
              

City, University of London Institutional Repository

Citation: Deihim, A., Alonso, E. & Apostolopoulou, D. (2023). STTRE: A Spatio-Temporal 

Transformer with Relative Embeddings for Multivariate Time Series Forecasting. Neural 
Networks, 168, pp. 549-559. doi: 10.1016/j.neunet.2023.09.039 

This is the published version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/31408/

Link to published version: https://doi.org/10.1016/j.neunet.2023.09.039

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Neural Networks 168 (2023) 549–559

A
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

STTRE: A Spatio-Temporal Transformer with Relative Embeddings for
multivariate time series forecasting
Azad Deihim a,∗, Eduardo Alonso b, Dimitra Apostolopoulou a

a Department of Engineering, City University of London, Northampton Square, London, EC1V 0HB, England, United Kingdom
b Department of Computer Science, City University of London, Northampton Square, London, EC1V 0HB, England, United Kingdom

A R T I C L E I N F O

Keywords:
Multivariate time series
Transformer
Forecasting
Attention
Embeddings
Spatio-temporal

A B S T R A C T

The prevalence of multivariate time series data across several disciplines fosters a demand and, subsequently,
significant growth in the research and advancement of multivariate time series analysis. Drawing inspiration
from a popular natural language processing model, the Transformer, we propose the Spatio-Temporal
Transformer with Relative Embeddings (STTRE) to address multivariate time series forecasting. This work
primarily focuses on developing a Transformer-based framework that can fully exploit the spatio-temporal
nature of a multivariate time series by incorporating several of the Transformer’s key components, but with
augmentations that allow them to excel in multivariate time series forecasting. Current Transformer-based
models for multivariate time series often neglect the data’s spatial component(s) and utilize absolute position
embeddings as their only means to detect the data’s temporal component(s), which we show is flawed for
time series applications. The lack of emphasis on fully exploiting the spatio-temporality of the data can
incur subpar results in terms of accuracy. We redesign relative position representations, which we rename
to relative embeddings, to unveil a new method for detecting latent spatial, temporal, and spatio-temporal
dependencies more effectively than previous Transformer-based models. We couple these relative embeddings
with a restructuring of the Transformer’s primary sequence learning mechanism, multi-head attention, in a way
that allows for full utilization of relative embeddings, thus achieving up to a 24% improvement in accuracy
over other state-of-the-art multivariate time series models on a comprehensive selection of publicly available
multivariate time series forecasting datasets.
1. Introduction

A multivariate time series is a group of time-dependent variables,
where each variable is represented as a sequence of historical data
indexed in chronological order; each element in the sequence can
exhibit dependencies on its historical values and other interlinked
variables (Silvestrini & Veredas, 2008). For example, increased precip-
itation may be linked to decreased car traffic volume on a motorway.
Multivariate time series data are prevalent across several domains, such
as energy, finance, transportation, and healthcare (Lu et al., 2022, Patel
et al. 2022, Lee et al. 2021, Merdjanovska and Rashkovska 2022),
calling attention to the need for research and advancement of multi-
variate time series forecasting. Multivariate time series forecasting can
be defined as the prediction of a future value of a target variable based
on historical values of that variable and other related variables (Box
et al., 2008).

The ideal model for multivariate time series forecasting should be
able to fully exploit latent spatio-temporal dependencies to extract as

∗ Corresponding author.
E-mail address: azaddeihim@gmail.com (A. Deihim).

much relevant information from the data as possible. Models developed
for univariate time series can often be adapted slightly for multivariate
time series and still achieve notable accuracy without a means for
detecting spatial dependencies. Still many of the top-performing models
for multivariate time series utilize mechanisms to identify both spatial
and temporal dependencies (Ruiz et al., 2021; Wen et al., 2022).
The current state-of-the-art in time series is generally composed of
neural networks that employ advanced methods that can capture these
relationships, such as recurrent units, convolution, attention, graph
learning, and many others. Before the rise of these deep learning
methods, more rudimentary statistical analysis was commonly used
for time series forecasting, such as autoregressive integrated moving
average (Box & Pierce, 1970).

Although most commonly associated with computer vision appli-
cations, convolutional architectures have also gained widespread no-
toriety in time series research. Their ability to detect dependencies
within image pixels is easily transferable to time series, demonstrated
vailable online 30 September 2023
893-6080/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.neunet.2023.09.039
Received 21 February 2023; Received in revised form 28 July 2023; Accepted 24 S
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

eptember 2023

https://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
mailto:azaddeihim@gmail.com
https://doi.org/10.1016/j.neunet.2023.09.039
https://doi.org/10.1016/j.neunet.2023.09.039
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2023.09.039&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Neural Networks 168 (2023) 549–559A. Deihim et al.
in InceptionTime (Fawaz et al., 2020) and XceptionTime (Rahimian
et al., 2019). InceptionTime is an ensemble of deep convolutional net-
works designed for univariate time series classification. XceptionTime
utilizes depthwise separable convolutions and a novel normalization
technique to operate on multivariate time series data but was only
used for hand gesture classification. A non-deep convolutional model,
Rocket (Dempster et al., 2020), currently scores high accuracy on many
publicly available datasets by combining a novel method of random
convolutional kernels and a linear classifier, outperforming or matching
other time series models, including InceptionTime, across 85 University
of California, Riverside (UCR) datasets for univariate time series clas-
sification. MiniRocket (Dempster et al., 2021), the successor to Rocket,
utilizes very similar techniques and can produce comparable results to
Rocket across 109 UCR datasets — univariate and multivariate time
series classification.

Recurrent Neural Networks, namely long short-term memory
(LSTM), have long been a staple in time series analysis. They utilize
a hidden state to recall information from prior inputs to influence
the current and future inputs and outputs, granting the ability to
detect temporal behavior. LSTM-FCN (Karim et al., 2018) combines
long short-term memory and a fully convolutional network to achieve
improved accuracy over earlier models, such as ResNet (He et al.,
2016) and COTE (Bagnall et al., 2015). ALSTM-FCN, an extension of
LSTM-FCN, gains minor accuracy improvement with an added attention
module. Initially designed for univariate time series, these models were
later augmented for use in multivariate time series classification (Karim
et al., 2019).

Despite their effectiveness, many of the aforementioned models are
outclassed by ensemble models HIVE-COTE (Lines et al., 2018) and
TS-CHEIF (Shifaz et al., 2020), who perform time series classifica-
tion by combining various sophisticated classifiers. HIVE-COTE utilizes
an ensemble of phase-independent shapelets, bag-of-words-based dic-
tionaries, and phase-dependent intervals, while TS-CHEIF utilizes an
ensemble of tree classifiers. Although these methods are powerful, they
suffer from extremely high computational complexity, coupled with
the inability to exploit GPU hardware well. Additionally, these models
were built for univariate time series classification but did not consider
multivariate time series or regression. HIVE-COTE 2.0 (Middlehurst
et al., 2021), introducing Rocket classifiers, and novel dictionary and
forest classifiers, can perform multivariate time series classification,
but, similar to its predecessor, it cannot be used for regression and
suffers from computational complexity issues.

Graph neural networks have become increasingly popular in recent
years as they are effective in analyzing data with graph-like structures.
These networks typically require the data to have a defined set of
vertices, edges, and adjacency matrix.MTGNN (Wu et al., 2020a) intro-
duces a novel implementation of a graph learning layer to use a graph
neural network for multivariate time series. The graph learning layer al-
lows the model to connect elements with strong relationships, allowing
it to uncover spatio-temporal dependencies without needing a preex-
isting graph structure. MTGNN addresses single-step and multi-step
forecasting across four multivariate time series datasets. MTPool (Duan
et al., 2022) introduces a novel graph-pooling framework to hierarchi-
cally aggregate node information, addressing a significant limitation of
graph neural networks, but is only evaluated on multivariate time series
classification.

Similarly to the graph neural network, the Transformer (Vaswani
et al., 2017), an attention-based neural network, has also increased
in popularity since its inception. While initially developed for natural
language translation, the Transformer is universally powerful across
many sequence learning tasks, including time series (Qi et al., 2021, Li
et al., 2019, Zhou et al., 2021, Wu et al., 2020b, Wu et al., 2021, Zhou
et al., 2022, Liu et al., 2022). While the structure of the Transformer’s
attention mechanism is invariant to a sequence’s order, positional
embeddings are used to encode position information into each element
550
in the sequence, informing attention about the sequence’s order, thus
allowing the Transformer to be effective for sequence learning.

Many Transformer-based models have been developed for mul-
tivariate time series applications. BAT (Lei et al., 2022) utilizes a
Transformer-based framework for speech emotion recognition. Time
Series Transformer (TST) (Zerveas et al., 2021) performs both mul-
tivariate time series classification and forecasting across 17 datasets
using a Transformer encoder-based architecture, achieving higher ac-
curacy than Rocket on a majority of studied datasets. TST used absolute
position embeddings but did not specify an explicit means for capturing
the data’s spatial components. Spacetimeformer (Grigsby et al., 2021)
couples absolute position embeddings with variable embeddings, in-
forming the attention mechanism about both position information and
variable information of each element, allowing it to capture spatio-
temporal dependencies. This model achieves high accuracy across four
multivariate time series datasets, outperforming MTGNN. Chen et al.
(2022) combines a Transformer with a graph learning layer and graph
convolution to perform anomaly detection in an Internet of Things
system. The Gated Transformer Network (Liu et al., 2021) utilizes two
transformer encoders for multivariate time series classification: one
encoder that attends to time steps and one encoder that attends to
variables across a single time step. Transformers have also been widely
adopted in video analysis tasks, which have similar spatio-temporal
properties to MTS. Learning videos using transformers (Neimark et al.,
2021, Ye & Bilodeau, 2023, Qu et al., 2023) demonstrates the ability
of transformers to be effective across a wide range of tasks that require
spatio-temporal learning.

Notwithstanding the success of recent Transformer-based models for
multivariate time series, many did not utilize a structure that could
fully exploit the spatio-temporal nature of a multivariate time series.
Inspired by the Transformer, we propose Spatio-temporal Transformer
with Relative Embeddings (STTRE). This model utilizes three different
modules to learn spatial, temporal, and spatio-temporal dependencies
by re-purposing relative positional representations to exploit these
dependencies. STTRE is the first Transformer-based model for mul-
tivariate time series to introduce relative positional representations.
Relative positional representations (Shaw et al., 2018), which we will
refer to as relative embeddings for the remainder of this paper, were
introduced to replace the absolute positional embeddings in the Trans-
former — for natural language processing (NLP); this was a minor
improvement. Still, it could be far more advantageous in time series
applications. Using only absolute position to describe an element’s
position in a sequence can be misleading for many types of sequences.
For time series, where the sequence is tied to observable time such as
time of day, or day of the week, it can be arbitrary and misinformative
to denote any time step in a sequence with a specific integer position, as
that position could represent dissimilar times and/or days in different
sequences. For example, position 𝑖 could represent 00:00 and 06:00 in
two different sequences, but they would be given the same position
embedding. A visualization for this problem is provided in Fig. 1.
Many Transformer-based models use absolute positional embeddings as
their only means of informing the attention mechanism about position
information, but it is flawed in time series applications.

The contributions of our work are as follows:

1. We create a novel three-module Transformer-based architecture
to extract and isolate temporal, spatial, and spatio-temporal
dependencies.

2. We introduce a novel implementation of relative embeddings to
extract spatial and temporal dependencies in a multivariate time
series. We also showcase a method of structuring multi-head
attention to exploit our relative embedding implementation.

3. We implement the first Transformer-based model for multivari-
ate time series to utilize relative embeddings.

4. We demonstrate that STTRE achieves the best accuracy across
six experiments compared to other state-of-the-art multivariate
time series models.



Neural Networks 168 (2023) 549–559A. Deihim et al.
Fig. 1. Two sequence segments from a toy dataset. The 𝑥-axis denotes the time of day
in hours, while the 𝑦-axis denotes the value of a toy variable. Position 1 in sequence
1 represents the time 0:00, while position 1 in sequence 2 represents the time 6:00.
While dissimilar, these positions will be given the same absolute position embedding.

These contributions primarily focus on augmentations to the Trans-
former encoder, allowing our model to uncover latent relationships
between elements more effectively than other Transformer-based im-
plementations, granting a significant advantage for multivariate time
series forecasting. We apply STTRE to perform forecasting across five
multivariate time series datasets, covering energy consumption, traf-
fic, finance, and air pollution — studying STTRE’s accuracy on each.
We compare performance with five baseline models, including top-
performing models for multivariate time series, and demonstrate that
STTRE outperforms all using various standard metrics. We also ana-
lyze the contribution of each component of our model by performing
ablation studies, which adds to the interpretability of our results.

The rest of the paper is structured as follows: Section 2 will cover
background and related work, outlining details of the Transformer and
its primary components; Section 3 will detail the proposed model,
outlining the three core modules of the architecture and their charac-
teristics; Section 4 will detail the experimental set-up and the datasets
used, present the results, and analyze the performance of STTRE against
the state-of-the-art; we shall conclude with a discussion and outline of
future work in Section 5.

2. Background

In this section, we review background material and related work
that supports STTRE. This includes a brief outline of the Transformer,
embeddings, multi-head attention, and normalization.

The Transformer ( (Vaswani et al., 2017)) is an attention-based
neural network developed for natural language translation. Attention
mechanisms in neural networks imitate cognitive function, amplifying
parts of the input deemed essential while diminishing those less es-
sential. The use of attention in neural networks across several areas
of machine learning has been widely studied (Chaudhari et al., 2021).
While the Transformer was initially developed for natural language
translation, many have studied its application outside of NLP, discov-
ering merit across many sequence learning tasks and beyond sequence
learning (Han et al., 2023). Many of the modules and mechanisms uti-
lized in the Transformer were designed solely for sequence-to-sequence
processing of words and are incompatible with other tasks. As a re-
sult, architectures tend to differ significantly from that of the original
Transformer in non-NLP applications.

The Transformer uses an encoder to process an input sequence to
create a new encoded representation of the input, which a decoder
can process and translate into a desired output sequence. The primary
learning mechanism in the transformer decoder, masked multi-head
551
Fig. 2. Diagram of the Transformer encoder. The encoder, which processes 𝑋𝑒 to com-
pute 𝑋′

𝑒, comprises multi-head attention and a feed-forward layer, with normalization
after each.

attention, requires the output to be a sequence. For multivariate time
series forecasting, we will predict one value rather than a sequence;
thus, using a decoder is neither necessary nor applicable in our work,
so we will focus on the encoder.

The Transformer encoder comprises the following components:
multi-head attention, feed-forward, and normalization layers. Fig. 2
shows a diagram of the encoder.

Firstly, the raw input 𝑋 is embedded. In the multivariate case,
𝑋 ∈ R𝑙×𝑚 is cast to 𝑋𝑒 ∈ R𝑙×𝑚×𝑑 , where 𝑙 is the sequence length, 𝑚 is
the number of variables, and 𝑑 is the size of the embedding dimension
(in the univariate case, 𝑚 is 1). Next, multi-head attention processes
𝑋𝑒 to produce a new matrix 𝑧 ∈ R𝑙×𝑚×𝑑 , a matrix of attention scores. A
skip connection is used to sum 𝑧 with 𝑋𝑒. The resultant matrix is then
normalized, producing 𝑧𝑛 ∈ R𝑙×𝑚×𝑑 . A two-layer feed-forward followed
by an activation function is used to transform 𝑧𝑛 into a new matrix with
the same dimension; the elected activation function will be LeakyReLU:

FF(𝑧𝑛) = LeakyReLU(𝑊1𝑧𝑛 + 𝑏1)𝑊2 + 𝑏2, (1)

LeakyReLU(𝑥) =
{

𝑥, if 𝑥 ≥ 0
0.01𝑥, if 𝑥 < 0

}

, (2)

where 𝑊(⋅) and 𝑏(⋅) are weight matrices and bias vectors respectively.
The feed-forward output is summed with the input, 𝑧𝑛. The sum is then
normalized, producing the final output of the encoder, 𝑋′

𝑒 ∈ R𝑙×𝑚×𝑑 ,
highlighting important features and dependencies within 𝑋𝑒.

The encoder also utilizes a layering mechanism, where the encoder
is duplicated 𝑘 times: the input of the 𝑖’th encoder sublayer will be the
output of encoder sublayer 𝑖 — 1, and the output of the 𝑘’th layer will
be the final output of the encoder. Note that learned weights are not
shared across sublayers.

As a standalone module, the encoder cannot generate a prediction;
it simply creates an encoded data representation. With the removal of
the decoder, an alternative learning mechanism is required to translate
the encoded representation into a prediction.

2.1. Embeddings

The encoder operates on an embedded sequence; the embedding
layer casts each sequence’s elements into a higher dimensional space,
where each dimension can represent a different characteristic, fea-
ture, or contextual meaning regarding its respective element. Elements
closer to each other in this multidimensional space are more likely
to be closely related. Element embeddings are more intuitive when
operating on words, as it is widely recognized that words can have
different meanings depending on their context, but this is also true
for elements in a time series, as specific values may have different
contextual meanings based on their surrounding values. These element
embeddings are learned during the model’s training via a set of learned
weights. In the original Transformer, which had a discrete input space,
an embedding vector for each unique word is stored in a dictionary. In
the continuous case, where an infinitely large dictionary is infeasible,
a learned weight matrix 𝑊𝑒 ∈ R𝑙×𝑑𝑙 and bias vector 𝑏𝑒 ∈ R𝑙 are used to
linearly transform the sequence via 𝑊𝑒𝑋 + 𝑏𝑒, thus casting it into the
embedding dimension. Fig. 3 provides a visualization of the element
embedding process.

Another type of embedding, position embedding, is used to implant
position information into each element. Since multi-head attention has



Neural Networks 168 (2023) 549–559A. Deihim et al.

n
p
E
h
m
v
p

𝑃

𝑑

𝐾

𝑄

w
v
b
s
s
r
e
s
t
c
m
a
t

A

𝑧

Fig. 3. Visualization of the element embedding process on an 𝑙 length sequence.

o built-in mechanism to understand the order of a sequence, absolute
osition embeddings are necessary to understand temporal information.
ach position 𝑡𝑖 in 𝑇 = {𝑡1, 𝑡2, 𝑡3,⋯ , 𝑡𝑙} will be translated into a
igher dimensional vector, resulting in the absolute position embedding
atrix 𝑃𝐸 ∈ R𝑙×𝑑 , where each position 𝑡𝑖 will be represented by a

ector of 𝑑 different values. The Transformer introduced sinusoidal
osition embeddings of varying frequencies taking the form:

𝐸(𝑡𝑖, 𝑗) = sin(
𝑡𝑖

100002𝑗∕𝑑
) ∀𝑡 ∈ 𝑇 , (3)

𝑃𝐸(𝑡𝑖, 𝑗) = cos(
𝑡𝑖

10000(2𝑗+1)∕𝑑
) ∀𝑡 ∈ 𝑇 , (4)

where 𝑗 = {1, 2, 3,… , 2
𝑑 }. Sinusoidal embeddings work well for se-

quence learning tasks with sequences of varying lengths, as they can
generalize to sequence lengths that are unseen during training. Their
flaw is that they may overpower or be overpowered by element em-
beddings when summed together, as orthogonality is not guaranteed to
remain intact after they are added. Some have experimented with con-
catenating element embeddings and positional embeddings rather than
summing them to ensure that they occupy orthogonal spaces (Huang
et al., 2018), but this is an impractical approach in many applications
as it increases memory requirements significantly. Time2Vec (Kazemi
et al., 2019) experiments with learned sinusoidal position represen-
tations to alleviate orthogonality issues. Since then, many tried fully
learnable absolute position embeddings, where an embedding for every
possible position is stored in a dictionary (Devlin et al., 2018). A
benefit of fully learnable absolute position embeddings is that they
can learn to occupy a virtually orthogonal space in relation to the
element embeddings, mimicking the effect of concatenation without the
added memory constraints. However, fully learnable absolute position
embeddings do not work well in tasks with varying sequence lengths,
as they cannot generalize to sequence lengths unseen during training
— the learned dictionary will not contain entries for positions beyond
the maximum position seen during training. Also, higher positions seen
infrequently during training may have undertrained weights. In time
series tasks, where there is more control over the length of sequences,
varying sequence lengths will not be a complication.

For use in multivariate time series, Grigsby et al. (2021) experi-
mented with variable embeddings, utilizing a similar method to fully
learnable absolute position embeddings to embed variable information
into each element, thus informing multi-head attention about variable
information regarding each element in the sequence.

In 2018, relative embeddings were created as a novel way to
552

represent positional information for multi-head attention by using an w
embedding matrix of relative distances between all sequence element
pairs, granting minor accuracy improvement over absolute position
embeddings (Shaw et al., 2018). Note that relative embeddings are
more representative of the relationship between two elements than an
actual numerical distance between their positions. They function by cal-
culating a matrix of pairwise embeddings between any two elements in
the input sequence, informing attention about the relationship between
two positions. The memory requirements associated with relative em-
beddings made them infeasible for long sequence lengths, but they were
later optimized to reduce memory requirements significantly (Huang
et al., 2018).

Each type of embedding offers a unique benefit when computing
a new representation of the input data. Many of the aforementioned
embeddings are utilized in STTRE.

2.2. Multi-head attention

At the core of the Transformer encoder is multi-head attention,
a type of self-attention mechanism that computes an attention func-
tion several times in parallel, concatenating each computation. Self-
attention describes a type of attention mechanism that can relate
different positions of a sequence and compute a new representation of
that sequence; this new representation highlights parts of the sequence
and its embedding space that warrant more attention.

Multi-head attention is divided into ℎ heads, each attending to 1
ℎ

of the input space. The output is 𝑧 ∈ R𝑙×𝑑 , or in the multivariate case,
𝑧 ∈ R𝑙×𝑚×𝑑 , a matrix that contains attention scores. Attention scores in
𝑧 inform the model of what elements are more important and what
embedding information is more important. Multi-head attention can
exploit GPU power by parallelizing heads, which is prominent in its
appeal.

When dividing 𝑋𝑒 between heads, it is commonly divided along the
dimension — resulting in a (𝑙, 𝑑ℎ ) dimensional space for each head,

allocating a portion of the embedding space to each head. The input to
each head is duplicated thrice, forming the values, keys, and queries.
Each value, key, and query matrix first undergo a linear transformation:

𝑉 = 𝑊𝑉 𝑋𝑒 + 𝑏𝑉 ,

= 𝑊𝐾𝑋𝑒 + 𝑏𝐾 ,

= 𝑊𝑄𝑋𝑒 + 𝑏𝑄,

(5)

here 𝑊 are learned weight matrices and 𝑏 are learned bias vectors —
alues, keys, and queries have separate weights and biases, as denoted
y the subscripts. Reference to heads is removed from the equations for
implicity. The values, keys, and queries are named as such because the
tructure of the multi-head attention is analogous to that of a database
etrieval system. The naming is representative of how they interact with
ach other. It is hypothesized that they could hold information repre-
entative of their named functions since their interactions will affect
heir learned weights. Following the linear transformation, attention is
omputed using the values, keys, and queries. The attention function
ost commonly used is scaled dot-product attention, which will be the

ttention function used in this paper. Scaled dot-product attention takes
he form:

ttention(𝑄,𝐾, 𝑉 ) = Softmax( 𝑄𝐾𝑇
√

𝑑∕ℎ
)𝑉 , (6)

Softmax(𝑎) = exp(𝑎)
∑𝐾

𝑗=1 exp(𝑎)
. (7)

An upper left triangle mask is applied to 𝑄𝐾𝑇 to prevent the queries
from attending to keys that occur later in the sequence. The output
of the attention function for each head is then concatenated together,
followed by a linear transformation, producing the resultant matrix 𝑧:

= 𝑊𝐴𝐴 + 𝑏𝐴, (8)

here 𝐴 is the output of the attention function in (6).



Neural Networks 168 (2023) 549–559A. Deihim et al.

h
d
t

3

t
t
s
t
𝑙
d
s
i
a
m
e
a
o
p

c
a
l

a
𝑋
t
r
𝑌

p

o
m
f
f
r
s
p
b

3

t
t
t
e
i

d
I
h

2.3. Normalization

Introduced to mitigate the presence of internal covariate shift in
neural networks, batch normalization (Ioffe & Szegedy, 2015) is used
between layers of the encoder. Batch normalization decreases train-
ing time by allowing the user to set higher learning rate values and
mitigates the variance of random initialization of weights. Batch nor-
malization uses mean-standard deviation normalization:

𝑛′𝑖 =
𝑛𝑖 − 𝜇

√

𝜎2 + 𝜖
, (9)

where 𝑛𝑖 is the value at the 𝑖’th neuron, 𝜇 is the mean of the batch, 𝜎2
is the variance of the batch, and 𝜖 is a small constant value added to
the variance for numerical stability.

Layer normalization (Ba et al., 2016) was introduced shortly follow-
ing the discovery of batch normalization. Layer normalization is the
transpose of batch normalization, computing mean and variance across
all neurons in the layer within a single training case rather than an
entire batch. While the original Transformer uses layer normalization
for their normalization layers, we use batch normalization in our study.
The superiority of layer normalization in the Transformer can be mainly
attributed to the varying sequence lengths found in sentences (Shen
et al., 2020). However, this does not apply to the datasets examined in
this study. Additionally, batch normalization can help dampen outliers
found in time series (Zerveas et al., 2021), which is not an issue in
natural language processing.

3. Proposed methodology

In this section, we address multivariate time series forecasting. Let
𝑋 = {𝑥0, 𝑥1, ⋯ , 𝑥𝑚} define a multivariate time series with 𝑚
variables, where each 𝑥𝑖 represents a univariate time series with 𝑙
istorical observations, i.e, 𝑥𝑖 = {𝑥𝑖,1, 𝑥𝑖,2, ⋯ , 𝑥𝑖,𝑙}, where 𝑥𝑖,𝑗 ∈ R
enotes the value of the 𝑖’th variable at the 𝑗’th time step. Given 𝑋,
he objective is to predict 𝑌 = {𝑥𝑖,𝑙+1}.

.1. Model

STTRE1 incorporates three modules: the temporal module, the spa-
ial module, and the spatio-temporal module. Each module is designed
o capture different latent dependencies within a multivariate time
eries. Each module will accept a flattened and embedded multivariate
ime series segment 𝑋𝑒 ∈ R𝑙𝑚×𝑑 . The inputs are flattened into a
𝑚 length vector, and then each element is cast into the embedding
imension via linear transformation. Absolute position embeddings are
till used in conjunction with relative embeddings, as they offer a minor
mprovement in performance at a minimal computational cost — these
re summed with element embeddings to produce 𝑋𝑒. In the spatial
odule, the absolute position embeddings are replaced with variable

mbeddings, which will embed information regarding the variable of
n element rather than embedding information regarding the position
f an element. For the position and variable embeddings, fully learnable
ositional embeddings are used.

Each module utilizes a structure similar to the Transformer’s en-
oder but with augmentations that we hypothesize will improve its
bility to perform its delegated task. We also adopt the encoder’s
ayering mechanism, setting the number of layers to three.

The output of each module, 𝑋′
𝑒 ∈ R𝑙𝑚×𝑑 is concatenated, producing

new matrix 𝑋𝑠𝑡 ∈ R3𝑙𝑚×𝑑 , a spatio-temporal encoded representation of
𝑒. A feed-forward layer consolidates the embedding dimension such

hat 𝑋𝑠𝑡 is reduced to a vector of length 3𝑙𝑚. A linear regression layer
educes this vector into a single value, representing the final prediction,
. A diagram of STTRE’s architecture can be found in Fig. 4.

1 https://github.com/AzadDeihim/STTRE
553
Fig. 4. Diagram of STTRE model.

Learned weights in the architecture were optimized using a mean
squared error loss function:

𝐌𝐒𝐄 = 1
𝑛

𝑛
∑

𝑖=1
(𝑌𝑖 − 𝑌𝑖)2, (10)

where 𝑛 is the batch size, 𝑌 is the observed target value, and 𝑌 is the
redicted target value.

In most cases, STTRE requires relatively small values of 𝑑 for
ptimal performance, ranging from 8 to 32. Many Transformer imple-
entations require significantly larger values of 𝑑 for optimal results;

or instance, Time Series Transformer, a Transformer-based framework
or multivariate time series (Zerveas et al., 2021), uses embedding sizes
anging from 256 to 512. We found that using a smaller embedding
ize increases accuracy significantly while also greatly decreasing com-
utation time and memory requirements. We demonstrate the trade-off
etween accuracy and embedding size in Appendix B.

.1.1. Multi-head attention structure
While the architecture of each module appears the same, the struc-

ure of the multi-head attention in each differs. The three core modules,
emporal, spatial, and spatio-temporal, are designed to learn informa-
ion and detect dependencies related to their named functions; thus,
ach module’s multi-head attention structure is designed to improve
ts ability to perform its assigned function.

The temporal module is designed to detect strictly temporal depen-
encies while minimizing its ability to capture spatial dependencies.
n this module, multi-head attention will have exactly 𝑚 heads, one
ead to attend to each variable. Also, 𝑋𝑒 will be divided along the

𝑚 dimension rather than the 𝑑 dimension, resulting in a (𝑙, 𝑑) space
for each head so that heads cannot attend to variables other than the
one allocated to it. Lastly, weight matrices will have separate weights
for each head. There are no learned weights in the temporal module
that are shared across multiple variables, so each weight will only be

https://github.com/AzadDeihim/STTRE


Neural Networks 168 (2023) 549–559A. Deihim et al.

t
t
r
t
s
i

s
m
h

𝑆

A
f
m
l
E
e
b
c
e
b
𝑄
A
t

Fig. 5. Head inspection space for each module. This diagram is meant to visualize the dimensions each module attends to. For simplicity, only the inspection space for the first
head is shown.
w
s
s
𝑆

capable of learning information regarding the variable it was delegated
to.

The spatial module behaves similarly to the temporal module but
transposed — 𝑋 must be transposed before transforming into 𝑋𝑒. In
his module, multi-head attention will use exactly 𝑙 heads, one head
o attend to each time step. 𝑋𝑒 is divided along the 𝑙 dimension,
esulting in a (𝑚, 𝑑) space for each head, so each head cannot attend
o time steps other than the one allocated. Weight matrices will have
eparate weights for each head — weights will be capable of learning
nformation across variables but only within their assigned time step.

Multi-head attention in the spatio-temporal module will be con-
tructed differently than in the spatial and temporal modules — it is
ore similar to that of a standard implementation. It will have four
eads, with each attending to 1

ℎ of the embedding space, resulting
in a (𝑙𝑚, 𝑑ℎ ) dimensional space for each head. Unlike the other mod-
ules, the heads in the multi-head attention will be granted access to
elements across different variables and timesteps but are confined to
their assigned portion of the embedding space. Weight matrices will
share weights across heads. A visual representation of the multi-head
attention’s functionality for each module is provided in Fig. 5.

3.2. Relative embeddings

Relative embeddings are employed to aid each module in construct-
ing an encoded spatio-temporal representation of 𝑋𝑒. To obtain relative
embeddings, we must first generate a matrix of learnable relative
embedding weights 𝐸𝑟. The operation shown in (12) is performed using
𝑄, the queries, and 𝐸𝑟 to obtain 𝑆, a square matrix containing an
entry for all pairs of elements in 𝑋, denoting a relationship between
the elements’ locations in 𝑋. Next, the scaled dot-product attention
function is augmented to factor relative embedding information:

Attention(𝑄,𝐾, 𝑉 ) = Softmax(𝑄𝐾𝑇 + 𝑆
√

𝑑∕ℎ
)𝑉 , (11)

= skew(𝑄𝐸𝑇
𝑟 ). (12)

n upper left triangle mask is applied to 𝑄𝐸𝑇
𝑟 before the skewing

unction. The skew function is crucial in this calculation as 𝑆 must
atch up with the indexing in 𝑄𝐾𝑇 . Otherwise, the addition calcu-

ation in (11) will add relative embeddings to the incorrect indices.
ach (𝑖, 𝑗) entry in 𝑄𝐾𝑇 contains the dot product of the query for
lement 𝑖 in 𝑋 and key for element 𝑗 in 𝑋, making 𝑄𝐾𝑇 absolute-
y-absolute indexed. However, When 𝑄𝐸𝑇

𝑟 is computed, each (𝑖, 𝑟)
ontains the dot product of the query at position 𝑖 and the relative
mbedding 𝑟 between elements 𝑖 and 𝑗 in 𝑋, making 𝑄𝐸𝑇

𝑟 absolute-
y-relative indexed. The skew function’s purpose is to shift columns in
𝐸𝑇
𝑟 to make the indexing absolute-by-absolute. (Huang et al., 2018).

lgorithm 1 describes the skewing function, defined in the context of
554

he temporal module. Dimensionality will vary in other modules, but
Algorithm 1 Skew

Input: 𝑆0 ∈ R𝑙×𝑙, the resultant matrix of 𝑄𝐸𝑇
𝑟 with an upper left

triangle mask.
Output: 𝑆 ∈ R𝑙×𝑙, the skewed representation of 𝑆0.

𝑆𝑝 ← pad(𝑆0) {Pad column of zeros on left}
𝑆𝑟 ← reshape(𝑆𝑝) {Such that upper left triangle mask is now an upper
right triangle mask}
𝑆 ← slice(𝑆𝑟) {Remove first row}

Fig. 6. Diagram of skewing function — gray circles represent masked values. Firstly,
we pad a column vector before the leftmost column. Next, we reshape the matrix such
that the upper triangle mask is now on the right. Lastly, we remove the first row to
produce the desired 𝑆.

the algorithm’s structure will remain unchanged. Fig. 6 visualizes how
the skewing function operates.

In each module, relative embeddings will capture pairwise rela-
tionships between elements within their respective head inspection
spaces. In the temporal module, the relative embedding weight matrix
𝐸𝑡 ∈ Rℎ×𝑙×𝑑 , have a separate (𝑙, 𝑑) dimensional weight matrix for each
head as the relative embeddings of each head should only be able
to acknowledge pairs within its assigned variable, and not be able to
acknowledge pairs across variables. The resulting matrix 𝑆𝑡 ∈ Rℎ×𝑙×𝑙

will be a matrix of pairwise temporal relationships.
In the spatial module, 𝐸𝑠 ∈ Rℎ×𝑚×𝑑 has a separate (𝑚, 𝑑) dimensional

eight matrix for each head, as the relative embeddings of each head
hould only be able to acknowledge pairs within its assigned time
tep, and not be able to acknowledge pairs across time steps. Thus
𝑠 ∈ Rℎ×𝑚×𝑚 will be a matrix of pairwise spatial relationships.

In the spatio-temporal module, 𝐸𝑠𝑡 ∈ R𝑙𝑚× 𝑑
ℎ has shared weights

across heads. This is done to reduce memory requirements but cannot
be done in other modules as it may obstruct their ability to perform
their delegated task. Relative embeddings in this module will be ca-
pable of recognizing pairs across variables and time steps, thus 𝑆𝑠𝑡 ∈
R𝑙𝑚×𝑙𝑚 will be a matrix of pairwise spatio-temporal relationships.

Fig. 7 provides a visual representation of each module’s inspection
space of relative embeddings. Algorithm 2 describes multi-head atten-
tion with relative embeddings for the temporal module. The algorithm’s
structure is similar for the other modules, but the dimensions must be

adjusted accordingly.



Neural Networks 168 (2023) 549–559A. Deihim et al.

i

Algorithm 2 Temporal Multi-head Attention With Relative Embeddings
Input: 𝑋𝑒 ∈ R𝑙𝑚×𝑑 , the flattened and embedded input multivariate
time series; ℎ, the number of heads.
Output: 𝑧 ∈ R𝑙𝑚×𝑑 , the new attention-weighted temporal
representation of 𝑋𝑒
Parameters: Linear transformation weights and biases for the values,
keys, and queries,

𝑊𝑉 ∈ R𝑑×𝑑 , 𝑏𝑉 ∈ R𝑑

𝑊𝐾 ∈ R𝑑×𝑑 , 𝑏𝐾 ∈ R𝑑

𝑊𝑄 ∈ R𝑑×𝑑 , 𝑏𝑄 ∈ R𝑑

Relative embeddings weights, 𝐸𝑟 ∈ Rℎ×𝑙×𝑑

𝑉 ← 𝑊𝑉 𝑋𝑒 + 𝑏𝑉
𝐾 ← 𝑊𝐾𝑋𝑒 + 𝑏𝐾
𝑄 ← 𝑊𝑄𝑋𝑒 + 𝑏𝑄
𝑆0 ← mask(𝑄𝐸𝑇

𝑟 ) {Upper left triangle mask}
𝑆 ← skew(𝑆)
𝑧 ← Softmax(𝑄𝐾𝑇 +𝑆

√

𝑑∕ℎ
)𝑉

Fig. 7. Visual representation of the span of relative embeddings in each module. Note
that not all possible pairwise connections are represented in this figure.

4. Experiments

The results shown in this section are produced by training models
on a predefined set of training data and evaluating them on a pre-
defined set of testing data. The training data and testing data will
be the same for all models. All models are trained until convergence.
The number of epochs until convergence varied between models and
datasets. Experiments are conducted using Python 3.7 on an NVIDIA
A100 40 GB GPU. For each epoch, the Mean Squared Error (MSE),
Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error
(MAPE),2 and mean absolute error (MAE) of the predictions on testing
data is recorded. After each epoch, the average of each metric across the
five most recent epochs is also recorded — the lowest average MSE will
be used to determine which epoch to extract results from. The results
will be presented as an average across five epochs.

4.1. Data

Five publicly accessible datasets are used for this study. Datasets are
primarily gathered from the UCI repository (Dua & Graff, 2017), except
for one aggregated from Yahoo! Finance.

• Metro Interstate Traffic Volume: a dataset from the UCI repos-
itory used to predict car traffic volume on an interstate highway.

2 MAPE is only considered for datasets where the zero values do not exist
n the target variable, as this will produce divide-by-zero errors.
555
Table 1
Dataset characteristics according to sampling rates, number of samples, sequence
lengths, and number of variables. The heterogeneous dataset selection is designed to
provide STTRE with an extensive assessment.

Dataset Sampling rate Total samples Sequence length Variables

MetroInterstate 1 h 48205 24 17
Uber Stock 1 day 726 60 5
Appliances Energy 10 min 19736 144 26
BeijingPM2.5 1 h 15901 24 6
Istanbul Stock 1 day 536 40 8

• Uber Stock: a dataset aggregated from publicly available Yahoo!
Finance data (Yahoo!Finance, 2022). Used to predict the stock
price of Uber.

• Appliances Energy: a dataset from the UCI repository used to
predict household energy usage. This dataset contains two target
variables: energy consumption of appliances and energy con-
sumption of lights — these target variables will be evaluated
separately, denoted by 1 and 2, respectively.

• BeijingPM2.5: a dataset from the UCI repository used to predict
air pollution in Beijing.

• Istanbul Stock Exchange: a dataset from the UCI repository used
to predict Istanbul stock exchange returns.

Table 1 describes the characteristics of each examined dataset.
While the datasets cover various domains, they also provide diverse
characteristics, allowing for a comprehensive examination. We used a
50%–50% split of training and testing data for each dataset. 20% of
the training data was used as validation data; validation data is used
strictly to tune hyperparameters for the model(s). The datasets are not
randomized prior to the split. Chronologically, all data in the testing
set occurs after all data in the training set. This is a more practical
approach to time series problems, as real-world applications will always
exhibit this characteristic. Also, this mitigates the presence of high
degrees of autocorrelation between sequences in the training set and
sequences in the test set since chronologically neighboring sequences
will have significant overlap and will generally be easy targets to
predict accurately.

Multivariate time series data can often exhibit different behavior
based on long-term trends, i.e., seasonal trends. The train and test split
used in this study allows the models to be evaluated on a more diverse
set of data, encompassing various monthly or seasonal trends. If the
test set is too small, we may only find that models are trained on data
from various months or seasons but are only evaluated on data from
one season, thus providing only a limited assessment of the model(s).

4.2. Baseline models

STTRE’s performance is compared with a diverse selection of 5
baseline models. These models are primarily selected from recently
published literature which include multivariate time series analysis in
their study and hence are representative of the state-of-the-art.

• XceptionTime: A convolutional neural network for multivariate
time series (Rahimian et al., 2019).

• TST: A transformer-based neural network for multivariate time
series (Zerveas et al., 2021).

• MiniRocket: Random convolutional kernels with linear regres-
sion layer for prediction (Dempster et al., 2021).

• LSTM: Long short-term memory (Hochreiter & Schmidhuber,
1997).

• LSTM-FCN: Long short-term memory with a fully convolutional
network (Karim et al., 2018).



Neural Networks 168 (2023) 549–559A. Deihim et al.
Table 2
Results of each experiment — Bold values indicate the best score for each category, and underlined values represent the second-best score for
that category.

RMSE

Model MetroInter. Uber Stock Appliances 1 Appliances 2 BeijingPM2.5 Istanbul Stock

STTRE 895.6 2.947 90.74 6.474 36.02 0.013
XceptionTime 2011.6 4.342 108.7 8.473 40.16 0.016
TST 936.7 5.926 108.1 7.937 38.91 0.036
MiniRocket 1206.1 6.458 103.2 8.639 47.85 0.047
LSTM 974.4 4.678 109.4 9.244 41.26 0.016
LSTM-FCN 1100.8 5.190 103.8 8.213 47.61 0.018

MAE

Model MetroInter. Uber Stock Appliances 1 Appliances 2 BeijingPM2.5 Istanbul Stock

STTRE 556.7 2.216 48.65 3.649 20.96 0.008
XceptionTime 1769.5 2.758 58.64 4.970 24.25 0.012
TST 569.6 3.714 62.30 4.671 24.14 0.029
MiniRocket 888.5 4.531 55.43 5.884 32.10 0.036
LSTM 617.3 3.088 60.10 6.072 25.65 0.012
LSTM-FCN 802.2 3.236 62.95 5.301 31.34 0.014

MAPE

Model MetroInter. Uber Stock Appliances 1 Appliances 2 BeijingPM2.5 Istanbul Stock

STTRE – 0.069 0.513 – – 0.731
XceptionTime – 0.085 0.672 – – 0.973
TST – 0.115 0.776 – – 6.546
MiniRocket – 0.148 0.641 – – 8.623
LSTM – 0.094 0.708 – – 1.438
LSTM-FCN – 0.103 0.845 – – 2.276
4.3. Results

We conducted six experiments using the five previously outlined
datasets. Table 2 shows the RMSE, MAE, and MAPE scores earned by
each model on each dataset. The winner in each experiment is denoted
in bold font, while an underline denotes the runner-up. We observe
that STTRE outperforms all baselines across all datasets, achieving an
average rank of 1. The second-best-performing model, XceptionTime,
earns an average rank of 3.4, directly followed by TST. Compared with
XceptionTime, STTRE achieves a median 27% improvement in RMSE,
23% improvement in MAE, and 23% improvement in MAPE.

With the comprehensive dataset selection considered in this study,
we observe STTRE’s ability to forecast multivariate time series in
various environments, including datasets from different domains with
vastly differing sizes, sampling rates, sequence lengths, and number
of variables. STTRE’s performance remained consistent across all ex-
periments, demonstrating that it can excel across a wide range of
datasets, regardless of their characteristics. On the contrary, while
TST and XceptionTime performed well on many of the datasets, both
models obtained significantly lower accuracy than other models on at
least one dataset: TST ranked 5th on the Istanbul stock exchange, and
XceptionTime ranked 6th on the Metro Interstate Traffic Volume. This
suggests that these models are less robust and have a more narrow
usability range than STTRE.

For each experiment, we compare STTRE’s accuracy against the
second best performing model, XceptionTime, and the median accuracy
of all baseline models, calculating the improvement in accuracy as a
percentage. This is shown in Table 3. Although the margins are notable
in all experiments, STTRE scores most decisively on Uber Stock and
Istanbul Stock Exchange, two small financial datasets. While this could
indicate that STTRE works best on small datasets, the more likely
hypothesis is that the other models underperform on small datasets,
as this is a complication for many deep learning models.

TST, the other Transformer-based model, is the runner-up in three of
the six experiments. It utilizes a relatively simple architecture, incorpo-
rating one Transformer encoder rather than three and does not utilize
relative embeddings. Still, the parameter count in TST outnumbers that
of STTRE in most experiments. With a better allocation of learned
556
Fig. 8. Parameter count of STTRE compared with parameter count of TST.

Table 3
STTRE’s improvement in accuracy over the runner-up, XceptionTime,
and the median accuracy of all baseline models.
Experiment Improvement

vs. XceptionTime vs. median

MetroInterstate 3.3% 17.6%
Uber Stock 24.0% 33.4%
Appliances 1 14.7% 19.3%
Appliances 2 20.1% 25.6%
BeijingPM2.5 10.3% 13.7%
Istanbul Stock 23.7% 39.1%

weights, STTRE can use fewer weights on average to yield state-of-the-
art accuracy. Fig. 8 provides a visual comparison of parameter counts
of TST and STTRE. Information regarding hyperparameter settings,

training, and convergence is provided in Appendix A.



Neural Networks 168 (2023) 549–559A. Deihim et al.
Table 4
Ablation study — bold values indicate the best score for each category, and underlined values represent the second-best score for each category.

RMSE

Model MetroInter. Uber Stock Appliances 1 Appliances 2 BeijingPM2.5 Istanbul Stock

STTRE 895.6 2.947 90.74 6.474 36.02 0.013
w/o RE 903.7 3.033 93.54 6.873 37.33 0.013
w/o STM 919.6 4.022 93.23 6.727 36.42 0.016
w/o SM 927.5 4.939 94.98 6.922 37.22 0.016
w/o TM 933.2 4.898 91.80 7.328 36.14 0.014

MAE

Model MetroInter. Uber Stock Appliances 1 Appliances 2 BeijingPM2.5 Istanbul Stock

STTRE 556.7 2.216 48.65 3.649 20.96 0.008
w/o RE 563.8 2.222 52.64 3.981 21.46 0.008
w/o STM 578.5 2.621 51.05 3.843 21.29 0.012
w/o SM 570.6 3.412 51.59 4.022 21.20 0.011
w/o TM 577.4 3.371 47.27 4.193 21.01 0.009

MAPE

Model MetroInter. Uber Stock Appliances 1 Appliances 2 BeijingPM2.5 Istanbul Stock

STTRE – 0.069 0.513 – – 0.731
w/o RE – 0.071 0.625 – – 0.838
w/o STM – 0.079 0.579 – – 1.237
w/o SM – 0.101 0.576 – – 1.189
w/o TM – 0.097 0.501 – – 0.826
Table 5
Improvement in accuracy and standard deviation (SD) of accuracy
improvement given by each component.
Component Improvement SD

Relative Embeddings 4.6% 4.9%
Spatio-Temporal Module 11.8% 11.5%
Spatial Module 15.4% 13.8%
Temporal Module 11.3% 13.0%

4.4. Ablation study

In this section, we conduct an ablation study to demonstrate the
indispensability of key components in this architecture. The following
models will be evaluated:

• w/o RE: STTRE without relative embeddings.
• w/o STM: STTRE without the spatio-temporal module.
• w/o SM: STTRE without spatial module.
• w/o TM: STTRE without the temporal module.

The ablation study is conducted using the same datasets which we
examined previously. Table 4 contains the results of the ablation study,
displaying the RMSE, MAE, and MAPE earned by each model on each
dataset. The winner in each experiment is denoted in bold font, while
an underline denotes the runner-up. The ablation study demonstrates
that with all components and modules intact, the base model achieves
the best results, earning an average rank of 1.3. We calculate the
significance of each removed component across all datasets, given as a
percentage, denoting the improvement of STTRE’s accuracy compared
to the other versions in the ablation study. In Table 5, we report the
average improvement in accuracy granted by each component and the
standard deviation of improvement in accuracy.

On average, w/o SM scores the lowest accuracy, which tends to
remain consistent across all experiments. This suggests that the spatial
module could be the STTRE’s most influential component. Performance
degradation w/o SM does not coincide with the number of variables in
the datasets or any other dataset characteristic. This also appears to be
the case for the other modules.

On Uber Stock and Istanbul Stock Exchange, STTRE performed rela-
tively well without relative embeddings. We hypothesize that this is due
to the small amount of data used for training in these datasets, as both
557
of these datasets are two orders of magnitude smaller than the other
datasets used in this study. It is likely that relative embeddings require
larger amounts of data for full efficacy and may be less advantageous
on smaller datasets. We find that on the subset of datasets containing
larger amounts of data, relative embeddings provide an average 5.6%
improvement in accuracy.

In some cases, STTRE can still obtain high accuracy w/o TM,
demonstrated on Appliances Energy 1, BeijingPM2.5, and Istanbul
Stock Exchange. This could be due to redundancy in the spatio-temporal
module. For example, if the temporal module is removed, STTRE will
still have the means to undercover temporal dependencies via the
spatio-temporal module. Still, it is important to note that since the
heads in these modules attend to different dimensions, they will both
hold different interpretations of the uncovered temporal dependen-
cies. Alternatively, this could result from those datasets having weak
temporal dependencies.

5. Conclusion

In this work, we proposed STTRE, a novel Transformer-based model
for spatio-temporal learning of multivariate time series. STTRE ad-
dresses shortcomings of Transformer-based models for multivariate
time series by improving upon the encoder in a way that enhances
recognition of spatio-temporal dependencies, namely the novel imple-
mentation of relative embeddings, coupled with a novel restructuring
multi-head attention to fully exploit latent spatio-temporal dependen-
cies in a multivariate time series. We evaluated STTRE on a com-
prehensive set of publicly available multivariate time series forecast-
ing datasets encompassing an expansive range of characteristics. We
demonstrate significantly improved performance over several state-of-
the-art models, defining STTRE as the current best-performing multi-
variate time series forecasting model.

The innovations introduced in this study focused primarily on com-
puting an encoded spatio-temporal representation of a multivariate
time series. This was done via the three core modules in the archi-
tecture. The complementary task of computing a prediction given the
encoded representation of the data was originally a task delegated
to the decoder, which is absent in our work and replaced with feed-
forward and linear layers. In the future, we aim to explore the use
of alternative mechanisms which could aid in computing a prediction
given the encoded representation of the data in lieu of the decoder.



Neural Networks 168 (2023) 549–559A. Deihim et al.

A
c
n

B

B

C

C

Table A.6
Hyperparameter settings for all experiments. This table includes settings for learning
rate, embedding size, batch size, number of epochs until convergence, and total training
time in minutes.

Dataset Learning rate 𝑑 Batch size Epochs Time

MetroInterstate 0.0001 32 256 1070 328
Uber Stock 0.0001 32 64 1320 29
Appliances Energy 1 0.0001 8 32 47 371
Appliances Energy 2 0.0001 8 32 51 396
BeijingPM2.5 0.0001 32 256 1063 86
Istanbul Stock 0.00005 32 268 485 5

Fig. B.9. RMSE versus embedding size on Uber Stock dataset.

Fig. B.10. RMSE versus embedding size on BeijingPM2.5 dataset.

dditionally, although STTRE tends to be exceptionally memory effi-
ient when compared to other Transformer-based models, due to the
558

ature of relative embeddings, memory requirements can scale poorly
as sequence lengths and the number of variables increase. In the future,
we aim to find a remedy for this issue when faced with larger inputs.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data is publicly available and will be included in the referenced
GitHub link.

Appendix A. Reproduciblity

For reproducibility of our experiments, we outline hyperparameter
settings and the number of epochs and total computation time for con-
vergence for each experiment, shown in Table A.6. We set dropout to
0.1 for regularization for all experiments and used the Adam optimizer.
The weight matrices in the feed-forward layer of each module are (𝑑,
𝑑) dimensional.

Appendix B. Embedding size and accuracy trade-off

We demonstrate the trade-off between embedding size and accuracy
to validate our claim that smaller embedding sizes work better for
STTRE. Figs. B.9 and B.10 display the trade-off between RMSE and
embedding size on the Uber Stock and BeijingPM2.5 datasets, respec-
tively. These figures show that commonly used embedding sizes, which
generally range between 256 and 512, do not work well for STTRE.

References

Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. http://dx.doi.org/
10.48550/ARXIV.1607.06450.

Bagnall, A., Lines, J., Hills, J., & Bostrom, A. (2015). Time-series classification with
COTE: The collective of transformation-based ensembles. IEEE Transactions on
Knowledge and Data Engineering, 27(9), 2522–2535. http://dx.doi.org/10.1109/
TKDE.2015.2416723.

ox, G. E. P., Jenkins, G. M., & Reinsel, G. C. (2008). Time series analysis: Forecasting
and control (4). Hoboken, N.J: J. Wiley & Sons.

ox, G. E. P., & Pierce, D. A. (1970). Distribution of residual autocorrelations
in autoregressive-integrated moving average time series models. Journal of the
American Statistical Association, 65(332), 1509–1526. http://dx.doi.org/10.1080/
01621459.1970.10481180.

haudhari, S., Mithal, V., Polatkan, G., & Ramanath, R. (2021). An attentive survey of
attention models.

hen, Z., Chen, D., Zhang, X., Yuan, Z., & Cheng, X. (2022). Learning graph structures
with transformer for multivariate time-series anomaly detection in IoT. IEEE
Internet of Things Journal, 9(12), 9179–9189. http://dx.doi.org/10.1109/JIOT.2021.
3100509.

Dempster, A., Petitjean, F., & Webb, G. I. (2020). ROCKET: Exceptionally fast and
accurate time series classification using random convolutional kernels. Data Mining
and Knowledge Discovery, 34(5), 1454–1495. http://dx.doi.org/10.1007/s10618-
020-00701-z.

Dempster, A., Schmidt, D. F., & Webb, G. I. (2021). MiniRocket: A very fast (almost)
deterministic transform for time series classification. In Data mining and knowledge
discovery (pp. 248–257). New York, NY, USA: Association for Computing Machinery,
http://dx.doi.org/10.1145/3447548.3467231.

Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2018). BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, URL http://arxiv.org/
abs/1810.04805.

Dua, D., & Graff, C. (2017). UCI machine learning repository. University of California,
Irvine, School of Information and Computer Sciences, URL http://archive.ics.uci.
edu/ml.

Duan, Z., Xu, H., Wang, Y., Huang, Y., Ren, A., Xu, Z., Sun, Y., & Wang, W. (2022).
Multivariate time-series classification with hierarchical variational graph pooling.
Neural Networks, 154, 481–490. http://dx.doi.org/10.1016/j.neunet.2022.07.032.

Fawaz, H. I., Lucas, B., Forestier, G., Pelletier, C., Schmidt, D. F., Weber, J., Webb, G.
I., Idoumghar, L., Muller, P.-A., & Petitjean, F. (2020). InceptionTime: Finding
AlexNet for time series classification. Data Mining and Knowledge Discovery, 34(6),

1936–1962. http://dx.doi.org/10.1007/s10618-020-00710-y.

http://dx.doi.org/10.48550/ARXIV.1607.06450
http://dx.doi.org/10.48550/ARXIV.1607.06450
http://dx.doi.org/10.48550/ARXIV.1607.06450
http://dx.doi.org/10.1109/TKDE.2015.2416723
http://dx.doi.org/10.1109/TKDE.2015.2416723
http://dx.doi.org/10.1109/TKDE.2015.2416723
http://refhub.elsevier.com/S0893-6080(23)00536-1/sb3
http://refhub.elsevier.com/S0893-6080(23)00536-1/sb3
http://refhub.elsevier.com/S0893-6080(23)00536-1/sb3
http://dx.doi.org/10.1080/01621459.1970.10481180
http://dx.doi.org/10.1080/01621459.1970.10481180
http://dx.doi.org/10.1080/01621459.1970.10481180
http://refhub.elsevier.com/S0893-6080(23)00536-1/sb5
http://refhub.elsevier.com/S0893-6080(23)00536-1/sb5
http://refhub.elsevier.com/S0893-6080(23)00536-1/sb5
http://dx.doi.org/10.1109/JIOT.2021.3100509
http://dx.doi.org/10.1109/JIOT.2021.3100509
http://dx.doi.org/10.1109/JIOT.2021.3100509
http://dx.doi.org/10.1007/s10618-020-00701-z
http://dx.doi.org/10.1007/s10618-020-00701-z
http://dx.doi.org/10.1007/s10618-020-00701-z
http://dx.doi.org/10.1145/3447548.3467231
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1016/j.neunet.2022.07.032
http://dx.doi.org/10.1007/s10618-020-00710-y


Neural Networks 168 (2023) 549–559A. Deihim et al.
Grigsby, J., Wang, Z., & Qi, Y. (2021). Long-range transformers for dynamic
spatiotemporal forecasting. CoRR, URL https://arxiv.org/abs/2109.12218.

Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z., Tang, Y., Xiao, A., Xu, C.,
Xu, Y., Yang, Z., Zhang, Y., & Tao, D. (2023). A survey on vision transformer.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(1), 87–110. http:
//dx.doi.org/10.1109/TPAMI.2022.3152247.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. In IEEE conference on computer vision and pattern recognition (pp.
770–778). http://dx.doi.org/10.1109/CVPR.2016.90.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation,
9(8), 1735–1780. http://dx.doi.org/10.1162/neco.1997.9.8.1735.

Huang, C. A., Vaswani, A., Uszkoreit, J., Shazeer, N., Hawthorne, C., Dai, A. M.,
Hoffman, M. D., & Eck, D. (2018). An improved relative self-attention mechanism
for transformer with application to music generation. CoRR, URL http://arxiv.org/
abs/1809.04281.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. http://dx.doi.org/10.48550/ARXIV.
1502.03167.

Karim, F., Majumdar, S., Darabi, H., & Chen, S. (2018). LSTM fully convolutional
networks for time series classification. IEEE Access, 6, 1662–1669. http://dx.doi.
org/10.1109/ACCESS.2017.2779939.

Karim, F., Majumdar, S., Darabi, H., & Harford, S. (2019). Multivariate LSTM-FCNs
for time series classification. Neural Networks, 116, 237–245. http://dx.doi.org/10.
1016/j.neunet.2019.04.014.

Kazemi, S. M., Goel, R., Eghbali, S., Ramanan, J., Sahota, J., Thakur, S., Wu, S.,
Smyth, C., Poupart, P., & Brubaker, M. A. (2019). Time2Vec: Learning a vector
representation of time. CoRR, URL http://arxiv.org/abs/1907.05321.

Lee, K., Eo, M., Jung, E., Yoon, Y., & Rhee, W. (2021). Short-term traffic prediction
with deep neural networks: A survey. IEEE Access, 9, 54739–54756. http://dx.doi.
org/10.1109/ACCESS.2021.3071174.

Lei, J., Zhu, X., & Wang, Y. (2022). BAT: Block and token self-attention for speech
emotion recognition. Neural Networks, 156, 67–80. http://dx.doi.org/10.1016/j.
neunet.2022.09.022.

Li, S., Jin, X., Xuan, Y., Zhou, X., Chen, W., Wang, Y.-X., & Yan, X. (2019). Enhancing
the locality and breaking the memory bottleneck of transformer on time series
forecasting. Neural Information Processing Systems, 5243–5253. http://dx.doi.org/
10.5555/3454287.3454758.

Lines, J., Taylor, S., & Bagnall, A. (2018). Time series classification with HIVE-cote: The
hierarchical vote collective of transformation-based ensembles. ACM Transactions on
Knowledge Discovery from Data, 12(5), http://dx.doi.org/10.1145/3182382.

Liu, M., Ren, S., Ma, S., Jiao, J., Chen, Y., Wang, Z., & Song, W. (2021). Gated
transformer networks for multivariate time series classification. CoRR, URL https:
//arxiv.org/abs/2103.14438.

Liu, S., Yu, H., Liao, C., Li, J., Lin, W., Liu, A. X., & Dustdar, S. (2022). Pyraformer: Low-
complexity pyramidal attention for long-range time series modeling and forecasting.
In International conference on learning representations. URL https://openreview.net/
forum?id=0EXmFzUn5I.

Lu, C., Li, S., & Lu, Z. (2022). Building energy prediction using artificial neural
networks: A literature survey. Energy and Buildings, 262, Article 111718. http:
//dx.doi.org/10.1016/j.enbuild.2021.111718.

Merdjanovska, E., & Rashkovska, A. (2022). Comprehensive survey of computational
ECG analysis: Databases, methods and applications. Expert Systems with Applications:
An International Journal, 203(C), http://dx.doi.org/10.1016/j.eswa.2022.117206.

Middlehurst, M., Large, J., Flynn, M., Lines, J., Bostrom, A., & Bagnall, A. (2021). HIVE-
COTE 2.0: A new meta ensemble for time series classification. Machine Learning,
110, 3211–3243. http://dx.doi.org/10.1007/s10994-021-06057-9.

Neimark, D., Bar, O., Zohar, M., & Asselmann, D. (2021). Video transformer network.
In Proceedings of the IEEE/CVF international conference on computer vision. arXiv:
2102.00719.

Patel, N. P., Parekh, R., Thakkar, N., Gupta, R., Tanwar, S., Sharma, G., Davidson, I. E.,
& Sharma, R. (2022). Fusion in cryptocurrency price prediction: A decade survey
on recent advancements, architecture, and potential future directions. IEEE Access,
10, 34511–34538. http://dx.doi.org/10.1109/ACCESS.2022.3163023.
559
Qi, X., Hou, K., Liu, T., Yu, Z., Hu, S., & Ou, W. (2021). From known to unknown:
Knowledge-guided transformer for time-series sales forecasting in alibaba. CoRR,
URL https://arxiv.org/abs/2109.08381.

Qu, M., Deng, G., Di, D., Cui, J., & Su, T. (2023). Dual attentional transformer
for video visual relation prediction. Neurocomputing, 550, Article 126372. http:
//dx.doi.org/10.1016/j.neucom.2023.126372.

Rahimian, E., Zabihi, S., Atashzar, S. F., Asif, A., & Mohammadi, A. (2019). Xception-
Time: A novel deep architecture based on depthwise separable convolutions for
hand gesture classification. CoRR, URL http://arxiv.org/abs/1911.03803.

Ruiz, A. P., Flynn, M., Large, J., Middlehurst, M., & Bagnall, A. (2021). The great multi-
variate time series classification bake off: A review and experimental evaluation of
recent algorithmic advances. Data Mining and Knowledge Discovery, 35(2), 401–449.
http://dx.doi.org/10.1007/s10618-020-00727-3.

Shaw, P., Uszkoreit, J., & Vaswani, A. (2018). Self-attention with relative position
representations. CoRR, URL http://arxiv.org/abs/1803.02155.

Shen, S., Yao, Z., Gholami, A., Mahoney, M. W., & Keutzer, K. (2020). PowerNorm:
Rethinking batch normalization in transformers. In Proceedings of the 37th interna-
tional conference on machine learning. JMLR.org, http://dx.doi.org/10.1007/s10994-
021-06057-9.

Shifaz, A., Pelletier, C., Petitjean, F., & Webb, G. I. (2020). TS-CHIEF: A scalable and
accurate forest algorithm for time series classification. Data Mining and Knowledge
Discovery, 34(3), 742–775. http://dx.doi.org/10.1007/s10618-020-00679-8.

Silvestrini, A., & Veredas, D. (2008). Temporal aggregation of univariate and multi-
variate time series models: A survey. Journal of Economic Surveys, 22(3), 458–497.
http://dx.doi.org/10.1111/j.1467-6419.2007.00538.x.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, &
R. Garnett (Eds.), Advances in neural information processing systems, Vol.
30. Curran Associates, Inc., URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Wen, Q., Zhou, T., Zhang, C., Chen, W., Ma, Z., Yan, J., & Sun, L. (2022). Transformers
in time series: A survey. http://dx.doi.org/10.48550/ARXIV.2202.07125.

Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., & Zhang, C. (2020). Connecting the dots:
Multivariate time series forecasting with graph neural networks. In Data mining and
knowledge discovery (pp. 753–763). New York, NY, USA: Association for Computing
Machinery, http://dx.doi.org/10.1145/3394486.3403118.

Wu, S., Xiao, X., Ding, Q., Zhao, P., Wei, Y., & Huang, J. (2020). Adversarial
sparse transformer for time series forecasting. In Advances in neural information
processing systems, Vol. 33 (pp. 17105–17115). Curran Associates, Inc., URL https:
//proceedings.neurips.cc/paper/2020/file/c6b8c8d762da15fa8dbbdfb6baf9e260-
Paper.pdf.

Wu, H., Xu, J., Wang, J., & Long, M. (2021). Autoformer: Decomposition
transformers with auto-correlation for long-term series forecasting. In Ad-
vances in neural information processing systems, Vol. 34 (pp. 22419–22430).
Curran Associates, Inc., URL https://proceedings.neurips.cc/paper/2021/file/
bcc0d400288793e8bdcd7c19a8ac0c2b-Paper.pdf.

Yahoo!Finance (2022). URL https://finance.yahoo.com/quote/UBER/history?p=UBER.
Ye, X., & Bilodeau, G.-A. (2023). Video prediction by efficient transformers. Image and

Vision Computing, 130, Article 104612. http://dx.doi.org/10.1016/j.imavis.2022.
104612.

Zerveas, G., Jayaraman, S., Patel, D., Bhamidipaty, A., & Eickhoff, C. (2021). A
transformer-based framework for multivariate time series representation learn-
ing. In Data mining and knowledge discovery (pp. 2114–2124). New York, NY,
USA: Association for Computing Machinery, http://dx.doi.org/10.1145/3447548.
3467401.

Zhou, T., Ma, Z., Wen, Q., Wang, X., Sun, L., & Jin, R. (2022). Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In Proceedings
of machine learning research: vol. 162, Proceedings of the 39th international conference
on machine learning (pp. 27268–27286). URL https://proceedings.mlr.press/v162/
zhou22g.html.

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., & Zhang, W. (2021).
Informer: Beyond efficient transformer for long sequence time-series forecasting.
Association for the Advancement of Artificial Intelligence, 35, 11106–11115. http:
//dx.doi.org/10.1609/aaai.v35i12.17325.

https://arxiv.org/abs/2109.12218
http://dx.doi.org/10.1109/TPAMI.2022.3152247
http://dx.doi.org/10.1109/TPAMI.2022.3152247
http://dx.doi.org/10.1109/TPAMI.2022.3152247
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1809.04281
http://arxiv.org/abs/1809.04281
http://arxiv.org/abs/1809.04281
http://dx.doi.org/10.48550/ARXIV.1502.03167
http://dx.doi.org/10.48550/ARXIV.1502.03167
http://dx.doi.org/10.48550/ARXIV.1502.03167
http://dx.doi.org/10.1109/ACCESS.2017.2779939
http://dx.doi.org/10.1109/ACCESS.2017.2779939
http://dx.doi.org/10.1109/ACCESS.2017.2779939
http://dx.doi.org/10.1016/j.neunet.2019.04.014
http://dx.doi.org/10.1016/j.neunet.2019.04.014
http://dx.doi.org/10.1016/j.neunet.2019.04.014
http://arxiv.org/abs/1907.05321
http://dx.doi.org/10.1109/ACCESS.2021.3071174
http://dx.doi.org/10.1109/ACCESS.2021.3071174
http://dx.doi.org/10.1109/ACCESS.2021.3071174
http://dx.doi.org/10.1016/j.neunet.2022.09.022
http://dx.doi.org/10.1016/j.neunet.2022.09.022
http://dx.doi.org/10.1016/j.neunet.2022.09.022
http://dx.doi.org/10.5555/3454287.3454758
http://dx.doi.org/10.5555/3454287.3454758
http://dx.doi.org/10.5555/3454287.3454758
http://dx.doi.org/10.1145/3182382
https://arxiv.org/abs/2103.14438
https://arxiv.org/abs/2103.14438
https://arxiv.org/abs/2103.14438
https://openreview.net/forum?id=0EXmFzUn5I
https://openreview.net/forum?id=0EXmFzUn5I
https://openreview.net/forum?id=0EXmFzUn5I
http://dx.doi.org/10.1016/j.enbuild.2021.111718
http://dx.doi.org/10.1016/j.enbuild.2021.111718
http://dx.doi.org/10.1016/j.enbuild.2021.111718
http://dx.doi.org/10.1016/j.eswa.2022.117206
http://dx.doi.org/10.1007/s10994-021-06057-9
http://arxiv.org/abs/2102.00719
http://arxiv.org/abs/2102.00719
http://arxiv.org/abs/2102.00719
http://dx.doi.org/10.1109/ACCESS.2022.3163023
https://arxiv.org/abs/2109.08381
http://dx.doi.org/10.1016/j.neucom.2023.126372
http://dx.doi.org/10.1016/j.neucom.2023.126372
http://dx.doi.org/10.1016/j.neucom.2023.126372
http://arxiv.org/abs/1911.03803
http://dx.doi.org/10.1007/s10618-020-00727-3
http://arxiv.org/abs/1803.02155
http://dx.doi.org/10.1007/s10994-021-06057-9
http://dx.doi.org/10.1007/s10994-021-06057-9
http://dx.doi.org/10.1007/s10994-021-06057-9
http://dx.doi.org/10.1007/s10618-020-00679-8
http://dx.doi.org/10.1111/j.1467-6419.2007.00538.x
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://dx.doi.org/10.48550/ARXIV.2202.07125
http://dx.doi.org/10.1145/3394486.3403118
https://proceedings.neurips.cc/paper/2020/file/c6b8c8d762da15fa8dbbdfb6baf9e260-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c6b8c8d762da15fa8dbbdfb6baf9e260-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c6b8c8d762da15fa8dbbdfb6baf9e260-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c6b8c8d762da15fa8dbbdfb6baf9e260-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c6b8c8d762da15fa8dbbdfb6baf9e260-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/bcc0d400288793e8bdcd7c19a8ac0c2b-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/bcc0d400288793e8bdcd7c19a8ac0c2b-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/bcc0d400288793e8bdcd7c19a8ac0c2b-Paper.pdf
https://finance.yahoo.com/quote/UBER/history?p=UBER
http://dx.doi.org/10.1016/j.imavis.2022.104612
http://dx.doi.org/10.1016/j.imavis.2022.104612
http://dx.doi.org/10.1016/j.imavis.2022.104612
http://dx.doi.org/10.1145/3447548.3467401
http://dx.doi.org/10.1145/3447548.3467401
http://dx.doi.org/10.1145/3447548.3467401
https://proceedings.mlr.press/v162/zhou22g.html
https://proceedings.mlr.press/v162/zhou22g.html
https://proceedings.mlr.press/v162/zhou22g.html
http://dx.doi.org/10.1609/aaai.v35i12.17325
http://dx.doi.org/10.1609/aaai.v35i12.17325
http://dx.doi.org/10.1609/aaai.v35i12.17325

	STTRE: A Spatio-Temporal Transformer with Relative Embeddings for multivariate time series forecasting
	Introduction
	Background
	Embeddings
	Multi-head Attention
	Normalization

	Proposed Methodology
	Model
	Multi-Head Attention Structure

	Relative Embeddings

	Experiments
	Data
	Baseline Models
	Results
	Ablation study

	Conclusion
	Declaration of competing interest
	Data availability
	Appendix A. Reproduciblity
	Appendix B. Embedding Size and Accuracy Trade-Off
	References


