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A B S T R A C T

A framework predicting the rheological (storage and loss moduli, first normal stress coefficient, and relaxation
time) and transport (viscosity, diffusivity) properties of non-Newtonian dilute polymer solutions at mesoscales
(e.g. ∼ ns to μs) from the atomistic-scale molecular behaviour is presented. More specifically, the rheological
behaviour differences of OCP and PMA polymer solutions in PAO-2 oil are simulated using both atomistic
molecular dynamics (MD) and many-body dissipative particle dynamics (mDPD) within a temperature range
of 313–373 K. The simulation methodology described is able to distinguish itself from the standard DPD model
by accurately reproducing the shear-thinning with high sensitivity, as seen in the atomistic MD simulations
at high shear rates (e.g. 108 − 1013 s−1). It is shown that the model is well-suited to compute properties such
as first normal stress differences and relaxation times that are difficult to estimate at atomistic scales due to
the low signal-to-noise ratio. Moreover, the Schmidt numbers (> 103) are predicted with high accuracy when
compared with the values from atomistic-scale simulations. The proposed model is able to predict relaxation
times of dilute polymer mixtures that are difficult to be obtained using state-of-the-art rheometers. Finally, it
is found that the terminal relaxation time of PMA polymer chain does not vary monotonically as a function of
temperature, unlike in the case of OCP; this is significant for describing viscoelastic behaviour at macroscales
where satisfactory constitutive equations are not available.
1. Introduction

Dilute viscoelastic liquids are expected to be used in applications
such as direct cooling in electronic and automotive industries, and soft
electronics manufacturing, among many other industrial and biomed-
ical processes. These liquids are valued owing to their viscoelastic
nature, dielectric nature and thermal stability [1–4]. New combinations
of polymers and solvents are required to design novel viscoelastic dilute
polymer solutions [5,6]. In this work, we focus our investigation to the
dilute polymer solutions relevant to heat transfer applications. Given
the technical challenges associated with experimental methods in the
dilute polymer regime [7,8], and the requirement of satisfactory consti-
tutive equations to model such liquids in continuum scale simulations,
an alternative approach for modelling such liquids is required [9].

The fluid chemistry influences its thermodynamic (e.g. density),
morphological and transport (e.g., diffusion coefficient) properties, and
those can be modelled via atomistic molecular dynamics simulations
(MD). United-atom models are utilised to understand the Rouse to
reptation cross-over behaviour of short-chain concentrated polymer
solutions, their steady-state shear and elongational flow behaviour [10–
13]. Still, macroscopic properties such as deformation response, storage
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and loss moduli, and relaxation times of many such liquids are challeng-
ing to be obtained using a full-atomistic MD or united-atom MD, given
the expensive computational schemes for long-chain polymer solutions
and low signal-to-noise ratio [14,15]. Therefore, a mesoscale modelling
routine is required to bridge the gap between the microscale behaviour
and macroscopic observations [16].

An extensive body of work over the past three decades in the rele-
vant literature is dedicated to mesoscale modelling via the Lagrangian
mechanics [17–23]. Polymer melts and their entanglement characteris-
tics are studied along with their relaxation modes using Kremer–Grest
models [24,25]. Concurrently, the widely applied methodology is dissi-
pative molecular dynamics (DPD) developed by Groot and Warren [26].
DPD uses a Langevin form of equation where the repulsive, dissipative
and random forces lead to the description of the system of interest.
Several works in the field have concentrated on predicting rheological
and interfacial properties of aqueous solutions with dispersed macro-
molecules [19,27,28]. As a response to anomalies in behaviour under
anisotropic forces, vapour–liquid coexistence, and to assimilate heat
transfer characteristics, DPD models have been modified to develop
vailable online 16 September 2023
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many-body DPD (mDPD) [29,30], energy-conserving DPD (eDPD) [31]
and so on. However, a modelling scheme to reproduce viscoelastic
behaviour among a wide range of liquids is still being developed.

The standard DPD model is shown to provide misleading results for
viscosity (e.g. shear thickening) in the case of non-equilibrium DPD
simulations of simple fluids with spherical particles [32]. This is in
addition to the fact that conventional DPD underestimates Schmidt
numbers by three orders of magnitude [30]. Several suggestions ex-
tending from Lees–Edwards boundary condition modifications to ther-
mostat modifications have been prescribed in the literature to overcome
this [33–37]. The motivation for schemes to improve the prediction
of non-Newtonian behaviour is seen even recently. For example, Zhao
et al. [38] tried to use Gaussian process regression (GPR) based active
learning to connect bulk rheology to microstructure dynamics as a way
to reproduce experimental shear-thinning of viscoelastic liquids. Recent
efforts are engaged in parametrising the mDPD models to reproduce
non-Newtonian behaviour in fluids. Zhao et al. [39] showcased the
computation of surface tension and first normal stress difference of
polymer solutions. Jamali et al. [40] proposed a methodology to relate
the compressibility of the fluid with the Flory–Huggins theory to take
into consideration the mixing effects of different components to gener-
alise the modelling approach. At the same time, a modelling strategy to
consistently map all the relevant properties into real units with accurate
scaling is vital, and there is a scope for a consistent approach to be
introduced [36,41]. Moreover, the chemical structure of the organic
molecules which influences the order of magnitude of Schmidt numbers
needs to be included in the scaling-up process as well.

The investigation here demonstrates the simulation of polyalphaol-
efin (PAO-2) oil and polymer solutions of two different polymer chains,
namely, olefin co-polymer (OCP) and polydodecylemethacrylate (PMA)
in PAO-2. The specified oil and polymer compounds are extensively
used in industrial applications such as lubrication, and are proposed as
candidates for cooling technologies [42–46]. The radius of gyration of
OCP and PMA polymer chains varies differently in PAO-2 as a function
of temperature [47,48]. These structural differences lead to differences
in their rheological behaviour, as shown in the literature [49]. The
mapping of the chemistries of the different polymer chains in the
oil appropriately to mesoscale shows the ability of the simulation
methodology to be a tool for simulating any such liquids. The study
models realistic Schmidt numbers (>103) in mesoscale as seen for such
liquids in experiments [50]. The Schmidt number matching is essential
to capture the correct hydrodynamic interactions of the liquid [51].
The polymer chains are distinguished by inducting an angular cosine
potential into the mDPD model, whose parameters vary with the chem-
istry and temperature to qualitatively model the radius of gyration. The
simulated mesoscale polymer solution is able to behave as described by
Zimm’s model [52] and is able to show diluteness.

The simulation carried out here is able to showcase the varia-
tion in mildly viscoelastic non-Newtonian liquids with shear via non-
equilibrium mDPD. Moreover, the zero shear viscosity obtained via
non-equilibrium mDPD agrees with equilibrium mDPD computations,
validating the process. Additionally, properties such as first normal
stress coefficient, storage and loss moduli, and relaxation times which
influence fluid behaviour in continuum scales are computed. Therefore,
the detailed description of the methodology provides a novel tool that
can be extended to the simulation of any non-Newtonian polymer
liquids with minimal tuning of the scaling units and mDPD model
parametrisation.

2. Design of simulation

2.1. Solvent modelling

The simulation is designed in such a manner so as to map the
important system parameters such as the characteristic length, mass
and time for the temperature range of interest from atomistic MD to
2

mDPD. Here, the solvent PAO-2 being investigated is an oil that has
high Schmidt numbers (Sc) of the order of 103 − 104. The goal is to
find the appropriate mDPD parameter-set such that they reproduce Sc
(as computed by Eq. (13)). This ensures that the relative motion of the
particles due to momentum transport and mass transport manifest in
the same manner at the larger length- and time-scales. At the same time,
it must be ensured that the Sc is derived at the same thermodynamic
conditions such as temperature and pressure (consistent with unit map-
ping) as obtained at the atomistic scale simulations. The fundamentals
of the mDPD modelling are described in the Supporting Information. To
provide maximum control on the modelling of the polymer solutions of
interest, the work involves the tuning of five parameters, namely 𝜌, 𝐴𝑖𝑗 ,
𝑖𝑗 , 𝛾𝑖𝑗 and 𝑟𝐷 (see Equations S1 to S7).

A simulation framework is shown in Fig. 1 for the mDPD simulation
t temperature, 𝑇 ∗ = 313 K and pressure, 𝑝∗ = 1 atm with ‘∗’ from here
n indicating quantities whose values are in real units. PAO-2 molecule
as a molecular weight (𝑀∗

𝑤) of 282 g mol−1. By considering the
ensity of PAO-2 at the temperature of 313 K obtained from atomistic
D (𝜌∗ = 780 kg m−3), we compute the molecular volume as 600.34 Å3.
he simulation procedure starts with a number density, 𝜌 > 6 and

ocal density-dependent conservative force cut-off, 𝑟𝑑 = 0.75 and a
imestep, 𝑑𝑡 = 0.01. The reduced density range is in agreement with
he description in the literature [39,53]. The equation of state for an
DPD fluid has been approximated as follows:

= 𝜌kB𝑇 + 𝛼𝐴𝑖𝑖𝜌2 + 2𝛼𝐵𝑖𝑖𝑟4𝑑 (𝜌
3 − 𝑐𝜌2 + 𝑑) (1)

here 𝛼 = 0.101, 𝑐 = 4.16 and d = 19 for an organic fluid of the
ature of PAO-2 [30,53]. This simplifies the problem of mDPD model
arametrisation to two parameters, namely 𝐴𝑖𝑖 and 𝐵𝑖𝑖. To find their
xact solutions, another equation is required. By differentiating the
q. (1), we can relate the reduced units isothermal compressibility, 𝜅
o these parameters such that

1
kB𝑇

(

𝜕𝑝
𝜕𝜌

)

𝑇
= 𝜅−1 = 1 +

2𝛼𝐴𝑖𝑖𝜌
kB𝑇

+
2𝛼𝐵𝑖𝑖𝑟𝑑4
kB𝑇

(3𝜌2 − 2𝑐𝜌). (2)

The isothermal compressibility of the solvent from the atomistic MD
(𝜅∗) is used in this equation, calculated from the relation

𝜅−1 =
𝑀∗

𝑤𝑁𝑚

R𝑇 ∗𝜌∗𝜅∗
. (3)

Here, 𝑁𝑚 = 1 is the number of molecules of PAO-2 solvent being
represented by a single mDPD bead and R is the universal gas constant.
The 𝜅∗ values agree with the experimental results available in the
literature [46].

The initial values of 𝜌 and 𝑟𝑑 are used to solve the above equations
to obtain 𝐴𝑖𝑖 and 𝐵𝑖𝑖. The solvent system with these 𝐴𝑖𝑖 and 𝐵𝑖𝑖 is
simulated. Since Eq. (1) is an approximated equation of state, the value
of 𝐵𝑖𝑖 is optimised such that the virial pressure simulated oscillates
around the pressure as computed in Table 1. The mDPD scaling units for
the rest of the temperatures are provided in the Supporting Information
from Table S9 to S11. Following this, simulations are carried out for
maximum stable values of dissipative force parameters at this 𝑑𝑡, 𝛾𝑚𝑎𝑥
= 18.0 and 𝑟𝐷,𝑚𝑎𝑥 = 2.0. If the ScmDPD < Scatomistic, 𝜌 is increased and the
above steps are repeated. If ScmDPD > Scatomistic, 𝛾𝑖𝑗 and 𝑟𝐷 are optimised
till ScmDPD = Scatomistic. Fig. 2 shows the typical size difference between
the simulation boxes described in this study, with the mesoscale box
ensuring a larger ensemble-averaging of properties.

2.2. Polymer modelling

Two different polymer chemistries are simulated in this work,
namely an olefin copolymer (OCP) composed of ethylene and propylene
monomers, and poly dodecylmethacrylate (PMA) that has a branched
structure at the atomistic scale with a carboxylate function group. In the
case of OCP, the monomer consists of short alkene molecules that make
it chemically similar to the PAO-2 solvent molecules. Therefore, in
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Fig. 1. Schematic of the modelling workflow of the solvent for mDPD simulations.

mDPD simulation, the solvent–polymer bead interactions can be treated
as similar to that of solvent–solvent bead interactions. In other words,
𝐴𝑖𝑗 = 𝐴𝑖𝑖 and 𝐵𝑖𝑗 = 𝐵𝑖𝑖. This leads to the treatment of PAO-2 oil as a
theta solvent in case of the OCP polymer in the mDPD simulations. In
a theta solvent, the repulsive and attractive interactions between the
monomer beads of a polymer chain are balanced [54]. The bonded
3

Table 1
The properties of the PAO-2 system in reduced units (mDPD units) and corresponding
values in real units at 313 K. (Note: 𝑁𝑎 is the Avogadro number).

Property mDPD units Real units

Density (𝜌) 7.9 𝜌∗ =
𝜌𝑁𝑚𝑀∗

𝑤

𝑁𝑎𝑟∗3𝐶
= 780 kg m−3

m𝑏 1.0 m∗
𝑏 =

𝑁𝑚𝑀∗
𝑤

𝑁𝑎
= 4.683 ×10−25 kg

𝑟𝐶 1.0 𝑟∗𝐶 =
( 𝜌m∗

𝑏

𝜌∗

)

1
3

= 16.8 Å

Energy, 𝐸 (kB𝑇 ) 1.0 𝐸∗ = k∗B𝑇
∗ = 4.319 ×10−21 J

𝑑𝑡 0.01 𝑑𝑡∗ = 0.01𝑟∗𝐶

( 𝑚∗
𝑏

𝐸∗

)

1
2

= 0.17 ps

Pressure (𝑝) 0.111 𝑝∗ =
𝑝𝐸∗

𝑟∗3𝐶
= 1 atm

interactions of the polymer chain are derived from FENE potential,
and angle stiffness is provided by a cosine force-field (see Equations
S8 to S11). The parameters for the simulation of OCP solution are
shown in Table 2. Since OCP is composed of two types of monomers,
i.e., ethylene and propylene, the differentiation of those has been
reflected in the use of 𝑘𝑎𝑛𝑔𝑙𝑒,1 and 𝑘𝑎𝑛𝑔𝑙𝑒,2, respectively. After obtaining
the initial values from Everaers et al. [55], the final values of the two
parameters are optimised so as to agree with the radius of gyration (R𝑔)
values computed from the atomistic scale MD.

On the other hand, PMA has a different monomer structure and
therefore, the polymer–solvent bead interactions must consider the
mixing effects. In mesoscale simulations, such effects are modelled
by considering the Flory–Huggins theory [56]. Under this theory, the
magnitude of the attractive interaction parameters in the conservative
force in Equation S2 are computed as

|𝐴𝑖𝑗 | = |𝐴𝑖𝑖| +
𝜒𝑖𝑗kB𝑇

2𝛼(𝜌𝐴 + 𝜌𝐵)
(4)

where 𝜒𝑖𝑗 is called the Flory–Huggins interaction parameter that is
defined as

𝜒𝑖𝑗 =
V

kB𝑇
(

𝛿𝑖 − 𝛿𝑗
)2 (5)

where V is the volume of the simulation box. Here, 𝛿𝑖 is computed using
the cohesive energy density (CED) of a species 𝑖 from their non-bonded
energies obtained from the relationship

𝛿𝑖 = CED
1
2 =

(
∑𝑘
𝑖=1 𝐸

𝑖𝑠𝑜
𝑛𝑏 −

⟨

𝐸𝑘𝑛𝑏
⟩

𝑘

)

1
2

. (6)

Here,
⟨

𝐸𝑘𝑛𝑏
⟩

is the ensemble average of the non-bonded energies of 𝑘
molecules of species 𝑖 and ∑𝑘

𝑖=1 𝐸
𝑖𝑠𝑜
𝑛𝑏 is the sum of non-bonded energies

of 𝑘 individual molecules in an isolated simulation box of species 𝑖.
From the atomistic scale simulations, the total pairwise interaction
energies using a simulation box of pure PAO-2 or PMA are used to
compute

⟨

𝐸𝑘𝑛𝑏
⟩

. Similarly, the 𝐸𝑖𝑠𝑜𝑛𝑏 is computed using the total pairwise
interaction energies in the same simulation box retaining a single
molecule of PAO-2 or PMA. The parameters obtained are shown in
Table 2 for the mDPD simulation of the PMA polymer solution at 313
K. A similar exercise in case of OCP polymer chain shows that 𝛿𝑖 = 𝛿𝑗 ,
confirming the hypothesis to treat the OCP polymer solution as a theta
solution. The parameters for the rest of the temperatures are shown in
the Supporting Information (see Tables S6 to S8). At the same time, the
modelling of the polymer chain used in the study is complete only with
the correct parameters of angle stiffness, 𝑘𝑎𝑛𝑔𝑙𝑒. It is tuned to reproduce
the variation of R𝑔 as a function of temperature.

2.3. Simulation details

The time-integration of the mDPD equations is done using a mod-
ified velocity-verlet algorithm using the 𝜆 parameter of 0.5 [26]. A
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Fig. 2. Representative simulation boxes of PAO-2 solvent in the atomistic scale consisting of 170 molecules and in the mesoscale consisting of 10 980 molecules at 313 K.
Table 2
Various parameters of mDPD simulations at 313 K in reduced units (mDPD units).

Parameters OCP solution PMA solution

𝐴𝑖𝑖 −108.0 −108.0
𝐴𝑖𝑗 −108.0 −108.1
𝐵𝑖𝑖 43.5 43.5
𝐵𝑖𝑗 43.5 43.5
𝛾𝑖𝑗 18.0 18.0
𝑟𝐷 1.84 1.84
𝑘𝑓 30.0 30.0
𝑟0 1.5 1.5
𝑘𝑎𝑛𝑔𝑙𝑒,1 2.15 –
𝑘𝑎𝑛𝑔𝑙𝑒,2 0.70 –
𝑘𝑎𝑛𝑔𝑙𝑒 – 0.86

typical periodic simulation box consists of 10 989 solvent beads. The 𝜌
equal to 7.9 obtained at 313 K is used for the modelling and simulation
of the mDPD system at other temperatures. Polymer chains of different
lengths between 11 to 77 beads are simulated. The upper limit of the
chain length simulated here ensures that the radius of gyration is less
than or equal to half of the simulation box length ≈ 11.94 mDPD
units, thereby preventing any artefacts. The computation of equilibrium
properties and rheological analysis of polymer solutions have been
reported for a single OCP or PMA chain of a length of 11 beads
representing a molar mass of 3102 g mol−1 and a concentration of ∼
1000 ppm (0.1%) by weight. Additionally, an OCP polymer solution
corresponding to a similar concentration in atomistic simulation of
5.9% by weight (= 203 polymer chains) is also simulated for the sake
of validation.

The reported results are from five independent simulations of 107
timesteps or 1.7 μs in real units (see Table 1). The non-equilibrium
simulation is carried out by box deformation with equations of motion
expressed in SLLOD form [57], making it conceptually equivalent to
Lees–Edwards periodic boundary conditions [58]. The simulated sol-
vent systems are compared to the results obtained from the simulations
of original DPD model using parameters described by Groot and Warren
[26] at 𝜌 = 3 and 𝜌 = 7.9. The former 𝜌 value is used in the original
DPD model, whereas the latter is used to compare with the mesoscale
simulations carried out in this study.

The atomistic MD simulation details including the force-field param-
eters (Table S1 to S5, and Figure S1) are provided in the Supporting
Information. In brief, the simulations are done using a box consisting
of 170 PAO-2 solvent molecules in which a single polymer chain is
dispersed. The simulation uses OPLS-AA force field to account for
the polymer and solvent interactions. The mesoscale and atomistic
simulations are done using the LAMMPS software with source-code
modified in-house to implement the mDPD modelling scheme.
4

3. Results and discussion

The atomistic scale modelling of the viscoelastic liquids shows
unique behaviour for each polymer solution when computing the ra-
dius of gyration as a function of temperature. The mDPD models
aim to reproduce these fundamental features such that they can be
used to derive different rheological properties at higher scales. In
this respect, we initially validate the mDPD model to represent the
diluteness of the polymer solution, following which the hydrodynamic
radii variation with respect to the temperatures is compared between
atomistic and mDPD simulations. It is followed by the computation
of equilibrium properties showing the Schmidt number comparison at
various temperatures. The analysis is concluded with the computation
of the rheological properties of the two different polymer solutions to
showcase the similarities and differences in their viscoelastic nature.

3.1. Validation of diluteness of polymer solution

If a model is expected to replicate a dilute polymer solution, it
has to generally agree with Zimm’s polymer theory [52]. In essence,
it establishes that the polymer chains in the solution do not interact
with each other leading to entanglements. In turn, the morphology and
rheology exhibited by the polymer chains are functions of their chain
lengths. For example, the theory states that in a dilute solution with a
theta solvent,

R𝑔 ∝ (𝑁 − 1)𝜈

𝐷𝑝𝑜𝑙𝑦 ∝ 𝑁−𝜈 (7)

where R𝑔 is the radius of gyration of the polymer chain (as computed
by Eq. (11)), 𝐷𝑝𝑜𝑙𝑦 is the self-diffusion coefficient of the polymer chain
in the solution, 𝑁 is the number of monomer beads and 𝜈 is the so
called Flory exponent ≈ 0.53. The methodologies to compute the two
quantities are described in later sections. In this work, the OCP polymer
in PAO-2 acts as a theta solution. As shown in Fig. 3, R𝑔 increases
as a function of 𝑁 − 1 and 𝐷𝑝𝑜𝑙𝑦 decreases as a function of 𝑁 . The
green curves show equations as per Zimm’s model in Eq. (7). The
data points fit well with the curve indicating the dilute state of the
polymer solution. Additionally, the computation of the mean-squared
displacement of the central monomer of the polymer chain (𝑔1(𝑡)) [59]
has the following power-law sequence as a function of time

𝑔1(𝑡) ∝

⎧

⎪

⎨

⎪

𝑡1, 𝑡 < 𝜏0
𝑡0.67, 𝜏0 ⩽ 𝑡 < 𝜏𝑍
1

(8)
⎩

𝑡 , 𝑡 ⩾ 𝜏𝑍 .
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Fig. 3. (a) Radius of gyration of OCP polymer chain as a function of chain length, 𝑁 −1 at 𝑇 = 313 K. (b) The self-diffusion coefficient of the OCP polymer chain as a function of
chain length, 𝑁 at 𝑇 = 313 K. (c) 𝑔1(𝑡) as a function of time showcasing different regimes for different chain lengths. Here, the horizontal dashed lines show the value of R2

𝑔 and
the vertical dashed lines show the corresponding values of 𝜏𝑍 for different values of 𝑁 . (d) ℎ∗ as a function of chain length, 𝑁 at a temperature, 𝑇 = 313 K. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3(c) shows the three distinct temporal regimes of 𝑔1(𝑡) for the
different polymer chain lengths, agreeing with the Zimm’s theory [60].
The obtained values of 𝜏𝑍 for different chain lengths agree with the
relationship 𝜏𝑍 ∝ 𝑁3𝜈 . However, increasing N beyond 33 leads to
deviation from the Zimm relationships of 𝐷𝑝𝑜𝑙𝑦 and 𝜏𝑍 , indicating the
role of the local stiffness of the chain in sustaining the intermediate
regime longer than expected, as described by Hinczewski et al. [61].

In addition to Zimm’s relationship, the primary characteristic to
verify if a mesoscale fluid acts as a dilute mixture is to establish
the ability of solvent molecules to provide effective hydrodynamic
interactions to screen the different monomer beads of the polymer [62].
To verify if the model reported here is able to provide the required
hydrodynamic screening, the computation of the variable

ℎ∗ =
√

3
𝜋
r𝐻
𝑏

(9)

s done, where 𝑏 is the average bond length of the polymer chain and
is the hydrodynamic radius of the polymer bead computed from the
5

𝐻

tokes–Einstein relationship

𝐻 =
kB𝑇

6𝜋𝜂𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐷𝑚𝑜𝑛𝑜𝑚𝑒𝑟
. (10)

ere, 𝐷𝑚𝑜𝑛𝑜𝑚𝑒𝑟 is the self-diffusion coefficient of the polymer bead [63].
s mentioned in the literature, the value of ℎ∗ should be ≥0.25 to
onsider the simulated system as a dilute solution. From Fig. 3(d), it
s seen that ℎ∗ value is above 0.25 at all simulated conditions for the
odel with the values increasing from 0.53 to 1.017 with increase in

he OCP polymer chain length at 313 K.

.2. Structural characteristics

The basic structural characteristic of a polymer chain in a solution
s its hydrodynamic radius defined as

𝑔 =

√

√

√

√

1
𝑀

𝑛
∑

𝑚𝑖(𝐫𝑖 − 𝐫com)2 (11)

𝑖=1
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where 𝑀 is the mass of a molecule, 𝑚𝑖 is the mass and 𝐫𝑖 is the position
vector of an atom/bead 𝑖 of a molecule consisting of 𝑛 atoms/beads,
and 𝐫com is the centre of mass of a molecule. Therefore, we require the
polymer behaviour at mesoscale to match the one shown at atomistic
scale MD as a function of temperature.

As observed in Fig. 4, the radius of gyration of OCP in PAO-2
does not vary as a function of temperature at atomistic scale. The
comparison of the end-to-end chain length distribution of OCP (see
Figure S4) shows a similar mean value in both the scales, even though
the distribution is broader in the mesoscale. This can be attributed to
the longer runtime in the mesoscale ensuring the chain relaxation to be
complete. On the other hand, the R𝑔 of PMA polymer chain in PAO-2
increases as a function of temperature. The viscosity index and shear
response of the solutions have been demonstrated to be influenced by
the variation of R𝑔 as a function of temperature [64,65]. The PMA
polymer chain is reported to be a better viscosity index improver (VII)
than OCP in olefin oils because of how its R𝑔 increases as a function
of temperature. Hence, the mDPD model here is expected to reproduce
the same trend as in the case of the atomistic MD.

The behaviour of the atomistic MD is replicated in the mDPD model
by tuning the angle stiffness energy, 𝑘𝑎𝑛𝑔𝑙𝑒 at every temperature. 𝑘𝑎𝑛𝑔𝑙𝑒
limits the movements of the bonded string of beads. As OCP chain is
shown to have a constant R𝑔 with temperature, the 𝑘𝑎𝑛𝑔𝑙𝑒 is given the
same values at all temperatures of the mDPD model. The values of
R𝑔 oscillate around a mean of 1.90 in mDPD units with an increase
in temperature. On the other hand, as the PMA chain increases its R𝑔
values with temperature, the 𝑘𝑎𝑛𝑔𝑙𝑒 values are tuned to reproduce the
behaviour (see Figure S5 in the Supporting Information). For that, the
R𝑔 value of mDPD simulation at 313 K is treated as the benchmark, and
the 𝑘𝑎𝑛𝑔𝑙𝑒 is increased at every temperature such that the ratio of R𝑔 at
the simulated temperature and 313 K is the same for atomistic MD and
mDPD. As shown in Fig. 4(a), this procedure is shown to increase the
R𝑔 as a function of different temperatures of the mDPD simulation of
PMA polymer in PAO-2 with the mean values increasing from 1.83 at
313 K to 2.17 at 373 K.

While ensuring the R𝑔 mapping, the intramolecular bond distribu-
tion of the polymer chain is verified by computing the pair distribution
function

𝑔(𝑟)𝑝𝑜𝑙𝑦𝑚𝑒𝑟 𝑏𝑜𝑛𝑑 =
𝑛(𝑟)

4𝜋 𝜌𝑏𝑒𝑎𝑑 𝑟2𝑑𝑟
. (12)

For comparison, the bond distribution in the atomistic scale is com-
puted from the sum of all the distances between the bonded atoms
of the same monomeric mass as the mDPD bead (see Fig. 4(b)). The
distances between the OCP monomer beads are close to 16 Å with the
difference of the peaks in the two scales being approximately equal to
1 Å. Similarly, PMA monomer beads are found at a similar distance,
with the mDPD scale having beads closer than the equivalent bonded
distance between atoms at the atomistic scale. Further comparison of
the dihedral distribution function [66] of the polymer chains in both
the scales is shown in Figure S6 in the Supporting Information. It shows
that the specific peaks of the distribution plateaus with increase in
coarse-graining. The decrease in specificity of the peaks of intramolec-
ular features in the implemented modelling scheme has been attributed
to the insufficient accounting of entropy in recent literature [67,68]. An
attempt to match these structural distributions for smaller segments of
alkanes is done by Reith et al. [69]. The radial distribution function
(𝑔(𝑟)𝑠𝑜𝑙𝑣𝑒𝑛𝑡−𝑝𝑜𝑙𝑦𝑚𝑒𝑟) between solvent and polymer beads is shown in
Figure S7. The impact of the structural differences of 𝑔(𝑟)𝑠𝑜𝑙𝑣𝑒𝑛𝑡−𝑝𝑜𝑙𝑦𝑚𝑒𝑟
in atomistic and mesoscale modelling on the dynamics is looked into
in a later section.

3.3. Equilibrium properties

The motion of particles in a fluid occurs simultaneously due to
6

the momentum transport as well as molecular diffusive motion due to
thermal fluctuations. Schmidt number that compares the two kinds of
motion is computed as

𝑆𝑐 =
Momentum diffusivity

Mass diffusivity = 𝜈
𝐷

(13)

where 𝜈 is the kinematic viscosity and 𝐷 is the self-diffusion coefficient.
ere, the momentum diffusivity (𝜈) values at zero shear rate are

calculated from the dynamic viscosity (𝜂0) computed via the Green–
Kubo formulation [70]. At the same time, the mass diffusivity (𝐷)
values are computed via Einstein’s relation [71]. In accordance with
this modelling approach, the Schmidt number has to match at both the
atomistic and mesoscale levels. 𝑆𝑐 values in the atomistic scale MD
match well with experiments reported in the literature [46].

Fig. 5 shows the comparison of the PAO-2 solvent Schmidt numbers
(𝑆𝑐𝑠𝑜𝑙𝑣𝑒𝑛𝑡) in atomistic and mDPD simulations at different tempera-
tures under equilibrium conditions. The 𝑆𝑐𝑠𝑜𝑙𝑣𝑒𝑛𝑡 value decreases as
a function of temperature. As seen, the 𝑆𝑐𝑠𝑜𝑙𝑣𝑒𝑛𝑡 ≈ 40 000 at 313 K,
before it undergoes a drastic reduction in magnitude with increasing
temperature leading to a value ≈ 3000 at 373 K. After carrying out the
mDPD modelling following the steps described in Section 4 A, the 𝑆𝑐
values in the mesoscale simulation agree with that of the atomistic MD
at all temperatures, thereby validating the solvent physics.

The relative motion of the OCP polymer chain with respect to the
solvent motion is measured by the computation of

𝑆𝑐𝑝𝑜𝑙𝑦 =
𝜂0,𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝜂0,𝑠𝑜𝑙𝑣𝑒𝑛𝑡

𝜌𝐷𝑝𝑜𝑙𝑦
. (14)

Here, 𝑆𝑐𝑝𝑜𝑙𝑦 is the Schmidt number of the polymer chain with 𝜂𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
and 𝜂0,𝑠𝑜𝑙𝑣𝑒𝑛𝑡 representing dynamic viscosity of polymer solution and
pure solvent at zero shear rate, respectively. Fig. 6 shows the 𝑆𝑐𝑝𝑜𝑙𝑦
as a function of temperature. As seen in Fig. 6(a), 𝑆𝑐𝑝𝑜𝑙𝑦 values for
atomistic MD are higher than the 𝑆𝑐𝑝𝑜𝑙𝑦 values obtained in the case
of mDPD. 𝑆𝑐𝑝𝑜𝑙𝑦 decreases from 30 000 at 313 K to 5100 at 373 K in
the atomistic MD, whereas it decreases from 26 800 to 867 for the same
temperature range in mDPD simulation. In order to verify the veracity
of the model, mDPD simulation at the exact polymer concentration of
5.9% by weight as in the case of atomistic MD simulation is carried out.
Consequently, Fig. 6(b) shows that 𝑆𝑐𝑝𝑜𝑙𝑦 values are in good agreement
expressing unit consistency of polymer concentrations in atomistic and
mesoscale models.

3.4. Rheology

For a model in the Lagrangian framework to be used for compounds
with flow properties different from Newtonian fluids, the rheological
behaviour must be reproduced in scales relevant to continuum me-
chanics. For different polymer chemistries, the dilute solutions have
different rheological behaviour at the atomistic scale with respect to
the changes in viscosity as a function of shear rate (i.e., shear-thinning)
at different temperatures. However, it is essential to see if the shear-
thinning behaviour itself is replicated while using the mesoscale models
as well or not. Moreover, having an accurate mesoscale model helps in
deriving properties that are not possible to be computed at the atomistic
scale due to low signal-to-noise ratio and slow dynamics.

The solvent and the two different polymer solutions undergo a Cou-
ette flow simulation. The flow is simulated by deforming the periodic
box in the 𝑦-direction and the velocity gradient is computed in the 𝑧-
direction of the simulation box. The 𝜂(�̇�) as a function of shear rate (�̇�)
s computed from the relationship

(�̇�) = −
𝜏𝑦𝑧
�̇�

(15)

where 𝜏𝑦𝑧 is the off-diagonal component of the stress-tensor. In the
atomistic scale, it is clearly seen that the solvent and polymer solu-
tion shear-thins at very high shear rates (refer to Fig. 7). A distinct
behaviour with respect to shear-thinning is observed in case of OCP and
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Fig. 4. (a) Radius of gyration as a function of temperature, 𝑇 for OCP and PMA solutions in atomistic and mDPD simulations. (b) Intramolecular bond distribution of OCP
and PMA polymer chains at 313 K in the atomistic and mDPD simulations. The schematic here compares the equivalent bonded distance of the beads in mesoscale with that in
atomistic scale.
PMA in their respective solutions at different temperatures by fitting a
Carreau-model of the form

𝜂(�̇�) =
𝜂0

(1 + (𝜏𝑠�̇�)2)𝑚
, (16)

where 𝜂0 is the Newtonian viscosity that is obtained from the extrap-
olation of the data to �̇� = 0, 𝜏𝑠 indicates the time constant related to
shear-thinning and 𝑚 is the strain-rate sensitivity coefficient.

The PMA solution starts shear-thinning at a lower shear rate (𝜏𝑠 =
2.07 ns) than the OCP solution (𝜏𝑠 = 0.73 ns) at 313 K. Similarly,
at a higher temperature of 373 K, the shear-thinning behaviour is
observed at lower shear rates for PMA (𝜏𝑠 = 0.80 ns) than what is
observed in case of the pure solvent (𝜏𝑠 = 0.10 ns) and OCP polymer
solution (𝜏𝑠 = 0.14 ns). At the same time, the mechanism of shear-
thinning enhancement in case of PMA and OCP solution is different.
While the OCP polymer chain leads to an increase in the hydrodynamic
7

radius of PAO-2 on average, the presence of PMA does not impact the
overall radius of PAO-2 molecules (see Figure S2 in the Supporting
Information). The enhanced shear-thinning by PMA can be attributed to
ease of shear-direction alignment of branched PMA polymer compared
to the linear OCP polymer.

It is essential to reproduce the shear-thinning behaviour at such
high shear rates for these mildly viscoelastic liquids via mesoscale
model while proposing a universal methodology that can be extended
to strongly viscoelastic medium as well. An oligomer solvent itself,
such as the one used in this work, can show shear-thinning better than
solvents such as water. This is attributed to the chains aligning in the
direction of deformation [46]. Fig. 8 shows the dynamic viscosity (𝜂) of
the PAO-2 solvent and DPD solvent as a function of shear rate (0.001 ≤
�̇� ≤ 1.0 in mDPD units). The DPD solvents show no viscosity variation
with the imposed shear rate and follow more of a Newtonian character
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Fig. 5. Schmidt number of solvent, 𝑆𝑐𝑠𝑜𝑙𝑣𝑒𝑛𝑡 as a function of temperature, 𝑇 .

within the range, as observed in literature [72]. This is attributed to the
inherent nature of the DPD equations that cannot capture a significant
dependence of 𝜂 with �̇� [73]. However, the PAO-2 solvent in this
work is able to reproduce the shear-thinning behaviour as seen in the
atomistic scale. Oils or hydrocarbons can shear-thin at shear rates well
below those solvents represented by conventional DPD. Additionally,
the model clearly shows that with NEMD, the zero-shear viscosity
obtained by the Carreau-model agrees with the zero-shear viscosity
obtained via the Green–Kubo methodology in equilibrium simulations
of PAO-2. This underlines the consistency of the modelling technique
described in this study.

Fig. 9 shows the viscosity as a function of shear rate for the PAO-
2 solvent and the two polymer solutions of OCP and PMA polymer
chains. With the addition of the polymer chain, the resultant polymer
solutions of OCP and PMA are shown to have a higher viscosity than
that of the solvent at lower shear rates. For the concentration of OCP
and PMA polymers simulated in mesoscale, they are not adding any
more favourable shear-thinning than that as seen in case of the PAO-2
solvent.

Even though shear-thinning at simulated shear rates depicts the
mild non-Newtonian behaviour, the characteristic that is essential to
prove that a liquid is viscoelastic is the first normal stress coefficient
(𝜓1) computed as

𝜓1 = −
𝜏𝑦𝑦 − 𝜏𝑧𝑧

�̇�2
. (17)

Here, 𝜏𝑦𝑦 is the diagonal component of stress tensor in the direction
of flow and 𝜏𝑧𝑧 is the component of stress tensor in the direction of
the velocity gradient in the Couette flow being examined. For a dilute
viscoelastic liquid, the value of 𝜓1 has been demonstrated to be greater
han zero [74]. It is reported that the greater the magnitude of 𝜓1, the

greater the fluid tendency to augment instabilities leading to vortex
roll-up. In the continuum-scale simulations, the prominent viscoelastic
models such as Oldroyd-3-constant and second-order-fluid models show
the relationship between the magnitude of 𝜓1 and the magnitude of
vortical motion [75,76]. Thus, the influence of fluid rheology on flow
and heat-transfer applications becomes evident.

Fig. 10 shows 𝜓1 as a function of shear rate in case of a DPD solvent,
he simulated PAO-2 solvent and the polymer solutions. As observed,
he DPD solvent has physically insignificant values of 𝜓1 <≈ 0 at all

values of shear rate [77]. Similarly, the simulated PAO-2 solvent shows
a Newtonian behaviour at low shear rate. With a higher shear rate, the
𝜓1 obtains positive values for the simulated solvent. However, with the
8

addition of a polymer chain, 𝜓1 is positive at all shear rates simulated. It t
confirms the viscoelastic nature achieved with the addition of polymer
chains in the solvent [78].

The individual contribution of the viscous and elastic components
towards the viscoelasticity can be obtained with the computation of
storage (𝐺′) and loss moduli (𝐺′′) from

𝐺(𝑡) = V
kB𝑇

⟨

𝜎𝑥𝑦(𝑡)𝜎𝑥𝑦(0)
⟩

, (18)

hich is fitted with a sum of exponential functions

(𝑡) =
𝑀
∑

𝑖=1
𝐺𝑖𝑒

−
(

𝑡
𝜏𝑖

)

. (19)

ith 𝑀 relaxation modes. Fig. 11(a) shows the 𝐺(𝑡) values smoothened
y doing a running average between 0.9t and 1.1t, as described by Sen
t al. [79], and the corresponding fits for OCP and PMA polymer
olutions at 313 K and 373 K. The long scattered tail of 𝐺(𝑡) (𝑡 >
000 mDPD units) emerging due to numerical precision issues at small
agnitudes in the long time regime [80] is further smoothened by

aking a weighted average [81]. 𝐺′ and 𝐺′′ are subsequently estimated
rom the Fourier transformation of the Eq. (19) such that

′(𝜔) =
𝑀
∑

𝑖=1
𝐺𝑖

𝜔2𝜏2𝑖
1 + 𝜔2𝜏2𝑖

(20)

nd

′′(𝜔) =
𝑀
∑

𝑖=1
𝐺𝑖

𝜔𝜏𝑖
1 + 𝜔2𝜏2𝑖

. (21)

ig. 11(b) shows 𝐺′ and 𝐺′′ of the different polymer solutions as
unctions of the frequency 𝜔 at the two different temperatures. As
bserved, 𝐺′ and 𝐺′′ values decrease with increase in temperature. In
ther words, the elasticity and viscosity decrease with temperature.
he 𝜔 values at which the slope of 𝐺′ and 𝐺′′ change increase with
emperature. This is clearly demonstrated by computing

∗(𝜔) =
(𝐺′(𝜔)2 + 𝐺′′(𝜔)2)

1
2

𝜔
(22)

as depicted in Figure S8 in the Supporting Information. The data shows
consistency with the results from Green–Kubo formulation for 𝜂0. At the
same time, the value of 𝜂∗(𝜔) decreases at a higher 𝜔 with increase in
temperature.

The final aspect to verify for the present modelling approach is
about how the relaxation time provided by the mDPD model behaves as
a function of temperature. In the atomistic MD simulation, the longest
relaxation time, i.e., terminal relaxation time is computed using the
formula

𝜏𝑡𝑒𝑟𝑚 = ∫

∞

0
𝐶(𝑡)𝑑𝑡 (23)

here

(𝑡) =
⟨𝐑(𝑡) ⋅ 𝐑(0)⟩
⟨𝐑(0) ⋅ 𝐑(0)⟩

(24)

with 𝐑(𝑡) depicting the end-to-end vector (𝐫1 − 𝐫𝑙) of the polymer chain
having 𝑙 monomers [59]. As shown in Figure S3 in the Supporting
Information, the 𝜏𝑡𝑒𝑟𝑚 values of OCP polymer chain decrease with
increasing temperature. However, 𝜏𝑡𝑒𝑟𝑚 values of PMA could not be
computed due to the extremely slow decay of 𝐶(𝑡) at the atomistic
scale and hence, they are not reported. The computation of the re-
laxation time using the same procedure is performed for the case of
the mDPD simulations (see Figure S9 in the Supporting Information)
and the results are shown in Fig. 12(a). The comparison of the longest
relaxation time, 𝜏𝑍 obtained from Eq. (19) is performed against 𝜏𝑡𝑒𝑟𝑚
in Table S12. The values of 𝜏𝑍 are showcased to be in the range of
0.3𝜏𝑡𝑒𝑟𝑚 to 0.4𝜏𝑡𝑒𝑟𝑚 depending on the temperature and the nature of the
polymer. In literature, these variations are attributed to the fact that
𝐶(𝑡) decays very slowly compared to 𝐺(𝑡), given the requirement of
rue decorrelation in space for 𝐶(𝑡) to reach zero [79]. Furthermore,
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Fig. 7. Viscosity (𝜂(�̇�)) as a function of shear rate (�̇�) at (a) 313 K and (b) 373 K for pure solvent and polymer solution systems simulated via atomistic MD. The symbols with
the error bars show the simulated dynamic viscosity values, 𝜂(�̇�) at different shear rates, �̇�. The lines depict the Carreau-model fittings.
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in Fig. 12(a), the relaxation time decreases in case of OCP polymer
chain from 92.7 ns to 29.9 ns as a function of temperature. However,
the relaxation time of PMA shows a different trend wherein the values
decrease from 74.9 ns to 28.6 ns in the temperature range of 313 K -
353 K after which they increase to 40.4 ns at 373 K. This is a possible
trend since the expansion of PMA chain with increasing temperature
compensates for the additional thermal energy at 373 K, leading to
slower dynamics in the solution. The veracity of the claim is supported
by the argument that relaxation time is proportional to the physical
quantity [𝜂]×𝜂𝑠

𝑇 according to the Zimm model [82]. Here, [𝜂] is the
ntrinsic viscosity of the polymer chain, 𝜂𝑠 is the solvent viscosity and

is the temperature. The same proportionality can be simplified in this
ase as follows:

𝑡𝑒𝑟𝑚 ∝ 𝑆𝑐𝑝𝑜𝑙𝑦𝐷𝑝𝑜𝑙𝑦 ⋅ 𝑆𝑐𝑠𝑜𝑙𝑣𝑒𝑛𝑡𝐷𝑠𝑜𝑙𝑣𝑒𝑛𝑡. (25)

ig. 12(b) shows that the product in the right-hand side of Eq. (25)
ecreases with increasing temperature in case of OCP. However, for
9

MA, the value increases beyond 353 K for the modelling strategy
mplemented here. This in turn could lead to the explanation of how
CP in PAO solvent acts merely as a thickener whereas PMA in the

ame solvent acts as a viscosity index improver (VII) [47,83].
Fig. 13(a) shows the terminal relaxation time values as a function

f shear rate. The values in the reduced mDPD units, and the corre-
ponding values in the real units using the scaling parameters in Table 1
re depicted in the figure. In case of the OCP polymer chain, the 𝜏𝑡𝑒𝑟𝑚

decreases with an increase in the shear rate at both 313 K and 373 K.
Additionally, it is observed that beyond �̇� = 0.1, the 𝜏𝑡𝑒𝑟𝑚 values drop
significantly at both the temperature values. At the same time, PMA
polymer chain also shows a decrease in 𝜏𝑡𝑒𝑟𝑚 as a function of shear
rate. The reduction in 𝜏𝑡𝑒𝑟𝑚 values as a function of shear rate is evident
from the Zimm model relationship as described above. However, the
structural reason is explored in this work. By computing the ratio of
the y-component of squared end-to-end distance (Re𝑦) of the polymer
chains to the total squared end-to-end distance (Re) such that

𝑆alignment =

⟨

Re𝑦
2⟩

⟨

2
⟩ , (26)
Re
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Fig. 8. Shear viscosity, 𝜂 as a function of shear rate, �̇� for solvent molecules computed
in the mesoscale simulations. The horizontal lines show the zero-shear viscosity
computed using Green–Kubo method under equilibrium conditions and the dashed line
shows the Carreau-model fit.

Fig. 9. Shear viscosity, 𝜂 as a function of shear rate, �̇� at 313 K and 373 K in the
mesoscale simulations. The horizontal lines show the zero-shear viscosity computed
using Green–Kubo method under equilibrium conditions. The dashed and dash-dotted
lines show the Carreau-model fit.

i.e., the fraction of molecular stretching aligned in the direction of the
shear (𝑦-direction) is observed. As shown in Fig. 13(b), the 𝑆alignment ≈
0.33 at zero shear rate. As the shear rate increases, the polymer chains
become aligned in the direction of shear as depicted by 𝑆alignment values
increasing from 0.45 to 0.9. This in turn leads to the drop in viscosity
of the polymer and consequently, the relaxation time as well.

3.5. Salient features of the model

Simultaneous implementation of the SLLOD thermostat and the
mDPD thermostat is functioning appropriately. The consistency in
the zero-shear viscosity results computed via equilibrium and non-
equilibrium simulations acts as proof of it. The mesoscale model of the
liquids of interest is essentially that of a droplet having a diameter of
0.02 μm. The simulation results reported here are intended to reproduce
the major features such as molecular structure and rheology, as seen
in atomistic simulation studies using a mesoscale model. Properties
10

such as viscosity, relaxation time and first normal stress coefficient are o
Fig. 10. First normal stress coefficient, 𝜓1 as a function of shear rate, �̇� at 313 K
omputed by mesoscale simulations. DPD solvent has 𝜌 = 7.9.

eported for a shear rate range in real units in order to be compared
ith the atomistic-scale MD. The consistency of the results in the range,
s seen in both scales, indicates their mild viscoelasticity. Increasing
he polymeric concentration makes the non-Newtonian behaviour more
ronounced, as shown in Fig. 14, with the shear-thinning of 5.9% by
eight polymer solution starting at a lower shear rate than the 0.1%
olymer solution, an observation that is consistent in the real units as
ell. At the same time, it needs to be pointed out that the mesoscale
odel here shows a slower rate of shear thinning than the atomistic

cale model. The effect could emerge from the increase in structural
rdering of the beads in mesoscale compared with the atomistic scale
see Figure S7 in the Supporting Information). So it will be vital to
mprove the model to account for these variations by optimising the
xcluded volume further.

. Conclusions

The responses of terminal relaxation time, viscosity and first normal
tress difference as a function of shear rates are vital to determine the
istinct aspects of a fluid’s non-Newtonian behaviour. To predict those,
framework for non-Newtonian dilute polymer solutions at mesoscale
as been developed, capturing the structural differences of OCP and
MA polymers in PAO-2 solvent. The order of magnitude differences
n storage and loss moduli between fluids simulated by both mDPD
nd DPD simulations establishes the high sensitivity of the model to
dentify viscoelastic behaviour. It is achieved by a combination of
ensity-dependent conservative force parameters, and systematically-
erived dissipative force cut-off and angle stiffness energies. As a result,
he reported relationships between the mDPD (reduced) units and real
SI) units make the model accessible for direct comparison with results
rom macroscopic experiments of industrially important viscoelastic
iquids. By the application of the developed methodology, distinct
spects of the behaviour of the different solutions at mesoscales are
emonstrated, such as the relationship of terminal relaxation time with
espect to temperature. Furthermore, the model is able to predict the
iscoelasticity introduced with the addition of polymer chains, even at
small concentration of 0.1% by weight, as shown by the computation

f the first normal stress coefficient, and storage and loss moduli.



Polymer 285 (2023) 126360B. Ravikumar et al.

t
f

(

C

m
I
t
F
s
P
S

D

t
I
F

Fig. 11. (a) 𝐺(𝑡) as a function of time at a temperature of 313 K computed by mesoscale simulations for OCP and PMA polymer solutions. The vertical dashed lines correspond
o the values of longest relaxation time, 𝜏𝑍 from Eq. (19). (b) The storage modulus, 𝐺′ (solid) and the loss modulus, 𝐺′′ (dashed) as a function of radial frequency, 𝜔. The lines
or OCP and PMA solutions are seen overlapping for the entire 𝜔 range at a particular temperature. The vertical dotted lines correspond to the values of 2𝜋

𝜏𝑍
.

Fig. 12. (a) Terminal relaxation time, 𝜏𝑡𝑒𝑟𝑚 as a function of temperature, 𝑇 at zero shear rate for OCP and PMA solutions. (b) 𝑆𝑐𝑝𝑜𝑙𝑦𝐷𝑝𝑜𝑙𝑦 ⋅𝑆𝑐𝑠𝑜𝑙𝑣𝑒𝑛𝑡𝐷𝑠𝑜𝑙𝑣𝑒𝑛𝑡 as a function of temperature
refer to Eq. (25)).
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Fig. 13. (a) Terminal relaxation time, 𝜏𝑡𝑒𝑟𝑚 as a function of shear rate, �̇� at 313 K. (b) 𝑆alignment of polymer chains as a function of shear rate at 313 K. The data on the 𝑦-axis
shows the 𝑆alignment values at zero shear rate.
Fig. 14. The ratio of shear viscosity, 𝜂(�̇�)∕𝜂0 as a function of shear rate, �̇� at 313 K
for OCP polymer solution with polymer concentrations of 0.1% and 5.9% by weight.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at
https://doi.org/10.1016/j.polymer.2023.126360. The Supporting In-
formation document contains the mDPD modelling equations, atomistic
MD simulation aspects such as the L-OPLS-AA force field parame-
ters, and the mesoscale model parameters. The dihedral distribution
function and solvent–polymer radial distribution function are shown.
Comparison of 𝜂∗(𝜔) is shown. Following that, 𝐶(𝑡) values and the
orresponding exponential fits are also shown.
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