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A B S T R A C T   

The use of bicycles can provide myriad benefits to society, especially in crowded urban centres where other 
modes of transport are at or near capacity. However, integrating cycling into policy and planning requires more 
comprehensive data about their use in space and time. Current approaches, using sparse networks of counters 
provide one possible route to more comprehensive data. In this paper we investigate another, using data 
collected from Paris’ bicycle sharing system to explore use during 2020. We chose 2020 as a test year because the 
use of bicycles was strongly influenced by the COVID-19 pandemic, allowing us to explore how bicycle use 
adapted to both legal and environmental influences. We used interactive visualization to allow hypothesis 
generation and data exploration, before analysing bicycle use as a function of weather and COVID-19 restrictions. 
Our results show that bicycle sharing system data and Paris’ counters both capture very similar behaviour 
patterns, and therefore bicycle sharing system data are a reliable proxy for overall cycling behaviour, providing 
finer spatial granularity than existing sparse counter networks. Seasonally, precipitation influenced bicycle use 
more strongly in 2020 than COVID-19 measures.   

1. Introduction 

The use of bicycles as a potentially safe, sustainable, non-polluting, 
space-saving and healthy model of transport in urban centres has been 
promoted across the globe in recent years. During the COVID-19 
pandemic, many populations saw a modal shift from crowded public 
transport to bicycles, and cities worldwide made efforts to promote the 
use of bicycles. However, collecting data on bicycle use, and under-
standing the factors that influence changes of use in time and space 
remain challenging and lag studies of other modes of transport. Many 
cities have relatively sparse networks of bicycle-specific counters, and 
while crowdsourced data such as Strava receive increasing attention 
(Fischer et al., 2022), especially in North America, collecting represen-
tative data about bicycle use for short, everyday journeys within cities 
remains challenging. 

In this paper, we address this shortcoming by comparing data from a 
bicycle sharing system (BSS) in Paris to a relatively sparse network of 
bicycle counters. We use interactive visualization for data exploration 
and hypothesis generation, before analysing bicycle use captured by 
both the BSS and bicycle counters. We do so in the context of the COVID- 
19 pandemic, and explore cycling behaviour with respect to COVID-19 

restrictions and weather using both data sources. Paris was selected as 
a test area because it has both a mature bicycle sharing system and a 
network of bicycle counters, and was subject to a wide range of re-
strictions during 2020. The city also has a long-standing interest in 
promoting cycling as a mode of transport for short journeys within the 
city, which was accelerated during the COVID-19 pandemic. 

In addition to describing the context of bicycle use in Paris during the 
first year of the Covid pandemic, our work offers three generalisable 
contributions:  

• We evaluate the reliability of public bicycle sharing scheme data as a 
proxy for all urban cycling behaviour demonstrating it consistently 
reflects dedicated cycle counter data.  

• We propose a visual analytic approach for capturing both long-term 
and real-time patterns in cycling behaviour that can be used to guide 
subsequent statistical analysis.  

• We uncover empirical evidence that even in the context of an 
extreme exogenous shock to transport systems, cycling behaviour 
remains highly responsive to local environmental conditions. 

Bicycle sharing systems have increasingly emerged as a way for large 
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urban centres to encourage cycling. As of August 2021, there were 
nearly 10 million shared bicycles and 3,000 BSS across the world. The 
Paris BSS, Vélib, has been in operation since 2007 and consists of more 
than 1,400 stations from which about 20,000 bicycles can be borrowed. 
The existing network of stations is densest in central Paris, while the 
network is being continually expanded toward the suburbs. According to 
Vélib, the number of registered users increased from about 85,000 in 
January 2019 to 270,000 in December 2019,1 and in 2020 an estimated 
210,000 daily trips took place with 40,000 subscribed users. 

Data produced by BSS have been considered a useful data source for 
various mobility analyses by the scientific community over the past 
decade. In many BSS the most accessible public information recorded 
with respect to mobility are the number of bicycles checked in and out at 
a given station within a given time period. These two values can be used 
to derive a count (the difference between checked in and checked out 
bicycles), a proxy of ridership or bicycle demand at a BSS station level (e. 
g. Gebhart and Noland, 2014; El-Assi et al., 2017). While most BSS 
provide this basic information, some systems provide additional infor-
mation such as origin–destination data indicating start and end station 
of individual journeys. This enables not only analyses based on rider-
ship, but also more complex questions, for example determining bicycle 
trip’s commuting or recreational purpose (Li et al., 2020; Chen et al., 
2020), group cycling motivation (Beecham and Wood, 2014a) and 
gender-related behaviour (Beecham and Wood, 2014b). However, few 
studies (e.g. Pazdan et al., 2021) have combined BSS data with bicycle 
traffic counters, leaving open questions about the representativeness of 
studies focussing only on BSS. 

Besides analyses of trip purpose, other mobility analyses performed 
using bicycle sharing data, include socio-demographic studies (Wang 
et al., 2018), impacts of external factors on bicycle sharing use e.g., 
weather or built environment (El-Assi et al., 2017), and more recently, 
modelling the impact of the COVID-19 pandemic on cycling (Teixeira 
and Lopes, 2020). Studies exploring the impact of weather on cycling, 
via, for example, temperature, precipitation and humidity (Gallop et al., 
2011; Gebhart and Noland, 2014; Kim, 2018) are common as journeys 
can often be discretionary and therefore responsive to environmental 
conditions. Linking weather parameters to cycling behaviour means 
choosing a temporal interval over which to summarise weather condi-
tions. Most typical are hourly or daily values of either directly measured 
weather conditions such as average temperature, rainfall totals, average 
wind speed or insolation hours. Alternatives include indicators thought 
to capture likely responses to weather (e.g. the temperature-humidity 
index (THI) (Kim, 2018) or lagged effects of rain and snow (Gebhart 
and Noland, 2014). The selected temporal resolution can have important 
consequences for the results - higher temporal resolutions will capture 
more and shorter trips, which are especially common in BSS, and thus 
may lead to different results. For example, De Chardon et al (2017) did 
not identify a negative impact of humidity on BSS ridership counts, most 
likely due to monthly aggregation of data, while studies with much finer 
(hourly) temporal resolutions (Gebhart and Noland, 2014; Nosal and 
Miranda-Moreno, 2014, Pazdan et al., 2021) all reported that increased 
humidity reduced the propensity to cycle. Both De Chardon et al (2017) 
and El-Assi et al (2017) identified optimum cycling temperatures of 
between around 20 and 30C, with temperatures below freezing, rain and 
high humidity decreasing the number of trips and their duration (Geb-
hart and Noland, 2014). 

An additional strong external factor affecting human mobility 
generally, and in particular cycling in 2020 was the COVID-19 
pandemic. The crisis impacted many aspects of everyday life provok-
ing huge challenges in supply (Guan et al., 2020) and human mobility 
(Hu et al., 2021; Chinazzi et al., 2020; Teixeira and Lopes, 2020; Linka 

et al., 2020). To reduce the rate of spread of the virus, governments 
worldwide imposed travel bans on international transport followed by 
more local mobility restrictions and lockdowns. This caused an imme-
diate and strong decline in human mobility during the first wave of the 
pandemic (Hu et al., 2021; Chinazzi et al., 2020; Teixeira and Lopes, 
2020; Linka et al., 2020). Studies exploring the effects of the COVID-19 
pandemic on cycling represent a growing body of research. Many have 
used BSS data as a baseline for cycling mobility patterns (Shang et al., 
2021; Hu et al., 2021; Kim, 2021; Kubaľák et al., 2021), with very few 
using counters capturing total bicycle traffic at specific locations (Dou-
bleday et al., 2021; Büchel et al., 2022). Most authors considered BSS 
data to be representative of overall cycling patterns in cities, despite 
rapid changes in potential ridership, for example due to travel bans, and 
few studies considered the additional impact of weather on patterns of 
use. 

To our knowledge no study has been published that has a) explored 
variation in cycling mobility using both counter data and the proxy of 
BSS and b) has controlled for effects of weather on variation in these 
patterns. Both of these effects are important since counter data nomi-
nally capture all bicycle use but only at selected locations, while BSS 
typically have more extensive spatial coverage but only indirectly 
measure actual cycle use. 

Thus, we define our research questions as follows:  

• How did the COVID-19 pandemic and three weather parameters 
(temperature, precipitation and insolation) impact bicycle-sharing 
mobility patterns during the first year of the COVID-19 outbreak in 
Paris?  

• Are the patterns of mobility and their relationships to weather and 
lockdown measures captured in bicycle-sharing data replicated in 
data captured by a network of bicycle counters? 

2. Materials and methods 

2.1. Study area 

Paris is the most populated urban region of France with some 2.2 
million inhabitants in the city of Paris, and more than 12 million in the 
adjoining urban agglomeration. The public transport service RATP 
operates an integrated public transport system in the Paris region (Ile de 
France) including metros, trams, buses, and RER trains, recording 
around 3.3 billion trips per year. Its infrastructure includes 206 km and 
302 stations belonging to 16 metro lines, 117 km of regional train lines 
(RER) with 66 stations, a tramway network of 105 km and 4,700 buses. 
Paris was the sixth most visited city in the world in 2018 with 17.5 
million tourists. Bicycle infrastructure is also highly developed with 
more than 1,000 km of cycle paths by the end of 2020. 

Paris has a typical Western European climate, affected by its prox-
imity to the Atlantic. The overall climate throughout the year is mild and 
moderately wet. Average annual precipitation is 641 mm with relatively 
light rainfall distributed evenly throughout the year. However, the city 
is also known for intermittent, abrupt, heavy showers. Summer days are 
warm and pleasant with average temperatures ranging between 15 and 
25C and with a fair amount of sunshine. Spring and autumn usually have 
mild days and fresh nights but are often subject to unsettled weather. 
During winter, sunshine is scarce; days are cool, and nights are cold but 
generally above freezing with low temperatures around 3C. Icy roads, a 
significant hazard to winter cycling, are unusual. 

2.2. Data 

2.2.1. Bicycle sharing system 
We use data collected from the Vélib fixed docking station BSS that 

has been in operation since 2007. The system includes 1,400 stations in 
the Paris region (Ile-de-France), 20,000 bicycles of which 35 % are e- 
bicycles, and had 400,000 registered users in 2020. Despite (or perhaps 

1 Retrieved from https://www.smovengo. 
fr/wp-content/uploads/2020/08/Smovengo_Rapport-annuel_2019.pdf, 
October 28, 2021. 
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because of) the COVID-19 pandemic, 2020 was a record-breaking year in 
terms of use, including a monthly record of 5.5 million trips (September 
2020) and a daily trip record of 215,000 trips was set on 11th September 
2020.2 

Our Vélib raw dataset contains information about station locations 
and capacity, together with temporal information on changes in the 
number of available bicycles at individual stations over time. The res-
olution of registered changes is 5 min. Thus, every record in the dataset 
represents a change in the number of available bicycles at a station 
within 5 min. Paris’ urban area is covered by a total of 1,004 Vélib 
stations (Fig. 1). Bicycle IDs are not stored, so origin–destination jour-
neys cannot be extracted directly. 

Since the information available to us is the number of bicycles 
available at an individual station at any given time, we define bicycle 
ridership as the difference between the number of available bicycles at 
the start and at the end of a given time interval at a station. This measure 
is sensitive to temporal resolution - lower temporal resolutions may miss 
throughput of bicycles as they are docked and then removed within the 
temporal bins. We defined temporal resolution as one hour - a 
compromise between capturing all possible changes to the system and a 
useful temporal granularity over which to aggregate. 

Paris is administratively structured into 20 arrondissements, each of 
which is further sub-divided into 4 quartiers. Since spatial aggregation 
reduces the effects of individual station errors or biases and many as-
pects of Parisian life are adapted to local quartiers, including trans-
portation, education, shopping, health, and policing, we spatially 
aggregated BSS counts to quartiers, with on average 13 stations assigned 
to each quartier. 

2.2.2. Bicycle counters 
A network of bicycle traffic counters has been developed over Paris 

since 2010 (Fig. 1). The counters are distributed across the city and 
designed to capture important bicycle flows throughout Paris. The 
company ‘Ecocompteur’ that runs the Paris counters claim an accuracy 
of more than 95%3 and counters are rarely out of order so provide a 
reliable record of bicycle flows throughout the year. Counter data are 
published as hourly counts of bicycles at counter locations, and in 2020, 
50 counters were in operation for the whole year. 

However, as is visible in Fig. 1, some counters are placed very close 
to one another. It is not unusual for these counters to be paired, 
measuring unidirectional flows of traffic, where for example separated 
bicycle lanes are found on opposite sides of wide streets. In such cases 
we summed counts to create a single counter measurement, reducing the 
total number of count locations to 40. 

Since we have a well distributed set of counters across the whole city 
of Paris, which nominally captures all bicycle movements, we consider 
the counter data to be representative of behaviour as a whole in Paris in 
2020, albeit with reduced spatial granularity in comparison to the 1,004 
BSS stations, even when aggregated to 80 quartiers. The temporal 
granularity of one hour is fine enough to capture lagged responses to 
weather conditions, and allows us to compare BSS and counter data 
across all of 2020. 

2.2.3. Weather data 
We consider three aspects of weather in this study: precipitation, 

insolation and temperature. These capture the conditions in Paris most 
likely to influence discretionary bicycle travel. For example, we expect 
bicycle use to decrease on rainy days, increase on sunny days, and be 
generally positively correlated with temperature (Nosal and Miranda- 
Moreno, 2014; De Chardon et al., 2017; Kim, 2018; Wang et al., 

2018). High winds and icy conditions are rare in Paris, and therefore not 
considered. We chose an interval of one hour for weather data, aligned 
to the bicycle counter temporal resolution, since this has been found 
sufficient to capture responses of cyclists to weather (Gebhart and 
Noland, 2014; Nosal and Miranda-Moreno, 2014, Pazdan et al., 2021). 
Although most trips are shorter than an hour, we expect to see a lagged 
effect from weather events on hourly counts. 

The weather dataset was obtained from Météo-France, France’s na-
tional weather service, and data were collected at the Paris-Montsouris 
meteorological station in the south of Paris (Fig. 1). Given Paris’ rela-
tively compact size and topography, we assume this station to be broadly 
representative of temperature and precipitation in the city as a whole 
(Fig. 2). 

2.3.4. COVID-19 lockdown in Paris 
To represent the effects of the COVID-19 pandemic on cycling 

behaviour we created a dataset capturing important events related to the 
outbreak in France in 2020. We included three types of events – impo-
sition of restrictions (e.g. lockdowns), their relaxation and public holi-
days likely to influence behaviour. We selected events from the official 
French government chronology of the COVID-19 outbreak and govern-
mental responses.4 We additionally linked these events to the stringency 
index – a composite measure based on nine response indicators 
including school closures, workplace closures, and travel bans, rescaled 
to values between 0 and 100 created by the Our World in Data team.5 We 
used stringency values with a daily temporal resolution in our statistical 
analysis. 

2.4. Analysis 

We used a combination of visual and statistical analytical methods to 
explore spatial and temporal patterns in the use of Vélib and general 
bicycle usage in Paris in 2020. Table 1 catalogues the raw data used in 
our analysis and analytical approaches taken, as well as the independent 
variables used to represent both weather and the effects of COVID-19 on 
bicycle-related mobility in Paris. 

We initially constructed a series of visualizations to explore patterns 
in bicycle counts. Firstly, we created dynamic plots to visualise the 
anomaly in use of individual stations, by plotting signed χ-scores (Wood 
et al., 2010) calculated with respect to baselines of average daily system 
use between January 6th and March 1st 2020. 

χ =
count − baseline

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
baseline

√ (1) 

This baseline represents counts with respect to observed data prior to 
the effects of COVID-19 in Paris, and explicitly excludes the Christmas 
holiday period. As with any calculation of anomalies, changing the 
baseline period would result in changes with respect to the anomaly. 

Two graphical representations were used to plot anomalies - line 
plots of individual station anomalies, and heatmaps vertically ordered 
by absolute counts of station use. Both representations were annotated 
with important events related to the COVID-19 pandemic, as illustrated 
in Fig. 3. The visualizations were implemented dynamically, allowing 
individual stations to be selected and viewed in conjunction with a 
representation of their locations in Paris,. 

A third heat map-based representation plotted average hourly ab-
solute counts across Paris over monthly periods, with the aim of 
capturing changes in absolute mobility at hourly intervals on individual 
days of the week during the pandemic. 

We carried out a statistical analysis of average daily counts to explore 
the influence of both the COVID-19 pandemic and weather-related 

2 Retrieved from https://www.velib-metropole.fr/service, November 5, 
2021.  

3 Retrieved from https://www.eco-compteur. 
com/expertise/compter-les-velos/, November 8, 2021. 

4 https://www.gouvernement. 
fr/info-coronavirus/les-actions-du-gouvernement.  

5 https://ourworldindata.org/grapher/covid-stringency-index. 
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Fig. 1. Locations of Vélib docking stations and bicycle counting stations in the quartiers of Paris.  

Fig. 2. Monthly total precipitation and mean temperature at Paris-Montsouris in 2020.  
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influences on both the Vélib system and overall bicycle use as captured 
by counters in 2020. Consistent with prior approaches (e.g. Kim, 2018; 
Gebhard and Noland, 2014; De Chardon et al., 2017) we modelled bi-
cycle counts using negative binomial regression. This allows us to relate 
the relative contribution and significance of weather and stringency 
measurements to changes in the overall count of bicycle trips. The in-
fluence of weather was represented using hourly average temperature, 
hourly total precipitation and hourly total insolation. To capture the 
effects of the COVID-19 pandemic, we used the daily stringency index as 
an additional independent variable. 

3. Findings 

The effects of COVID-19 lockdown on bicycle sharing use in Paris 
were first analysed at a daily level. Daily cycling activity for each 80 

quartiers for BSS data and 40 counter locations for overall cycling ac-
tivity recorded in the city were plotted with respect to COVID-19 events 
(Fig. 4)6. 

The first large anomaly is observed at the start of March, shortly 
before lockdown where a sudden peak is visible, especially in the BSS 
data. We interpret this as a shift to bicycles as people sought to avoid 
public transport before the first lockdowns. The initial lockdown is 
visible in both datasets, though more strongly in the BSS data, sug-
gesting strong compliance with the measures introduced. As measures 
are relaxed, we see greater use of both BSS and bicycles overall, with 
variations suggesting leisure use, for example at weekends and over the 
Easter break. A dip in usage in the summer holiday period is apparent, 
before increased usage as people returned to work onsite in late August. 
Later in autumn usage decreases, with a sharp drop as a second lock-
down was introduced in October, and a curfew in December. Both 

Table 1 
Overview of the analytical process and data aggregation.  

Dataset Raw data Visual analytics Statistical analysis 

Vélib BSS 1004 stations recording 
changes in bicycle 
availability every 5 min 

Daily line plots of anomaly in 
count per quartier 

Heatmaps of anomaly in count 
per quartier 

Monthly summary of 
average hourly docking 
station count per day 

Negative binomial regression of 
hourly docking station counts 

Bike 
counters 

50 locations, hourly counts Daily line plots of anomaly in 
count 

Heatmaps of anomaly in count 
per count station 

Monthly summary of 
average hourly count per 
day 

Negative binomial regression of 
hourly docking station counts 

Weather 
data 

Hourly mean temperature, 
total insolation and 
precipitation 

NA NA NA Hourly temperature, insolation 
and precipitation used as 
independent variables 

COVID-19 Key events and daily 
stringency index 

Events indicated on plots Events indicated on plots NA Daily stringency index 

Aggregation  Hourly counts aggregated to 
calculate daily anomalies; 
BSS stations aggregated per 
quartier; unidirectional 
counters aggregated 

Hourly counts aggregated to 
calculate daily anomalies; 
BSS stations aggregated per 
quartier; unidirectional 
counters aggregated 

Hourly counts averaged 
over month and week day 
for the city of Paris 

Counts aggregated over Paris as a 
whole; separate models for 
whole year and quarters  

Fig. 3. Significant events COVID-19 related events and the stringency index in Paris in 2020.  

6 Interactive visualizations of Figs. 4, 5 and 6 can be viewed at https://jwol 
ondon.github.io/tripParisVis/. 
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datasets show considerable variance between stations, which make the 
plots more difficult to interpret. Nonetheless, it is clear that the overall 
pattern of use in the longer term reflects stringency measures and that 
similar patterns are visible in both datasets. 

To observe patterns of use in more detail, we used heatmaps of 
signed anomalies, ranked by magnitude of usage (Fig. 5). These repre-
sentations allow us to not only capture the broad pattern of usage 
described above - for example the sudden peak of usage of the BSS for a 
few days before the major dip during lockdown, with a slight upturn 
over Easter, but also allow us to compare stations more reliably. Most 
notable here are the differences during the second lockdown, where in 
both BSS and counter data we observe that the downturn of the system 
varies in space, with some quartiers and locations (presumably linked to 
permitted commuting for essential workers for example) subject to 
much less of a downturn (c.f. pale orange strips and pale blue strips from 
late October until shortly before Christmas). 

Fig. 6 shows absolute average counts over quartiers (for BSS) and 
over counter locations. Since we are observing systems of different na-
tures - in the case of BSS we count all usage of the Vélib system, which 

makes up a proportion of total bicycle use in Paris, while counters count 
bicycles of all types at specific locations - then the absolute values are 
not directly comparable. Nonetheless, we see strong correspondences 
between both systems. Pre-pandemic, clear commuter use with diurnal 
peaks is visible, while during the first lockdown usage decreases glob-
ally. However, some use of bicycles remains visible, especially in the 
morning/ evening for counters, potentially reflecting travel of essential 
workers. As measures are relaxed and then reimposed over the summer 
and autumn we note that the strength of the commuter peaks decreases 
(e.g. in June) and that some new behaviours become visible - for 
instance a peak in use of both BSS and other bicycles on Saturday af-
ternoons in November. 

Combining the three visualization approaches allows us to effec-
tively describe many patterns of cycling behaviour in Paris qualitatively 
at differing spatial and temporal scales. Thus, in Fig. 4 we gain insights 
as to overall behaviour in time, and can identify possible outliers to this 
behaviour. In Fig. 5 patterns of use in individual quartiers is visualized, 
and it is possible to qualitatively compare anomalies and their timing 
between quartiers. Finally, Fig. 6 summarises daily temporal patterns of 

Fig. 4. Line plots of anomaly in BSS use per quartier (top) and counter locations in 2020 (bottom).  
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Fig. 5. Heat maps of signed anomaly vertically ordered by use for BSS per quartier (top) and counter locations (bottom).  
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Fig. 6. Daily and hourly variation in average use of bicycles per month per quartier for BSS (left) and counter data (right).  
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use across the whole city for the BSS and counter networks, giving a 
higher temporal but coarse spatial resolution to the results. 

However, robust interpretation also requires us to understand how 
bicycle use is influenced by other factors, especially weather. To pick 
apart the influence of stringency and weather we carried out a negative 
binomial regression. The results of this analysis are visually summarised 
in Fig. 7. 

The statistical analysis is useful in a number of ways. Firstly, it 
confirms that both bicycle counter and BSS data exhibit very similar 
behaviour. For example, Fig. 7 reveals that both measures of cycling 
volume respond to precipitation and temperature identically. This result 
is important, since it confirms that BSS data are a reliable proxy for 
overall cycling behaviour, in a study using a large number of counter 
locations (40). Indeed, direction and significance of all variables pre-
dicting count are identical, while small variations in the magnitude of 
the estimates are present. Precipitation leads to a decrease in bicycle use 
in Q1 and Q4, during the colder months of the year. Increases in inso-
lation and temperature are always predictors of increased usage of bi-
cycles. Finally, bicycle use generally decreased where stringency 
increased, except during Q3 where we observe the opposite effect for 
both systems. The results for Q1, Q2 and Q4 again suggest general 
conformity with stronger measures (lockdowns and stay at home orders 
were in force during all of these periods). Q3 was the period of the 
pandemic with the lowest stringency and also coincides with the French 
holiday period, which as we observed above led to a general decline of 
bicycle use, coincident with a decrease in stringency. 

4. Discussion 

This paper has considered the use of BSS and counter data to explore 
cycling behaviour in the city of Paris. We used a combination of visu-
alization and statistical analysis to explore the comparability of these 
two data sources, and the influences on cycling behaviour in 2020. Since 
behaviour generally in 2020 was strongly influenced by restrictions 
imposed as a result of the COVID-19 pandemic, it is an ideal test year to 
explore both the sensitivity of bicycle use to major mobility shocks and 

how aligned BSS use is with direct bicycle counts. The impacts of 
COVID-19 provide a non-weather-related control over behaviour that 
allow us to both assess and account for weather-related measurements. 
In the following, we explore the key results found, comment on the 
strengths and weaknesses of the methodological approaches taken and 
relate our results to previous work. 

The proposed visual analytics methods revealed behavioural changes 
at hourly, daily and monthly levels. The visualizations allowed us to see 
fluctuations in cycling activity at different temporal scales in Paris over 
the first pandemic year. The immediate signal resulting from the first 
wave of the pandemic was rapid and obvious, and of particular note was 
the rapid increase in use of bicycles across all of Paris immediately 
before the first lockdown. This suggests bicycle travel and BSS have a 
potentially important role in acting as a ‘buffer’ in response to external 
mobility shocks. More generally, the visualization suggested a strong 
link between lockdown events and use of bicycles, with easing of mea-
sures resulting in increased demand. By changing temporal scales, we 
observed ways in which demand shifted through the day, flattening 
morning and evening rush hours, while maintaining overall demand 
during the day. 

The visualization also prompted questions, since peaks and troughs 
in usage were visible at different spatial scales which did not appear to 
be driven by COVID-19. We used a negative binomial regression model 
to link the effects of COVID-19 (stringency index) and weather (pre-
cipitation, insolation and temperature) effects on cycling in Paris for 
bike sharing and counter data. The results were remarkably consistent 
for both datasets, with both temperature and insolation effects signifi-
cantly positively correlated with cycling over the whole year and during 
all quarters. On the other hand, the effects of precipitation on cycling 
demand were negative over the year as a whole, but vary consistently 
between the two datasets over calendar quarters. This suggests that 
despite an obvious utility function, bicycle use is significantly discre-
tionary in character, even in the presence of strong external constraints 
such as lockdown and pandemic-induced reluctance to use public 
transport. Unlike most existing work (e.g., De Chardon et al., 2017; 
Hyland et al., 2018), increased precipitation was not associated with a 

Fig. 7. Visual summary of the results of negative binomial regression on bicycle counts for BSS and counters. Circle size indicates effect size; hue indicates direction 
of relationship; colour lightness indicates statistical significance. 
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decrease in cycling in two quarters (Q2 & Q3). In these quarters we also 
note a switch in the influence of stringency measures, from a negative to 
a positive correlation. We suggest that these results demonstrate that the 
abrupt and sharp increase in bicycling induced by the end of ‘stay at 
home’ order in Paris, that lasted until the imposition of a new lockdown 
in October was broadly resistant to weather influences. Given the 
extreme nature of COVID-19 impacts on behaviour in France (with 
relatively strict stay at home orders and restrictions) our results point to 
the importance more generally of considering environmental factors in 
modelling disruptive events such as transport strikes (Saberi et al., 
2018). 

Regarding weather effects in cycling more generally, our findings are 
broadly in line with the results of others (e.g., De Chardon et al., 2017, 
Hyland et al., 2018) when it comes to temperature and insolation effects. 
Positive precipitation effects on cycling were not reported in any of 
reviewed studies. However, few authors have compared the combined 
effects of weather and COVID-19 measures, with the notable exception 
of Büchel et al. (2022) who used weather as input data to model baseline 
behaviours in Switzerland. Our results point to the importance of dis-
entangling multiple factors on behaviour. Even after aggregation to 
quartiers we had 80 data points per hour for Vélib data and 40 for 
counter data, allowing us to perform robust regressions. 

Our analyses of COVID-19 impact on cycling showed similar results 
to existing studies. The changes in cycling traffic induced by the 
pandemic – reduced during strict restrictions, but recovering quickly, 
had similar trends to other studies using BSS (Shang et al., 2021; Hu 
et al., 2021; Kim, 2021) and counter data (Doubleday et al., 2021; 
Büchel et al., 2022). Our comparative study shows clearly that BSS and 
counter data show very similar patterns and relationships in both our 
qualitative and quantitative analysis. Since these two datasets are in-
dependent, this is good evidence that BSS data capture well the overall 
pattern of bicycle usage in Paris. Furthermore, these data have finer 
spatial granularity than counter data due to their much denser network 
of stations. Since BSS data exist in many cities, and basic counter data 
are often available through APIs, this result is encouraging, because it 
suggests a possible route to fine-grained spatial and temporal studies of 
bicycle use, without resorting to expensive counter networks. 

The methods and data sources we have adopted here provide a useful 
approach for establishing detailed baseline behaviour for those ana-
lysing post-pandemic mobility responses. It could be productively 
combined with other methods for understanding demographics and 
behaviour (e.g. the survey-based investigation of cyclists’ motivation 
explored by Adam et al., 2023). Paris, like several other major cities, has 
retained new infrastructure that was built to support cycling during the 
pandemic (Buehler and Pucher, 2021). Our approach, which reveals 
spatial detail in behaviour change, could inform planning of further 
infrastructure as well as inform city managers of changes in behaviour 
during major disruptions to the system. Our interactive visualizations 
are resolved to individual quartiers in Paris, allowing exploration of 
geographic variations in behaviour in time. 

Nonetheless, our approach has several important limitations. First, 
our results are clearly sensitive to the spatial and temporal aggregations 
we chose. In particular, the choice of quartiers for counts may mask 
important local spatial variation. Second, the stringency index we used 
to explore the impacts of COVID-19 in our statistical analysis integrates 
multiple measures which influence different sorts of cycling behaviour 
in different ways. For example, during lockdowns people were 
encourage to work from home, while exercise by bicycle was still 
permitted or even encouraged – thus commuting cycling likely 
decreased at high stringency index values while some recreational 
cycling probably increased as has been observed in other studies (Hu 
et al., 2021; Doubleday et al., 2021). Third, no information about in-
dividual cyclists is available that would allow deeper mobility change 
analyse, for example, based on social stratification or gender, both 
known to be important predictors of some forms of cycling behaviour 
(Hu et al., 2021, Beecham and Wood, 2014b). Finally, the network of 

bicycle counters in Paris is underdeveloped compared to the BSS 
network with respect to density and therefore spatial analyses with finer 
granularity are not possible using counter data. 

5. Conclusions and further work 

In this paper we set out to explore and compare cycling behaviour 
captured through two sources: counts of activity at 1,004 fixed stations 
of the Vélib bicycle sharing system in the city of Paris, aggregated to 80 
quartiers, and bicycle counts captured on the Paris street network at 40 
locations. 

Our results demonstrate that:  

• Bicycle sharing station data are an effective and reliable proxy for 
both qualitative (as captured in a range of dynamic visualization) 
and quantitative (comparing bicycle use to weather and COVID-19 
stringency) patterns of overall bicycle use as captured by bicycle 
counters.  

• Cycling behaviour responded rapidly to specific events during the 
COVID-19 pandemic in Paris, and behaviour patterns (e.g. use of 
bicycle at different times of day and reduced commuter peaks) are 
visible.  

• Overall bicycle use in Paris was influenced more strongly over the 
year as a whole by precipitation than COVID-19 stringency, while 
temperature and insolation have influences of a similar magnitude. 

Our approach, which combines dynamic visualization with more 
traditional statistical analysis is flexible, and indeed we have already 
produced visualizations for other cities using both BSS and counter data. 
In future work we plan to explore in more depth the spatial pattern of 
responses to other forms of disruption on the network through events 
such as strikes, holidays and festivals. 
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