT erosion-to-sliding
Explanatory Story U . drai lif lidi
Knowledge Teller ses (< rainage> <upli t> <sliding>)
Supports :  <erosion>
Achieves : det-cause
Bottoms ¢ (<drainage> <uplift> <sliding>)
Verbalizer Vconstraint : (and .<drainage> <uplift> <slidin.g>)
Text : <erosion> would cause <broken-pipe>
resulting in <drainage> thereby creating
<sliding> and eventually <uplift>
) GOAL SCRIPT causal
Explanation End-User Holds : (<det-cause>)

Text : (simply <det-cause>)

FIGURE 1 Explanation capability as a problem-solving activity (left) and example of explanatory knowledge (right) (Wick &
Thompson, 1992)

I attempted to find the cause of an excessive load on a concrete dam. Based on the FIGURE 2 Example of a line of explanation in Rex
broken pipes in the foundation, the sliding of the dam, the uplift pressures, and the (Wick & Thompson, 1992)

slow drainage, I was able to make an initial hypothesis. In studying causal relations,

I found that thc erosion of soil from under the dam would cause broken pipes,

resulting in slow drainage, thereby creating increased uplift pressures and eventually

sliding of the dam downstream. This led me to conclude erosion was the cause of the

excessive load.

explanatory knowledge. The explainer can finally build an explanation line by taking into account the knowledge speci-
fication and the explanatory knowledge.

The explanatory knowledge is a key component of the explanation process (see Figure 1). It models cues, goals, and
hypotheses. Transitions among these elements are modeled through scripts. Scripts are represented using a frame-based
language. The explainer tries to find an explanation “plan” using only transitions whose hypotheses can be proven. The
search of the explanation plan is carried out backward from the final conclusion until reaching the empty hypothesis.
Each state in the explanation plan corresponds to an explanation that uses cues and a hypothesis as data, establishes
other cues and a hypothesis as conclusions, and traverses certain edges in the knowledge specification.

Once an explanation is found, the story-teller organizes it into a consistent flow from data to conclusions. Then, it
presents the explanation as a story according to a grammar that models the memory structure built during human
story-understanding. The basic idea is to extract the information concerning the structure of each hypothesis transition
from the line of explanation. Each transition is formatted as a story-tree with a setting, theme, plot, and resolution. The
story-tree is then converted to textual description by the verbalizer that fills in a template with the problem description,
goal description, movement description, and the conclusion of the expert system. A line of explanation in Rex looks like
the explanation shown in Figure 2.

4 | EXPLANATIONS IN MACHINE LEARNING

While some machine learning models can be considered interpretable by design, namely decision trees, decision rules,
and decision tables,* the majority of machine learning models work as black-boxes. Given an input, a black-box returns
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the result of a decision task (classification, prediction, recommendation, etc.), but it does not reveal sufficient details
about its internal behavior, resulting in an opaque decision model. For this reason, explainability in machine learning
is formulated as the problem of finding an interpretable model that approximates the black-box model as much as pos-
sible, typically seeking high fidelity.

The literature about explainable or interpretable machine learning is vast. A recent survey on interpretable machine
learning methods and techniques can be found in (Guidotti et al., 2018). There, a classification of explanation models is
proposed:

« Global methods: The extraction of an explainable counterpart from a black-box model aims at providing an overall
approximation of the behavior of the black-box, such that all decisions made by the latter can be tracked in terms of
interpretable mechanisms, for example, (Craven & Shaolin, 1995; Frost & Hinton, 2017).

« Local methods: Explanations are built for the decisions made by a black-box model over specific outcomes/instances
of a dataset. In this sense, interpretable local models are considered a local approximation of how the black-box
works. This kind of explanations can vary greatly depending on the instance considered, for example (Kim, Rodin, &
Shah, 2014; Ribeiro, Singh, & Guestrin, 2016b; Ribeiro, Singh, & Guestrin, 2018).

« Introspective methods: Explanations are built by relating inputs to outputs of a black-box model. For instance, expla-
nations can consist of saliency masks for Deep Neural Network models in image classification (such as Convolutional
Neural Networks [CNNs]), for example (Hendricks et al., 2016; Park et al., 2016; Same, Wigand, & Miiller, 2019) or
groups of input-output tokens that are causally related, for example, (Alvarez-Melisa & Jackova, 2017).

In the following, we present some global and local explanation methods: PDPs (partial dependence plots), LIME
(local interpretable model-agnostic explanations; Ribeiro et al., 2016b), and SHAP (Shapley Additive explanations;
Lundberg & Lee, 2017). Furthermore, we dedicate a section to counterfactual explanations (Mothilal et al., 2020;
Watcher, Mittelstadt, & Russell, 2018).

41 | Global explanations

The goal of extracting explanations via an interpretable global model is to automatically generate general representa-
tions of the black-box model and its relationship to features of the dataset is has been trained on. One possible strategy
is to generate symbolic representations of all decisions made by the complex model and represent it in a directly inter-
pretable way. An example of this is the extraction of decision trees, for example (Craven & Shavlik, 1995; Frosst &
Hinton, 2017), and decision rules from a trained neural network, for example (Odense & Garcez, 2017; Zhou, Jiang, &
Chen, 2003), or the extraction of feature importance vectors, for example, (Lou, Caruana, & Gehrke, 2012; Lou,
Caruana, Gehrke, & Hooker, 2013), from noninterpretable models.’ In some other cases, the interpretable model is a
refinement of previous models, which were used to build the black box, such as in the case of Knowledge Neural Net-
works (Towell & Shavlik, 1993).

A different example can be found in PDPs Friedman (2000), which compute the effect of various variables in the
predicted outcome of a machine learning model. This effect can be linear (as in linear regression) or more complex.
PDP works by marginalizing the machine learning model output over the distribution of features so that the function
shows the relationship between the features one is interested in, and the predicted outcome. PDP works well when one
wants to explain two or three features (since it generates 2-D and 3-D plots) and when the features are uncorrelated. In
other cases, Accumulated Local Effect plots are used. They work with the conditional instead of the marginal distribu-
tion (Apley & Zhu, 2016). Figure 3 shows an example of these explanations.

4.2 | Local explanations

In local explanation methods, the individual predictions of a black-box model can be approximated by generating local
surrogate models that are intrinsically interpretable.

This strategy has been implemented for instance in LIME; Ribeiro et al., 2016b). The LIME approach exploits the
fact that the trained black-box model can be queried multiple times about the predictions of particular instances. By
perturbing the data used for training, LIME generates a new dataset after feeding the black-box model with perturbed
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FIGURE 3 Explanations as partial dependence plots—PDPs (left) and Accumulated Local Effect—ALE (right) showing how
temperature, humidity, and wind speed affect the predicted number of rented bicycles on a given day (Molnar, 2019). Due to correlation
between temperature and humidity, the PDP shows a smaller decrease in predicted number of bikes for high temperature or high humidity
compared to the ALE plots. The example shows that when features of a machine learning model are correlated, PDPs are not very accurate
and cannot be trusted (Apley & Zhu, 2016)
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Feature Value

[('6.21 < RM <= 6.64', -1.4447236495087157),

('TAX <= 283.25', 0.7417794586320381),

('0.45 < NOX <= 0.54', 0.7290587475071078),
('6.91 < LSTAT <= 11.38', 0.647686973013182),
('17.00 < PTRATIO <= 19.10', 0.2490023133440792)]

[TAX <= 283.25
1074
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FIGURE 4 Local explanation extracted through LIME in the Boston dataset (Harrison & Rubinfeld, 1978). The dataset contains
information collected by the U.S Census Service concerning housing in the area of Boston, Massachusetts. On the left, the median value of
owner-occupied homes in $1000's (the predicted value), is explained using a linear regression model using 5 over 14 features (RM, average
number of rooms per dwelling; TAX, full-value property-tax rate per $10; 000; NOX, nitric oxides concentration; LSTAT, % lower status of
the population; PTRATIO, pupil-teacher ratio by town). On the right, the local explanation in the form of a linear regression using the
mentioned features can be appreciated

data and creates a new interpretable model from the predictions made over the new dataset. The local surrogate model
is weighted by the proximity of the perturbed instances to the original ones such that it has a high local fidelity.

Methods like LIME generate explanations by creating surrogate models that are interpretable and have a low num-
ber of features in order to keep the complexity of the interpretable model low. Figure 4 shows an example of a local
explanation extracted by LIME. In the example, the predicted variable is explained using a linear regression.

However, the sampling method used to train the interpretable model is not applicable to situations in which feature
spaces are high dimensional or when black-box model decision boundaries are complex. In these scenarios, more fea-
tures have to be taken into account in order to increase local fidelity, to the detriment of interpretability. An extension
of the method, which uses rules instead of surrogate models, has recently been proposed by the authors of LIME. The
method, called ANCHOR (Ribeiro et al., 2018), uses the same perturbation space as LIME and constructs explanations
by adapting their coverage to the model structure. In this regard, explanations have a well-defined boundary in terms of
their faithfulness to the black-box model.

4.3 | Counterfactual explanations

A counterfactual explanation provides “what-if” information in terms of which alterations of the input features could
change the output of a predictive model. A counterfactual explanation is then defined as the smallest change to the
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“world” (as captured by the input data) that can be made to obtain a desired outcome (Wachter, Mittelstadt, &
Russell, 2018); for example, You were denied a loan because your annual income was £30,000. If your income had been
£45,000, you would have been offered a loan. In this scenario, the borrower receives information regarding why the loan
was denied but also will be informed as to what she should do in order to change this outcome.

One of the issues that has to be addressed when generating counterfactuals is that some features might not be
changeable (e.g., a person’s gender, race, or birth-place). Hence it becomes crucial to present counterfactuals that are
indeed actionable in the application domain. An actionable example, thus, refers to what can concretely be done next
in order to change the outcome of a given decision. For a counterfactual to be actionable it has to meet four properties:
proximity, obeying user constraints, sparsity, and causal constraints (Mothilal et al., 2020). Furthermore, presenting
users with a set of diversified examples (i.e., a range of suggested actions) can help them shed light on how the system
works, and can ease the adoption of these changes.

Unlike explanation methods that depend on approximating the classifier's decision boundary (Ribeiro et al., 2016a),
counterfactual explanations have the advantage that they are more human understandable (Mothilal et al., 2020), and
that they are always truthful with respect to the underlying model by giving direct outputs of the algorithm (Wachter,
Mittelstadt, & Russell, 2018). These properties might prove to be particularly useful in the context of explainability and
the GDPR.

An approach to generating counterfactuals was proposed in (Wachter, Mittelstadt, & Russell, 2018). Soon after, the
importance of diversity also in counterfactuals was acknowledged by (Russell, 2019), who correspondingly proposed a
method to generate diversified counterfactuals for linear models. More recently, Mothilal et al. (2020) proposed Diverse
Counterfactual Explanations (DiCE), a novel-model agnostic approach for generating counterfactual examples that are
both actionable and diverse.® An example of counterfactual explanations using DiCE can be seen in Figure 5.

5 | EXPLANATIONS IN RECOMMENDER SYSTEMS

Recommender systems make use of a large variety of models as back-end engines to serve customized recommenda-
tions to users. Such models can be based on Collaborative Filtering, which include Matrix Factorisation (MF; Koren,
Bell, & Volinsky, 2009) and all its variants, for example, singular value decomposition (SVD; Nati & Jaakkola, 2003) or
nonnegative matrix factorisation (NMF; Lee & Seung, 1999), Nearest Neighbors, and methods based on embeddings
such as Deep Learning (Wang, He, Feng, Nie, & Chua, 2018) or Knowledge-based Embeddings for Recommendation
(Zhang, Ai, Chen, & Wang, 2018).

Explanations in recommender systems is a popular topic and has received considerable attention in recent years
(Nunes & Jannach, 2017; Tintarev & Masthof, 2015). Most of the corresponding work aims to answer the question of
why a particular recommendation has been served. This answer can take into account many different aspects used by
the recommendation algorithm, such as past interactions characteristics, or contextual information, for example, loca-
tion of the user, his or her social context, or the time the recommendation is provided.

Query instance (original outcome : ©)

age workclass education marital_status occupation race gender hours_per_week income

0 220 Private HS-grad Single Service White Female 45.0 0.009411

Diverse Counterfactual set (new outcome : 1)

age workclass education marital_status occupation race gender hours_per_week income
0 57.0 Private Doctorate Single White-Collar White Female 45.0 0.724
1 36.0 Private Prof-school Married Service White Female 37.0 0.869
2 22.0 Self-Employed Doctorate Married Service White Female 45.0 0.755
3 43.0 Private HS-grad Married White-Collar White Female 63.0 0.822

FIGURE 5 Example of counterfactual explanations with DiCE (Mothilal et al., 2020). In this example, a neural network was trained to
predict the income of a person based on the above eight features (age, work-class, etc.). The first table represents the original query, where
the model computed a negative outcome. The second table represents the counterfactual examples
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Explainable recommendation systems can be broadly classified into two categories: model-based and post-hoc. The
first tackle the mechanistic part of the recommendation, aiming at explaining the way the algorithm proposes a particu-
lar recommended item, while the latter analyze the output of a trained recommender in order to infer an explanation
for all (recent) recommendations served.

The following subsections provide a brief overview on current state-of-the-art explainable recommender models,
and present some forms of explanations meant to increase persuasiveness, effectiveness, efficiency, user satisfaction,
and efficiency in platforms that serve recommendations.

5.1 | Explainable recommender system models

One of the most widespread methods which recommendation engines are based on is MF. Factorisation models rely on
latent representations of users and items so as to predict either the item(s) with the highest chance to be interacted
with, or the rating of an item given by a user. Problems arise when trying to explain the latent factors that contribute to
the prediction: the exact meaning of each factor is generally unknown and therefore more information about user inter-
ests and item characteristics is required. Explicit factor models (EFM; Zhang, 2015) take into account information pro-
vided by the user about features of items that she might be interested in (through reviews and explicit feedback) and
map them to the latent factors used in the (matrix or tensor) factorization part. Tensor factorization is an extension of
EFM's, where the cube user-item-features is used to predict ratings with embedded explanations in terms of features
(X. Chen, Qin, Zhang, & Xu, 2016). Implicit feedback for explaining a recommendation has also been proposed by
means of neighborhood-based explanations: in these models a recommended item comes with an explanation of the
style “x% similar users viewed this item,” which can be extracted thanks to an explainability regularizer that forces user
and item latent vectors to be close if x% of users have interacted with the same item.

There are other approaches to explaining recommendations, which are based on the use of external knowledge of
items in order to provide personalized explanations on new recommendations. Knowledge-based explanations for rec-
ommender systems (Catherine, Mazaitis, Eskénazi, & Cohen, 2017) make use of knowledge graphs that relate item
properties and users' behavior in terms of their past interactions with items. With such graphs, different paths can con-
nect a particular user to a particular item (i.e., the graph relationships) in the form of links (either views, purchases, or
category), the building blocks of the provided explanations. On a similar note, if user-item relationships are represented
as graphs, graph theory can provide insights about how users behave in terms of their interests on different items. For
instance, Heckel and Vlachos (2016) proposed a method to compute coclustering to find similar users in terms of their
interests and similar items in terms of their properties using an user-item bipartite graph. Explanations can then be
retrieved by using shared information between users, considering the purchase/interaction behavior of similar users on
recommended items as the core of the explanation.

A different approach to explaining the performance of a recommender engine is to consider it as a black-box that
can be probed so as to extract statistical features of recommendations (Peake & Wang, 2018). Explanations can then
highlight what percentage of the users have behaved similarly and therefore can provide the confidence on the recom-
mendation to be effective. Besides, the black-box can be approximated by an interpretable version of the recommender
engine, for example, association rules or similarity-based models, that can preserve high accuracy while being intrinsi-
cally interpretable (Singh & Anand, 2018).

Finally, there recently has been a surge in the number of deep learning-based recommender models deployed in rec-
ommender engines (He et al., 2017). Many deep learning techniques, such as CNNs; Seo, Huang, Yang, & Liu, 2017) or
Recurrent Neural Networks and Long-Short Term Memory networks (RNN-LSTM) (Hidasi & Karatzoglou, 2018) are used
to implement different recommendation strategies, such as sequential recommendations (LSTMs) or context-aware rec-
ommendations using user reviews. Attention-based methods are used to highlight the importance of words used in user
reviews of past interactions in order to provide explanations about new recommendations. These algorithms use natural
language generation in the explanations that can also take into account visual features of the items of interest.

5.2 | Explanation styles in recommender systems

Herlocker, Konstan, and Riedl (2000) compared a large number of different styles of explanations and found that rating
histograms generally were users’ preferred mechanism for rendering the data behind the recommendations transparent.
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Supporting these results, these visual explanations of user styles have proven to be popular in many studies ever since
(Bilgic & Mooney, 2005; Cosley, Lam, Albert, Konstan, & Riedl, 2003). Recently, a study using the visual rating histo-
gram paradigm specifically identified user-based explanations and high mean rating values as the most popular styles
(Kouki, Schaffer, Pujara, O'Donovan, & Getoor, 2017).

Friedrich and Zanker (2011) proposed a taxonomy to classify different approaches to generate explanations for rec-
ommendations. Among the types of explanations in their taxonomy, there are collaborative explanations. These are
explanations that justify recommendations based on the amount as well as the concrete values of ratings that derive
from similar users, where similarity is typically determined based on similar behavior and preference expressions dur-
ing past interactions.

The explanation taxonomy proposed by (Papadimitriou, Symeonidis, & Manolopoulos, 2012) extends this classifica-
tion by making a distinction based on the three fundamental concepts used for explaining recommendations, which are
users, items, and item features. They can be used to denote the following explanation styles:

« User Style, which provides explanations based on similar users,
« Item Style, which is based on choices made by users on similar items, and
« Feature Style, which explains the recommendation based on item features (content).

Please note, that any combination of the aforementioned styles is then categorized as a multi-dimensional hybrid
explanation style.

For the User Style, several collaborative filtering recommender systems, such as the one used by Amazon in their
online stores, adopted the following style of justification: “Customers who bought item X also bought items Y, Z, ....”
This is called User style (Bilgic & Mooney, 2005) as it is based on users performing similar actions like buying or rating
items (see also Figure 6). Regarding the Item style of explanation, justifications are of the form: “Item Y is rec-
ommended because you highly rated or bought item X, Z, ....” Thus, the system depicts those items that is, X, Z, ..., that
mostly influenced the recommendation of item Y. Bilgic and Mooney (2005) claimed that the Item style is preferable
over the User style, because it allows users to accurately formulate their true opinion about an item. In case of Feature
style explanations, the description of items is exploited to determine a match between a current recommended item
and observed user interests. For instance, restaurants may be described by features such as location, cuisine, and cost.
If a user has demonstrated a preference for Chinese cuisine and Chinese restaurants are recommended, then explana-
tions will note the Chinese cuisine or the restaurants’ cost aspects. As part of the work in Coba, Zanker, Rook, &
Symeonidis (2018), the authors tested users' preference for different explanation styles in a study. They found that User
Style explanations were the most preferred. In later studies, they also provided evidence that perception of explanations
relates to personality characteristics, and they proposed model-based approaches to further personalize explanations
(Coba, RooKk, et al., 2019; Coba, Symeonidis, et al., 2019).

6 | EXPLANATIONS IN NEURAL-SYMBOLIC LEARNING AND REASONING

Neural-Symbolic Learning and Reasoning seeks to integrate principles from neural network learning with logical rea-
soning (Garcez et al., 2015). Although neural networks and symbolic systems are frequently painted as two irreconcil-
able paradigms, the differences actually are more subtle and less fundamental than frequently presumed.

Symbolic systems operate on the symbolic level where reasoning is performed over abstract, discrete entities follow-
ing logical rules. A common goal of work on symbolic systems is to model (certain aspects of) common-sense reasoning,
for example, the kind of reasoning humans do in their everyday lives, which is considered to automatically allow for
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FIGURE 6 Example of an explanation interface visualizing a User style ﬁk ikikik 10
explanation using the explainability power of nearest neighbors for a target user (Coba, ﬁk ﬁk ﬁk ﬁk ﬁk 3

Symeonidis, et al., 2019)
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DATA MINING AND KNOWLEDGE DISCOVERY

better explainability. Neural networks, on the other hand, operate in the sub-symbolic (or connectionist) level. Individ-
ual neurons do not necessarily represent a readily recognizable concept, or any discrete concept at all. Instead, they
often model statistical regularities present in the training dataset, imbuing the system with statistical predictive capabil-
ities rather than allowing it to perform sound abstract reasoning. As discussed by Besold, Garcez, Bader, et al. (2017),
the integration between both levels could, therefore, bridge low-level information processing such as frequently
encountered in perception and pattern recognition with reasoning and explanation on a higher, more cognitive level of
abstraction.

Achieving this integration promises a range of benefits such as representations, which are abstract, reusable, and
general-purpose. Having these readily available could directly allow to tackle some of the pressing issues with current
deep learning practices. While the data efficiency and sample complexity of deep learning systems tend to be very com-
putationally demanding and data-heavy, symbolic approaches are less difficult in that aspect. Furthermore, deep learn-
ing approaches often do not generalize well out of the sample distribution and prove to be a limited foundation for
transfer learning, whereas symbolic representation can help to overcome these limitations. Last and most importantly
in this context, deep learning systems lack transparency while symbolic approaches can be designed in such a way as to
follow a humanly comprehensible decision-making process (see, e.g., Garcez et al., 2019; Muggleton, Schmid, Zeller,
Tamaddoni-Nezhad, & Besold, 2018).

6.1 | The neural-symbolic integration cycle

Figure 7 illustrates the general idea underlying neural-symbolic approaches. On one side, there is a symbolic system,
both writable and readable by human experts. On the other side, we have a neural network capable of taking full
advantage of connectionist training methods. The iterative loop between both sides allows for the embedding of sym-
bolic (expert) knowledge into the sub-symbolic model as well as for the extraction of learned and refined knowledge
from the connectionist model, which can drive the data-based modification and fine-tuning of predefined rules
(see e.g., Besold, Garcez, Stenning, et al., 2017).

This cycle already hints at the four main pillars of neural-symbolic systems: representation, extraction, reasoning,
and learning. Knowledge representation provides the mapping between the integrated symbolism and connectionism.
The different forms of representations can be divided into rule-based, formula-based, and embeddings. As previously
mentioned, the aim is to extract symbolic knowledge given a trained neural network for explaining and reasoning aims.
There have also been efforts at integrating neural-symbolic systems into the immediate process of learning. Inductive
Logic Programming (ILP), for example, develops a logic program directly from examples (Franca, Zaverucha, &
Garcez, 2014). In addition to this, learning with logical constraints generally has shown to be beneficial for improving
the data efficiency (Garnelo & Shanahan, 2019). These constraints can, for example, be integrated as a logic network
module on top of a regular neural network. As a consequence, models can further learn relations in-between the inner
abstractions as well as guiding the model to explain its prediction. Reasoning is another essential goal of neural-
symbolic systems. Successful integration aim to perform symbolic reasoning on the knowledge learned during the train-
ing phase (Garcez et al., 2001).

Complementing Deep Learning systems by integrating symbolic representations such as Knowledge Graphs can
serve as a lingua franca between humans and Al systems. Sarker, Xie, Doran, Raymer, and Hitzler (2017) propose that
methods for explanations should be seen as interactive systems. The authors present a method that enables active
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monitoring for classifiers where humans can act on given explanations. These interactive approaches become increas-
ingly relevant as they provide not only extracted information, but also the ability to act on this information. Against
that backdrop symbolic representation are taken to be vital as enablers of human-intelligible explanations. Similarly,
Futia and Vetro (2020) state that hybrid methods will further allow for explanations targeted at nonexperts based on
querying and reasoning mechanisms, which are at the core of the integrated semantic components.

6.2 | Explanations via knowledge extraction

Staying close to the neural-symbolic cycle, most traditional approaches to explainability in neural-symbolic systems
aim to generate a set of symbolic rules that approximates the behavior of a sub-symbolic model.

The task of generating—usually by via some form of learning—these rules is known as knowledge extraction
(Towell & Shavlik, 1993). The extraction process seeks to optimize for different metrics and criteria, namely, accuracy,
fidelity, consistency, and comprehensibility. On the one hand, accuracy (i.e., a measure for the performance of the rules
on the original test sets) and fidelity metrics (i.e., a measure for the ability of the rules to replicate the behavior of the
original sub-symbolic model) relate to performance dimensions of the extracted interpretable model. On the other
hand, consistency and comprehensibility are related to the consumer of the rules: rules should be precisely representing
the underlying model, but should also be easy to understand and use. This usually requires a trade-off between consis-
tency and comprehensibility.

The extracted rules can then be used to revise and consolidate available background knowledge (often taking the
form of domain knowledge). This background knowledge can be used not only to provide meaningful semantics for the
explanations—facilitating, in this way, human-machine interactions—but can also be injected back into the sub-
symbolic model itself in order to improve its performance (Ziegler et al., 2017).

Returning to the task of knowledge extraction, two main approaches are commonly considered: one of the decom-
positional, the other one pedagogical. Algorithms falling of the first type extract rules directly from the structure and
weights of the sub-symbolic model. This is usually achieved by first extracting rules that approximate the behavior of
each connectionist unit. Then, these unit-level rules are aggregated to form the composite rule base of the neural net-
work as a whole (Andrews et al., 1995). To extract rules in such a way, these methods need access to the internal layers
of the sub-symbolic model. Often this access cannot be obtained (e.g., due to intellectual property considerations), but
one might still need and want to be able to extract explanations. Algorithms belonging to the class of pedagogical
approaches overcome this limitation. They treat the sub-symbolic model as an “oracle,” and extract information from
input-output pairings. A prime example for a pedagogical approach to knowledge extraction is Trepan (Craven &
Shavlik, 1995).

Trepan is a tree induction algorithm that recursively extracts decision trees from statistical classifiers, originally
intended in particular for use with feed-forward neural networks (but as the original classifier is treated like a
generic oracle within the algorithm, Trepan can be considered in principle agnostic to the type of sub-symbolic
model at hand). Craven and Shavlik (1995)'s approach can be seen as an extension of the ID2-of-3 algorithm
(Murphy & Pazzani, 1991), a method for building decision trees from data based on “m-of-n” rules—that is, m out
of n specified conditions must be true to send an example down a particular branch. These tests are usually built by
a greedy search algorithm that starts from the single feature that maximizes information gain, and iteratively adds
features to the test until information gain is no longer improved by doing so. Trepan combines this with the idea of
using a trained machine learning classifier as oracle, in its original version targeting multi-layer perceptrons (MLPs).
At each splitting step, the oracle's predicted labels are used instead of the known real labels from the input dataset.
Figure 8 shows an example of a Trepan tree extracted from a trained MLP. The use of the classifier as oracle serves
two purposes: first, it helps to avoid overfitting to outliers in the training data. Second, and more importantly, it
helps to build deeper trees.

While Trepan extracts trees from sub-symbolic models by approximating the models to an arbitrarily close degree
without having direct access to their architecture and units, there is still the problem of assessing to what extent the
extracted trees are human-understandable. Recent work measured human understandability of decision trees using
syntactic and cognitive metrics (Huysmans et al., 2011; Piltaver, Lustrek, Gams, & Martin¢i¢-Ipsi¢, 2016). Building on
these, Confalonieri, Weyde, et al. (2020) also showed how human understandability of surrogate decision trees can be
enhanced by using and integrating domain knowledge, for example, in the form of ontologies, in the decision tree
extraction.
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7 | DISCUSSION

The historical overview provided in this article hints at a categorization of explanations. This categorization relies on
the reasoning characteristics of the underlying decision system, namely, symbolic, sub-symbolic, and hybrid.

Expert systems were one of the first realizations of applied AI, where the aim was to build systems able to aid
humans in decision-making activities in very specific domains. Making these systems operative required a knowledge
acquisition effort in which domain knowledge had to be formally specified. This knowledge formalization was essential
to develop intelligent systems able to reason, draw new conclusions, and to generate explanations. Explanations in
these systems consisted of either descriptions coupled to the reasoning trace of the system, or descriptions decoupled
from the reasoning itself, but more focused on the story behind the decision-making process itself. Since knowledge in
expert systems in most cases aimed at modeling (some aspects of) common-sense reasoning, explanations generated by
these systems were usually human-understandable. Nonetheless, acquiring and modeling domain knowledge is a com-
plex task, and it is subject to human interpretation and the point of view that the modeler decides to capture.

Machine learning was introduced to alleviate this knowledge acquisition problem. Machine learning algorithms are
indeed capable of identifying data patterns from (in most cases) large amounts of data, but this often happens at the
price of creating black-box models. An explanation in these systems is mainly understood as an interpretable model
that approximates the behavior of the underlying black-box. Explanations of this type allow users to understand why a
certain conclusion or recommendation is made, by means of local, global, introspective, or counterfactual explanations.
Whereas these explanations seek to maximize metrics such as accuracy (i.e., the performance of the extracted interpret-
able model on the test sets), fidelity (i.e., the ability of the extracted interpretable model to replicate the behavior of the
black-box model), they also have to be understandable by human users. Clearly, accuracy and understandability often
compete with each other, and a reasonable trade-off must be found. For instance, a very technical and precise explana-
tion (e.g., in equation form) may be appropriate for a data scientist, but not for a lay person, who prefers possibly a less
accurate but more comprehensible representation format of the explanation.

Most explainability methods nowadays are not powerful enough to give guarantees about truthfulness and closeness
of the explanation with respect to the underlying model. Most metrics currently in place are lacking a reliable way of
expressing this uncertainty. For instance, the measured fidelity is supposed to be a satisfactory proxy of closeness of the
representation to the underlying model. However, this metric is limited in its capacity and capability to find
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semantically meaningful representations that allow for transparent reasoning, as it is solely optimizing for resemblance
of the explained model.

Aspects of understandability of explanations for lay users has for a long time been overlooked. As also pointed
out in (Bhatt et al., 2020), the majority of deployments do not focus on the end-users, who are affected by the
model, but rather on machine learning engineers, who use explainability to debug the model itself. In practice, there
is a gap between explainability and the goal of transparency, since explanations primarily serve “internal” stake-
holders rather than “external” ones. To bridge this gap, explanations need to be human-understandable and adapt-
able to different stakeholders (Ribera & Lapedriza, 2019). Trustworthy systems need to target explanations for
different types of user, taking into account their different goals, and providing relevant and selected (customized)
information to them. This requires an approach to explainable AI that starts from a user-centered perspective.
Related to this, guidelines behind Responsible AI establishing that fairness, accountability and privacy (especially
related to data fusion) should be considered when implementing Al models in real environments have been dis-
cussed in (Arrieta et al., 2020).

Finally, while explainability has been addressed in some form or another since the mid-1980, its general under-
standing and definition(s) are still under discussion. In particular, proposing a set of global desiderata for explanations
appears to be challenging, since these properties often depend on the application domain. Notwithstanding, we con-
clude our discussion by pointing out some desiderata that, we believe, should be taken into account for the develop-
ment of XAI systems, particularly putting the user at the heart of the entire explainability enterprise:

« Causal: Knowing what relationship there is between input and output, or between input features can foster human-
understandable explanations. However, causal explanations are largely lacking in the machine learning literature,
with only few exceptions such as (Chattopadhyay, Manupriya, Sarkar, & Balasubramanian, 2019). A related problem
is then how to measure the causal understanding of an explanation (causability) (Holzinger, Langs, et al., 2019).
While this is always possible for explanations of human statements, as the explanation is per-se related to a human
model, measuring the causal understanding of an explanation of a machine statement has to be based on a causal
model, which is not the case for most machine learning algorithms (Holzinger et al., 2020).

« Counterfactual: Reviewed empirical evidence indicates that humans psychologically prefer counterfactual or contras-
tive explanations (Miller, 2019). For instance, people do not ask why event P happened, but rather why event P hap-
pened instead of some event Q. It is thus important to provide explanations that are both contrastive and direct.
Some preliminary steps have been taken in this direction, for example, (Mothilal et al., 2020). Issues related to the
diversity and proximity of counterfactuals arise in designing counterfactual explanations.

« Social: Interactive transfer of knowledge is required in which information is tailored according to the recipient's
background and level of expertise. Explanations can be conceived of as involving one or more explainers and
explainees engaging in information transfer through dialogue, visual representation, or other means (Hilton, 1990).
Conversational or argumentative processes can enhance user's inspection of explanations, and increasing user's trust
in the system.

« Selective: Explanations do not always need to be complex representations of the real world. They should be epistemi-
cally relevant for the explainee. The informational content of explanations has to be selected according to the user's
background and needs, as humans do not expect the complete cause of an event. Clearly, this depends on the stake-
holders’ profiles. For instance, explaining a medical diagnosis to a doctor requires a level of technicality, which, pre-
sumably, is not necessary for most lay users.

« Transparent: Explanations should help the explainee in understanding the underlying logic of the decision system,
and possibly identifying that the system is wrong. Nonetheless, explanations can sometimes be used to learn about
the model or the training data. Therefore, a trade-off between transparency and privacy must be found when generat-
ing explanations. Generally, methods to address these concerns will have to be developed for training a differentially
private model that is able generate local and global explanations. Harder, Bauer, and Park (2020) is an example of
methods of this kind.

« Semantic: If explanations are symbolically grounded—by means of ontologies, conceptual networks, or knowledge
graphs—they can support common-sense reasoning. Formal representation and reasoning can in turn enact various
forms of knowledge manipulation, such as abstraction and refinement (Confalonieri et al., 2018; Confalonieri,
Galliani, et al., 2020; Keet, 2007; Lehmann & Hitzler, 2010; Troquard et al., 2018). These forms of manipulation can
play an important role when one wants to develop a system able to provide personalized explanations matching dif-
ferent stakeholder profiles.
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« Interactive: Explanations should be interactive, allowing the explainee to revise and consolidate some previous back-
ground knowledge. The background knowledge can be used not only to provide meaningful semantics for the expla-
nations, facilitating, in this way, human-machine knowledge interactions, but also injected back to the underlying
model to improve its performances (e.g., Kulesza, Burnett, Wong, & Stumpf, 2015).

More generally, if one cares about finding ways of successful communication between humans and Al systems, esta-
blishing a common ground of inherent logic from the ground up appears reasonable. This common ground can be facilitated
by the modularity that integrates perception at the sub-symbolic level and reasoning at the symbolic level. Recent advance-
ments in Al demonstrate robust solutions for many perception tasks. However, to enforce some understanding of the model
at a fundamental level, logical integration using symbolic representations will play an important role in the future.

8 | CONCLUSION

We reviewed the literature on explainability in Al, and provided a historical overview of how the notion of explanation
has been conceived from traditional to more recent perspectives, namely in the context of expert systems, of machine
learning, of recommender systems, and of neural-symbolic learning and reasoning.

The main goal of this article was not to provide a comprehensive review of the literature on XAI, which can be
found in, for example, (Andrews et al., 1995; Arrieta et al., 2020; Fernandez et al., 2019; Guidotti et al., 2018; Mueller
et al., 2019; Nunes & Jannach, 2017; Tintarev & Masthof, 2015). We aimed, instead, at describing different notions of
explanations, examples thereof, as well as properties, and metrics used to evaluate explanations. The article, thus, con-
tains a wide range of references that the reader can use to “navigate” through different notions of explanations, and
gain a deeper understanding of the topic of explainable Al.

In providing this historical overview, we analyzed the different notions of explanation to understand what makes
for a good explanation. While we are unable to provide a single answer, one conclusion that can be drawn is that for
explanations to be human-understandable, they need to be user-centric explanations. To this end, we proposed some
desiderata for explanations, that, in our opinion, are crucial for the development of human-understandable explana-
tions, and, in general, of explainable intelligent systems.
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ENDNOTES

! The right to explanation refers to the right of end-users and, more generally, service consumers, to ask for explana-
tions of why a certain decision was reached by an Al system, such as in the case of loan allowance by a bank, recom-
mendations, and medical diagnosis. For a different point of view on this, please refer to Wachter, Mittelstadt, and
Floridi (2017).
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? Regulation (EU) 2016/679 on the protection of natural persons with regard to the processing of personal data and on
the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation) [2016] OJ
L119/1.

* The categorization of explanations based on the type of system (sub-symbolic, symbolic, and hybrid) also relates to
Michie (1988)'s criteria for machine learning: weak, strong and ultra-strong. Michie's aim was to provide operational
criteria for various qualities of machine learning that include not only predictive performance but also comprehensi-
bility of learned knowledge. His weak criterion identifies the case in which the machine learner produces improved
predictive performance with increasing amounts of data. The strong criterion additionally requires the learning sys-
tem to provide its hypotheses in symbolic form. Last, the ultra-strong criterion extends the strong criterion by requir-
ing the learner to teach the hypothesis to a human, whose performance is consequently increased to a level beyond
that of the human studying the training data alone.

* A different problem is then to decide how much these models are human understandable; see for example Huysmans,
Dejaeger, Mues, Vanthienen, and Baesens (2011) for a comparison of the comprehensibility of decision tables, trees,
and rules.

> In Section 6, we will have a closer look at Trepan (Craven & Shavlik, 1995) as a concrete example. Trepan is a global
explanation method that extracts decision trees from neural networks. The discussion has been relegated to Section 6
as Trepan can also be considered a neural-symbolic approach.

¢ Here, novelty and diversity are concepts that relate to (serendipitous) information discovery which have been studied,
among others, in the fields of information search and recommender systems (Clarke et al., 2008; Vargas &
Castells, 2011).
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