
              

City, University of London Institutional Repository

Citation: Oldfield, J., Tzelepis, C., Panagakis, Y., Nicolaou, M. & Patras, I. (2023). PandA: 

Unsupervised Learning of Parts and Appearances in the Feature Maps of GANs. Paper 
presented at the International Conference on Learning Representations, 1-5 May 2023, 
Kigali, Rwanda. 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/31342/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Published as a conference paper at ICLR 2023

PANDA: UNSUPERVISED LEARNING OF PARTS AND
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ABSTRACT

Recent advances in the understanding of Generative Adversarial Networks (GANs)
have led to remarkable progress in visual editing and synthesis tasks, capitalizing
on the rich semantics that are embedded in the latent spaces of pre-trained GANs.
However, existing methods are often tailored to specific GAN architectures and
are limited to either discovering global semantic directions that do not facilitate
localized control, or require some form of supervision through manually provided
regions or segmentation masks. In this light, we present an architecture-agnostic
approach that jointly discovers factors representing spatial parts and their appear-
ances in an entirely unsupervised fashion. These factors are obtained by applying
a semi-nonnegative tensor factorization on the feature maps, which in turn enables
context-aware local image editing with pixel-level control. In addition, we show
that the discovered appearance factors correspond to saliency maps that local-
ize concepts of interest, without using any labels. Experiments on a wide range
of GAN architectures and datasets show that, in comparison to the state of the
art, our method is far more efficient in terms of training time and, most impor-
tantly, provides much more accurate localized control. Our code is available at
https://github.com/james-oldfield/PandA.

1 INTRODUCTION

Figure 1: We propose an unsupervised method for learning a set of factors that correspond to
interpretable parts and appearances in a dataset of images. These can be used for multiple tasks: (a)
local image editing, (b) context-aware object removal, and (c) producing saliency maps for learnt
concepts of interest.

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) constitute the state of the art
(SOTA) for the task of image synthesis. However, despite the remarkable progress in this domain
through improvements to the image generator’s architecture (Radford et al., 2016; Karras et al., 2018;
2019; 2020b; 2021; Brock et al., 2019), their inner workings remain to a large extent unexplored.
Developing a better understanding of the way in which high-level concepts are represented and
composed to form synthetic images is important for a number of downstream tasks such as generative
∗Corresponding author: j.a.oldfield@qmul.ac.uk
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model interpretability (Shen et al., 2020a; Bau et al., 2019; Yang et al., 2021) and image editing
(Härkönen et al., 2020; Shen & Zhou, 2021; Shen et al., 2020c; Voynov & Babenko, 2020; Tzelepis
et al., 2021; Bau et al., 2020). In modern generators however, the synthetic images are produced
through an increasingly complex interaction of a set of per-layer latent codes in tandem with the
feature maps themselves (Karras et al., 2020b; 2019; 2021) and/or with skip connections (Brock
et al., 2019). Furthermore, given the rapid pace at which new architectures are being developed,
demystifying the process by which these vastly different networks model the constituent parts of
an image is an ever-present challenge. Thus, many recent advances are architecture-specific (Wu
et al., 2021; Collins et al., 2020; Ling et al., 2021) and a general-purpose method for analyzing and
manipulating convolutional generators remains elusive.

A popular line of GAN-based image editing research concerns itself with learning so-called “inter-
pretable directions” in the generator’s latent space (Härkönen et al., 2020; Shen & Zhou, 2021; Shen
et al., 2020c; Voynov & Babenko, 2020; Tzelepis et al., 2021; Yang et al., 2021; He et al., 2021; Haas
et al., 2021; 2022). Once discovered, such representations of high-level concepts can be manipulated
to bring about predictable changes to the images. One important question in this line of research is
how latent representations are combined to form the appearance at a particular local region of the im-
age. Whilst some recent methods attempt to tackle this problem (Wang et al., 2021; Wu et al., 2021;
Broad et al., 2022; Zhu et al., 2021a; Zhang et al., 2021; Ling et al., 2021; Kafri et al., 2021), the cur-
rent state-of-the-art methods come with a number of important drawbacks and limitations. In particu-
lar, existing techniques require prohibitively long training times (Wu et al., 2021; Zhu et al., 2021a),
costly Jacobian-based optimization (Zhu et al., 2021a; 2022), and the requirement of semantic masks
(Wu et al., 2021) or manually specified regions of interest (Zhu et al., 2021a; 2022). Furthermore,
whilst these methods successfully find directions affecting local changes, optimization must be per-
formed on a per-region basis, and the resulting directions do not provide pixel-level control–a term
introduced by Zhu et al. (2021a) referring to the ability to precisely target specific pixels in the image.

In this light, we present a fast unsupervised method for jointly learning factors for interpretable parts
and their appearances (we thus refer to our method as PandA) in pre-trained convolutional generators.
Our method allows one to both interpret and edit an image’s style at discovered local semantic regions
of interest, using the learnt appearance representations. We achieve this by formulating a constrained
optimization problem with a semi-nonnegative tensor decomposition of the dataset of deep feature
maps Z ∈ RM×H×W×C in a convolutional generator. This allows one to accomplish a number of
useful tasks, prominent examples of which are shown in Fig. 1. Firstly, our learnt representations of
appearance across samples can be used for the popular task of local image editing (Zhu et al., 2021a;
Wu et al., 2021) (for example, to change the colour or texture of a cat’s ears as shown in Fig. 1 (a)).
Whilst the state-of-the-art methods (Zhu et al., 2021a; Wu et al., 2021; Zhu et al., 2022) provide fine-
grained control over a target region, they adopt an “annotation-first” approach, requiring an end-user
to first manually specify a ROI. By contrast, our method fully exploits the unsupervised learning
paradigm, wherein such concepts are discovered automatically and without any manual annotation.
These discovered semantic regions can then be chosen, combined, or even modified by an end-user as
desired for local image editing.

More interestingly still, through a generic decomposition of the feature maps our method identifies
representations of common concepts (such as “background”) in all generator architectures considered
(all 3 StyleGANs (Karras et al., 2019; 2020b; 2021), ProgressiveGAN (Karras et al., 2018), and
BigGAN (Brock et al., 2019)). This is a surprising finding, given that these generators are radically
different in architecture. By then editing the feature maps using these appearance factors, we can
thus, for example, remove specific objects in the foreground (Fig. 1 (b)) in all generators, seamlessly
replacing the pixels at the target region with the background appropriate to each image.

However, our method is useful not only for local image editing, but also provides a straightforward
way to localize the learnt appearance concepts in the images. By expressing activations in terms
of our learnt appearance basis, we are provided with a visualization of how much of each of the
appearance concepts are present at each spatial location (i.e., saliency maps for concepts of interest).
By then thresholding the values in these saliency maps (as shown in Fig. 1 (c)), we can localize the
learnt appearance concepts (such as sky, floor, or background) in the images–without the need for
supervision at any stage.

We show exhaustive experiments on 5 different architectures (Karras et al., 2020b; 2018; 2021; 2019;
Brock et al., 2019) and 5 datasets (Deng et al., 2009; Choi et al., 2020; Karras et al., 2019; Yu et al.,
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Table 1: A high-level comparison of our method to the SOTA for local image editing. “Training time”
denotes the total training time required to produce the images for the quantitative comparisons.

Manual ROI–free Semantic mask–free Pixel-level control Architecture-agnostic Style diversity Training time (mins)

StyleSpace (Wu et al., 2021) 3 7 7 7 3 177.12
LowRankGAN (Zhu et al., 2021a) 7 3 7 3 7 324.21
ReSeFa (Zhu et al., 2022) 7 3 7 3 7 347.79
Ours 3 3 3 3 3 0.87

2015; Karras et al., 2020a). Our method is not only orders of magnitude faster than the SOTA,
but also showcases superior performance at the task of local image editing, both qualitatively and
quantitatively. Our contributions can be summarized as follows:

• We present an architecture-agnostic unsupervised framework for learning factors for both the
parts and the appearances of images in pre-trained GANs, that enables local image editing.
In contrast to the SOTA (Zhu et al., 2021a; Wu et al., 2021), our approach requires neither
semantic masks nor manually specified ROIs, yet offers more precise pixel-level control.

• Through a semi-nonnegative tensor decomposition of the generator’s feature maps, we show
how one can learn sparse representations of semantic parts of images by formulating and
solving an appropriate constrained optimization problem.

• We show that the proposed method learns appearance factors that correspond to semantic
concepts (e.g., background, sky, skin), which can be localized in the image through saliency
maps.

• A rigorous set of experiments show that the proposed approach allows for more accurate
local image editing than the SOTA, while taking only a fraction of the time to train.

2 RELATED WORK

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) continue to push forward the
state of the art for the task of image synthesis through architectural advances such as the use of
convolutions (Radford et al., 2016), progressive growing (Karras et al., 2018), and style-based
architectures (Karras et al., 2019; 2020b; 2021). Understanding the representations induced by these
networks for interpretation (Bau et al., 2019; Shen et al., 2020a; Yang et al., 2021) and control
(Shen & Zhou, 2021; Härkönen et al., 2020; Voynov & Babenko, 2020; Georgopoulos et al., 2021;
Tzelepis et al., 2021; Zhu et al., 2021a; Bounareli et al., 2022; Wu et al., 2021; Abdal et al., 2021)
has subsequently received much attention.

However, whilst several methods identify ways of manipulating the latent space of GANs to bring
about global semantic changes–either in a supervised (Goetschalckx et al., 2019; Plumerault et al.,
2020; Shen et al., 2020c;a) or unsupervised (Voynov & Babenko, 2020; Shen & Zhou, 2021; Härkönen
et al., 2020; Tzelepis et al., 2021; Oldfield et al., 2021) manner–many of them struggle to apply
local changes to regions of interest in the image. In this framework of local image editing, one
can swap certain parts between images (Collins et al., 2020; Jakoel et al., 2022; Chong et al., 2021;
Suzuki et al., 2018; Kim et al., 2021; Bau et al., 2020), or modify the style at particular regions
(Wang et al., 2021; Wu et al., 2021; Broad et al., 2022; Zhu et al., 2021a; Zhang et al., 2021; Ling
et al., 2021; Kafri et al., 2021). This is achieved with techniques such as clustering (Collins et al.,
2020; Zhang et al., 2021; Broad et al., 2022; Kafri et al., 2021), manipulating the AdaIN (Huang
& Belongie, 2017) parameters (Wu et al., 2021; Wang et al., 2021), or/and operating on the feature
maps themselves (Wang et al., 2021; Broad et al., 2022; Zhang et al., 2021) to aid the locality of
the edit. Other approaches employ additional latent spaces or architectures (Kim et al., 2021; Ling
et al., 2021), require the computation of expensive gradient maps (Wang et al., 2021; Wu et al., 2021)
and semantic segmentation masks/networks (Wu et al., 2021; Zhu et al., 2021b; Ling et al., 2021),
or require manually specified regions of interest (Zhu et al., 2021a; 2022). In contrast to related
work, our method automatically learns both the parts and a diverse set of global appearances, in a fast
unsupervised procedure without any semantic masks. Additionally, our method allows for pixel-level
control (Zhu et al., 2021a). For example, one can choose to modify a single eye only in a face, which
is not possible with the SOTA (Zhu et al., 2021a; 2022). Our method and its relationship to the SOTA
for local image editing is summarized in Table 1.
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Figure 2: An overview of our method. We decompose a dataset of generator’s activations Zi ∈
RH×W×C with a separable model. Each factor has an intuitive interpretation: the factors for the
spatial modes pj control the parts, determining at which spatial locations in the feature maps the
various appearances ak are present, through their multiplicative interactions.

From a methodological standpoint, most closely related to our method are the works of Collins et al.
(2020; 2018). Both of these perform clustering in the activation space for parts-based representations
in generators (Collins et al., 2020) and CNNs (Collins et al., 2018) respectively. However, Collins
et al. (2018) considers only discriminative networks for locating common semantic regions in CNNs,
whilst we additionally focus on image editing tasks in GANs. On the other hand, Collins et al. (2020)
does not jointly learn representations of appearances. Therefore Collins et al. (2020) is limited to
swapping parts between two images, and is additionally StyleGAN-specific, unlike our method that
offers a generic treatment of convolutional generators.

3 METHODOLOGY

In this section, we detail our approach for jointly learning interpretable parts and their appearances in
pre-trained GANs, in an unsupervised manner. We begin by establishing the notation used throughout
the paper in Section 3.1. We then introduce our proposed separable model in Section 3.2, and our
optimization objective in Section 3.3. In Section 3.4 we describe our initialization strategies, and
finally in Section 3.5 we describe how to refine the learnt global parts factors.

3.1 NOTATION

We use uppercase (lowercase) boldface letters to refer to matrices (vectors), e.g., X (x), and calli-
graphic letters for higher-order tensors, e.g., X . We refer to each element of an N th order tensor
X ∈ RI1×I2×···×IN using N indices, i.e., X (i1, i2, . . . , iN ) , xi1i2...iN ∈ R. The mode-n fibers of
a tensor are the column vectors formed when fixing all but the nth mode’s indices (e.g., x:jk ∈ RI1

are the mode-1 fibers). A tensor’s mode-n fibers can be stacked along the columns of a matrix, giving
us the mode-n unfolding denoted as X(n) ∈ RIn×Īn with Īn =

∏N
t=1
t 6=n

It (Kolda & Bader, 2009).
We denote a pre-trained convolutional GAN generator with G, and use G[l:] to refer to the partial
application of the last l layers of the generator only.

3.2 A SEPARABLE MODEL OF PARTS AND APPEARANCES

A convolutional generator maps each latent code zi ∼ N (0, I) to a synthetic image Xi ∈ RH̃×W̃×C̃

via a sequence of 2D transpose convolutions. The intermediate convolutional featuresZi ∈ RH×W×C

at each layer have a very particular relationship to the output image. Concretely, each spatial activation
(Olah et al., 2018) (which can be thought of as a spatial coordinate in the feature maps in Fig. 2
indexed with an (h,w) tuple) affects a specific patch in the output image (Collins et al., 2020). At
each of these spatial positions, a channel fiber zihw: ∈ RC lies depth-wise along the activation tensor,
determining its value. With this understanding, we propose to factor the spatial and channel modes
separately with a tensor decomposition, providing an intuitive separation into representations of the
images’ parts and appearances. This provides a simple interface for local image editing. We suggest
that representations of a set of interpretable parts for local image editing should have two properties:

1. Non-negativity: the representations ought to be additive in nature, thus corresponding to
semantic parts of the images (Lee & Seung, 1999).

4
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2. Sparsity: the parts should span disjoint spatial regions, capturing different localized patterns
in space, as opposed to global ones (Yang & Oja, 2010; Yuan et al., 2009).

Concretely, given the dataset’s intermediate feature maps Z ∈ RN×H×W×C from the pre-trained
generator, each sample’s mode-3 unfolding Zi(3) ∈ RC×S contains in its columns the channel-wise
activations at each of the S , H ·W spatial positions in the feature maps1. We propose a separable
factorization of the form

Zi(3) = AΛiP
> (1)

=

[ | |
a1 · · · aRC

| |

]
︸ ︷︷ ︸

Appearance

 λi11 λi12 . . .
...

. . .
λiRC1 . . . λiRCRS


︸ ︷︷ ︸

Sample i’s coefficients

 | p1
> |

...

| pRS
> |


︸ ︷︷ ︸

Parts

, (2)

where A ∈ RC×RC are the global appearance factors and P ≥ 0 ∈ RS×RS are the global parts
factors (with RC ≤ C,RS ≤ S), jointly learnt across many samples in a dataset. Intuitively, the
coefficients λijk encode how much of appearance aj is present at part pk in sample i’s feature
maps Zi(3). We show our proposed separable decomposition schematically in Fig. 2. Each non-
negative parts factor pk ∈ RS ≥ 0 spans a spatial sub-region of the feature maps, corresponding to a
semantic part. The various appearances and textures present throughout the dataset are encoded in
the appearance factors aj ∈ RC and lie along the depth-wise channel mode of the feature maps. This
formulation facilitates modelling the multiplicative interactions (Jayakumar et al., 2020) between the
parts and appearance factors. Concretely, due to the outer product, the factors relating to the parts
control the spatial regions at which the various appearance factors are present. The parts factors thus
function similarly to semantic masks, but rather are learnt jointly and in an entirely unsupervised
manner. This is particularly useful for datasets for which segmentation masks are not readily available.

3.3 OBJECTIVE

We propose to solve a constrained optimization problem that leads to the two desirable properties
outlined in Section 3.2. We impose hard non-negativity constraints on the parts factors P to achieve
property 1, and encourage both factor matrices to be column-orthonormal for property 2 (which
has been shown to lead to sparser representations (Ding et al., 2006; Yang & Laaksonen, 2007;
Yang & Oja, 2010; Yuan et al., 2009), and has intricate connections to clustering (Ding et al., 2005;
Li & Ding, 2006)). We achieve this by formulating a single reconstruction objective as follows.
Let Z ∈ RN×C×S be a batch of N samples’ mode-3 unfolded intermediate activations. Then our
constrained optimization problem is

min
A,P
L(Z,A,P) = min

A,P

N∑
i=1

||Zi −A
(
A>ZiP

)
P>||2F s.t. P ≥ 0. (3)

A good reconstruction naturally leads to orthogonal factor matrices (e.g., P>P ≈ IRS
for P ∈

RS×RS with S ≥ RS) without the need for additional hard constraints (Le et al., 2013). What’s more,
each parts factor (column of P) is encouraged to span a distinct spatial region to simultaneously
satisfy both the non-negativity and orthonormality-via-reconstruction constraints. However, this
problem is non-convex. We thus propose to break the problem into two sub-problems in A and P
separately, applying a form of block-coordinate descent (Lin, 2007), optimizing each factor matrix
separately whilst keeping the other fixed. The gradients of the objective function in Eq. (3) with
respect to the two factor matrices (see the supplementary material for the derivation) are given by

∇PL = 2

(
N∑
i=1

P̄Z>i ĀĀZiP + Z>i ĀĀZiP̄P− 2Z>i ĀZiP

)
, (4)

∇AL = 2

(
N∑
i=1

ĀZiP̄P̄Z>i A + ZiP̄P̄Z>i ĀA− 2ZiP̄Z>i A

)
, (5)

1Intuitively, Zi(3) ∈ RC×S can be viewed simply as a ‘reshaping’ of the ith sample’s feature maps that
combines the height and width modes into a single S-dimensional ‘spatial’ mode.
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with P̄ , PP> and Ā , AA>. After a gradient update for the parts factors P, we project them
onto the non-negative orthant (Lin, 2007) with max {0, ·}. This leads to our alternating optimization
algorithm, outlined in Algorithm 1.

Algorithm 1: Block-coordinate descent solution to Eq. (3)

Input :Z ∈ RM×C×S (M lots of mode-3-unfolded activations), RC , RS ∈ R (ranks), λ ∈ R
(learning rate), and T (# iterations).

Output :P ∈ RS×RS ,A ∈ RC×RC (parts and appearance factors).
Initialise

U,Σ,V> ← SVD
(
Z(2)Z

>
(2)

)
;

A(1) ← U:RC
;

P(1) ∼ U(0, 0.01) ;
for t = 1 to T do

P(t+1) ← max

{
0,P(t) − λ · ∇P(t)L

(
Z,A(t),P(t)

)}
; // PGD step

A(t+1) ← A(t) − λ · ∇A(t)L
(
Z,A(t),P(t+1)

)
;

end

Upon convergence of Algorithm 1, to modify an image i at region k with the jth appearance with
desired magnitude α ∈ R, we compute the forward pass from layer l onwards in the generator with
X ′i = G[l:]

(
Zi + αajp̂

>
k

)
, with p̂k being the normalized parts factor of interest.

3.4 INITIALIZATION

Let Z ∈ RN×C×S be a batch of N mode-3 unfolded feature maps as in Section 3.3. A common
initialization strategy (Cichocki et al., 2009; Boutsidis & Gallopoulos, 2008; Yuan et al., 2009) for
non-negative matrix/tensor decompositions is via a form of HOSVD (Tucker, 1966; Lu et al., 2008).
Without non-negativity constraints, the channel factor matrix subproblem has a closely related closed-
form solution given by the first RC left-singular vectors of the mode-2 unfolding of the activations
expressed in terms of the parts basis (proof given in Appendix B of Xu et al. (2005)). We thus
initialize the channel factors at time-step t = 1 with A(1) , U:RC

where U:RC
are the first RC-

many left-singular vectors of Z(2)Z
>
(2). Later on in Section 4.1.2 we demonstrate the benefits of this

choice, including its usefulness for locating interpretable appearances.

3.5 PARTS FACTORS REFINEMENT

The formulation in Eq. (3) for learning parts and appearances makes the implicit assumption that
the samples are spatially aligned. However, this does not always hold in practice, and therefore
the global parts are not always immediately useful for datasets with no alignment. To alleviate this
requirement, we propose a fast optional “refinement” step of the global parts factors P ∈ RS×Rs

from Eq. (3) to specialize them to sample-specific parts factors P̃i ∈ RS×Rs for sample i. Given
the ith target sample’s intermediate activations Zi ∈ RC×S , we optimize a few steps of a similar
constrained optimization problem as before:

min
P̃i

LR(Zi,A, P̃i) = min
P̃i

||Zi −A
(
A>ZiP̃i

)
P̃>i ||2F s.t. P̃i ≥ 0. (6)

We analyze in Appendix B.0.2 the benefits of this refinement step, and compare the global parts
factors to the refined factors.

4 EXPERIMENTS

In this section we present a series of experiments to validate the method and explore its properties.
We begin in Section 4.1 by focusing on using the method for interpretation: showing how one
can generate saliency maps for concepts of interest and remove the foreground at target locations.

6
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Following this, we showcase local image editing results on 5 GANs in Section 4.2. In Appendix B
we present ablation studies to further justify and motivate our method.

4.1 INTERPRETING THE APPEARANCE VECTORS

Figure 3: Our architecture-agnostic method discovers a representation of the “background” concept
in the feature maps, which allows us to remove objects in a context-aware manner for all 5 generators.

Using the learnt appearance basis A, one can straightforwardly visualize “how much” of each column
is present at each spatial location via a change of basis. In particular, the element at row c and column
s of the activations expressed in terms of the appearance basis A>Zi ∈ RRC×S encodes how much of
appearance c is present at spatial location s, for a particular sample i of interest. This transformation
provides a visual understanding of the concepts controlled by the columns by observing the semantic
regions in the image at which these values are the highest.

4.1.1 GENERIC CONCEPTS SHARED ACROSS GAN ARCHITECTURES

The analysis above leads us to make an interesting discovery. We find that our model frequently
learns an appearance vector for a high-level “background” concept in all 5 generator architectures.
This is a surprising finding–one would not necessarily expect these radically different architectures to
encode concepts in the same manner (given that many existing methods are architecture-specific), let
alone that they could be extracted with a single unsupervised approach. We can thus use this learnt
“background” appearance vector to remove objects in a context-aware manner, as shown on all 5
generators and numerous datasets in Fig. 3.

4.1.2 VISUALIZING AND LOCALIZING APPEARANCE VECTORS

Figure 4: Visualizing the coordinates in the appearance basis (2nd row), one can interpret how much
of each appearance vector is present at each spatial patch. For example, we see appearance vectors at
various layers very clearly corresponding to (a) background, (b) skin, (c) sky, and (d) foreground.

Through the change of basis A>Zi we can identify the pixels in the image that are composed of
the concept k of interest (e.g., the “background” concept), offering an interpretation of the images’
semantic content. We first compute the saliency map mik = a>k Zi ∈ RS , whose elements encode
the magnitude of concept k at each spatial position in the ith sample. This can be reshaped into a

7
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square matrix and visualized as an image to localize the kth concept in the image, as shown in row 2
of Fig. 4. We then additionally perform a simple binary classification following Voynov & Babenko
(2020). We classify each pixel j as an instance of concept k or not with m̃ikj = [mikj ≥ µk], where
µk = 1

N ·S
∑

n,smnks ∈ R is the mean magnitude of the kth concept in N samples. We show this
in row 3 of Fig. 4 for various datasets and GANs. For example, this analysis allows us to identify
(and localize) appearance vectors in various generators that control concepts including “foreground”,
“skin”, and “sky”, shown in Fig. 4 (b-d). We find this visualization to be most useful for understanding
the first few columns of A, which control the more prominent high-level visual concepts in the dataset
due to our SVD-based initialization outlined in Section 3.4.

Figure 5: Local image editing on a number of architectures and datasets, using both the global and
refined parts factors. At each column, the original image is edited at the target part with a different
appearance vector (many more examples are shown in Appendix C.3).

4.2 LOCAL IMAGE EDITING

Next, we showcase our method’s ability to perform local image editing in pre-trained GANs, on 5
generators and 5 datasets (ImageNet (Deng et al., 2009), AFHQ (Choi et al., 2020), FFHQ (Karras
et al., 2019), LSUN (Yu et al., 2015), and MetFaces (Karras et al., 2020a)). In Fig. 5 we show a number
of interesting local edits achievable with our method, using both the global and refined parts factors.
Whilst we can manipulate the style at common regions such as the eyes with the global parts factors,
the refined parts factors allow one to target regions such as an individual’s clothes, or their background.
Many more examples are shown in Appendix C.3. One is not limited to this set of learnt parts however.
For example, one can draw a ROI by hand at test-time or modify an existing part–an example of this
is shown in Appendix C.1. This way, pixel-level control (e.g., opening only a single eye of a face) is
achievable in a way that is not possible with the SOTA methods (Zhu et al., 2021a; Wu et al., 2021).

We next compare our method to state-of-the-art GAN-based image editing techniques in Fig. 6. In
particular, we train our model at layer 5 using RS = 8 global parts factors, with no refinement. As
can be seen, SOTA methods such as LowRank-GAN (Zhu et al., 2021a) excel at enlarging the eyes
in a photo-realistic manner. However, we frequently find the surrounding regions to change as well.
This is seen clearly by visualizing the mean squared error (Collins et al., 2020) between the original
images and their edited counterparts, shown in every second row of Fig. 6. We further quantify this
ability to affect local edits in the section that follows.

4.2.1 QUANTITATIVE RESULTS

We compute the ratio of the distance between the pixels of the original and edited images in the
region of ‘disinterest’, over the same quantity with the region of interest:

ROIR(M,X ,X ′) =
1

N

N∑
i=1

|| (1−M) ∗ (Xi −X ′i ) ||
||M ∗ (Xi −X ′i ) ||

, (7)
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Figure 6: Qualitative comparison to SOTA methods editing the “eyes” ROI. We also show the
mean squared error (Collins et al., 2020) between the original images and their edited counterparts,
highlighting the regions that change.

Table 2: ROIR (↓) of Eq. (7) for 10k FFHQ samples per local edit.

Eyes Nose Open mouth Smile

GANSpace (Härkönen et al., 2020) 2.80±1.22 4.89±2.11 3.25±1.33 2.44±0.89
SeFa (Shen & Zhou, 2021) 5.01±1.90 6.89±3.04 3.45±1.12 5.04±2.22
StyleSpace (Wu et al., 2021) 1.26±0.70 1.70±0.82 1.24±0.44 2.06±1.62
LowRankGAN (Zhu et al., 2021a) 1.78±0.59 5.07±2.06 1.82±0.60 2.31±0.76
ReSeFa (Zhu et al., 2022) 2.21±0.85 2.92±1.29 1.69±0.65 1.87±0.75
Ours 1.04±0.33 1.17±0.44 1.04±0.39 1.05±0.38

whereM∈ [0, 1]H×W×C is an H ×W spatial mask (replicated along the channel mode) specifying
the region of interest, 1 is a 1-tensor, and X ,X ′ ∈ RN×H̃×W̃×C̃ are the batch of original and edited
versions of the images respectively. A small ROIR indicates more ‘local’ edits, through desirable
change to the ROI (large denominator) and little change elsewhere (small numerator). We compute
this metric for our method and SOTA baselines in Table 2, for a number of regions of interest. As can
be seen, our method consistently produces more local edits than the SOTA for a variety of regions
of interest. We posit that the reason for this is due to our operating directly on the feature maps,
where the spatial activations have a direct relationship to a patch in the output image. Many more
comparisons and results can be found in Appendix C.

5 CONCLUSION

In this paper, we have presented a fast unsupervised algorithm for learning interpretable parts and
their appearances in pre-trained GANs. We have shown experimentally how our method outperforms
the state of the art at the task of local image editing, in addition to being orders of magnitude faster to
train. We showed how one can identify and manipulate generic concepts in 5 generator architectures.
We also believe that our method’s ability to visualize the learnt appearance concepts through saliency
maps could be a useful tool for network interpretability.

Limitations Whilst we have demonstrated that our method can lead to more precise control, the
approach is not without its limitations. Such strictly local editing means that after modifying a precise
image region, any expected influence on the rest of the image is not automatically accounted for. As a
concrete example, one can remove trees from an image, but any shadow they may have cast elsewhere
is not also removed automatically. Additionally, we find that methods editing the feature maps have a
greater tendency to introduce artifacts relative to methods working on the latent codes. This is one
potential risk with the freedom of pixel-level control–adding appearance vectors at arbitrary spatial
locations does not always lead to photorealistic edits. We hope to address this in future work.

Acknowledgments This work was supported by the EU H2020 AI4Media No. 951911 project.
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6 REPRODUCIBILITY STATEMENT

Efforts have been made throughout to ensure the results are reproducible, and the method easy to
implement. We provide full source code in the supplementary material folder. This contains jupyter
notebooks to reproduce the concept localizations from Section 4.1.2, the qualitative results from
Section 4.2, and a full demo including the training and refinement objective of Section 3.5 for easy
training and editing with new generators. We also provide pre-trained models that can be downloaded
by following the link in the supplementary material’s readme.md.

7 ETHICS STATEMENT

The development of any new method such as PandA facilitating the ability to edit images brings
a certain level of risk. For example, using the model, bad actors may more easily edit images for
malicious ends or to spread misinformation. Additionally, it’s important to highlight that through
our use of pre-trained models we inherit any bias present in the generators or the datasets on which
they were trained. Despite these concerns, we believe our method leads to more interpretable and
transparent image synthesis–for example, through our concept localization one has a much richer
understanding of which attributes appear in the generated images, and where.
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A GRADIENTS

We first provide a derivation of the gradients of the main paper’s loss function with respect to each
factor. The main paper’s objective function is given by

L =

N∑
i=1

||Zi −A(A>ZiP)P>||2F

=

N∑
i=1

tr
((

Zi −A(A>ZiP)P>
)> (

Zi −A(A>ZiP)P>
))

=

N∑
i=1

tr
(
Z>i Zi

)︸ ︷︷ ︸
La

−2 tr
(
PP>Z>i AA>Zi

)︸ ︷︷ ︸
Lb

+ tr
(
PP>Z>i AA>AA>ZiPP>

)︸ ︷︷ ︸
Lc

.

Clearly,∇PLa = 0. The term∇PLb is of the form ∂
∂P tr

(
PP>X

)
. Thus we have

∇PLb =
(
Z>i AA>Zi + Z>i AA>Zi

)
P = 2 · Z>i AA>ZiP. (8)

The final term ∇PLc has the form ∂
∂P tr

(
PP>XPP>

)
. Through the chain rule, we have

∇PLc = 2
(
PP>

(
Z>i AA>AA>Zi

)
P +

(
Z>i AA>AA>Zi

)
PP>P

)
. (9)

Combining the terms, and defining P̄ , PP> and Ā , AA> for convenience, the gradient of the
reconstruction loss w/r/t the parts factors is thus

∇PL =

N∑
i=1

−4
(
Z>i AA>ZiP

)
+ 2
(
PP>Z>i AA>AA>ZiP + Z>i AA>AA>ZiPP>P

)
(10)

= 2

(
N∑
i=1

P̄Z>i ĀĀZiP + Z>i ĀĀZiP̄P− 2Z>i ĀZiP

)
. (11)

Via similar arguments, the gradient w/r/t the channel factors is

∇AL =

N∑
i=1

−4
(
ZiPP>Z>i A

)
+ 2
(
AA>ZiPP>PP>Z>i A + ZiPP>PP>Z>i AA>A

)
(12)

= 2

(
N∑
i=1

ĀZiP̄P̄Z>i A + ZiP̄P̄Z>i ĀA− 2ZiP̄Z>i A

)
. (13)

A.1 ORTHOGONALITY AND CLOSED-FORM SOLUTION

Strictly speaking, Section 4.1 requires A to be an orthogonal matrix for the necessary equivalence
A>Z = A−1Z to hold for the interpretation as a change of basis. In practice, we find our appearance
factor matrix A ∈ RC×C to be very close to orthogonal. For example, for BigGAN on the ‘alp’
class at layer 7, we find the mean element of |A>A− IC | to be 8.33e−4. We show in Fig. 7 the 1st

appearance vector localized in the image (following the procedure in Section 4.1.2) through both
A>Z and A−1Z, where we see that, for the purposes of understanding the appearance factor visually
as controlling the ‘sky’ concept, the two results are near-identical. Thus, we can take A to be an
orthogonal matrix for our practical purposes.

If a more strict form of orthogonality is desired, one has the option to instead compute the appearance
factors’ solution in closed-form following Xu et al. (2005). In particular, let Z ∈ RM×C×S be the
batch of mode-3-unfolded feature maps as in the main paper. Using the mode-n product (Kolda &
Bader, 2009), the partial multilinear projection of the feature maps onto the parts subspace is given by
Y = Z ×3 P> ∈ RM×C×RS . The appearance factors’ solution is then given in closed-form by the
leading eigenvectors of Y(2)Y

>
(2) ∈ RC×C (Xu et al., 2005). When using this closed-form solution,

we find the mean element of |A>A− IC | is 9.11e−5 in the same setting as above.
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Figure 7: Comparing the concept localization with A> and A−1, we see that they are near-identical.

B ABLATION STUDIES

In this section, we present a thorough study of the various parts of our method, and the resulting
learnt parts factors.

Figure 8: Ablation study comparing the parts factors learnt with various constraints and formulations.
As can be seen, only our constrained formulation learns factors that span local parts-based semantic
regions.

B.0.1 CONSTRAINTS AND FORM

We first study the impact of the non-negativity constraints on the parts factors, and the importance
of operating on the mode-3 unfolded Zi(3) ∈ RC×H·W tensors (rather than their original 3rd-order
form Zi ∈ RH×W×C). We show along the rows of Fig. 8 the resulting parts factors using various
forms of decomposition and constraints. In particular, naively applying MPCA (Lu et al., 2008)
(row 1) to decompose Zi imposes a separable structure between the spatial modes, restricting its
ability to capture semantic spatial regions. Moreover, even when combining the spatial modes and
decomposing Zi(3), the solution given by MPCA (Lu et al., 2008) (row 2) and by optimizing our
method without any non-negativity constraints (row 3) leads to parts factors spanning the entire spatial
window. This is due to the non-additive nature of the parts. However, as shown in row 4 of Fig. 8,
only our constrained method successfully finds local, non-overlapping semantic regions of interest.

B.0.2 PARTS FACTORS REFINEMENT

Finally, we showcase the benefit of our optional parts factors refinement process for data with no
alignment. In row 2 of Fig. 9, we show the global parts factors overlaid over the target samples.
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Clearly, for extreme poses (or in the case of data with no alignment, such as with animals and
cars), these global parts will not correspond perfectly to the specific sample’s parts (row 2 of Fig. 9).
However, after a few projected gradient descent steps of Eq. (6), we see (row 3 of Fig. 9) that
the refined parts factors span the specific parts of the individual samples more successfully. This
refinement step is very fast; for example, at l = 6 it takes only 127ms (100 iterations).

Figure 9: Visualization of the global parts factors (middle row) and the refined factors (bottom row)
for particular samples (top row).

C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide additional experimental results to support the main paper. We begin by
presenting additional qualitative results on local image editing in Appendix C.1 and Appendix C.3.
After this, we present additional ablation studies in Appendix C.6, and Appendices C.7.1 and C.7.2.
Finally, we showcase additional experiments analyzing the runtime in Appendix C.8. However, we
first provide a more detailed overview figure for our method–in Fig. 10 we show in more detail our
proposed semi-nonnegative factorization in the context of a pre-trained image generator.

C.1 TEST-TIME MANUAL PART SELECTION

In the main paper, we describe how pixel-level control is facilitated by our method in a way that is
not possible with the SOTA (Zhu et al., 2021a; 2022). To demonstrate this, we show in Fig. 11 the
resulting image when we add an appearance vector controlling the eye size to our spatial part for the
eye region manually edited to cover over only one of the eyes. As we see, this clearly enlarges just a
single eye, leaving the other untouched.

C.2 BACKGROUND REMOVAL

Whilst not the main focus of the paper, we show that one can use the appearance vectors to identify
the background of an image as one way of further demonstrating the quality of the concepts learnt
and their utility for additional tasks. Prior work (Voynov & Babenko, 2020; Melas-Kyriazi et al.,
2022) identify a “background removal” interpretable direction in the latent space of BigGAN (and
GANs more generally in the case of Melas-Kyriazi et al. (2022)). By using our thresholded saliency
maps for the “background” concept as a mask at the pixel-level, we can straightforwardly perform
background removal.

For BigGAN, we show in Fig. 14a a comparison to Voynov et al. (2020) on their custom generator
weights. For StyleGAN2, we make both a qualitative (Fig. 14b) and quantitative (Fig. 14c) to the
mask predictions generated by the recent SOTA Melas-Kyriazi et al. (2022) on 4 different datasets.
As can be seen, our method performs extremely well under the IoU metric, despite not being trained
for this task. We generate "ground-truth" background/foreground masks using the general-purpose
U2 model Qin et al. (2020), which whilst not perfect, is often remarkably accurate as can be seen
from the qualitative results.
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Figure 10: A more detailed overview of our method, in the context of the image generator. We apply
our semi-nonnegative tensor decomposition on the intermediate convolutional feature maps, to extract
factors for parts and appearances.

Figure 11: One can manually edit the learnt parts factors or provide custom ones for pixel-level
control. For example, using half of the “eyes” part to affect only a single eye.

C.3 ADDITIONAL QUALITATIVE RESULTS

Here we show many more qualitative results, on all 5 generators. Results for StyleGAN2 are shown
in Fig. 12, and the other models in Fig. 13. As can be seen, our method is applicable to a large number
of generators and diverse datasets. Additionally, we show in Fig. 15 that our method learns a diverse
range of appearance vectors. Thus, it is possible to chain together a sequence of local edits, removing
some objects, and modifying the appearance of other regions. This results in a powerful technique
with which one can make complex changes to a scene of interest.

C.4 ADDITIONAL COMPARISONS

We next include additional comparisons in Fig. 16 to the SOTA methods for all 4 local edits found in
all baseline methods. As can be seen, whilst the SOTA local image editing methods excel at making
prominent, photo-realistic changes to the ROI, they once again affect large changes to the image
beyond just the ROI, as visualized by the MSE in the bottom rows. This is quantified once again with
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Figure 12: Additional local image editing results for StyleGAN2: at each column, we edit the target
part with a different appearance vector.
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Figure 13: Additional local image editing results for 4 generators: at each column, we edit the target
part with a different appearance vector.

the ROIR metric for six more local edits found in both our method and StyleSpace (Wu et al., 2021)
in Table 3. We also show these images’ quality is comparable to the SOTA by computing the FID
(Heusel et al., 2017) metric in Table 4, for 10k samples per edit.

Table 3: Additional ROIR (↓) results for six more local edits (1k images per edit)

Wide nose Dark eyebrows Light eyebrows Glance left Glance right Short eyes
StyleSpace 2.52 ± 0.91 1.99 ± 1.28 1.95 ± 1.13 1.54 ± 1.14 1.50 ± 1.17 1.91 ± 1.41
Ours 0.80 ± 0.23 0.51 ± 0.19 0.41 ± 0.13 0.68 ± 0.24 0.67 ± 0.24 0.46 ± 0.13

C.5 SALIENCY MAPS

In this section we show additional results on saliency map generation. In Fig. 18 we show this for the
“background” concept, which can be used to remove the background in the image, with the negative
mask. We also provide localization results on additional concepts such as “sky” and “concrete” in
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(a) A comparison of our method to Voynov & Babenko (2020) for background removal and object detection: we
leave the object of interest largely untouched.

(b) Qualitative comparison on StyleGAN2 to Melas-Kyriazi et al. (2022) for AFHQ-dogs. The single dataset-
specific background appearance factor can often accurately segment the images.

AFHQ-dogs AFHQ-cats FFHQ MetFaces

Mean IoU Median IoU Mean IoU Median IoU Mean IoU Median IoU Mean IoU Median IoU

Melas-Kyriazi et al. (2022) 0.48 ± 0.22 0.52 0.34 ± 0.18 0.30 0.37 ± 0.23 0.36 0.28 ± 0.27 0.21
Ours 0.65 ± 0.19 0.72 0.54 ± 0.19 0.58 0.46 ± 0.19 0.47 0.52 ± 0.19 0.53

(c) Quantitative comparison to Melas-Kyriazi et al. (2022) for StyleGAN2 on 4 datasets, using the author’s
official code, and recommended r = 0.2. We train for the default 300 iterations on all datasets apart from the
two face-based datasets, where we find their method to give much better results at 100 iterations. For each
dataset we compute the IoU over 1k samples.

Figure 14: Demonstrating the appearance factor’s semantics through background mask generation.
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Figure 15: Progressively editing the feature maps with appearance vectors at various regions. Ulti-
mately one can perform complex composite changes to a scene.

Table 4: FID (↓) (Heusel et al., 2017) on 10k FFHQ samples per local edit.

Eyes Nose Open mouth Smile

GANSpace (Härkönen et al., 2020) 29.92 30.60 46.85 30.62
SeFa (Shen & Zhou, 2021) 30.23 31.52 31.73 29.53
StyleSpace (Wu et al., 2021) 29.81 29.62 31.47 30.19
LowRankGAN (Zhu et al., 2021a) 30.57 29.18 30.95 30.60
ReSeFa (Zhu et al., 2022) 29.37 30.02 29.63 29.45
Ours 29.91 29.77 29.26 28.91

Fig. 20. Interestingly, our method learns concepts at 3 layers of depth in BigGAN. For example, we
see foreground, mid-ground, and background concepts emerge independently as visualized in Fig. 19.

C.6 DECOMPOSITION RANK

We next demonstrate the impact of the choice of rank RS for the parts factors. Shown in Fig. 21 are
various global parts overlaid over a random image from the dataset. As can be seen, a smaller value
of RS leads to larger semantic parts such those spanning the entire face, whilst a larger value of RS

leads to spatially smaller parts such as the eyebrows and teeth. This can in essence be viewed as a
hyperparameter that affords a user control over the size of the parts one wishes to learn. Additional
comparisons are shown for many datasets in Figs. 22 to 24.

C.7 INITIALIZATION STRATEGIES

C.7.1 PARTS FACTORS INITIALIZATION

We find our method is robust to different non-negative initialisations of the parts factors. This is a
crucial benefit of our method–we do not require an SVD-based initialisation (Cichocki et al., 2009;
Boutsidis & Gallopoulos, 2008; Yuan et al., 2009) for the parts factors, and thus need not solve the
corresponding S-dimensional eigenproblem in this step. As a case in point, at layer 10 in an 18-layer
StyleGAN (Karras et al., 2019), an 16384-dimensional eigenproblem must be solved solely for the
parts factors initialization–thus going deeper quickly becomes infeasible without the flexibility of the
proposed method. Instead, our formulation permits initialization through sampling each element of
the parts factors P from a random uniform distribution on the interval [0, 0.01]. This allows us to
perform our decomposition at much later layers in the network than would otherwise be possible, and
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Figure 16: Qualitative comparison to SOTA methods for 4 local edits. As can be seen, our method
succeeds in keeping the area outside the ROI unchanged, as intended.

consequently one can discover more fine-grained appearance vectors (due to the way in which later
layers in StyleGAN control more fine-grained styles (Karras et al., 2018)).

C.7.2 CHANNEL FACTOR INITIALIZATION

We find the leading left-singular vectors of the channel mode’s scatter matrix to contain particularly
semantically meaningful directions. This initialization is what allows us to locate common concepts
such as “background” with ease, due to the ordering of the singular vectors by their singular values.

Intuitively, the leading few left-singular vectors for the channel mode’s scatter matrix capture
frequently occurring appearances and textures. For faces, this is largely textures such as skin, and hair.
Whilst for other datasets, common textures include the sky or floor. We show additional examples of
this in Fig. 25, where the first columns of the appearance basis (through our initialization) correspond
to the “background” and “skin” texture. For example, one can remove the facial features of a person
by adding this appearance vector, seen in Fig. 25 (b). Whilst we find our decomposition also works
with random initialization of the channel factors, the first few vectors do not necessarily correspond
to the more frequently appearing concepts in the same way the SVD-based initialization provides,
meaning they are less easy to interpret.

C.8 RUNTIME AND OBJECTIVE

An important benefit of our method is the lack of need to compute expensive gradient maps or
Jacobians with respect to target regions, as is required in Zhu et al. (2021a); Wu et al. (2021); Zhu
et al. (2022). To quantify this, we plot in Fig. 26 the total training time required to train the SOTA
methods to produce the four local directions used in the main paper. In particular, we train the
methods for all 3 regions of interest (“mouth”, “eyes”, and “nose”), with a single Quadro RTX 6000
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Figure 17: Qualitative comparison to more local edits for the StyleSpace method.

Figure 18: Saliency maps, generated masks, and subsequently removed backgrounds on AFHQ Dog,
with StyleGAN2.

GPU, using the official authors’ codebases2. We find that our method takes less than 1/400th of the
training time of LowRankGAN (Zhu et al., 2021a), and 1/170th the time of StyleSpace (Wu et al.,
2021)–greatly speeding up the task of local image editing.

Alternatively, one can use an optimizer such as Adam (Kingma & Ba, 2014) in an autograd framework
(e.g., PyTorch (Paszke et al., 2019)) to compute Algorithm 1. We find this removes some sensitivity

2StyleSpace: https://github.com/betterze/StyleSpace,
LowRankGAN: https://github.com/zhujiapeng/LowRankGAN,
ReSeFa: https://github.com/zhujiapeng/resefa
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Figure 19: Saliency maps and generated masks on BigGAN “alp” and “breakwater”. We see concepts
at 3 different levels of depth emerge.

to the learning rate that comes with vanilla gradient descent. However, we find that when solving our
objective manually with the gradients in Eq. (12), our method takes less than 1/3rd of the time to
train. This is a particularly useful performance boost when decomposing later layers in the network.

C.8.1 RUNTIME ABLATIONS

To isolate the impact of the appearance factor training, in Fig. 27 we show the importance of
descending the gradient in the channel subproblem (after 1000 initial steps of the parts subproblem)
on top of the HOSVD initialisation, for 1000 samples. As can be seen, the cost strictly decreases as a
function of the number of iterations T , far below that of the HOSVD initialisation.

We also show in Fig. 28 the impact of number of training iterations T various choices of rank RS . As
can be seen, the model is relatively stable over iterations in assigning global parts factors.

C.9 IMPLEMENTATION DETAILS

We use a modified version of the GenForce (Shen et al., 2020b) library for the ProgressiveGAN,
StyleGAN1, and StyleGAN2 models3. We also use the TensorLy (Kossaifi et al., 2019) library for

3in addition to StyleGAN3: https://github.com/NVlabs/stylegan3,
BigGAN: https://github.com/huggingface/pytorch-pretrained-BigGAN.
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Figure 20: Saliency maps and generated masks on StyleGAN2 (church). Shown here are what one
could deduce to be ‘sky’ and ‘concrete’ concepts.

Figure 21: Learnt global parts factors for varying ranks RS , with StyleGAN2 trained on FFHQ at
layer l = 9, for 2000 iterations. As can be seen, shared semantic regions such as the eyes, the nose,
and the mouth are captured by the parts factors.

the autograd implementation of our method. In practice, we find it useful (in terms of run-time) to
descend the gradients of our loss function stochastically, sampling new activations each iteration.

C.9.1 BASELINES

For both the quantitative and qualitative results for the baseline methods, we use the following
directions annotated from the pre-trained models by the authors, where available:

• GANSpace (Härkönen et al., 2020): we use the following author-annotated directions:
Eye_Openness, Nose_length, Screaming, and Smile.
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Figure 22: Learnt global parts factors for varying ranks RS , with StyleGAN2 trained on two separate
splits of AFHQ at various layers l. (zoom for detail). As can be seen, common semantic regions such
as the eyes, the nose, and the mouth are captured by the parts factors.

Figure 23: Learnt global parts factors for varying ranks RS , with StyleGAN1 trained on CelebA-HQ
at various layers l. As can be seen, common semantic regions such as the eyes, the nose, and the
mouth are captured by the parts factors.
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Figure 24: Learnt global parts factors for varying ranks RS , with StyleGAN2 trained on FFHQ at
various layers l. As can be seen, common semantic regions such as the eyes, the nose, and the mouth
are captured by the parts factors.

• SeFA (Shen & Zhou, 2021): we use directions manually found by ourselves that most
closely resemble the target attributes.

• LowRankGAN (Zhu et al., 2021a): we use the following author-annotated directions:
expression, eye_size, mouth_open, nose.

• StyleSpace (Wu et al., 2021): we use following author-annotated directions: 8_289,
6_113, 6_202, and 14_239, where x_y is channel x at generator level y as described in
(Wu et al., 2021).

• ReSeFa (Zhu et al., 2022): we use the following author-annotated directions:
eyesize, mouth, and nose_length. We manually find a direction that most closely
resembles a smile.
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Figure 25: The appearance vectors obtained via an SVD-based initialization are particularly seman-
tically meaningful: for example, the 1st column in the basis of PGGAN removes objects from the
image in CelebA-HQ, whilst the 2nd column for StyleGAN2 adds skin in FFHQ.
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Figure 26: Total training time (to train the models used for the quantitative results) for our method
and the SOTA, using a Quadro RTX 6000.
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Figure 27: Appearance factor subproblem when using the fixed HOSVD initialization VS additionally
descending the gradient, as a function of T and for various number of parts RS .

Figure 28: The learnt global parts factors as a function of training iterations T for various choices of
rank RS : the parts factors are stable over iterations and reliably correspond to semantic parts across
different values of RS .
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